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ABSTRACT 

RICHARD BRANDON KEITHLEY:  IMPROVING IN VIVO FAST-SCAN  
CYCLIC VOLTAMMETRIC DETECTION OF NEUROMODULATORS 

(Under the direction of R. Mark Wightman) 
 

Fast-scan cyclic voltammetry is an electroanalytical technique used to probe 

neuromodulator signaling dynamics in vivo.  The popularity of fast-scan cyclic 

voltammetry has grown in recent years because of its ability to address various 

neurobiology research interests in a simple, rapid, sensitive, manner in vivo in real time.  

However, there still remain challenges associated with the identification and detection of 

neuromodulators in vivo.  Here, the application of principal component regression with 

residual analysis to in vivo fast-scan cyclic voltammetry data is presented for the first 

time in a straightforward, non-mathematical context.  Changing the estimation of rank 

from the 99.5% cumulative variance method to Malinowski’s F-test better separates 

relevant information from noise contained in the training set cyclic voltammograms.  This 

allows the residual analysis procedure to function more accurately in determining 

whether the calibration model was applicable for the unknown data set being predicted.  

The presence of electrode drift is shown to dramatically alter concentration prediction 

when it is not included during the construction of the calibration model.  Several tools 

including a residual color plot, the pseudoinverse of the principal component regression 

calibration matrix, and Cook’s distance are shown to successfully improve the accuracy 

and robustness of training set construction and concentration prediction.  In addition, the 

sensitivity of fast-scan cyclic voltammetry is increased by increasing the scan rate of the 

applied voltage waveform.  Analog background subtraction allows some of the charging 

current to be neutralized, preventing saturation of the system.  The in vitro and in vivo 
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sensitivities are significantly improved, approaching a sub-nanomolar limit of detection.  

Scanning to a potential of 1.3 V requires waveform modification to maintain the 

increased sensitivity, but the surface integrity of the carbon-fiber microelectrode is 

altered.  Taken together, these improvements allow for a more sensitive detection 

scheme and a more robust and accurate quantitation methodology associated with the 

detection of neuromodulators in vivo with fast-scan cyclic voltammetry. 
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CHAPTER I 

BUILDING A BETTER MOUSETRAP FOR FAST-SCAN CYCLIC VOLTAMMETRY 

 

Introduction 

To an analytical chemist, the brain provides both an extremely interesting and 

challenging measurement environment.  In vivo measurements require rapid time 

response, excellent sensitivity, low limits of detection, high selectivity, all in an 

environment where biofouling is likely.  By studying the brain, analytical chemists have 

the unique opportunity of improving in vivo measurement strategies while simultaneously 

learning fundamental information about brain signaling dynamics.  The latter point may 

seem unusual to the traditional analytical chemist, but resolving long-standing questions 

in the field of neurobiology is exciting and often requires the unique skill set of an 

analytical chemist.  The analyst can contribute to multiple fields of study including normal 

behavior, disease states, and drug-seeking behaviors, all of which require thorough 

chemical characterization to unravel. 

Fast-scan cyclic voltammetry (FSCV) is an electroanalytical technique used to 

probe neuromodulator signaling dynamics in vivo.  In this approach, the applied voltage 

is swept rapidly (> 100 V/s) and the shape of the resulting current response gives 

information regarding the electron transfer properties of the analyte (Baur et al., 1988).  

As such, the shapes of the cyclic voltammograms can serve as a unique identifier for the 

specific neuromodulator of interest, except for dopamine and norepinephrine which have 

nearly identical cyclic voltammograms (Baur et al., 1988; Park et al., 2009).   
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FSCV offers several advantages including sub-second temporal resolution, low 

nanomolar limits of detection, and the best selectivity of electrochemical methods for 

neuromodulator detection in vivo (Robinson and Wightman, 2007).  A carbon-fiber 

microelectrode is typically used as the working electrode which gives two additional 

advantages:  micrometer spatial resolution and minimal damage in vivo (Jaquins-Gerstl 

and Michael, 2009).  One disadvantage to using FSCV is that a conventional commercial 

potentiostat is usually insufficient for in vivo recordings, so more sophisticated, 

expensive custom-made instrumentation is needed (Takmakov et al., 2011). 

A true testament to any analytical chemistry technique is the number of non-

analytical chemists that use it.  FSCV is used today by psychologists, neuroscientists, 

pharmacologists, and others studying a variety of neurobiological applications.  

Measurement of the catecholamine dopamine has been of particular interest over the 

past several years.  Dopamine is involved in various cognitive and motor processes 

(Cooper et al., 1996), with deficiencies in dopamine neurotransmission being associated 

with Parkinson’s disease.  Dopamine plays a critical role in the reward circuitry system of 

the brain and drugs of abuse such as cocaine are thought to hijack this system, 

contributing to drug addiction (Wightman and Robinson, 2002; Schultz, 2007). 

Broadly, this work will highlight several recent advances in analytical chemistry 

regarding FSCV.  Specifically, sensitivity improvements with proposed mechanisms, 

advancements in the measurement of analytes other than dopamine, and signal 

processing developments will be presented.  Insights into neurotransmission gleaned 

from FSCV measurements are beyond the scope of this work and have recently been 

reviewed elsewhere (Robinson and Wightman, 2007; Huffman and Venton, 2009). 

 

Sensitivity and Limit of Detection Improvements 
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Much of the recent work on improving sensitivity of in vivo FSCV measurements 

relies on modifying the surface of the carbon-fiber microelectrode.  One approach 

developed by Swamy and Venton involved coating single wall carbon nanotubes 

(SWCNTs) onto carbon-fiber microelectrodes (Swamy and Venton, 2007).  The 

SWCNTs increased signal-to-noise ratios of dopamine measurements up to 2.5-fold 

without decreasing response time, a common disadvantage with other methods such as 

electrochemical pretreatment.  The SWCNT-coated carbon-fiber microelectrodes also 

showed resistance to the fouling oxidation byproducts of serotonin and allowed for co-

detection of dopamine and serotonin in vivo after the administration of a serotonin 

precursor. 

Electrochemical oxidation is known to enhance the sensitivity towards positively 

charged neuromodulators through the creation of adsorption sites, but the additional 

adsorption sites decreases the response time of the microelectrode and can increase 

noise (McCreery, 1991; Bath et al., 2000; Heien et al., 2003b).  Carbon-fiber 

microelectrodes have recently been flame etched to improve signal to noise ratios 

towards dopamine.  Flame etching lead to faster electron transfer kinetics, faster 

adsorption/desorption kinetics, and increased the signal to noise ratio for dopamine 

(Strand and Venton, 2008). 

Rather than directly modifying the surface of carbon-fiber microelectrodes, the 

scan rate of FSCV measurements was increased to improve sensitivity (Keithley et al., 

2011).  Because dopamine adsorbs to the electrode surface, its current response is 

proportional to scan rate (Bath et al., 2000).  Unfortunately background charging current 

is also proportional to scan rate so scanning faster will saturate the current-to-voltage 

converter or the analog-to-digital converter used in data collection, unless gain is 

decreased which increases quantization noise.  Analog background subtraction 

(Hermans et al., 2008) was used to circumvent this problem.  Charging current at 400 
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V/s was recorded and fed into the summing point of the current-to-voltage converter, 

thereby zeroing out some the measured response.  Scan rate could then be increased 

without saturating the system to enhance the sensitivity for dopamine. 

FSCV measurements are routinely made with a waveform with a potential limit of 

1.0 V which has a rapid temporal response but poor sensitivity, or a potential limit of 1.3 

V which has enhanced sensitivity but a poor temporal response (Heien et al., 2003b).  

Increasing the scan rate from 400 V/s to 2400 V/s with the 1.0 V excursion increased the 

signal-to-noise ratio in vitro for 1 µM dopamine to 1.3 + 0.2 x103 and a stable four-fold 

increase in peak current in vivo (Keithley et al., 2011).  The 1.3 V waveform was adapted 

into a novel sawhorse design to maintain sensitivity over time with faster scan rate 

experiments.  The 1.3 V sawhorse waveform at 2400 V/s increased the signal-to-noise 

ratio of 1 µM dopamine in vitro to 3.3 + 0.3 x103, lowering the limit of detection to 0.96 + 

0.08 nM. 

A carbon electrode material based on the pyrolysis of novolac-containing 

photoresists has recently been used to uncover the underlying mechanism for enhanced 

sensitivity with the 1.3 V waveform (Takmakov et al., 2010b).  Pyrolyzed photoresist 

films (PPF) have electrochemical properties very similar to glassy carbon, but have the 

capability of being microfabricated using photolithographic methods (Ranganathan et al., 

2000).  Takmakov and coworkers microfabricated a PPF electrode with a similar 

electroactive surface area of a carbon-fiber microelectrode onto a fused silica wafer 

(Figure 1.1A, top) (Takmakov et al., 2010b).  Interestingly, after the application of the 1.3 

V waveform for several hours, the electrode completely vanished (Figure 1.1A, bottom).  

When a carbon-fiber microelectrode was used, the electrode was visibly etched after the 

application of the 1.3 V waveform (Figure 1.1B).  Both the PPF and carbon-fiber 

microelectrodes remained intact if the 1.0 V waveform was used. 
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Figure 1.1.  The application of the 1.3 V FSCV waveform alters carbon surface 
chemistry.  A)  Top:  Cartoon of a microfabricated PPF electrode patterned on a fused 

silica wafer, insulated with silica nitride.  Bottom:  A  scanning electron microscope 
image of the PPF electrode after the application of the 1.3 V waveform for 2.2 million 
cycles.  The blue circles indicate silicon nitride insulated PPF not exposed to solution, 
the red square indicates the region of the PPF electrode that was exposed to solution, 
and the black X indicates an etched PPF electrode.  Both top and bottom were adapted 
from Takmakov et al., 2010b.  B)  A carbon-fiber microelectrode before (left) and after 
(right) application of the 1.3 V cyclic waveform for 6.5 million cycles.  C)  XPS 1s carbon 
(left) and 1s oxygen (right) mapping of a PPF-coated tungsten wire that was partially 
immersed in physiological buffer after application of the 1.3 V waveform.   
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Scanning to potential limits above 1.0 V with FSCV is known to overoxidize 

carbon surfaces (Hafizi et al., 1990; Heien et al., 2003b).  Indeed, x-ray photoelectron 

spectroscopy (XPS) mapping of carbon and oxygen on a PPF-coated tungsten 

microwire shows the application of the 1.3 V waveform increases the oxygen to carbon 

ratio on the electrode surface (Figure 1.1C).  Unfortunately, the XPS signals can be faint 

because of the small area of the microelectrodes.  Nevertheless, surface techniques 

such as XPS (Takmakov et al., 2010b), Raman spectroscopy (Roberts et al., 2010), and 

scanning electron and atomic force microscopies (Takmakov et al., 2010b; Keithley et 

al., 2011) are becoming routine to probe carbon microelectrode surface states 

associated with FSCV measurements. 

Taken together, the literature suggests that dopamine sensitivity with carbon 

surfaces scanned to moderate anodic potential limits depends on an oxidative etching 

mechanism.  The idea of a renewable electrode surface is similar to that of traditional 

polarography experiments using a mercury drop electrode and may provide useful at 

resisting biofouling in vivo.  The exact functional groups providing enhanced sensitivity 

are unknown, but are likely a combination of carboxylic groups, quinine moieties, and 

hydroxyl groups (Roberts et al., 2010; Takmakov et al., 2010a). 

 

Pushing Beyond Rodent Dopamine 

Dopamine is readily detected with FSCV in vivo because of its favorable electron 

transfer properties and the significant amounts of dopamine released in vivo that enable 

high signal-to-noise ratios.  Furthermore, the regions where dopamine rich nerve 

terminals are located are fairly large compared to other brain structures.  Rats and mice 

are widely used for FSCV experiments, however dopamine has been recently measured 

in the anesthetized pig (Shon et al., 2010).  The pig serves as a large animal model to 

study the therapeutic effects of deep brain stimulation in Parkinson’s disease.  It was 
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determined that maximal dopamine release occurred during stimulations typically given 

to patients afflicted with the disease.   

The field of neuroeconomics blends neuroscientific observations, social sciences, 

and economic theories to try and understand the basis value judgments and human 

choice (Glimcher, 2011).  Dopamine release has also been detected in the human 

striatum to investigate the role of dopamine in economic decision making (Sandberg et 

al., 2010).  A subject was given the opportunity to invest money in a fictional stock 

market.  It was shown that dopamine activity in this subject was a significant predictor of 

future market performance, indicating that dopamine may be an important player guiding 

human preference and choice. 

Rice and Nicholson were the first to identify pH change using FSCV (Rice and 

Nicholson, 1989), but the origin of the characteristic peaks of its cyclic voltammogram 

were poorly characterized.  Takmakov et al. identified several peaks consistent with in 

vivo pH change cyclic voltammograms:  a C-peak at approximately -0.2 V on the 

oxidative sweep, a QH-peak at approximately 0.3 V on the oxidative sweep, and a Q-

peak at approximately -0.3 V on the reductive sweep (Takmakov et al., 2010a).  The C-

peak is associated with non-faradaic charging of the electrode double layer and the QH- 

and Q-peaks are associated with hydroquinone electrochemistry at the electrode 

surface.  The authors also identified a fourth peak associated with 3,4-

dihydroxyaceticacid (DOPAC), a metabolite of dopamine that is present in the 

extracellular fluid.  In vivo pH changes could also be induced without neuronal 

stimulation through inhalation of carbon dioxide.  Most importantly, it was determined 

that the commonly used TRIS buffering system for calibration was unsuitable for proper 

generation of pH change cyclic voltammograms in vitro. 

In vivo pH changes are routinely measured in rats after neuronal stimulation and 

are associated with blood flow and metabolism (Venton et al., 2003).  pH changes have 
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been recently measured in the brains of non-human primates during reward delivery 

(Heien, 2005; Hermans, 2007).  A cue preceding a predicted juice induced a basic pH 

change while a long term acidic shift was recorded after the juice reward delivery.  

These results correlated with those of functional magnetic resonance imaging, a 

technique conventionally used to measure neuronal activation in vivo. 

Norepinephrine is a catecholamine involved in learning, stress and drug 

addiction, but its detection in vivo is difficult because the shape of its cyclic 

voltammogram is nearly identical to dopamine, physiological concentrations are low, and 

brain structures containing measureable levels of norepinephrine are only a few hundred 

microns in size (Park et al., 2009).  Park et al. recently used FSCV to study 

norepinephrine signaling dynamics for the first time in vivo in the ventral bed nucleus of 

the stria terminalis, a major relay center for processing stressful and anxiety causing 

stimuli (Park et al., 2009).  Because of the similar shape of dopamine and 

norepinephrine cyclic voltammograms, tissue content, anatomical, and pharmacological 

evidence was used to verify that norepinephrine rather than dopamine was detected.  

This study opens the door for using FSCV to study the connection between stress and 

drug addiction in freely-moving animals. 

Serotonin is a neurotransmitter that regulates emotional processes and mood, 

with impairments of serotonin neurotransmission being implicated in depression and 

anxiety disorders (Jackson et al., 1995).  Serotonin is electrochemically active, but its 

oxidation byproducts quickly foul the electrode surface.  The FSCV waveform was 

previously altered to prevent the fouling from occurring which allowed for routine 

measurements in brain slices (Jackson et al., 1995).  However, endogenous serotonin 

release had yet to be detected in the intact brain using FSCV without the administration 

of a large dose of a serotonin precursor.   
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Hashemi et al. identified that the presence of 5-hydroxyindoleacetic acid (5-

HIAA), a metabolite of serotonin present in the extracellular space in concentrations up 

to 1000 times larger than serotonin, also caused fouling of the carbon-fiber 

microelectrode (Hashemi et al., 2009).  5-HIAA is washed out during normal brain slice 

preparations which would allow for its detection in vitro.  Nafion® was electrodeposited 

onto the carbon-fiber microelectrode to prevent the negatively charged 5-HIAA from 

reaching and fouling the electrode surface.  This modification allowed for the first 

measurement of endogenous serotonin release and uptake in the intact mammalian 

brain. 

Adenosine is associated with metabolism, regulation of blood flow, and 

modulation of neurotransmitter release in the brain (Cunha, 2001).  Swamy and Venton 

extended the anodic potential limit of the FSCV waveform to 1.5 V and characterized the 

electrochemical properties of adenosine (Swamy and Venton, 2006).  Cechova and 

Venton then used this approach to simultaneously measure dopamine and adenosine 

efflux in vivo (Cechova and Venton, 2008).  They also found that adenosine and oxygen 

efflux correlated after neuronal stimulation.  Recent works have also been published 

using FSCV to characterize the release and transport of adenosine (Cechova et al., 

2010; Pajski and Venton, 2010). 

Hydrogen peroxide is a reactive oxygen species that can both be involved in 

cellular stress and play a role modulating neurotransmission in vivo (Halliwell, 2006; 

Kishida and Klann, 2007).  Sanford et al. modified the FSCV waveform for hydrogen 

peroxide detection by extending the anodic potential limit to 1.4 V.  Hydrogen peroxide 

was oxidized at 1.2 V on the reverse sweep because an overoxidized carbon surface 

was necessary to facilitate measurement.  This work is extremely exciting because 

enzyme-modified electrodes typically detect hydrogen peroxide for the measurement of 

nonelectroactive biomolecules.  Therefore, it may be possible to simultaneously detect 
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electroactive and non-electroactive neuromodulators voltammetrically rather than 

amperometrically which will greatly improve the selectivity.  Furthermore, the greater 

selectivity of FSCV may reduce the need for electrode coatings, allowing for the 

fabrication of biosensors with a faster temporal response over conventional enzyme 

modified electrodes. 

 

In Vivo Microelectrode Design Developments 

The modern era of microelectrode development for in vivo neuroanalytical 

measurements began with an enzyme-modified glutamate sensor developed by the 

Wilson group (Hu et al., 1994).  Gerhardt introduced ceramic-based microelectrode 

devices for neuromodulator detection (Burmeister et al., 2000; Burmeister et al., 2002; 

Burmeister et al., 2004), which are stronger than traditional microfabricated silicon 

substrates and nonconducting.  These electrodes have been used to amperometrically 

detect several analytes in vivo (Burmeister et al., 2004; Parikh et al., 2004; Parikh et al., 

2007) using a self-referencing technique for the elimination of interferents (Burmeister 

and Gerhardt, 2001). 

Recent progress has also been made in the development of microelectrodes for 

in vivo FSCV measurements.  Carbon-fiber microelectrodes are traditionally insulated 

using pulled glass because of easy fabrication and low cost, but these sensors are 

fragile and prone to breakage during in vivo use.  Fused silica has previously been 

shown to be a well insulating, flexible alternative to glass for carbon-fiber 

microelectrodes (Swiergiel et al., 1997; Gerhardt et al., 1999).  An array of fused silica 

insulated carbon-fiber microelectrodes were used to monitor dopamine release at 

multiple locations simultaneously in vivo, but these electrodes were laser pulled at the tip 

and still fragile (Zachek et al., 2010b). 
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Clark and co-workers recently showed that fused silica insulated carbon-fiber 

microelectrodes can be implanted for chronic measurements of neuromodulator release 

in vivo because the polyimide insulation surrounding the fused silica resists the immune 

response (Clark et al., 2009).  The electrodes were epoxied at the tip similar to the 

previous designs so they were more robust in vivo.  The authors were able to monitor 

dopamine changes that occurred over several days as an animal acquired behavior, an 

unprecedented measurement on the sub-second time scale.  While extremely powerful, 

a problem exists in that there is no way to validate the stability of the carbon-fiber 

microelectrode in vivo in real time.  A decreased response could be indicative of 

decreased neuromodulator release/efflux or the degradation of the carbon-fiber 

microelectrode.  The microelectrodes would then have to be excised from the skull and 

tested in vitro to identify the cause for any decrease in signal amplitude in vivo. 

Microfabricated devices have also been used for FSCV measurements using 

PPF as the working electrode material.  Dopamine and oxygen were simultaneously and 

separately detected in vitro with two different waveforms applied to two different 

microelectrodes on the same probe (Zachek et al., 2009).  The original probe design 

was made smaller for in vivo use and dopamine was detected at multiple locations in 

vivo, highlighting differences in local neurotransmitter release upon the administration of 

pharmaceutical agents (Zachek et al., 2010a). 

 

Unscrambling Mixed Messages with Principal Component Regression. 

The increasing number of analytes detected with FSCV highlights its widespread 

utility for measuring neuromodulators in vivo.  Unfortunately, the detection of multiple 

analytes with overlapping cyclic voltammogram presents a serious selectivity challenge.  

The recent introduction of microfabricated PPF array electrodes capable of performing 

FSCV will likely multiply to this problem. 



12 
 

Traditional approaches to calculate simultaneous dopamine and pH changes 

included visual matching of the pseudocolor representation of measured currents  

(Michael et al., 1998), statistical matching based on coefficients of determination (R2) 

and mean-squared error values (Robinson et al., 2003; Cheer et al., 2004; Stuber et al., 

2005), differential subtraction in the current versus time dimension (Phillips et al., 2003b; 

Phillips et al., 2003c; Cheer et al., 2004), and a sliding digital background algorithm 

(Stuber et al., 2005).  The disadvantage of visual matching is that the analysis was 

highly subjective user bias could occur.  Statistical matching and the sliding digital 

background approach avoid these criticisms, but are difficult to apply to multiple 

sequential cyclic voltammograms.  Principal component regression (PCR) of in vivo 

FSCV data eliminates many of these restrictions and allows for improved concentration 

prediction (Heien et al., 2004b; Heien et al., 2005).  PCR is a multivariate technique, 

meaning that signal quantitation is based on the amplitude and shape of the entire 

unknown cyclic voltammogram rather than peak current amplitude at a single potential. 

(Keithley et al., 2009; Keithley et al., 2010a). 

PCR consists of four steps (Keithley et al., 2009; Keithley et al., 2010a).  First, a 

set of representative reference in vivo cyclic voltammograms at known concentrations 

(termed a training set) is assembled.  Second, principal component analysis is 

performed to separate the relevant principal components (PCs) that are necessary for 

accurate concentration prediction from principal components that describe only noise.  

Next, regression analysis is used to relate the distance of the training set cyclic 

voltammograms along the relevant PCs (called scores) to the reference concentration 

values.  Finally, unknown concentration values are predicted by calculating the relevant 

scores of the unknown data and using the calibration relationship from the training set. 

A residual analysis procedure was incorporated into the PCR algorithm to verify 

that the multivariate calibration model was applicable to the unknown data set being 
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predicted (Heien et al., 2005).  PCR prediction of neuromodulator concentrations was 

improved by incorporating a statistical test during the separation of the relevant PCs 

from the noise PCs (Keithley et al., 2010b).  This allowed for proper separation of 

relevant information from noise and improved the accuracy of the residual analysis 

procedure.  The PCR with residual analysis procedure was further improved by the 

incorporation of other control procedures that increased the accuracy and robustness of 

concentration prediction for in vivo FSCV measurements (Keithley and Wightman). 

Figure 1.2 shows the strength of PCR in the separation of multiple analytes 

during a typical in vivo FSCV measurement.  A carbon-fiber microelectrode was lowered 

into the nucleus accumbens of a freely moving rat.  The data shown in three-dimensional 

color representation at the center of Figure 1.2 was recorded three minutes after an 

intravenous dose of cocaine (0.3 mg/kg).  Clearly, several analytes with distinct 

voltammetric signatures that overlap are recorded.  PCR can separate this mixed 

neurochemical message into contributions from dopamine and pH change, even in the 

presence of substantial background electrode drift.  All unknown currents not accounted 

for by the relevant PCs of the training set are contained in the residual.  If any 

deterministic error is present in the residual, it can alert the user that the calibration 

model may not be appropriate to predict neuromodulator concentrations (Keithley and 

Wightman). 

The analysis can be taken one step further to identify relevant fluctuations buried 

in the noise present in the predicted concentration trace (Hermans et al., 2008).  The 

dopamine, pH change, and background drift cyclic voltammograms from Figure 1.2 were 

integrated to generate the charge for each analyte as a function of time.  Since the 

contributions of each species at each time point are now all in the same units (rather 

than µM dopamine, pH change, and an arbitrary unit for background change after PCR  
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Figure 1.2.  PCR signal separation of complex in vivo FSCV data.  Three-

dimensional representations of the traditional color plots associated with in vivo FSCV 
data are shown.  After the intraveneous infusion of cocaine (0.3 mg/kg), simultaneous 
dopamine and pH changes are detected, while the electrode continually drifts over the 
course of the 60 s measurement.  PCR can split this total signal (center) into separate 
specific current contributions (corners).  The voltage was swept from -0.4 V to 1.3 V to -
0.4 V at 400 V/s. 
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prediction), oscillations in each analyte ―channel‖ can be directly compared on the same 

scale. 

Figure 1.3 shows the charge curves for each species as a function of time.  The 

dopamine channel has large oscillations compared to pH change and background 

change.  Because background change has no physiological relevance, the oscillations in 

this channel can be taken as a measure of noise (electronic and electrode) in the system 

(Hermans et al., 2008).  The standard deviation of the oscillations in each channel was 

1.1 pC for dopamine, 0.4 pC for pH change, and 0.4 pC for background drift.  Comparing 

dopamine and pH change oscillations to background oscillations shows that after 

cocaine, dopamine levels significantly fluctuated while pH change did not.  This behavior 

was expected because cocaine is known to cause transient concentration changes in 

dopamine (Heien et al., 2005).  Therefore, analyzing background electrode drift can be 

useful in separating relevant information from noise. 

