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Abstract 

Monitoring concentrations of bacterial pathogens and indicators of fecal contamination in 

coastal and estuarine ecosystems is critical to avoid adverse effects to public health. During 

storm events, particularly hurricanes, floods, Nor’easters, and tropical cyclones, sampling of 

coastal and estuarine waters is not generally possible due to safety concerns.  It is particularly 

important to monitor waters during these periods as at precisely these times pathogenic 

bacteria such as Vibrio spp. and fecal indicator bacteria concentrations increase, posing 

significant risks to public health. Automated samplers, such as the rosette based “ISCO” 

sampler, are commonly used to conduct sample collection in aquatic systems. In our case, we 

have designed an autonomous vertical profiler (AVP) that is deployed in the Neuse River 

Estuary, NC USA with an automated ISCO sampler attached. The AVP can be remotely enabled 

by cell phone or internet to collect water samples during severe storm periods. Water samples 

are then stored in a rosette of proprietary bottles until conditions are safe enough, typically in 

less than 21 h, to collect the samples. There is a paucity of data regarding the effects of 

containment on bacterial concentrations of water stored over these short durations. Concerns 

exists with regards to autosampler methodology and associated sample holding times that 

might impact bacterial concentrations invalidating the subsequent laboratory analyses  due to 

water samples’ misrepresentation of original in situ conditions. Six experiments were 

conducted to address this concern, and data from the experiments were pooled into three sets 

for data analyses: short-term, long-term, and full-term. Estuarine water samples were collected 

in the fall of 2013, placed into an ISCO rosette and subsampled over relevant time frames and 

ambient temperature conditions.  Vibrio spp. and fecal indicator bacteria were quantified over 

the course of the experiments using replicated culture-based methods, including EnterolertTM 

and membrane filtration. The experiments demonstrated no significant impact of storage time 

when comparing concentrations of total Vibrio spp., Vibrio vulnificus, Vibrio parahaemolyticus, 

Enterococcus spp., or E. coli after storage as compared to original concentrations. Small scale 

variations in concentrations of specific targets were observed, particularly during midday hours 

that appeared to follow a diel cycle.  Only culture-based analyses were conducted as part of this 

set of experiments, and further examination of bacterial community dynamics is warranted. 
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Based upon our experiments, holding times of up to 21 h appear to have a negligible effect on 

bacterial concentrations for estuarine waters. However, the findings also suggest that increased 

variability and growth can occur during the middle of the day. Therefore, if at all possible, 

analysis schedules should be modified to account for this variability, e.g. collection of samples 

after overnight storage should occur as early in the morning as practicable. 

1. Introduction  

1.1. Vibrio spp. and fecal indicator bacteria  

Bacteria of the genus Vibrio are abundant in, and autochthonous to, estuarine ecosystems. 

The genus contains two human pathogens of importance to North Carolina coasts and 

estuaries, V. vulnificus and V. parahaemolyticus. Both are known to cause disease from 

ingestion or wound infection (Tantillo et al., 2004). Allochthonous bacteria also exist in estuary 

ecosystems and can include Enterococcus spp. and E. coli which are used as a proxy of fecal 

contamination. Fecal contamination demonstrated by high levels of Enterococcus spp. is 

identified as a causal factor for gastrointestinal illnesses (Currieo et al., 2001; Fries et al., 2006). 

Urban and agricultural growth in coastal watersheds can increase microbial concentrations 

through stormwater runoff resulting in a decrease in water quality at locations where 

recreational and commercial fishing is prominent (Fries et al., 2008). Monitoring bacterial 

concentrations in coastal systems is therefore critical to avoid adverse effects to public health 

(Froelich et al., 2013; Burkholder et al., 2004; Currieo et al., 2003; Strom & Paranjpye, 2000).  

Studies have documented increases in bacterial pathogens such as Vibrio spp. and fecal 

indicator bacteria after storm events in the Neuse River Estuary (NRE), North Carolina, USA 

(Fries et al., 2008; Hsieh et al., 2008). Storm activity in the NRE resuspends sedimentary 

populations of Vibrio spp. into the water column (Wetz et al., 2008). Due to their affinity for 

fine particles, resuspension events also increase fecal indicator bacteria concentrations from 

contaminated stormwater runoff sources (Wetz et al., 2008; Krometis et al., 2007; Characklis et 

al., 2005). 

1.2. Autonomous Vertical Profiler and ISCO Automated Sampler 

To study the dynamics of resuspension during storm events outside the limits of boat-

sampling, the Autonomous Vertical Profiler (AVP) was created for in situ collection of water 
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samples. The AVP floats in the upper NRE region near New Bern, NC at what is referred to as 

Station 60 in previous studies monitoring the NRE (Figure 1) (Fries et al., 2006; Paerl et al., 

2006). Within the AVP, an ISCO Automated Sampler is programmed to fill proprietary bottles 

(1120 mL) with estuary water at a desired sampling scheme of varying time intervals and 

depths. The ISCO can be triggered at the beginning of severe weather events to collect water 

during a storm period.  

