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ABSTRACT

Robert Booth: An Investigation of Non-Trapping, Asymptotically

Euclidean Wave Equations

(Under the direction of Jason Metcalfe)

In this dissertation, we demonstrate almost global existence for a class of variable coefficient, non-trapping,

asymptotically Euclidean, quasilinear wave equations with small initial data. A novel feature is that the wave operator

may be a large perturbation of the usual D’Alembertian operator. The key step is developing a local energy estimate for

an appropriately linearized version of our wave equation. The linearized wave operator is a combination of a stationary,

non-trapping, asymptotically Euclidean wave operator and a small time-dependent perturbation. The time-dependent

perturbation need not be asymptotically Euclidean.
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Chapter 1: Introduction

Our first goal is to obtain a local energy estimate for a large class of non-trapping variable coefficient wave operators.

The wave operators can be thought of as being a combination of a stationary, non-trapping, asymptotically Euclidean

wave operator and a small time-dependent perturbation. The time-dependent perturbation need not be asymptotically

Euclidean. Even though the stationary component is asymptotically Euclidean, it can still be a large perturbation of the

typical D’Alembertian operator � := ∂2
t −Δ. Upon obtaining the said local energy estimate, we will apply it to prove

a long-time existence theorem for solutions to quasilinear variable coefficient wave equations.

1.1 Statement of Problem and Setup

We are interested in the following initial value problem:

(1.1)

⎧⎪⎪⎨
⎪⎪⎩
Phu(t, x) = F (t, x) (t, x) ∈ (R+,R

3)

u(0, ·) = f1 ∈ C2(R3), ∂tu(0, ·) = f2 ∈ C1(R3).

Here, Ph is a time-dependent variable coefficient wave operator:

(1.2) Ph ≡ Pg + hαβ(t, x)DαDβ ,

where h = (hαβ) is a smooth, symmetric, matrix-valued function and Pg is the stationary wave operator:

(1.3) Pg = −D2
t +Dig

ij(x)Dj .

Note the use of Einstein summation convention. Here Dα = 1
i ∂α and is interpreted as an operator. Greek indices

range from 0 to 3, with 0 denoting time and 1, 2, 3 denoting spatial dimensions. Latin indices range from 1 to 3. Our

background geometry is R+ × R
3 equipped with the usual Minkowski metric diag(−1, 1, 1, 1).

Note that g = (gij) is assumed to be a stationary, smooth, symmetric, matrix-valued function. Further, Dig
ijDj is

strictly elliptic in the sense that

(1.4) 0 < λ0|ξ|2 ≤ λ(x)|ξ|2 ≤ gij(x)ξiξj ≤ Λ(x)|ξ|2 ∀ξ ∈ R
3 − {0}.
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For more on elliptic operators, see [11]. Note that (1.4) implies the following useful lower bound:

(1.5) 〈Dig
ijDju, u〉L2 � ‖∇xu‖2L2 .

In addition, we assume that Dig
ijDj is non-trapping and asymptotically Euclidean. By asymptotically Euclidean, we

assume that gij(x) has the following spatial decay:

(1.6)
∑
|μ|≤2

3∑
i,j=1

‖〈x〉|μ|∂μ
x (g

ij − δij)‖�1l L∞(Al) = O(1),

where 〈x〉 = √
1 + |x|2, δ = δij is the Kronecker delta function, and Al denotes dyadic regions. Specifically, Al

denotes regions where 〈x〉 ≈ 2l and l runs over nonnegative integers. So, the L∞ norms are taken over each dyadic

region and then we sum over all such norms.

Our asymptotically Euclidean assumption is similar to that of [31], [29], among others. Observe the use of

multi-index notation. Here ∂x = (∂x1
, ∂x2

, ∂x3
).

For the remainder of this paper, we fix the constant M0 so that

(1.7) |||g||| ≡
∑
|μ|≤2

3∑
i,j=1

‖〈x〉|μ|∂μ
x (g

ij − δij)‖�1l L∞(Al) ≤M0.

Further, for any 0 < c� 1, we can find RAF such that

(1.8) |||g|||>RAF
≡

∑
|μ|≤2

3∑
i,j=1

‖〈x〉|μ|∂μ
x (g

ij − δij)‖�1l L∞(Al∩{|x|>RAF }) ≤ c.

The idea is that while Dig
ijDj can be a large perturbation of −Δ, for |x| > RAF , it is a small perturbation of −Δ, due

to our asymptotic Euclidean condition.

We assume that Pg is non-trapping in that upon setting up a Hamiltonian flow with respect to the principal symbol

of the elliptic portion of our operator gijξiξj :

ẋs
k = pξk = 2gik(xs)ξsi

ξ̇sk = −pxk
= −(∂kgij)(xs)ξsi ξ

s
j ,
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with (x0, ξ0) = (x, ξ), all geodesics escape to infinity. Hence, no geodesic stays in a compact set for all time.

We use the following multi-index notation to describe derivatives of a function:

(1.9) ∂≤Nf =
∑
|μ|≤N

∂μf.

Here ∂ denotes the full space-time gradient (∂t,∇x).

For future reference, it is useful to introduce a smooth cut-off function χ(|x|) that is monotonically decreasing as a

function of |x| such that χ ≡ 1 for |x| ≤ 1 and χ ≡ 0 for |x| > 2 and to define

(1.10) χR(|x|) = χ(|x|/R).

The notation A � B means that A ≤ CB for some positive constant, C, that is independent of all important parameters.

Further A ≈ B means that A � B and B � A.

Lastly, hαβ and its derivatives will usually be small in the sense

(1.11) ‖〈x〉∂≤2h‖�∞l L∞L∞([0,T ]×Al) < δ,

for some δ > 0 to be chosen later. Here we are using the mixed norm notation LpLq ≡ Lp
tL

q
x. That is the Lq norm is

taken with respect to spatial variables while the Lp norm is taken with respect to time. Further, we make use of the

following notation:

|h| =
3∑

α,β=0

|hαβ | and |∂≤Nh| =
∑
|μ|≤N

3∑
α,β=0

|∂μhαβ |.

Observe that hαβ(t, x) is time dependent and not necessarily asymptotically flat. Hence we can think of Ph as a small

Lipschitz perturbation of Pg .

Obtaining a local energy estimate for Ph is the key innovation in this work. In other words, our primary objective is

to find a local energy estimate for the stationary wave operator Pg with such a (non asymptotically flat) perturbation.

We will then apply this estimate to obtain a long-time existence theorem for solutions to quasilinear wave equations of

the form Pgu = Q(∂u, ∂2u), where Q is quadratic in its arguments and linear in ∂2u.

1.2 Local Energy Norms

In order to state the main local energy estimate for the operator Ph, we will need to define a few local energy norms.

Definition 1.1. Local Energy Norms

We define the following local energy norms for functions u(t, x), (t, x) ∈ R+ × R
3, as used in [26] and [31]:

‖u‖LE = ‖〈x〉−1/2
u‖�∞l L2L2([0,T ]×Al), ‖u‖LE1 = ‖(∂u, 〈x〉−1

u)‖LE .
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For forcing terms, F , we use the following dual norm:

‖F‖LE∗ = ‖〈x〉1/2F‖�1l L2L2([0,T ]×Al).

All of the above L2 norms are taken over both time and space. Further, the spatial L2 norms are localized to a

single dyadic region. We then take the �∞ or �1 norm with respect to all such dyadic regions, Al. Note that all time

integrations are over the interval [0, T ].

As in (1.8), we use the notation ‖u‖LE>R
(‖u‖LE1

>R
, ‖u‖L2

>R
) to denote the restriction of the LE (LE1, L2) norm

to regions such that |x| > R. Similarly, we use the notation ‖u‖LER
(‖u‖LE1

R
, ‖u‖L2

R
) to denote the restriction of the

LE (LE1, L2) norm to the region such that |x| ≈ R.

On occasion it will be useful to examine similar local energy norms, but at a fixed time. We use the notation LE
and LE∗ to denote the fixed time version of the LE and LE∗ norms, respectively. More specifically,

‖u‖LE = ‖〈x〉−1/2
u‖�∞l L2(Al), and ‖F‖LE∗ = ‖〈x〉1/2F‖�1l L2(Al).

We use the notation ‖u‖LE1 to mean something similar, except we will not measure time derivatives. Specifically,

‖u‖LE1 = ‖(∇xu, 〈x〉−1
u)‖LE .

1.3 The Main Theorems

We are now in a position to state the local energy decay theorem for our wave operator Ph. This is a major result of

this dissertation.

Theorem 1.1. Let Ph be as in (1.2), where hαβ is smooth, symmetric, and satisfies (1.11) for some δ > 0 sufficiently

small. Further Dig
ijDj is smooth, symmetric, non-trapping, stationary, strictly elliptic in the sense of (1.4), and

asymptotically Euclidean in the sense of (1.6). Fix T > 0. Suppose u(t, x) ∈ C2([0, T ]×R
3) solves Phu = F ∈ LE∗,

with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3)×C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ].

Then

‖u‖LE1 + ‖∂u‖L∞L2 � ‖∂u(0)‖L2 + ‖Phu‖LE∗ + δ log(2 + T )‖u‖LE1 .(1.12)

Here the implicit constant is independent of T and δ.

Theorem 1.1 is the principal result in this work. When h = 0, Theorem 1.1 has recently been proven by Metcalfe,

Sterbenz, and Tataru in [29] for a larger class of stationary, asymptotically flat, non-trapping wave operators. Further,
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their result is stable with respect to small, asymptotically flat perturbations. Theorem 1.1 is not merely a corollary of

the work of [29], however. This is because the perturbation term hαβDαDβ is not asymptotically flat. The perturbation

h is small but does not gain additional spatial decay when it is differentiated. Getting good bounds on such non-

asymptotically flat time-dependent perturbations is a major difficulty and important for many applications, as we will

discuss. Still, we are influenced by the methods in [29].

One important application of local energy estimates is to prove long-time existence results for solutions to nonlinear

wave equations. Indeed, the primary motivation for developing Theorem 1.1 was such a problem. We consider the

following quasilinear, variable coefficient wave equation:

(1.13)

⎧⎪⎪⎨
⎪⎪⎩
Pgu(t, x) = Q(∂u, ∂2u) (t, x) ∈ (R+,R

3)

u(0, ·) = f1 ∈ C∞(R3), ∂tu(0, ·) = f2 ∈ C∞(R3),

where the nonlinearity Q(∂u, ∂2u) in (1.13) is quadratic in its arguments and linear in ∂2u:

(1.14) Q(∂u, ∂2u) = B(∂u) +Bαβ
γ ∂γu∂α∂βu,

where B(∂u) is a constant coefficient quadratic form and Bαβ
γ are real constants. We also require that Bαβ

γ = Bβα
γ .

Here Pg is as in (1.3). Further, Dig
ijDj is smooth, non-trapping, symmetric, stationary, strictly elliptic in the sense of

(1.4), and asymptotically Euclidean in the sense of (1.6). As the proof of the long-time existence theorem will require

commuting with special classes of vector fields, we have the following addition assumptions on Dig
ijDj . Specifically,

we assume that we can write Dig
ijDj as

(1.15) Dig
ij(x)Dj = −Δ+Drgr(r)Dr − gω(r)

1

r2
ΔS2 +Dig

ij
sr(x)Dj .

Here ΔS2 is the Laplacian on the unit sphere and Dr = 1
i ∂r = 1

i
xj

r ∂j and is interpreted as an operator. Further gr(r)

and gω(r) are smooth, radial functions, while gijsr(x) is a smooth, symmetric, matrix-valued function such that

(1.16)
∑
|μ|≤2

‖〈x〉|μ|∂μ
xgr‖�1l L∞(Al) +

∑
|μ|≤2

‖〈x〉|μ|∂μ
xgω‖�1l L∞(Al) +

∑
3≤|μ|≤15

‖〈x〉2∂μ
xgr‖�1l L∞(Al)

+
∑

3≤|μ|≤15

‖〈x〉2∂μ
xgω‖�1l L∞(Al) +

∑
|μ|≤15

‖〈x〉1+|μ|∂μ
xgsr‖�1l L∞(Al) = O(1).
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So, we can think of Drgr(r)Dr − gω(r)
1
r2ΔS2 as a long-range radial perturbation of the Laplacian and Dig

ij
sr(x)Dj

as a short-range perturbation of the Laplacian. Observe Dig
ij
sr(x)Dj need not be radial.

We use the notation

(1.17) Ωij = xi∂j − xj∂i

to denote the generators of rotations and

(1.18) {Z} = {∂α,Ω}

to denote the generators of translations and rotations, where Ω ∈ {Ωij}.
We can now state our small data, long-time existence theorem to solutions of (1.13):

Theorem 1.2. Consider (1.13), where Pg is as in (1.3). Further, Dig
ijDj is smooth, non-trapping, symmetric,

stationary, strictly elliptic in the sense of (1.4), and can be written as (1.15) where gr, gω , and gijsr satisfy (1.16). The

nonlinearity Q(∂u, ∂2u) is as in (1.14), where where B(∂u) is a constant coefficient quadratic form and Bαβ
γ are real

constants. We also require that Bαβ
γ = Bβα

γ . Then, there exists real positive constants κ and ε0 such that for all ε < ε0

and initial data f1, f2 ∈ C∞(R3) satisfying

(1.19)
∑

|k|+|γ|≤15

‖∂k
xΩ

γ∇xf1‖L2 +
∑

|k|+|γ|≤15

‖∂k
xΩ

γf2‖L2 ≤ ε,

(1.13) has a unique solution u ∈ C∞([0, Tε)× R
3) with

(1.20) Tε = exp(κ/ε).

Remark. Prior work of [14] and [41] shows that the lifespan result of Theorem 1.2 is sharp.

Remark. Lifespans such as (1.20) are often referred to as almost global existence theorems since, while we cannot

expect a global solution to (1.13), the solution does have a lifespan that grows at an exponential rate as the size of the

initial data approaches zero.

1.4 A Brief Review of Prior Results

We now report prior key work, beginning by highlighting local energy estimates and then moving on to nonlinear

theory.

6



1.4.1 History of Local Energy Estimates

Local energy decay theorems such as Theorem 1.1 have a long and rich history, with initial introduction by

Morawetz for the Klein-Gordon equation and then later the wave equation, all on Minkowski space-time [35], [36], [37].

Key advances were made by Keel, Smith, and Sogge in [15] and by Metcalfe and Tataru in [31]. Other contributions

have been made in [1], [2], [3], [4], [6], [7], [13], [18], [27], [28], [29], [34], [38], [45], [49], [50].

Local energy estimates are a fundamental object of study for dispersive partial differential equations in the

asymptotically flat regime. They are known to be somewhat stable with respect to small time-dependent, asymptotically

flat, geometric perturbations [1], [27], [28], [29], [30], [31], as well as stationary, non-trapping perturbations [2], [6],

[47].

Further, other measures of dispersion can be derived from local energy estimates. In particular local energy

estimates imply global-in-time Strichartz estimates for wave equations in the asymptotically flat regime [26], [30],

[31], [51], [54]. Additionally, weak local energy estimates (in the asymptotically flat regime) imply pointwise decay

estimates [32], [33], [52]. In particular, they have been used to prove Price’s law ([39], [40]), which was a conjecture

that solutions to the wave equation on a Schwarzschild space-time should decay at a rate of t−3 for fixed x. For local

energy estimates in the context of exterior domain problems, see [5], [12], [27], [34], [45].

1.4.2 Some Quasilinear Theory

Many nonlinear results are known to follow provided one is able to obtain a good local energy estimate for an

appropriately linearized version of the problem [2], [15], [16], [27], [28], [47], [56], [57], [58], [59]. Indeed, this is a

large motivation for developing the estimate in Theorem 1.1.

Quasilinear wave equations can be thought of as arising from nontrivial background geometry where the metric of

the manifold depends on the solution of the equation. Lifespan estimates for quasilinear wave equations with small

initial data on Minkowski space-time are now well understood [46]. Here the solution to the linear problem decays at

a rate of t−(n−1)/2, where n denotes spatial dimension. This is integrable for n ≥ 4, allowing an iteration argument

to prove a global existence result. For n = 3, this misses being integrable by a logarithm, implying almost global

existence, instead of global existence.

The breakthrough work of [19] introduced the now standard invariant vector field method to obtain sufficient

decay to close an iteration argument to prove long time existence results for quasilinear wave equations on Minkowski

space-time. Here the generators of the full Poincaré group plus the scaling vector field are used. These are the vector

fields that preserve the homogeneous linear wave equation. The use of Lorentz boosts (and to a lesser extent, the scaling

vector field) are problematic in many important settings such as multiple speed systems of equations, exterior domain

problems, and equations on background metrics where commuting the Lorentz boosts (and scaling vector field) with the

linear operator (needed for the iteration argument) may yield terms that grow large for long times.

7



For quasilinear wave equations on exterior domains, the authors of [16] developed methods that avoid the use of

Lorentz boosts. See also the related work of [20], [42], [43], and [44], who first developed similar methods in different

contexts. Later, the authors of [27], based on the work of [15], simplified the argument of [16]. The methodology of [27]

uses the generators of translations and rotations to obtain decay in |x| over the more standard decay in t. Pairing this

decay with local energy estimates for solutions to the linear problem with time-dependent perturbations allowed them

to close an iteration argument. This is an improvement over prior work in that fewer symmetries on the background

geometry are needed. The methodology of [27] provides a method for proving almost global existence for quasilinear

wave equations with small initial data in fairly generic scenarios, provided that an appropriate local energy decay

theorem for a “background” operator can be obtained. A key facet to mention is that the background operator must

incorporate small time-dependent perturbations as done in Theorem 1.1. This perturbation essentially incorporates the

quasilinear nature of our equation. Hence, upon attaining Theorem 1.1, it is natural to expect a result such as Theorem

1.2 to hold.

There are several other related works to Theorem 1.2. The authors of [2] and [47] investigate related problems for

semilinear equations with a product manifold structure and short range perturbations. The works of [23], [56], [57],

and [58] consider semilinear wave equations satisfying the null condition. The work of [22] focuses on quasilinear

wave equations close to Schwarzschild that satisfy the weak null condition (it should be noted that here there are

complications involving trapping at the photon sphere that we need not consider). The works of [55] and [59] require

the wave operator to be a small perturbation of the d’Alembertian operator on Minkowski space-time, although the

framework of [59] holds in more general settings, provided one is able to prove an appropriate local energy estimate for

the linear problem. Further, [59] again assumes the null condition. We shall make no such assumptions in this work.

1.5 Outline of the Proof of Theorem 1.1

The bulk of this document is devoted to proving Theorem 1.1. This is done by observing that for sufficiently large

|x|, our wave operator is a small perturbation of � and good local energy decay should hold with errors localized to

a dyadic region as in [24], [29]. From here, it will suffice to work on a compact region and find estimates that have

errors that can be absorbed for high, medium, and low time frequencies, respectively. The high frequency analysis is a

positive commutator argument, using appropriately constructed pseudo-differential operators and the Gårding inequality.

The medium frequency analysis uses Carleman estimates, which are weighted L2L2 estimates where, morally, the

weights are convex. The low frequency analysis is essentially an argument in elliptic regularity. Upon attaining the high,

medium, and low frequency local energy estimates, we piece them together using time frequency cut-offs. After proving

Theorem 1.1, we obtain additional energy estimates by applying vector fields to the solution of our wave equation. We

then follow the work of [27] to use an iteration argument to prove Theorem 1.2.
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Chapter 2: Uniform Energy Estimates

Observe that the standard uniform energy estimate for stationary wave operators is built into Theorem 1.1. We now

state this uniform energy estimate as a proposition. This is similar to estimates found in [46].

Proposition 2.1. Let Pg be as in (1.3), where Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of

(1.4), and asymptotically Euclidean in the sense of (1.6). Fix T > 0. Suppose u(t, x) ∈ C2([0, T ] × R
3) solves

Pgu = F ∈ L1L2, with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3) × C1(R3) such that |∂≤2u(t, x)| → 0 as

|x| → ∞ for all t ∈ [0, T ]. Then, the following uniform energy estimate holds:

(2.1) ‖∂u‖2L∞L2 � ‖∂u(0)‖2L2 +

∫ T

0

∫
R3

|Pgu||∂tu| dxdt.

Proof. We begin by defining an energy functional

(2.2) Eg[u](t) =

∫
R3

(Dig
ijDju)u+ |Dtu|2 dx,

and observe

d

dt
Eg[u](t) = 2Re

∫
R3

∂tuF dx.

Integrating the above expression shows that for any t ∈ [0, T ]

Eg[u](t) � Eg[u](0) +

∫ T

0

∫
R3

|F ||∂tu| dxdt.

We note in the absence of forcing, the above equation becomes a statement of energy conservation. Proposition 2.1 will

follow if we can show ‖∂u‖2L2 ≈ Eg[u](t). But Dig
ijDj is strictly elliptic and asymptotically Euclidean, and so this is

immediate, completing the proof.

Since h will be small in an appropriate sense, we have an “almost” uniform energy bound for solutions to Phu = F .

Before stating this as a proposition, we note the following lemma which will be repeatedly used throughout this work.
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Lemma 2.1. Let hαβ be a smooth, symmetric, matrix-valued function that satisfies (1.11) for some δ > 0 sufficiently

small. Suppose u(t, x) ∈ LE1 ∩ L∞L2. Then

(2.3)

∫ T

0

∫
R3

(|∂2h|+ |∂h|+ |h|)(|∂u|+ |u|
〈x〉

)2
dxdt � δ log(2 + T )‖u‖2LE1 + δ‖∂u‖2L∞L2 .

Here the implicit constant is independent of T and δ.

Proof. We first observe

∫ T

0

∫
R3

(|∂2h|+ |∂h|+ |h|)(|∂u|+ |u|
〈x〉

)2
dxdt �

log(2+T )∑
l=0

‖〈x〉∂≤2h‖L∞L∞([0,T ]×Al)‖u‖2LE1

+ T‖∂≤2h‖L∞L∞([0,T ]×{|x|>T})‖∂u‖2L∞L2 .

Note that we have applied a Hardy inequality on the lower order terms. Specifically, we have used

(2.4) ‖|x|−1f(x)‖L2 � ‖∇xf(x)‖L2 ,

where f(x) ∈ H1. Observe that (1.11) implies

T‖∂≤2h‖L∞L∞([0,T ]×{|x|>T}) < δ.

Hence, we have shown

∫ T

0

∫
R3

(|∂2h|+ |∂h|+ |h|)(|∂u|+ |u|
〈x〉

)2
dxdt

� δ‖∂u‖2L∞L2 +

log(2+T )∑
j=0

‖〈x〉∂≤2h‖L∞L∞([0,T ]×Al)‖u‖2LE1

� δ log(2 + T ) ‖u‖2LE1 + δ‖∂u‖2L∞L2 ,

as desired. This completes the proof of Lemma 2.1.

Armed with Lemma 2.1, we now state and prove the “almost” uniform energy bound for solutions to Phu = F .

Proposition 2.2. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently

small. Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean

in the sense of (1.6). Fix T > 0. Suppose u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ L1L2, with initial data
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(u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3)× C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Then

(2.5) ‖∂u‖2L∞L2 � ‖∂u(0)‖2L2 +

∫ T

0

∫
R3

|Phu||∂tu| dxdt+ δ log(2 + T )‖u‖2LE1 .

Here the implicit constant is independent of T and δ.

Remark. Proposition 2.2 essentially holds for weaker assumptions on h. Indeed, if we assume only that |∂≤1h| < ε,

for some ε > 0 chosen sufficiently small, then the same proof demonstrates

‖∂u‖2L∞L2 � ‖∂u(0)‖2L2 +

∫ T

0

∫
R3

|Phu||∂tu| dxdt+
∫ T

0

∫
R3

|∂h||∂u|2 dxdt.

Proof. We modify the energy functional Eg[u](t) defined in (2.2) to

E[u](t) =

∫
R3

(Dig
ijDju)u+ (Dih

ijDju)u+ (1 + h00)|∂tu|2 dx

and compute

d

dt
E[u](t) =2Re

∫
R3

∂tuPhu dx+

∫
R3

∂th
ij∂ju∂iu dx+

∫
R3

(h0j∂j∂tu)∂tu dx

+

∫
R3

∂tuh0j∂j∂tu dx+

∫
R3

∂tu∂ihij∂ju dx+

∫
R3

(∂ih
ij∂ju)∂tu dx

+

∫
R3

∂th
00|∂tu|2 dx.

We integrate the above expression in time to find for any t ∈ [0, T ]:

E[u](t) � E[u](0) +

∫ T

0

∫
R3

|Phu||∂tu|+
∫ T

0

∫
R3

|∂h||∂u|2 dxdt

+

∫ T

0

∫
R3

(h0j∂j∂tu)∂tu dx+

∫ T

0

∫
R3

∂tuh0j∂j∂tu dx.

Integrating the last term on the right-hand side by parts, we find

∫ T

0

∫
R3

∂tuh0j∂j∂tu dx = −
∫ T

0

∫
R3

(h0j∂j∂tu)∂tu dx−
∫ T

0

∫
R3

∂tu∂jh0j∂tu.

So, we have shown

E[u](t) � E[u](0) +

∫ T

0

∫
R3

|Phu||∂tu|+
∫ T

0

∫
R3

|∂h||∂u|2 dxdt.
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Using that Dig
ijDj is strictly elliptic, we have

∫
R3

(
(Dig

ijDju)u+ |∂tu|2
)
dx ≈ ‖∂u‖2L2 .

Since ∫
R3

h00|∂tu|2 + hij∂ju∂iu dx � ‖h‖L∞L∞‖∂u‖2L2 ,

by choosing δ sufficiently small, we find E[u](t) ≈ ‖∂u‖2L2 . Therefore we have demonstrated

‖∂u‖2L∞L2 � ‖∂u(0)‖2L2 +

∫ T

0

∫
R3

|Phu||∂tu| dxdt+
∫ T

0

∫
R3

|∂h||∂u|2 dxdt.

An application of Lemma 2.1 completes the proof.
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Chapter 3: Exterior Estimates

We begin with a variation of a theorem found in [27], [28], and [31] which essentially states that good local energy

decay holds for small, asymptotically flat perturbations of the D’Alembertian.

Theorem 3.1. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further assume Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and a small, asymptotically

Euclidean perturbation of −Δ in the sense that |||g||| ≤ c� 1 for some c > 0, sufficiently small. Fix T > 0. Suppose

u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ L1L2, with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3) × C1(R3)

such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Then

(3.1) ‖u‖2LE1 � ‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈x〉
)
dxdt+ δ log(2 + T )‖u‖2LE1 .

Here the implicit constant is independent of T and δ.

Remark. Theorem 3.1 essentially holds for weaker assumptions on h. Indeed, if we assume only that |∂≤1h| < ε, for

some ε > 0 chosen sufficiently small, then the same proof demonstrates

‖u‖2LE1 � ‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈x〉
)
dxdt+

∫ T

0

∫
R3

(|∂h|+ |h|
〈x〉

)|∂u|(|∂u|+ |u|
〈x〉

)
dxdt.

Proof. The proof is a positive commutator argument. A direct computation shows

2Im 〈Phu,Qu〉L2L2 =〈i[Djg
jkDk, Q]u, u〉L2L2 − 2Re 〈Dtu,Qu〉∣∣T

0
− 2〈h0jDju,Qu〉L2

∣∣T
0

(3.2)

+ 2Re 〈∂ihijDju,Qu〉L2L2 − 2〈∂th0jDju,Qu〉L2L2 + 2〈∂jh0jQu,Dtu〉L2L2

+
1

i
〈hijDju, [Di, Q]u〉L2L2 +

1

i
〈[Q, hijDi]u,Dju〉L2L2

+
2

i
〈[Q, h0jDj ]u,Dtu〉L2L2 +

1

i
〈[Q, h00]Dtu,Dtu〉L2L2

+ 2Im 〈∂th00∂tu,Qu〉L2L2 − 2Im 〈h00∂tu,Qu〉L2

∣∣T
0
,

if Q(x,Dx) is self-adjoint. We choose

Q = f(r)
xl

r
glmDm +Dmf(r)

xl

r
glm
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and

f(r) =
r

r + ρ
.

For now we leave ρ ≥ 1 as a parameter to be chosen later. We record some useful computations for later:

(3.3) f ′(r) =
ρ

(r + ρ)2
, f ′′(r) =

−2ρ
(r + ρ)3

, f ′′′(r) =
6ρ

(r + ρ)4
.

We begin bounding the terms in (3.2). For the left-hand side, we note

2Im 〈Phu,Qu〉L2L2 �
∫ T

0

∫
R3

|Phu|
(|∂u|+ |u|

〈x〉
)
dxdt.