 

Concluding Remarks 

While the utility of in vivo electrochemistry has grown considerably over recent 

years, there remains considerable opportunity for analytical chemists to move the field 

forward.  The works presented here highlight that there is still considerable research 

interest in increasing sensitivity for carbon-based in vivo FSCV microelectrodes.  While 

every analytical chemist can benefit from enhanced sensitivity, FSCV measurements 

coupled to iotophoresis (Herr et al., 2010) and electrophysiology (Cheer et al., 2005) 

both suffer from decreased sensitivity.  However, it is ideal that any method for 

enhanced sensitivity does not increase the temporal response of the carbon-based 

microelectrode. 

Early work in the microfabrication of electrode arrays (Zachek et al., 2009; 

Zachek et al., 2010a) presents another direction of study.  Microfabricated PPF  
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Figure 1.3.  Comparison of charge oscillations.  Dopamine (top), pH change (center), 
and background change (bottom) upon intravenous cocaine infusion.  The charge 
oscillations were calculated using the data presented in Figure 1.2. 



17 
 

microelectrodes should allow for extreme precision in electrode design, ruggedness of 

the electrochemical sensor, spatial precision, and decreased microelectrode variability.  

One challenge that still remains is decreasing the size of the sensor to a size 

comparable to carbon-fiber microelectrodes for minimal damage in vivo (Jaquins-Gerstl 

and Michael, 2009).  Recent developments in electrophysiological probe design allow for 

three-dimensional spatial detection (X, Y, and depth positioning, (Langhals and Kipke, 

2009)) and construction of three-sided microelectrode arrays along the edge of a device 

(Seymour et al., 2011).  Both of the approaches could be applied to improve FSCV 

measurements in vivo.   

Data analysis strategies can also be improved.  So far, the only chemometric 

method incorporated into the analysis of in vivo FSCV data is PCR.  PCR is simple, yet 

unsophisticated.  Other methods such as partial least-squares, multivariate curve 

resolution, and independent component analysis could improve concentration prediction.   

If other methods are investigated, controls such as the residual analysis 

procedure for PCR must be included in the analysis so the user does not merely copy 

concentration data from computer like a general chemistry student from their calculator.  

Another caution to the analytical chemist is that a rat is not a beaker.  In vivo 

electrochemical and biological variability is incredibly interesting and should not be 

minimized in favor of an easy calibration scheme.  Finally, since researchers other than 

analytical chemists will use these data processing algorithms, any new data analysis 

strategies should be presented in the literature in a non-mathematical context. 
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CHAPTER II 

MULTIVARIATE CONCENTRATION DETERMINATION USING PRINCIPAL 

COMPONENT REGRESSION WITH RESIDUAL ANALYSIS 

 

Abstract 

Data analysis is an essential tenet of analytical chemistry, extending the possible 

information obtained from the measurement of chemical phenomena.  Chemometric 

methods have grown considerably in recent years, but are still considered by some too 

complicated hindering wide use.  The purpose of this review is to inform a general 

scientific audience about a multivariate chemometric method, principal component 

regression, in a simple manner from the point of view of an analytical chemist, to 

demonstrate the need for proper quality control measures in multivariate analysis, and to 

advocate the use of residuals as a proper method of quality control. 

 

Introduction 

Advances in electronics and computing over the past 30 years have 

revolutionized the analytical laboratory.  Technological developments have allowed 

instruments to become smaller, faster, and cheaper while continuing to increase 

accuracy, precision, and availability.  Data analysis methods have also benefitted from 

advances in technical computing; commercially available mathematical programming 

packages allow scientists to perform complex calculations with a few simple keystrokes.  

Furthermore, software sold with many commercial instruments contains automatic data 

processing algorithms (e.g. Fourier transform analysis, data filtering, peak recognition).  



24 
 

The advances in computing allow researchers to obtain more and more chemically 

relevant information from their data; however this is not always achieved using simple 

data processing techniques. 

Svante Wold first coined the term kemometri (chemometrics in English) in 1972 

by combining the words kemo for chemistry and metri for measure (R. Kiralj, 2006).  

Presently, the journal Chemometrics and Intelligent Laboratory Systems defines 

chemometrics as ―the chemical discipline that uses mathematical and statistical methods 

to design or select optimal procedures and experiments, and to provide maximum 

chemical information by analyzing chemical data‖ (Elsevier, 2009).  The field of 

chemometrics has also benefitted from technological advances in the past 30 years, 

causing the number of researchers using chemometric methods to grow (Brown and 

Bear, 1993; Bro, 2003; Lavine and Workman, 2008).  Unfortunately, however, 

chemometrics has not been as rapidly integrated into the analytical laboratory as other 

advances.   

The slow adaptation of these methods may be attributed to several factors.  

Technical articles on the subject are often written by chemometricians for 

chemometricians; it can be difficult for the general scientist to approach this field and 

comprehend the material presented.  Even introductory texts and review articles often 

require working knowledge of linear algebra and matrix manipulations.  Chemometric 

methods have developed such that they are readily available to any scientist and in this 

article we hope to show the importance of chemometrics to the benchtop analytical 

chemist in concentration determination using a technique known as principal component 

regression. 

 

Multivariate Analysis in Analytical Chemistry 
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Traditional concentration determinations are usually univariate, isolating one 

variable such as peak current at one potential in an electrochemical measurement or the 

wavelength of maximum absorbance in a spectroscopic measurement.  While intuitive 

and simple, this approach to data analysis is limited and wasteful.  As an example, 

consider a UV-VIS spectrum of a particular analyte containing 500 data points.  With 

only one data point being used for concentration determination (absorbance at one 

wavelength), after identification 99.8% of the data will be discarded.  Data collection can 

limit the throughput of an analytical methodology; it is not efficient to collect data that will 

not be used.  In addition, a univariate measurement is extremely sensitive to interferents.  

It is often times impossible to differentiate an analyte-specific signal from an interferent 

when looking only at one point of a data spectrum. 

Multivariate calibration methods involve the use of the multiple variables such as 

the response at a range of potentials or wavelengths, or even over the entire range 

collected to calculate concentrations.  This offers several advantages, often reducing 

noise and removing interferents (Bro, 2003).  It can be easier to identify and remove 

noise when looking at the entire data set, rather than one point.  In addition, interferents 

can be taken into account, provided their measurement profile differs sufficiently from 

the analyte of interest (Heien et al., 2004a).  Multivariate methods are generally better 

than univariate methods.  They increasing the amount of possible information that can 

be obtained without losing any information; multivariate models can always be simplified 

to a univariate model (Bro, 2003).  The advantages of multivariate methods come at a 

cost of computational power and complexity, but these drawbacks are easily handled 

with common mathematical software packages such as Matlab.   

Analytical techniques are often misused because their limitations are not always 

clearly understood.  Multivariate analysis methods are no different and have the potential 

to be misused more than instrumental techniques because all of the computations are 
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performed behind the computer screen.  Chemometricians have derived a series of 

rules, statistical tests, and other criteria in order for users to judge and validate the 

accuracy of the information obtained with multivariate methods (International, 2000).  It 

is important for any new user of multivariate methods to remember that the computer will 

always give an output but it is up to the scientist to make sure that both precautions are 

taken and the answers obtained make chemical sense. 

Construction of a multivariate model:  principal component regression 

Principal component regression (PCR) is a basic, but very powerful multivariate 

calibration method.  A brief overview of PCR will be presented here, but for a more 

detailed explanation readers are referred elsewhere (Jackson, 2004).  In addition, 

Kramer offers an excellent review of the topic in a manner that the benchtop analytical 

chemist can understand and use and we highly recommend it to anyone interested in 

using the technique (Kramer, 1998b).  PCR is a combination of principal component 

analysis (PCA) and least-squares regression.   

When discussing multivariate analysis techniques, including PCR, three terms 

are often used:  variance, vector, and projection.  Variance is another word for 

information of a data set.  Sources of variance within a data set include the changes in 

the chemical make-up of analyzed samples (concentrations and/or composition), 

changes in environmental parameters (e.g. temperature, pressure, etc.), and changes in 

instrument performance such (e.g. a drifting baseline).  The term vector is used to 

describe a line segment in a coordinate system with a specific direction (e.g. an axis) 

and the term projection is used to describe the distance of a point along a vector.   

We will illustrate how PCR is performed using simulated data taken from a 

hypothetical UV-VIS experiment.  This example is an oversimplification, but explains the 

technique of PCR in a manner that can be easily understood without overbearing 

mathematical descriptions. 
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The solid line in Figure 2.1A shows an example UV-VIS absorption trace of 

component X at a specific concentration, [X].  The information in the absorption 

spectrum of component X can be plotted in a different manner (Figure 2.1B).  Figure 

2.1B shows a plot of the intensities at 425 nm and 475 nm.  Component X has intensities 

of 0.1 A.U. and 0 A.U. at 425 nm and 475 nm, respectively and can be represented as 

the point (0.1, 0) in the two-dimensional coordinate system shown in Figure 2.1B.  

According to Beer’s law, if analyte X is doubled ([2X]), tripled ([3X]), and quadrupled 

([4X]), the absorbance spectrum will increase by 2, 3, and 4-fold, respectively, as shown 

in the dashed lines in Figure 2.1A.  These absorption spectra can also be plotted the 

same way as the first spectrum in a two-dimensional manner as shown in Figure 2.1B 

(purple squares).  Similarly, component Y, which has a different absorption spectrum 

(Figure 2.1C) and at concentrations [Y], [2Y], [3Y], and [4Y] can be plotted in a two-

dimensional manner as shown in Figure 2.1D (green diamonds) as multiples of the point 

(0, 0.1). 

As shown in Figures 2.1B and 2.1D, lines can be drawn through the two-

dimensional representations of the absorption spectra of components X and Y.  Each of 

these lines describes important information about the measured absorption spectra.  The 

horizontal line in Figure 2.1B describes how intensities change based on [X] and the 

vertical line in Figure 2.1D describes how intensities change based on [Y].  In this 

simplified case, moving in a horizontal direction in these graphs describes only how [X] 

is changing and says nothing about how [Y] is changing.  Conversely, moving in a 

vertical direction in these graphs describes only how [Y] is changing and says nothing 

about how [X] is changing.  Mathematically speaking these lines are orthogonal, 

meaning that each describes information that another does not.  These lines, which each 

describe different information about the original data drawn in an alternative coordinate 

system, can be thought of as principal components.  Stated another way, principal  
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Figure 2.1.  Representation of UV-VIS data in an intensity space.  A)  UV-VIS 

spectra of component X in concentrations [X] (solid line) to [2X], [3X], and [4X] (dashed 
lines).  B)  Spectra in A) plotted in an intensity coordinate system with intensity at 425 
nm on the x-axis, intensity at 475 nm on the y-axis, and intensity at 525 nm on the z-axis 

(going in and out of the page, omitted for clarity).  C)  UV-VIS spectra of component Y in 
concentrations [Y] (solid line) to [2Y], [3Y], and [4Y] (dotted lines).  D)  Spectra in C) 
plotted in an intensity coordinate system.  E)  UV-VIS spectra of an unknown mixture of 
X and Y.  F)  Spectrum in E) plotted in an intensity coordinate system with the dotted 
lines representing projections onto each principal component. 
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components can be thought of as vectors in an abstract coordinate system that describe 

sources of variance of a data set.  Chemometricians and mathematicians advocate the 

use of a slightly different definition of a principal component, but our definition is 

common and is used in many introductory texts (Kramer, 1998b; Jolliffe, 2004a; Ralston 

et al., 2004).  

The projection of the points onto the principal components shown in Figures 2.1B 

and 2.1D is related to concentration just like a traditional univariate calibration curve.  

Figure 2.1E shows an example of an absorption spectrum from an unknown mixture of 

components X and Y.  It can be represented as the point (0.3, 0.2) in the two-

dimensional space depicted in Figure 2.1F.  This unknown sample has a projection 

along the horizontal principal component of 0.3 and a projection along the vertical 

principal component of 0.2, correspond to concentrations of [3X] and [2Y].  Comparing 

the unknown spectrum in Figure 2.1E with the standards in Figure 2.1B and 2.1D 

confirm this result.  Mathematically, the projection onto a principal component is related 

to concentration by performing a simple least-squares regression. 

In a univariate calibration, known concentrations of standards are assembled.  

Peak responses are plotted as a function of concentration and a regression is performed 

relating a measured value to concentration.  Finally, the measured response is projected 

back onto the calibration line in order to determine a concentration.  PCR is a 

multivariate calibration method that works in a similar manner using up to all the data 

points in a spectrum instead of just one.  First, a series of known spectra and 

concentrations known as a training set is assembled.  Second, principal components are 

calculated that describe relevant portions of the assembled calibration spectra using 

PCA.  Third, a regression is performed that relates concentrations to distances along 

principal components.  Finally, concentrations are predicted by projecting an unknown 
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sample onto the principal component and relating its distance back to concentration 

(Kramer, 1998a). 

The number of principal components calculated equals the number of spectra in 

the training set that are input into the algorithm, but principal components themselves 

are not always directly interpretable.  The above example showed that one principal 

component described only component X and one principal component described only 

component Y, but principal components are abstract and should not be thought of as 

belonging solely to one component or as pure analyte spectra (Brown and Green, 2009).  

Sometimes, however, mathematical manipulations can be performed on the principal 

components in order to give the user something that relates back to a specific source of 

variance in the experiment (Jolliffe, 2004b). 

PCR offers several advantages to an analytical chemist.  First, one can separate 

and retain principal components that describe relevant information and discard principal 

components that contain noise, thereby eliminating sources of random error.  Principal 

components that describe relevant information should have larger projections because 

they describe more of the collected dataset than those that describe noise, which should 

be a small percentage of the overall measured signal.  There are numerous ways to 

decide how many principal components to keep, but all rely on the same basic 

assumption that principal components that describe relevant information will describe 

more of the collected data than principal components that describe only noise 

(Malinowski, 1990; Jackson, 1991b; Jolliffe, 2004c).  Second, the size of a data matrix is 

drastically reduced (Heien et al., 2004a).  An entire spectrum can be replaced by its 

distance (or projection) along a few principal components.  For example, a data set 

comprised of 1,000 data point cyclic voltammogram measured at 10 Hz for 60 seconds 

contains 600,000 data points.  If only three principal components are needed to fully 

describe all the relevant information of the collected data set, the number of data points 
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can be reduced by from 600,000 (1,000 points x 10 Hz x 60 s) to 1,800 (3 x 10 Hz x 60 

s), or 0.3% of the size of the original data set.  This example illustrates how PCA can 

reduce the dimensionality, or size, of a data set by orders of magnitude and still keep the 

relevant information. 

Samples used in multivariate training sets must meet several requirements 

(Kramer, 1998d; International, 2000).  First, training set samples must contain all 

expected components because concentrations obtained may not be accurate if the 

unknown sample contains spectral information not present in the training set.  Second, 

training set samples must uniformly span the expected concentrations of each of the 

components to insure that unknown concentrations fall within the calibration range.  

Third, training set samples must span the conditions of interest in order to properly 

account for environmental parameters and sample matrix.  Fourth, samples used in 

training sets must be mutually independent.  Samples created by serial dilutions are 

examples of samples that are not mutually independent because relative concentrations 

of the different components and relative errors in the concentration values are do not 

vary.  Finally, there needs to be sufficient number of samples in the training set to build 

an accurate model.  For infrared data, ASTM International recommends at least 24 

samples for a model that contains up to 3 relevant principal components and 6 samples 

per relevant principal component for a model with more than 3 relevant principal 

components.  Unfortunately, this means that a user will only know if enough samples 

were included in the training set after a model is constructed. 

PCR has been used in order to predict concentrations of in vivo electroactive 

species using fast-scan cyclic voltammetry (Heien et al., 2004a; Heien et al., 2005; 

Hermans et al., 2008).  Figure 2.2 shows how PCR can be used to separate the 

neuromodulators dopamine and pH during stimulated release.  A carbon fiber 

microelectrode is placed in a region of the brain containing dopaminergic neuron  
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Figure 2.2.  PCR deconvolution of in vivo electrochemical data.  A)  Color plot 

representation of cyclic voltammograms taken in the brain of a freely moving rat after a 
stimulation given at 0 s (60 Hz, 24 pulses, 300 µA depicted by the red bar).  Each 
vertical slice represents a cyclic voltammogram collected at a specific time point and 
each horizontal slice represents a current versus time trace at a specific potential.  The 
horizontal dashed line represents the oxidation potential of dopamine, 0.6 V.  Insets are 
cyclic voltammograms of dopamine (red, taken at the dashed line at 0 sec) and pH (blue, 
taken at the dashed line at 5 sec) with arrows drawn indicating the direction of the 
voltammetric sweep.  B)  Current versus time trace at the oxidation potential of 
dopamine with the red bar marking the onset of the stimulation.  C)  Dopamine (DA) and 
pH concentrations predicted using PCR. 
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terminals while a stimulating electrode is placed in a region containing dopaminergic cell 

bodies.  Figure 2.2A displays in vivo cyclic voltammograms in the form of a color plot, 

with each vertical slice a cyclic voltammogram at a specific time point, each horizontal 

slice a current versus time trace at a specific potential, and current in false color.  The 

cyclic voltammograms taken around 0 s are characteristic of the neurotransmitter 

dopamine while those taken between 2 and 10 s are characteristic of a pH change 

(Figure 2.2A inset).  The increase in dopamine concentration occurs due to a local 

stimulation given to the cell bodies of dopaminergic neurons that causes release in the 

terminal region.  The observed pH response is due to changes in blood flow and 

metabolism accompanying terminal activity which cause a decrease in carbon dioxide, a 

component of the extracellular buffering system of the brain (Venton et al., 2003).  The 

current versus time trace taken at the oxidation potential of dopamine in Figure 2.2B 

shows a convoluted response between dopamine and pH so a univariate calibration 

would be insufficient to determine dopamine concentration as a function of time.  Using a 

training set of in vivo cyclic voltammograms of dopamine and pH at varying intensities, 

PCR can separate these two components and generate concentration traces for each 

analyte as shown in Figure 2.2C. 

 

PCR Model Validation 

When fitting any calibration model to a data set, univariate or multivariate, an 

analytical chemist should ask two questions: 1. How accurate is my calibration model at 

predicting concentrations? and 2. How applicable is my calibration model an unknown 

data set?  When using multivariate calibrations, the accuracy of a model is addressed 

with a process called validation.  A set of test samples distinct from the calibration set 

with known concentrations are used to determine the accuracy of the calibration at 

predicting unknown concentrations.  The predicted residual error sum-of-squares 
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(PRESS) is the squared difference between the actual and predicted concentrations for 

all validation samples and serves as a figure of merit for the multivariate model (Kramer, 

1998c).  PRESS gives the experimenter an idea of how well the model can predict new 

concentrations and how much error can be expected in the concentrations obtained from 

the analysis of unknowns.  The extra work to validate a model before running an 

experiment is necessary; it is better to test the accuracy of a model first rather than using 

it blindly on unknowns and hoping for accuracy (Kramer, 1998c). 

Unfortunately, validation samples are not always available due to cost, time 

constraints, or other experimentation conditions.  In these cases the training set can be 

used as a test set in a process called cross validation.  When using cross validation with 

PCR, the regression is performed using all the samples of the training set except one.  

The concentration of this training set sample is predicted using the regression model and 

a PRESS value is calculated.  The excluded sample is reintroduced into the training set 

and another training set sample is excluded and its concentration and PRESS value is 

estimated and added to the previous PRESS value.  The process is repeated until all of 

the training set samples have been estimated and a final PRESS value is calculated 

(Kramer, 1998c).   

A PRESS value calculated in this way can also be used as a measure of the 

proper number of principal components of a data set to retain.  As more principal 

components are retained, the PCR model will predict concentrations more accurately 

and PRESS values will decrease.  However, there will come a point where increasing 

the number of principal components retained does not significantly improve the accuracy 

of the prediction and those principal components should be discarded (Jackson, 1991b; 

Kramer, 1998a; Jolliffe, 2004c). 

 

PCR Model Applicability:  Residual Analysis 
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The accuracy and applicability of a model are two distinct questions (vide supra) 

(Daszykowski and Walczak, 2006).  Some users of PCR do not address applicability of 

their calibration model and thus assume that the calibration model is always applicable 

to an unknown data set.  Stated another way, one assumes that the relevant principal 

components of a data set describe all relevant information in the unknown data set.  

Instrumental errors such as drift, experimental system errors such as pressure and 

temperature, and impurities or interferents can invalidate this assumption if they 

contribute significantly to the measured signal (Nomikos and Macgregor, 1995; Bro, 

2003). 

There are situations in which a scientist may not always know the complete 

composition of the unknown data set a priori and will not be able to predict if there are 

any unknown components that will significantly affect the measured response.  As an 

example, in vivo electrochemists use fast-scan cyclic voltammetry to measure 

electroactive species in the brain of freely moving rats.  Training set cyclic 

voltammograms often incorporate only dopamine and pH but measure in brain regions 

containing many electroactive species (Justice Jr., 1987).  If dopamine and pH are the 

only significant current contributions to the overall measurement, concentration data 

should be accurate.  However, if other electroactive species are present in 

concentrations large enough to contribute a significant amount of current, the training set 

cyclic voltammograms would be insufficient to model all of the collected data and 

concentration data obtained from PCR would be questionable. 

Jackson and Mudholkar proposed a method in order to evaluate the goodness of 

fit of training set data to an unknown data set in PCR using residuals (Jackson and 

Mudholkar, 1979; Jackson, 1991c).  In general, a residual is defined as the difference 

between an experimental observation and a predicted value from a model.  Residual 

analysis has several advantages including quality control monitoring, interferent 
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identification, and outlier detection.  An advantage with working with multivariate data is 

that it can sometimes be possible to visualize the data spectrum of an interferent, 

something that is impossible with a univariate measurement. 

In PCR residuals are a measure of the unknown signal (e.g. current) that is not 

accounted for by the retained principal components of the training set.  This includes 

noise and any signal arising from the response of any interfering analytes.  Ideally, the 

training set contains all the relevant information of an unknown data set and the 

residuals should contain only noise.  We will continue to use in vivo electrochemical data 

as an example throughout this section, but the principles apply to all other fields of 

analytical chemistry. 

The quantity Q is defined as the sum of the squares of the residual values at 

each variable in each sample of the data set.  Using in vivo electrochemistry as an 

example, one Q value is calculated for each cyclic voltammogram in the unknown data 

set by summing the squares of the current at each potential scanned that was not 

accounted for by the retained principal components of the training set used as shown in 

Figure 2.3.  Mathematically, the Q value of a cyclic voltammogram at time t, Qt, can be 

represented by        

 
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   (eq 2.1)  

where ix is the current at x point number of the wth point cyclic voltammogram and xî is 

the current predicted from the PCR model containing only the relevant principal 

components at x point number of the wth point cyclic voltammogram.  These Qt values 

are tabulated for each sample and plotted consecutively for unknown data set to make a 

Q plot, with a y-axis is in units of nA2 for this example. 
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Figure 2.3.  Calculation of a Q value at a specific time point, t.  The cyclic 
voltammetric representation of residual current is squared and summed at time t in order 
to obtain a Qt value. 
 



38 
 

Qα as a measure of significance 

The threshold for the sum of the squares of the residuals (Qα) is a threshold that 

establishes whether a satisfactory description of the experimental data by the retained 

principal components is achieved.  The discarded principal components should only 

contain noise and thus provide a measure of a noise level.  If the Qt values exceed Qα 

then there is measured signal that exceeds the noise anticipated by the principal 

components discarded.  The value of Qα includes a significance level that can be set by 

the user for how much noise can be tolerated.  

Qα is calculated using the following equations (Jackson and Mudholkar, 1979) 
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where cα is the z-score that determines the (1-α)% of noise that will be tolerated, n is the 

number of principal components retained to describe all significant signal contributions of 

the training set (i.e. if the training set contained 10 cyclic voltammograms n could vary 

between 1 and 10 depending on the number retained), m is the total number of principal 

components calculated (10 in the example described above because the number of 

principal components calculated equals the number of cyclic voltammograms in the 

training set), and λ is the sum of the squares of the data projections from all the samples 

in the training set for each principal component.  The remaining terms (Θ1, Θ2, and Θ3, 

and thus h0) are simply calculated from the λ values of the discarded noise components 

((k + 1)  m).  From this description, the calculation of Qα is based on only two pieces of 
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information:  a noise level threshold (cα) and the information contained in the discarded 

principal components of the training set (λ(n + 1) → m).  Here noise is defined as any signal 

that has a low probability of containing relevant information (Bezegh and Janata, 1987).  

When the principal components of the training set were discarded they were assumed to 

be irrelevant and thus serve as an estimated noise level.   

Qα is a threshold for significance of the Qt values.  Qα is an upper limit on the 

amount of noise or random error that will be tolerated from collected data, based on the 

amount of error contained in the discarded principal components of the training set.  A 

cyclic voltammogram with a Qt value above this threshold will be considered to contain 

significant information not accounted for by the retained principal components and 

concentration values obtained with PCR would be questionable.   

A chief advantage to using PCA is to help separate the significant deterministic 

information from non-deterministic error.  Deterministic variation is a non-random change 

in a signal—for example, the signature shape of the cyclic voltammogram that lets one 

determine its chemical identity.  Non-deterministic noise or error is random and should 

thus follow a normal distribution.  If Qt exceeds Qα then the level of the noise is greater 

than expected and may contain deterministic information that is not accounted for by the 

retained principal components. 

Interpretation of cα 

The cα term in equation 2 is the z-score corresponding to the (1-α)% of noise that 

will be tolerated.  Qt values are the sum of differences of squares and are not normally 

distributed.  However, Jenson and Solomon (Jensen and Solomon, 1972) have shown 

that the quantity (Q/Θ1)
h0

 can be approximated by a normal distribution with a mean and 

standard deviation, respectively, equal to  
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From elementary statistics, a z-score for a normal distribution is calculated as the 

difference between an observed value and the mean, divided by the standard deviation.  