 

During sampling and the additional transport time between the AVP and laboratory, ISCO 

water samples are stored in bottles that are shaded but exposed to ambient temperatures. For 

example, a typical sampling regime in the NRE collects samples every 6 h for an 18 h period 

with an additional 3 h of transport time to the lab. Whereas long-term bottle effects of water 

samples has been sufficiently studied, most studies do not consider or do not provide evidence 

of potential short-term bottle effects; therefore, it was necessary to study short-term bottle 

effects especially in the context of ISCO autosampling during pulse stresses (i.e. storms lasting 

less than 24 h) in coastal marine environments. Environmental microbiologists expressed 

concern as to whether up to 21 h of bottle storage in the sun-protected but un-refrigerated 

ISCO affects bacterial concentrations and invalidates the sample from representing in situ 

conditions. This report claims that short-term bottle effects are not significant on total Vibrio 

spp. abundance, and V. vulnificus, V. parahaemolyticus, and Enterococcus spp. concentrations 

when using the ISCO autosampling methodology specific to the NRE experimentation. 
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1.3. Methods in environmental microbiology: Bottle effects 

Environmental microbiology studies the interactions of microbes in nature and under 

anthropogenic conditions. Finding a suitable method to collect field water samples and perform 

analysis is a challenge in the microbiology field especially considering the plethora of microbial 

habitats and interactions that influence methodology. Scientists utilize the term “bottle effects” 

to explain variability in experimental results, especially those that require transport and storage 

time before lab analysis.  

While attention is given to collecting samples under aseptic conditions and choosing 

appropriate construction material of sampling containers, few studies mention the artifacts of 

containment on experimental results. Pernthaler & Amann (2005) articulated the uncertainty 

around the apparent effect of variability in experimental studies: “Such investigations are often 

plagued by the mysterious ‘bottle effect,’ a hard-to-define concept that reflects the worry of 

whether phenomena observed in confined assemblages are nonspecific consequences of the 

confinement rather than a result of the planned manipulation.” Hammes et al. (2010) 

summarized bottle effects to include changing cell concentrations, grazing and bacterivory, 

viability and cultivability, and population composition. As soon as a sample is removed from the 

field study site, artifacts of enclosure such as change in genetic, biochemical and physical 

aspects of the sample may be triggered and pose concern as to the validity of experimental 

results (Madsen 2006). Many published studies implicitly hypothesize a “safe period” of less 

than 24 h within which samples accurately represent in situ processes and while the general 

recommendation is to conduct immediate analysis or to minimize time of storage (e.g. 

Ferguson et al. 1984; O’Carroll, 1988; Brozel & Cloete, 1991; Atlas & Bartha, 1998; Toranzos et 

al., 2002) studies do not provide direct supporting evidence. Some studies do not even mention 

effects of confinement on experimental results (e.g. Munn, 2004; Mimura et al. 2005).  

Processing to accurately represent microorganisms should be completed as soon as possible, 

especially with estuary water samples, due to the ability of microorganisms to reproduce 

quickly (Atlas & Bartha, 1998); however, most investigations on microbiological parameters 

under confinement were based on samples taken at daily, weekly or monthly intervals. Very 

few studies have tested the effect of storage time within the first 24 h before analysis.  
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1.4. In depth: bottle effects 

Freshwater and saltwater stored in containers can increase bacterial cell numbers up to 

three orders of magnitude, especially in samples stored for longer than a day (ZoBell & 

Anderson, 1936; O’Carroll, 1988). Another study showed a 5 fold decrease in V. cholerae after 

two days (Heinemann & Dobbs, 2006). The doubling time of culturable bacteria is affected by 

containment in as few as 5 h of sample collection (Ferguson et al., 1984). Whipple (1991) saw a 

10-15% increase in bacterial concentrations within the first 3-6 h of storage followed by an 

increase of several hundred percent. Conversely, Brozel & Cloete (1991) did not see a 

significant increase or decrease of culturable bacteria counts at 4, 10, 20, and 30°C during 24, 

48, 72, and 216 h.  

When bacterial analysis is performed a distance away from the sampling location, samples 

are shipped cold because refrigeration is thought to retain bacterial composition and decrease 

enzymatic reaction rates, cell division and death (Harrigan & McCance, 1976; Brozel & Cloete, 

1991). Nevertheless, short-term effects of storage in refrigerated conditions can trigger bacteria 

into a “viable but not culturable” state, which is similarly induced during the winter months, 

preventing them from forming colonies during incubation (Roszak & Colwell, 1987). Even at 

refrigerated temperatures, the dying out of Protozoa and other marine organisms could 

increase bacteria survival (ZoBell & Anderson, 1936).  

