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ABSTRACT

Robert Booth: An Investigation of Non-Trapping, Asymptotically
Euclidean Wave Equations
(Under the direction of Jason Metcalfe)

In this dissertation, we demonstrate almost global existence for a class of variable coefficient, non-trapping,
asymptotically Euclidean, quasilinear wave equations with small initial data. A novel feature is that the wave operator
may be a large perturbation of the usual D’ Alembertian operator. The key step is developing a local energy estimate for
an appropriately linearized version of our wave equation. The linearized wave operator is a combination of a stationary,
non-trapping, asymptotically Euclidean wave operator and a small time-dependent perturbation. The time-dependent

perturbation need not be asymptotically Euclidean.
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Chapter 1: Introduction

Our first goal is to obtain a local energy estimate for a large class of non-trapping variable coefficient wave operators.
The wave operators can be thought of as being a combination of a stationary, non-trapping, asymptotically Euclidean
wave operator and a small time-dependent perturbation. The time-dependent perturbation need not be asymptotically
Euclidean. Even though the stationary component is asymptotically Euclidean, it can still be a large perturbation of the
typical D’ Alembertian operator [J := 97 — A. Upon obtaining the said local energy estimate, we will apply it to prove
a long-time existence theorem for solutions to quasilinear variable coefficient wave equations.
1.1 Statement of Problem and Setup

We are interested in the following initial value problem:

0 Puu(t,z) = F(t,z) (t,z) € (R4, R3)
U(O, ) =f€ 02(R3)7 8{&(0, ) =f2 € Cl(RS)

Here, P, is a time-dependent variable coefficient wave operator:

(1.2) Py, = Py + h*?(t,2) Do Dp,

where h = (h®?) is a smooth, symmetric, matrix-valued function and P, is the stationary wave operator:
(1.3) P, = —D} + D;g" (z)D;.

Note the use of Einstein summation convention. Here D, = %(% and is interpreted as an operator. Greek indices
range from 0 to 3, with O denoting time and 1, 2, 3 denoting spatial dimensions. Latin indices range from 1 to 3. Our
background geometry is R, x R? equipped with the usual Minkowski metric diag(—1,1,1,1).

Note that g = ( gij ) is assumed to be a stationary, smooth, symmetric, matrix-valued function. Further, D; gij Dj is

strictly elliptic in the sense that

(1.4) 0 < Aolé]? < AM@)[€]* < g"(2)&&; < A(z)|¢)? Ve € R? — {0}.



For more on elliptic operators, see [11]. Note that (1.4) implies the following useful lower bound:
(15) <Digiij7.L,’U,>L2 z ||VI’LL||%2

In addition, we assume that D;¢* D; is non-trapping and asymptotically Euclidean. By asymptotically Euclidean, we

assume that g% () has the following spatial decay:

3
(1.6) Z Z 2) M08 (g1 = 61)| s L (4 = O(1),
S :

where (z) = /1 + [z[2, § = d;; is the Kronecker delta function, and A; denotes dyadic regions. Specifically, A,
denotes regions where () ~ 2! and [ runs over nonnegative integers. So, the L> norms are taken over each dyadic
region and then we sum over all such norms.

Our asymptotically Euclidean assumption is similar to that of [31], [29], among others. Observe the use of
multi-index notation. Here 0, = (0, , Oy, Ozy)-

For the remainder of this paper, we fix the constant M so that

(1.7) gl = > Zn WO (g7 — 89) | 1 e (4) < Mo

<2 i,=1

Further, for any 0 < ¢ < 1, we can find R 4 such that

(1.8) lgllsr,, = > Z 1(2) " 08 (g — 89 | 1 poe (o] Rar ) < C

lul<2d,5=1

The idea is that while D; gij D can be a large perturbation of —A, for |x| > RaF, itis a small perturbation of —A, due
to our asymptotic Euclidean condition.
We assume that P, is non-trapping in that upon setting up a Hamiltonian flow with respect to the principal symbol

of the elliptic portion of our operator g/ ¢&;&;:

iy = pe, = 29" (2°)&;

& =~ = (009" (2")EE



with (29, £Y) = (x, &), all geodesics escape to infinity. Hence, no geodesic stays in a compact set for all time.

We use the following multi-index notation to describe derivatives of a function:

(1.9) oNf= > ot

|ul<N

Here 0 denotes the full space-time gradient (9, V).
For future reference, it is useful to introduce a smooth cut-off function x(]z|) that is monotonically decreasing as a

function of |z| such that y = 1 for || < 1 and x = 0 for || > 2 and to define

(1.10) xr(|z]) = x(|z|/R).

The notation A < B means that A < CB for some positive constant, C, that is independent of all important parameters.
Further A ~ B means that A < B and B < A.

Lastly, *# and its derivatives will usually be small in the sense
(1.11) 1{&)0=2h| 2o Loo Lo (f0, 17 41) < 6,

for some ¢ > 0 to be chosen later. Here we are using the mixed norm notation L? LY = LY L4. That is the L? norm is
taken with respect to spatial variables while the L? norm is taken with respect to time. Further, we make use of the

following notation:

3 3
b= > [p’|  and  [0=Nh[= Y > jorne?.
«a,3=0 [p|<N a,=0

Observe that h*?(t, x) is time dependent and not necessarily asymptotically flat. Hence we can think of P, as a small
Lipschitz perturbation of P,.

Obtaining a local energy estimate for P, is the key innovation in this work. In other words, our primary objective is
to find a local energy estimate for the stationary wave operator P, with such a (non asymptotically flat) perturbation.
We will then apply this estimate to obtain a long-time existence theorem for solutions to quasilinear wave equations of
the form Pyu = Q(Au, 0*u), where @ is quadratic in its arguments and linear in 0?u.

1.2 Local Energy Norms

In order to state the main local energy estimate for the operator P, we will need to define a few local energy norms.

Definition 1.1. Local Energy Norms

We define the following local energy norms for functions u(t, x), (t,z) € Ry x R3, as used in [26] and [31]:

lullze = @)™ Pullgererzqorixans  lulie = [1@u, @~ w)lLe.



For forcing terms, F', we use the following dual norm:

I1Fll e = 1) "> Fllo 12120, 40)-

All of the above L? norms are taken over both time and space. Further, the spatial L? norms are localized to a
single dyadic region. We then take the > or ¢! norm with respect to all such dyadic regions, A4;. Note that all time
integrations are over the interval [0, 7).

As in (1.8), we use the notation ||u|| L x. , (||u||LE1>R, ||u||L2>R) to denote the restriction of the LE (LE*', L?) norm
to regions such that [z > R. Similarly, we use the notation [[u|| Lz, (|ullzz1, [[ul[£2,) to denote the restriction of the
LE (LE*', L?) norm to the region such that |z| ~ R.

On occasion it will be useful to examine similar local energy norms, but at a fixed time. We use the notation £E

and LE™ to denote the fixed time version of the LE and LE™* norms, respectively. More specifically,
-1/2 1/2
lullce = @) ullgerzcan,  and  [Fllzes = @) 2 Fllgraca,-
We use the notation ||u|| g1 to mean something similar, except we will not measure time derivatives. Specifically,

el cer = (Vo (2) )l e

1.3 The Main Theorems
We are now in a position to state the local energy decay theorem for our wave operator P,. This is a major result of

this dissertation.

Theorem 1.1. Let P, be as in (1.2), where h®? is smooth, symmetric, and satisfies (1.11) for some 6 > 0 sufficiently
small. Further D;g" D; is smooth, symmetric, non-trapping, stationary, strictly elliptic in the sense of (1.4), and
asymptotically Euclidean in the sense of (1.6). Fix T > 0. Suppose u(t, ) € C%([0,T] x R?) solves P,u = F € LE*,
with initial data (u, 9;u)(0,-) = (f1, f2) € C?(R?) x C1(R?) such that |0=2u(t, z)| — 0 as |x| — oo forallt € [0, 7).

Then
(1.12) lullLer + [10ul|zerz S 1[0u(0)||L2 + || PrullLe- + 0log(2 + T)||ullLpa -

Here the implicit constant is independent of T and §.

Theorem 1.1 is the principal result in this work. When h = 0, Theorem 1.1 has recently been proven by Metcalfe,

Sterbenz, and Tataru in [29] for a larger class of stationary, asymptotically flat, non-trapping wave operators. Further,



their result is stable with respect to small, asymptotically flat perturbations. Theorem 1.1 is not merely a corollary of
the work of [29], however. This is because the perturbation term h*# D,, Dy is not asymptotically flat. The perturbation
h is small but does not gain additional spatial decay when it is differentiated. Getting good bounds on such non-
asymptotically flat time-dependent perturbations is a major difficulty and important for many applications, as we will
discuss. Still, we are influenced by the methods in [29].

One important application of local energy estimates is to prove long-time existence results for solutions to nonlinear
wave equations. Indeed, the primary motivation for developing Theorem 1.1 was such a problem. We consider the

following quasilinear, variable coefficient wave equation:

Pgu(ta I) = Q(auv 82“) (tvx) € (R-‘MRS)
(1.13)

uw(0,) = f1 € C®(R3), u(0,-) = fo € C(R3),

where the nonlinearity Q(9u, d%u) in (1.13) is quadratic in its arguments and linear in §%u:

(1.14) Q(9u,9*u) = B(0u) + B2 0,uda0pu,

where B(0u) is a constant coefficient quadratic form and Bs‘ﬁ are real constants. We also require that Bﬁjﬁ = Bffo‘.
Here P, is as in (1.3). Further, D;g" D; is smooth, non-trapping, symmetric, stationary, strictly elliptic in the sense of
(1.4), and asymptotically Euclidean in the sense of (1.6). As the proof of the long-time existence theorem will require
commuting with special classes of vector fields, we have the following addition assumptions on D;g" D;. Specifically,

we assume that we can write D; g% D; as
y 1 g
(1.15) Dig?(2)Dj = A+ Drgr(r)Dr = gu(r) 5 As2 + Digyi () D;.

Here Agq is the Laplacian on the unit sphere and D,. = %& =

1z
i T

0; and is interpreted as an operator. Further g, (r)

and g, (r) are smooth, radial functions, while ¢g¥.(x) is a smooth, symmetric, matrix-valued function such that

L 2
(116) > @0t gl poecan + D 1@ 0k gullopean + D @0 g0lle 1o ca

|n]<2 [u|<2 3<|pl<15
2 1+
+ 3 M@ gulla e an + > @) O gl e 4y = OQL).
3<|ul<15 || <15



So, we can think of D,.g,(r)D, — g.,(r) 5 Ag2 as a long-range radial perturbation of the Laplacian and D; g% (z)D,
as a short-range perturbation of the Laplacian. Observe D;g%.(z)D; need not be radial.

We use the notation

(1.17) Oy = x;0; — x;0;

to denote the generators of rotations and

(1.18) {Z} = {0a, 2}

to denote the generators of translations and rotations, where Q € {€;;}.

We can now state our small data, long-time existence theorem to solutions of (1.13):

Theorem 1.2. Consider (1.13), where P, is as in (1.3). Further, Dz-gij D; is smooth, non-trapping, symmetric,
stationary, strictly elliptic in the sense of (1.4), and can be written as (1.15) where g,., g.,, and g%. satisfy (1.16). The
nonlinearity Q(du, 8*u) is as in (1.14), where where B(du) is a constant coefficient quadratic form and Bﬁj‘ﬁ are real
constants. We also require that B,?‘ﬂ = B,eo‘. Then, there exists real positive constants « and € such that for all ¢ < ¢¢

and initial data fy, fo € C°°(R3) satisfying

(1.19) Yo 50 Vafillz+ Y 105 fellie <,

[k[+]vI<15 |k+]~]<15

(1.13) has a unique solution u € C*°([0,T:) x R?) with
(1.20) T. = exp(k/e).

Remark. Prior work of [14] and [41] shows that the lifespan result of Theorem 1.2 is sharp.

Remark. Lifespans such as (1.20) are often referred to as almost global existence theorems since, while we cannot
expect a global solution to (1.13), the solution does have a lifespan that grows at an exponential rate as the size of the

initial data approaches zero.

1.4 A Brief Review of Prior Results
We now report prior key work, beginning by highlighting local energy estimates and then moving on to nonlinear

theory.



1.4.1 History of Local Energy Estimates

Local energy decay theorems such as Theorem 1.1 have a long and rich history, with initial introduction by
Morawetz for the Klein-Gordon equation and then later the wave equation, all on Minkowski space-time [35], [36], [37].
Key advances were made by Keel, Smith, and Sogge in [15] and by Metcalfe and Tataru in [31]. Other contributions
have been made in [1], [2], [3], [4], [6], [7], [13], [18], [27], [28], [29], [34], [38], [45], [49], [50].

Local energy estimates are a fundamental object of study for dispersive partial differential equations in the
asymptotically flat regime. They are known to be somewhat stable with respect to small time-dependent, asymptotically
flat, geometric perturbations [1], [27], [28], [29], [30], [31], as well as stationary, non-trapping perturbations [2], [6],
[47].

Further, other measures of dispersion can be derived from local energy estimates. In particular local energy
estimates imply global-in-time Strichartz estimates for wave equations in the asymptotically flat regime [26], [30],
[31], [51], [54]. Additionally, weak local energy estimates (in the asymptotically flat regime) imply pointwise decay
estimates [32], [33], [52]. In particular, they have been used to prove Price’s law ([39], [40]), which was a conjecture
that solutions to the wave equation on a Schwarzschild space-time should decay at a rate of ¢t 3 for fixed . For local
energy estimates in the context of exterior domain problems, see [5], [12], [27], [34], [45].

1.4.2 Some Quasilinear Theory

Many nonlinear results are known to follow provided one is able to obtain a good local energy estimate for an
appropriately linearized version of the problem [2], [15], [16], [27], [28], [47], [56], [57], [58], [59]. Indeed, this is a
large motivation for developing the estimate in Theorem 1.1.

Quasilinear wave equations can be thought of as arising from nontrivial background geometry where the metric of
the manifold depends on the solution of the equation. Lifespan estimates for quasilinear wave equations with small
initial data on Minkowski space-time are now well understood [46]. Here the solution to the linear problem decays at
arate of t—("~1)/2 where n denotes spatial dimension. This is integrable for n > 4, allowing an iteration argument
to prove a global existence result. For n = 3, this misses being integrable by a logarithm, implying almost global
existence, instead of global existence.

The breakthrough work of [19] introduced the now standard invariant vector field method to obtain sufficient
decay to close an iteration argument to prove long time existence results for quasilinear wave equations on Minkowski
space-time. Here the generators of the full Poincaré group plus the scaling vector field are used. These are the vector
fields that preserve the homogeneous linear wave equation. The use of Lorentz boosts (and to a lesser extent, the scaling
vector field) are problematic in many important settings such as multiple speed systems of equations, exterior domain
problems, and equations on background metrics where commuting the Lorentz boosts (and scaling vector field) with the

linear operator (needed for the iteration argument) may yield terms that grow large for long times.



For quasilinear wave equations on exterior domains, the authors of [16] developed methods that avoid the use of
Lorentz boosts. See also the related work of [20], [42], [43], and [44], who first developed similar methods in different
contexts. Later, the authors of [27], based on the work of [15], simplified the argument of [16]. The methodology of [27]
uses the generators of translations and rotations to obtain decay in |z| over the more standard decay in ¢. Pairing this
decay with local energy estimates for solutions to the linear problem with time-dependent perturbations allowed them
to close an iteration argument. This is an improvement over prior work in that fewer symmetries on the background
geometry are needed. The methodology of [27] provides a method for proving almost global existence for quasilinear
wave equations with small initial data in fairly generic scenarios, provided that an appropriate local energy decay
theorem for a “background” operator can be obtained. A key facet to mention is that the background operator must
incorporate small time-dependent perturbations as done in Theorem 1.1. This perturbation essentially incorporates the
quasilinear nature of our equation. Hence, upon attaining Theorem 1.1, it is natural to expect a result such as Theorem
1.2 to hold.

There are several other related works to Theorem 1.2. The authors of [2] and [47] investigate related problems for
semilinear equations with a product manifold structure and short range perturbations. The works of [23], [56], [57],
and [58] consider semilinear wave equations satisfying the null condition. The work of [22] focuses on quasilinear
wave equations close to Schwarzschild that satisfy the weak null condition (it should be noted that here there are
complications involving trapping at the photon sphere that we need not consider). The works of [55] and [59] require
the wave operator to be a small perturbation of the d’ Alembertian operator on Minkowski space-time, although the
framework of [59] holds in more general settings, provided one is able to prove an appropriate local energy estimate for
the linear problem. Further, [59] again assumes the null condition. We shall make no such assumptions in this work.
1.5 Outline of the Proof of Theorem 1.1

The bulk of this document is devoted to proving Theorem 1.1. This is done by observing that for sufficiently large
||, our wave operator is a small perturbation of [J and good local energy decay should hold with errors localized to
a dyadic region as in [24], [29]. From here, it will suffice to work on a compact region and find estimates that have
errors that can be absorbed for high, medium, and low time frequencies, respectively. The high frequency analysis is a
positive commutator argument, using appropriately constructed pseudo-differential operators and the Garding inequality.
The medium frequency analysis uses Carleman estimates, which are weighted L?L? estimates where, morally, the
weights are convex. The low frequency analysis is essentially an argument in elliptic regularity. Upon attaining the high,
medium, and low frequency local energy estimates, we piece them together using time frequency cut-offs. After proving
Theorem 1.1, we obtain additional energy estimates by applying vector fields to the solution of our wave equation. We

then follow the work of [27] to use an iteration argument to prove Theorem 1.2.



Chapter 2: Uniform Energy Estimates
Observe that the standard uniform energy estimate for stationary wave operators is built into Theorem 1.1. We now

state this uniform energy estimate as a proposition. This is similar to estimates found in [46].

Proposition 2.1. Let P, be as in (1.3), where D;g"/ D; is symmetric, stationary, strictly elliptic in the sense of
(1.4), and asymptotically Euclidean in the sense of (1.6). Fix T > 0. Suppose u(t,z) € C%([0,T] x R3) solves
Pyu = F € L'L?, with initial data (u,0,u)(0,-) = (f1, f2) € C?(R3) x C*(R3) such that |0=%u(t,z)| — 0 as

|z| — oo forallt € [0,T)]. Then, the following uniform energy estimate holds:
T
e J0ul ez S 100+ [ [ 1Pullowe] dat
0o Jr3
Proof. We begin by defining an energy functional
(2.2) Eglu)(t) = / (D;ig" Dju)a + | Dyul? du,
R3

and observe

d —
—E,[u)(t) = 2Re OruF dx.
dt R3

Integrating the above expression shows that for any ¢ € [0, T']

T
E,[u(t) < Eylu)(0) + /O /R VP9 et

We note in the absence of forcing, the above equation becomes a statement of energy conservation. Proposition 2.1 will
follow if we can show ||Qul|3 . &~ Eg[u](t). But D;g% D; is strictly elliptic and asymptotically Euclidean, and so this is

immediate, completing the proof. O

Since h will be small in an appropriate sense, we have an “almost” uniform energy bound for solutions to Ppu = F'.

Before stating this as a proposition, we note the following lemma which will be repeatedly used throughout this work.



Lemma 2.1. Let h*® be a smooth, symmetric, matrix-valued function that satisfies (1.11) for some 6 > 0 sufficiently

small. Suppose u(t,z) € LE' N L>°L?. Then

T
2.3) / / (5‘2h|+|8h|+|h)(|8u|+<|xu|>)2dmdtgélog(QJrT)HuH%El+5||8u||%ooLz.
0 R3

Here the implicit constant is independent of T' and .

Proof. We first observe

log(2+4T)
|ul

T
2

[ [ Gl tonl+ a) (oul + 447 dode S S 1@)0=2 0l syl

0 3 1=0

+ T(|0=hl| L o< ((0.1)x {a)> 71 |0 F oo 12
Note that we have applied a Hardy inequality on the lower order terms. Specifically, we have used

2.4) ]~ F @)Lz S IVaf (@)l L2,

where f(z) € H'. Observe that (1.11) implies
T(0=2h|| oo Lo (0,11 x {2 >T) < 0.

Hence, we have shown

|ul

T
/ / (19%h] + |0h] + |A]) (10u] + TV dwat
0o Jrs (z)
log(2+4T)

Soloulliers + D 1(@)O=R oo Lo 0,17 x A lull7 g
=0

< 0log(2+T) [lullggr + 6)|0ulZoe 12,
as desired. This completes the proof of Lemma 2.1. O

Armed with Lemma 2.1, we now state and prove the “almost” uniform energy bound for solutions to P,u = F'.

Proposition 2.2. Let P, be as in (1.2), where h®? is symmetric and satisfies (1.11) for some § > 0 sufficiently
small. Further D;g" D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean

in the sense of (1.6). Fix T' > 0. Suppose u(t,z) € C?([0,T] x R3) solves P,u = F € L'L?, with initial data

10



(u, Opu)(0,-) = (f1, f2) € C*(R3) x CY(R?) such that |0=%u(t,z)| — 0 as |z| — oo forallt € [0, T)]. Then
T

(2.5) l0ul|2 < 12 < |Ou(0)]|22 +/ / | Pru||0yu| drdt + 6log(2 + T)|Ju||2 .-
0 R

Here the implicit constant is independent of T' and .

Remark. Proposition 2.2 essentially holds for weaker assumptions on h. Indeed, if we assume only that |0S1h| < ¢,

for some € > 0 chosen sufficiently small, then the same proof demonstrates
T T
10ul|F 0 2 < |Ou(0)])72 +/ / | Pru||Opul dxdt—i—/ / |Oh||Ou|? dxdt.
o Jrs 0 JR3
Proof. We modify the energy functional E,[u](t) defined in (2.2) to
Elu(t) = / (D;g" Dju)u + (D;h" Dju)a + (1 + h°)|0pul? dz
R3

and compute

iE[u} (t) =2Re [ OwPyudr+ [ 0;h"0;ud;udz + / (h%0;0yu)0pu dx
dt R3 R3 R3

+ Oyuh% 0,0, dx + Oyud;hii0ju dx + / (8ihij6‘j u)Opu dx
R3 R3 R3

+/ 3th00|8tu|2 dx.
R3

We integrate the above expression in time to find for any ¢ € [0, T'):

E[u](t)§E[u](O)+/0 /sthunatuu/o /R$|6h|\8u|2dxdt

T T
+ / / (h%Y8;0pu)0pu dx + / Oyuh% 0,0 dz.
o Jrs o Jrs

Integrating the last term on the right-hand side by parts, we find

T T T
/ Oyuh%50;0pu dr = — / / (h%9;0pu)0pu dx — / 9yud;h% dyu.
0 R3 0 R3 0 R3

So, we have shown

T T
Elu](t) gE[u](0)+/O /]R$|Phu||atu|+/0 /RS|5‘h||8u|2d:cdt.

