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ABSTRACT

CHARLES HAGUE: Cohomology of Flag Varieties and the BK-Filtration

(Under the direction of Professor Shrawan Kumar)

Let G be a complex algebraic group and let P be a parabolic subgroup of G. Let

T ∗(G/P ) denote the cotangent bundle of the flag variety G/P . In this thesis we describe

results connecting cohomology of bundles on T ∗(G/P ) to purely combinatorial objects

such as filtrations on irreducible G-modules and Lusztig’s q-analog of weight multiplicity.
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CHAPTER 1

Introduction

Let G be complex semisimple algebraic group. For a dominant weight µ let V (µ)

denote the irreducible representation of G with highest weight µ and for any weight λ

of V (µ) let Vλ(µ) denote the λ-weight space of V (µ). In [6], R. Brylinski constructed a

filtration on weight spaces of irreducible G-modules. This filtration, often referred to as

the Brylinski-Kostant (or BK) filtration, studies the action of certain special nilpotent

elements of the Lie algebra of G (the principal nilpotents). Explicitly, let e be a principal

nilpotent and set

Fn
(
Vλ(µ)

)
:= {v ∈ Vλ(µ) : en+1.v = 0} ,

where µ, λ are as above. This filtration was motivated by fundamental work of Kostant

[21], [22] on adjoint orbits and actions of sl2-triples.

In the presence of a particular higher cohomology vanishing result for line bundles

on the cotangent bundle T ∗(G/B) of G/B, Brylinski showed that certain polynomials,

Luzstig’s q-analogs of weight multiplicity, compute the dimensions of the various

degrees of this filtration. These polynomials were initially introduced in [25] and were

proven in [17] to be equal to certain Kazhdan-Lusztig polynomials for affine Weyl

groups. These Kazhdan-Lusztig polynomials are deep objects in combinatorial represen-

tation theory, cf [18], [19], and [25].



In chapter 3 we generalize Brylinski’s results to the filtration defined in a similar way

by arbitrary even nilpotents (see section 2.3 for the definition of an even nilpotent). The

main theorem in this chapter, Theorem 3.2.1, states that certain ”parabolic analogs” of

Kazhdan-Lusztig polynomials compute the dimensions of the various degrees of these

filtrations. This requires us to describe the correct generalization of the cohomology van-

ishing condition required for Brylinski’s result. This generalization involves cohomology

vanishing results for bundles on cotangent bundles of partial flag varieties of G.

The sheaf cohomology groups of G-equivariant bundles on flag varieties of G (often

called homogeneous bundles) are G-representations, and a central question is to deter-

mine which G-representations appear in the cohomology of these bundles. In particular,

the study of G-equivariant bundles on cotangent bundles of flag varieties has been exten-

sively studied in [1], [3], [4], and [12]; additionally, [30] extends some of these results to

algebraic groups in positive characteristic. Broer ([4]) in particular has extensive results

in this direction and we will generalize some of his results.

Explicitly, for any standard parabolic subgroup P of G, let pP : T ∗(G/P ) → G/P

denote the cotangent bundle of the flag variety G/P . For any P -dominant weight λ

there is a corresponding homogeneous bundle LP (λ) on G/P (see section 2.2 below for

the precise definition of these bundles). For i ≥ 0 set

H i,np(λ) := H i
(
T ∗(G/P ), p∗P LP (λ)

)

and for any weight λ set

H i,n(λ) := H i
(
T ∗(G/B), p∗B LB (λ)

)
.
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The higher cohomology vanishing required for Brylinski’s result is that H i,n(λ) = 0 for all

i > 0 and dominant λ; in [4] Broer proved this result (Broer’s result is actually stronger

than this, cf Theorem 4.2.4 below). Previously this vanishing had been known for many

(although not all) dominant λ, cf [1], [6], and [12]. Broer also proved that H i,np(λ) = 0

for all i > 0 when (1) P is a minimal parabolic corresponding to a short simple root and

λ is dominant; and (2) LP (λ) is a line bundle on G/P and λ is dominant (in general,

the bundles LP (λ) will not be line bundles).

In chapter 4 we prove the following extensions of these results, cf Theorems 4.2.5,

4.4.4, and 4.5.5. We show that H i,np(λ) = 0 for all i > 0 when: (1) P is an even

parabolic and both λ and λ+ 2ρP are dominant (see Section 2.2 for the definition of ρP

and Definition 2.3.7 for the definition of even parabolics); (2) P is any minimal parabolic

and λ is dominant; and (3) G is of type A and λ is regular dominant. (3) was already

known to S. Kumar as an easy application of Frobenius vanishing results; we include it

here for completeness.

These vanishing results provide a basic technical tool in analyzing filtrations on weight

spaces but are interesting in their own right; another application of these cohomology

vanishing results is in the geometry of Ad(G)-orbits of nilpotent elements in Lie(G).

These orbits and their closures are subvarieties of Lie(G) with rich geometric structure.

Using cohomology vanishing results on cotangent bundles of flag varieties it has been

shown that some of these orbits have normal closures and that, in general, the normal-

izations of these orbit closures have rational singularities, cf [4], [11], [13], [27], [28], and

[29].
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In chapter 5 we conclude by explicitly giving examples of these filtrations on various

irreducible representations.
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CHAPTER 2

Background

2.1. Notation

Let G denote a complex semisimple simply-connected algebraic group over C and T

a maximal torus in G (we assume G simply-connected only for notational convenience;

all results in my thesis generalize easily to G of arbitrary isogeny type). Set g = Lie G

and h = Lie T . Let W be the Weyl group of G. Fix a Borel subgroup B ⊆ G containing

T . Let Λ ⊆ h∗ denote the weight lattice of G. Let ΛR ⊆ Λ denote the root lattice. Let ρ

be the half sum of all elements of ∆+; ρ has the property that ρ(α∨) = 1 for all α ∈ π.

Note that ρ ∈ D. There is a shifted action of W on h∗ defined by w ∗ λ := w(λ+ ρ)− ρ.

This action clearly keeps Λ and ΛR stable.

Let ∆ (resp. ∆−, ∆+), denote the roots (resp. positive and negative roots) with

respect to T and B and let π ⊆ ∆+ denote the simple roots. For A, B ⊆ Λ and µ ∈ Λ

set A + B := {λ1 + λ2 : λ1 ∈ A, λ2 ∈ B} and set µ + A := {µ + λ1 : λ1 ∈ A}. For a

subset C ⊆ Λ set 〈C〉 :=
∑
λ∈C

λ . Set 〈Ø〉 = 0. For an element w ∈ W set

R(w) := {β ∈ ∆+ : wβ ∈ ∆−} .

One can check that for w ∈ W and λ ∈ Λ we have w ∗ λ = wλ− 〈R(w−1)〉.

Set

D := {λ ∈ Λ : λ(α∨) ≥ 0 for all α ∈ π},



the collection of dominant weights in Λ. We say that a weight µ ∈ D is regular if

µ(α∨) > 0 for all α ∈ π. Also set

D′ := {H ∈ h : α(H) ∈ R and α(H) ≥ 0 for all α ∈ π},

the dominant chamber in H. Irreducible representations of G are parametrized by

elements of D; let V (µ) denote the irreducible representation of G with highest weight

µ ∈ D.

For any α ∈ π let χα denote the fundamental weight corresponding to α. That

is, χα(α∨) = 1 and χα(β∨) = 0 for all β ∈ π \ {α}. For any nonempty S ⊆ π set

χS :=
∑
α∈S

χα. If S = Ø set χS = 0. Hence we can write ρ = χπ.

For any T -module M and any weight µ of M , let Mµ denote the µ-weight subspace

of M . In particular, for dominant λ,

Vµ(λ) := V (µ)λ

is the µ-weight space of the irreducible G-module V (λ).

2.2. Flag Varieties and Homogeneous Bundles

Remark 2.2.1. Although we are assuming that G is a semisimple group, most results

in this section are vaild for arbitrary reductive groups.

Parabolic subgroups and G-homogeneous spaces.

Definition 2.2.2. A subgroup P ⊆ G is called parabolic subgroup if it contains a

Borel subgroup of G. We say that P is a standard parabolic subgroup if B ⊆ P . A

subalgebra p ⊆ g is a parabolic subalgebra if p = Lie P for a parabolic subgroup P of
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G, and p is a standard parabolic subalgebra if P is a standard parabolic subgroup (note

of course that p is a standard parabolic subalgebra iff p ⊇ b, where b = Lie B).

Remark 2.2.3. For the rest of this paper, we assume that all parabolics are standard

parabolics, both on the group level and on the Lie algebra level. We may do this without

loss of generality, since if P is a parabolic not containing B some conjugate of P will

contain B (and similarly on the Lie algebra level).

Every parabolic subgroup can be written as a semidirect product L o UP where UP

is the unipotent radical of P and L is a reductive subgroup containing T . Since T is a

maximal torus of L as well, the root system ∆L of L is naturally a sub-root system of ∆,

and ∆L is generated by a collection of simple roots πL ⊆ π. In particular, ∆L = ∆∩ZπL.

We also have ∆+
L = ∆+ ∩∆L and ∆−

L = ∆− ∩∆L. In a slight abuse of notation we may

refer to ∆L as ∆P , and similarly for ∆±
L and πL. In particular, πB = ∆+

B = Ø. Let ρL

(also denoted by ρP ) be the half-sum of all roots in ∆+
L . We obviously have ρB = 0 and

ρG = ρ.

Let WL be the subgroup of W generated by the simple reflections corresponding to

the elements of πL, and let WL denote the set of minimal-length coset representatives of

W/WL. In particular, WL has a longest element that we will denote wL
0 . As above, we

may sometimes write WP , W P , etc.

A parabolic subgroup P of G is uniquely determined by πL (recall that we are as-

suming P to be a standard parabolic); and conversely, every subset of π gives rise to a

(standard) parabolic subgroup. Explicitly, we can write P = Lo UP as above, where L

is generated by T and the Uα with α ∈ ∆P .
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Similarly, Lie(P ) =: p = l⊕ np where l = Lie(L) and np = Lie(UP ). As UP is normal

in P we have that np is an ideal of p. Moreover, we have

l = h⊕

(⊕
α∈∆P

gα

)

and

np =
⊕

β∈∆+\∆+
P

gβ .

For any algebraic group G over C and any algebraic subgroup H ⊆ G we have

a scheme-theoretic quotient G/H. Topologically, we give G/H the natural quotient

topology under the map h : G→ G/H. To define the structure sheaf of G/H we set (for

any open U ⊆ G/H)

OG/H(U) = {f ∈ OG

(
h−1(U)

)
: f(ga) = f(g) for all g ∈ G and a ∈ H} .

This gives G/H the structure of a locally-ringed space, and with this structure G/H is

a scheme over C. Every G-homogeneous space is of this form: if X is a variety with

transitive G-action then X ∼= G/Hx , where Hx is the stabilizer of any point x ∈ X.

We have that P is a parabolic subgroup if and only if G/P is a projective variety.

When P 6= B these varieties are called partial flag varieties, and G/B is called a full

flag variety.

Representations of parabolics.

Every irreducible representation of a parabolic subgroup P arises from an irreducible

representation of L with trivial UP -action. Indeed, if V is an irreducible L-module,

then since UP is normal in P we may extend trivially over UP to obtain an irreducible
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P -module. Conversely, an irreducible P -module M must be a completely reducible UP -

module: since UP is normal in P , we have that socUP
M is a P -submodule of M (where

socUP
M is the direct sum of all completely reducible UP -submodules of M). But, as UP

is unipotent, a completely reducible UP -module must be trivial.

The highest weights of irreducible L-modules are parametrized by the P -dominant

weights in Λ, where we say that λ ∈ Λ is P -dominant if λ(α∨) ≥ 0 for all α ∈ πL. We

say that λ is P -regular dominant if λ(α∨) > 0 for all α ∈ πL. For P -dominant λ let

V P (λ) denote the irreducible L-module with highest weight λ.

In the special case P = B we have L = T and hence all weights of G are B-dominant.

In this case we simply have V B(λ) ∼= Cλ . On the other extreme, the set of G-dominant

weights is the set D of all dominant weights. We have V G(λ) ∼= V (λ), where V (λ)

denotes the irreducible G-module with highest weight λ ∈ D.

Homogenous bundles on flag varieties.

We define a functor

{P -modules} 7→ {G-equivariant bundles on G/P}

as follows. Let M be any P -module. Define a right action of P on G×M by

(g, v).p := (gp, p−1v) .

Set

G×P M := (G×M)/P .

9



For g ∈ G and m ∈M let g ∗m denote the image of (g,m) in G×P M . One checks easily

that the map φ : G ×P M → G/P given by g ∗m 7→ gP is a vector bundle map with

fibers isomorphic to M .

Furthermore, there is a natural G-action on G×P M given by g1.(g2 ∗m) = g1g2 ∗m.

