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Abstract

YI ZHANG: STATISTICAL METHODS FOR EVALUATING THE
DIAGNOSTIC ACCURACY OF INCOMPLETE MULTIPLE TESTS
(Under the direction of Donglin Zeng and Haitao Chu)

The accurate diagnosis of a molecularly-defined subtype of cancer is often a very
important step toward its effective prevention and treatment. For the diagnosis of some
subtypes of certain cancers, a gold standard with perfect sensitivity and specificity may
be unavailable. In those scenarios, the status of the tumor subtype commonly is mea-
sured by multiple imperfect diagnostic markers. In many such studies, some subjects
are only measured by a subset of diagnostic tests and the missing probabilities may
depend on the unknown disease status. In this research, we present novel statistical
methods based on an EM algorithm to evaluate incomplete multiple imperfect diagnos-
tic tests under conditional independence and conditional dependence assumptions. We
applied the proposed methods to a set of real data from the NCI Colon Cancer Family
Registry (C-CFR) on diagnosing microsatellite instability (MSI) for hereditary non-
polyposis colorectal cancer (HNPCC) to estimate diagnostic accuracy (i.e., sensitivities
and specificities) and prevalence for 11 biomarker tests. Simulations are conducted to
evaluate the small-sample performance of our methods. The advantages and limitations
of our methods are discussed. An R package was developed for easy implementation of

our methods. Finally, a proposal for future research also was presented.
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Chapter 1

Introduction and Literature Review

1.1 Diagnostic Accuracy for Binary Tests

Accurate diagnosis of a disease or classification of a subtype of a disease is often
the first step toward the treatment and prevention of the disease. A diagnostic test is
expected to contribute to a reliable diagnosis of a patient’s medical condition and aid in
the health practitioner’s development of an appropriate treatment plan. Misdiagnoses
are likely to result in mislead health practitioners’ initiating unnecessary or incorrect
treatment plans. Therefore, evaluation the diagnostic accuracy of a test is pivotal to
medical practices.

Conventional measures of diagnostic accuracy include sensitivity and specificity,
predictive values, the area under the receiver operating characteristic (ROC) curve,
and Youden’s index. These measures address different aspects of a diagnostic test,
such as its discriminative property or predictive ability. Our research considers only
binary diagnostic tests with two possible outcomes, i.e., whether a subject has a certain
disease or not. Sensitivity and specificity are basic measures of the performance of a
binary test. Sensitivity is the probability of having a positive test result when the
subject actually has the disease; specificity is the probability of having a negative test

result when the subject does not have the disease. (1-specificity) and (1-sensitivity)



are often referred to as false positive and false negative error rates associated with a
test. Neither sensitivity nor specificity is affected by the prevalence of the disease.
This crucial property makes estimates of sensitivity and specificity from one study
readily applicable to other studies in which the prevalence of the disease was different.
Nevertheless, sensitivity and specificity may be affected by the stages of the disease or
by patients’ characteristics (e.g., different densities of fat tissue). Ledley and Lusted
(1959) made some early contributions to the paradigm of diagnostic accuracy.

Ideally, the sensitivity and specificity of a new test are evaluated by comparing its
results with the true status/condition of the disease (presence or absence) in a subject,
which is the result of a test with a perfect ability to classify the disease; such a test is
referred to as a ‘gold standard’. In other words, a gold standard is an error-free reference
standard with a sensitivity of 100% and a specificity of 100%. In practice however, a
gold standard is often impossible to find, or it simply may not exist. Multiple imperfect
diagnostic tests often are used in the absence of a gold standard. These tests are either
applied simultaneously to one subject and interpreted altogether or applied sequentially
in a prespecified order. The latter is usually more cost-effective but less efficient, since
the decisions of whether to administer subsequent tests and when to administer them
depend on the results of tests that already have been conducted. The next section
introduces the common methods that are used to evaluate diagnostic accuracy in the

absence of a gold standard.

1.2 Diagnostic Accuracy Evaluation without a Gold Standard

1.2.1 Discrepant Analysis

Discrepant analysis (also known as discordant analysis or discrepant resolution)

applies a series of reference standards without statistical modeling to find the true



disease status. When two tests show discrepant results, a resolver test (often with
better diagnostic accuracy but which is costly and/or invasive) is chosen to reconcile
the discrepancy. This approach is subject to the error rate of the test used to reconcile
the discrepancy as well as the error rates in the wrongfully concordant results of the
initial tests. The resolver test is assumed to be independent of the preceding tests,
which may not be the case. Hadgu (1996, 1997, 1999) posited that discrepant analysis
cause serious bias in the estimates of diagnostic accuracy that are obtained and that

such estimates are scientifically flawed.

1.2.2 Composite Reference Standard

Alonzo et al. (1999) discussed the composite reference standard (CRS) that com-
bines the results of several imperfect reference tests to define a pseudo-gold standard
based on some predefined rule. It is assumed that a composite reference standard works
better than each single test by itself (Martin et al., 2004). The development of a CRS
depends significantly on the target diseases. Investigators may adjust the threshold
used to define a disease for the specific clinical problems encountered. A typical exam-
ple is when any of the reference test results are positive; in that case, disease status will
be labeled as present; conversely, if all test results are negative, the disease is considered
as absent. Thus, any patient with positive results for the first reference test does not
have to be retested by other reference tests. However, the simple decision rule is prone
to misclassification bias. Ideally, different tests should be targeted on the same disease
status with different error rates. It is problematic when these tests define the disease

status differently, but the decision rule treats them equally.



1.2.3 Expert Review Panel

When no reference standard is generally accepted, an expert review panel may reach
a consensus diagnosis concerning the status of a subject with respect to a specific disease
using assorted information from different sources, including symptoms/signs, physical
characteristics, medical history, clinical follow-ups, and imperfect reference tests. Test
results that are undergoing evaluation usually are not presented to the panel for review
in order to avoid the incorporation of bias that could lead to an overestimation of the
accuracy of the diagnosis. Thornbury et al. (1993) demonstrated a gold standard panel
of neurosurgeons, neurologists, and physicians experienced in technology assessment for
diagnosis of patients receiving MRI and CT for acute low-back pain. They eliminated
bias by using a diagnosis that was independent of the diagnostic test being evaluated.
Another practice is to present the results of the diagnostic test that is being evaluated to
the panel after they make a decision about the diagnosis, and then determine whether
these results would change their opinion. The Delphi method is a formal procedure that
collects and integrates the opinions of each individual panel member in an anonymous
way to avoid influence among fellow members or from a dominating member (Jones

and Hunter, 1995).

1.2.4 Latent Class Analysis (LCA)

Latent class analysis (LCA) is a group of methods that combine information from
multivariate categorical data to investigate the existence of unobserved heterogeneity
in groups or subtypes of cases. The latent variables can only be evaluated indirectly
through information collected from observable measurements, which are referred to
as manifest variables. LCA has application in many fields such as marketing/survey
research, sociology, and psychology. It gained popularity in the evaluation of the diag-

nostic accuracy of multiple tests in the absence of a gold standard. The latent variable



in this case is the unobservable, true status of the disease, whereas the manifest vari-
ables are the test results.

Estimates of the parameters of diagnostic accuracy can be derived with maximum
likelihood (ML) based methods involving iterative computation, such as expectation-
maximization (EM) algorithms (Dempster et al., 1977), Fisher scoring (Espeland and
Handelman, 1989), and the Newton-Raphson method (Qu and Hadgu, 1998). ML ap-
proaches provide a unified framework for various latent class models (LCMs), including
the Hui-Walter reference-free method (Hui and Walter, 1980), a Gaussian random ef-
fects model (Qu et al., 1996), a marginal model (Yang and Becker, 1997), a joint
model approach (Albert, 2009), a finite mixture model (Albert et al., 2004), a model
that incorporates multiple latent variables and covariates (Huang and Bandeen-Roche,
2004), a probit latent class (PLC) model with a general correlation structure (Xu and
Craig, 2009), and a Bayesian model using the Gibbs sampler algorithm to approximate
marginal posterior densities of all parameters (Joseph et al., 1995). In the absence of
a gold standard, LCMs have been well reviewed (Walter and Irwig, 1988; Goetghebeur
et al., 2000).

Under the conditional independence assumption, multiple tests applied to the same
subject are assumed to be independent conditional on his/her true disease status. In
other words, if the true disease status is misclassified by one test, the probability that it
will be misclassified by another test will not be affected. Conditional independence as-
sumption is plausible when different tests are based on different scientific/technological
grounds or when they measure different characteristics of the disease. In reality, though,
this assumption is often impractical when results from multiple tests are similar due to
some other latent effects other than disease status, e.g., similar severities/stages of the

disease, similar biological basis of the tests, similar subject-specific characteristics (e.g.,



age and gender), and similar training/experience of those who rate the test. The earli-
est work on LCA relied on the conditional independence assumption (Hui and Walter,
1980; Walter and Irwig, 1988; Rindskopf and Rindskopf, 2006). Torrance-Rynard and
Walter (1998) found that LCA under the conditional independence assumption often
handled conditional correlated tests well and produced relatively unbiased estimates of
diagnostic accuracy. However, for diseases with very low prevalence or for tests with
very low specificity, the estimates could be seriously biased with slightly correlated
tests. Many studies have shown that ignoring the correlation of misspecification errors
between tests led to biased estimates of diagnostic accuracy when the conditional in-
dependence assumption does not hold (Thibodeau, 1981; Vacek, 1985; Hui and Zhou,
1998). Most of the recently developed LCA methods relax the conditional indepen-
dence assumption (Joseph et al., 1995; Qu et al., 1996; Yang and Becker, 1997; Xu and
Craig, 2009; Albert, 2009). Albert and Dodd (2004) showed that estimates of diagnos-
tic accuracy and prevalence are sensitive to the choice of dependence structure. The
correct dependence structure between tests often is hard to specify, and estimates of
the parameters can be biased if the structure is misspecified. To better distinguish the
dependence structures between different latent classes, they strongly recommended a
large number of tests (ideally 10 or more).

One drawback of LCMs is model non-identifiability (Goodman, 1974), which occurs
due to either poor specification of the model (intrinsic non-identifiability) or certain
unexpected structures of the observed data (empirical non-identifiability). Empirical
non-identifiability usually is concerned with small sample sizes and sparse data. In-
trinsic non-identifiability occurs when the number of tests is small. Dendukuri and
Joseph (2001) described the problem of intrinsic non-identifiability from “ill-defined”
models with less than four tests, resulting in available degrees of freedom not being

large enough to handle the number of parameters to be estimated. A simple way to



get around intrinsic non-identifiability is to add a plausible restriction to the model,
e.g., setting equal sensitivities and specificities for the two tests. Bayesian methods are
particularly useful for ill-defined models. The unknown parameters are treated as ran-
dom variables with a prior distribution that incorporates pertinent information, such as
estimates from similar studies, expert’s opinions about the characteristics of the test,
and demographic data about patients or the study population. The prior distribution is
updated with new information from observed data to derive the posterior distribution
for each parameter. Then, point estimates along with the highest posterior density
(HPD) credible sets for diagnostic accuracy are obtained from the posterior distribu-
tion. The disadvantages of the ML approaches are that Bayesian approaches usually
are intensive computationally, and they are sensitive to the prior distribution that is
chosen.

Despite the popularity of LCA, it has been cautioned that estimates of diagnostic
accuracy are subject to bias if the underlying assumptions of the model cannot be
justified (Albert and Dodd, 2004; Pepe and Janes, 2007; Bertrand et al., 2005). Another
concern with LCA is that the true disease status is defined mathematically rather than
clinically, which results in scientific doubt among some clinicians about the meaning of

the resulting estimates (Pepe, 2004).

1.3 Evaluation with a Partially-Missing Gold Standard

Even when a gold standard exists, it may be too invasive and/or costly to be
applied to all study subjects. In practice, it is common that subjects who appear
to have a high risk of disease are treated with the gold standard, whereas subjects
who have lower risk of disease are not. One typical scenario that occurs with screening
studies is that subjects whose results are negative in the screening test may forgo the

more invasive/costly gold standard. Sometimes a less-desirable, imperfect reference test



(often less expensive/invasive) is feasible rather than the gold standard. This section
covers the evaluation of diagnostic accuracy when only a subset of subjects receives the

gold standard.

1.3.1 Case-Deletion Approach

The case-deletion approach excludes all subjects from analysis who were not tested
with a gold standard. This method could drastically reduce the power and cause
partial verification bias. Sensitivity tends to be overestimated, and specificity tends to
be underestimated. The direction and magnitude of the biases are affected by multiple
factors, such as the proportion of missing tests, the extent to which the true disease
status is dependent on or independent of the missing tests, and the unobserved ratio
of positive results to negative results for the missing tests. The case-deletion approach

should be avoided unless the missing proportion is very small.

1.3.2 Correction Methods

Verification bias occurs when the decision concerning the use of the gold standard
is influenced by test results or clinician/patient decisions. Correction methods apply
a mathematical correction to the biased estimates of diagnostic accuracy using mod-
els based on certain assumptions related to missing data (Baker, 1995; Zhou, 1998;
Schneeweiss, 2000; Hadgu et al., 2005; Alonzo, 2005). Conditional independence be-
tween tests and the true disease status are common assumptions for correction methods
(Begg and Greenes, 1983). Brenner (1996) reinforced the correction method with con-
sideration of correlated classification errors between tests conditional on the true disease
status. The main limitation is overcorrection. Begg and Greenes (1983) found that their
correction method underestimated sensitivity and overestimated specificity. Wacholder

et al. (1993) examined the performance of correction methods when the correlation of



classification errors between tests was misspecified and found that the bias of adjusted

estimates could be worse than the bias of unadjusted estimates.

1.3.3 Imputation Methods

Imputation methods replace missing values with substituted values, e.g., the arith-
metic means of available cases, predicted values from regression equations, observations
from subjects with similar response profiles, and observations that immediately precede
dropout in a longitudinal design (a.k.a. last observation carried forward (LOCF)).
More complex imputation models incorporate additional information, such as symp-
toms, morbidity, and the patient’s characteristics. Single imputation generates a single
replacement value for each missing observation, whereas multiple imputation (MI) re-
places each missing value with a set of plausible values that represent the uncertainty
about the true value that should be imputed. An inappropriate imputation model,
which can result from an improper assumption about a missing pattern, will lead to
biased estimates. Multiple imputation is generally preferred over single imputation be-
cause it adjusts the standard errors for missing data and is less likely to produce biased
estimates of parameter. Harel and Zhou (2007) reviewed the theory and application
of MI in a tutorial. The selection of an imputation model is subject to the missing
data assumptions. When missing not at random (MNAR) is tenable, it is difficult to
identify a suitable imputation model, and the models that are used often have question-
able validity. Harrell et al. (1996) found that imputation methods as well as correction
methods require large sample sizes to model the data. Harel and Zhou (2006) noted
that multiple imputation methods are more robust than correction methods for small

sample size.



1.3.4 Expectation-maximization Algorithm

The EM algorithm, formalized by Dempster et al. (1977), has been used in many
fields, including diagnostic medicine. The DLR paper stimulated great interest in the
use of finite mixture distributions for modeling heterogeneous data. Finite mixture or
unobserved heterogeneity models are one type of LCM that assumes that the observa-
tions of one sample arise from a mixture of two or more unobserved classes of unknown
proportions (Day, 1969). Determining ML estimates (MLEs) of mixture models with
incomplete data is simplified substantially by the EM algorithm. McLachlan and Peel
(2000) reviewed the application of finite mixture models. Dawid and Skene (1979)
first used the EM algorithm to determine MLEs of observed error rates when a gold
standard was not available, and they regarded the latent disease status as a missing
value.

The EM algorithm has an inherent advantage over other methods in that it takes into
consideration missing gold standards as well as missing imperfect diagnostic tests. To
our knowledge, there is very little literature on evaluating multiple imperfect diagnostic
tests with missing data and without a gold standard. For our case study, only a small
proportion (6.3%) of the 3,487 subjects has been tested with all 11 biomarker tests. The
latent true disease status (due to the absence of a gold standard), along with very high
proportions of missing tests, have posed statistical challenges related to the evaluation
of their diagnostic accuracy and motivated our research utilizing EM algorithm-based

approaches, which will be discussed fully in later chapters.

1.4 Outline for the Dissertation

The organization of the dissertation is as follows. In Chapter 2, we introduce a tra-

ditional latent class model based on the EM algorithm to evaluate incomplete multiple
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imperfect diagnostic tests in the absence of a gold standard under the conditional inde-
pendence assumption. We applied the proposed method to a real data set from the NCI
Colon Cancer Family Registry (C-CFR) on diagnosing MSI for hereditary nonpolyposis
colorectal cancer (HNPCC). Estimates of diagnostic accuracy, prevalence, and differ-
ential missing probabilities for the eleven biomarker tests were obtained. Simulations
also were conducted to evaluate the small-sample performance of our methods and the
advantages and limitations of our methods are discussed. In Chapter 3, we relaxed
the conditional independence assumption and extended an improved probit latent class
(PLC) model to evaluate incomplete multiple imperfect diagnostic tests under the con-
ditional dependence assumption. We applied a parameter-expanded Monte Carlo EM
(PX-MCEM) algorithm to the C-CFR data to derive point estimates of the model
parameters, and we used the bootstrap method to obtain their standard errors. The
validity of inference is demonstrated with extensive simulation studies. In Chapter 4,
we present DiagLLCA as the first R package for evaluation of multiple correlated diag-
nostic tests with abundant missing data and without a gold standard. Finally, Chapter
5 concludes with a brief summary, discussion, and recommendations for future research

work.
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Chapter 2

Conditional Independence
Assumption

2.1 Introduction

Accurate diagnosis of a disease or classification of a sub-type of a disease is often
the first step toward its treatment and prevention. Multiple imperfect biomarker tests
may be used when a gold standard test does not exist. It can be considered a missing
data issue where the gold standard (i.e. the true disease status) is always missing. A
considerable methods are developed to assess the diagnostic accuracy (usually quan-
tified by sensitivity and specificity) of “index tests” (the tests whose performance is
under evaluation) in the absence of a gold standard (Alonzo et al., 1999; Hadgu et al.,
2005; Enge et al., 2000). These methods either resort to some imperfect (non-gold) ref-
erence standards, or utilize all index tests simultaneously in a unified manner if there is
no accepted reference standard. Among them latent class analysis (LCA) methods are
popular by treating unobservable true disease status as a latent variable. The parameter
estimates of diagnostic accuracy can be derived through Bayesian approaches (Joseph
et al., 1995; Dendukuri and Joseph, 2001), or through maximum likelihood (ML) ap-

proaches involving iterative computation such as the Expectation-maximization (EM)



algorithm (Dempster et al., 1977; Dawid and Skene, 1979), Fisher scoring (Espeland
and Handelman, 1989), and Newton-Raphson method (Qu and Hadgu, 1998). The ML
approaches provide a unified framework for various latent class models (LCMs) in a
dispersed literature (Chu et al., 2009; Hui and Walter, 1980; Qu et al., 1996; Yang and
Becker, 1997; Albert et al., 2004; Albert, 2009; Huang and Bandeen-Roche, 2004; Xu
and Craig, 2009). Walter and Irwig (1988) and Goetghebeur et al. (2000) reviewed
LCMs based on ML approaches.