11



Using that D;¢% D; is strictly elliptic, we have
/Rg ((Dig" Dy + 0uP) dr |0l

Since

/RS 1Oyl + 10,0 dx < b oo oo |00,

by choosing ¢ sufficiently small, we find E[u](t) ~ ||0ul|%,. Therefore we have demonstrated

T T
[E S ||au(0)||iz+/ / \Phqu)tu\d:cdtJr/ / |Oh]|0ul? dzdt.
0 R3 0 R3

An application of Lemma 2.1 completes the proof.

12



Chapter 3: Exterior Estimates
We begin with a variation of a theorem found in [27], [28], and [31] which essentially states that good local energy

decay holds for small, asymptotically flat perturbations of the D’ Alembertian.

Theorem 3.1. Let P, be as in (1.2), where h®? is symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further assume D;g% D, is symmetric, stationary, strictly elliptic in the sense of (1.4), and a small, asymptotically
Euclidean perturbation of —A in the sense that ||| g||| < ¢ < 1 for some ¢ > 0, sufficiently small. Fix T > 0. Suppose
u(t,z) € C?([0,T] x R3) solves Pyu = F € L'L?, with initial data (u, 9,u)(0,-) = (f1, f2) € C*(R3) x C1(R3)
such that |0=%u(t, z)| — 0 as |z| — oo forall t € [0,T). Then

T

u
(3.1) ||u\|%E1 < ||8u\|%xm +/ / \Phu|(|8u| + u) dxdt + §log(2 + T)||u||2LE1
0o JR3 ()

Here the implicit constant is independent of T and §.

Remark. Theorem 3.1 essentially holds for weaker assumptions on h. Indeed, if we assume only that |0<'h| < e, for

some € > 0 chosen sufficiently small, then the same proof demonstrates

lull2 5 < NOu)|3 o0 2 —|—/ / |Phu| |Ou| + <||>> dx dt—|—/ /}R3 |Oh| + <h|>)|8u|(|8u| + <|1;|>) dxdt.

Proof. The proof is a positive commutator argument. A direct computation shows

(32)  2Im (Pyu, Qu) 22 =(i[D;g"" Dy, Qlu, u) ;2,2 — 2Re <Dtu,Qu>‘ 2(h% Dju, Qu) L2’0

+ 2Re <8ihiiju, QU>L2L2 - 2<8th0iju, QU>L2L2 + 2<8jh0jQu, Dtu>L2L2

1, .. 1 .
+ g<h”Dj“7 [Di, Qlu) 272 + g<[Q7 b Dilu, Dju) p2p»

2 . 1
+ Z<[Q» R Djlu, Do) page + ;<[Q; R Dyu, Dyu) 2

+ 2Im (9;h°°0pu, Qu) ;21 » — 2Im (R Oy, Qu) 1 » }0 ,

if Q(x, D,) is self-adjoint. We choose

Q:f()rl lmD + Dy f(r )a;l Im

13



and
r
r—}—p'

fr) =

For now we leave p > 1 as a parameter to be chosen later. We record some useful computations for later:

(33) IOt IO 0=

We begin bounding the terms in (3.2). For the left-hand side, we note

T
2Im (Pru, Qu) 272 S / / | Prul(|0u] + M) dxdt.
0 JR3 (z)

The time boundary terms are controlled by ||Ou||3 .. ; . Indeed, applying the Cauchy-Schwarz inequality, we find

—2Re (Dyu, Qu) ‘g + (W% Dju, Qu) - foT

— 2Im (h°dyu, Qu) 1,
S N0ulZa|,_o + 10ull7z |,y + 1QulZ:],_, + 1QullZ2|,_r

-1
S N0ullT e e + 1) ullfe 2 S 10|72

Note that we have applied a Hardy inequality (2.4) on the lower order terms.

Appealing to (2.3), we can bound the remaining h dependent terms directly from above:

Re <6lh”DJu, QU>L2L2 - 2<8thOJDJU, QU>L2L2 + 2<8]hOJQU, Dtu>L2L2
1,4 1 . 2 .
+ g<h”Djuv [Dia Q]U>L2L2 + ;<[Qv h”Di]uv ‘Dju>L2L2 + ;<[Qv hOJDj]u’ Dtu>L2L2

1
—+ ;<[Q, hOO]DtU, Dtu>L2L2 + 21m <8th006tu7 QU>L2L2

by

T
Ih] Jul < 2 2
L[ (om0l (0ul+ 55 ) dode < 5108+ Tl 1 + Sl oo

as desired. This is clear since

11,1 = 250,(£() 6™ Doy — 0,0 (£() 6™ = O((a) ™Dy +O(() )

r

and

L. 1 L. 1 .. L.
(Q, 19 Dy) = 2= f(r) 24" Db Dy = 2=B98; (f(r) 2g"™) Dy, + W9 0,0 (f (1) £ g'™)
A T A T

r

14



= O(|0h)) Dy, + O(|hl{w)~") Dy + O(|h| (z)~?).
Observe that we have used that g is asymptotically Euclidean so that |9g| < (z)~ " and |9g| < () 2. Similarly
[@. 1% Dj] = O(|0h)) Dz + O(hl(z) ™) Do+ O(|hI(w) ) and  [Q, h%] = O(|0h]),

where we have again made use of our asymptotically Euclidean assumption.

All that remains is to bound (i[D; ¢’* Dy, QJu, u) ;- » from below. Writing g% = m7* + §7*, we find

G4 {ilD;0 Dy Qs ) paa 2 (1=, F) 2Dy + D)) g — Nl + 12wl )

Perhaps the ||| (||8ul/2 5 + [|(z) " u||2 ;) term deserves additional comment. This is controlling the following exact

terms:

. . m Ly m
(3.5 (il=A F(r) 25" Do + D (1) 25" ) 2
. ~jk; Xy ~lm Z ~lm
+ <Zng Dy, f(r)?g Dy, + Dmf(r)?g ]u7 u>L2L2

. ~dq T xT
+ (1D D, £ (r) = D1+ Dy~ f (1)) o
Now

<Z.[*A7 f(T)%glmDm]ua U>L2L2 =- <i8jaj (f(r)%glm)DmUa U>L2L2

Tl < im
+2(0,(/(r) 25" D; Dyt )
Integrating the last term in the above line by parts, we obtain

(=2, F() 25" Dol ) 2y = 2005 (f (1) 515"™) Dt Dye) oz + (10,05 (F (1) 55" Dot ) 2.

-1
S Mgl (10wullZ e + 1{2)~ ullLp),

where we have applied Cauchy’s inequality and made use of our asymptotically Euclidean assumption and the fact that

OE(f(r)2) = O({x) ™™ for 0 < [K| < 2.

T

We now bound (i[—A, Dy, f(r) % g"™]u, u) 22 by noting

(i[-A, Dmf(’")%glm}u,uﬁzm = (i[-A, f(T)%glmDm]%WL?L‘z +([-A, 3m(f(7“)%glm)]uvu>L2L2~

15



We have already bound (i[-A, f(r)%2g"™D,]u,u);.;> and so it suffices to bound

(=2, O (f(r)23"™)]u, u) ;2 ». Integrating by parts, we find
(=2, Oy (FO) 225 ™ Vs 1) a0 = (G020, (F (1) 22 G™) Dy, ) oy — (102, (F(r) 2 5™)u, Dju)
;Om , g yWrap2 = (W05, , g JUs W22 im ” g y LjU)p2p2-

Again this is controlled by ||g||||u|| ;:. The remaining terms in (3.5) are bounded very similarly.

We return to [—A, f(r) 2Dy 4 Dyt f(r)] coming from the right-hand side of (3.4). A direct computation shows

Tk Zj

(:6) i[-Af()Di+ DL ()] =4D (1) 2D,
+ 4Dy xkxl)@((sjk D) — AG(ZE ().
Continuing, we compute
Tk _ 2pr+ 8p?
*Aak(7f(r)) =+t

Combining this and our explicit formulas for f(r) and f’(r) and integrating by parts, we see

G GGDE ) D + Dl xﬁxl)y(éjk—“%)l?—*ﬁ@k( )y uh 2

2 2, P 2
/ \/]Rg 2| U | +7|W’M‘ mu)dzdt,

where ¥ = V — 20, denotes angular derivatives. So, we have shown

(3.8) / /R 3

p
(p+1r)*

< 2 Jul
<[00 12 +/O /R \Phu|<|8u|+ <m>) dzdt

+681log(2 + T)l|ullf g + llgllllullf g1 -

+ 7|Y7 > + u2> dxdt

We recover time derivatives via a Lagrangian correction. To this end, we compute:
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(3.9) (P, —f'(r)u) pa gz = = (O, F/(r)eu) | + (Do, £/ (r)Deut) o
(g Dju. Dy (r)u) a2 — (Oih g, /(1)) oy
= (WY Dju, Dif'(r)w) 2z = 2A0;h% Beu, f'(r)u) paa
= 2(h% Dyu, Dy ' (1)) 22 — (000, f'(r)u) 12

+ <h008tU7 f’(r)@w)Lsz + <8th003t% f/(T)u>L2L2-

‘We note

T
(Poty £/(P)) 2 < /0 /R 3|Phu<|xu|> dedt.

The time boundary terms are controlled by [|Oul|3 .. ., where we have employed (2.4) on lower order terms. We

immediately observe

<5¢hijaj% f/(T)U>L2L2 + 2<h0thU» Djf/(r)u>L2L2
+ (W9 Dju, D f'(r)u) page + 2(0;h% Opu, f(r)u) 1oys

+ (h8yu, F(r)ou)p2p2 + (0:h*Opu, Fr)u) e
is bounded from above by

T
i Jul < 2 >
L[ (onl+ )il (0ul+ 55 ) dode < 6108+ Tl 1 + Sl o

where we have utilized (2.3). Now

T
1%
<atua f/(r)atU>L2L2 ~ A /Rs m‘&ﬂlp dl’dt,

and so our analysis shows
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(3.10) // 2|8tu|2da:dt<H8u||LooL2+/ / Pyl |>dxdt
]R3
+6log(2 + T)|Jull} g1 + [{g” Dju, D f'(r)u) p2pe|

T
< l0ul2e s + / / Pl L
o Jrs ()

T
4 2 1 2 14 2
0, — dzdt
+/0 /RS((TH)J W + ——|¥u +(p+r)4u) .

+lglllullZ g + 8log(2 + T)|[ull g1

Multiplying (3.10) by a small constant and adding it to (3.8), we obtain the bound

T
P 2 P 2 1 2 p 2
— P g+ Ol |V ul + =) dudt
[ L (getoad + G ettt + ) do
< 0]+ / [ 1Pl (10ul + 55 ) dode + gl

+0log(2+4+T) ||u||2LE1

By choosing p = 1 and restricting the range of integration on the left-hand side of the equation, we obtain the bound

T T
(3.11) / / (|8u\2 + u2) dzdt < ||0ul|? 12 +/ / \Phu|(|6u| + M) dzdt + ||g|l|w) g
0 Jz|<1 0 JR3 (z)

+61og(2 + T)|Jul|7 g1,

while choosing p = 2k for an integer k > 1, we find

(ot 1o (g5 1
(3.12) drdt < || u||L°°L2+ |Phu\ |Oul + dadt + || g|ll|ul|7 g
ok 1<\z|<2k (z) ( )3 (x)

+061log(2 + T)|[ul| g1

Taking the supremum over all such dyadic regions and absorbing the error term || g||||u||% ;1 using the smallness of

llglll, we have shown

T
u
i S W0ulegs + [ [ 1Paal(0u]+ 5 ) dode+ 5102+ T) ulf

completing the proof of Theorem 3.1. O
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We now return to the operator P, as described in the introduction, where g%/ can be a large perturbation of the
identity matrix. Since g is still asymptotically Euclidean, we expect a statement similar to Theorem 3.1 to hold for
sufficiently large |z|. Our next theorem develops such an exterior estimate. This theorem will be useful for our medium
and high frequency analysis. A similar estimate can be found in [29]. See also the earlier related work in [24]. We now

state the theorem:

Theorem 3.2. Let P, be as in (1.2), where h®® is symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further D;g" D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in
the sense of (1.6). Fix T > 0 and further fix Rar sufficiently large. Suppose u(t,z) € C?([0,T] x R?) solves
Pyu = F € L'L?, with initial data (u,9;u)(0,-) = (f1, f2) € C*(R?) x C}(R3) such that |0=u(t,z)| — 0 as
|z| = oo forallt € [0,T]. Then for any R > 2Rap

|ul

T
(3.13) ||u||%E1>R < H8u||2LooL2 + R_2||u||%ER + / / |Phu\(|8u| + 7) dxdt + §log(2 + T)||uH%E1
0 JRrs ()

Here the implicit constant is independent of T' and §.

Remark. Theorem 3.1 essentially holds for weaker assumptions on h. Indeed, if we assume only that |0='h| < e, for
some € > 0 chosen sufficiently small, then the same proof demonstrates
|ul

T
2 < 2 —21, 112 Jul
Il g1, S 100lmze + Bl [ [Pl + 5) dna

) m u u M T
+/O /R (19h] + 5)10ul(0ul + 5) dudt.

Proof. The proof follows the proof of Theorem 3.1 and the work of [29]. It suffices to replace the self-adjoint operator
@ with the following operator

Q=(1- XR/2(|$|))f(T)%glmDm + Dy, (1 - XR/2(|=’E|))f(7”)%glm,

where xr/2(|7|) is as in (1.10). For our Lagrangian correction, we modify the multiplier used in (3.9) from — f'(r)
to —(1 — xry2(|z])) f/(r). We have already proved a large portion of this result. Indeed, (3.2) still holds and
2Im (Ppu, Qu) 272 S fOT Jgs |Paul(|0u] + %) dxdt. Again, the time boundary terms arising on the right-hand side

of (3.2) are controlled by [|0u||3 . ; .. The remaining h-dependent terms on the right-hand side of (3.2):
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Re ((%hiiju, QU>L2L2 - 2(8th0iju, QU>L2L2 + 2(8,4h0jQu,Dtu>L2L2
|
+ g<h”DjUa [Di, Qlu) 22 + ~ <[Q h¥ DiJu, D; U pape + = <[Q, h% D, ilu, Deu) o

+ ;([Q, R Dy, Dyu) ;272 + 2Im (9;h°0u, Qu) ;2 -

are controlled by

h
(3.14) / / |8h|+|| |au|(|au|+<x“|>) dadt < 510g(2 + T)||ull2 g1 + 6] 0w 12,

as before. Further, investigating terms with h dependence in our Lagrangian correction in (3.9):

— 2Re (917 dju, (1 = xry2(|2)) f'(r)u) 22 — 2Re (W Dju, Di(1 = xgya(|2])) [ (r)u) 2 2
— 4Re (9;hY 8yu, (1 = xry2(J2]) f'(r)u) L2 2 — 4Re (h* Dyu, D (1 = xgya(|z])) £/ (r)u) 12
+ 2Re (h*°0;u, (1 — XR/2(|x|))f'(T)8tu)L2L2 + 2Re (0;h*°0su, (1 — XR/2(|x|))f'(7“)u>L2Lz

— 9Re (K, (1= xp2(2]) F () |

we see that these are again controlled by ||dul|3 ., + dlog(2 + T)||ul|3 ;1. as desired.

So to finish the proof, it suffices to bound the portions of the following terms that contain derivatives of x g 2(|z]):
(3.15) (ilD;g" Dk, Qlu ) 12 — &g" Dy, Di (1 = xry2(|2) £/ (r)) 2 2

Here ¢ is the small constant that (3.10) was multiplied by in the proof of Theorem 3.1. We investigate [D; g’ ¥ D, Q]

and observe

(3.16)

(D397 D, Q) = (D397 Dies (1= X2 (1) 1) 29" D + Do f () 2™ [D;97* D, (1 = xya(fe)]
+ (D397 D, D f (1) S4"™), (1 = Xy2J2])]

+ (1= a2 (7)) [D3¢"* i (1) 6" Do 4+ D f (1) g™,

Derivatives can land on x r/2(|z|) directly from the terms:
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(317) [ngjkD’W (1 - XR/2(|$|))]f( ) rl lmDm + Dmf( ) el lm[ngjka7 (1 - XR/2(|x|))]

+ (D397 D, D f (1) 519", (1 = X2(J2])]

or from the second order terms in

(3.18) (1= xn2(12) (D36 D, £(r) 29" D + Dy f (1) g™

when we consider

(3.19) / / (1 = xns2(2)) (D37 D, 7(r) 2™ Dy + Dy () L9 Y det,

and integrate by parts, as in the proof of Theorem 3.1.

We first bound the terms in (3.17):

(D307 i (1 = xigall2)] = 5 =Dy 2l ) — 20, (g7 (2l /1) )

14 z; 2 .
— — = g Clal/R) LDy + 203 (97X Clal/R)E),

which shows

[D;g’" Dy, (1 — XR/Q(“TD)}JC(T)%glmDm + Dmf(r)%glm[ngjka, (1= xr/(z))]

18 12
= == 2 D50 T (2fal [R)F () g™ D + < =0 (F() g0, (97X (2l /R) ) ).

i R

The above line yields the following bound from below:

. i LI im Ll im
(3:20)  (i[D;g"" Dy, (1 = Xap2(12D)1f (1) 26" Don + D f (r) =" [D3¢"" D, (1 = Xrpa(|2])]t, w) 2 2
x -
2 [ [ - e @ e 002 dedt — Bl
Note that the first term on the right-hand side of (3.20) is nonnegative since x /2 (|2|) is a monotonically decreasing

function of |z|.

We claim

(i(lDjg’" D, D f (r) 2Lt (1= xry2 (1)), ) g2 g2
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is also bounded by R~2||u||zx,, . Indeed, the commutator contains first order and zeroth order terms. The zeroth
order terms are controlled by R~ 2||u| g,. The first order terms are controlled by this quantity as well, which we
see by writing d,uu = 19, (u?) and integrating by parts. Indeed, [D;g7% Dy, Dy, f(r)% g'™] is an operator of the
following form iw_1 () D2 + w_o(2) Dy, + ia(z), where wy () are real-valued functions of order O((x) ") and a(z)

is a bounded real-valued function. Hence
‘ x . .
[[D;g’* Dy, Do f(r) = “9"™], (1= xaya(l2])] = Goa(@)X' (22l /R) Dy + id—3()X" (2|2|/R),
where «j, are real-valued functions of order O((z) ™). Therefore

(i[[D;g”" Dy, Dy f (r ) g, (1= Xaa(l2) s u) paps = (= D-s(@)x" 2lal/R)u,u) 2

+ (@-2(@)X (2lz]/R) Oz, ) o o

We immediately see ( — w_3(z)x" (2|z|/R)u,u) ;- is controlled by R™?||ul| g, as claimed. For the remaining part,

utilizing the chain rule and integrating by parts, we find

(3.21) (@_o(x)X' (2]2|/R)Opu,ut) 272 = / / —@_o(2)X' (2|2|/R)Dx (u?) dadt
_ / 5agc(aj_2(J;)X’(2\31;|/R))u2‘ dadt
0 R3

< R7|lulli gy

as desired.
We must still bound the terms with x’(2]x|/R) arising from integrating the second order terms by parts in (3.19).

We begin by observing that (3.19) can be written as

/ / 1_XR/2 |21)) D;[g?* Dy, f(r )TlglmDm]u)ﬂdxdt

+2/0 /Wi (1_XR/2(‘x|))Dkgjk[Dj,f(T)%glm’Dm]u)ﬂdxdt
T
=2

((1 — xry2(|2])) 0k (¢7*[D;, f(?")ﬂg”"DnJ)@ﬂ dxdt

/ [ (0= X)) D367 D 0 (50 2o ™ ) .

Note that second order terms are only present in the first two integrals and can be expressed as
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T
2/0 /RB ((1 - XR/2(|$|))ngjk6k(f(r)%glm)Dm@a dxdt
T
- 2/0 /]Rs ((1 N XR/Q(M))DJ'glmamgjkf(r)ﬂDku)ﬂ dxdt

+2/ / (1= xrya(jz]) Deg” 05 (f(r )xl g™)D mu)ﬂdﬂfdt-

Integrating by parts, we obtain the following error terms involving derivatives of our spatial cut-off function:

T o
(3.22) —4R71/ /R x’(2|a:|/R)1;—]g]k6k(f(r)%glm)ﬁmuu dxdt
0 3
T A ‘
+4R_1/ / X’(2|:E|/R)&glmamgjkf(r)ﬂakuudgcdt
o Jrs
— 4R~ / / "(2|z|/R) —gjkﬁ (f(r )xl 9'"™)Opun dxdt.

These can now be controlled by using the method from (3.21). Indeed, utilizing the chain rule and integrating by parts,

(3.22) becomes:

2R~ / / (V' @lal/R) 2 0 (£) g™ Yo dv
— 2R~ / / ak '(2lel/R) =2 i gim g, g7 F(r) 2L )u dwdt
LR / / (@l /R) g0, (£ () g™ Yol v,

which is bounded by R~2||u|| 1z, as desired.
Finally, we investigate the remaining term in (3.15). The term with a XIR/2 from

(9 Dju, D; (1 = xry2(|])) f/(r)u) 22 is bounded via the method from (3.21). This completes the proof. O

We now develop a second exterior estimate which will be useful for |z| sufficiently large, where Py is a small,
asymptotically Euclidean perturbation of []. This estimate will be applied in our low frequency analysis section. Again,

we follow the prior work of [29].

Theorem 3.3. Let P, be as in (1.2), where h®® is symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further D; g% D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in the sense
of (1.6). Fix T > 0 and further fix R s sufficiently large. Suppose u(t, z) € C%([0,T] x R3) solves P,u = F € LE*,
with initial data (u, O;u)(0,-) = (f1, f2) € C?(R?) x C1(R?) such that |0=2u(t, z)| — 0 as |x| — oo forallt € [0, 7).
Then for any R > 2R

(3.23) lullZ s, S NOulliw s + [Paullip: , + 10ulfp, +8log(2+ T)llullf -
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Here the implicit constant is independent of T and §.