With this action, the map φ is G-equivariant. We call G×P M a homogeneous vector

bundle on G/P with fiber M . For a fixed parabolic P the association M 7→ G ×P M

is functorial and hence we obtain the functor mentioned above. We will denote this

functor by LP . This functor is exact and commutes with dualizing, tensoring, and the

direct sum operation. When no confusion results we will make no distinction between

the bundle LP (M) and its sheaf of sections, which is a G-equivariant locally free sheaf

of OG/P -modules. We obtain a G-action on sections of LP (M) via

(g1.s)(g2P ) := g1.
(
s(g−1

1 g2P )
)
.

Let ψ : E → G/P be any G-equivariant bundle on G/P ; then ψ−1(eP ) is a P -module.

Let F denote the exact functor

{G-equivariant bundles on G/P} 7→ {P -modules}

that takes a bundle to its fiber over eP . It is straightforward to check that this functor

gives an inverse of the functor LP and hence we obtain an equivalence of categories

{G-equivariant bundles on G/P} ∼= {P -modules} .

Two particular homogeneous bundles on G/P will be of special interest to us. Let np

be the Lie algebra of UP . Then T (G/P ) ∼= G×P n∗p and hence T ∗(G/P ) ∼= G×P np.
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We will also be concerned with G×PM in the case where the representation M of P is

irreducible. In this case we are considering homogeneous bundles of the form LP

(
V P (λ)

)
for P -dominant λ ∈ Λ. For notational convenience, set

(2.1) LP (λ) := LP

(
V P (λ)∗

)
,

the dual bundle to LP

(
V P (λ)

)
.

It is also worth mentioning that the bundles G ×P V are trivial for all G-modules

V . Indeed, the map G×P V → G/P × V given by g ∗ v 7→ (g, gv) is an isomorphism of

G-equivariant bundles over G/P .

The Borel-Weil-Bott Theorem.

Note that the bundles LB (γ) for γ ∈ Λ are line bundles on G/B, since V B(γ) = Cγ .

In fact, every line bundle on G/B is of this form. The next result gives the G-module

structure of the sheaf cohomology groups of these line bundles. For the statement of the

next theorem, assume that G is an arbitrary reductive group.

Theorem 2.2.4. (The Borel-Weil-Bott Theorem) Choose λ ∈ Λ.

(i) If there is w ∈ W such that w ∗ λ ∈ D then

H l(w)
(
G/B, LB

(
λ
)) ∼= V (λ)∗

and H i
(
G/B, LB

(
λ
))

= 0 for all i 6= l(w). Note that such w is unique if it exists.

(ii) If there is no such w ∈ W (equivalently, if there is an α ∈ π and ν ∈ W such that

(ν ∗ λ) (α∨) = −1), then H i
(
G/B, LB

(
λ
))

= 0 for all i.

(iii) Let P be a standard parabolic. Then for all i ≥ 0,

H i (G/P, LP (λ)) ∼= H i (G/B, LB (λ)) .
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In general, if P 6= B and λ ∈ Λ is P -dominant, LP (λ) need not be a line bundle, as

V P (λ) will in general not be 1-dimensional.

Remark 2.2.5. Let P ⊆ Q be two parabolics and let LQ denote the Levi factor of Q.

Then LQ ∩ P is a parabolic subgroup of LQ and we have Q/P ∼= LQ/(LQ ∩ P ). Hence

Theorem 2.2.4 gives the sheaf cohomology of all LQ-equivariant bundles on Q/P .

Positivity properties of homogeneous bundles.

As noted above, LP (λ) will in general not be a line bundle for P 6= B. However, if

λ satisfies λ(α∨) = 0 for all α ∈ πP , then V P (λ) is 1-dimensional and LP (λ) is a line

bundle on G/P . The converse is also true, as it is easy to check that if λ is P -dominant

and λ(α∨) > 0 for some α ∈ ∆+
L then dim (V P (λ)) > 1.

Remark 2.2.6. We briefly review the notion of intersection product on an irreducible

complex projective variety X (for a brief introduction to this subject see section 1.1.C of

[23]). For any line bundle L of X we have the first Chern class

c1(L) ∈ H2(X; Z)

of L. Let L1, . . . , Lk be line bundles on X and let Y ⊆ X be a closed subspace of

dimension k. The cup product

c1(L1) · c1(L2) · . . . · c1(Lk)

is an element of H2k(X; Z) and hence

(
c1(L1) · c1(L2) · . . . · c1(Lk)

)
∩ [Y ] ∈ H0(X; Z) ∼= Z ,
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where ∩ is the cap product and [Y ] ∈ H2k(X; Z) is the fundamental class of Y . We

denote this integer, called the intersection product, by
∫

Y
c1(L1) · c1(L2) · . . . · c1(Lk).

One also has an intersection product for Cartier divisors on X through the line bundles

associated to the divisors.

Definition 2.2.7. Let L be a line bundle on a projective variety X. Then L is nef

if
∫

C
c1(L) ≥ 0 for every irreducible curve C ⊆ X.

Remark 2.2.8. By the Nakai-Moishezon-Kleiman criterion ([23], Theorem 1.2.23), a

line bundle L on a projective variety X is ample iff

∫
Y

c1(L)dimY > 0

for all irreducible subvarieties Y ⊆ X. Thus ample implies nef.

One has the following standard results for ample and nef line bundles.

Theorem 2.2.9. (cf [23], [24]) Let C and E be line bundles on a variety X over C.

(i) Assume that X is projective. If C is a quotient of a trivial bundle, then C is nef.

(ii) Assume that X is projective. If C is nef and E is ample then C ⊗ E is ample.

(iii) Assume that there is a proper morphism from X to an affine scheme. Then C

is ample iff for all coherent sheaves F on X there is an integer m0 such that

H i (X, F ⊗ Cm) = 0 for all i > 0 and m ≥ m0. In particular, note that the

map X → Spec C is a proper morphism when X is projective.

(iv) C is ample iff for all coherent sheaves F on X there is an integer n0 such that

F ⊗ Cn is generated by global sections for all n ≥ n0.
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(v) Assume that X is projective. Let f : X → Y be a finite map. If A is an ample

(resp. nef) bundle on Y then f ∗A is ample (resp. nef) on X.

We have the following standard positivity result.

Proposition 2.2.10. Let P be a parabolic and let λ ∈ Λ be such that LP (λ) is a line

bundle on G/P . Then:

(i) LP (λ) is nef iff λ ∈ D.

(ii) LP (λ) is ample iff λ(α∨) > 0 for all α ∈ π \ πP .

Bundle-theoretic results from algebraic geometry.

In this section we collect various results from algebraic geometry.

Proposition 2.2.11. (Projection formula) Let f : X → Y be a morphism of vari-

eties, let F be a coherent sheaf on X, and let G be a locally free sheaf on Y . Then

Rif∗ (f ∗G ⊗ F) ∼= G ⊗Rif∗F

for all i ≥ 0.

Proposition 2.2.12. (Leray spectral sequence) Let f : X → Y be a morphism of

varieties and let F be a coherent sheaf on X. Then there is a first-quadrant spectral

sequence in cohomology

H i
(
Y, Rjf∗F

)
=⇒ H i+j (X, F) .

The following corollary of the Leray spectral sequence is immediate.
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Corollary 2.2.13. Let f : X → Y be an affine morphism. Then for every coherent

sheaf F on X,

H i (X, F) ∼= H i (Y, f∗F)

for all i ≥ 0.

In particular, this implies that if h : E → X is a vector bundle then

H i (E, F) ∼= H i (X, f∗F)

for all i ≥ 0 and coherent sheaves F on E.

We have the following formulation of the Grauert-Riemenschneider vanishing theorem

due to Kempf [20].

Theorem 2.2.14. (Grauert-Riemenschneider) Let X be a smooth complex variety and

let f : X → Y be a proper morphism of complex varieties. Let ωX denote the canonical

bundle of X. If n is the dimension of a generic fiber of f then Rif∗(ωX) = 0 for all

i > n.

Remark 2.2.15. For a morphism f : X → Y of varieties, the function y 7→ dimf−1(y)

is upper semicontinuous on Y . Thus, if Y is irreducible, the dimension of a generic fiber

of f is the minimum of the dimensions of the fibers of f .

For a standard parabolic P of G, let p : T ∗(G/P ) → G/P denote the cotangent

bundle of P . By a slight abuse of notation, we will use the letter p to denote this map

regardless of which parabolic P we have chosen. Using the results above, we get the

following proposition.
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Proposition 2.2.16.

(i) Let f : X → Y be a proper morphism of smooth complex varieties, where Y is an

affine variety. Let n be the dimension of a generic fiber of f . Then H i (X, ωX) = 0

for all i > n.

(ii) Let P ⊆ Q be standard parabolics of G and let M be a P -module. Let g : G/P →

G/Q be the projection map. For any i ≥ 0, H i (Q/P, LP (M)) is a Q-module and

we have

(2.2) Rig∗
(
LP (M)

) ∼= LQ

(
H i (Q/P, LP (M))

)
.

(iii) Let P be any parabolic and M any P -module. Recall the bundle map

p : T ∗(G/P ) → G/P from above. We have

(2.3) H i
(
T ∗(G/P ), p∗LP (M)

) ∼= H i
(
G/P, LP (S(np

∗)⊗M)
)

for all i.

(iv) Let P ⊆ Q be parabolics and let µ ∈ Λ be Q-dominant. Then

(2.4) H i
(
T ∗(G/Q), p∗LQ(µ)

) ∼= H i
(
G/P, LP

(
µ
)
⊗ LP

(
S(nq

∗)
))

for all i.

Proof. (i) Consider the Leray spectral sequence

H i
(
Y, Rjf∗(ωX)

)
⇒ H i+j (X, ωX).

Now, Rjf∗(ωX) is a coherent sheaf on Y for all j. Thus H i
(
Y, Rjf∗(ωX)

)
= 0 for all

i > 0. Hence the spectral sequence collapses and the statement follows immediately from

Theorem 2.2.14.
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(ii) The fact that H i (Q/P, LP (M)) is a Q-module follows from the fact that LP (M)

is a Q-equivarant bundle on Q/P . For any point aQ ∈ G/Q we have

H i

(
g−1(aQ), LP (M)

∣∣
g−1(aQ)

)
∼= H i (Q/P, LP (M))

for all i, since g is a fiber bundle with fibers Q/P . Thus Rig∗(LP (M)) is a locally free

sheaf on G/Q which is also G-equivariant since LP (M) is a G-equivariant sheaf on G/P

and g is a G-equivariant morphism. As a Q-equivariant bundle on Q/P is completely

determined by its fiber at eQ, the result now follows by considering the (geometric) fiber

of Rig∗(LP (M)) at eQ.

(iii) For any vector bundle map b : E → Z it is easy to check that

b∗OE
∼= S(E∨),

where E is the sheaf of sections of the bundle E, E∨ is the dual sheaf, and S(E∨) is the

symmetric algebra sheaf of E∨.

We have

T ∗(G/P ) ∼= G×P np.

Thus

p∗OT ∗(G/P )
∼= LP

(
S(np

∗)
)
.

By the projection formula,

p∗ p
∗LP (M) ∼= LP

(
S(np

∗)
)
⊗ LP (M) ∼= LP

(
S(np

∗)⊗M
)
.

Now, as p is an affine map, using the Leray spectral sequence we have that

H i
(
T ∗(G/P ), p∗LP (M)

) ∼= H i (G/P, p∗ p
∗LP (M)) ∼= H i

(
G/P, LP (S(np

∗)⊗M)
)
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for all i, as desired.

(iv) Let g : G/P → G/Q be the projection map as above. Consider the Leray spectral

sequence

H i
(
G/Q, Rjg∗

(
LP

(
µ
)
⊗ LP (S(nq

∗))
) )

⇒ H i+j
(
G/P, LP

(
µ
)
⊗ LP (S(nq

∗)))
)
.

By Borel-Weil we have

Hj (Q/P, LP (µ)) = 0

for all j > 0, and

H0
(
Q/P, LP (µ)

)
= LQ (µ).

By (ii) we have

Rjg∗

(
LP (µ)⊗ LP

(
S(nq

∗)
)) ∼= LQ

(
Hj
(
Q/P, LP (µ)⊗ LP

(
S(nq

∗)
)))

∼= LQ

(
Hj
(
Q/P, LP (µ)

))
⊗ S(nq

∗)

= 0

for all j > 0. Hence the spectral sequence collapses and the result follows from (iii).

�

2.3. Nilpotent Orbits

All of the material in this section is drawn from [8]. In this section we assume that

all algebras and varieties are over C.

Semisimple and nilpotent elements.
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Definition 2.3.1. Let g denote the Lie algebra of G. An element X ∈ g is said

to be nilpotent if ad(X) is a nilpotent operator on g. An element H ∈ g is said to

be semisimple if ad(H) is a semisimple operator on g, ie the action of ad(H) on g is

diagonalizable.

For any g ∈ G and A ∈ g, we will denote Ad(g).A by g.A . From the definition one

sees immediately that A ∈ g is nilpotent (resp. semisimple) iff g.A is nilpotent (resp.

semisimple) for some (equivalently, all) g ∈ G. Hence it makes sense to talk about a

nilpotent or semisimple G-orbit in g.