The time boundary terms are controlled by ‖∂u‖2L∞L2 . Indeed, applying the Cauchy-Schwarz inequality, we find

−2Re 〈Dtu,Qu〉∣∣T
0
+ 〈h0jDju,Qu〉L2

∣∣T
0
− 2Im 〈h00∂tu,Qu〉L2

∣∣T
0

� ‖∂u‖2L2

∣∣
t=0

+ ‖∂u‖2L2

∣∣
t=T

+ ‖Qu‖2L2

∣∣
t=0

+ ‖Qu‖2L2

∣∣
t=T

� ‖∂u‖2L∞L2 + ‖〈x〉−1
u‖2L∞L2 � ‖∂u‖2L∞L2 .

Note that we have applied a Hardy inequality (2.4) on the lower order terms.

Appealing to (2.3), we can bound the remaining h dependent terms directly from above:

Re 〈∂ihijDju,Qu〉L2L2 − 2〈∂th0jDju,Qu〉L2L2 + 2〈∂jh0jQu,Dtu〉L2L2

+
1

i
〈hijDju, [Di, Q]u〉L2L2 +

1

i
〈[Q, hijDi]u,Dju〉L2L2 +

2

i
〈[Q, h0jDj ]u,Dtu〉L2L2

+
1

i
〈[Q, h00]Dtu,Dtu〉L2L2 + 2Im 〈∂th00∂tu,Qu〉L2L2

by ∫ T

0

∫
R3

(
|∂h|+ |h|

〈x〉
)
|∂u|

(
|∂u|+ |u|

〈x〉
)
dxdt � δ log(2 + T )‖u‖2LE1 + δ‖u‖2L∞L2 ,

as desired. This is clear since

[Di, Q] = 2
1

i
∂i
(
f(r)

xl

r
glm

)
Dm − ∂i∂m

(
f(r)

xl

r
glm

)
= O(〈x〉−1

)Dx +O(〈x〉−2
)

and

[Q, hijDi] = 2
1

i
f(r)

xl

r
glm∂mhijDi − 2

1

i
hij∂i

(
f(r)

xl

r
glm

)
Dm + hij∂i∂m

(
f(r)

xl

r
glm

)
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= O(|∂h|)Dx +O(|h|〈x〉−1
)Dx +O(|h|〈x〉−2

).

Observe that we have used that g is asymptotically Euclidean so that |∂g| � 〈x〉−1
and |∂g| � 〈x〉−2

. Similarly

[Q, h0jDj ] = O(|∂h|)Dx +O(|h|〈x〉−1
)Dx +O(|h|〈x〉−2

) and [Q, h00] = O(|∂h|),

where we have again made use of our asymptotically Euclidean assumption.

All that remains is to bound 〈i[Djg
jkDk, Q]u, u〉L2L2 from below. Writing gjk = mjk + g̃jk, we find

〈i[Djg
jkDk, Q]u, u〉L2L2 � 〈i[−Δ, f(r)

xl

r
Dl +Dl

xl

r
f(r)]u, u〉L2L2 − |||g|||(‖∂xu‖2LE + ‖〈x〉−1

u‖2LE).(3.4)

Perhaps the |||g|||(‖∂xu‖2LE + ‖〈x〉−1
u‖2LE) term deserves additional comment. This is controlling the following exact

terms:

(3.5) 〈i[−Δ, f(r)
xl

r
g̃lmDm +Dmf(r)

xl

r
g̃lm]u, u〉L2L2

+ 〈iDj g̃
jkDk, f(r)

xl

r
g̃lmDm +Dmf(r)

xl

r
g̃lm]u, u〉L2L2

+ 〈i[Dj g̃
jkDk, f(r)

xl

r
Dl +Dl

xl

r
f(r)]u, u〉L2L2 .

Now

〈i[−Δ, f(r)
xl

r
g̃lmDm]u, u〉L2L2 =− 〈i∂j∂j(f(r)xl

r
g̃lm)Dmu, u〉L2L2

+ 2〈∂j(f(r)xl

r
g̃lm)DjDmu, u〉L2L2 .

Integrating the last term in the above line by parts, we obtain

〈i[−Δ, f(r)
xl

r
g̃lmDm]u, u〉L2L2 = 2〈∂j(f(r)xl

r
g̃lm)Dmu,Dju〉L2L2 + 〈i∂j∂j(f(r)xl

r
g̃lm)Dmu, u〉L2L2

� |||g|||(‖∂xu‖2LE + ‖〈x〉−1
u‖2LE),

where we have applied Cauchy’s inequality and made use of our asymptotically Euclidean assumption and the fact that

∂k
x(f(r)

xl

r ) = O(〈x〉−|k|) for 0 ≤ |k| ≤ 2.

We now bound 〈i[−Δ, Dmf(r)xl

r g̃
lm]u, u〉L2L2 by noting

〈i[−Δ, Dmf(r)
xl

r
g̃lm]u, u〉L2L2 = 〈i[−Δ, f(r)

xl

r
g̃lmDm]u, u〉L2L2 + 〈[−Δ, ∂m(f(r)

xl

r
g̃lm)]u, u〉L2L2 .
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We have already bound 〈i[−Δ, f(r)xl

r g̃
lmDm]u, u〉L2L2 and so it suffices to bound

〈[−Δ, ∂m
(
f(r)xl

r g̃
lm

)
]u, u〉L2L2 . Integrating by parts, we find

〈[−Δ, ∂m
(
f(r)

xl

r
g̃lm

)
]u, u〉L2L2 = 〈i∂2

jm

(
f(r)

xl

r
g̃lm

)
Dju, u〉L2L2 − 〈i∂2

jm

(
f(r)

xl

r
g̃lm

)
u,Dju〉L2L2 .

Again this is controlled by |||g|||‖u‖2LE1 . The remaining terms in (3.5) are bounded very similarly.

We return to [−Δ, f(r)xl

r Dl +Dl
xl

r f(r)] coming from the right-hand side of (3.4). A direct computation shows

i[−Δ, f(r)
xl

r
Dl +Dl

xl

r
f(r)] =4Dk

xk

r
f ′(r)

xj

r
Dj(3.6)

+ 4Dl

(
δlk − xkxl

r2
)f(r)

r

(
δjk − xkxj

r2
)
Dj −Δ∂k(

xk

r
f(r)).

Continuing, we compute

−Δ∂k(
xk

r
f(r)) =

2ρr + 8ρ2

r(r + ρ)4
.

Combining this and our explicit formulas for f(r) and f ′(r) and integrating by parts, we see

〈i(4
i
Dk

xk

r
f ′(r)

xj

r
Dj +

4

i
Dl

(
δlk − xkxl

r2
)f(r)

r

(
δjk − xkxj

r2
)
Dj − 1

i
Δ∂k(

xk

r
f(r))

)
u, u〉L2L2(3.7)

�
∫ T

0

∫
R3

( ρ

(r + ρ)2
|∂ru|2 + 1

r + ρ
|�∇u|2 + ρ

(ρ+ r)4
u2

)
dxdt,

where �∇ = ∇− x
r ∂r denotes angular derivatives. So, we have shown

∫ T

0

∫
R3

( ρ

(r + ρ)2
|∂ru|2 + 1

r + ρ
|�∇u|2 + ρ

(ρ+ r)4
u2

)
dxdt(3.8)

�‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈x〉
)
dxdt

+ δ log(2 + T )‖u‖2LE1 + |||g|||‖u‖2LE1 .

We recover time derivatives via a Lagrangian correction. To this end, we compute:
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〈Phu,−f ′(r)u〉L2L2 =− 〈∂tu, f ′(r)u〉L2

∣∣T
0
+ 〈∂tu, f ′(r)∂tu〉L2L2(3.9)

− 〈gijDju,Dif
′(r)u〉L2L2 − 〈∂ihij∂ju, f

′(r)u〉L2L2

− 〈hijDju,Dif
′(r)u〉L2L2 − 2〈∂jh0j∂tu, f

′(r)u〉L2L2

− 2〈h0jDtu,Djf
′(r)u〉L2L2 − 〈h00∂tu, f

′(r)u〉L2

∣∣T
0

+ 〈h00∂tu, f
′(r)∂tu〉L2L2 + 〈∂th00∂tu, f

′(r)u〉L2L2 .

We note

〈Phu, f
′(r)u〉L2L2 �

∫ T

0

∫
R3

|Phu| |u|〈x〉 dxdt.

The time boundary terms are controlled by ‖∂u‖2L∞L2 , where we have employed (2.4) on lower order terms. We

immediately observe

〈∂ihij∂ju, f
′(r)u〉L2L2 + 2〈h0jDtu,Djf

′(r)u〉L2L2

+ 〈hijDju,Dif
′(r)u〉L2L2 + 2〈∂jh0j∂tu, f

′(r)u〉L2L2

+ 〈h00∂tu, f
′(r)∂tu〉L2L2 + 〈∂th00∂tu, f

′(r)u〉L2L2

is bounded from above by

∫ T

0

∫
R3

(
|∂h|+ |h|

〈x〉
)
|∂u|

(
|∂u|+ |u|

〈x〉
)
dxdt � δ log(2 + T )‖u‖2LE1 + δ‖u‖2L∞L2 ,

where we have utilized (2.3). Now

〈∂tu, f ′(r)∂tu〉L2L2 ≈
∫ T

0

∫
R3

ρ

(r + ρ)2
|∂tu|2 dxdt,

and so our analysis shows
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∫ T

0

∫
R3

ρ

(r + ρ)2
|∂tu|2 dxdt � ‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu| |u|〈x〉 dxdt(3.10)

+ δ log(2 + T )‖u‖2LE1 +
∣∣〈gijDju,Dif

′(r)u〉L2L2

∣∣
� ‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu| |u|〈x〉 dxdt

+

∫ T

0

∫
R3

( ρ

(r + ρ)2
|∂ru|2 + 1

r + ρ
|�∇u|2 + ρ

(ρ+ r)4
u2

)
dxdt

+ |||g|||‖u‖2LE1 + δ log(2 + T )‖u‖2LE1 .

Multiplying (3.10) by a small constant and adding it to (3.8), we obtain the bound

∫ T

0

∫
R3

( ρ

(r + ρ)2
|∂ru|2 + ρ

(r + ρ)2
|∂tu|2+ 1

r + ρ
|�∇u|2 + ρ

(ρ+ r)4
u2

)
dxdt

� ‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈x〉
)
dxdt+ |||g|||‖u‖2LE1

+ δ log(2 + T )‖u‖2LE1 .

By choosing ρ = 1 and restricting the range of integration on the left-hand side of the equation, we obtain the bound

(3.11)

∫ T

0

∫
|x|≤1

(
|∂u|2 + u2

)
dxdt � ‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈x〉
)
dxdt+ |||g|||‖u‖2LE1

+ δ log(2 + T )‖u‖2LE1 ,

while choosing ρ = 2k for an integer k ≥ 1, we find

(3.12)

∫ T

0

∫
2k−1≤|x|≤2k

( |∂u|2
〈x〉 +

u2

〈x〉3
)
dxdt � ‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈x〉
)
dxdt+ |||g|||‖u‖2LE1

+ δ log(2 + T )‖u‖2LE1 .

Taking the supremum over all such dyadic regions and absorbing the error term |||g|||‖u‖2LE1 using the smallness of

|||g|||, we have shown

‖u‖2LE1 � ‖∂u‖2L∞L2 +

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈x〉
)
dxdt+ δ log(2 + T )‖u‖2LE1 ,

completing the proof of Theorem 3.1.
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We now return to the operator Ph as described in the introduction, where gij can be a large perturbation of the

identity matrix. Since g is still asymptotically Euclidean, we expect a statement similar to Theorem 3.1 to hold for

sufficiently large |x|. Our next theorem develops such an exterior estimate. This theorem will be useful for our medium

and high frequency analysis. A similar estimate can be found in [29]. See also the earlier related work in [24]. We now

state the theorem:

Theorem 3.2. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in

the sense of (1.6). Fix T > 0 and further fix RAF sufficiently large. Suppose u(t, x) ∈ C2([0, T ] × R
3) solves

Phu = F ∈ L1L2, with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3) × C1(R3) such that |∂≤2u(t, x)| → 0 as

|x| → ∞ for all t ∈ [0, T ]. Then for any R > 2RAF

(3.13) ‖u‖2LE1
>R

� ‖∂u‖2L∞L2 + R−2‖u‖2LER
+

∫ T

0

∫
R3

|Phu|
(
|∂u| + |u|

〈x〉
)
dxdt + δ log(2 + T )‖u‖2LE1 .

Here the implicit constant is independent of T and δ.

Remark. Theorem 3.1 essentially holds for weaker assumptions on h. Indeed, if we assume only that |∂≤1h| < ε, for

some ε > 0 chosen sufficiently small, then the same proof demonstrates

‖u‖2LE1
>R

� ‖∂u‖2L∞L2 +R−2‖u‖2LER
+

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈x〉
)
dxdt

+

∫ T

0

∫
R3

(|∂h|+ |h|
〈x〉

)|∂u|(|∂u|+ |u|
〈x〉

)
dxdt.

Proof. The proof follows the proof of Theorem 3.1 and the work of [29]. It suffices to replace the self-adjoint operator

Q with the following operator

Q =
(
1− χR/2(|x|)

)
f(r)

xl

r
glmDm +Dm

(
1− χR/2(|x|)

)
f(r)

xl

r
glm,

where χR/2(|x|) is as in (1.10). For our Lagrangian correction, we modify the multiplier used in (3.9) from −f ′(r)
to −(

1 − χR/2(|x|)
)
f ′(r). We have already proved a large portion of this result. Indeed, (3.2) still holds and

2Im 〈Phu,Qu〉L2L2 �
∫ T

0

∫
R3 |Phu|

(|∂u|+ |u|
〈x〉

)
dxdt. Again, the time boundary terms arising on the right-hand side

of (3.2) are controlled by ‖∂u‖2L∞L2 . The remaining h-dependent terms on the right-hand side of (3.2):
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Re 〈∂ihijDju,Qu〉L2L2 − 2〈∂th0jDju,Qu〉L2L2 + 2〈∂jh0jQu,Dtu〉L2L2

+
1

i
〈hijDju, [Di, Q]u〉L2L2 +

1

i
〈[Q, hijDi]u,Dju〉L2L2 +

2

i
〈[Q, h0jDj ]u,Dtu〉L2L2

+
1

i
〈[Q, h00]Dtu,Dtu〉L2L2 + 2Im 〈∂th00∂tu,Qu〉L2L2

are controlled by

(3.14)

∫ T

0

∫
R3

(
|∂h|+ |h|

〈x〉
)
|∂u|

(
|∂u|+ |u|

〈x〉
)
dxdt � δ log(2 + T )‖u‖2LE1 + δ‖∂u‖2L∞L2 ,

as before. Further, investigating terms with h dependence in our Lagrangian correction in (3.9):

− 2Re 〈∂ihij∂ju,
(
1− χR/2(|x|)

)
f ′(r)u〉L2L2 − 2Re 〈hijDju,Di

(
1− χR/2(|x|)

)
f ′(r)u〉L2L2

− 4Re 〈∂jh0j∂tu,
(
1− χR/2(|x|)

)
f ′(r)u〉L2L2 − 4Re 〈h0jDtu,Dj

(
1− χR/2(|x|)

)
f ′(r)u〉L2L2

+ 2Re 〈h00∂tu,
(
1− χR/2(|x|)

)
f ′(r)∂tu〉L2L2 + 2Re 〈∂th00∂tu,

(
1− χR/2(|x|)

)
f ′(r)u〉L2L2

− 2Re 〈h00∂tu,
(
1− χR/2(|x|)

)
f ′(r)u〉L2

∣∣T
0
,

we see that these are again controlled by ‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1 , as desired.

So to finish the proof, it suffices to bound the portions of the following terms that contain derivatives of χR/2(|x|):

(3.15) 〈i[Djg
jkDk, Q]u, u〉L2L2 − c̃〈gijDju,Di

(
1− χR/2(|x|)

)
f ′(r)u〉L2L2 .

Here c̃ is the small constant that (3.10) was multiplied by in the proof of Theorem 3.1. We investigate [Djg
jkDk, Q]

and observe

(3.16)

[Djg
jkDk, Q] = [Djg

jkDk,
(
1− χR/2(|x|)

)
]f(r)

xl

r
glmDm +Dmf(r)

xl

r
glm[Djg

jkDk,
(
1− χR/2(|x|)

)
]

+ [[Djg
jkDk, Dmf(r)

xl

r
glm],

(
1− χR/2(|x|)

)
]

+
(
1− χR/2(|x|)

)
[Djg

jkDk, f(r)
xl

r
glmDm +Dmf(r)

xl

r
glm].

Derivatives can land on χR/2(|x|) directly from the terms:
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(3.17) [Djg
jkDk,

(
1− χR/2(|x|)

)
]f(r)

xl

r
glmDm +Dmf(r)

xl

r
glm[Djg

jkDk,
(
1− χR/2(|x|)

)
]

+ [[Djg
jkDk, Dmf(r)

xl

r
glm],

(
1− χR/2(|x|)

)
]

or from the second order terms in

(3.18)
(
1− χR/2(|x|)

)
[Djg

jkDk, f(r)
xl

r
glmDm +Dmf(r)

xl

r
glm]

when we consider

(3.19)

∫ T

0

∫
R3

i
((

1− χR/2(|x|)
)
[Djg

jkDk, f(r)
xl

r
glmDm +Dmf(r)

xl

r
glm]u

)
u dxdt,

and integrate by parts, as in the proof of Theorem 3.1.

We first bound the terms in (3.17):

[Djg
jkDk,

(
1− χR/2(|x|)

)
] = −1

i

4

R
Djg

jk xk

r
χ′(2|x|/R)− 2

R
∂j

(
gjkχ′(2|x|/R)

xk

r

)
= −1

i

4

R
gjkχ′(2|x|/R)

xj

r
Dk +

2

R
∂j

(
gjkχ′(2|x|/R)

xk

r

)
,

which shows

[Djg
jkDk,

(
1− χR/2(|x|)

)
]f(r)

xl

r
glmDm +Dmf(r)

xl

r
glm[Djg

jkDk,
(
1− χR/2(|x|)

)
]

= −1

i

8

R
Djg

jk xk

r
χ′(2|x|/R)f(r)

xl

r
glmDm +

1

i

2

R
∂m

(
f(r)

xl

r
glm∂j

(
gjkχ′(2|x|/R)

xk

r

))
.

The above line yields the following bound from below:

(3.20) 〈i[Djg
jkDk,

(
1− χR/2(|x|)

)
]f(r)

xl

r
glmDm +Dmf(r)

xl

r
glm[Djg

jkDk,
(
1− χR/2(|x|)

)
]u, u〉L2L2

�
∫ T

0

∫
R3

−R−1f(r)χ′(2|x|/R)(gjk
xk

r
∂ju)

2 dxdt−R−2‖u‖LER
.

Note that the first term on the right-hand side of (3.20) is nonnegative since χR/2(|x|) is a monotonically decreasing

function of |x|.
We claim

〈i[[Djg
jkDk, Dmf(r)

xl

r
glm],

(
1− χR/2(|x|)

)
]u, u〉L2L2
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is also bounded by R−2‖u‖LER
. Indeed, the commutator contains first order and zeroth order terms. The zeroth

order terms are controlled by R−2‖u‖LER
. The first order terms are controlled by this quantity as well, which we

see by writing ∂xuu = 1
2∂x(u

2) and integrating by parts. Indeed, [Djg
jkDk, Dmf(r)xl

r g
lm] is an operator of the

following form iω−1(x)D
2
x + ω−2(x)Dx + iα(x), where ωk(x) are real-valued functions of order O(〈x〉−k

) and α(x)

is a bounded real-valued function. Hence

[[Djg
jkDk, Dmf(r)

xl

r
glm], (1− χR/2(|x|))

]
= ω̃−2(x)χ

′(2|x|/R)Dx + iω̃−3(x)χ
′′(2|x|/R),

where ω̃k are real-valued functions of order O(〈x〉−k
). Therefore

〈i[[Djg
jkDk, Dmf(r)

xl

r
glm],

(
1− χR/2(|x|)

)
]u, u〉L2L2 = 〈 − ω̃−3(x)χ

′′(2|x|/R)u, u〉L2L2

+ 〈ω̃−2(x)χ
′(2|x|/R)∂xu, u〉L2L2 .

We immediately see 〈 − ω̃−3(x)χ
′′(2|x|/R)u, u〉L2L2 is controlled by R−2‖u‖LER

as claimed. For the remaining part,

utilizing the chain rule and integrating by parts, we find

〈ω̃−2(x)χ
′(2|x|/R)∂xu, u〉L2L2 =

∫ T

0

∫
R3

1

2
ω̃−2(x)χ

′(2|x|/R)∂x(u
2) dxdt(3.21)

= −
∫ T

0

∫
R3

1

2
∂x(ω̃−2(x)χ

′(2|x|/R))u2 dxdt

� R−2‖u‖2LER
,

as desired.

We must still bound the terms with χ′(2|x|/R) arising from integrating the second order terms by parts in (3.19).

We begin by observing that (3.19) can be written as

2

∫ T

0

∫
R3

i
((

1− χR/2(|x|)
)
Dj [g

jkDk, f(r)
xl

r
glmDm]u

)
u dxdt

+ 2

∫ T

0

∫
R3

i
((

1− χR/2(|x|)
)
Dkg

jk[Dj , f(r)
xl

r
glmDm]u

)
u dxdt

− 2

∫ T

0

∫
R3

((
1− χR/2(|x|)

)
∂k

(
gjk[Dj , f(r)

xl

r
glmDm]

)
u
)
u dxdt

+

∫ T

0

∫
R3

((
1− χR/2(|x|)

)
[Djg

jkDk, ∂m(f(r)
xl

r
glm)]u

)
u dxdt.

Note that second order terms are only present in the first two integrals and can be expressed as
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2

∫ T

0

∫
R3

((
1− χR/2(|x|)

)
Djg

jk∂k
(
f(r)

xl

r
glm

)
Dmu

)
u dxdt

− 2

∫ T

0

∫
R3

((
1− χR/2(|x|)

)
Djg

lm∂mgjkf(r)
xl

r
Dku

)
u dxdt

+ 2

∫ T

0

∫
R3

((
1− χR/2(|x|)

)
Dkg

jk∂j
(
f(r)

xl

r
glm

)
Dmu

)
u dxdt.

Integrating by parts, we obtain the following error terms involving derivatives of our spatial cut-off function:

(3.22) − 4R−1

∫ T

0

∫
R3

χ′(2|x|/R)
xj

r
gjk∂k

(
f(r)

xl

r
glm

)
∂muu dxdt

+ 4R−1

∫ T

0

∫
R3

χ′(2|x|/R)
xj

r
glm∂mgjkf(r)

xl

r
∂kuu dxdt

− 4R−1

∫ T

0

∫
R3

χ′(2|x|/R)
xk

r
gjk∂j

(
f(r)

xl

r
glm

)
∂muu dxdt.

These can now be controlled by using the method from (3.21). Indeed, utilizing the chain rule and integrating by parts,

(3.22) becomes:

2R−1

∫ T

0

∫
R3

∂m

(
χ′(2|x|/R)

xj

r
gjk∂k

(
f(r)

xl

r
glm

))
u2 dxdt

− 2R−1

∫ T

0

∫
R3

∂k

(
χ′(2|x|/R)

xj

r
glm∂mgjkf(r)

xl

r

)
u2 dxdt

+ 2R−1

∫ T

0

∫
R3

∂m

(
χ′(2|x|/R)

xk

r
gjk∂j

(
f(r)

xl

r
glm

))
u2 dxdt,

which is bounded by R−2‖u‖LER
, as desired.

Finally, we investigate the remaining term in (3.15). The term with a χ′R/2 from

〈gijDju,Di

(
1− χR/2(|x|)

)
f ′(r)u〉L2L2 is bounded via the method from (3.21). This completes the proof.

We now develop a second exterior estimate which will be useful for |x| sufficiently large, where Pg is a small,

asymptotically Euclidean perturbation of �. This estimate will be applied in our low frequency analysis section. Again,

we follow the prior work of [29].

Theorem 3.3. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in the sense

of (1.6). Fix T > 0 and further fix RAF sufficiently large. Suppose u(t, x) ∈ C2([0, T ]×R
3) solves Phu = F ∈ LE∗,

with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3)×C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ].

Then for any R > 2RAF

(3.23) ‖u‖2LE1
>R

� ‖∂u‖2L∞L2 + ‖Phu‖2LE∗
>R

+ ‖∂u‖2LER
+ δ log(2 + T )‖u‖2LE1 .
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Here the implicit constant is independent of T and δ.

Proof. Instead of working with the function u, we will consider

(3.24) uext(t, r, ω) = (1− χR)(|x|)u(t, r, ω) + χR(|x|)ūR(t),

where χR(|x|) is as in (1.10) and ūR(t) is a local space-time average of u adapted to the annulus R ≤ |x| ≤ 2R.

Restricting our analysis to R > 2RAF allows us to assume that Pg is a small asymptotically Euclidean perturbation of

� globally. We define ūR(t):

(3.25) ūR(t) = R−4

∫
R

∫
S2

∫ ∞

0

u(s, r, ω)γ

(
t− s

R
,
r

R

)
r2drdσ(ω)ds,

where γ(t, x) is a smooth, nonnegative bump function, with suppγ ⊂ [−1, 1]× [1, 2] such that

∫
R

∫ ∞

0

γ(t, r) r2drdt = 1.

It will be necessary to bound time derivatives of ūR in L2. Taking j ≥ 1 time derivatives of (3.25), integrating by

parts, and applying the Cauchy-Schwarz inequality, we find

∂j
t ūR(t) =R−4

∫
R

∫
S2

∫ ∞

0

u(s, r, ω)∂j
t γ

(
t− s

R
,
|x|
R

)
r2drdσ(ω)dt(3.26)

=R−4

∫
R

∫
S2

∫ ∞

0

u(s, r, ω)∂j−1
t (−∂s)γ

(
t− s

R
,
|x|
R

)
r2drdσ(ω)dt

=R−4

∫
R

∫
S2

∫ ∞

0

∂su(s, r, ω)∂
j−1
t γ

(
t− s

R
,
|x|
R

)
r2drdσ(ω)dt

≤R−4

∫
‖∂u‖L2(R≤r≤2R)‖∂j−1

t γ(
t− s

R
,
·
R
)‖L2(R≤r≤2R)ds

�R−4

∫
R1/2‖〈x〉−1/2∂u‖L2(R≤r≤2R)R

3/2‖∂j−1
t γ(

t− s

R
, ·)‖L2(1≤r≤2)ds.

An application of Young’s convolution inequality yields the desired bound:

‖∂j
t ūR‖L2 �R−2‖〈x〉−1/2∂u‖L2L2(R≤r≤2R)‖∂j−1

t γ(
·
R
, ·)‖L1L2(1≤r≤2)(3.27)

=R−2‖〈x〉−1/2∂u‖L2L2(R≤r≤2R)R
2−j‖∂j−1

t γ(·, ·)‖L1L2(1≤r≤2)

≤R−j‖∂u‖LER
.
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A similar argument shows

(3.28) ‖ūR‖L2 � R−1‖u‖LER
.

Indeed,

ūR(t) =R−4

∫
R

∫
S2

∫ ∞

0

u(s, r, ω)γ

(
t− s

R
,
|x|
R

)
r2drdσ(ω)dt

≤R−4

∫
‖u‖L2(R≤r≤2R)‖γ( t− s

R
,
·
R
)‖L2(R≤r≤2R)ds

�R−4

∫
R1/2‖〈x〉−1/2u‖L2(R≤r≤2R)R

3/2‖γ( t− s

R
, ·)‖L2(1≤r≤2)ds.

Again, an application of Young’s convolution inequality yields the desired bound:

‖ūR‖L2 �R−2‖〈x〉−1/2u‖L2L2(R≤r≤2R)‖γ( ·
R
, ·)‖L1L2(1≤r≤2)

=R−2‖〈x〉−1/2u‖L2L2(R≤r≤2R)R‖γ(·, ·)‖L1L2(1≤r≤2)

≤R−1‖u‖LER
.

We also note a Poincaré-type inequality (see, for example [29], [9]):

(3.29) ‖〈x〉−1(ūR − u)‖LER
� ‖∂u‖LER

.

Applying Theorem 3.1 to uext, we see

(3.30) ‖uext‖2LE1 � ‖∂uext‖2L∞L2 + ‖Phuext‖2LE∗ + δ log(2 + T )‖uext‖2LE1 .

Using the support of our cut-off functions, we find

(3.31) ‖uext‖LE1 ≈ ‖(1− χR)(|x|)u‖LE1 + ‖ūR‖L2 +R‖∂tūR‖L2 .