Proof. Instead of working with the function u, we will consider
(3.24) Uegt (t,7,w) = (1 — xr)(|z))u(t, r,w) + xr(|z))ur(t),

where xr(|z|) is as in (1.10) and @r(t) is a local space-time average of u adapted to the annulus R < |z| < 2R.
Restricting our analysis to & > 2R 4 allows us to assume that P, is a small asymptotically Euclidean perturbation of

O globally. We define @g(t):

(3.25) - R //S/ srw»y(tRS ;) r2drdo(w)ds,

where (¢, z) is a smooth, nonnegative bump function, with suppy C [—1, 1] x [1, 2] such that

/ / y(t,r) ridrdt = 1.
R JO

It will be necessary to bound time derivatives of % in L?. Taking j > 1 time derivatives of (3.25), integrating by

parts, and applying the Cauchy-Schwarz inequality, we find

(3.26) dug(t) =R~ /// (s rw8§7< |R> r2drdo(w)dt
S2
=R~ /// (s,m,w)d! < _s |m>r2drd0(w)dt
S2
=R™* /3@/82/0 asu(s,r,w)ag_1'y< RS |;U{|> r?drdo(w)dt

_ i t—s -
<R 4/||8u||L2(R§r§2R)”6i 17(T’E)HL2(R§T§23)CZS

t—s

<SR™* R1/2||<$>_1/25U||L2(R§r§23)33/2||85717(

s M rza<r<a)ds.
An application of Young’s convolution inequality yields the desired bound:

(3.27) |0 iR L2 5372\\<$>71/23UHL2L2(R9§2R)||5g_17(§’ Mrrirza<r<2)
:R_2 H <‘r>_1/28’U’HLQL2(R§7”§2R)R2_j ||ag_17<7 ) ||L1L2(1§7‘§2)

<R7|0ul LE,.
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A similar argument shows

(3.28) liglre S R ullLeg-

Indeed,

ar(t) :R_4/R/S2 /000 u(s,r,w)y (t ]_%S, |]g;|> r2drdo(w)dt

_ t—s -
<R 4/||u||L2(R§r§2R)||7(Ta§)||L2(R§r§23)d3

_ _ . t—s
SR 4/R1/2||<$> 1/2UHL2(R§7-§23)R‘3/2||’Y(Ta')||L2(1§7-gz)d5.

Again, an application of Young’s convolution inequality yields the desired bound:

llarl L2 SR_QH<$>_1/2UHL2L2(R§T§2R)H7(§7 Mrrrea<r<2)
=R72|[(x) " *u r2r2(rer<omy RIV(C, ) 22 (1<r<2)

<R ullLeg-
We also note a Poincaré-type inequality (see, for example [29], [9]):
(3.29) ()" (ar = w)l|Len S 10Ul LER-
Applying Theorem 3.1 to uey:, We see
(3.30) [ueatlFpr S |0Uextl|Foc 2 + [ Prtteat | L+ + 6108(2 + T)||ueatll7 -
Using the support of our cut-off functions, we find
(3.31) [wextllLer = [[(1 = xr)(|2)ullLpr + [[Ur]L2 + ROtz L2

Perhaps this line deserves some explanation. The triangle inequality yields the upper bound.
To obtain the lower bound, we integrate over a dyadic radius of size approximately R that is outside of the support

of (1 — xr)(]z|) to obtain

[@rllze + RIOtr| 2 = R™2 gl rare, , + B2 0rore, ) S lucodllzm:
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The above line combined with the triangle inequality yields the desired lower bound, proving (3.31).

We claim
(3.32) |0Uest||Loor2 S ||Oul|poore-
To begin, observe:
|Otteat| < (1 = xr)(J2))0ul + [X(|2l/R)R™ ul + [xr (|2 detir| + X' (|2l /R)R ™ in]-

We bound each term separately. The bound on the first term is immediate. The bound for the second term follows after

the use of a Hardy inequality (2.4). For the third term, we use the work in (3.26), to observe

Orup(t) :R*4/ / / Osu(s,r,w)y (t — S, |x|) r2drdo(w)dt
R JS2 0 R R

_ t—s
Sk [ oulieln (5 llasreads:

Applying Young’s Convolution inequality, we find
18R (D)L S R™22)|0ul poe 2]y ()L L2 <r<ay S B2 0ull Lo L2
Hence,

Ixr(l2)dtr] w2 £ B™*2l|0ul o2l xr(l2)llzz S 0ull L 2,

as desired.

The bound for the remaining term x’(|z|/R) R~ follows from a similar argument. Indeed, a variant of the work

in (3.26) and a Hardy inequality (2.4) show

ur(t) :]~2_4/R/S2 /OOO u(s,r,w)y <t ]—%s’ 2') r2drdo(w)dt

B _ t—s
S [ @) Nl (Dl srsads

— t_ 5
SR [ oul oIy s <rsards:

As in the prior case, an application of Young’s convolution inequality gives the bound, proving (3.32).
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We now calculate P uey::
(3.33) Pruerr = (1 — xr)(|2]) Pou + xr(|2|) Prtir — [Pr, xr(|2])](u — ur).

The commutator term is first order:

[P, xr(J2))(u = ar) £ B (l2l/R)||0u] + B (|2]/R)l|Ovir]

+ R (I (l2l/R)| + X (|21 /R) ) [u — gl

This is supported where » ~ R and so we can bound it in the LE™* norm via:

(3.34) I[Phs xr(|2)])(uw — ar)llLp- SIR™Y20ul 22 + R (u = ug)ll 122,
+|R20tiR | 212,

SloullLe, + IK2) ™ (u — ar)llLen < 10Ul LER,

where we have applied (3.27) and (3.29) in the last line. Applying (3.27) yields the desired bound for

Ixr(|z]) Prtr| e

(3.35) Ixr(lz)Putrlre- < R?0Far] L2 < |0ull ey,

Therefore, we have shown

(3.36) | Prest|| L= S | PaullLes , + [|0ullLEy-
Lastly, we observe

(3.37) teatllLpr < lullLer + IxXrR(ZDURlLEr S llullpe,

where we have applied (3.27) and (3.28) in the above line. Theorem 3.3 now follows from combining (3.30), (3.31),
(3.32), (3.36), and (3.37). O
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Chapter 4: High Frequency Analysis
4.1 High Frequency Background Estimate
We begin by stating the main theorem of this section, which is a local energy estimate for our background operator

P, with an error term that can be absorbed for high time frequencies.

Theorem 4.1. Let P, be as in (1.3), where D;g" D; is smooth, symmetric, non-trapping, stationary, strictly elliptic
in the sense of (1.4), and asymptotically Euclidean in the sense of (1.6). Fix Rp sufficiently large. Further, fix
Ry > 2Rup and T > 0. Suppose u(t,xz) € C%([0,T] x R?) solves Pyju = F € LE* + L'L?, with initial data
(u, 0u)(0,-) = (f1, f2) € C*(R®) x C*(R?3) such that |0=2u(t, z)| — 0 as |x| — oo forall t € [0, T]. Then

4.1 lullLer S Oullpeeore + lull g2z + 1 PgullLesypire-

<2R;

Remark. The implicit constant in (4.1) can depend on R;.

We devote the remainder of this section to proving Theorem 4.1 and will then consider the perturbation separately
in the next section.

Now, via the triangle inequality

lullLer < lIxr, ([zDullLer + 11 = xr,) (2 ullLe

Here x g, (|z]) is as in (1.10). We choose R; > 2R 45 so that we can bound ||(1 — xg, )(|z|)u|| L2 via our exterior
estimate Theorem 3.2. Hence, for the remainder of this section, we will focus on developing a good bound for

xR, (|z|)u| L g1. We will prove the following:

@2 lxm(2Dullie S lullzepz,, + 10ullie 2 + [Py X, (@D]ullLo- el e

+[[Pyullpeeq iz ([|ull et + [[0ul| Lo 2).

Combining (4.2) with Theorem 3.2 proves Theorem 4.1. Observe that we are applying Cauchy’s inequality and Theorem

3.2 on the error term ||[P,, X g, (|z])]u|| L&~ ||u|| L 5. We now focus on proving (4.2), which essentially follows from

the following two lemmas.
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Lemma 4.1. Under the same assumptions of Theorem 4.1, there exists a smooth, real valued symbol g € S L such that

(4.3) {97685, 0} 2 Boa(€D)xr, (1) €] + 7 (2, ),

where Ry > Ry and B>(|¢]) = 1 — x»/2(|¢]) . Here X > 1 to be chosen later and r(z, £) € S°.

Lemma 4.2. Let q be as in Lemma 4.1 and P, as in Theorem 4.1. Then

T
21m / / Pyxn, (J2l)ug™xn, (2)u dadt
0 R3

S IPyull ez ([ullLer + 19ull o £2) + [[Pos xry (|2)]ull - [l it

We will hold off on the proofs of Lemmas 4.1 and 4.2 momentarily and instead show how they imply (4.2).
Proof of Theorem 4.1. To simplify notation, set v = x g, (|x|)u. Observe

T T g
4.4) 2Im (Pyv, ¢*v) p272 = 1{00, ¢"0) 12 . i{(q" v, 0pv) | 2 . +([D;g"” Dj,q"]v,v) 122

The time boundary terms are controlled by ||8u||%x 12~ Indeed by applying the Cauchy-Schwarz inequality and noting

g € OPS? so that it is a bounded linear operator from H' — L? (see Appendix A, Theorem A.6), we find

T T
. . 2
(00,470) o | = ila" 0. 000 o] | S NOwIR| _ +I000I3| _ g eliEa| _ +llaola]
2 2 2 2
Showla| _ +l0wllEa] _ + ol| _ + el | _
2 2 2 2
S100la| _ + Nowla| S Nowle| _ +19uliza|

< lloulf 12

where we used the compact support of v to bound all lower order terms via the Hardy inequality (2.4).

Now from Theorem A.7 in Appendix A, we have

i<[Di9iijaqw]va>L2L2 = <{9ijfifjaQ}wvv’U>L2L2 + <AO”,’U>L2L27

where A° € OPS°. Applying the Cauchy-Schwarz inequality, utilizing that A° is a bounded linear operator from

L? — L? (see Appendix A, Theorem A.6), and using the compact support of v, we can bound the error term
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(A%, v) ;2 > appropriately:
(A%, ) a2 S 1A% 22 ]|v]| 202 S [[0ll72ze S HU||2L2L2<2R1'

We now investigate ({g"/&;€;, ¢} v, v) ;2> with the goal of applying Lemma 4.1 to bound this term from below.

Consider the new symbol {¢"/&,&;,q} + (1 — xr,(|z]))|£]? and observe
{99€¢5,a} + (1= xro(l2)IE7 2 (€)%, forl¢] > L.
Therefore, an application of the Garding inequality (Theorem A.8) shows
({97€i&5, 4} v, 0) a2 + (L= xmo (|2))IE7) "0, 0) papa 2 N0lIZ2 g — 0] 72
As Ry > Ry, (1 — xr, (\:z:|))|§|2)wv, v) ;272 = 0. Therefore, we have shown the desirable bound:
({g76& a0, v pars 2 W2 — Il0lZ2 -

Making use of the compact support of v, we have shown

-1
@5 [0:(xr, Iz 75 + )™ xr, (I2))ulllp S IIUHizL2<2R1 + [[0ullF e 2 + [Py, x5, ([2D)]ull o [|ul L 22

+[[Pyullpgeq iz ([|ullLer + [[0ul[ Lo 2).

To obtain (4.2), we need to add in time derivative terms. We accomplish this by considering the following integral

and integrating by parts:
T T T N - r
(4.6) —5/ / (Pyu)v dedt = 5/ |0y |? dadt — 5/ / (9" Djv)D;v dxdt — 5/ Opvv dx‘o .
o Jrs o Jms o Jms R3

The above time boundary terms are controlled by ||8u||%oc 12> Where we have used the compact support of v to apply

(2.4) on lower order terms. We immediately see

T
/ /S(ng)?dxdt S 1Pgs xr, ([2D]ull L= [[ull e + 1Pyl Lo rr2 (ull Lo + (18l Lo 22)-
0 R?
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Hence choosing € > 0 small enough so that we can absorb the —¢ fOT fRS g D;jvD;v dxdt term into (4.5), and utilizing
the compact support of v to convert L?L? norms to LE norms as needed, we find combining (4.5) and (4.6) implies

(4.2), completing the proof of Theorem 4.1. [
We now prove Lemma 4.1.

Proof of Lemma 4.1. Let p(x, &) denote the principal symbol for the spatial components of our background operator.

That is

4.7) p(z,€) = g7&¢;.

To construct our multiplier, we utilize a construction related to prior work in [8], [17], [24], [29], and [48]. We set

up the following Hamiltonian flow with respect to p(x, £). Let (z*, £*) solve

(4.8) iy = pe, = 29" (2°)&

& = —pu, = —(Okg")(2)EES,

with (20, £%) = (z,&). We note that due to the homogeneity of p in &, (4.8) enjoys the following scaling relation, as

discussed in [17]:

(4.9) a®(x, 1) = 2 (x,€)

& (@, 18) = t€" (2, 6).

We define a multiplier useful for an interior region:

(4.10) Gin = —Bo(1€)Xars (12]) / 1€ Pxy(12°)) ds.

Here Ry > R is chosen sufficiently large and 5> 5 (|¢|) is included because of the homogeneity of the symbol in [£].
The argument of [25] shows that ¢;,, is symbolic while an argument rooted in utilizing the scaling in (4.9) ensures that

¢in € S*. Indeed, by choosing t = |¢|~, (4.9) and a u-substitution shows g;,, is equivalent to

§

E)Dds.

Gin = _5ZA(‘€|)X4R2(|$|)|§|A 1€° (=, |E)IQXRZ(IQTS(JJ,
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Using the non-trapping and asymptotically Euclidean assumptions, we see the above integral is bounded, as in [29].
The methods of [25] now carry through.

We now compute H,q;n:

Hyton = ~Hy(Boa€Dvars (1) [ 16 (1) as)
=, (Boalehar () [ 16 e s
Ood 5|2 s
= Boallelana el | 56 P (a7)) ds

= —{paBzA(KI)sz(IxI)}/O €512 X ro (|2°]) ds + B (1€)X rs (|2 €[,

where we have used the Fundamental Theorem of Calculus. Computing the above Poisson bracket, we find

@11 Hygin = Box(IE)xr. (1) — 29’k€zﬁ>x(\§|)4R L (IHCI/Lle)/0 1€° X Ry (|2°]) ds

+ 066 €N anel) [ 1€ Pl ds

We note that due to the support of 5’(|€|/)), the third term on the right-hand side of the above equation is in the symbol

class S°. That is

4.12) r(x,€) = OngV €& (|§|//\))\|£|X4R2(|x\)/o 1€°*x2R, (|2°]) ds € S°.

Motivated by the multiplier used in [24] and [29], we also consider an exterior multiplier:

Qout = (1 - XR2/2)(|:E|) (|(E|)‘ Z| ”€J7

where

@13 o) = el

We need to compute Hy,q,,,;. Taking the Poisson bracket {p, ¢o. }, one finds:
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14 Hytous = 47516 U 2lal o) g6+ 272977650 = i a) () 1)

mie (s _ LiTm _ (‘xl) o T T g

9
] [|

+ 2™, (g") T2 €560 (1 — Xap2) (|2 F(|2]) = Don(9)g 9" ’]%( = xra/2) (&) S (J1).

||

We note that H,,go,; is nonnegative everywhere and strictly positive for |z| > Rs, as we are in the regime where ||g]|| is
small and the first term on the right-hand side is beneficially signed.

We now combine symbols to define

(4.15) q(2,€) = 8qin (2, ) + qout (2, €),

where 0 is a small positive constant such that

(4.16) Hypq 2 Box(1ED) xR, (J2))IEI* + 7(2,€).

Indeed, d is chosen small enough so that the error term

206 g o el f4Re) [ I Pran ) ds

in (4.11) can be absorbed into (4.14). This completes the proof of the lemma. O

All that remains to show is Lemma 4.2. We do so by first proving a boundedness lemma for ¢*.

Lemma 4.3. Let q be as in Lemma 4.1. Then,

(4.17) g xr, (|Z)ullFzpe S llullf g
and
(4.18) la“ X g, ([z))ul|Foe 12 S [|0U]|F o0 12

Proof. Again, let v = xg, (|z|)u. We first prove (4.17). Now ¢ € OPS" and hence it is a bounded linear operator

from H' — L? (see Appendix A, Theorem A.6). Therefore,

lg*“vlZ2re S Iolfem < lulfen,
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where we used the compact support of v to convert to a LE! norm. The proof of (4.18) is essentially the same as the

proof of (4.17), except that we bound all lower order terms by a derivative via a Hardy inequality (2.4). O
Armed with Lemma 4.3, we are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. We begin by integrating P, x g, (||)u against ¢* x g, (|z])u:

T
2 [ [ (P (lewig (elu dade
0 R3

T T
= 2Im /0 /R3 Xr: (|2]) (Pyu)g¥ xR, (|z])u dedt + 2Im /0 /Ra([Pg,XRl(|x\)]u)q“’XRl(|x|)u dxdt.

Now

2Tm /OTAs([Pg7XR1(|$|)]U)W“dxdt5/OT/RS’[pg’XRl(:ﬂ|)}quwXRl(|:E|)u’d;pdt

S 1Py xr ([2D]ull 222 Mg xr, ([ ul L2 2

S Py xr, (2Dl L~ [ull et

where we have used the Cauchy-Schwarz inequality and applied Lemma 4.3. Hence, it suffices to establish

T
2 [ [, (ol) (P a e, (el dedt S | Pyl sono (el + 10l -12).
0 R

We write Pju = Fy + F, where Fy € L'L? and F», € LE* and proceed as in the bound for
2Im fOT Jzs[Pgs x g, (|2])]ug® x r, (|2])u dadt. Again, applying the Cauchy-Schwarz inequality and Lemma 4.3,

proves the result. Indeed,

T e —
2 [ [ Qo) (Py) 7, (ol dade
0 R?
T
S [ ] IRl Gelul dode+ [ |Fallg® e, (el dode
0 R3 R3

S lla“xr, (Jx)ullpe 2 [[Fillpiee + 1% xR, (J2))ullL2r2 | Fol L2 L2

An application of Lemma 4.3 completes the proof. O

4.2 High Frequency Estimate with Perturbation
The goal of this section is to add the perturbation h*? D, D to our high frequency estimate. We now state the

main theorem of this section.
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Theorem 4.2. Let P}, be as in (1.2), where heP is smooth, symmetric, and satisfies (1.11) for some 6 > 0 sufficiently
small. Further D;g% D; is smooth, symmetric, non-trapping, stationary, strictly elliptic in the sense of (1.4), and
asymptotically Euclidean in the sense of (1.6). Fix R sufficiently large. Further, fix Ry > 2R p and T > 0.
Suppose u(t,z) € C%([0,T] x R®) solves Pyu = F € LE* + L'L?, with initial data (u, 9,u)(0,-) = (f1, f2) €
C?(R?) x CY(R3) such that |0=2u(t,z)| — 0 as |z| — oo for all t € [0,T]. Then

(4.19) lelfgr S 10ulioe e + ullfere,, + I1PaullEpe e + 81082 + T)lfulf g

Here the implicit constant is independent of T and §.
Remark. The implicit constant in (4.19) can depend on R;.

Proof. This theorem follows by combining the exterior estimate Theorem 3.2 with the proof of Theorem 4.1, where we

track the h-dependent terms that we are now including. Indeed,

T T
2 [ [ (P, (el (e dodt — = [ [ (P, (ol (ol deds
o JR 0o JR
S Prullp g rrre (lull e + 10wl e p2) + 1 [Pay X5, (l2)]ull L= l|ull e,
just as before. So it suffices to bound

T T
@20) 2 [ [ (027 Do Dy (el (el dodt —< [ [ (627D Do ) el dat,

as all other terms are controlled via the proof of Theorem 4.1. We handle each term separately.

For the first term, it suffices to bound

T —
@21) Q’Im/ /d(h”ﬂDiDngl(|x|)u)quRl(|x\)u dad
0 R3
and
T —
422) 2| / / (KO DDy, (ol g, (ol |
0 R

Again, we set v = x g, (||)u to simplify notation. Expanding the first integral above and integrating by parts, we see

that it is equal to
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(4.23) (&-hiﬁDBv,q“’v}Lng + {q"v, 35hiﬁD,-v>L2L2 + (i[Dg, ¢*]v, hiﬁDﬂ}>L2L2

. . X T
+ (W Dy, i[Dis6"10) 12 — (Do, ila® B2D;0) g + a0, 0Dy 1|

The above time boundary term is controlled by [|0u||2 .. ;.. We control (9;h*# Dgv, q*v) 2> by applying Cauchy’s
inequality, utilizing the compact support of v, and using the fact that g% € OPS". This ensures that ¢’ a bounded

linear operator from H! — L? (see Appendix A, Theorem A.6). Therefore:

(Ol D, ¢v) ags S (1001322 + g vl3ay2 )

S 6(10013212 + lollEerms ) S Slullf s,

where we have used the compact support of v in the last line. The bound for {(¢* v, 85hw D;v) ;2 - is similar.
We control (i[Dg, ¢*]v, k%’ D;v) . » by noting [Dy, ¢*] = 0 and [D;, ¢*] € OPS" (see Appendix A, Theorem

A.S). Applying similar steps to our prior bound, we immediately see
(1D, 6”10, W Div) a2 S 6 (100322 + 03 2pr1 ) S Slullf -

The term (h*# Dgv,i[D;, ¢*]v) 2, » is controlled similarly.

We now examine (Dgv,i[q", h"#]D;v) 2, .. We use Theorem A.7 to write this as
(Dpv,ilg", h°1Div) 22 = (Dgv, {q; K"} Div) 22 + (Dgv, Z-2Div) a2,

where Z_, € OPS~2. Continuing, we use Theorem A.4 to switch quantizations to the Kohn-Nirenberg quantization to

write this as
(4.24) (Dgv,i[q", h"P|D;v) 22 = (Dpv, {q, "’} kN Div) ;212 + (Dgv, Z_1Div) 1212 + (Dpv, Z_oDiv) 1212,

where Z_; € OPS~!. Now

T
(Dgv, {q, h”ﬂ}KNDﬂ/)Lsz = / Do h'B () F~10¢qF D;v dxdt
0o JRrs

T
:/ 8zthﬂv(85q)KNDiv dxdt.
0 R3

Now J¢q € S° and so (9:q)kn is a bounded linear operator from L? — L2. Utilizing this fact, and applying

Cauchy’s inequality, we are able to bound the above by §(|0v[|2,,, < 8||ul|2 1. It remains to bound the error terms
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(Dgv, Z_1Div) 22 + (Dpv, Z_9D;v) 2,.. We note it suffices to bound (Dgv, Z_1D;v);2;.. Now Z_1D; €

OPSY, and so we utilize this, Cauchy’s inequality, and the compact support of v to see
< 2 1 2 1
(Dgv, Z-1Div) gz S ell0vlEage + <121 Dol pors S ll0vlEage + ~llollzare.

