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Background



Data: The Backbone of our Research
Prominence of Insurance Claims and Electronic 
Medical Records (EMR) in Pharmacoepidemiology 
research

How does our choice of data source impact our 
research?
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Medicare patients undergoing surgery at UNC, 2015-2016

Population: N=5,975

 Prospectively collected at the time of 
healthcare delivery

 Basic demographics (age, sex, race)
 Diagnosis and procedure codes
 Dates of service, admission, and 

discharge
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Summary
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EMR Claims

Limited inpatient 
medications

No out-of-
pocket Rx

Limited clinical 
details

Single health 
system

Physician orders 
(not fullfed Rx)

Limited 
generalizability
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EMR: How “new” 
are new users?

EMR: Are “exposed” 
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outcomes?
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care research

Neither data source is 
perfect
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bias parameters

Context – Vitally important to understand where the data originate
Context! Must understand the data + 

proceed with caution
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