Perhaps this line deserves some explanation. The triangle inequality yields the upper bound.

To obtain the lower bound, we integrate over a dyadic radius of size approximately R that is outside of the support

of (1− χR)(|x|) to obtain

‖ūR‖L2 +R‖∂tūR‖L2 ≈ R−3/2‖ūR‖L2L2
R/2

+R−1/2‖∂tūR‖L2L2
R/2

� ‖uext‖LE1 .
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The above line combined with the triangle inequality yields the desired lower bound, proving (3.31).

We claim

(3.32) ‖∂uext‖L∞L2 � ‖∂u‖L∞L2 .

To begin, observe:

|∂uext| ≤ |(1− χR)(|x|)∂u|+ |χ′(|x|/R)R−1u|+ |χR(|x|)∂tūR|+ |χ′(|x|/R)R−1ūR|.

We bound each term separately. The bound on the first term is immediate. The bound for the second term follows after

the use of a Hardy inequality (2.4). For the third term, we use the work in (3.26), to observe

∂tūR(t) =R−4

∫
R

∫
S2

∫ ∞

0

∂su(s, r, ω)γ

(
t− s

R
,
|x|
R

)
r2drdσ(ω)dt

�R−5/2

∫
‖∂u‖L2‖γ( t− s

R
, ·)‖L2(1≤r≤2)ds.

Applying Young’s Convolution inequality, we find

‖∂tūR(t)‖L∞ � R−3/2‖∂u‖L∞L2‖γ(·, ·)‖L1L2(1≤r≤2) � R−3/2‖∂u‖L∞L2 .

Hence,

‖χR(|x|)∂tūR‖L∞L2 � R−3/2‖∂u‖L∞L2‖χR(|x|)‖L2 � ‖∂u‖L∞L2 ,

as desired.

The bound for the remaining term χ′(|x|/R)R−1ū follows from a similar argument. Indeed, a variant of the work

in (3.26) and a Hardy inequality (2.4) show

ūR(t) =R−4

∫
R

∫
S2

∫ ∞

0

u(s, r, ω)γ

(
t− s

R
,
|x|
R

)
r2drdσ(ω)dt

�R−3/2

∫
‖〈x〉−1u‖L2‖γ( t− s

R
, ·)‖L2(1≤r≤2)ds

�R−3/2

∫
‖∂u‖L2‖γ( t− s

R
, ·)‖L2(1≤r≤2)ds.

As in the prior case, an application of Young’s convolution inequality gives the bound, proving (3.32).
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We now calculate Phuext:

(3.33) Phuext = (1− χR)(|x|)Phu+ χR(|x|)PhūR − [Ph, χR(|x|)](u− ūR).

The commutator term is first order:

[Ph, χR(|x|)](u− ūR) � R−1|χ′(|x|/R)||∂u|+R−1|χ′(|x|/R)||∂tūR|

+R−2
(|χ′′(|x|/R)|+ |χ′(|x|/R)|)|u− ūR|.

This is supported where r ≈ R and so we can bound it in the LE∗ norm via:

‖[Ph, χR(|x|)](u− ūR)‖LE∗ �‖R−1/2∂u‖L2L2
R
+ ‖R−3/2(u− ūR)‖L2L2

R
(3.34)

+ ‖R−1/2∂tūR‖L2L2
R

�‖∂u‖LER
+ ‖〈x〉−1(u− ūR)‖LER

� ‖∂u‖LER
,

where we have applied (3.27) and (3.29) in the last line. Applying (3.27) yields the desired bound for

‖χR(|x|)PhūR‖LE∗ :

(3.35) ‖χR(|x|)PhūR‖LE∗ � R2‖∂2
t ūR‖L2 � ‖∂u‖LER

.

Therefore, we have shown

(3.36) ‖Phuext‖LE∗ � ‖Phu‖LE∗
>R

+ ‖∂u‖LER
.

Lastly, we observe

(3.37) ‖uext‖LE1 ≤ ‖u‖LE1 + ‖χR(|x|)ūR‖LE1 � ‖u‖LE1 ,

where we have applied (3.27) and (3.28) in the above line. Theorem 3.3 now follows from combining (3.30), (3.31),

(3.32), (3.36), and (3.37).
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Chapter 4: High Frequency Analysis

4.1 High Frequency Background Estimate

We begin by stating the main theorem of this section, which is a local energy estimate for our background operator

Pg with an error term that can be absorbed for high time frequencies.

Theorem 4.1. Let Pg be as in (1.3), where Dig
ijDj is smooth, symmetric, non-trapping, stationary, strictly elliptic

in the sense of (1.4), and asymptotically Euclidean in the sense of (1.6). Fix RAF sufficiently large. Further, fix

R1 > 2RAF and T > 0. Suppose u(t, x) ∈ C2([0, T ] × R
3) solves Pgu = F ∈ LE∗ + L1L2, with initial data

(u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3)× C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Then

(4.1) ‖u‖LE1 � ‖∂u‖L∞L2 + ‖u‖L2L2
<2R1

+ ‖Pgu‖LE∗+L1L2 .

Remark. The implicit constant in (4.1) can depend on R1.

We devote the remainder of this section to proving Theorem 4.1 and will then consider the perturbation separately

in the next section.

Now, via the triangle inequality

‖u‖LE1 ≤ ‖χR1
(|x|)u‖LE1 + ‖(1− χR1

)(|x|)u‖LE1 .

Here χR1
(|x|) is as in (1.10). We choose R1 > 2RAF so that we can bound ‖(1− χR1

)(|x|)u‖LE1 via our exterior

estimate Theorem 3.2. Hence, for the remainder of this section, we will focus on developing a good bound for

‖χR1
(|x|)u‖LE1 . We will prove the following:

(4.2) ‖χR1
(|x|)u‖2LE1 � ‖u‖2L2L2

<2R1

+ ‖∂u‖2L∞L2 + ‖[Pg, χR1(|x|)]u‖LE∗‖u‖LE1

+ ‖Pgu‖LE∗+L1L2(‖u‖LE1 + ‖∂u‖L∞L2).

Combining (4.2) with Theorem 3.2 proves Theorem 4.1. Observe that we are applying Cauchy’s inequality and Theorem

3.2 on the error term ‖[Pg, χR1
(|x|)]u‖LE∗‖u‖LE1 . We now focus on proving (4.2), which essentially follows from

the following two lemmas.
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Lemma 4.1. Under the same assumptions of Theorem 4.1, there exists a smooth, real valued symbol q ∈ S1 such that

(4.3) {gijξiξj , q} � β≥λ(|ξ|)χR2(|x|)|ξ|2 + r(x, ξ),

where R2 � R1 and β≥λ(|ξ|) = 1− χλ/2(|ξ|) . Here λ� 1 to be chosen later and r(x, ξ) ∈ S0.

Lemma 4.2. Let q be as in Lemma 4.1 and Pg as in Theorem 4.1. Then

2Im

∫ T

0

∫
R3

PgχR1
(|x|)uqwχR1

(|x|)u dxdt

� ‖Pgu‖LE∗+L1L2(‖u‖LE1 + ‖∂u‖L∞L2) + ‖[Pg, χR1(|x|)]u‖LE∗‖u‖LE1 .

We will hold off on the proofs of Lemmas 4.1 and 4.2 momentarily and instead show how they imply (4.2).

Proof of Theorem 4.1. To simplify notation, set v = χR1
(|x|)u. Observe

(4.4) 2Im 〈Pgv, q
wv〉L2L2 = i〈∂tv, qwv〉L2

∣∣∣T
0
− i〈qwv, ∂tv〉L2

∣∣∣T
0
+ i〈[Dig

ijDj , q
w]v, v〉L2L2 .

The time boundary terms are controlled by ‖∂u‖2L∞L2 . Indeed by applying the Cauchy-Schwarz inequality and noting

qw ∈ OPS1 so that it is a bounded linear operator from H1 → L2 (see Appendix A, Theorem A.6), we find

∣∣∣i〈∂tv, qwv〉L2

∣∣∣T
0
− i〈qwv, ∂tv〉L2

∣∣∣T
0

∣∣∣ � ‖∂tv‖2L2

∣∣∣
t=0

+ ‖∂tv‖2L2

∣∣∣
t=T

+ ‖qwv‖2L2

∣∣∣
t=0

+ ‖qwv‖2L2

∣∣∣
t=T

� ‖∂tv‖2L2

∣∣∣
t=0

+ ‖∂tv‖2L2

∣∣∣
t=T

+ ‖v‖2H1

∣∣∣
t=0

+ ‖v‖2H1

∣∣∣
t=T

� ‖∂v‖2L2

∣∣∣
t=0

+ ‖∂v‖2L2

∣∣∣
t=T

� ‖∂u‖2L2

∣∣∣
t=0

+ ‖∂u‖2L2

∣∣∣
t=T

� ‖∂u‖2L∞L2 ,

where we used the compact support of v to bound all lower order terms via the Hardy inequality (2.4).

Now from Theorem A.7 in Appendix A, we have

i〈[Dig
ijDj , q

w]v, v〉L2L2 = 〈{gijξiξj , q}wv, v〉L2L2 + 〈A0v, v〉L2L2 ,

where A0 ∈ OPS0. Applying the Cauchy-Schwarz inequality, utilizing that A0 is a bounded linear operator from

L2 → L2 (see Appendix A, Theorem A.6), and using the compact support of v, we can bound the error term
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〈A0v, v〉L2L2 appropriately:

〈A0v, v〉L2L2 � ‖A0v‖L2L2‖v‖L2L2 � ‖v‖2L2L2 � ‖u‖2L2L2
<2R1

.

We now investigate 〈{gijξiξj , q}wv, v〉L2L2 with the goal of applying Lemma 4.1 to bound this term from below.

Consider the new symbol {gijξiξj , q}+ (1− χR2
(|x|))|ξ|2 and observe

{gijξiξj , q}+ (1− χR2
(|x|))|ξ|2 � 〈ξ〉2, for |ξ| � 1.

Therefore, an application of the Gårding inequality (Theorem A.8) shows

〈{gijξiξj , q}wv, v〉L2L2 + 〈
(
(1− χR2(|x|))|ξ|2

)w
v, v〉L2L2 � ‖v‖2L2H1 − ‖v‖2L2L2 .

As R2 � R1, 〈((1− χR2
(|x|))|ξ|2)wv, v〉L2L2 = 0. Therefore, we have shown the desirable bound:

〈{gijξiξj , q}wv, v〉L2L2 � ‖v‖2L2H1 − ‖v‖2L2L2 .

Making use of the compact support of v, we have shown

(4.5) ‖∂x(χR1
(|x|)u)‖2LE + ‖〈x〉−1

χR1
(|x|)u‖2LE � ‖u‖2L2L2

<2R1

+ ‖∂u‖2L∞L2 + ‖[Pg, χR1
(|x|)]u‖LE∗‖u‖LE1

+ ‖Pgu‖LE∗+L1L2(‖u‖LE1 + ‖∂u‖L∞L2).

To obtain (4.2), we need to add in time derivative terms. We accomplish this by considering the following integral

and integrating by parts:

−ε
∫ T

0

∫
R3

(Pgv)v dxdt = ε

∫ T

0

∫
R3

|∂tv|2 dxdt− ε

∫ T

0

∫
R3

(gijDjv)Div dxdt− ε

∫
R3

∂tvv dx
∣∣T
0
.(4.6)

The above time boundary terms are controlled by ‖∂u‖2L∞L2 , where we have used the compact support of v to apply

(2.4) on lower order terms. We immediately see

∫ T

0

∫
R3

(Pgv)v dxdt � ‖[Pg, χR1(|x|)]u‖LE∗‖u‖LE1 + ‖Pgu‖LE∗+L1L2(‖u‖LE1 + ‖∂u‖L∞L2).
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Hence choosing ε > 0 small enough so that we can absorb the−ε ∫ T

0

∫
R3 g

ijDjvDiv dxdt term into (4.5), and utilizing

the compact support of v to convert L2L2 norms to LE norms as needed, we find combining (4.5) and (4.6) implies

(4.2), completing the proof of Theorem 4.1.

We now prove Lemma 4.1.

Proof of Lemma 4.1. Let p(x, ξ) denote the principal symbol for the spatial components of our background operator.

That is

(4.7) p(x, ξ) = gijξiξj .

To construct our multiplier, we utilize a construction related to prior work in [8], [17], [24], [29], and [48]. We set

up the following Hamiltonian flow with respect to p(x, ξ). Let (xs, ξs) solve

ẋs
k = pξk = 2gik(xs)ξsi(4.8)

ξ̇sk = −pxk
= −(∂kgij)(xs)ξsi ξ

s
j ,

with (x0, ξ0) = (x, ξ). We note that due to the homogeneity of p in ξ, (4.8) enjoys the following scaling relation, as

discussed in [17]:

xs(x, tξ) = xts(x, ξ)(4.9)

ξs(x, tξ) = tξts(x, ξ).

We define a multiplier useful for an interior region:

(4.10) qin = −β≥λ(|ξ|)χ4R2
(|x|)

∫ ∞

0

|ξs|2χR2
(|xs|) ds.

Here R2 � R1 is chosen sufficiently large and β≥λ(|ξ|) is included because of the homogeneity of the symbol in |ξ|.
The argument of [25] shows that qin is symbolic while an argument rooted in utilizing the scaling in (4.9) ensures that

qin ∈ S1. Indeed, by choosing t = |ξ|−1, (4.9) and a u-substitution shows qin is equivalent to

qin = −β≥λ(|ξ|)χ4R2
(|x|)|ξ|

∫ ∞

0

|ξs(x, ξ

|ξ| )|
2χR2

(|xs(x,
ξ

|ξ| )|) ds.
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Using the non-trapping and asymptotically Euclidean assumptions, we see the above integral is bounded, as in [29].

The methods of [25] now carry through.

We now compute Hpqin:

Hpqin = −Hp

(
β≥λ(|ξ|)χ4R2(|x|)

∫ ∞

0

|ξs|2χR2(|xs|) ds
)

= −Hp

(
β≥λ(|ξ|)χ4R2(|x|)

)∫ ∞

0

|ξs|2χR2(|xs|) ds

− β≥λ(|ξ|)χ4R2
(|x|)

∫ ∞

0

d

ds

(|ξs|2χR2
(|xs|)) ds

= −{p, β≥λ(|ξ|)χ4R2
(|x|)}

∫ ∞

0

|ξs|2χR2
(|xs|) ds+ β≥λ(|ξ|)χR2

(|x|)|ξ|2,

where we have used the Fundamental Theorem of Calculus. Computing the above Poisson bracket, we find

(4.11) Hpqin = β≥λ(|ξ|)χR2(|x|)|ξ|2 − 2gikξiβ≥λ(|ξ|) 1

4R2

xk

|x|χ
′(|x|/4R2)

∫ ∞

0

|ξs|2χR2(|xs|) ds

+ ∂kg
ijξiξjβ

′(|ξ|/λ) ξk
λ|ξ|χ4R2

(|x|)
∫ ∞

0

|ξs|2χR2
(|xs|) ds.

We note that due to the support of β′(|ξ|/λ), the third term on the right-hand side of the above equation is in the symbol

class S0. That is

(4.12) r(x, ξ) ≡ ∂kg
ijξiξjβ

′(|ξ|/λ) ξk
λ|ξ|χ4R2

(|x|)
∫ ∞

0

|ξs|2χ2R2
(|xs|) ds ∈ S0.

Motivated by the multiplier used in [24] and [29], we also consider an exterior multiplier:

qout = (1− χR2/2)(|x|)f(|x|)
xi

|x|g
ijξj ,

where

(4.13) f(|x|) = |x|
|x|+R2

.

We need to compute Hpqout. Taking the Poisson bracket {p, qout}, one finds:
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(4.14) Hpqout = −4xm

|x| g
mjξj

f(|x|)
R2

χ′(2|x|/R2)
xk

|x|g
klξl + 2

xm

|x| g
mjξj(1− χR2/2)(|x|)f ′(|x|)

xk

|x|g
klξl

+ 2gmjξj(δim − xi

|x|
xm

|x| )(1− χR2/2)(|x|)
f(|x|)
|x| (δik − xi

|x|
xk

|x| )g
klξl

+ 2gmj∂m(gkl)
xk

|x|ξjξl(1− χR2/2)(|x|)f(|x|)− ∂m(gij)gkm
xk

|x|ξiξj(1− χR2/2)(|x|)f(|x|).

We note that Hpqout is nonnegative everywhere and strictly positive for |x| > R2, as we are in the regime where |||g||| is

small and the first term on the right-hand side is beneficially signed.

We now combine symbols to define

(4.15) q(x, ξ) = δ̃qin(x, ξ) + qout(x, ξ),

where δ̃ is a small positive constant such that

(4.16) Hpq � β≥λ(|ξ|)χR2
(|x|)|ξ|2 + r(x, ξ).

Indeed, δ̃ is chosen small enough so that the error term

−2gikξiβ≥λ(|ξ|) 1

4R2

xk

|x|χ
′(|x|/4R2)

∫ ∞

0

|ξs|2χ2R2(|xs|) ds

in (4.11) can be absorbed into (4.14). This completes the proof of the lemma.

All that remains to show is Lemma 4.2. We do so by first proving a boundedness lemma for qw.

Lemma 4.3. Let q be as in Lemma 4.1. Then,

(4.17) ‖qwχR1(|x|)u‖2L2L2 � ‖u‖2LE1

and

(4.18) ‖qwχR1
(|x|)u‖2L∞L2 � ‖∂u‖2L∞L2 .

Proof. Again, let v = χR1
(|x|)u. We first prove (4.17). Now qw ∈ OPS1 and hence it is a bounded linear operator

from H1 → L2 (see Appendix A, Theorem A.6). Therefore,

‖qwv‖2L2L2 � ‖v‖2L2H1 � ‖u‖2LE1 ,
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where we used the compact support of v to convert to a LE1 norm. The proof of (4.18) is essentially the same as the

proof of (4.17), except that we bound all lower order terms by a derivative via a Hardy inequality (2.4).

Armed with Lemma 4.3, we are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. We begin by integrating PgχR1
(|x|)u against qwχR1

(|x|)u:

2Im

∫ T

0

∫
R3

(PgχR1
(|x|)u)qwχR1

(|x|)u dxdt

= 2Im

∫ T

0

∫
R3

χR1
(|x|)(Pgu)qwχR1

(|x|)u dxdt+ 2Im

∫ T

0

∫
R3

([Pg, χR1
(|x|)]u)qwχR1

(|x|)u dxdt.

Now

2Im

∫ T

0

∫
R3

([Pg, χR1
(|x|)]u)qwχR1

(|x|)u dxdt �
∫ T

0

∫
R3

∣∣∣[Pg, χR1
(|x|)]u

∣∣∣∣∣∣qwχR1
(|x|)u

∣∣∣ dxdt
� ‖[Pg, χR1

(|x|)]u‖L2L2‖qwχR1
(|x|)u‖L2L2

� ‖[Pg, χR1
(|x|)]u‖LE∗‖u‖LE1 ,

where we have used the Cauchy-Schwarz inequality and applied Lemma 4.3. Hence, it suffices to establish

2Im

∫ T

0

∫
R3

χR1
(|x|)(Pgu)qwχR1

(|x|)u dxdt � ‖Pgu‖LE∗+L1L2(‖u‖LE1 + ‖∂u‖L∞L2).

We write Pgu = F1 + F2 where F1 ∈ L1L2 and F2 ∈ LE∗ and proceed as in the bound for

2Im
∫ T

0

∫
R3 [Pg, χR1

(|x|)]uqwχR1
(|x|)u dxdt. Again, applying the Cauchy-Schwarz inequality and Lemma 4.3,

proves the result. Indeed,

2Im

∫ T

0

∫
R3

χR1
(|x|)(Pgu)qwχR1

(|x|)u dxdt

�
∫ T

0

∫
R3

|F1||qwχR1
(|x|)u| dxdt+

∫
R3

|F2||qwχR1
(|x|)u| dxdt

� ‖qwχR1
(|x|)u‖L∞L2‖F1‖L1L2 + ‖qwχR1

(|x|)u‖L2L2‖F2‖L2L2 .

An application of Lemma 4.3 completes the proof.

4.2 High Frequency Estimate with Perturbation

The goal of this section is to add the perturbation hαβDαDβ to our high frequency estimate. We now state the

main theorem of this section.
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Theorem 4.2. Let Ph be as in (1.2), where hαβ is smooth, symmetric, and satisfies (1.11) for some δ > 0 sufficiently

small. Further Dig
ijDj is smooth, symmetric, non-trapping, stationary, strictly elliptic in the sense of (1.4), and

asymptotically Euclidean in the sense of (1.6). Fix RAF sufficiently large. Further, fix R1 > 2RAF and T > 0.

Suppose u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ LE∗ + L1L2, with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈

C2(R3)× C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Then

(4.19) ‖u‖2LE1 � ‖∂u‖2L∞L2 + ‖u‖2L2L2
<2R1

+ ‖Phu‖2LE∗+L1L2 + δ log(2 + T )‖u‖2LE1 .

Here the implicit constant is independent of T and δ.

Remark. The implicit constant in (4.19) can depend on R1.

Proof. This theorem follows by combining the exterior estimate Theorem 3.2 with the proof of Theorem 4.1, where we

track the h-dependent terms that we are now including. Indeed,

2Im

∫ T

0

∫
R3

(PhχR1(|x|)u)qwχR1(|x|)u dxdt− ε

∫ T

0

∫
R3

(PhχR1(|x|)u)χR1(|x|)u dxdt

� ‖Phu‖LE∗+L1L2

(‖u‖LE1 + ‖∂u‖L∞L2

)
+ ‖[Ph, χR1

(|x|)]u‖LE∗‖u‖LE1 ,

just as before. So it suffices to bound

(4.20) 2Im

∫ T

0

∫
R3

(hαβDαDβχR1(|x|)u)qwχR1(|x|)u dxdt− ε

∫ T

0

∫
R3

(hαβDαDβχR1(|x|)u)χR1(|x|)u dxdt,

as all other terms are controlled via the proof of Theorem 4.1. We handle each term separately.

For the first term, it suffices to bound

(4.21) 2
∣∣∣Im ∫ T

0

∫
R3

(hiβDiDβχR1
(|x|)u)qwχR1

(|x|)u dxdt
∣∣∣

and

(4.22) 2
∣∣∣Im ∫ T

0

∫
R3

(h00DtDtχR1(|x|)u)qwχR1(|x|)u dxdt
∣∣∣.

Again, we set v = χR1(|x|)u to simplify notation. Expanding the first integral above and integrating by parts, we see

that it is equal to
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(4.23) 〈∂ihiβDβv, q
wv〉L2L2 + 〈qwv, ∂βhiβDiv〉L2L2 + 〈i[Dβ , q

w]v, hiβDiv〉L2L2

+ 〈hiβDβv, i[Di, q
w]v〉L2L2 − 〈Dβv, i[q

w, hiβ ]Div〉L2L2 + 〈qwv, hi0Div〉L2

∣∣∣T
0
.

The above time boundary term is controlled by ‖∂u‖2L∞L2 . We control 〈∂ihiβDβv, q
wv〉L2L2 by applying Cauchy’s

inequality, utilizing the compact support of v, and using the fact that qw ∈ OPS1. This ensures that qw a bounded

linear operator from H1 → L2 (see Appendix A, Theorem A.6). Therefore:

〈∂ihiβDβv, q
wv〉L2L2 � δ

(
‖∂v‖2L2L2 + ‖qwv‖2L2L2

)
� δ

(
‖∂v‖2L2L2 + ‖v‖2L2H1

)
� δ‖u‖2LE1 ,

where we have used the compact support of v in the last line. The bound for 〈qwv, ∂βhiβDiv〉L2L2 is similar.

We control 〈i[Dβ , q
w]v, hiβDiv〉L2L2 by noting [Dt, q

w] = 0 and [Dj , q
w] ∈ OPS1 (see Appendix A, Theorem

A.5). Applying similar steps to our prior bound, we immediately see

〈i[Dβ , q
w]v, hiβDiv〉L2L2 � δ

(
‖∂v‖2L2L2 + ‖v‖2L2H1

)
� δ‖u‖2LE1 .

The term 〈hiβDβv, i[Di, q
w]v〉L2L2 is controlled similarly.

We now examine 〈Dβv, i[q
w, hiβ ]Div〉L2L2 . We use Theorem A.7 to write this as

〈Dβv, i[q
w, hiβ ]Div〉L2L2 = 〈Dβv, {q, hiβ}wDiv〉L2L2 + 〈Dβv, Z−2Div〉L2L2 ,

where Z−2 ∈ OPS−2. Continuing, we use Theorem A.4 to switch quantizations to the Kohn-Nirenberg quantization to

write this as

(4.24) 〈Dβv, i[q
w, hiβ ]Div〉L2L2 = 〈Dβv, {q, hiβ}KNDiv〉L2L2 + 〈Dβv, Z−1Div〉L2L2 + 〈Dβv, Z−2Div〉L2L2 ,

where Z−1 ∈ OPS−1. Now

〈Dβv, {q, hiβ}KNDiv〉L2L2 =

∫ T

0

∫
R3

Dβv∂xhiβ(x)F−1∂ξqFDiv dxdt

=

∫ T

0

∫
R3

∂xh
iβDβv(∂ξq)KNDiv dxdt.

Now ∂ξq ∈ S0 and so (∂ξq)KN is a bounded linear operator from L2 → L2. Utilizing this fact, and applying

Cauchy’s inequality, we are able to bound the above by δ‖∂v‖2L2L2 � δ‖u‖2LE1 . It remains to bound the error terms
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〈Dβv, Z−1Div〉L2L2 + 〈Dβv, Z−2Div〉L2L2 . We note it suffices to bound 〈Dβv, Z−1Div〉L2L2 . Now Z−1Di ∈
OPS0, and so we utilize this, Cauchy’s inequality, and the compact support of v to see

〈Dβv, Z−1Div〉L2L2 � ε‖∂v‖2L2L2 +
1

ε
‖Z−1Div‖L2L2 � ε‖∂v‖2L2L2 +

1

ε
‖v‖L2L2 .

We choose ε small enough to absorb ε‖∂v‖2L2L2 into the left-hand side of (4.1). So we have controlled the integral in

(4.21) by

(4.25) ε‖∂(χR1(|x|)u)‖2L2L2 + ε−1‖u‖2L2L2
<2R1

+ ‖∂u‖2L∞L2 + δ‖u‖2LE1 ,

which suffices.

We need to obtain a similar bound for (4.22). To this end, we investigate

2Im

∫ T

0

∫
R3

h00DtDtvqwv dxdt

and note that this is equal to

− 〈iqwv, h00∂tv〉L2

∣∣T
0
+ 〈i∂tv, qwh00v〉L2

∣∣T
0
+ 〈iqwv, ∂th00∂tv〉L2L2 − 〈i∂tv, qw∂th00v〉L2L2

+ 〈∂2
t v, i[q

w, h00]v〉L2L2 .

The time boundary terms are controlled via ‖∂u‖2L∞L2 , as usual. We have already controlled terms very similar to

〈iqwv, ∂th00∂tv〉L2L2 . We write

〈i∂tv, qw∂th00v〉L2L2 = 〈i∂th00∂tv, q
wv〉L2L2 + 〈i∂tv, [qw, ∂th00]v〉L2L2 .

We have already bound terms in the form 〈i∂th00∂tv, q
wv〉L2L2 . For 〈i∂tv, [qw, ∂th00]v〉L2L2 , we note [qw, ∂th

00] ∈
OPS0 and so

〈i∂tv, [qw, ∂th00]v〉L2L2 � ε‖∂tv‖2L2L2 +
1

ε
‖[qw, ∂th00]v‖2L2L2

� ε‖∂tv‖2L2L2 +
1

ε
‖v‖2L2L2 .

We choose ε small enough to absorb the ε‖∂tv‖2L2L2 term as needed.

We now turn to 〈∂2
t v, i[q

w, h00]v〉L2L2 and write this term as
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(4.26) 〈∂2
t v, i[q

w, h00]v〉L2L2 = 〈Phv, i[q
w, h00]v〉L2L2 − 〈Dig

ijDjv, i[q
w, h00]v〉L2L2

− 〈hαβDαDβv, i[q
w, h00]v〉L2L2 .

Using that [qw, h00] ∈ OPS0 , the compact support of v, and the Hardy inequality used in (2.4), we see

〈Phv, i[q
w, h00]v〉L2L2 � ‖PhχR1

(|x|)u‖LE∗+L1L2‖(‖u‖LE1 + ‖∂u‖L∞L2).