We choose & small enough to absorb &[|0v||2 . , into the left-hand side of (4.1). So we have controlled the integral in

4.21) by
(4.25) ello(xr, (Je)u)F2p2 + E_1||7«t||isz<2R1 +[0ulF e 2 + [l s

which suffices.

We need to obtain a similar bound for (4.22). To this end, we investigate

T
2Im / / h% D, Dyvq®v dxdt
0 R3

and note that this is equal to

) T, . T, . .
— (ig"v, h"°0v) | » |O + (100, ¢ h%) |0 + (iq"v, 0th®04v) ;25 — (1040, ¢ Oth""V) 12 s

+ <8152Ua i[qw, hOO}U>L2L2-

The time boundary terms are controlled via [|dul|3 .. ; -, as usual. We have already controlled terms very similar to

<7;qua 8th008tU>L2L2- We write
(1010, ¢ O h%) ;5 > = (10,h°00, ¢Vv) 2o + (1040, [q%, Bh*0]v) 2.

We have already bound terms in the form (i9;h°°0,v, ¢*v) ;212 For (iyv, [¢*, Oph]v) 212, we note [¢*, 0,h"°] €

OPS° and so

- L 1 L
(100, [q", 0ch*J) 122 S el0rv]72ra + ZIlla"”, A0 Zare

1
S ellowles + < lolEapo

We choose & small enough to absorb the &[|0;v[|%,, » term as needed.

We now turn to (97v,i[q", h°]v) .- and write this term as
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(4.26) <at207i[qwah00]v>L2L2 = (Pyv,i[g"”, hOO]U>L2L‘2 - <Di9iijUai[qw7h00]v>L2L2

— (h*’ Do Dgv,i[q", h%v) 212
Using that [¢*, h%°] € OPS° , the compact support of v, and the Hardy inequality used in (2.4), we see

(Pro,ilg”, h*0) page S I1Phxr: (J2))ull gt ora[(lull e + 10ull L 2)-

Now

@427)  — (h*’ Dy Dgv,ig”, h%°v) 20 = <h0585v,i[qw,hoo]v>L2L2|0T — (0ah*Pdpv,i[g", h°10) 2y

+ (h*95v, Dalg", h*0) L2 2.

The time boundary term is controlled by ||Oul|% .. , ., as usual. Recognizing [¢*’, h°°] € OPS°, we see the last two terms
in the above equation are similar to terms already bounded. Therefore (4.27) is controlled by ||Oul|2 .. ;> + 8||u/|? ;1.

We now turn to the remaining term in (4.26) and find:

_<Di9iijU7i[qu hOO]U>L2L2 = _<DigiijU7 {Q7 hOO}wU>L2L2 + <Digiijv, Q—2U>L2L2

= _<D'Lg”DJ’U7 {Q7 h'OO}KN/U>L2L2 + <ngUD]v7 Qflv>L2L2u

where we have applied Theorems A.8 and Theorems A.4. Here Q_, € OPS™2 and Q_; € OPS~!. Now
(Dig"¥ Djv,Q_10) 22 = (g" Djv, D;_10) ;2> which is in the form of terms we have already bounded. Continuing,

we find

—(Dig" Djv, {g, A} k) 212 = (Dig” Djv, 0 (Beq) k) 2
= <8zhoogiijU7 Di(0cq) kNvV) 1212

- <3i3xh009ij8jvv (0cq)kNV) 22

Note that (9¢q) kv is a bounded linear operator from L? — L? and D;(0¢q) k n is a bounded linear operator from
H' — L? (see Appendix A, Theorem A.6), and so we have already controlled terms of this form.

So we have bound the first term in (4.20) by

@.28) elloCr, (Jewllzzpe + e ullferz,, +10ulfe 2 + OlulL g

+ |1 Puxr, ([N ull g pree ([ull e + 10ull e L2),
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which suffices.

For the second term in (4.20), we must bound

T
/ / (h* D Dg)vT ddt.
0 R3

We integrate by parts to obtain
T T - -
/ 9o h*POpvv dadt + / h? Q5v0au dadt — / h*? 9500 da| .
o Jrs 0o Jrs R3
The time boundary term is controlled by [|dul|2 . ; -, while the remaining terms are bounded by

/OT /R (10h] + ) (|0u] + <|Z>)2 dzdt,

where we have utilized the compact support of v in the last line. An application of (2.3) completes the proof of Theorem

4.2. O
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Chapter 5: Medium Frequency Analysis
We begin by stating the main theorem of this section, which is a weighted local energy estimate with an error term
that can be absorbed for any bounded range of time frequencies supported away from zero. This theorem is related to a
similar theorem in [29]. The key difference is obtaining good bounds for our time-dependent perturbation h** D, D 85

as it is not asymptotically flat.

Theorem 5.1. Let P}, be as in (1.2), where h®? is symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further D;g"/ D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in
the sense of (1.6). Fix T > 0. Suppose u(t,z) € C*([0,T] x R3) solves P,u = F € LE*, with initial data
(u, 0u)(0,-) = (f1, fa) € C*(R?) x C(R3) such that |0=%u(t,z)| — 0 as |x| — oo for allt € [0,T]. Fix Rar
sufficiently large and fix Reyr > Rout > Rin > Rap. Then, for any radial weight ¢(r) that is constant for r > 2R,
and compatible with the constructions in Appendix B in that (B.1) holds for {R;, /2 < r < 2R} and (B.4) holds

for {r < R;,/2}, the following bound is true:

GO )T A+ G2 T U ) Vo) g+ )T (1 60 2Byl

t

in)

+ Rgxl’fHE%HiEéRm S ”e(bphu”%“imm + R lle” Prull i pe + (6")2€?0pull T2 21 < o
o B Rzt (|00 12 + 01082 + Dl 1)

-2
I T+ )P ullTar2(my cr<2Ron)

Here the implicit constant is independent of T' and .

Remark. The implicit constant in (5.1) is independent of Ry, Rout, Rext, ¢, and its derivatives unless explicitly stated

in the form CRin yRout, Reat, -

This is a medium frequency estimate since it implies the following local energy estimate for « with appropriate

time frequency support:

Corollary 5.1. Let P, be as in (1.2), where h®? is symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further D;g" D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in
the sense of (1.6). Fix T' > 0. Suppose u(t,z) € C*([0,T] x R?) solves P,u = F € LE*, with initial data
(u, Ou)(0,-) = (f1, f2) € C*(R3) x C1(R?) such that |0=?u(t,z)| — 0 as |z| — oo for all t € [0,T). Further
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assume u(t, z) has time frequency support in some bounded interval away from zero: 0 < 79 < || < 71 , where T is

the Fourier dual of t. Then, the following bound holds:
lulll g S 1Phull? g + 10ullZe 2 + 610g(2 + T)||ullF g1

Here the implicit constant is independent of T' and .

We first show Theorem 5.1 implies Corollary 5.1, before proving the theorem.

Proof of Corollary 5.1. The corollary follows by applying Theorem 5.1 to u. We need to absorb the following two error
terms on the right-hand side of (5.1): || (¢/,)1/26¢atu||2L2L2(1<7><2Rv ) and || <7">72(1 + ¢’)3/26¢u||%2L2(Rout<r<2Rm)'

The term |[(¢”)Y/2e0pul|?,, is absorbed into the first term on the left-hand side of (5.1) by observing

(1<r<2R;y)
® = X > 1 in this regime and choosing A > R? 11. We are now free to choose R, sufficiently large so

that 70 > supp_ . .<or.., (ry""(1 + ¢)’. Indeed this is possible provided ¢’ (log(r))/r — 0 as r — oo, which
is certainly true for the weight function constructed in Appendix B. This ensures that the error term || <r>_2(1 +
@) %ebul2, L2(Ryus<r<2R..,) a0 be absorbed into the second term on the left-hand side of (5.1). This completes the

proof of the corollary. O

We now turn to Theorem 5.1 which is proved via two separate Carleman estimates. The first estimate is useful
for when our “background” operator —D? + D; g Dj is a small, asymptotically Euclidean perturbation of [, i.e. for
r > Rap. The second estimate is useful on a compact set around the origin. Our Carleman estimates are weighted
L?L? estimates obtained by conjugating the wave operator with e?, where ¢ = ¢(r) is a convex weight function. For
more on this, we refer the reader to [21], [29], and the references therein.

We begin with a preliminary estimate that is applied for r sufficiently large. The authors of [29] prove a similar
estimate by working on the symbol side, quantitizing, and absorbing errors. We work directly on the differential

operator side but are motivated by the methods found in [29].

Proposition 5.1. Let P, be as in (1.2), where h®” is symmetric and satisfies (1.11) for some § > 0 sufficiently
small. Further D;g" D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean
in the sense of (1.6). Fix R4 sufficiently large and fix R,,5 > R,,1 > Rap. Further, fix T > 0. Suppose
u(t,z) € C%([0,T) x R?) solves P,u = F € LE* with initial data (u, 9;u)(0,-) = (f1, f2) € C?*(R3) x C1(R?),

such that u is supported in R,,,, < r < Ry,,. Then, for any weight ¢(s), where s = log(r), that satisfies

(5.2) AS () S ()/250"(s), 187 S ¢(s), A>1,
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the following bound holds:

(5:3) |rH(¢")2e? (7 ¢ u, Vau) G2 pe + Ir ™ (¢) e Opul|

S 1e? Putl g + Crtpn, st (10Ul13 2 + 81082 + ) ul 2 ).

Here the implicit constant is independent of T and §.

Remark. The only reason that we require u to be compactly supported is to ensure that all constants Cr,, | R,...o are
finite since ¢ — 0o as r — co. We will actually bend this weight in a later estimate at the expense of an error term,

which we later absorb for bounded time frequencies.

Remark. 7o see the existence of such a weight function ¢, we refer the reader to [29] and especially [21], where such
a function is explicitly constructed. A similar construction can be found in Appendix B, where a weight function is
constructed for the next proposition. By choosing R,,o < 2R, this function satisfies all the desired properties in

Proposition 5.1 on the support of u.

Proof. To prove Proposition 5.1, we will conjugate P}, by e® and break the resulting operator into its self-adjoint and
skew-adjoint components. We then form the commutator of the resulting self-adjoint and skew-adjoint operators and
obtain the proposition via a positive commutator argument. In the sequel, it is useful to consider the new differential

operator:

(5.4) P, = —D? 4+ D;g"D; + D,h*’Dg = Do,g*’ Dj.

The operator P, has the benefit that it is symmetric (up to time boundary terms). We now conjugate this operator,

calculating
(55) P¢ = e¢phe*¢ — PSElf + Pskrew.

Breaking the result into self-adjoint and skew-adjoint components, we find

(5.6) Pl = D.g* Dy — §7
r? ror
and
skew ]-d)l Ti .4 1 ~ (b/ Ty
5.7 psk :_,_ffgﬁpﬁ_,.pﬁg677.
iror i ror
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Setting v = e®u, we see it suffices to show

- T
(5-8) I~ (@) 2 (100, Vao)l|Za e + 77 () 2000l T2 S I Pavll e + Erl] , il

- T ~
where F1 [v] . and H; [v] have good bounds in terms of u:

- T
Bifol|| S Oy . |00ll 1

and

0] S Chips, s 66 (1082 + T) ullf g + 003 12 )-

Morally, we want to reduce the proof to a positive commutator argument by observing
| Pyv]|2ape = | P 0|20 0 + | P 0|22 2 + ([P, PTR%]y, v) 5, 5 + time boundary terms.

We can control the time boundary terms via Cg,,, g,..6/0u/|? ;2.
It will not actually suffice to work with ([P*¢!/ Pskew]y v) , , alone. Rather, we will show that the left-hand

side of (5.8) is controlled by

1 i / - T ~
O =40, Py e+ Bal| + il

([P P00, v) s+ 20(8) 2P0 B + (5 55 — 45 4,

and then obtain (5.8) via Cauchy’s inequality.

We now compute the aforementioned time boundary terms via integration by parts:

1PsvllZore = 1P ollFars + 1P 0l|Fa 2 + ([P, PE]0,0) oo

/3 Ty T ! T
_9 %40%&@@@@:’ +2 iﬂélo(l)aﬂﬁDﬁvﬁdl“
— roror 0 rR3 7T 0

/ / I T

,/ (gﬂglvav+D7gﬂ§”v)§05ngdx‘

RS T T ror 0

! T
Iy . _
¢ —g”v)v dx‘ .
ror 0

/
—/ he,aoji)a(ﬂﬂglmw+D7
R3 T rTr

Observe that the above time boundary terms are equal to:
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3 g T T
fg/ %glogl]&ﬂﬂvﬂd;p‘ +2 oy 3" (D; glﬁDlgv)vd:r’
rR3 T rror 0 rR3 T T
/ ) T
+2 ﬂﬂgw(Dtgoijv)@d”f‘ vo [ Egop, " D)o dz|
R3 T T 0 R3 T T
/ / -
_/ (ﬂﬂg”Dw+Dwgﬂg%)g0ﬁDﬂv dx‘
R3 T T 0
' T
_/ glO(DZ(d) g §"Dv+ D, gﬂg” ))@dx’
R3 r 0
T
_/ gOO(Dt(¢ 2 l’YD +D QQQIVU))ﬂdw‘
R3 r 0
B 4 — T
— g [ O gogutiiint Edac‘ +2/ (giﬂpﬁv)Dﬂﬂgl%dx‘
RS T roroT RS ror 0
1 T T
_2/ gil?l zo(Dta 3%0)p dx‘ _2/ (Dt§0JU)ngﬂ§lov dx’
R3 0T R3 rr 0
1 T
+ - w)vdr| + v)U dx
2/ ¢ L1 lo(agooD Yo d ’ 9 ¢ Zy 33" D2v)v d ‘
R3 ? R3 T T 0

rTr

T
—/ (¢ iy §"D,v+ D, g—g )D g’ovda:’
R3

rr

T
7/ 501 (Dta (d’ Ty ) dx‘ 72/ gooiﬁ i”lglo(va)vdx‘
R3 rr 0 r

R3 r 0

/ [ T
-, @%”Dw + D, E 2 G0) Do dal,

7

~00 ¢ T, - ~00? Ty r
-2/ g f(“)t(——g J(Dyv)odz| —2 (Dtv)D g —g Judx| .
R3 rr 0 0

By taking the derivative of v, the supremum of ¢-dependent terms, applying Cauchy’s inequality, and a Hardy inequality
(2.4) on lower order terms, we can bound this from above by Cr,,., g,..,6/|0u[|% « ; 2, as desired.

We now consider the commutator [P*¢!/ | Ps¥¢*] and observe

i ()2 @i @ hay 1 ¢'a
69 3! )7777779”’5‘2%7 797
N2 ;Ti T . Ti T DRy N T T T
(¢> . (5" r rj) 4(¢) §'*g =2 1_87@) (g7 —=-1)? +27(¢) ('“)ﬁgjglﬁff]—l.

ror réd ror ré roror

Calculating the other terms present in [P*!f | Ps%e%] | we find

1
(5.10) [Da~a’3D/a7—ﬁﬂ "p,~1p ¥ xlglﬂzwag“ﬁaﬁ(ﬂ 1§D, +2D79a68 (¢ =5 Dy
rTr r

(3 rr

1
- 2D, ﬂﬂglm §*°Dg — Wﬁaaay(f ‘ff ”)Dg+ 'p, ~aﬂaﬁa(

¢ o —4").
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Remark. We note that a more standard form of the above commutator would have no first order terms. It is indeed

possible to put (5.10) in this form, as it is equal to
2Da§aﬂaﬁ(¢iiglv)p + 2D, 370 (¢ ?QM)D —2D, ﬂﬂglva ~a6Dﬁ*a ( ﬁaﬁa (¢ a;lgh))

Note that the last term in the above expression allows for three derivatives to land on g and h (contained in g). It is

preferable for this not to occur. Therefore, we work with (5.10) instead of the above expression.

Utilizing (5.9) and (5.10), we see

/!
(5.11) / ([P*, P**ev] )5 dadt = / / d) iTi L5y +4(¢) GihghiTi L ) 2 dudt
Rs ]R3 rr rr
3 o
/ / i L2y +27(¢4) 0p5" 57 =T ) o dudt
- ror roror
—|—4/ / O‘ﬁé‘g ——lgl"*)@ V0 v dxdt — 2 / / g% ”(’9 O‘ﬁf)‘gva v dxdt
R3 R3
G Ty 500 PN
Lo 80,0, ( ——g Ngvv dedt — 0 (S50 da
]R3 ]R3 r 0
—2/ g“ﬁaﬁ(fgjl W)a ) dz‘ —2/ §P0, (g—lglo)agvv d:c’ + 2 g—g”@ goﬁaﬁw dx
R3 R3 0 R3

We can bound the above time boundary terms via Cg,,,,R,.,,6/|0u||? .=, using very similar steps as before.

We must control the remaining terms in (5.11) and observe the immediate bound for all ~A-dependent terms:

! .
<[Dahoc,3DB _ hu <¢) . Q;J PSkew]v7v>L2L2
ij (@) xix, 14w 1 T,
+ <[_Dt2 + D,;g" D, _gzjﬂﬂxJ’_,ﬂﬂhbﬁDB — ngﬂxfh’ﬂ]v,szLz
1 rr

T
S Chos st (0] 2 +/0 /]R (19°h] + O] + |l) (|0u] + |<T“>)2 dadt)

S Chns st (1003 12 + 8log(2 + T) [ull3 2 )

where we have applied (2.3) in the last line by choosing ¢ sufficiently small.

Therefore we need consider only the following terms from ([P5¢!/| Pskew]y o) L2r2
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" 3
(5.12) / / O (gatitay: +4(¢)g”“g’“fxf D)2 dedt
R3 T ror

e 7\3 B D
/ / il'z ﬁ)2+2(¢2 akgz]glk&&ﬂ)UQ dadt
R3 ror roror
—|—4/ / g"70;( n lk)@w@vdwdt— / n lk@ 9" 0iv0;v dadt
R3 rR3 T
+2/ / ”8 Ok ( )8 vu dzdt.
RS

We now calculate 2||(¢)~1/2Pskewy| 2, ,:

T / T .
2)|(¢") V2 Pskewy|2, . :8/0 ‘b( ﬁxlaﬁv) dxdt+8/ / (1‘“ Thaton )85(£—§16)vdxdt

r3 T2 o Jrs' T

d) L ~25
+2/ . ¢/ v ) dxdt.

We now investigate the h-dependent terms in 2||(¢') ~1/2Psk¢wy||2, , and find the immediate bound:

s [ [ (001 10) (00l + )t S Ot (100 + o2+ D).

where we have applied (2.3) in the last line.

So it suffices to consider the following terms from 2|| (¢’)*1/2P5ke“’v||%2L2:

37’2 37“7‘

T / i 1 / 7,
(5.13) 8/ % (g ”m d,v) dxdt—i—S/ / Lty ¢'9)Opvv dzdt
0 '

(b Xy z] 2
+2/ g <b’ o)~ dadt.

We now investigate (1% — 4% )v, P*//v) ,,, and integrate by parts to obtain:

/! / /!
(5.14) <(%¢L—4¢) Py o0 = / /R %%—4 5)3*P 0000 dadt
/

<l5” PLAE / ¢ 19"\ op
/ /]RS — r ) Ogvv dxdt + ( 273 2) Ogvv dx

¢ T T; N--¢N¢/2I‘I‘>
giu -t g T Tt )2 dadt.
//]R?’ T 2gr2r2rr

Applying our typical analysis on the time boundary terms, utilizing Cauchy’s inequality, and a Hardy inequality (2.4),

we control them by Cr,., R0 /10Ul o ;2.
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Further, we bound h-dependent terms in (5.14) (i.e., when §*° = h8) by

T
U|\2
Crnins [ [ 11000+ 2)? dodt  Crtp o (10012 + g2 + Dl ).

Hence, we need only consider the following terms from (5.14):

T " / / 2
Lo ¢ g ¢ ¢5

1z r LI 1 ..¢" &? x: .
/ 05 ( ¢ %)g”ﬁjvv dacdt+/ / 4917(25—&&— fg”dj—d)—&ﬁyﬂ dxdt.
R3 0 R3

r rd ror 27 rZ2 2 p oy

Combining (5.12), (5.13), and (5.15) leads to the following bound:

(516) <[Pself7pskew] + (iﬂ _ 4¢

/ /! /! /
/ / 4£ — f(b—) Otv dxdt +/ / f% — 4¢ ) ijaivajv dxdt
R3 R3 2r ’

r (b/ Ty l
+ 8/ (g = 8 v)? dadt + 4/ / 9"70;( lk)akv&v dxdt
R3

R3 7”2

)0, PM0) oo+ 2(¢) 2P

_2/ . o lk@g”@v@ Udacdt+2/ / ”88 (¢ 9 "oy dadt
R3

1 i " 49
+8/ / Ty g*o ¢ Ly Zj)ak,uvdxdt+/ ¢2 — ¢) ”8 v dadt
rR3 T T r 2
/!
/ / ¢ ij Ti xj) +4(¢) glkgkj ) dxdt
RS ror rr
/ / :m:cj) +2(¢) 8kg¢jglkﬁﬁﬂ>v2dzdt
s r roroTr
¢xz / / Cwizg 10" % wia;
9 1,] 2 dadt ZJ DI Zgi T I N2 dedt
* / R3 ¢/ vt + R3 Hrr 29 e T)v v
. T
+ E1[v] o + Hi[v].