The effects of sample volume on bacterial growth were demonstrated in several papers (e.g. 

O’Carroll, 1988; Ferguson et al. 1984; ZoBell & Anderson, 1936; Whipple, 1901; Marrase et al., 

1992) and all agreed that as sample volume increases, the effects of confinement on bacterial 

activity and growth are less prominent. While ZoBell & Anderson (1936) showed evidence of 

multiplication of bacteria in seawater within 8 h of storage, almost no difference was found in 

their density in different volumes during the first 2 days. Hammes et al. (2010) also found no 

correlation between six bottle sizes and total cell count of bacterial populations using three 

independent enumeration methods for up to five days of storage. Even our own data from the 

proof of concept stage of this thesis’ experiment where we compared sampling with big bottles 

vs. small bottles showed no significant difference in bacteria counts, except for total Vibrio spp. 

(Figure 2).  
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Studies which have observed volume bottle effects have attributed them to adhesion and 

surface-associated aggregation of microorganisms on bottle surfaces. ZoBell & Anderson (1936) 

calculated approximately half of total bacteria in a 100 cc. of sterile seawater sample resided in 

the water itself while the other half remained attached to the glass surface of the bottle. Glass 

surface adhesion due to nutrient depletion in the water was described as a potential reason for 

the decrease in culturable count since nutrients become concentrated in films on solid surfaces 

(ZoBell & Anderson, 1936; Ferguson et al. 1984). Volume effects were found to disappear when 

organic matter was added to samples in more than a few milligrams (ZoBell & Andersson, 

1936). Even differences in primary productivity in mesocosm experiments have been attributed 

to artifacts of enclosure which include periphyton growth on sample container walls; therefore, 

shape and size of the container are important to consider when quantifying bacterial 
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concentrations (Petersen et al., 1997). On the other hand, Fuhrman & Azam (1980) showed that 

ATP on walls of glass containers of different surface to volume ratios rose to 3-5% of total ATP 

by 22 h, but bacterioplankton cell counts were within 5% of each other. Studies that did not 

observe surface wall growth admit that carbon adsorbs to clean glass surfaces but question 

how these effects can be dramatic enough to alter growth (Hammes et al., 2010).  

During initial colonization on surface walls, microbes interact in cooperative and inhibitory 

ways, shaping bacteria community structure, for example by decreasing the number of species, 

in confined samples (Whipple, 1991; Lawrence et al., 2002). Prolonged assays also affect 

dominance in microbial communities of the sample (Christian & Capone, 2002; Ferguson et al., 

1984).  

2. Methods 

2.1. Experiment Site 

Sampling for this study was done at Calico Creek, a small tidal estuarine creek in the lower 

Newport River estuary, near Morehead City, NC (Figure 3). Calico Creek receives much of its 

water from the Newport River but also from the creek’s watershed, stormwater runoff, and 

chlorinated secondary effluent from the Morehead City, NC treatment plant (Chung et al., 

1996; Sanders, 1978). Temperature, salinity and microbial community conditions at Calico 

Creek are similar to conditions of the estuary where the AVP resides.  
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2.2. Seawater Parameters and Bacterial Analyses 

Temperature and pH were recorded using an UltraBASIC UB-5 pH meter (Denver 

Instrument; Bohemia, NY, USA). A HI96822 Seawater Refractometer (HANNA Instruments Inc.; 

Woonsocket, RI, USA) was used to determine salinity. Turbidity was recorded using a 2100Q 

Portable Turbidimeter (HACH®; Loveland, CO, USA). 

Water samples were filtered through 0.45-μm pore, glass fiber filters and plated on 

Thiosulfate Citrate Bile Sucrose (TCBS) agar or CHROMAGAR VIBRIO to quantify total Vibrio spp. 

(VIB) and presumptive V. vulnificus (VV) and V. parahaemolyticus (VP), respectively. Two plates 

of different dilutions (1 ml, 5 ml, or 10 ml) using phosphate buffered saline for each sample 

were prepared. Plates were then incubated for 24 h at 37°C. Green and yellow colonies were 

counted from TCBS plates to quantify VIB in colony forming units (CFU). Purple and blue 

colonies were counted on CHROMAGAR plates to quantify VP and VV, respectively, also in CFU.  

Fecal indicator bacteria Enterococcus spp. (ENT) were quantified using EnterolertTM. Quanti-

tray/2000® (IDEXX Laboratories) trays were incubated at 41°C for 24 h and quantification of 

most probable number (MPN) per 100 ml was calculated based on the numbers of small and 

large positive wells (Hurley & Roscoe, 1983; Fries et al., 2006).  