Now

(4.27) − 〈hαβDαDβv, i[q
w, h00]v〉L2L2 = 〈h0β∂βv, i[q

w, h00]v〉L2L2

∣∣T
0
− 〈∂αhαβ∂βv, i[q

w, h00]v〉L2L2

+ 〈hαβ∂βv,Dα[q
w, h00]v〉L2L2 .

The time boundary term is controlled by ‖∂u‖2L∞L2 , as usual. Recognizing [qw, h00] ∈ OPS0, we see the last two terms

in the above equation are similar to terms already bounded. Therefore (4.27) is controlled by ‖∂u‖2L∞L2 + δ‖u‖2LE1 .

We now turn to the remaining term in (4.26) and find:

−〈Dig
ijDjv, i[q

w, h00]v〉L2L2 = −〈Dig
ijDjv, {q, h00}wv〉L2L2 + 〈Dig

ijDjv,Ω−2v〉L2L2

= −〈Dig
ijDjv, {q, h00}KNv〉L2L2 + 〈Dig

ijDjv,Ω−1v〉L2L2 ,

where we have applied Theorems A.8 and Theorems A.4. Here Ω−2 ∈ OPS−2 and Ω−1 ∈ OPS−1. Now

〈Dig
ijDjv,Ω−1v〉L2L2 = 〈gijDjv,DiΩ−1v〉L2L2 which is in the form of terms we have already bounded. Continuing,

we find

−〈Dig
ijDjv, {q, h00}KNv〉L2L2 = 〈Dig

ijDjv, ∂xh
00(∂ξq)KNv〉L2L2

= 〈∂xh00gijDjv,Di(∂ξq)KNv〉L2L2

− 〈∂i∂xh00gij∂jv, (∂ξq)KNv〉L2L2 .

Note that (∂ξq)KN is a bounded linear operator from L2 → L2 and Di(∂ξq)KN is a bounded linear operator from

H1 → L2 (see Appendix A, Theorem A.6), and so we have already controlled terms of this form.

So we have bound the first term in (4.20) by

(4.28) ε‖∂(χR1
(|x|)u)‖2L2L2 + ε−1‖u‖2L2L2

<2R1

+ ‖∂u‖2L∞L2 + δ‖u‖2LE1

+ ‖PhχR1(|x|)u‖LE∗+L1L2

(‖u‖LE1 + ‖∂u‖L∞L2

)
,
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which suffices.

For the second term in (4.20), we must bound

∫ T

0

∫
R3

(hαβDαDβ)vv dxdt.

We integrate by parts to obtain

∫ T

0

∫
R3

∂αh
αβ∂βvv dxdt+

∫ T

0

∫
R3

hαβ∂βv∂αv dxdt−
∫
R3

h0β∂βvv dx
∣∣T
0
.

The time boundary term is controlled by ‖∂u‖2L∞L2 , while the remaining terms are bounded by

∫ T

0

∫
R3

(|∂h|+ |h|)(|∂u|+ |u|
〈x〉

)2
dxdt,

where we have utilized the compact support of v in the last line. An application of (2.3) completes the proof of Theorem

4.2.
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Chapter 5: Medium Frequency Analysis

We begin by stating the main theorem of this section, which is a weighted local energy estimate with an error term

that can be absorbed for any bounded range of time frequencies supported away from zero. This theorem is related to a

similar theorem in [29]. The key difference is obtaining good bounds for our time-dependent perturbation hαβDαDβ ,

as it is not asymptotically flat.

Theorem 5.1. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in

the sense of (1.6). Fix T > 0. Suppose u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ LE∗, with initial data

(u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3) × C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Fix RAF

sufficiently large and fix Rext > Rout > Rin > RAF . Then, for any radial weight φ(r) that is constant for r ≥ 2Rext

and compatible with the constructions in Appendix B in that (B.1) holds for {Rin/2 ≤ r ≤ 2Rout} and (B.4) holds

for {r ≤ Rin/2}, the following bound is true:

(5.1) ‖〈r〉−1
(1 + φ′′+)

1/2eφ(〈r〉−1
(1 + φ′)u,∇xu)‖2L2L2

<2Rext

+ ‖〈r〉−1
(1 + φ′)1/2eφ∂tu‖2L2L2

<2Rext

+R−1
ext‖eφu‖2LE1

>Rext

� ‖eφPhu‖2L2L2
<2Rext

+R−1
ext‖eφPhu‖2LE∗ + ‖(φ′′)1/2eφ∂tu‖2L2L2(1�r<2Rin)

+ CRin,Rout,Rext,φ

(
‖∂u|2L∞L2 + δ log(2 + T )‖u‖2LE1

)
+ ‖〈r〉−2

(1 + φ′)3/2eφu‖2L2L2(Rout<r<2Rext)
.

Here the implicit constant is independent of T and δ.

Remark. The implicit constant in (5.1) is independent of Rin, Rout, Rext, φ, and its derivatives unless explicitly stated

in the form CRin,Rout,Rext,φ.

This is a medium frequency estimate since it implies the following local energy estimate for u with appropriate

time frequency support:

Corollary 5.1. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in

the sense of (1.6). Fix T > 0. Suppose u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ LE∗, with initial data

(u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3) × C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Further
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assume u(t, x) has time frequency support in some bounded interval away from zero: 0 < τ0 ≤ |τ | ≤ τ1 , where τ is

the Fourier dual of t. Then, the following bound holds:

‖u‖2LE1 � ‖Phu‖2LE∗ + ‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1 .

Here the implicit constant is independent of T and δ.

We first show Theorem 5.1 implies Corollary 5.1, before proving the theorem.

Proof of Corollary 5.1. The corollary follows by applying Theorem 5.1 to u. We need to absorb the following two error

terms on the right-hand side of (5.1): ‖(φ′′)1/2eφ∂tu‖2L2L2(1�r<2Rin)
and ‖〈r〉−2

(1+φ′)3/2eφu‖2L2L2(Rout<r<2Rext)
.

The term ‖(φ′′)1/2eφ∂tu‖2L2L2(1�r<2Rin)
is absorbed into the first term on the left-hand side of (5.1) by observing

φ′ � λ � 1 in this regime and choosing λ � R2
inτ1. We are now free to choose Rout sufficiently large so

that τ0 � supRout<r<2Rext
〈r〉−1

(1 + φ)′. Indeed this is possible provided φ′(log(r))/r → 0 as r → ∞, which

is certainly true for the weight function constructed in Appendix B. This ensures that the error term ‖〈r〉−2
(1 +

φ′)3/2eφu‖2L2L2(Rout<r<2Rext)
can be absorbed into the second term on the left-hand side of (5.1). This completes the

proof of the corollary.

We now turn to Theorem 5.1 which is proved via two separate Carleman estimates. The first estimate is useful

for when our “background” operator −D2
t +Dig

ijDj is a small, asymptotically Euclidean perturbation of �, i.e. for

r > RAF . The second estimate is useful on a compact set around the origin. Our Carleman estimates are weighted

L2L2 estimates obtained by conjugating the wave operator with eφ, where φ = φ(r) is a convex weight function. For

more on this, we refer the reader to [21], [29], and the references therein.

We begin with a preliminary estimate that is applied for r sufficiently large. The authors of [29] prove a similar

estimate by working on the symbol side, quantitizing, and absorbing errors. We work directly on the differential

operator side but are motivated by the methods found in [29].

Proposition 5.1. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently

small. Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean

in the sense of (1.6). Fix RAF sufficiently large and fix Rm2 > Rm1 > RAF . Further, fix T > 0. Suppose

u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ LE∗ with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3) × C1(R3),

such that u is supported in Rm1 < r < Rm2 . Then, for any weight φ(s), where s = log(r), that satisfies

(5.2) λ � φ′′(s) ≤ φ′(s)/2 � φ′′(s), |φ′′′(s)| � φ′(s), λ� 1,
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the following bound holds:

(5.3) ‖r−1(φ′′)1/2eφ(r−1φ′u,∇xu)‖2L2L2 + ‖r−1(φ′)1/2eφ∂tu‖2L2L2

� ‖eφPhu‖2L2L2 + CRm1,Rm2,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

Here the implicit constant is independent of T and δ.

Remark. The only reason that we require u to be compactly supported is to ensure that all constants CRm1,Rm2,φ are

finite since φ→∞ as r →∞. We will actually bend this weight in a later estimate at the expense of an error term,

which we later absorb for bounded time frequencies.

Remark. To see the existence of such a weight function φ, we refer the reader to [29] and especially [21], where such

a function is explicitly constructed. A similar construction can be found in Appendix B, where a weight function is

constructed for the next proposition. By choosing Rm2 ≤ 2Rout, this function satisfies all the desired properties in

Proposition 5.1 on the support of u.

Proof. To prove Proposition 5.1, we will conjugate Ph by eφ and break the resulting operator into its self-adjoint and

skew-adjoint components. We then form the commutator of the resulting self-adjoint and skew-adjoint operators and

obtain the proposition via a positive commutator argument. In the sequel, it is useful to consider the new differential

operator:

(5.4) P̃h = −D2
t +Dig

ijDj +Dαh
αβDβ ≡ Dαg̃

αβDβ .

The operator P̃h has the benefit that it is symmetric (up to time boundary terms). We now conjugate this operator,

calculating

(5.5) Pφ ≡ eφP̃he
−φ = P self + P skew.

Breaking the result into self-adjoint and skew-adjoint components, we find

(5.6) P self = Dαg̃
αβDβ − g̃ij

(φ′)2

r2
xi

r

xj

r

and

(5.7) P skew = −1

i

φ′

r

xi

r
g̃iβDβ − 1

i
Dβ g̃

iβ φ
′

r

xi

r
.
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Setting v = eφu, we see it suffices to show

(5.8) ‖r−1(φ′′)1/2(r−1φ′v,∇xv)‖2L2L2 + ‖r−1(φ′)1/2∂tv‖2L2L2 � ‖Phv‖2L2L2 + Ẽ1[v]
∣∣∣T
0
+ H̃1[v],

where Ẽ1[v]
∣∣∣T
0

and H̃1[v] have good bounds in terms of u:

Ẽ1[v]
∣∣∣T
0
� CRm1,Rm1,φ‖∂u‖2L∞L2

and

H̃1[v] � CRm1,Rm1,φδ
(
log(2 + T )‖u‖2LE1 + ‖∂u‖2L∞L2

)
.

Morally, we want to reduce the proof to a positive commutator argument by observing

‖Pφv‖2L2L2 = ‖P selfv‖2L2L2 + ‖P skewv‖2L2L2 + 〈[P self , P skew]v, v〉L2L2 + time boundary terms.

We can control the time boundary terms via CRm1,Rm2,φ‖∂u‖2L∞L2 .

It will not actually suffice to work with 〈[P self , P skew]v, v〉L2L2 alone. Rather, we will show that the left-hand

side of (5.8) is controlled by

〈[P self , P skew]v, v〉L2L2 + 2‖(φ′)−1/2P skewv‖2L2L2 + 〈(1
2

φ′′

r2
− 4

φ′

r2
)v, P selfv〉L2L2 + Ẽ1[v]

∣∣∣T
0
+ H̃1[v],

and then obtain (5.8) via Cauchy’s inequality.

We now compute the aforementioned time boundary terms via integration by parts:

‖Pφv‖2L2L2 = ‖P selfv‖2L2L2 + ‖P skewv‖2L2L2 + 〈[P self , P skew]v, v〉L2L2

− 2

∫
R3

φ′3

r3
g̃l0g̃ij

xi

r

xj

r

xl

r
vv dx

∣∣∣T
0
+ 2

∫
R3

φ′

r

xl

r
g̃l0(Dαg̃

αβDβv)v dx
∣∣∣T
0

−
∫
R3

(φ′
r

xl

r
g̃lγDγv +Dγ

φ′

r

xl

r
g̃lγv

)
g̃0βDβv dx

∣∣∣T
0

−
∫
R3

g̃α0Dα

(φ′
r

xl

r
g̃lγDγv +Dγ

φ′

r

xl

r
g̃lγv

)
v dx

∣∣∣T
0
.

Observe that the above time boundary terms are equal to:
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− 2

∫
R3

φ′3

r3
g̃l0g̃ij

xi

r

xj

r

xl

r
vv dx

∣∣∣T
0
+ 2

∫
R3

φ′

r

xl

r
g̃l0(Dig̃

iβDβv)v dx
∣∣∣T
0

+ 2

∫
R3

φ′

r

xl

r
g̃l0(Dtg̃

0jDjv)v dx
∣∣∣T
0
+ 2

∫
R3

φ′

r

xl

r
g̃l0(Dtg̃

00Dtv)v dx
∣∣∣T
0

−
∫
R3

(φ′
r

xl

r
g̃lγDγv +Dγ

φ′

r

xl

r
g̃lγv

)
g̃0βDβv dx

∣∣∣T
0

−
∫
R3

g̃i0
(
Di

(φ′
r

xl

r
g̃lγDγv +Dγ

φ′

r

xl

r
g̃lγv

))
v dx

∣∣∣T
0

−
∫
R3

g̃00
(
Dt

(φ′
r

xl

r
g̃lγDγv +Dγ

φ′

r

xl

r
g̃lγv

))
v dx

∣∣∣T
0

= −2
∫
R3

φ′3

r3
g̃l0g̃ij

xi

r

xj

r

xl

r
vv dx

∣∣∣T
0
+ 2

∫
R3

(g̃iβDβv)Di
φ′

r

xl

r
g̃l0v dx

∣∣∣T
0

− 2

∫
R3

1

i

φ′

r

xl

r
g̃l0(Dt∂j g̃

0jv)v dx
∣∣∣T
0
− 2

∫
R3

(Dtg̃
0jv)Dj

φ′

r

xl

r
g̃l0v dx

∣∣∣T
0

+ 2

∫
R3

1

i

φ′

r

xl

r
g̃l0(∂tg̃

00Dtv)v dx
∣∣∣T
0
+ 2

∫
R3

φ′

r

xl

r
g̃l0(g̃00D2

t v)v dx
∣∣∣T
0

−
∫
R3

(φ′
r

xl

r
g̃lγDγv +Dγ

φ′

r

xl

r
g̃lγv

)
g̃0βDβv dx

∣∣∣T
0

−
∫
R3

(φ′
r

xl

r
g̃lγDγv +Dγ

φ′

r

xl

r
g̃lγv

)
Dig̃i0v dx

∣∣∣T
0

−
∫
R3

g̃00
1

i

(
Dt∂γ(

φ′

r

xl

r
g̃lγ)v

)
v dx

∣∣∣T
0
− 2

∫
R3

g̃00
φ′

r

xl

r
g̃l0(D2

t v)v dx
∣∣∣T
0

− 2

∫
R3

g̃00
1

i
∂t(

φ′

r

xl

r
g̃lγ)(Dγv)v dx

∣∣∣T
0
− 2

∫
R3

(Dtv)Dj g̃00
φ′

r

xl

r
g̃ljv dx

∣∣∣T
0
.

By taking the derivative of v, the supremum of φ-dependent terms, applying Cauchy’s inequality, and a Hardy inequality

(2.4) on lower order terms, we can bound this from above by CRm1,Rm2,φ‖∂u‖2L∞L2 , as desired.

We now consider the commutator [P self , P skew] and observe

(5.9) [−g̃ij (φ
′)2

r2
xi

r

xj

r
,−1

i

φ′

r

xl

r
g̃lβDβ − 1

i
Dβ

φ′

r

xl

r
g̃lβ ]

= 4
(φ′)2φ′′

r4
(g̃ij

xi

r

xj

r
)2 + 4

(φ′)3

r4
g̃lkg̃kj

xj

r

xl

r
− 8

(φ′)3

r4
(g̃ij

xi

r

xj

r
)2 + 2

(φ′)3

r4
∂β g̃

ij g̃lβ
xi

r

xj

r

xl

r
.

Calculating the other terms present in [P self , P skew] , we find

(5.10) [Dαg̃
αβDβ ,−1

i

φ′

r

xl

r
g̃lγDγ − 1

i
Dγ

φ′

r

xl

r
g̃lγ ] = 2Dαg̃

αβ∂β(
φ′

r

xl

r
g̃lγ)Dγ + 2Dγ g̃

αβ∂α(
φ′

r

xl

r
g̃lγ)Dβ

− 2Dα
φ′

r

xl

r
g̃lγ∂γ g̃

αβDβ − 1

i
g̃αβ∂α∂γ(

φ′

r

xl

r
g̃lγ)Dβ +

1

i
Dαg̃

αβ∂β∂γ(
φ′

r

xl

r
g̃lγ).
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Remark. We note that a more standard form of the above commutator would have no first order terms. It is indeed

possible to put (5.10) in this form, as it is equal to

2Dαg̃
αβ∂β(

φ′

r

xl

r
g̃lγ)Dγ + 2Dγ g̃

αβ∂α(
φ′

r

xl

r
g̃lγ)Dβ − 2Dα

φ′

r

xl

r
g̃lγ∂γ g̃

αβDβ − ∂α
(
g̃αβ∂β∂γ(

φ′

r

xl

r
g̃lγ)

)
.

Note that the last term in the above expression allows for three derivatives to land on g and h (contained in g̃). It is

preferable for this not to occur. Therefore, we work with (5.10) instead of the above expression.

Utilizing (5.9) and (5.10), we see

(5.11)

∫ T

0

∫
R3

([P self , P skew]v)v dxdt =

∫ T

0

∫
R3

(
4
(φ′)2φ′′

r4
(g̃ij

xi

r

xj

r
)2 + 4

(φ′)3

r4
g̃lkg̃kj

xj

r

xl

r

)
v2 dxdt

+

∫ T

0

∫
R3

(
− 8

(φ′)3

r4
(g̃ij

xi

r

xj

r
)2 + 2

(φ′)3

r4
∂β g̃

ij g̃lβ
xi

r

xj

r

xl

r

)
v2 dxdt

+ 4

∫ T

0

∫
R3

g̃αβ∂β(
φ′

r

xl

r
g̃lγ)∂γv∂αv dxdt− 2

∫ T

0

∫
R3

φ′

r

xl

r
g̃lγ∂γ g̃

αβ∂βv∂αv dxdt

+ 2

∫ T

0

∫
R3

g̃αβ∂α∂γ(
φ′

r

xl

r
g̃lγ)∂βvv dxdt−

∫
R3

g̃α0∂α∂γ(
φ′

r

xl

r
g̃lγ)v2 dx

∣∣∣T
0

− 2

∫
R3

g̃0β∂β(
φ′

r

xl

r
g̃lγ)∂γvv dx

∣∣∣T
0
− 2

∫
R3

g̃αβ∂α(
φ′

r

xl

r
g̃l0)∂βvv dx

∣∣∣T
0
+ 2

∫
R3

φ′

r

xl

r
g̃lγ∂γ g̃

0β∂βvv dx
∣∣∣T
0
.

We can bound the above time boundary terms via CRm1,Rm2,φ‖∂u‖2L∞L2 , using very similar steps as before.

We must control the remaining terms in (5.11) and observe the immediate bound for all h-dependent terms:

〈[Dαh
αβDβ − hij (φ

′)2

r2
xi

r

xj

r
, P skew]v, v〉L2L2

+ 〈[−D2
t +Dig

ijDj − gij
(φ′)2

r2
xi

r

xj

r
,−1

i

φ′

r

xi

r
hiβDβ − 1

i
Dβ

φ′

r

xi

r
hiβ ]v, v〉L2L2

� CRm1,Rm2,φ

(
‖∂u‖2L∞L2 +

∫ T

0

∫
R3

(|∂2h|+ |∂h|+ |h|)(|∂u|+ |u|
〈r〉

)2
dxdt

)

� CRm1,Rm2,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
,

where we have applied (2.3) in the last line by choosing δ sufficiently small.

Therefore we need consider only the following terms from 〈[P self , P skew]v, v〉L2L2 :
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(5.12)

∫ T

0

∫
R3

(
4
(φ′)2φ′′

r4
(gij

xi

r

xj

r
)2 + 4

(φ′)3

r4
glkgkj

xj

r

xl

r

)
v2 dxdt

+

∫ T

0

∫
R3

(− 8
(φ′)3

r4
(gij

xi

r

xj

r
)2 + 2

(φ′)3

r4
∂kg

ijglk
xi

r

xj

r

xl

r

)
v2 dxdt

+ 4

∫ T

0

∫
R3

gij∂j(
φ′

r

xl

r
glk)∂kv∂iv dxdt− 2

∫ T

0

∫
R3

φ′

r

xl

r
glk∂kg

ij∂iv∂jv dxdt

+ 2

∫ T

0

∫
R3

gij∂j∂k(
φ′

r

xl

r
glk)∂ivv dxdt.

We now calculate 2‖(φ′)−1/2P skewv‖2L2L2 :

2‖(φ′)−1/2P skewv‖2L2L2 = 8

∫ T

0

∫
R3

φ′

r2
(g̃iβ

xi

r
∂βv)

2 dxdt+ 8

∫ T

0

∫
R3

(
1

r

xl

r
g̃lα∂αv)∂β(

φ′

r

xi

r
g̃iβ)v dxdt

+ 2

∫ T

0

∫
R3

1

φ′
(
∂β(

φ′

r

xi

r
g̃iβ)v

)2
dxdt.

We now investigate the h-dependent terms in 2‖(φ′)−1/2P skewv‖2L2L2 and find the immediate bound:

CRm1,Rm2,φ

∫ T

0

∫
R3

(|∂h|+ |h|)(|∂u|+ |u|
〈r〉

)2
dxdt � CRm1,Rm2,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
,

where we have applied (2.3) in the last line.

So it suffices to consider the following terms from 2‖(φ′)−1/2P skewv‖2L2L2 :

(5.13) 8

∫ T

0

∫
R3

φ′

r2
(gij

xi

r
∂jv)

2 dxdt+ 8

∫ T

0

∫
R3

1

r

xl

r
glk∂j(

φ′

r

xi

r
gij)∂kvv dxdt

+ 2

∫ T

0

∫
R3

1

φ′
(
∂j(

φ′

r

xi

r
gij)v

)2
dxdt.

We now investigate 〈( 12 φ′′

r2 − 4φ′

r2 )v, P
selfv〉L2L2 and integrate by parts to obtain:

(5.14) 〈(1
2

φ′′

r2
− 4

φ′

r2
)v, P selfv〉L2L2 =

∫ T

0

∫
R3

(1
2

φ′′

r2
− 4

φ′

r2
)
g̃αβ∂βv∂αv dxdt

+

∫ T

0

∫
R3

∂i

(1
2

φ′′

r2
− 4

φ′

r2

)
g̃iβ∂βvv dxdt+

∫
R3

(
4
φ′

r2
− 1

2

φ′′

r2

)
g̃0β∂βvv dx

∣∣∣T
0

+

∫ T

0

∫
R3

(
4g̃ij

φ′3

r4
xi

r

xj

r
− 1

2
g̃ij

φ′′

r2
φ′2

r2
xi

r

xj

r

)
v2 dxdt.

Applying our typical analysis on the time boundary terms, utilizing Cauchy’s inequality, and a Hardy inequality (2.4),

we control them by CRm1,Rm2,φ‖∂u‖2L∞L2 .
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Further, we bound h-dependent terms in (5.14) (i.e., when g̃αβ = hαβ) by

CRm1,Rm2,φ

∫ T

0

∫
R3

|h|(|∂u|+ |u|
〈r〉

)2
dxdt � CRm1,Rm2,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

Hence, we need only consider the following terms from (5.14):

(5.15)

∫ T

0

∫
R3

(1
2

φ′′

r2
− 4

φ′

r2
)
gij∂iv∂jv dxdt+

∫ T

0

∫
R3

(
4
φ′

r2
− 1

2

φ′′

r2
)
(∂tv)

2 dxdt

+

∫ T

0

∫
R3

∂i(
1

2

φ′′

r2
− 4

φ′

r2
)gij∂jvv dxdt+

∫ T

0

∫
R3

(
4gij

φ′3

r4
xi

r

xj

r
− 1

2
gij

φ′′

r2
φ′2

r2
xi

r

xj

r

)
v2 dxdt.

Combining (5.12), (5.13), and (5.15) leads to the following bound:

(5.16) 〈[P self , P skew]v + (
1

2

φ′′

r2
− 4

φ′

r2
)v, P selfv〉L2L2 + 2‖(φ′)−1/2P skewv‖2L2L2

≥
∫ T

0

∫
R3

(
4
φ′

r2
− 1

2

φ′′

r2
)
(∂tv)

2 dxdt+

∫ T

0

∫
R3

(1
2

φ′′

r2
− 4

φ′

r2
)
gij∂iv∂jv dxdt

+ 8

∫ T

0

∫
R3

φ′

r2
(gij

xi

r
∂jv)

2 dxdt+ 4

∫ T

0

∫
R3

gij∂j(
φ′

r

xl

r
glk)∂kv∂iv dxdt

− 2

∫ T

0

∫
R3

φ′

r

xl

r
glk∂kg

ij∂iv∂jv dxdt+ 2

∫ T

0

∫
R3

gij∂j∂k(
φ′

r

xl

r
glk)∂ivv dxdt

+ 8

∫ T

0

∫
R3

1

r

xl

r
glk∂j(

φ′

r

xi

r
gij)∂kvv dxdt+

∫ T

0

∫
R3

∂i(
1

2

φ′′

r2
− 4

φ′

r2
)gij∂jvv dxdt

+

∫ T

0

∫
R3

(
4
(φ′)2φ′′

r4
(gij

xi

r

xj

r
)2 + 4

(φ′)3

r4
glkgkj

xj

r

xl

r

)
v2 dxdt

+

∫ T

0

∫
R3

(
− 8

(φ′)3

r4
(gij

xi

r

xj

r
)2 + 2

(φ′)3

r4
∂kg

ijglk
xi

r

xj

r

xl

r

)
v2 dxdt

+ 2

∫ T

0

∫
R3

1

φ′
(∂j(

φ′

r

xi

r
gij)v)2 dxdt+

∫ T

0

∫
R3

(
4gij

φ′3

r4
xi

r

xj

r
− 1

2
gij

φ′′

r2
φ′2

r2
xi

r

xj

r

)
v2 dxdt

+ Ẽ1[v]
∣∣∣T
0
+ H̃1[v].

Applying Cauchy’s inequality on first order terms, we can bound this from below by
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(5.17)

∫ T

0

∫
R3

(
4
φ′

r2
− 1

2

φ′′

r2
)
(∂tv)

2 dxdt+

∫ T

0

∫
R3

(1
2

φ′′

r2
− 4

φ′

r2
)
gij∂iv∂jv dxdt

+ 8

∫ T

0

∫
R3

φ′

r2
(gij

xi

r
∂jv)

2 dxdt+ 4

∫ T

0

∫
R3

gij∂j(
φ′

r

xl

r
glk)∂kv∂iv dxdt

− 2

∫ T

0

∫
R3

φ′

r

xl

r
glk∂kg

ij∂iv∂jv dxdt− 11

2

∫ T

0

∫
R3

1

r2
|∇xv|2 dxdt

−
∑
i

∫ T

0

∫
R3

(
rgij∂j∂k(

φ′

r

xl

r
glk)

)2

v2 dxdt− 4
∑
k

∫ T

0

∫
R3

(xl

r
glk∂j(

φ′

r

xi

r
gij)

)2

v2 dxdt

− 1

2

∑
j

∫ T

0

∫
R3

(
r∂i(

1

2

φ′′

r2
− 4

φ′

r2
)gij

)2

v2 dxdt

+

∫ T

0

∫
R3

(
4
(φ′)2φ′′

r4
(gij

xi

r

xj

r
)2 + 4

(φ′)3

r4
glkgkj

xj

r

xl

r

)
v2 dxdt

+

∫ T

0

∫
R3

(
− 8

(φ′)3

r4
(gij

xi

r

xj

r
)2 + 2

(φ′)3

r4
∂kg

ijglk
xi

r

xj

r

xl

r

)
v2 dxdt

+ 2

∫ T

0

∫
R3

1

φ′
(∂j(

φ′

r

xi

r
gij)v)2 dxdt+

∫ T

0

∫
R3

(
4gij

φ′3

r4
xi

r

xj

r
− 1

2
gij

φ′′

r2
φ′2

r2
xi

r

xj

r

)
v2 dxdt

+ Ẽ1[v]
∣∣∣T
0
+ H̃1[v].

