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Abstract

YI ZHANG: STATISTICAL METHODS FOR EVALUATING THE
DIAGNOSTIC ACCURACY OF INCOMPLETE MULTIPLE TESTS

(Under the direction of Donglin Zeng and Haitao Chu)

The accurate diagnosis of a molecularly-defined subtype of cancer is often a very

important step toward its effective prevention and treatment. For the diagnosis of some

subtypes of certain cancers, a gold standard with perfect sensitivity and specificity may

be unavailable. In those scenarios, the status of the tumor subtype commonly is mea-

sured by multiple imperfect diagnostic markers. In many such studies, some subjects

are only measured by a subset of diagnostic tests and the missing probabilities may

depend on the unknown disease status. In this research, we present novel statistical

methods based on an EM algorithm to evaluate incomplete multiple imperfect diagnos-

tic tests under conditional independence and conditional dependence assumptions. We

applied the proposed methods to a set of real data from the NCI Colon Cancer Family

Registry (C-CFR) on diagnosing microsatellite instability (MSI) for hereditary non-

polyposis colorectal cancer (HNPCC) to estimate diagnostic accuracy (i.e., sensitivities

and specificities) and prevalence for 11 biomarker tests. Simulations are conducted to

evaluate the small-sample performance of our methods. The advantages and limitations

of our methods are discussed. An R package was developed for easy implementation of

our methods. Finally, a proposal for future research also was presented.
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Chapter 1

Introduction and Literature Review

1.1 Diagnostic Accuracy for Binary Tests

Accurate diagnosis of a disease or classification of a subtype of a disease is often

the first step toward the treatment and prevention of the disease. A diagnostic test is

expected to contribute to a reliable diagnosis of a patient’s medical condition and aid in

the health practitioner’s development of an appropriate treatment plan. Misdiagnoses

are likely to result in mislead health practitioners’ initiating unnecessary or incorrect

treatment plans. Therefore, evaluation the diagnostic accuracy of a test is pivotal to

medical practices.

Conventional measures of diagnostic accuracy include sensitivity and specificity,

predictive values, the area under the receiver operating characteristic (ROC) curve,

and Youden’s index. These measures address different aspects of a diagnostic test,

such as its discriminative property or predictive ability. Our research considers only

binary diagnostic tests with two possible outcomes, i.e., whether a subject has a certain

disease or not. Sensitivity and specificity are basic measures of the performance of a

binary test. Sensitivity is the probability of having a positive test result when the

subject actually has the disease; specificity is the probability of having a negative test

result when the subject does not have the disease. (1-specificity) and (1-sensitivity)



are often referred to as false positive and false negative error rates associated with a

test. Neither sensitivity nor specificity is affected by the prevalence of the disease.

This crucial property makes estimates of sensitivity and specificity from one study

readily applicable to other studies in which the prevalence of the disease was different.

Nevertheless, sensitivity and specificity may be affected by the stages of the disease or

by patients’ characteristics (e.g., different densities of fat tissue). Ledley and Lusted

(1959) made some early contributions to the paradigm of diagnostic accuracy.

Ideally, the sensitivity and specificity of a new test are evaluated by comparing its

results with the true status/condition of the disease (presence or absence) in a subject,

which is the result of a test with a perfect ability to classify the disease; such a test is

referred to as a ‘gold standard’. In other words, a gold standard is an error-free reference

standard with a sensitivity of 100% and a specificity of 100%. In practice however, a

gold standard is often impossible to find, or it simply may not exist. Multiple imperfect

diagnostic tests often are used in the absence of a gold standard. These tests are either

applied simultaneously to one subject and interpreted altogether or applied sequentially

in a prespecified order. The latter is usually more cost-effective but less efficient, since

the decisions of whether to administer subsequent tests and when to administer them

depend on the results of tests that already have been conducted. The next section

introduces the common methods that are used to evaluate diagnostic accuracy in the

absence of a gold standard.

1.2 Diagnostic Accuracy Evaluation without a Gold Standard

1.2.1 Discrepant Analysis

Discrepant analysis (also known as discordant analysis or discrepant resolution)

applies a series of reference standards without statistical modeling to find the true
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disease status. When two tests show discrepant results, a resolver test (often with

better diagnostic accuracy but which is costly and/or invasive) is chosen to reconcile

the discrepancy. This approach is subject to the error rate of the test used to reconcile

the discrepancy as well as the error rates in the wrongfully concordant results of the

initial tests. The resolver test is assumed to be independent of the preceding tests,

which may not be the case. Hadgu (1996, 1997, 1999) posited that discrepant analysis

cause serious bias in the estimates of diagnostic accuracy that are obtained and that

such estimates are scientifically flawed.

1.2.2 Composite Reference Standard

Alonzo et al. (1999) discussed the composite reference standard (CRS) that com-

bines the results of several imperfect reference tests to define a pseudo-gold standard

based on some predefined rule. It is assumed that a composite reference standard works

better than each single test by itself (Martin et al., 2004). The development of a CRS

depends significantly on the target diseases. Investigators may adjust the threshold

used to define a disease for the specific clinical problems encountered. A typical exam-

ple is when any of the reference test results are positive; in that case, disease status will

be labeled as present; conversely, if all test results are negative, the disease is considered

as absent. Thus, any patient with positive results for the first reference test does not

have to be retested by other reference tests. However, the simple decision rule is prone

to misclassification bias. Ideally, different tests should be targeted on the same disease

status with different error rates. It is problematic when these tests define the disease

status differently, but the decision rule treats them equally.

3



1.2.3 Expert Review Panel

When no reference standard is generally accepted, an expert review panel may reach

a consensus diagnosis concerning the status of a subject with respect to a specific disease

using assorted information from different sources, including symptoms/signs, physical

characteristics, medical history, clinical follow-ups, and imperfect reference tests. Test

results that are undergoing evaluation usually are not presented to the panel for review

in order to avoid the incorporation of bias that could lead to an overestimation of the

accuracy of the diagnosis. Thornbury et al. (1993) demonstrated a gold standard panel

of neurosurgeons, neurologists, and physicians experienced in technology assessment for

diagnosis of patients receiving MRI and CT for acute low-back pain. They eliminated

bias by using a diagnosis that was independent of the diagnostic test being evaluated.

Another practice is to present the results of the diagnostic test that is being evaluated to

the panel after they make a decision about the diagnosis, and then determine whether

these results would change their opinion. The Delphi method is a formal procedure that

collects and integrates the opinions of each individual panel member in an anonymous

way to avoid influence among fellow members or from a dominating member (Jones

and Hunter, 1995).

1.2.4 Latent Class Analysis (LCA)

Latent class analysis (LCA) is a group of methods that combine information from

multivariate categorical data to investigate the existence of unobserved heterogeneity

in groups or subtypes of cases. The latent variables can only be evaluated indirectly

through information collected from observable measurements, which are referred to

as manifest variables. LCA has application in many fields such as marketing/survey

research, sociology, and psychology. It gained popularity in the evaluation of the diag-

nostic accuracy of multiple tests in the absence of a gold standard. The latent variable

4



in this case is the unobservable, true status of the disease, whereas the manifest vari-

ables are the test results.

Estimates of the parameters of diagnostic accuracy can be derived with maximum

likelihood (ML) based methods involving iterative computation, such as expectation-

maximization (EM) algorithms (Dempster et al., 1977), Fisher scoring (Espeland and

Handelman, 1989), and the Newton-Raphson method (Qu and Hadgu, 1998). ML ap-

proaches provide a unified framework for various latent class models (LCMs), including

the Hui-Walter reference-free method (Hui and Walter, 1980), a Gaussian random ef-

fects model (Qu et al., 1996), a marginal model (Yang and Becker, 1997), a joint

model approach (Albert, 2009), a finite mixture model (Albert et al., 2004), a model

that incorporates multiple latent variables and covariates (Huang and Bandeen-Roche,

2004), a probit latent class (PLC) model with a general correlation structure (Xu and

Craig, 2009), and a Bayesian model using the Gibbs sampler algorithm to approximate

marginal posterior densities of all parameters (Joseph et al., 1995). In the absence of

a gold standard, LCMs have been well reviewed (Walter and Irwig, 1988; Goetghebeur

et al., 2000).

Under the conditional independence assumption, multiple tests applied to the same

subject are assumed to be independent conditional on his/her true disease status. In

other words, if the true disease status is misclassified by one test, the probability that it

will be misclassified by another test will not be affected. Conditional independence as-

sumption is plausible when different tests are based on different scientific/technological

grounds or when they measure different characteristics of the disease. In reality, though,

this assumption is often impractical when results from multiple tests are similar due to

some other latent effects other than disease status, e.g., similar severities/stages of the

disease, similar biological basis of the tests, similar subject-specific characteristics (e.g.,

5



age and gender), and similar training/experience of those who rate the test. The earli-

est work on LCA relied on the conditional independence assumption (Hui and Walter,

1980; Walter and Irwig, 1988; Rindskopf and Rindskopf, 2006). Torrance-Rynard and

Walter (1998) found that LCA under the conditional independence assumption often

handled conditional correlated tests well and produced relatively unbiased estimates of

diagnostic accuracy. However, for diseases with very low prevalence or for tests with

very low specificity, the estimates could be seriously biased with slightly correlated

tests. Many studies have shown that ignoring the correlation of misspecification errors

between tests led to biased estimates of diagnostic accuracy when the conditional in-

dependence assumption does not hold (Thibodeau, 1981; Vacek, 1985; Hui and Zhou,

1998). Most of the recently developed LCA methods relax the conditional indepen-

dence assumption (Joseph et al., 1995; Qu et al., 1996; Yang and Becker, 1997; Xu and

Craig, 2009; Albert, 2009). Albert and Dodd (2004) showed that estimates of diagnos-

tic accuracy and prevalence are sensitive to the choice of dependence structure. The

correct dependence structure between tests often is hard to specify, and estimates of

the parameters can be biased if the structure is misspecified. To better distinguish the

dependence structures between different latent classes, they strongly recommended a

large number of tests (ideally 10 or more).

One drawback of LCMs is model non-identifiability (Goodman, 1974), which occurs

due to either poor specification of the model (intrinsic non-identifiability) or certain

unexpected structures of the observed data (empirical non-identifiability). Empirical

non-identifiability usually is concerned with small sample sizes and sparse data. In-

trinsic non-identifiability occurs when the number of tests is small. Dendukuri and

Joseph (2001) described the problem of intrinsic non-identifiability from “ill-defined”

models with less than four tests, resulting in available degrees of freedom not being

large enough to handle the number of parameters to be estimated. A simple way to
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get around intrinsic non-identifiability is to add a plausible restriction to the model,

e.g., setting equal sensitivities and specificities for the two tests. Bayesian methods are

particularly useful for ill-defined models. The unknown parameters are treated as ran-

dom variables with a prior distribution that incorporates pertinent information, such as

estimates from similar studies, expert’s opinions about the characteristics of the test,

and demographic data about patients or the study population. The prior distribution is

updated with new information from observed data to derive the posterior distribution

for each parameter. Then, point estimates along with the highest posterior density

(HPD) credible sets for diagnostic accuracy are obtained from the posterior distribu-

tion. The disadvantages of the ML approaches are that Bayesian approaches usually

are intensive computationally, and they are sensitive to the prior distribution that is

chosen.

Despite the popularity of LCA, it has been cautioned that estimates of diagnostic

accuracy are subject to bias if the underlying assumptions of the model cannot be

justified (Albert and Dodd, 2004; Pepe and Janes, 2007; Bertrand et al., 2005). Another

concern with LCA is that the true disease status is defined mathematically rather than

clinically, which results in scientific doubt among some clinicians about the meaning of

the resulting estimates (Pepe, 2004).

1.3 Evaluation with a Partially-Missing Gold Standard

Even when a gold standard exists, it may be too invasive and/or costly to be

applied to all study subjects. In practice, it is common that subjects who appear

to have a high risk of disease are treated with the gold standard, whereas subjects

who have lower risk of disease are not. One typical scenario that occurs with screening

studies is that subjects whose results are negative in the screening test may forgo the

more invasive/costly gold standard. Sometimes a less-desirable, imperfect reference test
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(often less expensive/invasive) is feasible rather than the gold standard. This section

covers the evaluation of diagnostic accuracy when only a subset of subjects receives the

gold standard.

1.3.1 Case-Deletion Approach

The case-deletion approach excludes all subjects from analysis who were not tested

with a gold standard. This method could drastically reduce the power and cause

partial verification bias. Sensitivity tends to be overestimated, and specificity tends to

be underestimated. The direction and magnitude of the biases are affected by multiple

factors, such as the proportion of missing tests, the extent to which the true disease

status is dependent on or independent of the missing tests, and the unobserved ratio

of positive results to negative results for the missing tests. The case-deletion approach

should be avoided unless the missing proportion is very small.

1.3.2 Correction Methods

Verification bias occurs when the decision concerning the use of the gold standard

is influenced by test results or clinician/patient decisions. Correction methods apply

a mathematical correction to the biased estimates of diagnostic accuracy using mod-

els based on certain assumptions related to missing data (Baker, 1995; Zhou, 1998;

Schneeweiss, 2000; Hadgu et al., 2005; Alonzo, 2005). Conditional independence be-

tween tests and the true disease status are common assumptions for correction methods

(Begg and Greenes, 1983). Brenner (1996) reinforced the correction method with con-

sideration of correlated classification errors between tests conditional on the true disease

status. The main limitation is overcorrection. Begg and Greenes (1983) found that their

correction method underestimated sensitivity and overestimated specificity. Wacholder

et al. (1993) examined the performance of correction methods when the correlation of

8



classification errors between tests was misspecified and found that the bias of adjusted

estimates could be worse than the bias of unadjusted estimates.

1.3.3 Imputation Methods

Imputation methods replace missing values with substituted values, e.g., the arith-

metic means of available cases, predicted values from regression equations, observations

from subjects with similar response profiles, and observations that immediately precede

dropout in a longitudinal design (a.k.a. last observation carried forward (LOCF)).

More complex imputation models incorporate additional information, such as symp-

toms, morbidity, and the patient’s characteristics. Single imputation generates a single

replacement value for each missing observation, whereas multiple imputation (MI) re-

places each missing value with a set of plausible values that represent the uncertainty

about the true value that should be imputed. An inappropriate imputation model,

which can result from an improper assumption about a missing pattern, will lead to

biased estimates. Multiple imputation is generally preferred over single imputation be-

cause it adjusts the standard errors for missing data and is less likely to produce biased

estimates of parameter. Harel and Zhou (2007) reviewed the theory and application

of MI in a tutorial. The selection of an imputation model is subject to the missing

data assumptions. When missing not at random (MNAR) is tenable, it is difficult to

identify a suitable imputation model, and the models that are used often have question-

able validity. Harrell et al. (1996) found that imputation methods as well as correction

methods require large sample sizes to model the data. Harel and Zhou (2006) noted

that multiple imputation methods are more robust than correction methods for small

sample size.
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1.3.4 Expectation-maximization Algorithm

The EM algorithm, formalized by Dempster et al. (1977), has been used in many

fields, including diagnostic medicine. The DLR paper stimulated great interest in the

use of finite mixture distributions for modeling heterogeneous data. Finite mixture or

unobserved heterogeneity models are one type of LCM that assumes that the observa-

tions of one sample arise from a mixture of two or more unobserved classes of unknown

proportions (Day, 1969). Determining ML estimates (MLEs) of mixture models with

incomplete data is simplified substantially by the EM algorithm. McLachlan and Peel

(2000) reviewed the application of finite mixture models. Dawid and Skene (1979)

first used the EM algorithm to determine MLEs of observed error rates when a gold

standard was not available, and they regarded the latent disease status as a missing

value.

The EM algorithm has an inherent advantage over other methods in that it takes into

consideration missing gold standards as well as missing imperfect diagnostic tests. To

our knowledge, there is very little literature on evaluating multiple imperfect diagnostic

tests with missing data and without a gold standard. For our case study, only a small

proportion (6.3%) of the 3, 487 subjects has been tested with all 11 biomarker tests. The

latent true disease status (due to the absence of a gold standard), along with very high

proportions of missing tests, have posed statistical challenges related to the evaluation

of their diagnostic accuracy and motivated our research utilizing EM algorithm-based

approaches, which will be discussed fully in later chapters.