2.3. Experimental Set-up 

A total of six experiments were conducted during September and October 2013 (Table 1). 

The six experiments addressed variations in bacterial concentrations according to “bottle 

effects” associated with water storage in an ISCO autosampler, and used estuarine water from 

Calico Creek as the source water (Figure 3). Bottles were stored in the ISCO autosampler 

compartment outside, with the exception of a single replicate set that was taken immediately 

to the lab for analysis. These samples were labeled as T0. Remaining replicate sets would be 

retrieved from the ISCO after a specific number of hours after collection elapsed (i.e. T3 after 3 

hours elapsed in the ISCO).  

Both large and small bottles were filled at Calico Creek for Experiment 1. A single source for 

seawater stored in the large bottle provided water samples for analysis at T0, T4 and T8 points. 

Multiple small bottles were filled and retrieved as replicate sets of three from the ISCO at T0, T4 

and T8 for analysis. T0 analysis for Experiment 1 was at 8:00. T4 and T8 analysis were conducted 
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Table 1. Summary of six experiments conducted September to October of 2013 and their respective 
data analyses set and measured parameters.  

at 12:00 and 16:00, respectively. VIB, VV and VP were quantified along with TC, ENT and EC 

concentrations. Temperature, salinity, pH and turbidity were recorded for each water sample at 

each time point. Because Experiment 1 results did not yield a significant difference between 

small vs. big bottle sample concentrations for VV, VP and ENT and since the ISCO autosampler 

uses only small bottles, we eliminated the use of big bottles in Experiment 2. We also did not 

measure pH or turbidity since they did not significantly affect bacterial concentrations during 

the course of Experiment 1. Except for number of replicates and time points, Experiment 2 was  

conducted in the same manner as Experiment 1. Replicate sets of 4 were used for analysis 

at time points T0 (10:00), T3 (13:00) and T6 (16:00).  

 Water collection for Experiment 3 occurred in the evening. T0 (20:00) bottles were analyzed 

immediately while T12 (8:00), T15 (11:00), T18 (14:00) and T20 (16:00) bottles were analyzed the 

following day. Replicate sets of 4, small ISCO bottles were analyzed for temperature, salinity, 

VIB, VV and VP. Two of the four replicate bottles were analyzed for TC, EC and ENT. Experiment 

4 was conducted in the same manner as Experiment 3 except for the last time point was T21 

(17:00) and neither TC nor EC were quantified. ENT was calculated for all four replicates at each 

time point. Experiment 5 consisted of time points T0 (9:00), T3 (12:00), T6 (15:00) and T9 (18:00). 

This experiment analyzed the same parameters as Experiment 4 except only two replicates 

were analyzed for ENT.  

EXPERIMENT DATE TELAPSED (TIME OF DAY) TERM 
MICROBIAL PARAMETER &  

# OF REPLICATES 

    VIB VV VP ENT TC EC 

1* 9/20 T0 (10:00) T4 (12:00) T8 (16:00)  short Y 
3 

Y 
3 

Y 
3 

Y 
3 

Y 
3 

Y 
3 

2 9/27 T0 (10:00) T3 (13:00) T6 (16:00) short Y 
4 

Y 
4 

Y 
4 

Y 
4 

Y 
4 

Y 
4 

3 10/3 T0 (20:00) T12 (8:00) T15 (11:00) T18 (14:00) T20 (16:00) long Y 
4 

Y 
4 

Y 
4 

Y 
2 

Y 
2 

Y 
2 

4 10/17 T0 (20:00) T12 (8:00) T15 (11:00) T18 (14:00) T21 (17:00) long Y 
4 

Y 
4 

Y 
4 

Y 
4 

N N 

5 10/18 T0 (9:00) T3 (12:00) T6 (15:00) T9 (18:00) short Y 
4 

Y 
4 

Y 
4 

Y 
2 

N N 

6 10/25 T0 (9:00) T3 (12:00) T7 (16:00) T12 (21:00) T23 (8:00) T29 (14:00) full
†
 N Y 

4 
Y 
4 

Y 
2 

Y 
2 

Y 
2 

*Proof of concept experiment. Small vs. large bottles used.  
†
Experiment 6 T3, T7, T12 used as T3, T6, T9  to enhance short-term data set since match in elapsed time and time of day. 
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 Calico Creek water for Experiment 6 was collected in the morning of day 1 and analyzed at 

T0 and at intervals throughout the day. Leftover bottles were left to sit in the ISCO overnight 

until analysis continued in the morning and through early afternoon of day 2. The time points 

were T0 (9:00), T3 (12:00), T7 (16:00), T12 (21:00), T23 (8:00) and T29 (14:00). Each of the four 

replicate sample bottles was analyzed for VV and VP. Only two of the four were analyzed for TC, 

EC and ENT. 