By choosing Rm1 > RAF sufficiently large, we may freely replace gij with mij at the expense of additional error

terms involving |||g|||>Rm1
. So, we must consider

(5.18)

∫ T

0

∫
R3

(
4
φ′

r2
− 1

2

φ′′

r2
)
(∂tv)

2 dxdt+

∫ T

0

∫
R3

(1
2

φ′′

r2
− 4

φ′

r2
− 11

2

1

r2
)|∇xv|2 dxdt

+ 8

∫ T

0

∫
R3

φ′

r2
(∂rv)

2 dxdt+ 4

∫ T

0

∫
R3

∂i(
φ′

r

xk

r
)∂kv∂iv dxdt

−
∑
i

∫ T

0

∫
R3

(
r∂i∂l(

φ′

r

xl

r
)
)2

v2 dxdt− 4
∑
k

∫ T

0

∫
R3

(xk

r
∂i(

φ′

r

xi

r
)
)2

v2 dxdt

− 1

2

∑
j

∫ T

0

∫
R3

(
r∂j(

1

2

φ′′

r2
− 4

φ′

r2
)
)2

v2 dxdt

+
7

2

∫ T

0

∫
R3

(φ′)2φ′′

r4
v2 dxdt+ 2

∫ T

0

∫
R3

1

φ′
(∂i(

φ′

r

xi

r
)v)2 dxdt

− |||g|||>Rm1

∫ T

0

∫
R3

φ′

r2
|∇xv|2 dxdt− |||g|||>Rm1

∫ T

0

∫
R3

(φ′)3

r4
v2 dxdt.

Utilizing the largeness assumptions on the first two derivatives of φ in (5.2) and the smallness of |||g|||>Rm1
, we are able

to bound the above equation from below by
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(5.19)

∫ T

0

∫
R3

(
4
φ′

r2
− 1

2

φ′′

r2
)
(∂tv)

2 dxdt+

∫ T

0

∫
R3

(1
2

φ′′

r2
− 4

φ′

r2
− 11

2

1

r2
)|∇xv|2 dxdt

+ 8

∫ T

0

∫
R3

φ′

r2
(∂rv)

2 dxdt+ 4

∫ T

0

∫
R3

∂i(
φ′

r

xk

r
)∂kv∂iv dxdt+

∫ T

0

∫
R3

(φ′)2φ′′

r4
v2 dxdt

− |||g|||>Rm1

∫ T

0

∫
R3

φ′

r2
|∇xv|2 dxdt.

Observe, thus far, we have only simplified our bound for the lower order terms.

Making use of (5.2), we see

∫ T

0

∫
R3

(4
φ′

r2
− 1

2

φ′′

r2
)(∂tv)

2 dxdt+

∫ T

0

∫
R3

φ′′(φ′)2

r4
v2 dxdt

� ‖r−2(φ′′)1/2φ′v‖2L2L2 + ‖r−1(φ′)1/2∂tu‖2L2L2 ,

as desired. Now the remaining terms in (5.19) can be expressed as

4

∫ T

0

∫
R3

∂i
(φ′
r

xk

r

)
∂kv∂iv dxdt+ 8

∫ T

0

∫
R3

φ′

r2
(∂rv)

2 dxdt(5.20)

+

∫ T

0

∫
R3

(
1

2

φ′′

r2
− 4

φ′

r2
− 11

2

1

r2
)|∇xv|2 dxdt− |||g|||>Rm1

∫ T

0

∫
R3

φ′

r2
|∇xv|2 dxdt

= 4

∫ T

0

∫
R3

φ′′

r2
(∂rv)

2 dxdt+
1

2

∫ T

0

∫
R3

(
φ′′

r2
− 11

r2
)|∇xv|2 dxdt

− |||g|||>Rm1

∫ T

0

∫
R3

φ′

r2
|∇xv|2 dxdt

� ‖r−1(φ′′)1/2∇xu‖2L2L2 ,

provided λ and Rm1 are sufficiently large.

So, we have shown

(5.21) ‖r−1(φ′′)1/2(r−1φ′v,∇xv)‖2L2L2 + ‖r−1(φ′)1/2∂tv‖2L2L2

� 〈[P self , P skew]v, v〉L2L2 + 〈(1
2

φ′′

r2
− 4

φ′

r2
)v, P selfv〉L2L2 + 2‖(φ′)−1/2P skewv‖2L2L2 + Ẽ1[v]

∣∣∣T
0
+ H̃1[v].

Applying Cauchy’s inequality on 〈( 12 φ′′

r2 − 4φ′

r2 )v, P
selfv〉L2L2 and making use of the properties of φ in (5.2), we

can bootstrap error terms into the left-hand side of (5.21) to obtain

(5.22) ‖r−1(φ′′)1/2(r−1φ′v,∇xv)‖2L2L2 + ‖r−1(φ′)1/2∂tv‖2L2L2 � ‖Pφv‖2L2L2 + Ẽ1[v]
∣∣∣T
0
+ H̃1[v].
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We can switch back to our original coordinates to find

(5.23) ‖r−1(φ′′)1/2eφ(r−1φ′u,∇xu)‖2L2L2 + ‖r−1(φ′)1/2eφ∂tu‖2L2L2

� ‖eφP̃ u‖2L2L2 + CRm1,Rm2,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

Finally we estimate the error associated with working with P̃ as opposed to Ph:

‖eφ(Ph − P̃ )u‖2L2L2 = ‖eφ∂αhαβ∂βu‖2L2L2 � CRm1,Rm2,φ

∫ T

0

∫
R3

|∂h|2|∂u|2 dxdt(5.24)

� CRm1,Rm2δ
(
‖∂u‖2L∞L2 + log(2 + T )‖u‖2LE1

)
,

where we have applied (2.3) in the last line. This completes the proof of Proposition 5.1.

We would like to pair Proposition 5.1 with the exterior estimate, Theorem 3.2, but this requires that our weight φ

be constant at infinity, which breaks the convexity assumption. To overcome this, we permit a lower order error term

localized to a region Rout < r < 2Rext and modify φ such that φ is as in Proposition 5.1 for r ≤ 2Rout and φ is

constant for r ≥ 2Rext. Please see Appendix B for an explicit construction of such a function, which is based on the

prior work of [21].

With this set up, we have the following proposition:

Proposition 5.2. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in the

sense of (1.6). Fix RAF sufficiently large and fix Rext > Rout > Rm1 > RAF , where Rext and Rout are defined

precisely in Appendix B and Rm1 is as in Proposition 5.1. Let φ = φ(s), where s = log(r), be the weight constructed

in Appendix B. Observe φ satisfies

λ � φ′′(s) ≤ φ′(s)/2 � φ′′(s), |φ′′′(s)| � φ′(s), λ� 1

for r ≤ 2Rout and is constant for r ≥ 2Rext.

Fix T > 0. Suppose u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ LE∗, with initial data (u, ∂tu)(0, ·) =

(f1, f2) ∈ C2(R3)× C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ] and further assume u(t, x) is

supported in {r > Rm1}. Then the following bound holds:
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(5.25) ‖r−1(1 + φ′′+)
1/2eφ(r−1(1 + φ′)u,∇xu)‖2L2L2

<2Rext

+ ‖r−1(1 + φ′)1/2eφ∂tu‖2L2L2
<2Rext

+R−1
ext‖eφu‖2LE1

>Rext

� ‖eφPhu‖2L2L2
<2Rext

+R−1
ext‖eφPhu‖2LE∗ + ‖〈r〉−2

(1 + φ′)3/2eφu‖2L2L2(Rout<r<2Rext)

+ CRout,Rext,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

Here the implicit constant is independent of T and δ.

Remark. Observe Rout corresponds to Rm2/2 in Proposition 5.1.

Remark. In the transition region between Rout and 2Rext, we may break the conditions on φ′ and φ′′, but will still

have good bounds for φ′ and φ′′. In particular for Rout ≤ r ≤ 3Rext/2, φ′ � 1, but φ′′ will be in part negative, with a

bound from below |φ′′| ≤ φ′/2. For r ≥ Rext, |φ′|+ |φ′′|+ |φ′′′| � 1.

Proof. We divide the analysis into the following three regions:

1. s < log(2Rout)

2. log(Rout) < s < log(3Rext/2)

3. log(Rext) < s.

For Regions 1 and 2, we apply appropriate cut-off functions to our solution u and note that the error terms arising

from commuting our operators with the cut-off functions are lower order and supported in the other regions. Hence,

these error terms can be controlled with the methods from the other regions. We will elaborate more on this momentarily.

The bound in Region 1 follows immediately from Proposition 5.1.

The proof for the bound of Region 2 is similar to the proof of Proposition 5.1. Instead of working with

〈[P self , P skew]v, v〉L2L2 + 2‖(φ′)−1/2P skewv‖2L2L2 + 〈( 12 φ′′

r2 − 4φ′

r2 )v, P
selfv〉L2L2 , we bound

〈[P self , P skew]v, v〉L2L2 + 2‖(φ′)−1/2P skewv‖2L2L2 − 〈φ′

r2 v, P
selfv〉L2L2 from below. We have essentially made all

of the necessary computations in the proof of Proposition 5.1. Indeed, applying the methods from (5.14) and (5.15), we

see

(5.26) − 〈φ
′

r2
v, P selfv〉L2L2 ≥ −

∫ T

0

∫
R3

φ′

r2
gij∂iv∂jv dxdt+

∫ T

0

∫
R3

φ′

r2
(∂tv)

2 dxdt

−
∫ T

0

∫
R3

∂i
φ′

r2
gij∂jvv dxdt+

∫ T

0

∫
R3

gij
φ′3

r4
xi

r

xj

r
v2 dxdt+ Ẽ2[v]

∣∣T
0
+ H̃2[v],

where ∣∣∣Ẽ2[v]
∣∣T
0

∣∣∣+ ∣∣∣H̃2[v]
∣∣∣ � CRout,Rext,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.
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The remaining terms 〈[P self , P skew]v, v〉L2L2 + 2‖(φ′)−1/2P skewv‖2L2L2 are still controlled by (5.12) and (5.13), up

to h-dependent terms and time boundary terms controlled by CRout,Rext,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
, as

usual. Hence, performing nearly identical analysis to that in (5.16), (5.17), (5.18), (5.20), and recalling we are now

allowing for a lower order error term, we obtain the bound:

〈[P self , P skew]v, v〉L2L2 + 2‖(φ′)−1/2P skewv‖2L2L2 − 〈φ
′

r2
v, P selfv〉L2L2

≥
∫ T

0

∫
R3

φ′

r2
(∂tv)

2 dxdt+ 4

∫ T

0

∫
R3

∂j
(φ′
r

xk

r

)
∂kv∂jv dxdt+ 8

∫ T

0

∫
R3

φ′

r2
(∂rv)

2 dxdt

−
∫ T

0

∫
R3

(
φ′

r2
+

11

2

1

r2
)|∇xv|2 dxdt− |||g|||>Rm1

∫ T

0

∫
R3

φ′

r2
|∇xv|2 dxdt

+ Ẽ3[v]
∣∣∣T
0
+ H̃3[v]− C‖〈r〉−2

(1 + φ′)3/2v‖2L2L2(Rout<r<2Rext)

=

∫ T

0

∫
R3

φ′

r2
(∂tv)

2 dxdt+

∫ T

0

∫
R3

(3
φ′

r2
− 11

2

1

r2
)|∇xv|2 dxdt+ 4

∫ T

0

∫
R3

φ′′

r2
(∂rv)

2 dxdt

− |||g|||>Rm1

∫ T

0

∫
R3

φ′

r2
|∇xv|2 dxdt+ Ẽ3[v]

∣∣∣T
0
+ H̃3[v]

− C‖〈r〉−2
(1 + φ′)3/2v‖2L2L2(Rout<r<2Rext)

�
∫ T

0

∫
R3

φ′

r2
(∂tv)

2 dxdt+

∫ T

0

∫
R3

φ′

r2
|∇xv|2 dxdt

− |||g|||>Rm1

∫ T

0

∫
R3

φ′

r2
|∇xv|2 dxdt+ Ẽ3[v]

∣∣∣T
0
+ H̃3[v]

− ‖〈r〉−2
(1 + φ′)3/2v‖2L2L2(Rout<r<2Rext)

,

where C is a constant that does not depend on any important parameters and

∣∣∣Ẽ3[v]
∣∣T
0

∣∣∣+ ∣∣∣H̃3[v]
∣∣∣ � CRout,Rext,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

This yields the desired bound for Region 2.

The bound for Region 3 is perturbative off the exterior estimate, Theorem 3.2. Indeed, we are in the regime

s > log(Rext), where |φ′| � 1. Further for r ≥ 2Rext, φ is constant. An application of the Mean Value Theorem

and the triangle inequality therefore shows φ(s) < φ(log(2Rext)) + 1 and φ(log(2Rext)) < φ(s) + 1 in this regime.

Hence in Region 3, exp(φ(s)) ≈ exp(φ(log(2Rext))). Multiplying both sides of (3.13) by R−1
ext exp(φ(log(2Rext))),

we obtain
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R−1
ext exp(φ(log(2Rext)))‖u‖2LE1

>Rext

� R−1
ext exp(φ(log(2Rext)))‖∂u‖2L∞L2

+R−3
ext exp(φ(log(2Rext)))‖u‖2LERext

+R−1
ext exp(φ(log(2Rext)))

∫ T

0

∫
R3

|Phu|
(
|∂u|+ |u|

〈r〉
)
dxdt

+R−1
ext exp(φ(log(2Rext)))δ log(2 + T )‖u‖2LE1 .

Since exp(φ(log(2Rext))) ≈ exp(φ(s)) in this region, we can move the exponential function inside of the integrals

to obtain

(5.27) R−1
ext‖eφu‖2LE1

>Rext

� R−3
ext‖eφu‖2LERext

+R−1
ext

∫ T

0

∫
R3

eφ|Phu|
(
|∂u|+ |u|

〈r〉
)
dxdt

+ CRout,Rext,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
,

which is the desired bound for Region 3.

We now piece together our bounds in Regions 1, 2, and 3 with cut-off functions. For Region 1, we apply a smooth,

monotonically decreasing, cut-off function β1(r) that is identically one for r ≤ 3Rout/2 and 0 for r ≥ 2Rout. This

introduces the following error term ‖eφ[Ph, β1(r)]u‖2L2L2 .

Similarly, for Region 2, we apply a cut-off function β2(r) to u, where β2(r) ≡ 1 for

3Rout/2 ≤ r ≤ Rext and 0 for Rout ≤ r and r ≥ 3Rext/2. Hence we need to bound the following commuta-

tor term:

‖eφ[Ph, β2(r)]u‖2L2L2 = ‖eφ[Ph, β2(r)]u‖2L2L2
Rout

+ ‖eφ[Ph, β2(r)]u‖2L2L2
Rext

.

Observe that the bound for Region 3 already has a spatial cut-off built in to the estimate. Therefore, combining our

bounds in Regions 1, 2, and 3 along with the error terms, we have shown

(5.28) ‖r−1(1 + φ′′+)
1/2eφ(r−1(1 + φ′)u,∇xu)‖2L2L2

<2Rext

+ ‖r−1(1 + φ′)1/2eφ∂tu‖2L2L2
<2Rext

+R−1
ext‖eφu‖2LE1

>Rext

� ‖eφPhu‖2L2L2
<2Rext

+R−1
ext

∫ T

0

∫
R3

eφ|Phu|
(
|∂u|+ |u|

〈r〉
)
dxdt

+ ‖〈r〉−2
(1 + φ′)3/2eφu‖2L2L2(Rout<r<2Rext)

+ CRout,Rext,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
− ‖eφ[Ph, β1(r)]u‖2L2L2 − ‖eφ[Ph, β2(r)]u‖2L2L2

Rout

− ‖eφ[Ph, β2(r)]u‖2L2L2
Rext

.
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Returning to the first error term in (5.28):

(5.29) ‖eφ[Ph, β1(r)]u‖2L2L2 � R−2
out‖eφ∂u‖2L2L2

Rout

+R−4
out‖eφu‖2L2L2

Rout

.

The last term on the right-hand side of the above equation is controlled by

‖〈r〉−2
(1 + φ′)3/2eφu‖2L2L2(Rout<r<2Rext)

and so this is a harmless error term. The first term on the right-hand

side of the equation, R−2
out‖eφ∂u‖2L2L2

Rout

, can be bootstrapped into the left-hand side of (5.28) by using the largeness

of φ′′ in this regime.

The second error term in (5.28), ‖eφ[Ph, β2(r)]u‖2L2L2
Rout

, can be bound in the exact same manner. The final error

term can be controlled by observing:

‖eφ[Ph, β2(r)]u‖2L2L2
Rext

� R−2
ext‖eφ∂u‖2L2L2

Rext

+R−4
ext‖eφu‖2L2L2

Rext

.

Both terms on the right-hand side of the above equation are immediately controlled by applying our exterior estimate,

(5.27). An application of Cauchy’s inequality on the R−1
ext

∫ T

0

∫
R3 e

φ|Phu|
(
|∂u|+ |u|

〈r〉
)
dxdt term in (5.28) completes

the proof of Proposition 5.2.

We need to pair Proposition 5.2 with an interior estimate. To this end, we consider the following Carleman estimate,

motivated by the prior work of [29].

Proposition 5.3. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in the

sense of (1.6). Fix RAF sufficiently large and fix Rin > RAF . Let φ = φ(r) be the weight constructed in Appendix B.

Observe φ satisfies

φ′(0) = 0, φ′′ ≈ λ+ σφ′, |φ′′′| � σ2φ′, λ, σ � 1 and(5.30)

0 ≤ φ′′ − φ′

r
�σ φ′ ∀ r while

φ′

r
≈ φ′′ for r �σ 1.

Fix T > 0. Suppose u(t, x) ∈ C2([0, T ]× R
3) solves Phu = F ∈ LE∗, with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈

C2(R3)× C1(R3). Further assume u is supported in {r < Rin}. Then the following bound holds:
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(5.31) ‖(φ′/r)1/2eφ∂u‖2L2L2 + ‖(φ′′)1/2φ′eφu‖2L2L2 + ‖(φ′/r)eφu‖2L2L2

� ‖eφPhu‖2L2L2 + ‖(φ′′)1/2eφ∂tu‖2L2L2(|x|�1)

+ CRin,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

Here the implicit constant is independent of T and δ.

Remark. Note that the assumptions on φ ensure that φ is increasing and that φ′/r � λ. Near the origin, morally, φ′

acts as a linear function. Please see Appendix B for an explicit construction of a function satisfying these properties.

Proof. The proof is similar in flavor to the proof of Proposition 5.1 and hence it suffices to work in conjugated

coordinates and prove

(5.32) ‖(φ′/r)1/2∂v‖2L2L2 + ‖(φ′′)1/2φ′v‖2L2L2 + ‖(φ′/r)v‖2L2L2

� ‖Pφv‖2L2L2 + ‖(φ′′)1/2∂tv‖2L2L2(|x|�1) + Ẽ4[v]
∣∣∣T
0
+ H̃4[v],

where Ẽ4[v]
∣∣∣T
0

and H̃4[v] are controlled by

Ẽ4[v]
∣∣∣T
0
� CRin,φ‖∂u‖2L∞L2 ,

and

H̃4[v] � CRin,φδ
(
‖∂u‖2L∞L2 + log(2 + T )‖u‖2LE1

)
.

We use a positive commutator argument centered around the operator [P self , P skew], as before. We can reuse many of

our calculations provided we are careful by replacing φ′/r with φ′ and φ′′/r2 − φ′/r2 with φ′′, as we are now working

with a weight that is directly a function of r as opposed to a function of log(r). As in the proof of Proposition 5.1, we

immediately bound

〈[Dαh
αβDβ − hij(φ′)2

xi

r

xj

r
, P skew]v, v〉L2L2

+ 〈[−D2
t +Dig

ijDj − gij(φ′)2
xi

r

xj

r
,−1

i
φ′
xi

r
hiβDβ − 1

i
Dβφ

′xi

r
hiβ ]v, v〉L2L2

� CRin,φ

(
‖∂u‖2L∞L2 +

∫ T

0

∫
R3

(|∂2h|+ |∂h|+ |h|)(|∂u|+ |u|
〈r〉

)2
dxdt

)

� CRin,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
,
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where we have applied (2.3) in the last line by choosing δ sufficiently small. So it suffices to consider

∫ T

0

∫
R3

[Dig
ijDj − gij(φ′)2

xi

r

xj

r
,−1

i
φ′
xl

r
glkDk − 1

i
Dkφ

′xl

r
glk]vv dxdt,

which, from our prior calculations, we immediately see is equal to

(5.33) 4

∫ T

0

∫
R3

gij∂j(φ
′xl

r
glk)∂iv∂kv dxdt− 2

∫ T

0

∫
R3

φ′
xl

r
glk∂kg

ij∂iv∂jv dxdt

+ 2

∫ T

0

∫
R3

∂kg
ij(φ′)3

xi

r

xj

r

xl

r
glkv2 dxdt+ 4

∫ T

0

∫
R3

(φ′)2φ′′(gij
xi

r

xj

r
)2v2 dxdt

− 4

∫ T

0

∫
R3

(φ′)3

r
(gij

xi

r

xj

r
)2v2 dxdt+ 4

∫ T

0

∫
R3

gikglk
(φ′)3

r

xi

r

xl

r
v2 dxdt

+ 2

∫ T

0

∫
R3

gij∂j∂k(φ
′xl

r
glk)∂ivv dxdt.

We break our analysis into two regimes. The first region is for r � 1 and the second region is for r � 1.

1. Region 1: r � 1. We note that in this regime φ′/r ≈ φ′′. Also, recall the useful bound φ′/r � λ. We begin by

examining the highest order terms in (5.33):

(5.34) 4

∫ T

0

∫
R3

φ′

r
gijgjk∂iv∂kv dxdt+ 4

∫ T

0

∫
R3

(φ′′ − φ′

r
)gijglk

xj

r

xl

r
∂iv∂kv dxdt

+ 4

∫ T

0

∫
R3

gijφ′
xl

r
∂jg

lk∂iv∂kv dxdt− 2

∫ T

0

∫
R3

glkφ′
xl

r
∂kg

ij∂iv∂jv dxdt

�
3∑

i=1

∫ T

0

∫
R3

φ′

r
|gij∂jv|2 dxdt �

∫ T

0

∫
R3

φ′

r
|∇xv|2 dxdt.

We elaborate on the bound from below in (5.34). As gij is strictly elliptic,
∑

i |gij∂jv|2 � |∇xv|2. Indeed,

|∇xv|2 � gij∂jv∂iv, and so the bound follows by applying Cauchy’s inequality. Therefore, for r � 1, we can absorb

the last two terms into the first term. Observing that the second term is nonnegative completes the bound.

We now examine the lower order terms in (5.33):

(5.35) 2

∫ T

0

∫
R3

∂kg
ij(φ′)3

xi

r

xj

r

xl

r
glkv2 dxdt+ 4

∫ T

0

∫
R3

(φ′)2φ′′(gij
xi

r

xj

r
)2v2 dxdt

− 4

∫ T

0

∫
R3

(φ′)3

r
(gij

xi

r

xj

r
)2v2 dxdt+ 4

∫ T

0

∫
R3

gikglk
(φ′)3

r

xi

r

xl

r
v2 dxdt

�
∫ T

0

∫
R3

(φ′)2φ′′v2 dxdt,
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where we have used (φ′)2φ′′ − (φ′)3/r ≥ 0, φ′′ ≈ φ′/r, and that g is strictly elliptic so that gikglk xi

r
xl

r � 1. We now

examine the remaining term in (5.33):

2

∫ T

0

∫
R3

gij∂j∂k(φ
′xl

r
glk)∂ivv dxdt.

Taking derivatives and grouping like terms, the above integral becomes

(5.36)

2

∫ T

0

∫
R3

gij(φ′′ − φ′

r
)
(
− 3

r

xj

r

xl

r

xk

r
glk +

1

r

xj

r
δlkg

lk +
1

r

xl

r
δjkg

lk +
1

r

xk

r
δjlg

lk +
1

r

xk

r

xl

r
∂jg

lk
)
∂ivv dxdt

+ 2

∫ T

0

∫
R3

gij
(
φ′′′

xk

r

xj

r

xl

r
glk + φ′′

xj

r

xl

r
∂kg

lk +
φ′

r
δjl∂kg

lk − φ′

r

xl

r

xk

r
∂jg

lk

+
φ′

r
δkl∂jg

lk +
φ′

r

xl

r
∂2
jkg

lk
)
∂ivv dxdt.

Utilizing (5.30) and Cauchy’s inequality, we find that the above line is bounded by

(5.37) ‖(φ′/r)3/4v‖2L2L2 + ‖(φ′/r)1/4∂v‖2L2L2 .

Using the largeness of φ′/r, we will be able to absorb ‖(φ′/r)1/4∂v‖2L2L2 into (5.34). We will see that we can absorb

‖(φ′/r)3/4v‖2L2L2 later.

In order to get useful bounds on terms involving time derivatives, we consider − ∫ T

0

∫
R3

φ′

r vP
selfv dxdt and note

that as usual

−
∫ T

0

∫
R3

φ′

r
vDαhαβDβv dxdt+

∫ T

0

∫
R3

φ′

r
vhij(φ′)2

xi

r

xj

r
v dxdt

� CRin,φ

(
‖∂u‖2L∞L2 +

∫ T

0

∫
R3

(|∂2h|+ |∂h|+ |h|)(‖∂u|+ |u|
〈r〉

)2
dxdt

)

� CRin,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

Therefore it suffices to consider

(5.38) −
∫ T

0

∫
R3

φ′

r
(P selfv −DαhαβDβv + hij(φ′)2

xi

r

xj

r
v)v dxdt

=

∫ T

0

∫
R3

φ′

r
(∂tv)

2 dxdt−
∫ T

0

∫
R3

φ′

r
gij∂iv∂jv dxdt

+

∫ T

0

∫
R3

(φ′)3

r
gij

xi

r

xj

r
v2 dxdt+

∫ T

0

∫
R3

(
φ′

r2
− φ′′

r
)gij

xi

r
∂jvv dxdt−

∫
R3

φ′

r
∂tvv dx

∣∣∣T
0
.
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The time boundary term is controlled by CRin,φ‖∂u‖2L∞L2 .

Combining (5.34), (5.35), (5.37), and (5.38), we see for c > 0 chosen sufficiently small,

(5.39) ‖(φ′′)1/2φ′v‖2L2L2 + ‖(φ′/r)1/2∂v‖2L2L2 � 〈[P self , P skew]v, v〉L2L2 − c〈φ
′

r
v, P selfv〉L2L2

+ Ẽ5[v]
∣∣∣T
0
+ H̃5[v] + ‖(φ′/r)3/4v‖2L2L2 ,

where Ẽ5[v]
∣∣∣T
0
+ H̃5[v] are controlled by

CRin,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

One can add ‖r−1φ′v‖2L2L2 to the left-hand side of (5.39). Recall, we are in the regime r � 1. Utilizing

φ′/r ≈ φ′′ in this regime, it suffices to show ‖φ′′v‖2L2L2 � ‖(φ′′)1/2φ′v‖2L2L2 + ‖(φ′/r)1/2∂v‖2L2L2 . Making use of

polar coordinates, we have

∫ T

0

∫
R3

(φ′′)2v2 dxdt =
1

3

∫ T

0

∫
S2

∫ ∞

0

(φ′′)2v2∂r(r3) drdσ(ω)dt

=− 2

3

∫ T

0

∫
R3

φ′′φ′′′rv2 dxdt− 2

3

∫ T

0

∫
R3

(φ′′)2rv∂rv dxdt

�σ

∫ T

0

∫
R3

φ′φ′′rv2 dxdt+
∫ T

0

∫
R3

(φ′′)2r|v||∂rv| dxdt

�σ

∫ T

0

∫
R3

(φ′)2

λ
φ′′v2 dxdt+

∫ T

0

∫
R3

(φ′′)2r|v||∂rv| dxdt

�σ‖(φ′′)1/2φ′v‖2L2 +

∫ T

0

∫
R3

φ′′φ′|v||∂rv| dxdt.

So it suffices to bound
∫ T

0

∫
R3 φ

′′φ′|v||∂rv| dxdt:

∫ T

0

∫
R3

φ′′φ′|v||∂rv| dxdt �σ

∫ T

0

∫
R3

(φ′′)2rφ′|v|2 dxdt+
∫ T

0

∫
R3

φ′

r
|∂v|2 dxdt

�σ

∫ T

0

∫
R3

φ′′(φ′)2|v|2 dxdt+
∫ T

0

∫
R3

φ′

r
|∂v|2 dxdt,

as desired. Hence, we have shown

(5.40) ‖(φ′′)1/2φ′v‖2L2L2 + ‖(φ′/r)v‖2L2L2 + ‖(φ′/r)1/2∂v‖2L2L2 � 〈[P self , P skew]v, v〉L2L2

− c〈P selfv,
φ′

r
v〉L2L2 + Ẽ5[v]

∣∣∣T
0
+ H̃5[v] + ‖(φ′/r)3/4v‖2L2L2 .
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Using the largeness of φ′/r, we can bootstrap the error term ‖(φ′/r)3/4v‖2L2L2 into the second term on the right-hand

side of the equation. Applying Cauchy’s inequality, conjugating back to our regular coordinates, and recalling (5.24)

proves Proposition 5.3 for r � 1.

