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ABSTRACT 

Alisha Renee Coffey: Systems Genetics Approach to Defining Genetic and MicroRNA 
Association with Diet-Associated Atherosclerosis 

(Under the direction of Brian J. Bennett and Praveen Sethupathy) 

Atherosclerosis is a progressive condition that can develop over the course of 

decades, and eventually lead to cardiovascular disease, which is the leading cause of 

death in the world. Metabolic imbalance in the liver can cause dyslipidemia (abnormal 

levels of lipids) and aberrant levels of metabolites such as trimethylamine N-oxide 

(TMAO), both of which are associated with increased risk of atherosclerosis. 

Understanding the genetic influences and molecular networks that govern these 

processes is necessary to identify candidates for more effective therapeutics.  

MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators 

of gene expression in various biological and pathological processes, and have been 

shown to be dysregulated in atherosclerosis. Most previous mouse studies of miRNAs 

in atherosclerosis have a common limitation in that they have utilized single inbred 

strains to study individual miRNAs of interest. These have left important knowledge 

gaps in the field that motivate new studies to understand the response of miRNAs to 

atherogenic diets in diverse genetic backgrounds.  Also, because miRNAs are 

purported to function cooperatively in groups, it is important to not simply focus 

investigative efforts on the actions of single miRNAs. My research directly addresses 

these gaps in the field. Specifically, I utilized an unbiased systems genetics approach in 
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a genetically diverse mouse cohort from the Diversity Outbred (DO) resource to 

identify co-regulated modules of hepatic miRNAs, or rather groups of miRNAs in the 

liver that exhibit a shared response to a pro-atherogenic diet. I also quantified the extent 

of association between the miRNA groups, gene modules, and several cardiometabolic 

traits. Notably, we found that one particular group of miRNAs, comprising members 

such as miR-146, miR-27, miR-24, miR-199, and miR-181, is strongly correlated with 

circulating levels of low-density lipoprotein cholesterol. 

The majority of previous studies on the cardiovascular disease risk factor and 

liver metabolite TMAO focus on its regulation by the gut microbiota as well as some 

host liver enzymes. However, there have been very few studies to investigate the 

effects of host genetics on circulating TMAO levels. To understand the genetic 

influences on TMAO, I performed quantitative trait loci mapping in the same DO cohort 

mentioned above. I identified a novel association between a locus on chromosome 12 

and circulating TMAO levels. Also, I identified miR-146 as a strong candidate regulator 

of TMAO, which was corroborated in additional animal models (a mouse and non-

human primate model) of cardiometabolic dysfunction. 

The findings from this body of work contribute to the field by addressing two 

major knowledge gaps, and warrant further study and validation in the context of 

atherosclerosis.	
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CHAPTER 1: INTRODUCTION 
 

1.1 ATHEROSCLEROSIS 

According to the World Health Organization, cardiovascular disease (CVD) is 

the number one cause of death worldwide, with ~30% of all deaths resulting from 

complications of CVD in 2015 [WHO]. CVD is not one disease, but can be one (or 

more) of multiple systemic conditions including, but not limited to angina, coronary 

heart disease, and peripheral artery disease. Atherosclerosis, a condition involving 

the gradual hardening and narrowing of the major or medium arteries caused by 

fatty deposit build-up, is a common cause and hallmark of CVD [AHA].  

Atherosclerosis is a progressive condition that can initiate as early as within the 

first ten years of life [Lusis 2000]. Atherosclerotic plaques begin as fatty streaks that 

are mainly composed of monocyte-derived macrophages, and T lymphocytes [Ross 

et al. 1995]. These tend to form in the regions of arteries that have an increase in 

blood pressure-induced tensile stresses such as in branching sites, or in sites where 

there are changes in the direction of blood flow such as in the aortic arch [Langille et 

al. 1997].  Over time and in favorable conditions, the streak can grow to become an 

advanced fibrous lesion consisting of smooth muscle cells, extracellular matrix, 

debris such as calcium and connective tissue, and a lipid-rich necrotic core 
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[Lusis 2000]. The advanced lesion, if left untreated, can lead to ischemia, heart 

attack, stroke and death.  

A number of environmental factors are known to promote the development of 

atherosclerosis. These include having a lifestyle that lacks exercise, overuse of 

alcohol, chronic smoking, and (of particular importance) an unhealthy diet that is 

high in saturated fats and cholesterol [AHA, WHO]. Of these, diet is one of the 

largest contributors to atherosclerosis and CVD. A health comparison of Japanese 

people living in Japan versus those living in the United States showed that 

individuals that adopted an American diet and lifestyle had higher incidence of CVD, 

and that the frequency of incidence was comparable to that of other Americans; 

thus, highlighting the relevance and importance of diet in CVD [Kagan et al.1974]. 

An unhealthy, unbalanced diet consisting of large quantities of high fat, high 

cholesterol foods can cause a type of dyslipidemia known as hyperlipidemia, or 

abnormally high lipid levels. In addition, supplementation of the high fat diet with 

cholic acid, a type of hydrophobic bile acid, causes an increase in lipid absorption in 

the intestines, an inflammatory response, and increased cholesterol excretion 

[Fickert et al. 2001]. To that end, cholic acid is often added to a high fat diet to 

induce hypercholesterolemia in mice. Elevated concentrations of certain cholesterol 

fractions, such as low-density lipoprotein cholesterol (LDL-C) or triglycerides, often 

leads to atherosclerosis and many forms of CVD [Lusis 2004].  
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1.2 LIPID HOMEOSTASIS, THE LIVER, AND ATHEROSCLEROSIS 

Lipid homeostasis is a balancing act between lipid intake, distribution, storage, 

and elimination. Although there are several organs and tissues that have a role in 

lipid homeostasis, the liver is one of the central organs in lipid metabolism and 

distribution. It is responsible for the synthesis, export, and clearance of lipids from 

circulation. Liver metabolism is meticulously regulated by the quality and quantity of 

diet, and energy availability.  

Dietary lipids, as well as lipids from other sources in the body (e.g. adipose 

tissue, macrophages), are sent to the liver as components of lipoproteins [Ponziani 

et al. 2015].  However, atherogenic dyslipidemia can occur when there is a deviation 

from normal uptake, export of lipids, or as a result of chronically consuming foods 

high in fat and cholesterol [Austin et al. 1990]. After large amounts of dietary lipids 

are transported to the liver, an overproduction of very low-density lipoprotein (VLDL; 

composed of apolipoprotein B, phospholipids, triglycerides and cholesteryl esters) 

often occurs, and this is a common hallmark of atherogenic dyslipidemia [Adiels et 

al. 2008, Hebbachi et al. 2001]. VLDL is converted to LDL by a series of processes 

that involves an initial transfer of triglycerides by CETP, and subsequent lipase 

activity [Ginsberg et al. 1994, Manjunath et al. 2013]. In fact, increased amounts of 

circulating LDL-C, which is especially rich in cholesterol, tend to accumulate in the 

arterial wall, and undergo oxidation, which initiates an inflammatory response that 

causes recruitment of monocytes to the area [Helkin et al. 2016]. Once there, the 
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monocytes differentiate into macrophages, which proceed to engulf and digest the 

oxidized LDL-C (oxLDL). However, oxLDL overload often occurs in macrophages, 

thereby causing them to become foam cells: cells typically found in abundance in 

atherosclerotic plaques [Helk et al. 2016]. Thus, an increase in circulating lipids 

initiated in large part by the liver, is extremely important in the onset and progression 

of atherosclerosis. 

A metabolic imbalance in the liver often results in a shift in lipid homeostasis. 

For instance, non-alcoholic fatty liver disease (NAFLD) has been implicated as a 

predictor for several cardiometabolic conditions, including CVD [Lonardo et al. 

2017]. Not only is NAFLD a strong risk factor for CVD, but also, evidence suggests 

that it may instigate the premature progression of fatty streaks to advanced lesions, 

which ultimately increases the incidence of cardiac events (e.g., heart attack, stroke) 

and mortality irrespectively of other CVD risk factors [Lonardo et al. 2006]. 

Furthermore, it has been shown to cause chronic inflammation, which is another 

hallmark of atherosclerosis and CVD [Sinn et al. 2017, Zeb et al. 2016]. NAFLD also 

can be used as a predictor for hypertension (another important risk factor for CVD), 

and the severity of NAFLD-induced fibrosis in the liver can additionally serve as an 

indicator of CVD mortality [Ekstedt et al. 2015, Li et al. 2017, Lopez-Suarez et al. 

2011]. 

The liver is also responsible for processing and producing a number of 

metabolites, including pro-atherogenic trimethylamine N-oxide (TMAO), which is 

associated with a 2.5-fold increase in the risk of developing CVD [Tang et al. 2013]. 



	 5	

The microbiota first convert dietary choline (from sources like red meat, eggs, and 

fish) to trimethylamine (TMA) gas, which is then absorbed and transported to the 

liver where it is oxidized into TMAO, predominately by flavin monooxygenase 3 

(FMO3) [Wang et al. 2011]. Studies in atherosclerosis-prone mice show that a 

regular chow diet supplemented with TMAO or choline is enough to cause formation 

of atherosclerotic plaques in the aorta, whereas treatment of the same mice with 

antibiotics prevented this increase in plaque formation [Wang et al. 2011]. A similar 

study in humans showed a marked reduction in TMAO levels after treatment with 

antibiotics, and a rebound after antibiotic treatment was complete [Tang et al. 2013]. 

Further studies in humans comparing vegetarians and omnivores showed that 

omnivores had higher baseline levels of TMAO and a greater capacity to produce 

TMAO after L-carnitine feeding than the vegetarians; thereby, highlighting the 

differences in diet-mediated gut microbiota composition between meat-eaters and 

vegetarians [Koeth et al. 2013].  

While these studies suggest a causal relationship between the microbiota, 

TMAO, and atherosclerosis, they do not address the relationship between TMAO 

levels and host genetics. A genome-wide association study (GWAS) done in the 

Hybrid Mouse Diversity Panel identified a locus for TMAO levels that overlaps with 

an expression quantitative trait locus (eQTL) on chromosome 3 for Slc30a7 

expression [Hartiala et al. 2014]. In their comparative GWAS performed in humans, 

the association was found to be merely suggestive. Although the association did not 

replicate when the lead SNP was genotyped in the individuals, it is still possible that 
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this gene is involved with modulating TMAO levels [Hartiala et al. 2014].  

Additionally, in a recent variant analysis done in individuals with trimethylaminuria 

disorder – which prevents individuals from converting TMA to TMAO – rare SNPs 

and insertion/deletions were identified in genes other than FMO3, thus providing 

further evidence that TMA metabolism and TMAO levels may be affected by other 

genes and genetic variation [Guo et al. 2017]. This provides the motivation for 

additional studies to further elucidate genetic influences, whether at the genomic 

level or molecular level, on TMAO.  

 

1.3 MICRORNAS 

A prominent species of RNA, known as microRNAs (miRNAs), has emerged as 

important regulators of gene expression, has been shown to function within 

molecular regulatory networks, and has been implicated in many biological 

processes that control lipid and metabolite metabolism. Here, it is important to 

highlight their actions and significance in CVD as they are part of the foundation of 

the work presented in this dissertation. 

 

1.3.1 Overview of MicroRNA Biogenesis 

MiRNAs are small non-coding RNAs that are post-transcriptional repressors 

of messenger RNA (mRNA) expression. They are encoded in the genome in 

intergenic regions, or within exonic or intronic regions of host genes [Altuvia et al. 

2005]. Primary miRNA transcripts (pri-miRNAs) are transcribed predominantly by 
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RNA Polymerase II, although there are some transcribed by RNA Polymerase III 

[Borchert et al. 2006, Lee et al. 2004]. The pri-miRNAs, which can be over 1 

kilobase in length, are trimmed by nuclear RNase III Drosha to reveal one or more 

miRNA precursors (pre-miRNAs), which are stem loop intermediates that are around 

70 nucleotides in length [Lee et al. 2002, Lee et al. 2003]. The pre-miRNAs are then 

transported to the cytoplasm by the Ran-GTP-dependent RNA binding protein, 

Exportin-5, where they are further processed by RNase III Dicer into a ~22 

nucleotide duplex [Yi et al. 2003]. One of the strands of the duplex is incorporated 

into the RISC (RNA-induced silencing complex), more specifically with an Argonaute 

protein, to locate an accessible complementary target sequence commonly found in 

the 3’ untranslated region (UTR) of specific mRNAs. Once the mature miRNA’s seed 

is sufficiently hybridized with a target sequence, the RISC can prevent translation by 

deadenylation, recruiting P body components to the mRNA, ribosomal drop off 

during translational elongation, and possibly other proposed methods [Eulalio et al. 

2008, Wakiyama et al. 2007, Parker and Sheth 2007, Petersen et al. 2006]. 

 

1.3.2 Regulatory Function of MicroRNAs 

MiRNAs were first studied in Caenorhabditis elegans (C. elegans), in the 

context of post-embryonic development, and were regarded as molecular switches. 

Lin-4, which was originally presumed to be a protein-coding gene, was found to be a 

miRNA that heterochronically decreases expression of lin-14 during the L1 larval 

stage [Ambros and Horvitz 1987, Lee et al. 1993, Wightman et al. 1993]. Without lin-
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4, the lingering high levels of lin-14 cause the larva to undergo a repeat of previous 

developmental stages, thus causing an abnormal adult lacking critical tissues. These 

findings demonstrated that miRNAs can turn essential genes that progress 

developmental programs on or off. Beyond development, miRNAs have been shown 

to perform this on/off switch-like function in other pathways, such as those 

associated with cancer cell proliferation. For instance, overexpression of let-7a was 

shown to cause a decrease in expression of MYC mRNA and protein, and decrease 

proliferation of lymphoma cells [Sampson et al. 2007]. More recently, researchers 

have harnessed and utilized the molecular on/off regulatory power of miRNAs in the 

detection and purification of cell types for which specific antigens have not been 

identified or extensively validated [Miki et al. 2015]. Overall, miRNA function as a 

molecular switch demonstrates that the effect of a single miRNA can have a robust 

regulatory effect on the expression of highly impactful genes. 

Although there are some contexts in which miRNAs operate as molecular 

switches, they more often operate as fine tuners of gene expression. On their own, 

miRNAs tend to have moderate effects on target gene expression. Most miRNAs 

merely stymie the expression of their target mRNAs to maintain levels below a 

certain threshold [Mukherji et al. 2011]. In other words, the miRNAs function to 

decrease noisy expression of their targets in order to enhance the robustness of 

some other switch-like molecule [Cohen et al. 2006, Mukherji et al. 2011, Siciliano et 

al. 2013]. This buffering function is likely the reason why the dysregulation of a 

miRNA’s expression can lead to drastic physiological outcomes, including 
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atherosclerosis and cardiometabolic dysfunction. The dysregulated miRNA’s 

function can obscure its target genes’ expression thresholds, thereby rendering the 

other molecular switch ineffective. 

Many studies across the field of miRNA biology present results in such a way 

that may lead one to assume that a single miRNA may regulate a single mRNA 

transcript at a time in a particular tissue or disease context. However, generally, 

miRNAs can have hundreds of target genes, many of which may be simultaneously 

expressed in the cell at any given time [Bartel 2009]. In addition, the vast majority of 

mRNAs, on average, contain four or more target sites in their 3’ UTRs, thus allowing 

a single mRNA to be targeted by multiple miRNAs [Friedman et al. 2009, John et al. 

2004]. Furthermore, these target sites are often conserved together, and many 

genes operating within the same networks have the same miRNA target sites [Chan 

2005]. All of this supports the notion that miRNAs can regulate gene expression in a 

combinatorial manner. In fact, there is evidence to indicate that multiple miRNAs can 

cooperatively target the same mRNAs to regulate their expression [Coronello et al. 

2013, Doench et al. 2004, Hashimoto et al. 2013, Hon et al. 2007, Krek et al. 2005, 

Wu et al. 2010]. Even beyond this concept, it has been shown that networks of 

miRNAs can coordinately target entire networks of mRNAs, many of which are part 

of the same or related biological processes [Georges et al. 2008, Gusev et al. 2007, 

Joung et al. 2007]. Transcription factors can promote the expression of several 

miRNAs and their targets thereby creating complicated expression networks such as 

feedforward loops and feedback loops [Vera et al. 2012]. 



	 10	

 

1.4 MICRORNAS IN ATHEROSCLEROSIS 

While processes of atherosclerosis and CVD progression encompass several 

tissues including immune cells, endothelial cells, the intestine, and adipose, multiple 

miRNAs in the liver have been implicated as being drivers or responders to 

atherosclerosis or cardiometabolic dysfunction. Yet, there are a precious few that 

have been extensively studied. In the following paragraphs, I will briefly describe 

them and their importance in atherosclerosis. 

 

1.4.1 miR-33 

miR-33 is arguably the most well-studied miRNA when it comes to lipid 

metabolism and atherosclerosis. Its genomic location in mice is within an intron in 

the SREBF2 gene, which encodes a transcription factor that is essential for turning 

on the expression of cholesterol biosynthesis genes [Horton et al. 2002, Rayner et 

al. 2010]. MiR-33 is co-expressed with SREBP-2 in macrophages, the liver, and 

other tissues in the absence of cholesterol or after treatment with a statin, and is 

decreased in cholesterol feeding [Rayner et al. 2010]. It has been shown to target 

ABCG1, and have 3 functional target sites in the 3’UTR of ABCA1, both of which 

encode membrane proteins that control cellular cholesterol efflux [Rayner et al. 

2010]. MiR-33 also targets SREBP1, which is an activator of fatty acid synthesis 

genes [Horie et al. 2013]. MiR-33 knockout (KO) mice were shown to have elevated 

SREBP-1, as well as higher incidences of obesity and hepatic steatosis (fatty liver) 
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[Horie et al. 2013]. This action is conserved in humans, however, humans have two 

members of the miR-33 family, miR-33a and miR-33b, that differ by only 2 

nucleotides; whereas mice only have one, which is homologous to human miR-33a. 

Antagonism of miR-33 results in an increase in fatty acid oxidation genes and high-

density lipoprotein (HDL), and a decrease in expression of fatty acid synthesis genes 

and circulating VLDL triglyceride levels in non-human primates [Rayner et al. 2011]. 

In mice, treatment of antagomiR-33 or miR-33 KO ultimately caused the regression 

of atherosclerotic plaques in two traditional models of atherosclerosis, Ldlr-/- and 

Apoe-/-, respectively, which led to the consideration of miR-33 as a therapeutic target 

[Horie et al. 2012, Rotllan et al. 2013]. However, long-term inhibition of miR-33 

showed no change in the state of disease in Ldlr--/- mice, and even had detrimental 

effects in wild-type C57BL/6 mice fed a high fat diet (HFD) [Marquart et al. 2013, 

Goedeke et al. 2014]. 

 

1.4.2 miR-30c 

miR-30c is a more recently discovered miRNA in the context of 

atherosclerosis. In 2013, it was discovered to have atherosclerosis and 

hyperlipidemia-reducing effects when overexpressed by lentivirus in the livers of 

C57BL/6 mice fed a western diet [Soh et al. 2013]. Injecting miR-30c mimic was 

shown to have similar effects in Ldlr-/- mice, as well as ob/ob, and db/db mice, which 

are other models of cardiometabolic dysfunction [Irani et al. 2016, Irani et al. 2017]. 

miR-30c targets MTP, or microsomal triglyceride transport protein, which assists in 
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lipoprotein assembly and lipidation to form LDL. In an MTP activity assay, miR-30c 

decreased MTP activity by 50%, whereas other miR-30 family members had no 

effect [Soh et al. 2013]. It exerts its lipid synthesis reducing activity by also targeting 

Lpgat1. This activity, along with its lack of steatosis or other harmful side effects 

makes miR-30c an attractive candidate for use as a therapeutic agent against 

atherosclerosis [Irani et al. 2015, Irani et al. 2016, Soh et al. 2013]. 

 

1.4.3 miR-148a 

miR-148a is an intergenic miRNA that regulates lipid metabolism in the liver, 

adipose tissue, and macrophages by regulating LDLR and ABCA1 [Baldan and 

Fernandez-Hernando 2016].  A high-throughput screen revealed that miR-148a 

mimic led to a decrease in LDLR [Goedeke et al. 2016]. Further investigation 

showed that miR-148a expression is modulated by SREBP1, which is in turn 

modulated by lipid levels [Goedeke et al. 2016].  When miR-148a is inhibited, LDLR 

and ABCA1 are increased, which causes a decrease in circulating LDL-C and an 

increase in circulating HDL-C [Goedeke et al. 2016, Wagschal et al. 2015]. In the 

livers of mice and non-human primates fed a HFD, miR-148a is found to be 

upregulated, and a human GWAS solidified a connection between SNPs near miR-

148a and abnormal circulating lipids [Goedeke et al. 2016, Wagschal et al. 2015]. All 

of these findings lend the suggestion of miR-148a as another potential therapeutic 

target for dyslipidemia and atherosclerosis. 
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1.4.4 miR-27 

Yet another miRNA that plays a role in lipid metabolism and atherosclerosis is 

miR-27. It is another miRNA that targets LDLR and ABCA1, but also targets other 

genes involved in lipid transport [Alvarez et al. 2015]. Overexpression of miR-27a 

both directly and indirectly causes a decrease in LDLR activity, and an increase in 

PCSK9, a negative regulator of LDLR [Alvarez et al. 2015]. MiR-27a and miR-27b 

both regulate cholesterol transport in and out of THP-1 macrophages by targeting 

ABCA1, LPL, and ACAT1, and they also indirectly regulate the expression of apoA1 

in vitro [Zhang et al. 2014]. In vitro experiments also showed that overexpression of 

miR-27b decreased MMP-13 expression both directly and via targeting of IL-1β, 

which may promote plaque formation during atherosclerosis progression [Akhtar et 

al. 2010, Deguchi et al. 2005, Prescott et al. 1999,]. Yet another mechanism of 

regulation facilitated by miR-27b is that of PPARα, a transcription factor that is highly 

expressed in the liver that activates expression of a slew of lipid metabolism genes 

[Kida et al. 2011]. MiR-27 also regulates cholesterol synthesis by targeting HMGCR, 

which is the rate-limiting enzyme in the pathway [Selitsky et al. 2015]. Furthermore, 

miR-27 has been shown to regulate a number of genes in other pathways involved 

with atherosclerosis including inflammation, angiogenesis, and apoptosis [Chen et 

al. 2012]. With regulatory control over such a wide array of genes, it is no wonder 

that miR-27 has been identified as a regulatory hub in lipid metabolism, and that its 
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expression in the liver is altered in dyslipidemia and atherosclerosis [Vickers et al. 

2013]. 

In addition to the four that have been highlighted here, there are a number of 

other hepatic miRNAs that have been implicated in atherosclerosis. Many of these 

such as miR-29, miR-146, miR-24, and miR-122 have been identified as regulators 

of lipid metabolism and have been shown to be abnormally expressed in the disease 

state [Baldan and Fernandez-Hernando 2016, Kurtz et al. 2015, Rotllan et al. 2016, 

Willeit et al. 2016]. The growing list of miRNAs relevant to lipid metabolism and 

homeostasis provides the motivation to identify groups of miRNAs that modulate the 

underlying processes of CVD.  

 

1.5 ANIMAL MODELS USED FOR STUDYING ATHEROSCLEROSIS  

The laboratory mouse has been an invaluable tool for studying the onset, 

progression, and molecular mechanisms involved in atherosclerosis and its risk 

factors. Since mice are naturally resistant to atherosclerosis, it was necessary to 

develop mouse models that are prone to developing atherosclerosis and 

hyperlipidemia. These are generally on the C57BL/6J background, and commonly 

harbor a null mutation in a single gene -- the two most widely-used KO mouse 

models being ApoE-/- and Ldlr-/- mice [Ishibashi et al.1994, Zhang et al. 1992].  

ApoE KO mice have a disruption in cholesterol uptake (especially that of 

cholesterol-rich chylomicrons and VLDL-C) and, therefore, have elevated levels of 

plasma cholesterol. This phenotype is further exacerbated by HFD or Western diet 
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feeding [Plump et al. 1992]. Ldlr deficient mice also have disrupted cholesterol 

uptake (especially that of apoB and apoE-containing lipoproteins), and have a 

phenotype similar to that seen in humans with familial hypercholesterolemia 

[Defesche 2004]. Similar to ApoE deficient mice, when Ldlr deficient mice are fed a 

HFD, the severity of hyperlipidemia and atherosclerosis is worsened. Much of what 

is known about genes and mechanisms influencing atherosclerosis have been 

identified using these mouse models. It is worth noting that there are other models, 

including transgenic mouse models such as ApoE3-Leiden that are also popular for 

studying cardiometabolic dysfunction, but may have slightly different phenotypic 

characteristics [van den Maagdenberg et al. 1993]. 