Heretofore the LCMs merely handle latent disease status, whereas the imperfect
tests typically have no missing value. However, missing data is ubiquitous in diag-
nostic medical settings where some subjects are only measured by a subset of tests.
A commonly reported missing data issue deals with a partially missing gold standard
(e.g. patients with negative results are more likely to skip the gold standard due to
cost/invasiveness). General methods have been established to deal with missing data
under different missing pattern assumptions (Little and Rubin, 1987). A missing data
mechanism is called missing completely at random (MCAR) if the probability of miss-
ingness does not depend on any missing or observed observations. A mechanism is said
to be missing at random (MAR) when the probability of missingness does not depend
on any missing observation conditional on some observed observations. Both MCAR
and MAR are considered “ignorable” missing data mechanism, as MCAR is a special
case of MAR. When the probability of missing depends on some missing observations
or latent disease status, it is known as a missing not at random (MNAR) mechanism
or “non-ignorable” (NI) missing data mechanism. There are various references deal-
ing with ignorable (Alonzo, 2005; Begg and Greenes, 1983; Harel and Zhou, 2007; He
and McDermott, 2012; Lin et al., 2006; Yu et al., 2010; Zhou, 1998) and non-ignorable
(Baker, 1995; Harel and Zhou, 2007; Kosinski and Barnhart, 2003b,a; Zhou, 1993) miss-

ing gold standards. When a gold standard is always present (i.e. true disease status
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always known), Poleto et al. (2011) proposed a two-stage hybrid procedure (ML in
the first stage; weighted least squares in the second stage) in estimating the diagnos-
tic accuracy of three index tests with abundant missing data under the MCAR/MAR
assumptions.

The aforementioned literature deals with two scenarios: (i) a gold standard does not
exist whereas the index tests / imperfect reference standards have no missing value; (ii)
a gold standard is available (partially or fully observed). To the best of our knowledge,
when a gold standard does not exist, there are no studies on handling missing test
results from multiple imperfect diagnostic tests to facilitate the estimation of their
diagnostic accuracy. For the Colon Cancer Family Registry (C-CFR) study that we
will consider (see Section 2), only a small proportion (6.3%) of the 3,487 subjects has
been tested for all 11 biomarkers. The latent true disease status along with very high
proportions of missing test results have created statistical challenges for evaluating the
population prevalence and the estimates of diagnostic accuracy for the 11 biomarkers.
Motivated by the C-CFR case study, we develop a LCM to handle the general case
where some subjects may only be tested by a subset of markers. It accounts for missing
data under the MAR or MNAR assumptions and unobservable latent disease status
simultaneously. Specifically, it allows for differential missing probability of each test
to depend on latent disease status under one MNAR scenario. The C-CFR study is
described in Section 2. Section 3 introduces the statistical methods. Full analysis of
the case study (Section 4) and simulation studies (Section 5) are summarized next.

Section 6 presents a brief discussion.

2.2 Colon Cancer Family Registry Study

Colorectal cancer is the fifth most common form of cancer in the United States

and the third leading cause of cancer-related death in the Western world (based on
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statistics from NCI and WHO websites). In the United States, about 15,000 new cases
of colorectal cancer are diagnosed each year (Ford and Whittemore, 2006). About two to
five percent of all colon cancer cases are attributed to hereditary nonpolyposis colorectal
cancer (HNPCC), also called Lynch Syndrome after Dr. Henry Lynch. HNPCC is
a hereditary syndrome that is caused by a mutation in genes involved in the DNA
mismatch repair pathway. People with HNPCC have a much higher risk of developing
colon cancer than the general population if they do not undergo early and regular
screening. The average age of diagnosis of cancer in patients with HNPCC is 44 years,
as compared to 64 years in people without the syndrome (Lynch and de la Chapelle,
1999; DeFrancisco and Grady, 2003).

Microsatellites are common and normal repeated sequences of DNA. Although the
length of microsatellites is highly variable from person to person, each individual has
microsatellites of set length. In cells with mutations in DNA repair genes, however,
some of these sequences accumulate errors and become longer or shorter. The appear-
ance of such long or short microsatellites in an individual’s DNA is referred to as mi-
crosatellite instability (MSI). MSI is a key factor in several cancers including colorectal,
endometrial, ovarian and gastric cancers. Cancers with MSI account for approximately
15% of all colorectal cancers and for HNPCC germline mutations (Boland et al., 1998;
Umar et al., 2004; Lynch and de la Chapelle, 1999). The diagnosis of HNPCC may
be determined if the cancer exhibits a high level of MSI. People with HNPCC have a
much higher risk of developing colon cancer than the general population if they do not
undergo early and regular screening.

Our methodology research is motivated by a real study from the NCI Colon Cancer
Family Registry (C-CFR). It is an international consortium of six centers located in
North America and Australia formed to support studies on the etiology, prevention

and clinical management of colorectal cancer (Newcomb et al., 2007). The C-CFR
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data includes diagnostic test results of eleven molecular biomarkers (BAT25, BAT26,
BAT40, BAT34C4, D10S197, D175250, D18555, D25123, D55346, ACTC and MYCL)
which are used to assess the level of MSI.

In this paper, we consider the 3,487 subjects from families with a single subject
per family. The observed missing proportions range from 7.26% for biomarker BAT26
to 81.73% for biomarker D2S123. Table 2.2 summarizes the number of subjects by
frequency of missing test results for the 11 biomarkers. Most of the subjects (93.72%)
have at least one test result missing. Specifically, the “missing” category includes the
following categories defined by the Colon CFR code book: a) quantity of DNA or
tissue not sufficient (code 13); b) not tested, reason not specified (code 12); ¢) no
amplification (code 11); d) equivocal (inconclusive, code 6); and e) normal DNA not
used in test (code 9). The high proportions of missing and latent disease status have

motivated our methodology research which we introduce in the next section.

2.3 Statistical Methods

The total number of subjects is N = 3,487 and the total number of biomarkers is
J =11. Let D; = d(d = 1,0) denote latent disease status (whether the i’* subject has
disease or not, 1=Yes, 0=No). Let 7, = Pr(D; = d) represent probability of disease/no
disease (m = Pr(D; = 1) is prevalence, my = 1 — m); Se; represent sensitivity of the
7™ biomarker; Sp; represent specificity of the j* biomarker. Let T; = (t;1,--- ,tis) be
the collection of all test results of the " subject (ti; = 1 for positive and ¢;; = 0 for
negative). Under a conditional independence assumption, the multiple test results of
T; are independent given D;. Let A; = (0;1,--,0;7) be the collection of all missing
indicators of the i*" subject, where d;; is indicating whether the subject has been tested
by the j™ biomarker (§;; = 1 for tested and &;; = 0 for not tested). Let T denote the

observed tests for subject i.
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2.3.1 Diagnostic Performance under a MAR Assumption

We first assume MAR for the missing data mechanism. The probability of observing

(T¢%, A;) can be expressed as a finite mixture of two components

P(T? A) = P(AT?™) P(T?™)

o P(iriobs)

1
= E Talid
d=0
where

Se;ijéij (1 — Se;)=ti)%i

&
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The parameters 6§ = (my,Sey, - ,Se;, Sp1,---,Sps) can be estimated by the EM
algorithm, where the complete data Y; = (7%, A, D;) ~ po(y;) = (m1hir)% (mohio) %
The complete log-likelihood is logL.(0) = S~ (dilog(mihi ) + (1 —d;)log(mohig)). Thus

the M-step is to solve the score equations

N
d, 1—d;
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where " = (ﬂ”’,seﬁ”), - ,Segn),Spgn), - ,Spgn)). The E-step computes E[d;|Y;,

f(] nMhiY

n+1 n+1 n+1
T (- )a Se; )> Sp;- )
=0 Tq  Pig

Thus we can get closed-form solutions for 7T§
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and iterate EM steps until convergence to get 6.

Because analytical evaluation of the second-order derivatives of the incomplete-
data log-likelihood logL(#) is difficult, Louis’s formula (1982) can be used to obtain
the observed information matrix of the MLE obtained via the EM algorithm. Once the
information matrix [ (é;beS, A;) is derived and inverted, the standard errors are the
square root of the diagonal elements of the inverse matrix. Refer to Appendix 1 for

more details on derivation of information matrices for Louis Formula.

2.3.2 An Extension to One MNAR Scenario

Now we consider the situation when missingness only depends on unobserved disease
status. That is, we allow the missing pattern to differentiate between diseased and
non-diseased populations. We note that under this situation, MAR no longer holds.
However, our previous method can be easily generalized to estimate diagnostic measures
under this MNAR scenario. Let r1; be the missing probability of the ' biomarker when
the subject has disease; 79; be the missing probability of the j biomarker when the

subject is disease free. The probability of observing (7%, A;) is
TObs A Z Wdhzdszd (21)
where 74 and h;q are same as before and s;; accounts for missing probabilities:
J
[Tt v
j=1

The complete data is Y; = (7%, Ai, D;) ~ po(yi) = (m1hisia) % (mohiosio) =%, Tts log-
likelihood becomes logL(y;) = S°N | (dilog(mihasin) + (1 — di)log(mohiosio)). In the

likelihood expression, s;4 can be integrated with h;4 so that h;ss;q9 become our new h;g.
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Hence estimates and 95% confidence intervals (CIs) of missing probabilities allowing for
the MNAR assumption, 71; and rg;, can be derived as (1 — Se;) and Sp; respectively.

We can further test the null hypothesis that the missingness does not depend on
the disease status. Particularly, we apply the likelihood ratio test (LRT) to test the
hypotheses Hy : r1; = ro; for j =1,---,J vs. Hy : 11j # 1y, for at least some of j =
1,--+,J. The log-likelihood under H; is l(é|T, A) = Zf\il log(mihi1sa + (1 —m1)hiosio),
i.e. the log-likelihood of observed data (incomplete without knowing D) and @ (the
estimates for m, Se;, Spj, ri; and ro; under Hy). Under Hy, the log-likelihood with
observed data is [(A|T, A) = SN | log(mihisi + (1 — 1) higs;), where 6 are the estimates

for m, Sej, Spj, and r; under H,.

2.3.3 Model checking using Kappa statistics

We adopt the Kappa agreement plot (Chu et al., 2009) as a simple graphical
method to quantitatively check the conditional dependence assumption based on the
final model. The model based Kappa statistics for any two of the 11 tests are

P11 + Pijoo — (Pij11 + Piji0)(Piji1 + Pijor) — (Pijoo + Piji0)(Pijoo + Pijor)
1 — (P11 + Pyjo)(Pijin + Pijor) — (Pyjoo + Pijio) (Pijoo + Pijor)

/ﬂj =
where for two tests ¢ and j

Py = mSeSe;+ (1 —m)(1 — Spi)(1 — Spy)
Pijio = mSei(1—Se;) + (1 —m)(1— Spi)Sp;
Py = m(l—Se;)Se; + (1 —m)Spi(1 — Spy)

-PijOO = 7T1(]_ — S@Z)(]_ — Sej) + (]_ — Wl)SpZSpJ

Plug in 7y, ge\j, §p\j, we have the estimates k;; for model based Kappa statistics.
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The Kappa agreement plot can be obtained by plotting #;; with 95% simultaneous
confidence intervals (correcting possible agreement by chance) vs. the observed Kappa
for each pair of tests. There is not enough evidence to reject the conditional indepen-
dence assumption if the model based 95% simultaneous confidence intervals contain the

observed Kappa statistics at close to the nominal rate.

2.4 Analysis of the Colon Cancer Family Registry

Applying the proposed method to the C-CFR data we obtained the point estimates
for 6, which includes m, Se;, Sp; as well as ryj,7ry; for all 11 biomarkers, and their
standard errors (SE). The 95% CIs are then obtained from point estimates and SEs. The
results for § under different missing assumptions are presented in Table 2.3. The point
estimates with 95% CIs under the MNAR assumption are almost the same with those
under the MAR assumption. The slight difference is caused by introducing columns of
1 for missing indicator of ¢;; for our method.

The estimates for missing probabilities are presented in Table 2.6. Under the MNAR
assumption, we can see that for some tests ry; and ry; are quite different while for others
they are very close. Generally ry; tends to be greater than ry; (the only exception is
for MYCL). The reason is probably that non-diseased patients are more likely to have
negative test results, and patients with negative test results are more willing to take
additional tests (hence smaller missing probabilities) to confirm they do not have the
disease. As expected, r; under the MAR assumption falls between ry; and r;.

The log-likelihood ratio statistic (LRS) is found to be —2(1(0|T, A) — I(6|T, A))=
—2 x (—21407.85 — (—21166.83))= 482.04 > x251,, where x2g5,, = 19.675 is the
95 percentile of the the x? distribution with d.f.=11. Therefore we reject the null
hypothesis and conclude that at least for some tests, the missing probabilities of

those who have colon cancer are significantly different from those who don’t have
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colon cancer. To tell whether r; and ry; are significantly different for each test j,

we calculated p-values based on Wald statistic, which is calculated as goi—%- where

Eryj.r0;

SEry; 0, = \/Varrlj + Var,,, — 2Cov;, ;- These nominal p-values can be adjusted for
multiplicity using Bonferroni correction (multiply by J = 11). The results suggest that
the MNAR assumption is more plausible than the MAR assumption for our case study.

Figure 2.1 plots the model based Kappa statistics versus observed Kappa statistics
as a graphical check for conditional independence assumption. The model based Kappa
statistics in Figure 2.2(a) are derived from diagnostic accuracy estimates under the
MAR assumption, and the model based Kappa statistics in Figure 2.2(b) are from
the MNAR assumption. Not surprisingly, these two figures look similar due to the
resemblance of diagnostic accuracy estimates under the two assumptions. In both
figures, all of the 95% simultaneous confidence intervals of model-based Kappa contain
the observed Kappa statistics. Hence these figures fail to reject the null hypothesis of

conditional independence assumption.

2.5 Simulation Studies

To further investigate the performance of the proposed methods, 10000 simulations
were run. For each simulation, we generate N = 3,500 observations (chosen to be close
to the sample size of the real data, N = 3,487) with J = 5 tests including missing
indicators for each test under three different missing pattern assumptions. The true
values of prevalence is set to be m = 0.2, close to the estimates from the C-CFR study.
The true values of sensitivity and specificity are set to be close to estimates for the five
NCI-recommended microsatellite sequence panels (BAT25, BAT26, D175250, D25123,
D55346), i.e. we let Se = (0.9,0.9,0.8,0.8,0.6) and Sp = (0.9,0.9,0.9,0.9,0.9). For
each subject, disease status D; is randomly assigned 0,1 from a binomial distribution

with 7, as the binomial p. Given a subject’s D;, test results 7; are randomly assigned
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0,1 from a binomial distribution with Se and (1 — Sp) as the binomial p under the
assumption that T; are independent given D;. Finally, we randomly assign missing
indicator A; to each test results considering the three missing scenarios. Simulation
results are listed in Table 2.1.

We first simulated the missingness of test results under the MCAR assumption. All
five tests were randomly assigned a missing indicator (1 = observed;) = missing),
through a binomial distribution, independent of any other missing or observed values.
The missing probabilities of the five tests (r1,--- ,,75) are 0.274, 0.090, 0.251, 0.023,
0.089 subsequently, which were randomly selected from a uniform distribution bounded
by (0,0.35). Secondly, under the MAR assumption, we let the missing patterns of Test
4 and Test 5 depend on some fully-observed test results. A;; and A;s all equal to 1
(the first two tests have no missing value); A;3 are randomly generated from a binomial
distribution with a missing probability of 0.2 (the third test is MCAR); A,y is randomly
generated from a binomial distribution with missing indicator A;4 depending on T}
through equation logit(P(A;s = 1|T}1)) = a+ 01 T;1; and A5 is randomly generated from
a binomial distribution with missing indicator A;5 depending on T;; and Tj, through
equation logit(P(Ai;s = 1|T;1,Ti2)) = a+ 1T + S2Te. The regression coefficients are
set to a = —1.5, f1 = —4, B, = 2. Lastly, for the MNAR assumption, Test 4 and Test 5
depend on a subset of unobserved tests or disease status. A;1, A and A3 are generated
following the same settings as for the MAR assumption. A;; is randomly generated
from a binomial distribution with missing indicator A;4 depending on partially-observed
T;3 through equation logit(P(Ay = 1|T;1,Ti3)) = « + B3T3, and Ay is randomly
generated from a binomial distribution with missing indicator A;; depending on both
T;3 and unobservable disease status D through equation logit(P(A;s = 1|Ti3, D)) =
a+ B3T3 + BsD, where oo = —1.5, 83 = 0.75, 85 = 0.7.