Applying Cauchy’s inequality on first order terms, we can bound this from below by
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T / " " /
(5.17) / / 4g — lgz)—) 0p)? dadt —|—/ / 1(;57 - 4¢ ) ij@,'v@jv dxdt
0 R3 R3

r2 2 r2

T /
+ 8/ ¢ (g% xla v)? dadt + 4/ / 9"0;( n lk)ﬁkv&v dxdt
0 R3

]R:STQ

—2/ . n lk@ g™ 0;v0;v drdt — / / —2\V$U|2da:dt

R3

o i l lk: CE[ lk xl i 2 2

Z/ /}R3 7"986 ))vdxdt 42/ -/R3 rg))vdmdt
// /
—72/ / ra ¢)’j)vdxdt
R3
" 3 .
/ /R ¢ i 21 Ly +4—(¢4) glkg’“ﬂ'%%)ﬁ dxdt

ror

/ / ij Ti ajj) +2(¢) 8kgzjglkﬂxiﬂ)v2 dxdt
g . roroT
o, 3as x5 ¢" ¢ wiw
2 2141 )0)? dadt ” Sl ”77;7) " dodt
Jr/]quS’ x‘L//Rs o 29T2T2TTUI
B T .
+E1[v]‘0 + Hy[v]

By choosing R,,1 > Rar sufficiently large, we may freely replace g*/ with m* at the expense of additional error

terms involving [[gl| z . So, we must consider

d)/ (b” (bl/ ¢I 11 1
(5.18) / /R3 2 ) (Opv) dgcdt—i—/ /W 5,2 4a- ?ﬁ)|vwv|2 dadt

T / /
+8/ ()2 d:vdt+4/ 0,2 xk)@w@vda:dt

R3 7‘2

—Z/ /Rg raal 7)) v dmdt—42/ /Rg x’“ q””)) v? dwdt
_,Z/ /R ;‘f;/_%)) o dadt
/ g d’/ d)//v dxdt+2/ a2 ”“”) )2 dwdt

¢
2
R dxdt.

R3
T 3
(¢)
- H|9|||>Rm1/ 2|Vaav|2 dxdt — |H9|||>Rm1/ /
0 rR3 T 0 R3

Utilizing the largeness assumptions on the first two derivatives of ¢ in (5.2) and the smallness of ||g]| g, . We are able

to bound the above equation from below by
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/ /! 1/ /
(5.19) / / 4g - lgz)—) 0p)? dadt —|—/ / 1% — ¢ — l—liz)wxm? dxdt
R3 2r

T / / / 1"
+8/ ¢(8v) dxdt+4/ ¢$k)8kv8vdxdt+/ ¢ ¢ v? dadt
0

R3
|||9H|>R,,L1// 2|v v|? dedt.

Observe, thus far, we have only simplified our bound for the lower order terms.

Making use of (5.2), we see

/ " T 100 41
/ 4g — ld)— )(Opw)? dadt —|—/ MU2 dxdt

R3 ’l” 0 R3 7'4

2 =2 (@) 29 ol Fa e + (@) 200ul| s o,
as desired. Now the remaining terms in (5.19) can be expressed as

T /
(5.20) / / —— 8;4)(9 v dxdt + 8/ %(87.11)2 dxdt
R3 0 rR3 T

1¢” qS’ 111
/ 43 57‘72 T2 T 77)|v ’U|2 dxdt — |Hg”|>le / / 2 ‘V ’U|2 dxdt
/! 17 11
=4 ¢ (0,v)? dadt + ¢— - — |V,¢v|2 dxdt
R3 7’2 RS ’]"2
¢/
gl .. / / 3 ﬁw dwdt

2 |lr (@) 2V pul 3,

provided A and R,,, are sufficiently large.

So, we have shown

520 [r (") 2 (r7 0, Vo) Gaps + IrH (@) /2000 ) a0

" / - T
S PP, PR, g + (5 oy = 45500, PP g+ 20(6) /2P0l + B, + el

Applying Cauchy’s inequality on ((3 ‘f—;, — %')v, Pselfy) 5, » and making use of the properties of ¢ in (5.2), we

can bootstrap error terms into the left-hand side of (5.21) to obtain

- T
(5.22) lr=H (") 2 (e "0, V)| Fape + lr (&) 2000l T2 S IPs0l 2o g2 + Enl] , T
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We can switch back to our original coordinates to find

(5.23)  |r=H(@") 2 (r ¢ u, Vou)||2a o + 11 (9) Y 2e?80ul25

S e Pull3are + Crtp s (1003 2 + Slog(2 + T ull3 1 )-
Finally we estimate the error associated with working with P as opposed to P:

T
524 1P~ Pl = 140005l aps S s | [ 108100 dia
0 R3

S Chy ad (0l 2 + 1082 + TfulE 1),

where we have applied (2.3) in the last line. This completes the proof of Proposition 5.1. O

We would like to pair Proposition 5.1 with the exterior estimate, Theorem 3.2, but this requires that our weight ¢
be constant at infinity, which breaks the convexity assumption. To overcome this, we permit a lower order error term
localized to a region R,,; < r < 2R.;+ and modify ¢ such that ¢ is as in Proposition 5.1 for r < 2R+ and ¢ is
constant for » > 2R..;. Please see Appendix B for an explicit construction of such a function, which is based on the
prior work of [21].

With this set up, we have the following proposition:

Proposition 5.2. Let Py, be as in (1.2), where heb s symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further D; g% D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in the
sense of (1.6). Fix Rp sufficiently large and fix Reyy > Rout > R > Rarp, where R,y and R,,,; are defined
precisely in Appendix B and R, is as in Proposition 5.1. Let ¢ = ¢(s), where s = log(r), be the weight constructed

in Appendix B. Observe ¢ satisfies

AS ¢ (5)<¢'(s)/25¢"(s), (") S (s),  A>1

forr < 2R,,+ and is constant forr > 2R..¢.
Fix T > 0. Suppose u(t,z) € C%([0,T] x R3) solves P,u = F € LE*, with initial data (u,9;u)(0,-) =
(f1, f2) € C*(R3) x CY(R3) such that |0=2u(t,z)| — 0 as |z| — oo for all t € [0, T and further assume u(t, x) is

supported in {r > R,,1}. Then the following bound holds:
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(525) [ (14 60 P Uk O Vo) e, + I (U ¢) 2l
ext ext
+ R eCull s,

_ -2
N ||e¢Ph“||%2L2<2Rm + Rex1t||e¢Phu”%E* +[(r) (1 + ¢/)3/26¢u||%2L2(Rout<’l‘<2Rezt)

- O et (10Ul 2 + 61082 + T [ulld 1 ).

Here the implicit constant is independent of T and §.
Remark. Observe R, corresponds to R,,2/2 in Proposition 5.1.

Remark. In the transition region between Ry, and 2R, we may break the conditions on ¢’ and ¢", but will still
have good bounds for ¢' and ¢". In particular for Royr < 1 < 3Rert/2, ¢' 2 1, but ¢ will be in part negative, with a

bound from below |¢"| < ¢' /2. Forr > Regs, || + |0"] + |¢"] < 1.

Proof. We divide the analysis into the following three regions:
1. s < log(2Rout)

2. 10g(Rout) < 8 < log(3Rext/2)

3. log(Rext) < s.

For Regions 1 and 2, we apply appropriate cut-off functions to our solution u and note that the error terms arising
from commuting our operators with the cut-off functions are lower order and supported in the other regions. Hence,
these error terms can be controlled with the methods from the other regions. We will elaborate more on this momentarily.
The bound in Region 1 follows immediately from Proposition 5.1.

The proof for the bound of Region 2 is similar to the proof of Proposition 5.1. Instead of working with
(PP P, 0) e+ 20|(6) 2P 0|2, + (3% — 4%)0, P, we  bound
([Poelf, PRy v) o0 + 2||(¢)) "2 P3kewy|2, , — <%v, Pselfy) 5, from below. We have essentially made all
of the necessary computations in the proof of Proposition 5.1. Indeed, applying the methods from (5.14) and (5.15), we

N9

/ T d)/ B T /
(5.26) — (—QU,Pselme?m > —/ — 9" 0jv0;v dzdt +/ = (0pv)? dadt
T 0 R3 T 0

R3 7‘2

T o T A3 B 5
—/ / 81-%9”@% da:dt—|—/ / g”%ﬁx—%ﬂ da:dt—|—E2[v]|§ + H[v],
0 R3 r 0 R3 r-r.r

where

~ T ~
|Balolly | + | H2le]] S Croveohero (100l 12 + 8108 (2 + Tlful 1 )
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The remaining terms ([P, Pske@]y v) 5,5 + 2||(¢') ~1/2Pskewy||2, , are still controlled by (5.12) and (5.13), up
to h-dependent terms and time boundary terms controlled by Cg, ., R....¢ (HBUH wp2 T 0log(2+7T) ||u||LE1>, as
usual. Hence, performing nearly identical analysis to that in (5.16), (5.17), (5.18), (5.20), and recalling we are now

allowing for a lower order error term, we obtain the bound:

’
<[Pself,PSkew]U,’U>L2L2 + 2H(¢I)71/2Pskewv||22 y — <7U,P86lfv>L2L2

T ¢/ T ¢/
> / (6t11 dxdt + 4/ / 8“18 v dxdt + 8/ (0,v)?* dadt
0

R3 7‘ 0 R3 7“2

11 1 , ,
G S S st gl [ [ G0 s

s Eyfol|| + ) - P Y03 <<t
T / / 7
111
:/ 7 (o) dzdt+/ / :ﬂfff)\vx |2dxdt+4/ / P (@,0)? dudt
0 rR3 T R3 rR3 T
S g E -
Ml [ [ GVl doa Byl + Al
0 rR3 T 0
— CIl) 2@+ @) 20l[32 2y <reornn)
T (b/ d)/
z/ / = (Ov)? dxdt—i—/ / 5 I Vov|? dadt
0 rR3 T
~lglls ,,, / Ix O Vol dedt + Bl + ]

=) 2+ )20l R 22y <rcarenns

where C' is a constant that does not depend on any important parameters and
~ T ~
|Bslolly | + | Hole]] S Croveirero (100l 12 + 3108 (2 + Dlful 1 )

This yields the desired bound for Region 2.

The bound for Region 3 is perturbative off the exterior estimate, Theorem 3.2. Indeed, we are in the regime
s > log(Rext), where |¢'| < 1. Further for r > 2R..+, ¢ is constant. An application of the Mean Value Theorem
and the triangle inequality therefore shows ¢(s) < ¢(log(2Rest)) + 1 and ¢(log(2Rezt)) < &(s) + 1 in this regime.
Hence in Region 3, exp(¢(s)) ~ exp(¢(log(2Rex:))). Multiplying both sides of (3.13) by R_.} exp(¢(log(2Rcxt)))

we obtain
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Ry exp(@(log@Rea) Dt} s | S Rehexp(0(10g(2Re))) 00l 1.

T
+ Rz exp(¢(l0g(2Ree)) 1]} ., + Ry exp(¢(log(2Rear)) / / Poul (Jow] + '<jf>) dudt

+ Ry exp(¢(log(2Reat)))0 log(2 + T) |[ull 1.

Since exp(@(log(2Re.t))) = exp(¢(s)) in this region, we can move the exponential function inside of the integrals

to obtain

el

)
- CRpnr et (10Ul 2 + 61082 + T [ullE 1 ).

T
(527 Reylleullip t,gRggHe%H%ERm +R;}t/0 /Rs e¢\PhUI<|3UI+ )dwdt

which is the desired bound for Region 3.

We now piece together our bounds in Regions 1, 2, and 3 with cut-off functions. For Region 1, we apply a smooth,
monotonically decreasing, cut-off function (31 (r) that is identically one for r < 3R,,:/2 and 0 for r > 2R,,,;. This
introduces the following error term ||e? [Py, 81 (r)]ul|2 ;.

Similarly, for Region 2, we apply a cut-off function [(r) to w, where So(r) = 1 for
3Rout/2 < 1 < Reyt and O for R,y < rand r > 3R.,:/2. Hence we need to bound the following commuta-

tor term:

Ie® (P Bor )l e = e Py B ulZags,  + e? Py Ba0lulZas, -

Observe that the bound for Region 3 already has a spatial cut-off built in to the estimate. Therefore, combining our

bounds in Regions 1, 2, and 3 along with the error terms, we have shown

(5.28) |Ir N1+ @)Yl (r (1 + ¢)u, Vz‘“)”i%im o+ r= (1 + ¢/)1/26¢8tu||2LzL2<2R

ot

T
_ - |ul
FR O S e Pailage, Rk /O /R Pyl (0] + W> dedt

—2
+ () 2L+ @) Peull 32 2 (r,, <rear..n

 Chyue,enrst (100]3 12 + 810g(2 + T) ][ 2 )

— 1€?[Pn, Bu(r)]ullZ2pe — ||€¢[Ph,52(7")]U\\%2L§m = [1e?[Pu, Ba(r)]ullZs 2

ext
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Returning to the first error term in (5.28):
(5.29) e (P, Bu(r)JulFase S Rodle®Oullops  + Roble?ulfps .

The last term on the rightthand side of the above equation is controlled by
()2 (1 + ¢’)3/26¢u||2LgL2(Rout<r<2Rm) and so this is a harmless error term. The first term on the right-hand

side of the equation, R,2 ||e?dul|

out

QLQ ;2 »can be bootstrapped into the left-hand side of (5.28) by using the largeness
Rout
of ¢" in this regime.
The second error term in (5.28), [|e?[Py,, B2(r)]ul|2.,. . can be bound in the exact same manner. The final error
Rout

term can be controlled by observing:

16 1Pu Bo(Pulegs S ReZNOulags  + RotlePulZers -
‘ext ‘ext ‘ext

Both terms on the right-hand side of the above equation are immediately controlled by applying our exterior estimate,
(5.27). An application of Cauchy’s inequality on the R_,} fOT Jrs €2 Prul (|8u\ + %) dxdt term in (5.28) completes

the proof of Proposition 5.2. O

We need to pair Proposition 5.2 with an interior estimate. To this end, we consider the following Carleman estimate,

motivated by the prior work of [29].

Proposition 5.3. Let P, be as in (1.2), where h®” is symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further D;g" D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in the
sense of (1.6). Fix R ap sufficiently large and fix R;,, > Rap. Let ¢ = ¢(r) be the weight constructed in Appendix B.

Observe ¢ satisfies

(5.30) #'(0) =0, ¢ ~A+od, 16" < o, Ao>1 and
¢’ ¢’
0<¢’"—=<,¢ vr while — =~ ¢ forr <, 1.
T T

Fix T > 0. Suppose u(t,z) € C?*([0,T] x R?) solves Pyu = F € LE*, with initial data (u, 9;u)(0,-) = (f1, f2) €
C?(R3) x C(R?®). Further assume u is supported in {r < R;,}. Then the following bound holds:
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(531 [[(¢/r)!2e®OullFaps + 11(6") 2 ¢ e?ullFzp + (¢ /7)e%ull2 2
S lle? Puull7ap2 + H(¢5”)1/2€¢5tu|\%2L2(m21)

+ Crp oo (|00 2 + 51082 + Tl 1 )

Here the implicit constant is independent of T and §.

Remark. Note that the assumptions on ¢ ensure that ¢ is increasing and that ¢' /v 2 \. Near the origin, morally, ¢’

acts as a linear function. Please see Appendix B for an explicit construction of a function satisfying these properties.

Proof. The proof is similar in flavor to the proof of Proposition 5.1 and hence it suffices to work in conjugated

coordinates and prove

(5.32) (' /r)200lf32 2 + (&) 20 0l 2 + (& /)0l
SIPsvlI7are + 1(6") /200013 12z ) + Balv]| + Halo],

- T -
where E4[v]| and Hy[v] are controlled by
0

. T
Eufol| | S Crops9ullf 1

and

o] S Crip 00 (190l 2 +108(2 + Tl 1 )

We use a positive commutator argument centered around the operator [P*¢/f | Ps%¢] ag before. We can reuse many of
our calculations provided we are careful by replacing ¢’ /r with ¢’ and ¢ /r? — ¢’ /r? with ¢, as we are now working
with a weight that is directly a function of  as opposed to a function of log(r). As in the proof of Proposition 5.1, we

immediately bound

iJ Li Ly skew
([Dah™ Ds — W (/)= PR, 0) 12
” ” ixy; 1, 1 i
+([~D? + D;g" D, — g (¢/)* 22, —Z ¢ T piP Dy — 2D L h 0, 0) a0
T r 7 T 7 T
< 2 r 2 |u\ 2
S Chons (10030 2 + (16%R] + O8] -+ 1]) (10u] + )" dadt)
0 JR3 <7“>

S Chops (1100l 2 + 0108(2 + Tl|ul} ),
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where we have applied (2.3) in the last line by choosing ¢ sufficiently small. So it suffices to consider

i 1 1
/ / 1ng _g (¢)2x xj’_f(ﬁ/ﬂglka_kaqslﬂglk]dexdt’
R3 2 r 2 r

which, from our prior calculations, we immediately see is equal to

(5.33) 4/ / g70;(¢ all ““)8 O,V dxdt — / ng fui g% 09" 01w dxdt
R

3
T .
+ 2/ 8kg (¢ )3% xJ n g"*v? dadt + 4/ / a;] )2v? dadt
R3

/ / 22dl’dt+4/ / ik lk Zﬂlﬂdmdt
R? R3 ror
"‘2/ / gijajoﬁ’k(ﬁﬂglk)@ivv dxdt.
o Jrs r

We break our analysis into two regimes. The first region is for » < 1 and the second region is for r > 1.
1. Region 1: 7 < 1. We note that in this regime ¢ /7 ~ ¢". Also, recall the useful bound ¢’ /r > \. We begin by

examining the highest order terms in (5.33):

T / /
(5.34) 4/ ¢ ¢ 7% 000 dadt +4/ / ¢ — =) gt gt r] L 9wdyv drdt
0 R3

RST’

+ 4/ / gijgb’?lajglkaiv@kv dzdt — 2/ / glkqﬁlﬂakgijaivajv dxdt
o Jrs

/
e Z/ / ¢ g 0|2 dadt > / /}R3 —|V3,v\2 dzdt.

We elaborate on the bound from below in (5.34). As g% is strictly elliptic, Y, |¢9;v]* 2 |V,v|?. Indeed,
|V,0|? < g%0;v0;v, and so the bound follows by applying Cauchy’s inequality. Therefore, for r < 1, we can absorb
the last two terms into the first term. Observing that the second term is nonnegative completes the bound.

We now examine the lower order terms in (5.33):

T .
(5.35) 2/ / Bg™ (¢ )?*E’ ””J I gtk 2d9cdt+4/ / /) L% ~1)2? dadt
0 R3
—4/ / 22dxdt+4/ / ik gk BT T g
R3 R3 rr
/ / 29" v? dadt,
R3
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where we have used (¢)%¢" — (¢')%/r > 0, ¢" ~ ¢'/r, and that g is strictly elliptic so that g*g'¥ Z: ZL > 1. We now

examine the remaining term in (5.33):

/ / g"70;0k( g"*)0;vv dadt.

Taking derivatives and grouping like terms, the above integral becomes

(5.36)
3 12, 1 1 1
/ / ¢ — (——x—fﬂxkglM ot + = o + gt~ “)orwv dadt
R3 rTr nr.rTr rr T rTr
/ /
+2/ / ij mﬂkag i lk+¢//xj lk+£ jlakglk_ﬂﬂﬂcajglk
R3 T rr T r.r
/
¢5 199" +fﬂ62 )avvd:vdt
T r

Utilizing (5.30) and Cauchy’s inequality, we find that the above line is bounded by
(5.37) 16" /)2 0l 2 e + 116 /1) /400G o

Using the largeness of ¢’ /7, we will be able to absorb ||(¢'/7)1/40v]|2, , . into (5.34). We will see that we can absorb
[(¢'/r)3/%v|)2, . later.
In order to get useful bounds on terms involving time derivatives, we consider — fOT Jrs %/vPself v dxdt and note

that as usual

T / T )
- / O o DahoPDyu dadt + / ¢ Sk (g2 ”’7 v dzdt
0 0

rR3 T rR3 T

u
< C’Rm,qﬁ(HauH%sz +/ / (|82h| + |Oh] + \h|)(||8u\ + u)2 da:dt)
0o JRr3 (r)

S Chops (1100l 2+ 010g(2 + Dlful} 1 )-

Therefore it suffices to consider

T / .
(5.38) — / ﬂ(Pselfu - Dahaﬁng + 119 (¢)2 2 B ) g dudt
o Jrs T ror
¢/ T QS/ B
= 9,v)? dadt — g¥ 0;v0;v dxdt
J
0 rR3 T rR3 T

T / / " / T
+ / / (¢ ) L v? dxdt + / ¢2 (b 3 v dxdt — ¢ —O0pvv da:‘ .
0 R3 T R3 T rR3 T 0
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The time boundary term is controlled by Cr,, ¢

|0u||? 12

Combining (5.34), (5.35), (5.37), and (5.38), we see for ¢ > 0 chosen sufficiently small,

/
(539) (&) /2@ vl + (6 /1) /2 00| T2 S ([P, P10, 0) g0 — {0, PP 0) 1

- T ~
+ Bslo]| |+ Hs[o] + [1(0/r)* 0l T2z,

~ T ~
where Es[v]| + Hj[v] are controlled by
0

Cin (100l 12 + 1082 + T Jul} 1 )-

One can add |[r~'¢/v||?.,, to the left-hand side of (5.39). Recall, we are in the regime r < 1. Utilizing
¢'/r ~ ¢ in this regime, it suffices to show || ¢"v|2,,. S [(¢”)Y 240|222 + ||(¢' /7)1 200||2 . , .. Making use of

polar coordinates, we have

T
/ / (¢")?v? dedt = / / / " )?0%0,.(r®) drdo(w)dt
0 JR3 S2
=— */ " ¢"rv? dadt — f/ / "V2rvd,v dadt
3 0 R3 R3
T
<g/ &' ¢''rv? dxdt—i—/ / ¢")r|v||0pv| dedt
0o Jr?

/ / o 2dmdt+/ / (¢")2r|v||0,v| dedt
RS o Jrs

T
< @) 28 |2 + / / ¢/ |v]|0yv] dacdt.
0 R3

So it suffices to bound fOT Jgs "' |v]|0pv| dadt:

T /
/ / ¢"¢'|v]|0pv]| dadt (,/ / "Vrg! |v|2d:cdt+/ / ¢|8v|2dwdt
0 R3
T
/ ¢ (¢")?|v]? dxdt—|—/ / —|81}|2 dxdt,
0 R3

as desired. Hence, we have shown

(5:40) [[(¢") 2@ vl|F2 a2 + (&' /r)ollTare + (' /r)!200)F2re S (P, P, 0) 2

/ . T ~
= e{P* 0, S o ol + sl + 161 0l
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3/4

Using the largeness of ¢’ /r, we can bootstrap the error term ||(¢' /r)3/4v[|2,, . into the second term on the right-hand

side of the equation. Applying Cauchy’s inequality, conjugating back to our regular coordinates, and recalling (5.24)
proves Proposition 5.3 for r < 1.