This would make the z-score for the (Q/Θ1)
h0 distribution 
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Substituting cα for z and Qα for Q in equation 7 and rearranging to solve for Qα gives 

equation 2. 

Approximately 95% of random, non-deterministic error will fall below a cα of 1.645 

(Jackson, 1991c).  An unknown sample will be significantly different from the training set 

if its Qt exceeds Qα. Its signal contribution is larger than where a certain percentage of 

the signal contributions due solely to random error would be.  Using our example with a 

cα of 1.645, a Qt value will only be significant (cross Qα) if its current contributions are 

larger than 95% of current contributions due to random noise.  Qα is a measure of 

significance, not confidence.  If Qt exceeds Qα, Qt has a significant value and the use of 

the retained principal components is insufficient to describe the experimental data.  It is 

incorrect to say that one is (1-α)% confident concentration data obtained from principal 

component regression is correct if the residuals do not cross Qα.  Accuracy of 

concentrations is addressed using validation, but if Qt crosses Qα, the validation cannot 

be trusted because significant interferents are present. 

As cα increases, Qα increases.  As an example, increasing from 95% to 99% 

increases cα from 1.645 to 2.326.  This increase would mean that a residual (Q t) would 

only be significant if it has a current contribution larger than 99% of current contributions 

due to random noise.  Qα has to increase because an extra 4% of larger random error 
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current contributions will have to be accounted for.  Mathematically, equation 2 shows 

increasing cα increases Qα (ho is less than 1).   Also, decreasing cα decreases Qα and the 

smaller the Qt value will have to be in order to be deemed to contain significant 

information. 

Qt crossing Qα: 

One of three possibilities is occurring if Qt crosses Qα.  First, there is an α% 

chance that random noise would cross Qα, but since α is small, this reason is not very 

probable.  Second, too many principal components were kept and tolerance for noise is 

essentially zero.  Each consecutive principal component is calculated by determining the 

maximum amount of variance present not accounted for by previous principal 

components.  The first PC describes the largest source of variance in the training set; 

the second PC describes the largest source of variance not described by the first 

principal component, etc.  Increasing the number of retained principal components 

deems more and more of a data set significant, leaving less to be counted as noise.  

Thus, if the amount of noise decreases, the threshold for what is significant must also 

decrease.  Mathematically speaking, equation 3 decreases as k increases.  This 

possibility is also not likely if the proper number of principal components is retained.  The 

third and most important reason that Qt crosses Qα is because significant deterministic 

variation is present in the residual.  If Qt crosses Qα, significant information is present in 

the residual because the principal components retained in the training set do not 

accurately model all of the significant current contributions in experimental data set. 

Qα is a trigger of significance and is not related to the accuracy of the predicted 

concentrations.  Qα is a threshold to determine if significant information is present in the 

residual.  If Qt does not cross Qα, it means that all significant signals in the collected data 

set have been accounted for, where significance is defined as having a Q t value larger 

than (1-α)% of Qt values that would be calculated by chance from random noise. 
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Figure 2.4 shows how residuals and Qt values can be visualized for the in vivo 

electrochemical data set used previously.  Figure 2.4B shows a color plot representation 

of the residual currents when both dopamine and pH are included in the training set.  

There are no features in the color plot, suggesting that the training set accurately 

describes all relevant sources of information present in the unknown data set.  

Furthermore, the Q plot in Figure 2.4C also shows no significant current contributions at 

the 95% significance level.  If the training set used contains both dopamine and pH, its 

principal components should describe all the relevant information in the measured color 

plot leaving only noise.  

However, if we construct a model with a training set which only includes 

dopamine, its principal components should fail to describe all relevant information in the 

measured color plot.  The residual color plot in Figure 2.4D shows features in the pH 

region and its Q plot in Figure 2.4E crosses Qα at the 95% significance level, meaning 

that the dopamine principal components fail to describe all significant current 

contributions in the cyclic voltammograms taken between 2 s and 10 s and concentration 

values should not be trusted.  The residual cyclic voltammograms do not look identical to 

pH, but they have some pH-like features.  Residuals cannot always be directly 

interpreted as an interferent spectrum as shown in Figure 2.4, but the Q residual plot will 

inform the experimenter of any samples in the unknown data set that possibly contain an 

interferent (Jouan-Rimbaud et al., 1999). 

It is not always true that a training set with 4 relevant principal components will 

have a larger Qα than a different training set with 3 relevant principal components.  In 

fact, this is an erroneous assumption because the Qα threshold for two different training 

sets cannot be compared in this way.  This statement is true only if one is referring to the 

same training set when the PCA decomposition is calculated.  The principal components 

in the two training sets shown in Figure 2.4 are calculated differently because the two  
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Figure 2.4.  The use of residual analysis as a diagnostic tool for significance in in 
vivo electrochemical data.  A)  Color plot taken from Figure 2.  B)  Residual color plot 

when both dopamine (DA) and pH were used in the PCR training set.  Malinowski’s F-
Test was used in order to determine the proper number of principal components to keep 
(k = 2) [9,16].  C)  Q trace of the residuals from B) with the dashed line marking Qα at 
95% significance.  All Q values are below Qα indicating the principal components of the 
training set accurately describe all relevant sources of information.  D)  Residual color 
plot when only DA was used in the PCR training set.  Malinowski’s F-Test was used in 
order to determine the proper number of principal components to keep (k = 1).  E)  Qt 

trace of the residuals from D) with the dashed line marking Qα at 95% significance.  Qt 
values crossed Qα in the pH region of the color plot indicating significant information 
present in the residual. 
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training sets have different sources of variation (one training set contains dopamine and 

pH the other training set contains only dopamine).  Further, the pH cyclic 

voltammograms used in the training set are noisier than the dopamine cyclic 

voltammograms so the training set with only dopamine cyclic voltammograms contains 

less noise so the noise threshold and thus Qα is smaller. 

Any multivariate model used for quality control purposes should fulfill four 

requirements (Jackson, 1991d).  First, it should provide a yes or no answer as to if the 

model used accurately describes all relevant measured responses of an unknown data 

set.  The rate of false positives, concluding the model does not accurately model all 

relevant measured responses of an unknown data set when it actually does, should also 

be specified.  Any relationships that exist between experimental variables must be taken 

into account.  Finally, there should be a way to identify why the model does not 

accurately describe an unknown data set.  All of these points, especially the latter, are 

very interesting to the analytical chemist and residual analysis is an excellent tool that 

meets all of these requirements.   

 

Future Outlook / Conclusions 

PCR is a powerful data analysis tool used in analytical chemistry (Heien et al., 

2005; De Beer et al., 2006; Fang et al., 2006; Hermans et al., 2008), however another 

technique called partial least-squares (Geladi and Kowalski, 1986) (PLS) has become 

the de facto standard in multivariate calibration in recent years due to a technical 

advantage and availability of commercial software programs (Faber and Rajko, 2007; 

Lavine and Workman, 2008).  PCR calculates each principal component of data matrix 

to maximize the amount of variance described without using concentration information 

so there is no guarantee that the calculated principal components are important for 

concentration prediction (Thomas and Haaland, 1990).  PLS calculates principal 
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components using concentration information, enabling better prediction while sacrificing 

some spectral fit.  For example, if some of the training set spectra contained a 

substantial linear baseline shift, PCA decomposition of the data matrix would be 

significantly altered while PLS should disregard the baseline shift since it has little to do 

with concentration of an analyte.  PCR and PLS have been extensively compared 

theoretically and practically.  However, despite their theoretical difference, both methods 

offer similar predictive abilities with only a slight advantage to PLS in some cases 

(Wentzell and Montoto, 2003).  

Multivariate techniques offer several advantages over univariate calibration 

methods.  Noise is more easily removed and interferents can be identified.  PCR can 

drastically reduce the dimensionality of a data set while still retaining all of the pertinent 

information.  Residual analysis assures users that the calibration data take into account 

all relevant components of measured data and can identify specific samples that contain 

significant amounts of an interfering signal. 
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CHAPTER III 

RANK ESTIMATION AND THE MULTIVARIATE ANALYSIS OF IN VIVO FAST-SCAN 

CYCLIC VOLTAMMETRIC DATA 

 

Abstract 

Principal component regression has been used in the past to separate current 

contributions from different neuromodulators measured with in vivo fast-scan cyclic 

voltammetry.  Traditionally, a percent cumulative variance approach has been used to 

determine the rank of the training set voltammetric matrix during model development, 

however this approach suffers from several disadvantages including the use of arbitrary 

percentages and the requirement of extreme precision of training sets.  Here we propose 

that Malinowski’s F-test, a method based on a statistical analysis of the variance 

contained within the training set, can be used to improve factor selection for the analysis 

of in vivo fast-scan cyclic voltammetric data.  These two methods of rank estimation 

were compared at all steps in the calibration protocol including the number of principal 

components retained, overall noise levels, model validation as determined using a 

residual analysis procedure, and predicted concentration information.  By analyzing 119 

training sets from two different laboratories amassed over several years, we were able to 

gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study 

how differences in factor selection propagate throughout the entire principal component 

regression analysis procedure.  Visualizing cyclic voltammetric representations of the 

data contained in the retained and discarded principal components showed that using 

Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be 
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more accurately removed.  Malinowski’s F-test also improved the robustness of our 

criterion for judging multivariate model validity, even though signal-to-noise ratios of the 

data varied.  In addition, pH change was the majority noise carrier of in vivo training sets 

while dopamine prediction was more sensitive to noise.   

 

Introduction 

Chemometrics has become more prevalent in recent years because of advances 

in technical computing.  Specifically, multivariate calibration represents the fastest 

growing subdivision of the field (Lavine and Workman, 2008).  Multivariate calibration is 

superior to univariate calibration because multivariate calibration can simultaneously 

improve selectivity, reduce noise, and handle interferences during concentration 

determination (Bro, 2003).  These reasons have led to the use of multivariate calibration 

techniques for the analysis of in vivo data (Hansson et al., 1995; Heise, 1996; Bjallmark 

et al., 2010).   

Principal component regression (PCR) is a multivariate calibration methodology 

that combines principal component analysis (PCA) with inverse least-squares regression 

(Kramer, 1998a).  In this technique, a data set consisting of measured spectra and the 

corresponding concentrations known as a training set is first assembled.  The measured 

spectra in the training set is broken up into principal components (PCs) which are 

abstract representations of the information (termed variance) present.  Some of the PCs 

in the data set describe relevant variance and are essential for proper model 

development and concentration prediction.  PCs of this type are termed primary PCs.  

The rest of the PCs, termed secondary or error PCs, describe only noise and can be 

discarded (Malinowski, 1977).  A model is constructed using the relevant primary PCs 

and a regression matrix is calculated using the concentration data from the training set.  

Finally, concentration data of an unknown data set is predicted by projecting the 



51 
 

unknown data set onto the retained PCs and relating the distance back into 

concentration using the regression matrix. 

Fast-scan cyclic voltammetry (FSCV) is an electroanalytical technique that uses 

scan rates above 100 V/s to monitor neuromodulator release in biological systems, 

including freely-moving rats capable of performing behavioral tasks (Phillips et al., 

2003a).  FSCV offers many advantages including excellent sensitivity, sub-second time 

resolution, micrometer spatial resolution, and minimal damage from the carbon-fiber 

microelectrode.  Unfortunately, the moderate selectivity obtained using FSCV can 

complicate the analysis of in vivo data (Heien et al., 2004b).  Incorporating PCR into the 

analysis of in vivo FSCV spectral data allowed for a more widely acceptable, robust, 

unbiased multivariate approach to determine the concentration of multiple 

neuromodulators while simultaneously removing noise. 

PCR has been used in conjunction with FSCV to investigate neuromodulator 

release in cells (Heien et al., 2004b), brain slices (Heien et al., 2004b), and in freely-

moving rats (Heien et al., 2005; Wightman et al., 2007a).  PCR has also been used to 

account for electrode drift, enabling continual FSCV measurements to be made for up to 

30 minutes (Hermans et al., 2008).  A residual analysis procedure developed by Jackson 

and Mudholkar (Jackson and Mudholkar, 1979) was incorporated to make sure that the 

primary PCs of the training set describe all relevant sources of variance present in the 

unknown data set being predicted.  Any developed PCR model that fails to meet this 

requirement is discarded and not used for concentration prediction (Keithley et al., 2009; 

Keithley et al., 2010a).  

Determining the proper rank (number of primary PCs to retain) of multivariate 

data is a difficult problem in chemometrics.  Although many chemometric texts include a 

brief overview of some of the more popular methods (Jackson, 1991b; Malinowski, 1991; 

Kramer, 1998a; Jolliffe, 2004c), a general consensus about which method should be 
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used remains undetermined.  Broadly, these approaches can be divided into two 

categories:  methods that require estimation of the error level and methods that require 

no a priori information on experimental error.  Furthermore, some techniques have a 

statistical basis and significance tests can be developed to determine the proper number 

of PCs to retain in the PCR model. 

In our original work we used the method of cumulative variance to decide the 

rank of the voltammetric matrix of the training set (Heien et al., 2004b).  In this method, 

sufficient PCs are retained to describe a specified percentage of the overall variance.  A 

value of 99.5% of the cumulative variance was arbitrarily chosen for factor selection.  

While the percent cumulative variance method is both extremely simple to comprehend 

and calculate, this approach has several drawbacks.  First, it assumes that all training 

sets are sufficiently precise to satisfy a specified value of the error present; in our case 

noise would represent 0.5% of the variance in every training set voltammetric matrix.  

Differences in experimental variables such as users, equipment, biological variability, 

and laboratories will most certainly violate this rule (Malinowski, 1999).  Second, there is 

not a specific percentage of the variance corresponding to noise that works for all users 

in all cases so the percentage choice will always have to be arbitrary and inconsistent.  

Methods exist to determine a distribution of the percentage cumulative variance so more 

formal procedures could be used (Jolliffe, 2004c).   Finally, because of the extreme 

precision required for widespread usage and the lack of a constant value that works in 

all cases, the use of the cumulative variance method is not advocated (Jackson, 1991b; 

Malinowski, 1991).  Therefore, there is a need for the use of a different method of factor 

selection in the PCR analysis of FSCV data. 

There are several requirements in choosing a method of factor selection for the 

analysis of FSCV data.  First, the method should be accepted in chemometrics literature.  

Second, the method requires robustness sufficient to provide consistent results across 
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laboratories.  Third, the method should not require any a priori estimation of error levels.  

Fourth, a statistical measure should be employed in rank determination to remove any 

subjectivity and interpretation to make the results more comparable between 

laboratories.  Finally, the method should be simple to understand and calculate.   

We have previously used Malinowski’s F-test for factor selection with much 

success (Hermans et al., 2008).  A thorough evaluation and comparison with the 99.5% 

cumulative variance method, however, has not been presented.  In this work, the two 

methods of factor selection are compared in several ways beyond estimating rank.  

Noise removal, model validity, and concentration prediction constructed using the 

primary PCs retained with each approach are discussed. 

 

Theory 

Malinowski introduced the concept of a reduced eigenvalue (REV) of a data 

matrix 
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   (eq 3.1) 

where λj is the eigenvalue corresponding to jth PC, r is the number of rows in the data 

matrix, and c is the number of columns in the data matrix (Malinowski, 1987).  He 

proposed that REVs of secondary PCs should be statistically equal and REVs of primary 

PCs would be larger because of contributions due to significant information present in 

the data matrix.  An F-test was developed using REVs to statistically differentiate 

between primary and secondary PCs, thereby determining the rank of a data matrix 

(Malinowski, 1988, 1990).  The F-statistic used to test whether the nth PC is a primary or 

secondary PC is calculated as 
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where s is equal to r or c, whichever is smaller, and λj
0 corresponds to the error 

eigenvalue of the jth PC.  Each PC is orthogonal, capturing variance previous PCs did 

not, thereby satisfying the requirement of independence necessary for an F-test 

(Malinowski, 1988, 1990).  These calculations are easy to perform and Matlab command 

lines are available (Gemperline, 2006).  

Malinowski’s F-test is conducted as follows.  First, the smallest eigenvalue is 

assumed to represent only noise and is assigned to the null pool.  The next smallest 

eigenvalue is tested for significance using equation 2.  If the calculated F-statistic is 

larger than the tabulated F-statistic at a specific value of α (i.e. 0.05, 0.1, etc.), the null 

hypothesis is rejected because the nth PC had a variance statistically larger than the 

error and the rank of the data matrix is determined.  If the calculated F-statistic is smaller 

than the tabulated F-statistic, the tested eigenvalue is also assigned to the null pool.  

The test is repeated with the next smallest eigenvalue compared to the pool of 

eigenvalues until the null hypothesis is rejected.  At each iteration of Malinowski’s F-test, 

there is an α% chance that the nth PC describes error rather than significant information 

present in the spectral matrix of the training set.  Malinowski determined that an α value 

of 5% tended to underestimate the rank and an α value of 10% tended to overestimate 

the rank (Malinowski, 1988, 1990).   

Malinowski originally suggested that REVs would only be constant for uniformly 

distributed error and normally distributed error could contain one REV that may be 

significantly larger than the other error REVs, thereby causing Malinowski’s F-test to 

erroneously overestimate rank (Malinowski, 1977).  This result was unsubstantiated, 
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however, because uniform, normal, or random sign simulated noise distributions gave 

identical REVs (Faber et al., 1994).  Malinowski’s F-test also performed well in the 

presence of Gaussian error and moderately well in the presence of multiplicative noise 

(Malinowski, 2004).  In addition, Malinowski’s F-test takes advantage of the central limit 

theorem, giving a theoretical basis for the insignificance of the underlying distribution of 

the noise present in the original data spectrum (Malinowski, 1987; Malinowski, 2004).  

Through simulations of random matrices error REVs were determined not to follow a 

normal distribution when r and c deviated substantially from one another (Faber et al., 

1994) which violate the assumption necessary for an F-test, but Malinowski’s F-test has 

been used successfully to estimate the rank of these ―skinny‖ matrices in the literature 

(Malinowski, 2004; Wasim and Brereton, 2004).  

One of the assumptions of Malinowski’s F-test is that the noise present in the 

training set spectral matrix is homoscedastic (has a constant statistical variance) and is 

uncorrelated between variables (Faber and Kowalski, 1997b; Malinowski, 1999).  If 

multiple sources of error are present with significantly different amplitudes or if the data 

are autocorrelated, Malinowski’s F-test will erroneously overestimate rank (Malinowski, 

1999; Vivo-Truyols et al., 2007).  In addition, if the primary PCs contain variance similar 

to secondary PCs, Malinowski’s F-test is expected to assign those primary PCs to the 

null pool, thereby underestimating the rank (Wasim and Brereton, 2004).  

One of the criticisms against Malinowski’s F-test is that an incorrect number of 

degrees of freedom are used in the calculation of the F-statistic (Faber and Kowalski, 

1997a).  The Faber-Kowalski F-test uses much larger degrees of freedom calculated 

from the analysis of simulations of random matrices, thus increasing the power of the 

statistical test and having a much sharper significance level (α ≤ 1%).  This method is 

computationally intensive; however, the authors have supplied command lines for 

mathematical software programs (Faber, 1999).  However, this adaptation of 
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Malinowski’s F-test has been criticized for being hypersensitive to the requirement of a 

normal error distribution which many chemical measurements fail to meet (Malinowski, 

1999; Wasim and Brereton, 2004).  

In sum, there are several assumptions and limitations that we recognize for the 

use of Malinowski’s F-test.  First, we assume the noise to be homoscedastic among the 

cyclic voltammograms contained in each training set voltammetric matrix.  If 

heteroscedastic noise is present, we recognize noise will be retained in model 

construction.  Second, any PCs that describe variance similar to that of noise will be 

discarded, even if it is possible that relevant information is buried within noise.  We 

define significant variance as having an amplitude statistically larger than noise variance 

so any PC that fails to meet this requirement will be discarded.  Third, an α value of 5% 

will be used for Malinowski’s F-test because of the size of the training set voltammetric 

matrix and we wish to be more confident in the identification of primary PCs. 

 

Experimental 

Fast-scan cyclic voltammetry and animal experimentation 

Carbon-fiber microelectrodes were prepared as described previously using T-650 

carbon fibers cut to an exposed length of 25-100 µm (Kawagoe et al., 1993).  The 

voltage of the carbon-fiber microelectrode was held at -0.4 V, increased to 1.3 V, and 

decreased back to -0.4 V at 400 V/s.  This triangular excursion was repeated at 10 Hz.  

All potentials are reported versus a Ag/AgCl reference electrode.  Data acquisition was 

performed as previously described using locally constructed hardware and software 

(Michael et al., 1999).  All cyclic voltammograms were low-pass filtered at 2 kHz.  The 

stimulated release and intracranial self stimulation data was also smoothed using a one-

pass moving average. 
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All animal experiments were performed on freely-moving male Sprague Dawley 

rats weighing approximately 300 g in accordance with the University of North Carolina 

Animal Care and Use Committee.  Surgeries were carried out as described elsewhere 

(Heien et al., 2005; Day et al., 2007; Owesson-White et al., 2008).  The coordinates 

used for stimulating and working electrodes varied according to the desired experiment 

because training sets from multiple users and laboratories were pooled.  Generally, the 

training sets focused on measuring in the dorsal and ventral striatum, with the nucleus 

accumbens being a region of specific interest.  The location in the brain that the cyclic 

voltammograms in the training set were taken from was irrelevant for the analyses.  All 

training sets used were taken from freely-moving rat experiments so the cyclic 

voltammograms used in prediction were the best approximation to those recorded in the 

unknown data sets (Heien et al., 2005).  In vitro cyclic voltammograms were not included 

in the training sets because inconsistencies in the shapes of the cyclic voltammograms, 

peak potentials, and noise levels. 

Data analysis and principal component regression 

All chemometric and statistical analyses were carried out in MATLAB 

(Mathworks, Natick, MA), GraphPad Prism (GraphPad Software Incorporated, La Jolla, 

CA), Excel (Microsoft Corporation, Redmond, WA) and LabVIEW (National Instruments, 

Austin, TX).  All values are reported as averages + standard error of the mean (SEM). 

Each in vivo training set constructed met specific requirements (Kramer, 1998d; 

ASTM International, 2000).  First, cyclic voltammograms of all expected analytes were 

included, generated by electrically stimulating the animal.  Second, no more than one 

cyclic voltammogram for each species was taken per stimulated release event, satisfying 

the requirement of mutual independence.  Third, the training set mimicked the 

experimental conditions as closely as possible.  The same electrode, electronics, and 

other equipment were used to collect both the training set and the unknown data set.  
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The various cyclic voltammograms in the training set were consistent in shape and 

representative in noise level to the unknown data set.  Cyclic voltammograms of the 

unknown data set were not used to build the training set.  Finally, the training set 

spanned the concentration range contained in the unknown data set being predicted.  

Cyclic voltammograms of varying intensity were generated by changing the stimulation 

parameters (i.e. current, number of pulses, and frequency).  Concentrations were 

estimated using flow injection analysis (Kristensen et al., 1986b) after the experiment 

was completed (Owesson-White et al., 2008).  

In total, 119 training sets were assembled from five users in two different 

laboratories over the course of several years.  These training sets have been used for 

concentration prediction from a variety of experiments including various behavioral 

experiments and stimulated release studies.  Each training set consisted of five 

dopamine and five pH change cyclic voltammograms.  Any training sets that contained 

more than five cyclic voltammograms per analyte were truncated to make all training 

sets consistent in size.  However, a uniform distribution of concentration values within 

the training set was maintained.   

PCA was performed using singular value decomposition (Hendler and Shrager, 

1994).  PCR using residual analysis was performed as described previously (Keithley et 

al., 2009; Keithley et al., 2010a).   Cyclic voltammetric representations of the training set 

consisting of only the primary PCs were calculated as follows.  First, the primary PCs of 

the training set determined by either the 99.5% cumulative variance method or 

Malinowski’s F-test were organized in a matrix, Vc.  The projection of the training set 

onto the primary PCs, Aproj was calculated, 

Aproj = VcTA    (eq 3.3) 

where the superscript T represents the transpose of the matrix and A contains the 

training set voltammetric matrix.  Finally, the training set consisting of only the primary 
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PCs, AnPC, was reconstructed by multiplying the retained PCs by the projection of the 

training set onto the primary PCs (Jackson and Mudholkar, 1979) 

AnPC = VcAproj    (eq 3.4) 

To determine the noise discarded in the secondary PCs of a training set, AjPC, AnPC was 

subtracted from the original training set voltammetric matrix A. 

The signal-to-noise ratios of the dopamine cyclic voltammograms were 

calculated by dividing oxidative peak current by the standard deviation of a flat portion of 

the cyclic voltammogram, specifically from 0.95 V to 0.25 V on the reductive sweep.  

Root-mean-square (RMS) noise was calculated from AjPC.  The RMS current, iRMS, was 

calculated for each cyclic voltammogram in the training set using the following equation 
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   (eq 3.5) 

where ix is the current at the xth point of the voltammetric waveform containing w total 

points taken from the AjPC matrix.  An average iRMS value for each analyte using each 

method of factor selection was calculated for each training set.   

 

Results and Discussion 

Principal component selection & training set heterogeneity 

Table 3.1 compares how Malinowski’s F-test and the 99.5% cumulative variance 

method determine the rank of a data matrix.  Eigenvalues are given for each PC along 

with the corresponding cumulative variance percentage as rank increases.  From this 

data, the 99.5% cumulative variance method would estimate the rank of this training set 

voltammetric matrix to be four.  REVs are also given for each PC.  For PCs four through 

ten the REVs are comparable, as evidenced by the small F-statistics.  PC ten does not 

have an F-statistic because its REV is placed in the null pool.  Starting from the bottom  
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Table 3.1.  Comparison of Rank Estimation Methods.  Eigenvalue, reduced 
eigenvalue, calculated F-statistic, critical F-value at 5% significance, and PRESS value 
as a function of PC for an example FSCV training set spectral matrix. 