Although these mouse models have contributed a great deal to what we know 

about atherosclerosis and hyperlipidemia, utilizing them in experiments comes along 

with some limitations. For instance, ApoE-/- mice typically have elevated VLDL-C and 

rarely have plaque rupture without the aid of a perivascular cuff. This is different 

from the elevated LDL-C and myocardial infarction/stroke-causing plaques that are 

seen in human atherosclerosis [Emini Veseli et al. 2017]. Also, in both ApoE and 

Ldlr null mice, the metabolic dysfunction is caused by a disruption in only one gene. 

The role that genetic variation plays in CVD is, in a way, omitted since the studies 

utilize mice that are all on the same genetic background and harboring the same 

mutation. That single mutation, while detrimental in one context, may produce a 

completely opposite effect in a different mouse strain [Shi et al. 2002]. However 
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successful these models are, their limitations and shortcomings suggest that a 

model that more directly mimics the genetic diversity seen in humans is needed. 

 

1.6 SYSTEMS GENETICS APPROACHES FOR STUDYING 

ATHEROSCLEROSIS 

Many of the risk factors have significant genetic components associated with 

strong heritability and increased susceptibility for developing atherosclerosis. These 

risk factors, including total cholesterol, HDL-C, triglycerides, body mass index, blood 

pressure, and type 2 diabetes, together have heritability measures anywhere from 

approximately 25-80% [Lusis 2004]. These factors, when measured in the 

population, often convey normal distributions, which are indicative of polygenic traits, 

or rather traits controlled by multiple genes [Lusis 2004].  

Since many cardiometabolic traits are polygenic and influenced by pleiotropic 

molecules, studying them should involve a method that includes a more 

comprehensive view of the systems and networks underpinning them. Instead of 

using a knockout or transgenic animal model that involves a single mutation like in 

conventional studies, systems genetics studies -- in which there is integration of 

genetic variation, molecular profiles, and phenotype information -- are becoming 

increasingly popular as a method for relating genetics with molecular and 

physiological phenotypes [Sieberts and Schadt 2007]. In these methods, a 

genetically diverse population is necessary for studying molecular interactions and 

drawing conclusions that are applicable to multiple genetic backgrounds. In this 
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case, the genetic diversity acts as multiple genetic perturbations, which modifies the 

proper function of molecular networks and initiates disease [Civelek and Lusis 2014, 

Sieberts and Schadt 2007]. Overall, by integrating genetic and genomic data, we 

can explore how natural variation in a population influences disease and disease-

related phenotypes, and eventually identify candidates that exert causal control over 

them [Kulp and Jagalur 2006]. 

There are few requirements when choosing a model to use in a systems 

genetics study. As mentioned, a systems genetics study utilizes natural DNA 

variation as perturbations, so the model must have high levels of genetic diversity. 

However, other sources of variation such as environment or population structure 

must be controlled for. Diversity outbred mice, or DO mice, are a mouse resource 

that were created for the exact purpose of performing systems genetics studies 

[Churchill et al. 2012]. The population was created by strategically breeding eight 

parental mouse strains, including both inbred and wild-derived strains to first form 

the Collaborative Cross (CC) mice, which are recombinant inbred strains of mice 

[Churchill et al. 2012]. Then, mice from different CC mouse strains were randomly 

outbred in a way that ensured that mating pairs were unrelated; thus, resisting 

genetic drift or loss of variation [Churchill et al. 2012, Schmidt 2015]. The breeding 

scheme allows for a high level of allelic diversity, an even distribution of variants in 

gene coding and regulatory regions, as well as small haplotype blocks that decrease 

with each successive generation, thereby allowing for increasingly high-resolution 

mapping [Churchill et al. 2012, Gatti et al. 2014, Svenson et al. 2012]. With such a 
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high degree of naturally-occurring allelic variation, the genetic makeup, phenotypic 

variability, and susceptibility to various chemicals or diseases mimics that which is 

seen in humans [Schmidt 2015]. To that end, the DO mouse resource is an idyllic 

animal model for systems genetics and genetic mapping studies. Specifically, it is a 

resource that is ideal for performing unbiased systems genetics studies, in which 

transcriptional signatures are identified in a particular context without the specific 

modification of the organism’s genome. By this method, we can begin to answer 

explicit questions regarding genetics and regulation, as well as gain a more global 

view of the system. 

 

1.7 SUMMARY AND SIGNIFICANCE OF RESEARCH PRESENTED 

The research within this dissertation features work that is an expansion of a 

previous study in which DO mice were used to perform quantitative trait loci (QTL) 

mapping studies to identify novel QTL for clinical phenotypes measured either 

before or after specific diet treatments [Smallwood 2015]. The work presented here 

delves a bit deeper by investigating the molecular profiles of gene and miRNA 

expression in the livers of the same ~300 DO mice. Having the molecular 

information as well as genotype and phenotypic measurements from the genetically 

diverse mice, we endeavored to find miRNAs and miRNA co-regulated modules that 

are associated with cardiometabolic risk factors. In addition, we also attempted to 

identify genetic variation that regulates these parameters via genes or miRNAs. 



	 19	

Although there is a large amount of evidence supporting groups of miRNAs 

regulating networks or modules of genes, miRNA studies encompassing 

cardiometabolic dysfunction commonly involve the investigation of single miRNAs in 

a single inbred mouse strain, or mice on an inbred strain background. Those studies 

are not conducive to getting a complete picture of how the fine-tuning action of 

miRNA groups, or modules, can facilitate the development of particular physiological 

outcomes. With the work included in Chapter 2, we addressed this deficiency by 

performing an unbiased systems genetics approach to identifying miRNA modules 

associated with VLDL/LDL-C in a large and genetically diverse cohort of outbred 

mice on an atherogenic diet. By utilizing the gene and miRNA expression data and 

phenotype data, I performed a co-expression network analysis to identify co-

regulated modules (or groups) of miRNAs that are most responsive to the 

atherogenic diet and genetic variation. To do this, I used the weighted gene co-

expression network analysis (WGCNA) software. Briefly, WGCNA identifies modules 

of possible co-regulated miRNAs by calculating the extent of correlation, adjacency, 

and topological overlap measures for each item to another. This not only groups 

miRNAs that have similar expression patterns, but also calculates how connected 

each miRNA is to another, thereby allowing for the identification of potential hubs, or 

master regulators, of each module. Utilizing this method led to the identification of a 

particular miRNA module that is both associated with post-diet VLDL/LDL-C, and 

with gene modules that are also associated with VLDL/LDL-C. With these data, I 

also identified possible hub miRNAs, miR-199a, miR-181b, miR-24, miR-27a, and 
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miR-21 isomiR. This work not only addresses the aforementioned shortcomings in 

the field, but also highlights the importance of using genetically diverse animal 

models in such studies, as some results did not coincide with findings from studies 

using only inbred mice; thus, suggesting that the results from the inbred mouse 

studies may be ungeneralizable to genetically diverse organisms such as humans. 

To take advantage of the genetic diversity of the mouse cohort, and to address 

our question on genetic regulatory action, I integrated the data sets to perform QTL 

and eQTL mapping on the cardiometabolic parameters, genes and miRNAs. Since 

not much is known about the host genetic regulation of circulating TMAO, in chapter 

3, I utilized the mapping results to shed some light on the molecular underpinnings 

governing the cardiometabolic trait, TMAO. My work peels back one of the layers of 

this regulation by identifying miR-146 as a potential regulator of TMAO levels as it is 

one of the most highly aberrantly expressed miRNAs in the livers of the DO mice, as 

well as in the livers of two other animal models of cardiometabolic dysfunction with 

elevated TMAO levels, including non-human primates. Its expression is also 

significantly correlated with post-diet TMAO thereby supporting miR-146 as a likely 

driver of, or responder to, elevated circulating TMAO levels (a marker for 

cardiometabolic dysfunction). Also, QTL mapping done on pre-diet and post-diet 

levels of TMAO introduces another layer of genetic regulation of TMAO. We 

identified candidate genes with eQTL overlapping the QTL for TMAO -- a step in the 

direction of further elucidating the underlying host genetics that modulate circulating 

TMAO levels. 



	 21	

The work presented herein is unique in that it incorporates multiple datasets with 

phenotypic, genotypic, and molecular profile information from a cohort of genetically 

diverse mice. In Chapter 4, I end the exposition of my work with a discussion of how 

with these data, we have been able to answer some key scientific questions on 

genetics and regulation in cardiometabolic dysfunction, and develop a basis for 

asking and answering even more. 
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2 CHAPTER 2: SYSTEMS GENETICS IDENTIFIES A CO-REGULATED 
MODULE OF LIVER MICRORNAS ASSOCIATED WITH PLASMA LDL 

CHOLESTEROL IN MURINE DIET-INDUCED DYSLIPIDEMIA 
 

2.1 INTRODUCTION 

Dyslipidemia, or the state of having chronically altered lipid levels in the blood, 

is a major risk factor for developing atherosclerosis and cardiovascular disease 

[Nelson 2013, Zhang et al. 2015]. The liver is the primary organ regulating plasma 

lipid levels, and dysfunction in certain hepatic processes has been shown to be a 

main contributor to dyslipidemia [Hojland et al. 2016, Zhang et al. 2015]. Thus, 

understanding the underlying molecular mechanisms in the liver that cause or 

respond to dyslipidemia is important for ultimately identifying novel therapeutic 

targets. 

MiRNAs, which are small non-coding RNAs that fine-tune gene expression 

primarily at the post-transcriptional level, have emerged as key players in many 

processes, including those involved with lipid homeostasis. Several hepatic miRNAs 

have been associated with atherosclerosis and hyperlipidemia, including miR-27 

[Shirasaki et al. 2013, Vickers et al. 2013], miR-122 [Elman et al. 2008], miR-148a 

[Goedeke et al 2015], miR-33 [Horie et al. 2012, Rayner et al. 2010, Rayner et al. 

2011], and miR-30c [Soh et al. 2013].  
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A number of these miRNAs, including miR-33 and miR-30c, have been 

identified as potential therapeutic targets for atherosclerosis and hyperlipidemia 

[Christopher et al. 2016, Irani and Hussain 2015]. However, there are at least two 

limitations shared by most of these studies. First, the vast majority of the studies of 

miRNAs in lipid-related disorders have been performed in C57BL/6 mice, an inbred 

mouse strain. Although these have produced promising results, the relevance of the 

findings to genetically diverse outbred populations (like humans) is unclear. Second, 

all of these studies involve a focused effort to understand an individual miRNA, and 

its contextually relevant target genes. While this is a reasonable approach, it is not 

conducive to understanding the roles of miRNAs within a network of other miRNAs 

and genes. This is an important limitation since there is evidence to support the idea 

that miRNAs often work in cooperative groups to regulate gene expression [Krek et 

al. 2005, Lai et al. 2012, Xu et al. 2011]. 

One approach to addressing both of these limitations is to utilize a systems 

genetics strategy wherein transcript levels are quantified in tissues of interest, 

integrated with underlying genetic information, and related to clinical traits of interest. 

This has been successfully performed in a number of studies focused on gene 

networks in glucose and lipid metabolism in humans [Plaisier et al. 2009], mice 

[Yang et al. 2009], and flies [Cermelli et al. 2006]. Subsequent studies have 

consistently demonstrated that the candidates identified with these approaches are 

critical mediators of these processes [Fan et al. 2014, Musunuru et al. 2010, Zhang 

et al. 2016].  
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A resource that is ideal for such a study is the Diversity Outbred (DO) mouse 

population. The DO mice were created by strategic outbreeding of eight parental 

strains of mice, the same ones used to generate the Collaborative Cross (CC) which 

are distinct lines of mice that are maintained as recombinant inbred strains [Churchill 

et al. 2004]. While DO mice are similar to CC mice in that they represent mosaics of 

the eight founder lines, they are different from the CC in that each DO mouse has a 

unique, non-reproducible genome with dramatically increased levels of accumulated 

recombination [Churchill et al. 2012]. With each mouse harboring around 45 million 

variants in its genome, there is a high degree of allelic and phenotypic variation 

within the population. The extent of genotypic and phenotypic diversity, as well as 

the high frequency of recombination events, is very useful for identifying genetic 

contributions to traits of interest with high resolution [Svenson et al. 2012]. 

In the present study, we utilized a cohort of almost 300 DO mice to interrogate 

the hepatic network of miRNAs associated with circulating lipid levels in diet-induced 

dyslipidemia. We identify a key co-regulated module of miRNAs that is strongly 

associated with LDL cholesterol (LDL-C), which is a significant risk factor for many 

downstream morbidities, including atherosclerosis and metabolic disease. 

 
 
2.2 MATERIALS AND METHODS 

	
2.2.1 Animals, Diets, and Phenotyping 

Details on the origin, housing, husbandry and treatment of the Diversity 

Outbred (DO) animals, diet compositions, and measurement of total cholesterol, 
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triglycerides, glucose, and insulin have been provided previously [Smallwood et al. 

2014]. For HDL precipitation, 100μL aliquots of blood plasma samples were diluted 

1:4 with PBS, combined with 9 μL of Heparin-MnCl2, and centrifuged. Supernatant 

was removed and combined with working cholesterol reagent (mixture of reagent, 

HDCBS, Cholesterol Oxidase, Cholesterol Esterase, and Horseradish Peroxidase) 

[Puppione and Charugundla 1994]. Samples were run in triplicate on 96-well flat 

bottom plates, and absorbance was read at 515nm using BioTek plate reader and 

Gen5 software. Absorbance values were averaged across triplicates, and 

concentrations were calculated. In order to determine VLDL-C/LDL-C levels, HDL-C 

was subtracted from total cholesterol. Markers of liver inflammation, alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST), were measured 

using a Biolis 24i Analyzer (Carolina Liquid Chemistries, Winston Salem, NC). 

 

2.2.2 RNA Extraction 

Livers were flash frozen in liquid nitrogen and subsequently stored at -80 

degrees Celsius until their use. Total RNA was isolated by automated 

instrumentation from approximately 25 milligrams of liver tissue per sample using 

Norgen Total RNA Purification Kit (Norgen, Ontario, Canada, Catalog No. 24300). 

Quant-iTTM RiboGreen from ThermoFisher Scientific (Waltham, MA, Catalog No. 

R11490) was used to measure RNA concentration by fluorometry. RNA integrity was 

determined by Bioanalyzer from Bio-Rad Technologies. Only samples with RNA 
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Quality Indicator (RQI) of at least 7.5 or greater were used for microarray and 

sequencing.  

 
2.2.3 Microarray 

High quality RNA was available from livers of 268 of the 292 DO mice and 

was used for microarray gene expression analysis. The RNA was hybridized to 

Affymetrix Mouse Gene 2.1 ST 96-Array Plate using the GeneTitan Affymetrix 

instrument according to standard manufacturer’s protocol. Robust Multiarray 

Average (RMA) method was used to estimate normalized expression levels of 

transcripts (median polish and sketch-quantile normalization). Affymetrix Expression 

Console software was used for quality control assessment, and as a result, six of the 

mice were removed for not passing tests leaving 262 samples to be analyzed. All 

probes containing known SNPs from the eight founder inbred mouse strains of the 

DO mouse population were masked (165,204 probes) during normalization by 

downloading the SNPs from the Sanger sequencing website 

[http://www.sanger.ac.uk/science/data/mouse-genomes-project], and overlapping 

them with probe sequences. All control probes (190 probes), reporter probes (82 

probes), and normalization probes (6,683 probes) were removed from the probe sets 

before running WGCNA. Probes were filtered using an expression threshold of a 

minimum RMA of 4 in at least one-quarter of the samples, which left 15,105 probes. 

Differential expression analysis was performed by Student’s t-test, and p-values 

were corrected using the Bonferroni method. Microarray data is available on the 

GEO repository, accession number GSE99561. 
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2.2.4 Small RNA-sequencing 

High quality RNA was available from livers of 269 of 292 of the DO mice was 

used for small RNA sequencing (smRNA-seq). Libraries were created using New 

England Biosciences NEBNext Multiplex Small RNA Library Prep Set for Illumina, 

and 50bp single-read sequencing was carried out on the Illumina HiSeq platform 

resulting in an average of over 16 million reads per sample. miRquant 2.0 [Kanke et 

al. 2016] was used to trim off adapter sequences, align reads to the mouse genome, 

and quantify miRNAs and their isoforms (termed isomiRs). A previous study in 

Collaborative Cross mice has shown that miRNAs do not contain variants across 

founder strains within their seed regions, so reads were aligned to the mm9 mouse 

genome [Rutledge et al. 2015]. Reads were normalized to reads per millions 

mapped to miRNAs (RPMMMs). An expression threshold of at least 50 RPMMMs in 

at least one-quarter of all samples was set to filter out the lowly expressed miRNAs, 

which resulted in a set of 246 robustly expressed miRNAs. The results were 

consistent when repeated with an expression threshold of at least 100 RPMMMs in 

at least a quarter of all samples. Hierarchical clustering of the samples’ expression 

profiles was performed based on several dataset characteristics (library prep date, 

plate, etc.) to ensure there were no batch affects. Differential expression of miRNAs 

was performed by Student’s t-test, and p-values were corrected using the Benjamini-
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Hochberg method. Small RNA-seq data is available on the GEO repository, 

accession number GSE99561. 

 

2.2.5 WGCNA 

The WGCNA R package was used to identify the co-regulated modules 

(CRMs) for miRNAs and genes [Langfelder and Horvath 2008]. Only expression 

data from the HFCA-fed mouse samples were used to identify the CRMs.  

For the miRNA network analysis, we matched the smRNA-seq samples with 

the mice for which phenotypic data was measured, and were left with 256 DO mice, 

of which 135 were HFCA-fed mice. The RPMMMs were transformed to log2(x+1) 

scale. The soft threshold was chosen by running the pickSoftThreshold function to 

find the best fit to a scale-free topology, and beta was set to 14 because it fit with an 

R2 value ³ 0.8, and connectivity measures suggested the possibility of identifying 

hubs. An adjacency matrix was created using Pearson correlations. From the 

adjacency matrix, the topological overlap measure (TOM) was calculated using the 

signed method. The dissimilarity measure was calculated by 1-TOM, and this was 

used to create a dendrogram according to the Ward’s hierarchical clustering method. 

We use Ward’s method instead of the default average method because it considers 

the variance in expression between miRNAs before choosing to put them in a clade 

together. Thus, miRNAs within the same clade have the lowest variance in 

expression possible, which is meaningful for identifying clusters of co-regulated 

miRNAs. The hybrid tree-cutting algorithm was used to form the modules, which 
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were left unmerged. Module eigenmiRs (MEms) were calculated using the 

moduleEigengenes function, and were correlated with each phenotype measured in 

the mice using the biweight midcorrelation. Module significance was also calculated 

using biweight midcorrelation method. Modules with the highest correlation or 

inverse correlation (coefficient >|0.4|) were taken as those of interest. miRNAs that 

were found to have the highest aggregated TOMs within the respective CRMs, the 

highest kWithin (intramodular connectivity measure) and the highest Pearson 

correlations to their MEms were identified as hub miRNAs. Network files were 

exported to Cytoscape [Shannon et al. 2003] for visualization. 

For WGCNA on mRNAs, we matched microarray samples with the mice we 

have measured phenotypes for, and we were left with 249 DO mice, of which 135 

were HFCA-fed mice. We parsed out the top 5,000 most variably expressed mRNAs 

within the HFCA samples from the 15,105. We found that a large number of the 

mRNAs were not separated into CRMs, but were allocated to an undefined group, 

which is where genes are assigned when they cannot be placed into any module. 

We gradually reduced the number of mRNAs from 5,000 to 3,000. Using the top 

3,000 most variably expressed mRNAs within the HFCA samples allowed for each 

gene to be assigned to a specific CRM. Soft threshold beta was set to 9 because it 

fit a scale-free topology with an R2 value > 0.8, and connectivity measures 

suggested the possibility of identifying hub genes. An adjacency matrix was 

calculated with Pearson correlations, and the TOM was calculated using the signed 

method. The 1-TOM distance measure was used to create a dendrogram according 
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to the Ward’s method of hierarchical clustering. The hybrid tree-cutting algorithm 

was used to form the modules, which were left unmerged. Module eigengenes were 

calculated and correlated with each phenotype measured in the mice using the 

biweight midcorrelation. The same method was used to calculate correlations 

between gene CRMs and the brown miRNA CRM. Modules with the highest 

correlation or inverse correlation (coefficient >|0.4|) were recognized as those of 

potential interest.  

 

2.2.6 Pathway Enrichment Analysis 

Enrichr was used to perform pathway enrichment analysis and gene ontology 

analysis on the genes within each gene CRM [Chen et al. 2013, Kuleshov et al. 

2016].  

 

2.2.7 MicroRNA Target Site Enrichment Analysis 

miRhub [Selitsky et al. 2015] was used to perform target site enrichment 

analysis for miRNAs.  Briefly, miRhub employs a Monte Carlo simulation strategy to 

determine which miRNAs, if any, have an over-representation of predicted target 

sites at a specified level of conservation in a set of input genes.  We ran miRhub on 

genes up- and down-regulated in the liver from HFCA-fed mice and required 

positional conservation of predicted target sites in at least two mammalian species in 

addition to mouse. 
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2.3 RESULTS 

 
2.3.1 Effects of a high-fat cholic acid, dyslipidemia-inducing diet on plasma 

lipoprotein cholesterol levels in the diversity outbred mouse population 

 
In a previous study [Smallwood et al. 2014], we demonstrated the value of a 

specific multi-parental mouse population, the diversity outbred (DO) resource, for 

mapping quantitative trait loci (QTL) and identifying candidate genes and potential 

therapeutic targets for dyslipidemia and atherosclerosis. An initial cohort of 292 DO 

mice comprised of 146 sibling pairs was fed either a high-fat cholic acid containing 

diet (HFCA), which induces dyslipidemia, or a calorie-matched high protein diet (HP) 

for eighteen weeks. We identified QTLs for atherosclerotic lesion size, pre-diet 

circulating triglycerides, and post-diet circulating total cholesterol. In the present 

study (Figure 2.1), we have analyzed plasma samples from the same mouse cohort 

for several additional cardio-metabolic endpoints, with a primary focus on Very Low 

Density Lipoprotein and Low Density Lipoprotein Cholesterol (VLDL/LDL-C), and 

High Density Lipoprotein Cholesterol (HDL-C) prior to and after the eighteen-week 

diet exposure. We found that the average levels of alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), VLDL/LDL-C, but not HDL-C, are significantly 

elevated in HFCA-fed DO mice relative to the HP-fed DO mice (Figure 2.2A-D). 
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Notably, all but three of the HFCA-fed mice had higher circulating VLDL/LDL-C 

levels than the average level among HP-fed mice. Moreover, VLDL/LDL-C levels 

were highly variable among the HFCA-fed mice, ranging from <10 mg/dL to > 

300mg/dL (Figure 2C). This finding indicates that effects of the HFCA diet on plasma 

VLDL/LDL-C is highly dependent on genetic background. 

 

2.3.2 Effects of the HFCA diet on liver microRNA expression in the DO cohort 

Given the importance of the liver in maintaining cholesterol and lipoprotein 

homeostasis, and the growing appreciation for miRNAs in the control of cholesterol 

metabolism, we reasoned that hepatic miRNAs may associate with the observed 

variation in lipid phenotypes, particularly VLDL/LDL-C, across the mice in the DO 

cohort. To test this hypothesis, we performed small RNA sequencing (smRNA-seq) 

on liver tissue from 269 of the same DO mice at an average depth of 16 million 

reads per sample (range 7,662,595 – 30,8861,518 reads). The reads were mapped 

to the mouse genome (mm9), and miRNAs and their isoforms (referred to as 

isomiRs) were annotated and quantified using miRquant 2.0 [Kanke et al. 2016]. 

Detailed information on the mapping statistics are provided in online supplemental 

tables at http://www.physiology.org/doi/full/10.1152/physiolgenomics.00050.2017.  
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Figure 2.1 Summary Diagram of Study Design. 292 DO mice, each having a 
different composite of the 8 founder mouse strain genomes, were fed either HP or 
HFCA diet. Cardio-metabolic endpoints were measured before and after diet 
intervention. RNA was isolated from the livers of each of the mice, and used for 
microarray analysis to measure gene expression, and small RNA sequencing. 