2. Region II: 2 1. The result in this region is almost immediate due to our prior calculations. Indeed, the left-hand
side of (5.34) is bounded from below by —||(¢’/7)1/2V,v||2,. The bound in (5.35) still holds which is clear by using
@" ~ X+ o¢’ to absorb poorly signed terms into the second term of the left-hand side of the equation.

The terms in (5.36) are now controlled by [|¢'v[|2, > + | AY/2v]|2, 5 + ||AY/20v||2, -, which is clear for all terms
by utilizing our assumptions in (5.30) and Cauchy’s inequality, with perhaps the exception of the second term on the

second line of the equation. We control this term via

T , T T
/ / gijd’ﬁﬂ@kglk@wv dxdt S/ / AV vl |v] da:dt+a/ / @' |V zvl|v| dzdt,
o JRs rr 0 Jr3 0 Jr3

and then apply Cauchy’s inequality. Hence,

(@) 2 w722 S (P, P 0,0) oy + 1601522 + [IA20]| 32
- T -
FINY200) 20,0 + E6[v]]0 + Hg[v]

~ T ~
< ([P, P0,0) oo + [1(¢ /1) /2 00| T + Eﬁ[”]‘o + Hg[v],

where we have used the largeness of ¢ and ¢’ to absorb the second and third terms on the right-hand side of the
equation into the left-hand side and made use of the fact ¢ /7 > X in the last line. Here Eg[v] ‘OT + Hg[v] are controlled
by

Chin (10013 12 + S10g(2 + T [ul} 2 )-

Since we computed —((¢'/r)v, P*¢fv) 5, in (5.38), we reuse this computation and Cauchy’s inequality to see

SAD (6" 2@ vl|Ta e + (¢ /1) 200l 722 S ([P, P 0,0) paga + Co{(¢'/r)v, P ) 2

~ T ~
+ Co|[(¢'/r) /2 0p0l|7 22 + Er[o] o T H
~ T ~
where Cy > C7 > 1 are chosen significantly large, but are independent of \, and E;[v] ‘0 + H[v] is controlled by
Cront (100l 12 + 51082 + Tl 1 )

An application of Cauchy’s inequality and conjugating back to our original coordinates now yields Proposition 5.3 in

this regime. This completes the proof of Proposition 5.3. [
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We are now able to prove Theorem 5.1.

Proof of Theorem 5.1. We prove Theorem 5.1 by combining Proposition 5.2 and Proposition 5.3. We fix R;,, sufficiently
large so that Proposition 5.3 holds for u supported in {r < R;,} and Proposition 5.2 holds for u supported in
{r > Rin/4}. We define ¢;,, from Proposition 5.3 by integrating ¢, beginning at R;,, /2 and ¢, from Proposition
5.2 by integrating ¢, also beginning at R;,, /2. Further, we ensure ¢,,,, > ¢, for R;,/4 < r < R;, by multiplying
¢!+ by an appropriate constant if needed. Observe this ensures ¢yt > Gin, for Rin /2 < ¢ < Ry, and @iy, > oy for
Rin/4 <1 < Ry /2. To be precise, we define ¢yt (r) = Cf;m/z @i (log(u)) du and ¢ (r) = flgm/z ¢, (u) du.
Here ¢!, and ¢}, are as in Appendix B.
Applying Proposition 5.3 to x g,,, /2(|z|)u and Proposition 5.2 to (1 — xr,,, /4)(|z|)u yields Theorem 5.1 provided
we can bound the following commutator terms: ||e?" [Py, X g, /2(|z])]ul|32 2 and [|e®= [Py, x g, a(|2])]ull32 ;2.
We control the first term via:
€% [P X ol l2a e S RO 0ulgs o+ Bt ul3ops
Both of these terms are supported where Proposition 5.2 holds and ¢,,; > ¢;,. Hence, they can be absorbed into the

left-hand side of Proposition 5.2 using the largeness of ¢’ and ¢” in this regime.

The bound for [|e?ot[Py, X, /4(|@|)]u||32 - is similar. Indeed,

le? P X pa (o Jul3e 2 S Rip2ledo 0ul2aps

in

A boue. 112
/4+Rm le? t“”L?qu

Lin /4

Both of these terms are supported where Proposition 5.3 hold and ¢;,, > ¢,,:. Hence, they can be absorbed into the
left-hand side of Proposition 5.3 using the largeness of ¢’ and ¢” in this regime. This completes the proof of Theorem

5.1. O
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Chapter 6: Low Frequency Analysis
We now turn to developing a local energy estimate that admits an error term that can be absorbed for small time

frequencies. These methods are similar to those developed in [29]. We now state the main theorem of this section.

Theorem 6.1. Let P, be as in (1.2), where h®? is symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further D;g"/ D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in
the sense of (1.6). Fix Rap sufficiently large. Further, fix R, such that Ry > R and fix T' > 0. Suppose
u(t,z) € C%([0,T] x R3) solves P,u = F € LE*, with initial data (u, 9,u)(0,-) = (f1, f2) € C*(R3) x C1(R3)

such that |0=%u(t, z)| — 0 as |z| — oo forall t € [0,T). Then

©.1) el S 1903 2 + Cr, (I Pwl e + 1000l 0, ) + 81og(2 + )l

Here the implicit constant is independent of T and §.

We prove Theorem 6.1 by utilizing a series of reductions based on the properties of the fundamental solution to
Poisson’s equation. Throughout the rest of this section, we will make use of the results found in the low frequency
section of [29, Section 6], often directly expositing their results. The next lemma is a restatement of a lemma found in

[29].

Lemma 6.1 ([29, Lemma 6.4]). For |s| = 0,1, 2, we have the following estimates for DS A~*:

(6.2) 1) | ce S | Aul|ce-
(6.3) 1(2) 2 D3| cex < | Aulle- |5 =1,2
(6.4) (@) Diullce < [{x)Aullces |s|=0,1,2.

Proof. We will prove (6.3) for |s| = 1 since the other proofs are very similar. The proof of this lemma hinges on the
decay rate of the fundamental solution to Poisson’s equation. Hence we consider Au(z) = f(x) and write f = >, f&,

where each f;, is supported on a single dyadic region |x| = 2¥. This follows from choosing an appropriate partition of
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unity. Let u denote a solution to Auy, = fi. Appealing to the fundamental solution to Poisson’s equation and the

support of f;, we see

ui(z) = — / 1w dy,

A Jiyjaor 17—yl

from which it follows

1
(6.5) |Vug| =~ ‘/I ) mfk(y) dy|.
y|~2k

We can apply another partition of unity to write each uy, as > ; Ukj» where uy; is supported where |z| ~ 27. Now if

k—1<j<k+1,(6.5) can be written as

1 Bollz —yl)
Vil = ‘ /|y|~2k |z —yl? fily) dy.

where [y (|x|) is a cut-off function that is identically 1 for 0 < |z| < 2772 and is supported on a slightly fattened

interval. An application of Young’s convolution inequality shows

(6.6) IVurjllze < 8ol =l fullze < 271l fullz2-

Now if £ > 7 + 2 we find (6.5) becomes

_ 1 _ _
Vg ~ 2 2’“/ ——fu(y) dy $ 2 2’“/ Fe() dy S 2752 fl e
jyix2r [or =1

ly|~2k

Hence,
(6.7) 2792 | Vugj 2 < 272772 fill e

Lastly, for £ < 57 — 2, (6.5) becomes

s 1 L N
Vg, ~ 2 2J/ T W) dy S 2 2J/ fr(y) dy S 27222 fi| 2.
2k 11— 3| |2k

Hence,

(6.8) 2792 Vugj| 2 < 2772%%2|| fi| 2
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We now must combine our bounds in (6.6), (6.7), and (6.8). We begin by observing

1(z) "2 Vull e 37N 272 | Vg e

ko J
oo k—2 oo k+1
SY D 27V llee + ) Y 279 Vg e
k=0 j=0 k=0 j=k—1
o 0o
+Y 0 Y 279 Ve
k=0 j=k+2

We now bound each term in the above equation. For the first term, we apply (6.7) to see

oo k-2 oo k—2
DD 2Vl £ 22 Rl z<22 E2(25 1 1)) fillpe S 01l e
k=0 j=0 k=0 j=0

For the second term, we use (6.6) to observe

oo k+1 oo k+1
S 292 Vgl >0 2]/2||fk||L2Nz2k/2”fk”L2 [ fllce-
k=0 j=k—1 k=0 j=k—1

For the third term, an application of (6.8) yields the desired bound and completes the proof:

o0 (o) ) oo o0 ) o
2. 2 2PVl S5 D 22 el = D 27 R e S e
k=0 j=k+42 k=0 j=k+42 k=0

O

Our next lemma is essentially a restatement of a result from [29] applied to a “zero frequency” version of our
operator P,. The operator P, g is obtained from P, by setting instances of D; = 0. Specifically, we will investigate the

operator:
(6.9) Py = D;g" D; + h" D; Dy,

where D; g% D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in the sense

of (1.6). Further A% is symmetric and sufficiently small in the sense that (1.11) holds for some § > 0 sufficiently small.

Lemma 6.2. Let Py, o be as in (6.9), where h# is symmetric and satisfies (1.11) for some § > 0 sufficiently small.
Further D;g"’ D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in

the sense of (1.6). Fix Rap sufficiently large. Further, fix Ry such that Ry > R and fix T > 0. Suppose
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u(t,z) € C%([0,T] x R?) such that |0=2u(t, z)| — 0 as |#| — oo forall t € [0,T]. Then

(6.10) [{z)ullzer S [1{x) Proullce-
(6.11) lull cer + 1(z) "' Vaull cew S [ Phoullcer
-1
(6.12) lullcer,, +Ix) " Veulcer, < lProullcer,, +llullces, -

Proof. This proof is essentially an argument in elliptic regularity and appeals to Lemma 6.1. In fact, if we replace Py, o

by A, then (6.10) and (6.11) immediately follow from Lemma 6.1. Observe, one can write the Laplacian as
> 1. iy
—A=Pyo—9”D;Dj— ~0;g" Dj — h” D; Dj,
1
where §% = g% — §%.

Now consider an operator 13;1,0 which agrees with P}, o for r > RaF and is a small, asymptotically Euclidean

perturbation of [J when h = 0. Observe that the Laplacian is related to ]Shyo via:
. i 1 . y
(613) — A= Ph70 — 2] ((IJ)DZDJ — ;(ﬁjl(l')DJ —h JDZ'.DJ',

where [|¢2[g1 o (4,) + (@) P1lpr Lo (a,) < € < 1. Now (6.10) and (6.11) holds for Py, as we can directly see via

the triangle inequality and Lemma 6.1:

6.14)  [[{@)Aullze- S [[{@) Proullcer + I d2lleroe can 1) *Oull ce + [[{@)dr e Lo (a [l (2) Ol e

2
+ [[7lle2 Loo oo (0,77 % A1) 1 () D2ul|ce.

Here we are using 92 to denote ZI =2 OF. By fixing Rar sufficiently large (which forces ¢ to be small) and ¢
sufficiently small, we find ¢1, ¢2, and h are small enough to absorb the error terms using Lemma 6.1. Indeed, the error

terms are controlled by

(6.15) @2ller = (@) *02ul e + (@) buller oo an) @) Dutill ce + IRlle pow Low (o715 1) | (%) O3l e
< (e +20)||(x)*0%ul| ce + e[ (x)pu] ce

< 2(e + 0)||(z) Aul| e,
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where we have applied (6.4) in the last line. We note that the smallness assumption in (1.11) implies
Al oo Lo (0, 77% A7) < 627, so that [7l[2 oo oo (0,77x 4;) < 26. By choosing ¢ and ¢ sufficiently small, these
terms can be bootstrapped into the left-hand side of (6.14). This proves the bound for (6.10) for small perturbations.
The proof for (6.11) is similar.

Now we write u = ]5}: é Py, ou + 1, noting ]5,; é exists as ]5;170 is a small perturbation of the Laplacian. Applying

(6.10) and (6.11) for the operator ]5;170 to ]5; éPh,OU, we obtain the desirable bounds:

1) Py g Proull cer S 1) Pr.oul| ce-

and

1By o Puotll e + 11(2) "' ValPy o Paoullcer S |1 Pt ce--

We now obtain similar bounds for @. Note that P, o@ solves the following equation:
Pyou = (Ph,o - Ph,o) P;:éph,ou
and is supported in {|z| < Rar}. Hence
| Phoii| S [D2Py o Phoul + Rap(x) ™" |Da Py Phoul.
An application of (6.3) to ]5;1,0 yields

(6.16) 1Pnoiil| 2 S 1| Paoiill e S I1D3 Py o Paoullces + Rarll(@) ™ DaPy g Paoul|ce-

S RAFHPh,OP;ZéPh,OUHLE* ~ Rap||Proulcex-

As we allow constants to depend on R 4 in this chapter, we will no longer track instances of R 4 in the remaining
analysis. Combining the above line with the strict ellipticity assumption on D; g% D;, our smallness assumption on A,

and the compact support of P}, o, we obtain

AT ,S/SPh7oﬂﬁdx—/3hijDiDjﬂﬁd:c
R R
:/3XRAF(|x|)ph,0aﬁdx—/3 h ;00,1 dx — gaihijajﬂﬁdx
R: R: RR¢

1 B - 3
< L1Puoils + 2 (z) Y2 —/ Wiosadid — | 0,h0;0i da
g R3 R3

1 . 1 _ i
S gHPh,ouII%z + &) T all 7 + Nl oo o | V2] 72 —/ 9;h" djut dx
RS
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1 ~ ~ 1. ~
S 2 1Phoiillzz + (@) Yl 3e + (2)0= b L e | Vo] 72

+ (@) O oo o || ()~ 7.

By applying a Hardy inequality (2.4) on the lower order terms and choosing € and ¢ sufficiently small to bootstrap

the second, third, and fourth terms on the right-hand side, we obtain the bound:
(6.17) IVeallZe S 1PhotlZe S I1PaoullZe--

Note that we have applied (6.16) in the above line. On the compact set |z| < 2R 4, the weights are not important and

so we have shown

(6.18) (@)l e

2R p

+ [ Vaille S ([ Provllce-
For larger |z|, we utilize a cut-off function to see

1Pro(L = Xrar) (2l L2 = |Pro(l = Xrap) (2] 2

S IPnoullces + [[[Pros (1= Xrar)(2)]a] L2

Now
[Pao, (1= xrap)(J2D]a] S RAZIX"(|2]/Rar)a| + RyEIX (|2]/Rar)a| + Ryp|X (|2|/Rarp) Dyl

Using this computation and a Hardy inequality (2.4), applying (6.10) and (6.11) for Ph,os and utilizing the support of

Py, ot and derivatives of x g, (|z|), we see

1) (1= xrap) (2l cer + [(2) 7 (1 = Xpap) (2] Vi e
S @) Pro(L = Xrap) (2] ce-
S IK2) (1 = Xrar) (12 Phodl 2 + @) [Pro, (1= Xrap)al 22
S 1Protllze + (Va2

S [ Proull e
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Here we have used (6.17) in the last line. Combining the above line with (6.18) yields the bound
(@)l cer + +[{x) ™ Vil e < || Proullce-

which completes the proof of (6.10) and (6.11) for the operator Py, ¢.
We now prove (6.12) by applying (6.11) to the following function:

(6.19) uy = Xg, (|z))u+r""(1 = xr,)(2])(ru) g, ,

where (ru) g, is the average of ru over the Ry annulus:

1
(6.20) (ru)r, = —3/ rudz.
Rl r~Ry

As in [29], by the Poincaré inequality, we have
(6:21) IV~ )z, + By = ), D, < I 90w, -

A direct computation shows

(6.22)  Prour = Xr, (|2))Pnou + [Pho, X, (|2)] (w =171 (ru)r, ) + (1= xmy)(J2]) (ru) g, (Pro — A)r 7,

where we have utilized that, away from the origin, Ar~* = 0 since 7! is proportional to the fundamental solution to

Laplace’s equation. Now

(6.23) 11 = xR (|2]) (rw) g, (Pho = A) 77 lzes S (lglls gy + 1ller noe nos 0,71x 40) B 1)y -
Utilizing this bound, the triangle inequality, and (6.21), we find

(624)  ||Prourllces < lIxr: (|2]) Proul ce + Rfl/QHr_lV(ru)HL%l

+ (gl r, + hller e e o,y x a0 BT (), |

67



Observe:
(6.25) lurllcer + 1(z) ™' V|| e 2 [ullzer,, + [(2) " Vullges . + Ry (ru) |
Combining (6.11), (6.24), and (6.25), we find

—1 — —1
lullcer,, + 2) ™ Vaullees, + By Hrw)p,| < luallcer + [[{a)™ V| g
<Rj 1

—1/2 —
S IPuoullce- + By 2lr = V(ra)ll g,

+ gl g, + 1ller oo Los o1 a0 ) B ()R, .
By choosing R; sufficiently large and §  sufficiently small, we can  bootstrap

(gl z, + ||h||€11LooLoo([O,T]XAZ))Rl_l|(ru)R1| into the left-hand side of the above equation. Recognizing

RII/Q lr=2V (ru) |2, = [lullzer, completes the proof of (6.12) and hence the proof of Lemma 6.2. O
We now prove Theorem 6.1 and note that all implicit constants are independent of R; unless explicitly stated.

Proof of Theorem 6.1. There exists an R € [2R 4, R1] such that
(6.26) [Vullze, < min{[|[Vullze,p, .- [Vullceg, }-

Equations (6.26) and (6.12) imply

-1
(6.27) IVulleen S I Prollces , + (log(R1/Rar))  lullcey, -
We integrate (6.27) L? in time to obtain

-1

(6.28) IVullLen S Cr,IPaolliss,, + (10g(R/Rar) el s, -
Similarly, we integrate (6.12) L? in time to find
(6.29) @) ullLeo, + IVaullLe s, S [1PnoullLes, +llulee g, -
By our exterior estimate (3.23), we have
(630) el g1, S 10wl e + Pl - + 19l £, + 5102+ T) g

68



Combining (6.28), (6.29), and (6.30), we find

[l 2 s S N0ulie 2 + 100ulli gy, + 1PRulL e + Cry | Proullipe.

-1
+ (Log(Ry/Rary)  llull} gy, +31og(2+Dljull} 1.
-1
Choosing R; sufficiently large to bootstrap (log(Rl/RAF)) |ull gy, - we find
1
lull e SlOulZe e + 100l L5y, + 1PhulLpe + Cri | Proullip. , +0log(2 + T)llullf 1.
Recognizing that P, = Py, o — D? 4+ 2h% D, D; + h% D?, upon applying the triangle inequality, we obtain
lullf g SI9ulin g + Cry (100l o, + [ Palid - ) +Slog(2 + T)lful .

which completes the proof of Theorem 6.1.
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Chapter 7: Proof of Theorem 1.1

We are now in a position to prove our main local energy estimate, Theorem 1.1, by piecing together our high
frequency, medium frequency, and low frequency estimates: Theorem 4.2, Corollary 5.1, and Theorem 6.1, respectively
and then applying our uniform energy bound Proposition 2.2. Fix 0 < 7;4, < g, 1 sufficiently small such that for u
with time frequency support {|7| < 7, }, we can absorb the error term in Theorem 6.1: Cr, [|9;u||3 Ly, into the
[lul|3 ;1 term on the left-hand side of (6.1). Similarly, fix g, >>g, 1 such that for u with time frequency support
{I7| = Thign }. the error term ||u/|3, 12,, ©an be absorbed into the ||u/|? . term on the left-hand side of (4.19). Recall
Corollary 5.1 implies Theorem 1.1 for u with any bounded time-frequency support away from 0. So this estimate fills
the gap between Theorem 6.1 and Theorem 4.2.

Now we write u = Q;(|D¢|)u + Qu(|Dt)u + Qn(|D¢|)u, where Q;(|D¢]) = X7, /2(|Dt]), Qn = (1 —
Xrnign ) (| Dtl), and Qo (1D¢]) = 1 — Qi(|D¢|) — Qn(|Dy]). Here  is the cut-off function in (1.10) and “h” stands for
high,“m” for medium, and “1” for low. We estimate Q;u with Theorem 6.1, Q,,,u with Corollary 5.1, and Q,u with

Theorem 4.2, absorbing the errors as described above. So, we have shown

lulleer < Y 1Qiullpe

i=l,m,h

3
S > <||Qz'3u||L°<>L2 +0210g! 2 (2 + 1) | Qiul| Lr + ||PhQiU||LE*) + 3 I[P, Qilull -
i=1

i=l,m,h

S 0ullpeore + 62 10g (2 + T)Jull e + [ Prullie- + > [P, Qilul L

i=l,m,h

S 0]l ez + 8log(2 + D) ull e + 1Paulze- + > [Ph. QilullLe-,

i=l,m,h

where we have applied Young’s convolution inequality in the second to last line and Cauchy’s inequality in the last line.

So if we can show

(7.1 > P Qilulle- S 10ullpe 2 + log(2 + T)ull L + || Prull -

i=l,m,h

an application of Proposition 2.2 completes the proof of Theorem 1.1. Indeed, the following stronger bound holds,

which immediately implies (7.1).
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Lemma 7.1. Let P, be as in (1.2), where h®” is symmetric and satisfies (1.11) for some 6 > 0 sufficiently small.
Further D;g" D; is symmetric, stationary, strictly elliptic in the sense of (1.4), and asymptotically Euclidean in
the sense of (1.6). Fix T > 0. Suppose u(t,z) € C?([0,T] x R?) solves Pyu = F € LE*, with initial data
(u, Oyu)(0,-) = (f1, f2) € C*(R?) x C*(R3) such that |0=?u(t, z)| — 0 as |x| — oo forallt € [0, T]. Then

(7.2) 1P, Qilullee < 6(1PrullLp + [0ull L2 +log(2 + T)llull L),

where i is a place holder for [, m, h and Q; is as above. Here the implicit constant is independent of T' and §.