1.4 Outline for the Dissertation

The organization of the dissertation is as follows. In Chapter 2, we introduce a tra-

ditional latent class model based on the EM algorithm to evaluate incomplete multiple

10



imperfect diagnostic tests in the absence of a gold standard under the conditional inde-

pendence assumption. We applied the proposed method to a real data set from the NCI

Colon Cancer Family Registry (C-CFR) on diagnosing MSI for hereditary nonpolyposis

colorectal cancer (HNPCC). Estimates of diagnostic accuracy, prevalence, and differ-

ential missing probabilities for the eleven biomarker tests were obtained. Simulations

also were conducted to evaluate the small-sample performance of our methods and the

advantages and limitations of our methods are discussed. In Chapter 3, we relaxed

the conditional independence assumption and extended an improved probit latent class

(PLC) model to evaluate incomplete multiple imperfect diagnostic tests under the con-

ditional dependence assumption. We applied a parameter-expanded Monte Carlo EM

(PX-MCEM) algorithm to the C-CFR data to derive point estimates of the model

parameters, and we used the bootstrap method to obtain their standard errors. The

validity of inference is demonstrated with extensive simulation studies. In Chapter 4,

we present DiagLCA as the first R package for evaluation of multiple correlated diag-

nostic tests with abundant missing data and without a gold standard. Finally, Chapter

5 concludes with a brief summary, discussion, and recommendations for future research

work.
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Chapter 2

Conditional Independence
Assumption

2.1 Introduction

Accurate diagnosis of a disease or classification of a sub-type of a disease is often

the first step toward its treatment and prevention. Multiple imperfect biomarker tests

may be used when a gold standard test does not exist. It can be considered a missing

data issue where the gold standard (i.e. the true disease status) is always missing. A

considerable methods are developed to assess the diagnostic accuracy (usually quan-

tified by sensitivity and specificity) of “index tests” (the tests whose performance is

under evaluation) in the absence of a gold standard (Alonzo et al., 1999; Hadgu et al.,

2005; Enøe et al., 2000). These methods either resort to some imperfect (non-gold) ref-

erence standards, or utilize all index tests simultaneously in a unified manner if there is

no accepted reference standard. Among them latent class analysis (LCA) methods are

popular by treating unobservable true disease status as a latent variable. The parameter

estimates of diagnostic accuracy can be derived through Bayesian approaches (Joseph

et al., 1995; Dendukuri and Joseph, 2001), or through maximum likelihood (ML) ap-

proaches involving iterative computation such as the Expectation-maximization (EM)



algorithm (Dempster et al., 1977; Dawid and Skene, 1979), Fisher scoring (Espeland

and Handelman, 1989), and Newton-Raphson method (Qu and Hadgu, 1998). The ML

approaches provide a unified framework for various latent class models (LCMs) in a

dispersed literature (Chu et al., 2009; Hui and Walter, 1980; Qu et al., 1996; Yang and

Becker, 1997; Albert et al., 2004; Albert, 2009; Huang and Bandeen-Roche, 2004; Xu

and Craig, 2009). Walter and Irwig (1988) and Goetghebeur et al. (2000) reviewed

LCMs based on ML approaches.

Heretofore the LCMs merely handle latent disease status, whereas the imperfect

tests typically have no missing value. However, missing data is ubiquitous in diag-

nostic medical settings where some subjects are only measured by a subset of tests.

A commonly reported missing data issue deals with a partially missing gold standard

(e.g. patients with negative results are more likely to skip the gold standard due to

cost/invasiveness). General methods have been established to deal with missing data

under different missing pattern assumptions (Little and Rubin, 1987). A missing data

mechanism is called missing completely at random (MCAR) if the probability of miss-

ingness does not depend on any missing or observed observations. A mechanism is said

to be missing at random (MAR) when the probability of missingness does not depend

on any missing observation conditional on some observed observations. Both MCAR

and MAR are considered “ignorable” missing data mechanism, as MCAR is a special

case of MAR. When the probability of missing depends on some missing observations

or latent disease status, it is known as a missing not at random (MNAR) mechanism

or “non-ignorable” (NI) missing data mechanism. There are various references deal-

ing with ignorable (Alonzo, 2005; Begg and Greenes, 1983; Harel and Zhou, 2007; He

and McDermott, 2012; Lin et al., 2006; Yu et al., 2010; Zhou, 1998) and non-ignorable

(Baker, 1995; Harel and Zhou, 2007; Kosinski and Barnhart, 2003b,a; Zhou, 1993) miss-

ing gold standards. When a gold standard is always present (i.e. true disease status

13



always known), Poleto et al. (2011) proposed a two-stage hybrid procedure (ML in

the first stage; weighted least squares in the second stage) in estimating the diagnos-

tic accuracy of three index tests with abundant missing data under the MCAR/MAR

assumptions.

The aforementioned literature deals with two scenarios: (i) a gold standard does not

exist whereas the index tests / imperfect reference standards have no missing value; (ii)

a gold standard is available (partially or fully observed). To the best of our knowledge,

when a gold standard does not exist, there are no studies on handling missing test

results from multiple imperfect diagnostic tests to facilitate the estimation of their

diagnostic accuracy. For the Colon Cancer Family Registry (C-CFR) study that we

will consider (see Section 2), only a small proportion (6.3%) of the 3, 487 subjects has

been tested for all 11 biomarkers. The latent true disease status along with very high

proportions of missing test results have created statistical challenges for evaluating the

population prevalence and the estimates of diagnostic accuracy for the 11 biomarkers.

Motivated by the C-CFR case study, we develop a LCM to handle the general case

where some subjects may only be tested by a subset of markers. It accounts for missing

data under the MAR or MNAR assumptions and unobservable latent disease status

simultaneously. Specifically, it allows for differential missing probability of each test

to depend on latent disease status under one MNAR scenario. The C-CFR study is

described in Section 2. Section 3 introduces the statistical methods. Full analysis of

the case study (Section 4) and simulation studies (Section 5) are summarized next.

Section 6 presents a brief discussion.

2.2 Colon Cancer Family Registry Study

Colorectal cancer is the fifth most common form of cancer in the United States

and the third leading cause of cancer-related death in the Western world (based on

14



statistics from NCI and WHO websites). In the United States, about 15,000 new cases

of colorectal cancer are diagnosed each year (Ford and Whittemore, 2006). About two to

five percent of all colon cancer cases are attributed to hereditary nonpolyposis colorectal

cancer (HNPCC), also called Lynch Syndrome after Dr. Henry Lynch. HNPCC is

a hereditary syndrome that is caused by a mutation in genes involved in the DNA

mismatch repair pathway. People with HNPCC have a much higher risk of developing

colon cancer than the general population if they do not undergo early and regular

screening. The average age of diagnosis of cancer in patients with HNPCC is 44 years,

as compared to 64 years in people without the syndrome (Lynch and de la Chapelle,

1999; DeFrancisco and Grady, 2003).

Microsatellites are common and normal repeated sequences of DNA. Although the

length of microsatellites is highly variable from person to person, each individual has

microsatellites of set length. In cells with mutations in DNA repair genes, however,

some of these sequences accumulate errors and become longer or shorter. The appear-

ance of such long or short microsatellites in an individual’s DNA is referred to as mi-

crosatellite instability (MSI). MSI is a key factor in several cancers including colorectal,

endometrial, ovarian and gastric cancers. Cancers with MSI account for approximately

15% of all colorectal cancers and for HNPCC germline mutations (Boland et al., 1998;

Umar et al., 2004; Lynch and de la Chapelle, 1999). The diagnosis of HNPCC may

be determined if the cancer exhibits a high level of MSI. People with HNPCC have a

much higher risk of developing colon cancer than the general population if they do not

undergo early and regular screening.

Our methodology research is motivated by a real study from the NCI Colon Cancer

Family Registry (C-CFR). It is an international consortium of six centers located in

North America and Australia formed to support studies on the etiology, prevention

and clinical management of colorectal cancer (Newcomb et al., 2007). The C-CFR

15



data includes diagnostic test results of eleven molecular biomarkers (BAT25, BAT26,

BAT40, BAT34C4, D10S197, D17S250, D18S55, D2S123, D5S346, ACTC and MYCL)

which are used to assess the level of MSI.

In this paper, we consider the 3, 487 subjects from families with a single subject

per family. The observed missing proportions range from 7.26% for biomarker BAT26

to 81.73% for biomarker D2S123. Table 2.2 summarizes the number of subjects by

frequency of missing test results for the 11 biomarkers. Most of the subjects (93.72%)

have at least one test result missing. Specifically, the “missing” category includes the

following categories defined by the Colon CFR code book: a) quantity of DNA or

tissue not sufficient (code 13); b) not tested, reason not specified (code 12); c) no

amplification (code 11); d) equivocal (inconclusive, code 6); and e) normal DNA not

used in test (code 9). The high proportions of missing and latent disease status have

motivated our methodology research which we introduce in the next section.

2.3 Statistical Methods

The total number of subjects is N = 3, 487 and the total number of biomarkers is

J = 11. Let Di = d(d = 1, 0) denote latent disease status (whether the ith subject has

disease or not, 1=Yes, 0=No). Let πd = Pr(Di = d) represent probability of disease/no

disease (π1 = Pr(Di = 1) is prevalence, π0 = 1 − π1); Sej represent sensitivity of the

jth biomarker; Spj represent specificity of the jth biomarker. Let Ti = (ti1, · · · , tiJ) be

the collection of all test results of the ith subject (tij = 1 for positive and tij = 0 for

negative). Under a conditional independence assumption, the multiple test results of

Ti are independent given Di. Let ∆i = (δi1, · · · , δiJ) be the collection of all missing

indicators of the ith subject, where δij is indicating whether the subject has been tested

by the jth biomarker (δij = 1 for tested and δij = 0 for not tested). Let T obsi denote the

observed tests for subject i.
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2.3.1 Diagnostic Performance under a MAR Assumption

We first assume MAR for the missing data mechanism. The probability of observing

(T obsi ,∆i) can be expressed as a finite mixture of two components

P (T obsi ,∆i) = P (∆i|T obsi )P (T obsi )

∝ P (T obsi )

=
1∑
d=0

πdhid

where

hi1 =
J∏
j=1

Se
tijδij
j (1− Sej)(1−tij)δij

hi0 =
J∏
j=1

(1− Spj)tijδijSp
(1−tij)δij
j .

The parameters θ = (π1, Se1, · · · , SeJ , Sp1, · · · , SpJ) can be estimated by the EM

algorithm, where the complete data Yi = (T obsi ,∆i, Di) ∼ pθ(yi) = (π1hi1)di(π0hi0)1−di .

The complete log-likelihood is logLc(θ) =
∑N

i=1(dilog(π1hi1)+(1−di)log(π0hi0)). Thus

the M-step is to solve the score equations

0 =
N∑
i=1

E[{ di
π1

− 1− di
1− π1

}|Yi, θ(n)]

0 =
N∑
i=1

E[{ditijδij
Sej

− diδij − ditijδij
1− Sej

}|Yi, θ(n)]

0 =
N∑
i=1

E[{(1− di)(1− tij)δij
Spj

− (1− di)tijδij
1− Spj

}|Yi, θ(n)]

where θ(n) = (π
(n)
1 , Se

(n)
1 , · · · , Se(n)

J , Sp
(n)
1 , · · · , Sp(n)

J ). The E-step computes E[di|Yi,

θ(n)] =
π
(n)
1 h

(n)
i1∑1

d=0 π
(n)
d h

(n)
id

. Thus we can get closed-form solutions for π
(n+1)
1 , Se

(n+1)
j , Sp

(n+1)
j
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and iterate EM steps until convergence to get θ̂.

Because analytical evaluation of the second-order derivatives of the incomplete-

data log-likelihood logL(θ) is difficult, Louis’s formula (1982) can be used to obtain

the observed information matrix of the MLE obtained via the EM algorithm. Once the

information matrix I(θ̂;T obsi ,∆i) is derived and inverted, the standard errors are the

square root of the diagonal elements of the inverse matrix. Refer to Appendix 1 for

more details on derivation of information matrices for Louis Formula.

2.3.2 An Extension to One MNAR Scenario

Now we consider the situation when missingness only depends on unobserved disease

status. That is, we allow the missing pattern to differentiate between diseased and

non-diseased populations. We note that under this situation, MAR no longer holds.

However, our previous method can be easily generalized to estimate diagnostic measures

under this MNAR scenario. Let r1j be the missing probability of the jth biomarker when

the subject has disease; r0j be the missing probability of the jth biomarker when the

subject is disease free. The probability of observing (T obsi ,∆i) is

P (T obsi ,∆i) =
1∑
d=0

πdhidsid (2.1)

where πd and hid are same as before and sid accounts for missing probabilities:

sid =
J∏
j=1

r
δij
dj (1− rdj)(1−δij).

The complete data is Yi = (T obsi ,∆i, Di) ∼ pθ(yi) = (π1hi1si1)di(π0hi0si0)1−di . Its log-

likelihood becomes logL(yi) =
∑N

i=1(dilog(π1hi1si1) + (1 − di)log(π0hi0si0)). In the

likelihood expression, sid can be integrated with hid so that hidsid become our new hid.
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Hence estimates and 95% confidence intervals (CIs) of missing probabilities allowing for

the MNAR assumption, r1j and r0j, can be derived as (1− Sej) and Spj respectively.

We can further test the null hypothesis that the missingness does not depend on

the disease status. Particularly, we apply the likelihood ratio test (LRT) to test the

hypotheses H0 : r1j = r0j for j = 1, · · · , J vs. H1 : r1j 6= r0j, for at least some of j =

1, · · · , J . The log-likelihood under H1 is l(θ̂|T,∆) =
∑N

i=1 log(π1hi1si1 +(1−π1)hi0si0),

i.e. the log-likelihood of observed data (incomplete without knowing D) and θ̂ (the

estimates for π1, Sej, Spj, r1j and r0j under H1). Under H0, the log-likelihood with

observed data is l(θ̃|T,∆) =
∑N

i=1 log(π1hi1si+(1−π1)hi0si), where θ̃ are the estimates

for π1, Sej, Spj, and rj under H0.

2.3.3 Model checking using Kappa statistics

We adopt the Kappa agreement plot (Chu et al., 2009) as a simple graphical

method to quantitatively check the conditional dependence assumption based on the

final model. The model based Kappa statistics for any two of the 11 tests are

κij =
Pij11 + Pij00 − (Pij11 + Pij10)(Pij11 + Pij01)− (Pij00 + Pij10)(Pij00 + Pij01)

1− (Pij11 + Pij10)(Pij11 + Pij01)− (Pij00 + Pij10)(Pij00 + Pij01)

where for two tests i and j

Pij11 = π1SeiSej + (1− π1)(1− Spi)(1− Spj)

Pij10 = π1Sei(1− Sej) + (1− π1)(1− Spi)Spj

Pij01 = π1(1− Sei)Sej + (1− π1)Spi(1− Spj)

Pij00 = π1(1− Sei)(1− Sej) + (1− π1)SpiSpj.

Plug in π̂1, Ŝej, Ŝpj, we have the estimates κ̂ij for model based Kappa statistics.
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The Kappa agreement plot can be obtained by plotting κ̂ij with 95% simultaneous

confidence intervals (correcting possible agreement by chance) vs. the observed Kappa

for each pair of tests. There is not enough evidence to reject the conditional indepen-

dence assumption if the model based 95% simultaneous confidence intervals contain the

observed Kappa statistics at close to the nominal rate.

2.4 Analysis of the Colon Cancer Family Registry

Applying the proposed method to the C-CFR data we obtained the point estimates

for θ, which includes π1, Sej, Spj as well as r1j, r0j for all 11 biomarkers, and their

standard errors (SE). The 95% CIs are then obtained from point estimates and SEs. The

results for θ under different missing assumptions are presented in Table 2.3. The point

estimates with 95% CIs under the MNAR assumption are almost the same with those

under the MAR assumption. The slight difference is caused by introducing columns of

1 for missing indicator of δij for our method.

The estimates for missing probabilities are presented in Table 2.6. Under the MNAR

assumption, we can see that for some tests r1j and r0j are quite different while for others

they are very close. Generally r1j tends to be greater than r0j (the only exception is

for MYCL). The reason is probably that non-diseased patients are more likely to have

negative test results, and patients with negative test results are more willing to take

additional tests (hence smaller missing probabilities) to confirm they do not have the

disease. As expected, rj under the MAR assumption falls between r1j and r0j.

The log-likelihood ratio statistic (LRS) is found to be −2(l(θ̃|T,∆) − l(θ̂|T,∆))=

−2 × (−21407.85 − (−21166.83))= 482.04 > χ2
0.95,11, where χ2

0.95,11 = 19.675 is the

95th percentile of the the χ2 distribution with d.f.=11. Therefore we reject the null

hypothesis and conclude that at least for some tests, the missing probabilities of

those who have colon cancer are significantly different from those who don’t have
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colon cancer. To tell whether r1j and r0j are significantly different for each test j,

we calculated p-values based on Wald statistic, which is calculated as
r1j−r0j

SEr1j ,r0j
where

SEr1j ,r0j =
√

Varr1j + Varr0j − 2Covr1j ,r0j . These nominal p-values can be adjusted for

multiplicity using Bonferroni correction (multiply by J = 11). The results suggest that

the MNAR assumption is more plausible than the MAR assumption for our case study.

Figure 2.1 plots the model based Kappa statistics versus observed Kappa statistics

as a graphical check for conditional independence assumption. The model based Kappa

statistics in Figure 2.2(a) are derived from diagnostic accuracy estimates under the

MAR assumption, and the model based Kappa statistics in Figure 2.2(b) are from

the MNAR assumption. Not surprisingly, these two figures look similar due to the

resemblance of diagnostic accuracy estimates under the two assumptions. In both

figures, all of the 95% simultaneous confidence intervals of model-based Kappa contain

the observed Kappa statistics. Hence these figures fail to reject the null hypothesis of

conditional independence assumption.

2.5 Simulation Studies

To further investigate the performance of the proposed methods, 10000 simulations

were run. For each simulation, we generate N = 3, 500 observations (chosen to be close

to the sample size of the real data, N = 3, 487) with J = 5 tests including missing

indicators for each test under three different missing pattern assumptions. The true

values of prevalence is set to be π1 = 0.2, close to the estimates from the C-CFR study.