For any A ∈ g we can write A uniquely as A = X + H, where X is nilpotent, H is

semisimple, and [X,H] = 0. The following is a useful characterization of nilpotent and

semisimple elements of g.

Proposition 2.3.2. An element A ∈ g is nilpotent (resp. semisimple) iff the action

of A on any representation of g is nilpotent (resp. semisimple).

From here on, an adjoint orbit in g will mean an orbit under the adjoint action of

the group G. We will denote the adjoint orbit G.X by OX . Every semisimple adjoint

orbit is closed in g and the union of all semisimple orbits forms a dense subset of g. On

the other hand, the only closed nilpotent orbit is {0} and the union N of all nilpotent

elements of g is a closed subvariety of g called the nullcone. N is the union of a finite

number of G-orbits. An adjoint orbit in g is called regular if the dimension of the orbit is

maximal. Regular adjoint orbits have codimension rank(G) in g, and regular semisimple

and nilpotent orbits exist.
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There is a unique regular nilpotent orbit Oreg which is dense in N ; elements of this

orbit are called principal nilpotents. See section 2.3 below for an explicit representative

of this orbit. There is also a unique nilpotent orbit dense in N \Oreg ; this orbit is called

the subregular nilpotent orbit and is denoted by Osubreg. There is a unique nonzero

nilpotent orbit of minimal dimension in N , denoted by Omin; this orbit is also the unique

nonzero orbit that is contained in the closure of every other nilpotent orbit.

sl2-triples, associated parabolics, and even elements.

Definition 2.3.3. A triple {X, Y,H} ⊆ g is called an sl2-triple if there is a Lie

algebra isomorphism sl2 −̃→ span{X, Y,H} such that the standard basis {X ′, Y ′, H ′}

of sl2 maps to {X,Y,H}.

In particular, since an sl2-triple gives g the structure of an sl2-representation, we see

that if {X,Y,H} is an sl2-triple then X and Y are nilpotent and H is semisimple. X

is called the nilpositive element of the triple and H is the semisimple element of the

triple. We have the following important theorem.

Theorem 2.3.4. (Jacobson-Morozov) Let X ∈ N . Then there is an sl2-triple through

X, ie an sl2-triple {X,Y,H}.

The sl2-triple guaranteed by the theorem will not necessarily be unique. It is also

important to point out that while every nilpotent element lies in an sl2-triple, the same

is not true of semisimple elements. If a semisimple element H is the semisimple element

in some sl2-triple then we say that H is distinguished. This also gives a notion of

distinguished semisimple orbits.
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Definition 2.3.5. We say that a nilpotent element X is in good position if (1)

X ∈ n and (2) there is an sl2-triple {X,Y,H} with H ∈ D′ (recall that D′ ⊆ h is the

dominant chamber).

Let {X, Y,H} be an sl2-triple. Then, viewing g as an sl2-representation, we can write

the eigenspace decomposition of g under the action of H as

g =
⊕
n∈Z

gn .

This decomposition depends only on the nilpositive element X and not on the rest of

the elements of the triple, cf [8], Remark 3.8.5. Thus, given any nilpotent element X, we

obtain such a decomposition of g into eigenspaces. We say that X is even if gn = 0 for

all odd n.

One may check that
⊕
n≥0

gn is a parabolic subalgebra of g; we call this the parabolic

subalgebra associated to X. It has Levi factor g0 = gH and nilradical
⊕
n>0

gn (where gH

denotes the centralizer of H in g). This associated parabolic is a standard parabolic iff

X is in good position. Furthermore, X is regular iff the associated parabolic is a Borel

subalgebra; in this case, H will be regular as well.

Let p be a parabolic subalgebra of g. We say that X is a Richardson element for p

if OX ∩ np is dense in np. The Richardson elements for p form a single orbit in N .

Lemma 2.3.6. (Kostant) Let X ∈ N and let p be the associated parabolic. Let P ⊆ G

be the parabolic subgroup with Lie algebra p. Set

p2 :=
⊕
n≥2

gn ⊆ np .
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Then

OX ∩ p2 = OX ∩ np = P.X

and OX ∩ p2 is open dense in p2.

This implies that X is even nilpotent iff X is a Richardson element for its associated

parabolic, since one may check via sl2-theory that X is even iff p2 = np.

Definition 2.3.7. Assume we have chosen a Borel subgroup b of g and a Cartan

subalgebra h ⊆ b. A standard parabolic subalgebra p is a standard even parabolic if

there is an even nilpotent X such that p is the parabolic associated to X. A subalgebra

l of g is a standard even Levi if it is the Levi factor of a standard even parabolic.

When no confusion results we shall also use these definitions to refer to the appropriate

subgroups of G.

Remark 2.3.8. It can happen that there are X, Y ∈ N such that X and Y are not

in the same orbit but the parabolics associated to X and Y are the same; this happens

when the weighted Dynkin diagrams (defined below) associated to X and Y have 0’s on

the exact same nodes. In particular, in some types there are non-even X ∈ N whose

associated parabolics are standard even parabolic; see the table on p. 49 of [8] for an

example in type A3.

Weighted Dynkin diagrams.

We would like to find a way of describing nilpotent orbits in N . The coarsest level

of information would simply be to know how many nilpotent orbits there are; we would

then hopefully want to find a way of explicitly constructing them. The first method of

doing this involves Dynkin diagrams. The essential result here is the following theorem.
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Theorem 2.3.9. ([8], Theorems 3.2.10 and 3.2.14) Let OrN denote the set of nonzero

nilpotent orbits in g and let OrS denote the set of standard semisimple orbits.

(i) If {X,H, Y } and {X,H ′, Y ′} are two sl2-triples with the same nilpositive element

X then the two triples are conjugate by an element of G. In particular, this gives a

well-defined map ϕ : OrN → OrS via OX 7→ OH .

(ii) The map ϕ above is a bijection.

Thus, to describe nilpotent orbits, we will first describe standard semisimple orbits.

Fix a Borel subgroupB and a torus T ⊆ B. Let b and h be the corresponding Lie algebras,

and set n = Lie(U) (recall that U is the unipotent radical of B). Every semisimple orbit

has nonempty intersection with D′ and in fact each semisimple orbit has a unique element

in D′ up to the action of the Weyl group. Further, if H ∈ D′ is distinguished semisimple

then α(H) ∈ {0, 1, 2} for all α ∈ π.

For each nonzero nilpotent orbit OX we now obtain a unique weighted Dynkin di-

agram with weights 0, 1, or 2 as follows. By Theorem 2.3.9 there is a unique distin-

guished semisimple orbit OH corresponding to OX and we may choose a unique element

H ∈ OH ∩D′. To each node of the Dynkin diagram of G we now associate the integer

α(H), where α is the simple root corresponding to the chosen node. In particular, for

the 0 orbit, the associated weighted Dynkin diagram has every weight 0.

This shows that the number of nilpotent orbits in g is at most 3l, where l is the

rank of G. In general, though, the correspondence won’t be bijective; there may be some

weighted Dynkin diagrams that do not correspond to nilpotent orbits. Note that OX

is an even nilpotent orbit iff the corresponding weighted Dynkin diagram has no 1’s.

The regular nilpotent orbit (also called the principal nilpotent orbit) corresponds to
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the weighted Dynkin diagram where every weight is 2. An orbit representative for the

principal nilpotent orbit is given by

Xreg =
∑
α∈π

Xα ,

where for each α ∈ π, Xα ∈ gα is a nonzero root vector.

There is also another method of classifying nilpotent orbits, called Bala-Carter theory,

which works for any simple group. For more details see [8], Chapter 8.

Explicit orbit representatives in type A and even nilpotent orbits.

In the case of classical groups, one can explicitly construct representatives for each

nilpotent orbit, cf [8], Chapter 5. We will do this in the case of sln, and also indicate

which orbits are even. For the other classical types the combinatorics are rather ugly

and non-enlightening.

In type sln, there is a bijective correspondence between partitions p = [p1, . . . , pk]

of n where the pi are nonzero and nonincreasing, and nilpotent orbits in N . Orbit

representatives for these partitions are constructed as follows.

If the partition is such that pi = 1 for all 1 ≤ i ≤ k then the associated orbit is the 0

orbit, so we assume that p 6= [1, . . . , 1]. For any β ∈ ∆+ let Xβ ∈ gβ be a Chevalley basis

element. Let {α1, . . . , αn−1} denote the simple roots from left to right in the Dynkin

diagram of type An−1.

Given a partition p as above, set m = max{j : pj > 1}. For each 1 ≤ i ≤ m set

Ni :=
i∑

l=1

pl−1 (where we set p−1 = 0) and set

Xi :=

Ni+1−1∑
j=Ni+1

Xαj
.
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We now obtain an orbit representative corresponding to p by setting

Xp :=
m∑

i=1

Xi .

We may explicitly describe the matrix corresponding to Xp as follows. For any q > 0

let J(q) be the q× q matrix with 1′s on the superdiagonal and 0′s everywhere else. Then

Xp is the matrix with Jordan blocks of size p1, . . . , pk, i.e. the block diagonal matrix

diag
(
J(1), . . . , J(q)

)
:=



J(p1)

J(p2)

. . .

J(pk)


.

The bijection between partitions and orbits is given by p 7→ OXp . Even nilpotent

orbits correspond to partitions consisting of only even or only odd parts.

Remark 2.3.10. Given a partition p of n, let X be the orbit representative of this

partition in type An−1 constructed above. One can also explicitly construct H ∈ h such

that H is the semisimple element of an sl2-triple containing X. Generally H itself will not

be in D′, though, and often no GX-conjugate of H will be in D′ either (where GX is the

stabilizer of X in G). This is a subtlety worth noting: if no GX-conjugate of H is in D′

then X is not be a standard nilpotent element and hence, if we want to obtain a standard

triple (or a weighted Dynkin diagram), we must conjugate the sl2-triple containing X

and H. This can always be done by an element of W , as described below.

Given a partition p = [p1, . . . , pk], we now describe how (cf [8], section 3.6) to (a)

construct a semisimple element H in an sl2-triple containing Xp; (b) how to conjugate
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the resulting triple to a standard triple; and (c) how to obtain a weighted Dynkin diagram

corresponding to OXp (all of this in type A only, of course).

Retain the notation from the construction of X = Xp above. Let

{χ∨1 , . . . , χ∨n−1} ⊆ h

denote the fundamental coweights; that is, χ∨i is defined by αj(χ
∨
i ) = δi,j for 1 ≤ i, j ≤

n− 1. For 1 ≤ i ≤ min{m, k − 1} set

Hi :=

(
Ni+1−1∑
j=Ni+1

χ∨j

)
− (pi + pi+1 − 2)χ∨Ni+1

.

If m = k set

Hk :=
n−1∑

j=Nk+1

χ∨j .

We now set H :=
m∑

i=1

Hi, a semisimple element in an sl2-triple containing X; this is

always an element of the coroot lattice.

Explicitly, we can write a matrix for H as follows. For each q > 0 let D(q) be the

q × q diagonal matrix diag(q − 1, q − 3, . . . ,−(q − 1)). We now set

H = diag(D(p1), . . . , D(pk))

(recall the notation diag(?) from above).

To conjugate H to a standard semisimple element it is straightforward to find w ∈ W

such that wH ∈ D′. Explicitly, wH will be the diagonal matrix where the entries of

H have been rearranged into nonincreasing order. Furthermore, wX will be a standard

nilpotent element (cf [8], section 3.6) and the weighted Dynkin diagram associated to

OX is the Dynkin diagram whose nodes are labelled by α(wH) for α ∈ π. See chapter 5

below for an explicit example.
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CHAPTER 3

The BK-filtration and generalizations

3.1. The BK-filtration

Definitions.

Choose a BorelB and a torus T ofG. The BGG categoryO consists of g representations

V that have finite-dimensional weight spaces and are n-locally finite; i.e., for any v ∈ V ,

v lies in a finite-dimensional n-submodule of V .

Let V be an object in the BGG category O and let U ⊆ V be any vector subspace. Let

e be a principal nilpotent in good position (recall the definition of principal nilpotents and

nilpotents in good position from section 2.3). In [6], Ranee Brylinski defined a filtration

on U inside of V , called the Brylinski-Kostant filtration (or BK-filtration), as

follows: set

Fn
V (U) := {v ∈ U : en+1v = 0} .

In particular, we would like to consider this filtration in the case where V is an

irreducible representation V (µ) of G and U is a weight subspace Vλ(µ) of V , for µ ∈ D

and λ ∈ Λ. In this case we shall suppress the subscript and write

(3.1) Fn
(
Vλ(µ)

)
:= Fn

V (µ)

(
Vλ(µ)

)
.



Define

rλ
µ(q) :=

∑
n≥0

dim

(
Fn
(
Vλ(µ)

)
Fn−1

(
Vλ(µ)

)) qn ∈ Z[q]

(where F−1
(
Vλ(µ)

)
= {0}). This jump polynomial counts the dimensions of the

degrees of the filtration, and clearly dim (Vλ(µ)) = rλ
µ(1).

Kazhdan-Lusztig polynomials and Brylinski’s theorem.