 

PC λ % Cum. Var. REV FStat F0.05 PRESS 

1 4875.4 85.33 0.4875 26.08 5.12 25.4 

2 551.2 94.98 0.0613 7.66 5.32 17.7 

3 238.6 99.15 0.0299 17.23 5.59 11.0 

4 26.9 99.63 0.0039 3.76 5.99 9.6 

5 11.5 99.83 0.0019 2.91 6.61 8.0 

6 5.0 99.91 0.0010 2.04 7.71 6.3 

7 2.3 99.95 0.0006 1.29 10.13 3.1 

8 1.7 99.98 0.0006 1.91 18.51 2.1 

9 0.5 99.99 0.0003 0.74 161.45 ~ 0 

10 0.4 100 0.0004 -- -- -- 
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of the table working upwards, the F-statistic becomes larger than the 5% critical F-values 

(National Institute of Standards and Technology)  for a rank of three, indicating that three 

PCs are statistically relevant in model construction for this training set. 

Leave one out cross validation is also a popular method of rank determination in 

which the training set concentration matrix is incorporated (Malinowski, 1991; Beebe and 

Seasholtz, 1998; Kramer, 1998c).  Predicted residual error sum-of-squares (PRESS) 

values are calculated as a function of rank and give the user an idea of the error 

between the actual concentrations and those predicted using the retained PCs (Kramer, 

1998c).  A minimum or stabilization of PRESS values is indicative of the proper rank of 

the training set.  This test is subjective, but more formal statistical tests are available 

(Haaland and Thomas, 1988; Osten, 1988; Beebe and Seasholtz, 1998).  Malinowski’s 

F-test and cross validation have been compared in the past, yielding mixed results 

(Wasim and Brereton, 2004; Hasegawa, 2006; Wahbi et al., 2009; Virkler and Lednev, 

2010).  Here, cross validation was not able to estimate rank for all data sets because the 

rank of many training sets (as in Table 3.1) was ambiguous using this approach. 

When comparing the 99.5% cumulative variance method and Malinowski’s F-test 

in the number of PCs to retain in the model used for concentration prediction, three 

outcomes are possible.  First, if the number of PCs to retain in the model is fewer for 

Malinowski’s F-test compared to the 99.5% cumulative variance method (referred to as 

Case I) then the overall noise level is greater than 0.5% of the cumulative variance and 

models developed using the 99.5% cumulative variance rule are retaining noise during 

concentration prediction.  Keeping noise should not significantly impact concentration 

data as long as any noise retained does not significantly alter the factor space generated 

during PCA deconvolution of a training set.  Second, if the number of PCs to retain in the 

model is greater for Malinowski’s F-test compared to the 99.5% cumulative variance 

method (referred to as Case II) then the overall noise level is less than 0.5% of the 
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cumulative variance and models developed using the 99.5% cumulative variance rule 

are discarding significant information in the training set when calculating concentration 

data.  Finally, if the number of PCs to retain in the model is the same for both 

Malinowski’s F-test and the 99.5% cumulative variance method (referred to as Case III) 

then the overall noise level is 0.5% of the cumulative variance. 

Table 3.2 compares the 99.5% cumulative variance method to Malinowski’s F-

test in the number of PCs to retain in 119 training sets from five different users in two 

different laboratories.  Table 3.2 shows both the heterogeneity of training sets between 

researchers and failure of the 99.5% cumulative variance method in determining the 

number of principal components to retain.  The vast majority (65.5%) of the evaluated 

training sets were classified as Case I, a much smaller percentage (10.0%) were 

classified as Case II, and the rest (24.4%) were classified as Case III. 

Table 3.2 shows how inadequate using a fixed number percentage of the 

cumulative variance for PC retention was at removing noise from training sets as stated 

in chemometric texts (Malinowski, 1991; Jolliffe, 2004c).  The 99.5% cumulative variance 

rule worked well only for user 1 and moderately overall.  In fact, if these training sets 

were analyzed with the 99.5% cumulative variance rule 65.5% of the PCR models 

constructed would retain noise during PCR prediction and 10% of PCR models 

constructed would discard significant information used for concentration prediction. 

Figure 3.1 shows the number of PCs retained from the training sets in Table 3.2 

using both the 99.5% cumulative variance method and Malinowski’s F-test.  Figure 3.1A 

compares both methods for all of the Case I training sets.  While the 99.5% cumulative 

variance method retained a wider distribution of PCs, Malinowski’s F-test retained no 

more than 3 PCs, with two PCs being the mode of the distribution.  On average, 

Malinowski’s F-test retained two fewer PCs than the 99.5% cumulative variance method 

for Case I training sets.  Figure 3.1B compares both methods for all of the Case II  



63 
 

Table 3.2.  Inter-researcher comparison of rank estimation between Malinowski’s 
F-test and the 99.5% cumulative variance method. 
 

 
User 1  User 2  User 3  User 4  User 5  Totals 

 
N = 13 N = 16 N = 20 N = 14 N = 56 N = 119 

Case I 2 8 16 8 44 78 (65.5%) 

Case II 2 3 0 5 2 12 (10.0%) 

Case III 9 5 4 1 10 29 (24.4%) 
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Figure 3.1.  Histograms of the estimated rank of A) Case I and B) Case II training 
sets.  White and black represent rank determined by the 99.5% cumulative variance 
method and Malinowski’s F-test, respectively.  C) Histogram of the estimated rank of 
Case III training sets. 
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training sets.  The distribution of the number of primary PCs retained by Malinowski’s F-

test was shifted higher by approximately one PC on average.  Finally, Figure 3.1C 

shows the distribution of retained PCs for all of the Case III training sets.  For these 

training sets the average number of primary PCs was three.   

There were only two analytes in all of these training sets, but one PC does not 

always necessarily correspond to one analyte (Brown and Green, 2009).  It is possible 

that any training set voltammetric matrix with a rank higher than two could be due to 

differences in signal-to-noise ratio, the presence of heteroscedastic noise, or to 

inconsistencies present in the various cyclic voltammograms of the training set that were 

larger than noise.  In addition, pH change cyclic voltammograms do not have a 

consistent ―correct‖ shape (Heien et al., 2004a; Heien et al., 2005; Cheer et al., 2006).  

This discrepancy makes the process of separating significant information from noise 

difficult for the pH change cyclic voltammograms of the training set.  It is also possible 

that more than two primary PCs were needed to span significant current contributions to 

the analytes of interest. 

Comparison of information contained in secondary PCs 

In PCR, some of the principal components are discarded in an effort to remove 

noise from the training set before concentration prediction.  Visualizing how the training 

set cyclic voltammograms change as rank is estimated differently should give qualitative 

information on how noise is removed.  This process will also show researchers 

―effective‖ cyclic voltammograms of the training set used by PCR for concentration 

prediction.  In addition, visualizing the secondary PCs will determine if any significant 

information was discarded during factor selection.   

Figure 3.2 shows a representative training set comparing how both methods of 

factor selection remove noise for a Case I training set.  Since there were ten cyclic 

voltammograms in the training set, ten PCs were calculated.  For this training set, the  
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Figure 3.2.  Comparison of effective cyclic voltammograms in a representative 
Case I training set.  A) Original dopamine cyclic voltammograms containing all PCs 

before factor selection.  B) Original pH change cyclic voltammograms containing all PCs 
before factor selection.  C) Dopamine cyclic voltammograms from A) constructed using 
only the PCs retained by the 99.5% cumulative variance method (n = 5 PCs).  D) pH 

change cyclic voltammograms from B) constructed using only the PCs retained by the 
99.5% cumulative variance method (n = 5 PCs).  E) Dopamine cyclic voltammograms 
from A) constructed using only the PCs retained by Malinowski’s F-test (n = 2 PCs).  F) 

pH change cyclic voltammograms from B) constructed using only the PCs retained by 
Malinowski’s F-test (n = 2 PCs). 
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99.5% cumulative variance method retained five PCs in the model while Malinowski’s F-

test retained two PCs.  Figures 3.2A and 3.2B show the original dopamine and pH 

change cyclic voltammograms, respectively, in the training set.  The noise in the 

dopamine cyclic voltammograms caused the peak shapes and peak potentials to vary.  

In addition, there is substantially more noise present in the pH change cyclic 

voltammograms.  By discarding five PCs, the 99.5% cumulative variance method only 

slightly improved the condition of the cyclic voltammograms as shown in Figures 3.2C 

and 3.2D.  Some of the noise in the dopamine cyclic voltammograms was removed and 

their peak shapes and peak potentials became more consistent.  Unfortunately, the pH 

change cyclic voltammograms showed only a small decrease in noise as evidenced in 

the similarity between Figures 3.2B and 3.2D.  Substantial noise remained in the pH 

change cyclic voltammograms as evidenced by extraneous peaks and inconsistent 

shapes. 

By discarding eight PCs, Malinowski’s F-test was able to remove more noise in 

the dopamine and pH change cyclic voltammograms as shown in Figures 3.2E and 3.2F, 

respectively.  The dopamine cyclic voltammograms were less noisy than those 

computed using the 99.5% cumulative variance method, specifically at the beginning 

and end of the cyclic voltammetric sweeps and in the green cyclic voltammogram 

overall.  Some small peaks at -0.1 V and 0.1 V were retained in some of the dopamine 

cyclic voltammograms.  The amplitudes of these peaks were comparable to the noise 

level in the original dopamine cyclic voltammograms, but since these peaks were 

conserved in several of the cyclic voltammograms, PCA was able to separate them as a 

relevant portion of the dopamine cyclic voltammograms.  The small peak at the switching 

potential in some of the dopamine cyclic voltammograms was probably retained for a 

similar reason.  The pH change cyclic voltammograms calculated with Malinowski’s F-

test showed a dramatic decrease in the overall noise level.  As with the dopamine cyclic 
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voltammograms, the shape of the pH change cyclic voltammograms was conserved as 

the amplitude of the cyclic voltammograms varied.  

Figure 3.2 showed qualitatively how Malinowski’s F-test could remove more 

noise than the 99.5% cumulative variance method for Case I training sets, which were 

the majority of training sets analyzed.  It is important to quantify the amount of noise 

each method removes from Case I training sets rather than relying only on qualitative 

evaluations.  Figure 3.3 displays the amount of RMS noise removed from dopamine and 

pH change cyclic voltammograms using both methods of factor selection for all Case I 

training sets.  Overall, Malinowski’s F-test was able to remove significantly more noise 

than the 99.5% cumulative variance method from dopamine cyclic voltammograms (P < 

0.0001, Wilcoxon Signed Rank Test) and from the pH change cyclic voltammograms (P 

< 0.0001, Wilcoxon Signed Rank Test) proving that the 99.5% cumulative variance 

method was unsuitable for noise removal in these training sets.   

The noise removed by the 99.5% cumulative variance method was not 

significantly different between dopamine and pH change (P = 0.3057, Mann-Whitney 

Test).  In addition, significantly more noise was present in the pH change cyclic 

voltammograms compared to the dopamine cyclic voltammograms (P = 0.0033, Mann-

Whitney Test) when Malinowski’s F-test was used for rank estimation.  A possible 

reason for this increased noise could be due to the origin of the pH change cyclic 

voltammograms used for the in vivo training sets.  Background currents that occur when 

surface functional groups on the electrode are protonated and deprotonated contribute 

to the shape of the pH change cyclic voltammogram (Runnels et al., 1999).  It is 

therefore plausible that the pH change cyclic voltammograms are highly dependent on 

the local environment of the electrode in vivo.  Subtle changes in extracellular species 

could impact the shape of cyclic voltammograms.  Changes in the shape of the cyclic 

voltammograms comparable to noise would be discarded increasing the overall noise  
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Figure 3.3.  RMS noise removed by the 99.5% cumulative variance method (99.5% 
C.V.) and Malinowski’s F-test for all of the Case I training sets.  Error bars represent 

SEM.  White bars represent noise from dopamine secondary PCs and black bars 
represent noise from pH change secondary PCs.  Two stars and three stars represent P 
< 0.01 and P < 0.001 significance, respectively. 
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level.  In addition, the pH change cyclic voltammograms are obtained approximately 2-5 

seconds after an electrical stimulation is given to the animal, during which time 

locomotor activity is increased which can increase electrical noise.  Either way, since the 

signal-to-noise ratio of the cyclic voltammograms used in Figure 3.3 was low (16 - 61), 

these differences were not significantly larger than the noise present in the training set 

cyclic voltammograms and were thus discarded by Malinowski’s F-test.  

Potentially significant information could be discarded by the 99.5% cumulative 

variance method for Case II training sets because statistically more PCs should be 

retained.  Figure 3.4 more clearly illustrates what each method considers error for a 

representative Case II training set.  The 99.5% cumulative variance method estimated 

rank to be two and Malinowski’s F-test estimated rank to be four for this training set.  

Figure 3.4A contains cyclic voltammetric representations of PCs three through ten that 

were discarded with the 99.5% cumulative variance method for each dopamine sample 

in the Case II training set.  Similarly, Figure 3.4B contains cyclic voltammetric 

representations of PCs three through ten for each pH change sample in the training set.  

Figure 3.4C and 4D contain cyclic voltammetric representations of PCs five through ten 

that were discarded with Malinowski’s F-test for dopamine and pH changes, 

respectively.  Figures 3.4E and 3.4F contain cyclic voltammetric representations of PCs 

three and four for both dopamine and pH changes, respectively, in the original training 

set.   

Interestingly, a conserved distinct shape emerged in the difference between the 

secondary PCs discarded between the two methods for the dopamine cyclic 

voltammograms.  Error with such a pattern suggest that PCs three and four represent 

deterministic variance which was why Malinowski’s F-test retained these PCs.  The 

shapes of the cyclic voltammograms in Figures 3.4E and 3.4F show that heteroscedastic 

noise was not present which could have caused Malinowski’s F-test to overestimate  
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Figure 3.4.  Cyclic voltammetric representation of the secondary PCs from each 
method of factor selection for a representative Case II training set.  A) Secondary 

PCs of the dopamine cyclic voltammograms determined by the 99.5% cumulative 
variance method (PCs 3-10).  B) Secondary PCs of the pH change cyclic 
voltammograms determined by the 99.5% cumulative variance method (PCs 3-10).  C) 
Secondary PCs of the dopamine cyclic voltammograms determined by Malinowski’s F-

test (PCs 5-10).  D) Secondary PCs of the pH change cyclic voltammograms determined 
by Malinowski’s F-test (PCs 5-10).  E) The difference of secondary PCs between 

methods for the dopamine cyclic voltammograms (PCs 3-4).  F) The difference of 
secondary PCs between methods for the pH change cyclic voltammograms (PCs 3-4). 
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rank.  Since the signal-to-noise ratio of the original cyclic voltammograms of this 

representative Case II training set was high (114 - 307), PCs three and four discarded by 

the 99.5% cumulative variance rule contained variance that was significantly larger than 

the variance of the noise present.  While discarding these PCs may have helped create 

more consistently shaped cyclic voltammograms and these PCs may not be necessary 

for concentration prediction, it is our assertion that it is better and more conservative to 

retain all statistically significant information present in training sets.   

Figures 3.4E and 3.4F showed that more than two primary PCs were necessary 

to describe currents measured at the switching potential and at the end of the 

voltammetric sweep when signal-to-noise ratios of the cyclic voltammograms in a 

training set are high.  This data, taken with the data presented in Figures 3.1 and 3.3 

suggest that the number of primary PCs required for in vivo FSCV voltammetric data 

varies with signal-to-noise ratio.  The signal-to-noise ratios of the dopamine cyclic 

voltammograms for Case I, Case II, and Case III training sets were significantly different 

(P < 0.0001, Kruskal-Wallis Test) with averages of 74 + 3 (N = 390), 200 + 17 (N = 60), 

and 147 + 12 (N = 145), respectively, giving evidence for this hypothesis.   

Training sets with smaller signal-to-noise ratios will have more room to discard 

inconsistencies in the cyclic voltammograms with amplitudes similar to that of noise.  As 

signal-to-noise ratio increases, inconsistencies in the shapes of the cyclic 

voltammograms of the training set become more significant compared to the noise 

present.  In addition, PCs describing only a small amount of the overall variance of the 

training set become more significant.   

Comparison of model validity 

The most important aspect to our in vivo calibration protocol is PCR model 

validation.  We use a residual analysis method developed by Jackson and Mudholkar to 

determine if the multivariate model is valid and predicted concentration values can be 
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trusted (Jackson and Mudholkar, 1979; Keithley et al., 2009; Keithley et al., 2010a).  

This method uses the data contained in the discarded PCs from the training set to 

determine a threshold for tolerable error (Qα).  Qα represents a threshold where 1-α% of 

the sum of squared residuals due to noise would fall below.  By convention, we use an α 

value of 5% for the residual analysis procedure (Keithley et al., 2009; Keithley et al., 

2010a).  The sum of the squared residual error present in each cyclic voltammogram at 

time t of the unknown data file being predicted is calculated as the quantity Q t, plotted as 

a function of time, and compared to Qα.  The quantity Qt is calculated as 

 
2

1

ˆ



w

x

xxt iiQ    (eq 3.6) 

where ix is the current at the xth point of the cyclic voltammogram, îx is the current 

predicted using only the relevant PCs of the PCR model, and w is the number of points 

in the cyclic voltammogram.  As long as the Qt plot falls below Qα, the retained PCs 

accurately describe all significant sources of variance present.  However, if the Q t plot 

crosses Qα, the retained PCs of the model do not accurately describe all relevant 

sources of variance in the unknown data set and the model cannot be used for 

concentration prediction. 

Incorrect estimation of the proper noise level would cause an incorrect value of 

Qα to be calculated which would impair proper judgment of PCR model validity.  Figure 

3.5 shows Qα distributions for Case I, II, and III training sets shown in Figure 3.1.  Figure 

3.5A shows a histogram of Qα values calculated for all Case I training sets.  First, the Qα 

values calculated using the PCs retained with Malinowski’s F-test have a considerably 

larger distribution, indicating that the amount of error contained in training sets is 

variable.  This variability could be due to low signal-to-noise ratios or to differences in 

users, electrodes, equipment, or other experimental variables.  Second, the Qα values 

calculated using the 99.5% cumulative variance method were shifted to lower threshold  
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Figure 3.5.  Histograms of Qα values of A) Case I and B) Case II training sets.  
White and black represent the rank determined by the 99.5% cumulative variance 
method and Malinowski’s F-test, respectively.  C) Histogram of Qα values of Case III 

training sets. 
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values because more PCs were retained than necessary.  Retaining more primary PCs 

would decrease the amount of variance contained in the secondary PCs.  This difference 

would render a value of Qα that would be artificially lower than it rightfully should be, 

which may lead to possibly rejecting an otherwise valid PCR model. 

Figure 3.5B shows a histogram of Qα values for all Case II training sets.  The Qα 

values calculated using the PCs retained with Malinowski’s F-test were lower than those 

calculated using the PCs retained with the 99.5% cumulative variance method.  The 

distribution of Qα values calculated using the PCs retained with Malinowski’s F-test was 

also smaller.  Retaining too few primary PCs with the 99.5% cumulative variance method 

would leave more variance in the secondary PCs which would render a value of Qα that 

would be artificially higher than it should be, possibly leading to the use of an invalid 

PCR model for concentration prediction.  Figure 3.5C shows a bimodal distribution of Qα 

values existed for all of the Case III training sets.   

Table 3.3 gives average Qα and values for the data presented in Figure 3.5.  The 

average Qα value calculated using the PCs retained with Malinowski’s F-test was 

approximately four times larger than the average Qα value calculated using the PCs 

retained with the 99.5% cumulative variance method for Case I training sets.  For Case II 

training sets the average Qα value calculated using the PCs retained with Malinowski’s 

F-test was approximately 3.5-fold lower than the average Qα value calculated using the 

PCs retained with the 99.5% cumulative variance method.  The average Qα values from 

Case III training sets were comparable to the values calculated using the PCs retained 

with Malinowski’s F-test from Case I training sets. 

The data in Table 3.3 suggest that it was possible that the validity of PCR models 

was improperly assessed.  Since Case I training sets were the majority of training sets 

used, in most instances researchers were being overly cautions, possibly discarding 

valid PCR models.  The analysis of the much smaller number of Case II training sets  
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Table 3.3.  Comparison of average Qα values calculated using PCs retained with 
Malinowski’s F-test and the 99.5% cumulative variance (C.V.) method. 

 
F-test Qα (nA

2
) 99.5% C.V. Qα (nA

2
) 

Case I (N = 78) 220 + 22 58 + 6 

Case II (N = 12) 102 + 17 364 + 59 

   

 
Qα (nA

2
) 

Case III (N = 29) 186 + 30 



77 
 

suggests it was possible that invalid PCR models were used for concentration prediction.  

However, we do not doubt the validity of our previous results for several reasons.  First, 

Table 3.2 shows that no more than five of such training sets originated from a specific 

researcher over several years so any discrepancies were probably averaged out.  

Second, cyclic voltammograms contained in Case II training sets had such a large 

signal-to-noise ratio, any errors in concentration prediction using a proper PCR model 

should be small.  Third, it is very unlikely that all of the Case II training sets produced 

invalid PCR models in the analysis of all experiments.  Nevertheless, a statistical-based 

rank estimation approach that properly distinguishes between information and noise, 

such as Malinowski’s F-test, should be used with the residual analysis procedure to 

properly assess multivariate model validity.  Because a distribution, rather than one 

specific value, existed for Qα suggests that a universal training set does not exist for the 

analysis of in vivo FSCV data.   

Comparison in concentration prediction 

Ideally, it would be best to assess accuracy of both methods of factor selection in 

concentration prediction using in vitro training sets, however there are several important 

features of our in vitro training sets which can limit their applicability to in vivo training 

sets.  First, the shapes  of the cyclic voltammograms are more consistent in vitro than in 

vivo.  Second, the shapes of the cyclic voltammograms in vitro are not always consistent 

with the shapes of the cyclic voltammograms in vivo.  Third, the signal-to-noise ratios of 

the cyclic voltammograms in vitro are different than those in vivo and signal-to-noise 

ratios are important in determining the type of training set being analyzed (Case I, Case 

II, or Case III).  To guarantee Case I training sets one could artificially add noise through 

simulations, but the applicability of such data sets could be in question. 

In vitro training sets have an independent measure of concentration (i.e. the 

concentrations we believe we are creating during solution preparation) so accuracy of 
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the prediction can always be determined.  However, in vivo training sets have their 

concentrations determined by dividing measured peak height by sensitivity without an 

independent measure of concentration.  Unfortunately, because the ―true‖ concentration 

of species in vivo is unknown, we cannot determine whether the extra PCs retained by 

the 99.5% cumulative variance method were necessary for accurate concentration 

prediction in vivo.  Instead, all that can be inferred is if the extra PCs retained 

significantly affect the concentration data determined by PCR.  We then have to decide 

which method of factor selection allows us to build the better model, remove noise, and 

generate the best estimate for in vivo concentration data. 

Since the number of Case II training sets is small and no difference in 

concentration values would be seen for Case III training sets, this section will focus 

solely on Case I training sets.  In every instance that the 99.5% cumulative variance 

method retains more PCs in the model compared to Malinowski’s F-test, noise will be 

used in concentration prediction.  In theory, concentration information should not be 

appreciably different between both methods as long as the signal-to-noise ratio of the 

cyclic voltammograms in the training set is large.   

Figure 3.6 compares the 99.5% cumulative variance method and Malinowski’s F-

test in the calculation of both dopamine concentration data and pH changes in vivo.  

Figure 3.6A shows a color plot (Michael et al., 1998) containing stimulated dopamine 

release, basic pH shifts, and naturally occurring dopamine transients in a freely-moving 

rat.  The white dotted line represents the oxidation potential of dopamine.  A current 

versus time trace at this potential is shown in Figure 3.6B.  As previously reported, a 

current versus time trace is insufficient in measuring dopamine fluctuations because pH 

change information is also contained at this potential which convolutes the response 

(Keithley et al., 2009; Keithley et al., 2010a).  Figures 3.6C and 3.6D show dopamine 

concentration and pH change information, respectively, predicted using both the 99.5%  
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Figure 3.6.  Comparison of stimulated release predicted by PCR using primary 
PCs determined with both methods of factor selection for a representative Case I 
training set.  A) Color plot representation of in vivo cyclic voltammograms collected in a 

freely-moving rat.  The pink bar indicates a stimulation given to the animal to evoke 
dopamine release and pH changes (60 Hz, 24 pulses, 125 μA).  The white dashed line 
indicates the oxidation potential of dopamine.  B) Current versus time trace at the 
oxidation potential of dopamine showing a convoluted response with pH changes.  C) 
Dopamine concentration predicted by PCR using the primary PCs determined by the 
99.5% cumulative variance method (blue) and Malinowski’s F-test (red).  D) pH change 

predicted by PCR using the primary PCs determined by the 99.5% cumulative variance 
method (blue) and Malinowski’s F-test (red). 
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cumulative variance method and Malinowski’s F-test.  The 99.5% cumulative variance 

method retained six PCs while Malinowski’s F-test retained two PCs.  Malinowski’s F-

test was able to predict virtually identical changes in dopamine and pH levels as the 

99.5% cumulative variance method, including dopamine transients at and below 50 nM.  

Since concentration data was unaffected, these results support the assertion made by 

Malinowski’s F-test that the extra four PCs retained by the 99.5% cumulative variance 

method span only noise. 