Under the MCAR assumption, the EM algorithm is very robust with all coverage
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probabilities above 95%. The SE estimates are also very close to the standard deviations
from point estimates of 71, Se and Sp. The average missing probability for Test 1 under
MCAR assumption is the highest (almost 30% observations missing), yet the coverage
probability is still very good (> 95%) for its sensitivity and specificity. Under the MAR
assumption, the coverage probabilities for m; and Se is a bit poorer than the MCAR
assumption albeit the coverage probabilities for Sp is almost undifferentiable between
the two tests. The missing probabilities under the MAR assumption vary between
[0.004, 0.182] for Test 4, and [0.004, 0.622] for Test 5. The average missing probabilities
under the MAR assumption are 0.136 for Test 4 and 0.183 for Test 5. Although the
missing probabilities for Test 5 can be as high as 0.622, the coverage probability for
Test 5 is very good (> 95%) for both sensitivity and specificity. Our method is well
suitable for both the MCAR and MAR assumptions. Under the MNAR assumption, the
missing probabilities vary between [0.182,0.321] for Test 4, and [0.182,0.488] for Test
5. The average missing probabilities under the MNAR assumption are 0.217 for Test 4
and 0.250 for Test 5, both greater than those under the MAR assumption. Generally
speaking the coverage probabilities under the MNAR assumption are not compromised
much as all are above 94%. We do observe that the coverage probability for Sp is
consistently smaller comparing to the MAR assumption. This may be explained by the
missingness of Test 4 only depends on Test 3 (which is MCAR), while the missingness
of Test 5 depends on latent disease status in addition to Test 3. As a sensitivity
analysis, we did another simulation for the MNAR assumption with everything the same
except that A;; depends on Tj3 and T} through equation logit(P(A;s = 1|Ti3, Ti5)) =
a + B3T3 + B5T;5. Our method did not handle Test 5 estimation very well: although
both Test 4 and Test 5 are MNAR, the coverage for Test 4 is barely affected while
the coverage for Test 5 is seriously impacted (coverage probability 26.4% for sensitivity

and 37.4% for specificity). These results imply that MNAR may not be a serious issue
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when the cause of a missing test lies in the value of another test or the true disease
status, whereas MNAR can cast doubt on our estimation if the cause of a missing is
the value of the missing test itself.

We also conducted a simulation to assess estimation of missing probabilities under
the new assumption for MNAR, where the missingness of each test depends on the
unknown disease status. The missing probabilities for Test 1 through Test 5 were
subsequently set to (0.1,0.1,0.2,0.2,0.3) for r; and (0.1,0.2,0.4,0.6,0.8) for 7o, while
7, Se and Sp hold the same values as before. The estimates of r; and ry along with
m, Se and Sp are obtained simultaneously with coverage probabilities varying from
94.8% to 95.8%. Our method is once more shown to handle different missing scenarios

fairly well.

2.6 Discussion

In this paper we developed an EM algorithm based approach to evaluate the popu-
lation prevalence and diagnostic accuracy of multiple imperfect tests in the absence of
a gold standard, when the tests are assumed to be independent conditional on the true
disease status. Under either a MAR assumption or one MNAR scenario, the proposed
method can efficiently and precisely estimate population prevalence and diagnostic ac-
curacy of each test with its associated missing probability. Simulations under different
missing data mechanisms consistently result in fairly high coverage probabilities for
the estimates. Although there is no established statistical test to assess the underlying
missing data mechanism, our method has shown robustness to missing data assump-
tions as long as the missing percentages are not extremely high. Even though our
estimates are biased under the MNAR scenario, the bias is confined to those specific
tests affected and our estimates can still provide a reasonably good approximation to

the “true” parameter values. On the contrary, many other methods tend to propagate
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bias throughout all tests. In conclusion, our method is straightforward to comprehend
and simple to implement for diagnostic studies involving multiple conditionally inde-
pendent tests with moderate percentages of missing data and without a gold standard.
It has the potential to improve public health by facilitating the diagnosis of cancer and
other prevalent diseases.

Common methods such as case deletion, maximum likelihood estimation, multiple
imputation, etc. are valid for MCAR and MAR but cannot handle MNAR without
explicitly modeling the missing pattern. Two possible models to account for MNAR
data are selection models (Heckman, 1979) and pattern mixture models (Little, 1993).
These models are complicated and require substantial statistical knowledge and soft-
ware experience, yet their validity is not easily justifiable and sometimes questionable.
Methodological development to cope with missing data under the MNAR assumption
is beyond our current scope but would be considered for future research.

One limitation of our method is that we assumed conditional independence between
tests, which is difficult to verify in practice. We cannot be absolutely certain of the con-
ditional independence assumption, although our Kappa agreement plots fail to reject it.
Some degrees of dependence may exist due to the similarity of biological basis. The ef-
fects of conditional dependence on the estimation of diagnostic accuracy and prevalence
have been reviewed (Vacek, 1985; Dendukuri and Joseph, 2001). It has been shown that
the latent class models under the independence assumption can produce relatively un-
biased estimates when the degree of dependence is not too strong (Torrance-Rynard
and Walter, 1998; Black and Craig, 2002; Georgiadis et al., 2003; Monti et al., 2005).
To assess the robustness of our method, the conditional independence model is applied
to data simulated under the conditional dependence assumption. It is able to estimate
the parameters fairly well albeit the estimates are biased and the confidence intervals

have worse coverage probability. Several methods have been developed for estimation
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of diagnostic accuracy under the assumption of conditional dependence (Qu et al.,
1996; Black and Craig, 2002; Xu and Craig, 2009; Shih and Albert, 2004; Dendukuri
and Joseph, 2001; Yang and Becker, 1997). These methods produce superior point
estimates for diagnostic accuracy than methods based on the conditional independence
assumption, especially when the tests are indeed highly correlated. For future inves-
tigations, we would relax the conditional independence assumption by extending the

application of such methods to data abundant with missing values.
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Figure 2.1: Plot of Observed vs. Model Based Kappa
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Note: Dots and lines are model based Kappa statistics with their corresponding 95% simultaneous

confidence intervals. There are a total of 55 dots and lines for 11 tests.
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Table 2.2: Number of Subjects by Frequency of Missing Test Results

Number of Missing Tests 0 1 2 3 4 5 >6
Number of Subjects 219 871 1202 584 216 203 192
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Table 2.3: Estimates and 95% Cls of Sensitivity, Specificity, and Prevalence from Dif-

ferent Models

MAR? MNARP
Marker Sensitivity (95%CI) Specificity (95%CI) Sensitivity (95%CI) Specificity (95%CI)
ACTC 0.7111 (0.665, 0.753) _ 0.9700 (0.963, 0.976) 0.7098 (0.663, 0.752) _ 0.9703 (0.963, 0.976)
BAT25 0.9405 (0.915, 0.959)  0.9962 (0.993, 0.998) 0.9365 (0.909, 0.956)  0.9961 (0.993, 0.998)
BAT26 0.9308 (0.903, 0.951)  0.9985 (0.996, 0.999) 0.9280 (0.900, 0.949)  0.9985 (0.996, 1.000)
BAT40 0.9301 (0.902, 0.951)  0.9867 (0.981, 0.991) 0.9251 (0.896, 0.947)  0.9868 (0.981, 0.991)
BATS84CY 0.8499 (0.812, 0.882)  0.9980 (0.995, 0.999) 0.8490 (0.811, 0.881)  0.9980 (0.995, 0.999)
D10S197 0.8353 (0.796, 0.868)  0.9816 (0.975, 0.986) 0.8354 (0.796, 0.868)  0.9816 (0.975, 0.986)
D175250  0.8121 (0.762, 0.854)  0.9564 (0.946, 0.965) 0.8110 (0.761, 0.853)  0.9569 (0.946, 0.966)
D18S55 0.8098 (0.770, 0.844)  0.9842 (0.978, 0.988) 0.8104 (0.771, 0.844)  0.9846 (0.979, 0.989)
D25123 0.8493 (0.747, 0.915)  0.9769 (0.960, 0.987) 0.8495 (0.746, 0.916)  0.9773 (0.961, 0.987)
D55346 0.6455 (0.600, 0.688)  0.9923 (0.988, 0.995) 0.6435 (0.598, 0.686)  0.9923 (0.988, 0.995)
MYCL 0.7587 (0.716, 0.797)  0.9360 (0.926, 0.945) 0.7547 (0.712, 0.793)  0.9366 (0.926, 0.946)
Prevalence 0.1482 (0.137, 0.160) 0.1506 (0.139, 0.163)

& Missingness depends on observed test results without modeling missing probabilities.
b Missingness depends on latent disease status when modeling missing probabilities.
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Table 2.4: Estimates and 95% Cls of r;, 795, and 7; under Different Missing Data

Assumptions
MAR? MNARP

Marker ] 15 Toj T1; — Toj (SE) p—Value
ACTC 0.1394 0.2248 0.1242 0.1006 (0.0194) < 0.0001
BAT25 0.0771 0.0908 0.0747 0.0161 (0.0138)  0.2450
BAT26 0.0726 0.1077 0.0663 0.0414 (0.0147) 0.0048
BAT40 0.1408 0.1535 0.1386 0.0149 (0.0173) 0.3884
BAT34C4  0.1397 0.2200 0.1254 0.0946 (0.0194) < 0.0001
D10S197  0.1792 0.2231 0.1715 0.0516 (0.0198) 0.0091
D175250  0.4193 0.4554 0.4129 0.0425 (0.0237)  0.0724
D18555 0.1342 0.1508 0.1313 0.0195 (0.0172) 0.2573
D25123 0.8173 0.8606 0.8097 0.0509 (0.0168) 0.0025
D55346 0.0849 0.1301 0.0769 0.0532 (0.0158) 0.0008
MYCL 0.1663 0.1636 0.1668 -0.0032 (0.0177)  0.8566

& Missingness does not depend on latent disease status.

b Missingness depends on latent disease status.

Note: r; denotes missing probability for each test; 71; and r¢; denote missing probabilities for diseased

and non-diseased subjects respectively.
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Chapter 3

Conditional Dependence
Assumption

3.1 Introduction

Diagnostic accuracy, commonly quantified by sensitivity and specificity, plays a key
role in the development of new diagnostic binary tests. A gold standard with perfect
sensitivity and specificity may not always be administered due to the invasiveness, cost,
or other limitations. For example, patients with negative test results are more likely to
forgo the gold standard for a definitive diagnosis. This is considered to be a missing data
problem involving partially missing gold standards. Following the language of Little
and Rubin (1987), the mechanism that led to the missing gold standard is said to be
missing completely at random (MCAR) if the probability of missingness is independent
of any missing or observed data; the mechanism is called missing at random (MAR)
when the probability of missingness depends only on observed data; the mechanism is
called missing not at random (MNAR) when the probability of missing depends on some
missing data. Both MCAR and MAR are “ignorable” missing data mechanisms whereas
MNAR is a “non-ignorable” (NI) missing data mechanism. A considerable literature

exists dealing with partially missing gold standards under the ignorable (Alonzo, 2005;



Begg and Greenes, 1983; Harel and Zhou, 2007; He and McDermott, 2012; Lin et al.,
2006; Yu et al., 2010; Zhou, 1998) and the non-ignorable (Baker, 1995; Geloven et al.,
2012; Harel and Zhou, 2007; Kosinski and Barnhart, 2003b,a; Zhou, 1993) missing data
assumptions.

In many instances a gold standard does not exist, which causes another type of
missing data problem in which the gold standard (i.e. the true disease status) is always
missing. Various methods have been developed to assess the diagnostic accuracy of new
tests in the absence of a gold standard (Alonzo et al., 1999; Hadgu et al., 2005; Enge
et al., 2000; Reitsma et al., 2009; Goetghebeur et al., 2000). One practice is to compare
the new tests to some imperfect reference standard and attempt to correct imperfect
reference bias. When there is no acceptable reference standard, the latent class analysis
(LCA) treats the unobservable true disease status as a latent variable and utilizes all
tests simultaneously in a unified manner. Early latent class models were based on the
conditional independence assumption, which states that multiple tests are independent
conditional on the true disease status (Hui and Walter, 1980; Walter and Irwig, 1988;
Rindskopf and Rindskopf, 2006). These models often are referred to as traditional la-
tent class (TLC) models. However, the conditional independence assumption usually
does not hold when multiple tests have a similar basis, e.g. measuring a similar biologi-
cal attribute, or when they are influenced by some subject-specific characteristics other
than the disease status. Several maximum likelihood (ML) approaches that allow for
conditional dependence between tests have been developed to estimate diagnostic ac-
curacy, including a finite mixture model (Albert et al., 2004) that uses a quasi-Newton
method, a latent class joint cell probability log-linear model that uses a Fisher scor-
ing algorithm (Espeland and Handelman, 1989), a marginal latent class model that
uses an accelerated EM gradient algorithm (Yang and Becker, 1997), and probit latent
class (PLC) models (Qu et al., 1996; Qu and Hadgu, 1998; Uebersax, 1999; Chib and
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Greenberg, 1998; Xu and Craig, 2009).

A PLC model is a version of LCA in which specified threshold locations discretize
a latent continuous variable into different regions that correspond to observed response
levels. Qu et al. (1996) developed a special PLC model, called the Gaussian random
effects model, because conditional dependence between tests is addressed by subject-
specific random effects in a standard Gaussian distribution that links the observed
test results to the latent disease status through a probit model. Qu and Hadgu (1998)
extended the Gaussian random effects model to a generalized linear mixed model with a
hybrid algorithm that combined the EM algorithm and the Newton-Raphson method for
its ML estimates. Dendukuri and Joseph (2001) presented a Bayesian approach similar
to the random effects model of Qu et al. by imposing a prior distribution to summarize
the uncertainty about each parameter. However, these models simply assume that
the dependence between tests is based on their having the same distribution, which
is hard to justify. To relax this assumption, Uebersax (1999) proposed a PLC model
that assumes a multivariate-normal distribution within each latent class so that the
correlation structure can be modeled flexibly. Employing the Monte Carlo EM (MCEM)
algorithm (Wei and Tanner, 1990), Chib and Greenberg (1998) obtained ML estimates
for multivariate probit models with a general covariance structure. Xu and Craig (2009)
further developed a PLC model to estimate diagnostic accuracy while accommodating
a general correlation structure between tests using a parameter-expanded Monte Carlo
EM (PX-MCEM) algorithm, which was motivated by the MCEM algorithm (Chib and
Greenberg, 1998) and the parameter-expanded EM (PX-EM) algorithm (Liu et al.,
1998). A TLC model is a special version of the PLC model when the two covariance
matrices are restricted to be diagonal.

Heretofore we have discussed two types of missing data problems regarding gold

standard: (i) a gold standard is available but not applied on all subjects (partially
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missing); (i) a gold standard is never applied or does not exist (totally missing). Po-
leto et al. (2011) presented a scenario in which all subjects are evaluated with a gold
standard and one of the three imperfect tests under evaluation, whereas the other two
imperfect tests are not always performed. They used a two-stage hybrid approach (i.e.,
ML in stage one and weighted least squares in stage two) to estimate the diagnostic
accuracy of the three imperfect tests. To our knowledge, when a gold standard is to-
tally missing, there is no study that has evaluated the diagnostic accuracy of multiple
correlated diagnostic tests with excessive missing data. Motivated by the Colon Cancer
Family Registry (C-CFR) study (Section 2), we extended the PLC models under the
conditional dependence assumption to evaluate the prevalence and diagnostic accuracy
of multiple imperfect diagnostic tests with high proportions of missing data and with-
out a gold standard. In addition, we also evaluated the correlation between these tests
through a general correlation structure of the PLC model.

The remainder of this paper is organized as follows. Section 3.2 introduces the C-
CFR study that motivated our research. Section 3.3 describes the PLC-based method-
ology of estimating diagnostic accuracy and correlation matrices, as well as the boot-
strap approach for estimating their standard errors. Section 3.4 summarizes the results
of simulation studies with different missing data assumptions and examines the finite
sample properties of the proposed model. Section 3.5 presents the preliminary analyses

of the C-CFR data. Finally, section 3.6 concludes with an extensive discussion.

3.2 DMotivating Example

Hereditary nonpolyposis colorectal cancer (HNPCC), also known as Lynch syn-
drome (1999), is the most common familial colorectal cancer syndrome accounting for
two to five percent of all colorectal cancer. HNPCC is a genetic disease caused by a

deleterious germline mutation in genes involved in the DNA mismatch repair (MMR)
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pathway that repairs the mismatches in the genome that occur during cell duplication.
It is estimated that 600, 000 individuals in the United States have HNPCC. These indi-
viduals have a substantially increased (up to 80%) lifetime risk of developing cancer in
the colorectum and other sites when compared to the general public. Mutation analysis
of the MMR genes may be considered a gold standard for HNPCC diagnosis. How-
ever its high cost ($2,000 - $3,000 per individual) precludes its broad use in HNPCC
screening. A relatively inexpensive alternative ($200 - $300 per individual) (Thibodeau,
1981) seeks to identify a high level of microsatellite instability (MSI), the amplification
or deletion within microsatellites (common and normal repeated sequences of DNA).
Since the establishment of a consensus definition of MSI and unifying criteria for its
measurement in 1998 (Boland et al., 1998), MSI biomarker tests have been used regu-
larly as part of the international guidelines for HNPCC diagnosis (Umar et al., 2004).
Therefore it is of great interest from a public health perspective to evaluate the diag-
nostic accuracy of MSI biomarkers for early detection and prevention of HNPCC.
The NCI C-CFR study is an international consortium of six centers in North Amer-
ica and Australia that was formed to support studies on the etiology, prevention, and
clinical management of colorectal cancer (Newcomb et al., 2007). The C-CFR data
include test results of 11 MSI biomarkers (namely BAT25, BAT26, BAT40, BAT3/C4,
D10S197, D175250, D18S55, D25123, D55346, ACTC, and MYCL). A total of 3,487
subjects from families with a single subject are included in this research. Only a small
proportion (6.3%) of the 3,487 subjects has been tested for all 11 MSI biomarkers.
The observed missing proportions range from 7.3% for biomarker BAT26 to 81.7% for
biomarker D25123. No gold standard was used for the C-CFR study. Furthermore,
the 11 MSI biomarkers share similar biological bases so it is reasonable to assume that
they are conditionally dependent. The high percentages of missing tests and the latent

disease status, together with the conditional dependence between tests have motivated
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our methodology research, which is to be introduced in the next section.