For γ ∈ ΛR let pq(γ) ∈ Z[q] be the coefficient of eγ in
∏

β∈∆+

(1 − qeβ)−1. This is a

q-analog of Kostant’s partition function p(γ) = pq(γ)
∣∣
q=1

, which counts the number of

ways of writing γ as a sum of positive roots. The degree-n coefficient of pq(γ) counts the

number of ways of writing γ as a sum of precisely n (not necessarily distinct) positive

roots.

For µ, λ ∈ D such that λ− µ ∈ ΛR set

mλ
µ(q) :=

∑
w∈W

(−1)l(w)pq(w ∗ µ− λ) ,

Lusztig’s q-analog of weight multiplicity [25]. It is called an analog of weight multi-

plicity because, by the Weyl character formula, mλ
µ(1) = dim (Vλ(µ)). The polynomials

mλ
µ(q) for λ, µ ∈ D are equal to certain Kazhdan-Lusztig polynomials for affine

Weyl groups, which are important objects in combinatorial representation theory (see

[17], [19], [18], and [25]).

Using this setup, we have the following theorem of Brylinski which relies on a coho-

mology vanishing condition. Recall the bundle LB (λ) on G/B from equation (2.1), and

let p : T ∗(G/B) → G/B be the cotangent bundle of G/B.
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Theorem 3.1.1. (Brylinski, [6]) Let e be a principal nilpotent in good position. Let

µ, λ ∈ D. If

H i
(
T ∗(G/B), p∗LB(λ)

)
= 0

for all i > 0 then mλ
µ(q) = rλ

µ(q).

We also have the following result of Broer which is a special case of Theorem 4.2.4

below.

Theorem 3.1.2. (Broer, [3]) H i
(
T ∗(G/B), p∗LB(λ)

)
= 0 for all λ ∈ D and i > 0.

Thus we have

Corollary 3.1.3. For µ, λ ∈ D, mλ
µ(q) = rλ

µ(q).

3.2. Generalization of the BK-filtration

Definitions and main result.

We now generalize the BK-filtration to the case of an arbitrary nilpotent element. Choose

X ∈ N and V in the category O. Let U ⊆ V be any vector subspace. Define a filtration

FX,V on U by

Fn
X,V (U) := {v ∈ U : Xn+1v = 0} .

If e is a principal nilpotent then clearly Fn
e,V (U) = Fn

V (U), the original BK-filtration.

As before, we want to consider subspaces of an irreducible G-module V . However, we

will not consider the filtration on an entire weight subspace of V , but rather on special
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subspaces of weight spaces. We will also restrict our attention to the case where X ∈ n

is even.

Let X ∈ n be an even nilpotent element in good position and let P be its associated

standard even parabolic. Let L be the Levi factor of P containing T . For any µ ∈ D and

weight λ of V (µ) let WP
λ (µ) ⊆ Vλ(µ) denote the subspace consisting of L-highest weight

vectors. Set

Fn
X

(
WP

λ (µ)
)

:= Fn
X,V (µ)

(
WP

λ (µ)
)
.

This generalizes the filtration F
(
Vλ(µ)

)
from (3.1) above. Note that WB

λ (µ) = Vλ(µ), so

that

Fn
e

(
WB

λ (µ)
)

= Fn
(
Vλ(µ)

)
.

We obtain a jump polynomial as before: set

rX,λ
µ (q) :=

∑
n≥0

dim

(
Fn

X

(
WP

λ (µ)
)

Fn−1
X

(
WP

λ (µ)
)) qn .

We also need to generalize the polynomials p and m from above. This is straight-

forward, as we will simply restrict our attention to weights of np instead of n. Let

pP
q (γ) ∈ Z[q] be the coefficient of eγ in

∏
β∈∆+\∆+

P

(1− qeβ)−1 and set

mP,λ
µ (q) :=

∑
w∈W

(−1)l(w)pP
q (w ∗ µ− λ)

. It is clear that when P = B we obtain the earlier setting due to Brylinski.

Let p : T ∗(G/B) → G/P be the cotangent bundle of G/P . The following theorem is

the main theorem in this section; it generalizes Theorem 3.1.1 above.

Theorem 3.2.1. Let X ∈ n be a standard even nilpotent. Let µ, λ ∈ D. If

H i
(
T ∗(G/P ), p∗LP (λ)

)
= 0
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for all i > 0, then rX,λ
µ (q) = mP,λ

µ (q), where P is the parabolic associated to X.

In chapter 4 below, we will prove this cohomology vanishing for various λ.

Remark 3.2.2. Note that this implies, in the presence of the cohomology vanishing

condition, that the coefficients of mP,λ
µ (q) are positive when µ, λ ∈ D. This is by no

means clear from the definition and, in fact, can fail if λ /∈ D.

3.3. Proof of Theorem 3.2.1

Outline of proof.

Remark 3.3.1. Our proof is an adaptation of Brylinski’s proof of her Theorem 3.4

in [6] (which is stated as Theorem 3.1.1 above).

Let us first give a sketch of the proof. Fix µ, λ ∈ D, and choose an even nilpotent

element X in good position. Let P be the parabolic subgroup corresponding to X. We

first construct two G-equivariant locally-free sheaves q∗AP (λ) and p∗ p
∗LP (λ) of infinite

rank on G/P such that (a) q∗AP (λ) is filtered by G-equivariant locally-free sheaves(
q∗AP (λ)

)≤n
of finite rank and (b) p∗ p

∗LP (λ) is graded by G-equivariant locally-free

sheaves
(
p∗ p

∗LP (λ)
)n

of finite rank.

We then show in Theorem 3.3.18 below that the multiplicity of V (µ)∗ in

H0
(
G/P,

(
q∗AP (λ)

)≤n
)

H0
(
G/P,

(
q∗AP (λ)

)≤n−1
)

is precisely the degree-n coefficient of the jump polynomial rX,λ
µ (q). In Proposition 3.3.19

we show that this quotient of global sections is isomorphic, in the presence of the desired
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cohomology vanishing condition, to H0
(
G/P,

(
p∗ p

∗LP (λ)
)n)

as G-modules. To com-

plete the proof of Theorem 3.2.1 we show in the same proposition that the multiplicity

of V (µ)∗ in H0
(
G/P,

(
p∗ p

∗LP (λ)
)n)

is the degree-n coefficient of mP,λ
µ (q).

The proof.

Fix µ, λ, P and X as above. Let L be the Levi factor of P . Recall that D′ ⊆ h is

the dominant chamber. Let H ∈ D′ be the unique distinguished semisimple element in

D′ occuring in an sl2-triple with nilpositive element X. Recall that GH = L and gH = l,

where GH is the stabilizer of H in G and gH is the stabilizer of H in g.

Lemma 3.3.2. The natural projection G/L � G/P induces an isomorphism

G/L ∼= G×P (H + np)

of G-equivariant fiber bundles on G/P , where we consider G/L as an equivariant fiber

bundle on G/P through the isomorphism G/L ∼= G ×P (P/L) given by g ∗ pL 7→ gpL

and where P acts on H + np through the adjoint action.

Proof. It suffices to show that P/L ∼= H+np as P -varieties. As a variety, P ∼= UP×

L. Since UH
P = {e} by the construction of P , we have PH = L and hence P/L ∼= P.H.

Since L.H = H we have P.H = UP .H and hence a variety isomorphism UP −̃→ UP .H.

Note that np.H ⊆ np, so that UP .H ⊆ H + np (cf [7], Lemma 1.4.12(i)). As UP and

H +np are both isomorphic to An for n = dim(np), the variety injection UP .H ↪→ H +np

must be an isomorphism. Thus we have

P/L ∼= P.H = UP .H ∼= H + np

as desired. �
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Remark 3.3.3. From here on, we will use the G-equivariant isomorphism G/L ∼=

G×P (H + np) to write elements of G/L in the form g ∗ (H + Z), for g ∈ G and Z ∈ np.

Recall that the cotangent bundle of G/P is a homogeneous bundle: we have

T ∗(G/P ) ∼= G×P np.

There is a natural fiberwise action of T ∗(G/P ) on G/L via

g ∗ Z1 + g ∗ (H + Z2) = g ∗ (H + Z1 + Z2),

for g ∈ G, g ∗ Z1 ∈ T ∗(G/P ), and g ∗ (H + Z2) ∈ G/L.

Notation 3.3.4. Let p : T ∗(G/P ) → G/P and q : G/L→ G/P be the bundle maps.

For λ ∈ D we will denote by LP (λ) the bundle G ×P
(
V P (λ)∗

)
on G/P . Recall that

LP (λ) is the notation for the sheaf of sections of this bundle.

Let AP (λ) denote the bundle q∗LP (λ) on G/L and let AP (λ) denote the sheaf of

sections of AP (λ) on G/L.

For gP ∈ G/P let LP (λ)gP (resp. T ∗(G/P )gP , resp.
(
G/L

)
gP

) denote the fiber of

LP (λ) (resp. T ∗(G/P ), resp. G/L) over gP . For H0 ∈ G/L let AP (λ)H0 denote the fiber

of AP (λ) over H0.

Remark 3.3.5. Given a variety Y and a sheaf G on Y , by an abuse of notation we

shall write g ∈ G to mean g ∈ G(U) for some open subset U of Y . If g is meant to be a

gloabl section of G this will be specified.

Remark 3.3.6. We have that p∗OT ∗(G/P )
∼= LP (S(np

∗)) and q∗OG/L
∼= LP (C[H + np]).

Hence

p∗ p
∗LP (λ) ∼= LP

(
S(np

∗)⊗ V P (λ)∗
)
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and

q∗AP (λ) ∼= LP

(
C[H + np]⊗ V P (λ)∗

)
,

for P -dominant λ, by the projection formula (Proposition 2.2.11). In particular, these

sheaves are locally-free and G-equivariant on G/P .

For any two varieties X and Y over C let Homvar(X,Y ) denote the set of variety

morphisms from X to Y over C. Note that

S(np
∗)⊗ V P (λ)∗ ∼= C[np]⊗ V P (λ)∗ ∼= Homvar

(
np, V

P (λ)∗
)

as P -modules, where the action of P on Homvar

(
np, V

P (λ)∗
)

is given by

(p.f)(X) = p.
(
f(p−1.X)

)
.

Similarly, we see that

C[H + np]⊗ V P (λ)∗ ∼= Homvar

(
H + np, V

P (λ)∗
)

as P -modules, where the P -action on Homvar

(
H + np, V

P (λ)∗
)

is given by

(p.h)(H1) = p.
(
h(p−1.H1)

)
.

Thus we have isomorphisms of G-equivariant sheaves

p∗ p
∗LP (λ) ∼= LP

(
Homvar

(
np, V

P (λ)∗
))

and

q∗AP (λ) ∼= LP

(
Homvar

(
H + np, V

P (λ)∗
))
.

This means that we can interpret a section u ∈ p∗ p
∗LP (λ) as follows. Choose gP ∈

G/P ; then u(gP ) is a variety morphism T ∗(G/P )gP → LP (λ)gP . Similarly, for s ∈
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q∗AP (λ), we can interpret s(gP ) as a variety morphism
(
G/L

)
gP

→ LP (λ)gP . From

here on I will use the less cumbersome notation ugP for u(gP ) (resp. sgP for s(gP )) and

we will interpret these sections as LP (λ)gP -valued morphisms on the fibers of T ∗(G/P )

(resp. G/L) over G/P .

Definition 3.3.7. Define a gradation on p∗ p
∗LP (λ) by

(
p∗ p

∗LP (λ)
)n

:= LP

(
Sn(np

∗)⊗ V P (λ)∗
)

for all n ≥ 0. By remark 3.3.6 above, for u ∈
(
p∗ p

∗LP (λ)
)n

and gP ∈ G/P we can think

of ugP as a degree-n map of vector spaces T ∗(G/P )gP → LP (λ)gP .

Since H + np is an affine space there is no natural gradation on C[H + np]. However,

for any f ∈ C[H + np] there is a well-defined notion of top-degree monomial, which is a

function on np. Thus we can define the degree of f to be the degree of this monomial.

This gives rise to a natural filtration C[H + np]
≤n on C[H + np]. More generally, although

the notion of ”top-degree monomial” is not well-defined in C[H + np] ⊗ V P (λ)∗, the

notion of degree still is. Thus we obtain a natural filtration C[H + np]
≤n ⊗ V P (λ)∗ on

C[H + np]⊗ V P (λ)∗ which gives rise to a filtration

(
q∗AP (λ)

)≤n
:= LP

(
(C[H + np]

≤n ⊗ V P (λ)∗)
)

on LP

(
C[H + np]⊗ V P (λ)∗

)
. If s ∈

(
q∗AP (λ)

)≤n \
(
q∗AP (λ)

)≤n−1
we say that the fiber

degree of s is n.

Given s ∈
(
q∗AP (λ)

)≤n
and gP ∈ G/P , by remark 3.3.6 we can think of sgP as

a regular map from the affine space
(
G/L

)
gP

to the vector space LP (λ)gP of degree at

most n. Thus the fiber degree of s is n iff (1) there exists gP ∈ G/P such that sgP is a
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degree-n map, and (2) there does not exist hP ∈ G/P such that the degree of the map

shP is > n.