RNA 
Isolation

Microarray Small RNA-seq

292 DO mice (HP or HFCA diet) 
with differing genomes

Livers

Measure pre- and post-diet cardio-
metabolic endpoints including:

• Plasma Total Cholesterol
• Plasma LDL/VLDL-C and 

HDL-C
• Plasma Triglycerides
• Plasma Glucose
• Plasma Insulin
• Plasma AST & ALT
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Figure 2.2: Plasma vLDL/LDL, AST and ALT are dramatically affected by HFCA 
diet. Box plot of (A) post-diet AST (mg/dL), (B) post-diet ALT (mg/dL), (C) post-diet 
plasma VLDL/LDL-C (mg/dL), and (D) post-diet plasma HDL-C (mg/dL) 
concentration in HP-fed DO mice and HFCA-fed DO mice. Each dot represents one 
mouse in the respective diet. Hinges of boxplots represent the first and third quartile 
of expression. 
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To normalize miRNA expression, we used the reads per millions mapped to 

miRNAs (RPMMM) method. After filtering out those miRNAs with low levels of 

expression across the majority of samples, 246 miRNAs remained (Methods). More 

than one-third of these were significantly elevated (fold-change ≥ 1.5, FDR < 0.05) in 

the livers of the mice fed the dyslipidemic HFCA diet relative to those fed the HP diet 

(Figure 2.3). Specifically, 45 miRNAs were significantly up-regulated, and 39 

miRNAs were significantly down-regulated in the HFCA-fed mice. These 

differentially expressed miRNAs included several that have previously been 

implicated in the development and/or progression of atherosclerosis or 

hyperlipidemia. One such miRNA is miR-34a, which is up-regulated in the plasma of 

ApoE knockout (KO) C57BL/6 mice [Han et al. 2015], a well-established animal 

model of atherosclerosis; in the liver tissue of high-fat diet-fed C57BL/6 mice [Ding et 

al. 2015, Fu et al. 2012], a model of hepatic steatosis and obesity; as well as in the 

plaques of humans with coronary artery disease [Raitoharju et al. 2011]. We found 

that liver miR-34a expression levels in most HFCA diet-fed mice were significantly 

greater than in the HP diet-fed mice (Figure 2.4A). Notably, miR-34a expression in 

all but two (98.7%) of the HFCA samples was above the average expression in the 

HP-fed mice. In addition, analysis of miR-34a expression within the sibling pairs 

shows the majority of the pairs follow the same trend of an increase in miR-34a 

expression as a result of HFCA feeding (Figure 2.4B). We also identified other 

miRNAs significantly altered by HFCA diet, including several that have not been 

previously associated with regulation of lipid levels, such as miR-874, which was 
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down-regulated by almost 2-fold, and miR-1247-5p, which was up-regulated by >4-

fold (Figure 2.4C, D). 

The HFCA diet did not universally alter expression for every miRNA, including 

miR-30c, which has been shown to be significantly down-regulated in the liver of the 

ApoE C57BL/6 KO model. Over-expression of miR-30c mimic can mitigate 

hyperlipidemia and regress atherosclerosis in both wild-type and ApoE KO C57BL/6 

mice [Soh et al. 2013]. However, in our DO cohort, while there is an expected trend 

toward lower liver miR-30c expression in the HFCA-fed mice, the difference is not 

substantial and the expression distributions among HFCA- and HP-fed mice are 

largely overlapping (Figure 4E).  The response of the miR-30c levels to the HFCA 

diet is much more mixed than what is seen for miR-34a (Figure 4F).  These data 

suggest that while the dyslipidemia-inducing diet has a robust effect on liver miR-

34a, the effect on miR-30c may be more dependent on genetic composition than 

diet. The extensive variation in hepatic expression that we observed for miRNAs 

across the DO mice that were fed the same HFCA diet is likely due to interactions 

between the underlying genetics and diet, and it provided a unique opportunity to 

identify groups or modules of miRNAs that exhibit highly similar genotype-dependent 

responses to the HFCA diet. 
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2.3.3 Identification of co-regulated microRNA modules and correlation with 

lipid phenotypes 

We next sought to identify groups, or co-regulated modules (CRMs), of 

hepatic miRNAs across the HFCA-fed DO mice. We applied the weighted gene co-

expression network analysis (WGCNA) [Langfelder and Horvath 2008] to the 246 

miRNAs robustly expressed in the liver (Methods). This analysis identified five main 

miRNA CRMs (mCRMs) with anywhere from 32 to 60 miRNAs in each CRM (Figure 

2.5A). We then used the biweight midcorrelation (bicor) analysis to assess the extent 

of correlation between each of these modules and the various endpoints that were 

measured in these mice (Methods). We found that one particular module, which we 

will refer to as the brown module, is comprised of 34 miRNAs/isomiRs, and is highly 

correlated with important endpoints, most notably post-diet circulating VLDL/LDL-C 

(bicor coefficient 0.49) (Figure 2.5B). Furthermore, all of the top 20 correlations 

between any of the 246 miRNAs and any of the endpoints involve miRNAs from the 

brown module, and almost all are associated with the diet-induced change in plasma 

VLDL/LDL-C (Table 2.1).  

As a comparison, we performed the WGCNA analysis with the HP-fed mice 

using the liver expression data for the same 246 miRNAs. Of the five mCRMs that 

were identified, none were strongly correlated with any of the cardio-metabolic 

endpoints that were measured in the mice (Figure 2.5C). Also, none of the mCRMs 

in the HP-only analysis exhibited substantial overlap with any of the mCRMs 

identified in the HFCA analysis, with an average of only ~8 shared miRNAs (which 
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represents an average of just ~20% shared between any one HP mCRM and any 

one HFCA mCRM). This indicates that the HFCA diet leads to a very specific, robust 

re-wiring of the regulatory networks governing miRNA expression. 

 

 

 

Figure 2.3: Diet alters miRNA expression. Volcano plot of differentially expressed 
liver miRNAs between HFCA-fed and HP-fed DO mice after filtering out those that 
were lowly expressed. Each dot represents one miRNA. Red dots are miRNAs that 
are up-regulated in HFCA-fed mice relative to HP-fed mice with a fold-change of 1.5 
or more and an FDR ≤ 0.05. Blue dots are miRNAs that are down-regulated in 
HFCA-fed mice relative to HP-fed mice with a fold-change of 1.5 or more and an 
FDR ≤ 0.05. Horizontal dashed line denotes FDR = 0.05. Vertical dashed lines 
denote fold change of -1.5 (left) and 1.5 (right).  
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Figure 2.4: Diet alters expression of specific miRNAs. (A) Box plot of miR-34a-
5p. (B) miR-34a-5p expression with lines connecting DO mouse sibling pairs in 
either diet group. (C-E) Box plot of miR-874-3p, miR-1247-5p, and miR-30c-2-5p 
expression in HP-fed and HFCA-fed DO mice. For all box plots, each dot represents 
one mouse in the respective diet. Hinges of boxplots represent the first and third 
quartile of expression. (F) miR-30c-2-5p expression with lines connecting DO mouse 
sibling pairs in either diet group. 
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Figure 2.5: MiRNA co-expression analysis identifies module associated with 
metabolic traits. (A) miRNA modules formed using WGCNA. Only HFCA mice were 
used during analysis. RPMMMs were converted using log2(x+1) and used to 
calculate Pearson correlations. Dendrogram was created using the 1-TOM, and 
Ward’s method of hierarchical clustering. Modules were formed using the hybrid 
tree-cutting function in the WGCNA software package. (B,C) Heatmap of miRNA 
module eigenmiRs correlated to cardio-metabolic endpoints measured in the (B) 
HFCA-fed DO mice and (C) HP-fed DO mice. EigenmiRs were calculated using the 
WGCNA function moduleEigengenes, and correlated using the biweight 
midcorrelation to normalized endpoint values. The intensity of orange or blue 
denotes how close the correlation coefficient is to 1 or -1, respectively. Top numbers 
are biweight midcorrelation coefficients, bottom numbers are p-values. (D) 
Cytoscape visualization of brown mCRM. Each node represents one miRNA. Each 
edge represents high co-correlation. The dashed circle highlights the hub miRNAs in 
this module as determined by number of connections and weight of connections. 
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2.3.4 Identification of microRNA “hubs” in the brown module correlated with 

post-diet plasma VLDL/LDL-C 

The strength of connection between miRNAs in an mCRM is indicative of the 

extent of co-correlation. The miRNAs with the highest connectivity scores are 

defined as “hubs.” To define the miRNA “hubs” in the brown mCRM, we ranked the 

miRNAs according to their topological overlap measure (TOM) scores and 

intramodular connectivity measures, which are the WGCNA metrics for 

interconnectedness. The miRNAs in the 75th percentile were identified as “hubs” in 

the brown mCRM: miR-199a, miR-181b, miR-27a, miR-21_-_1, and miR-24. Each of 

these miRNAs was very highly correlated with the module eigenmiR, or first principal 

component, of the brown module (Figure 2.5D, Table 2.2), with miR-199a being the 

most highly correlated (Pearson coefficient = 0.93). 

 

2.3.5 Analysis of gene expression data and identification of several gene co-

regulated modules associated with post-diet LDL-C and inversely 

correlated with the brown microRNA module 

To determine the effects of the HFCA diet on gene expression, we performed 

microarray analysis on 262 liver samples from the DO mice (34,390 mRNAs 

detected, 15,105 mRNAs with RMA ≥ 4 in at least one-quarter samples). Differential 

expression analysis revealed that 4236 genes were significantly (corrected p-value < 

1.20 x 10-6) up-regulated, of which 401 exhibited a fold-change greater than 2, and 

3603 genes significantly (corrected p-value < 1.20 x 10-6) down-regulated, of which 
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140 exhibited a fold-change less than -2, in the liver tissue from HFCA-fed mice 

compared to HP-fed mice (Figure 2.6A). We found that lipid processing and 

metabolism genes such as lipoprotein lipase (Lpl) are up-regulated (+14.8-fold), 

whereas cholesterol biosynthesis genes such as squalene epoxidase (Sqle) are 

down-regulated (-19.5-fold). These results are expected in response to HFCA, which 

leads to a dramatic increase in dietary lipid and cholesterol, eliciting a suppression of 

endogenous lipid/cholesterol synthesis and increase in lipid metabolic activity.  

Using the tool miRhub we demonstrated that the 3603 genes significantly 

down-regulated in the liver from HFCA-fed mice are significantly enriched for 

predicted conserved target sites for the brown module hub miRNAs miR-27a 

(empirical p-value = 0.008), miR-199a (p=0.015), miR-24 (p=0.020), and miR-181b 

(p=0.045), each of which is significantly up-regulated in the liver in response to 

HFCA.  This finding held for miR-27a (p=0.017) upon miRhub analysis of the subset 

of significantly down-regulated genes that are altered by more than 2-fold (n=140). 

We and others have shown previously that the miR-27 family is involved in the 

control of lipid balance in part through regulation of genes in the lipid synthesis and 

uptake pathways. We confirmed that the previously validated targets of miR-27, 

Hmgcr [Selitsky et al. 2015] and Ldlr [Alvarez et al. 2015], which encode proteins 

critical for cholesterol biosynthesis and LDL-C uptake, respectively, are indeed 

among the 140 genes significantly down-regulated in the liver from HFCA-fed mice, 

and are significantly inversely correlated with miR-27a levels (Figure 2.6B). We 

additionally identified a predicted conserved target site for miR-27 in the 3’ UTRs of 
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Acly and Lpin1, each of which is reduced in the liver by >2-fold in HFCA-fed mice 

and is inversely correlated with miR-27a levels (Figure 6C). Acly catalyzes an early 

step in fatty acid synthesis and Lpin1 mediates one of the final steps in triglyceride 

biosynthesis in the liver. Analysis of published Argonaute (Ago) CLIP-seq data from 

human Huh7 hepatoma cells provided strong experimental support for a regulatory 

interaction between miR-27 and Acly, and to a slightly lesser extent, miR-27 and 

Lpin1 [Luna et al. 2015], thereby adding to the evidence that miR-27 is a critical diet-

responsive regulator of lipid homeostasis. 

As we did with miRNA expression data, we next analyzed the gene 

expression data via WGCNA. Using the top 3,000 most variable genes within the 

HFCA-fed mice, we identified twenty groups, or gene CRMs (gCRMs), each of which 

contains highly co-correlated mRNAs that are likely co-regulated (Figure 2.7A). 

Among these there are two gCRMs, pink and midnight blue, that are relatively highly 

correlated with post-diet plasma LDL-C (pink bicor coefficient = 0.5, midnight blue 

bicor coefficient = 0.58), and three gCRMs, magenta, tan and turquoise, which are 

strongly inversely correlated with post-diet LDL-C (bicor coefficients -0.56, -0.56, and 

-0.51, respectively) (Figure 2.7B).  As expected, individual miRNAs from the brown 

mCRM (e.g., miR-199a) exhibited strong inverse correlation with the genes in the 

magenta, light cyan, tan, and turquoise gCRMs, whereas miRNAs in other mCRMs 

did not (e.g., miR-151), suggestive of a unique association in diet-induced 

dyslipidemia between miRNAs in the brown mCRM and genes in these four gCRMs 
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(Figure 2.7C).  Genes in these gCRMs that are candidate targets of one or more of 

the miRNAs in the brown mCRM are listed in Table A.1.1 

Table 2.1: Top correlations between miRNAs and cardio-metabolic endpoints. 
Biweight midcorrelation coefficients of miRNAs as they are related to the cardio-
metabolic endpoints. Only correlation values ≥ 0.45 and ≤ -0.45 are shown. 

																																																								
	
1 Oversized tables and figures are presented in Appendix A. 

miRNA Associated Phenotype Cor_coef p-value
mmu-mir-24-2-5p Delta VLDL/LDL-C 0.66 2.88E-09
mmu-mir-24-1-3p Delta VLDL/LDL-C 0.63 2.48E-08
mmu-mir-24-2-3p Delta VLDL/LDL-C 0.63 2.48E-08

mmu-let-7i-5p Delta VLDL/LDL-C 0.61 5.35E-08
mmu-let-7i-5p Post-diet ALT 0.61 5.61E-13

mmu-mir-29a-3p_-_1 Delta VLDL/LDL-C 0.60 9.75E-08
mmu-let-7i-5p Post-diet AST 0.59 7.19E-07

mmu-mir-181b-1-5p Delta VLDL/LDL-C 0.58 3.95E-07
mmu-mir-214-3p_-_1 Delta VLDL/LDL-C 0.58 4.18E-07

mmu-mir-21-5p Delta VLDL/LDL-C 0.58 4.19E-07
mmu-mir-501-3p Post-diet ALT 0.58 1.42E-11
mmu-mir-143-3p Delta VLDL/LDL-C 0.58 5.18E-07
mmu-mir-99b-3p Delta VLDL/LDL-C 0.58 5.32E-07

mmu-mir-199a-2-3p Delta VLDL/LDL-C 0.57 5.94E-07
mmu-mir-199a-1-3p Delta VLDL/LDL-C 0.57 6.22E-07
mmu-mir-199b-3p Delta VLDL/LDL-C 0.57 6.22E-07

mmu-mir-181b-2-5p Delta VLDL/LDL-C 0.56 9.75E-07
mmu-mir-99b-5p Delta VLDL/LDL-C 0.56 1.02E-06

mmu-let-7e-5p Delta VLDL/LDL-C 0.56 1.04E-06
mmu-mir-21-5p_-_1 Delta VLDL/LDL-C 0.56 1.33E-06
mmu-mir-24-2-5p Post-diet LDL-C 0.55 6.37E-12
mmu-mir-214-3p Delta VLDL/LDL-C 0.54 2.77E-06
mmu-mir-21-5p Post-diet ALT 0.54 5.40E-10

mmu-mir-146b-5p Post-diet AST 0.54 7.10E-06
mmu-mir-146b-5p Post-diet ALT 0.54 5.85E-10
mmu-mir-342-3p Post-diet ALT 0.54 6.13E-10
mmu-mir-143-3p Post-diet ALT 0.54 7.01E-10

mmu-mir-146a-5p Post-diet ALT 0.53 1.49E-09
mmu-mir-21-5p Post-diet LDL-C 0.52 1.07E-10

mmu-mir-501-3p Post-diet AST 0.52 1.67E-05
mmu-mir-27a-3p Delta VLDL/LDL-C 0.52 9.24E-06
mmu-mir-24-2-5p Post-diet ALT 0.52 4.08E-09
mmu-mir-146a-5p Delta VLDL/LDL-C 0.52 1.12E-05
mmu-mir-99a-5p Delta VLDL/LDL-C 0.51 1.14E-05

mmu-mir-191-5p_+_1 Post-diet ALT 0.51 4.83E-09
mmu-let-7e-5p Post-diet AST 0.51 2.56E-05

mmu-mir-1839-5p Post-diet ALT 0.51 7.11E-09
mmu-mir-1839-5p_+_1 Post-diet ALT 0.51 8.68E-09

mmu-mir-199a-1-5p Delta VLDL/LDL-C 0.50 1.93E-05
mmu-mir-199a-2-5p Delta VLDL/LDL-C 0.50 1.94E-05
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2.4 DISCUSSION 

To our knowledge, this is the first large-scale study aimed at using a genetically 

diverse mouse population to identify hepatic miRNAs associated with a variety of 

different cardio-metabolic endpoints pertinent to diet-induced dyslipidemia and 

metabolic dysfunction. Our study utilizes a population of outbred mice to delineate 

the miRNA regulatory networks associated with diet-induced metabolic dysfunction. 

This systems-level approach yielded at least four novel findings. Firstly, we 

determined that certain metabolic phenotypes in DO mice, notably plasma 

mmu-mir-532-5p Post-diet ALT 0.50 1.27E-08
mmu-mir-191-5p Delta VLDL/LDL-C 0.50 2.39E-05
mmu-mir-322-3p Post-diet ALT 0.50 2.12E-08
mmu-mir-21-5p Post-diet AST 0.49 5.07E-05
mmu-let-7i-5p Post-diet LDL-C 0.49 1.65E-09

mmu-mir-140-5p Delta VLDL/LDL-C 0.49 3.78E-05
mmu-let-7e-5p Post-diet ALT 0.49 3.95E-08

mmu-mir-191-5p_+_1 Delta VLDL/LDL-C 0.49 4.09E-05
mmu-mir-322-3p Delta VLDL/LDL-C 0.48 4.28E-05
mmu-mir-425-5p Delta VLDL/LDL-C 0.48 4.77E-05

mmu-mir-200b-3p Post-diet AST 0.48 8.57E-05
mmu-mir-10a-5p_+_1 Post-diet ALT 0.48 7.24E-08

mmu-mir-143-3p Post-diet LDL-C 0.48 7.54E-09
mmu-mir-674-3p Delta VLDL/LDL-C 0.48 6.14E-05

mmu-mir-21-5p_-_1 Post-diet AST 0.47 0.0001225
mmu-mir-99b-5p Post-diet ALT 0.47 1.43E-07

mmu-mir-21-5p_-_1 Post-diet ALT 0.47 1.43E-07
mmu-mir-143-3p Post-diet AST 0.47 0.00015041

mmu-mir-146b-5p Delta VLDL/LDL-C 0.47 8.95E-05
mmu-mir-21-5p_-_1 Post-diet LDL-C 0.46 2.32E-08

mmu-mir-10a-5p_+_1 Delta VLDL/LDL-C 0.46 0.00010479
mmu-mir-186-5p Delta VLDL/LDL-C 0.46 0.00010562
mmu-mir-10a-5p Post-diet AST 0.46 0.00017707
mmu-mir-24-2-5p Delta Cholesterol 0.46 2.84E-08
mmu-mir-24-2-5p Post-diet Cholesterol 0.46 3.15E-08
mmu-mir-532-5p Post-diet AST 0.45 0.00023692

mmu-mir-140-3p_+_1 Delta VLDL/LDL-C 0.45 0.00014825
mmu-mir-122-5p Post-diet ALT -0.45 4.22E-07
mmu-mir-122-5p Delta VLDL/LDL-C -0.56 1.24E-06
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VLDL/LDL-C, are far more variable in response to a dyslipidemia-inducing diet than 

other phenotypes. Secondly, we identified specific miRNAs (e.g., miR-34a) that 

exhibit a dramatic response to the dyslipidemic diet irrespective of host genotype; 

these are miRNAs for which the diet had the most dominant effect. Thirdly, we 

showed that some miRNAs (e.g., miR-30c), though previously identified as 

dramatically altered in diet-induced dyslipidemia, were not altered by HFCA in most 

DO mice, indicating the prominent contribution of genetics to the responses of 

certain liver miRNAs to diet. Fourthly, we identified a co-regulated module of 

miRNAs that is strongly associated with circulating levels of VLDL/LDL-C – a 

significant risk factor for atherosclerosis and other related cardiovascular conditions. 

Moreover, we predicted that miRNAs in this module together target about one-third 

of the genes that are inversely correlated with VLDL/LDL-C.  

We found that some miRNAs, such as miR-34a, are altered by high-fat/high-

cholesterol diet across most strains in a manner that is consistent with expectation 

based on previous studies in C57BL/6 mice. However, others such as miR-30c, 

exhibited much more genotype-dependent behaviors, indicating that previous 

implications of miR-30c as a potential therapeutic in dyslipidemia and 

atherosclerosis based on studies in C57BL/6 mice are not necessarily generalizable 

to different genetic backgrounds. This finding underscores the importance and value 

of performing studies across diverse genetic backgrounds in order to more broadly 

define the variability in miRNA responses to diet or other perturbations.  Multi-



	 47	

parental resources such as the DO and CC appear to be especially promising in this 

regard.  

It is worth noting that another prominent atherosclerosis-related miRNA, miR-

33 [Horie et al. 2012, Marquart et al. 2010, Najafi-Shoushtari et al. 2010, Rayner et 

al. 2010, Rayner et al. 2011a, Rayner et al. 2011b], was not included in the set of 

miRNAs considered in this analysis because the levels at which it was detected did 

not reach our threshold for robust expression. This may be because the library 

preparation protocol we used in this study is biased against the detection of some 

miRNAs such as miR-33 (most likely due to adapter ligation bias, as has been 

reported previously [Baran-Gale et al. 2015].  Due to the importance of miR-33 in 

lipid biology and atherosclerosis, it may be worth re-analyzing these samples in the 

future with alternate detection methods such as RT-qPCR as well as the Bioo 

Scientific NextFlex V3 library preparation protocol, which is intended to mitigate 

adapter ligation bias [Baran-Gale et al. 2015]. 

To identify those mCRMs that are most affected by HFCA diet interactions 

with genetic composition, we used only the HFCA-fed mouse samples in the 

WGCNA process. Since all of these mice were fed the same impactful HFCA diet, 

and each harbored a distinct genome, we reasoned that the use of just these 

samples would best accentuate the CRMs affected most by genetics and the 

dyslipidemic diet. Indeed, running the analysis with just the HP-fed mouse samples 

resulted in mCRMs that are poorly correlated with the cardio-metabolic endpoints. 

Furthermore, the compositions of the HP mCRMs were very different from the HFCA 
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mCRMs, with the mean overlap between modules being approximately 8. Taken 

together, these data demonstrate that HFCA leads to a rearrangement of the 

regulatory networks controlling miRNA expression. 

In order to identify hub members of gene and miRNA CRMs, we calculated 

the total TOM for each member within the respective module, ranked them and 

found those with the top aggregated TOMs and intramodular connectivity measures. 

A hub’s expression is believed to influence the expression of the other members 

within their module, so their TOMs and scaled intramodular connectivities are 

relatively high because of their strong interconnectedness to the other members in 

the CRM. Hubs are also most similar to the eigenvalues of the modules itself, so 

correlations to the eigenmiRs and eigengenes should be very high. In regards to the 

brown mCRM, we identified miR-199a, miR-181b, miR-27a, miR-21_-_1, and miR-

24 as hubs due to their high TOMs and scaled kWithin, and their high correlations 

with the brown mCRM eigenmiR. In this context, these are miRNAs that are 

purported to have the most regulatory influence in the module. miRNA hubs may 

modulate the expression of regulatory genes, such as those encoding transcription 

and/or biogenesis factors, which subsequently effect the expression and/or stability 

of other members of the module.  

Several of the hub miRNAs we identified have been studied in the context of 

hyperlipidemia and related metabolic diseases. miR-27 is involved in the regulation 

of lipid synthesis and metabolic pathways [Vickers et al. 2013], and has been 

implicated in the etiology of viral hepatitis-induced steatosis [Singaravelu et al. 2014] 
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and atherosclerosis [Chen et al. 2012]. Although miR-21_-_1 (a 5’-shifted isomiR of 

miR-21) is not well-studied, the canonical miR-21 is more highly expressed in the 

liver tissue of the DO mice, and is also a member of the brown mCRM. Notably, 

hepatic miR-21 is a key partner of miR-27 in the negative regulation of factors 

mediating cholesterol synthesis [Selitsky et al. 2015] and lipid metabolism [Kida et 

al. 2011], and was very recently proposed as a driver of metabolic disorders 

associated with diet-induced obesity as well as fatty liver disease [Calo et al. 2016]. 