3.3 Statistical Methods

3.3.1 PLC Model Parameters Specification and Expansion

Suppose that we have a total of N subjects and J binary tests. Let D; = d(d = 1,0)
represent the latent variable for disease status (1=Yes, 0=No) of the i'" subject (i =
1,--+,N,). Let mqy = Pr(D; = d) denote the probability of disease/no disease of the the
i" subject (7 is the prevalence). Let t;; be the result of the j test of the i’ subject.
Notice that due to missing values, the test results are not in the typical “binary” fashion
with three possible values, i.e., 1=positive, O=negative, 99=missing. Let d;; be the
indicator of whether the i'" subject has been tested by the j test (1=tested, 0=not
tested). T; = (ti1,--- ,tiy) and A; = (d;1,- -+ ,0;7) represent all the test results and
missing indicators of the " subject. Under the conditional dependence assumption,
the similarity between tests of the i"® subject is explained by some Gaussian latent
variable Z; = (21, -, 2;y)’, which has a multivariate normal distribution conditional
on D;, i.e. Z;|D; =d ~ Nj(pq, Xq) with mean vector g and variance-covariance matrix
Yq = {ag-i)}. We assume z;; > 0 when ¢;; = 1; z;; <= 0 when ?;; = 0; z;; could take
any value within (—oo, co) when ¢;; is missing. The probability of observing (7, A;) is

obtained by integrating over Z;:

P(Tu Ai|Di =d, 4, Zd) = / / ¢J(Zz'éﬂd; Ed)dzil codzy
B B;y
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where the integration interval of each test is

Bij = (0,00) if t;;=1 (3.1)

(-O0,00) if tij:997 ie. 5@‘ =0

However we are unable to find a fixed solution for the model parameters (pgq, Xq)
since they are not identifiable. One way to overcome this challenge is to restrict the
variance-covariance matrix >4 to correlation matrix R, with all diagonal elements equal
to 1 and all off-diagonal elements between [—1,1], and then re-parameterize pg to aq
(Chib and Greenberg, 1998). It can be shown that the sensitivity and specificity of the
j'" test are Se; = ®(ay;) and Sp; = ®(—ay;), respectively. Let 0 = (1, a1, R, ag, Ro)
denote the vector of all 1+2.J42 x @ = J%2+J+1 unique parameters. Assume that
we know Z; and D; in addition to the observed data (T}, D;), and assume that, for any
pair of two tests, there are at least some subjects with both test results present. (For
the C-CFR data set, this is of no concern because 219 subjects have all 11 test results
present.) By Bayes’ theorem, the log-likelihood of complete data Y; = (T}, Ay, Z;, D;)

18

logLC(e) = logL(eynaAMZl’Dl)
N
= log [ [{P(T:, Ai|Z;, Dy, 0)}

i=1

N
= IOgH{P(Di|7T1)P(Zi|Dz‘,G1,Rbao,RO)P(Tz’,Az’Zz',GhRl,a()’Ro)}
i=1

Since P(Z;|D;, a1, Ry, ap, Ry) = QSJ(Zi;alaRl)ding(Zi;aOaRO)(lidi% P(T;, A Z;, aq,
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Ry) = [IL, I(z; € By), P(Di|m) = 7 (1 — m)1=%). the log-likelihood becomes

N
IOgLC(@) = log H{ﬂ-fz(l _ 71.1)(17di)¢J(Zi; ai, R1)di€bJ(Zi§ ao, RO)(lfdi)
=1
J
[11Gi € By}
=1

N
= Z{dilog(ﬂl) + (1 — di)log(1 — m1) + dilog(¢,;(Zi; ar, R1))

+(1 — d;)log(¢s(Zi; ao, Ro)) + Y log(I(zi; € Bij))}

=1
3.3.2 ML Estimation Using the Monte Carlo EM Algorithm

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is an itera-
tive computation approach that has been used extensively to find maximum likelihood
estimates (MLEs) of the parameters of an underlying distribution in two general incom-
plete data problems: (i) the data contains missing values; (ii) the model can be sim-
plified by assuming the existence of additional unobserved (latent) variables. The EM
algorithm involves both integration methods (for the E-step) and optimization methods
(for the M-step). When one or both steps are analytically intractable, as frequently is
encountered in the high-dimensional integration for the E-step, approximation meth-
ods (e.g., Laplace approximation and Taylor series expansions), numerical methods
(e.g., Gauss-Hermite and Newton-Cotes), and Monte Carlo methods have been used.
With increasingly powerful computing resources, Monte Carlo methods have gained in
popularity for high-dimensional integrations without closed-form solutions. The Monte
Carlo EM (MCEM) algorithm was introduced by Wei and Tanner (1990) to compute
expectation in the E-step using Monte Carlo simulations. The Monte Carlo sample
size does not depend as much on dimensionality as it does on numerical methods, such

as Gaussian quadrature (Evans and Swartz, 1995). It allows for an easy assessment of
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the approximation error since one can increase the Monte Carlo sample size until the
desired accuracy is obtained.

The MCEM algorithm is well suited for our C-CFR case study: first, we are deal-
ing with missing test results as well as the latent disease status; secondly, our PLC
model involves an intractable E-step due to the high-dimensional integration incurred
by the 11 tests. However, the M-step does not have a closed-form solution when the
variance-covariance matrices are restricted to be correlation matrices R;. Thus we need
to expand the parameters as pg = Vd% aqg and X4, = Vd% RdVd% following the PX-EM al-
gorithm by Liu et al. (1998). V, is a J x J diagonal matrix with all diagonal elements
positive. The parameter vector becomes = (my, p1, X1, fo, o) and the log-likelihood

becomes

N
logLC(ﬁ) = 10g H{ﬂ'fl(l — Wl)(l_di)qu(Zi; 1, Zl)ding(Zi; 1o, ZO)(l—di)

i=1

HI(%‘ € By}

N
= Z{di10g<7rl) + (1 — di)log(1 — 1) + dilog(¢(Zi; pa, X))
=1

+(1 = di)log(¢(Zi; pro, To)) + Y log(I(z;5 € Bij))}

i=1

Substituting the joint density functions of the multivariate normal distribution

G5 (Zis pa, Xa) = WGXP{—%(@ — pa)'S7 " (Z; = pa)}Hd = 1,0) into logLc(f)

we have the final log-likelihood function of the complete data

N
logL.(8) = log H{Wfi(l — 1)) b (Zis iy, S) B by (Zis g, X))
i=1
J

[11Gzi € By)}

=1
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= Z{dilog(m) + (1 — dy)log(1 — mp)

1 1 J

1 1 J
—510g|20|di - §di<Zi — 110)' S0 (Zi — o) — 5108;(27T)dz’
7

+ log(I(z; € Byj))} (3:2)

=1

The M-step is to solve the score equations after taking expectations conditional on

the complete data:

N

d; —d;
0 = Y B{E - {TIT A6

- T 1—7
=1

i;l

0 = Y BH(—d)Z — (1 - d)uo} Ti, Ai, )
=1

0 = iE[{—EEfldi—\—121_1(21'—Ml)(Zz‘—Hl)/zfldiHE?Ai’ﬁ(n)]
— 2 2

N

1 1 I — n

0 = ZE[{—ﬁzol(l—di)+§Eol(Zz‘—#0)(Zi—ﬂo) 5o (1= di) YT, Ay, B
=1
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The solutions are:

N
n 1 .
75 +1) NZE[di’TuAmﬁ( )]
=1
4) SN Bd Z| Ty, A, 5]
' SN Eld|T;, Ay, B

i) o El(1—d)Zi| Ty, A, B
Ho N

2im (1= di)[ T, Ay, B)
o) _ i Bldi(Zi — ) (Zi — m)' [Ty, A, )
o) _ i Bl = di)(Zs — o) (Zi — o) 1T, A, 5]
)

>ty BI(1 = di)|T3, Ay, 5]

They are simplified for d = 1,0 as

N
7T§n+1) — Z d ’Tv“ A“B(n)]

=1
(n+1) ZN:1 [ ( di)l_dZi’TiaAivB(n)]
. SN, Bl (1 — )T, A, 50
SN VBN~ d) U2~ pa)(Zi — pa)' | T, Ay B
S

Z&n—l—l)

Zl 1E[dd(1 — d;)' Ty, Ay, B0
Zi:l E[dglﬂ — d;)"UT;, Ay, fV)

— Gy (3.3)

The estimates for a; and Ry can be derived by reducing the expanded parameter

through U, (a diagonal matrix with diagonal elements equal to those of E(”H))

_1
ORI s
_1
Ry = u;rsiVu, > (3.4)
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For the E-step we compute the conditional expectations of the expanded com-
plete data sufficient statistics, i.e. Zf\;l E[di|T;, A, ™), Zfil Eld; Z|T;, As, 3™,
Siny Bl ZiZ)| Ty, Ay, ™), SO E[(1 — di) Zi| Ty, Ay, ), and 320 E[(1 — d3)Z:Z]
|T;, A, )] via Markov chain Monte Carlo (MCMC) routines such as the Gibbs and
Metropolis-Hastings samplers. For computation efficiency, we grouped subjects by K
distinctive response profiles with ny subjects for each response profile. (Subjects with
the same results for all J tests are said to have the same response profile.) With three
possible test results (1, 0, missing), the total number of possible profiles for J tests is
37 — 1. Tt is unlikely for the observed data to contain all possible profiles since 37 — 1
increases exponentially with J. For the C-CFR data, the actual number of profiles
observed is K = 887 but the total number of possible profiles is 3'' — 1 = 177,146. It
is reasonable to speculate that the 177,146 — 887 = 176, 259 missing profiles are due to
ignorable missing data mechanism, i.e. there is no clinical or other logical consideration
that precludes a response profile from occurring.

We adopt Xu and Craig’s (2009) sampling algorithm, which reduces a truncated
multivariate normal distribution to a computationally much easier problem involving a

series of univariate truncations. We proceed as follows:

e Begin with a set of arbitrary starting values for the parameter (0 = g0 =

(7?50), ag ), ago), R((jo), R ) and the latent variable Z = (zk1,  ,2kg) (k=1

K). For the first MC sample m = 1, generate dk from Bernoulli(péo)), where
0) (0) ¢ (2'(,0);(1(0),]%(0))
Pho = o, and = ¢j(zl,i°);a§°),R?°>)’

(1)

e Generate Z,’ given d,(co) = d from a truncated normal distribution T'N (u*, o*?)

where the integration interval is By, 0% = =& 1) W= agi—0* (RN j(Zg i —

aq—j). Draw each z;;(j = 1,---,J) from the distribution of z;; conditioned on
all other variables, making use of the most recent values and updating z;; with

: : : 1 0 0
its new value as soon as it has been drawn, i.e. draw 215;1) from [zk1|z,gz), e z,(cj)]
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draw 2,212) from [zk2|zl(€11), z,(cg), e ,z,i?}], -+ -, draw z,(i,) from [zkj|z,(€11), e ,z,(g}()t,fl)}.
e Repeat the above simulation steps for m = {2,--- , M} to generate M samples of

dj, and Z,. The conditional expectations of the expanded complete data sufficient

statistical are estimated by averaging over the M Monte Carlo samples, e.g.,

SN EldZi| T Ay, 8™ = S8 Blngdi Z| T, Ay, 8™] = L 500 S0 ngd(™

7™ Substituting the estimated conditional expectations into 3.3, we derive
k g

parameter estimates () = (W%l),ugl),uél),Egl),zél)), and subsequently ) =

(ﬂl), agl), a(()l), Rgl), R((]l)). This completes the first iteration [ = 1. 1) and Z,EM)

(the last MC sample) will be starting values for the next iteration.

e Repeat the above PX-MCEM algorithm steps for [ = 2,3,--- until the conver-
gence at | = L, i.e. the difference between 8 and “~1 is consecutively less
than a preset tolerance for several iterations. Then, we have the final estimates

6L which converge to the true parameter values 6 by the law of large numbers.

To control the between-simulation variability known as Monte Carlo error (MCE),
a large MC sample size M (typically at least 10,000) is preferred but it may quickly be-
come computationally burdensome. It is advisable to implement a small M for the first
few iterations when % is far from the true parameter values 6, and increase M for later
iterations when #) moves closer to # (Wei and Tanner, 1990). For example, McCulloch
developed MCEM algorithms that increase M linearly (1994) and nonlinearly (1997)
with the number of iterations. We used a more efficient cumulative MCEM algorithm
(Kou et al., 1998) by fixing M as a relatively small number (e.g. M = 1500) for all
iterations. It utilizes MC samples from the current iteration as well as an adaptively
increasing number of previous iterations, so that simulations from previous iterations
are not wasted.

As with any MCMC method, each MC sample is correlated with nearby samples.
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We thinned the chain by saving every o simulated sample from each sequence. Another
issue arises when the MC samples at the beginning of the chain do not represent the
desired distribution accurately. We discarded the initial MC samples of each iteration

for early EM iterations during the burn-in period.

The adequacy of the model can be checked by plotting all @ pairwise correlation

residuals (Qu et al., 1996). The correlation coefficient between any two tests t;; and t;;
S P(tijil,tij/:1)—P(tij:1)P(tij/:1) '
V/P(tij=1)(1=P(ti;=1))P(t;;;=1)(1—P(t;;=0))

ot N tigti ..
P(t,; =1) = % and P(t;; = 1,t; = 1) = Zﬂ% For model-based pairwise

i For observed pairwise correlation coefficients,

correlation coefficients, P(t;; = 1) = Z(l) T4 fooo 0;(Zi; pra, La)dzij and P(t;; = 1,65 =
1) = Zé Ta fy 5 55 (Zi; g, 2a)dzijdzp. The residuals are the differences between

the observed and model-based pairwise correlation coefficients.

3.3.3 Starting Values for the PX-MCEM Algorithm

When the loglikelihood function is concave and unimodal over the entire parameter
space, the PX-MCEM algorithm converges to the unique MLE ) from any set of
starting values. In that sense §(®) = (ﬂo), a§°>, aéo), REO), R[()O)) can be selected arbitrarily
as long as Rg)) is positive definite. In reality it always helps to choose starting values
that are likely to be close to the true values of 6 instead of making a wild guess. For
example, Walter and Irwig (1988) used starting values based on the majority opinion
among three radiologists. Staquet et al. (1981) used ”the most probable value” based
on medical and biological knowledge about the PCR and ME tests. The choice of
starting values is more crucial when missing data occur, especially if the proportion of
missing data is high for certain tests. Little and Rubin (1987) outlined a few choices
for the starting values of parameters assuming that the missing-data mechanism was

ignorable, such as the complete-case solution and the available-case solution.
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However, multiple maxima often exist, and the PX-MCEM algorithm is not guar-
anteed to converge to a unique global maximum. One suggestion is to try a variety
of starting values to examine whether a global maxima is reached rather than a local
maximum. This becomes impractical due to the computational intensity of the PX-
MCEM algorithm, as well as the large number of tests and subjects for the C-CFR
data. Conversely, the TLC model is much more efficient computationally. It has been
shown that the TLC model is adequate even with conditionally dependent tests when
the accuracies of the tests are high or when the tests are weakly dependent (Hui and
Zhou, 1998; Georgiadis et al., 2003). In this paper we extended the TLC model under
the conditional independence assumption to allow for missing data, and we used the
model’s estimates of the parameter as our starting values. Assuming that the ignorable

missing data mechanism is tenable, the probability of observing (7}, A;) for subject 7 is

po(T3, A;) Zﬂdhzd (3.5)
where
J
| G
J
ho = T s
Let v = (m,Sey,--+,Seys,Sp1, -+ ,Spy). Start with some arbitrary starting values

7 for the PX-MCEM algorithm. Given v for the (n)" iteration, the M-step solves
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the score equations as:

N

d; 1-—d;

0 ;1 [{W1 1_7T1}! 7]
ZN diti;0;  dibi; — diti;0

0 — B iy ij_ Uiy — WilqjUig Y; (n)
i=1 [{ Sej 1 - Sej }| 7 ]
N

_ ZE _ Y~

=1

where Y; = (T}, A;, D;) are the complete data. We compute E[d;|Y;,y™)] in the E-step
and derive 4"t Tterating EM steps until convergence, we get the final estimates 4.
After transformation a,; = ®~'(Se;) and dg; = —CI>_1(§pj) are our starting values for
ai; and ap; to initiate the PX-MCEM algorithm aforementioned. Simulation studies
indicate great coverage probability for gej and gpj when the missing rate of test j is
not too high and the conditional independence assumption holds. When the condi-
tional independence assumption is relaxed to the conditional dependence assumption,
S e; and gpj are still reasonably close to the true values. The TLC model converts oth-
erwise arbitrary starting values to the best available starting values. Nevertheless, the
TLC model does not estimate R; and Ry, so their starting values have to be selected

arbitrarily.

3.3.4 Bootstrap Method for Standard Errors

Many methods have been developed to estimate standard error (SE) in the context of
the EM algorithm with missing data (Tanner, 1991; Little and Rubin, 1987). In modern
high-performance computing environment, resampling methods such as the bootstrap
method (Efron, 1979) and the jackknife method (Miller, 1974) are used broadly to
derive asymptotic SE estimates using just the data at hand. The bootstrap method is

shown to be robust in many situations, i.e., it provides large-sample SE estimates of
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MLEs with good coverage, even if the model is misspecified or if the model assumptions,
such as the ignorable missing-data assumption, are invalid (Efron, 1994).

The bootstrap method is employed to estimate the SE of the ML estimate of 6.
We randomly drew B bootstrap samples of size N from observed data T3, -- , Ty with
replacement. Then, the PLC model was applied to each bootstrap sample to get the

. ~ 2 . . A B p(v)
ML estimates (611, --.  #)). The bootstrap estimate of 8 is o0 = % and the

. . - _ 21173:1(9(1))—9500,5)2 . .
SE estimate is SEyoor = |/ ==F5—>". It has been demonstrated that B = 200 is

required if the bootstrap distribution is approximately normal (Efron, 1994).