Proposition 3.3.8. There is a natural G-equivariant isomorphism

Dgr : gr q∗AP (λ) −̃→ p∗ p
∗LP (λ)

of graded sheaves on G/P .

Proof. We have that

gr q∗AP (λ) ∼=
⊕
n≥0

LP

( (
C[H + np]⊗ V P (λ)∗

)≤n(
C[H + np]⊗ V P (λ)∗

)≤n−1

)

and

p∗ p
∗LP (λ) ∼= LP

(
C[np]⊗ V P (λ)∗

) ∼= LP

(
S(np

∗)⊗ V P (λ)∗
)

(where
(
C[H + np]⊗ V P (λ)∗

)≤−1
= {0}).

Now, for all n ≥ 0 there is a natural P -equivariant isomorphism

(
C[H + np]⊗ V P (λ)∗

)≤n(
C[H + np]⊗ V P (λ)∗

)≤n−1
∼= Sn(np

∗)⊗ V P (λ)∗ .

Extending this to a sheaf map gives the desired G-equivariant isomorphism Dgr. �

The following easy lemma gives an important tool for computing fiber degrees.

Definition 3.3.9. Let gP ∈ G/P and let M(t) be a line in the affine space
(
G/L

)
gP

(we can write M(t) = g∗(H ′+tX ′) for some H ′ ∈ H+np and X ′ ∈ np). For s ∈ q∗AP (λ),

consider the map C → LP (λ)gP given by

t 7→ sgP

(
M(t)

)
.
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This map is a polynomial in t with values in LP (λ)gP and we define the degree of s

restricted to M to be the degree of this polynomial.

Lemma 3.3.10. Let gP ∈ G/P and let s ∈ q∗AP (λ).

(i) The degree of sgP on
(
G/L

)
gP

is the maximum of the degrees of the restrictions of

sgP to lines in
(
G/L

)
gP

.

(ii) If M1 and M2 are parallel lines in
(
G/L

)
gP

then the degrees of the restrictions of s

to each of these lines are the same.

(iii) The fiber degree of s is the maximum of the degrees of the restrictions of s to all

lines contained in fibers of G/L over G/P .

Proof. (iii) clearly follows from (i). The rest of the proof follows easily from the

fact that if f ∈ C[V ] for some vector space then (i) the degree of f is the maximum of

the degrees of f restricted to lines in V , and (ii) the degrees of f restricted to parallel

lines are the same. �

Definition 3.3.11. Let s ∈ H0
(
G/P,

(
q∗AP (λ)

)≤n)
. Motivated by the above lemma,

we say that s attains its fiber degree on a line N(t) = g ∗ (H ′ + tX ′) ⊆
(
G/L

)
gP

(for

some H ′ ∈ H + np and X ′ ∈ np) if the degree of the LP (λ)gP -valued polynomial

t 7→ sgP (g ∗ (H ′ + tX ′)) = sgP

(
N(t)

)
is n.

The next lemma generalizes Brylinski’s Lemma 5.6.

Lemma 3.3.12. Let M(t) := g ∗ (H1 + tZ), t ∈ C, be an affine line in the affine space(
G/L

)
gP

. Choose s ∈ H0 (G/P, q∗AP (λ)). For each t ∈ C let u′t ∈ UP be such that
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u′t.H1 = H1 + tZ and set ut = gu′tg
−1. Then the degree of the map sgP on the line M is

the degree of the LP (λ)gP -valued polynomial (u−1
t .s)gP

(
(g ∗H1)

)
in t.

Proof. As noted in the remark above, the degree of this map on the line M is the

degree of the LP (λ)gP -valued polynomial sgP

(
M(t)

)
in t. We have

(u−1
t .s)gP

(
(g ∗H1)

)
= sutgP

(
utg ∗H1

)
= sgu′tg

−1gP

(
gu′tg

−1g ∗H1

)
= sgP

(
g ∗ u′t.H1

)
= sgP

(
g ∗ (H1 + tZ)

)
= sgP

(
M(t)

)
as desired. �

Lemma 3.3.13. Let s ∈ H0 (G/P, q∗AP (λ)), H ′ ∈ H + np, and X ′ ∈ P.X ⊆ np. Let

N be the line N(t) := H ′ + tX ′ in
(
G/L

)
eP

. Then s attains its fiber degree on some

G-conjugate of N .

Proof. Choose gP ∈ G/P such that sgP attains its fiber degree on a line in
(
G/L

)
gP

.

For any Z ∈ np let dg(Z) be the degree in t of the LP (λ)gP -valued polynomial

t 7→ sgP

(
g ∗ (H + tZ)

)
.

It is strightforward to check that the map dg is upper semicontinuous on np (i.e., dg ≥ m

is an open condition on np for all m ≥ 0), so there is a dense open subset of np where d

attains its maximal value. In particular, there is Z ′ ∈ P.X such that s attains its fiber
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degree on the line g ∗ (H + tZ ′), since g ∗ P.X is a dense subset of T ∗(G/P )gP (recall

that P.X is dense in np since X is even nilpotent).

Choose a ∈ P such that aX ′ = Z ′. Then ga.N is the desired G-conjugate of N , since

ga.N is a line in
(
G/L

)
gP

parallel to g ∗ (H + tZ ′) and the degrees of the restrictions of

s to parallel lines in a single fiber are the same.

�

The following result is a basic tool for induced representations; recall that for any

algebraic groups G1 ⊆ G2 and any G1-module M , we have

(3.2) H i
(
G2/G1, LG2/G1 (M)

) ∼= RiIndG2
G1
M .

Proposition 3.3.14. (Frobenius reciprocity) Let G1 ⊆ G2 be algebraic groups. Let

M be a G1-module and N a G2-module. Then

HomG2(N, Ind
G2
G1
M) ∼= HomG1(Res

G2
G1
N, M) .

Definition 3.3.15. Let WP
λ (µ) denote the subspace of Vλ(µ) consisting of L-highest

weight vectors. Note that, in particular, WB
λ (µ) = Vλ(µ) .

Remark 3.3.16. Let BL denote the Borel subgroup of L; note that

V P (µ)∗ ∼= H0 (L/BL, C−µ)
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as L-modules. Hence, by Frobenius reciprocity (Proposition 3.3.14), we have isomor-

phisms of BL-modules

HomG

(
V (µ)∗, H0 (G/P, q∗AP (λ))

)
∼= HomG

(
V (µ)∗, H0 (G/L, AP (λ))

)
∼= HomL

(
V (µ)∗, V P (λ)∗

)
∼= HomBL

(
V (µ)∗, C−λ

)
∼= HomBL

(
Cλ, V (µ)

)
(3.3)

∼= WP
λ (µ)

⊆ V (µ) .

Define a G-action on Homvs

(
V (µ)∗, H0 (G/P, q∗AP (λ))

)
by (g ∗ f)(v) = f(g−1v)

(where Homvs stands for vector space homomorphisms). Define a similar G-action (also

denoted by ∗) on Homvs

(
V (µ)∗, V P (λ)∗

)
and Homvs

(
V (µ)∗, C−λ

)
. Define a G-action

on Homvs

(
Cλ, V (µ)

)
by (g ∗ h)(v) = g.(h(v)). Then the vector spaces in (3.3) above

obtain interpretations as subspaces of G-modules. Furthermore, the isomorphisms in

(3.3) commute with this G-action, so that we may think of all of these vector spaces as

subspaces of V (µ). In particular, we will act on elements of these modules by elements

of G and consider this action as occuring inside of V (µ).

Denote by ϕ the isomorphism

HomG

(
V (µ)∗, H0 (G/P, q∗AP (λ))

)
−̃→ WP

λ (µ) ⊆ V (µ) .
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For v ∈ V (µ)∗ and f ∈ HomG

(
V (µ)∗, H0 (G/L, AP (λ))

)
we will denote f(v) ∈

H0 (G/P, q∗AP (µ)) by fv. Note that there is an explicit isomorphism

evH : HomG

(
V (µ)∗, H0 (G/P, q∗AP (λ))

)
−̃→ HomL

(
V (µ)∗, V P (λ)∗

)
given by (

evH(f)
)
(v) := fv(eP )(H) ∈ AP (λ)eP

∼= V P (λ)∗ .

Definition 3.3.17. We define a filtration H on WP
λ (µ) as follows. Set

Hn
(
WP

λ (µ)
)

:= ϕ

(
HomG

(
V (µ)∗, H0

(
G/P,

(
q∗AP (λ)

)≤n ) )) ⊆ WP
λ (µ) .

Theorem 3.3.18. We have

Hn
(
WP

λ (µ)
)

= Fn
X

(
WP

λ (µ)
)

for all n ≥ 0 and λ, µ ∈ D.

Proof. Choose f̄ ∈ Hn
(
WP

λ (µ)
)
\ Hn−1

(
WP

λ (µ)
)
. We need to check that

f̄ ∈ Fn
X

(
WP

λ (µ)
)
\ Fn−1

X

(
WP

λ (µ)
)
.

Set f := ϕ−1f̄ . By Remark 3.3.16 we have (g−1 ∗ f)v = fgv = g.fv for all g ∈ G.

Choose v ∈ V (µ)∗ and define the line

M(t) := H + tX ⊆
(
G/L

)
eP
.

By Lemma 3.3.13, fv attains its fiber degree on g.M for some g ∈ G. Since

fgv(eP )(M) = g.
(
fv(g

−1P )(g−1M)
)

41



we have that fgv attains its fiber degree on M . Since AP (λ)eP
∼= V P (λ)∗, by Lemma

3.3.12 this fiber degree is the degree of the V P (λ)∗-valued polynomial

(
exp(−tX).fgv

)
(eP )(H) .

In particular, this shows that n is the maximum of the degrees of the V P (λ)∗-

valued polynomials
(
exp(−tX).fv

)
(eP )(H) as v runs over the elements of V (µ)∗. By

G-equivariance and Remark 3.3.16, for any v ∈ V (µ)∗ we have

(
exp(−tX).fv

)
(eP )(H) = fexp(−tX).v(eP )(H)

=
(
evH(f)

)
(exp(−tX).v)

=
(
exp(tX) ∗ evH(f)

)
(v) .

Hence n is the maximum of the degrees of the V P (λ)∗-valued polynomials

(
exp(tX) ∗ evH(f)

)
(v)

as v varies in V (µ)∗. Now, we may think of exp(tX) ∗
(
evH(f)

)
as a polynomial in t

with values in Homvs(V (µ)∗, V P (λ)∗) , with evaluation at v ∈ V (µ)∗ given in the obvious

fashion. Thus n is clearly the degree of the polynomial exp(tX) ∗
(
evH(f)

)
in t. Further,

this degree is the same as the degree of the polynomial exp(tX).
(
ϕ(f)

)
. Since

exp(tX).
(
ϕ(f)

)
= (1 + tX + t2X2/2 + . . . ) . ϕ(f)

we see that Xn.
(
ϕ(f)

)
6= 0 and Xn+1.

(
ϕ(f)

)
= 0, as desired. �
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Proposition 3.3.19. Let λ, µ ∈ D. Let X be an even nilpotent element in good

position. Assume that H i
(
T ∗(G/P ), p∗LP (λ)

)
= 0 for all i > 0. Then

rX,λ
µ (q) =

∑
n≥0

dim

(
Hn
(
WP

λ (µ)
)

Hn−1
(
WP

λ (µ)
)) qn = mP,λ

µ (q) ,

where P is the parabolic associated to X.

Proof. The first equality follows immediately from Theorem 3.3.18.

By Proposition 3.3.8 there is a G-equivariant isomorphism

gr q∗AP (λ) −̃→ p∗ p
∗LP (λ)

of graded sheaves on G/P . Furthermore, we have

p∗ p
∗LP (λ) ∼= pr∗

(
LB

(
λ
)
⊗ LB

(
S(np

∗)
))

(where pr : G/B → G/P is the projection map) and hence, for all n ≥ 0, a short exact

sequence

0 →
(
q∗AP (λ)

)≤n−1 →
(
q∗AP (λ)

)≤n → pr∗

(
LB

(
λ
)
⊗ LB

(
S(np

∗)
))

→ 0

of G-equivariant sheaves on G/P .

As

H i
(
T ∗(G/P ), p∗LP (λ)

) ∼= pr∗

(
LB

(
λ
)
⊗ LB

(
S(np

∗)
))

∼= H i
(
G/B, LB

(
λ
)
⊗ LB

(
S(np

∗)
))

for all i ≥ 0, the cohomology vanishing assumption and an easy induction on n give that

H i
(
G/P,

(
q∗AP (λ)

)≤n
)

= 0 for all i > 0. This implies that there is an isomorphism of
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G-modules

H0
(
G/P,

(
q∗AP (λ)

)≤n)
H0
(
G/P,

(
q∗AP (λ)

)≤n−1) ∼= H0
(
G/B, LB

(
λ
)
⊗ LB

(
Sn(np

∗)
))

for all n ≥ 0. Thus we have reduced to showing that

∑
n≥0

dim

[
HomG

(
V (µ)∗, H0

(
G/B, LB

(
λ
)
⊗ LB

(
Sn(np

∗)
)))]

qn = mP,λ
µ (q) .