Our findings underscore the importance of these three miRNAs in contributing to 

diet-induced dyslipidemia. miR-24 also has been connected previously to the 

development of hyperlipidemia. It is known to be up-regulated in the livers of 

C57BL/6 mice fed a high-fat diet, and to directly target Insig1 which leads to hepatic 

lipid accumulation and hyperlipidemia [Ng et al. 2014]. In the DO mice, miR-24 is up-

regulated by ~1.4-fold in the HFCA-fed mice relative to the HP-fed mice. In our gene 

expression microarray data, Insig1 is down-regulated by about 2.4-fold. Hepatic 

miR-199a is not as well-studied in the context of dyslipidemia; however, it has been 

linked to a lipid-related condition as it was shown to be elevated in livers of humans 

with non-alcoholic fatty liver disease (NAFLD) [Li et al. 2014]. Hepatic expression of 

miR-181b in dyslipidemia is even less studied as it is more known for its role in liver 

fibrosis [Yu et al. 2016], and hepatocarcinogenesis in mice [Wang et al. 2010] and 

rats [Furtado et al. 2017]. 

We found that the brown mCRM is inversely correlated with four of the 

gCRMs. Moreover, we observed that for each of the gCRMs approximately 30-40% 
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of their genes are predicted to harbor conserved target sites for one or more brown 

mCRM miRNAs. The brown mCRM members may function within a larger regulatory 

network to cooperatively regulate gene expression pertinent to the control of 

circulating VLDL/LDL-C levels.  

The brown mCRM and four inversely-correlated gCRMs are associated with 

post-diet circulating VLDL/LDL-C levels, AST and ALT levels in the HFCA-fed DO 

mice, but not strongly associated with any of the other endpoints. It is noteworthy 

that the same mCRM was not associated with endpoints such as atherosclerotic 

lesion size. One reason for this seemingly discordant result is the fact that long-term 

feeding of HFCA diet consistently results in early atheroma formation where lesions 

consist primarily of macrophages and immune cells [Paigen et al. 1987, Qiao et al. 

1994]. Furthermore, we found DO mice to be generally resistant to atherosclerosis 

on the HFCA diet, but all were hyperlipidemic [Smallwood et al. 2014]. This indicated 

that factors other than hepatic gene expression and hyperlipidemia, perhaps those 

operating at the vessel wall itself, may be responsible for inhibition of lesion 

formation.  

In utilizing the DO mice in a systems genetics study, we have identified not 

only miRNAs that may potentially function cooperatively within a network of other 

miRNAs and genes, but also hub miRNAs that may contribute substantially to the 

observed increase in VLDL/LDL-C levels or may contribute to the liver’s adaptive 

response to HFCA. These miRNAs are prime candidates for future loss- and gain-of-

function studies in diverse genetic strains in the context of diet-induced dyslipidemia. 
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Table 2.2: miRNAs with the highest interconnectedness are identified as hubs. 
Members of the brown mCRM ranked according to intramodular connectivity 
measure (kWithin). Column 2 lists kWithin scaled by the module. Column 3 lists 
Pearson correlations to the module eigenmiR, and the last column lists the total 
summed TOM for each miRNA. 

 

Brown mCRM miRNAs kWithin
kWithin 
(Scaled)

Cor to 
MEbrown

Summed 
TOM

mmu-mir-199a-2-3p 7.0038 1.0000 0.93 8.0038
mmu-mir-199a-1-3p 6.9947 0.9987 0.93 7.9947
mmu-mir-199b-3p 6.9947 0.9987 0.93 7.9947
mmu-mir-181b-1-5p 6.2731 0.8957 0.92 7.2731
mmu-mir-181b-2-5p 6.1845 0.8830 0.92 7.1845
mmu-mir-199a-2-5p 6.0431 0.8628 0.92 7.0431
mmu-mir-199a-1-5p 6.0431 0.8628 0.92 7.0431
mmu-mir-24-2-3p 6.0018 0.8569 0.89 7.0018
mmu-mir-24-1-3p 6.0018 0.8569 0.89 7.0018
mmu-mir-27a-3p 5.0559 0.7219 0.88 6.0559

mmu-mir-21-5p_-_1 5.0528 0.7214 0.89 6.0528
mmu-let-7e-5p 4.9871 0.7121 0.88 5.9871

mmu-mir-200a-3p 4.8912 0.6984 0.86 5.8912
mmu-mir-214-3p_-_1 4.8437 0.6916 0.86 5.8437
mmu-mir-214-3p 4.6433 0.6630 0.84 5.6433
mmu-let-7i-5p 4.4421 0.6342 0.86 5.4421

mmu-mir-200c-3p 4.2868 0.6121 0.81 5.2868
mmu-mir-200b-3p 4.2822 0.6114 0.81 5.2822

mmu-mir-142-5p_-_2 4.2114 0.6013 0.82 5.2114
mmu-mir-24-2-5p 4.2033 0.6001 0.86 5.2033
mmu-mir-146b-5p 3.9551 0.5647 0.84 4.9551
mmu-mir-21-5p 3.8489 0.5495 0.81 4.8489

mmu-mir-29a-3p_-_1 3.7823 0.5400 0.80 4.7823
mmu-mir-872-5p 3.6169 0.5164 0.78 4.6169
mmu-mir-99b-3p 3.4688 0.4953 0.77 4.4688
mmu-mir-99b-5p 3.4553 0.4933 0.76 4.4553
mmu-mir-146a-5p 3.3812 0.4828 0.78 4.3812
mmu-mir-143-3p 3.3189 0.4739 0.78 4.3189
mmu-mir-125a-5p 3.1855 0.4548 0.69 4.1855
mmu-mir-99a-5p 3.1538 0.4503 0.74 4.1538
mmu-mir-342-3p 3.0082 0.4295 0.72 4.0082
mmu-mir-322-3p 3.0044 0.4290 0.75 4.0044
mmu-mir-501-3p 2.9523 0.4215 0.73 3.9523
mmu-mir-532-5p 1.6634 0.2375 0.53 2.6634
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Figure 2.6: Differential expression analysis for gene expression. (A) Volcano 
plot of differentially expressed liver genes between HFCA-fed and HP-fed DO mice. 
Each dot represents one probe. Red dots are probes that are up-regulated (n=401) 
in HFCA-fed mice relative to HP-fed mice with a fold-change of 2 or more and a p-
value ≤ 1.20e-06 (Bonferroni correction). Blue dots are probes that are down-
regulated (n=140) in HFCA-fed mice relative to HP-fed mice with a fold-change of 2 
or more and an p-value ≤ 1.20e-06. Horizontal dashed line denotes –log10(1.20e-
06). Vertical dashed lines denote fold change of -2 (left) and 2 (right). (B,C) 
Correlation plots illustrating the inverse relationship between miR-27a and Hmgcr, 
Ldlr, Acly, and Lpin1 expression (correlations calculated using bicor). 
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Figure 2.7: Gene co-expression analysis identifies gCRMs that are correlated 
with the brown mCRM. (A) Gene co-regulated modules formed using WGCNA. 
Only HFCA mice were used during analysis. The top 3,000 most variable genes and 
the hybrid tree-cutting function in the WGCNA software package were used to form 
modules. (B) Heatmap of correlations between mRNA (gene) modules and brown 
miRNA module, and list of cardio-metabolic endpoints measured in the DO mice. 
Eigengenes and eigenmiRs were calculated using the WGCNA function, and 
correlated using the biweight midcorrelation to normalized endpoint values. The 
intensity of orange or blue denotes how close the correlation coefficient is to 1 or -1, 
respectively. Numbers in parentheses are Student p-values. (C) Aggregate 
correlation values of miRNAs to gene module members. Biweight midcorrelations 
were calculated between each individual miRNA and each gene. Values were 
averaged (mean) across gene module members. Dashed lines denote significant 
correlation values (-0.198, 0.198) as determined by 97.5% quantile of 1000 
permutations. 
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3 CHAPTER 3: GENETIC AND MICRORNA ASSOCIATION WITH THE 
CARDIOMETABOLIC DISEASE RISK FACTOR TMAO 

 

3.1 INTRODUCTION 

The previous chapter covered the work on discovering miRNA modules 

associated with elevated LDL-C, a common hallmark and risk factor of 

cardiometabolic dysfunction. While the work in this chapter exploits the same gene 

and miRNA expression to find associations that convey potential regulatory 

relationships, it also incorporates the genotype information in order to elucidate the 

genetic architectural component regulating another cardiometabolic risk factor, 

TMAO. 

Intestinal microbiota metabolism is now appreciated as having a profound 

impact on cardiovascular disease (CVD) risk [Bennett et al. 2013a, Koeth et al. 

2013, Loscalzo 2011, Rak and Rader 2012, Tang et al. 2013, Wang et al. 2011].  In 

particular, the meta-organismal pathway involving dietary choline, gut microbiota, 

and TMAO, has been shown to be predictive of cardiovascular disease events in 

humans [Tang et al. 2013]. Just as in mice that are genetically engineered to be 

susceptible to atherosclerosis, dietary supplementation with choline (the dietary 

precursor of TMAO) or treatment with TMAO itself has been shown to promote 

atherosclerotic lesion development [Wang et al. 2011]. The pathway for TMAO is 

thought to be dependent on the microbiota, as administration of antibiotics 
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suppresses TMAO levels and atherosclerosis [Koeth et al. 2013, Koeth et al. 2014]. 

The effects of the microbiota on TMAO and atherosclerosis are transferrable as 

demonstrated by adoptive transfer studies in mice [Gregory et al. 2014]. 

The role of host genetics on the TMAO/CVD pathway has been difficult to 

dissect.  The gut microbiota metabolize dietary choline to form an intermediate 

compound, TMA, which is then absorbed into the host circulation and detoxified to 

TMAO primarily by FMO3 in the liver [Bennett et al. 2013b]. Aside from the 

regulation by FMO3, little is known about how host genetics interact with and 

regulate circulating TMAO levels. Human cohort studies have demonstrated that 

common genetic variation within the FMO3 gene is not associated with circulating 

TMAO levels [Hartiala et al. 2014]. Genetic studies of inbred mouse strains have 

demonstrated that TMAO levels are heritable [O’Conner et al. 2014] and have 

identified candidate loci [Hartiala et al. 2014, Bennett et al. 2015] associated with 

circulating TMAO.  These studies indicate that the genetic architecture and 

regulation of TMAO levels is complex. 

One possible mode of regulation of plasma TMAO levels is via miRNAs. 

Changes in gene and miRNA expression profiles have each been linked to the 

response and onset of many physiological conditions, including CVD. The studies 

presented here utilize the Diversity Outbred (DO) mouse population, an ideal 

resource for systems genetics [Churchill et al. 2013]. In this study, we focus on the 

discovery of novel genetic and miRNA associations with TMAO, which extends our 

previous work on cardiometabolic traits using DO mice [Smallwood et al. 2014], as 
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well as independent mouse and monkey models of atherosclerosis. We identify a 

novel link between a locus on Chromosome 12 and TMAO levels, as well as a 

robust association between miR-146a/b and TMAO potentially mediated through 

interactions with genes at the Chromosome 12 locus. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Animals, Diets and Genotyping 

Animal housing, husbandry, and handling, diet compositions, and methods of 

genotyping were previously reported in Chapter 2 and in Smallwood et al. 2014. 

 

3.2.2 Measurement of TMAO Metabolite 

Measurement of choline metabolites was performed by the University of North 

Carolina Nutrition Research Institute Metabolomics Core Facility (Kannapolis, NC). 

Plasma was extracted with three volumes of acetonitrile spiked with internal 

standards of TMAO-d9 (DLM-4779-1, Cambridge Isotope Laboratories), incubated 

on ice for 10 minutes, and centrifuged at 15,000 g for 2 minutes. Quantification of 

TMAO, was performed using liquid chromatography-stable isotope dilution-multiple 

reaction monitoring mass spectrometry (LC-SID-MRM/MS). Chromatographic 

separations were performed on an Atlantis Silica HILIC 3µm 4.6×150mm column 

(Waters Corp, Milford, USA) using a Waters ACQUITY UPLC system. The column 

was heated to 40°C, and the flow rate was maintained at 1 mL/min. The gradient 

was 5% A for 0.05 min, to 15% A in 0.35 min, to 20% A in 0.6 min, to 30% A in 1 
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min, to 45% A in 0.55 min, to 55% A in 0.05 min, at 55% A for 0.9 min, to 5% A in 

0.05 min, at 5% A for 1.45 min, where A is 10% acetonitrile/90%water with 10 mM 

ammonium formate. The metabolites and their corresponding isotopes were 

monitored on a Waters TQ detector using characteristic precursor-product ion 

transitions: 76à58 for TMAO, 85à66 for TMAO-d9. Concentrations of TMAO in the 

samples were determined from its calibration curve using peak area ratio of the 

metabolite to its isotope.  

 

3.2.3 Measurement of microRNA and mRNA Expression 

Methods of RNA extraction from the livers of the DO mice, evaluation of RNA 

integrity, microarray analysis for mRNAs (genes), library prep and small RNA 

sequencing were as previously explained in Chapter 2. miRNA expression was 

transformed using the boxcox method. Bi-weight mid-correlations between genes, 

miRNAs, and TMAO levels were performed using WGCNA package in R [Langfelder 

and Horvath 2008]. Microarray and small RNA-seq data is available on the GEO 

repository, accession number GSE99561. 

 

3.2.4 QTL Mapping 

QTL and expression QTL (eQTL) mapping were performed using DOQTL 

[Gatti et al. 2014] package in R as previously described [Smallwood et al. 2014]. 

Haplotype reconstructions were performed utilizing genotyping data from a much 

larger cohort of DO mice available at the Jackson Laboratory (kindly performed by 
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Daniel Gatti; Jackson Laboratory).  Diet was included as an additive covariate in the 

mapping model for measurements including those obtained from 24-week old mice 

after dietary treatment.  Significant QTL were determined at a genome-wide p-value 

of <0.05 and suggestive QTL were determined at a p-value of <0.63, which 

corresponds to one false positive per genome scan [Lander and Kruglyak 1995]. 

QTL support intervals were defined by the 95% Bayesian credible interval, 

calculated by normalizing the area under the QTL curve on a given Chromosome 

[Sen and Churchill 2001]. The mapping statistic reported is log of the odds (LOD) 

ratio. The significance thresholds were determined via permutations of genome-wide 

scans by shuffling phenotypic or expression data in relation to individual genotypes.  

Association mapping was performed for TMAO levels or gene/miRNA expression 

with known SNPs within the identified QTL by imputing the founder SNPs onto the 

DO genomes. Candidate genes were identified by position based on the UCSC 

Genome Browser. To verify that QTL are robust, we repeated haplotype 

reconstruction and pre- and post-diet TMAO QTL mapping using the R/qtl2 package 

(http://kbroman.org/qtl2/), which differs from DOQTL in that it utilizes genotype calls 

instead of allele intensity plots for haplotype reconstruction. 

TMAO measurements were transformed using the boxcox method to satisfy 

the model assumption of a normal distribution. Microarray RMA values were 

corrected for known SNPs in the DO founder strains. Each phenotype and miRNA 

were used to run 1000 permutations. For mRNA-eQTL LOD thresholds, 500 genes 

were chosen at random to perform 1000 permutations on each.  
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3.2.5 QTL-eQTL Overlap Analysis 

Overlaps between mRNA eQTL, miRNA eQTL, and TMAO QTL suggestive 

and/or significant hits were performed by taking the peak SNPs of 

suggestive/significant QTL, and identifying SNPs across gene and miRNA eQTL 

datasets within a flanking 1Mb region that were above their respective suggestive or 

significant threshold. This 2Mb flanking region was then removed, and the next peak 

SNP was identified. The process was repeated until no other SNPs were found to be 

above the suggestive/significant threshold. 

 

3.2.6 Bioinformatics 

MicroRNA target prediction in mouse reference (NCBI build 37) 3’ UTRs was 

performed using the TargetScan algorithm [Argwal et al. 2015, Grimson et al. 2007]. 

Positional conservation of a predicted target site in at least one other species was 

required. Correlation between miRNA levels and gene expression as well as TMAO 

was calculated using biweight mid-correlation analysis. All p-values take into 

account multiple testing unless specifically noted otherwise. Significant differences 

between diet groups were determined using a Student’s t-test. 

 

3.2.7 Small RNA-Sequencing in Livers of LIRKO Mice 

Treatment and phenotyping of liver-specific insulin receptor knockout (LIRKO) 

mice has been previously reported by Miao et al. 2015. Liver tissue was isolated 
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from LIRKO mice (n=3) and floxed controls (n=2). RNA was extracted using Norgen 

Total RNA Purification Kit (Norgen Biotek, Thorold, ON, Canada). RNA yield and 

quality was assessed by Thermo Scientific NanoDrop 2000 (Waltham, MA) and 

integrity was measured by Agilent 2100 Bioanalyzer (Santa Clara, CA). Small RNA 

library preparation using the TriLink CleanTag kit was performed at the Genome 

Sequencing Facility of Greehey Children’s Cancer Research Institute at the 

University of Texas Health Science Center at San Antonio and sequencing was 

carried out on the HiSeq platform at an average depth of ~40 million reads/sample 

(with a range across samples of 18 million to 65 million). Data processing and 

miRNA quantification was performed using miRquant 2.0 [Kanke et al. 2016]. On 

average, >75% of the trimmed reads mapped to the mouse genome, of which almost 

50% corresponded to miRNA loci. The length distribution of mapped reads revealed 

a clear peak at the size range 21-24 nucleotides, which matches the expectation for 

miRNAs. 

 

3.2.8 Small RNA-Sequencing in Livers of Monkeys  

Dietary treatment, liver tissue extraction, and phenotyping of African Green 

Monkeys has been previously reported by Chung et al., 2014. The samples used for 

reporting here were from monkeys fed either chow or a high fat high cholesterol (0.4 

mg/kcal cholesterol) diet. RNA was extracted using Norgen Total RNA Purification 

Kit (Norgen Biotek, Thorold, ON, Canada). RNA yield and quality was assessed by 

Thermo Scientific NanoDrop 2000 (Waltham, MA) and integrity was measured by 
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Agilent 2100 Bioanalyzer (Santa Clara, CA). Small RNA library preparation using the 

TriLink CleanTag kit was performed at the Genome Sequencing Facility of Greehey 

Children’s Cancer Research Institute at the University of Texas Health Science 

Center at San Antonio and sequencing was carried out on the HiSeq platform at an 

average depth of ~17 million reads/sample. Data processing and microRNA 

quantification was performed using miRquant 2.0 [Kanke et al. 2016]. On average, 

~85% of the trimmed reads mapped to the human genome, of which greater than 

~65% corresponded to miRNA loci. The length distribution of mapped reads 

revealed a clear peak at the size range 21-24 nucleotides, which matches the 

expectation for miRNAs. 

 

3.3 RESULTS 

Several studies have identified a role for the microbiome in the regulation of 

circulating TMAO; however, relatively few studies to date have reported host genetic 

associations with TMAO. In this study, we leveraged a DO cohort of 288 female 

mice comprised of 144 sibling pairs that has been previously described in Chapter 2 

to identify novel genetic regulators of circulating TMAO. In those earlier studies we 

reported baseline measures of metabolic parameters and molecular traits in the DO 

mice during feeding of a synthetic AIN-76 diet and then after feeding with either a 

high-fat, high cholesterol diet with added cholic acid (HFCA) or a high protein diet 

(HP) for 18 weeks. In the current study, we integrate hepatic messenger RNA 

(mRNA) expression and miRNA expression with targeted measurement of the 
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metabolite TMAO to identify novel candidate genetic regulators of TMAO 

concentrations in circulation. 

 

3.3.1 Plasma TMAO levels in the Diversity Outbred mice and its relationship 

to cardiovascular risk factors  

At baseline the mean circulating TMAO value in the DO mice was 1.25 mmol 

and ranged between 0.16 and 5.41 mmol.  There was no difference in TMAO levels 

between the mice randomized to each of the diet groups at baseline (data not 

shown). However, after 18 weeks on an atherogenic diet we observed a highly 

significant increase in TMAO levels, 4.19±0.22 mmol (p = 1.36 x 10-22), whereas 

TMAO levels in the mice fed the HP diet did not differ significantly from the baseline 

levels (1.25±0.06 mmol) (Figure 3.1A).  

We next assessed the relationship between TMAO and cardiometabolic risk 

factors.  We found a significant correlation between TMAO and LDL/VLDL 

cholesterol (R = 0.61, p = 3.56 x 10-26) (Figure 3.1B) as well as total cholesterol (R = 

0.56, p = 2.18 x 10-22) (Figure 3.1C). A simple Pearson correlation analysis across 

all samples indicated a moderate relationship between TMAO and atherosclerosis 

(R=0.26, P=0.002) similar to previous reports [Bennett et al. 2013b, Bennett et al. 

2015, Wang et al. 2011], but the biweight mid-correlation between atherosclerotic 

lesion size and TMAO was not significant (Figure 3.1D), indicating that a relationship 

between TMAO and atherosclerosis is likely driven by a few of the more susceptible 

mice in the study. 
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Figure 3.1: Plasma TMAO 
levels are altered by diet 
and are correlated with 
cardiometabolic 
phenotypes in the DO 
mice. (A) Mice were 
maintained on a synthetic 
diet for two weeks, fasted for 
four hours, and then 
phenotyped for plasma 
clinical chemistries at 6 
weeks of age (Baseline). 
Following two weeks of 
synthetic diet, mice were 
transferred to either a high 
protein diet (HP) or an 
atherogenic diet (HFCA). 
Plasma was taken from 24-
week-old mice after 18 
weeks on their respective 
diets, and with four hours 
fasting, and then 
phenotyped for plasma 
clinical chemistries after diet 
treatment (HFCA or HP). 
TMAO is measured in mmol. 
(B-D) Correlation plots 
demonstrating the 
associations between post-
diet TMAO and post-diet 
VLDL/LDL-C (B) or Total 
Cholesterol (C) or 
atherosclerotic lesion size 
(D). Lesion sizes were 
measured in Oil Red O-
stained slides of cross 
sections of aortic sinuses 
from each mouse, and 
averaged based on number 
of slides per mouse. Data is 
only representative of 
HFCA-fed mice, as HP-fed 
mice developed no lesions.	
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3.3.2 Identification of Chromosome 12 QTL associated with TMAO at baseline 

and after dietary treatment 

We identified a novel QTL on Chromosome 12 that is associated with TMAO 

levels at baseline and after the dietary regimen. In 6-week old mice, the 

Chromosome 12 QTL is significantly associated with TMAO levels (LOD=9.98, 

p<0.05) (Figure 3.2A). This QTL has a ~3.5 Mb (83.55-87.02 Mb) support interval 

with a peak SNP at 86.25 Mb. Based on the founder allele effects, we see that allelic 

contribution from NOD/ShiLtJ and 129S1/SvImJ within the interval are associated 

with the highest TMAO levels, while allelic contribution from CAST/EiJ and PWK/PhJ 

alleles are associated with the lowest TMAO levels (Figure 3.2B). According to the 

UCSC Genome Browser, there are 78 positional candidates within this QTL interval 

(Table A.2).2  

We identified a coincident QTL on Chromosome 12 (LOD= 7.04, p<0.01) 

associated with TMAO after dietary treatment, which overlaps with the QTL on 

Chromosome 12 in these mice at 6 weeks of age prior to dietary treatment (Figure 

3.2C). The allele effects for the QTL also indicate that allelic contribution from 

CAST/EiJ and PWK/EiJ are associated with low circulating TMAO levels, suggesting 

that a variant shared by these strains may be causal for the Chromosome 12 QTL 

both before and after dietary treatment (Figure 3.2D). The QTL for TMAO after 

dietary treatment has a ~3.6 Mb (83.46 Mb- 87.08 Mb) support interval with a peak 

SNP at 85.7 Mb, which is about 500 kb from the peak SNP associated with baseline  

																																																								
	
2	Oversized tables can be found in Appendix A.	
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Figure 3.2: Genetic mapping of TMAO in DO mice before and after dietary 
treatment. Genome-wide quantitative trait locus (QTL) scan for loci affecting TMAO 
concentrations. Chromosomes 1 through X are represented numerically on the x-
axis and the y-axis represents the logarithm of odds (LOD) score. The relative width 
of the space allotted for each Chromosome reflects the relative length of each 
Chromosome. Colored lines show permutation-derived significance thresholds 
(N=1000) at P = 0.05 (LOD=7.5, shown in red), P = 0.10 (LOD=7.1, shown in 
orange), and P = 0.63 (LOD=5.8, shown in yellow). (A) Genome-wide QTL scan for 
loci affecting TMAO levels at baseline. (B) The eight coefficients of the QTL model 
show the effect of each founder allele on the phenotype along Chromosome 12. (C) 
Genome-wide QTL scan for loci affecting TMAO levels after 18 weeks of dietary 
treatment. (D) Shading identifies the 95% Bayesian credible interval around the 
peak.  
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TMAO levels in mice at 6 weeks of age. The interval contains 80 positional 

candidates (Table A.2). 