The true values of sensitivity and specificity are set to be close to estimates for the five

NCI-recommended microsatellite sequence panels (BAT25, BAT26, D17S250, D2S123,

D5S346 ), i.e. we let Se = (0.9, 0.9, 0.8, 0.8, 0.6) and Sp = (0.9, 0.9, 0.9, 0.9, 0.9). For

each subject, disease status Di is randomly assigned 0, 1 from a binomial distribution

with π1 as the binomial p. Given a subject’s Di, test results Ti are randomly assigned
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0, 1 from a binomial distribution with Se and (1 − Sp) as the binomial p under the

assumption that Ti are independent given Di. Finally, we randomly assign missing

indicator ∆i to each test results considering the three missing scenarios. Simulation

results are listed in Table 2.1.

We first simulated the missingness of test results under the MCAR assumption. All

five tests were randomly assigned a missing indicator (1 = observed; 0 = missing),

through a binomial distribution, independent of any other missing or observed values.

The missing probabilities of the five tests (r1, · · · , , r5) are 0.274, 0.090, 0.251, 0.023,

0.089 subsequently, which were randomly selected from a uniform distribution bounded

by (0, 0.35). Secondly, under the MAR assumption, we let the missing patterns of Test

4 and Test 5 depend on some fully-observed test results. ∆i1 and ∆i2 all equal to 1

(the first two tests have no missing value); ∆i3 are randomly generated from a binomial

distribution with a missing probability of 0.2 (the third test is MCAR); ∆i4 is randomly

generated from a binomial distribution with missing indicator ∆i4 depending on Ti1

through equation logit(P (∆i4 = 1|Ti1)) = α+β1Ti1; and ∆i5 is randomly generated from

a binomial distribution with missing indicator ∆i5 depending on Ti1 and Ti2 through

equation logit(P (∆i5 = 1|Ti1, Ti2)) = α + β1Ti1 + β2Ti2. The regression coefficients are

set to α = −1.5, β1 = −4, β2 = 2. Lastly, for the MNAR assumption, Test 4 and Test 5

depend on a subset of unobserved tests or disease status. ∆i1, ∆i2 and ∆i3 are generated

following the same settings as for the MAR assumption. ∆i4 is randomly generated

from a binomial distribution with missing indicator ∆i4 depending on partially-observed

Ti3 through equation logit(P (∆i4 = 1|Ti1, Ti3)) = α + β3Ti3, and ∆i5 is randomly

generated from a binomial distribution with missing indicator ∆i5 depending on both

Ti3 and unobservable disease status D through equation logit(P (∆i5 = 1|Ti3, D)) =

α + β3Ti3 + β5D, where α = −1.5, β3 = 0.75, β5 = 0.7.

Under the MCAR assumption, the EM algorithm is very robust with all coverage
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probabilities above 95%. The SE estimates are also very close to the standard deviations

from point estimates of π1, Se and Sp. The average missing probability for Test 1 under

MCAR assumption is the highest (almost 30% observations missing), yet the coverage

probability is still very good (> 95%) for its sensitivity and specificity. Under the MAR

assumption, the coverage probabilities for π1 and Se is a bit poorer than the MCAR

assumption albeit the coverage probabilities for Sp is almost undifferentiable between

the two tests. The missing probabilities under the MAR assumption vary between

[0.004, 0.182] for Test 4, and [0.004, 0.622] for Test 5. The average missing probabilities

under the MAR assumption are 0.136 for Test 4 and 0.183 for Test 5. Although the

missing probabilities for Test 5 can be as high as 0.622, the coverage probability for

Test 5 is very good (> 95%) for both sensitivity and specificity. Our method is well

suitable for both the MCAR and MAR assumptions. Under the MNAR assumption, the

missing probabilities vary between [0.182, 0.321] for Test 4, and [0.182, 0.488] for Test

5. The average missing probabilities under the MNAR assumption are 0.217 for Test 4

and 0.250 for Test 5, both greater than those under the MAR assumption. Generally

speaking the coverage probabilities under the MNAR assumption are not compromised

much as all are above 94%. We do observe that the coverage probability for Sp is

consistently smaller comparing to the MAR assumption. This may be explained by the

missingness of Test 4 only depends on Test 3 (which is MCAR), while the missingness

of Test 5 depends on latent disease status in addition to Test 3. As a sensitivity

analysis, we did another simulation for the MNAR assumption with everything the same

except that ∆i5 depends on Ti3 and Ti5 through equation logit(P (∆i5 = 1|Ti3, Ti5)) =

α + β3Ti3 + β5Ti5. Our method did not handle Test 5 estimation very well: although

both Test 4 and Test 5 are MNAR, the coverage for Test 4 is barely affected while

the coverage for Test 5 is seriously impacted (coverage probability 26.4% for sensitivity

and 37.4% for specificity). These results imply that MNAR may not be a serious issue
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when the cause of a missing test lies in the value of another test or the true disease

status, whereas MNAR can cast doubt on our estimation if the cause of a missing is

the value of the missing test itself.

We also conducted a simulation to assess estimation of missing probabilities under

the new assumption for MNAR, where the missingness of each test depends on the

unknown disease status. The missing probabilities for Test 1 through Test 5 were

subsequently set to (0.1, 0.1, 0.2, 0.2, 0.3) for r1 and (0.1, 0.2, 0.4, 0.6, 0.8) for r0, while

π1, Se and Sp hold the same values as before. The estimates of r1 and r0 along with

π1, Se and Sp are obtained simultaneously with coverage probabilities varying from

94.8% to 95.8%. Our method is once more shown to handle different missing scenarios

fairly well.

2.6 Discussion

In this paper we developed an EM algorithm based approach to evaluate the popu-

lation prevalence and diagnostic accuracy of multiple imperfect tests in the absence of

a gold standard, when the tests are assumed to be independent conditional on the true

disease status. Under either a MAR assumption or one MNAR scenario, the proposed

method can efficiently and precisely estimate population prevalence and diagnostic ac-

curacy of each test with its associated missing probability. Simulations under different

missing data mechanisms consistently result in fairly high coverage probabilities for

the estimates. Although there is no established statistical test to assess the underlying

missing data mechanism, our method has shown robustness to missing data assump-

tions as long as the missing percentages are not extremely high. Even though our

estimates are biased under the MNAR scenario, the bias is confined to those specific

tests affected and our estimates can still provide a reasonably good approximation to

the “true” parameter values. On the contrary, many other methods tend to propagate
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bias throughout all tests. In conclusion, our method is straightforward to comprehend

and simple to implement for diagnostic studies involving multiple conditionally inde-

pendent tests with moderate percentages of missing data and without a gold standard.

It has the potential to improve public health by facilitating the diagnosis of cancer and

other prevalent diseases.

Common methods such as case deletion, maximum likelihood estimation, multiple

imputation, etc. are valid for MCAR and MAR but cannot handle MNAR without

explicitly modeling the missing pattern. Two possible models to account for MNAR

data are selection models (Heckman, 1979) and pattern mixture models (Little, 1993).

These models are complicated and require substantial statistical knowledge and soft-

ware experience, yet their validity is not easily justifiable and sometimes questionable.

Methodological development to cope with missing data under the MNAR assumption

is beyond our current scope but would be considered for future research.

One limitation of our method is that we assumed conditional independence between

tests, which is difficult to verify in practice. We cannot be absolutely certain of the con-

ditional independence assumption, although our Kappa agreement plots fail to reject it.

Some degrees of dependence may exist due to the similarity of biological basis. The ef-

fects of conditional dependence on the estimation of diagnostic accuracy and prevalence

have been reviewed (Vacek, 1985; Dendukuri and Joseph, 2001). It has been shown that

the latent class models under the independence assumption can produce relatively un-

biased estimates when the degree of dependence is not too strong (Torrance-Rynard

and Walter, 1998; Black and Craig, 2002; Georgiadis et al., 2003; Monti et al., 2005).

To assess the robustness of our method, the conditional independence model is applied

to data simulated under the conditional dependence assumption. It is able to estimate

the parameters fairly well albeit the estimates are biased and the confidence intervals

have worse coverage probability. Several methods have been developed for estimation
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of diagnostic accuracy under the assumption of conditional dependence (Qu et al.,

1996; Black and Craig, 2002; Xu and Craig, 2009; Shih and Albert, 2004; Dendukuri

and Joseph, 2001; Yang and Becker, 1997). These methods produce superior point

estimates for diagnostic accuracy than methods based on the conditional independence

assumption, especially when the tests are indeed highly correlated. For future inves-

tigations, we would relax the conditional independence assumption by extending the

application of such methods to data abundant with missing values.
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Figure 2.1: Plot of Observed vs. Model Based Kappa
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(a) Under the MAR Assumption
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(b) Under the MNAR Assumption

Note: Dots and lines are model based Kappa statistics with their corresponding 95% simultaneous

confidence intervals. There are a total of 55 dots and lines for 11 tests.
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Table 2.2: Number of Subjects by Frequency of Missing Test Results

Number of Missing Tests 0 1 2 3 4 5 ≥ 6
Number of Subjects 219 871 1202 584 216 203 192
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Table 2.3: Estimates and 95% CIs of Sensitivity, Specificity, and Prevalence from Dif-
ferent Models

MARa MNARb

Marker Sensitivity (95%CI) Specificity (95%CI) Sensitivity (95%CI) Specificity (95%CI)
ACTC 0.7111 (0.665, 0.753) 0.9700 (0.963, 0.976) 0.7098 (0.663, 0.752) 0.9703 (0.963, 0.976)
BAT25 0.9405 (0.915, 0.959) 0.9962 (0.993, 0.998) 0.9365 (0.909, 0.956) 0.9961 (0.993, 0.998)
BAT26 0.9308 (0.903, 0.951) 0.9985 (0.996, 0.999) 0.9280 (0.900, 0.949) 0.9985 (0.996, 1.000)
BAT40 0.9301 (0.902, 0.951) 0.9867 (0.981, 0.991) 0.9251 (0.896, 0.947) 0.9868 (0.981, 0.991)
BAT34C4 0.8499 (0.812, 0.882) 0.9980 (0.995, 0.999) 0.8490 (0.811, 0.881) 0.9980 (0.995, 0.999)
D10S197 0.8353 (0.796, 0.868) 0.9816 (0.975, 0.986) 0.8354 (0.796, 0.868) 0.9816 (0.975, 0.986)
D17S250 0.8121 (0.762, 0.854) 0.9564 (0.946, 0.965) 0.8110 (0.761, 0.853) 0.9569 (0.946, 0.966)
D18S55 0.8098 (0.770, 0.844) 0.9842 (0.978, 0.988) 0.8104 (0.771, 0.844) 0.9846 (0.979, 0.989)
D2S123 0.8493 (0.747, 0.915) 0.9769 (0.960, 0.987) 0.8495 (0.746, 0.916) 0.9773 (0.961, 0.987)
D5S346 0.6455 (0.600, 0.688) 0.9923 (0.988, 0.995) 0.6435 (0.598, 0.686) 0.9923 (0.988, 0.995)
MYCL 0.7587 (0.716, 0.797) 0.9360 (0.926, 0.945) 0.7547 (0.712, 0.793) 0.9366 (0.926, 0.946)

Prevalence 0.1482 (0.137, 0.160) 0.1506 (0.139, 0.163)

a Missingness depends on observed test results without modeling missing probabilities.
b Missingness depends on latent disease status when modeling missing probabilities.
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Table 2.4: Estimates and 95% CIs of r1j, r0j, and rj under Different Missing Data
Assumptions

MARa MNARb

Marker rj r1j r0j r1j − r0j (SE) p-value
ACTC 0.1394 0.2248 0.1242 0.1006 (0.0194) < 0.0001
BAT25 0.0771 0.0908 0.0747 0.0161 (0.0138) 0.2450
BAT26 0.0726 0.1077 0.0663 0.0414 (0.0147) 0.0048
BAT40 0.1408 0.1535 0.1386 0.0149 (0.0173) 0.3884
BAT34C4 0.1397 0.2200 0.1254 0.0946 (0.0194) < 0.0001
D10S197 0.1792 0.2231 0.1715 0.0516 (0.0198) 0.0091
D17S250 0.4193 0.4554 0.4129 0.0425 (0.0237) 0.0724
D18S55 0.1342 0.1508 0.1313 0.0195 (0.0172) 0.2573
D2S123 0.8173 0.8606 0.8097 0.0509 (0.0168) 0.0025
D5S346 0.0849 0.1301 0.0769 0.0532 (0.0158) 0.0008
MYCL 0.1663 0.1636 0.1668 -0.0032 (0.0177) 0.8566

a Missingness does not depend on latent disease status.
b Missingness depends on latent disease status.

Note: rj denotes missing probability for each test; r1j and r0j denote missing probabilities for diseased

and non-diseased subjects respectively.
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Chapter 3

Conditional Dependence
Assumption

3.1 Introduction

Diagnostic accuracy, commonly quantified by sensitivity and specificity, plays a key

role in the development of new diagnostic binary tests. A gold standard with perfect

sensitivity and specificity may not always be administered due to the invasiveness, cost,

or other limitations. For example, patients with negative test results are more likely to

forgo the gold standard for a definitive diagnosis. This is considered to be a missing data

problem involving partially missing gold standards. Following the language of Little

and Rubin (1987), the mechanism that led to the missing gold standard is said to be

missing completely at random (MCAR) if the probability of missingness is independent

of any missing or observed data; the mechanism is called missing at random (MAR)

when the probability of missingness depends only on observed data; the mechanism is

called missing not at random (MNAR) when the probability of missing depends on some

missing data. Both MCAR and MAR are “ignorable” missing data mechanisms whereas

MNAR is a “non-ignorable” (NI) missing data mechanism. A considerable literature

exists dealing with partially missing gold standards under the ignorable (Alonzo, 2005;



Begg and Greenes, 1983; Harel and Zhou, 2007; He and McDermott, 2012; Lin et al.,

2006; Yu et al., 2010; Zhou, 1998) and the non-ignorable (Baker, 1995; Geloven et al.,

2012; Harel and Zhou, 2007; Kosinski and Barnhart, 2003b,a; Zhou, 1993) missing data

assumptions.

In many instances a gold standard does not exist, which causes another type of

missing data problem in which the gold standard (i.e. the true disease status) is always

missing. Various methods have been developed to assess the diagnostic accuracy of new

tests in the absence of a gold standard (Alonzo et al., 1999; Hadgu et al., 2005; Enøe

et al., 2000; Reitsma et al., 2009; Goetghebeur et al., 2000). One practice is to compare

the new tests to some imperfect reference standard and attempt to correct imperfect

reference bias. When there is no acceptable reference standard, the latent class analysis

(LCA) treats the unobservable true disease status as a latent variable and utilizes all

tests simultaneously in a unified manner. Early latent class models were based on the

conditional independence assumption, which states that multiple tests are independent

conditional on the true disease status (Hui and Walter, 1980; Walter and Irwig, 1988;

Rindskopf and Rindskopf, 2006). These models often are referred to as traditional la-

tent class (TLC) models. However, the conditional independence assumption usually

does not hold when multiple tests have a similar basis, e.g. measuring a similar biologi-

cal attribute, or when they are influenced by some subject-specific characteristics other

than the disease status. Several maximum likelihood (ML) approaches that allow for

conditional dependence between tests have been developed to estimate diagnostic ac-

curacy, including a finite mixture model (Albert et al., 2004) that uses a quasi-Newton

method, a latent class joint cell probability log-linear model that uses a Fisher scor-

ing algorithm (Espeland and Handelman, 1989), a marginal latent class model that

uses an accelerated EM gradient algorithm (Yang and Becker, 1997), and probit latent

class (PLC) models (Qu et al., 1996; Qu and Hadgu, 1998; Uebersax, 1999; Chib and
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Greenberg, 1998; Xu and Craig, 2009).

A PLC model is a version of LCA in which specified threshold locations discretize

a latent continuous variable into different regions that correspond to observed response

levels. Qu et al. (1996) developed a special PLC model, called the Gaussian random

effects model, because conditional dependence between tests is addressed by subject-

specific random effects in a standard Gaussian distribution that links the observed

test results to the latent disease status through a probit model. Qu and Hadgu (1998)

extended the Gaussian random effects model to a generalized linear mixed model with a

hybrid algorithm that combined the EM algorithm and the Newton-Raphson method for

its ML estimates. Dendukuri and Joseph (2001) presented a Bayesian approach similar

to the random effects model of Qu et al. by imposing a prior distribution to summarize

the uncertainty about each parameter. However, these models simply assume that

the dependence between tests is based on their having the same distribution, which

is hard to justify. To relax this assumption, Uebersax (1999) proposed a PLC model

that assumes a multivariate-normal distribution within each latent class so that the

correlation structure can be modeled flexibly. Employing the Monte Carlo EM (MCEM)

algorithm (Wei and Tanner, 1990), Chib and Greenberg (1998) obtained ML estimates

for multivariate probit models with a general covariance structure. Xu and Craig (2009)

further developed a PLC model to estimate diagnostic accuracy while accommodating

a general correlation structure between tests using a parameter-expanded Monte Carlo

EM (PX-MCEM) algorithm, which was motivated by the MCEM algorithm (Chib and

Greenberg, 1998) and the parameter-expanded EM (PX-EM) algorithm (Liu et al.,

1998). A TLC model is a special version of the PLC model when the two covariance

matrices are restricted to be diagonal.