Figure 3.6 shows a representative stimulated release example, but more 

quantitative evidence from a larger data set was needed in the comparison of 

concentration values.  First, changes in dopamine and pH levels were predicted using 

each method of factor selection using multiple stimulated release events.  These 

stimulated release events were taken from multiple animals from user 5 in Table 3.2.  

Accordingly, these multiple stimulated release events used multiple Case I training sets 

for concentration prediction.  Next, coefficients of determination (R2) values were 

calculated comparing the results obtained with the 99.5% cumulative variance method to 

those predicted using Malinowski’s F-test from each stimulated release event for both 

dopamine and pH changes.   

Average R2 values were 0.963 + 0.010 for dopamine and 0.992 + 0.003 for pH 

change (N = 7 training sets predicting dopamine and pH changes in 18 stimulated 

release data files).  One of two possibilities exists for the average R2 value of 

approximately unity for the pH change data.  First, the extra PCs retained by the 99.5% 

cumulative variance method could be inherently unimportant during concentration 

prediction.  Second, since noise should not have large peaks that substantially deviate 

from baseline, the broad-shaped pH change information obtained from PCR could be 

less sensitive to added noise.  This second possibility suggests that dopamine cyclic 

voltammograms, which do not deviate from the baseline for approximately 3/4 of the 
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length of the voltammetric sweep, would be more sensitive to noise, especially if their 

signal-to-noise ratio is low.   

Supporting this theory, five of the eighteen stimulated release files had R2 values 

for dopamine concentrations below 0.95 while all R2 values for pH change 

concentrations were above this value.  In the five cases where R2 values were below 

0.95, the extra noise PCs retained with the 99.5% cumulative variance method led to 

different dopamine concentration information.  One possibility is that noise PCs were 

retained by the 99.5% cumulative variance method and were included in the factor 

space during model generation, leading to the calculation of a different regression 

matrix.  In addition, during concentration prediction of the unknown stimulated release 

data, cyclic voltammograms that contained noise could have had projections onto noise 

PCs and noise could have been interpreted by PCR as dopamine changes.  Training 

sets with low signal-to-noise ratios would be the most susceptible.   

Another possibility for the lower R2 values for dopamine is that Malinowski’s F-

test discarded significant information necessary for concentration prediction.  Qualitative 

evaluations of the PCs discarded by Malinowski’s F-test (similar to Figure 3.4) showed 

no consistent or significant shape distinct from noise, suggesting that the inclusion of 

noise using the 99.5% cumulative variance method could significantly change 

concentration information in some instances.  Taken together with the data in Figure 3.3, 

pH change cyclic voltammograms contained a larger amount of noise, but dopamine 

concentration data was more sensitive to noise for Case I training sets. 

We define the limit of detection (LOD) for a significant event as a concentration 

change larger than five times the standard deviation of the noise in the concentration 

versus time trace.  To provide evidence for the fact that the noise contained in the 

training set does not impact our LOD, noise levels were estimated by taking the standard 

deviations of the pre-stimulation dopamine and pH change baselines predicted using 
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both the 99.5% cumulative variance method and Malinowski’s F-test for the data used in 

the calculation of R2 values (N = 7 training sets and 18 stimulated release data files).  

While Figure 3.3 showed that Malinowski’s F-test discarded significantly more noise from 

the training set cyclic voltammograms, the choice of factor selection did not significantly 

impact noise levels for either dopamine or pH changes in the concentration versus time 

dimension (data not shown). 

We also wanted to provide evidence of how Malinowski’s F-test was able to 

predict dopamine concentration information during a behavioral experiment.  Intracranial 

self-stimulation (ICSS) is a behavioral model that mimics reward-seeking behavior in 

animals and we have extensively studied this experimental paradigm previously (Cheer 

et al., 2007; Owesson-White et al., 2008).  We have shown that extracellular dopamine 

increases following both the presentation of a cue associated with lever presentation and 

immediately after the stimulation is given (Owesson-White et al., 2008).  

Figure 3.7 shows how the 99.5% cumulative variance method and Malinowski’s 

F-test predicted concentrations during an ICSS experiment where the time between 

trials was allowed to vary (Owesson-White et al., 2008).  Each trace represents an 

average + SEM of thirty-nine trials.  Malinowski’s F-test and the 99.5% cumulative 

variance method estimated the rank to be two and four, respectively.  The concentration 

values predicted by Malinowski’s F-test were identical within error to those predicted by 

the 99.5% cumulative variance method, including the approximately 30 nM cue-evoked 

release.  Since the training set for this experiment was classified as a Case I training set 

and the results were identical for both methods, the extra PCs retained by the 

cumulative variance method were, in fact, noise.   

A calibration set must contain all expected components or the concentration 

values predicted with PCR may be significantly different (Kramer, 1998d).  The black 

trace in Figure 3.7 shows this effect when pH change was removed from the training set.   
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Figure 3.7.  Dopamine release predicted by PCR during an ICSS experiment using 
primary PCs determined with both methods of factor selection for a Case I training 
set.  Time 0 s represents cue presentation and the pink bar represents the stimulation.  

The blue and red traces are average (error bars representing SEM) dopamine 
concentrations predicted using the primary PCs from the 99.5% cumulative variance 
method (rank = 4) and Malinowski’s F-test (rank = 2), respectively.  The black trace is an 
average dopamine concentration predicted using Malinowski’s F-test without pH in the 

training set.  The green bar represents a significant difference in concentrations 
predicted when pH was excluded from the training set (one-way ANOVA, p < 0.05). 
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There was no significant difference in dopamine concentrations during either the cue or 

stimulation.  However, dopamine concentrations were significantly underestimated (P < 

0.05, one-way ANOVA) after the stimulation, when basic pH changes occur because 

basic pH change cyclic voltammograms resemble ―anti-dopamine‖ in a dopamine factor 

space. 

Our residual analysis protocol should notify the user that a specified training set 

does not contain all significant sources of variation in the unknown data set, however it is 

not perfect.  One limitation to residual analysis is that if a large amount of noise is 

present in the cyclic voltammograms of the training set, Qα would be very large and may 

be unable to inform a user that a training set is invalid.  This was the case for the black 

trace in Figure 3.7.  All of the Qt values fell below Qα during concentration prediction 

indicating a proper model was constructed.  During these instances seemingly 

insignificant sources of variance present in the unknown data set can cause an error in 

the prediction of concentration changes.  Therefore all expected components, no matter 

how small in amplitude, should be included in the training set to eliminate this type of 

error from occurring during the validation step.  Furthermore, visualizing a residual color 

plot should aid in determining if other analytes are present, even though residuals are 

not always directly interpretable (Keithley et al., 2009; Keithley et al., 2010a).  

 

Conclusions 

Here we have shown that Malinowski’s F-test offered a more accurate, statistical-

based approach for the removal of noise from an in vivo FSCV training set.  The 

literature suggested it was possible that the dimensions of our training sets may limit the 

usage of Malinowski’s F-test (Faber et al., 1994), but this result was unsubstantiated in 

this work.  Visualizing the discarded PCs in terms of the original data offers an easily 
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interpretable alternative to looking at complicated loading plots or abstract vector 

transformations of PCs in conventional PCA. 

Malinowski’s F-test improved the overall consistency in the shapes of the 

effective analyte cyclic voltammograms within a particular training set.  Malinowski’s F-

test was able to remove noise even though its underlying distribution was unknown and 

the data was already filtered and smoothed before rank estimation.  The 99.5% 

cumulative variance method deteriorated the quality of training sets with large signal-to-

noise ratios by discarding potentially important voltammetric information.   Interestingly, 

pH change contributed the majority of error of training sets while dopamine 

concentrations were more sensitive to error present.  Neuromodulator concentration 

values were not significantly affected for either stimulated release files or an ICCS 

experiment in most instances using Malinowski’s F-test for factor selection, except when 

the error PCs retained by the 99.5% cumulative variance method influenced the factor 

space such that noise from the unknown data set was interpreted as dopamine.  

Training sets with low signal-to-noise ratios were more susceptible to this type of error. 

The specific value of rank for a particular training set was irrelevant because it 

varied with signal-to-noise ratio, no matter whether the 99.5% cumulative variance 

method or Malinowski’s F-test was used for factor selection.  Even though the number of 

PCs retained varied depending on the Case, the distributions of the Qα values calculated 

using Malinowski’s F-test from all three Cases were similar.  The average Qα value for 

Case II training sets was significantly lower than the other two Cases, but this could be 

due to a low number of training sets in the distribution. 

The similar overall distributions of Qα values give new insights into Malinowski’s 

F-test and the residual analysis validation protocol.  Even though the signal-to-noise 

ratios of the training set cyclic voltammograms varied, on average Malinowski’s F-test 

was able to remove the similar amounts of noise from all training sets.  The residual 
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analysis validation protocol is an excellent measure of quality control and its usage can 

be improved with using Malinowski’s F-test as a method of rank estimation, even if 

training sets are heterogeneous.  As long as signal-to-noise ratios of training set spectra 

are moderate (>10, (Malinowski, 2004)) Malinowski’s F-test is robust enough to analyze 

in vivo data from multiple laboratories with varying signal-to-noise ratios and obtain a 

comparable standard for validation of multivariate calibration models. 
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CHAPTER IV 

ASSESSING PRINCIPAL COMPONENT REGRESSION WITH RESIDUAL ANALYSIS 

IN THE DETECTION OF NEUROMODULATORS 

 

Abstract 

Principal component regression with residual analysis is routinely used to predict 

neuromodulator concentrations from in vivo fast-scan cyclic voltammetry measurements.  

This combined approach suffers from a lack of a proper validation protocol and includes 

no procedure to assess the overall quality of the calibration standards, both of which can 

lead to erroneous concentration prediction.  Here, we evaluate several methods that can 

be used to dramatically improve multivariate concentration determination.  First, 

separate analyses of smaller increments of a single continuous measurement could not 

be concatenated without substantial error in the predicted neuromodulator 

concentrations due to electrode drift, even though the residual analysis procedure 

suggested the concentrations were predicted properly.  This work also presents the first 

direct interpretation of a residual color plot and demonstrated how it can be used to 

identify the specific potentials that contribute to the error quantified in the residual 

analysis procedure.  A cyclic voltammetric representation of the calculated regression 

vector is shown to be a valuable tool in determining whether or not the calculated 

multivariate model is chemically appropriate.  Finally, the use of Cook’s distance 

successfully identified outliers contained within in vivo fast-scan cyclic voltammetry 

training sets.  Taken together, these tools allow for the construction of more robust, 
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precise, and accurate multivariate calibration models and significantly improve the 

validity of predicted neuromodulator concentration data. 

 

Introduction 

Fast-scan cyclic voltammetry (FSCV) is an electroanalytical technique used to 

measure real time neuromodulator signaling dynamics in vivo of electroactive 

biomolecules including catecholamines (Heien et al., 2003b).  FSCV used with carbon-

fiber microelectrodes offers several advantages including sub-second temporal 

resolution, excellent sensitivity, micrometer spatial resolution, and minimal damage in 

vivo (Robinson and Wightman, 2007; Jaquins-Gerstl and Michael, 2009).  FSCV is also 

one of the most selective electrochemical approaches because FSCV is a multivariate 

technique.  The shape of the characteristic cyclic voltammogram for most 

neuromodulators is unique and can be used as a fingerprint identifier for the species 

being measured (Phillips and Wightman, 2003; Heien et al., 2004b). 

Principal component regression (PCR) is a chemometric technique that 

combines principal component analysis with inverse least-squares regression (Kramer, 

1998b; Keithley et al., 2009; Keithley et al., 2010a).  In PCR, a training set containing 

reference spectra at known concentrations is assembled.  Abstract representations of 

the training set spectra called principal components (PCs) are calculated.  PCs that 

describe relevant information necessary for concentration prediction are retained and 

PCs that describe noise are discarded.  The projection of the training set spectra onto 

the relevant PCs (called scores) are calibrated to the reference concentration values 

through regression analysis.  Finally, concentration values of unknown spectra are 

predicted by calculating their relevant scores and using the calibration determined from 

the training set.  Incorporation of PCR into the analysis of in vivo FSCV measurements 

dramatically improved neuromodulator concentration determination of analytes with 
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overlapping cyclic voltammograms in single cells, in brain slices, and in awake behaving 

rats (Heien et al., 2004b; Heien et al., 2005; Wightman et al., 2007b; Keithley et al., 

2009; Keithley et al., 2010b; Keithley et al., 2010a). 

The applicability of all calibration models to the unknown data sets being 

predicted should be properly characterized before concentration prediction of unknown 

samples (Daszykowski and Walczak, 2006).  A residual analysis procedure developed 

by Jackson and Mudholkar (Jackson and Mudholkar, 1979) has been incorporated into 

the PCR analysis of in vivo FSCV data to address this concern (Heien et al., 2005; 

Keithley et al., 2009; Keithley et al., 2010a).  If the extraneous variance in the unknown 

measurement (denoted as Q) is greater than a calculated tolerance level (denoted as 

Qα) the multivariate calibration is insufficient to predict neuromodulator concentration 

values in the unknown measurement.  However, this procedure is not perfect and has 

been shown to fail (Keithley et al., 2010b). 

The accuracy of multivariate calibration models should also be verified before 

concentration prediction and is addressed in a process called validation (Kramer, 1998b; 

Daszykowski and Walczak, 2006).  If separate validation standards are not available, the 

training set can be used as the validation set in a method called cross-validation 

(Kramer, 1998b).  One severe disadvantage to the current PCR analysis of in vivo FSCV 

data is that there is no independent method to calculate the ―true‖ concentration of the 

species being measured.  The reference concentration values of in vivo training sets are 

determined empirically by dividing the measured peak current by an in vitro calibration 

factor so any validation procedure may not be of much use.    

The goal of this work was to improve the PCR prediction of neuromodulator 

concentrations detected by FSCV in vivo.  PCR prediction of in vivo FSCV data was 

previously limited to 90 seconds because the presence of electrode drift caused Q to 

cross the Qα tolerance level (Heien et al., 2005).  One way to circumvent this problem 
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would be to break up a long continuous measurement into smaller increments, perform 

PCR with residual analysis on each increment, and concatenate the results into one 

concentration trace for each analyte.  However, this approach has not been evaluated.  

In addition, other diagnostic tools are applied here to characterize the overall multivariate 

calibration model.  As suggested in the literature (Weisberg, 1983), these diagnostics 

should be simple, graphical, and give specific guidance of how to improve the calibration 

methodology.  We describe the first interpretation of a residual color plot, qualitatively 

evaluate an estimation of pure analyte cyclic voltammograms determined from the PCR 

calibration relationship, and incorporate Cook’s distance to successfully identify and 

remove standards classified as outliers in the training set. 

 

Theory 

PCR and K generation 

Throughout the manuscript, uppercase bold letters represent matrices, lowercase 

bold letters represent vectors, and normal notation represent scalar values.  PCR 

prediction of unknown neuromodulator concentrations (Cunk) can be described according 

to 

Cunk = FVc
TAunk   (eq 4.1) 

where Aunk contains the unknown cyclic voltammograms to be predicted, Vc contains the 

relevant PCs of rank r (the superscript T represents the matrix transpose), and F 

contains the regression coefficients that relate unknown concentrations of each analyte 

to the scores of the relevant PCs (Kramer, 1998b).  The regression coefficients in F are 

calculated using the training set according to 

F = CTSAprojTS
T[AprojTSAprojTS

T]-1 (eq 4.2) 

where CTS are the training set reference concentration values and AprojTS are the relevant 

PC scores of the training set cyclic voltammograms (Kramer, 1998b).  Here we define 



95 
 

CTS as being size j x m, where j is the number of analytes and m is the number of 

training set samples.  The training set voltammetric matrix (ATS) is size w x m, where w is 

the number potential steps in the cyclic voltammetric waveform. 

Ignoring error, the relevant currents of any unknown data set can be predicted if 

pure analyte cyclic voltammograms are known according to 

Aunk = KCunk    (eq 4.3) 

where K is a matrix containing cyclic voltammograms of each analyte j in units of current 

per concentration change.  Substituting equation 1 into equation 2 shows that K (as 

defined here) is the inverse of the quantity FVC
T calculated during the PCR procedure.  

However, since the quantity FVC
T is not square, K can be calculated by taking the 

pseudoinverse of FVC
T (Hendler and Shrager, 1994).  We have previously used the 

calculation of K to compare the specific current contributions of dopamine, pH change, 

and electrode drift after an intravenous infusion of cocaine in a freely moving rat 

(Hermans et al., 2008). 

Each column of K, kj, can be thought of as a cyclic voltammetric representation 

of the regression vector for each analyte in the relevant multivariate calibration space of 

the training set.  Stated another way, each kj vector can be thought of as the PCR 

interpretation of a pure analyte cyclic voltammogram based on the training set cyclic 

voltammograms, reference concentration values, and the relevant PCs of the 

multivariate model.  Therefore, the shape of each kj vector could possibly be used as an 

overall qualitative measure to assess the validity of multivariate PCR calibration models. 

Leverage 

Several statistics exist for the evaluation and optimization of multivariate 

calibration models (ASTM International, 2000).  Leverage (hi) is a measure of 

uniqueness and describes how far away the ith sample is away from the other m - 1 

training set samples in the calibration space.  While there are multiple ways to calculate 
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hi, if singular value decomposition is used to decompose the n x m training set 

voltammetric matrix (Hendler and Shrager, 1994; Keithley et al., 2009; Keithley et al., 

2010a), then each hi value is easily calculated as the ith diagonal element of the following 

multiplication 

hi = diag(VnVn
T)   (eq 4.4) 

where Vn is the m x n subset that spans the relevant row information of the training set 

voltammetric matrix.  hi is a scalar that takes on values between 0 and 1, with samples of 

higher leverage having greater potential to influence the calculation of the regression 

vector.   A good rule of thumb in for eliminating high leverage samples is to delete those 

that have hi values higher than 2n/m or 3n/m (Marbach and Heise, 1990; ASTM 

International, 2000).  

While conservative, eliminating samples based on leverage is not always ideal.  

First, multiple outliers make the identification of truly high leverage outliers difficult 

(Zhang et al., 2003).  It is also possible that a sample with high leverage may have an 

extreme composition relative to other samples in the training set, which may occur at 

either the low or high end of a calibration.  These regions are usually of great interest to 

the user during the analysis.  Leverage does not take into account accuracy so samples 

could be eliminated based on the possibility of harm, rather than the actual error.   

Practically, in vivo FSCV training sets can be inherently high leverage.  In vivo 

FSCV training samples are generated by stimulating the freely-moving rat to elicit 

neuromodulator release of varying amplitudes.  Stimulations are given to encompass a 

wide range of responses, but do not always evenly span the calibration space.  In 

addition, only five cyclic voltammograms per analyte are traditionally incorporated into a 

training set (Keithley et al., 2009; Keithley et al., 2010b; Keithley et al., 2010a).  

Therefore, excluding samples with hi > 3n/m is not ideal in practice. 

Studentized residual 
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Another figure of merit that can be used to evaluate multivariate calibrations is 

termed studentized residual and has the notation t i.  If ei is the difference between the 

estimated and reference concentration values, t i can be calculated as 

i

i

i
hSEC

e
t




1
   (eq 4.5) 

where SEC is the standard error of the calibration (ASTM International, 2000).  Pure 

concentration prediction error cannot be used to evaluate fit because of h i.  Samples 

with high leverage tend to determine the overall multivariate calibration model, which 

would tilt the regression vector towards them, and would as such have a lower overall 

prediction error (ASTM International, 2000; Stevens, 2002)  Because studentized 

residuals should be normally distributed with common variance, a statistical test can be 

used to determine if the ith sample is a potential outlier (Marbach and Heise, 1990; 

ASTM International, 2000).  However, a significant value of ti may also sometimes be 

indicative of an imprecise estimate of the reference concentration.  Deletion of this 

sample may cause an underestimation of the PRESS statistic that is sometimes used for 

rank estimation (Marbach and Heise, 1990). 

Cook’s distance 

Cook’s distance (Cook, 1977b) (Di) combines hi and ti and is a measure of the 

effect of the ith sample on the overall multivariate calibration.  In PCR, Di is calculated as 

(without mean centering of the training set voltammetric matrix) 

i

ii
i

h

h

n

t
D




1

2

    (eq 4.6) 

where n is the number of retained PCs (Marbach and Heise, 1990).  Di is a measure of 

the distance that the regression vector moves within the calibration space if the ith 

sample is removed from the training set (Cook, 1977b; Gunst and Mason, 1980; 

Marbach and Heise, 1990).  Di takes into account the overall extent to which a sample 
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can be considered an outlier (ti) and the sensitivity of the regression vector to outliers at 

each data point [hi/(1-hi)] (Cook, 1977b).  Large values of Di indicate that the ith sample is 

highly influential in the calculation of the regression coefficients and deletion of the ith 

sample would cause a dramatic difference in their values (Cook, 1977b; Cook and 

Weisberg, 1980; Gunst and Mason, 1980; Naes, 1989).  

 Calculated Di values can be compared to the F-distribution to determine the 

extent to which the removal of the ith sample changes the calculation of the regression 

coefficients greater than a user-defined tolerance.  In PCR, the tabulated F-value used is 

F1-γ(r, m – n – 1) where γ is the significance level (Naes, 1989).  However, in this case γ 

is a descriptive significance level and does not take the familiar p-value interpretation 

(Cook, 1977a; Obenchain, 1977; Gunst and Mason, 1980).  Specifically, a Di value that 

equals F1-γ(r, m – n – 1) means that deletion of the ith sample moves the regression 

vector to the distance away corresponding to the edge of a γ confidence ellipsoid around 

the original regression vector.  Di is not distributed as F and, therefore, Di is not a true 

test statistic.  Instead, Di is an indicator of how close the regression vectors are with and 

without the ith sample (for further review see (Cook, 1977a; Obenchain, 1977; Gunst and 

Mason, 1980)).  

Di values that are greater than the tabulated F1-γ(n, m – n – 1) mean that deletion 

of the ith sample causes the regression vector to move farther than a tolerable amount in 

the relevant multivariate calibration space.  Therefore the ith sample is said to be very 

influential in calculating the regression vector (Cook and Weisberg, 1980).  Such 

samples should be removed from the training set because of their adverse influence on 

the overall regression model (Marbach and Heise, 1990).  Cook’s distance has been 

used successively with multivariate calibration to remove outliers in training sets and 

should serve as excellent assessment of the prediction model (Naes, 1989; Marbach 

and Heise, 1990; Walczak and Massart, 1995; Hawkins and Yin, 2002).  Di is more 
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powerful than either hi or ti alone because Di simultaneously reflects error of prediction 

and uniqueness of spectral information (Walczak and Massart, 1995).  Unfortunately, 

because hi is used in the calculation of Di, Di suffers from the disadvantage that multiple 

outliers may not be detected (Lawrence, 1995). 

 

Experimental 

Electrochemical and animal experimentation 

All FSCV data was collected with cylindrical, T-650 type (Thornel, Amoco 

Corporation, Greenville, SC) carbon-fiber microelectrodes.  The preparation of the 

carbon-fiber microelectrodes is described elsewhere (Kawagoe et al., 1993; Hermans et 

al., 2008).  All voltages are reported versus a Ag/AgCl reference electrode.  The 

voltammetric waveform used was a triangular excursion at 400 V/s from -0.4 V to 1.3 V 

to -0.4 V.  All data was acquired and collected as described previously (Michael et al., 

1999).  All animal experimentation was conducted on male Sprague Dawley Rats 

(Charles River Laboratory, Willmington, MA) weighing approximately 300 g in 

accordance with the University of North Carolina Institutional Animal Care and Use 

Committee.  Surgical protocols and freely-moving experimental procedures used to 

generate the data analyzed here were carried out as described elsewhere (Heien et al., 

2005; Day et al., 2007; Owesson-White et al., 2008). 

Data analysis 

All data analysis was carried out using locally written software in the MATLAB 

(Mathworks, Natick, MA) and LabVIEW (National Instruments, Austin, TX) programming 

environments.  All voltammetric data was filtered at 2 kHz.  PCR was performed as 

described previously, using singular value decomposition to decompose the training set 

voltammetric matrix (Hendler and Shrager, 1994; Keithley et al., 2009; Keithley et al., 

2010b; Keithley et al., 2010a).  Rank was estimated using Malinowski’s F-test 
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(Malinowski, 1988, 1990; Keithley et al., 2010b).  Score plots and analyte regression 

vectors were calculated from theory (Jackson, 1991a; Kramer, 1998b; Jolliffe, 2002). 

Data was taken from experiments performed using analog background 

subtraction (Hermans et al., 2008) in the nucleus accumbens to determine the effect of 

electrode drift on predicted neuromodulator concentrations.  The output was initially 

zero, with only analyte electrochemistry and electrode drift being detected.  The data 

was collected continuously, but was broken up into eleven separate consecutive 60 

second files. 

Neuromodulator concentrations were predicted both with and without electrode 

drift in the training set.  If electrode drift was to be accounted for, electrode drift training 

set cyclic voltammograms were collected at various times before and after the 

measurement.  Because the unit for quantitation of electrode drift was arbitrary, 

reference values were taken to be the negative value of the measured current at -0.3 V 

on the forward sweep.  This convention was used so electrode drift was predicted as to 

increase positively over time.  Digital background subtraction (Howell et al., 1986) was 

not performed when the data was analyzed in this way. 