3.4 Simulation Studies

We assessed the performance of the PLC model when fitting simulated data sets
from different missing data mechanisms. Each simulation study consists of S = 500
simulations. Each simulation generated a simulated data set with N = 3,500 sub-
jects and J = 5 tests. The true parameter values were set to m; = 0.2, Se =
(0.7,0.9,0.8,0.6,0.75), and Sp = (0.9,0.85,0.9,0.9,0.8). All test results are condi-
tional dependent, i.e., the correlation coefficients between any two tests are 0.6 for
diseased subjects and 0.45 for non-diseased subjects. For simulated data sets under the
MCAR mechanism, all tests were assigned randomly 6;; = 1 or 0 with P(d;; = 1) =
(0.95,0.9,0.8,0.5,0.1). For simulated data sets under the MAR and MNAR mech-
anisms, t;; and t;; are always observed, whereas t;3 has P(d;3 = 1) = 0.8. Under
the MAR mechanism, t;,’s missing probability depends on t;; through logit(P(d;y =
1t;i1)) = a+ Bitir; tis’s missing probability depends on ¢;; and ¢;, through logit(P(d;5 =
1ti,tie)) = o + Biti + Patie. Under the MNAR mechanism, ¢;4’s missing probabil-
ity depends on ¢;; and t;3 through logit(P (8,4 = 1|ti1,ti3)) = a + Pita + Pstis; tis’s
missing probability depends on t¢;1, t;2, t;3 and unobservable disease status D; through

lOg’Lt(P((SZ5 = 1|ti1, ti27 ti37 Dz)) = Oé/—f—ﬁitﬂ +52t7;2 +ﬁétz3+64DZ The coefficients of IOglt
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models are set to v = 1.5, 1 = —2.5, By = =2, B3 = —1.5, By = —0.7, &/ =2, f] = =2,
p4 = —3. Under the MAR mechanism, the missing probabilities vary from 0.18 to 0.73
for t;4 and from 0.12 to 1.00 for t;5. The average missing probabilities are about 30%
for T, and 40% for T5. Under the MNAR mechanism, the missing probabilities vary
from 0.18 to 0.92 for ¢;4 and from 0.12 to 1.00 for ¢;5. The average missing probabilities
for T and T5 are 40% and 50% respectively.

The PLC model’s estimates were obtained from each simulated data set, and the
mean and standard deviation (SD) of the estimates were calculated. For each EM
iteration, 3000 Gibbs sampler iterations were simulated. A burn-in of 1000 MC samples
was implemented for the initial 10 EM iterations. Thinning of the chains was performed
by saving every 2" MC sample, which resulted in 1500 MC samples for each EM
iteration. Thinning decreases the correlation of the chain at the cost of increasing the
number of samples required to obtain the same MC sample size. Hence, we refrained
from over-thinning in the interest of computation time. We assessed convergence by
visual examination. The value chosen for burn-in appears to be reasonable as it cut
off all the early fluctuations. Trace plots of MC samples (e.g. Y1, ned™ Z™) versus
m do not exhibit any pattern or poor mixing of MCMC. We also plotted cumulative
parameter estimates %) against the PX-MCEM algorithm iteration [, which stabilized
(leveled off to a flat line) within 100 EM iterations. According to the convergence
checks, our simulation settings will likely suffice.

In addition, each simulated data set has B = 200 bootstrap samples drawn for SE
estimation. Then, the mean of these SE estimates were calculated. Both the MCMC
simulation and bootstrap resampling are computationally intensive. Parallel computing
was employed to subdivide a simulation task into sub-tasks that can undergo analysis

simultaneously using multi-processors in a high-performance computing environment.
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Histograms of the bootstrap samples demonstrated a bell-shaped curve that was ap-
proximately Gaussian. We also ran the Shapiro-Wilk test for each bootstrap sample
and failed to reject the null assumption of normality, with almost all p-values being less
than 0.05. The SE estimates closely match the SD estimates. All these results indicate
good behavior of the bootstrap method. To explore the effect of increasing simula-
tion size S and/or bootstrap sample size B, we did sensitivity studies with S = 400
and B = 400. The results of these studies do not show much improvement. To save
computational time, we stick with .S = 200 and B = 200 for all simulation studies.

Table 3.1 summarizes the simulation results when the true parameter values as used
as the starting values. Under both the MCAR and MAR mechanisms, the PLC model
gave unbiased estimates with good coverage probabilities for all parameters (all above
90% and most around 95%). Under the MNAR mechanism, the coverage probabilities
are slightly worse for Se; (88.2%). The PLC model is robust to data sets with abundant
missing values (e.g., the missing probabilities of ¢;5 are 90% for MCAR, 40% for MAR,
and 50% for MNAR) when the starting values are very close to the true values.

For our proposed method, we fit the TLC model first and used the parameter
estimates as starting values for prevalence and diagnostic accuracy. For R; and Ry,
the starting values were set to 0.5 for all off-diagonal elements. The estimates of the
PLC model are considerably more accurate than the estimates of the TLC model as
they move closer towards the true values. Under the MCAR mechanism, coverage
probabilities for prevalence, sensitivities, and specificities are around 95% for all tests
except for t;5, due to its high percentage of missing values. Under the MAR and MNAR
mechanism, coverage probabilities for sensitivities and specificities are a little worse but
the majority are still above 90%. Not surprisingly, the coverage probabilities are much
worse for R; and Ry due to their arbitrary starting values. It is noteworthy that the

coverage probabilities for R usually are better than for R, possibly due to the fact
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that more data are available from non-diseased subjects for estimation of Rj.

Additional simulation studies were conducted with different starting values for the
PX-MCEM algorithm to illustrate their effects on parameter estimates. For example,
we obtained starting values following the method of Walter and Irwig (1988), which
was based on the majority opinion among multiple radiologists. The starting value of
prevalence was set to the proportion of subjects with at least three positive tests among
all subjects with at least three non-missing tests; the starting value of sensitivity for
each test was set to the proportion of subjects with a positive result for this test among
all subjects with at least three positive tests and a non-missing result for this test; the
starting value of specificity for each test was set to the proportion of subjects with a
negative result for this test among all subjects with no more than two positive tests
and a non-missing result for this test. These starting values deviate further away from
the true values than do the TLC estimates, and hence result in much poorer coverage
probabilities. Essentially, the closer the starting values are to the true values, the better
the PLC model performs in terms of coverage probabilities.

Figure 3.2 presents correlation residual plots under different missing data mech-
anisms. The true parameter values for my, g, and 34 (d = 1,0) were used for the
model-based correlation coefficients. Under the MCAR mechanism, all pairwise cor-
relation residuals are close to zero, and there is no noticeable pattern, which means
a good fit. Under the MAR mechanism, the correlation residuals between the two
MAR tests (t;4 and ¢;5) and the three non-MAR tests tend to be negative, suggesting
an overestimation of such correlations. Under the MNAR mechanism, the correlation
residuals between the two MNAR tests (t;4 and t;5) and the three non-MNAR tests in-
dicate more serious overestimation of their correlations. All three plots are supported

by the simulation results.
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3.5 Results

We applied the proposed method to the C-CFR study to obtain estimates of the
diagnostic accuracy under the conditional dependence assumption. For the C-CFR
data, we have N = 3,487 subjects and J = 11 tests. First, the TLC model under the
conditional independence assumption was fit, and the estimates from the TLC model
were used as the starting values for the PLC model under the conditional dependence
assumption. The starting values for R; and Ry are all set to 0.5. An MC sample of
size M = 1,500 was simulated for each EM iteration with a burn-in of 1000 for the
initial 10 EM iterations. We thinned a chain by keeping every other simulated draw.
Trace plots of MCMC iterates S5 npdt™ and S8 npd™ Z™ show that the chains
have reached good mixing. To monitor the convergence of the PX-MCEM algorithm,
we plotted the estimates of the parameters of prevalence, sensitivity, and specificity
versus the number of iterations of the PX-MCEM algorithm. The convergence plots
also indicate good convergence since all parameter estimates fluctuate randomly around
the 6 = 6 line and stabilize (converge) after 100 iterations.

The SE estimates used for 95% Cls are based on B = 1,000 bootstrap samples ran-
domly sampled with replacement from the original data. Figure 3.3 shows histograms
of bootstrap samples for prevalence and diagnostic accuracy. Most of the histograms
are well approximated by a Gaussian bell curve, which indicates that their sampling
distributions are close to normal. Tests BAT26 and BATS3/C4 have histograms that
were cut off to the right boundary 1 due to their very high specificities. The QQ plots
in Figure 3.4 also support the approximate normality of the bootstrap samples.

Figure 3.1 plots all w

= 55 pairwise correlation residuals for both the TLC
and PLC models. In general, the deviation of the correlation residuals from the zero
reference line is smaller for the PLC model, indicating that the model provided a better

fit than the TLC model. The largest deviation involves tests D175250 and D25123
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because they have the highest missing probabilities (41.9% and 81.7%).

Table 2.3 presents the estimates of prevalence and diagnostic accuracy with 95%
CIs from the TLC and PLC models. As expected, the estimates provided by the TLC
and PLC models are very similar. Test BAT25 has the highest sensitivity of 0.9394
while D55346 has the lowest sensitivity of 0.6294. All of the tests have high specifities
(> 0.93) with the highest sensitivity of 0.9986 for test BAT26. BAT25 and BAT26 are
shown to be the two best biomarkers (BAT25 has the highest sensitivity and the third
highest specificity; BAT26 has the highest specificity and the second highest sensitiv-
ity.) They also happen to be two of the five biomarkers for the NCI-recommended mi-
crosatellite sequence panel, with the other three being D25123, D55346, and D175250.
The pairwise correlation coefficients Ry and Ry are listed in Table 3.3. Estimates of
Ry vary from 0.0953 to 0.6166, and estimates of Ry vary from 0.2730 to 0.4863. The
estimates of R; must be viewed with caution since simulation studies have suggested
that they are less accurate due to their much poorer starting values. We test Hy: all
correlation coefficients of R; are equal to zero vs. H;p: at least some correlation coef-
ficients of R, are greater than zero. Let éRl denote estimates of R; and SEéR1 denote

Or,
SE,

standard errors of fg, ). The nominal p-values ®(—| ) are adjusted by Bonferroni

Ry
correction, i.e. multiplied by the total number of tests @ = 55. 40 out of the 55
p-values are less than 0.05. Therefore we reject Hy and conclude that at least some

test results are conditionally dependent for diseased subjects. Similarly, testing for Ry

supports conditional dependence assumption for non-diseased subjects.

3.6 Discussion

In this article we extended the use of the PLC model to the analysis of diagnos-
tic tests for which many results are missing and for which there is no gold standard.

The application we was concerned with the estimation of the prevalence and diagnostic
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accuracy of 11 biomarker tests from the C-CFR study. A parameter expanded cumu-
lative MCEM algorithm was implemented to facilitate the computation of the orthant
probabilities of multivariate normal distributions. The PX-MCEM algorithm provides
an analytically tractable M-step and also eases the complexity of evaluating condi-
tional expectations in the E-step. We applied the TLC model under the conditional
independence assumption to derive the starting values for the PLC model. Then, we
assumed conditional dependence among the tests for the PLC model, which is more
plausible due to the biologically similar basis of these tests. The estimates provided by
the PLC model were fairly close to the estimates provided by the TLC model. This is
consistent with our simulation studies that also showed that the two models produced
similar results. We are confident that the estimates from the TLC model are useful as
first approximations for subsequent iterations of the PX-MCEM algorithm. The PLC
model generated estimates that are even closer to the true values than those of the
TLC model. Although there is no established way to assess the underlying missing
data mechanism, when the starting values used in the PLC model are close to the true
values and the missing percentages are moderate, the model is robust irrespective of
the underlying assumptions concerning missing data. In cases in which the percentages
of missing data are high, multiple imputation can be used, but this is beyond the scope
of this paper.

Another advantage of the PLC model is that it readily can be extended to explicitly
model the effects of the characteristics of an individual (including, but not limited to,
gender, race, age at diagnosis, and stage of colon cancer) on prevalence and diagnostic
accuracy. Let X; denote the covariate vector of the characteristic of subject 7. Then,
we assume that Z;|D; = d ~ N;j(X;By, %), where d = 1 or 0. This will be fully
investigated in our future research.

It is important to note that the final estimates are highly sensitive to the starting
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values. We also found that starting values affect the speed of convergence, i.e., it
took much longer to reach convergence with poor starting values, which would be
computationally prohibitive if we repeat the method on a large amount of bootstrap
samples to get SE estimates. Therefore, it is critical to find even better starting values.
For prevalence and diagnostic accuracy, we can resort to other models that allow for
conditional dependence, such as the Gaussian random effects model (Qu et al., 1996).
Unfortunately, no method is available for achieving viable starting values for correlation
coefficients. We cannot use the observed correlations between T;; and T;;, because they
are very different from the correlations between the latent variables Z;; and Z;;, due
to loss of information from the dichotomization of continuous Z; to binary T;. For this
article we used an arbitrary starting value of 0.5, which results in much less accurate
estimates of R; and Ry. It will be beneficial to identify starting values for R, that
are sufficiently reliable. One potential strategy would be to assume certain simplified
structures for R; and Ry that could be justified scientifically and/or on the basis of
expert opinion, e.g., it could be assumed that the tests are dependent for the diseased
subjects but independent for the non-diseased subjects, i.e., all of the off-diagonal
entries of Ry are zero.

One limit of the PLC model is that the number of tests must be J > 5. The reason
for this is that the total number of model parameters (J? + J + 1) cannot exceed the
degrees of freedom of the observed data (27 — 1) for a model to be identifiable. For
studies that involve less than 5 tests, other methods must be considered, e.g., Bayesian
methods that incorporate non-identifiability in the likelihood (Dendukuri and Joseph,
2001), fixing the values of certain parameters (Hui and Walter, 1980), and methods
that address partial identifiability (Jones et al., 2010).

Simulation studies demonstrate compelling closeness of bootstrap SE estimates to

SD of the PLC model parameter estimates, even under the nonignorable missing data
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assumption. Nevertheless, Efron (1994) considered the bootstrap estimates to be invalid
under the nonignorable missing data assumption. Another drawback of the bootstrap
method is that it can be extremely time-consuming for studies that have a large number
of subjects N and/or a large number of tests J. Then, it may be essential to investigate
alternative methods for SE estimation, e.g., the Louis formula (1982) and supplemented
EM (SEM) algorithm (Meng and Rubin, 1991). For the C-CFR data, the Louis formula
did not work out probably due to the high sensitivities and specificities. We expect
the Louis formula will perform better with moderate sensitivities and specificities in
further research.

Computation challenges are posed by both bootstrap resampling and MCMC sim-
ulations during the E-steps. Not to mention that the number of parameters increases
quadratically for high-dimensional correlation matrices. For a modest number of tests,
Gaussian-Hermite quadrature can be a more efficient alternative for approximating in-
tegrals over a finite number of quadrature points. But the C-CFR data require much
more computing resources with the large number of quadrature points required for high
dimensions. Embarrassingly parallel computing was employed for data simulation and
bootstrap. By contrast, MCMC simulations are based on correlated sampling, i.e., the
input of the next iteration is dependent on the output from the previous iteration.
Such iterations are not naturally convertible into parallel code because they cannot be
executed concurrently. To render the PX-MCEM algorithm more computationally fea-
sible, we will explore methods for parallelization of MCMC, for instance, by distributing
entire chains or parts of chains to different processors (Feng et al., 2003).

One concern over latent class models is the lack of clinical definition of disease,
prevalence, and diagnostic accuracy, because disease is an implicitly defined random
variable (Pepe and Janes, 2007). There are certain cases in which the nature of disease

has a spectrum of severity rather than being binary. For our case study, while it
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was expected that the PLC model would provide a reasonable latent structure for
the biology in HNPCC, additional caution must be exercised in the interpretation of
the study results. It also is worthwhile to note that there is no substitute for a gold
standard test when one is available, even if the gold standard is applied to only a small
fraction of the subjects. Another area for potential future research is to determine
whether the previously mentioned mutational analysis (a costly gold standard) can be
applied to at least some patients to facilitate the evaluation of the 11 MSI biomarker
tests. Interdisciplinary collaboration between statisticians, clinicians, and laboratory

scientists is vital for the achievement of these research goals.
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Figure 3.2: Correlation Residual Plots for Simulated Data Sets
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Figure 3.3: Histograms of Bootstrap Samples (B=1000) for Prevalence and Diagnostic
Accuracy
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Figure 3.4: QQ Plots of Bootstrap Samples (B=1000) for Prevalence and Diagnostic
Accuracy
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Table 3.2: Estimates and 95% CIs of Se, Sp, and Prevalence from Different Models

TLC Model

PLC Model

Se (95%CI)

Sp (95%CT)

Se (95%C1)

Sp (95%CT)

ACTC
BAT25
BAT26
BAT40
BAT34C4
D10S197
D175250
D18S55
D2S123
D55346
MYCL

Prevalence

0.7111 (0.665, 0.753)
0.9405 (0.915, 0.959)
0.9308 (0.903, 0.951)
0.9301 (0.902, 0.951)
0.8499 (0.812, 0.882)
0.8353 (0.796, 0.868)
0.8120 (0.762, 0.854)
0.8098 (0.770, 0.844)
0.8493 (0.747, 0.915)
0.6455 (0.600, 0.688)
0.7587 (0.716, 0.797)

0.9700 (0.963, 0.976)
0.9962 (0.993, 0.998)
0.9985 (0.996, 0.999)
0.9867 (0.981, 0.991)
0.9980 (0.995, 0.999)
0.9816 (0.975, 0.986)
0.9564 (0.946, 0.965)
0.9842 (0.978, 0.988)
0.9769 (0.960, 0.987)
0.9923 (0.988, 0.995)
0.9360 (0.926, 0.945)

0.1482 (0.137, 0.160)

0.6982 (0.650, 0.743)
0.9394 (0.907, 0.961)
0.9314 (0.897, 0.955)
0.9268 (0.895, 0.950)
0.8434 (0.799, 0.879)
0.8153 (0.771, 0.853)
0.7881 (0.735, 0.833)
0.7967 (0.754, 0.834)
0.8444 (0.740, 0.912)
0.6294 (0.583, 0.673)
0.7419 (0.697, 0.782)

0.9680 (0.961, 0.974)
0.9958 (0.992, 0.998)
0.9986 (0.996, 1.000)
0.9869 (0.981, 0.991)
0.9977 (0.994, 0.999)
0.9787 (0.972, 0.984)
0.9543 (0.943, 0.963)
0.9822 (0.976, 0.987)
0.9766 (0.960, 0.987)
0.9900 (0.985, 0.993)
0.9348 (0.925, 0.944)

0.1485 (0.137, 0.161)
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Table 3.3: Estimates and 95% ClIs of Ry and R, from the PLC Model

Ry (95% CI)

Ro (95% CI)

Ry (95% CI)

Ro (95% CI)