Heretofore we have discussed two types of missing data problems regarding gold

standard: (i) a gold standard is available but not applied on all subjects (partially
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missing); (ii) a gold standard is never applied or does not exist (totally missing). Po-

leto et al. (2011) presented a scenario in which all subjects are evaluated with a gold

standard and one of the three imperfect tests under evaluation, whereas the other two

imperfect tests are not always performed. They used a two-stage hybrid approach (i.e.,

ML in stage one and weighted least squares in stage two) to estimate the diagnostic

accuracy of the three imperfect tests. To our knowledge, when a gold standard is to-

tally missing, there is no study that has evaluated the diagnostic accuracy of multiple

correlated diagnostic tests with excessive missing data. Motivated by the Colon Cancer

Family Registry (C-CFR) study (Section 2), we extended the PLC models under the

conditional dependence assumption to evaluate the prevalence and diagnostic accuracy

of multiple imperfect diagnostic tests with high proportions of missing data and with-

out a gold standard. In addition, we also evaluated the correlation between these tests

through a general correlation structure of the PLC model.

The remainder of this paper is organized as follows. Section 3.2 introduces the C-

CFR study that motivated our research. Section 3.3 describes the PLC-based method-

ology of estimating diagnostic accuracy and correlation matrices, as well as the boot-

strap approach for estimating their standard errors. Section 3.4 summarizes the results

of simulation studies with different missing data assumptions and examines the finite

sample properties of the proposed model. Section 3.5 presents the preliminary analyses

of the C-CFR data. Finally, section 3.6 concludes with an extensive discussion.

3.2 Motivating Example

Hereditary nonpolyposis colorectal cancer (HNPCC), also known as Lynch syn-

drome (1999), is the most common familial colorectal cancer syndrome accounting for

two to five percent of all colorectal cancer. HNPCC is a genetic disease caused by a

deleterious germline mutation in genes involved in the DNA mismatch repair (MMR)
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pathway that repairs the mismatches in the genome that occur during cell duplication.

It is estimated that 600, 000 individuals in the United States have HNPCC. These indi-

viduals have a substantially increased (up to 80%) lifetime risk of developing cancer in

the colorectum and other sites when compared to the general public. Mutation analysis

of the MMR genes may be considered a gold standard for HNPCC diagnosis. How-

ever its high cost ($2,000 - $3,000 per individual) precludes its broad use in HNPCC

screening. A relatively inexpensive alternative ($200 - $300 per individual) (Thibodeau,

1981) seeks to identify a high level of microsatellite instability (MSI), the amplification

or deletion within microsatellites (common and normal repeated sequences of DNA).

Since the establishment of a consensus definition of MSI and unifying criteria for its

measurement in 1998 (Boland et al., 1998), MSI biomarker tests have been used regu-

larly as part of the international guidelines for HNPCC diagnosis (Umar et al., 2004).

Therefore it is of great interest from a public health perspective to evaluate the diag-

nostic accuracy of MSI biomarkers for early detection and prevention of HNPCC.

The NCI C-CFR study is an international consortium of six centers in North Amer-

ica and Australia that was formed to support studies on the etiology, prevention, and

clinical management of colorectal cancer (Newcomb et al., 2007). The C-CFR data

include test results of 11 MSI biomarkers (namely BAT25, BAT26, BAT40, BAT34C4,

D10S197, D17S250, D18S55, D2S123, D5S346, ACTC, and MYCL). A total of 3, 487

subjects from families with a single subject are included in this research. Only a small

proportion (6.3%) of the 3, 487 subjects has been tested for all 11 MSI biomarkers.

The observed missing proportions range from 7.3% for biomarker BAT26 to 81.7% for

biomarker D2S123. No gold standard was used for the C-CFR study. Furthermore,

the 11 MSI biomarkers share similar biological bases so it is reasonable to assume that

they are conditionally dependent. The high percentages of missing tests and the latent

disease status, together with the conditional dependence between tests have motivated
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our methodology research, which is to be introduced in the next section.

3.3 Statistical Methods

3.3.1 PLC Model Parameters Specification and Expansion

Suppose that we have a total of N subjects and J binary tests. Let Di = d(d = 1, 0)

represent the latent variable for disease status (1=Yes, 0=No) of the ith subject (i =

1, · · · , N ,). Let πd = Pr(Di = d) denote the probability of disease/no disease of the the

ith subject (π1 is the prevalence). Let tij be the result of the jth test of the ith subject.

Notice that due to missing values, the test results are not in the typical “binary” fashion

with three possible values, i.e., 1=positive, 0=negative, 99=missing. Let δij be the

indicator of whether the ith subject has been tested by the jth test (1=tested, 0=not

tested). Ti = (ti1, · · · , tiJ) and ∆i = (δi1, · · · , δiJ) represent all the test results and

missing indicators of the ith subject. Under the conditional dependence assumption,

the similarity between tests of the ith subject is explained by some Gaussian latent

variable Zi = (zi1, · · · , ziJ)′, which has a multivariate normal distribution conditional

on Di, i.e. Zi|Di = d ∼ NJ(µd,Σd) with mean vector µd and variance-covariance matrix

Σd = {σ(d)
ij }. We assume zij > 0 when tij = 1; zij <= 0 when tij = 0; zij could take

any value within (−∞,∞) when tij is missing. The probability of observing (Ti, ∆i) is

obtained by integrating over Zi:

P (Ti,∆i|Di = d, µd,Σd) =

∫
Bi1

· · ·
∫
BiJ

φJ(Zi;µd,Σd)dzi1 · · · dziJ
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where the integration interval of each test is

Bij =


(−∞, 0] if tij=0

(0,∞) if tij=1

(−∞,∞) if tij=99, i.e. δij = 0

(3.1)

However we are unable to find a fixed solution for the model parameters (µd,Σd)

since they are not identifiable. One way to overcome this challenge is to restrict the

variance-covariance matrix Σd to correlation matrix Rd with all diagonal elements equal

to 1 and all off-diagonal elements between [−1, 1], and then re-parameterize µd to ad

(Chib and Greenberg, 1998). It can be shown that the sensitivity and specificity of the

jth test are Sej = Φ(a1j) and Spj = Φ(−a0j), respectively. Let θ = (π1, a1, R1, a0, R0)

denote the vector of all 1+2J+2× J(J−1)
2

= J2 +J+1 unique parameters. Assume that

we know Zi and Di in addition to the observed data (Ti, Di), and assume that, for any

pair of two tests, there are at least some subjects with both test results present. (For

the C-CFR data set, this is of no concern because 219 subjects have all 11 test results

present.) By Bayes’ theorem, the log-likelihood of complete data Yi = (Ti,∆i, Zi, Di)

is

logLc(θ) = logL(θ|Ti,∆i, Zi, Di)

= log
N∏
i=1

{P (Ti,∆i|Zi, Di, θ)}

= log
N∏
i=1

{P (Di|π1)P (Zi|Di, a1, R1, a0, R0)P (Ti,∆i|Zi, a1, R1, a0, R0)}

Since P (Zi|Di, a1, R1, a0, R0) = φJ(Zi; a1, R1)diφJ(Zi; a0, R0)(1−di), P (Ti,∆i|Zi, ad,
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Rd) =
∏J

i=1 I(zij ∈ Bij), P (Di|π1) = πdi1 (1− π1)(1−di), the log-likelihood becomes

logLc(θ) = log
N∏
i=1

{πdi1 (1− π1)(1−di)φJ(Zi; a1, R1)diφJ(Zi; a0, R0)(1−di)

J∏
i=1

I(zij ∈ Bij)}

=
N∑
i=1

{dilog(π1) + (1− di)log(1− π1) + dilog(φJ(Zi; a1, R1))

+(1− di)log(φJ(Zi; a0, R0)) +
J∑
i=1

log(I(zij ∈ Bij))}

3.3.2 ML Estimation Using the Monte Carlo EM Algorithm

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is an itera-

tive computation approach that has been used extensively to find maximum likelihood

estimates (MLEs) of the parameters of an underlying distribution in two general incom-

plete data problems: (i) the data contains missing values; (ii) the model can be sim-

plified by assuming the existence of additional unobserved (latent) variables. The EM

algorithm involves both integration methods (for the E-step) and optimization methods

(for the M-step). When one or both steps are analytically intractable, as frequently is

encountered in the high-dimensional integration for the E-step, approximation meth-

ods (e.g., Laplace approximation and Taylor series expansions), numerical methods

(e.g., Gauss-Hermite and Newton-Cotes), and Monte Carlo methods have been used.

With increasingly powerful computing resources, Monte Carlo methods have gained in

popularity for high-dimensional integrations without closed-form solutions. The Monte

Carlo EM (MCEM) algorithm was introduced by Wei and Tanner (1990) to compute

expectation in the E-step using Monte Carlo simulations. The Monte Carlo sample

size does not depend as much on dimensionality as it does on numerical methods, such

as Gaussian quadrature (Evans and Swartz, 1995). It allows for an easy assessment of
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the approximation error since one can increase the Monte Carlo sample size until the

desired accuracy is obtained.

The MCEM algorithm is well suited for our C-CFR case study: first, we are deal-

ing with missing test results as well as the latent disease status; secondly, our PLC

model involves an intractable E-step due to the high-dimensional integration incurred

by the 11 tests. However, the M-step does not have a closed-form solution when the

variance-covariance matrices are restricted to be correlation matrices Rd. Thus we need

to expand the parameters as µd = V
1
2
d ad and Σd = V

1
2
d RdV

1
2
d following the PX-EM al-

gorithm by Liu et al. (1998). Vd is a J × J diagonal matrix with all diagonal elements

positive. The parameter vector becomes β = (π1, µ1,Σ1, µ0,Σ0) and the log-likelihood

becomes

logLc(β) = log
N∏
i=1

{πdi1 (1− π1)(1−di)φJ(Zi;µ1,Σ1)diφJ(Zi;µ0,Σ0)(1−di)

J∏
i=1

I(zij ∈ Bij)}

=
N∑
i=1

{dilog(π1) + (1− di)log(1− π1) + dilog(φJ(Zi;µ1,Σ1))

+(1− di)log(φJ(Zi;µ0,Σ0)) +
J∑
i=1

log(I(zij ∈ Bij))}

Substituting the joint density functions of the multivariate normal distribution

φJ(Zi;µd,Σd) = 1
(2π)J/2|Σd|1/2

exp{−1
2
(Zi − µd)

′Σ−1
d (Zi − µd)}(d = 1, 0) into logLc(β)

we have the final log-likelihood function of the complete data

logLc(β) = log
N∏
i=1

{πdi1 (1− π1)(1−di)φJ(Zi;µ1,Σ1)diφJ(Zi;µ0,Σ0)(1−di)

J∏
i=1

I(zij ∈ Bij)}
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=
N∑
i=1

{dilog(π1) + (1− di)log(1− π1)

−1

2
log|Σ1|di −

1

2
di(Zi − µ1)′Σ−1

1 (Zi − µ1)− J

2
log(2π)di

−1

2
log|Σ0|di −

1

2
di(Zi − µ0)′Σ−1

0 (Zi − µ0)− J

2
log(2π)di

+
J∑
i=1

log(I(zij ∈ Bij))} (3.2)

The M-step is to solve the score equations after taking expectations conditional on

the complete data:

0 =
N∑
i=1

E[{ di
π1

− 1− di
1− π1

}|Ti,∆i, β
(n)]

0 =
N∑
i=1

E[{diZi − diµ1}|Ti,∆i, β
(n)]

0 =
N∑
i=1

E[{(1− di)Zi − (1− di)µ0}|Ti,∆i, β
(n)]

0 =
N∑
i=1

E[{−1

2
Σ−1

1 di +
1

2
Σ−1

1 (Zi − µ1)(Zi − µ1)′Σ−1
1 di}|Ti,∆i, β

(n)]

0 =
N∑
i=1

E[{−1

2
Σ−1

0 (1− di) +
1

2
Σ−1

0 (Zi − µ0)(Zi − µ0)′Σ−1
0 (1− di)}|Ti,∆i, β

(n)]
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The solutions are:

π
(n+1)
1 =

1

N

N∑
i=1

E[di|Ti,∆i, β
(n)]

µ
(n+1)
1 =

∑N
i=1 E[diZi|Ti,∆i, β

(n)]∑N
i=1E[di|Ti,∆i, β(n)]

µ
(n+1)
0 =

∑N
i=1 E[(1− di)Zi|Ti,∆i, β

(n)]∑N
i=1E[(1− di)|Ti,∆i, β(n)]

Σ
(n+1)
1 =

∑N
i=1 E[di(Zi − µ1)(Zi − µ1)′|Ti,∆i, β

(n)]∑N
i=1E[di|Ti,∆i, β(n)]

Σ
(n+1)
0 =

∑N
i=1 E[(1− di)(Zi − µ0)(Zi − µ0)′|Ti,∆i, β

(n)]∑N
i=1E[(1− di)|Ti,∆i, β(n)]

They are simplified for d = 1, 0 as

π
(n+1)
1 =

1

N

N∑
i=1

E[di|Ti,∆i, β
(n)]

µ
(n+1)
d =

∑N
i=1E[ddi (1− di)1−dZi|Ti,∆i, β

(n)]∑N
i=1E[ddi (1− di)1−d|Ti,∆i, β(n)]

Σ
(n+1)
d =

∑N
i=1E[ddi (1− di)1−d(Zi − µd)(Zi − µd)′|Ti,∆i, β

(n)]∑N
i=1E[ddi (1− di)1−d|Ti,∆i, β(n)]

=

∑N
i=1E[ddi (1− di)1−dZiZ

′
i|Ti,∆i, β

(n)]∑N
i=1E[ddi (1− di)1−d|Ti,∆i, β(n)]

− µ(n+1)
d (µ

(n+1)
d )′ (3.3)

The estimates for ad and Rd can be derived by reducing the expanded parameter

through Ud (a diagonal matrix with diagonal elements equal to those of Σ
(n+1)
d ):

a
(n+1)
d = U

− 1
2

d µ
(n+1)
d

R
(n+1)
d = U

− 1
2

d Σ
(n+1)
d U

− 1
2

d (3.4)

.
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For the E-step we compute the conditional expectations of the expanded com-

plete data sufficient statistics, i.e.
∑N

i=1E[di|Ti,∆i, β
(n)],

∑N
i=1E[diZi|Ti,∆i, β

(n)],∑N
i=1 E[diZiZ

′
i|Ti,∆i, β

(n)],
∑N

i=1 E[(1 − di)Zi|Ti,∆i, β
(n)], and

∑N
i=1E[(1 − di)ZiZ

′
i

|Ti,∆i, β
(n)] via Markov chain Monte Carlo (MCMC) routines such as the Gibbs and

Metropolis-Hastings samplers. For computation efficiency, we grouped subjects by K

distinctive response profiles with nk subjects for each response profile. (Subjects with

the same results for all J tests are said to have the same response profile.) With three

possible test results (1, 0, missing), the total number of possible profiles for J tests is

3J − 1. It is unlikely for the observed data to contain all possible profiles since 3J − 1

increases exponentially with J . For the C-CFR data, the actual number of profiles

observed is K = 887 but the total number of possible profiles is 311 − 1 = 177, 146. It

is reasonable to speculate that the 177, 146− 887 = 176, 259 missing profiles are due to

ignorable missing data mechanism, i.e. there is no clinical or other logical consideration

that precludes a response profile from occurring.

We adopt Xu and Craig’s (2009) sampling algorithm, which reduces a truncated

multivariate normal distribution to a computationally much easier problem involving a

series of univariate truncations. We proceed as follows:

• Begin with a set of arbitrary starting values for the parameter θ(0) = β(0) =

(π
(0)
1 , a

(0)
1 , a

(0)
0 , R

(0)
d , R

(0)
0 ) and the latent variable Z

(0)
k = (zk1, · · · , zkJ)′(k = 1, · · · ,

K). For the first MC sample m = 1, generate d
(0)
k from Bernoulli(p

(0)
k ), where

p
(0)
k =

π
(0)
1

π
(0)
1 +(1−π(0)

1 )r
and r =

φJ (z
(0)
k ;a

(0)
0 ,R

(0)
0 )

φJ (z
(0)
k ;a

(0)
1 ,R

(0)
1 )

.

• Generate Z
(1)
k given d

(0)
k = d from a truncated normal distribution TN(µ∗, σ∗2)

where the integration interval is Bkj, σ
∗2 = 1

(R−1
d )j,j

, µ∗ = adj−σ∗2(R−1
d )j,−j(Zk,−j−

ad,−j). Draw each zkj(j = 1, · · · , J) from the distribution of zkj conditioned on

all other variables, making use of the most recent values and updating zkj with

its new value as soon as it has been drawn, i.e. draw z
(1)
k1 from [zk1|z(0)

k2 , · · · , z
(0)
kJ ],
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draw z
(1)
k2 from [zk2|z(1)

k1 , z
(0)
k3 , · · · , z

(0)
kJ ], · · · , draw z

(1)
kJ from [zkJ |z(1)

k1 , · · · , z
(1)
k,(J−1)].