When electrode drift was not accounted for, a training set was created using only 

dopamine and pH change cyclic voltammograms.  Training sets including and excluding 

electrode drift contained the same dopamine and pH change cyclic voltammograms to 

maintain consistency in neuromodulator prediction.  Each of the eleven 60 second data 

files were digitally background subtracted using an average of five cyclic 

voltammograms collected at the beginning of the data file and neuromodulator levels 

were predicted using PCR.  The resulting traces were concatenated together to create 

analyte predictions over eleven minutes, where the last concentration value of the 

previous file was taken as the baseline value for the next file being predicted. 

In vivo FSCV training sets 
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 The training sets used in this work were taken from a library of 119 in vivo 

training sets measured in freely moving rats (Keithley et al., 2010b).  The cyclic 

voltammograms were taken from stimulated neuromodulator release measured in the 

dorsal and ventral striatum but the location in the brain where the training sets were 

generated was irrelevant for the analyses.  Unless noted, training sets were used without 

modification. 

Each training set consisted of five dopamine and five pH change cyclic 

voltammograms.  The reference concentration values reported in the library were 

determined by dividing peak current by a calibration factor determined using flow 

injection analysis (Kristensen et al., 1986b) after the experiment was performed 

(Owesson-White et al., 2008).  The oxidation potential of dopamine (approximately 0.6 V 

on the positive sweep) and the C-peak of pH change (approximately -0.2 V on the 

positive sweep) (Takmakov et al., 2010a) were chosen for determining library reference 

concentrations of the training set, by convention.  In this work, the QH-peak 

(approximately 0.3 V on the positive sweep) was also used for pH change quantitation to 

compare to the values calculated with the C-peak from the library. 

 

Results and Discussion 

Proper accounting of electrode drift and failure of the residual analysis procedure 

Figure 4.1 compares in vivo dopamine and pH prediction using training sets that 

either include or exclude background drift for a continuous eleven minute measurement.  

When background drift was included in the training set, PCR predicted a minimal change 

in either dopamine (Figure 4.1A) or pH change levels (Figure 4.1B), while the electrode 

continually drifted as time progressed (Figure 4.1C).  The Q-plot was below the Qα 

threshold throughout the entire trace, verifying that the training set accounted for all 

significant variance in the measured data (Figure 4.1D).   
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Figure 4.1.  Neuromodulator prediction by PCR with and without electrode drift in 
the training set.  The carbon-fiber microelectrode was located in the nucleus 

accumbens of a freely moving rat.  A)  Dopamine concentration predicted with 
background drift in the training set.  B)  pH change predicted with background drift in the 
training set.  C)  Background change predicted by PCR.  D)  Q-plot for the data predicted 
in A) through C).  The horizontal dashed line represents Qα.  E)  Concatenated 
dopamine concentrations predicted without background drift in the training set.  F)  
Concatenated pH changes predicted without background drift in the training set.  G)  
Concatenated digital background subtracted current versus time traces at the oxidation 
potential of dopamine.  H)  Concatenated Q-plots for the data predicted in E) and F).  
The horizontal dashed line represents Qα.  The vertical dotted lines in E) through H) 
represent the start of a new 60 s data file.  I)  Digital background-subtracted cyclic 
voltammogram taken at 60 s.  J)  Score plots and regression vectors for the training set 
without background drift.  Blue squares represent the dopamine cyclic voltammograms 
and red triangles represent pH change cyclic voltammograms.  The black circle 
represents the background drift cyclic voltammogram in I) and its projections onto the 
dopamine regression vector (blue) and pH regression vector (red) are plotted. 
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Neuromodulator levels were also predicted without electrode drift by separately 

analyzing the data in 60 s increments.  Digital background subtraction was performed at 

the beginning of each increment and the resulting predicted concentration values were 

concatenated to generate continuous concentration traces.  The last concentration value 

of the previous file was taken as the baseline for the next file, assuming that the 

concentration at the end of the previous file was the same as that in the beginning of the 

next file.  PCR predicted an approximate 200 nM decrease in dopamine (Figure 4.1E) 

and a 0.3 basic pH shift (Figure 4.1F).  Figure 4.1G shows the current versus time trace 

at the oxidation potential of dopamine decreased approximately 8 nA over the course of 

eleven minutes and likely contributed to both the predicted decrease in dopamine and 

the basic pH shift.   

Interestingly, the Q-plot was below the Qα threshold for each increment, although 

values increased as time progressed during the duration of each 60 second file as 

shown in Figure 4.1H.  It was previously shown that the limiting duration of analysis of in 

vivo FSCV by PCR was determined by the magnitude of electrode drift.  The limit was 

indicated when the Q-plot crossed the Qα threshold (Heien et al., 2005).  Here, incorrect 

concentrations were predicted even though the Q-plot was below the Qα threshold 

throughout the entire trace.  These drastic predicted changes in basal dopamine and pH 

levels were unrealistic because the animal was neither performing a behavioral task, nor 

was under the effect of any pharmacological agents (including anesthesia), and the 

carbon-fiber microelectrode is known to cause minimal damage in vivo (Jaquins-Gerstl 

and Michael, 2009).  As further evidence, a digital background subtracted cyclic 

voltammogram at 60 s is shown in Figure 4.1I, which has a shape consistent with 

electrode drift, and not dopamine nor pH change (Hermans et al., 2008).   

Figure 4.1J shows how electrode drift contributes to the erroneously predicted 

neuromodulator changes.  The electrode drift cyclic voltammogram in Figure 4.1I has 
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projections onto the dopamine and pH change regression vectors which would make this 

artifact be interpreted as a combination of a decrease in dopamine and a basic pH 

change in this case.  Background drift may not always be interpreted by PCR as a 

decrease in dopamine and/or a basic pH change because the magnitude and shape of 

background drift is known to vary and depends on the state of the carbon-fiber electrode 

surface (Hermans et al., 2008).  A score plot, such as the one shown in Figure 4.1J, 

provided an excellent way to assess how electrode drift impacted neuromodulator levels 

predicted with PCR.   

One possibility to account for electrode drift is to fit and subtract a baseline to the 

predicted neuromodulator concentration traces.  Alternatively, in a multivariate sense, a 

cyclic voltammogram of electrode drift could be multiplied by a scaling factor determined 

by a baseline fit and subtracted from the entire measurement.  The obvious flaw is that 

the determination of the baseline used to fit the data would be highly subjective.  The 

change of electrode drift with time has been shown to be highly nonlinear (Hermans et 

al., 2008) so any baseline would be questionable at best and prone to bias.  Therefore, 

electrode drift should be included in the PCR training set in the analysis of long 

continuous measurements.  Rather than digitally background subtracting individual 

separate files and stitching the predicted concentrations together, an alternative analysis 

method would be to subtract background taken at the beginning of the first file from all 

other files of the continuous measurement, include electrode drift in the training set, and 

predict neuromodulator concentrations.  This would yield a data structure similar to what 

has been analyzed previously (Hermans et al., 2008). 

Transformation of the Qα value 

The residual error in the Q-plot at time t, Qt, describes the amount of residual 

error contained in a specific cyclic voltammogram.  Qt is calculated by summing the 

squared residual current in the data not included in the retained PCs of the training set.  



105 
 

Qα represents a tolerable noise level based on the discarded noise of the training set 

and is calculated independently of Qt (Keithley et al., 2009; Keithley et al., 2010a).  

Because each Qt value is calculated by summing the square residual current between 

the original data and the data described by the primary PCs at each point of the cyclic 

voltammogram, an approximate noise threshold in units of current can be calculated as 

w

Q
iTH

     (eq 4.7) 

where iTH could be either positive or negative.  The quantity iTH represents a current 

value that 1-α% of currents due to random noise would be below based on the amount 

of random noise discarded during PC selection.   

The value of iTH can give a user an approximation of tolerable noise in units that 

have physical significance, rather than being an abstract transformation representing the 

sum of squared currents.  The analysis of all 119 library training sets gave an average 

iTH value of 0.41 + 0.17 nA, but this value will vary based on the signal-to-noise ratio of 

the training set cyclic voltammograms (Keithley et al., 2010b).  An uncharacteristically 

large value of iTH would correspond to a large amount of information being discarded 

during factor selection and could alert the user that Qα is too high to be of practical use. 

Interpretation of residual color plots for the identification of deterministic error 

A residual color plot (Keithley et al., 2009; Keithley et al., 2010a) provides extra 

information to the Q-plot for assessing training set augmentation; the specific peak 

potentials causing the error can quickly be identified.  Figure 4.2A shows a 

representative color plot of stimulated neuromodulator release measured in the nucleus 

accumbens of a freely moving rat.  At the time of the stimulation (as indicated by the red 

bar) dopamine was released, followed by a basic pH change that lasted for 

approximately seven seconds.  There was also a transient increase in dopamine before 

the stimulation was given.   
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Figure 4.2.  Interpretation of a residual color plot when an unrepresentative 
training set is used for concentration prediction.  A)  Color plot representation of 

stimulated dopamine release in the nucleus accumbens of a freely moving rat.  The 
voltammetric sweep is plotted to the left of the color plot.  B)  Residual color plot after an 
unrepresentative training set was used for concentration prediction.  A) and B) share the 
time axis below B), with the red bar indicating a stimulation given to the animal (60 Hz, 
24 pulses, 125 µA).  C)  Unfolded normalized dopamine cyclic voltammograms for the 
stimulated dopamine release in A) (solid line) and a dopamine cyclic voltammogram 
from the unrepresentative training set (dashed line).  D)  Unfolded cyclic voltammogram 
representing the subtraction of the improper training set dopamine cyclic voltammogram 
from the stimulated dopamine release shown in C).  The green and blue shadings are 
shown to highlight differences at the oxidation and reduction peaks, with the color 
scheme mimicking that of the residual color plot shown in B).  E) Concentration 
prediction comparison between the proper representative and improper unrepresentative 
training sets. 
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A training set was generated by exchanging representative dopamine cyclic 

voltammograms for those taken from a different animal to illustrate how the residual 

color plot can be used to improve the multivariate calibration and to show why training 

sets generated in one animal is risky for concentration prediction in another animal.  

Both the dopamine calibration factor and the pH change cyclic voltammograms 

remained consistent.  After concentration prediction using the unrepresentative training 

set, the residual color plot was calculated and is shown in Figure 4.2B.  There was 

considerable deterministic error that was only present during the prediction of dopamine 

events.  Specifically, positive-negative current deflections at the oxidation and reduction 

peak positions were calculated. 

The origin of the residual color plot can be explained by the unfolded cyclic 

voltammograms shown in Figure 4.2C.  The unfolded cyclic voltammogram of dopamine 

taken at maximal release from Figure 4.2A is shown as the solid black trace in Figure 

4.2C and one of the dopamine cyclic voltammograms of the unrepresentative training set 

used for the prediction is shown as the dashed trace in Figure 4.2C.  There was a 

difference in peak separation (ΔEp) of approximately 130 mV between dopamine from 

the measured stimulation and the dopamine cyclic voltammograms of the training set.  

Such shifts in ΔEp can arise from differences in electron transfer kinetics or resistance 

differences between carbon-fiber microelectrodes (Wipf et al., 1988). 

Subtracting training set dopamine from stimulated dopamine release gives the 

pattern shown in Figure 4.2D that arises from the differences in ΔEp.  This difference 

shows positive-negative current deflections at the oxidation and reduction peak 

potentials apparent in the color representation (Figure 4.2B).  Ideally, the residual color 

plot should contain only pure noise.  Deterministic error will arise if the training set is not 

representative of the unknown data set either because of differences in the in the 

shapes of analyte cyclic voltammograms or because of the presence of an interfering 
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species.  Theoretically, these should cause the Q-plot to cross the Qα threshold, but this 

does not always occur as shown in Figure 4.1H.  To minimize the possibility of such 

errors, training sets should be collected within the same animal at the same location of 

the unknown measurement. 

Differences in ΔEp values occurred even though the exact same type of carbon-

fiber microelectrodes was used for all experiments.  The predicted dopamine 

concentration values differed by approximately 50 nM or 18% between the two training 

sets (Figure 4.2E), but the same general trend was measured.  Therefore, slight 

variations in peak shapes may yield qualitative information on neuromodulator changes, 

but neuromodulator quantitation will likely be inaccurate.  Therefore, the creation of a 

standard training set of in vivo cyclic voltammograms applicable to all experiments 

(Flagel et al., 2010) is risky.   Moreover, if the residual analysis procedure was to be 

used, a standardized training assumes that the noise level of all electrodes in all animals 

performing all types of behavioral tasks is constant.  It was previously hypothesized that 

the noise level of in vivo FSCV measurements was correlated to animal movement 

(Keithley et al., 2010b) so tasks that involve more motor movements would likely contain 

an overall larger noise level.  Therefore, standard training sets may also invalidate the 

proper application of the residual analysis procedure. 

The use of K as a qualitative diagnostic tool 

Another possible source of deterministic error in the residual color plot is the 

calculation of improper regression vectors.  If the calculated regression vectors were 

erroneous, the multivariate calibration space would be altered, causing errors during 

concentration prediction when analytes of interest are present.  There is a need for a 

rapid, simple diagnostic criterion that can be used to verify that the PCR model correctly 

identified the characteristic voltammetric pattern associated with each neuromodulator of 
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interest.  In a qualitative way, the kj vector provides this information as illustrated by the 

following two data sets. 

 Figures 4.3A and 4.3B shows an example of a proper training set consisting of 

five dopamine cyclic voltammograms and five pH change cyclic voltammograms.  The 

cyclic voltammograms for each species had a consistent shape and spanned the 

calibration space well with an estimated rank of two.  The calculated values of kj for 

dopamine (kDA) and pH change (kpH) are shown in Figures 4.3C and 4.3D respectively.  

These cyclic voltammetric representations are consistent with those of the training set 

and the known cyclic voltammograms of these two neuromodulators (Heien et al., 

2004b; Takmakov et al., 2010a).  The sensitivity at the peak potentials of dopamine and 

pH change were also consistent with values reported in the literature (Heien et al., 

2003b; Heien et al., 2004b; Takmakov et al., 2010a). 

 Figures 4.3E and 4.3F show an example of an improper training set with an 

estimated rank of three (the rank of in vivo FSCV training sets varies with signal-to-noise 

ratio and is not a diagnostic criterion for an invalid training set (Keithley et al., 2010b)).  

The dopamine cyclic voltammograms showed a consistent shape that spanned a wide 

concentration range.  However the 0.14 basic pH change cyclic voltammogram was 

inconsistent with the rest of the pH change cyclic voltammograms.  The pH change 

cyclic voltammogram normally has three peaks known as the C-peak at approximately -

0.2 V on the oxidative sweep, the QH-peak at approximately 0.3 V on the oxidative 

sweep, and the Q-peak at approximately -0.3 V on the reductive sweep (Takmakov et 

al., 2010a).  Using the other pH change cyclic voltammograms for comparison, the peak 

current of the C-peak for the 0.14 basic pH change was much too large for reasons that 

are not understood.  Since the C-peak was used for quantitation, the 0.14 basic pH 

change reference value was also likely incorrect. 
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Figure 4.3.  K representations of a proper and an improper training set.  A)  

Dopamine cyclic voltammograms of the proper training set.  B)  pH change cyclic 
voltammograms of the proper training set.  C)  kDA for the proper training set shown in A) 
and B).  D)  kpH for the proper training set shown in A) and B).  E)  Dopamine cyclic 
voltammograms of the improper training set.  F)  pH change cyclic voltammograms of 
the improper training set.  G) kDA for the improper training set shown in E) and F).  H) kpH 
for the improper training set shown in E) and F).  I) and J) show the recalculated kDA and 
kpH vectors, respectively, for the improper training set shown in E) and F) if the QH-peak 
is used for pH change quantitation rather than the C-peak. 
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Figures 4.3G and 4.3H show the calculated kDA and kpH vectors for the poor 

training set.  Even though the dopamine cyclic voltammograms of the poor training set 

were of good quality, the shape of kDA was distorted.  Moreover, the shape of kpH was 

even worse with only the C-peak was apparent.  The broad shape of the pH change 

cyclic voltammogram was incorporated into kDA rather than kpH, as well as most of the 

QH- and Q-peaks.  In fact, the sensitivity of dopamine at the reduction potential was a 

positive value.  PCR would generate concentration information for the species with cyclic 

voltammograms shown in Figures 4.3G and 4.3H, rather than those of the desired 

neuromodulators.  If the training set shown in Figures 4.3E and 4.3F was used for 

prediction, the resulting dopamine concentrations would likely represent a blend of 

dopamine and pH change information and the predicted pH changes would be difficult to 

interpret.  Moreover, there would be considerable deterministic error associated during 

the prediction of neuromodulator changes, which could be visualized with the residual 

color plot, similar to the one shown in Figure 4.2B.   

Since K is calculated from the inverse of FVc
T, there are three reasons that would 

cause kj vectors to deviate from ideal behavior.  First, the number of relevant PCs 

chosen during factor selection could be incorrect.  This was unlikely because factor 

selection has been previously evaluated for in vivo FSCV training sets (Keithley et al., 

2010b).  Second, the reference concentration values could be incorrect leading to 

erroneous relationships between the projections onto the regression vectors and 

predicted concentrations.  To illustrate this point, the QH-peak was used instead of the 

C-peak to determine the amplitude of the basic pH shifts from the improper training set 

in Figure 4.3F.  kDA and kpH were recalculated and are shown in Figures 4.3I and 4.3J.  

These values were consistent with the known cyclic voltammograms (Heien et al., 

2004b).  This result showed that the reference pH changes determined using the QH-
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peak were more appropriate, given the shapes of the pH change cyclic voltammograms 

of the improper training set. 

PCR assumes that the amplitude of the entire cyclic voltammogram linearly 

increases with concentration so the choice of which of the C-, QH-, or Q-peaks is used 

for quantitation should be irrelevant because their relative ratios should remain constant.  

However, the amplitude of the C-peak has been shown to vary depending on the 

extracellular environment meaning that the C-peak is more susceptible to voltammetric 

inconsistencies and overall error (Takmakov et al., 2010a).  In that work it was 

suggested that a current versus time trace taken at the C-peak was unsuitable for 

quantitation of pH changes in vitro or in vivo.  The results here provide clear evidence 

that extends this conclusion to multivariate analysis of in vivo FSCV data.  Instead, the 

QH- or Q-peak should be used to determine the value of the reference pH changes for in 

vivo FSCV training sets. 

A third possibility for improper kDA or kpH values is that inconsistent cyclic 

voltammograms could be included in the training set that drastically alter the multivariate 

calibration space.  Such samples could unduly influence the position of the regression 

vector and thus K.  While the K approach can be used as a simple, rapid, qualitative 

graphical diagnostic tool of overall model prediction, another criterion should be included 

to identify any cyclic voltammograms of the training set that act as outliers, unduly 

influencing the position of the regression vectors and the relevant calibration space. 

Identifying and removing training set outliers using Cook’s distance 

 If there is a significant change in a calibration model upon the deletion of one 

sample, the sample is likely an outlier and should not be included in the training set.  

Mathematically, if Di is larger than a tabulated F-value, that sample should be 

considered for rejection.  Originally, Cook suggested that a value of 0.1 be used for γ, 

but this selection was arbitrary (Cook, 1977b).  Using a value of 0.1 for γ determined that 
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31 out of a library of 119 training sets contained at least one poor standard.  Careful 

visual inspection of the questionable training sets determined that this was unreasonable 

(data not shown).  A γ value of 0.1 led to the calculation of tolerable distance shifts that 

were too small for the high leverage FSCV data (vide supra).  Instead, a γ value of 0.05 

was used here that yielded satisfactory results, as shown below.  

Figure 4.4 shows how Cook’s distance can be used to improve the PCR analysis 

of in vivo FSCV data.  Figures 4.4A and 4.4B show the dopamine and pH change cyclic 

voltammograms, respectively, for an improper training set.  The estimated rank of this 

training set was two.  The 0.25 µM dopamine and 0.062 basic pH change samples were 

clearly uncharacteristic of the other neuromodulator cyclic voltammograms.  The 0.25 

µM dopamine cyclic voltammogram had an extra peak at -0.2 V on the forward sweep 

and the 0.062 basic pH shift had a positive current deflection at 0.4 V on the forward 

sweep. 

kDA and kpH for this improper training set are shown in Figures 4.4C and 4.4D, 

respectively.  The inclusion of the questionable standards negatively affected the 

interpretation of pure analyte voltammograms by the PCR model, especially for pH 

change.  Figure 4.4E shows the score plot for the improper training set from Figures 

4.4A and 4.4B.  Visually, the 0.25 µM dopamine and the 0.062 basic pH shift samples 

resemble possible outliers in the relevant calibration space.  hi of the questionable 

dopamine and pH change standards were calculated to be 0.61 and 0.60 respectively, 

higher than all the other samples, indicating that these two samples had moderate 

potential to influence the multivariate calibration.  Indeed, the position of the regression 

vectors appear tilted towards these outliers and away from the other analyte standards.   

The calculated Di values for these questionable dopamine and pH standards 

were 5.49 and 5.01, respectively, which were significantly higher than the tablulated F-

value of 4.74.  The significant Di values indicate that these two samples were outliers  
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Figure 4.4.  The use of Cook’s distance to improve PCR calibration.  A) and B) 

show the dopamine and pH change cyclic voltammograms (respectively) of an improper 
training set.  C) and D) show kDA and kpH, respectively, for the improper training set 
shown in A) and B).  E)  Score plot showing both the dopamine (blue squares) and pH 
change (red triangles) cyclic voltammograms of the training set in A) and B).  The solid 
lines represent the calculated regression vecotrs for both dopamine (blue) and pH 
change (red).  The circled points represent the 0.25 µM dopamine and 0.062 basic pH 
change standards.  F)  Score plot as in E) with the 0.25 µM dopamine and 0.062 basic 
pH change standards removed.  The regression vectors without these standards were 
recalculated and are plotted.  The original regression vectors in E) are also shown as 
faded solid lines.    G) and H) show the recalculated kDA and kpH vectors, respectfully, 
after the removal of the 0.25 µM dopamine and 0.062 basic pH change standards. 
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and should not have been included in the calibration model because of their overall 

adverse impact on the regression vectors.  The regression vectors were recalculated 

with the outliers removed from this training set and are plotted in Figure 4.4F.  There 

was a dramatic shift in the position of the regression vectors for each neuromodulator.  

Without the outliers, the regression vectors more accurately spanned the remaining 

training set samples for both dopamine and pH change.   

kDA and kpH were also recalculated without the outliers and are shown in Figures 

4.4G and 4.4H, respectfully.  kDA and kpH differed in shape from the proper training set 

shown in Figure 4.3, but were consistent with the remaining neuromodulator cyclic 

voltammograms of this training set.  The shape of a pH change cyclic voltammogram 

depends on both the extracellular environment and carbon surface chemistry (Takmakov 

et al., 2010a) and has been published with varying C-/QH-/Q-peak ratios (Roitman et al., 

2004; Heien et al., 2005; Stuber et al., 2005; Hermans et al., 2008). 

Di was also used to evaluate the improper training set shown in Figures 4.3E and 

4.3F.  hi was calculated to be 0.86 for the questionable pH change cyclic voltammogram 

labeled as a 0.14 basic pH shift.  Such a large hi indicates that this sample had a large 

potential to influence the calculation of the regression vectors.  Calibrating with the pH 

change cyclic voltammograms with the C-peak gave a Di value of 6.65 and calibrating 

with the QH-peak gave a Di value of 11.42.  Since both of these values were larger than 

the tabulated F-value of 4.76, this standard was considered an outlier no matter how the 

reference pH change value was determined. 

Cook’s distance may also likely improve model selection.  Recently it was shown 

that Malinowski’s F-test improved factor selection for in vivo FSCV training sets (Keithley 

et al., 2010b).  This approach estimates rank by identifying PCs that contain statistically 

more variance than PCs that span noise.  While the ideal rank of a training set 

containing only dopamine and pH is two, many training sets had an estimated rank 
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higher than two.  One reason for a large estimated rank is that inconsistencies were 

present in the cyclic voltammograms that were significantly larger than the noise.  For 

these training sets Malinowski’s F-test could retain more PCs to span inconsistencies in 

outlier cyclic voltammograms rather than only the relevant calibration space. 

Cook’s distance was used to test this hypothesis.  Of the 119 training sets 

analyzed, 15 were identified to contain outliers based on Cook’s distance.  Interestingly, 

Malinowski’s F-test estimated the rank to be larger than two for 13 of the 15 training 

sets.  Upon removal of the identified outliers, the estimated rank decreased for 10 of 

those 13 training sets.  This result shows that the estimated rank increased for some 

training sets only to span samples that would adversely impact the overall prediction of 

the multivariate calibration model.  Therefore, Cook’s distance can be used to improve 

both the prediction ability and selection of the relevant factor space of multivariate in vivo 

FSCV calibration models. 

 

Conclusions 

This work presents several vital improvements in the multivarate prediction of 

neuromodulators detected with FSCV using PCR with residual analysis.  The presence 

of electrode drift introduced significant error in the prediction of dopamine and pH 

change for multi-minute recordings, even if the continuous data set was analyzed in 

smaller segments.  The residual color plot was shown to be effective in specifically 

describing how training sets can be augmented to be more representative of the 

unknown data to be predicted.  An approach based on the pseudoinverse of the PCR 

calibration matrix allowed for a simple, straightforward, rapid graphical way to 

qualitatively assess the validity of the multivariate prediction model.  Using this 

approach, it was determined that the C-peak of the pH cyclic voltammogram should not 

be used to determine the reference pH change values of in vivo FSCV training sets.  
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Finally, the incorporation of Cook’s distance successfully demonstrated how outliers 

could be removed from the training set before unknown concentrations are predicted.  