2. Region II: r � 1. The result in this region is almost immediate due to our prior calculations. Indeed, the left-hand

side of (5.34) is bounded from below by −‖(φ′/r)1/2∇xv‖2L2 . The bound in (5.35) still holds which is clear by using

φ′′ ≈ λ+ σφ′ to absorb poorly signed terms into the second term of the left-hand side of the equation.

The terms in (5.36) are now controlled by ‖φ′v‖2L2L2 + ‖λ1/2v‖2L2L2 + ‖λ1/2∂v‖2L2L2 , which is clear for all terms

by utilizing our assumptions in (5.30) and Cauchy’s inequality, with perhaps the exception of the second term on the

second line of the equation. We control this term via

∫ T

0

∫
R3

gijφ′′
xj

r

xl

r
∂kg

lk∂ivv dxdt �
∫ T

0

∫
R3

λ|∇xv||v| dxdt+ σ

∫ T

0

∫
R3

φ′|∇xv||v| dxdt,

and then apply Cauchy’s inequality. Hence,

‖(φ′′)1/2φ′v‖2L2L2 � 〈[P self , P skew]v, v〉L2L2 + ‖φ′v‖2L2L2 + ‖λ1/2v‖2L2L2

+ ‖λ1/2∂v‖2L2L2 + Ẽ6[v]
∣∣∣T
0
+ H̃6[v]

� 〈[P self , P skew]v, v〉L2L2 + ‖(φ′/r)1/2∂v‖2L2L2 + Ẽ6[v]
∣∣∣T
0
+ H̃6[v],

where we have used the largeness of φ′′ and φ′ to absorb the second and third terms on the right-hand side of the

equation into the left-hand side and made use of the fact φ′/r � λ in the last line. Here Ẽ6[v]
∣∣∣T
0
+ H̃6[v] are controlled

by

CRin,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

Since we computed −〈(φ′/r)v, P selfv〉L2L2 in (5.38), we reuse this computation and Cauchy’s inequality to see

(5.41) ‖(φ′′)1/2φ′v‖2L2L2 + ‖(φ′/r)1/2∂v‖2L2L2 � 〈[P self , P skew]v, v〉L2L2 + C1〈(φ′/r)v, P selfv〉L2L2

+ C2‖(φ′/r)1/2∂tv‖2L2L2 + Ẽ7[v]
∣∣∣T
0
+ H̃7[v],

where C2 > C1 � 1 are chosen significantly large, but are independent of λ, and Ẽ7[v]
∣∣∣T
0
+ H̃7[v] is controlled by

CRin,φ

(
‖∂u‖2L∞L2 + δ log(2 + T )‖u‖2LE1

)
.

An application of Cauchy’s inequality and conjugating back to our original coordinates now yields Proposition 5.3 in

this regime. This completes the proof of Proposition 5.3.
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We are now able to prove Theorem 5.1.

Proof of Theorem 5.1. We prove Theorem 5.1 by combining Proposition 5.2 and Proposition 5.3. We fix Rin sufficiently

large so that Proposition 5.3 holds for u supported in {r ≤ Rin} and Proposition 5.2 holds for u supported in

{r ≥ Rin/4}. We define φin from Proposition 5.3 by integrating φ′in beginning at Rin/2 and φout from Proposition

5.2 by integrating φ′out also beginning at Rin/2. Further, we ensure φ′out > φ′in for Rin/4 ≤ r ≤ Rin by multiplying

φ′out by an appropriate constant if needed. Observe this ensures φout > φin for Rin/2 < φ ≤ Rin and φin > φout for

Rin/4 ≤ r < Rin/2. To be precise, we define φout(r) = C
∫ r

Rin/2
φ′out(log(u)) du and φin(r) =

∫ r

Rin/2
φ′in(u) du.

Here φ′out and φ′in are as in Appendix B.

Applying Proposition 5.3 to χRin/2(|x|)u and Proposition 5.2 to (1− χRin/4)(|x|)u yields Theorem 5.1 provided

we can bound the following commutator terms: ‖eφin [Ph, χRin/2(|x|)]u‖2L2L2 and ‖eφout [Ph, χRin/4(|x|)]u‖2L2L2 .

We control the first term via:

‖eφin [Ph, χRin/2(|x|)]u‖2L2L2 � R−2
in ‖eφin∂u‖2L2L2

Rin/2
+R−4

in ‖eφinu‖2L2L2
Rin/2

.

Both of these terms are supported where Proposition 5.2 holds and φout > φin. Hence, they can be absorbed into the

left-hand side of Proposition 5.2 using the largeness of φ′ and φ′′ in this regime.

The bound for ‖eφout [Ph, χRin/4(|x|)]u‖2L2L2 is similar. Indeed,

‖eφout [Ph, χRin/4(|x|)]u‖2L2L2 � R−2
in ‖eφout∂u‖2L2L2

Rin/4
+R−4

in ‖eφoutu‖2L2L2
Rin/4

.

Both of these terms are supported where Proposition 5.3 hold and φin > φout. Hence, they can be absorbed into the

left-hand side of Proposition 5.3 using the largeness of φ′ and φ′′ in this regime. This completes the proof of Theorem

5.1.
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Chapter 6: Low Frequency Analysis

We now turn to developing a local energy estimate that admits an error term that can be absorbed for small time

frequencies. These methods are similar to those developed in [29]. We now state the main theorem of this section.

Theorem 6.1. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in

the sense of (1.6). Fix RAF sufficiently large. Further, fix R1 such that R1 � RAF and fix T > 0. Suppose

u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ LE∗, with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3) × C1(R3)

such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Then

‖u‖2LE1 � ‖∂u‖2L∞L2 + CR1

(
‖Phu‖2LE∗ + ‖∂tu‖2LE1

<R1

)
+ δ log(2 + T )‖u‖2LE1 .(6.1)

Here the implicit constant is independent of T and δ.

We prove Theorem 6.1 by utilizing a series of reductions based on the properties of the fundamental solution to

Poisson’s equation. Throughout the rest of this section, we will make use of the results found in the low frequency

section of [29, Section 6], often directly expositing their results. The next lemma is a restatement of a lemma found in

[29].

Lemma 6.1 ([29, Lemma 6.4]). For |s| = 0, 1, 2, we have the following estimates for Ds
xΔ

−1:

(6.2) ‖〈x〉−1
u‖LE � ‖Δu‖LE∗

(6.3) ‖〈x〉−2+|s|
Ds

xu‖LE∗ � ‖Δu‖LE∗ |s| = 1, 2

(6.4) ‖〈x〉|s|Ds
xu‖LE � ‖〈x〉Δu‖LE∗ |s| = 0, 1, 2.

Proof. We will prove (6.3) for |s| = 1 since the other proofs are very similar. The proof of this lemma hinges on the

decay rate of the fundamental solution to Poisson’s equation. Hence we consider Δu(x) = f(x) and write f =
∑

k fk,

where each fk is supported on a single dyadic region |x| ≈ 2k. This follows from choosing an appropriate partition of
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unity. Let uk denote a solution to Δuk = fk. Appealing to the fundamental solution to Poisson’s equation and the

support of fk, we see

uk(x) =
1

4π

∫
|y|≈2k

1

|x− y|fk(y) dy,

from which it follows

(6.5) |∇uk| ≈
∣∣∣ ∫
|y|≈2k

1

|x− y|2 fk(y) dy
∣∣∣.

We can apply another partition of unity to write each uk as
∑

j ukj , where ukj is supported where |x| ≈ 2j . Now if

k − 1 ≤ j ≤ k + 1, (6.5) can be written as

|∇ukj | ≈
∣∣∣ ∫
|y|≈2k

β0(|x− y|)
|x− y|2 fk(y) dy

∣∣∣,
where β0(|x|) is a cut-off function that is identically 1 for 0 ≤ |x| ≤ 2j+2 and is supported on a slightly fattened

interval. An application of Young’s convolution inequality shows

(6.6) ‖∇ukj‖L2 � ‖β0(|x|)|x|−2‖L1‖fk‖L2 � 2j‖fk‖L2 .

Now if k ≥ j + 2 we find (6.5) becomes

∇ukj ≈ 2−2k

∫
|y|≈2k

1

| x
2k
− 1|2 fk(y) dy � 2−2k

∫
|y|≈2k

fk(y) dy � 2−k/2‖fk‖L2 .

Hence,

(6.7) 2−j/2‖∇ukj‖L2 � 2j2−k/2‖fk‖L2 .

Lastly, for k ≤ j − 2, (6.5) becomes

∇ukj ≈ 2−2j

∫
|y|≈2k

1

|1− y
2j |2

fk(y) dy � 2−2j

∫
|y|≈2k

fk(y) dy � 2−2j23k/2‖fk‖L2 .

Hence,

(6.8) 2−j/2‖∇ukj‖L2 � 2−j23k/2‖fk‖L2 .
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We now must combine our bounds in (6.6), (6.7), and (6.8). We begin by observing

‖〈x〉−1/2∇u‖L2 �
∑
k

∑
j

2−j/2‖∇ukj‖L2

�
∞∑
k=0

k−2∑
j=0

2−j/2‖∇ukj‖L2 +

∞∑
k=0

k+1∑
j=k−1

2−j/2‖∇ukj‖L2

+

∞∑
k=0

∞∑
j=k+2

2−j/2‖∇ukj‖L2 .

We now bound each term in the above equation. For the first term, we apply (6.7) to see

∞∑
k=0

k−2∑
j=0

2−j/2‖∇ukj‖L2 �
∞∑
k=0

k−2∑
j=0

2j2−k/2‖fk‖L2 ≤
∞∑
k=0

2−k/2(2k−1 − 1)‖fk‖L2 � ‖f‖LE∗ .

For the second term, we use (6.6) to observe

∞∑
k=0

k+1∑
j=k−1

2−j/2‖∇ukj‖L2 �
∞∑
k=0

k+1∑
j=k−1

2j/2‖fk‖L2 ≈
∞∑
k=0

2k/2‖fk‖L2 ≈ ‖f‖LE∗ .

For the third term, an application of (6.8) yields the desired bound and completes the proof:

∞∑
k=0

∞∑
j=k+2

2−j/2‖∇ukj‖L2 �
∞∑
k=0

∞∑
j=k+2

2−j23k/2‖fk‖L2 =

∞∑
k=0

2−2−k23k/2‖fk‖L2 � ‖f‖LE∗ .

Our next lemma is essentially a restatement of a result from [29] applied to a “zero frequency” version of our

operator Ph. The operator Ph,0 is obtained from Ph by setting instances of Dt = 0. Specifically, we will investigate the

operator:

(6.9) Ph,0 = Dig
ijDj + hijDiDj ,

where Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in the sense

of (1.6). Further hij is symmetric and sufficiently small in the sense that (1.11) holds for some δ > 0 sufficiently small.

Lemma 6.2. Let Ph,0 be as in (6.9), where hij is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in

the sense of (1.6). Fix RAF sufficiently large. Further, fix R1 such that R1 � RAF and fix T > 0. Suppose

63



u(t, x) ∈ C2([0, T ]× R
3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Then

(6.10) ‖〈x〉u‖LE1 � ‖〈x〉Ph,0u‖LE∗ ,

(6.11) ‖u‖LE1 + ‖〈x〉−1∇xu‖LE∗ � ‖Ph,0u‖LE∗ ,

(6.12) ‖u‖LE1
<R1

+ ‖〈x〉−1∇xu‖LE∗
<R1

� ‖Ph,0u‖LE∗
<R1

+ ‖u‖LE1
R1

.

Proof. This proof is essentially an argument in elliptic regularity and appeals to Lemma 6.1. In fact, if we replace Ph,0

by Δ, then (6.10) and (6.11) immediately follow from Lemma 6.1. Observe, one can write the Laplacian as

−Δ = Ph,0 − g̃ijDiDj − 1

i
∂ig̃

ijDj − hijDiDj ,

where g̃ij = gij − δij .

Now consider an operator P̃h,0 which agrees with Ph,0 for r > RAF and is a small, asymptotically Euclidean

perturbation of � when h = 0. Observe that the Laplacian is related to P̃h,0 via:

(6.13) −Δ = P̃h,0 − φij
2 (x)DiDj − 1

i
φj
1(x)Dj − hijDiDj ,

where ‖φ2‖�1l L∞(Al) + ‖〈x〉φ1‖�1l L∞(Al) < ε � 1. Now (6.10) and (6.11) holds for P̃h,0 as we can directly see via

the triangle inequality and Lemma 6.1:

(6.14) ‖〈x〉Δu‖LE∗ � ‖〈x〉P̃h,0u‖LE∗ + ‖φ2‖�1L∞(Al)‖〈x〉2∂2
xu‖LE + ‖〈x〉φ1‖�1L∞(Al)‖〈x〉∂xu‖LE

+ ‖h‖�1l L∞L∞([0,T ]×Al)‖〈x〉2∂2
xu‖LE .

Here we are using ∂2
x to denote

∑
|μ|=2 ∂

μ
x . By fixing RAF sufficiently large (which forces ε to be small) and δ

sufficiently small, we find φ1, φ2, and h are small enough to absorb the error terms using Lemma 6.1. Indeed, the error

terms are controlled by

‖φ2‖�1L∞‖〈x〉2∂2
xu‖LE + ‖〈x〉φ1‖�1L∞(Al)‖〈x〉∂xu‖LE + ‖h‖�1l L∞L∞([0,T ]×Al)‖〈x〉2∂2

xu‖LE(6.15)

< (ε+ 2δ)‖〈x〉2∂2
xu‖LE + ε‖〈x〉∂xu‖LE

< 2(ε+ δ)‖〈x〉Δu‖LE∗ ,
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where we have applied (6.4) in the last line. We note that the smallness assumption in (1.11) implies

‖h‖L∞L∞([0,T ]×Al) < δ2−l, so that ‖h‖�1l L∞L∞([0,T ]×Al) < 2δ. By choosing ε and δ sufficiently small, these

terms can be bootstrapped into the left-hand side of (6.14). This proves the bound for (6.10) for small perturbations.

The proof for (6.11) is similar.

Now we write u = P̃−1
h,0Ph,0u+ ũ, noting P̃−1

h,0 exists as P̃h,0 is a small perturbation of the Laplacian. Applying

(6.10) and (6.11) for the operator P̃h,0 to P̃−1
h,0Ph,0u, we obtain the desirable bounds:

‖〈x〉P̃−1
h,0Ph,0u‖LE1 � ‖〈x〉Ph,0u‖LE∗

and

‖P̃−1
h,0Ph,0u‖LE1 + ‖〈x〉−1∇xP̃

−1
h,0Ph,0u‖LE∗ � ‖Ph,0u‖LE∗ .

We now obtain similar bounds for ũ. Note that Ph,0ũ solves the following equation:

Ph,0ũ =
(
P̃h,0 − Ph,0

)
P̃−1
h,0Ph,0u

and is supported in {|x| < RAF }. Hence

|Ph,0ũ| � |D2
xP̃

−1
h,0Ph,0u|+RAF 〈x〉−1|DxP̃

−1
h,0Ph,0u|.

An application of (6.3) to P̃h,0 yields

‖Ph,0ũ‖L2 � ‖Ph,0ũ‖LE∗ � ‖D2
xP̃

−1
h,0Ph,0u‖LE∗ +RAF ‖〈x〉−1

DxP̃
−1
h,0Ph,0u‖LE∗(6.16)

� RAF ‖P̃h,0P̃
−1
h,0Ph,0u‖LE∗ ≈ RAF ‖Ph,0u‖LE∗ .

As we allow constants to depend on RAF in this chapter, we will no longer track instances of RAF in the remaining

analysis. Combining the above line with the strict ellipticity assumption on Dig
ijDj , our smallness assumption on h,

and the compact support of Ph,0ũ, we obtain

‖∇xũ‖2L2 �
∫
R3

Ph,0ũũ dx−
∫
R3

hijDiDj ũũ dx

=

∫
R3

χRAF
(|x|)Ph,0ũũ dx−

∫
R3

hij∂j ũ∂iũ dx−
∫
R3

∂ih
ij∂j ũũ dx

� 1

ε̃
‖Ph,0ũ‖2L2 + ε̃‖〈x〉−1

ũ‖2L2 −
∫
R3

hij∂j ũ∂iũ dx−
∫
R3

∂ih
ij∂j ũũ dx

� 1

ε̃
‖Ph,0ũ‖2L2 + ε̃‖〈x〉−1

ũ‖2L2 + ‖h‖L∞L∞‖∇xũ‖2L2 −
∫
R3

∂ih
ij∂j ũũ dx
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� 1

ε̃
‖Ph,0ũ‖2L2 + ε̃‖〈x〉−1

ũ‖2L2 + ‖〈x〉∂≤1h‖L∞L∞‖∇xũ‖2L2

+ ‖〈x〉∂h‖L∞L∞‖〈x〉−1
ũ‖2L2 .

By applying a Hardy inequality (2.4) on the lower order terms and choosing ε̃ and δ sufficiently small to bootstrap

the second, third, and fourth terms on the right-hand side, we obtain the bound:

(6.17) ‖∇xũ‖2L2 � ‖Ph,0ũ‖2L2 � ‖Ph,0u‖2LE∗ .

Note that we have applied (6.16) in the above line. On the compact set |x| < 2RAF , the weights are not important and

so we have shown

(6.18) ‖〈x〉ũ‖LE1
<2RAF

+ ‖∇xũ‖L2 � ‖Ph,0u‖LE∗ .

For larger |x|, we utilize a cut-off function to see

‖P̃h,0(1− χRAF
)(|x|)ũ‖L2 = ‖Ph,0(1− χRAF

)(|x|)ũ‖L2

� ‖Ph,0u‖LE∗ + ‖[Ph,0, (1− χRAF
)(|x|)]ũ‖L2 .

Now

|[Ph,0, (1− χRAF
)(|x|)]ũ| � R−2

AF |χ′′(|x|/RAF )ũ|+R−2
AF |χ′(|x|/RAF )ũ|+R−1

AF |χ′(|x|/RAF )Dxũ|.

Using this computation and a Hardy inequality (2.4), applying (6.10) and (6.11) for P̃h,0, and utilizing the support of

Ph,0ũ and derivatives of χRAF
(|x|), we see

‖〈x〉(1− χRAF
)(|x|)ũ‖LE1 + ‖〈x〉−1

(1− χRAF
)(|x|)∇ũ‖LE∗

� ‖〈x〉P̃h,0(1− χRAF
)(|x|)ũ‖LE∗

� ‖〈x〉(1− χRAF
)(|x|)P̃h,0ũ‖L2 + ‖〈x〉[P̃h,0, (1− χRAF

)]ũ‖L2

� ‖Ph,0ũ‖L2 + ‖∇xũ‖L2

� ‖Ph,0u‖LE∗ .
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Here we have used (6.17) in the last line. Combining the above line with (6.18) yields the bound

‖〈x〉ũ‖LE1 ++‖〈x〉−1∇ũ‖LE∗ � ‖Ph,0u‖LE∗ ,

which completes the proof of (6.10) and (6.11) for the operator Ph,0.

We now prove (6.12) by applying (6.11) to the following function:

(6.19) u1 = χR1
(|x|)u+ r−1(1− χR1

)(|x|)(ru)R1
,

where (ru)R1
is the average of ru over the R1 annulus:

(6.20) (ru)R1
=

1

R3
1

∫
r≈R1

ru dx.

As in [29], by the Poincaré inequality, we have

(6.21) ‖∇(u− r−1(ru)R1
)‖L2

R1
+R−1

1 ‖u− r−1(ru)R1
‖L2

R1
� ‖r−1∇(ru)‖L2

R1
.

A direct computation shows

(6.22) Ph,0u1 = χR1(|x|)Ph,0u+ [Ph,0, χR1(|x|)]
(
u− r−1(ru)R1

)
+ (1− χR1)(|x|) (ru)R1

(Ph,0 −Δ) r−1,

where we have utilized that, away from the origin, Δr−1 = 0 since r−1 is proportional to the fundamental solution to

Laplace’s equation. Now

‖(1− χR1)(|x|) (ru)R1
(Ph,0 −Δ) r−1‖LE∗ � (|||g|||>R1

+ ‖h‖�1l L∞L∞([0,T ]×Al))R
−1
1 |(ru)R1 |.(6.23)

Utilizing this bound, the triangle inequality, and (6.21), we find

(6.24) ‖Ph,0u1‖LE∗ � ‖χR1
(|x|)Ph,0u‖LE∗ +R

−1/2
1 ‖r−1∇(ru)‖L2

R1

+ (|||g|||>R1
+ ‖h‖�1l L∞L∞([0,T ]×Al))R

−1
1 |(ru)R1

|.

67



Observe:

‖u1‖LE1 + ‖〈x〉−1∇u1‖LE∗ � ‖u‖LE1
<R1

+ ‖〈x〉−1∇u‖LE∗
<R1

+R−1
1 |(ru)R1 |.(6.25)

Combining (6.11), (6.24), and (6.25), we find

‖u‖LE1
<R1

+ ‖〈x〉−1∇u‖LE∗
<R1

+R−1
1 |(ru)R1

| � ‖u1‖LE1 + ‖〈x〉−1∇u1‖LE∗

� ‖Ph,0u‖LE∗ +R
−1/2
1 ‖r−1∇(ru)‖L2

R1

+ (|||g|||>R1
+ ‖h‖�1l L∞L∞([0,T ]×Al))R

−1
1 |(ru)R1 |.

By choosing R1 sufficiently large and δ sufficiently small, we can bootstrap

(|||g|||>R1
+ ‖h‖�1l L∞L∞([0,T ]×Al))R

−1
1 |(ru)R1

| into the left-hand side of the above equation. Recognizing

R
−1/2
1 ‖r−1∇(ru)‖L2

R1
≈ ‖u‖LE1

R1
completes the proof of (6.12) and hence the proof of Lemma 6.2.

We now prove Theorem 6.1 and note that all implicit constants are independent of R1 unless explicitly stated.

Proof of Theorem 6.1. There exists an R ∈ [2RAF , R1] such that

(6.26) ‖∇u‖LER
≤ min{‖∇u‖LE2RAF

, ..., ‖∇u‖LER1
}.

Equations (6.26) and (6.12) imply

(6.27) ‖∇u‖LER
� ‖Ph,0‖LE∗

<R1
+

(
log(R1/RAF )

)−1

‖u‖LE1
R1

.

We integrate (6.27) L2 in time to obtain

(6.28) ‖∇u‖LER
� CR1

‖Ph,0‖LE∗
<R1

+
(
log(R1/RAF )

)−1

‖u‖LE1
R1

.

Similarly, we integrate (6.12) L2 in time to find

(6.29) ‖〈x〉−1
u‖LE<R1

+ ‖∇xu‖LE<R1
� ‖Ph,0u‖LE∗

<R1
+ ‖u‖LE1

R1
.

By our exterior estimate (3.23), we have

(6.30) ‖u‖2LE1
>R

� ‖∂u‖2L∞L2 + ‖Phu‖2LE∗ + ‖∂u‖2LER
+ δ log(2 + T )‖u‖2LE1 .
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Combining (6.28), (6.29), and (6.30), we find

‖u‖2LE1 � ‖∂u‖2L∞L2 + ‖∂tu‖2LE<R1
+ ‖Phu‖2LE∗ + CR1‖Ph,0u‖2LE∗

<R1

+
(
log(R1/RAF )

)−1

‖u‖2LE1
R1

+ δ log(2 + T )‖u‖2LE1 .

Choosing R1 sufficiently large to bootstrap
(
log(R1/RAF )

)−1

‖u‖LE1
R1

, we find

‖u‖2LE1 �‖∂u‖2L∞L2 + ‖∂tu‖2LE<R1
+ ‖Phu‖2LE∗ + CR1‖Ph,0u‖2LE∗

<R1

+ δ log(2 + T )‖u‖2LE1 .

Recognizing that Ph = Ph,0 −D2
t + 2h0jDtDj + h00D2

t , upon applying the triangle inequality, we obtain

‖u‖2LE1 �‖∂u‖2L∞L2 + CR1

(
‖∂tu‖2LE1

<R1

+ ‖Phu‖2LE∗

)
+ δ log(2 + T )‖u‖2LE1 ,

which completes the proof of Theorem 6.1.
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Chapter 7: Proof of Theorem 1.1

We are now in a position to prove our main local energy estimate, Theorem 1.1, by piecing together our high

frequency, medium frequency, and low frequency estimates: Theorem 4.2, Corollary 5.1, and Theorem 6.1, respectively

and then applying our uniform energy bound Proposition 2.2. Fix 0 < τlow �R1
1 sufficiently small such that for u

with time frequency support {|τ | ≤ τlow}, we can absorb the error term in Theorem 6.1: CR1‖∂tu‖2LE1
<R1

into the

‖u‖2LE1 term on the left-hand side of (6.1). Similarly, fix τhigh �R1
1 such that for u with time frequency support

{|τ | ≥ τhigh}, the error term ‖u‖2
L2L2

<2R1

can be absorbed into the ‖u‖2LE1 term on the left-hand side of (4.19). Recall

Corollary 5.1 implies Theorem 1.1 for u with any bounded time-frequency support away from 0. So this estimate fills

the gap between Theorem 6.1 and Theorem 4.2.

Now we write u = Ql(|Dt|)u + Qm(|Dt|)u + Qh(|Dt|)u, where Ql(|Dt|) = χτlow/2(|Dt|), Qh = (1 −
χτhigh

)(|Dt|), and Qm(|Dt|) = 1−Ql(|Dt|)−Qh(|Dt|). Here χ is the cut-off function in (1.10) and “h” stands for

high,“m” for medium, and “l” for low. We estimate Qlu with Theorem 6.1, Qmu with Corollary 5.1, and Qhu with

Theorem 4.2, absorbing the errors as described above. So, we have shown

‖u‖LE1 ≤
∑

i=l,m,h

‖Qiu‖LE1

�
∑

i=l,m,h

(
‖Qi∂u‖L∞L2 + δ1/2 log1/2(2 + T )‖Qiu‖LE1 + ‖PhQiu‖LE∗

)
+

3∑
i=1

‖[Ph, Qi]u‖LE∗

� ‖∂u‖L∞L2 + δ1/2 log1/2(2 + T )‖u‖LE1 + ‖Phu‖LE∗ +
∑

i=l,m,h

‖[Ph, Qi]u‖LE∗

� ‖∂u‖L∞L2 + δ log(2 + T )‖u‖LE1 + ‖Phu‖LE∗ +
∑

i=l,m,h

‖[Ph, Qi]u‖LE∗ ,

where we have applied Young’s convolution inequality in the second to last line and Cauchy’s inequality in the last line.

So if we can show

(7.1)
∑

i=l,m,h

‖[Ph, Qi]u‖LE∗ � ‖∂u‖L∞L2 + δ log(2 + T )‖u‖LE1 + ‖Phu‖LE∗ ,

an application of Proposition 2.2 completes the proof of Theorem 1.1. Indeed, the following stronger bound holds,

which immediately implies (7.1).
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Lemma 7.1. Let Ph be as in (1.2), where hαβ is symmetric and satisfies (1.11) for some δ > 0 sufficiently small.

Further Dig
ijDj is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in

the sense of (1.6). Fix T > 0. Suppose u(t, x) ∈ C2([0, T ] × R
3) solves Phu = F ∈ LE∗, with initial data

(u, ∂tu)(0, ·) = (f1, f2) ∈ C2(R3)× C1(R3) such that |∂≤2u(t, x)| → 0 as |x| → ∞ for all t ∈ [0, T ]. Then

(7.2) ‖[Ph, Qi]u‖LE∗ � δ
(‖Phu‖LE∗ + ‖∂u‖L∞L2 + log(2 + T )‖u‖LE1

)
,

where i is a place holder for l,m, h and Qi is as above. Here the implicit constant is independent of T and δ.

Proof. As g is stationary and the exact support of each Qi is unimportant for the proof, we need only demonstrate the

bound

(7.3) ‖[hαβDαDβ , Q≤1]u‖LE∗ � δ
(‖Phu‖LE∗ + ‖∂u‖L∞L2 + log(2 + T )‖u‖LE1

)
,

where Q≤1 = χ(|Dt|). We will estimate each term ‖hαβDαDβQ≤1u‖LE∗ and ‖Q≤1h
αβDαDβu‖LE∗ separately.