2.4.  Compilation of Experiments into Short, Long and Full-terms  

All raw data was converted into relative change by dividing a measured value by the 

average of the replicate samples measured at T0 within each experiment. As result, experiment 

data could then be compiled into three different data analyses sets: short, long and full-term 

categories (Table 1). Experiments 1, 2 and 5 were compiled into a short-term data set by time 

of day which was then enhanced by incorporating T3, T7 and T12 time points from Experiment 6 

as T3, T6 and T9 time points since they matched in approximate elapsed time and time of day. 

Experiments 3 and 4 are long-term and Experiment 6 is our full-term experiment. The long term 

experiment was the only experiment that was conducted starting in the evening. 

2.5. Statistical Analyses 

One-way ANOVAs with a Holm-Sidak post-test for multiple comparisons run by SigmaPlot 

determined significance (p≤0.05) between time points.  

3. Results 

For each of the three compiled data analyses sets, the temperatures according to time of 

day were significantly different from one another over the course of the experiment (Figure 4). 

Conversely, salinity remained constant within each experiment (Figure 4).  

In our short-term experiments, we observed no significant change in total VIB (p=0.189), VP 

(p=0.521) and ENT (p=0.080) concentrations within the first nine hours of collection. VIB 

concentrations revealed an increasing trend at T3 and decreasing through T9 (Figure 5a). VP 

concentrations increased through T3 and peaked at T6, but decreased at T9 (Figure 5b). VV 

concentrations peaked at T3 and decreased through T9. While these changes were noticeable, 

they were not significant. T3 and T9 VV concentrations were significantly different from each 
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other (p=0.001) (Figure 5c). However, neither T3 (p=0.243) nor T9 (p=0. 302) values were 

significantly different from T0. ENT decreased through T6 but increased at T9 (Figure 5d).  

Over the long-term experiments, the concentrations of VIB (p=0.521), VP (p=0.509), VV 

(p=0.334) and ENT (p=0.509) were also not significantly different at any time point over the 21 

h as compared to the concentration at T0. Total VIB peaked at T12 and T18 (Figure 6a). VP peaked 

at T15 and decreased through T21 (Figure 6b). Both VV and ENT peaked at T15 and followed 

downward trend to T21 (Figure 6c, d).  

No significant difference was detected in microbial concentrations over time for the full 

length experiment for VP (p=0.109), VV (p=0.415) and ENT (p=0.053) concentrations at any 

point in time as compared to time zero. VP first decreased then peaked at T7 and T23 (Figure 

7a). VV peaked at T3, dipped at T7 and continued to increase through T29 (Figure 7b). ENT 

concentrations peaked at T12 and dipped at T23 subsequently increasing through T29 (Figure 7c).  

When analyzing the variability of the VV concentrations associated with samples collected 

from morning through early evening, we observed a surprising trend (Figure 8). Changes in 

concentrations during sampling points close to noon indicated variability that was noticeable 

higher that during other periods of the day. VV concentrations were also compared to 

temperature for the short and long-term experiments (Figure 9).  
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4. Discussion 

 In studying the short-term bottle effects associated with ISCO autosampling 

methodologies, our data shows that short-term bottle effects are non-significant for culturable 

total Vibrio spp., V. vulnificus, V. parahaemolyticus, and Enterococcus spp. abundance. Our 

short-term dataset reveals that any sample stored in ISCO bottles and analyzed up to 9 h after 

collection are valid representations of T0 concentrations. Our long-term experiment also 

demonstrates that water samples analyzed within 21 h of storage in the ISCO autosampler are 

representative of the original samples at collection. However, it is also likely that temperature 

plays a role in the fluctuation of V. vulnificus concentrations as stored over the course of a day. 

Noon and evening V. vulnificus concentrations were significantly different from T0 

concentrations, and the increased likelihood of variation is most likely due to high and low of 

temperature for samples that are analyzed at those times. A study conducted at 10, 20 and 

37°C showed bacterial increasing to a maximum quicker at higher temperatures (12 h at 37°C, 

22 h at 20°C and 50 h and 10°C), supporting the likelihood that V. vulnificus increased at noon 

due to increased temperatures (Butterfield, 1933). While V. vulnificus concentrations seemed 

to continuously decrease after peaking around midday, our full term experiments reveal 

concentrations increasing during the morning regardless of elapsed time in the ISCO bottles. V. 