We also identified a significant QTL for baseline TMAO levels on 

Chromosome 14 (LOD= 8.2, p <0.05) that spans a 16.3 Mb region (Figure 3.2A) and 

contains 21 positional candidate genes. Based on the founder allele effects we 

observed that C57BL/6J, 129S1/SvImJ, CAST/EiJ, and PWK/PhJ alleles in this 

interval are associated with higher TMAO levels, while A/J, NOD/ShiLtJ, NZO/HiLtJ, 

and WSB/EiJ alleles are associated with lower TMAO levels. This QTL, however, 

was not detected in the post-diet analysis and thus we focused only on the 

Chromosome 12 locus. 

 

3.3.3 A subset of genes within the Chromosome 12 TMAO QTL have 

overlapping eQTL 

In order to identify any candidate genes within the 95% confidence interval of 

the Chromosome 12 TMAO QTL whose expression is related to TMAO levels, we 

sought to determine whether any of the Chromosome 12 interval genes have local 

eQTL, or cis-eQTL, that overlap the TMAO QTL. First, since the pre-diet and post-

diet TMAO QTL are overlapping, we extended the interval to encompass the QTL 

SNPs above the 90% threshold (which includes the post-diet QTL) within both 

intervals (83.46Mb – 87.08Mb). Then, for each of the 63 out of 80 genes in the 

extended interval for which a probe was present in the microarray, we associated 

differences in gene expression to genetic differences using the R package DOQTL 
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as described in the methods [Gatti et al. 2014]. We and others have previously 

shown that DOQTL effectively identifies QTL for quantitative traits and can estimate 

the allele effects for haplotypes of the 8 founders of the DO [Churchill et al. 2012, 

Gatti et al. 2014, Smallwood et al. 2014, Svenson et al. 2012]. Next, for each of the 

63 genes with significant eQTL SNPs, we assessed whether any of the eQTLs are 

within 1 Mb on either side of the TMAO QTL (Methods), which we refer to as 

overlapping. We found significant overlapping eQTL for 14 of the 63 genes (Figure 

3.3, Table 3.1).  

For each of these 14 genes we next investigated the allele effects at their 

respective eQTL SNPs. We found that for 7 of the 14 genes, the allele effect is 

consistent with that of the QTL for TMAO, with 3 having CAST/EiJ and PWK/PhJ 

alleles associating with lower levels of expression, and 4 with the same alleles 

associating with higher levels of expression (Table 3.1, Figure 3.3, Figure 3.4). For 

example, based on the founder coefficients for each marker along Chromosome 12, 

we see that both CAST/EiJ and PWK/PhJ alleles are associated with higher 

expression of Numb and lower expression of Acot4 (Figure 3.3). Several genes, 

such as Arel1, have overlapping eQTL with the TMAO QTL but do not have similar 

allele effect patterns. Among the 7 genes with overlapping eQTL and shared allele 

effect patterns with the TMAO QTL, we next sought to identify genes that are 

positively or inversely correlated with pre- and post-diet TMAO by performing a 

biweight mid-correlation analysis. We found that 4 of these 7 are significantly 

associated with post-diet TMAO levels (Table 3.2), including Numb and Acot4. 
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Taken together, these results indicate that mice contributing CAST/EiJ and 

PWK/PhJ alleles at the Chromosome 12 QTL have higher expression of Numb, 

lower expression of Acot4, and lower circulating TMAO levels.   

 
 

	
Figure 3.3: Genes within the TMAO QTL interval have overlapping eQTL.  
(A,B) Genome-wide QTL scan for loci affecting A) Numb, and B) Acot4 in the livers 
of the DO mice. Chromosomes 1 through X are represented numerically on the x-
axis and the y-axis represents the LOD score. The relative width of the space 
allotted for each chromosome reflects the relative length of each chromosome. Red 
lines in top plots show permutation-derived significance thresholds (N=1000) at P = 
0.05 (LOD=7.2). The bottom plots show eight coefficients of the QTL model 
depicting the effect of each founder allele on the expression of each respective gene 
along Chromosome 12. Shading identifies the 95% Bayesian credible interval 
around the peak. 
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Figure 3.4: The remainder of the seven genes that have consistent founder 
allele effects with TMAO. Coefficients of the QTL model showing the effect of each 
of the eight founders’ alleles on expression along Chromosome 12. 
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3.3.4 Evidence for robust miR-146 association with circulating TMAO levels 

and atherosclerosis 

MiRNAs represent an important class of diet-responsive biomolecules that 

have emerged as prominent regulators of atherogenesis and related cardiometabolic 

conditions [Feinberg and Moor 2016]. While there is only one known miRNA 

encoded in the TMAO QTL interval, miR-6938, we found that it is not expressed in 

the DO mice livers. Thus, we sought to determine whether any robustly expressed 

liver miRNAs are associated with the 7 genes of interest in the post-diet TMAO QTL 

that have an overlapping eQTL and a shared allele effect pattern with the TMAO 

QTL, and are strongly negatively or positively correlated with circulating TMAO 

levels. In a previous study, we had shown that 246 miRNAs are robustly expressed 

in the livers of the same cohort of DO mice [Chapter 2]. Among these, we found that 

4 miRNAs had predicted conserved target sites in 2 of the 7 genes of interest (Table 

3.3). Using biweight mid-correlation analysis, we found that 3 of the 4 miRNAs 

exhibit significant negative or positive correlation with TMAO, and 2 miRNAs among 

these with the highest and most significant correlations with post-diet TMAO are 

miR-146a and miR-146b (R =  0.42 and 0.40, respectively, p-value = 9.26 x 10-11 

and 6.42 x 10-10, respectively, Figure 3.5). Of note, we observed that a few miRNAs 

that do not have predicted target sites in the 7 genes of interest, most notably miR-

34a and miR-1247, are nonetheless very strongly positively correlated with TMAO 

(R = 0.62 and 0.53, respectively). 
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Table 3.1: Significant eQTL at the chromosome 12 TMAO locus. 
	

Gene 
Gene 

Chromosome 
Stran

d TSS Peak SNP 

Peak 
SNP 
LOD P-value 

Allele 
Effects 

Consistent 
with 

TMAO? 

Acot4 12 + 84.04 UNC21525003 9.44 2.68x10-07 Yes 

Acot6 12 + 84.10 UNC21513484 15.45 8.66x10-13 Yes 

Arel1 12 - 84.92 UNC21535324 21.09 4.20 x10-18 No 

Angel1 12 - 86.70 UNC21559085 16.80 4.72 x10-14 No 

Dcaf4 12 + 83.52 UNC21513484 39.74 4.54 x10-36 Yes 

Ift43 12 + 86.08 UNC21535324 8.69 1.26 x10-06 No 

Isca2 12 + 84.77 UNC21526856 16.46 9.75 x10-14 Yes 

Lin52 12 + 84.45 UNC21506680 10.90 1.31 x10-08 No 

Mlh3 12 - 85.23 UNC21535914 16.83 4.42 x10-14 Yes 

Numb 12 - 83.79 UNC21509060 10.42 3.58 x10-08 Yes 

Ptgr2 12 + 84.29 UNC21523779 7.28 2.13 x10-05 No 

Rnf113a2 12 + 84.42 UNC21522264 7.71 9.03 x10-06 No 

Syndig1l 12 - 84.68 UNC21526856 35.04 1.65 x10-31 No 

Zfyve1 12 - 83.55 UNC21525523 17.79 5.63 x10-15 Yes 
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Table 3.2: Correlations between genes and TMAO levels. Correlations were 
calculated using the biweight mid-correlation method with Student’s p-values. 

Gene	 Pre-Diet	TMAO	 Pre-Diet	TMAO	
P-value	

Post-Diet	
TMAO	

Post-Diet	
TMAO	P-value	

Acot4	 -0.16	 0.621	 -0.3	 1.72 x10-05 
Acot6	 0.08	 0.862	 0.37	 1.86 x10-08 
Angel1	 0.14	 0.659	 0.04	 0.638 
Arel1	 -0.05	 0.919	 0.05	 0.593 
Dcaf4	 -0.18	 0.543	 -0.12	 0.142 
Ift43	 -0.03	 0.949	 0.52	 2.36 x10-16 
Isca2	 -0.11	 0.757	 -0.37	 1.42 x10-08 
Lin52	 -0.004	 0.998	 -0.19	 0.01 
Mlh3	 0.22	 0.409	 0.06	 0.471 
Numb	 -0.13	 0.715	 -0.27	 0.0001 
Ptgr2	 0.04	 0.931	 -0.32	 2.76 x10-06 

Rnf113a2	 -0.09	 0.821	 -0.29	 2.58 x10-05 
Syndig1l	 -0.03	 0.959	 0.05	 0.547 
Zfyve1	 0.18	 0.509	 -0.04	 0.626 

 

 

Table 3.3: miRNAs that are predicted to target genes with eQTL overlapping 
the TMAO QTL and exhibit consistent allele effects. Information for predicted 
regulatory relationships were taken from TargetScanMouse. All miRNA target sites 
are conserved between mouse and at least one other species. 
Genes	 miRNAs	
Isca2	 mmu-miR-23a-3p	
Numb	 mmu-miR-146a-5p,	mmu-miR-146b-5p,	mmu-miR-31-5p	
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Table 3.4: Mapping statistics for small RNA-seq in LIRKO mice. 
Sample_name Flox 1 Flox 2 LIRKO 1 LIRKO 2 LIRKO 3 

Total reads 18838092 48825252 65008050 45497483 18043841 
Trimmed reads 4665795 16598923 25657079 14924053 6489845 

% Trimmed reads 24.77 34 39.47 32.8 35.97 
Short reads 13275125 856164 1456951 1427793 10606325 

% Short 70.47 1.75 2.24 3.14 58.78 
Exact match to 

genome 2376178 10930102 17218926 9795010 3520129 
% EM 50.93 65.85 67.11 65.63 54.24 

No exact match to 
genome 2289617 5668821 8438153 5129043 2969716 
% NEM 49.07 34.15 32.89 34.37 45.76 

Toatl mapped reads 3346853 12989102 19475840 12273850 5073373 
% Mapped 71.73 78.25 75.91 82.24 78.17 

Total mapped to 
miRs 1621051 5549923 7233770 7163434 2630898 

% of total mapped to 
miRs 48.44 42.73 37.14 58.36 51.86 

Total mapped to 
tRNAs 119835 940582 1798469 376758 303200 

% of total mapped to 
tRNAs 3.58 7.24 9.23 3.07 5.98 

Indeed, miR-146a, miR-146b, miR-34a, and miR-1247 are among the most 

significantly up-regulated miRNAs in the liver of HFCA-fed DO mice compared to the 

HP-fed DO mice (2.2-fold, 4.3-fold, 6-fold, and 4.6-fold, respectively; FDR < 0.05, 

Figure 3.6).   

To test whether the miRNAs most strongly correlated with TMAO in the DO 

mice are also significantly elevated in an independent model documented to have 

elevated circulating TMAO, we examined the liver-specific insulin receptor knockout 

(LIRKO) mouse model [Feinberg and Moore 2016] performed small RNA-seq 

analysis with liver tissue from both LIRKO and floxed control mice (Table 3.4) and 

found that miR-1247, miR-34a, miR-146a, and miR-146b were among the top 10 

most highly up-regulated hepatic miRNAs in LIRKO mice, at levels of ~35-fold, ~7-

fold, ~2.2-fold and ~1.8-fold, respectively (Figure 3.6). 
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We next sought to provide even further validation for this result by studying a 

monkey model of hypercholesterolemia and atherosclerosis. Specifically, we profiled 

miRNAs by small RNA-seq in liver tissue from African Green Monkeys at baseline 

during standard chow diet feeding (n=4) and then after a 10-week high-fat/high-

cholesterol (HFHC) atherogenic diet (n=5) (Table 3.5). As expected, the HFHC diet 

significantly elevates circulating TMAO (Figure 3.7A). We found that miR-146a is 

among the most robustly up-regulated miRNAs (>2-fold) in the liver in response to 

the HFHC diet (Figure 3.7B, Figure 3.8), and that miR-146b is also significantly 

elevated albeit to a slightly lower degree (Figure 3.7B, Table A.3). Importantly, we 

also found that the levels of miR-146a in the HFHC-fed monkeys are very strongly 

correlated with plasma TMAO levels (R = 0.67, p < 0.05), as well as total plasma 

cholesterol (R = 0.58, p < 0.05), LDL cholesterol (R = 0.45, p < 0.05), and HDL 

cholesterol (R = 0.70, p < 0.05). 

According to the literature, the predicted interaction between miR-146 and 

Numb (Table 3.3) has been validated in several different tissues [Forloni et al. 2014, 

Hwang et al. 2014], though it has not been studied previously in the liver. We found 

that in the DO mice both miR-146a and miR-146b are strongly inversely correlated 

with Numb (R = -0.40 and -0.29, respectively; p-value = 6.44 x 10-10 and 2.05 x 10-05, 

respectively, Figure 3.7C-D) across the 288 post-diet murine liver samples, 

supporting the previously suggested regulatory connection. Overall, these results 

point to a strong link between miR-146a/b and TMAO, particularly in the context of 

an atherogenic diet.  
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3.4 DISCUSSION 

High circulating TMAO levels are strongly associated with an increased risk for 

cardiovascular disease. However, the factors that are involved in regulating TMAO 

levels remain incompletely characterized. In this work, we’ve carried out a genetic 

mapping study of TMAO in a cohort of 288 female Diversity Outbred mice, of which 

half were fed an atherogenic diet.  The three main novel findings are the 

identification of: (i) a QTL on Chromosome 12 that is associated with circulating 

TMAO levels; (ii) at least 7 genes at this locus, including Numb, which have 

overlapping eQTLs for which allele effects are consistent with the TMAO QTL, and 

which have post-diet expression levels that are significantly negatively or positively 

correlated with TMAO; and (iii) a link between miR-146 and TMAO levels, possibly 

through regulation of one of these 7 genes, Numb. Numb has been implicated 

previously in the control of circulating cholesterol levels through its role in regulating 

intestinal cholesterol absorption [Li et al. 2014, Wei et al. 2014]. Moreover, a recent 

study reported that genetic variants in Numb may be associated with coronary artery 

disease in humans [Abudoukelimu et al. 2015]. What, if any, functions Numb has in 

the liver, or in immune cells recruited to the liver in atherosclerosis, remains to be 

determined.   

The levels of miR-146a are significantly elevated in atherosclerotic plaques and 

rise with disease progression [Cheng et al. 2017, Raitoharju et al. 2011]. Moreover, 

levels of miR-146 in serum have been associated with hyperlipidemia [Simionescu et 

al. 2014] and were shown recently to be reduced upon statin treatment [Yang et al. 
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2016]. A very recent study using a knockout mouse model demonstrated that miR-

146a is a critical regulator of cholesterol metabolism and inflammatory signaling in 

the context of an atherogenic diet [Cheng et al. 2017]. The authors showed that 

genetic ablation of miR-146a in bone marrow-derived cells reduces circulating LDL-

C and suppresses atherogenesis, whereas deletion of miR-146a in the vascular 

endothelium promotes the development of atherosclerosis in part due to 

unrestrained inflammatory signaling. This complicated result points to the 

pleiotropism of miRNAs and their cell-type specific functionalities. The inverse 

correlation and regulatory interaction between miR-146 and Numb has been 

validated experimentally in other tissues [Forloni et al. 2014, Hwang et al. 2014], but 

to our knowledge this study represents the first report of its potential relevance in the 

context of atherosclerosis. Interestingly, miR-146a and miR-146b are members of 

the co-regulated module of miRNAs identified in our previous study that is 

associated with circulating LDL-C levels in the DO mice fed the HFCA atherogenic 

diet. In addition, Numb is a member of a co-regulated module that is inversely 

correlated with the LDL-C associated miRNA module identified in Chapter 2. Our 

current and previous findings strengthen the burgeoning connection between miR-

146 and diet-associated cardiometabolic disease by demonstrating a novel 

correlation with circulating TMAO via a possible mediator of this relationship, Numb. 

It is also important to point out here that there are 80 genes in the Chr12 TMAO 

QTL, and genes other than Numb at this locus may be more relevant to TMAO 

levels and atherogenesis, and therefore, merit attention in future studies as well. 
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It has been shown previously that TMAO levels are significantly elevated in the 

liver-specific insulin receptor knockout (LIRKO) mouse model [Miao et al. 2015]. We 

demonstrate here that miR-146a and miR-146b, as well as a suite of other miRNAs 

including miR-34a and miR-1247, which are positively correlated with TMAO in the 

DO cohort, are also significantly elevated in the livers of LIRKO mice. Lastly, we 

demonstrate that miR-146a is among the most aberrantly elevated miRNAs in the 

livers of monkeys fed a high-fat/high-cholesterol diet, and is also significantly 

correlated with plasma TMAO levels, which provides even greater physiological 

relevance to diet-associated atherosclerosis in humans. The >30-fold increase in 

miR-1247 in the liver of LIRKO mice compared to floxed controls also warrants a 

deeper study, especially since the targets and functions of miR-1247 are very poorly 

characterized.  

Overall, these findings strengthen the connection between miRNAs and 

dyslipidemia/atherosclerosis. Whether the rise in the levels of miR-146a/b and other 

miRNAs contributes to atherogenesis or is part of an adaptive response to 

atherogenic stimuli is not yet known and merits further investigation. As 

demonstrated by the Cheng et al. study (2017) of the miR-146 knockout mice, these 

miRNAs could serve both pro- and anti-atherogenic roles, depending on cellular 

context and stage of disease progression. 
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Figure 3.5: miR-146a/b has significant associations with post-diet TMAO in DO 
mice. Plots indicating correlations between miR-146a-5p and miR-146b-5p, 
respectively, and post-diet TMAO. R is the bi-weight mid-correlation coefficient. P is 
Student p-value. miR-146b-5p expression is in reads per million mapped to miRNAs 
(RPMMM). 
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Figure 3.6: miR-146a/b, miR-34a, and miR-1247 are upregulated in DO and 
LIRKO mouse livers. Top: miRNA expression fold-change in the livers of the DO 
mice. RPMMMs are log10 transformed. Bottom: miRNA expression fold-change in 
the livers of the LIRKO mice (n = 2 control, n = 3 LIRKO). RPMMMs and fold-change 
are log10 transformed. 
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Table 3.5: Mapping statistics for small RNA-seq in African Green Monkey 
livers. Chow denotes monkeys fed chow diet, HFHC denotes monkeys fed a high 
fat high cholesterol diet. 
 
Sample name Chow 1 Chow 2 Chow 3 Chow 4 
Total reads 6921450 14800272 22431223 13731169 
Trimmed reads 6578170 13894207 20261384 12891396 
% Trimmed reads 95.04% 93.88% 90.33% 93.88% 
Short reads 142744 572506 1590743 557777 
% Short 2.06% 3.87% 7.09% 4.06% 
Exact match to genome 3509573 9778874 13617582 8470357 
% EM 53.35% 70.38% 67.21% 65.71% 
No exact match to genome 3068597 4115333 6643802 4421039 
% NEM 46.65% 29.62% 32.79% 34.29% 
Total mapped reads 5117952 12539485 18139799 10992897 
% Mapped 77.80% 90.25% 89.53% 85.27% 
Total mapped to miRs 1997849 8934078 12645667 6966324 
% of total mapped to miRs 39.04% 71.25% 69.71% 63.37% 
Total mapped to tRNAs 532787 346637 717081 307479 
% of total mapped to tRNAs 10.41% 2.76% 3.95% 2.80% 
 

Sample name HFHC 1 HFHC 2 HFHC 3 HFHC 4 HFHC 5 
Total reads 15695910 17844833 19020563 24498194 16772594 
Trimmed reads 14732475 15751785 18132684 21045693 15992340 
% Trimmed reads 93.86% 88.27% 95.33% 85.91% 95.35% 
Short reads 613518 1659082 277830 2842095 371020 
% Short 3.91% 9.30% 1.46% 11.60% 2.21% 
Exact match to genome 10421206 11245175 11187318 13609384 11003906 
% EM 70.74% 71.39% 61.70% 64.67% 68.81% 
No exact match to genome 4311269 4506610 6945366 7436309 4988434 
% NEM 29.26% 28.61% 38.30% 35.33% 31.19% 
Total mapped reads 13102013 14518080 14570075 17626760 14003600 
% Mapped 88.93% 92.17% 80.35% 83.75% 87.56% 
Total mapped to miRs 9266037 10660269 8962880 11253808 9400558 
% of total mapped to miRs 70.72% 73.43% 61.52% 63.85% 67.13% 
Total mapped to tRNAs 670051 152697 1265460 954150 1593411 
% of total mapped to tRNAs 5.11% 1.05% 8.69% 5.41% 11.38% 
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levels in African Green 
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chow (n = 4). Error bars 
show standard error. (B) 
miR-146a/b fold-change in 
the livers of African Green 
Monkeys fed high-fat/high-
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diet relative to baseline 
chow (n = 4). (C,D) 
Correlation plots 
demonstrating correlations 
between miR-146a-5p and 
miR-146b-5p, respectively, 
and Numb expression in 
DO mice. Asterisk (*) 
denotes p < 0.05. 
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Figure 3.8: Fold change in expression of miRNAs in monkeys fed HFHC diet.  
miRNA expression log2 of fold change in the livers of African Green Monkeys fed 
HFHC diet (n=5_ relative to chow-fed monkeys (n=4). 
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4 CHAPTER 4: DISCUSSION AND FUTURE DIRECTIONS 
 

Atherosclerosis is a progressive condition that is governed by genetics, 

environmental factors, or an interaction between the two. Many miRNAs have been 

implicated in the consequences of cardiometabolic dysfunction such as 

atherosclerosis and dyslipidemia. Yet, there are significantly fewer studies that 

convey an unbiased investigation of the global profile of hepatic miRNAs as they fit 

into co-regulated modules that are most responsive to genetics and diet 

perturbation; and to my knowledge, none that are in the context of dyslipidemia and 

cardiometabolic dysfunction. Furthermore, the knowledge concerning genetic 

components that modulate TMAO levels is still fairly sparse. The work presented 

here takes a step in the direction of elucidating miRNA regulation of atherosclerosis 

risk factors, dyslipidemia and TMAO, and provides compelling data as the 

foundations for future studies. 

 

4.1 MICRORNA MODULES 

With expression data and phenotype data in hand, we first asked if there are 

co-regulated modules associated with cardiometabolic parameters. We identified the 

hepatic miRNAs that not only are key players in the regulation or response to 

cardiometabolic dysfunction in a diverse population of mice, but also identified which 
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miRNAs are co-regulated and potentially function as a module. To clarify, co-

regulated modules are assigned when its members have similar expression levels. 

When forming modules using WGCNA, it is common to use the ‘average’ method of 

hierarchical clustering. This method ensures that the distance of each clade to 

another is the average of each of its members’ distances to members in neighboring 

clades. This method, while helpful for some, may not be the most intuitive when 

trying to identify modules of co-regulated miRNAs (or genes) since averages can be 

skewed by outliers. Instead, I used the Ward’s method of hierarchical clustering, 

which is an ANOVA-based approach that puts members with the lowest possible 

combined standard error together into clades. Since the fundamental idea behind 

co-regulatory modules is that module members have shared regulatory elements, 

and may be co-expressed, it makes sense that using Ward’s method would be the 

most advantageous at identifying co-regulated members. The standard error of 

expression patterns between each miRNA to another across the mouse samples is 

the lowest possible within a clade, giving a greater likelihood that the expression 

patterns are extremely similar.  

As an answer to our primary question, we found that one miRNA module, the 

brown module, is associated with post-diet LDL-C and with several gene modules 

that are also associated with post-diet LDL-C. There are 34 members of the module, 

5 of which (miR-199a, miR-181b, miR-27a, miR-24, and miR-21 isomiR) were 

identified as hub miRNAs. In this context, we refer to the hub miRNAs that are the 

most highly connected miRNAs in the module. These connections are based on the 
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summed TOMs (topological overlap measures), interconnectedness of each miRNA 

within its module, and the correlation to the module eigenmiR. A pair of miRNAs (or 

module members in general) has a high TOM when they are similarly connected to 

the same groups of miRNAs in the entire network [Li and Horvath 2009]. The 

intramodular connectivity is a fuzzy measure of module membership, and those 

members with high intramodular connectivity are the most central to the module 

[Horvath and Dong 2008]. The module eigenmiR (normally named eigengene, but 

was changed to fit a miRNA module) is a measure that is representative of the 

characteristic expression profile exhibited by module members [Horvath and Dong 

2008]. Thus, the use of these three metrics to define the miRNA hubs is extensive 

and quite thorough.  

After identifying them, we are forced to consider what their function is as 

miRNA hubs. In other words, how are they biologically relevant to the system? The 

following are possible roles for hub miRNAs with respect to regulating their fellow 

miRNA module members. One potential role could be as a regulator of a regulator, 

such as a transcription factor, inhibitor, chromatin modifier, kinase or phosphatase. 