We begin by estimating ‖hαβDαDβQ≤1u‖LE∗ , first working with the h00D2
t term. We see

‖h00D2
tQ≤1u‖LE∗ � ‖∂2

tQ≤1u‖LE

log(2+T )∑
l=0

‖〈x〉h‖L∞L∞([0,T ]×Al)(7.4)

+ ‖〈x〉h‖1/2�∞l L∞L∞([0,T ]×Al)
‖∂2

tQ≤1u‖L2L2

∞∑
l=log(2+T )

‖h‖1/2L∞L∞([0,T ]×Al)

� ‖u‖LE1

log(2+T )∑
l=0

‖〈x〉h‖L∞L∞([0,T ]×Al)

+ ‖〈x〉h‖1/2�∞l L∞L∞([0,T ]×Al)
‖∂tu‖L2L2

∞∑
l=log(2+T )

‖h‖1/2L∞L∞([0,T ]×Al)

� δ log(2 + T )‖u‖LE1

+ T 1/2‖〈x〉h‖1/2�∞l L∞L∞([0,T ]×Al)
‖∂u‖L∞L2

∞∑
l=log(2+T )

‖h‖1/2L∞L∞([0,T ]×Al)
.

Now (1.11) implies ‖∂≤1h‖L∞L∞([0,T ]×Al) � 2−lδ, and so

T 1/2
∞∑

l=log(2+T )

‖∂≤1h‖1/2L∞L∞([0,T ]×Al)
� δ1/2T 1/2

∑
l=log(2+T )

√
2−l � δ1/2.
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Therefore

‖〈x〉h‖1/2�∞l L∞L∞([0,T ]×Al)
‖∂u‖L∞L2T 1/2

∞∑
l=log(2+T )

‖∂≤1h‖1/2L∞L∞([0,T ]×Al)
� δ‖∂u‖L∞L2 ,

and so we have shown

‖h00D2
tQ≤1u‖LE∗ � δ log(2 + T )‖u‖LE1 + δ‖∂u‖L∞L2 .

A nearly identical analysis demonstrates

2‖h0jDtDjQ≤1u‖LE∗ � δ log(2 + T )‖u‖LE1 + δ‖∂u‖L∞L2 .

Before investigating ‖hijDiDjQ≤1u‖LE∗ , we consider ‖Q≤1h
00D2

t ‖LE∗ and ‖Q≤1h
0jDtDj‖LE∗ . We begin

with ‖Q≤1h
00D2

t u‖LE∗ and write Q≤1h
00D2

t = Q≤1Dth
00Dt + iQ≤1∂th

00Dt to see

‖Q≤1h
00D2

t u‖LE∗ ≤ ‖Q≤1Dth
00Dtu‖LE∗ + ‖Q≤1∂th

00Dtu‖LE∗(7.5)

� ‖h00∂tu‖LE∗ + ‖∂th00∂tu‖LE∗

� ‖u‖LE1

log(2+T )∑
l=0

‖〈x〉∂≤1h‖L∞L∞([0,T ]×Al)

+ ‖〈x〉∂≤1h‖1/2�∞l L∞L∞([0,T ]×Al)
‖∂u‖L∞L2T 1/2

∞∑
l=log(2+T )

‖∂≤1h‖1/2L∞L∞([0,T ]×Al)

� δ log(2 + T )‖u‖LE1 + δ‖∂u‖L∞L2 .

A nearly identical analysis shows

‖Q≤1h
0jDtDju‖LE∗ � δ log(2 + T )‖u‖LE1 + δ‖∂u‖L∞L2 .

We now turn to bounding terms with spatial derivatives only. We begin by investigating ‖hijDiDjQ≤1u‖LE∗

and first consider a single dyadic interval. To simplify notation, we set v = β(|x|/2l)Q≤1u, where β(|x|) is a cut-off

function that is identically 1 for 1 ≤ |x| ≤ 2 and 0 for |x| ≥ 4 or |x| ≤ 1/2. It suffices to bound:

∫ T

0

∫
R3

2l|h|2(∂2
xv)

2 dxdt,
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where ∂2
x =

∑
|μ|=2 ∂

μ
x . Using that Dig

ijDj is strictly elliptic and integrating by parts, we find

∫ T

0

∫
R3

2l|h|2(∂2
xv)

2 dxdt �
∫ T

0

∫
R3

2l|h|2gij∂j∂xv∂i∂xv dxdt(7.6)

≤ −
∫ T

0

∫
R3

2l|h|2∂xgij∂jv∂i∂xv dxdt

+ 2

∫ T

0

∫
R3

2l|∂h|h||gij∂jv∂i∂xv| dxdt

−
∫ T

0

∫
R3

2l|h|2gij∂jv∂i∂2
xv dxdt.

Integrating by parts, we see (7.6) can be controlled by

(7.7) −
∫ T

0

∫
R3

2l|h|2∂xgij∂jv∂i∂xv dxdt+ 2

∫ T

0

∫
R3

2l|∂h||h||gij∂jv∂i∂xv| dxdt

+ 2

∫ T

0

∫
R3

2l|∂h||h||gij∂jv∂2
xv| dxdt+

∫ T

0

∫
R3

2l|h|2∂i(gij∂jv)∂2
xv dxdt.

Combining (7.6), (7.7), and applying Cauchy’s inequality, we have shown

(7.8) 2l
∫ T

0

∫
R3

|h|2(∂2
xv)

2 dxdt � 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≤1∂x

(
β(|x|/2l)u))2

dxdt

+ 2l‖h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≤1∂i

(
gij∂j(β(|x|/2l)u)

))2

dxdt.

We will be able to bound the first term on the right-hand side of (7.8) using our prior methods. For the second term,

we introduce the operator Ph via the following:

2l‖h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≤1∂i

(
gij∂j(β(|x|/2l)u)

))2

dxdt(7.9)

�2l‖h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≤1Phβ(|x|/2l)u

)2

dxdt

+2l‖h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≤1D

2
t β(|x|/2l)u

)2

dxdt

+2l‖h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≤1h

00D2
t β(|x|/2l)u

)2

dxdt

+2l‖h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≤1h

0jDtDjβ(|x|/2l)u
)2

dxdt

+2l‖h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≤1h

ijDiDjβ(|x|/2l)u
)2

dxdt.
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Combining (7.8), (7.9), and summing over dyadic regions, we have shown

(7.10) ‖hijDiDjQ≤1u‖LE∗ � δ
(
‖Phu‖LE∗ + ‖∂u‖L∞L2 + log(2 + T )‖u‖LE1

)
+ δ‖Q≤1h

ijDiDju‖LE∗ .

Here we are applying the method used in (7.5) to control the second, third, and fourth terms on the right-hand side of

(7.9). The first term on the right-hand side of (7.8) is controlled by observing

(7.11)
∑
l

2l/2‖∂≤1h‖L∞L∞([0,T ]×Al)‖Q≤1∂x
(
β(|x|/2l)u)‖L2L2

� ‖u‖LE1

log(2+T )∑
l=0

‖〈x〉∂≤1h‖L∞L∞([0,T ]×Al)

+ ‖〈x〉∂≤1h‖1/2�∞l L∞L∞([0,T ]×Al)
‖∂u‖L2L2

∞∑
l=log(2+T )

‖∂≤1h‖1/2L∞L∞([0,T ]×Al)
,

which is nearly identical to terms in (7.4) and so this is controlled via δ log(2 + T )‖u‖LE1 + δ‖∂u‖L∞L2 . Lastly, we

note commuting Ph with the cutoff functions, as in the first term on the right-hand side of (7.9) poses no problems as it

results in terms that are controlled by ‖h‖�1l L∞L∞([0,T ]×Al)‖u‖LE1 � δ‖u‖LE1 .

We now turn to ‖Q≤1h
ijDiDju‖LE∗ and observe by the triangle inequality ‖Q≤1h

ijDiDju‖LE∗

≤ ‖Q≤1h
ijDiDju≥1‖LE∗ + ‖Q≤1h

ijDiDju≤1‖LE∗ . Here u≤1 = Q≤1u and u≥1 = (1−Q≤1)u. By Plancherel’s

Theorem, we have already controlled ‖Q≤1h
ijDiDju≤1‖LE∗ in (7.10). Therefore it suffices to bound

‖Q≤1h
ijDiDju≥1‖LE∗ . We demonstrate the following bound:

(7.12) ‖Q≤1h
ijDiDju≥1‖LE∗ � δ

(
‖Phu‖LE∗ + ‖∂u‖L∞L2 + log(2 + T )‖u‖LE1

)
+ δ‖hijDiDju≤1‖LE∗ .

We first observe

F(
Q≤1h

ij∂i∂ju≥1

)
(τ) =

∫ ∞

−∞
χ(|τ |)ĥij(s)∂i∂j û≥1(τ − s) ds(7.13)

=

∫ ∞

−∞
χ(|τ |)ĥij(s)∂i∂j

τ − s

τ − s
û≥1(τ − s) ds

=

∫ ∞

−∞
τχ(|τ |)ĥij(s)∂i∂j

1

τ − s
û≥1(τ − s) ds

−
∫ ∞

−∞
χ(|τ |)sĥij(s)∂i∂j

1

τ − s
û≥1(τ − s) ds.

By Plancherel’s theorem and the triangle inequality, we have shown

‖Q≤1h
ij∂i∂ju≥1‖LE∗ � ‖|∂≤1h|∂2

x(|Dt|−1u≥1)‖LE∗ .(7.14)
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We begin by working on a single dyadic annulus. We set w = |Dt|−1β(|x|/2l)u≥1 and proceed nearly identically

to the work in (7.6) and (7.7) to obtain the analog of (7.8):

(7.15) 2l
∫ T

0

∫
R3

|∂≤1h|2(∂2
xw)

2 dxdt

� 2l‖∂≤2h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1∂x

(
β(|x|/2l)u))2

dxdt

+ 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1∂i

(
gij∂j(β(|x|/2l)u)

))2

dxdt.

We will be able to bound the first term on the right-hand side of (7.15) using our prior methods. For the second term,

we introduce the operator Ph via the following:

2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1∂i

(
gij∂j(β(|x|/2l)u)

))2

dxdt(7.16)

�2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1Phβ(|x|/2l)u

)2

dxdt

+2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1D2

t β(|x|/2l)u
)2

dxdt

+2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1h00D2

t β(|x|/2l)u
)2

dxdt

+2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1h0jDtDjβ(|x|/2l)u

)2

dxdt

+2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1hijDiDjβ(|x|/2l)u

)2

dxdt.

Writing h00D2
t + h0jDtDj as Dth

00Dt +Dth
0jDj + i∂th

00Dt + i∂th
0jDj , we find (7.16) is controlled by

(7.17) 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Phβ(|x|/2l)u

)2

dxdt

+ 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
β(|x|/2l)∂tu

)2

dxdt

+ 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
|∂≤1h|∂(β(|x|/2l)u))2

dxdt

+ 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1hijDiDjβ(|x|/2l)u

)2

dxdt.

For the last term in (7.17), we use the triangle inequality to bound this by
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2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1hijDiDjβ(|x|/2l)u

)2

dxdt(7.18)

� 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
hij∂i∂j

(
β(|x|/2l)u≤1

))2

dxdt

+ 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
Q≥1|Dt|−1hij∂i∂j

(
β(|x|/2l)u≥1

))2

dxdt

� 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
hij∂i∂j

(
β(|x|/2l)u≤1

))2

dxdt

+ 2l‖∂≤1h‖2L∞L∞([0,T ]×Al)

∫ T

0

∫
R3

(
|∂≤1h|∂2

x

(
β(|x|/2l)|Dt|−1u≥1

))2

dxdt,

where we have used work similar to that in (7.13) in the last line. Specifically, setting v≥1 = β(|x|/2l)u≥1, we have

used

F(
Q≥1|Dt|−1hij∂i∂jv≥1

)
(τ) =

∫ ∞

−∞
(1− χ(|τ |))|τ |−1ĥij(s)∂i∂j v̂≥1(τ − s) ds

=

∫ ∞

−∞
(1− χ(|τ |))|τ |−1ĥij(s)∂i∂j

τ − s

τ − s
v̂≥1(τ − s) ds

=

∫ ∞

−∞
(1− χ(|τ |))|τ |−1τ ĥij(s)∂i∂j

1

τ − s
v̂≥1(τ − s) ds

−
∫ ∞

−∞
(1− χ(|τ |))|τ |−1sĥij(s)∂i∂j

1

τ − s
v̂≥1(τ − s) ds,

combined with Plancherel’s Theorem.

Combining (7.14), (7.15), (7.16), (7.17), (7.18), summing over dyadic regions, and utilizing work leading to the

bound in (7.10), we have shown

‖Q≤1h
ijDiDju≥1‖LE∗ � δ

(
‖Phu‖LE∗ + ‖∂u‖L∞L2 + log(2 + T )‖u‖LE1

)
+ δ‖hijDiDju≤1‖LE∗ .

Specifically, we control the first term on the right-hand side of (7.15) as well as the second and third terms on the

right-hand side of (7.17) via the work in (7.11). We have chosen δ sufficiently small to absorb the last term on the

right-hand side of (7.18) into the left-hand side of (7.15).

Combining (7.10) and (7.12) completes the proof of Lemma 7.1.

76



Chapter 8: Energy Estimates and Vector Fields

In this chapter, we record several lemmas describing energy estimates with vector fields applied to our solution u to

Phu = F . These are rooted in the work of [15]. We begin with a local energy estimate involving the generators of

translations applied to u.

Lemma 8.1. Let Ph be as in (1.2), where hαβ is smooth, symmetric, and satisfies (1.11) for some δ > 0 sufficiently

small. Further Dig
ijDj is smooth, symmetric, stationary, strictly elliptic in the sense of (1.4), and can be written as

in (1.15) where gr, gω, and gijsr satisfy (1.16). Fix T > 0. Suppose u(t, x) ∈ C∞([0, T ] × R
3) solves Phu = F ∈

C∞([0, T ] × R
3) ∩ LE∗, with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C∞(R3) × C∞(R3) such that u vanishes for

large |x| for all t ∈ [0, T ]. Then for fixed N = 0, 1, 2, ...15:

(8.1)
∑
|μ|≤N

‖∂μu‖2LE1 +
∑
|μ|≤N

‖∂μ∂u‖2L∞L2 �
∑
|μ|≤N

‖∂μ∂u(0)‖2L2 +
∑
k≤N

‖∂k
t Phu‖2LE∗

+
∑
k≤N

‖[hαβ∂α∂β , ∂
k
t ]u‖2LE∗ +

∑
|μ|≤N

δ2 log2(2 + T )‖∂μu‖2LE1

+
∑

|μ|≤N−1

‖∂μPgu‖2LE +
∑

|μ|≤N−1

‖∂μPgu‖2L∞L2 .

Here the implicit constant is independent of T and δ.

We first show the following bound:

(8.2)
∑
|μ|≤N

‖∂μ∂u‖2LE1 +
∑
|μ|≤N

‖∂μ∂u‖2L∞L2 �
∑
k≤N

‖∂k
t ∂u(0, ·)‖2L2 +

∑
k≤N

‖Ph∂
k
t u‖2LE∗

+
∑
|μ|≤N

δ2 log2(2 + T )‖∂μu‖2LE1 +
∑

|μ|≤N−1

‖Pg∂
μu‖2L∞L2 +

∑
μ≤N−1

‖Pg∂
μu‖2LE

via an induction argument.

Proof of (8.2). Observe (8.2) follows immediately when ∂μ is replaced by ∂k
t (all derivatives are taken with respect to

time), by applying Theorem 1.1 to ∂k
t u. We now use an induction argument to complete the bound. Observe the case

N = 0 follows from Theorem 1.1. Assume (8.2) holds when N is replaced by N − 1. We show that this implies (8.2)

for a full N derivatives applied to u.
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Observe

(8.3)
∑
|μ|≤N

‖∂μ∂u‖2L∞L2 +
∑
|μ|≤N

‖∂μu‖2LE1 �
∑

|μ|≤N−1

∑
|ν|=2

‖∂μ∇ν
xu‖2L∞L2 +

∑
|μ|≤N−1

∑
|ν|=2

‖∂μ∇ν
xu‖2LE

+
∑

|μ|≤N−1

‖∂μ∂t∂u‖2L∞L2 +
∑

|μ|≤N−1

‖∂μ∂t∂u‖2LE + ‖∂u‖2L∞L2 +
∑

|μ|≤N−1

‖∂μu‖2LE1 .

The bound for the last two terms on the right-hand side of the equation follows from the inductive hypothesis. The

bound for the third and fourth terms on the right-hand side of (8.3) follows by applying the inductive hypothesis to ∂tu.

For the first term on the right-hand side of (8.3), we use the fact that Dig
ijDj is strictly elliptic and integrate by parts to

observe

∫
R3

(∂2
x∂

μu)2 dx �
∫
R3

gij∂j∂x∂
μu∂i∂x∂

μu dx

= −
∫
R3

(Pg∂
μu)∂μ∂2

xu dx+

∫ T

0

∫
R3

∂μ∂2
t u∂

μ∂2
xu dxdt

−
∫ T

0

∫
R3

∂xg
ij∂j∂

μu∂i∂
μ∂xu dxdt

� 1

ε
‖Pg∂

μu‖2L2 + ε‖∂2
x∂

μu‖2L2 +
1

ε
‖∂μ∂2

t u‖2L2 +
1

ε
‖∂μ∂u‖2L2 .

Here ∂2
x =

∑
|μ|=2 ∂

μ
x . We choose ε > 0 sufficiently small to bootstrap the ε‖∂2

x∂
μu‖2L2 term into the left-hand side of

the above equation. Therefore, we have shown

∑
|μ|≤N−1

∑
|ν|=2

‖∂μ∇ν
xu‖2L∞L2 �

∑
|μ|≤N−1

‖Pg∂
μu‖2L∞L2 +

∑
|μ|≤N−1

‖∂μ∂2
t u‖2L∞L2 +

∑
|μ|≤N−1

‖∂μ∂u‖2L∞L2 .

The last term on the right-hand side of the above equation is bound using the inductive hypothesis. Similarly, the second

term on the right-hand side of the above equation is bound by applying the inductive hypothesis to ∂tu.

We use a similar argument for the second term on the right-hand side of (8.3). We begin by considering a single

dyadic interval. To simplify notation, we set v = β(|x|/2l)u, where β(|x|) is a cut-off function that is identically 1 for

1 ≤ |x| ≤ 2 and 0 for |x| ≥ 4 or |x| ≤ 1/2. Using that Dig
ijDj is strictly elliptic and integrating by parts, we find

2−l

∫ T

0

∫
R3

(∂2
x∂

μv)2 dxdt � 2−l

∫ T

0

∫
R3

gij∂j∂x∂
μv∂i∂x∂

μv dxdt

= −2−l

∫ T

0

∫
R3

(Pg∂
μv)∂μ∂2

xv dxdt+ 2−l

∫ T

0

∫
R3

∂μ∂2
t v∂

μ∂2
xv dxdt

− 2−l

∫ T

0

∫
R3

∂xg
ij∂j∂

μv∂i∂
μ∂xv dxdt
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� 1

ε
2−l‖Pg∂

μv‖2L2L2 + ε2−l‖∂2
x∂

μv‖2L2L2 +
1

ε
2−l‖∂μ∂2

t v‖2L2L2

+
1

ε
2−l‖∂μ∂v‖2L2L2 .

We choose ε > 0 small enough to absorb the error term ε2−l‖∂2
x∂

μv‖2L2 into the left-hand side of the above equation.

Commuting with our cut-off function, β, we have shown

∑
|μ|≤N−1

∑
|ν|=2

‖∂μ∇ν
xu‖2LE �

∑
|μ|≤N−1

‖Pg∂
μv‖2LE +

∑
|μ|≤N−1

‖∂μ∂2
t u‖2LE +

∑
|μ|≤N−1

‖∂μu‖2LE1 .

The third term on the right hand side of the above equation is controlled using the inductive hypothesis and the second

term is controlled by applying the inductive hypothesis to ∂tu. We have therefore demonstrated (8.2).

Proof of Lemma 8.1. We now obtain (8.1) with another induction argument. Equation (8.1) holds when N = 0 from

Theorem 1.1. Now assume (8.1) is true when N is replaced by N − 1. We will show that this implies the bound for

N . Applying Cauchy’s inequality and the triangle inequality to the following terms on the right-hand side of (8.2)

demonstrates

∑
k≤N

‖Ph∂
k
t u‖2LE∗ +

∑
|μ|≤N−1

‖Pg∂
μu‖2LE +

∑
|μ|≤N−1

‖Pg∂
μu‖2L∞L2

�
∑
k≤N

‖∂k
t Phu‖2LE∗ +

∑
k≤N

‖[hαβ∂α∂β , ∂
k
t ]u‖2LE∗ +

∑
|μ|≤N−1

‖∂μPgu‖2LE +
∑

|μ|≤N−1

‖∂μPgu‖2L∞L2

+
∑

|μ|≤N−1

‖[Pg, ∂
μ]u‖2LE +

∑
|μ|≤N−1

‖[Pg, ∂
μ]u‖2L∞L2 .

Observe

∑
|μ|≤N−1

‖[Pg, ∂
μ]u‖2LE +

∑
|μ|≤N−1

‖[Pg, ∂
μ]u‖2L∞L2 �

∑
|μ|≤N−1

‖∂μ∂u‖2LE +
∑

|μ|≤N−1

‖∂μ∂u‖2L∞L2 ,

and so these terms are bound via our induction hypothesis. This completes the proof of Lemma 8.1.

We state a second local energy estimate for Zμu, again motivated by the prior work of [15].

Lemma 8.2. Let Ph be as in (1.2), where hαβ is smooth, symmetric, and satisfies (1.11) for δ > 0 sufficiently small.

Further Dig
ijDj is smooth, symmetric, stationary, strictly elliptic in the sense of (1.4), and can be written as in

(1.15) where gr, gω, and gijsr satisfy (1.16). Fix T > 0. Suppose u(t, x) ∈ C∞([0, T ] × R
3) solves Phu = F ∈

C∞([0, T ] × R
3) ∩ LE∗, with initial data (u, ∂tu)(0, ·) = (f1, f2) ∈ C∞(R3) × C∞(R3) such that u vanishes for

large |x| for all t ∈ [0, T ]. Then for fixed N = 0, 1, 2, ..., 14:
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(8.4)
∑
|μ|≤N

‖Zμu‖2LE1 +
∑
|μ|≤N

‖Zμ∂u‖2L∞L2 �
∑
|μ|≤N

‖Zμ∂u(0)‖2L2 +
∑
|μ|≤N

‖ZμPhu‖2LE∗

+
∑
|μ|≤N

‖[hαβ∂α∂β , Z
μ]u‖2LE∗ +

∑
|μ|≤N

δ2 log2(2 + T )‖Zμu‖2LE1

+
∑

|μ|≤N−1

‖ZμPgu‖2LE +
∑

|μ|≤N−1

‖ZμPgu‖2L∞L2 .

Here the implicit constant is independent of T and δ.

Proof. This lemma follows from Lemma 8.1 if Zμ = ∂μ. We now assume (8.4) holds for Zμ = ∂γΩν−1 and show

that (8.4) still holds for Zμ = ∂γΩν . We are using multi-index notation for μ, γ, and ν. We can consider this operator

ordering since [∂k, xi∂j − xj∂j ] = δik∂j − δjk∂i. To be precise Zμ = ∂γΩν denotes
∑
|γ|+|ν|=|μ| ∂

γΩν , while

Zμ = ∂γΩν−1 denotes
∑
|γ|+|ν−1|=|μ|, |γ|≤|μ| ∂

γΩν . Applying Lemma 8.1 to ∂γΩνu, we find

‖∂γΩνu‖2LE1 + ‖∂γΩν∂u‖2L∞L2 �
∑

|μ|≤|γ|+|ν|
‖Zμ∂u(0)‖2L2 +

∑
k≤|γ|

‖∂k
t PhΩ

νu‖2LE∗

+
∑
k≤|γ|

‖[hαβ∂α∂β , ∂
k
t ]Ω

νu‖2LE∗ +
∑

|μ|≤|γ|+|ν|
δ2 log2(2 + T )‖Zμu‖2LE1

+
∑

|μ|≤|γ|−1

‖∂μPgΩ
νu‖2LE +

∑
|μ|≤|γ|−1

‖∂μPgΩ
νu‖2L∞L2 .

Utilizing the long-range spherical symmetry assumption on Dig
ijDj in (1.15) and recognizing

[Ph,Ω
ν ] = [hαβ∂α∂β ,Ω

ν ] + [Dig
ij
srDj ,Ω

ν ], we find

‖∂γΩνu‖2LE1 + ‖∂γΩν∂u‖2L∞L2 �
∑

|μ|≤|γ|+|ν|
‖Zμ∂u(0)‖2L2 +

∑
|μ|≤|γ|+|ν|

‖ZμPhu‖2LE∗

+
∑

|μ|≤|γ|+|ν|
‖[hαβ∂α∂β , Z

μ]u‖2LE∗ +
∑

|μ|≤|γ|+|ν|
δ2 log2(2 + T )‖Zμu‖2LE1

+
∑

|μ|≤|γ|+|ν|−1

‖ZμPgu‖2LE +
∑

|μ|≤|γ|+|ν|−1

‖ZμPgu‖2L∞L2 +
∑

|μ|≤|γ|−1

‖∂μ[Dig
ij
srDj ,Ω

ν ]u‖2LE

+
∑

|μ|≤|γ|−1

‖∂μ[Dig
ij
srDj ,Ω

ν ]u‖2L∞L2 +
∑
k≤|γ|

‖∂k
t [Dig

ij
srDj ,Ω

ν ]u‖2LE∗ .

Utilizing the decay properties of gijsr in (1.16), we see the last three terms in the above equation are controlled via
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∑
|μ|≤|γ|−1

‖∂μ[Dig
ij
srDj ,Ω

ν ]u‖2LE +
∑

|μ|≤|γ|−1

‖∂μ[Dig
ij
srDj ,Ω

ν ]u‖2L∞L2 +
∑
k≤|γ|

‖∂k
t [Dig

ij
srDj ,Ω

ν ]u‖2LE∗

�
∑
|μ|≤|γ|

∑
|η|≤|ν|−1

‖∂μΩη∂u‖2LE +
∑
|μ|≤|γ|

∑
|η|≤|ν|−1

‖∂μΩη∂u‖2L∞L2 +
∑
|μ|≤|γ|

∑
|η|≤|ν|−1

‖∂μΩη∂∂tu‖2LE .

The first two terms on the right-hand side of the above equation are bound using the inductive hypothesis. The third

term on the right-hand side of the above equation is also bound by applying the inductive hypothesis to ∂tu. This

completes the proof.
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Chapter 9: Proof of Theorem 1.2

In this chapter, we prove Theorem 1.2 via an iteration argument. Given the energy estimates in the prior chapter,

we can apply the argument of [27], rooted in the previous argument of [15]. We first record a now standard weighted

Sobolev inequality as proved in [19].

Lemma 9.1. Let f(x) ∈ C∞(R3) and fix R > 1. Then

(9.1) ‖f‖L∞({R/2≤|x|≤R}) � R−1
∑

|μ|+|ν|≤2

‖∂μ
xΩ

νf‖L2({R/4≤|x|≤2R}).

Remark. The proof follows by applying Sobolev embeddings on R× S
2.

Remark. A similar bound holds for |x| ≤ 1 by standard Sobolev embeddings.

We set u−1 ≡ 0 and define a sequence uk, k = 0, 1, 2, ... to solve the following linearized problem:

(9.2)

⎧⎪⎪⎨
⎪⎪⎩
Pguk = Q(∂uk−1, ∂

2uk) (t, x) ∈ [0, Tε]× R
3

uk(0, ·) = f1 ∈ C∞(R3), ∂tuk(0, ·) = f2 ∈ C∞(R3),

where f1 and f2 are small in the following sense:

∑
|k|+|γ|≤15

‖∂k
xΩ

γ∇xf1‖L2 +
∑

|k|+|γ|≤15

‖∂k
xΩ

γf2‖L2 ≤ ε.

We now show that a solution to (9.2) satisfies

(9.3)
∑
|μ|≤15

(
‖∂μ∂uk‖L∞L2 + ‖∂μuk‖LE1

)
+

∑
|μ|≤14

(
‖Zμ∂uk‖L∞L2 + ‖Zμuk‖LE1

)
≤ Cε,

for 0 ≤ t ≤ Tε, where Tε is as in (1.20). Here C is a uniform constant in k. We will apply Lemma 8.1 and Lemma 8.2

by setting hαβ = −Bαβ
γ ∂γuk−1. We define

(9.4) Mk(Tε) =
∑
|μ|≤15

(
‖∂μ∂uk‖L∞L2 + ‖∂μuk‖LE1

)
+

∑
|μ|≤14

(
‖Zμ∂uk‖L∞L2 + ‖Zμuk‖LE1

)
,
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where all norms in time are taken over [0, Tε]. Observe by (8.1) and (8.4), M0(Tε) ≤ C0ε, where C0 is the sum of the

implicit constants in (8.1) and (8.4). We will show inductively that for ε < ε0, where ε0 is sufficiently small and κ > 0

is sufficiently small, where κ is as in (1.20), that

(9.5) Mk(Tε) ≤ 10C0ε.