• Repeat the above simulation steps for m = {2, · · · ,M} to generate M samples of

dk and Zk. The conditional expectations of the expanded complete data sufficient

statistical are estimated by averaging over the M Monte Carlo samples, e.g.,∑N
i=1 E[diZi|Ti,∆i, β

(n)] =
∑K

i=1E[nkdkZk|Ti,∆i, β
(n)] = 1

M

∑M
m=1

∑K
k=1 nkd

(m)
k

Z
(m)
k . Substituting the estimated conditional expectations into 3.3, we derive

parameter estimates β(1) = (π
(1)
1 , µ

(1)
1 , µ

(1)
0 ,Σ

(1)
1 ,Σ

(1)
0 ), and subsequently θ(1) =

(π
(1)
1 , a

(1)
1 , a

(1)
0 , R

(1)
1 , R

(1)
0 ). This completes the first iteration l = 1. θ(1) and Z

(M)
k

(the last MC sample) will be starting values for the next iteration.

• Repeat the above PX-MCEM algorithm steps for l = 2, 3, · · · until the conver-

gence at l = L, i.e. the difference between θ(L) and θ(L−1) is consecutively less

than a preset tolerance for several iterations. Then, we have the final estimates

θ(L), which converge to the true parameter values θ by the law of large numbers.

To control the between-simulation variability known as Monte Carlo error (MCE),

a large MC sample size M (typically at least 10, 000) is preferred but it may quickly be-

come computationally burdensome. It is advisable to implement a small M for the first

few iterations when θ(l) is far from the true parameter values θ, and increase M for later

iterations when θ(l) moves closer to θ (Wei and Tanner, 1990). For example, McCulloch

developed MCEM algorithms that increase M linearly (1994) and nonlinearly (1997)

with the number of iterations. We used a more efficient cumulative MCEM algorithm

(Kou et al., 1998) by fixing M as a relatively small number (e.g. M = 1500) for all

iterations. It utilizes MC samples from the current iteration as well as an adaptively

increasing number of previous iterations, so that simulations from previous iterations

are not wasted.

As with any MCMC method, each MC sample is correlated with nearby samples.
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We thinned the chain by saving every oth simulated sample from each sequence. Another

issue arises when the MC samples at the beginning of the chain do not represent the

desired distribution accurately. We discarded the initial MC samples of each iteration

for early EM iterations during the burn-in period.

The adequacy of the model can be checked by plotting all J(J−1)
2

pairwise correlation

residuals (Qu et al., 1996). The correlation coefficient between any two tests tij and tij′

is
P (tij=1,tij′=1)−P (tij=1)P (tij′=1)√

P (tij=1)(1−P (tij=1))P (tij′=1)(1−P (tij=0))
. For observed pairwise correlation coefficients,

P (tij = 1) =
∑N
i=1 tij
N

and P (tij = 1, tij′ = 1) =
∑N
i=1 tijtij′

N
. For model-based pairwise

correlation coefficients, P (tij = 1) =
∑1

0 πd
∫∞

0
φj(Zi;µd,Σd)dzij and P (tij = 1, tij′ =

1) =
∑1

0 πd
∫∞

0

∫∞
0
φj,j′(Zi;µd,Σd)dzijdzij′ . The residuals are the differences between

the observed and model-based pairwise correlation coefficients.

3.3.3 Starting Values for the PX-MCEM Algorithm

When the loglikelihood function is concave and unimodal over the entire parameter

space, the PX-MCEM algorithm converges to the unique MLE θ(L) from any set of

starting values. In that sense θ(0) = (π
(0)
1 , a

(0)
1 , a

(0)
0 , R

(0)
1 , R

(0)
0 ) can be selected arbitrarily

as long as R
(0)
d is positive definite. In reality it always helps to choose starting values

that are likely to be close to the true values of θ instead of making a wild guess. For

example, Walter and Irwig (1988) used starting values based on the majority opinion

among three radiologists. Staquet et al. (1981) used ”the most probable value” based

on medical and biological knowledge about the PCR and ME tests. The choice of

starting values is more crucial when missing data occur, especially if the proportion of

missing data is high for certain tests. Little and Rubin (1987) outlined a few choices

for the starting values of parameters assuming that the missing-data mechanism was

ignorable, such as the complete-case solution and the available-case solution.
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However, multiple maxima often exist, and the PX-MCEM algorithm is not guar-

anteed to converge to a unique global maximum. One suggestion is to try a variety

of starting values to examine whether a global maxima is reached rather than a local

maximum. This becomes impractical due to the computational intensity of the PX-

MCEM algorithm, as well as the large number of tests and subjects for the C-CFR

data. Conversely, the TLC model is much more efficient computationally. It has been

shown that the TLC model is adequate even with conditionally dependent tests when

the accuracies of the tests are high or when the tests are weakly dependent (Hui and

Zhou, 1998; Georgiadis et al., 2003). In this paper we extended the TLC model under

the conditional independence assumption to allow for missing data, and we used the

model’s estimates of the parameter as our starting values. Assuming that the ignorable

missing data mechanism is tenable, the probability of observing (Ti,∆i) for subject i is

pθ(Ti,∆i) =
1∑
d=0

πdhid (3.5)

where

hi1 =
J∏
j=1

Se
tijδij
j (1− Sej)(1−tij)δij

hi0 =
J∏
j=1

(1− Spj)tijδijSp
(1−tij)δij
j .

Let γ = (π1, Se1, · · · , SeJ , Sp1, · · · , SpJ). Start with some arbitrary starting values

γ(0) for the PX-MCEM algorithm. Given γ(n) for the (n)th iteration, the M-step solves
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the score equations as:

0 =
N∑
i=1

E[{ di
π1

− 1− di
1− π1

}|Yi, γ(n)]

0 =
N∑
i=1

E[{ditijδij
Sej

− diδij − ditijδij
1− Sej

}|Yi, γ(n)]

0 =
N∑
i=1

E[{(1− di)(1− tij)δij
Spj

− (1− di)tijδij
1− Spj

}|Yi, γ(n)]

where Yi = (Ti,∆i, Di) are the complete data. We compute E[di|Yi, γ(n)] in the E-step

and derive γ(n+1). Iterating EM steps until convergence, we get the final estimates γ̂.

After transformation â1j = Φ−1(Ŝej) and â0j = −Φ−1(Ŝpj) are our starting values for

a1j and a0j to initiate the PX-MCEM algorithm aforementioned. Simulation studies

indicate great coverage probability for Ŝej and Ŝpj when the missing rate of test j is

not too high and the conditional independence assumption holds. When the condi-

tional independence assumption is relaxed to the conditional dependence assumption,

Ŝej and Ŝpj are still reasonably close to the true values. The TLC model converts oth-

erwise arbitrary starting values to the best available starting values. Nevertheless, the

TLC model does not estimate R1 and R0, so their starting values have to be selected

arbitrarily.

3.3.4 Bootstrap Method for Standard Errors

Many methods have been developed to estimate standard error (SE) in the context of

the EM algorithm with missing data (Tanner, 1991; Little and Rubin, 1987). In modern

high-performance computing environment, resampling methods such as the bootstrap

method (Efron, 1979) and the jackknife method (Miller, 1974) are used broadly to

derive asymptotic SE estimates using just the data at hand. The bootstrap method is

shown to be robust in many situations, i.e., it provides large-sample SE estimates of
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MLEs with good coverage, even if the model is misspecified or if the model assumptions,

such as the ignorable missing-data assumption, are invalid (Efron, 1994).

The bootstrap method is employed to estimate the SE of the ML estimate of θ.

We randomly drew B bootstrap samples of size N from observed data T1, · · · , TN with

replacement. Then, the PLC model was applied to each bootstrap sample to get the

ML estimates (θ̂(1), · · · , θ̂(B)). The bootstrap estimate of θ is θ̂boot =
∑B
b=1 θ̂

(b)

B
and the

SE estimate is ŜEboot =

√∑B
b=1(θ̂(b)−θ̂boot)2

B−1
. It has been demonstrated that B = 200 is

required if the bootstrap distribution is approximately normal (Efron, 1994).

3.4 Simulation Studies

We assessed the performance of the PLC model when fitting simulated data sets

from different missing data mechanisms. Each simulation study consists of S = 500

simulations. Each simulation generated a simulated data set with N = 3, 500 sub-

jects and J = 5 tests. The true parameter values were set to π1 = 0.2, Se =

(0.7, 0.9, 0.8, 0.6, 0.75), and Sp = (0.9, 0.85, 0.9, 0.9, 0.8). All test results are condi-

tional dependent, i.e., the correlation coefficients between any two tests are 0.6 for

diseased subjects and 0.45 for non-diseased subjects. For simulated data sets under the

MCAR mechanism, all tests were assigned randomly δij = 1 or 0 with P (δij = 1) =

(0.95, 0.9, 0.8, 0.5, 0.1). For simulated data sets under the MAR and MNAR mech-

anisms, ti1 and ti2 are always observed, whereas ti3 has P (δi3 = 1) = 0.8. Under

the MAR mechanism, ti4’s missing probability depends on ti1 through logit(P (δi4 =

1|ti1)) = α+β1ti1; ti5’s missing probability depends on ti1 and ti2 through logit(P (δi5 =

1|ti1, ti2)) = α′ + β′1ti1 + β2ti2. Under the MNAR mechanism, ti4’s missing probabil-

ity depends on ti1 and ti3 through logit(P (δi4 = 1|ti1, ti3)) = α + β1ti1 + β3ti3; ti5’s

missing probability depends on ti1, ti2, ti3 and unobservable disease status Di through

logit(P (δi5 = 1|ti1, ti2, ti3, Di)) = α′+β′1ti1+β2ti2+β′3ti3+β4Di. The coefficients of logit
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models are set to α = 1.5, β1 = −2.5, β2 = −2, β3 = −1.5, β4 = −0.7, α′ = 2, β′1 = −2,

β′3 = −3. Under the MAR mechanism, the missing probabilities vary from 0.18 to 0.73

for ti4 and from 0.12 to 1.00 for ti5. The average missing probabilities are about 30%

for T4 and 40% for T5. Under the MNAR mechanism, the missing probabilities vary

from 0.18 to 0.92 for ti4 and from 0.12 to 1.00 for ti5. The average missing probabilities

for T4 and T5 are 40% and 50% respectively.

The PLC model’s estimates were obtained from each simulated data set, and the

mean and standard deviation (SD) of the estimates were calculated. For each EM

iteration, 3000 Gibbs sampler iterations were simulated. A burn-in of 1000 MC samples

was implemented for the initial 10 EM iterations. Thinning of the chains was performed

by saving every 2nd MC sample, which resulted in 1500 MC samples for each EM

iteration. Thinning decreases the correlation of the chain at the cost of increasing the

number of samples required to obtain the same MC sample size. Hence, we refrained

from over-thinning in the interest of computation time. We assessed convergence by

visual examination. The value chosen for burn-in appears to be reasonable as it cut

off all the early fluctuations. Trace plots of MC samples (e.g.
∑K

k=1 nkd
(m)
k Z

(m)
k ) versus

m do not exhibit any pattern or poor mixing of MCMC. We also plotted cumulative

parameter estimates θ(l) against the PX-MCEM algorithm iteration l, which stabilized

(leveled off to a flat line) within 100 EM iterations. According to the convergence

checks, our simulation settings will likely suffice.

In addition, each simulated data set has B = 200 bootstrap samples drawn for SE

estimation. Then, the mean of these SE estimates were calculated. Both the MCMC

simulation and bootstrap resampling are computationally intensive. Parallel computing

was employed to subdivide a simulation task into sub-tasks that can undergo analysis

simultaneously using multi-processors in a high-performance computing environment.
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Histograms of the bootstrap samples demonstrated a bell-shaped curve that was ap-

proximately Gaussian. We also ran the Shapiro-Wilk test for each bootstrap sample

and failed to reject the null assumption of normality, with almost all p-values being less

than 0.05. The SE estimates closely match the SD estimates. All these results indicate

good behavior of the bootstrap method. To explore the effect of increasing simula-

tion size S and/or bootstrap sample size B, we did sensitivity studies with S = 400

and B = 400. The results of these studies do not show much improvement. To save

computational time, we stick with S = 200 and B = 200 for all simulation studies.

Table 3.1 summarizes the simulation results when the true parameter values as used

as the starting values. Under both the MCAR and MAR mechanisms, the PLC model

gave unbiased estimates with good coverage probabilities for all parameters (all above

90% and most around 95%). Under the MNAR mechanism, the coverage probabilities

are slightly worse for Se5 (88.2%). The PLC model is robust to data sets with abundant

missing values (e.g., the missing probabilities of ti5 are 90% for MCAR, 40% for MAR,

and 50% for MNAR) when the starting values are very close to the true values.

For our proposed method, we fit the TLC model first and used the parameter

estimates as starting values for prevalence and diagnostic accuracy. For R1 and R0,

the starting values were set to 0.5 for all off-diagonal elements. The estimates of the

PLC model are considerably more accurate than the estimates of the TLC model as

they move closer towards the true values. Under the MCAR mechanism, coverage

probabilities for prevalence, sensitivities, and specificities are around 95% for all tests

except for ti5, due to its high percentage of missing values. Under the MAR and MNAR

mechanism, coverage probabilities for sensitivities and specificities are a little worse but

the majority are still above 90%. Not surprisingly, the coverage probabilities are much

worse for R1 and R0 due to their arbitrary starting values. It is noteworthy that the

coverage probabilities for R0 usually are better than for R1, possibly due to the fact
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that more data are available from non-diseased subjects for estimation of R0.

Additional simulation studies were conducted with different starting values for the

PX-MCEM algorithm to illustrate their effects on parameter estimates. For example,

we obtained starting values following the method of Walter and Irwig (1988), which

was based on the majority opinion among multiple radiologists. The starting value of

prevalence was set to the proportion of subjects with at least three positive tests among

all subjects with at least three non-missing tests; the starting value of sensitivity for

each test was set to the proportion of subjects with a positive result for this test among

all subjects with at least three positive tests and a non-missing result for this test; the

starting value of specificity for each test was set to the proportion of subjects with a

negative result for this test among all subjects with no more than two positive tests

and a non-missing result for this test. These starting values deviate further away from

the true values than do the TLC estimates, and hence result in much poorer coverage

probabilities. Essentially, the closer the starting values are to the true values, the better

the PLC model performs in terms of coverage probabilities.

Figure 3.2 presents correlation residual plots under different missing data mech-

anisms. The true parameter values for πd, µd, and Σd (d = 1, 0) were used for the

model-based correlation coefficients. Under the MCAR mechanism, all pairwise cor-

relation residuals are close to zero, and there is no noticeable pattern, which means

a good fit. Under the MAR mechanism, the correlation residuals between the two

MAR tests (ti4 and ti5) and the three non-MAR tests tend to be negative, suggesting

an overestimation of such correlations. Under the MNAR mechanism, the correlation

residuals between the two MNAR tests (ti4 and ti5) and the three non-MNAR tests in-

dicate more serious overestimation of their correlations. All three plots are supported

by the simulation results.

51



T
ab

le
3.

1:
S
u
m

m
ar

y
of

S
im

u
la

ti
on

R
es

u
lt

s

M
C
A
R

M
A
R

M
N
A
R

T
ru

e
M

ea
n

(S
D

)
S

E
C

P
M

ea
n

(S
D

)
S

E
C

P
M

ea
n

(S
D

)
S

E
C

P
P

re
va

le
n

ce
0.

25
0.

25
10

(0
.0

08
3)

0
.0

0
8
2

9
5
.8

0
.2

5
1
3

(0
.0

0
8
3
)

0
.0

0
8
4

96
.2

0
.2

5
0
4

(0
.0

0
8
7
)

0
.0

0
8
5

9
5
.6

S
e

1
0.

70
0.

70
12

(0
.0

18
6
)

0
.0

1
8
7

9
5
.8

0
.7

0
0
3

(0
.0

1
9
6
)

0
.0

1
8
8

94
.2

0
.7

0
1
7

(0
.0

2
0
3
)

0
.0

1
9
1

9
4
.0

S
e

2
0.

90
0.

90
08

(0
.0

11
1
)

0
.0

1
0
6

9
4
.8

0
.9

0
0
1

(0
.0

1
2
6
)

0
.0

1
1
6

92
.4

0
.9

0
0
5

(0
.0

1
2
5
)

0
.0

1
1
9

9
5
.0

S
e

3
0.

80
0.

80
00

(0
.0

16
0
)

0
.0

1
5
6

9
5
.2

0
.7

9
9
3

(0
.0

1
7
1
)

0
.0

1
6
3

94
.2

0
.7

9
8
9

(0
.0

1
6
6
)

0
.0

1
6
7

9
5
.0

S
e

4
0.

60
0.

60
16

(0
.0

24
9
)

0
.0

2
4
1

9
4
.6

0
.5

9
9
7

(0
.0

2
7
6
)

0
.0

2
6
8

95
.0

0
.5

9
0
9

(0
.0

2
9
7
)

0
.0

2
9
5

9
6
.2

S
e

5
0.

75
0.

75
14

(0
.0

23
5
)

0
.0

2
2
7

9
5
.0

0
.7

4
7
7

(0
.0

2
4
6
)

0
.0

2
4
3

94
.0

0
.7

3
5
5

(0
.0

2
2
1
)

0
.0

2
1
5

8
8
.2

S
p

1
0.

90
0.

90
08

(0
.0

06
9)

0
.0

0
6
8

9
5
.4

0
.9

0
0
6

(0
.0

0
6
7
)

0
.0

0
6
8

95
.4

0
.9

0
0
4

(0
.0

0
6
9
)

0
.0

0
6
8

9
5
.4

S
p

2
0.

85
0.