vulnificus is consequently exhibiting a diel pattern. This phenomenon deserves further study as 

there are several factors attributable to diel patterns that could hold implications for samples 

containing V. vulnificus stored in ambient environment or during transport conditions. An 

example of an indirect effect the seemingly diel pattern could be attributed to predation 
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interactions in response to temperature. Bdellovibrio and like organisms (BALOs) preferably 

consume Vibrio spp. (Williams & Pineiro, 2007). Not only are BALOs associated with surfaces 

which could increase their abundance in storage bottles, but they are also tightly coupled with 

temperature (Williams, 1988; Yair et al., 2003). The inverse relationship between temperature 

and V. vulnificus concentrations may have been a result of diurnal temperature change which 

could also affect BALO abundance in the water sample. We hypothesize the increase of BALOs 

with the increase in temperature following the time of day causes V. vulnificus concentrations 

to rise and fall. Noon and evening time points exhibit extremes in temperatures potentially 

increasing the effects of predation. Further research of predator-prey interactions of microbial 

communities in confinement would provide evidence for our hypothesis. Temperature itself 

could be playing an important direct role on bacterial growth, effecting metabolism directly 

through the production of enzymes that dictate growth substrate utilization. 

According to Dawson et al. (1981) the number and size of marine Vibrio spp. increased and 

decreased dramatically, respectively, within 5 h of exposure to starvation and showed 

enhanced rates of adhesion to siliconized glass surfaces for survival. Future studies should apply 

sonication techniques to determine the quantity of Vibrio spp. on the surface and compare to 

Vibrio spp. in the water sample prior to agitation. Shaking will ensures that bacteria are 

loosened from surface walls as Taylor & Collins (1949) reconciled the increase in bacteria 

concentration to surface growth after conducting experiments between bottles that were 

shaken before sampling and not. 

Although the ISCO autosampler stores bottles in the shade, it is important to question what 

would happen if other methodology allowed bottles to be exposed to sunlight. Marrase et al. 

(1992) did not see an increase in bacterivory under different volumes within 24-48 h between 

light and dark conditions, just that higher rates of consumption were observed at higher 

temperatures. Would the oxygen content of water samples increase due to photosynthetic 

activity and in turn increase bacterial activity? ZoBell & Anderson (1936) found that bacterial 

activity increase in small volumes of seawater was not attributable to oxygen content in the 

water, but it would be ideal to monitor parameters such as oxygen, algae population, 



16 
 

chlorophyll-A concentrations, and zooplankton (grazer) counts to determine other variables 

that affect the concentration of bacteria in stored sample bottles. 

Whether or not the relationship of concentrating a sample through filtration on the 

observed bacteria activity causes variability is also interesting. The filtration used to for 

abundance measurements in this study may pose a problem in that treatment of vacuum-

filtering could have injured delicate cells. It has also been shown that Vibrio spp. and E. coli that 

attach to aggregates in the water persist longer than those in aggregate free water and have a 

significant species-richness-area relationship (Lyons et al., 2010). Manipulating filter size may 

be of concern when aggregates are present or absent because of the possibility of altering cell 

count. To choose filter size, scientists must consider the natural conditions of the bacteria of 

interest to simulate nature as closely as possible.  

There are a range of limitations to the study that was conducted.  First, the study focused on 

culture-based quantification of Vibrio spp. and fecal indicator bacteria. Neither bacterial 

community structure nor population dynamics were studied in this experiment and would have 

been a valuable addition. For example, 16S rDNA sequence analyses would have been a useful 

addition to show the variation in species of eubacteria present in the water samples over time. 

Population dynamics could have been studied via either fluorescence in situ hybridization, or 

qPCR analyses to determine interactions of Vibrio spp., fecal indicator bacteria and other 

important bacterial players in the system in confined bottles. This could be done at very small 

time scales, for example, every 2 h for 20-24 h hours to observe small scale changes. Scrapping 

the sides of the bottle and collecting material that has settled to the bottom would allow us to 

understand the full array of particles attached and free living organism dynamics over time. 

Finally, ideally this experiment would be conducted over the course of a real extreme storm 

event such as a hurricane, incorporating bacterial abundance, BALO abundance, viral analyses, 

community and population dynamics and culture based analyses.  

Regardless, our findings confirm that a sample analyzed at any point up to 21 h of storage in 

the ISCO autosampler after collection is a valid representation of in situ concentrations; 

however, due to the increased likely-hood of variation we do not recommend analyzing 

samples in the noon and evening times of day. Our study provides evidence against bottle 
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effects within 24 h of collection. In our collection regime, bottle effects experienced with 

samples that are stored for more than 24 h may be diminished by increasing sample size and 

decreasing surface area relative to volume. It is well known that surfaces provide substrate for 

many microorganisms and increase bacterial population, absorb substrates and metabolites or 

release contaminants. An important consideration is the development of gradients and ability 

to agitate the sample to ensure homogenization (Christian & Capone, 2002). If keeping samples 

saturated with oxygen should become a priority, bottles should be kept partly filled and in 

contact with air with daily shaking (ZoBell & Anderson, 1936).  