0.3210 (0.154, 0.550)
0.2516 (0.091, 0.531)
0.4446 (0.266, 0.639)
0.1147 (0.017, 0.488)
0.3370 (0.185, 0.533)
0.3346 (0.176, 0.543)
0.3643 (0.213, 0.549)
0.4630 (0.287, 0.649)
0.4141 (0.233, 0.622)
0.4651 (0.284, 0.656)
0.6008 (0.462, 0.725)
0.3202 (0.153, 0.552)
0.2847 (0.115, 0.551)
0.0953 (0.011, 0.492)
0.3567 (0.202, 0.549)
0.6048 (0.471, 0.725)
0.4777 (0.302, 0.659)
0.4692 (0.282, 0.666)
0.3659 (0.203, 0.566)
0.5990 (0.457, 0.726)
0.5878 (0.451, 0.712)
0.5552 (0.422, 0.681)
0.2486 (0.100, 0.497)
0.1848 (0.051, 0.491)
0.2261 (0.078, 0.502)
0.4853 (0.328, 0.645)
0.5287 (0.385, 0.668)
0.5735 (0.428, 0.707)

0.3885 (0.333, 0.448)
0.3885 (0.337, 0.442)
0.4548 (0.411, 0.499)
0.3881 (0.320, 0.461)
0.4196 (0.376, 0.465)
0.4500 (0.405, 0.495)
0.3923 (0.343, 0.444)
0.4625 (0.420, 0.506)
0.4604 (0.418, 0.503)
0.4325 (0.389, 0.477)
0.4180 (0.344, 0.496)
0.4472 (0.391, 0.505)
0.4298 (0.382, 0.479)
0.4053 (0.354, 0.458)
0.4446 (0.396, 0.495)
0.3868 (0.313, 0.466)
0.4148 (0.362, 0.470)
0.4440 (0.394, 0.496)
0.3794 (0.322, 0.440)
0.4191 (0.366, 0.474)
0.4629 (0.389, 0.539)
0.4138 (0.347, 0.484)
0.4159 (0.369, 0.464)
0.4604 (0.414, 0.507)
0.4488 (0.385, 0.514)
0.4377 (0.392, 0.485)
0.4689 (0.400, 0.539)
0.4441 (0.373, 0.518)

(1,9)
(2,9)

0.4213 (0.260, 0.602)
0.3470 (0.209, 0.517)
0.4111 (0.259, 0.582)
0.2856 (0.158, 0.460)
0.3759 (0.230, 0.548)
0.4498 (0.300, 0.609)
0.5443 (0.402, 0.679)
0.3715 (0.217, 0.557)
0.4657 (0.330, 0.607)
0.2448 (0.088, 0.521)
0.2904 (0.116, 0.560)
0.1011 (0.011, 0.529)
0.2575 (0.122, 0.464)
0.5068 (0.369, 0.644)
0.4654 (0.322, 0.614)
0.3232 (0.186, 0.499)
0.3758 (0.220, 0.562)
0.4589 (0.321, 0.604)
0.2615 (0.114, 0.494)
0.4034 (0.220, 0.619)
0.2955 (0.141, 0.518)
0.5000 (0.344, 0.656)
0.6089 (0.472, 0.731)
0.6166 (0.483, 0.735)
0.4739 (0.330, 0.622)
0.4171 (0.275, 0.575)
0.5228 (0.395, 0.648)

0.4275 (0.367, 0.490)
0.4537 (0.404, 0.504)
0.4513 (0.407, 0.496)
0.4322 (0.387, 0.479)
0.4670 (0.423, 0.511)
0.4257 (0.371, 0.483)
0.4786 (0.417, 0.540)
0.4561 (0.404, 0.509)
0.4236 (0.360, 0.490)
0.4559 (0.407, 0.505)
0.4804 (0.432, 0.529)
0.4432 (0.393, 0.495)
0.4421 (0.398, 0.487)
0.4819 (0.411, 0.554)
0.4863 (0.410, 0.563)
0.4546 (0.395, 0.516)
0.4643 (0.414, 0.515)
0.2730 (0.199, 0.362)
0.3593 (0.299, 0.424)
0.3832 (0.333, 0.436)
0.3430 (0.273, 0.420)
0.3665 (0.315, 0.421)
0.3122 (0.244, 0.390)
0.3583 (0.282, 0.443)
0.3854 (0.311, 0.466)
0.4076 (0.348, 0.470)
0.3567 (0.293, 0.426)

Note: 1=ACTC, 2=BAT25, 3=BAT26, &=BAT40, 5=BAT34C4, 6=D105197,
7=D175250, 8=D18S55, 9=D2S123, 10=D55346, 11=MYCL
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Chapter 4

DiagLCA - An R Package for the
Evaluation of Binary Tests

4.1 Introduction

In diagnostic medicine, observed signs, symptoms, or test results are commonly
dichotomized into two possible outcomes, i.e., “positive” or “negative.” Evaluation
of the diagnostic accuracy (sensitivity and specificity) of such binary tests is of great
importance because reliable diagnoses of patients’ medical conditions are critical in
health practitioners’ treatment plans. Ideally, diagnostic accuracy of a new test could
be evaluated by comparing its results with the test results of a gold standard, which
would definitively separate those subjects with disease from those without disease.
In other words, a gold standard is, by definition, error-free with both sensitivity and
specificity equal to 1. In practice, a gold standard may not exist or is too costly/invasive
to apply. Latent class analysis (LCA) is a group of popular methods that assess the
diagnostic accuracy of multiple imperfect tests in the absence of a gold standard. It
treats the unobserved true disease status as a latent variable with binary classification
(present or absent). The latent variables can only be evaluated indirectly through

observable measurements called manifest variables, e.g. observed test results and/or



patient characteristics (e.g., gender and age).

LCA has a sound theoretical basis in maximum likelihood (ML) or Bayesian method-
ologies. For the ML approach, the estimation of parameters by latent class mod-
els usually involve iterative methods, such as the Fisher scoring algorithm (Espeland
and Handelman, 1989), the Newton-Raphson method (Qu and Hadgu, 1998), and the
expectation-maximization (EM) algorithm (Dempster et al., 1977; Dawid and Skene,
1979). For the Bayesian approach, the parameters often are estimated by Markov Chain
Monte Carlo (MCMC) methods via Gibbs sampling (Joseph et al., 1995; Dendukuri
and Joseph, 2001). The Bayesian approach is particularly useful by incorporating prior
information to address non-identifiability situations when the number of parameters to
be estimated exceeds the available degrees of freedom. However, it is sensitive to the
prior distribution that is chosen. Great caution must be taken to avoid any bias when
collecting prior information. For this article, we focused on ML-based LCA approaches.
The traditional latent class (TLC) model assumes the tests are conditionally indepen-
dent given the true disease status, known as the conditional independence assumption
(Hui and Zhou, 1998; Walter and Irwig, 1988; Rindskopf and Rindskopf, 2006). When
the tests share the same attribute, the conditional independence assumption no longer
holds. Latent class models relaxed for the conditional dependence assumption have been
developed in a dispersed literature (Albert et al., 2004; Espeland and Handelman, 1989;
Yang and Becker, 1997; Qu et al., 1996; Qu and Hadgu, 1998; Uebersax, 1999; Chib and
Greenberg, 1998; Xu and Craig, 2009), including the probit latent class (PLC) model
proposed by Uebersax (1999) and introduced to diagnostic accuracy estimation by Xu
and Craig (2009). The PLC model accommodates conditional dependence among tests
with a general correlation structure assuming a multivariate-normal distribution within
each latent class. A parameter expanded cumulative MCEM (PX-MCEM) algorithm

is implemented to facilitate an analytically tractable M-step and an computationally
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manageable E-step (Liu et al., 1998).

Several R packages have been developed for evaluation of the diagnostic accuracy
of binary tests. DiagnosisMed is applied in evaluation of an index test with compar-
ison to a gold standard (Brasil, 2010). DTComPair computes the accuracy of two
binary diagnostic tests in a paired study design that requires a gold standard (Stock
et al., 2013). R packages utilizing LCA in the absence of a gold standard are also
available. lemr estimates latent class models with random effects with the Bayesian
approach (Wang and Dendukuri, 2012). TAGS generates ML estimates using the
Newton-Raphson method and EM algorithms based on Hui and Walter’s model (1980)
under the conditional independence assumption (Pouillot et al., 2002). randomLCA
utilizes Qu’s random effects model (1996) to allow for condition dependence between
tests (Beath, 2011). However, none of the aforementioned packages can handle missing
tests, which are very common in diagnostic medicine, i.e., a test kit may be out of stock
during a patient’s visit; the doctor may decide to withhold the test; and the patient
may decline the test. Essentially, there are three types of missing data mechanisms
(Little and Rubin, 1987): missing completely at random (MCAR) when the probabil-
ity of missing does not depend on any missing or observed observations; missing at
random (MAR) when the probability of missing does not depend on any other missing
observations, but can depend on some observed observations; missing not at random
(MNAR) when the probability of missing depends on some missing observations or
latent disease status. MCAR and MAR are both “ignorable” missing data mechanisms
whereas MNAR is a “non-ignorable” (NI) missing data mechanism. Research that deal
with missing tests are available when a gold standard is present (Kosinski and Barn-
hart, 2003b; Zhou, 1993; Alonzo, 2005; Lin et al., 2006; He and McDermott, 2012; Yu
et al., 2010; Harel and Zhou, 2006, 2007; Harrell et al., 1996). But to our knowledge,

there is no literature on missing tests evaluation in the absence of a gold standard.
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In this paper, we introduce the DiagLCA package to address the missing data
problem in the evaluation of multiple correlated diagnostic tests without a gold stan-
dard. Section 4.2 provides a methodological background of the TLC and PLC models.
Section 4.3 gives an overview of the DiagLLCA package. Section 4.4 presents a step-by-
step demonstration of the usage of the package through a real-world example. Section

4.5 concludes with a brief summary.

4.2 Methodology

The DiagL.CA package extends Xu and Craig’s (2009) PLC model to estimate the
diagnostic accuracy of conditionally dependent tests when some results are missing.
It also has the capability of fitting a TLC model under the conditional independence
assumption. We give a brief overview of the TLC and PLC models and introduce all

parameters needed as follows:

e N is the total number of subjects.

J is the total number of tests.
e t;; is the test result of the j™ test for the i*" subject.
o T; = (ti, - ,tiy) is for all J test results of the i** subject.

o Z; = (21, -+ ,2y) is a vector of Gaussian latent variables with a multivariate
normal distribution Nj(pg, 24). 2i; > 0 when ¢;; = 1; z;; <= 0 when ¢;; = 0; z;;

could take any value within (—o0, 00) when ¢;; is missing.
e §;; indicates whether the i subject was tested by the j™ test (1=Yes).
o A; = (81, ,0;y) is all non-missing indicators of the i** subject.

e D, =d(d=1,0) is latent disease status (1=VYes).
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e 7, = Pr(D; = d) is probability of disease/no disease (m; is prevalence).
e Se; and Sp; are sensitivity and specificity of the j test.

e a,(d=1,0) are mean vectors of N; (14, £4). Notice the relationship Se; = ®(ay;)
and Sp; = ®(—ag;).

e R; (d=1,0) are correlation matrices of N;(uq, Xq).

o 0 = (m,Sey, - ,Se;, Sp1,---,Spy) is the vector of all parameters for the TLC

model.

o 1 = (m,a11, - ,a1s,Go1, " , Qo5 Ri12, -+, Ras—1), Roja, - -+, Ro,s-1)s) is the

vector of all parameters for the PLC model.

Assuming the unobserved disease status D; is known for each subject i, the log-
likelihood of complete data Y; = (T}, A;, D;) under the conditional independence as-
sumption is logL.(0) = SN | (dilog(mihiy) + (1 — di)log(mohio)), Wwhere

hil =

tz] zy e )(17&']’)51‘]‘
J

h”LO — Sp tzgézg Sp 1 tl])al]

J
J

6 is then estimated using the EM algorithm. Assume 0™ is known at iteration n
forn =0,1,---, (0 is starting value). Solving the score equations during the M-step
and computing the conditional expectations of the complete-data sufficient statistics

during the E-step, we get closed-form solutions for #"+1):
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s o T, (Sef™) % (1=8ef™) 0 1%
LD =1 2T (Sef™) 1% (1-ef™) )% 4 (1—m ™) T, (1-8p§™) 4% (sp™) 1%
! N N
N 105w T (Sel™) 1% (1-5el™) 1)
Se(n—l-l) B =1 ﬂ_g’ﬂ) H;Zl(se‘;n))twéw(1_56271))(1775”)52]+(1_ﬂ_§n))H;’Zl(l_sp;’ﬂ))t”(s” (Sp§n))<17t”)§”
J N 81y TI (Sel™) 9% (1-5elm) 1=1)%
=1l T (56l % (1-5e§) 0 1a)%i 4 (1—-a ™) T, (1-5p0™) i %ia (5p{)) (=i )%
T (1=tiy)0i; (1= TT_y (1=8p™) i3 (sp{"™)) 1%
Gt =1l Ty (e 1% (1=sel™) 100 4 (1= (™) [Ty (1=5p") 3% (sp™)) %
pj - (7T RN, (n)\(1—t;;)8;;
55 (1—my )Hj:1(1 Spj )71 (Sp;) 7

N J
Zi:l 7rEn) H]JZI(Segn))tiﬁij (1_582"))“*%]')61‘]‘_;’_(1_71.5"))Hj:l(l_sp;"))tij‘sij (Sp§"))(1*tij)5z‘j

We iterate EM steps until convergence to get the ML estimate 6 for the TLC model.
Now we move on to describe the PLC model. The PX-MCEM algorithm is used to
estimate 7. To ensure a closed-form solution for the M-step, the parameter vector
n is expanded to f = (my, p1, 21, fo, o) Where pg = Vd%ad and X = Vd%RdVd% (Liu
et al., 1998). Z; is introduced to account for the similarity between tests of subject

¢ under the conditional dependence assumption. The log-likelihood of complete data

}/; = (E?A’HZZ?DZ) 1s

N J
logLe(B) = log | [{m" (1 = )" (Zis pr, $0)"65(Zis 10, 20) ™ [ |

i=1 =1

I(z;; € Bij)}

= Z{dilog(m) + (1 — d)log(1 — m1) + dilog(¢5(Zs; 11, 51))

+(1 = di)log(¢5(Zii pro, To)) + Y _log(I(z; € Bij))}

=1

The closed-form solutions for ™+ is:
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mty _ 1 (n)
= — E|d;|T;, A;,
! ¥ 2 BlAIT, A1, 5
(n+1) >y Bldi(1 — dy) 1 Z|T;, A, B™]
Mg =

SN E[dA(1 — d) T, A, B

)

VLB - d) N Z — pa)(Zi — pa)'|Ti, A, BT

> :
Zf\; Eld}(1 — d)'=4T;, Ay, )]
S Bl = d) T, A g0 T T

Egln-i-l)

Reduce the expanded parameter through U, (a diagonal matrix with diagonal ele-

ments equal to those of Zénﬂ)), we get the estimates for ag and Ry:

U2

(n+1)
ay d

_1
Rglnﬂ) = UdEEgLH)Ud

NG

Now, we can compute the above conditional expectations of the expanded complete
data sufficient statistics via a Markov chain Monte Carlo (MCMC) method. As for
standard errors of point estimates, DiagLCA employs the Louis formula (1982) for the
TLC model and the bootstrap method for the PLC model (Efron, 1979). DiagLCA
provides a graphic check for the conditional independence assumption (Qu et al., 1996;
Chu et al., 2009). If the graphic check or other resources (clinician opinions, biology
knowledge, etc.) dictate the conditional independence assumption is appropriate in
practice, one may proceed with the TLC model to get diagnostic accuracy. Otherwise
if the conditional independence assumption does not hold, users can go with the PLC

option.
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Starting values for the parameters of the PLC model are needed in order to initiate
the iterations of the PX-MCEM algorithm. The final estimates of the PLC model are
highly sensitive to the starting values. One common practice for the EM algorithm
is to try different sets of starting values to ensure that a global maximum is reached.
We do not recommend this approach due to the computational intensity of the PX-
MCEM algorithm and the bootstrap method. Users should enter the best set of starting
values available from clinician opinions, other studies for the same tests, or preliminary
model estimates from other statistical methods. When users do not have any reliable
information on starting values, we propose fitting the computationally efficient TLC
model first and using the TLC model estimates as starting values for the PLC model.
Our simulation results have proven that the TLC model’s estimates are good starting
values for the PLC model to generate estimates closer to the true values.

The distinctive advantage of DiagLCA over other available R packages is its abil-
ity to handle missing data. Although the assumption of the missing data mechanism
cannot be checked /tested without additional information on the missing data, sensitiv-
ity analyses have shown that the PLC model is robust to the underlying missing data
assumptions as long as the starting values are close to the true values and the missing

percentages are not too high.

4.3 The R Package DiagLCA

4.3.1 Function indTLC

indTLC, one of the two main functions, applies the TLC model under the conditional

independence assumption. The synopsis for indTLC is:

indTLC(data, nTest=11, iniSize=10, prev=prev0, sens=sensO,

spec=spec0, thresh=0.001, stable=5, print=FALSE)
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The arguments of indTLC are described as follows:

e data: The original data set name. The data is expected to be in a specific
format. Each record corresponds to one subject. The first column is for subject
ID. Columns 2 to J + 1 correspond to 1'; columns J 4+ 2 to 2J + 1 correspond to
A.

e nTest: Number of tests, i.e. J.

e iniSize: The number of different sets of initial values. In order to ensure a global

maxima is reached, we recommend no less than 5.
e prev: A vector of length iniSize for initial values of prevalence.
e sens: A matrix with iniSize rows and J columns for initial values of sensitivity.
e spec: A matrix with iniSize rows and J columns for initial values of specificity.

e thresh: The threshold to decide when EM iterations converge. The sum of
absolute changes for all parameter estimates should be less than this threshold

for a prespecified number of consecutive iterations (stable). Default value is

0.001.

e stable: The number of consecutive iterations that a threshold (thresh) has been

reached. Default value is 5.

e print: If TRUE, depPLC will print in the output window the outputs resulted.
Default value is TRUE.