Overall, these methods prove to be crucial to provide more precise, accurate, and robust 

concentration prediction of in vivo FSCV data using PCR with residual analysis.  
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CHAPTER V 

HIGHER SENSITIVITY DOPAMINE MEASUREMENTS WITH FASTER-SCAN CYCLIC 

VOLTAMMETRY 

 

Abstract 

Fast-scan cyclic voltammetry with carbon-fiber microelectrodes has been 

successfully used to detect catecholamine release in vivo.  Generally, waveforms with 

anodic voltage limits of 1.0 V or 1.3 V (vs. Ag/AgCl) are used for detection.  The 1.0 V 

excursion provides good temporal resolution, but suffers from a lack of sensitivity.  The 

1.3 V excursion increases sensitivity, but also increases response time which can blur 

the detection of neurochemical events.  Here, the scan rate was increased to improve 

the sensitivity of the 1.0 V excursion while maintaining the rapid temporal response.  

However, increasing scan rate increases both the desired faradaic current response and 

the already large charging current associated with the voltage sweep.  Analog 

background subtraction was used to prevent the analog-to-digital converter from 

saturating from the high currents generated with increasing scan rate by neutralizing 

some of the charging current.  In addition, because the gain of the current-to-voltage 

converter was held constant, quantization noise did not increase.  In vitro results with the 

1.0 V waveform showed approximately four-fold increase in signal to noise ratio with 

maintenance of the desired faster response time by increasing scan rate up to 2400 V/s.  

In vivo, stable stimulated release was detected with an approximate four-fold increase in 

faradaic response.  In an attempt to create an ultra-sensitive waveform, the scan rate of 

the 1.3 V waveform was also increased, but the signal was unstable with time in vitro 
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and in vivo.  Adapting the 1.3 V triangular wave into a novel sawhorse design prevented 

signal decay and increased the faradaic response.  The use of the 1.3 V sawhorse 

waveform decreased the detection limit of dopamine with FSCV to 0.96 + 0.08 nM in 

vitro and showed improved performance in vivo.  Furthermore, the higher currents 

obtained with this waveform did not alter the firing rates of adjacent neurons.  Electron 

microscopy showed the effects of faster scan rates of all waveforms on the carbon-fiber 

surface.  The unstable loss in sensitivity with the 1.3 V cyclic excursion at faster scan 

rates was accompanied by a lack of electrochemical etching.  This result suggests the 

lack of electrochemical etching decreases dopamine adsorption and dopamine 

sensitivity is in a quasi-steady state with carbon-fiber microelectrodes scanned to 

potentials above 1.0 V. 

 

Introduction 

Fast-scan cyclic voltammetry (FSCV) with carbon-fiber microelectrodes is a 

useful technique for the in vivo detection of various electroactive species including 

catecholamines.  FSCV offers many advantages including sub-second time resolution, 

high spatial resolution, moderate selectivity, and excellent sensitivity (Robinson and 

Wightman, 2007).  These advantages have allowed users to probe neurochemical 

signaling dynamics in single cells, adrenal slices, brain slices, and in the intact brains of 

anesthetized and freely moving rats (Phillips et al., 2003; Rice and Cragg, 2004; Heien 

et al., 2005; Cheer et al., 2007; Clark et al., 2009; Fulks et al., 2010; Ge et al., 2010; 

Petrovic et al., 2010). 

Several approaches have been used to improve the signal-to-noise ratios in the 

detection of neuromodulators with FSCV including improving electrode fabrication (Rice 

and Nicholson, 1989; Strand and Venton, 2008),  signal processing (Wiedemann et al., 

1991; Cahill et al., 1996; Heien et al., 2005; Keithley et al., 2010), instrumentation 
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(Howell et al., 1986; Michael et al., 1999), and the incorporation of novel electrode 

coatings (Kawagoe and Wightman, 1994; Swamy and Venton, 2007).  Electrochemical 

pretreatment also enhances sensitivity towards catecholamines through the creation of 

adsorption sites (Gonon et al., 1980; Gonon et al., 1981; Hafizi et al., 1990; Heien et al., 

2003).  Traditional experiments employed FSCV waveforms that had an anodic potential 

limit of 1.0 V (vs. Ag/AgCl), which provided for good temporal resolution (Heien et al., 

2003).  These waveforms suffered from a lack of sensitivity so waveforms with an anodic 

limit of 1.3 V are frequently used to provide increased sensitivity in vivo (Day et al., 2007; 

Roitman et al., 2008; Gan et al., 2010).  However, the increase in catecholamine 

adsorption sites associated with higher anodic limits that improve sensitivity increases 

the response time of the carbon-fiber microelectrode (Heien et al., 2003).   

Constant potential amperometry is a useful electrochemical technique for the 

detection of neuromodulators in vivo that offers far superior temporal resolution 

compared to FSCV, typically around 50 kHz (Wightman et al., 1991; Petrovic et al., 

2010).  However, any approaches that could be used to increase the signal-to-noise 

ratio in constant potential amperometry (coatings, surface modifications, increasing 

electrode area) can also be applied to improve FSCV measurements.  Though FSCV 

measurements cannot be performed with the temporal resolution of constant potential 

amperometry, the ability to customize scan rate provides an additional parameter to 

increase the signal-to-noise ratio and is one reason submicromolar concentrations of 

neuromodulator can be detected with microelectrodes using FSCV.  Microelectrodes 

offer several advantages including reduced ohmic loss and cell time constant which 

allows scan rates to be increased without appreciable signal distortions (Michael and 

Wightman, 1996).  Scan rates in the range of 105 to 106 V/s have been used with disc 

microelectrodes to probe reaction mechanisms and study electron transfer of short lived 

species (Montenegro and Pletcher, 1986; Amatore et al., 1987; Andrieux et al., 1988b, a; 
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Wipf and Wightman, 1988).  However, at these high scan rates, classical cyclic 

voltammetry theory is no longer valid (Amatore and Lefrou, 1990) and signal distortions 

even with microelectrodes can occur (Wipf et al., 1988).   

Basic cyclic voltammetry theory predicts that peak current for diffusion-mediated 

electron transfer varies with the square root of scan rate while peak current for species 

that adsorb to the electrode surface scales proportionally with scan rate (Bard, 2001).  

Catecholamines such as dopamine strongly adsorb to the electrode surface (Baur et al., 

1988; Bath et al., 2000; Heien et al., 2003) so increasing scan rate proportionally 

increases their faradaic response.  For this reason, increasing the scan rate above the 

traditional (Heien et al., 2003) 300-400 V/s range is advantageous in the detection of 

neuromodulators and has been used previously (Pihel et al., 1994; Jackson et al., 1995; 

Hsueh et al., 1997; Bath et al., 2000; Troyer and Wightman, 2002; Hashemi et al., 2009). 

Unfortunately, charging current also increases proportionally with scan rate 

(Michael and Wightman, 1996).  Charging current overwhelms the faradaic signal at the 

small concentrations of neurotransmitters typically measured, but can be digitally 

subtracted over short time scales such that only the signal of interest is viewed (Howell 

et al., 1986).  However, the large charging current is still measured at the working 

electrode and provides numerous disadvantages.  First, if the charging current is too 

large, it can saturate the current-to-voltage converter because of its finite power supply 

and/or the analog-to-digital converter (ADC) because of its limited voltage range.  Also, 

large charging currents force lower gains to be used which increase quantization error 

and digitization noise (Cahill et al., 1996; Hermans et al., 2008).  Dynamically changing 

the gain requires either the reconfiguration of the current-to-voltage converter or the use 

of a potentiostat with an adjustable gain, both of which are impractical for experiments in 

behaving animals. 
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Recently, analog background subtraction (ABS) was developed in our lab to 

remove charging current in real time before digitization (Hermans et al., 2008).  In this 

approach, charging current is recorded and played back at the summing point of the 

current-to-voltage converter thereby nulling the output in a procedure similar to that of 

some noise-cancelling headphones.  This approach was successfully used to decrease 

quantization noise and enabled continuous FSCV measurements for up to 30 minutes.   

Here, dopamine sensitivity was increased by scanning faster than 400 V/s, but 

ABS was used to decrease the larger charging currents associated with scanning faster, 

thereby circumventing the aforementioned disadvantages.  One goal was to create a 

more sensitive 1.0 V excursion while maintaining rapid response time.  Another aim was 

to develop an ultra-sensitive 1.3 V sweep to detect even smaller dopamine signaling 

events.  

 

Experimental 

Chemicals   

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and were used 

as received.  Solutions were prepared in doubly distilled deionized water.  In vitro 

experiments were conducted in PBS buffer (10 mM NaH2PO4, 140 mM NaCl, 3 mM KCl, 

adjusted to pH 7.4 with concentrated NaOH).  Dopamine stock solutions were prepared 

in 0.1 N perchloric acid and were diluted with PBS buffer on the day of use.  Both the 

PBS buffer and dopamine solutions were N2 saturated to prevent oxidative degradation 

of dopamine over the course of the experiment. 

Electrode fabrication   

Carbon-fiber microelectrodes were fabricated as previously described (Cahill et 

al., 1996).  Briefly, T-650 carbon-fibers (Thornel, Amoco Corporation, Greenville, SC) 

were aspirated into glass capillaries (A-M Systems, Carlsborg, WA) under vacuum.  The 
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filled capillaries were then pulled with a micropipette puller (Narashige, Tokyo, Japan).  

The carbon-fibers were cut to a length of 50-75 µm with a scalpel and the aid of a light 

microscope (Thermo Fisher Scientific, Waltham, MA).  Except for etching experiments, 

electrodes were backfilled with an electrolyte solution (4 M CH3COOK and 150 mM KCl) 

and a stainless steel wire was inserted to make electrical contact.  A multibarrel carbon-

fiber microelectrode capable of performing iontophoresis was used for the combined 

electrochemistry/electrophysiology experiment, whose construction is described 

elsewhere (Herr et al., 2008; Herr et al., 2010).  All electrodes were soaked in 

isopropanol purified with Norit A activated carbon for at least 20 minutes before use to 

remove any surface impurities (Bath et al., 2000). 

Data acquisition   

All data was acquired using locally constructed hardware (Carolina Chemistry 

Electronics Facility) and software in the LabVIEW programming environment (National 

Instruments, Austin, TX) as described previously (Michael et al., 1999; Hermans et al., 

2008).  The voltammetric waveform was generated and the data was acquired using a 

PCI-6052E DAC/ADC card (16 bit, National Instruments).  A PCI 6711 card was used for 

synchronization and flow injection analysis control.  A PCI 6040E card was used for 

electrophysiology recordings.  Typically, voltammetric waveforms are also low-pass 

filtered at 2 kHz to remove digitization noise (Heien et al., 2003; Takmakov et al., 

2010b).  However, this filter is unsuitable for the use of faster scan rates and was 

removed.  For combined electrochemistry and electrophysiology experiments, a locally 

constructed headstage was used that incorporated a solid-state relay that switched 

between a current-to-voltage converter capable of performing ABS for voltammetric 

scans and a voltage follower for unit recordings.  Unit recordings were amplified (x 

1000), band-pass filtered (300 Hz – 3 kHz, Krohn Hite, Brockton, MA), and then digitized 

(Neurosurgery WorkStation, Plexon Inc., Dallas, TX).   
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Electrochemical experiments 

Several voltage excursions at varying scan rates were used in this work.  First, a 

triangular cyclic sweep from -0.4 V to 1.0 V back to -0.4 V (henceforth referred to as the 

―1.0 V waveform‖) was used at scan rates varying from 400 V/s to 2400 V/s.  Second, a 

triangular cyclic sweep from -0.4 V to 1.3 V back to -0.4 V (henceforth referred to as the 

―1.3 V cyclic waveform‖) was used at scan rates of 400 V/s and 2400 V/s.  Finally, a 

voltage excursion was constructed in piecemeal fashion by ramping from -0.4 V to 1.3 V 

at 2400 V/s, holding at 1.3 V for 0.55 ms, and ramping back to -0.4 V at 2400 V/s.  The 

resulting waveform shape resembled a sawhorse pattern (henceforth referred to as the 

―1.3 V sawhorse waveform‖, discussed vide infra).   

The number of points in the voltammetric excursions was kept constant to 

maintain the same sampling rate.  The 1.0 V waveform at 400 V/s (7 ms duration) was 

acquired with 1000 points giving a sampling rate of 143 kHz.  Increasing the scan rate to 

800 V/s, 1200 V/s, 1600 V/s, 2000 V/s, and 2400 V/s reduced the number of points in 

the voltammetric sweep to 500, 333, 250, 200, and 168, respectively.  The 1.3 V cyclic 

excursion at 400 V/s (8.5 ms duration) was acquired with 1000 points giving a sampling 

rate of 118 kHz.  To maintain the same sampling rate, the 1.3 V cyclic excursion at 2400 

V/s was acquired with 168 points and the 1.3 V sawhorse waveform contained 230 

points.  All waveforms used a holding voltage of -0.4 V between voltammetric sweeps. 

All experiments began with either the 1.0 V waveform or the 1.3 V cyclic 

waveform at 400 V/s.  Electrodes were cycled with the corresponding waveform for 15 

minutes at 60 Hz and 10 Hz for 15 minutes before use.  Afterwards, all experiments 

were conducted with a waveform application frequency of 10 Hz except the combined 

electrochemistry and electrophysiology experiment which used an application frequency 

of 5 Hz for sufficient unit recording.  A Ag/AgCl reference electrode was used for all 
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electrochemical experiments.  All experiments were performed in a grounded Faraday 

cage to reduce noise. 

Data analysis   

All analyses were conducted using locally written LabVIEW software (National 

Instruments, Austin, TX), Microsoft Excel (Redmond, WA), and MATLAB (Mathworks, 

Natick, MA).  Cell firing was analyzed using Offline Sorter (Plexon).  Statistical tests 

were performed using GraphPad Prism (GraphPad Software Inc., San Diego, CA).  

Specific statistical tests are listed in the text.  All values and traces are reported as 

averages + standard error of the mean.  For quantitation of peak currents, the data was 

denoised using only a nearest-neighbor smoothing algorithm as was done previously for 

faster scan rate experiments (Bath et al., 2000).  The effect of the time constant of the 

current-to-voltage converter was evaluated by convolution as described elsewhere (Wipf 

et al., 1988). 

Quantization noise was calculated as follows.  First, an electrode was cycled with 

the 1.0 V waveform at 400 V/s.  Next, an average of three digital background-subtracted 

cyclic voltammograms without the presence of analyte was calculated without filtering or 

smoothing.  The standard deviation of the resulting cyclic voltammogram was taken as a 

noise level.  Finally, the scan rate was increased in 400 V/s increments up to 2400 V/s 

and the procedure was repeated.   

Signal-to-noise ratios were calculated by analyzing peak current versus time 

traces.  A low frequency polynomial was used to fit a baseline to remove drift and signal 

to noise ratios were determined by dividing the maximal response by the standard 

deviation of 1 s of noise.  For the calculation of temporal responses, the data was 

denoised solely with a 4th order Bessel low-pass filter.  The frequency of the filter in Hz 

was chosen by multiplying the scan rate by five (ex:  400 V/s filtered at 2 kHz, 800 V/s 
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filtered at 4 kHz, etc.).  Response time was quantified to be the amount of time 

necessary for the peak current to rise from 0% to 90% of its maximum value. 

Flow injection analysis   

All in vitro experiments were conducted using a flow injection analysis system to 

expose carbon-fiber microelectrodes to a bolus of analyte (Kristensen et al., 1986).  The 

electrodes were placed at the output of a six-port rotary valve attached to a pneumatic 

actuator, controlled by a 12 V DC solenoid (Rheodyne, Rohnert Park, CA).  Buffer was 

pumped into the system at a flow rate of 0.5 mL/min (New Era Pump Systems, Inc., 

Wantagh, NY). 

Etching studies   

Scanning electron microscopy was used to study the effect of the applied 

waveform on the carbon-fiber microelectrode (Takmakov et al., 2010b).  Carbon-fiber 

microelectrodes were imaged before and after electrochemical etching.  Microelectrodes 

were rinsed with copious quantity of DI water to remove residual salt.  A total of 6.48 x 

106 cycles of a selected waveform was applied to a carbon-fiber microelectrode as done 

previously (Takmakov et al., 2010b) in PBS buffer, pH 7.4.  Electrical connection with the 

carbon-fiber microelectrode was made using a stainless steel wire and a silver-based 

paint (GC Electronics, Rockford, IL); backfill solution was not used to prevent 

evaporation in the instrument.  Because the duration of each voltammetric excursion 

differed, each waveform was applied at a different frequency such that all waveforms 

had 6.5 ms of holding time between sweeps.  Images were collected using FEI Quanta 

200 FEG environmental scanning electron microscope (FEI Company, Hillsboro, OR) in 

low-vacuum mode with electron beam energy of 13 kEV and at magnifications of 1.5 k, 3 

k and 10 k.  Diameters were estimated using ImageJ (Rasband, 1997-2009).  A one-way 

ANOVA with Bonferroni’s post-test was used to determine significant differences 

between groups. 
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In vivo experiments in anesthetized rats   

Male Sprague-Dawley rats (~ 350 g, Charles River, Wilmington, MA) were 

anesthetized with urethane (1.5 g/kg i.p., made in a 50% w/w solution of saline).  Rats 

were mounted in a stereotaxic frame (Narashige, Tokyo, Japan) and holes were drilled 

for the carbon-fiber microelectrode in the striatum (+1.3 A/P, +2.3 M/L, -4.0 to -7.5 D/V, 

relative to bregma), a stimulating electrode in the ventral tegmental area (-5.2 A/P, +1.0 

M/L, -7.0 to -9.0 D/V), and a reference placed contralateral to the carbon-fiber 

microelectrode.  The working and stimulating electrodes were adjusted for maximal 

dopamine release.  A bipolar stimulating electrode was used (Plastics One, Roanoke, 

VA).  Biphasic stimulations (300 µA, 60 Hz, 40 pulses) were delivered using optically 

isolated constant current stimulators (Digitimer Ltd., Letchworth, UK). 

Use of ABS for faster scan rate experiments 

Figure 5.1 shows how ABS was used for faster scan rate experiments.  First, 

charging current was recorded at 400 V/s in the absence of analyte, digitized, and fed 

into the summing point of the current to voltage converter as a voltage signal as 

described previously (Hermans et al., 2008).  Because the recorded charging current at 

400 V/s was recorded as an inverted voltage, the addition of this signal at the summing 

point of the current-to-voltage converter will initially yield a zeroed output.   Next, the 

scan rate was increased which results in a larger charging current at the working 

electrode, but because some of the current can be neutralized, the output voltage will 

not saturate the ADC.  The resulting output was then digitized and digitally background-

subtracted (Howell et al., 1986) to generate analyte cyclic voltammograms and color 

plots (Michael et al., 1998). 

Combined electrochemistry and electrophysiology 

A combined iontophoresis, ABS, and electrophysiology experiment was 

performed to study the effect of the increased charging current on local neuronal firing of 
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Figure 5.1.  ABS utilization for faster-scan cyclic voltammetry.  When the working 

electrode (WE) is scanned faster, a larger charging current is generated.  A digitized 
version of background charging current measured at 400 V/s is fed into the summing 
point of the current-to-voltage converter, neutralizing some of the measured charging 
current, preventing the analog to digital converter from reaching saturation (dotted lines). 
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medium spiny neurons in anesthetized animals.  The procedure was adapted from 

previous work (Cheer et al., 2005; Herr et al., 2008; Owesson-White et al., 2009; Herr et 

al., 2010).  To maintain consistency, the experiments were performed in anesthetized 

animals with the same coordinates previously mentioned for the reference, stimulating 

and working electrodes (vide supra).  The Ag/AgCl electrode served as the reference for 

both the electrochemical and electrophysiological experiments, as well as the return for 

the iontophoresis current. 

First, the dorsal-ventral position of the working and stimulating electrodes was 

optimized to ensure the experiments were performed in an area displaying stimulated 

dopamine release.  Next, a 200 mM L-glutamate solution was locally iontophoresed 

using a constant current source (15 nA – 35 nA, Neurophore, Harvard Apparatus, 

Holliston, MA) into the extracellular environment at the carbon-fiber microelectrode tip to 

evoke firing of medium spiny neurons in the anesthetized animal (White et al., 1995; Hu 

and White, 1997).  Units were then recorded for 10 minutes to ensure a stable baseline.  

The waveform application frequency was 5 Hz for these experiments.  The 

duration of the voltammetric scans was 20 ms, which included the voltammetric sweep 

time and amplifier settling time.  The remaining 180 ms was used for unit recording.  Cell 

firing was recorded for 60 s with the 1.3 V waveform at 400 V/s.  Next, the 1.3 V 

sawhorse waveform at 2400 V/s was applied using ABS to prevent saturation and cell 

firing was again recorded for 60 s.  Finally, the 1.3 V waveform at 400 V/s was reapplied 

and cell firing was measured for another 60 s.  The procedure was repeated for multiple 

locations within an animal, but locations were at least 300 µm apart.   

 

Results and Discussion 

Scanning faster with the 1.0 V waveform 
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The scan rate of the 1.0 V waveform was increased to improve sensitivity while 

maintaining temporal resolution.  Figure 5.2 shows the effect of increasing scan rate with 

the 1.0 V waveform.  Figure 5.2A shows a color plot representation of a 1 µM dopamine 

injection in vitro at 400 V/s.  Increasing the scan rate to 2400 V/s increased the faradaic 

response (Figure 5.2B), but there was a 190 mV shift in peak potential.  This peak shift 

at high scan rates has been reported before (Hsueh et al., 1997; Bath et al., 2000) and 

was likely due to a combination of slow kinetics of dopamine oxidation (Deakin et al., 

1986; Deakin and Wightman, 1986), an increased cell time constant, and ohmic drop 

(Wipf et al., 1989; Wightman and Wipf, 1990), both of which are larger for cylindrical 

microelectrodes (Robinson et al., 1982) compared to disc microelectrodes (Wightman 

and Wipf, 1989).  The capacitance of the glass coated portion of the carbon-fiber 

microelectrode present with longer electrode tapers may also play a role (Wipf et al., 

1989).  The time constant of the current-to-voltage converter was approximately 2.4 µs 

which negligibly distorts the measured response (Wipf et al., 1988).  Convolution with 

the system transform of a low-pass filter with such a time constant further supported this 

theory (data not shown) (Wipf et al., 1988).  While undesirable, this peak shift did not 

interfere with dopamine identification but 2400 V/s was chosen as the maximal scan rate 

to prevent oxidation from occurring past the 1.0 V switching potential.   

Figure 5.2C shows normalized peak current versus time traces for a 1 µM 

dopamine injection in vitro at various scan rates.  The rapid response time of the 1.0 V 

waveform was not significantly different between 400, 800, 1200, 1600, 2000, and 2400 

V/s (N = 5, P = 0.5113, repeated measures ANOVA).  Previous work has shown that a 

major noise source of FSCV measurements is due to the finite step size of data 

quantization (Hermans et al., 2008).  Since gain of the current-to-voltage converter 

remains unchanged while increasing scan rate in this work, the noise level should 

remain constant as long as the application of faster scan rates does not affect the  
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Figure 5.2.  Performance characteristics of the 1.0 V waveform upon increasing 
scan rate.    A)  Color plot representation of a 1 µM dopamine injection at 400 V/s.  B)  
Color plot representation of a 1 µM dopamine injection at 2400 V/s.  A) and B) share the 
same time axis.  C)  Temporal response for in vitro injections of 1 µM dopamine at 400 
V/s (black dashed line), 1200 V/s (dark grey solid line), and 2400 V/s (light grey solid 
line) for a representative electrode.  D)  Quantization electrode noise as a function of 
scan rate (N = 5).  E)  Color plot representation of stimulated dopamine release with the 
1.0 V waveform at 2400 V/s in an anesthetized rat.  The red bar indicates the duration of 
the stimulation.  A), B), and E) have the voltammetric sweep plotted to the left of the 
color plot.   F)  Current versus time trace at the oxidation potential of dopamine from the 
color plot shown in E).  G)  Baseline normalized dopamine peak current as a function of 
time for the 1.0 V waveform at 400 V/s, 2400 V/s, and back to 400 V/s in vitro (filled 
squares) and in vivo (open circles).  In vitro peak currents were measured from 1 µM 
dopamine injections (N = 5) and in vivo responses were measured from stimulated 
dopamine release (N = 5) in anesthetized rats.  Both responses were measured every 
four minutes.  H)  Ten consecutive cyclic voltammograms of stimulated dopamine 
measured in vivo at 2400 V/s (solid lines) from a representative animal.  The dotted line 
represents the cyclic voltammogram of dopamine at 400 V/s for comparison. 
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carbon-fiber microelectrode.  Figure 5.2D shows that quantization noise was 

independent of scan rate (N = 5, P = 0.5707, repeated measures ANOVA).  However, 

electrode drift increased as the scan rate was increased. 

Figures 5.2E and 5.2F show the in vivo response seen with the 1.0 V waveform 

at 2400 V/s.  Figure 5.2E shows a representative color plot of stimulated dopamine 

release.  Figure 5.2F shows the current versus time trace from Figure 5.2E taken at the 

oxidation potential of dopamine.  The measured dopamine current increased throughout 

the duration of the stimulation and uptake caused the current response to decrease after 

the stimulation ended as dopamine was removed from the extracellular space.   

Increasing scan rate from 400 V/s to 2400 V/s with the 1.0 V waveform initially 

gave a 4.8 + 0.1 fold increase in peak current in vitro that stabilized to a 4.4 + 0.1 fold 

increase after approximately 20 minutes (Figure 5.2G, filled squares, N = 5).  Dopamine 

is known to strongly adsorb to the carbon-fiber microelectrode using this waveform 

because of the negative holding potential and electrostatic effects (Bath et al., 2000; 

Heien et al., 2003; Takmakov et al., 2010b); therefore, peak current should scale 

proportionally with scan rate.  Since the amount of dopamine that is oxidized should 

remain constant, integral charge should also remain constant.  However, the broadening 

shift of the oxidation peak (Figure 5.2B) would cause peak current to be smaller than 

theory predicts to maintain the same overall peak area.   