As demonstrated by our study, the effect of temperature in the ISCO autosampler during 

sampling period is also of note. It would be ideal to keep the ISCO bottles in a water bath that 

filters water from the estuary as the sampling period progresses even though this could pose 

problems if water temperatures change dramatically, for example during an extreme storm 

period.  

Changes to normal growth activity are unavoidable during laboratory measurement of 

bacterial populations. Relating of results back to the natural environment should fully disclose 

of the consequences of extrapolation (O’Carroll, 1988). Incubations monitoring short-term 

changes may provide direct information on a single variable pertaining to the confined 

community. Albeit, confinement disrupts the steady-state and/or flux system (e.g. production 

and consumption) experienced in the natural environment. Even in situ experimentation 

restricts the natural exchange of substrates (Christian & Capone, 2002). Artifacts of enclosure 

are unavoidable, and it is crucial environmental microbiologists understand the characteristics 

of bottle effects so that extrapolation of microcosm data to natural ecosystem is accurate.   

 

Note: The table below summarizes 11 bottle effect studies dated from 1936 to 2010 that 

were used as reference in this paper.  

  



AUTHOR(S) 
& YEAR 

TITLE WATER CONTAINER  FACTORS EXPERIMENT RESULT(S) & CONCLUSION(S)  

Fuhrman & 
Azam 
(1980) 

Bacterioplankton 
secondary 
production estimates 
for coastal waters of 
British Columbia, 
Antarctica, and 
California 

Seawater Glassware, 
baked 2 h at 
400°C 

15, 100 and 500 ml with 3, 10, and 
5 3 cm long glass tubing added, 
respectively  (for three different 
surface to volume ratios) 

Samples taken periodically for 
30 h for water cell biomass 
and surface cell biomass  

▪ Cell counts from different surface to volume 
ratios within 5% of each other 

▪ Substantial growth without large particles in 
water 

▪ ATP on walls negligible within 15 h, increased 3-
5% of total ATP by 22 h and was 8-14% of total by 
30 h 

Brozel & 
Cloete  
(1991) 

Effect of storage time 
and temperature on 
the aerobic plate 
count and on the 
community structure 
of two water samples 

Cooling-
water and 
tap water 

Sterile 10 ml 
glass tubes 

4, 10, 20, 30°C for 24, 48, 72 and 
216 h  

Aerobic plate count and 
bacterial community 
structure of each sample 
determined 

▪ No significant trend for culturable bacteria count 
or change in community structure 

▪ No temperature where  culturable bacteria count 
after 24 h equal to initial count  

Ferguson et 
al. (1984)  

Response of marine 
bacterioplankton to 
differential filtration 
and confinement  

Seawater 4 L 
autoclaved 
polypropylen
e bottles  

Unfiltered, 0.2-μm and 3.0-μm 
filtered water 

Subsamples taken at 0, 16 to 
18 h, and 30 to 34 h 

▪ Culturable cells increased from 0.08% of total cell 
number (TCN) upon collection, 13% at 16 h and 
41% at 32 h 

▪ Shift in dominance from non-culturable to 
culturable bacteria 

▪ Vibrio spp. only bacteria not observed initially  
▪ Dissolved primary amines (DPA) increased then 

decreased during confinement  
▪ 41% of growth within 16 h attributable to bottle 

effect 
▪ Bottle effect increased TCN 10% after incubation 

of approx. 15 h 
▪ Confinement can affect estimate of TCN within as 

few as 5 h  
Zobell & 
Anderson 
(1936) 

Observations on the 
multiplication of 
bacteria in different 
volumes of stored 
sea water and the 
influence of oxygen 
tension and solid 
surfaces 

Seawater Chemically 
clean and 
sterilized 
Pyrex bottles 
or flasks  

▪ Bottles of differing volume  
▪ Differing volumes in varying 

types of bottle  
▪ Partially filled bottles of differing 

volumes  
▪ Completely filled bottles of 

differing volumes  
▪ Bottles with different initial 

oxygen concentrations 
▪ Bottles with different volume to 

solid surface ratios  
▪ Bottles of same volume stored 

without shaking   

Samples storage at 16°C and 
tested for bacteria 
concentration and oxygen 
content; storage in number of 
days 

▪ Densest bacterial populations appear in smallest 
volume (or highest surface area) in low nutrient 
concentrations therefore related to surface area 
of underwater glass surface  

▪ Bacteria detach from walls if a few mg of organic 
matter present 

▪ Little to no difference in bacteria population 
within the first two days at any volume 

▪ Bacteria population abundance not related to 
surface area of sample exposed to air 

Heinemann 
& Dobbs 
(2006) 

Microbiological 
'bottle effects' not to 
be ignored (a 
comment on Mimura 
et al., 2005) 