4.3.2 Function depPLC

The other main function is depPLC, which fits the PLC model under the conditional

dependence assumption. It is used as:
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depPLC(data, count=TRUE, nTest=11, iniSize=1, prev=prev0, al=al.0,
a0=a0.0, R1=R1.0, RO=R0.0, ndraw=1500, burniter=10, burndraw=1000,

thin=2, nboot=200, bootseed=1:200, thresh=0.001, stable=5, print=FALSE)

Many arguments for depPLC are the same as indTLC. The diffrent/new ones are:

e count: Default value is TRUE. It converts the original data input into a data
frame with each record corresponding to one data pattern. Columns 1 to J
correspond to 7', column J + 1 represents number of subjects sharing the same
pattern. If the input data is already in this format, the value should be set to
FALSE.

e iniSize: Here we recommend using the TLC model estimates as starting values,

i.e. iniSize is 1.
e al: A matrix with iniSize rows and J columns for initial values of a;.
e a0: A matrix with iniSize rows and J columns for initial values of ag.

e R1: An array of iniSize matrices (each with J x J dimension) for initial values
of Ry. Defaul value is a diagonal matrix with 1 for all diagonal elements and 0.5

for all off-diagonal elements.

e RO: An array of iniSize matrices (each with J x J dimension) for initial values
of Ry. Defaul value is a diagonal matrix with 1 for all diagonal elements and 0.5

for all off-diagonal elements.
e ndraw: Number of draws for each Monte Carlo sample. Default value is 1500.
e burniter: Number of early MC samples with burn-in draws. Default value is 10.

e burndraw: Number of burn-in draws to be discarded during initial portion of a

MC sample. Default value is 1000.
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e thin: Number of thinning. Default vaule is 2, i.e. keep every 2"¢ simulated draw

from each sequence.

e nboot: The number of bootstrap samples for standard error calculation. Default

value is 200.

e bootseed: A vector of length nboot for random seeds of bootstrap samples.

Defalut values are the sequence number of each bootstrap sample (1,2, -+ ,200).

The rest of the functions provide diagnostic plots for the PX-MCEM algorithm and
bootstrap method, produce visual checks for model assumptions, and create simulated

data sets for simulation studies.

4.3.3 Function modelcheck

modelcheck generates correlation residual plots proposed by Qu et al. (1996), or

plots observed vs. model based Kappa statistics proposed by Chu et al. (2009).

modelcheck(x, type = "1", xlab="Model Based Kappa",

ylab="0Observed Kappa", method="kappa", ...)

Most of the arguments here are the same to graphic function plot, e.g., type denotes
whether to plot symbols, lines, or both; xlab and ylab define labels of axises. (The

x-axis label is typically blank.) The special arguments are:

e x: A depPLC object containing the input values needed: all pairwise differences
between observed and model based correlation coefficients for method "kappa”;
a vector of all pairwise differences between observed and model based Kappa

statistics for method "kappa”.

e method: Model checking method. Possible values are "kappa” and ”corr”.
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4.3.4 Function traceplot

traceplot plots MC iterations vs. sampled values for specified PX-MCEM itera-

tion(s), with a separate plot for each parameter.

traceplot(x, iter=1:10, type = "1", xlab = "Iterations",

ylab = "", ...)
Refer to plot for other arguments except for x and iter:

e x: A depPLC object containing the input values needed: cumulative MC samples

during each PX-MCEM iteration.

e iter: Specify the PX-MCEM iteration(s) where MC samples are plotted. Possi-

ble values are 1, 1 : 10, etc.

4.3.5 Function convergplot

convergplot plots PX-MCEM algorithm iterations vs. the PLC model parameter

estimates (prevalence, diagnostic accuracy, and correlation coefficients).
convergplot(x, type = "1", xlab = "Iterations", ylab = "", ...)
Refer to plot for other arguments except for x:

e x: A depPLC object containing the input values needed: cumulative parameter

estimates over all PX-MCEM iterations until convergence is reached.

4.3.6 Function histgram

histgram generates histograms of all bootstrap samples (used for standard error

estimation) for each parameter.
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histgram(x, xlab = colnames(x), breaks=20, ...)
The arguments are the same as the standard R function hist except for x:

e x: A depPLC object containing the input values needed: parameter estimates for

all bootstrap samples.

4.3.7 Function qgplot

qqplot generates QQ plots of all bootstrap samples for each parameter.
qqplot(x, main =colnames(x), ...)
The arguments are the same as the standard R function qqnorm except for x:

e x: A depPLC object containing the input values needed: parameter estimates for

all bootstrap samples.

4.3.8 Function simudata

simudata produces simulated data sets under different missing data mechanisms.
Each data record corresponds to one subject. The first column is for subject ID;
columns 2 to J 4 1 correspond to T'; columns J + 2 to 2.J 4+ 1 correspond to A, the last
column is for true disease status. simudata can be integrated with indTLC and depPLC

to carry out simulation studies.

simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,
prev=prev.0, al=al.0, a0=a0.0, R1=R1.0, RO=RO.O,

CDA=TRUE, miss=rep(1,5), missprob=missprob)

The arguments are defined as:

80



seed: Random seed.

nTest: Number of tests, i.e. J.

nSubj: Number of subjects, i.e. V.

nData: Number of data sets simulated for each simulation study.
prev: A vector of length nStudy for initial values of prevalence.

al: A matrix with nStudy rows and J columns for initial values of a;.
a0: A matrix with nStudy rows and J columns for initial values of ay.

R1: An array of nStudy matrices (each with J x J dimension) for initial values

of Rl.

RO: An array of nStudy matrices (each with J x J dimension) for initial values

of Ro.

CDA: Specify the conditional dependence assumption among tests (value TRUE)

or conditional independence assumption (value FALSE). Default value is TRUE.

miss: Specify missing data algorithms. Possible values are: 0 for no missing

values, 1 for MCAR,; 2 for MAR; 3 for MNAR.
missprob: A vector for missing probabilities. Only to be used for MCAR tests.

missmodel: A vector for regression coefficients of a logistic regression model for

missing data probability. Only to be used for MAR or MNAR tests.
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4.4 Implementation

4.4.1 Example Data

Colorectal cancer is the third most common cancer in the world. It is more common
in developed countries, where around 60% of cases are diagnosed. Hereditary nonpoly-
posis colorectal cancer (HNPCC), also known as Lynch Syndrome, is an autosomal
dominant genetic condition caused by mutations that impair DNA mismatch repair.
HNPCC patients have an 80% lifetime risk of developing colon cancer compared to 5%
for the general population. Thus, early detection of the disease is highly important for
timely treatment. Microsatellite instability (MSI) biomarker tests have been used to
diagnose HNPCC (Boland et al., 1998; Umar et al., 2004; Lynch and de la Chapelle,
1999). Our data set comes from NCI Colon Cancer Family Registry (C-CFR). To
this end, we have J = 11 MSI tests measured on N = 3,487 individuals from single-
subject families. The data set is included in the DiagLCA package named msi. After

installation of DiagLLCA, load the data set:

R> library(DiagLCA)

R> data(msi)

4.4.2 Initial Exploration

We first examine the data structure:

R> head(msi)

SUBJID T1 T2 T3 T4 T6 T6 Tr T8 T9 T10 T11 M1 M2 M3 M4 M5 M6
[1,] 110030000020 0 O 099 O 09 0 O O O 1 1 1 0 1 1
[2,] 110030000244 0 1 199 99 099 0 99 1 01 1 1 0 0 1

[3,] 110030000392 99 0 0999999 099 0 0 99 0 1 1 0 O O
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[4,] 110030000491 99 0 0 0 0 0 O O 0 9 0 O 1 1 1 1 1

[5,] 110030000624 099 0 0 0 0 0 0 O O O 1 O 1 1 1 1

[6,] 110030000665 0 099 99 9999 19999 0 99 1 1 0 0 0 O
M7 M8 M9 M10 Mii

1,17 o 1 1 1 1

[2,] o 1 0 1 1

3,7 1 01 1 0

4,7 1 1 1 0 1

5,7 11 1 1 1

6,] 1 0 0 1 0

The first column is for subject ID, followed by 11 columns of test results (7") and 11
columns of non-missing indicators (A). Tests T} to T3y correspond to BAT25, BAT26,
BAT40, BAT34CY4, D10S197, D175250, D18555, D25123, D55346, ACTC and MYCL,
respectively. Notice that the column names are only used in the default labels on
figures. Users may freely choose column names as long as the columns follow this
standard structure. All missing values are coded to 99, corresponding to 0 for non-

missing indicators.

R> J <- 11
R> miss <- round((1 - colMeans(msi[, 1+J+1:J]1)), 4)
R> miss
M1 M2 M3 M4 M5 M6 M7 M8 M9
0.1394 0.0771 0.0726 0.1408 0.1397 0.1792 0.4193 0.1342 0.8173
M10 M11

0.0849 0.1663

R> A=msil[,1+J+1:J]
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R> a=rowSums (A)
R> table(a)
a
1 2 3 4 5 6

17 19 16 52 88 203

7 8 9 10 11

216 584 1202 871 219

The missing probabilities range from 7.26% for T3 to 81.73% for T,. Only 219

subjects have all 11 test results. And only 192 subjects have 6 or more tests missing.

4.4.3 Fitting a TLC Model

First, a TLC model is fit using indTLC. We tried different sets of starting values

and ended up with very similar results. For showcasing purposes, we use one set of

arbitrary starting values by specifying iniSize=1.

R> prevO <- 0.1
R> sens0O <- rep(0.8, J)

R> specO <- rep(0.9, J)

R> resultsl <- indTLC(data=msi, nTest=11, iniSize=1, prev=prevo0,

sens=sens0, spec=specO, thresh=0.001, stable=5, print=FALSE)

R> resultsi$Estimates

[1] 0.1482364 0.7110802 0.9405087 0.9308248 0.9301345 0.8499049

[7] 0.8352653 0.8120392 0.8097522 0.8492710 0.6454502 0.7586832

[13] 0.9699805 0.9961616 0.9985180 0.9866882 0.9979755 0.9815781

[19] 0.9564028 0.9841752 0.9769292 0.9922828 0.9360068

R> results1$StdErrs
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[1] 0.0060 0.0226 0.0111 0.0121 0.0123 0.0178 0.0184 0.0234 0.0187
[10] 0.0423 0.0225 0.0207 0.0034 0.0012 0.0008 0.0023 0.0009 0.0027

[19] 0.0049 0.0025 0.0064 0.0017 0.0049

R> resultsi$UpperLimits
[1] 0.160 0.753 0.959 0.951 0.951 0.882 0.868 0.854 0.844 0.915
[11] 0.688 0.797 0.976 0.998 0.999 0.991 0.999 0.986 0.965 0.988

[21] 0.987 0.995 0.945

R> resultsi$LowerLimits
[1] 0.137 0.665 0.915 0.903 0.902 0.812 0.796 0.762 0.770 0.747
[11] 0.600 0.716 0.963 0.993 0.996 0.981 0.995 0.975 0.946 0.978

[21] 0.960 0.988 0.926

indTLC is highly efficient. For the C-CFR data, the EM algorithm converges in
nine iterations (from resultsi$iter) taking only a few seconds. All results are con-
tained in a list object named resultsl. We specify print=FALSE in the interest of
conserving space. Only a selected set of results is presented: point estimates, standard
errors, and upper/lower limits of 95% confidence intervals. (The order of paramaters
is prevalence, sensitivities for 7} to Tj;, and specificities for 77 to T3;.) Users may
also call results1$Prevalence, resultsi$Sensitivity, resultsi$Specificity to
get the exact estimates. Other results, such as complete data information matrix
(resultsi$ComMatrix), observed data information matrix (results1$0bsMatrix),
model based Kappa statistics (results1$ModKappa), and observed Kappa statistics
(results1$0bsKappa) also are accessible. According to the TLC model’s estimates, the
two best tests are T, with the highest sensitivity (0.9405) and third highest specificity,

and T3 with the highest specificity (0.9985) and second highest sensitivity.
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The TLC model is based on the conditional independence assumption. We can run

the following code to check the validity of this assumption:

R> modelcheck(resultsi$Kappa, method="kappa", xlab="Model Based Kappa",
ylab="0bserved Kappa", xlim=c(0.37, 0.94), ylim=c(0.37, 0.94), err="x",

slty=1, cex=0.5, pch=19, sfrac=0, abline=c(0, 1), ablcol="black")

resultsi$ModKappa is a matrix object including observed Kappa statistics and
model based Kappa statistics with upper and lower limits. All of the 95% simultaneous
confidence intervals of model-based Kappa contain the observed Kappa statistics. We
fail to reject the null hypothesis of conditional independence assumption. However,
there is no conclusive test for examination of the conditional independence assumption.
Users are always encouraged to consult healthcare practitioners for clinical perspective
on the assumption. For the C-CFR data, it is reasonable to suspect the tests are
correlated due to their similar biological basis. Thus we proceed with the PLC model

fitting next.

4.4.4 Fitting a PLC Model

The diagnostic accuracy estimates from indTLC provide good starting values for al
and a0. As for R1 and RO, there is no feasible way of deriving good starting values so
a diagonal matrix with 1 for all diagonal elements and 0.5 for all off-diagonal elements

is used.

R> al.0 <- as.matrix(round(qnorm(resultsi$Sensitivity),4))

R> a0.0 <- as.matrix(round(-qnorm(resultsi$Specificity),4))

R> R1.0 = matrix(0.5, J, J, byrow=TRUE) + diag(0.5, J)

R> R0O.0

matrix(0.5, J, J, byrow=TRUE) + diag(0.5, J)
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R> results2 <- depPLC(data=msi, count=FALSE, nTest=11, iniSize=1,
prev=resultsi$Prevalence, al=al.0, a0=a0.0, R1=R1.0, RO=RO.O0,
ndraw=1500, burniter=10, burndraw=1000, thin=2, nboot=1000,

bootseed=1:200, thresh=0.001, stable=5, print=FALSE)

By specifying count=FALSE, the data input is reconstructed to group subjects by
response profiles, so that subjects with all the same test results are processed together
to ease the computation burden of the PX-MCEM algorithm. The reconstructed data

set is stored in the list object as results2$countdata along with other results.

R> msi2 <- results2$countdata
R> head(msi2)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T1i1 n
1 0 0000 0 0 O O 0 0166
2 0 0 0 000 00 O 0 1 11

3 0 0 00O 0O 0 O0 O0 0 99 28

R> tail(msi2)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Til n
882 99 99 99 99 99 99 0 099 99 991
883 99 99 99 99 99 99 0 99 99 99 99 1
884 99 99 99 99 99 99 1 1 99 1 01
885 99 99 99 99 99 99 1 99 99 99 99 1
886 99 99 99 99 99 99 99 99 99 0 99 1

887 99 99 99 99 99 99 99 99 99 99 0 3

87



There is a total of 887 response profiles for the C-CFR data. The total number of
possible profiles is 31! — 1 = 177146 with three possible test results (1, 0, 99). Thus,
many profiles have very few subjects, and many more profiles are not observed. We
assume ignorable missing data assumptions for the missing profiles. The final results

are:

R> results2$iter

[1] 100

R> results2$Prevalence

[1] 0.1485005

R> results2$Sensitivity
[,1]
[1,] 0.6982015
[2,] 0.9393666
[3,] 0.9314466
(4,1 0.9267739
[5,]1 0.8433803
[6,] 0.8153116
[7,]1 0.7881319
(8,1 0.7967001
[9,] 0.8444460
[10,] 0.6294338

[11,] 0.7419136

R> results2$Specificity
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[1,]
[2,]
[3,]
[4,]
[5,]
(6,1
[7,]
(8,]
[9,]
[10,]

[11,]

[,1]

.9679827

.9968260

.9986460

.9868597

.9977364

.9787428

.95643197

.9822086

.9766155

.9899994

.9348244

R> results2$R1

[1,]
(2,]
(3,]
(4,]
(5,]
(6,]
(7,]
(8,]
[9,]
[10,]

[11,]

[,1]

.0000000

.3210300

.25616105

.1147414

.3642791

.6007651

.6048265

.5651875

.4213350

.4657090

.4588924

[,2]

.3210300

.0000000

.4445768

.3370051

.4629772

.3202018

4777211

.2486382

.3469771

.2448462

.2614890

(,3]

.2516105

.4445768

.0000000

.3346488

.4140617

.2847188

.4692013

.1848360

.4110545

.2903905

.4034129

89

[,4]

.11474140

.33700505

.33464877

.00000000

.46511382

.095628937

.36592877

.22614256

.28561179

.10111881

.295652066

[,5]

.3642791

.4629772

.4140617

.4651138

.0000000

.3566888

.5990494

.4852895

.3758858

.2574552

.4999776

[,6]

.60076510

.32020180

.28471884

.09528937

.35668883

.00000000

.b8777314

.52871200

.44980459

.50680537

.60891431



[1,]
[2,]
[3,]
[4,]
[5,]
(6,1
[7,]
(8,]
[9,]
[10,]

[11,]

[,7]

.6048265

4777211

.4692013

.3659288

.5990494

.5877731

.0000000

.5734948

.5443290

.4654053

.6166252

R> results2$RO

[1,]
(2,]
(3,]
(4,]
(5,]
(6,]
(7,]
(8,]
[9,]
[10,]

[11,]

[,1]

.0000000

.3885253

.38856319

.3880731

.3922833

.4179660

.3868106

.4138077

.4274973

.4235997

.2730062

[,8]

.55651875

.2486382

.1848360

.2261426

.4852895

.5287120

.5734948

.0000000

.3714795

.3231993

.4738745

[,2]

.3885253

.0000000

.4548361

.4195803

.4625262

.4471870

.4147975

.4158910

.4536899

.4559045

.3593206

[,9]

.4213350

.3469771

.4110545

.2856118

.3758858

.4498046

.5443290

.3714795

.0000000

.3757601

.4171032

(,3]

.3885319

.4548361

.0000000

.4500090

.4604344

.4297889

.4439540

.4603657

.4513213

.4804309

.3832185

90

[,10]

.4657090

.2448462

.2903905

.1011188

.2574552

.5068054

.4654053

.3231993

.3757601

.0000000

.5228118

[,4]

.3880731

.4195803

.4500090

.0000000

.4325155

.40562659

.3794102

.4488452

.4322316

.4432340

.3429687

[,11]

.4588924

.2614890

.4034129

.2955207

.4999776

.6089143

.6166252

.4738745

.4171032

.5228118

.0000000

(,5]

.3922833

.4625262

.4604344

.4325155

.0000000

.4446123

.4190582

.4376806

.4669834

.4420838

.3665439

(,6]

.4179660

.4471870

.4297889

.4052659

.4446123

.0000000

.4628957

.4689404

.4257487

.4818607

.3122027



[1,]
[2,]
[3,]
[4,]
[5,]
(6,1
[7,]
(8,]
[9,]
[10,]

[11,]

The PX-MCEM algorithm converges after 100 iterations. The PLC model estimates
are similar to the TLC model estimates but closer to the true parameter values as
simulation studies have shown. The results confirm 75 and T3 as the two best tests
with superior diagnostic accuracy. The estimates for Ry and Ry are less accurate due
to the lack of good starting values. Hence they must be viewed with caution.