85
05

(0
.0

07
7)

0
.0

0
7
9

9
7
.0

0
.8

5
0
6

(0
.0

0
7
6
)

0
.0

0
7
7

96
.2

0
.8

4
9
8

(0
.0

0
7
3
)

0
.0

0
7
9

9
8
.0

S
p

3
0.

90
0.

90
09

(0
.0

07
0)

0
.0

0
7
2

9
5
.2

0
.9

0
0
8

(0
.0

0
7
0
)

0
.0

0
7
3

96
.8

0
.9

0
0
5

(0
.0

0
6
8
)

0
.0

0
7
4

9
6
.6

S
p

4
0.

90
0.

90
01

(0
.0

09
0)

0
.0

0
8
8

9
5
.2

0
.9

0
0
7

(0
.0

0
7
9
)

0
.0

0
7
7

95
.0

0
.9

0
1
7

(0
.0

0
8
1
)

0
.0

0
7
8

9
4
.6

S
p

5
0.

80
0.

80
09

(0
.0

15
2)

0
.0

1
5
4

9
6
.0

0
.7

9
9
8

(0
.0

1
0
3
)

0
.0

0
9
8

95
.6

0
.8

0
4
1

(0
.0

1
0
2
)

0
.0

1
0
0

9
2
.6

R
1(

2,
1)

0.
60

0.
59

70
(0

.0
32

8
)

0
.0

3
3
7

9
5
.8

0
.5

9
8
3

(0
.0

3
5
7
)

0
.0

3
7
2

9
6
.2

0
.5

9
9
8

(0
.0

3
9
9
)

0
.0

3
9
1

9
6
.0

R
1(

3,
1)

0.
60

0.
59

78
(0

.0
40

9
)

0
.0

4
0
6

9
3
.6

0
.5

9
8
1

(0
.0

4
3
3
)

0
.0

4
2
7

9
4
.2

0
.5

9
7
9

(0
.0

4
4
6
)

0
.0

4
3
9

9
5
.6

R
1(

3,
2)

0.
60

0.
59

77
(0

.0
29

1
)

0
.0

2
9
3

9
6
.8

0
.5

9
8
1

(0
.0

3
1
9
)

0
.0

3
2
9

9
5
.8

0
.5

9
7
0

(0
.0

3
6
0
)

0
.0

3
6
0

9
5
.0

R
1(

4,
1)

0.
60

0.
59

50
(0

.0
54

5
)

0
.0

5
2
5

9
4
.6

0
.5

9
9
9

(0
.0

5
5
1
)

0
.0

5
3
9

9
4
.4

0
.5

9
4
2

(0
.0

5
5
0
)

0
.0

5
3
5

9
4
.0

R
1(

4,
2)

0.
60

0.
59

57
(0

.0
33

0
)

0
.0

3
4
4

9
6
.4

0
.5

9
8
4

(0
.0

3
6
0
)

0
.0

3
6
7

9
5
.8

0
.5

9
4
9

(0
.0

3
8
2
)

0
.0

3
7
6

9
4
.0

R
1(

4,
3)

0.
60

0.
59

63
(0

.0
44

4
)

0
.0

4
4
8

9
5
.6

0
.5

9
6
7

(0
.0

4
6
2
)

0
.0

4
4
7

9
5
.6

0
.5

9
3
5

(0
.0

4
8
1
)

0
.0

4
6
3

9
5
.2

R
1(

5,
1)

0.
60

0.
59

96
(0

.0
39

3
)

0
.0

3
9
3

9
5
.2

0
.5

9
8
3

(0
.0

4
8
4
)

0
.0

4
9
5

9
5
.6

0
.6

0
3
9

(0
.0

4
1
0
)

0
.0

4
0
3

9
5
.0

R
1(

5,
2)

0.
60

0.
59

85
(0

.0
28

9
)

0
.0

2
8
6

9
4
.8

0
.5

9
7
9

(0
.0

3
6
0
)

0
.0

3
5
9

9
5
.2

0
.5

9
7
7

(0
.0

3
6
7
)

0
.0

3
5
1

9
5
.4

R
1(

5,
3)

0.
60

0.
60

01
(0

.0
34

9
)

0
.0

3
3
7

9
4
.8

0
.5

9
8
2

(0
.0

3
9
2
)

0
.0

3
9
9

9
6
.4

0
.5

9
7
9

(0
.0

3
9
9
)

0
.0

3
8
8

9
4
.2

R
1(

5,
4)

0.
60

0.
59

78
(0

.0
38

2
)

0
.0

3
7
7

9
6
.0

0
.5

9
8
5

(0
.0

5
0
5
)

0
.0

4
7
2

9
4
.6

0
.5

9
8
4

(0
.0

4
1
0
)

0
.0

3
9
2

9
4
.0

R
0(

2,
1)

0.
45

0.
44

68
(0

.0
31

3
)

0
.0

3
1
2

9
4
.8

0
.4

4
6
6

(0
.0

3
1
2
)

0
.0

3
2
2

9
5
.2

0
.4

4
6
4

(0
.0

3
1
6
)

0
.0

3
2
8

9
5
.8

R
0(

3,
1)

0.
45

0.
44

69
(0

.0
37

2
)

0
.0

3
7
0

9
5
.6

0
.4

4
5
7

(0
.0

3
9
6
)

0
.0

3
8
7

9
5
.2

0
.4

4
5
0

(0
.0

3
9
8
)

0
.0

3
9
5

9
6
.2

R
0(

3,
2)

0.
45

0.
44

58
(0

.0
27

0
)

0
.0

2
6
3

9
4
.0

0
.4

4
6
4

(0
.0

2
8
4
)

0
.0

2
9
3

9
6
.6

0
.4

4
7
6

(0
.0

2
7
5
)

0
.0

2
9
0

9
6
.2

R
0(

4,
1)

0.
45

0.
44

84
(0

.0
40

0
)

0
.0

3
8
9

9
5
.0

0
.4

4
8
0

(0
.0

3
7
8
)

0
.0

3
8
2

9
5
.2

0
.4

4
3
5

(0
.0

3
7
7
)

0
.0

3
8
2

9
5
.4

R
0(

4,
2)

0.
45

0.
44

80
(0

.0
35

6
)

0
.0

3
4
9

9
4
.6

0
.4

4
6
9

(0
.0

3
7
8
)

0
.0

3
7
2

9
3
.8

0
.4

4
6
4

(0
.0

3
7
3
)

0
.0

3
7
7

9
5
.4

R
0(

4,
3)

0.
45

0.
44

68
(0

.0
37

5
)

0
.0

3
6
4

9
5
.2

0
.4

4
7
3

(0
.0

3
7
9
)

0
.0

4
0
1

9
6
.6

0
.4

4
6
3

(0
.0

3
6
7
)

0
.0

3
8
9

9
6
.2

R
0(

5,
1)

0.
45

0.
44

85
(0

.0
33

8
)

0
.0

3
2
2

9
4
.0

0
.4

4
5
3

(0
.0

4
2
8
)

0
.0

4
2
2

9
4
.6

0
.4

3
7
3

(0
.0

4
3
8
)

0
.0

4
3
1

9
3
.8

R
0(

5,
2)

0.
45

0.
44

77
(0

.0
31

0
)

0
.0

3
0
8

9
5
.8

0
.4

4
5
8

(0
.0

3
6
9
)

0
.0

3
7
9

9
6
.2

0
.4

3
4
2

(0
.0

3
7
4
)

0
.0

3
9
7

9
5
.6

R
0(

5,
3)

0.
45

0.
44

63
(0

.0
31

9
)

0
.0

3
0
4

9
4
.6

0
.4

4
4
2

(0
.0

4
0
4
)

0
.0

4
1
0

9
5
.2

0
.4

3
5
8

(0
.0

3
6
6
)

0
.0

3
8
3

9
6
.0

R
0(

5,
4)

0.
45

0.
44

78
(0

.0
31

0
)

0
.0

3
0
6

9
4
.4

0
.4

4
8
2

(0
.0

4
4
0
)

0
.0

4
2
9

9
5
.6

0
.4

4
1
3

(0
.0

4
4
5
)

0
.0

4
4
4

9
5
.4

52



3.5 Results

We applied the proposed method to the C-CFR study to obtain estimates of the

diagnostic accuracy under the conditional dependence assumption. For the C-CFR

data, we have N = 3, 487 subjects and J = 11 tests. First, the TLC model under the

conditional independence assumption was fit, and the estimates from the TLC model

were used as the starting values for the PLC model under the conditional dependence

assumption. The starting values for R1 and R0 are all set to 0.5. An MC sample of

size M = 1, 500 was simulated for each EM iteration with a burn-in of 1000 for the

initial 10 EM iterations. We thinned a chain by keeping every other simulated draw.

Trace plots of MCMC iterates
∑K

k=1 nkd
(m)
k and

∑K
k=1 nkd

(m)
k Z

(m)
k show that the chains

have reached good mixing. To monitor the convergence of the PX-MCEM algorithm,

we plotted the estimates of the parameters of prevalence, sensitivity, and specificity

versus the number of iterations of the PX-MCEM algorithm. The convergence plots

also indicate good convergence since all parameter estimates fluctuate randomly around

the θ = θ̂ line and stabilize (converge) after 100 iterations.

The SE estimates used for 95% CIs are based on B = 1, 000 bootstrap samples ran-

domly sampled with replacement from the original data. Figure 3.3 shows histograms

of bootstrap samples for prevalence and diagnostic accuracy. Most of the histograms

are well approximated by a Gaussian bell curve, which indicates that their sampling

distributions are close to normal. Tests BAT26 and BAT34C4 have histograms that

were cut off to the right boundary 1 due to their very high specificities. The QQ plots

in Figure 3.4 also support the approximate normality of the bootstrap samples.

Figure 3.1 plots all 11×(11−1)
2

= 55 pairwise correlation residuals for both the TLC

and PLC models. In general, the deviation of the correlation residuals from the zero

reference line is smaller for the PLC model, indicating that the model provided a better

fit than the TLC model. The largest deviation involves tests D17S250 and D2S123
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because they have the highest missing probabilities (41.9% and 81.7%).

Table 2.3 presents the estimates of prevalence and diagnostic accuracy with 95%

CIs from the TLC and PLC models. As expected, the estimates provided by the TLC

and PLC models are very similar. Test BAT25 has the highest sensitivity of 0.9394

while D5S346 has the lowest sensitivity of 0.6294. All of the tests have high specifities

(> 0.93) with the highest sensitivity of 0.9986 for test BAT26. BAT25 and BAT26 are

shown to be the two best biomarkers (BAT25 has the highest sensitivity and the third

highest specificity; BAT26 has the highest specificity and the second highest sensitiv-

ity.) They also happen to be two of the five biomarkers for the NCI-recommended mi-

crosatellite sequence panel, with the other three being D2S123, D5S346, and D17S250.

The pairwise correlation coefficients R1 and R0 are listed in Table 3.3. Estimates of

R1 vary from 0.0953 to 0.6166, and estimates of R0 vary from 0.2730 to 0.4863. The

estimates of Rd must be viewed with caution since simulation studies have suggested

that they are less accurate due to their much poorer starting values. We test H0: all

correlation coefficients of R1 are equal to zero vs. H1: at least some correlation coef-

ficients of R1 are greater than zero. Let θ̂R1 denote estimates of R1 and SEθ̂R1
denote

standard errors of θ̂R1). The nominal p-values Φ(−| θ̂R1

SEθ̂R1

|) are adjusted by Bonferroni

correction, i.e. multiplied by the total number of tests J(J−1)
2

= 55. 40 out of the 55

p-values are less than 0.05. Therefore we reject H0 and conclude that at least some

test results are conditionally dependent for diseased subjects. Similarly, testing for R0

supports conditional dependence assumption for non-diseased subjects.

3.6 Discussion

In this article we extended the use of the PLC model to the analysis of diagnos-

tic tests for which many results are missing and for which there is no gold standard.

The application we was concerned with the estimation of the prevalence and diagnostic
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accuracy of 11 biomarker tests from the C-CFR study. A parameter expanded cumu-

lative MCEM algorithm was implemented to facilitate the computation of the orthant

probabilities of multivariate normal distributions. The PX-MCEM algorithm provides

an analytically tractable M-step and also eases the complexity of evaluating condi-

tional expectations in the E-step. We applied the TLC model under the conditional

independence assumption to derive the starting values for the PLC model. Then, we

assumed conditional dependence among the tests for the PLC model, which is more

plausible due to the biologically similar basis of these tests. The estimates provided by

the PLC model were fairly close to the estimates provided by the TLC model. This is

consistent with our simulation studies that also showed that the two models produced

similar results. We are confident that the estimates from the TLC model are useful as

first approximations for subsequent iterations of the PX-MCEM algorithm. The PLC

model generated estimates that are even closer to the true values than those of the

TLC model. Although there is no established way to assess the underlying missing

data mechanism, when the starting values used in the PLC model are close to the true

values and the missing percentages are moderate, the model is robust irrespective of

the underlying assumptions concerning missing data. In cases in which the percentages

of missing data are high, multiple imputation can be used, but this is beyond the scope

of this paper.

Another advantage of the PLC model is that it readily can be extended to explicitly

model the effects of the characteristics of an individual (including, but not limited to,

gender, race, age at diagnosis, and stage of colon cancer) on prevalence and diagnostic

accuracy. Let Xi denote the covariate vector of the characteristic of subject i. Then,

we assume that Zi|Di = d ∼ NJ(XiBd,Σd), where d = 1 or 0. This will be fully

investigated in our future research.

It is important to note that the final estimates are highly sensitive to the starting
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values. We also found that starting values affect the speed of convergence, i.e., it

took much longer to reach convergence with poor starting values, which would be

computationally prohibitive if we repeat the method on a large amount of bootstrap

samples to get SE estimates. Therefore, it is critical to find even better starting values.

For prevalence and diagnostic accuracy, we can resort to other models that allow for

conditional dependence, such as the Gaussian random effects model (Qu et al., 1996).

Unfortunately, no method is available for achieving viable starting values for correlation

coefficients. We cannot use the observed correlations between Tij and Tij′ because they

are very different from the correlations between the latent variables Zij and Zij′ , due

to loss of information from the dichotomization of continuous Zi to binary Ti. For this

article we used an arbitrary starting value of 0.5, which results in much less accurate

estimates of R1 and R0. It will be beneficial to identify starting values for Rd that

are sufficiently reliable. One potential strategy would be to assume certain simplified

structures for R1 and R0 that could be justified scientifically and/or on the basis of

expert opinion, e.g., it could be assumed that the tests are dependent for the diseased

subjects but independent for the non-diseased subjects, i.e., all of the off-diagonal

entries of R0 are zero.

One limit of the PLC model is that the number of tests must be J ≥ 5. The reason

for this is that the total number of model parameters (J2 + J + 1) cannot exceed the

degrees of freedom of the observed data (2J − 1) for a model to be identifiable. For

studies that involve less than 5 tests, other methods must be considered, e.g., Bayesian

methods that incorporate non-identifiability in the likelihood (Dendukuri and Joseph,

2001), fixing the values of certain parameters (Hui and Walter, 1980), and methods

that address partial identifiability (Jones et al., 2010).

Simulation studies demonstrate compelling closeness of bootstrap SE estimates to

SD of the PLC model parameter estimates, even under the nonignorable missing data
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assumption. Nevertheless, Efron (1994) considered the bootstrap estimates to be invalid

under the nonignorable missing data assumption. Another drawback of the bootstrap

method is that it can be extremely time-consuming for studies that have a large number

of subjects N and/or a large number of tests J . Then, it may be essential to investigate

alternative methods for SE estimation, e.g., the Louis formula (1982) and supplemented

EM (SEM) algorithm (Meng and Rubin, 1991). For the C-CFR data, the Louis formula

did not work out probably due to the high sensitivities and specificities. We expect

the Louis formula will perform better with moderate sensitivities and specificities in

further research.

Computation challenges are posed by both bootstrap resampling and MCMC sim-

ulations during the E-steps. Not to mention that the number of parameters increases

quadratically for high-dimensional correlation matrices. For a modest number of tests,

Gaussian-Hermite quadrature can be a more efficient alternative for approximating in-

tegrals over a finite number of quadrature points. But the C-CFR data require much

more computing resources with the large number of quadrature points required for high

dimensions. Embarrassingly parallel computing was employed for data simulation and

bootstrap. By contrast, MCMC simulations are based on correlated sampling, i.e., the

input of the next iteration is dependent on the output from the previous iteration.

Such iterations are not naturally convertible into parallel code because they cannot be

executed concurrently. To render the PX-MCEM algorithm more computationally fea-

sible, we will explore methods for parallelization of MCMC, for instance, by distributing

entire chains or parts of chains to different processors (Feng et al., 2003).