For any finite-dimensional B-module M set

χ(M) :=
∑
i≥0

(−1)i chH i
(
G/B, LB (M)

)
∈ X(T )

and set

χ
(
chM

)
:=

∑
weights
γ of M

∑
i≥0

(−1)i chH i
(
G/B, LB (Cγ)

)
∈ X(T ) ,

where the weights are summed with multiplicity. By the additivity of Euler characteristic

we have χ(M) = χ
(
chM

)
for all finite-dimensional B-modules M , and by the vanishing

assumption we have

ch
[
H0
(
G/B, LB

(
λ
)
⊗ LB

(
Sn(np

∗)
))]

= χ
(
Sn(np

∗)⊗ C−λ

)

for all n ≥ 0.

For any n ≥ 0 let pn,P
q be the degree-n coefficient of the polynomial pP

q and let mn,P,λ
µ

be the degree-n coefficient of mP,λ
µ (q) (recall the definitions of pP

q and mP,λ
µ (q) from section
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3.2 above). For all n ≥ 0 we now obtain

χ
(
Sn(np

∗)⊗ C−λ

)
= χ

(
ch (Sn(np

∗)⊗ C−λ)
)

=
∑
γ∈Λ

pn,P
q (γ) χ(C−(λ+γ))

=
∑
γ′∈Λ

pn,P
q (γ′ − λ) χ(C−γ′) (where γ′ = λ+ γ)

=
∑
γ′′∈D

(∑
w∈W

(−1)l(w)pn,P
q (w ∗ γ′′ − λ)

)
χ(C−γ′′)

=
∑
γ′′∈D

mn,P,λ
γ′′ χ(C−γ′′)

=
∑
γ′′∈D

mn,P,λ
γ′′ ch

(
V (γ′′)∗

)
.

That is, for all γ′′ ∈ D the multiplicity of V (γ′′)∗ inH0
(
G/B, LB

(
λ
)
⊗ LB

(
Sn(np

∗)
))

is mn,P,λ
γ′′ , as desired.

�

The proof of Theorem 3.2.1 is now immediate from Theorem 3.3.18 and Proposition

3.3.19.
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CHAPTER 4

Cohomology of Flag Varieties

4.1. Overview

We begin by providing an outline of the results in this section. For any parabolic

P ⊆ G let r : G×B np → G/B be the bundle map and consider the cohomology groups

H i,np(λ) := H i
(
G×B np, r

∗LB (λ)
)
.

By equation (2.4), when λ is P -dominant we have

H i,np(λ) ∼= H i
(
T ∗(G/P ), p∗LP (λ)

)
,

where p : T ∗(G/P ) → G/P is the bundle map.

Broer [4] showed that these cohomology groups vanish for i > 0 in the following cases

(see Theorem 4.2.4 and Propositions 4.2.1 and 4.4.3 below):

• P = B and cht (λ) = 0 (see Lemma 4.2.3(i) below for a useful definition of cht).

In particular, we have higher cohomology vanishing when P = B and λ ∈ D.

• P is a minimal parabolic corresponding to a short simple root and λ ∈ D.

• P is any parabolic and λ is any weight such that λ(α∨) = −1 for some α ∈ πP

(in fact, we have cohomology vanishing for all i in this case).

• P is any parabolic and Cλ is a 1-dimensional P -module, i.e. λ(α∨) = 0 for all

α ∈ πP .



In this chapter we show that these cohomology groups vanish for i > 0 in the following

additional cases:

• P is an even parabolic and λ ∈ D is such that λ+ 2ρP ∈ D (section 4.2).

• P is any minimal parabolic and λ ∈ D (section 4.4).

• P is any parabolic in type A and λ ∈ D is regular (section 4.5).

4.2. Vanishing Results for Flag Varieties

The following result of Broer’s ([4], Lemma 3.1) is very useful. I’ve stated it in a more

general version than Broer does, although his proof goes through mutatis mutandis. It

follows easily from the Borel-Weil-Bott Theorem and the Leray spectral sequence.

Proposition 4.2.1. (Broer, [4]) Let P ⊆ Q be two parabolic subgroups of G, let V

be an irreducible P -module, and let M be a Q-module.

(i) There exists at most one i ≥ 0 such that

H i (Q/P, LP (V ∗)) 6= 0.

(ii) If H i (Q/P, LP (V ∗)) = 0 for all i ≥ 0, then for all i ≥ 0

H i
(
G/P, LP (V ∗ ⊗M)

)
= 0.

(iii) Suppose that Ṽ := Hν (Q/P, LP (V ∗)) 6= 0 for ν ≥ 0. Then:

H i
(
G/P, LP (V ∗ ⊗M)

)
=


0 if i < ν;

H i−ν
(
G/Q, LQ

(
Ṽ ⊗M

))
if i ≥ ν.
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Definition 4.2.2. For γ ∈ Λ and γ+ denote the unique dominant weight in the Weyl

group orbit of γ. By [4], section 3, there is a unique dominant weight γ? such that (a)

γ? ≥ γ and (b) γ? ≤ µ for all µ ∈ D such that µ ≥ γ. We say that the combinatorial

height of λ is n, and we write cht (λ) = n, if

n = max
{
m : there is a chain of dominant weights γ? =: γ0 < γ1 < · · · < γm := γ+

}
.

The following is a more natural way of classifying the weights of combinatorial height

0. Part (i) is due to Broer ([5], Proposition 2), and (ii) follows readily from (i).

Lemma 4.2.3.

(i) Let λ ∈ Λ. Then cht (λ) = 0 iff λ(β∨) ≥ −1 for all β ∈ ∆+. In particular,

cht (λ) = 0 for all λ ∈ D.

(ii) Let λ ∈ Λ with cht (λ) = 0 and let µ ∈ D. Then cht (λ+ µ) = 0.

Theorem 4.2.4. (Broer, [4])

(i) Let P ⊆ G be any parabolic subgroup. Then H i,np(λ) = 0 for all i > 0 and λ ∈ D

such that Cλ is a P -module (i.e., λ(α∨) = 0 for all α ∈ πP ).

(ii) Choose γ ∈ Λ. Then cht (γ) = 0 iff H i,n(γ) = 0 for all i > 0.

(iii) Choose γ ∈ Λ. Then H i,n(γ) = 0 for all i > cht (γ).

We aim to generalize the theorem above to the case of arbitrary irreducible P -modules

with dominant highest weight. The case of minimal parabolics will be considered in

section 4.4 below; the following proposition is a more general statement about vanishing

for arbitrary parabolics. Recall the notation 〈M〉 for any subset M ⊆ Λ from section

2.1; we have that 2ρP = 〈∆+
P 〉. Recall also that a parabolic P is called even if it is the
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parabolic associated to an even nilpotent element. Remark that the proof of the following

theorem is adapted from Broer’s proof of his theorem 2.2 in [4].

Theorem 4.2.5. Let P be an even parabolic. Then H i,np(λ) = 0 for all i > 0 and

λ ∈ D such that λ+ 2ρP ∈ D.

Proof. Let µ := λ+ 2ρP ∈ D. By 2.4, it suffices to show that

(4.1) H i
(
G/B, LB(S(np

∗)⊗ C−λ)
)

= 0

for all i > 0.

Consider the vector bundle Y = G ×B (np ⊕ Cµ) on G/B and its subbundles Y1 =

G ×B np and Y2 = G ×B Cµ. We have Y = Y1 ⊕ Y2 (where ⊕ denotes a direct sum of

vector bundles). Let φ (resp. φ1, φ2) be the bundle maps from Y (resp. Y1, Y2) to G/B

(so that we have φ = φ1⊕ φ2). There is a natural map δ1 : Y1 → N (recall that N is the

nullcone of g) given by g ∗X 7→ Ad(g).X. Let δ2 : Y2 → V (µ) be the map g ∗ v 7→ g.v,

and let δ : Y → N × V (µ) be the map g ∗ (X, v) 7→ (g.X, g.v).

We claim now that δ has a finite fiber. Now, δ1 factors as the quotient map

Y1 = G×B np � G×P np

followed by the map b : G ×P np → N . Choose an even nilpotent element r ∈ np such

that P is the parabolic associated to r; then

b : b−1(Or) −̃→ Or

is a variety isomorphism (this follows from Lemma 2.3.6; recall that Or is the adjoint orbit

through r). In particular, b−1(r) is an element of the fiber of G×P np over eP . Thus δ−1
1 (r)

is contained in the inverse image of ϕ1 over P.eB ⊆ G/B. That is, φ1(g
−1
1 (r)) ⊆ P.eB.

49



Choose nonzero v ∈ V (µ)µ. Note that µ(α∨) > 0 for all α ∈ ∆+
P . Thus, for any p ∈ P

with p /∈ B, we have p.v /∈ V (µ)µ. Hence

φ2(δ
−1
2 (v)) ∩ (P.eB) = {eB} ⊆ G/B .

In particular, this gives that

φ1(δ
−1
1 (r)) ∩ φ2(δ

−1
2 (v)) = {eB} .

As

φ
(
δ−1(r, v)

)
⊆ φ1

(
δ−1
1 (r)

)
∩ φ2

(
δ−1
2 (v)

)
we obtain that φ

(
δ−1(r, v)

)
= eB. Now note that δ restricted to the fiber φ−1(eB) of Y

over eB is an injection, as we have e ∗ (Z,w) 7→ (Z,w) for all Z ∈ nq and w ∈ Cµ. Thus

the fiber of δ over (r, v) is a single point, as claimed above. In particular, the map δ is

generically finite.

Now, δ factors as Y ↪→ G×B (N × V (µ)) followed by the projection

G×B (N × V (µ)) � N × V (µ).

As N × V (µ) is a G-variety,

G×B (N × V (µ)) ∼= G/B × (N × V (µ)).

Hence δ is a proper map. By Proposition 2.2.16 (i), since δ has finite fibers generically

and N × V (µ) is affine, we obtain that H i (Y, ωY ) = 0 for all i > 0.

As Y is a homogeneous bundle,

ωY
∼= φ∗LB

(∧top(np ⊕ Cµ)
∗ ⊗

∧top(g/b)
∗)
.
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Using the Killing form, we may identify (g/b)∗ with n. Furthermore,

∧top(n∗p)
∼= C−〈∆+\∆+

P 〉
= C〈∆+

P 〉−〈∆+〉

and ∧top(n) ∼= C〈∆+〉 .

Thus

ωY
∼= φ∗LB

(
µ− 〈∆+

P 〉
) ∼= φ∗LB (λ)

and we have

H i (Y, φ∗LB (λ)) = 0

for all i > 0.

Since φ is an affine map,

H i (Y, φ∗LB (λ)) ∼= H i
(
G/B, φ∗φ

∗LB (λ)
)

for all i. By arguments similar to those in the proof of Proposition 2.2.16,

φ∗φ
∗LB (λ) ∼= LB

(
S(np

∗ ⊕ C−µ)⊗ C−λ

)
.

Thus

H i
(
G/B, LB

(
(S(np

∗))⊗ S(C−µ)⊗ C−λ

))
= 0(4.2)

for all i > 0.

Now, LB

(
S(C−µ)

)
is graded by the G-subsheaves LB

(
Sn(C−µ)

)
for n ≥ 0. Hence the

cohomology group in (4.2) above is graded by the G-submodules

H i
(
G/B, LB

(
(S(np

∗))⊗ Sn(C−µ)⊗ C−λ

))
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for n ≥ 0. In particular, setting n = 0, the vanishing in (4.2) implies the desired vanishing

in equation (4.1) (recall that LB (λ) = LB (C−λ)). This completes the proof.

�

Corollary 4.2.6. Let P be an even parabolic. Recall that wP
0 is the longest element

of the Weyl group WP ⊆ W corresponding to πP . Choose µ ∈ Λ such that wP
0 (µ) ∈ D

and wP
0 is of minimal length with this property. Then H i,np(µ) = 0 for all i > l(wP

0 ).

Proof. If µ(α∨) = −1 for any α ∈ πL then the result follows immediately from 4.2.1.

Thus we may assume that µ(α∨) ≤ −2 for all α ∈ πL and hence wL
0 µ(α∨) ≥ 2 for all

α ∈ πL. This implies that

(
wL

0 ∗ µ
)
(α∨) = (µ− 2ρL) (α∨) ≥ 0

for all α ∈ πL and we get that wL
0 ∗ µ ∈ D. Thus H i,np(wP

0 ∗ µ) = 0 for all i > 0 by

Theorem 4.2.5. The result now follows from Proposition 4.2.1.

�

Corollary 4.2.7. Let µ ∈ Λ be such that µ /∈ D and rβ(µ) ∈ D for some short

root β ∈ π. Assume that the minimal parabolic Pβ corresponding to β is even. Then

H i,n(µ) = 0 for all i > 1.