Even slight fluctuations in the levels of any of these can result in large downstreamt 

differences in signaling cascades and efforts in transcription [Giorgetti et al. 2010, 

Ivanovska et al. 2015, McKinsey 2012, Vaquerizas et al. 2009]. Another possible 

method is by regulating the expression of RNA-binding proteins that may aid in the 

processing, function, or regulation of the other module members. The upregulation 

of a miRNA that targets a gene encoding an RNA-binding protein, which in turn 
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inhibits a direct or indirect inhibitor of another miRNA would surely effect that 

miRNA’s expression. In reality, since miRNAs can be participants in complex 

regulatory motifs, there may be a combination of the two possibilities at work, or 

even others that have not been considered here.  

With the module of miRNAs that is significantly correlated to a 

cardiometabolic endpoint/phenotype comes the question as to whether or not the 

miRNA members are cooperatively regulating the network of genes that promote the 

phenotype. We found that approximately 30-40% of the genes in the gene modules 

inversely correlated with post-diet LDL-C are predicted to have conserved target 

sites for at least one of the miRNA module members. Some of these genes are 

predicted to be targeted by several of the miRNAs, suggesting that they could also 

be regulated coordinately. Furthermore, several of the miRNA hubs have been 

studied and implicated in atherosclerosis or dyslipidemia, two of which, miR-21 and 

miR-27, have been shown to be regulatory partners for lipid metabolism [Kida et al. 

2011]. In addition, a previous study identified miR-21, miR-27 and miR-199 as 

candidate master regulators of downregulated genes in viral hepatitis, of which the 

majority were lipid metabolism genes [Selitsky et al. 2015]. To that end, it is very 

likely that these miRNA module members work together to effect lipid metabolism 

and homeostasis, but have yet to be specifically studied together in this context. 

Future studies to validate this miRNA module and the role of its hubs in modulating 

LDL-C levels may include co-overexpressing the hubs in mice and measuring the 

effects on expression of genes and other miRNAs, especially those that are miRNA 
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module members identified in the current work. If the hub miRNAs are truly hubs of 

the module, the remainder of the 34 miRNAs in the module should have altered 

expression levels in the same direction as is seen in the work presented here. In 

addition, some of the genes in the correlated gene modules would also have 

markedly altered expression levels. In order to deeper understand whether the 

increased hub miRNA expression is simply responding to the atherogenic diet, or is 

causal or contributory to the increased circulating LDL-C levels, we could feed mice 

a HFCA diet, and also treat mice with a cocktail of inhibitors against the five miRNA 

hubs. If the miRNA hubs are causal for increased circulating LDL-C levels, the mice 

fed the HFCA diet and treated with the inhibitors should have circulating LDL-C 

levels that are reduced in comparison to the mice fed the HFCA diet alone.  

Although the primary focus of this portion of the dissertation has been on 

miRNAs with a secondary view of gene modules, gene expression is also a major 

piece of the puzzle that is important to address. In the present work, we utilized 

microarray technology to measure gene expression differences in the DO mice, and 

used this information to perform a basic differential expression analysis and co-

expression network analysis. While the microarray is informative, performing 

sequencing would be even more informative. The microarray plate incorporated 

SNPs in the probes so that the majority of mRNAs from the genetically diverse DO 

mice would be able to hybridize to them. However, there is a chance that we are 

inadvertently missing transcripts, such as those that are alternatively spliced due to 

some variant. Performing RNA-seq in the DO mice would give us more information 
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about the transcript differences between mice with different genotypes, and 

furthermore, a more sensitive account of transcript abundance. With sequencing 

data for both miRNAs and mRNAs, we would also be able to identify specific 

variants within transcripts and relate them to differences in miRNA binding between 

alleles. 

 

4.2 TMAO QTL 

In an effort to identify host genetic regulation of TMAO, we identified a novel 

QTL for plasma TMAO levels located on Chromosome 12. We focused on the 

Chromosome 12 locus because it was present in mapping for pre- and post-diet 

TMAO levels. The Chromosome 12 locus is almost perfectly overlapping between 

pre- and post-diet TMAO, and the two share the same founder allele effects with 

CAST/EiJ and PWK/PhJ alleles associated with high plasma TMAO levels. Notably, 

we found neither a significant nor suggestive peak on Chromosome 3, for which a 

GWAS locus and overlapping eQTL were identified in a previous study [Hartiala et 

al. 2014]. While this result was not recapitulated in our hands, this does not 

necessarily mean that either result is false. Major differences in the type of mice 

used could be the cause for the vast difference in results. Haritala et al. used an all-

male cohort of HMDP mice, whereas we used an all-female cohort of DO mice. The 

differences caused by gender along with the differences between the two mouse 

resources are two possible sources of discrepancy.  
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The QTL peak on Chromosomes 14 and X did not replicate in post-diet TMAO 

QTL mapping. The pre-diet TMAO levels were measured in the same mice as were 

the post-diet TMAO levels, so the only difference between the two is dietary 

intervention with either HP or HFCA diet. This suggests that the regulatory elements 

on Chromosomes 14 and X seem to become inactive or less effective in modulating 

plasma TMAO levels after diet treatment. This may indicate that interaction between 

diet and genetics is heavily influential to these loci, and possibly causes a rewiring of 

the genetic architecture for some loci, and not at all for others. 

  Within the extended TMAO QTL region are 80 genes, 63 of which have 

probes on the microarray so their expression levels were measured. We also 

performed eQTL mapping on these 63 genes and found that only 14 of the 63 had 

overlapping eQTL, or rather, eQTL peaks that are within 1Mb of the TMAO QTL. 

Only 7 of the 14 genes had consistent founder allele frequencies that effected pre- 

and post-diet TMAO levels. However, 4 of the 7, and a few other of the 14 genes, 

were significantly correlated with TMAO levels. It is worth noting that even though 

the eQTL overlap with QTL for both pre-diet and post-diet TMAO levels, merely a 

subset of the genes with overlapping eQTL were significantly correlated with post-

diet TMAO, and not pre-diet TMAO. This may indicate that either 1) TMAO levels 

before diet are modulated by different genes from post-diet TMAO that happen to be 

located within the same region, 2) TMAO before and after diet treatment are 

modulated by the same one or more genes within the region, but diet interacting with 

the underlying genetics exacerbates their effects, or 3) this is further evidence of a 
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rewiring of the genetic architecture controlling pre-diet TMAO levels versus post-diet 

levels. Option 1 is highly unlikely, but cannot be completely ruled out because, with 

the current data, we cannot analyze all 80 genes in the locus. A likely reason is 

option 3 given that the non-replicated Chromosome 14 and X QTL are seen in pre-

diet TMAO and not post-diet TMAO; this is perhaps evidence of epistasis of genes in 

different loci. This can be coupled with option 2 where the diet interactions initiate 

the alteration in architecture and exacerbate the effects of the Chromosome 12 locus 

gene(s).  

Although there are only 4 genes that are within the TMAO QTL region that 

have consistent allele frequencies, have overlapping significant eQTL, and are 

correlated with TMAO, it is worth considering that there are possibly other genes that 

may contribute to modulating TMAO levels. We identified one of the 4, Numb, as a 

likely candidate gene as it has been shown to be regulated by NPC1L1, and 

necessary for cholesterol absorption in the intestine [Lei et al. 2014, Wei et al. 2014]. 

Even with its connection to cholesterol homeostasis, it is possible that some other 

gene indirectly effects TMAO levels through influential actions on genes like Numb, 

and not Numb alone mediating TMAO. One could argue that the other gene’s 

indirect regulatory effects would show up as a peak in the eQTL mapping. After all, 

there are a total of 47 transcripts (including the 14) with significant eQTL that overlap 

the Chromosome 12 locus. Also, Numb has a single highly significant peak at 

Chromosome 12, and three suggestive peaks on Chromsomes 3, 10, and 17. The 

‘other’ gene could contribute such minor effects that we are too underpowered for 
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the results to be clearly detected or reach significance. There is also the likelihood 

that the ‘other’s’ effects may be at the post-transcriptional or post-translational level, 

which would not be recognized by the microarray. Further investigation, perhaps 

using a Numb-/- mouse, is necessary to tease apart the potentially complex 

mechanism.  

Since the DO mice have so much genetic variation between them, performing 

other types of sequencing in them would be advantageous for further studying how 

genetic variation effects expression, and phenotypes. Sequencing techniques such 

as CHIP-seq would provide further information about chromatin, and more 

interestingly, information about transcription factor binding differences between 

alleles. Relating transcription factor affinity for their respective binding sites with 

genotype would add another layer of information that would help elucidate the 

regulatory effects that variants can have on genes and miRNAs, and could help 

clarify any overlaps in the QTL and eQTL data. 

  

4.3 MIR-146 AND TMAO 

In addition to host genetics at the DNA level, we wanted to identify any 

candidate miRNA regulators of circulating TMAO levels. MiR-146a and miR-146b 

were identified as two of the most highly upregulated miRNAs in the livers of the DO 

mice fed a HFCA diet, and their expression is positively correlated with post-diet 

TMAO levels. Additionally, they are also two of the most highly upregulated miRNAs 

in the livers of LIRKO mice, which are known to have elevated plasma TMAO levels. 
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Lastly, it is the most highly upregulated miRNA in the livers of African Green 

Monkeys fed a HFHC diet who also have, on average, elevated circulating TMAO 

levels in comparison to their counterparts fed a chow diet. To my knowledge, miR-

146 has not previously been connected with circulating TMAO levels. However, the 

evidence presented here in three independent animal models is highly associative 

and suggests that miR-146 is responsive to an atherogenic/dyslipidemic diet, and 

may be a regulator of TMAO. 

Although the evidence is compelling, it is only associative, and more 

experimentation is required to solidify the notion of the regulatory relationship. To 

begin to definitively test for a regulatory relationship, miR-146 can be overexpressed 

and TMAO measured in a mouse model in an effort to recapitulate the results 

observed in the current study. In a second experiment, a miR-146 KO mouse can be 

used to determine if there is an opposite effect on TMAO levels to what is seen in 

miR-146 overexpression, and miR-146 mimic can later be injected or expressed in 

the KO mouse in an attempt to create a rescue effect. The results from such 

experiments would determine if TMAO is indeed under regulation by miR-146, 

however further experimentation would be necessary to elucidate the mechanism by 

which this occurs. Sequencing experiments to measure gene expression in the 

overexpression and knockout animals would allow us to identify any genes that are 

altered in both experiments, especially those that are altered in opposite directions 

between the two. If Numb is one such gene that is altered in both experiments, it 

would lend evidence to support our findings, and would catalyze another series of 
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experiments to validate it as a modulator of TMAO that is under the regulatory 

control of miR-146 in the liver. 

We identified that miR-146 is predicted to target Numb. Numb is correlated with 

miR-146 and inversely correlated with post-diet TMAO levels. Of note, miR-146 is 

part of the brown miRNA module that was identified in Chapter 2. Numb is also a 

member of one of the gene modules that is inversely correlated with the brown 

miRNA module. Not only is this a connection between the two bodies of work, but 

also suggests that there may be other connections between non-hub miRNA module 

members and cardiometabolic traits worth investigating.  

Although we identified Numb as a possible candidate that is mediating the 

relationship between miR-146 and TMAO, we also cannot deny that there are at 

least 5 other genes within the TMAO QTL region that miR-146 is predicted to target 

(Zfyve1, Psen1, Elmsan1, Dlst, Gpatch2l). Any one of these, or any combination of 

these, can be targeted by miR-146 and effect TMAO levels. Indeed, as the theme of 

this body of work is oriented toward a collective effort in regulation, and since TMAO 

is a quantitative trait, I am inclined to suspect that the latter explanation would be 

valid. 

While I have focused here on liver molecular traits and their regulatory 

relationship with TMAO, it is important not to disregard the contributions of the gut 

and gut microbiota. Although we have endeavored to understand the relationships 

between genetic variation, hepatic gene and miRNA expression, and circulating 

TMAO levels, understanding the relationship between genotype, expression profiles, 
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and microbiota composition is also extremely relevant. To that end, fecal matter and 

intestine samples were taken from the mice in the DO cohort. Since TMAO begins 

as TMA, which is produced in the intestine, performing sequencing in these samples 

from the DO mice to have gene, miRNA, and microbiota composition profiles, and 

perform genetic mapping and correlation analyses would provide greater insight into 

the regulatory systems behind circulating TMAO, and help to fill in any gaps or 

confounding results we have. 

 

The work presented here was generated by using computational analysis on 

experimental data from mice, and provides largely associative and compelling data 

that is quite sufficient to be expanded upon. The results and data presented here 

have contributed another piece of the cardiometabolic dysfunction regulatory puzzle, 

and can act as strong rationale and basis for future work. 
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APPENDIX A: OVERSIZED TABLES 
 
 

Table A.1: Predicted target genes of the brown miRNA module members. 
Target prediction analysis performed on the inversely correlated gene CRMs using 
only the brown miRNA module members. Target predictions listed are conserved 
conserved in at least 2 species. 
	
Module	
Color	

Gene	Symbol	 miRNAs	

lightcyan	 Ppp1r15b	 mmu-miR-200a-3p,mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-29a-
3p	

lightcyan	 Aamp	 mmu-miR-342-3p	
lightcyan	 Pan2	 mmu-miR-29a-3p	
lightcyan	 Agpat3	 mmu-miR-24-3p,mmu-miR-27a-3p	
lightcyan	 Trim41	 mmu-let-7e-5p,mmu-let-7i-5p	
lightcyan	 Nfe2l1	 mmu-miR-199a-5p	
lightcyan	 Fam134c	 mmu-miR-29a-3p,mmu-miR-125a-5p,mmu-miR-27a-3p	
lightcyan	 Numb	 mmu-miR-146a-5p,mmu-miR-146b-5p,mmu-miR-143-3p	
lightcyan	 Arel1	 mmu-miR-199b-3p,mmu-miR-199a-3p,mmu-miR-24-3p,mmu-miR-

125a-5p	
lightcyan	 Sel1l	 mmu-miR-125a-5p,mmu-miR-181b-5p	
lightcyan	 Foxn3	 mmu-miR-125a-5p,mmu-miR-200a-3p,mmu-miR-27a-3p,mmu-

miR-200a-3p	
lightcyan	 Desi1	 mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-miR-199a-5p	
lightcyan	 Ccnt1	 mmu-miR-199a-3p,mmu-miR-199b-3p,mmu-miR-27a-3p,mmu-

miR-181b-5p	
lightcyan	 Rhot2	 mmu-miR-146a-5p,mmu-miR-146b-5p,mmu-miR-125a-5p	
lightcyan	 Cyb5a	 mmu-miR-200a-3p	
lightcyan	 Ak3	 mmu-miR-29a-3p	
lightcyan	 Surf2	 mmu-miR-532-5p,mmu-miR-146a-5p,mmu-miR-146b-5p	
lightcyan	 Rprd1b	 mmu-miR-181b-5p	
lightcyan	 Atg13	 mmu-miR-199a-5p	
lightcyan	 Ube2r2	 mmu-miR-214-3p,mmu-miR-125a-5p	
lightcyan	 Nfia	 mmu-miR-29a-3p,mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-

miR-200a-3p,mmu-miR-27a-3p,mmu-miR-199b-3p,mmu-miR-
199a-3p	

lightcyan	 Bsdc1	 mmu-miR-29a-3p	
lightcyan	 Abhd11	 mmu-miR-125a-5p,mmu-let-7i-5p,mmu-let-7e-5p	
lightcyan	 Edem1	 mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-125a-5p,mmu-miR-125a-

5p	
lightcyan	 Necap1	 mmu-miR-143-3p,mmu-miR-27a-3p	
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lightcyan	 Phb2	 mmu-miR-24-3p,mmu-miR-200a-3p	
lightcyan	 Pex5	 mmu-miR-29a-3p,mmu-miR-200a-3p	
lightcyan	 Akt2	 mmu-miR-200c-3p,mmu-miR-200b-3p	
lightcyan	 Egln2	 mmu-let-7e-5p,mmu-let-7i-5p	
lightcyan	 Amfr	 mmu-miR-24-3p,mmu-miR-29a-3p,mmu-miR-200b-3p,mmu-miR-

200c-3p	
lightcyan	 Ormdl2	 mmu-miR-532-5p	
magenta	 Pcmtd1	 mmu-miR-199a-3p,mmu-miR-199b-3p,mmu-miR-200c-3p,mmu-

miR-200b-3p	
magenta	 Hspd1	 mmu-miR-27a-3p	
magenta	 Tmem183a	 mmu-miR-29a-3p	
magenta	 Shprh	 mmu-miR-27a-3p,mmu-miR-29a-3p,mmu-miR-501-3p	
magenta	 Ttc19	 mmu-miR-501-3p,mmu-miR-199a-5p	
magenta	 Rhot1	 mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-miR-27a-3p	
magenta	 Ube2b	 mmu-miR-181b-5p,mmu-miR-200c-3p,mmu-miR-200b-3p	
magenta	 Med1	 mmu-miR-146a-5p,mmu-miR-146b-5p,mmu-miR-200b-3p,mmu-

miR-200c-3p	
magenta	 1110057K04Rik	 mmu-miR-342-3p,mmu-miR-200a-3p	
magenta	 Ppm1a	 mmu-miR-199a-3p,mmu-miR-199b-3p	
magenta	 Synj2bp	 mmu-miR-200b-3p,mmu-miR-200c-3p	
magenta	 Smek1	 mmu-miR-125a-5p,mmu-miR-125a-5p	
magenta	 B3galnt2	 mmu-miR-125a-5p	
magenta	 C78339	 mmu-miR-200a-3p,mmu-miR-27a-3p,mmu-miR-200c-3p,mmu-

miR-200b-3p	
magenta	 Srek1ip1	 mmu-let-7e-5p,mmu-let-7i-5p	
magenta	 Ngly1	 mmu-let-7e-5p,mmu-let-7i-5p	
magenta	 Samd8	 mmu-miR-200a-3p	
magenta	 Naa30	 mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-143-3p,mmu-miR-199a-

5p	
magenta	 Ghitm	 mmu-miR-181b-5p	
magenta	 Rnf139	 mmu-miR-27a-3p	
magenta	 Ndufb9	 mmu-miR-143-3p,mmu-miR-199b-3p,mmu-miR-199a-3p,mmu-

miR-200a-3p,mmu-miR-214-3p,mmu-miR-532-5p	
magenta	 Crkl	 mmu-miR-200c-3p,mmu-miR-200b-3p	
magenta	 Tomm70a	 mmu-miR-24-3p,mmu-miR-200c-3p,mmu-miR-200b-3p	
magenta	 Gabpa	 mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-let-7i-5p,mmu-let-7e-

5p,mmu-miR-146a-5p,mmu-miR-146b-5p,mmu-miR-501-3p	
magenta	 1600012H06Rik	 mmu-miR-27a-3p	
magenta	 Ypel5	 mmu-miR-200a-3p	
magenta	 Ppm1b	 mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-miR-181b-5p	
magenta	 Pfdn6	 mmu-miR-181b-5p	
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magenta	 Ttr	 mmu-miR-200a-3p	

magenta	 Ammecr1l	 mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-200c-3p,mmu-miR-200b-
3p,mmu-miR-29a-3p,mmu-miR-27a-3p	

magenta	 Ndfip1	 mmu-miR-143-3p	

magenta	 Pcgf5	 mmu-miR-199a-3p,mmu-miR-199b-3p	

magenta	 Arl5b	 mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-miR-200a-3p,mmu-
miR-146b-5p,mmu-miR-146a-5p,mmu-let-7i-5p,mmu-let-7e-
5p,mmu-miR-29a-3p	

magenta	 Mtx2	 mmu-miR-214-3p	

magenta	 Ythdf3	 mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-181b-5p,mmu-miR-200b-
3p,mmu-miR-200c-3p,mmu-miR-29a-3p	

magenta	 Mynn	 mmu-miR-200a-3p	

magenta	 Nmd3	 mmu-miR-146a-5p,mmu-miR-146b-5p	

magenta	 Mrpl24	 mmu-miR-200b-3p,mmu-miR-200c-3p	

magenta	 Usp33	 mmu-miR-181b-5p	

magenta	 Ankrd13c	 mmu-miR-181b-5p,mmu-miR-29a-3p,mmu-miR-501-3p,mmu-miR-
199a-3p,mmu-miR-199b-3p	

magenta	 Golim4	 mmu-miR-199b-3p,mmu-miR-199a-3p,mmu-miR-200b-3p,mmu-
miR-200c-3p	

magenta	 Ttpa	 mmu-miR-143-3p	

magenta	 Stx17	 mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-29a-3p,mmu-miR-24-3p	

magenta	 Gpbp1l1	 mmu-miR-199b-3p,mmu-miR-199a-3p	

magenta	 Zyg11b	 mmu-miR-200a-3p,mmu-miR-532-5p	

magenta	 Osbpl9	 mmu-miR-125a-5p	

magenta	 Vkorc1l1	 mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-miR-181b-5p,mmu-
miR-342-3p	

magenta	 Hmgb1	 mmu-miR-181b-5p,mmu-miR-200a-3p	

magenta	 Met	 mmu-miR-181b-5p,mmu-miR-199a-3p,mmu-miR-199b-3p,mmu-
miR-27a-3p	

magenta	 Crebl2	 mmu-miR-24-3p,mmu-miR-24-3p	

magenta	 Zranb1	 mmu-miR-27a-3p	

magenta	 Tmem66	 mmu-miR-199a-5p	

magenta	 4933411K20Rik	 mmu-miR-200a-3p,mmu-miR-27a-3p,mmu-miR-200a-3p	

magenta	 Zfp617	 mmu-miR-199a-5p	

magenta	 Hook3	 mmu-miR-29a-3p,mmu-miR-200c-3p,mmu-miR-200b-3p	

magenta	 Pgrmc1	 mmu-let-7i-5p,mmu-let-7e-5p	

tan	 Lypla1	 mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-200a-3p,mmu-miR-29a-
3p	

tan	 Stradb	 mmu-miR-199a-5p,mmu-miR-24-3p	

tan	 Timm13	 mmu-miR-24-3p	

tan	 Ube2g1	 mmu-miR-146b-5p,mmu-miR-146a-5p,mmu-miR-125a-5p	

tan	 Gphn	 mmu-miR-200a-3p	
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tan	 Dlst	 mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-146b-5p,mmu-miR-146a-
5p	

tan	 Ndufs4	 mmu-miR-27a-3p	
tan	 Ndrg2	 mmu-miR-181b-5p	
tan	 Deptor	 mmu-miR-146a-5p,mmu-miR-146b-5p	
tan	 Slc38a4	 mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-miR-27a-3p	
tan	 Clpp	 mmu-miR-27a-3p	
tan	 Slc25a46	 mmu-miR-532-5p	
tan	 Nr3c1	 mmu-miR-181b-5p,mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-

miR-200a-3p	
tan	 Afg3l2	 mmu-miR-27a-3p,mmu-miR-181b-5p	
tan	 Cdc37l1	 mmu-miR-125a-5p	
tan	 Acvr2a	 mmu-miR-181b-5p,mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-200a-

3p,mmu-miR-125a-5p,mmu-miR-200b-3p,mmu-miR-200c-
3p,mmu-miR-27a-3p,mmu-miR-29a-3p,mmu-miR-200a-3p,mmu-
miR-199a-3p,mmu-miR-199b-3p	

tan	 Atrn	 mmu-miR-29a-3p	
tan	 Gid8	 mmu-miR-342-3p,mmu-miR-29a-3p,mmu-miR-143-3p	
tan	 Aco1	 mmu-miR-200a-3p	
tan	 Mycbp	 mmu-miR-27a-3p,mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-181b-

5p	
tan	 Wipi2	 mmu-let-7i-5p,mmu-let-7e-5p	
tan	 Hadha	 mmu-miR-27a-3p	
tan	 Grsf1	 mmu-miR-532-5p,mmu-miR-125a-5p	
tan	 Ndufb2	 mmu-miR-200b-3p,mmu-miR-200c-3p	
tan	 Crebzf	 mmu-miR-143-3p	
tan	 Tmem135	 mmu-miR-200a-3p,mmu-miR-199a-5p	
tan	 Slc7a6os	 mmu-miR-181b-5p	
tan	 Wdr59	 mmu-miR-24-3p	
tan	 Glyctk	 mmu-miR-214-3p	
tan	 Taz	 mmu-miR-125a-5p,mmu-miR-125a-5p	
turquoise	 Atg16l1	 mmu-let-7i-5p,mmu-let-7e-5p	
turquoise	 Ccnt2	 mmu-miR-200a-3p,mmu-miR-27a-3p,mmu-miR-29a-3p,mmu-let-