One concern over latent class models is the lack of clinical definition of disease,

prevalence, and diagnostic accuracy, because disease is an implicitly defined random

variable (Pepe and Janes, 2007). There are certain cases in which the nature of disease

has a spectrum of severity rather than being binary. For our case study, while it
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was expected that the PLC model would provide a reasonable latent structure for

the biology in HNPCC, additional caution must be exercised in the interpretation of

the study results. It also is worthwhile to note that there is no substitute for a gold

standard test when one is available, even if the gold standard is applied to only a small

fraction of the subjects. Another area for potential future research is to determine

whether the previously mentioned mutational analysis (a costly gold standard) can be

applied to at least some patients to facilitate the evaluation of the 11 MSI biomarker

tests. Interdisciplinary collaboration between statisticians, clinicians, and laboratory

scientists is vital for the achievement of these research goals.
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Figure 3.2: Correlation Residual Plots for Simulated Data Sets
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Figure 3.3: Histograms of Bootstrap Samples (B=1000) for Prevalence and Diagnostic
Accuracy
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Figure 3.4: QQ Plots of Bootstrap Samples (B=1000) for Prevalence and Diagnostic
Accuracy
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Table 3.2: Estimates and 95% CIs of Se, Sp, and Prevalence from Different Models

TLC Model PLC Model
Se (95%CI) Sp (95%CI) Se (95%CI) Sp (95%CI)

ACTC 0.7111 (0.665, 0.753) 0.9700 (0.963, 0.976) 0.6982 (0.650, 0.743) 0.9680 (0.961, 0.974)
BAT25 0.9405 (0.915, 0.959) 0.9962 (0.993, 0.998) 0.9394 (0.907, 0.961) 0.9958 (0.992, 0.998)
BAT26 0.9308 (0.903, 0.951) 0.9985 (0.996, 0.999) 0.9314 (0.897, 0.955) 0.9986 (0.996, 1.000)
BAT40 0.9301 (0.902, 0.951) 0.9867 (0.981, 0.991) 0.9268 (0.895, 0.950) 0.9869 (0.981, 0.991)
BAT34C4 0.8499 (0.812, 0.882) 0.9980 (0.995, 0.999) 0.8434 (0.799, 0.879) 0.9977 (0.994, 0.999)
D10S197 0.8353 (0.796, 0.868) 0.9816 (0.975, 0.986) 0.8153 (0.771, 0.853) 0.9787 (0.972, 0.984)
D17S250 0.8120 (0.762, 0.854) 0.9564 (0.946, 0.965) 0.7881 (0.735, 0.833) 0.9543 (0.943, 0.963)
D18S55 0.8098 (0.770, 0.844) 0.9842 (0.978, 0.988) 0.7967 (0.754, 0.834) 0.9822 (0.976, 0.987)
D2S123 0.8493 (0.747, 0.915) 0.9769 (0.960, 0.987) 0.8444 (0.740, 0.912) 0.9766 (0.960, 0.987)
D5S346 0.6455 (0.600, 0.688) 0.9923 (0.988, 0.995) 0.6294 (0.583, 0.673) 0.9900 (0.985, 0.993)
MYCL 0.7587 (0.716, 0.797) 0.9360 (0.926, 0.945) 0.7419 (0.697, 0.782) 0.9348 (0.925, 0.944)

Prevalence 0.1482 (0.137, 0.160) 0.1485 (0.137, 0.161)
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Table 3.3: Estimates and 95% CIs of R1 and R0 from the PLC Model

R1 (95% CI) R0 (95% CI) R1 (95% CI) R0 (95% CI)
(1,2) 0.3210 (0.154, 0.550) 0.3885 (0.333, 0.448) (1,9) 0.4213 (0.260, 0.602) 0.4275 (0.367, 0.490)
(1,3) 0.2516 (0.091, 0.531) 0.3885 (0.337, 0.442) (2,9) 0.3470 (0.209, 0.517) 0.4537 (0.404, 0.504)
(2,3) 0.4446 (0.266, 0.639) 0.4548 (0.411, 0.499) (3,9) 0.4111 (0.259, 0.582) 0.4513 (0.407, 0.496)
(1,4) 0.1147 (0.017, 0.488) 0.3881 (0.320, 0.461) (4,9) 0.2856 (0.158, 0.460) 0.4322 (0.387, 0.479)
(2,4) 0.3370 (0.185, 0.533) 0.4196 (0.376, 0.465) (5,9) 0.3759 (0.230, 0.548) 0.4670 (0.423, 0.511)
(3,4) 0.3346 (0.176, 0.543) 0.4500 (0.405, 0.495) (6,9) 0.4498 (0.300, 0.609) 0.4257 (0.371, 0.483)
(1,5) 0.3643 (0.213, 0.549) 0.3923 (0.343, 0.444) (7,9) 0.5443 (0.402, 0.679) 0.4786 (0.417, 0.540)
(2,5) 0.4630 (0.287, 0.649) 0.4625 (0.420, 0.506) (8,9) 0.3715 (0.217, 0.557) 0.4561 (0.404, 0.509)
(3,5) 0.4141 (0.233, 0.622) 0.4604 (0.418, 0.503) (1,10) 0.4657 (0.330, 0.607) 0.4236 (0.360, 0.490)
(4,5) 0.4651 (0.284, 0.656) 0.4325 (0.389, 0.477) (2,10) 0.2448 (0.088, 0.521) 0.4559 (0.407, 0.505)
(1,6) 0.6008 (0.462, 0.725) 0.4180 (0.344, 0.496) (3,10) 0.2904 (0.116, 0.560) 0.4804 (0.432, 0.529)
(2,6) 0.3202 (0.153, 0.552) 0.4472 (0.391, 0.505) (4,10) 0.1011 (0.011, 0.529) 0.4432 (0.393, 0.495)
(3,6) 0.2847 (0.115, 0.551) 0.4298 (0.382, 0.479) (5,10) 0.2575 (0.122, 0.464) 0.4421 (0.398, 0.487)
(4,6) 0.0953 (0.011, 0.492) 0.4053 (0.354, 0.458) (6,10) 0.5068 (0.369, 0.644) 0.4819 (0.411, 0.554)
(5,6) 0.3567 (0.202, 0.549) 0.4446 (0.396, 0.495) (7,10) 0.4654 (0.322, 0.614) 0.4863 (0.410, 0.563)
(1,7) 0.6048 (0.471, 0.725) 0.3868 (0.313, 0.466) (8,10) 0.3232 (0.186, 0.499) 0.4546 (0.395, 0.516)
(2,7) 0.4777 (0.302, 0.659) 0.4148 (0.362, 0.470) (9,10) 0.3758 (0.220, 0.562) 0.4643 (0.414, 0.515)
(3,7) 0.4692 (0.282, 0.666) 0.4440 (0.394, 0.496) (1,11) 0.4589 (0.321, 0.604) 0.2730 (0.199, 0.362)
(4,7) 0.3659 (0.203, 0.566) 0.3794 (0.322, 0.440) (2,11) 0.2615 (0.114, 0.494) 0.3593 (0.299, 0.424)
(5,7) 0.5990 (0.457, 0.726) 0.4191 (0.366, 0.474) (3,11) 0.4034 (0.220, 0.619) 0.3832 (0.333, 0.436)
(6,7) 0.5878 (0.451, 0.712) 0.4629 (0.389, 0.539) (4,11) 0.2955 (0.141, 0.518) 0.3430 (0.273, 0.420)
(1,8) 0.5552 (0.422, 0.681) 0.4138 (0.347, 0.484) (5,11) 0.5000 (0.344, 0.656) 0.3665 (0.315, 0.421)
(2,8) 0.2486 (0.100, 0.497) 0.4159 (0.369, 0.464) (6,11) 0.6089 (0.472, 0.731) 0.3122 (0.244, 0.390)
(3,8) 0.1848 (0.051, 0.491) 0.4604 (0.414, 0.507) (7,11) 0.6166 (0.483, 0.735) 0.3583 (0.282, 0.443)
(4,8) 0.2261 (0.078, 0.502) 0.4488 (0.385, 0.514) (8,11) 0.4739 (0.330, 0.622) 0.3854 (0.311, 0.466)
(5,8) 0.4853 (0.328, 0.645) 0.4377 (0.392, 0.485) (9,11) 0.4171 (0.275, 0.575) 0.4076 (0.348, 0.470)
(6,8) 0.5287 (0.385, 0.668) 0.4689 (0.400, 0.539) (10,11) 0.5228 (0.395, 0.648) 0.3567 (0.293, 0.426)
(7,8) 0.5735 (0.428, 0.707) 0.4441 (0.373, 0.518)

Note: 1=ACTC, 2=BAT25, 3=BAT26, 4=BAT40, 5=BAT34C4, 6=D10S197,
7=D17S250, 8=D18S55, 9=D2S123, 10=D5S346, 11=MYCL

67



Chapter 4

DiagLCA - An R Package for the
Evaluation of Binary Tests

4.1 Introduction

In diagnostic medicine, observed signs, symptoms, or test results are commonly

dichotomized into two possible outcomes, i.e., “positive” or “negative.” Evaluation

of the diagnostic accuracy (sensitivity and specificity) of such binary tests is of great

importance because reliable diagnoses of patients’ medical conditions are critical in

health practitioners’ treatment plans. Ideally, diagnostic accuracy of a new test could

be evaluated by comparing its results with the test results of a gold standard, which

would definitively separate those subjects with disease from those without disease.

In other words, a gold standard is, by definition, error-free with both sensitivity and

specificity equal to 1. In practice, a gold standard may not exist or is too costly/invasive

to apply. Latent class analysis (LCA) is a group of popular methods that assess the

diagnostic accuracy of multiple imperfect tests in the absence of a gold standard. It

treats the unobserved true disease status as a latent variable with binary classification

(present or absent). The latent variables can only be evaluated indirectly through

observable measurements called manifest variables, e.g. observed test results and/or



patient characteristics (e.g., gender and age).

LCA has a sound theoretical basis in maximum likelihood (ML) or Bayesian method-

ologies. For the ML approach, the estimation of parameters by latent class mod-

els usually involve iterative methods, such as the Fisher scoring algorithm (Espeland

and Handelman, 1989), the Newton-Raphson method (Qu and Hadgu, 1998), and the

expectation-maximization (EM) algorithm (Dempster et al., 1977; Dawid and Skene,

1979). For the Bayesian approach, the parameters often are estimated by Markov Chain

Monte Carlo (MCMC) methods via Gibbs sampling (Joseph et al., 1995; Dendukuri

and Joseph, 2001). The Bayesian approach is particularly useful by incorporating prior

information to address non-identifiability situations when the number of parameters to

be estimated exceeds the available degrees of freedom. However, it is sensitive to the

prior distribution that is chosen. Great caution must be taken to avoid any bias when

collecting prior information. For this article, we focused on ML-based LCA approaches.

The traditional latent class (TLC) model assumes the tests are conditionally indepen-

dent given the true disease status, known as the conditional independence assumption

(Hui and Zhou, 1998; Walter and Irwig, 1988; Rindskopf and Rindskopf, 2006). When

the tests share the same attribute, the conditional independence assumption no longer

holds. Latent class models relaxed for the conditional dependence assumption have been

developed in a dispersed literature (Albert et al., 2004; Espeland and Handelman, 1989;

Yang and Becker, 1997; Qu et al., 1996; Qu and Hadgu, 1998; Uebersax, 1999; Chib and

Greenberg, 1998; Xu and Craig, 2009), including the probit latent class (PLC) model

proposed by Uebersax (1999) and introduced to diagnostic accuracy estimation by Xu

and Craig (2009). The PLC model accommodates conditional dependence among tests

with a general correlation structure assuming a multivariate-normal distribution within

each latent class. A parameter expanded cumulative MCEM (PX-MCEM) algorithm

is implemented to facilitate an analytically tractable M-step and an computationally
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manageable E-step (Liu et al., 1998).

Several R packages have been developed for evaluation of the diagnostic accuracy

of binary tests. DiagnosisMed is applied in evaluation of an index test with compar-

ison to a gold standard (Brasil, 2010). DTComPair computes the accuracy of two

binary diagnostic tests in a paired study design that requires a gold standard (Stock

et al., 2013). R packages utilizing LCA in the absence of a gold standard are also

available. lcmr estimates latent class models with random effects with the Bayesian

approach (Wang and Dendukuri, 2012). TAGS generates ML estimates using the

Newton-Raphson method and EM algorithms based on Hui and Walter’s model (1980)

under the conditional independence assumption (Pouillot et al., 2002). randomLCA

utilizes Qu’s random effects model (1996) to allow for condition dependence between

tests (Beath, 2011). However, none of the aforementioned packages can handle missing

tests, which are very common in diagnostic medicine, i.e., a test kit may be out of stock

during a patient’s visit; the doctor may decide to withhold the test; and the patient

may decline the test. Essentially, there are three types of missing data mechanisms

(Little and Rubin, 1987): missing completely at random (MCAR) when the probabil-

ity of missing does not depend on any missing or observed observations; missing at

random (MAR) when the probability of missing does not depend on any other missing

observations, but can depend on some observed observations; missing not at random

(MNAR) when the probability of missing depends on some missing observations or

latent disease status. MCAR and MAR are both “ignorable” missing data mechanisms

whereas MNAR is a “non-ignorable” (NI) missing data mechanism. Research that deal

with missing tests are available when a gold standard is present (Kosinski and Barn-

hart, 2003b; Zhou, 1993; Alonzo, 2005; Lin et al., 2006; He and McDermott, 2012; Yu

et al., 2010; Harel and Zhou, 2006, 2007; Harrell et al., 1996). But to our knowledge,

there is no literature on missing tests evaluation in the absence of a gold standard.
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In this paper, we introduce the DiagLCA package to address the missing data

problem in the evaluation of multiple correlated diagnostic tests without a gold stan-

dard. Section 4.2 provides a methodological background of the TLC and PLC models.

Section 4.3 gives an overview of the DiagLCA package. Section 4.4 presents a step-by-

step demonstration of the usage of the package through a real-world example. Section

4.5 concludes with a brief summary.

4.2 Methodology

The DiagLCA package extends Xu and Craig’s (2009) PLC model to estimate the

diagnostic accuracy of conditionally dependent tests when some results are missing.

It also has the capability of fitting a TLC model under the conditional independence

assumption. We give a brief overview of the TLC and PLC models and introduce all

parameters needed as follows:

• N is the total number of subjects.

• J is the total number of tests.

• tij is the test result of the jth test for the ith subject.

• Ti = (ti1, · · · , tiJ) is for all J test results of the ith subject.

• Zi = (zi1, · · · , ziJ) is a vector of Gaussian latent variables with a multivariate

normal distribution NJ(µd,Σd). zij > 0 when tij = 1; zij <= 0 when tij = 0; zij

could take any value within (−∞,∞) when tij is missing.

• δij indicates whether the ith subject was tested by the jth test (1=Yes).

• ∆i = (δi1, · · · , δiJ) is all non-missing indicators of the ith subject.

• Di = d(d = 1, 0) is latent disease status (1=Yes).

71



• πd = Pr(Di = d) is probability of disease/no disease (π1 is prevalence).

• Sej and Spj are sensitivity and specificity of the jth test.

• ad (d = 1, 0) are mean vectors of NJ(µd,Σd). Notice the relationship Sej = Φ(a1j)

and Spj = Φ(−a0j).

• Rd (d = 1, 0) are correlation matrices of NJ(µd,Σd).

• θ = (π1, Se1, · · · , SeJ , Sp1, · · · , SpJ) is the vector of all parameters for the TLC

model.

• η = (π1, a11, · · · , a1J , a01, · · · , a0J , R1,12, · · · , R1,(J−1)J , R0,12, · · · , R0,(J−1)J) is the

vector of all parameters for the PLC model.

Assuming the unobserved disease status Di is known for each subject i, the log-

likelihood of complete data Yi = (Ti,∆i, Di) under the conditional independence as-

sumption is logLc(θ) =
∑N

i=1(dilog(π1hi1) + (1− di)log(π0hi0)), where

hi1 =
J∏
j=1

Se
tijδij
j (1− Sej)(1−tij)δij

hi0 =
J∏
j=1

(1− Spj)tijδijSp
(1−tij)δij
j .

θ is then estimated using the EM algorithm. Assume θ(n) is known at iteration n

for n = 0, 1, · · · , (θ(0) is starting value). Solving the score equations during the M-step

and computing the conditional expectations of the complete-data sufficient statistics

during the E-step, we get closed-form solutions for θ(n+1):
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We iterate EM steps until convergence to get the ML estimate θ̂ for the TLC model.

Now we move on to describe the PLC model. The PX-MCEM algorithm is used to

estimate η. To ensure a closed-form solution for the M-step, the parameter vector

η is expanded to β = (π1, µ1,Σ1, µ0,Σ0) where µd = V
1
2
d ad and Σd = V

1
2
d RdV

1
2
d (Liu

et al., 1998). Zi is introduced to account for the similarity between tests of subject

i under the conditional dependence assumption. The log-likelihood of complete data

Yi = (Ti,∆i, Zi, Di) is

logLc(β) = log
N∏
i=1

{πdi1 (1− π1)(1−di)φJ(Zi;µ1,Σ1)diφJ(Zi;µ0,Σ0)(1−di)
J∏
i=1

I(zij ∈ Bij)}

=
N∑
i=1

{dilog(π1) + (1− di)log(1− π1) + dilog(φJ(Zi;µ1,Σ1))

+(1− di)log(φJ(Zi;µ0,Σ0)) +
J∑
i=1

log(I(zij ∈ Bij))}

The closed-form solutions for β(n+1) is:
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π
(n+1)
1 =

1

N

N∑
i=1

E[di|Ti,∆i, β
(n)]

µ
(n+1)
d =

∑N
i=1E[ddi (1− di)1−dZi|Ti,∆i, β

(n)]∑N
i=1E[ddi (1− di)1−d|Ti,∆i, β(n)]

Σ
(n+1)
d =

∑N
i=1E[ddi (1− di)1−d(Zi − µd)(Zi − µd)′|Ti,∆i, β

(n)]∑N
i=1E[ddi (1− di)1−d|Ti,∆i, β(n)]

=

∑N
i=1E[ddi (1− di)1−dZiZ

′
i|Ti,∆i, β

(n)]∑N
i=1E[ddi (1− di)1−d|Ti,∆i, β(n)]

− µ(n+1)
d (µ

(n+1)
d )′

Reduce the expanded parameter through Ud (a diagonal matrix with diagonal ele-

ments equal to those of Σ
(n+1)
d ), we get the estimates for ad and Rd:

a
(n+1)
d = U

− 1
2

d µ
(n+1)
d

R
(n+1)
d = U

− 1
2

d Σ
(n+1)
d U

− 1
2

d

.