Proof of (9.5). Applying (8.1) and (8.4) with δ = C1ε, we see

(9.6) Mk(Tε) ≤ C0ε+ C0

( ∑
j≤15

‖∂j
tPhuk‖2LE∗ +

∑
|μ|≤14

‖ZμPhuk‖2LE∗ +
∑
j≤15

‖[hαβ∂α∂β , ∂
j
t ]uk‖LE∗

+
∑
|μ|≤14

‖[hαβ∂α∂β , Z
μ]uk‖LE∗ +

∑
|μ|≤14

‖∂μPguk‖LE +
∑
|μ|≤14

‖∂μPguk‖L∞L2

+
∑
|μ|≤13

‖ZμPguk‖LE +
∑
|μ|≤13

‖ZμPguk‖L∞L2

)

+
∑
|μ|≤15

C2
1ε

2 log2(2 + Tε)‖∂μuk‖LE1 +
∑
|μ|≤14

C2
1ε

2 log2(2 + Tε)‖Zμuk‖LE1 .

It is permissible to take δ = C1ε by our inductive hypothesis and (9.1). Indeed, for 0 ≤ t ≤ Tε,

‖〈x〉∂≤2h‖L∞L∞([0,T ]×Al) ≈ ‖〈x〉∂≤2∂uk−1‖L∞L∞([0,T ]×Al) �
∑

|μ|+|ν|≤4

‖∂μ
xΩ

ν∂uk−1‖L∞L2([0,T ]×Ãl)
,

where we have applied (9.1) and Ãl denotes a slightly fattened dyadic annulus. Hence,

‖〈x〉∂≤2h‖�∞l L∞L∞([0,T ]×Al) � Mk−1(Tε) ≤ C1ε,

where C1 is a constant that depends on C0, the implicit constant in (9.1), and the collection of constants in Bαβ
γ .

Observe that

(9.7)
∑
|μ|≤15

(
|∂μPhuk|+ |[∂μ, hαβ∂α∂β ]uk|

)
�

∑
|μ|≤7

|∂μ∂uk−1|
∑
|ν|≤15

|∂ν∂uk|

+
∑
|μ|≤8

|∂μ∂uk|
∑
|ν|≤15

|∂ν∂uk−1|+
∑
|μ|≤7

|∂μ∂uk−1|
∑
|ν|≤15

|∂ν∂uk−1|

and
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(9.8)
∑
|μ|≤14

(
|ZμPhuk|+ |[Zμ, hαβ∂α∂β ]uk|

)
�

∑
|μ|≤7

|Zμ∂uk−1|
∑
|ν|≤14

|Zν∂uk|

+
∑
|μ|≤8

|Zμ∂uk|
∑
|ν|≤14

|Zν∂uk−1|+
∑
|μ|≤7

|Zμ∂uk−1|
∑
|ν|≤14

|Zν∂uk−1|.

Therefore the second, third, fourth, and fifth terms on the right-hand side of (9.6) are controlled by the following:

∑
j≤15

‖∂j
tPhuk‖LE∗ +

∑
|μ|≤14

‖ZμPhuk‖LE∗ +
∑
j≤15

‖[hαβ∂α∂β , ∂
j
t ]uk‖LE∗ +

∑
|μ|≤14

‖[hαβ∂α∂β , Z
μ]uk‖LE∗

�
∑
l

2l/2
∑
|μ|≤7

‖∂μ∂uk−1‖L∞L∞([0,Tε]×Al)

∑
|ν|≤15

‖∂ν∂uk‖L2L2([0,Tε]×Al)

+
∑
l

2l/2
∑
|μ|≤8

‖∂μ∂uk‖L∞L∞([0,Tε]×Al)

∑
|ν|≤15

‖∂ν∂uk−1‖L2L2([0,Tε]×Al)

+
∑
l

2l/2
∑
|μ|≤7

‖∂μ∂uk−1‖L∞L∞([0,Tε]×Al)

∑
|ν|≤15

‖∂ν∂uk−1‖L2L2([0,Tε]×Al)

∑
l

2l/2
∑
|μ|≤7

‖Zμ∂uk−1‖L∞L∞([0,Tε]×Al)

∑
|ν|≤14

‖Zν∂uk‖L2L2([0,Tε]×Al)

+
∑
l

2l/2
∑
|μ|≤8

‖Zμ∂uk‖L∞L∞([0,Tε]×Al)

∑
|ν|≤14

‖Zν∂uk−1‖L2L2([0,Tε]×Al)

+
∑
l

2l/2
∑
|μ|≤7

‖Zμ∂uk−1‖L∞L∞([0,Tε]×Al)

∑
|ν|≤14

‖Zν∂uk−1‖L2L2([0,Tε]×Al).

Applying (9.1), we find the above is controlled by

∑
l

2−l/2
∑
|μ|≤9

‖Zμ∂uk−1‖L∞L2([0,Tε]×Ãl)

∑
|ν|≤15

‖∂ν∂uk‖L2L2([0,Tε]×Al)

+
∑
l

2−l/2
∑
|μ|≤10

‖Zμ∂uk‖L∞L2([0,Tε]×Ãl)

∑
|ν|≤15

‖∂ν∂uk−1‖L2L2([0,Tε]×Al)

+
∑
l

2−l/2
∑
|μ|≤9

‖Zμ∂uk−1‖L∞L2([0,Tε]×Ãl)

∑
|ν|≤15

‖∂ν∂uk−1‖L2L2([0,Tε]×Al)

+
∑
l

2−l/2
∑
|μ|≤9

‖Zμ∂uk−1‖L∞L2([0,Tε]×Ãl)

∑
|ν|≤14

‖Zν∂uk‖L2L2([0,Tε]×Al)

+
∑
l

2−l/2
∑
|μ|≤10

‖Zμ∂uk‖L∞L2([0,Tε]×Ãl)

∑
|ν|≤14

‖Zν∂uk−1‖L2L2([0,Tε]×Al)

+
∑
l

2−l/2
∑
|μ|≤9

‖Zμ∂uk−1‖L∞L2([0,Tε]×Ãl)

∑
|ν|≤14

‖Zν∂uk−1‖L2L2([0,Tε]×Al),
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where Ãl is a slightly fattened annulus. The above line, in turn, is bounded by

∑
|μ|≤9

‖Zμ∂uk−1‖L∞L2

( ∑
|ν|≤15

log(2 + Tε)‖∂νuk‖LE1 +
∑
|ν|≤15

‖∂νuk‖L∞L2

)

+
∑
|μ|≤10

‖Zμ∂uk‖L∞L2

( ∑
|ν|≤15

log(2 + Tε)‖∂νuk−1‖LE1 +
∑
|ν|≤15

‖∂νuk−1‖L∞L2

)

+
∑
|μ|≤9

‖Zμ∂uk−1‖L∞L2

( ∑
|ν|≤15

log(2 + Tε)‖∂νuk−1‖LE1 +
∑
|ν|≤15

‖∂νuk−1‖L∞L2

)

+
∑
|μ|≤9

‖Zμ∂uk−1‖L∞L2

( ∑
|ν|≤14

log(2 + Tε)‖Zνuk‖LE1 +
∑
|ν|≤14

‖Zνuk‖L∞L2

)

+
∑
|μ|≤10

‖Zμ∂uk‖L∞L2

( ∑
|ν|≤14

log(2 + Tε)‖Zνuk−1‖LE1 +
∑
|ν|≤14

‖Zνuk−1‖L∞L2

)

+
∑
|μ|≤9

‖Zμ∂uk−1‖L∞L2

( ∑
|ν|≤14

log(2 + Tε)‖Zνuk−1‖LE1 +
∑
|ν|≤14

‖Zνuk−1‖L∞L2

)
,

where we have used methods as in (2.3). Using the inductive hypothesis, this is bounded by

(9.9)
(
1 + log(2 + Tε)

)(
εMk(Tε) + ε2

)
.

The sixth, seventh, eighth, and ninth terms in (9.6) are controlled via

∑
|μ|≤14

‖∂μPguk‖LE +
∑
|μ|≤14

‖∂μPguk‖L∞L2 +
∑
|μ|≤13

‖ZμPguk‖LE +
∑
|μ|≤13

‖ZμPguk‖L∞L2

�
∑
|μ|≤14

‖∂μ(∂uk−1)
2‖LE +

∑
|μ|≤14

‖∂μ(∂uk−1)
2‖L∞L2 +

∑
|μ|≤13

‖Zμ(∂uk−1)
2‖LE

+
∑
|μ|≤13

‖Zμ(∂uk−1)
2‖L∞L2 +

∑
|μ|≤14

‖∂μ(∂uk−1∂
2uk)‖LE +

∑
|μ|≤14

‖∂μ(∂uk−1∂
2uk)‖L∞L2

+
∑
|μ|≤13

‖Zμ(∂uk−1∂
2uk)‖LE +

∑
|μ|≤13

‖Zμ(∂uk−1∂
2uk)‖L∞L2 .

Applying nearly identical analysis to bounding the second, third, fourth, and fifth terms, we find that this is controlled

by
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∑
|μ|≤7

‖∂μ∂uk−1‖L∞L∞
( ∑
|ν|≤15

‖∂ν∂uk‖LE +
∑
|ν|≤15

‖∂ν∂uk‖L∞L2

)

+
∑
|μ|≤8

‖∂μ∂uk‖L∞L∞
( ∑
|ν|≤15

‖∂ν∂uk−1‖LE +
∑
|ν|≤15

‖∂ν∂uk−1‖L∞L2

)

+
∑
|μ|≤7

‖∂μ∂uk−1‖L∞L∞
( ∑
|ν|≤15

‖∂ν∂uk−1‖LE +
∑
|ν|≤15

‖∂ν∂uk−1‖L∞L2

)

+
∑
|μ|≤7

‖Zμ∂uk−1‖L∞L∞
( ∑
|ν|≤14

‖Zν∂uk‖LE +
∑
|ν|≤14

‖Zν∂uk‖L∞L2

)

+
∑
|μ|≤8

‖Zμ∂uk‖L∞L∞
( ∑
|ν|≤14

‖Zν∂uk−1‖LE +
∑
|ν|≤14

‖Zν∂uk−1‖L∞L2

)

+
∑
|μ|≤7

‖Zμ∂uk−1‖L∞L∞
( ∑
|ν|≤14

‖Zν∂uk−1‖LE +
∑
|ν|≤14

‖Zν∂uk−1‖L∞L2

)
.

Applying Sobolev embeddings (9.1) and our inductive hypothesis, we find that this is controlled by

(9.10) εMk(Tε) + ε2.

Combing (9.6), (9.9), and (9.10), we have proved the following bound

Mk(Tε) ≤ C0ε+ C2 log(2 + Tε)
(
εMk(Tε) + ε2

)
+ C3

(
εMk(Tε) + ε2

)
+ C2

1ε
2 log2(2 + Tε)Mk(Tε),

where C2 and C3 can depend on C0. Choosing κ� 1 sufficiently small compared to C1, C2, and C3, and then ε > 0

sufficiently small, we obtain (9.5) as desired.

To show that uk converges to a solution of (1.13), we define

(9.11) Ak(Tε) =
∑
|μ|≤14

(
‖∂μ∂(uk − uk−1)‖L∞L2 + ‖∂μ(uk − uk−1)‖LE1

)

+
∑
|μ|≤13

(
‖Zμ∂(uk − uk−1)‖L∞L2 + ‖Zμ(uk − uk−1)‖LE1

)
,

and observe that it suffices to show Ak(Tε) is Cauchy. Specifically, we will prove

(9.12) Ak(Tε) ≤ 1

2
Ak−1(Tε).

Proof of (9.12). This is very similar to the proof of (9.5). We set hαβ = −Bαβ
γ ∂γuk−1 and observe

(9.13) Ph(uk − uk−1) = Q(∂uk−1)−Q(∂uk−2) +Bαβ
γ ∂α∂βuk−1(∂

γuk−1 − ∂γuk−2).
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Applying Lemma 8.1 and Lemma 8.2 to uk − uk−1, one obtains

(9.14) Ak(Tε) �
∑
j≤14

‖∂j
tPh(uk − uk−1)‖LE∗ +

∑
|μ|≤13

‖ZμPh(uk − uk−1)‖LE∗

+
∑
j≤14

‖[hαβ∂α∂β , ∂
j
t ](uk − uk−1)‖LE∗ +

∑
|μ|≤13

‖[hαβ∂α∂β , Z
μ](uk − uk−1)‖LE∗

+
∑
|μ|≤13

‖∂μPg(uk − uk−1)‖LE +
∑
|μ|≤13

‖∂μPg(uk − uk−1)‖L∞L2

+
∑
|μ|≤12

‖ZμPg(uk − uk−1)‖LE +
∑
|μ|≤12

‖ZμPg(uk − uk−1)‖L∞L2

+
∑
|μ|≤14

ε2 log2(2 + Tε)‖∂μ(uk − uk−1)‖LE1 +
∑
|μ|≤13

ε2 log2(2 + Tε)‖Zμ(uk − uk−1)‖LE1 .

Since our nonlinearity is quadratic, we have the following useful bounds:

(9.15)
∑
|μ|≤14

(
|∂μPh(uk − uk−1)|+ |[∂μ, hαβ∂α∂β ](uk − uk−1)|

)

�
∑
|μ|≤7

|∂μ∂uk−1|
∑
|ν|≤14

|∂ν∂(uk − uk−1)|+
∑
|μ|≤14

|∂μ∂uk−1|
∑
|ν|≤7

|∂ν∂(uk − uk−1)|

+
( ∑
|μ|≤8

|∂μ∂uk−1|+
∑
|μ|≤7

|∂μ∂uk−2|
) ∑
|ν|≤14

|∂ν∂(uk−1 − uk−2)|

+
( ∑
|μ|≤15

|∂μ∂uk−1|+
∑
|μ|≤14

|∂μ∂uk−2|
) ∑
|ν|≤7

|∂ν∂(uk−1 − uk−2)|

and

(9.16)
∑
|μ|≤13

(
|ZμPh(uk − uk−1)|+ |[Zμ, hαβ∂α∂β ](uk − uk−1)|

)

�
∑
|μ|≤7

|Zμ∂uk−1|
∑
|ν|≤13

|Zν∂(uk − uk−1)|+
∑
|μ|≤13

|Zμ∂uk−1|
∑
|ν|≤7

|Zν∂(uk − uk−1)|

+
( ∑
|μ|≤8

|Zμ∂uk−1|+
∑
|μ|≤7

|Zμ∂uk−2|
) ∑
|ν|≤13

|Zν∂(uk−1 − uk−2)|

+
( ∑
|μ|≤14

|Zμ∂uk−1|+
∑
|μ|≤13

|Zμ∂uk−2|
) ∑
|ν|≤7

|Zν∂(uk−1 − uk−2)|.
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Hence applying (9.5) and a nearly identical analysis to our bound for (9.6), we find the first four terms on the right-hand

side of (9.14) are controlled by

(9.17) Mk−1(Tε)
(
1 + log(2 + Tε)

)
Ak(Tε) +

(
Mk−1(Tε) +Mk−2(Tε)

)(
1 + log(2 + Tε)

)
Ak−1(Tε).

Similarly, the fifth, sixth, seventh, and eighth terms on the right-hand side of (9.14) are bounded from above by

(9.18) Mk−1(Tε)Ak(Tε) +
(
Mk−1(Tε) +Mk−2(Tε)

)
Ak−1(Tε).

Combining (9.14), (9.17), and (9.18) shows

Ak(Tε) � Mk−1(Tε)
(
1 + log(2 + Tε)

)
Ak(Tε) +

(
Mk−1(Tε) +Mk−2(Tε)

)(
1 + log(2 + Tε)

)
Ak−1(Tε)

+ ε2 log2(2 + T )Ak(Tε).

Utilizing (9.5), defining Tε as in (1.20), fixing κ > 0 sufficiently small compared to our implicit constant, and ε > 0

sufficiently small completes the proof of (9.12).

Proof of uniqueness. To demonstrate uniqueness, let u and v be two solutions to (1.13). We define T1 to be the first

time that u and v differ via T1 = inft{t : |u(t)− v(t)| > 0}. Uniqueness now follows from running a standard local

argument beginning at time T1 [46, Theorem 4.1]. Indeed, if u �= v for t > T1, this will contradict local uniqueness of

solutions.

Proof of smoothness. Smoothness on the interval [0, Tε] is proven similarly. Indeed, we proceed by contradiction and

define T2 to be the first time that u is not smooth via T2 = inft{t : u /∈ C∞([0, Tε]× R
3)}. Smoothness now follows

from running a standard local argument beginning at time T2 [46, Theorem 4.3]. Indeed, if u /∈ C∞([0, Tε]×R
3)} for

t > T2, this will contradict local smoothness of solutions.
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Appendix A: Some Microlocal Analysis

We record some standard definitions and theorems from microlocal analysis. There are many excellent texts on

the subject. We primarily use [10] and [53]. Another excellent reference is [60], although its perspective is that of

semiclassical analysis instead of traditional microlocal analysis.

We begin by defining the standard symbol class Sm for symbols σ(x, ξ) ∈ R
2n:

Definition A.1 Symbol Classes. [53, (1.4)]. The symbol class, Sm, consists of the following elements:

(A.1) Sm = {σ ∈ C∞(R2n) : |Dα
ξ D

β
xσ(x, ξ)| ≤ Cαβ〈ξ〉m−|α|},

where m ∈ R.

Definition A.2 Weyl Quantization. [10, (2.3)]. We use the notation OPSm to denote the operator class corresponding

to the Weyl quantization of symbols σ(x, ξ) ∈ Sm obtained via the formula:

(A.2) σw(x,Dx)u(x) =
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξσ(
x+ y

2
, ξ)u(y) dydξ.

Definition A.3 Kohn-Nirenberg Quantization. [10, (2.31)]. We use σ(x,Dx)KN to denote the operator correspond-

ing to the so-called standard quantization or Kohn-Nirenberg quantization:

(A.3) σ(x,Dx)KNu(x) =
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξσ(x, ξ)u(y) dydξ.

The following formula is a useful way of describing the Kohn-Nirenberg quantization (see [60], (4.1.5)):

(A.4) σ(x,Dx)KNu(x) = F−1a(x, ξ)Fu(x),

where F and F−1 denote the Fourier transform and inverse Fourier transform, respectively. We now list several standard

theorems.

Theorem A.1 (Schwartz Kernel Representation. [53, (2.1)], [10, (2.2)]). To an operator σw(x,Dx) ∈ OPSm, there

corresponds a Schwartz kernel K(x, y) ∈ D′(Rn,Rn) , satisfying

(A.5) 〈v(x)u(y),K(x, y)〉L2 =
1

(2π)n

∫
Rn

∫
Rn

∫
Rn

v(x)ei(x−y)·ξσ(
x+ y

2
, ξ)u(y) dydξdx.
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Therefore K(x, y) is given by the following oscillatory integral (in the sense of distributions)

(A.6) K(x, y) =
1

(2π)n

∫
Rn

ei(x−y)·ξσ(
x+ y

2
, ξ) dξ.

Remark. The above theorem can be found in [10] for the Weyl quantization. The same statement holds for the Kohn-

Nirenberg quantization and can be found in [53]. The results and method of proof are the same for both quantizations.

We note that [53] provides slightly more details and our statement more closely resembles this framework.

We note that the integral kernel defined above has good spatial decay away from the diagonal. In particular, the

following theorem holds:

Theorem A.2 ([10, Theorem 2.53]). Suppose σ ∈ Sm and let K(x, y) be the integral kernel of σw(x,Dx). Then

(x− y)jK(x, y) is of class Ck, and its derivatives of order ≤ k are bounded, provided j > m+ n+ k. In particular,

K(x, y) is C∞ off the diagonal and is rapidly decreasing as x− y →∞.

Remark. Theorem A.2 is also true for the Kohn-Nirenberg quantization. For more on this, see the discussion under

Proposition 5.1 in [53]. The exposition in [53] clarifies the meaning of rapidly decreasing as |x − y| → ∞ via the

following useful estimate:

(A.7) |K(x, y)| ≤ CN |x− y|−N |x− y| ≥ 1,

which is true for each N ∈ N where CN is a positive constant.

Theorem A.3 ([60, Theorem 4.1]). Let σ(x, ξ) ∈ Sm be a real valued symbol. Then, σw(x,Dx) is a self-adjoint

operator.

It is sometimes useful to switch between the Weyl and the Kohn-Nirenberg quantizations. The following theorem

allows us to do so, at the expense of a lower order operator.

Theorem A.4 ([10, Corollary 2.43]). Let σ(x, ξ) ∈ Sm. Then σ(x,Dx)KN − σw(x,Dx) ∈ OPSm−1.

Theorem A.5 ([10, Corollary 2.51]). Let σ1(x, ξ) ∈ Sm1 and σ2(x, ξ) ∈ Sm2 . Then [σw
1 (x, ξ), σ

w
2 (x, ξ)] ∈

OPSm1+m2−1. Note that the same conclusion is true when considering the Kohn-Nirenberg quantization (see

[53, (3.24)]).

Theorem A.6 ([10, Corollary 2.61]). Let σ(x, ξ) ∈ Sm, with m, s ∈ R. Then σw(x,Dx) is a bounded linear operator

from Hs(Rn)→ Hs−m(Rn). The same is true for the Kohn-Nirenberg quantization (see [53, (3.24)]) .

The next theorem yields a useful asymptotic expansion for the composition of operators in the Weyl calculus.
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Theorem A.7 ([10, Theorem 2.47, Theorem 2.49]). Let a(x, ξ) ∈ Sm1 and b(x, ξ) ∈ Sm2 .

Then aw(x,Dx)b
w(x,Dx) ≡ (a#b)w(x,Dx) ∈ OPSm1+m2 and we have the following asymptotic expansion

for such an operator:

awbw ≡ (a#b)w =
( N∑
|α|+|β|=0

2−|α|−|β|

|α|!|β|!
(−1)|α|
(i)|α|+|β|

∂β
ξ ∂

α
x a(x, ξ)∂

α
ξ ∂

β
x b(x, ξ)

)w

+RN (x, ξ),(A.8)

where N ∈ N and RN (x, ξ) ∈ OPSm1+m2−N−1. We note that truncating (A.8) after N = 1 and N = 2 (respectively)

immediately implies the following two equations, which will be primarily what we utilize:

awbw = (ab)w +
1

2i
{a, b}w +R2(x, ξ)

and

[aw, bw] =
1

i
{a, b}w + R̃(x, ξ),

where R̃(x, ξ) ∈ OPSm1+m2−3. Similar results hold for the Kohn-Nirenberg quantization, except now R̃(x, ξ) ∈
OPSm1+m2−2 (see [53, Proposition 3.3], ).

Theorem A.8 ([10, Theorem 2.63]). The Gårding Inequality.

Suppose σ ∈ Sm and for some A,B > 0,

Reσ(x, ξ) ≥ A〈ξ〉m for 〈ξ〉 ≥ B.

Then for any ε > 0 and a > 0, there is a constant Caε such that

Re 〈σw(x,Dx)f(x), f(x)〉L2 ≥ (A− ε)‖f‖2Hm/2 − Caε‖f‖2H(m−a)/2 ,

where f ∈ Hm/2(Rn). The same is true for the Kohn-Nirenberg quantization ( [53, Theorem 6.1]).
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Appendix B: Construction of the Weight Functions from Proposition 5.2 and Proposition 5.3

In this appendix, we construct the weight functions used in the proofs of Proposition 5.2 and Proposition 5.3. For

the remainder of this appendix, we fix RAF sufficiently large and further fix Rext > Rout > Rm1 > RAF , where Rout

and Rext will be given somewhat explicitly when necessary.

Constructing the Weight from Proposition 5.2

We begin with the weight from Proposition 5.2. Recall, we need a function φ = φ(s), where s = log(r) such that

(B.1) λ � φ′′(s) ≤ φ′(s)/2 � φ′′(s), |φ′′′(s)| � φ′(s), λ� 1

for r ≤ 2Rout and is constant for r ≥ 2Rext. In the transition region, we may break the conditions on φ′ and φ′′,

but will still have good bounds for φ′ and φ′′. In particular for Rout ≤ r ≤ 3Rext/2, φ′ � 1, but φ′′ will be in part

negative, with the following bound from below |φ′′| ≤ φ′/2. For r ≥ Rext, |φ′|+ |φ′′|+ |φ′′′| � 1.

Remark. We note that this weight satisfies all the requirements for Proposition 5.1 on the support of u.

We define φ via:

(B.2) φ(s) =

∫ s

RAF

β(q)
λR0e

q/2

R0 + ε0eq
dq,

where β(s) is a smooth cut-off function that is identically 1 for s ≤ log(3Rext/2) and 0 for s ≥ log(2Rext).

Here R0 � RAF is chosen sufficiently large and ε0 > 0 is chosen sufficiently small. Again, λ � 1. We define

Rout = R0/(4ε0) and Rext = 100λ2R2
0/ε

2
0.

Observe, for s < log(3Rext/2),

(B.3) φ′ =
λR0e

s/2

R0 + ε0es
, φ′′ =

λR0e
s/2(R0 − ε0e

s)

2(R0 + ε0es)2
, φ′′′ =

λR0e
s/2(R2

0 − 6R0εe
s + ε2e2s)

4(R0 + ε0es)3
,

which shows |φ′′| ≤ φ′/2 and |φ′′′| � φ′, as required. Further, a direct computation shows for s ≤ log(2Rout),

λ � φ′(s) ≈ φ′′(s), while for log(Rout) ≤ s ≤ log(3Rext/2), φ
′ � 1. Also for r ≥ log(Rext), |φ′|+|φ′′|+|φ′′′| � 1.

Therefore, this construction meets all the desired requirements for Proposition 5.2.
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Constructing the Weight from Proposition 5.3

We now construct a function that satisfies the hypothesis of Proposition 5.3 and verify that it satisfies all desired

requirements. We need a radial function φ = φ(r) that satisfies

φ′(0) = 0, φ′′ ≈ λ+ σφ′, |φ′′′| � σ2φ′, λ, σ � 1 and(B.4)

0 ≤ φ′′ − φ′

r
�σ φ′ ∀ r while

φ′

r
≈ φ′′ for r �σ 1.

We also note the useful properties that φ′ ≥ 0 and φ′/r ≥ λ. We claim that

(B.5) φ(r) =
λ

σ2
eσr − λ

σ
r − λσ

r3

6
− λσ2 r

4

24

satisfies all desired assumptions. Indeed

φ′(r) =
λ

σ
eσr − λ

σ
− λσ

r2

2
− λσ2 r

3

6
,

and so φ′(0) = 0. Taking a Taylor series expansion, we see

φ′(r) = λr +
λ

σ

∞∑
n=4

(σr)n

n!
,

and so φ′(r) ≥ 0 and φ′(r)/r ≥ λ for all r. Further,

φ′′(r) = λ+ λ
∞∑

n=3

(σr)n

n!
.

Hence,

φ′′ = λ+ σφ′ − σλr + λσ3r3/6.

This shows φ′′ ≈ λ+σφ′ for r �σ 1 and for r ≥ 1. To investigate other values of r, we take a derivative of the function

g(r) = λ − λσr + λσ3r3/6 to find g′(r) = −λσ + λσ3r2/2. Since r ≥ 0, this has one critical point: r =
√
2/σ.

Since g(
√
2/σ) ≈ λ, we see that φ′′ ≈ λ+ σφ′, as claimed.

Clearly, for r �σ 1, φ′/r ≈ φ′′ as λ dominates all other terms. In addition,

φ′′ − φ′/r = λ

∞∑
n=3

(σr)n

n!

n

n+ 1
< λ

∞∑
n=3

(σr)n

n!
= σφ′ − λσr + λσ3r3/6 ≤ σφ′ + λσ3r3/6.
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Observing λσ3r3/6 ≤ λσr + λσ4r4/24 (the first two terms of σφ′), shows that φ′′ − φ′/r �σ φ′. Note this is true

since the polynomial x+ x4/24− x3/6 has no real, positive roots.

Finally, direct computations show φ′′′ = σ2φ′ − λσ2r + λσ3r2/2 + λσ4r3/6 � σ2φ′, as desired.
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