We assess the convergence of Markov chains with the following example for MC
samples of T}, which is denoted by E::;lnkdgmzéTx results2$cumZ1 is an array
containing all MC samples. The 1% dimension of the array is set to 1 for T, the 2
dimension is left blank as all MC samples during the PX-MCEM iteration are utilized,

and the 3™ dimension is set to 100, meaning we only include MC samples during the

[,7]

.3868106

.4147975

.4439540

.3794102

.4190582

.4628957

.0000000

.4440690

.4786316

.4862578

.35683231

[,8]

.4138077

.4158910

.4603657

.4488452

.4376806

.4689404

.4440690

.0000000

.4561418

.4546393

. 3854386

final PX-MCEM iteration.

R> traceplot(results2$cumZi[1,,100], iter=100, type = "1",

[,9]

.4274973

.4536899

.4513213

.4322316

.4669834

.4257487

.4786316

.4561418

.0000000

.4643155

.4075752

xlab = "Iteration", ylab = "")
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.4235997

.4559045

.4804309

.4432340

.4420838

.4818607

.4862578

.4546393

.4643155

.0000000

.3566871

[,11]

.2730062

.3593206

.3832185

. 3429687

.3665439

.3122027

.35683231

. 3854386

.4075752

.3566871

.0000000



Figure 4.2 shows the chain is mixing very well. We also plot PX-MCEM algorithm
iterations vs. all sensitivity estimates with the statement below. results2$cumSens
is a matrix with rows for PX-MCEM algorithm iterations and columns for sensitivities

at each PX-MCEM algorithm iteration.

R> convergplot(results2$cumSens, type = "1", xlab = "Iterations",
ylab = "", ylim=c(0.62, 0.94), main="Sensitivity", xlab="Iteration",

col=1:11, abline=results2$Sensitivity, ablcol=1:11)

In Figure 4.3, all sensitivity estimates stabilize after about 50 PX-MCEM iterations
with tiny fluctuation around final estimates before convergence. Finally, we assess
standard error estimation by checking the QQ plot of all bootstrap estimates for the
prevalence. results2$bootMLE is a matrix with columns corresponding to model pa-

rameters (first column is for prevalence) and rows corresponding to bootstrap samples.
R> qgplot(results2$bootMLE[,1], main ="Prevalence")

Figure 4.4 indicates approximate normality of bootstrap samples for prevalence.

4.4.5 Simulate Data Sets for Simulation Studies

We demonstrate how to simulate data sets for three simulation studies under the
conditional dependence assumption. First, we simulate 200 data sets under the MCAR
mechanism. Each data set contains J = 5 tests and N = 3, 500 subjects. miss=rep(1,5)

defines the missing data mechanism for all 5 tests as MCAR.

R> prev.0 <- 0.25
R> se.0 <- ¢(0.7, 0.9, 0.8, 0.6, 0.75)
R> sp.0 <- ¢(0.9, 0.85, 0.9, 0.9, 0.8)

R> R1.0 <- matrix(0.6, J, J, byrow=TRUE) + diag(0.4, J)
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R> RO.0 <- matrix(0.45, J, J, byrow=TRUE) + diag(0.55, J)

R> missprob <- ¢(0.05, 0.1, 0.2, 0.5, 0.9)

R> simMCAR <- simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,
prev=prev.0, se=se.0, sp=sp.0, R1=R1.0, RO=R0.0, CDA=TRUE,

miss=rep(1,5), missprob=missprob)

simMCAR is an array object. The first 6 records of the first data set (simMCAR[,,1])
is showcased below. Notice that the simulated data sets contain one extra column D

for true disease status.

R > head(simMCAR[,,1])

SUBJID T1 T2 T3 T4 T6 M1 M2 M3 M4 M5 D
[1,] 001-0001 1 1 1 199 1 1 1 1 01
[2,] 001-0002 099999999 1 0 O O 00
[3,] 001-0003 1 1 19999 1 1 1 0 01
[4,] 001-0004 O O 099 0 1 1 1 0 10
[6,] 001-0005 O O 19999 1 1 1 0 00

[6,] 001-0006 0 O O 099 1 1 1 1 00

For the second simulation study, we simulate 200 data sets under the MAR mecha-
nism. The true parameter values are the same as above. miss=c(0,0,1,2,2) denotes
that 7} and Ty have no missing values; T3 is MCAR; T, and Ty are MAR. Missing
probabilities of T depend on T; whereas missing probabilities of T5 depend on T} and
T,. missprob=2 defines the missing probability for 75. parameter4 and parameter4

define the logistic regression model parameters for missing probabilities of T and T5.

R> parameter4 <- c(1.5, -2.5, -2, -1.5, 0, -0.7)

R> parameterb <- c(2, -2, 0, -3, 0, 0)
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R> simMAR <- simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,
prev=prev.0, al=al.0, a0=a0.0, R1=R1.0, RO=R0.0, CDA=TRUE,

miss=c(0,0,1,2,2), missprob=0.2, missmodel=c(parameter4,parameter5))
Here we list the last 6 records of the 200" data set (simMAR[, ,200]).

R> tail(simMAR[,,200])

SUBJID T1 T2 T3 T4 T5 M1 M2 M3 M4 M5 D
[3495,]1 200-3495 1 1 19999 1 1 1 0 01
[3496,] 200-3496 0 0 0 0 O 1 1 1 1 10
[3497,]1 200-3497 0 0 0 0 0 1 1 1 1 10
[3498,] 200-3498 1 1999999 1 1 0 0 01
[3499,] 200-3499 0 0 0 0 0 1 1 1 1 10

[35600,] 200-3500 1 1 19999 1 1 1 0 01

Finally we simulate 200 data sets under the MNAR mechanism. Same as the 2
simulation study, 7} and 75 have no missing values and T3 is MCAR. The logistic
regression model parameters parameter4 and parameter4 are also unchanged. The
only difference is that miss becomes ¢(0,0,1,3,3), which means T and T5 are MNAR:
missing probabilities of Ty depend on 77 and T3; missing probabilities of T5 depend on
Ty, Ty, T3, as well as the latent disease status D. Again we showcase the last six records

of the 200" data set.

R> simMNAR <- simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,
prev=prev.0, al=al.0, a0=a0.0, R1=R1.0, RO=R0.0, CDA=TRUE,

miss=c(0,0,1,3,3), missprob=0.2, missmodel=c(parameter4,parameter5))

R> tail (simMNAR[,,200])
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SUBJID T1 T2 T3 T4 T6 M1 M2 M3 M4 M5 D
[3495,] 200-3495 0 0 0 0 0 1 1 1 1 10
[3496,] 200-3496 0 0 0 0 0 1 1 1 1 10
[3497,] 200-3497 0 0 O 099 1 1 1 1 01
[3498,] 200-3498 1 1 19999 1 1 1 0 01
[3499,] 200-3499 0 1 1 099 1 1 1 1 00O

[35600,] 200-3500 0 1 1 199 1 1 1 1 01

We can also simulate data sets under the conditional independence assumption by
specifying CDA=FALSE and dropping R1 and RO. For example, the statement below
simulates data sets under the MCAR mechanism and the conditional independence

assumption.

R> simMCAR <- simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,

prev=prev.0, se=se.0, sp=sp.0, miss=rep(l,5), missprob=missprob)

4.5 Summary

Evaluation of multiple diagnostic tests without a gold standard yet with abundant
missing data is important in diagnostic medicine but no software handling missing
tests has been known to authors. Our DiagLLCA is the first R package to this end. We
first introduced the two useful latent class models, the traditional latent class (TLC)
model for conditionally independent tests and the probit latent class (PLC) model for
conditionally dependent tests. The utility of DiagLCA package is demonstrated in
detail using a real-world example data set in the diagnosis of HNPCC. We fit a TLC
model under the conditional independence assumption, and subsequently fit a PLC
model under the conditional dependence assumption using the TLC model estimates

as starting values for the PX-MCEM algorithm. We further examined how to simulate
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data sets under different missing data mechanisms.

The current version has its limitations. We are committed to continuous improve-
ment of the package to make it more accessible to medical researchers and applied
statisticians. For example, the runtime for depPLC is quite extensive with a large num-
ber of tests due to the time-consuming nature of the PX-MCEM algorithm. For future

work, we aim to reduce runtime by improving computing efficiency.
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Figure 4.1: Observed vs. Model Based Kappa for Model Checking
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Figure 4.2: Trace Plot of 31, nyd m)zkl over the Last PX-MCEM Algorithm Iteration
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Figure 4.3: Convergence Plot of Sensitivity Estimates
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Figure 4.4:
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Chapter 5

Future Research

Clustered data are common in diagnostic medicine when the clusters that are tested
for the targeted condition are positively correlated, such as the data from multiple
lesions of the same patient, from multiple teeth of the same mouth, and from multiple
subjects in the same family. For the C-CFR data, there are a total of 6,131 subjects
from 4,494 families. Table 5.1 summarizes the distribution of the number of subjects
per family. For our research, we considered only the 3, 487 subjects from families with a
single subject per family. However, 22.4% families have two or more subjects, and 1.3%
families have five or more subjects. Here, the families constitute the cluster, and the
subjects constitute the diagnostic unit of study within a cluster. In another word, we
have N = 6,131 subjects distributed in C' = 4,494 clusters. The clusted data created
a unique statistical challenge for future research.

In the analysis of such clustered data, if observations from the same cluster are
assumed independent, point estimates can still be derived without adjusting for cor-
relation within clusters. However, the standard errors likely are biased and lead to
incorrect test statistics and confidence intervals. For our study, if correlation within
clusters is ignored, the standard error for the diagnostic accuracy is likely to be over-

estimated when subjects from the same family are in different disease status, while it



is likely to be underestimated when subjects have the same disease status. Thus to
avoid biased statistical inference, we must take the correlation within clusters into con-
sideration. To the best of our knowledge, there is no particular method that addresses
clustering data in estimating the diagnostic accuracy of medical tests. We propose to
extend the methods in Chapter 3 by adding another level of random effect for each
cluster in our diagnostic models. In other words, there are two levels of random effects,
i.e., one is an individual-level random effect accounting for within-subject correlation
among multiple tests, which is denoted by Z; = (Zy,--- , Z;) for the i'* subject as in
Chapter 3, and the other is a cluster-level random effect accounting for within-cluster
correlation among multiple subjects, which can be denoted as W; for the i** subject
and W;|D; = d ~ N(pa, Xq)-

Other methods, such as the Bayesian approach, may also be explored. We can
specify the joint prior distribution of © as a multivariate normal distribution with
a certain mean vector and variance-covariance matrix based on expert knowledge or
previous study results. The joint posterior distribution can be introduced as well as
latent variables, and then we can use Gibbs sampling to draw samples from the posterior
distribution. Based on Bayes’ rule, we may further derive the predictive probability
of colon cancer for an individual subject. The predictive 95% credible intervals for

the predictive probability of having cancer given the test results can be computed via

MCMC methods.
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Table 5.1: The Distribution of the Number of Subjects per Family

Number of Subjects Frequency Percentage (%)

1 3487 77.59
2 668 14.86
3 208 4.63
4 73 1.62
> 95 58 1.29
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Appendix

Derivation of Information Matrices for Louis
Formula

For simplicity, we will first derive the components of information matrices for each

individual subject, and then sum them up. For subject ¢, the complete-data log-
likelihood is logL.(0) = logL(0|Y;) = logL(0|T, D;) = d;log(m1hi1) + (1 — d;)log(mohio),

where hil — H;J . Se;ijaij(l _ Sej)(l—tij)ﬁij; h’iO — Hj:l(l _ Spj)tij(sijspgl_tij)dij'

Thus S.(Y;;0) is
87’(’1 n 1 1-— 1
8logLC(6’) . dztwéz] . dZ(SZ] — dztzgéz]
856j a Sej 1-— Sej
OlogLc(0) (1 —di)(1 —ti)d; (1 — di)ti;di
d5p; Sp; 1 —Sp;
and 1.(0;Y;) is
o (1-m)?

871'1

_8SC(Y1-; 9) _ ditijfsij + dzézj - ditijdz’j
0Se; Se? (1 — Sej)?

(1 — d;)ti;0;

— tij)0ij
(1 —Spj)?

0S:(Yy;0) (1 —d;)(1
oSp; Sp;
Notice that we took the conditional expectation of S.(Y;;0) given T to derive the

104



point estimates (1) — (3):

il T (Sel™) "% (1-5¢(™) 1 "is)%
J (1_Sp§”))tij5ij (Spg_n))(lftij)éij

N
2.im1 ™ [T (Sef™)ti % (1-5e{™) i )% 4 (1—a ™) [T]_,

L(n+1) _
! N
(5.1)
N b0y Ty (5e8™)145% (1) (i)
ity 2= T S (1= e () T (0o (5T =75
Sej T = 5 17 (5e0 7% (150t (I—ti))85;
ZN im0 =1 ( €; ) ( €; )
=1 T (el ™) (1-5e(™) 1120 4 (1—al™) [T (1-5p{™) i %ia (5p(™)) 1=t
(5.2)
N (1—tig)3i5 (Lom(") Ty (1-py™) "% (i) 1%
Gyt _ =Ll T (Sel™) % (1-8eS™) U Hiis 4 (1—a{™) [T, (1—8p™) s i (sp{™)) O ~id )i
A S b1 (L) Ty (1) 5% (5p™) 0%
i=1 (") szl(Se;M)tij‘sif (17565_71))(1_%)5”+(177r§n)) szl(lispgn))tijéij (Sp§n))(l—tij)6ij
(5.3)
Now take the conditional expectation of 1.(0;Y;) given T; and A;, we have
Eldi|T;, A;] | N — Eldi|T;, Aj]
I(m; Ty, A) = T + > (5.4)
T3 (1 —m)
TA Bld;|T;, Ailtijoi; | Eldi| Ty, Ai]oy; — E[di| Ty, Ailti;oi;
Ic(Sej),I%» z) = Ge2 + 1 Se. )2 (55)
€5 (1—Sej)

(1 — Eldi|T;, Ai) (L — t35)055 (1 — Eldi| T3, Ai])ti03
1, 2T Ay = .
C(Spja is z) Sp]g + (1 — Spj)2 (5 6)
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where

Eld;|T;, A;] = %
> d—o Tahid
1 — E[d,|T;, A;] = fo#
> d—o Tahid

Using EM algorithm we already obtained the point estimates of 6. Plug these
estimates and T, A; into [.(0;Y;), we can get diagonal elements of ]c(é;ﬂ,Ai) de-
rived above. It is obvious that all off-diagonal elements are zero since —%ﬁé(é? =0,
—%ﬁf—ggg) = 0, and —gg%%cs(zi — 0. Therefore 1,(0;T;,A;) is a (2J + 1) x (2J + 1)
diagonal matrix in which the entries outside the main diagonal are all zero.

We have I,,,(0; T;, A;) = cove{S.(Y;;6)|T;, A;}. Thus

[m<771; Tzia Az) = Varﬂl{Sc(Y;; ﬂ-)‘na Az}

1
= var{d|T}, A,
(1 — 7r1)2var{ | }

Since we are assuming indepent observations, cov{d;, d;|T;, A;} = 0 for i # j. Thus

above becomes

Im(7T177_;,AZ) = mV&f{dJﬂ,Al} (57)
1

where

Bl&|T;, Al — (B[] T3, Ai))?
Hiz:o Tahia
(2(1,1:0 Wdhid)z

Var{di ’n, Az}
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For diagonol elements, we have

Im(Sej;Ti,Ai) = varsej{Sc(Yi;SemTi,Ai}
1

+S€]2~6ijvar{di|Ti, Az} — QSejtij&jvar{di]Ti7 Az}]

(5.8)
I (Sp;; T, ;) = varg, {Sc(Y3: Sp))| T, A}
1
B m[(l — t;;) 8 var{d;| Ty, A}
+Sp§5ijvar{di|Ti> A} —2Sp;(1 — ti;)0;var{d;|T;, A;}]
(5.9)
In(m1,Se; Tiy Ay) = covy se, {Se(Yi; w1, Se;) | Ti, A}
1
= 5. ATAL
7 (1 —m)Se;(1 — Sej)tz]@]var{dz] i A
1
T = (0 = 5y vl Ak
(5.10)

For off-diagonal elements, we have
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Im(ﬂl, Spj; 1;, Ai) = COVm,spj{Sc(Yi; T, Spj>|Ti; Az’}

1
7T1(1—7T1)Spj( 7)0ijvar{d;| }

1
+ ti-éi-var dz T;,AZ

(5.11)

I.(Sej, Sey; Ti, A;) = COVgej’Se]_/{SCO/i;Sej',Se;)}

1
Sej(l —Sej)Sej,(l —Sej,) §0ijLlij Jvar{ | }

1
— it d:\T:. A
Se;(1 — Se;)(1 — Sey) 77 var{di{Ti, )
1
— 4 1T A
(1 86,) e, (1~ g, ot dertlte )
+ 1 0305 var{d;| T3, A} (5.12)

(1 —Sej)(1— Sej)

Im(Spjv Spj’; Ea Az) = COVSpj,Spj/{SC(Y;; Spj7 Sp;)}
1
= 1_tz5z 1—tl/ 5i~/var le;,AZ
_ 1
1
(1 — Sp;)Spj
1

+(1 — Spj)(1 = Spy)

(]. — tij)@jtij/éijfvar{dﬂﬂ, Az}

tlj(sw(l — tij/)dij/Val"{dAT‘i, Al}

twéwthéwzvar{dl |ﬂ, Az} (5 13)
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In(Se;, Spjr; Tiy ;) = covse, sp, {Sc(Yi; Sej, Sp))}

1
= — ti0: (1 — t350)0450 d;|Ti, A
S@j(]. — Sej)Spj’ J j< J ) J Var{ | }

1
+
Sej(1— Se;)(1 — Spy)
1
J J
1
T (1= Se;)(1— Sp 'l>6ijtij/5ij/Var{di|T;,Ai} (5.14)
J J

t”&]thfsmlvar{dl ‘T‘z, Az}
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