7i-5p,mmu-let-7e-5p	
turquoise	 Kdm5b	 mmu-miR-29a-3p	
turquoise	 Tor1aip2	 mmu-let-7e-5p,mmu-let-7i-5p	
turquoise	 Scyl3	 mmu-let-7i-5p,mmu-let-7e-5p	
turquoise	 Tada1	 mmu-miR-27a-3p,mmu-miR-200a-3p	
turquoise	 Cox20	 mmu-miR-125a-5p,mmu-miR-199a-5p	
turquoise	 Nr5a2	 mmu-miR-27a-3p,mmu-miR-200b-3p,mmu-miR-200c-3p	
turquoise	 Heca	 mmu-miR-181b-5p	
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turquoise	 Man1a	 mmu-miR-27a-3p	

turquoise	 Slc25a3	 mmu-miR-200a-3p	

turquoise	 Nudt4	 mmu-miR-200b-3p,mmu-miR-200c-3p	

turquoise	 Rab21	 mmu-miR-200c-3p,mmu-miR-200b-3p	

turquoise	 Frs2	 mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-miR-532-5p	

turquoise	 Sertad2	 mmu-miR-27a-3p,mmu-miR-532-5p,mmu-miR-181b-5p	

turquoise	 Fnip1	 mmu-let-7e-5p,mmu-let-7i-5p	

turquoise	 Alkbh5	 mmu-miR-214-3p	

turquoise	 Timm22	 mmu-miR-199a-3p,mmu-miR-199b-3p	

turquoise	 Sdf2	 mmu-miR-200a-3p	

turquoise	 Mbtd1	 mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-200a-3p,mmu-miR-29a-
3p,mmu-miR-27a-3p	

turquoise	 Msl1	 mmu-miR-125a-5p	

turquoise	 Helz	 mmu-miR-29a-3p,mmu-let-7i-5p,mmu-let-7e-5p	

turquoise	 Nf2	 mmu-miR-146b-5p,mmu-miR-146a-5p	

turquoise	 Ctns	 mmu-let-7i-5p,mmu-let-7e-5p	

turquoise	 Gosr1	 mmu-miR-125a-5p,mmu-miR-146a-5p,mmu-miR-146b-5p	

turquoise	 Rps6kb1	 mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-miR-181b-5p,mmu-
miR-27a-3p	

turquoise	 Dynll2	 mmu-miR-27a-3p,mmu-miR-181b-5p,mmu-miR-143-3p	

turquoise	 Msi2	 mmu-miR-143-3p,mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-27a-
3p,mmu-miR-181b-5p	

turquoise	 Fbxl20	 mmu-miR-200a-3p,mmu-miR-27a-3p,mmu-miR-125a-5p,mmu-
miR-29a-3p	

turquoise	 Ccdc43	 mmu-miR-199a-5p	

turquoise	 Smurf2	 mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-miR-29a-3p	

turquoise	 Exoc7	 mmu-miR-29a-3p	

turquoise	 Slc39a9	 mmu-miR-125a-5p,mmu-miR-200a-3p,mmu-miR-29a-3p	

turquoise	 Ccnk	 mmu-miR-181b-5p,mmu-miR-27a-3p	

turquoise	 Yy1	 mmu-miR-200a-3p,mmu-let-7i-5p,mmu-let-7e-5p	

turquoise	 Eif5	 mmu-miR-27a-3p,mmu-miR-200a-3p	

turquoise	 Atg2b	 mmu-miR-143-3p	

turquoise	 2010107E04Rik	 mmu-miR-24-3p	

turquoise	 Dusp22	 mmu-let-7i-5p,mmu-let-7e-5p	

turquoise	 Secisbp2	 mmu-miR-181b-5p	

turquoise	 Mier3	 mmu-miR-199a-5p,mmu-miR-27a-3p,mmu-miR-29a-3p,mmu-miR-
181b-5p	

turquoise	 Slc38a9	 mmu-miR-125a-5p,mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-143-
3p	

turquoise	 Iqgap2	 mmu-miR-181b-5p,mmu-miR-199a-3p,mmu-miR-199b-3p	

turquoise	 Nek4	 mmu-miR-24-3p	
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turquoise	 Ankrd28	 mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-miR-501-3p,mmu-let-
7i-5p,mmu-let-7e-5p	

turquoise	 Mapk8	 mmu-miR-199a-3p,mmu-miR-199b-3p,mmu-miR-29a-3p,mmu-let-
7e-5p,mmu-let-7i-5p	

turquoise	 Rictor	 mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-27a-3p,mmu-miR-342-3p	
turquoise	 Tnrc6b	 mmu-miR-322-3p,mmu-miR-29a-3p,mmu-miR-200a-3p,mmu-miR-

181b-5p	
turquoise	 Letmd1	 mmu-let-7i-5p,mmu-let-7e-5p	
turquoise	 Yaf2	 mmu-miR-200a-3p,mmu-miR-214-3p,mmu-miR-199a-5p,mmu-let-

7i-5p,mmu-let-7e-5p	
turquoise	 Klhl24	 mmu-miR-125a-5p	
turquoise	 Ubxn7	 mmu-miR-532-5p,mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-

miR-146b-5p,mmu-miR-146a-5p,mmu-miR-29a-3p	
turquoise	 Pcyt1a	 mmu-miR-24-3p	
turquoise	 Osbpl11	 mmu-miR-200a-3p,mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-

miR-27a-3p	
turquoise	 Zfp318	 mmu-let-7e-5p,mmu-let-7i-5p	
turquoise	 Kat2b	 mmu-miR-181b-5p,mmu-miR-27a-3p	
turquoise	 Zeb1	 mmu-miR-199a-3p,mmu-miR-199b-3p,mmu-miR-200b-3p,mmu-

miR-200c-3p,mmu-miR-200a-3p	
turquoise	 Cep120	 mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-200a-3p,mmu-miR-24-3p	
turquoise	 March5	 mmu-miR-200a-3p	
turquoise	 Btrc	 mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-miR-199a-5p	
turquoise	 Sorbs1	 mmu-miR-342-3p	
turquoise	 Fbxw4	 mmu-miR-125a-5p	
turquoise	 Nmt2	 mmu-miR-181b-5p	
turquoise	 Mllt10	 mmu-let-7i-5p,mmu-let-7e-5p	
turquoise	 Arfgap2	 mmu-miR-342-3p,mmu-let-7e-5p,mmu-let-7i-5p	
turquoise	 Stx16	 mmu-miR-27a-3p,mmu-miR-29a-3p,mmu-miR-200a-3p	
turquoise	 Gtf3c4	 mmu-miR-29a-3p	
turquoise	 Fbxw2	 mmu-miR-146a-5p,mmu-miR-146b-5p,mmu-miR-29a-3p	
turquoise	 Rab14	 mmu-miR-27a-3p,mmu-miR-29a-3p	
turquoise	 Tlk1	 mmu-miR-532-5p,mmu-miR-181b-5p	
turquoise	 Srp14	 mmu-miR-146b-5p,mmu-miR-146a-5p	
turquoise	 Zscan29	 mmu-miR-146a-5p,mmu-miR-146b-5p,mmu-miR-125a-5p	
turquoise	 Pdrg1	 mmu-miR-342-3p	
turquoise	 Chd6	 mmu-miR-27a-3p,mmu-miR-143-3p,mmu-miR-532-5p	
turquoise	 Taf4a	 mmu-miR-200b-3p,mmu-miR-200c-3p	
turquoise	 Ythdf1	 mmu-miR-29a-3p	
turquoise	 Supt20	 mmu-miR-200b-3p,mmu-miR-200c-3p	
turquoise	 Setdb1	 mmu-miR-29a-3p	
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turquoise	 Prkacb	 mmu-miR-200a-3p,mmu-miR-200b-3p,mmu-miR-200c-3p	
turquoise	 Pnisr	 mmu-miR-181b-5p,mmu-miR-27a-3p	
turquoise	 Dcaf10	 mmu-miR-29a-3p,mmu-miR-125a-5p	
turquoise	 Pum1	 mmu-miR-181b-5p	
turquoise	 Casp9	 mmu-miR-199b-3p,mmu-miR-199a-3p	
turquoise	 AI314180	 mmu-miR-29a-3p	
turquoise	 Ptprd	 mmu-miR-24-3p,mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-29a-

3p,mmu-miR-200a-3p,mmu-miR-143-3p	
turquoise	 Nfib	 mmu-miR-24-3p,mmu-miR-532-5p,mmu-miR-29a-3p,mmu-miR-

200c-3p,mmu-miR-200b-3p,mmu-miR-27a-3p,mmu-miR-125a-
5p,mmu-miR-181b-5p	

turquoise	 S100pbp	 mmu-miR-200a-3p,mmu-miR-200c-3p,mmu-miR-200b-3p	
turquoise	 Szrd1	 mmu-miR-27a-3p,mmu-miR-125a-5p	
turquoise	 Rufy3	 mmu-let-7e-5p,mmu-let-7i-5p	
turquoise	 Atp6v0a2	 mmu-miR-24-3p,mmu-miR-200c-3p,mmu-miR-200b-3p	
turquoise	 Zfp664	 mmu-miR-181b-5p	
turquoise	 Sfswap	 mmu-miR-27a-3p	
turquoise	 Rabgef1	 mmu-miR-181b-5p	
turquoise	 Cpsf4	 mmu-miR-214-3p,mmu-let-7i-5p,mmu-let-7e-5p	
turquoise	 Cdk8	 mmu-miR-181b-5p,mmu-miR-27a-3p,mmu-miR-200a-3p	
turquoise	 Mphosph9	 mmu-miR-200a-3p	
turquoise	 Stx2	 mmu-miR-200a-3p	
turquoise	 Gtf2i	 mmu-miR-27a-3p,mmu-let-7i-5p,mmu-let-7e-5p	
turquoise	 Mepce	 mmu-miR-27a-3p,mmu-miR-342-3p	
turquoise	 C1galt1	 mmu-miR-27a-3p,mmu-miR-200a-3p,mmu-let-7e-5p,mmu-let-7i-

5p,mmu-miR-181b-5p	
turquoise	 Cped1	 mmu-let-7i-5p,mmu-let-7e-5p	
turquoise	 Luc7l2	 mmu-miR-146a-5p,mmu-miR-146b-5p	
turquoise	 C87436	 mmu-miR-200a-3p	
turquoise	 Mtmr14	 mmu-miR-24-3p	
turquoise	 March8	 mmu-miR-199a-5p,mmu-miR-200c-3p,mmu-miR-200b-3p	
turquoise	 Etnk1	 mmu-miR-200a-3p,mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-199a-

3p,mmu-miR-199b-3p,mmu-miR-181b-5p	
turquoise	 Wasl	 mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-181b-5p	
turquoise	 Abtb1	 mmu-miR-125a-5p	
turquoise	 Zfyve20	 mmu-miR-200c-3p,mmu-miR-200b-3p	
turquoise	 Tmcc1	 mmu-miR-27a-3p,mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-

miR-181b-5p	
turquoise	 Erc1	 mmu-miR-29a-3p	
turquoise	 Tnrc6a	 mmu-miR-27a-3p,mmu-miR-146a-5p,mmu-miR-146b-5p	
turquoise	 Inpp5a	 mmu-let-7e-5p,mmu-let-7i-5p,mmu-miR-181b-5p	
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turquoise	 Ruvbl2	 mmu-miR-27a-3p	
turquoise	 Chd2	 mmu-miR-27a-3p,mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-

miR-200a-3p	
turquoise	 2210018M11Rik	 mmu-miR-181b-5p,mmu-miR-29a-3p	
turquoise	 Uvrag	 mmu-miR-125a-5p	
turquoise	 Mrpl48	 mmu-miR-146a-5p,mmu-miR-146b-5p	
turquoise	 Knop1	 mmu-miR-125a-5p	
turquoise	 Otud4	 mmu-miR-143-3p,mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-

miR-29a-3p,mmu-miR-501-3p,mmu-miR-181b-5p	
turquoise	 Papd5	 mmu-miR-181b-5p,mmu-miR-200b-3p,mmu-miR-200c-3p	
turquoise	 Polr2c	 mmu-miR-24-3p	
turquoise	 Nfatc3	 mmu-miR-29a-3p	
turquoise	 Ap1g1	 mmu-miR-199a-5p,mmu-miR-29a-3p,mmu-miR-24-3p,mmu-miR-

181b-5p	
turquoise	 Aars	 mmu-miR-24-3p	
turquoise	 Gabarapl2	 mmu-miR-200a-3p,mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-

miR-532-5p	
turquoise	 Spg7	 mmu-miR-24-3p	
turquoise	 Golga7	 mmu-let-7i-5p,mmu-let-7e-5p,mmu-miR-200b-3p,mmu-miR-200c-

3p,mmu-miR-29a-3p	
turquoise	 Nr2f6	 mmu-miR-27a-3p	
turquoise	 Gab1	 mmu-miR-29a-3p,mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-

miR-200a-3p,mmu-miR-27a-3p	
turquoise	 Cmtm4	 mmu-miR-24-3p,mmu-miR-214-3p	
turquoise	 Fam96b	 mmu-miR-200a-3p	
turquoise	 Cog8	 mmu-miR-199a-5p	
turquoise	 Maf	 mmu-miR-143-3p,mmu-miR-200c-3p,mmu-miR-200b-3p,mmu-

miR-125a-5p,mmu-miR-200a-3p	
turquoise	 Dennd4a	 mmu-miR-29a-3p,mmu-miR-181b-5p	
turquoise	 Zfp280d	 mmu-miR-181b-5p	
turquoise	 Dcps	 mmu-miR-214-3p	
turquoise	 Zbtb38	 mmu-miR-200b-3p,mmu-miR-200c-3p,mmu-miR-125a-5p	
turquoise	 Arih2	 mmu-miR-199a-5p,mmu-miR-200c-3p,mmu-miR-200b-3p	
turquoise	 Tab3	 mmu-miR-181b-5p,mmu-miR-27a-3p,mmu-miR-532-5p,mmu-miR-

199a-3p,mmu-miR-199b-3p	
turquoise	 Rbmx	 mmu-miR-29a-3p,mmu-miR-199a-5p	
turquoise	 Amer1	 mmu-miR-29a-3p	
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Table A.2: Genes in the TMAO chromosome 12 QTL interval. List of genes in the 
entire chromosome 12 QTL interval. Transcript Cluster ID column provides the 
transcript cluster identification numbers from the Affymetrix MoGene 2.1 microarray. 
Genes that are not present in the microarray are marked by NA. Start and Stop 
columns denote transcription start and stop sites, respectively. QTL region 
column  describes if the gene is present in either both the pre- and post-diet TMAO 
QTL regions, or  post-diet TMAO region only. 

	

Genes	
Transcript	
Cluster	ID	 Chromosome	 Strand	 Start	 Stop	 QTL	Region	

0610007P14Rik	 17282732	 chr12	 -	 85815448	 85824550	 Both	
2410016O06Rik	 17277130	 chr12	 +	 83950608	 83952953	 Both	
AB347864	 NA	 chr12	 -	 85441070	 85441091	 Both	
AB349811	 NA	 chr12	 +	 86528204	 86528225	 Both	
AB351889	 NA	 chr12	 -	 83961999	 83962047	 Both	
Abcd4	 17282534	 chr12	 -	 84602531	 84617466	 Both	
Acot1	 17277140	 chr12	 +	 84009498	 84017671	 Both	
Acot2	 17277134	 chr12	 +	 83987861	 83993877	 Both	
Acot3	 17277152	 chr12	 +	 84052144	 84059565	 Both	
Acot4	 17277146	 chr12	 +	 84038379	 84044723	 Both	
Acot5	 17277161	 chr12	 +	 84069325	 84076020	 Both	
Acot6	 17277170	 chr12	 +	 84100654	 84111349	 Both	
Acyp1	 17282689	 chr12	 -	 85272398	 85288438	 Both	
AK033693	 NA	 chr12	 +	 84285373	 84287899	 Both	
AK081163	 NA	 chr12	 -	 84313853	 84317076	 Both	
AK086375	 NA	 chr12	 +	 85086373	 85088228	 Both	
AK132490	 NA	 chr12	 -	 84039468	 84053807	 Both	
AK140771	 NA	 chr12	 -	 83591335	 83595687	 Both	
AK156692	 NA	 chr12	 +	 86916531	 86918956	 Both	
AK164313	 NA	 chr12	 -	 83822558	 83827661	 Both	
AK165270	 NA	 chr12	 +	 83648301	 83652107	 Both	
AK186759	 NA	 chr12	 +	 85133452	 85134083	 Both	
Aldh6a1	 17282518	 chr12	 -	 84430717	 84450950	 Both	
Angel1	 17282760	 chr12	 -	 86700502	 86726460	 Both	
Arel1	 17282611	 chr12	 -	 84918148	 84970900	 Both	
Batf	 17277404	 chr12	 +	 85686669	 85709087	 Both	
Bbof1	 NA	 chr12	 +	 84409067	 84433780	 Both	
Cipc	 17277552	 chr12	 +	 86947043	 86965364	 Both	
Coq6	 17277232	 chr12	 +	 84361657	 84373796	 Both	
D030025P21Rik	 17277300	 chr12	 +	 84875769	 84879755	 Both	

Dcaf4	 17277043	 chr12	 +	 83520466	 83541994	
Post-Diet	
TMAO	
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Dlst	 17277352	 chr12	 +	 85110833	 85134091	 Both	
Dnal1	 17277177	 chr12	 +	 84114328	 84143517	 Both	

Dpf3	 17282403	 chr12	 -	 83213745	 83487708	
Post-Diet	
TMAO	

DQ687186	 NA	 chr12	 -	 84915344	 84919247	 Both	
Eif2b2	 17277370	 chr12	 +	 85219481	 85226628	 Both	
Elmsan1	 17282465	 chr12	 -	 84149168	 84218881	 Both	
Entpd5	 17282498	 chr12	 -	 84373857	 84409029	 Both	
Esrrb	 17277504	 chr12	 +	 86361117	 86521628	 Both	
Fam161b	 17282486	 chr12	 -	 84345309	 84361833	 Both	
Fcf1	 17277307	 chr12	 +	 84970897	 84983303	 Both	
Fos	 17277387	 chr12	 +	 85473890	 85477273	 Both	
Gm805	 17277484	 chr12	 +	 86169341	 86195102	 Both	
Gpatch2l	 17277490	 chr12	 +	 86241869	 86291414	 Both	
Ift43	 17277472	 chr12	 +	 86082561	 86162459	 Both	
Irf2bpl	 17282776	 chr12	 -	 86880703	 86884814	 Both	
Isca2	 17277294	 chr12	 +	 84773270	 84775089	 Both	
JA187517	 NA	 chr12	 -	 85218436	 85218457	 Both	
Jdp2	 17277396	 chr12	 +	 85599105	 85639878	 Both	
Lin52	 17277270	 chr12	 +	 84451508	 84531533	 Both	
Lrrc74a	 NA	 chr12	 +	 86734368	 86763795	 Both	
Ltbp2	 17282570	 chr12	 -	 84783212	 84876532	 Both	
Mfsd7c	 17277411	 chr12	 +	 85746539	 85813585	 Both	
Mir6938	 NA	 chr12	 -	 85245922	 85245985	 Both	
Mlh3	 17282673	 chr12	 -	 85234520	 85270591	 Both	
Nek9	 17282698	 chr12	 -	 85299514	 85339362	 Both	
Npc2	 17282563	 chr12	 -	 84754559	 84773112	 Both	
Numb	 17282435	 chr12	 -	 83794034	 83921934	 Both	
Papln	 17277101	 chr12	 +	 83763634	 83792384	 Both	
Pgf	 17282664	 chr12	 -	 85166639	 85177296	 Both	
Pnma1	 17282461	 chr12	 -	 84146131	 84148489	 Both	
Prox2	 17282641	 chr12	 -	 85086814	 85106431	 Both	
Psen1	 17277084	 chr12	 +	 83688202	 83735199	 Both	
Ptgr2	 17277195	 chr12	 +	 84285232	 84315832	 Both	
Rbm25	 17277063	 chr12	 +	 83632234	 83683123	 Both	
Rnf113a2	 17277265	 chr12	 +	 84417200	 84418578	 Both	
Rps6kl1	 17282649	 chr12	 -	 85135596	 85151264	 Both	
Syndig1l	 17282557	 chr12	 -	 84677278	 84698807	 Both	
Tgfb3	 17282743	 chr12	 -	 86056743	 86079041	 Both	
Tmed10	 17282723	 chr12	 -	 85340614	 85374717	 Both	
Tmem63c	 17277561	 chr12	 +	 87026292	 87090041	 Both	
Ttll5	 17277424	 chr12	 +	 85824673	 86053760	 Both	
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Vash1	 17277521	 chr12	 +	 86678700	 86695681	 Both	
Vrtn	 17277287	 chr12	 +	 84641019	 84651455	 Both	
Vsx2	 17277278	 chr12	 +	 84569840	 84595457	 Both	
Ylpm1	 17277319	 chr12	 +	 84996321	 85070515	 Both	
Zc2hc1c	 17277382	 chr12	 +	 85288591	 85299358	 Both	
Zdhhc22	 17282783	 chr12	 -	 86980764	 86988676	 Both	
Zfp410	 17277212	 chr12	 +	 84316859	 84344439	 Both	
Zfyve1	 17282420	 chr12	 -	 83546941	 83597147	 Both	
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Table A.3: Fold change of robustly expressed miRNAs in African Green 
Monkey livers. P-values are not adjusted. 
	