Proof. As g is stationary and the exact support of each (); is unimportant for the proof, we need only demonstrate the

bound

(7.3) I1h*’ DaDg, Q<alullLe- < 6(|PaullLe- + [|0ull o £z + log(2 + T)luf e ),

where Q<1 = x(|D;|). We will estimate each term ||h*? D, DsQ<1u| g~ and ||Q<1h*’ Do Dgul| g+ separately.

We begin by estimating ||h*? D, DsQ<1u|| g+, first working with the h°° D? term. We see

log(2+T)
(74) WD Q<rull e S107Q<rulle Y I1@)hll oL (o,11x A1)
1=0
1/2 1/2
+||<$>hHelo/cLooLoo([o,T]xAl)HatQQSlu”LzLQ Z Hh||L/°°L°°(0T]XAz)
I=log(2+T)
log(2+T)
S ulloe Z (@) Rl Loo oo (0,77 x AL)
1=0
1/2 - 1/2
+ @) Al e oo 0.7 ap IOeullzere Y IBILS e o
I=log(2+T)
< 0log(2+ 1) lull g1
1/2
+ T2 @)l e o oy an IOl oo D IR e oy
l=log(2+T)
Now (1.11) implies [[0='hl| oo oo ([0, 77x 4,) S 27!, and s0
1/2
T1/2 Z H8<1h||L/°°L°°(OT]><A,) §51/2T1/2 Z @551/2~
l=log(2+T) I=log(2+T)
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Therefore

1/2 1/2
@)l e oo o a0l e 2 T2 7 O RIGE 0y S 10Ul 12,
I=log(2+T)

and so we have shown

|A D2Q<yull - S S10g(2 + T) ull s + Ol|ull 2.

A nearly identical analysis demonstrates

2(|n% D D;Q<vullLps S 6log(2+ T)|ull L1 + 6]|0ul| Lo p2.

Before investigating ||h% D; D;Q<1ul| g+, we consider ||Q<1h°°D? ||, g+ and |Q<1h% Dy Dj|| . We begin
with ||Q<1h%° D2ul| g+ and write Q<1h°°D? = Q<1 D;h%° Dy +iQ<10;h%° D to see

(7.5)  |1Q<1h® Diul|pp+ < ||Q<1D:h® Dyul| L+ + ||Q<10:h°° Dyl L+

S AP0l - + (|0:h°°0pul| L

log(2+T)
S llullpe Z ”<x>8§1h||L°°L°°([O,T]><AL)
=0
<1y 1/2 1/2 - <1y1/2
+||<x>a_ hHechooLac([o,T]xAl)HauHL*”"LzT/ Z Ha hHLooLoc(oT]xAl)
l=log(2+T)

S 0log(2+ T)lullLpr + 6|0ul e L2
A nearly identical analysis shows
1Q<1h® Dy Djul| L~ S 61og(2 +T)|[ull L + 0]|0u| oo 2

We now turn to bounding terms with spatial derivatives only. We begin by investigating ||7* D; D;Q <1 ul| . g+
and first consider a single dyadic interval. To simplify notation, we set v = 3(|z|/2")Q<1u, where 3(|z|) is a cut-off

function that is identically 1 for 1 < |z| < 2 and 0 for |x| > 4 or |z| < 1/2. It suffices to bound:

T
/ / 21| B[2(820)? dadt,
0 R3
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where 07 = 37, | _, 0% Using that D;¢"/ D; is strictly elliptic and integrating by parts, we find

T T
(7.6) / / 21| (02v)? dadt < / / 2'11)2¢" 0;0,v0;0,v dxdt
0 R3 0 R3

T
—/ / 2l\h|28$gij8jv8i8xvdxdt
o Jrs

T
+2/ / 2'10h|h||g" 8;v0;0,v| dxdt
0 R3

T
—/ / 24h|? g% 0;00;0%v dadt.
0o Jrs

Integrating by parts, we see (7.6) can be controlled by

T T
(7.7) —/ / 21|h|28$gij6jv6iﬁxvdxdt+2/ / 2l|8h||h||gij8jv8ialv|dxdt
0 R3 0 R3
+2/ / 2l|6h\|h\|g”8jvaiv|dxdt—i—/ / 2'11)20;(g" 9;0)0%v ddt.
o JRs o JRs
Combining (7.6), (7.7), and applying Cauchy’s inequality, we have shown
T T 9
(7.8) 2 / / |1*(030)? dwdt S 2|05 2| Fe poe 0,77 41 / / (leax(ﬁ(lxl/%u)) dwdt
o JRs 0 JR3
T y 2
+2l||h\|%ecLoo([o,T]xAl)/0 /R3 (Qg@i(gwaj(ﬁ(|x|/21)u))) dxdt.

We will be able to bound the first term on the right-hand side of (7.8) using our prior methods. For the second term,

we introduce the operator P, via the following:

T y 2
(7.9) 2 [[H113 e (0,7 40 / / (@<10:(g70;(3al/2yw) )" dudt

J
J

0

' / (lePh/B(M/Ql)u)Q dudt

l
ST oo oo 0,77 1)

21 o 1740 Q1D B(|e|/2')u) " dodt

3

)ﬂ
T

T

2oy | [ (Qeah®DEA(el/2)u) dodt

T

%\%\

L e—y

T
l 2
L

(
(
<Q<1h7Dt Jg(|x\/2)) dedt
(@

Q<11 D;D;A(|z] /2 )u ) dadt.

73



Combining (7.8), (7.9), and summing over dyadic regions, we have shown
(7.10)  [|h9D;D;Q<rullLe- S 5<||Phu|\LE* + [|0ul| oo 12 +log(2 + T)||UHLE1) +6/|Q<1h” D;Djul| L -

Here we are applying the method used in (7.5) to control the second, third, and fourth terms on the right-hand side of

(7.9). The first term on the right-hand side of (7.8) is controlled by observing

(711 > 22|05 h| oo poo (0,10 ) 1Q<1 0 (B(|2] /2)1) || 22
l

log(2+T)
S llulloe Z [{2)0="h| oo L (j0,7]x A1)
1=0
1/2 1/2
+ ||<I‘>a§1hHe;{choLoo([07T]XAL)||8U||L2L2 Z HagthL/OOLOO([O,T]XAl)a
' I=log(2+T)

which is nearly identical to terms in (7.4) and so this is controlled via 6 log(2 + T)||u|| L g1 + 8]|Ou|| 2. Lastly, we
note commuting P, with the cutoff functions, as in the first term on the right-hand side of (7.9) poses no problems as it
results in terms that are controlled by [|2[[¢1 1o 1. (0, 77x A [UllLEr S 6|ullLpr

We now turn to ||Q<1h¥D;DjullL g+ and observe by the triangle inequality ||Q<ih¥D;DjullLp-
< ||Q31hijDZ—Dju21||LE* + HQSlhijDiDjuﬁHLE*. Here u<; = Q<ju and u>; = (1 — Q<1)u. By Plancherel’s
Theorem, we have already controlled ||Q§1hij D;Dju<i||pg- in (7.10). Therefore it suffices to bound

|Q<1h® D;Dju>1||rE~. We demonstrate the following bound:
(712) ”QSlhijDiDjuleLE* 5 5(HP}L’UJHLE* + ||au||Lo<>L2 + 10g(2 + T)”u”LEl) + (suhljDzD]USl”LE* .

We first observe

(7.13) F(Q<1hV 0i0uz1)(7) =/ X(TD)AY (5)8:0;51 (T — s) ds
= [ XU 00,7 S (r - ) ds
= /OO TX(|T|)hij(5)aiajiﬁ21(T —5)ds

e oy 1
[ s ()00 s ) ds.
e
By Plancherel’s theorem and the triangle inequality, we have shown

(7.14) 1Q<1h” 9;0;uz1|lLE- S |0="hOZ(| Dl uz1) || Le-
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We begin by working on a single dyadic annulus. We set w = |D;|~*3(|z|/2")u>1 and proceed nearly identically

to the work in (7.6) and (7.7) to obtain the analog of (7.8):

T
(7.15) 2! / / 10<1R[2(82w)? dadt
0 R3
T 2
SO pmorpeny [ [ (QalDI 02 (Bel/20) ) o

T N 2
+QZHaSlh“QLOOLW([O,T]XAz)/O /]RS (QZl‘Dt|—18i(glﬁaj(ﬁ(|x|/21>u))) dxdt.

We will be able to bound the first term on the right-hand side of (7.15) using our prior methods. For the second term,

we introduce the operator P, via the following:

T N 2
(7.16) 2l||aS1hH%°°LW([O,T]><Al)/0 /R3 (QzlIDW&-(g“aj(ﬂ(\:vl/?)U))) dxdt

2
<9! ||a<1h||LxLoo ([0,T]x A1) / Q21|Dt|—1ph6(|x|/2l)u) dxdt

0 R3

T
ALNO I e oan [

Qs1|Dy| "' D2B(2] /2 u ) dadt
0

T
210 M ozyeay |

J,
e
J,
J

~

A2NO M e oan [

0

(@1 [D1I*h® D23 2')u) dvl
(Q>1|Dt| 1h0thD ﬂ(‘$|/2) ) dxdt

T B 2
2[0S 2 o [OT]XAZ/O QZI|Dt|—1thiDj6(|x|/21>u) dxdt.

Writing h%° D? + hOthDj as D;h%°D, + DthOij +i0,h°°D, + i0;h% Dj, we find (7.16) is controlled by
T 2
(717 205 hl|T e Lo 0,17 XAZ)/ / Phﬁ(|x|/2l)u) dxdt
RIS M i ureny [ [ (hl/2000) dwa

2
+QZHaSIhHQLwLw([o,T]xAZ)/0 /}R3 |8§1h|8(ﬁ(|x\/2l)u)> dxdt

T - 2
+ 21“8S1h||2LNLw([O,T]XAl)/O /}Rd (QZl‘Dt|71hUD1’Djﬂ(|$‘/2l)u) dxdt.

For the last term in (7.17), we use the triangle inequality to bound this by
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T
(718) 205 A2 e (07 / / 3 (@111 W9 D,D,(fal /2 ) divd
0 R . )
SJ2l||a§1h”%°°L°°([0,T]><Al)/ /3 (hijaiaj(ﬂﬂﬂ/?l)ug)) dxdt
0 RT ,
+21\|8S1h||2LMLm([O7T]XAl)/ / (@110 h90,0, ((Jal 2'yuz1) ) dv
. 0 R )
52l||5§1h||%ooLoo([o,T]xA,)/0 /R3 (hijaiaj(ﬂﬂﬂ/?l)ug)) dxdt

T 2
+21H8§1h||2LooLoo([o,T]xAl)/0 /R3 (|6§1h|8§(ﬁ(|x|/21)|Dt|_1U21)) dxdt,

where we have used work similar to that in (7.13) in the last line. Specifically, setting v>1 = B(|x|/2")u>1, we have

used

o0

F(Q>1|Ds| ' h7 9;05v51) X(IT))| 7|7 0 (8)0;05051 (1 — 5) ds

88

T

/ DIl 6 (9010, T 01— 5) ds
/ 1

88

X(r )l ki (s )31'6]' U>1(T — 8) ds

oo

- / (1= x(Irl)) 7l 55 ()00 -

combined with Plancherel’s Theorem.

Combining (7.14), (7.15), (7.16), (7.17), (7.18), summing over dyadic regions, and utilizing work leading to the

bound in (7.10), we have shown

1Q<1h” D;iDjuxi|lLe- < 5(||Phu||LE* + [|Oul| oo 2 +log(2 + T)HU'”LEl) +6||hY D; Dju<t || L=

Specifically, we control the first term on the right-hand side of (7.15) as well as the second and third terms on the
right-hand side of (7.17) via the work in (7.11). We have chosen § sufficiently small to absorb the last term on the

right-hand side of (7.18) into the left-hand side of (7.15).

Combining (7.10) and (7.12) completes the proof of Lemma 7.1. O
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Chapter 8: Energy Estimates and Vector Fields
In this chapter, we record several lemmas describing energy estimates with vector fields applied to our solution w to
Pru = F. These are rooted in the work of [15]. We begin with a local energy estimate involving the generators of

translations applied to u.

Lemma 8.1. Let P, be as in (1.2), where h®” is smooth, symmetric, and satisfies (1.11) for some § > 0 sufficiently
small. Further D;g" D; is smooth, symmetric, stationary, strictly elliptic in the sense of (1.4), and can be written as
in (1.15) where g, g.,, and g% satisty (1.16). Fix T > 0. Suppose u(t,z) € C*([0,T] x R3) solves Pyu = F €
C*>([0,T] x R®) N LE*, with initial data (u, 0;u)(0,-) = (f1, f2) € C*°(R3) x C>°(R3) such that u vanishes for

large |z| for allt € [0,T). Then for fixed N = 0,1,2,...15:

@D Y N0"ulim + D 10"0ullfere S D 10"0u(0)Fe + D 110F Prulli g

|uI<N |ul<N lnl<N k<N
+ D h° 005, OfJulli g + Y 6°log(2+ T)||0"ul|7 g
k<N lul<N
+ > 0Pl + D 10 Poullf e
[p|<N-1 [p|<N-1

Here the implicit constant is independent of T and §.

We first show the following bound:

82 Y 0" 0ulip + Y 110"0ullfere S D I10FOu(0, )72 + D IIPOFulltp-

[u|<N [u| <N k<N k<N
+ Y Clog? 2+ D)0 ullip + Y [P0 ulliere + Y [P0 ulip
[pI<N |u|<N-1 u<N-1

via an induction argument.

Proof of (8.2). Observe (8.2) follows immediately when 9* is replaced by 9F (all derivatives are taken with respect to
time), by applying Theorem 1.1 to OFu. We now use an induction argument to complete the bound. Observe the case
N = 0 follows from Theorem 1.1. Assume (8.2) holds when [V is replaced by N — 1. We show that this implies (8.2)

for a full N derivatives applied to u.
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Observe

83) D 0"0ulfers + D M ullim S Y D 10 Viulltera+ D Y 10"Viulig

lul<N lul<N |u|<N—1|v|=2 |u|<N—1|v]|=2
+ Y 0" 00ulere + Y 10#0Dulltp + OulFere + D (10%u]F g
lu|<N—1 [ul<N-—1 |u|<N-1

The bound for the last two terms on the right-hand side of the equation follows from the inductive hypothesis. The
bound for the third and fourth terms on the right-hand side of (8.3) follows by applying the inductive hypothesis to O;u.
For the first term on the right-hand side of (8.3), we use the fact that D; g% D; is strictly elliptic and integrate by parts to

observe

/ (8%8’%)2 dx S/ gijaj(?m@”uaiama“u dx
R3 R3
T
_ / (P,000)0" PP da + / / 0" 02ud"9%u dadt
R3 0 R3
T ..
f/ 029" 0;0"u0;0" Oyu dxdt
0 R3
1 1 1
S g||Pg5“u||%2 + el 020" ull7. + glla”aquQLz + gHa“auHQm-

Here 02 = 2 =2 9% We choose € > 0 sufficiently small to bootstrap the e[| 020" u||2 , term into the left-hand side of

the above equation. Therefore, we have shown

Yo D Vil £ ) IR uliere + Y0 0% 0Fulfege + Y 107 0ulf e

| <N-1|v|=2 lnl<N-1 lu|<N-1 lul<N-1

The last term on the right-hand side of the above equation is bound using the inductive hypothesis. Similarly, the second
term on the right-hand side of the above equation is bound by applying the inductive hypothesis to Jyu.

We use a similar argument for the second term on the right-hand side of (8.3). We begin by considering a single
dyadic interval. To simplify notation, we set v = 3(|z|/2")u, where 3(|z|) is a cut-off function that is identically 1 for
1 <|z| <2and 0 for |z| > 4 or |z| < 1/2. Using that D;g* D is strictly elliptic and integrating by parts, we find

T T N
271/ / (020"v)? dadt < 271/ / 9" 0;0,0"v0;0,0"v dxdt
0 R3 0 R3

T T
=-27! / / (P,0"0)0"02v dzdt + 27 / OF 20O 92 v dxdt
0 R3 0 R3

T
— ! / / 029"10;0"00;0" D,v dadt
0 JR3
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1 1
S 227 P 03 + 27020 03 s + 227110 B0

1
+2270" 00|72 o
We choose ¢ > 0 small enough to absorb the error term 27|92 v||2, into the left-hand side of the above equation.

Commuting with our cut-off function, 3, we have shown

Yo D Viuis S Y0 IRlEs+ Yo 10" 0fulip+ Y 19"ulip.

[u]<N -1 |v|=2 [ul<N-1 lul<N-1 |u|<N-1

The third term on the right hand side of the above equation is controlled using the inductive hypothesis and the second

term is controlled by applying the inductive hypothesis to J,u. We have therefore demonstrated (8.2). O

Proof of Lemma 8.1. We now obtain (8.1) with another induction argument. Equation (8.1) holds when N = 0 from
Theorem 1.1. Now assume (8.1) is true when N is replaced by N — 1. We will show that this implies the bound for

N. Applying Cauchy’s inequality and the triangle inequality to the following terms on the right-hand side of (8.2)

demonstrates

ZHPhatku”%E*"" Z | Pyd*ullyp + Z || Py 0" ul|7 o 12

k<N [p|<N-1 [p|<N-1
S o Paulip- + D 1100608, 0 lullip- + > 10*Pullip+ Y 110" Pyullfee
k<N k<N lul<N—-1 lul<N-1
+ Y P ullis+ D Py 0*Julli o
[p|<N-1 |u|<N—1
Observe

Yo P ullie + Y0 NP0 uliere S D 10 0ullip + Do (10 0ullfe e,

[p|<N-1 |u|<N-1 [p|<N-1 [u|<N-1
and so these terms are bound via our induction hypothesis. This completes the proof of Lemma 8.1. O

We state a second local energy estimate for Z*u, again motivated by the prior work of [15].

Lemma 8.2. Let P, be as in (1.2), where h®? is smooth, symmetric, and satisfies (1.11) for § > 0 sufficiently small.
Further D;g" D; is smooth, symmetric, stationary, strictly elliptic in the sense of (1.4), and can be written as in
(1.15) where g,, g.,, and g%. satisty (1.16). Fix T > 0. Suppose u(t,z) € C*([0,T] x R3) solves P,u = F €
C>([0,T] x R3) N LE*, with initial data (u, 9;u)(0,-) = (f1, f2) € C*(R3) x C>°(R?) such that u vanishes for
large |x| for allt € [0,T). Then for fixed N = 0,1,2, ..., 14:
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B4 D NZMulip + Y N1Z2"0ulfera S Y 1240u(0)Fe + DY 12" Pyulip.

[u|<N |u| <N |ul<N |u| <N
+ Y NP 0005, Z"ull i + > 621og*(2 + T)|1 2"}
|nl<N [p|<N
+ Y NZ2*Pulisg+ > 12" Pyullie e
[p|<N-1 [p|<N-1

Here the implicit constant is independent of T and §.

Proof. This lemma follows from Lemma 8.1 if Z#* = 9*. We now assume (8.4) holds for Z#* = 97Q"~! and show

that (8.4) still holds for Z# = 97Q)”. We are using multi-index notation for p, -y, and v. We can consider this operator

ordering since [0y, x;0; — x;0;] = 0;50; — d;,0;. To be precise Z" = J7Q” denotes ZIW\HVI:W\ 07Q", while

ZH = 97QY~1 denotes Z|’Y|+\V—1\:W|, 1<l 070" . Applying Lemma 8.1 to 972" u, we find
107 |} + 1107 O T S D 12"0u(0)l[72 + Y 10F Puf ullf -
[l <|y[+]v] k<|v|
+ ) B 0a0s, 0810 ulli e+ > 67log?(2+ T)|| 2" ull}
k<] [ <[v[+]v]
+ Y 0P ulis+ D 0Pl e e

[pl<|yl-1 [l <lyl-1

Utilizing the long-range spherical symmetry assumption on D;g”D; in (1.15) and recognizing

[Py, Q] = [h*P0,05, Q"] + [D;g¥.D;, Q"], we find

107 ulf gy + 00Ul S Y0 NZ2M0u(O)IZ + D 12" Prulp

[pe] <[v]+[v] [ <[v]+[v]
+ Y IhP0a0s, 2Mulip- + > 0*1og® 2+ T)|| 2" ul}
[l <|y|+]v] [l <|y[+]v]
+ > Z'Pulis+ Y. 1Z"Paulliere + Y 10#[Digh Dy, 0 ull] g
[l <|y]+]v]-1 [ <|y[+]v] -1 [ <|y[-1
+ Y 0MDigi D, ¥ ullf 2 + D 10F[Digl Dy, 2 Jull7 -
[ <[v[-1 k<]

Utilizing the decay properties of g%/, in (1.16), we see the last three terms in the above equation are controlled via
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Y N0*Digd Dy Q" Nullip + Y 10#[Digd Dy, 2 Tulfe 2 + D 107 [Digi Dy, 2 Tull? e

[ <|y|-1 [ <]v]-1 E<|v|
S eroulis+ Y > 10M0ulliee + > Y 110Q2700ul[] k.
[e|<|yl In|<lv]-1 [l <] [n<lv|-1 [l <|yl InI<lv]-1

The first two terms on the right-hand side of the above equation are bound using the inductive hypothesis. The third
term on the right-hand side of the above equation is also bound by applying the inductive hypothesis to d,u. This

completes the proof. O
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Chapter 9: Proof of Theorem 1.2
In this chapter, we prove Theorem 1.2 via an iteration argument. Given the energy estimates in the prior chapter,
we can apply the argument of [27], rooted in the previous argument of [15]. We first record a now standard weighted

Sobolev inequality as proved in [19].

Lemma 9.1. Let f(z) € C*°(R?) and fix R > 1. Then

©.1) I FllLe(ragialcny SRS D 108 fll2((ryasal<2ry)-
[pl+lv|<2

Remark. The proof follows by applying Sobolev embeddings on R x S2.
Remark. A similar bound holds for |x| < 1 by standard Sobolev embeddings.