Seawater NA  V. cholerae in water sample stored 
at 4°C 

Daily analysis for 1 week then 
14 d after collection 

▪ 5-fold decrease in mean CFU after 2 d 
▪ 40-fold decrease in mean CFU after 7 d 
▪ CFU remained low after 14 d 

Table 2. Summary of 11 bottle effect studies dated from 1936 to 2010 that were used as reference in this paper. 
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Petersen et 
al. 
(1997)  

Scaling aquatic 
primary productivity: 
experiments under 
nutrient- and light-
limited conditions  

Seawater Sun-Lite 
glazed (fiber-
glass-
reinforced 
glazing 
material) 

▪ 0.1, 1, 10 m
3
 samples of constant 

depth (1 m) 
▪ Same volume samples in 

constant shape (0.56 radius to 
depth ratio) 

Nutrient concentration, 
primary productivity (PP) and 
respiration measured during 
spring, summer and fall 

▪ Differences in PP at constant depth less extreme 
than at constant shape - wall area to unit volume 
ratio as artifact 

▪ Rate of PP per volume and rate of PP per area 
increased as depth increased 

▪ Radius effect on surface area to volume ratio - 
total ecosystem metabolism increased decrease in 
radius 

Hammes et 
al. (2010) 

Critical evaluation of 
the volumetric 
"bottle effect" on 
microbial batch 
growth 

Filter-
sterilized 
river water 
and drinking 
treatment 
plant water 

Cleaned 
glassware 

30°C incubation until stationary 
phase reached (approx. 3, 4, 5 
days) at 20, 40, 250, 500 and 1000 
ml  

Net growth quantified by 
total cell counting, total ATP 
analysis, and conventional 
plating with less than 5 day 
assays 

▪ No growth on walls - questions how surface 
growth dramatic enough to make a difference on 
results 

▪ No correlation between bottle size and net 
growth 

▪ Rule out volume-related bottle effects 
Taylor & 
Collins 
(1949) 

Development of 
bacteria in waters 
stored in glass 
containers 

Windermere 
lake water 

Bohemian 
glass, 
gutta 
percha, 
Pyrex 
glass and 
fused 
silica 
containers 

▪ 1 L Pyrex, 32 oz. glass vs. 1 L gutta 
percha containers  

▪ 1 L Winchester bottle vs. 1 L Pyrex 
flasks 

▪ 1 L Pyrex flask with differing 
agitation schemes 

▪ 150, 500 vs. 2000 ml Pyrex flasks 
▪ Differing volume Pyrex flasks shaken 

before sampling 
▪ 25 vs. 1000 ml glass without shaking 

▪ Plates incubated for 
bacteria counts for 3, 4 or 
10 days at 20°C 

▪ Oxygen content measure 
for different volumes for 
different days 

▪ Greater numbers of bacteria when sample shaken 
before sampling 

▪ Quiescent conditions (most similar to natural 
conditions) show no significance increase in 
bacteria 

▪ Water-soluble substances of glass type stimulate 
bacterial activity  

▪ Observed growth of bacteria and demonstrable 
organic matter on walls  

Butterfield 
(1933) 

Observations on 
changes in numbers 
of bacteria in 
polluted water 

River, creek 
and sewer 
waters 

Glass 10, 20 and 37°C in the dark Bacterial density determined 
at 0, 4, 8, 24, 48, 96 h, 6 d, 15 
d and sometimes 41 d  

▪ 37°C samples reached max bacterial density in 12 
h, 20°C in 22 h and 10°C in 50 h  

▪ All subsequently decreased bacterial density 

Whipple 
(1901) 

Changes that take 
place in the bacterial 
contents of waters 
during transportation 

Tap water Glass Large vs. small bottles, non-agitated 
vs. agitated 

Time factors vs. number of 
bacteria and number of 
species 

▪ Number of bacteria decreased 10-25% within 3-6 
h subsequently increased by many hundred 
percent  

▪ Increase much greater in small than large bottles 
though effect reduced with agitation  

▪ 77 bacteria/ml initial gallon sample yielded 300 
bac/ml in pint and 7020 in two ounces after 24 h 

▪ Reduction in the number of species observed in 
all samples 

Marrase et 
al. (1992) 

Seasonal and daily 
changes in 
bacterivory in a 
coastal plankton 
community  

Sound water Poly-
carbonate 
containers 

100, 200 and 500 ml and 1, 2 and 20 L 
at 19°C without stirring under 
darkness, light, and 12 h dark/light 
cycle 

▪ Samples removed initially 
and every 6 h over 36 h 

▪ Light regime samples 
collected initially, after 12, 
24, 36 and 48 h  

▪ Bacterial grazing rates 
measured disappearance of 
fluorescently labeled 
bacteria 

▪ Large variability in small bottles - larger samples  
more representative 

▪ No effect of light on samples  
▪ Higher rates of bacterivory at higher 

temperatures 
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