Proof. Let p be the parabolic with πP = {β}. Consider the Koszul complex

0 → S(n∗)⊗ C−(µ+β) → S(n∗)⊗ C−µ → S(np
∗)⊗ C−µ → 0.

We use induction on µ(β∨).
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If µ(β∨) = −1 then H i,np(µ) = 0 for all i by Proposition 4.2.1 (ii). Also, µ + β =

rβ(µ) ∈ D, so H i,n(µ+ β) = 0 for all i > 0 by Theorem 4.2.4 (ii) (this also follows from

Theorem 4.2.5). Thus, by the Koszul complex above, H i,n(µ) = 0 for all i > 0.

If µ(β∨) = −2 thenH i,np(µ) = 0 for all i > 1 by Corollary 4.2.6. Further, as rβ(µ) ∈ D

and (µ+ β) (β∨) = (rβµ− β) (β∨) = 0, we have that µ+ β ∈ D. The result now follows

from the Koszul complex above.

Now assume that µ(β∨) = −n for some n > 2. By induction assume that H i,n(λ) = 0

for all i > 1 and λ such that rβ(λ) ∈ D and 0 < −λ(β∨) < n.

Note that

rβ(µ+ β) = rβ(µ)− β ∈ D,

since

(rβ(µ)− β)(β∨) = n− 2 ≥ 0

and

(rβ(µ)− β)(α∨) ≥ rβ(α∨) ≥ 0

for any α ∈ π \ {β}. Thus, by induction, H i,n(µ+ β) = 0 for all i > 1. Furthermore,

H i,np(µ) = 0 for all i > 1 by Corollary 4.2.7. The result now follows easily from the

Koszul complex above. �

4.3. Some Combinatorics

The following proposition is a handy combinatorial tool.

Proposition 4.3.1. (Thomsen, [30]) Let λ ∈ Λ, α ∈ π, and β ∈ ∆+.

(i) If λ(β∨) ≥ 0 then λ+ < (λ+ β)+.
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(ii) If λ(β∨) = −1 then λ+ = (λ+ β)+.

(iii) If λ(β∨) < −1 then λ+ > (λ+ β)+.

(iv) If λ(α∨) < 0 then λ? = (λ+ α)?.

(v) If λ(α∨) = −1 then cht (λ) = cht (λ+ α).

(vi) If λ(α∨) ≤ −2 then cht (λ) > cht (λ+ α).

(vii) If λ(α∨) ≤ 0 then cht (λ) ≥ cht (sαλ).

(viii) If λ(α∨) ≤ −2 then cht (λ) > cht (sα ∗ λ).

4.4. Vanishing for Minimal Parabolics

Lemma 4.4.1. (Broer, [4]) Assume that G is simple. Let α1, α2, . . . , αk be any

(nonempty) collection of short simple orthogonal roots. Then

cht

(
k∑

i=1

αi

)
= k − 1 .

Lemma 4.4.2. cht (β + µ) = 0 for all short roots β and µ ∈ D.

Proof. This is immediate from Lemma 4.2.3 and the fact that β(γ∨) ≥ −1 for all

γ ∈ ∆+. �

The following proposition is implicit in [4].

Proposition 4.4.3. Let G be simple. Let P be a minimal parabolic corresponding to

a short simple root α. Let µ ∈ D. Then H i,np(µ) = 0 for all i > 0.

Proof. We have a short exact sequence of B-modules

0 → np → n → Cα → 0
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which gives rise (upon taking the dual and tensoring with C−µ) to a short exact Koszul

sequence

0 → S(n∗)⊗ C−α−µ → S(n∗)⊗ C−µ → S(np
∗)⊗ C−µ → 0.

Hence we obtain the short exact sequence

0 → LB

(
S(n∗)

)
⊗ LB (α+ µ) → LB

(
S(n∗)

)
⊗ LB (µ) → LB

(
S(np

∗)
)
⊗ LB (µ) → 0

of sheaves on G/B. Using the associated long exact sequence of cohomology, the result

now follows from Lemma 4.2.3 (ii), Theorem 4.2.4 (ii), and Lemma 4.4.2. �

We now have the following theorem.

Theorem 4.4.4. Let P be any minimal parabolic. Let µ ∈ D. Then H i,np(µ) = 0 for

all i > 0.

Before we can prove the theorem, we need a combinatorial result. For the rest of this

section let (· , ·) denote a Weyl group-invariant inner product on h, normalized so that

|α|2 = 1 for all short simple roots α. Let Z∆ denote the root lattice of T .

The following is a trivial but useful lemma.

Lemma 4.4.5.

(i) |λ|2 ∈ Z+ for all λ ∈ Z∆.

(ii) Let µ and λ in D. If µ < λ then |µ|2 < |λ|2.

Recall the combinatorial notation from section 4.3.

Lemma 4.4.6. Let λ ∈ Λ.
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(i) cht (λ) ≤ |λ+|2 − |λ?|2.

(ii) For any γ ∈ Λ such that (1) λ ≤ γ ≤ λ? and (2) cht (γ) = 0, we have

cht (λ) ≤ |λ|2 − |γ|2.

Proof. (i) For any µ, γ ∈ D with µ < γ, we have

|γ|2 − |µ|2 = |γ − µ|2 + 2(γ − µ , µ) ≥ 1 .

Indeed, γ − µ ∈ Z∆ implies |γ − µ|2 ∈ Z+ by 4.4.5 (i); and (γ − µ , µ) ≥ 0 since µ ∈ D

and γ − µ > 0. The result now follows from the definition of cht.

(ii) By the definition of λ? and the fact that λ ≤ γ ≤ γ?, we have γ? ≥ λ?. By

the definition of γ? and the fact that γ ≤ λ? we have γ? ≤ λ?. Thus λ? = γ?. And,

since cht (γ) = 0, we have γ+ = γ?. Hence γ+ = λ?. The result now follows from the

Weyl-group invariance of ( , ) .

�

We can now prove Theorem 4.4.4.

Proof. By Proposition 4.4.3, we need to check this result for parabolics correspond-

ing to long simple roots. Recall that for any λ ∈ Λ and minimal parabolic p corresponding

to a simple root α we have the Koszul complex

0 → S(n∗)⊗ C−α−λ → S(n∗)⊗ C−λ → S(np
∗)⊗ C−λ → 0.

Thus, by the associated long exact sequence of sheaves on G/B and Theorem 4.2.4, to

prove the theorem for p it suffices to show that

cht (α+ µ) ≤ 1
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for all µ ∈ D.

We now check the cht condition case by case, and we use the usual labelling of simple

roots π = {α1, . . . , αn}.

(1) Type Bn.

We use the standard labelling for the simple roots, where αn is the unique short simple

root. Let µ ∈ D and let α be any long simple root. If µ(α∨n) > 0 then (µ+ α) (β∨) > −1

for all β ∈ ∆+, and hence cht (µ+ α) = 0. Thus we may assume that µ(α∨n) = 0. We

may also assume that µ 6= 0 as the higher cohomology vanishing when µ = 0 follows from

Theorem 4.2.4 (i).

Set

m := max {i : µ(α∨i ) > 0} .

We claim that cht (µ+ αl) = 0 for all 0 < l < m (if m = 1 this condition is of course

empty and there is nothing to check). Set

c1 := max {j : j < l and µ(α∨j ) > 0}

and set

c2 := min {k : l < k and µ(α∨k ) > 0} ≤ m ;

if µ(α∨j ) = 0 for all j < m then set c1 = 0. Set

γ :=

c2−1∑
i=c1+1

µ+ αi .

By Proposition 4.3.1 (v) and an easy induction we have cht (µ+ αl) = cht (γ). Further-

more, one checks easily that γ ∈ D. This shows the claim, and thus it suffices to consider

µ+ αk for m ≤ k < n.
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For any k ∈ N with m ≤ k < n, set

βk :=
n∑

i=k

αi ∈ ∆+.

An easy induction utilizing Proposition 4.3.1 (iv) shows that (βk +µ)? = (αk +µ)?, since

µ(α∨j ) = 0 for j > m. Thus

αk + µ ≤ βk + µ ≤ (αk + µ)?.

Further, βk is a short root, so cht (βk + µ) = 0 by Corollary 4.4.2. So, by Lemma 4.4.6,

we have

cht (αk + µ) ≤ |αk + µ|2 − |βk + µ|2

= −

[
n∑

i=k+1

|αi|2 + 2
n−1∑
i=k

(αi , αi+1)

]

= −
[
(2(n− k − 1) + 1)− (2(n− k))

]
= 1 .

(2) Type Cn.

We use the standard labelling for the simple roots, where αn denotes the unique long

simple root. Let µ ∈ D. If µ(α∨n−1) > 0 then cht (µ+ αn) = 0, so we may assume that

µ(α∨n−1) = 0.

By Proposition 4.3.1 (iv), since (µ+ αn)
(
α∨n−1

)
< 0, we get (αn−1 + αn + µ)? =

(αn + µ)?. Thus

αn + µ ≤ αn−1 + αn + µ ≤ (αn + µ)?.
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Further, αn−1 + αn is a short root, so cht (αn−1 + αn + µ) = 0 by Corollary 4.4.2. So, by

Lemma 4.4.6, we have

cht (αn + µ) ≤ |αn + µ|2 − |αn−1 + αn + µ|2

= −
[
|αn−1|2 + 2(αn−1 , αn)

]
= −(1− 2)

= 1 .

(3) Type G2.

We have a short simple root α1 and a long simple root α2. If µ(α∨1 ) > 1 then

cht (µ+ α2) = 0 by Proposition 4.3.1 (v), so we may assume that µ(α∨1 ) ≤ 1. Since α1+α2

is a short root, by Corollary 4.4.2 we get that cht (α1 + α2 + µ) = 0. By Proposition 4.3.1

(iv) and the assumption on µ, we have (α2 + µ)? = (α1 + α2 + µ)?. Hence

α2 + µ < α1 + α2 + µ ≤ (α2 + µ)?

and we have

cht (α2 + µ) ≤ |α2 + µ|2 − |α1 + α2 + µ|2

= −
[
|α1|2 + 2(µ , α1) + 2(α1 , α2)

]
= −(1 + µ(α∨1 )− 3)

= 2− µ(α∨1 ) .

Thus, if µ(α∨1 ) = 1, we have cht (α2 + µ) ≤ 1 and we are done.
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Now assume that µ(α∨1 ) = 0. Let p be the minimal parabolic associated to α2. If

µ = 0 then

H i,np(C) ∼= H i
(
T ∗(G/P ), OT ∗(G/P )

)
= 0

for i > 0, by Theorem 4.2.4.

If µ 6= 0 then µ(α∨2 ) > 0 and µ + α1 + α2 ∈ D. Let Q be the minimal parabolic

corresponding to the short simple root α1. We have the short exact Koszul complex

0 → LB

(
S(n∗)

)
⊗ LB (µ+ α1 + α2) → LB

(
S(n∗)

)
⊗ LB (µ+ α2)

→ LB

(
S(nq

∗)
)
⊗ LB (µ+ α2) → 0

of sheaves on G/B. Since µ+ α1 + α2 ∈ D we have

H i,n(µ+ α1 + α2) = 0

for all i > 0. Note also that rα1 ∗µ = µ+α1 +α2 and that (µ+ α1 + α2) (α∨1 ) = 0. Thus

H i,nq(rα1 ∗ µ) = 0

for all i > 1 by Proposition 4.2.1 and Theorem 4.2.4. Thus, by the short exact sequence

above,

H i,n(µ+ α2) = 0

for all i > 1. From the short exact Koszul complex

0 → LB

(
S(n∗)

)
⊗ LB (µ+ α2) → LB

(
S(n∗)

)
⊗ LB (µ)

→ LB

(
S(np

∗)
)
⊗ LB (µ) → 0

and the fact that µ ∈ D we now obtain that H i,np(µ) = 0 for all i > 0, as desired.

(4) Type F4.
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We have 4 simple roots αi, i = 1, 2, 3, 4, where α3 and α4 are the long simple roots.

Fix µ ∈ D.

We claim that if µ(α∨2 ) > 0 then cht (αi + µ) = 0, i = 3, 4. In the following we

use Proposition 4.3.1 (v) extensively. If µ(α∨3 ) > 0 and µ(α∨4 ) > 0 then µ + α3 ∈ D

and µ + α4 ∈ D. If µ(α∨3 ) = 0 and µ(α∨4 ) > 0 then µ + α3 ∈ D and cht (µ+ α4) =

cht (µ+ α3 + α4) = 0 as µ+α3+α4 ∈ D. If µ(α∨4 ) = 0 and µ(α∨3 ) > 0 then µ+α4 ∈ D and

cht (µ+ α3) = cht (µ+ α3 + α4) = 0 as µ + α3 + α4 ∈ D. Finally, if µ(α∨3 ) = µ(α∨4 ) = 0

we have that cht (µ+ α3) = cht (µ+ α3 + α4) = cht (µ+ α4) = 0 as µ + α3 + α4 ∈ D.

This shows the claim and hence we may assume that µ(α∨2 ) = 0.