We set u_; = 0 and define a sequence uy, k = 0, 1, 2, ... to solve the following linearized problem:

Pguk = Q(auk,l,(‘ﬁuk) (tvx) € [O:T€] x R?
9.2)

up(0,) = fr € C¥(R3),  Our(0,-) = fo € C=(R?),

where f; and fo are small in the following sense:

SNVl Y 0 foll e < e

[k|+]vI<15 [k|+]vI<15

We now show that a solution to (9.2) satisfies

9.3) 3 (Hauauknmm + ||8“ukHLE1) + Y (quauknmm + ||Z“ukHLE1) < Ce,
ul<15 |ul<14

for 0 <t < T, where T is as in (1.20). Here C'is a uniform constant in k. We will apply Lemma 8.1 and Lemma 8.2

by setting h*# = — B3P0, uj,_,. We define

O4)  M(T) = Y (10" 0unllpere + 10wl ) + Y (127 0unllere + 12wl e ),

|n|<15 lul<14
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where all norms in time are taken over [0, 7.]. Observe by (8.1) and (8.4), My(7.) < Coe, where Cj is the sum of the
implicit constants in (8.1) and (8.4). We will show inductively that for € < ¢, where ¢ is sufficiently small and x > 0

is sufficiently small, where « is as in (1.20), that
9.5) My (T:) < 10Cye.

Proof of (9.5). Applying (8.1) and (8.4) with 6 = C¢, we see

9.6) M (Tz) < C05+C’o< SN Prurlipe + > 12" Pruli - + > 116 0a0s, 0 Jurl| e

j<15 || <14 j<15
+ > 1 0a0p, 2"kl e + Y 10" Pourle + Y (10" Pyug| o
|n<14 [p<14 |pnl<14
+ > 2" Ppukle + Y ||Z“Pguk||M2>
[p] <13 [n]<13

+ > Crellog®(2+ To) 0" uklleer + Y, Cre’log?(2 + To)|| 2 k| e -
|n<15 |nl<14

It is permissible to take = C1e by our inductive hypothesis and (9.1). Indeed, for 0 < ¢ < T,

[(2)0=2hl| L Lo (o.17 5 4) = (@)= Oun 1| Lo ornan S D 1082 Ok 1]l oo 120 17 Ar):

[ul+|v|<4

where we have applied (9.1) and A; denotes a slightly fattened dyadic annulus. Hence,

[{2)0=h[ge Loo Lov ((0,11x A1) S Mi—1(T2) < Che,

where (7 is a constant that depends on Cj, the implicit constant in (9.1), and the collection of constants in B,‘j‘ﬁ .

Observe that

on Y (|8“Phuk|+|[8” h*P 9,5) uk) 30 oua] Y 10" 0wl

ul<15 ul<7 Iv|<15

+ ) 10" 0u| Y 10" Ouk |+ D [0 Ouk—a| Y 0¥ Oup|

|ul<8 v|<15 |ul <7 lv|<15

and
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©8 3 (|Z“Phuk|+|[Z“ ho89,04] uk|> DRV I VAT I

|n<14 |nl<7 lv|<14

+ ) 12"0u] > 12 0uka| + Y 12" Oup | Y 127 Oupa].

|p|<8 lv|<14 || <7 v|<14

Therefore the second, third, fourth, and fifth terms on the right-hand side of (9.6) are controlled by the following:

S N0 Pruklles + Y 12" Paukllie- + Y Ih*P0a0s, Hlurlle- + Y [0 0a0s, 2" ur Le-

§<15 |u|<14 j<15 lul<14

§22l/2 Z ||8“auk71||L°°L°°([().,TE]><A;,) Z ||8V8uk||L2L2([0,Ts]xAz,)
T i<t <15

+3 223 0" 0uk Lo Lo, any Y 1107 0uk—all Lo o1 x40
l [n|<8 [v|<15

+Z2l/2 Z |0 Oug 1 Loo Lo (0,7.]x A)) Z 10" Our—1 |22 ([0,1.]x A1)
! || <7 lv|<15
ZQZ/Q Z HZ“a“k*l||L°°L°°([0,Ts]xAz) Z ”Zyauk”Lsz([O,TE]xAl)
T jul<r <14

+Y 22N | ZFOunl e pe oAy Y 127 0uk—1llp2 o 1< a0
L juss i<l

+Z2l/2 Z |24 Oug—1| Lo Loo (j0,72) x AL Z 2% Our—1llL2L2(j0,1.1% A)-
l |ul<7 <14

Applying (9.1), we find the above is controlled by

Z? V2NN 240k | e ooy D 107 Oukllzese o< Ay

<9 [v|<15

+ Z 2_l/2 Z ||Z“auk||LooL2([O)T€]><A~l) Z Hayaukfl||L2L2([(),TE]><A,,)
l |p|<10 [v|<15

+ Z 2*1/2 Z ||Z#auk_1HLOCL2([O7T5]><Al) Z Hayauk—l||L2L2([O,TE]><AL)
l lul<9 lv|<15

+ Z Q*l/2 Z ||Zuauk*1HL°°L2([0,T5]><A1) Z Hleauk”LzLZ([O,Tg]xAl)
l || <9 lv|<14

+ 3 272NN Zun e 2oy dy D, 127 Ouk—allL22(0,m ) x A
l |n<10 lv|<14

+Yy 272y 1 2% Ouk—1l oo 210,721 % A1) > 1127 0ur—1ll 2Lz (0,1 x A
! 1119 <14
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where A, is a slightly fattened annulus. The above line, in turn, is bounded by

S 17 upllpers (D Tog@+ T ukllrm + > 10" ukllpers )

|1l <9 lv|<15 lv|<15

+ Z ||Z“8uk\|LocLz( Z log(2+T5)||8”uk,1||LE1+ Z ||8V’uk,1HLooL2)
lul<10 lv|<15 lv|<15

+ Z ||Z”3Uk—1HL<>°L2< Z log(2 + T0)[|0"ug—1|| et + Z ||6Uuk—1HL°°L2)
Iul<9 vi<1s vI<1s

+ 3 1270wl e (Y Tog(2+ T2 willm + Y 12 wnllpr2)
u]<9 vl<14 vl<14

+ Y 1270ulera (Y log2+ T2 wkollm + D 127kl 2
/<10 vi<ia vi<ia

+ ) ||Z“8uk_1HLocL2( > log(2+ To)|| 2 k-1l + Y ||Z"uk_1HLooLz>,
Iul<9 vi<ia vi<14

where we have used methods as in (2.3). Using the inductive hypothesis, this is bounded by
9.9) (1 +log(2 + TE)) (sM,c (T.) + 52).

The sixth, seventh, eighth, and ninth terms in (9.6) are controlled via

Yo o*Paullie + Y0 10 Pourllierz + Y 12*Pyurllee + Y 112" Pyur]lpe s

ln<14 [p<14 [pn|<13 |n<13
S Y 0" @ur—1)? e+ Y 10 (Oup—1)? ez + Y I12%(0ur—1)?(|LE
|| <14 [u|<14 [n|<13
+ Y 1240w 1) llpere + Y 10 (Ouk—10%wr) e+ D 10" (Quk—107us)| oo 2
[p[<13 |pl<14 |pl<14
+ > 112MOu1Pur) e + Y, 12" (0uk—10%up) | Lo 2
<13 <13

Applying nearly identical analysis to bounding the second, third, fourth, and fifth terms, we find that this is controlled

by
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SN0 ouslzre (Y 10°0uills+ Y 10" Ourlper)

<7 lv|<15 lv|<15
+ 3 ||aﬂauk||LooLoo( S 00w llie + Y ||avauk_1||LwL2)
|ul<8 v|<15 v|<15
+ Z ||8“8uk,1||LooLoo( Z ||8”8uk,1||LE+ Z \\6”6uk,1||LmLz)
lu|<7 lv|<15 lv]<15
+ 3 ||Z”8uk_1||LooLoo( S Z%0ule + Y ||Z"8uk||LooLz>
lul<7 lv|<14 lv|<14
+ Z \|Z”6uk|\LmLm( Z |\Z”6uk_1||LE+ Z ||Z”5'uk_1HLooLz)
|nl<8 lv|<14 v|<14
+ Z ||Z“8uk,1\|LocLoc( Z \|Z”6uk,1||LE+ Z ||ZV8’U,]€,1HL0<:L2>.
|ul<7 lv|<14 v|<14

Applying Sobolev embeddings (9.1) and our inductive hypothesis, we find that this is controlled by
9.10) eMy(T.) + &%
Combing (9.6), (9.9), and (9.10), we have proved the following bound
Mi(T2) < Coe + Calog(2 + T2) (sMk(TE) + 52) + 0y (5Mk (T2) + 52) + 22 1og?(2 + T2) My (T2),

where C5 and C3 can depend on Cj. Choosing x < 1 sufficiently small compared to C, C, and Cj3, and then € > 0

sufficiently small, we obtain (9.5) as desired. L]

To show that uj, converges to a solution of (1.13), we define

O11) AT = Y2 (1070w — wes) e + 10 (ux = wir) 11 )

lul<14

+ 3 (1270w = i)z + 112" (s = i) 25 )

lnl<13

and observe that it suffices to show Ay (T;) is Cauchy. Specifically, we will prove
1
9.12) Ap(T:) < §Ak71(Te)-
Proof of (9.12). This is very similar to the proof of (9.5). We set h®# = —ny‘ﬁ 0, uk—1 and observe

(9.13) Ph(uk — uk_l) = Q(auk_l) — Q(auk_g) + Bﬁﬁaaﬁﬁuk_l(a“’uk_l — awuk_g).
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Applying Lemma 8.1 and Lemma 8.2 to uy — uj_1, one obtains

©.14)  Ap(To) S D 110! Pulur —ur—1)lloes + D 12#Paluk — w1)| -
j<14 [n<13
+ > 00 0ads, ) — ur—)lle + D MW 0203, 2" (ur, — wr) || Le-
j<14 |u|<13
+ > 0#Py(un —ww—r)llLe + D 0#Py(ur — wp—1)l|p~re
|ul<13 |u|<13
+ > 2" Py(uk — un—)lle + Y 12" Py(ur — ur—1)| =z
|nl<12 [p<12
+ Y elog? (2 + To) [0 (uk — ur—1)|pr + Y €2log®(2+ To) | Z* (uk — u—1)| L1
|n<14 [p<13

Since our nonlinearity is quadratic, we have the following useful bounds:

©.15 > (|8“Ph(uk — wp_1)| + |[0", hPDa03) (us, — uk_1)|)

|ul<14
SO 10"0ua| Y 0¥ 0(uk —ur—1)| + Y [0#0uk1] Y 107 O(uk — ug—1)|
|| <7 lv|<14 |pu|<14 | <7
(D 100w+ 3 [0 ural) S 107 0(us s — up2)|
|u<8 [u|<7 [v[<14
+ (X 00w+ Y 10 0usal) Y 1070wk 1 — w o)
|n|<15 |u|<14 lv|<7

and

©.16 > <|Z“Ph(uk — g )|+ 112", WP 00 0] (uy, — u,H)|)

|n|<13
S 1Z2M0upa| D 1270wk — k)| + Y [ZF0uea] Y 127 0(uk — up-1)
|ul<7 lv|<13 lul<13 v|<7
+ ( ST ZRou |+ S |Z“8uk_2|) S 1270wkt — u—2)|
[n|<8 || <7 [v|<13
+( S 1240w+ Y |Zﬂauk,2|) 3 12%0(wi1 — wis)|.
ul<14 lul<13 <7
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Hence applying (9.5) and a nearly identical analysis to our bound for (9.6), we find the first four terms on the right-hand

side of (9.14) are controlled by

OI7) My (T2)(1+10g(2 + T2) ) AR(T:) + (Mi-a(T2) + Mi—o(T2) ) (1+ log(2 + T2) ) A (T2).
Similarly, the fifth, sixth, seventh, and eighth terms on the right-hand side of (9.14) are bounded from above by
©.18) Myt (T)AR(T) + (Mica(T2) + Mico(T2) ) A (T2).

Combining (9.14), (9.17), and (9.18) shows

Ap(T2) < My_1(T2) (1 +log(2 + TE)>A,€(T5) + (Mk_l(Tg) + Mk_z(TE)> (1 +log(2 + TS))Ak_1(TE)

+e2log®(2 + T) Ap(T2).

Utilizing (9.5), defining 7 as in (1.20), fixing £ > 0 sufficiently small compared to our implicit constant, and € > 0

sufficiently small completes the proof of (9.12). [

Proof of uniqueness. To demonstrate uniqueness, let u and v be two solutions to (1.13). We define T} to be the first
time that w and v differ via 71 = inf,{¢ : |u(t) — v(¢)| > 0}. Uniqueness now follows from running a standard local
argument beginning at time 7 [46, Theorem 4.1]. Indeed, if u # v for ¢ > T, this will contradict local uniqueness of

solutions. O

Proof of smoothness. Smoothness on the interval [0, T;| is proven similarly. Indeed, we proceed by contradiction and
define T to be the first time that u is not smooth via Ty = inf,{t : u ¢ C*°([0,7%] x R?®)}. Smoothness now follows
from running a standard local argument beginning at time 75 [46, Theorem 4.3]. Indeed, if u ¢ C>°([0, T%] x R3)} for

t > T5, this will contradict local smoothness of solutions. O
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Appendix A: Some Microlocal Analysis
We record some standard definitions and theorems from microlocal analysis. There are many excellent texts on
the subject. We primarily use [10] and [53]. Another excellent reference is [60], although its perspective is that of
semiclassical analysis instead of traditional microlocal analysis.

We begin by defining the standard symbol class S™ for symbols o (z, &) € R?™:

Definition A.1 Symbol Classes. [53, (1.4)]. The symbol class, S™, consists of the following elements:
(A.1) S™ = {g € C®(R*™) : [DEDIo(x,£)| < Caple)™ 1},

where m € R.

Definition A.2 Weyl Quantization. [10, (2.3)]. We use the notation O P.S™ to denote the operator class corresponding

to the Weyl quantization of symbols o(z, &) € S™ obtained via the formula:

(A2) o (x, Dy)u(z) = (2717)” /n /n ei@*y)fo(w;y,&)u(y) dydé.

Definition A.3 Kohn-Nirenberg Quantization. [10, (2.31)]. We use o(x, D)k n to denote the operator correspond-

ing to the so-called standard quantization or Kohn-Nirenberg quantization:

1

(a3) oo Do) = e [ [ e o €yuty) dyds.

The following formula is a useful way of describing the Kohn-Nirenberg quantization (see [60], (4.1.5)):
(A4) o (2, Do)k nu(x) = F~ a(z,§) Fu(w),

where F and F ! denote the Fourier transform and inverse Fourier transform, respectively. We now list several standard

theorems.

Theorem A.1 (Schwartz Kernel Representation. [53, (2.1)], [10, (2.2)]). To an operator o* (z, D,) € OPS™, there

corresponds a Schwartz kernel K (x,y) € D'(R",R™) , satisfying

Y Ouly) dydda.

A9 (@) K@) = g [ ] @i
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Therefore K (x,y) is given by the following oscillatory integral (in the sense of distributions)

1

(A.6) K(z,y) = —— / ¢ie=1)€ o
]R'n,

rry
(2m)" ’

56 d.

Remark. The above theorem can be found in [10] for the Weyl quantization. The same statement holds for the Kohn-
Nirenberg quantization and can be found in [53]. The results and method of proof are the same for both quantizations.

We note that [53] provides slightly more details and our statement more closely resembles this framework.

We note that the integral kernel defined above has good spatial decay away from the diagonal. In particular, the

following theorem holds:

Theorem A.2 ([10, Theorem 2.53]). Suppose o € S™ and let K (z,y) be the integral kernel of o*(x, D). Then
(v — y) K (z,y) is of class C*, and its derivatives of order < k are bounded, provided j > m + n + k. In particular,

K(z,y) is C* off the diagonal and is rapidly decreasing as © — y — oo.

Remark. Theorem A.2 is also true for the Kohn-Nirenberg quantization. For more on this, see the discussion under
Proposition 5.1 in [53]. The exposition in [53] clarifies the meaning of rapidly decreasing as |x — y| — oo via the

following useful estimate:
(A7) K (z,9)] < Onle—y[™ |z —yl =21,

which is true for each N € N where C'y is a positive constant.
Theorem A.3 ([60, Theorem 4.1]). Let o(x,&) € S™ be a real valued symbol. Then, o* (x, D,) is a self-adjoint

operator.

It is sometimes useful to switch between the Weyl and the Kohn-Nirenberg quantizations. The following theorem

allows us to do so, at the expense of a lower order operator.
Theorem A.4 ([10, Corollary 2.43]). Leto(z,£) € S™. Theno(x, Dy)kn — 0¥ (x, Dy) € OPS™ 1,

Theorem A.5 ([10, Corollary 2.51]). Let oq(z,§) € S™ and o9(x,£) € S™>. Then [0} (x,§), 05 (x,§)] €
OPS™+tm2=1" Note that the same conclusion is true when considering the Kohn-Nirenberg quantization (see

[53, 3.24)]).

Theorem A.6 ([10, Corollary 2.61]). Leto(x,£) € S™, withm, s € R. Then o*(z, D,) is a bounded linear operator
from H?(R™) — H*~™(R"). The same is true for the Kohn-Nirenberg quantization (see [53, (3.24)]) .

The next theorem yields a useful asymptotic expansion for the composition of operators in the Weyl calculus.
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Theorem A.7 ([10, Theorem 2.47, Theorem 2.49]). Let a(z,§) € S™ and b(zx,§) € S™.
Then a®(x, D, )b" (x,D,) = (a#b)”(z,D,) € OPS™ ™2 and we have the following asymptotic expansion

for such an operator:

N o o—lal=IBl (_1)lal w
ay e = )= (S L oleta(e. 9900, 0)” + Ry, o)
laf+gl=0 T

where N € N and Ry (x, &) € OPS™+tm2=N=1_We note that truncating (A.8) after N = 1 and N = 2 (respectively)

immediately implies the following two equations, which will be primarily what we utilize:
i ) 1
a”b® = (ab)® + ?{a, b} + Ry(x,§)
i

and

[, 5] = %{a, BY" + Rz, €),

where R(z, &) € OPS™ t™2=3_ Similar results hold for the Kohn-Nirenberg quantization, except now R(xz, &) €

OPSmi+tma—2 (see [53, PrOpOSjtiOH 3.31,).

Theorem A.8 ([10, Theorem 2.63]). The Garding Inequality.

Suppose o € S™ and for some A, B > 0,
Reo(r,&) > A(€)™  for () > B.
Then for any € > 0 and a > 0, there is a constant C. such that

Re (0" (2, Do) f (@), f(2)) 12 = (A= )| I7m/2 = Cacl FIFrcm-ar/2:

where f € H m/ 2(]R”). The same is true for the Kohn-Nirenberg quantization ( [53, Theorem 6.1]).
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Appendix B: Construction of the Weight Functions from Proposition 5.2 and Proposition 5.3
In this appendix, we construct the weight functions used in the proofs of Proposition 5.2 and Proposition 5.3. For
the remainder of this appendix, we fix R 4 sufficiently large and further fix Reyy > Rout > Rim1 > Rar, where Ryt
and R.,; will be given somewhat explicitly when necessary.
Constructing the Weight from Proposition 5.2

We begin with the weight from Proposition 5.2. Recall, we need a function ¢ = ¢(s), where s = log(r) such that
(B.1) AS@"(s) <9'(s)/2 S 9" (s), ¢ (s)] < ¢'(s), A>1

for r < 2R, and is constant for r > 2R..;. In the transition region, we may break the conditions on ¢’ and ¢",
but will still have good bounds for ¢’ and ¢". In particular for Ry,; < 7 < 3Rert/2, ¢' = 1, but ¢’ will be in part

negative, with the following bound from below |¢”| < ¢//2. For r > Reuy, |¢'| + 6] + |¢"| < 1.
Remark. We note that this weight satisfies all the requirements for Proposition 5.1 on the support of u.

We define ¢ via:

’ ARge/?
(B.2) os)= | Blo)——— dq,

Rar Ry + eged

where [(s) is a smooth cut-off function that is identically 1 for s < log(3Rez:/2) and 0 for s > log(2Reqt).
Here Ry > R4 is chosen sufficiently large and €y > 0 is chosen sufficiently small. Again, A > 1. We define
Rout = Ro/(42¢) and Repy = 100N2R2 /2.

Observe, for s < log(3Rext/2),

_ )\Roes/Z(Ro — 8068)
a 2(R0 + 5065)2 ’

_ ARoe®/?(RE — 6Rgee® + e2e%)

)\Roes/2
B.3 ' =
( ) d) 4(R0 +€O€S)3 ’

_ ¢W
Ro + gpe® ’

QZSH

which shows |¢”| < ¢'/2 and |¢"'| < ¢, as required. Further, a direct computation shows for s < log(2R,ut),
A< @ (s) = ¢ (s), while for log(Rout) < s < 1og(3Rest/2), ¢ = 1. Also forr > log(Rest), |¢'|+ 0" |+ 19" | < 1.

Therefore, this construction meets all the desired requirements for Proposition 5.2.
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Constructing the Weight from Proposition 5.3
We now construct a function that satisfies the hypothesis of Proposition 5.3 and verify that it satisfies all desired

requirements. We need a radial function ¢ = ¢(r) that satisfies

(B.4) #'(0) =0, ¢~ A+od, 16" < o, Ao>1 and

n ¢ / . ¢’ o !
0<¢"—=<,¢ Yo while — forr <, 1.
r T

We also note the useful properties that ¢’ > 0 and ¢’ /r > . We claim that

A e A 3 N

and so ¢’(0) = 0. Taking a Taylor series expansion, we see

@' (r) =Mr+ A i (Ur)n7

g

and so ¢/(r) > 0 and ¢'(r)/r > A for all r. Further,

(o7)"
—

n

¢"(r)=A+A)
n=3

Hence,

¢ =X+ 0d — o+ \o®r3/6.

This shows ¢ ~ A+ ¢’ forr <, 1 and for r > 1. To investigate other values of r, we take a derivative of the function
g(r) = X — Xor + Aa®r3/6 to find ¢'(r) = —\o + Ao>r? /2. Since r > 0, this has one critical point: r = v/2/0.
Since g(v/2/0) = ), we see that ¢ ~ \ + 0¢/, as claimed.

Clearly, for r <, 1, ¢'/r = ¢"" as X\ dominates all other terms. In addition,

¢~ r= /\Z (07;) nLH < )\Z % =0¢ — Aar + \o®r? /6 < o¢ + \o®r3 /6.
n=3

n=3
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Observing A\a®r3/6 < Aor + Ao*r? /24 (the first two terms of 0¢’), shows that ¢” — ¢ /r <, ¢'. Note this is true
since the polynomial 2 + 2* /24 — 23 /6 has no real, positive roots.

Finally, direct computations show ¢’ = 02¢' — A\o?r + Ao3r? /2 + Ao?r3 /6 < 02¢/, as desired.
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