ABS was originally used to increase signal to noise ratios of electrochemical 

measurements by decreasing quantization noise (Hermans et al., 2008).  At the highest 

digital gain tested, the overall noise level decreased approximately 60%, which would 

result in a net gain in signal to noise ratio of 2.5.  Unfortunately, ABS cannot be used in 

this manner for faster scan rate experiments because substantial current is digitized.  

Here, ABS was used to increase the signal to noise ratio for 1 µM dopamine 
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approximately 4-fold in vitro from 333 + 48 at 400 V/s to 1321 + 187 at 2400 V/s, higher 

than just decreasing quantization noise alone.  However, this value is slightly less than 

expected for the 4.4-fold increase in signal.  The addition of the background signal 

necessary for current subtraction with faster scan rate experiments likely introduces 

noise into the system.  Also, the lack of a ramp filter likely introduces greater noise at 

higher scan rates (Michael et al., 1999).  Assuming a limit of detection of three times the 

standard deviation of the noise (3σ), these signal to noise ratios correspond to limits of 

detection 9.7 + 1.3 nM at 400 V/s to 2.5 + 0.3 nM at 2400 V/s. 

In vivo, a stable 4.1 + 0.1 fold increase in oxidative peak current of stimulated 

dopamine release was detected (Figure 5.2G, open circles, N = 5).  Figure 5.2H shows 

ten consecutive cyclic voltammograms measured in vivo at 2400 V/s (solid traces), 

compared to the response seen at 400 V/s (grey dotted trace) with the 1.0 V waveform.  

The relative standard deviations of stimulated dopamine release oxidative peak currents 

at 400 V/s and 2400 V/s were 2.9 + 0.4% and 4.3 + 1.0%, respectively and were not 

significantly different (N = 5, P = 0.1958, paired t-test).  This result showed that 

dopamine release in vivo remained stable with higher scan rates with the 1.0 V 

waveform. 

Scanning faster with the 1.3 V cyclic waveform 

The scan rate of the 1.3 V cyclic waveform was increased to create an ultra-

sensitive voltage sweep.  Figure 5.3 shows the effect of increasing scan rate with the 1.3 

V cyclic waveform.  Unlike the 1.0 V waveform, the 1.3 V cyclic waveform showed an 

unstable increase in peak current both in vitro and in vivo, as shown in Figure 5.3A.  

Figure 5.3B shows consecutive in vivo cyclic voltammograms of stimulated dopamine 

release measured at 2400 V/s with the 1.3 V cyclic waveform every four minutes (grey 

solid lines).  There was again a larger than expected peak shift compared to the cyclic 

voltammogram measured at 400 V/s (grey dashed line).   
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Figure 5.3.  Performance characteristics of the 1.3 V cyclic waveform upon 
increasing scan rate.  A)  Baseline normalized dopamine peak current as a function of 

time for the 1.3 V cyclic waveform at 400 V/s, 2400 V/s, and back to 400 V/s in vitro 
(filled squares) and in vivo (open circles).  In vitro peak currents were measured from 1 
µM dopamine injections (N = 5 electrodes) and in vivo responses were measured from 
stimulated dopamine release in anesthetized rats (N = 5 rats).  Both responses were 
measured every four minutes.  B)  Ten consecutive cyclic voltammograms of stimulated 
dopamine measured in vivo at 2400 V/s (solid lines) from a representative animal.  The 
arrow indicates time progression.  The dotted line represents the cyclic voltammogram of 
dopamine at 400 V/s for comparison.  C)  Baseline normalized charge for the in vitro 
data shown in A).  D)  Temporal response for in vitro injections of 1 µM dopamine at 400 
V/s (black dashed line) and 2400 V/s (black solid line).   
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Figure 5.3A showed that increasing scan rate 6-fold increased the peak current 

7.2 + 0.1 fold in vitro.  To investigate this phenomenon, in vitro cyclic voltammograms 

were integrated to calculate charge as a function of time for the in vitro data shown in 

Figure 5.3A with the results plotted in Figure 5.3C.  Ideally, charge should stay constant 

as scan rate is increased as long as the number of moles of dopamine electrolyzed does 

not change.  Upon switching from 400 V/s to 2400 V/s with the 1.3 V cyclic waveform, 

there was an initial 53 + 3% (N = 5) increase in charge that quickly decayed over time.  

When switching back to 400 V/s, there was significantly less charge than there had been 

during the 400 V/s baseline period, but integral charge returned to baseline after 

approximately 20 minutes.   

According to theory, only an increase in electrode area and/or adsorbed species 

would result in a higher than expected peak current for adsorption-mediated electron 

transfer (Bard, 2001).  While the 1.3 V cyclic waveform is known to oxidatively etch 

carbon-fiber surfaces, it is unlikely that electrode area changed in such an erratic 

manner so quickly because the oxidative etch is mild compared to other voltammetric 

excursions which are known to fracture carbon surfaces (Takmakov et al., 2010b).  

Instead, this result suggests that the amount of dopamine adsorbed on the carbon-fiber 

microelectrode surface increased upon increasing scan rate.  In other words, surface 

chemistry rather than surface structure likely changes, as hypothesized previously 

(Hafizi et al., 1990). 

The duration of the 1.3 V cyclic waveform at 400 V/s is 8.5 ms, compared to 1.4 

ms at 2400 V/s, so some of the increased charge could be due to an increased holding 

time.  However, the duration of both waveforms are similar, compared to the application 

frequency of the voltammetric sweeps so this is unlikely.  Taking into account that 

dopamine can still adsorb during the voltage sweep before its oxidation (Bath et al., 

2000), the holding time at 2400 V/s is equivalent to an application frequency of 9.4 Hz at 
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400 V/s with the 1.3 V cyclic waveform.  Charge did not significantly change with this 

longer holding time at 400 V/s (N = 3, P = 0.9015, paired t-test) so the increase in 

charge seen at 2400 V/s with the 1.3 V cyclic waveform was due to a drastic increase in 

adsorption site availability. 

While the exact potential necessary to oxidatively etch the carbon-fiber surface 

for enhanced sensitivity is unknown, each 1.3 V cyclic sweep at 400 V/s spends 

approximately 1.5 ms above 1.0 V as shown in Figure 5.4A.  Increasing scan rate to 

2400 V/s decreases this time by 6 to approximately 250 µs (Figure 5.4B).  We previously 

hypothesized that adsorption sites are consumed with a Kolbe-like electrolysis that 

occurs at potentials above 1.0 V (Takmakov et al., 2010b).  Decreasing the amount of 

time at potentials above 1.0 V would also prevent adsorption site degradation, thereby 

increasing the number of available sites for dopamine adsorption which could explain the 

increase in measured charge.  If an oxidative etching mechanism constantly renews and 

maintains adsorption sites necessary for dopamine sensitivity, scanning faster would 

decrease the amount of time spent at potentials necessary for this process to occur.  As 

time progresses, sensitivity could decrease as adsorption sites foul, possibly due to 

irreversible adsorption of impurities or oxidative byproducts (Takmakov et al., 2010b).   

Supporting this hypothesis, Hafizi et al. described decreasing sensitivity with time 

as the anodic voltage limit of the applied waveform was switched from 1.4 V to 1.0 V 

(Hafizi et al., 1990).  Specifically, they describe a ―semi-reversible change in the 

electrode surface‖, which likely also explains the return to baseline behavior seen in 

Figure 5.3C after switching back to 400 V/s from 2400 V/s.  The authors go on to state 

that continual application of the 1.4 V waveform was necessary for maintenance of 

enhanced sensitivity with time.  While increasing scan rate decreases the time 

necessary to oxidatively etch the carbon-fiber microelectrode, it is also possible that the  
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Figure 5.4.  1.3 V excursions versus time.  The 400 V/s cyclic ramp (A), the 2400 V/s 

cyclic ramp (B), and the 2400 V/s sawhorse waveform (C).  The horizontal dotted line 
represents 1.0 V. 
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combination of ohmic loss and an increased cell time constant exacerbates this effect by 

also decreasing the applied voltage necessary for the process to occur.   

Interestingly, switching from 400 V/s to 2400 V/s also decreased the response 

time of the 1.3 V cyclic waveform by 60 + 5% (N = 5) as shown in Figure 5.3D.  This 

decreased response time occurred even though more material was adsorbed on the 

carbon-fiber microelectrode surface (Figure 5.3C).  If the amount of time spent at 

potentials above 1.0 V becomes insufficient for surface activation, the temporal response 

of the 1.3 V cyclic waveform at 2400 V/s may become similar to that seen with the 1.0 V 

waveform.  Taken together, these data show how scanning to anodic potentials higher 

than 1.0 V on carbon-fiber microelectrodes creates a quasi-steady state electrochemical 

surface and the behavior of adsorption dependent electron transfer can be extremely 

sensitive to even minor changes in electrochemical experimental parameters.   

Modification of the 1.3 V cyclic waveform for maintaining increased sensitivity   

The 1.3 V cyclic waveform was adapted in an effort to correct the unstable loss in 

sensitivity over time.  To increase the sensitivity, the scan rate was increased from 400 

V/s to 2400 V/s.  An anodic holding time was added at the switching potential between 

the anodic and cathodic voltage sweeps to create a 1.3 V sawhorse-shaped waveform 

as shown in Figure 5.4C.  For a stable response, the ideal holding time between scans 

was 0.55 ms for a total waveform length of 1.97 ms.  If the anodic holding time was less 

than 0.55 ms, the performance mimicked the response seen in Figure 5.3A.  If the 

anodic holding time was greater than 0.55 ms, the opposite trend was seen with an 

unstable increase in dopamine sensitivity (data not shown). 

Figure 5.5 shows the in vitro performance of the 1.3 V sawhorse waveform.  

Switching from the 1.3 V cyclic waveform at 400 V/s to the 1.3 V sawhorse waveform at 

2400 V/s corrected the instability measured with the 1.3 V cyclic waveform at 2400 V/s 

(Figure 5.5A, N = 5).  The application of the 1.3 V sawhorse waveform at 2400 V/s also  
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Figure 5.5.  In vitro performance of the 1.3 V sawhorse waveform.    A)  Baseline 

normalized dopamine peak current as a function of time for the 1.3 V cyclic waveform at 
400 V/s, the 1.3 V sawhorse waveform at 2400 V/s, and back to the 1.3 V cyclic 
waveform at 400 V/s in vitro.  In vitro peak currents were measured from 1 µM dopamine 
injections measured every four minutes (N = 5).  B)  Representative cyclic 
voltammograms for the 1.3 V cyclic waveform at 400 V/s (black dashed trace) and the 
1.3 V sawhorse waveform at 2400 V/s (black solid trace).  C)  Color plot representation 
of a 1 µM dopamine injection with the 1.3 V cyclic waveform at 400 V/s.  D)  Color plot 
representation of a 1 µM dopamine injection with the 1.3 V sawhorse waveform at 2400 
V/s.   Both C) and D) have the voltammetric sweep plotted to the left of the color plot.   
E)  Baseline normalized charge for the in vitro data shown in A).  F)  Temporal response 
for in vitro injections of 1 µM dopamine at 400 V/s with the 1.3 V cyclic waveform (black 
dashed line) and at 2400 V/s with the 1.3 V sawhorse waveform (black solid line). 
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significantly increased voltammetric noise by 7.9 + 1.8%, which remained elevated even 

after switching back to the 1.3 V cyclic waveform at 400 V/s (N = 5, P = 0.0015, repeated 

measures ANOVA).  In all, the signal to noise ratio for 1 µM dopamine increased from 

602 + 73 to 3322 + 311 when switching from the 1.3 V cyclic waveform at 400 V/s to the 

1.3 V sawhorse waveform at 2400 V/s, respectively.  Assuming a limit of detection of 3σ, 

these signal to noise ratios correspond to a lowering of the limits of detection from 5.3 + 

0.7 nM to 0.96 + 0.08 nM when switching from the 1.3 V cyclic waveform at 400 V/s to 

the 1.3 V sawhorse waveform at 2400 V/s, respectively. 

A representative cyclic voltammogram for 1 µM dopamine with the 1.3 V 

sawhorse waveform at 2400 V/s is shown in Figure 5.5B (solid trace) with the response 

towards dopamine at 400 V/s with the 1.3 V cyclic waveform with the same electrode is 

also shown (dashed trace) for comparison.  The increase in faradaic response is also 

shown in color plot representation in Figures 5.5C and 5.5D.  Integrating peak charge 

showed that upon switching to the 1.3 V sawhorse waveform at 2400 V/s, charge initially 

increased 39 + 2%.  However, unlike the 1.3 V cyclic waveform at 2400 V/s, the 1.3 V 

sawhorse waveform at 2400 V/s showed a stable level of integral charge throughout the 

period of waveform application.  Again, it is unlikely that electrode area would show such 

a rapid, dramatic increase during the 1.3 V sawhorse waveform at 2400 V/s, only to 

return to baseline when switching back to the 1.3 V cyclic waveform at 400 V/s.  Instead, 

it is much more likely that the application of the 1.3 V sawhorse waveform at 2400 V/s 

increased the amount of material adsorbed to the carbon-fiber microelectrode surface.  

The response time of the 1.3 V sawhorse waveform at 2400 V/s decreased by 26 + 6% 

(N = 5) as shown in Figure 5.5F, despite having more material adsorbed.  This implies 

that the 1.3 V sawhorse waveform at 2400 V/s, the 1.3 V cyclic waveforms at 400 V/s 

and 2400 V/s, and the 1.0 V waveform at all scan rates had distinct surface chemistries 

that adsorbed dopamine differently.  
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The performance of the 1.3 V sawhorse waveform at 2400 V/s in vivo is shown in 

Figure 5.6.  Representative color plot representations show that the application of the 

1.3 V sawhorse waveform at 2400 V/s increased the measured faradaic response 

without generally altering stimulated dopamine release (Figures 5.6A and 5.6B).  

Overall, there was a stable 4.3 + 0.3 increase in peak current of stimulated dopamine 

release (N = 8 locations in seven rats), similar to that seen with the 1.0 V waveform at 

2400 V/s (Figure 5.2E).  One animal showed over a 40% decrease in peak current after 

switching to the 1.3 V sawhorse waveform at 2400 V/s and these data were discarded.  

The average relative standard deviation of stimulated dopamine release peak currents 

significantly increased from 2.5 + 0.3 % with the 1.3 V cyclic waveform at 400 V/s to 5.6 

+ 1.0% with the 1.3 V sawhorse waveform at 2400 V/s (N = 8, P = 0.0468, paired t-test) 

but was still small overall and was well within the known stability of stimulated dopamine 

release over time (Ewing et al., 1983a).  Integrating peak current showed that, except for 

the stimulated release events immediately following the switches in waveforms, charge 

remained constant throughout the course of the in vivo experiment (Figure 5.6D).  It is 

possible that biomolecules foul and/or deactivate the surface(Park et al., 2005), which 

would lower both the increase in peak current and the increase in charge from that 

detected in vitro. 

Effect of increased charging current on neuronal firing  

With the exception of chronoamperometry with larger electrodes (Hefti and Felix, 

1983), previous work has shown that currents associated with electrochemical 

measurements performed with microelectrodes are too small to impact neuronal firing 

(Ewing et al., 1983b; Armstrong-James and Millar, 1984; Stamford et al., 1993; Johnson 

et al., 2008).  However, the charging currents generated at the working electrode by 

scanning faster are dramatically larger (typically between 2.5 µA to 3.5 µA for the 1.3 V 

sawhorse waveform at 2400 V/s).  Therefore, it is possible that the carbon-fiber  
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Figure 5.6.  In vivo performance of the 1.3 V sawhorse waveform in vivo in 
anesthetized rats.  A)  Color plot representation of stimulated dopamine release with 

the 1.3 V cyclic waveform at 400 V/s.  B)  Color plot representation of stimulated 
dopamine release with the 1.3 V sawhorse waveform at 2400 V/s.   Both A) and B) have 
the voltammetric sweep plotted to the left of the color plot and the time axis plotted 
below B).  The red bar indicates the duration of the stimulus.  C)  Baseline normalized 
dopamine peak current as a function of time for the 1.3 V cyclic waveform at 400 V/s, the 
1.3 V sawhorse waveform at 2400 V/s, and back to the 1.3 V cyclic waveform at 400 V/s 
in vivo (N = 8 locations in seven rats).  D)  Baseline normalized charge for the in vivo 
data shown in C).   
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microelectrode could act as a local stimulating electrode, altering neuronal firing and 

stimulated release.   

A combined electrochemistry and electrophysiology experiment (Cheer et al., 

2005; Owesson-White et al., 2009) was performed to examine if such an effect exists in 

vivo.  This approach used a device capable of switching the carbon-fiber microelectrode 

between two amplifiers:  a current-to-voltage converter capable of performing ABS for a 

faster scan rate voltammetric experiment and a voltage follower that was used to 

measure unit recordings.  To maintain consistency, the combined electrochemistry and 

electrophysiology experiment was performed in anesthetized rats.  The firing rate of 

medium spiny neurons in anesthetized animals is generally low so glutamate was locally 

delivered in vivo to evoke cell firing (White et al., 1995; Hu and White, 1997).  A 

multibarrel iontophoresis probe (Herr et al., 2008; Herr et al., 2010) was used to deliver 

glutamate to the same local area in which the charging current was generated and the 

electrophysiological recordings were made.  The 1.3 V sawhorse waveform at 2400 V/s 

generated the largest background current of any waveform used.  Therefore, if the 

charging current generated with this waveform does not impact neuronal firing, the 

charging currents of all other waveforms would not affect cell firing. 

Figure 5.7 shows the effect of increased charging current on glutamate-evoked 

cell firing (N = 21 cells in 4 rats).  The multibarrel iontophoresis probe was successfully 

able to evoke cell firing of striatal medium spiny neurons in the anesthetized animal 

while simultaneously measuring their firing pattern, as well as performing a voltammetric 

measurement.  Switching the applied waveform from the 1.3 V cyclic waveform at 400 

V/s to the 1.3 V sawhorse waveform at 2400 V/s and back to the 1.3 V cyclic waveform 

at 400 V/s did not significantly affect the average glutamate-evoked firing rate of medium 

spiny neurons in vivo (P = 0.7713, repeated measures ANOVA).  Since the 1.3 V 

sawhorse waveform at 2400 V/s had the largest charging current of any of the voltage  
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Figure 5.7.  The effect of waveform application on firing rate activity.  Average 
glutamate-evoked firing rate of medium spiny neurons as a function of time for the 1.3 V 
cyclic waveform at 400 V/s, the 1.3 V sawhorse waveform at 2400 V/s, and back to the 
1.3 V cyclic waveform at 400 V/s (N = 21 cells in 4 rats).  The dashed line represents 
standard error of the mean. 
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excursions studied, scanning faster with all other waveforms also should not affect the 

local cellular environment, as long as the overall charging current is less than 

approximately the 3.5 µA studied here. 

Surface integrity of carbon-fiber microelectrodes after waveform application   

The in vitro data presented here suggest that each voltage excursion uniquely 

affects the carbon-fiber microelectrode surface.  Recently, we have demonstrated the 

use of environmental scanning electron microscopy (ESEM) as a way to monitor etching 

that occurs upon waveform application (Takmakov et al., 2010b).  Unlike traditional 

scanning electron microscopy, the samples to be imaged do not need to be coated with 

a conductor in ESEM.  This difference allows one to image, perform electrochemistry, 

and reimage the same carbon-fiber microelectrode. 

Figure 5.8 shows the effect of each waveform on the etching of carbon-fiber 

microelectrodes.  Figure 5.8A shows representative images of carbon-fiber 

microelectrodes after the application of each waveform.  Figure 5.8B shows that the 

waveform applied significantly affects the etching rate of the carbon-fiber microelectrode 

(N = 5 each, P < 0.0001, one-way ANOVA).  Figure 5.8A-I shows a representative 

carbon-fiber microelectrode before any waveform application.  As shown previously 

(Takmakov et al., 2010b, application of the 1.0 V waveform at 400 V/s did not 

significantly etch the carbon-fiber microelectrode (Figure 5.8A-II).  Increasing the scan 

rate to 2400 V/s with the 1.0 V waveform also did not significantly etch the 

microelectrode (Figure 5.8A-III).  No difference in etching rates suggests that the 

increased current density with scanning faster at the carbon-fiber microelectrode does 

not alter its surface structure.  This result also confirms earlier observations from Figure 

5.2 regarding the stable increase in signal, maintenance of time response, and similar 

voltammetric noise levels when increasing scan rate of the 1.0 V waveform. 
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Figure 5.8.  Carbon fiber microelectrode etching as a function of the applied 
waveform.  A)  Representative ESEM images of an electrode (I) before waveform 
application, (II) after the 1.0 V waveform at 400 V/s, (III) after the 1.0 V waveform at 
2400 V/s, (IV) after the 1.3 V cyclic waveform at 400 V/s, (V) after the 1.3 V cyclic 
waveform at 2400 V/s, and (VI) after the 1.3 V sawhorse waveform at 2400 V/s.  B)  Etch 
rates for each waveform application described in A) (N = 5 electrodes each).  Only 
selected comparisons are shown for clarity (n.s. – no significant difference, ** - P < 0.01, 
*** - P < 0.001). 
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The 1.3 V cyclic waveform at 400 V/s etched the surface as shown before 

(Takmakov et al., 2010b) (Figure 5.8A-IV), but increasing the scan rate of this waveform 

to 2400 V/s significantly decreased the etch rate (Figure 5.8A-V) to a value comparable 

to that of the 1.0 V excursions.  This comparable etch rate probably contributes to the 

decreased time response and loss in sensitivity with the 1.3 V cyclic waveform at 2400 

V/s.  The decreased etch rate accompanying the diminishing dopamine sensitivity with 

the 1.3 V cyclic waveform at 2400 V/s confirms the hypothesis that the 1.3 V anodic 

potential limit creates a carbon surface that is in a quasi-steady state and is etching-

dependent.   

The 1.3 V sawhorse waveform at 2400 V/s had the largest etch rate of any 

waveform evaluated (Figure 5.8A-VI), etching significantly more than the 1.3 V cyclic 

waveform at 400 V/s and 2400 V/s.  The 1.3 V sawhorse waveform at 2400 V/s 

increased the etching done by the 1.3 V cyclic waveform at 2400 V/s and, at the same 

time, corrected the unstable loss in measured signal.  It is interesting that more etching 

was needed than the 1.3 V cyclic waveform at 400 V/s to maintain sensitivity over time.  

An increased etching rate, yet faster time response suggests that the adsorption sites 

created with the 1.3 V sawhorse waveform at 2400 V/s differ from those present with the 

1.3 V cyclic excursions.  The increase in electrode noise measured with the 1.3 V 

sawhorse waveform at 2400 V/s, that is still present upon switching back to the 1.3 V 

cyclic waveform at 400 V/s, was likely due to either a more reactive electrode etching 

process, sub-micron electrode resurfacing not visible with the ESEM, or a deterioration 

of the electrode-glass seal as more of the carbon-fiber microelectrode is etched.  Taken 

together, the in vitro responses and etching data shows that while the 1.3 V sawhorse 

waveform at 2400 V/s maintains sensitivity over time, it does not maintain the same 

surface structure and chemistry. 
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Conclusions 

This work demonstrates the use of faster than the traditional scan rates for 

enhanced in vivo sensitivity towards dopamine without increasing quantization error.  

Signal to noise ratios increased approximately 4-fold upon increasing scan rate from 400 

V/s to 2400 V/s with the 1.0 V waveform.  The temporal response and stability of 

measured dopamine release was unaffected by increasing scan rate with this waveform.  

However, increasing the scan rate from 400 V/s to 2400 V/s led to an unstable decrease 

in sensitivity in vitro and in vivo with the 1.3 V cyclic waveform.  The creation of a novel 

sawhorse waveform corrected this loss in sensitivity, but did not maintain the same 

surface chemistry as the 1.3 V cyclic waveform at 400 V/s. 

A prime advantage in focusing on increasing sensitivity is that other methods of 

noise reduction referenced in the introduction can be combined with this approach for 

even higher signal to noise ratios.  Another significant improvement will likely come from 

the incorporation of a tunable low-pass filter on the applied waveform to remove 

digitization steps (Michael et al., 1999; Heien et al., 2003).  Likewise, a filter should be 

placed on the background signal to remove noise from this additional input to the 

system, but care must be taken such that the subtraction process is time locked 

appropriately.  If more current could be subtracted, ABS can also be used in the way it 

was originally designed, lowering quantization noise and improving the overall signal to 

noise ratio 2.5-fold further.  Increasing the number of points in the applied waveform will 

also allow for better signal averaging in the current versus time dimension (Wiedemann 

et al., 1991). 

This initial characterization necessitates several future experiments.  Localized 

pH changes are also routinely measured in vivo (Heien et al., 2005; Takmakov et al., 

2010a).  The origin of pH change cyclic voltammograms is highly dependent on the state 

of the carbon surface (Runnels et al., 1999; Takmakov et al., 2010a).  Studying the 
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effect of any distortions in the shape of the pH change cyclic voltammograms could give 

extra insight into any changes that occur to specific functional groups on the carbon 

surface upon the application of either the 1.3 V cyclic waveform at 2400 V/s or the 1.3 V 

sawhorse waveform.  Also, this work could be extended to measurements in freely-

moving rats performing behavioral tasks.  Finally, norepinephrine and serotonin are 

present in low levels so their detection would be facilitated by improved sensitivity 

(Hashemi et al., 2009; Park et al., 2009). 
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