	

miRNAs	
FOLD_CHANGE	
(HFHC/Chow)	 P_VALUE	

hsa-mir-590-3p	 14.05956079	 0.00018404	
hsa-mir-590-3p_-_1	 14.00448562	 0.000403138	
hsa-mir-29b-2-3p_-_1	 3.047384615	 0.148574234	

hsa-mir-378i	 3.039855048	 0.15201004	
hsa-mir-29a-5p	 2.982051282	 0.161315438	

hsa-mir-29b-1-3p_-_1	 2.887463557	 0.168071801	
hsa-mir-27b-5p	 2.383482195	 0.228574395	

hsa-mir-29c-5p_+_1	 2.236625971	 0.093716366	
hsa-mir-133a-1	 2.211568123	 0.290275654	
hsa-mir-133a-2	 2.211568123	 0.290275654	

hsa-mir-133a-1_+_1	 2.174717833	 0.359116771	
hsa-mir-133a-2_+_1	 2.174717833	 0.359116771	
hsa-mir-146a-5p	 2.028501687	 0.028141747	
hsa-mir-21-5p	 2.018896639	 0.002463205	
hsa-mir-126-5p	 1.945253287	 0.007223175	

hsa-mir-22-3p_+_1	 1.920912006	 0.033197831	
hsa-mir-126-3p_+_1	 1.917841357	 0.005233945	
hsa-mir-126-5p_+_1	 1.903835666	 0.005819777	
hsa-mir-199b-5p	 1.867673365	 0.103236177	
hsa-mir-22-3p	 1.86760805	 0.019875459	
hsa-mir-140-5p	 1.859099479	 0.043917403	
hsa-mir-660-5p	 1.847675999	 0.016094865	

hsa-mir-34a-5p_+_1	 1.827690551	 0.222898902	
hsa-mir-223-3p	 1.825247063	 0.05244403	
hsa-mir-1-2	 1.814156873	 0.267009634	

hsa-mir-19a-3p	 1.794781826	 0.353786793	
hsa-mir-126-3p_-_1	 1.786809269	 0.065028898	
hsa-mir-126-3p_+_2	 1.78615467	 0.028213046	

hsa-mir-429	 1.777394389	 0.089402862	
hsa-mir-130b-3p	 1.772544302	 0.031027022	
hsa-mir-126-3p	 1.753587329	 0.032240955	
hsa-mir-1-1	 1.752517162	 0.283147029	

hsa-mir-454-3p	 1.748555466	 0.029594536	
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hsa-mir-34a-5p_-_1	 1.732943	 0.291097907	
hsa-mir-34a-5p	 1.730994117	 0.239921739	
hsa-mir-142-5p	 1.722240154	 0.145609165	

hsa-mir-142-5p_-_2	 1.703974108	 0.082119751	
hsa-mir-29b-1-5p	 1.677121845	 0.112518902	
hsa-mir-29b-1-5p	 1.677121845	 0.112518902	
hsa-mir-32-3p	 1.625300048	 0.040184318	
hsa-mir-100-5p	 1.605511727	 0.088401584	
hsa-mir-186-5p	 1.596572138	 0.059871264	
hsa-mir-203	 1.594255686	 0.047602284	

hsa-mir-676-3p	 1.590418132	 0.096525075	
hsa-mir-152	 1.569334238	 0.051930708	

hsa-mir-145-3p_+_2	 1.569119964	 0.14999042	
hsa-mir-222-3p	 1.565449135	 0.073267246	

hsa-mir-186-5p_+_1	 1.55775079	 0.101428839	
hsa-mir-425-5p_+_1	 1.553701586	 0.086151273	

hsa-mir-421	 1.553563142	 0.068678853	
hsa-mir-29b-2-5p_+_1	 1.53604336	 0.488797529	

hsa-mir-335-5p	 1.529178748	 0.103644734	
hsa-mir-27a-3p	 1.526562368	 0.029291464	
hsa-mir-146b-5p	 1.523028906	 0.074824737	

hsa-mir-30e-5p_+_1	 1.505520458	 0.11981439	
hsa-mir-99a-5p	 1.499427785	 0.148326308	
hsa-mir-24-1-3p	 1.498813216	 0.071773971	
hsa-mir-411-3p	 1.49627907	 0.081606134	
hsa-mir-24-2-3p	 1.494832629	 0.074036454	

hsa-mir-532-5p_+_1	 1.494581046	 0.011727452	
hsa-mir-200b-3p	 1.489435031	 0.109126346	
hsa-mir-29c-3p	 1.480466892	 0.228831749	
hsa-mir-29c-3p	 1.480466892	 0.228831749	
hsa-mir-215_+_1	 1.458478265	 0.239470777	
hsa-mir-200a-3p	 1.455665967	 0.156206277	
hsa-mir-194-2-5p	 1.453517195	 0.201124112	
hsa-mir-30e-5p	 1.446254958	 0.165771862	

hsa-mir-99b-5p_+_1	 1.446012724	 0.359529949	
hsa-mir-29a-3p	 1.439797501	 0.354418408	
hsa-mir-29a-3p	 1.439797501	 0.354418408	

hsa-mir-199a-1-5p	 1.437815048	 0.140147689	
hsa-mir-199a-2-5p	 1.437815048	 0.140147689	
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hsa-mir-148b-3p	 1.428242508	 0.083972601	
hsa-mir-221-3p	 1.427797305	 0.104694297	
hsa-mir-369-3p	 1.421589428	 0.139937905	
hsa-mir-15a-5p	 1.420723652	 0.167513236	

hsa-mir-29b-2-5p_-_1	 1.415086207	 0.328758904	
hsa-mir-27b-3p_+_1	 1.414125528	 0.234978036	
hsa-mir-497-5p	 1.413543506	 0.228968752	
hsa-mir-532-5p	 1.407959076	 0.002587625	
hsa-mir-29b-2-5p	 1.406064395	 0.149816687	
hsa-mir-29b-2-5p	 1.406064395	 0.149816687	
hsa-mir-29a-3p_-_1	 1.405670163	 0.330731685	
hsa-mir-29a-3p_-_1	 1.405670163	 0.330731685	
hsa-mir-29c-5p	 1.403094233	 0.397490167	
hsa-mir-455-5p	 1.40000938	 0.283511171	
hsa-mir-339-3p	 1.394973939	 0.245223914	
hsa-mir-99b-5p	 1.38700713	 0.383651839	
hsa-mir-22-5p	 1.382975436	 0.061496549	

hsa-mir-27b-3p_-_1	 1.372458796	 0.197590143	
hsa-mir-128-1	 1.371886339	 0.249206022	
hsa-mir-136-3p	 1.371369933	 0.127274334	

hsa-mir-24-1-3p_+_2	 1.370989252	 0.279034865	
hsa-mir-194-1-5p	 1.370974037	 0.194343912	
hsa-mir-500a-3p	 1.370888927	 0.14743196	
hsa-mir-19b-2-3p	 1.366467118	 0.551396673	
hsa-mir-19b-1-3p	 1.365236089	 0.554644042	
hsa-mir-16-2-5p	 1.365130459	 0.182839078	
hsa-mir-122-3p	 1.362714181	 0.280773376	
hsa-mir-128-2	 1.361253431	 0.276414513	
hsa-mir-16-1-5p	 1.361225175	 0.183180056	

hsa-mir-411-5p_-_1	 1.358692387	 0.13863353	
hsa-mir-17-5p	 1.357965819	 0.235269448	

hsa-mir-192-5p_+_1	 1.353857012	 0.199620487	
hsa-let-7f-2-5p_+_1	 1.352963671	 0.165563702	
hsa-mir-122-5p_-_2	 1.351069133	 0.14584982	
hsa-mir-361-3p	 1.341444435	 0.28098751	
hsa-mir-493-3p	 1.339424201	 0.355286217	

hsa-mir-122-3p_-_1	 1.338470623	 0.421743249	
hsa-mir-20a-5p	 1.338102836	 0.283148447	
hsa-mir-143-5p	 1.336878246	 0.35202295	
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hsa-mir-106b-5p	 1.331447112	 0.168165316	
hsa-mir-374a-5p	 1.328118609	 0.305859463	
hsa-mir-7-1-5p	 1.325289486	 0.161407284	
hsa-mir-485-5p	 1.321185787	 0.395287928	
hsa-mir-342-5p	 1.320744157	 0.285105739	
hsa-mir-7-3-5p	 1.315704374	 0.15821248	
hsa-mir-7-2-5p	 1.314315944	 0.160825392	

hsa-mir-664-5p_+_1	 1.31035837	 0.285180669	
hsa-mir-411-5p	 1.309104171	 0.183311979	

hsa-mir-361-3p_+_1	 1.304090181	 0.312126828	
hsa-mir-192-5p_-_1	 1.302133613	 0.172927337	
hsa-mir-1307-5p	 1.299591331	 0.462569893	
hsa-mir-23a-3p	 1.298442083	 0.065885981	

hsa-mir-200b-3p_+_1	 1.29694803	 0.389837497	
hsa-mir-125a-5p	 1.296918815	 0.413769017	
hsa-mir-424-3p	 1.291901078	 0.376940138	
hsa-mir-132-3p	 1.290301115	 0.186145386	
hsa-mir-203_+_1	 1.286150171	 0.152960898	
hsa-let-7g-5p_-_1	 1.283408942	 0.238883648	
hsa-mir-532-3p	 1.283352229	 0.426507071	
hsa-mir-154-5p	 1.282669856	 0.185369823	
hsa-mir-503	 1.280229868	 0.22630693	
hsa-let-7g-5p	 1.278204277	 0.27429742	
hsa-mir-191-5p	 1.27706538	 0.301748666	

hsa-mir-342-5p_+_1	 1.272741771	 0.426201777	
hsa-mir-199a-2-3p	 1.270671092	 0.240732865	
hsa-mir-199a-1-3p	 1.270423088	 0.242042419	
hsa-mir-199b-3p	 1.270423088	 0.242042419	

hsa-mir-654-3p_-_2	 1.268376977	 0.105430057	
hsa-mir-331-3p	 1.26779616	 0.353481405	

hsa-mir-125b-2-5p	 1.267676784	 0.414980862	
hsa-mir-125b-1-5p	 1.263393727	 0.419637568	
hsa-mir-654-3p	 1.261369557	 0.17053399	
hsa-mir-10a-3p	 1.260497024	 0.14662385	
hsa-mir-27b-3p	 1.260458869	 0.253593872	
hsa-mir-185-5p	 1.260350505	 0.377131321	
hsa-mir-214-5p	 1.255268836	 0.490070753	

hsa-mir-199a-2-3p_-_1	 1.25525307	 0.197312432	
hsa-mir-199a-1-3p_-_1	 1.254451483	 0.198489997	
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hsa-mir-199b-3p_-_1	 1.254451483	 0.198489997	
hsa-mir-425-5p	 1.249701271	 0.352421628	
hsa-mir-505-5p	 1.246734317	 0.383465765	

hsa-mir-191-5p_+_1	 1.245541626	 0.376394882	
hsa-mir-125a-3p	 1.244206062	 0.523366474	
hsa-mir-499a-5p	 1.238343641	 0.226861693	
hsa-mir-361-5p	 1.235445012	 0.161895246	
hsa-mir-130a-3p	 1.229013254	 0.194360805	
hsa-mir-664-5p	 1.228365058	 0.436713843	
hsa-mir-484	 1.225257485	 0.364595802	

hsa-mir-155-5p	 1.214515964	 0.446942833	
hsa-mir-26b-5p	 1.213952027	 0.178978622	
hsa-mir-431-5p	 1.203334254	 0.540466492	
hsa-let-7f-1-5p	 1.200225671	 0.140891495	
hsa-mir-324-5p	 1.198663107	 0.491083139	

hsa-mir-425-3p_-_1	 1.197252234	 0.392042495	
hsa-let-7f-2-5p	 1.197191193	 0.147982457	

hsa-mir-100-5p_+_3	 1.196230131	 0.614018964	
hsa-mir-150-5p	 1.19285993	 0.325572809	

hsa-mir-99a-5p_+_3	 1.191857853	 0.584605024	
hsa-mir-92b-3p	 1.191690203	 0.490762805	

hsa-mir-455-5p_+_2	 1.177973623	 0.363148736	
hsa-mir-151a-3p_-_2	 1.174630357	 0.042007616	
hsa-mir-29c-3p_+_5	 1.174271088	 0.652210495	
hsa-mir-122-5p_+_1	 1.169930623	 0.416686995	
hsa-mir-487b_+_2	 1.167554102	 0.53129519	
hsa-mir-10a-5p_+_1	 1.163655254	 0.198689264	
hsa-mir-30d-5p	 1.160590136	 0.457072646	
hsa-let-7e-5p	 1.154950284	 0.582293349	
hsa-mir-378c	 1.149732779	 0.293022133	
hsa-mir-326	 1.146568993	 0.667362855	

hsa-mir-193a-5p	 1.141937858	 0.495525682	
hsa-mir-424-5p	 1.141734906	 0.657982709	

hsa-mir-122-5p_+_2	 1.140517908	 0.31048089	
hsa-mir-125b-1-3p	 1.134912062	 0.678954348	
hsa-mir-26a-1-5p	 1.134342208	 0.140048424	
hsa-mir-26a-2-5p	 1.133543295	 0.14116087	
hsa-mir-378d-2	 1.129414689	 0.361072964	
hsa-mir-192-5p	 1.124157944	 0.443833084	
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hsa-let-7d-5p	 1.123755529	 0.59980024	
hsa-mir-652-3p	 1.12360228	 0.649846726	

hsa-mir-199a-2-3p_+_1	 1.120670046	 0.498777898	
hsa-mir-199a-1-3p_+_1	 1.117205419	 0.513561083	
hsa-mir-199b-3p_+_1	 1.117205419	 0.513561083	
hsa-mir-376a-1-3p	 1.112828519	 0.626307358	
hsa-mir-376a-2-3p	 1.112828519	 0.626307358	
hsa-mir-455-3p_-_2	 1.112611887	 0.590321372	
hsa-mir-335-3p	 1.108862809	 0.404940746	
hsa-mir-151b	 1.107793773	 0.664852425	

hsa-mir-151a-5p	 1.10530889	 0.612364905	
hsa-mir-323a-3p_-_1	 1.095136418	 0.779594927	

hsa-mir-885-3p	 1.094502247	 0.735419496	
hsa-mir-299-5p	 1.085872284	 0.693612994	
hsa-let-7a-2-5p	 1.085570593	 0.538069832	
hsa-mir-28-5p	 1.085041026	 0.7497052	
hsa-let-7a-3-5p	 1.08493054	 0.541439262	
hsa-mir-433	 1.083420182	 0.783684662	

hsa-let-7a-1-5p	 1.083114906	 0.547740981	
hsa-mir-410	 1.081382597	 0.598598412	

hsa-mir-148a-3p_+_2	 1.073945946	 0.617706996	
hsa-mir-378d-1	 1.072552843	 0.528979853	
hsa-mir-339-5p	 1.068362258	 0.830272185	
hsa-mir-95	 1.066679466	 0.776632459	

hsa-mir-122-5p_+_3	 1.066594926	 0.729001104	
hsa-mir-323b-3p	 1.066175355	 0.822866261	
hsa-mir-193b-3p	 1.066035783	 0.82077522	

hsa-mir-100-5p_+_4	 1.06269237	 0.851214063	
hsa-mir-17-3p	 1.061207012	 0.844073387	

hsa-mir-181b-2-5p_+_1	 1.060406252	 0.611985736	
hsa-mir-455-3p	 1.060314869	 0.774614485	
hsa-mir-10a-5p	 1.058646217	 0.671411797	

hsa-mir-423-3p_-_1	 1.056818898	 0.820219301	
hsa-mir-93-5p_+_1	 1.056382493	 0.634169749	

hsa-mir-887	 1.054452095	 0.874416114	
hsa-mir-98	 1.047036272	 0.639954629	

hsa-let-7a-3-5p_-_1	 1.045124535	 0.8032748	
hsa-mir-1180	 1.043778849	 0.865000183	

hsa-mir-29a-3p_+_5	 1.040219629	 0.941835609	
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hsa-mir-29a-3p_+_5	 1.040219629	 0.941835609	
hsa-mir-423-3p	 1.036233536	 0.890977889	
hsa-mir-141-3p	 1.035932024	 0.960069392	

hsa-mir-122-5p_+_4	 1.030982175	 0.911763112	
hsa-mir-122-5p_-_1	 1.029811166	 0.802624907	

hsa-mir-107	 1.028328652	 0.894122184	
hsa-mir-99a-5p_+_4	 1.025223389	 0.944334005	

hsa-mir-543	 1.022036595	 0.937105152	
hsa-mir-487b	 1.021102213	 0.927238807	
hsa-mir-140-3p	 1.013308319	 0.892731119	

hsa-let-7g-5p_+_3	 1.008268924	 0.981466096	
hsa-mir-134	 1.007760523	 0.953613374	

hsa-mir-423-3p_+_1	 1.007747955	 0.981063467	
hsa-mir-409-3p_+_1	 1.005095179	 0.981935934	
hsa-mir-122-5p_+_5	 1.00439322	 0.987092246	
hsa-mir-30c-1-3p	 1.003907482	 0.982507211	

hsa-let-7c	 1.00074132	 0.996987368	
hsa-mir-574-5p	 0.999425854	 0.998130433	
hsa-mir-127-3p	 0.996120346	 0.988728895	
hsa-mir-423-5p	 0.995775195	 0.986442174	
hsa-mir-148a-3p	 0.990555329	 0.957953883	

hsa-mir-505-3p_+_1	 0.989745037	 0.948067609	
hsa-mir-29b-2-3p	 0.988767032	 0.977389577	
hsa-mir-744-5p	 0.985594527	 0.959427523	
hsa-mir-504_+_1	 0.982216723	 0.894306605	
hsa-mir-598	 0.980995862	 0.945064835	

hsa-mir-139-3p_-_1	 0.979495915	 0.929760389	
hsa-mir-100-5p_+_5	 0.976515473	 0.947496823	
hsa-mir-103a-2-3p	 0.975575055	 0.781333589	

hsa-mir-193b-5p_-_1	 0.975526604	 0.942933489	
hsa-mir-103a-1-3p	 0.972349897	 0.753963775	
hsa-mir-483-5p	 0.971429796	 0.908836343	
hsa-let-7i-5p	 0.970984245	 0.877629574	
hsa-mir-190a	 0.9700519	 0.934858946	

hsa-mir-200c-3p	 0.96882877	 0.956151664	
hsa-mir-505-3p	 0.962742371	 0.794485712	

hsa-mir-574-3p_+_1	 0.96126119	 0.855149997	
hsa-mir-671-3p	 0.959092441	 0.867660375	
hsa-mir-99a-3p	 0.954812477	 0.778521687	
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hsa-mir-455-3p_+_1	 0.953385354	 0.845041661	
hsa-mir-29b-1-3p	 0.952258983	 0.900236961	
hsa-let-7c_-_1	 0.947620962	 0.579046898	

hsa-mir-320a_-_1	 0.946295323	 0.810245936	
hsa-mir-654-5p	 0.944619752	 0.650955655	
hsa-mir-340-5p	 0.942878358	 0.813662914	
hsa-mir-485-3p	 0.94171875	 0.801960609	
hsa-mir-23b-3p	 0.94059224	 0.724541162	

hsa-mir-125b-2-3p_+_2	 0.940583806	 0.803393493	
hsa-mir-214-3p	 0.936117647	 0.779765172	
hsa-mir-370	 0.932893431	 0.842800093	

hsa-mir-151a-3p	 0.929510749	 0.508529077	
hsa-mir-99a-5p_+_5	 0.927664124	 0.851301619	
hsa-mir-193b-3p_+_1	 0.926981885	 0.799207317	
hsa-mir-1307-3p	 0.92686145	 0.655246388	
hsa-let-7d-3p	 0.918266521	 0.71748926	

hsa-mir-29c-3p_+_6	 0.916788321	 0.811378872	
hsa-mir-29a-3p_+_6	 0.916367651	 0.865597204	
hsa-mir-29a-3p_+_6	 0.916367651	 0.865597204	
hsa-mir-92a-1-5p	 0.915845274	 0.852510223	

hsa-mir-483-3p_+_1	 0.912242599	 0.625887882	
hsa-mir-181b-2-5p	 0.909963036	 0.453208313	
hsa-mir-93-5p	 0.90824732	 0.401810878	
hsa-mir-1296	 0.907727933	 0.750891383	

hsa-mir-129-2-3p	 0.90744868	 0.834412898	
hsa-mir-204-5p	 0.904799788	 0.74847063	
hsa-mir-342-3p	 0.904262814	 0.776181188	
hsa-mir-574-3p	 0.903774117	 0.526457448	

hsa-mir-29a-3p_+_7	 0.902262057	 0.858460716	
hsa-mir-493-5p	 0.901851439	 0.553398558	
hsa-let-7b-5p	 0.901117811	 0.647736532	

hsa-mir-378a-5p	 0.893246617	 0.671295934	
hsa-mir-505-3p_+_2	 0.892887243	 0.604451674	
hsa-mir-30b-3p	 0.8912711	 0.566050946	
hsa-mir-195-5p	 0.888714238	 0.735331684	
hsa-mir-320a	 0.887224922	 0.645009652	

hsa-mir-320a_+_1	 0.887089697	 0.653949948	
hsa-mir-122-5p_+_6	 0.884534655	 0.693355773	
hsa-mir-148a-5p	 0.881991637	 0.414483775	
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hsa-mir-320a_+_2	 0.877640075	 0.668732529	
hsa-mir-382-3p	 0.877099735	 0.591172277	
hsa-mir-328	 0.875053078	 0.688777162	

hsa-mir-181b-1-5p	 0.874338648	 0.386893009	
hsa-mir-483-3p	 0.87171283	 0.506307107	

hsa-mir-378a-5p_+_1	 0.869024292	 0.588786926	
hsa-mir-504	 0.868767243	 0.579359591	

hsa-mir-193b-5p	 0.866407263	 0.640424194	
hsa-mir-320b-2	 0.863778428	 0.561291475	
hsa-mir-30d-3p	 0.862030814	 0.405816633	
hsa-mir-181c-5p	 0.86142005	 0.182374539	
hsa-mir-378a-3p	 0.86005768	 0.195632385	
hsa-mir-31-5p	 0.859622136	 0.757829846	

hsa-mir-214-3p_-_1	 0.856013654	 0.588723969	
hsa-mir-21-3p	 0.851562003	 0.703861763	

hsa-mir-30c-2-5p	 0.843168623	 0.328831441	
hsa-mir-30c-1-5p	 0.842910171	 0.328562476	
hsa-mir-197-3p	 0.838247127	 0.352937777	

hsa-mir-127-3p_-_1	 0.837539936	 0.457668588	
hsa-mir-140-3p_+_1	 0.836774351	 0.356468065	
hsa-mir-139-5p	 0.806055311	 0.404609399	
hsa-mir-409-3p	 0.788058528	 0.422208928	
hsa-mir-145-5p	 0.786718656	 0.619144782	
hsa-mir-374b-5p	 0.774180797	 0.585883539	
hsa-mir-30b-5p	 0.76767335	 0.569322149	
hsa-mir-320b-1	 0.764709865	 0.35888887	
hsa-mir-195-3p	 0.761141232	 0.327542556	
hsa-mir-99b-3p	 0.759632344	 0.42865002	

hsa-mir-101-1-3p_-_1	 0.758326602	 0.554553994	
hsa-mir-30a-5p	 0.757303928	 0.472061092	

hsa-mir-101-2-3p_-_1	 0.756219526	 0.550472083	
hsa-mir-664-3p	 0.754801331	 0.603114246	

hsa-mir-23b-3p_+_1	 0.751961569	 0.312468156	
hsa-mir-30a-5p_+_1	 0.7423799	 0.466584168	
hsa-mir-29c-3p_+_7	 0.731893266	 0.510049761	
hsa-mir-379-5p	 0.702497858	 0.31086116	

hsa-mir-181a-1-5p	 0.678383957	 0.137425879	
hsa-mir-181a-2-5p	 0.678353802	 0.137380816	
hsa-mir-181a-1-3p	 0.675378705	 0.462218	
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hsa-mir-374a-3p	 0.671097834	 0.49904261	
hsa-mir-432-5p	 0.664511144	 0.117905032	

hsa-mir-409-3p_-_1	 0.663752232	 0.246267826	
hsa-mir-1307-3p_+_1	 0.658686453	 0.129592738	
hsa-mir-16-2-3p_-_1	 0.653202039	 0.297950672	
hsa-mir-92a-1-3p	 0.648750941	 0.109917477	
hsa-mir-769-5p	 0.644634654	 0.348807878	
hsa-mir-92a-2-3p	 0.643084573	 0.123652716	

hsa-mir-381	 0.642321975	 0.167999992	
hsa-mir-15b-5p	 0.629818557	 0.190671022	
hsa-mir-210	 0.613601522	 0.223266828	

hsa-mir-382-5p_+_2	 0.61331998	 0.201117865	
hsa-mir-181d	 0.607818629	 0.237165418	

hsa-mir-148a-3p_+_1	 0.577839134	 0.358243733	
hsa-mir-215	 0.576546311	 0.48334011	

hsa-mir-143-3p	 0.574768699	 0.384819596	
hsa-mir-106b-3p_-_2	 0.560419564	 0.073745256	
hsa-mir-101-2-3p	 0.560111016	 0.468537104	

hsa-mir-495	 0.555594656	 0.400841846	
hsa-mir-140-3p_+_2	 0.551444127	 0.335779872	
hsa-mir-200a-5p	 0.550044635	 0.290500228	

hsa-mir-143-3p_+_3	 0.54969594	 0.149385376	
hsa-mir-148a-5p_-_1	 0.544290943	 0.294244184	
hsa-mir-101-1-3p	 0.538456137	 0.455081031	
hsa-mir-194-2-3p	 0.537801322	 0.151264589	

hsa-mir-92a-1-3p_+_1	 0.537791369	 0.096606346	
hsa-mir-92a-2-3p_+_1	 0.530293943	 0.112532734	
hsa-mir-378a-3p_+_1	 0.507108491	 0.284397705	
hsa-mir-143-3p_+_1	 0.497748344	 0.374983327	
hsa-mir-30c-2-3p	 0.487134582	 0.235315659	

hsa-mir-375	 0.48437756	 0.268688375	
hsa-mir-143-3p_-_1	 0.472781717	 0.339839842	
hsa-mir-10b-5p_+_1	 0.456199913	 0.467460454	
hsa-mir-106b-3p	 0.44762806	 0.095797425	
hsa-mir-382-5p	 0.440970859	 0.251771284	
hsa-mir-28-3p	 0.408499963	 0.276424152	
hsa-mir-187-3p	 0.391519728	 0.30028873	

hsa-mir-28-3p_+_1	 0.382293179	 0.257891899	
hsa-mir-25-3p	 0.363779923	 0.285592833	
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hsa-mir-10b-5p	 0.356073753	 0.402528657	
hsa-mir-25-3p_+_1	 0.335104346	 0.264630944	

hsa-mir-889	 0.294200503	 0.311144676	
hsa-mir-382-5p_+_1	 0.293081183	 0.285210492	
hsa-mir-28-3p_+_2	 0.291146639	 0.276761116	
hsa-mir-30a-3p_+_1	 0.269571391	 0.277655038	
hsa-mir-144-5p	 0.247697718	 0.020885832	
hsa-mir-584-5p	 0.246246476	 0.036640254	
hsa-mir-129-1-5p	 0.241643457	 0.269367837	
hsa-mir-129-2-5p	 0.241590011	 0.26951116	
hsa-mir-375_-_1	 0.240072439	 0.296805999	
hsa-mir-30a-3p	 0.23998844	 0.291156926	
hsa-mir-30e-3p	 0.230516514	 0.288679839	
hsa-mir-144-3p	 0.230390144	 0.069373664	

hsa-mir-30e-3p_+_1	 0.228846866	 0.284684681	
hsa-mir-182-5p	 0.224207096	 0.276432838	
hsa-mir-486-3p	 0.209603497	 0.066229684	
hsa-mir-451a	 0.169453882	 0.00482445	
hsa-mir-490-5p	 0.155332315	 0.299675602	
hsa-mir-486-5p	 0.137932284	 0.000912209	

hsa-mir-486-5p_+_2	 0.135503255	 0.001495682	
hsa-mir-3607-3p_-_5	 0.082709235	 0.281022079	

hsa-mir-891a	 0	 0.292351992	
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