Fix k = 3 or 4. If µ(α∨3 ) > 0 then µ+ α4 ∈ D so we may assume that µ(α∨i ) = 0 for

1 < i < k. Set

βk :=
k∑

i=2

αi.

Then βk is a short root and cht (βk + µ) = 0 by Corollary 4.4.2. Also, by our assumptions

on µ, (βk + µ)? = (αk + µ)? by Proposition 4.3.1 (iv). Hence

αk + µ < βk + µ ≤ (αk + µ)?

and we have (using δk, 4 to denote the terms that occur only when k = 4):

cht (αk + µ) ≤ |αk + µ|2 − |βk + µ|2

= −
[
|α2|2 + δk, 4|α3|2 + 2(α2 , α3) + 2δk, 4(α3 , α4)

]
= −

[
1 + 2δk, 4 − 2− 2δk, 4

]
= 1 .
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4.5. Vanishing in Type A

As pointed out by S. Kumar, in type A, Frobenius splitting methods easily imply that

for any regular dominant weight µ and any standard parabolic P we have H i,nP(µ) = 0

for all i > 0. For completeness we outline this proof. The main reference for this whole

section is [2].

Frobenius splitting.

We now introduce the main technical tool in this section. Fix a prime p; for the

rest of this section we assume that all schemes are F̄p-schemes unless otherwise specified,

where Fp is the finite field with p elements and F̄p is its algebraic closure.

Let X be a scheme. We define a morphism FX of schemes over Fp as follows. Set

FX(x) = x for all x ∈ X and define F#
X : OX → FX∗OX to be the pth power map f 7→ fp;

this is clearly an Fp-linear map (although it is not an F̄p-linear map). This morphism is

called the absolute Frobenius morphism. Generally when the context is clear we’ll

drop the subscript and just write F . Note that for any sheaf F of OX-modules, the sheaf

F∗F on X is isomorphic to F as a sheaf of abelian groups, but the OX-module structure

is twisted: for m ∈ F∗F and f ∈ OX we have the twisted action f ∗m = fpm.

Definition 4.5.1. We say that X is Frobenius split if there is an OX-linear map

ϕ : F∗OX → OX such that ϕ ◦ F# is the identity map on OX .

We will black-box the proof of the next result, which is the essential result we require

from the theory of Frobenius splitting.
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Proposition 4.5.2. ([2], Lemma 1.2.7) Let X be a Frobenius split scheme and let L

be an invertible sheaf on X. Then for all i ≥ 0 there is an injection

H i (X, L) ↪→ H i (X, Lp)

(as Fp-vector spaces). In particular, if H i (X, Ln) = 0 for all n� 0 then H i (X, L) = 0

also.

Corollary 4.5.3. ([2], Theorem 1.2.8) Assume that there is a proper morphism

from X to an affine variety. Let L be an ample invertible sheaf on a Frobenius split

variety X. Then H i (X, L) = 0 for all i > 0.

Application to cohomology of cotangent bundles of flag varieties.

We now apply Frobenius splitting methods to flag varieties in type A. The following

result is due to Mehta and van der Kallen, cf [26], Theorem 3.8 and [2], Exercise 5.1.E.6.

Theorem 4.5.4. Choose any prime p. Let G be a semisimple algebraic group over F̄p.

Let X be the full flag variety G/B of G. If all components of G are of type A, then the

bundles G ×B (np)p̄ on X are Frobenius split, where (np)p̄ is the nilradical of any standard

parabolic subgroup of Lie(G) =: gp̄.

We now come to the main result, which is a modification of Theorem 5.2.11 in [2].

Theorem 4.5.5. Let G be a semisimple algebraic group over C with all components

of type A. For every standard parabolic subalgebra p of g let pp : G×B np → G/B be the

bundle map. Then

H i
(
G×B np, p

∗
p LB (λ)

)
= 0
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for all regular λ ∈ D and i > 0. Hence

H i
(
T ∗(G/P ), p∗LP (λ)

)
= 0

for all i > 0 and regular λ ∈ D (recall that p : T ∗(G/P ) → G/P is the bundle map).

Proof. For the moment, assume that G is a semisimple algebraic group over F̄p for

any prime p with all components of type A. Consider the inclusion

G×B np ↪→ G×B g ∼= G/B × g .

Let q : G/B × g → G/B be projection onto the first coordinate. Since g is affine, the

bundle q∗LB (λ) is ample on G/B × g, since LB (λ) is ample on G/B. Note that the

restriction of q∗LB (λ) to G×B np is p∗p LB (λ); hence p∗p LB (λ) is ample on G×B np.

Note that there is a proper morphism G×B np → g given by

G×B np ↪→ G/B × g � g .

By Theorem 4.5.4 and Corollary 4.5.3, we have that

H i
(
G×B np, p

∗
p LB (λ)

)
= 0

for all i > 0. The result in characteristic 0 now follows from base change, cf [2], section

1.6.

�
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CHAPTER 5

Examples

In this section we explicitly compute some examples to illustrate Theorem 3.2.1. All

three examples will be generalized BK-filtrations on L-highest weight subsets of V0(µ)

for some µ ∈ D; we will always consider the 0 weight space since it doesn’t make the

examples any more interesting to consider other weight spaces.

5.1. Example 1

Let G be of type A3. Recall our method of constructing orbits from Section 2.3. Using

the methods of that section one can easily check that there are 5 partitions of n = 4 and

hence 5 nilpotent orbits in G. All but one are even; the non-even orbit corresponds to

the partition [2, 1, 1]. Recall that we set π = {α1, α2, α3}.

Let’s pick the nilpotent orbit corresponding to the partition [3, 1]. From Section 2.3 we

see that X := Xα1 +Xα2 is an orbit representative. However, one may check (cf [8]) that

a semisimple element H in an sl2 triple containing X is given by H = 2χ∨1 + 2χ∨2 − 2χ∨3 ,

where the χ∨i are fundamental coweights. As H is not dominant we should conjugate the

triple to obtain a representative of our nilpotent orbit in good position.

Choose a representative ṙα3 ∈ N(T ) of rα3 ∈ W . We may choose ṙα3 so that ṙα3(X) =

Xα1 +Xα2+α3 . Then H ′ := ṙα3(H) = 2χ∨1 + 2χ∨3 , which is dominant. Set Z := ṙα3(X);

then Z is in good position.



Now, considering H ′, we see that the standard parabolic P corresponding to Z is the

parabolic corresponding to {α2} ⊆ π. Explicitly, on the Lie algebra level, we have that

the Levi of p = Lie(P ) is

l = h⊕ gα2 ⊕ g−α2

and the nilradical of p is the b-subalgebra of n with weights

{α1, α3, α1 + α2, α2 + α3, 2ρ = α1 + α2 + α3} .

Now set µ := χ2 + 2χ3 = α1 + 2α2 + 2α3 ∈ D and consider the weight-0 subspace

WP
0 (µ) ⊆ V0(µ) ⊆ V (µ). Recall that we have the tangent bundle p : T ∗(G/P ) → G/P

of G/P . By Theorem 4.2.4 we have

H i
(
T ∗(G/P ), p∗LP (C0)

) ∼= H i
(
T ∗(G/P ), OT ∗(G/P )

)
= 0

for all i > 0. Thus, by Theorem 3.2.1, the jump polynomial for the generalized BK-

filtration on WP
0 (µ) is given by the P -analog Kazhdan-Lusztig polynomial mP,0

µ (q). We

now compute this polynomial.

Recall that

mP,0
µ (q) =

∑
w∈W

pP
q (w ∗ µ) ,

where pP
q (λ) is the coefficient of eλ in

∏
β∈∆+\∆+

P

(1− qeβ)−1.

Recall too that pP
q (λ) counts the number of ways of writing λ as a sum of roots from

∆+ \∆+
P .

Note that pP
q (λ) = 0 whenever λ is not in the Z+-span of ∆+ \ ∆+

P (the weights of

np). Hence we only need to restrict our attention to w ∈ W such that w ∗ µ is in this
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Z+-span. A quick computation verifies that the only W ∗-translates of µ that qualify are

µ, rα1 ∗ µ = 2α2 + 2α3, and rα2 ∗ µ = α1 + 2α3.

We now compute pP
q (µ), pP

q (rα1 ∗ µ), and pP
q (rα2 ∗ µ). We can write

µ = (α1 + α2 + α3) + (α2 + α3) = (α1) + 2(α2 + α3) = (α1 + α2) + (α2 + α3) .

Hence pP
q (µ) = 2q2 + q3. Similarly, we can write 2α2 + 2α3 = 2(α2 + α3) and this is

the only way; hence pP
q (rα1 ∗ µ) = q2. Finally, there is one way of writing α1 + 2α3, and

pP
q (rα2 ∗ µ) = q3. Thus

mP,0
µ (q) = pP

q (µ)− pP
q (rα1 ∗ µ)− pP

q (rα2 ∗ µ) = q2 .

This says that WP
0 (µ) is 1-dimensional and that for any nonzero v ∈ WP

0 (µ) we have

Z3.v = 0 and Z2.v 6= 0.

5.2. Example 2

Let G be of type G2. Let α denote the short simple root and β the long simple root.

We have

∆+ = {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}

and

W = {e, rα, rβ, rαrβ, rβrα, rαrβrα, rβrαrβ, rαrβrαrβ,

rβrαrβrα, rαrβrαrβrα, rβrαrβrαrβ, rαrβrαrβrαrβ} .

Recall that the subregular nilpotent orbit Osubreg in g is the orbit that is dense

in N \ Oreg , where Oreg is the regular nilpotent orbit. By Example 8.2.13 in [8], the

subregular orbit in G is even and the corresponding weighted Dynkin diagram has 2 on
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the node corresponding to α and 0 on the node corresponding to β. Equivalently, set

H := 2χα ∈ h; then there is an sl2-triple {X, Y,H} with X ∈ Osubreg ∩ np, and X is

clearly in good position.

The corresponding parabolic P is the minimal parabolic corresponding to the long

simple root β with Levi factor and unipotent radical (on the Lie algebra level) given by

l = h⊕ gβ ⊕ g−β

and

np =
⊕

β∈∆+\∆+
L

gβ ,

respectively, where

∆+ \∆+
L = {α, α+ β, 2α+ β, 3α+ β, 3α+ 2β} .

Consider the adjoint representation V := V (µ) of G where µ = 3α + 2β = χβ. We

compute the generalized BK-filtration on the subspace WP
0 (µ) ⊆ V0(µ) ⊆ V (µ), i.e. we

compute mP,0
µ (q). Hence we must compute pP

q (w ∗ µ − 0) = pP
q (w ∗ µ) for each w ∈ W .

One verifies easily that for w ∈ W , w ∗ µ ∈ Z+(∆+ \∆+
L) iff w ∈ {e, rα, rβ}. Explicitly,

we have e ∗ µ = µ, rα ∗ µ = µ− α = 2(α+ β), and rβ ∗ µ = 3α.

Now, we can write µ = 3α+ 2β = α+ 2(α+ β) = (α+ β) + (2α+ β). Hence

pP
q (e ∗ µ) = q + q2 + q3 .

The only way we can write 2α+ 2β as a positive sum of roots of ∆+ \∆+
P is as 2(α+ β)

and thus

pP
q (rα ∗ µ) = q2 .
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Similarly, there is only one way to write 3α and we have pP
q (rβ ∗µ) = q3. Hence we obtain

mP,0
µ (q) = q + q2 + q3 − q2 − q3 = q .

5.3. Example 3

Let G be of type C3. Set π = {α1, α2, β} where β is the unique long simple root. We

have

∆+ = {α1, α2, α1 + α2, β, α2 + β, α1 + α2 + β,

2α2 + β, α1 + 2α2 + β, 2α1 + 2α2 + β} .

One may verify (see chapter 5 of [8]) that

X := Xα1 +X2α2+β +Xβ

is a standard even nilpotent and that H = 2χα1 +2χβ is the unique standard semisimple

element in an sl2-triple containing X. Hence the weighted Dynkin diagram of X gives

weight 2 to the nodes corresponding to α1 and β, and weight 0 to the node corresponding

to α2. The associated parabolic P is defined by πP = {α1, β}; we have ∆+
P = {α1, β}

and the weights of the nilradical np of p are

∆+ \∆+
P = {α2, α1 + α2, α2 + β, α1 + α2 + β, 2α2 + β, α1 + 2α2 + β, 2α1 + 2α2 + β} .

Set

µ = 2χα1 = 2α1 + 2α2 + β ,

the highest root in ∆+, and consider the adjoint representation V (µ) of G. We consider

the generalized BK-filtration on WP
0 (µ) corresponding to X. It is straightforward to

verify that for w ∈ W , w ∗ µ ∈ Z+(∆+ \∆+
P ) iff w ∈ {e, rβ}.
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Note that we can write µ = (2α1 + 2α2 + β) = (α1 + α2 + β) + (α1 + α2). Thus

pP
q (e ∗ µ) = pP

q (µ) = q+ q2. We have rβ ∗ µ = 2α1 + 2α2 and the only way of writing this

is as 2(α1 + α2). Thus pP
q (rβ ∗ µ) = q2 and we obtain mP,0

µ (q) = q.
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