Now, we can compute the above conditional expectations of the expanded complete

data sufficient statistics via a Markov chain Monte Carlo (MCMC) method. As for

standard errors of point estimates, DiagLCA employs the Louis formula (1982) for the

TLC model and the bootstrap method for the PLC model (Efron, 1979). DiagLCA

provides a graphic check for the conditional independence assumption (Qu et al., 1996;

Chu et al., 2009). If the graphic check or other resources (clinician opinions, biology

knowledge, etc.) dictate the conditional independence assumption is appropriate in

practice, one may proceed with the TLC model to get diagnostic accuracy. Otherwise

if the conditional independence assumption does not hold, users can go with the PLC

option.
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Starting values for the parameters of the PLC model are needed in order to initiate

the iterations of the PX-MCEM algorithm. The final estimates of the PLC model are

highly sensitive to the starting values. One common practice for the EM algorithm

is to try different sets of starting values to ensure that a global maximum is reached.

We do not recommend this approach due to the computational intensity of the PX-

MCEM algorithm and the bootstrap method. Users should enter the best set of starting

values available from clinician opinions, other studies for the same tests, or preliminary

model estimates from other statistical methods. When users do not have any reliable

information on starting values, we propose fitting the computationally efficient TLC

model first and using the TLC model estimates as starting values for the PLC model.

Our simulation results have proven that the TLC model’s estimates are good starting

values for the PLC model to generate estimates closer to the true values.

The distinctive advantage of DiagLCA over other available R packages is its abil-

ity to handle missing data. Although the assumption of the missing data mechanism

cannot be checked/tested without additional information on the missing data, sensitiv-

ity analyses have shown that the PLC model is robust to the underlying missing data

assumptions as long as the starting values are close to the true values and the missing

percentages are not too high.

4.3 The R Package DiagLCA

4.3.1 Function indTLC

indTLC, one of the two main functions, applies the TLC model under the conditional

independence assumption. The synopsis for indTLC is:

indTLC(data, nTest=11, iniSize=10, prev=prev0, sens=sens0,

spec=spec0, thresh=0.001, stable=5, print=FALSE)
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The arguments of indTLC are described as follows:

• data: The original data set name. The data is expected to be in a specific

format. Each record corresponds to one subject. The first column is for subject

ID. Columns 2 to J + 1 correspond to T ; columns J + 2 to 2J + 1 correspond to

∆.

• nTest: Number of tests, i.e. J .

• iniSize: The number of different sets of initial values. In order to ensure a global

maxima is reached, we recommend no less than 5.

• prev: A vector of length iniSize for initial values of prevalence.

• sens: A matrix with iniSize rows and J columns for initial values of sensitivity.

• spec: A matrix with iniSize rows and J columns for initial values of specificity.

• thresh: The threshold to decide when EM iterations converge. The sum of

absolute changes for all parameter estimates should be less than this threshold

for a prespecified number of consecutive iterations (stable). Default value is

0.001.

• stable: The number of consecutive iterations that a threshold (thresh) has been

reached. Default value is 5.

• print: If TRUE, depPLC will print in the output window the outputs resulted.

Default value is TRUE.

4.3.2 Function depPLC

The other main function is depPLC, which fits the PLC model under the conditional

dependence assumption. It is used as:
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depPLC(data, count=TRUE, nTest=11, iniSize=1, prev=prev0, a1=a1.0,

a0=a0.0, R1=R1.0, R0=R0.0, ndraw=1500, burniter=10, burndraw=1000,

thin=2, nboot=200, bootseed=1:200, thresh=0.001, stable=5, print=FALSE)

Many arguments for depPLC are the same as indTLC. The diffrent/new ones are:

• count: Default value is TRUE. It converts the original data input into a data

frame with each record corresponding to one data pattern. Columns 1 to J

correspond to T , column J + 1 represents number of subjects sharing the same

pattern. If the input data is already in this format, the value should be set to

FALSE.

• iniSize: Here we recommend using the TLC model estimates as starting values,

i.e. iniSize is 1.

• a1: A matrix with iniSize rows and J columns for initial values of a1.

• a0: A matrix with iniSize rows and J columns for initial values of a0.

• R1: An array of iniSize matrices (each with J × J dimension) for initial values

of R1. Defaul value is a diagonal matrix with 1 for all diagonal elements and 0.5

for all off-diagonal elements.

• R0: An array of iniSize matrices (each with J × J dimension) for initial values

of R0. Defaul value is a diagonal matrix with 1 for all diagonal elements and 0.5

for all off-diagonal elements.

• ndraw: Number of draws for each Monte Carlo sample. Default value is 1500.

• burniter: Number of early MC samples with burn-in draws. Default value is 10.

• burndraw: Number of burn-in draws to be discarded during initial portion of a

MC sample. Default value is 1000.
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• thin: Number of thinning. Default vaule is 2, i.e. keep every 2nd simulated draw

from each sequence.

• nboot: The number of bootstrap samples for standard error calculation. Default

value is 200.

• bootseed: A vector of length nboot for random seeds of bootstrap samples.

Defalut values are the sequence number of each bootstrap sample (1, 2, · · · , 200).

The rest of the functions provide diagnostic plots for the PX-MCEM algorithm and

bootstrap method, produce visual checks for model assumptions, and create simulated

data sets for simulation studies.

4.3.3 Function modelcheck

modelcheck generates correlation residual plots proposed by Qu et al. (1996), or

plots observed vs. model based Kappa statistics proposed by Chu et al. (2009).

modelcheck(x, type = "l", xlab="Model Based Kappa",

ylab="Observed Kappa", method="kappa", ...)

Most of the arguments here are the same to graphic function plot, e.g., type denotes

whether to plot symbols, lines, or both; xlab and ylab define labels of axises. (The

x-axis label is typically blank.) The special arguments are:

• x: A depPLC object containing the input values needed: all pairwise differences

between observed and model based correlation coefficients for method ”kappa”;

a vector of all pairwise differences between observed and model based Kappa

statistics for method ”kappa”.

• method: Model checking method. Possible values are ”kappa” and ”corr”.
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4.3.4 Function traceplot

traceplot plots MC iterations vs. sampled values for specified PX-MCEM itera-

tion(s), with a separate plot for each parameter.

traceplot(x, iter=1:10, type = "l", xlab = "Iterations",

ylab = "", ...)

Refer to plot for other arguments except for x and iter:

• x: A depPLC object containing the input values needed: cumulative MC samples

during each PX-MCEM iteration.

• iter: Specify the PX-MCEM iteration(s) where MC samples are plotted. Possi-

ble values are 1, 1 : 10, etc.

4.3.5 Function convergplot

convergplot plots PX-MCEM algorithm iterations vs. the PLC model parameter

estimates (prevalence, diagnostic accuracy, and correlation coefficients).

convergplot(x, type = "l", xlab = "Iterations", ylab = "", ...)

Refer to plot for other arguments except for x:

• x: A depPLC object containing the input values needed: cumulative parameter

estimates over all PX-MCEM iterations until convergence is reached.

4.3.6 Function histgram

histgram generates histograms of all bootstrap samples (used for standard error

estimation) for each parameter.
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histgram(x, xlab = colnames(x), breaks=20, ...)

The arguments are the same as the standard R function hist except for x:

• x: A depPLC object containing the input values needed: parameter estimates for

all bootstrap samples.

4.3.7 Function qqplot

qqplot generates QQ plots of all bootstrap samples for each parameter.

qqplot(x, main =colnames(x), ...)

The arguments are the same as the standard R function qqnorm except for x:

• x: A depPLC object containing the input values needed: parameter estimates for

all bootstrap samples.

4.3.8 Function simudata

simudata produces simulated data sets under different missing data mechanisms.

Each data record corresponds to one subject. The first column is for subject ID;

columns 2 to J + 1 correspond to T ; columns J + 2 to 2J + 1 correspond to ∆, the last

column is for true disease status. simudata can be integrated with indTLC and depPLC

to carry out simulation studies.

simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,

prev=prev.0, a1=a1.0, a0=a0.0, R1=R1.0, R0=R0.0,

CDA=TRUE, miss=rep(1,5), missprob=missprob)

The arguments are defined as:
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• seed: Random seed.

• nTest: Number of tests, i.e. J .

• nSubj: Number of subjects, i.e. N .

• nData: Number of data sets simulated for each simulation study.

• prev: A vector of length nStudy for initial values of prevalence.

• a1: A matrix with nStudy rows and J columns for initial values of a1.

• a0: A matrix with nStudy rows and J columns for initial values of a0.

• R1: An array of nStudy matrices (each with J × J dimension) for initial values

of R1.

• R0: An array of nStudy matrices (each with J × J dimension) for initial values

of R0.

• CDA: Specify the conditional dependence assumption among tests (value TRUE)

or conditional independence assumption (value FALSE). Default value is TRUE.

• miss: Specify missing data algorithms. Possible values are: 0 for no missing

values, 1 for MCAR; 2 for MAR; 3 for MNAR.

• missprob: A vector for missing probabilities. Only to be used for MCAR tests.

• missmodel: A vector for regression coefficients of a logistic regression model for

missing data probability. Only to be used for MAR or MNAR tests.
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4.4 Implementation

4.4.1 Example Data

Colorectal cancer is the third most common cancer in the world. It is more common

in developed countries, where around 60% of cases are diagnosed. Hereditary nonpoly-

posis colorectal cancer (HNPCC), also known as Lynch Syndrome, is an autosomal

dominant genetic condition caused by mutations that impair DNA mismatch repair.

HNPCC patients have an 80% lifetime risk of developing colon cancer compared to 5%

for the general population. Thus, early detection of the disease is highly important for

timely treatment. Microsatellite instability (MSI) biomarker tests have been used to

diagnose HNPCC (Boland et al., 1998; Umar et al., 2004; Lynch and de la Chapelle,

1999). Our data set comes from NCI Colon Cancer Family Registry (C-CFR). To

this end, we have J = 11 MSI tests measured on N = 3, 487 individuals from single-

subject families. The data set is included in the DiagLCA package named msi. After

installation of DiagLCA, load the data set:

R> library(DiagLCA)

R> data(msi)

4.4.2 Initial Exploration

We first examine the data structure:

R> head(msi)

SUBJID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 M1 M2 M3 M4 M5 M6

[1,] 110030000020 0 0 0 99 0 0 99 0 0 0 0 1 1 1 0 1 1

[2,] 110030000244 0 1 1 99 99 0 99 0 99 1 0 1 1 1 0 0 1

[3,] 110030000392 99 0 0 99 99 99 0 99 0 0 99 0 1 1 0 0 0

82



[4,] 110030000491 99 0 0 0 0 0 0 0 0 99 0 0 1 1 1 1 1

[5,] 110030000624 0 99 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

[6,] 110030000665 0 0 99 99 99 99 1 99 99 0 99 1 1 0 0 0 0

M7 M8 M9 M10 M11

[1,] 0 1 1 1 1

[2,] 0 1 0 1 1

[3,] 1 0 1 1 0

[4,] 1 1 1 0 1

[5,] 1 1 1 1 1

[6,] 1 0 0 1 0

The first column is for subject ID, followed by 11 columns of test results (T ) and 11

columns of non-missing indicators (∆). Tests T1 to T11 correspond to BAT25, BAT26,

BAT40, BAT34C4, D10S197, D17S250, D18S55, D2S123, D5S346, ACTC and MYCL,

respectively. Notice that the column names are only used in the default labels on

figures. Users may freely choose column names as long as the columns follow this

standard structure. All missing values are coded to 99, corresponding to 0 for non-

missing indicators.

R> J <- 11

R> miss <- round((1 - colMeans(msi[, 1+J+1:J])), 4)

R> miss

M1 M2 M3 M4 M5 M6 M7 M8 M9

0.1394 0.0771 0.0726 0.1408 0.1397 0.1792 0.4193 0.1342 0.8173

M10 M11

0.0849 0.1663

R> A=msi[,1+J+1:J]
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R> a=rowSums(A)

R> table(a)

a

1 2 3 4 5 6 7 8 9 10 11

17 19 16 52 88 203 216 584 1202 871 219

The missing probabilities range from 7.26% for T3 to 81.73% for T9. Only 219

subjects have all 11 test results. And only 192 subjects have 6 or more tests missing.

4.4.3 Fitting a TLC Model

First, a TLC model is fit using indTLC. We tried different sets of starting values

and ended up with very similar results. For showcasing purposes, we use one set of

arbitrary starting values by specifying iniSize=1.

R> prev0 <- 0.1

R> sens0 <- rep(0.8, J)

R> spec0 <- rep(0.9, J)

R> results1 <- indTLC(data=msi, nTest=11, iniSize=1, prev=prev0,

sens=sens0, spec=spec0, thresh=0.001, stable=5, print=FALSE)

R> results1$Estimates

[1] 0.1482364 0.7110802 0.9405087 0.9308248 0.9301345 0.8499049

[7] 0.8352653 0.8120392 0.8097522 0.8492710 0.6454502 0.7586832

[13] 0.9699805 0.9961616 0.9985180 0.9866882 0.9979755 0.9815781

[19] 0.9564028 0.9841752 0.9769292 0.9922828 0.9360068

R> results1$StdErrs
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[1] 0.0060 0.0226 0.0111 0.0121 0.0123 0.0178 0.0184 0.0234 0.0187

[10] 0.0423 0.0225 0.0207 0.0034 0.0012 0.0008 0.0023 0.0009 0.0027

[19] 0.0049 0.0025 0.0064 0.0017 0.0049

R> results1$UpperLimits

[1] 0.160 0.753 0.959 0.951 0.951 0.882 0.868 0.854 0.844 0.915

[11] 0.688 0.797 0.976 0.998 0.999 0.991 0.999 0.986 0.965 0.988

[21] 0.987 0.995 0.945

R> results1$LowerLimits

[1] 0.137 0.665 0.915 0.903 0.902 0.812 0.796 0.762 0.770 0.747

[11] 0.600 0.716 0.963 0.993 0.996 0.981 0.995 0.975 0.946 0.978

[21] 0.960 0.988 0.926

indTLC is highly efficient. For the C-CFR data, the EM algorithm converges in

nine iterations (from results1$iter) taking only a few seconds. All results are con-

tained in a list object named results1. We specify print=FALSE in the interest of

conserving space. Only a selected set of results is presented: point estimates, standard

errors, and upper/lower limits of 95% confidence intervals. (The order of paramaters

is prevalence, sensitivities for T1 to T11, and specificities for T1 to T11.) Users may

also call results1$Prevalence, results1$Sensitivity, results1$Specificity to

get the exact estimates. Other results, such as complete data information matrix

(results1$ComMatrix), observed data information matrix (results1$ObsMatrix),

model based Kappa statistics (results1$ModKappa), and observed Kappa statistics

(results1$ObsKappa) also are accessible. According to the TLC model’s estimates, the

two best tests are T2 with the highest sensitivity (0.9405) and third highest specificity,

and T3 with the highest specificity (0.9985) and second highest sensitivity.
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The TLC model is based on the conditional independence assumption. We can run

the following code to check the validity of this assumption:

R> modelcheck(results1$Kappa, method="kappa", xlab="Model Based Kappa",

ylab="Observed Kappa", xlim=c(0.37, 0.94), ylim=c(0.37, 0.94), err="x",

slty=1, cex=0.5, pch=19, sfrac=0, abline=c(0, 1), ablcol="black")

results1$ModKappa is a matrix object including observed Kappa statistics and

model based Kappa statistics with upper and lower limits. All of the 95% simultaneous

confidence intervals of model-based Kappa contain the observed Kappa statistics. We

fail to reject the null hypothesis of conditional independence assumption. However,

there is no conclusive test for examination of the conditional independence assumption.

Users are always encouraged to consult healthcare practitioners for clinical perspective

on the assumption. For the C-CFR data, it is reasonable to suspect the tests are

correlated due to their similar biological basis. Thus we proceed with the PLC model

fitting next.

4.4.4 Fitting a PLC Model

The diagnostic accuracy estimates from indTLC provide good starting values for a1

and a0. As for R1 and R0, there is no feasible way of deriving good starting values so

a diagonal matrix with 1 for all diagonal elements and 0.5 for all off-diagonal elements

is used.

R> a1.0 <- as.matrix(round(qnorm(results1$Sensitivity),4))

R> a0.0 <- as.matrix(round(-qnorm(results1$Specificity),4))

R> R1.0 = matrix(0.5, J, J, byrow=TRUE) + diag(0.5, J)

R> R0.0 = matrix(0.5, J, J, byrow=TRUE) + diag(0.5, J)
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R> results2 <- depPLC(data=msi, count=FALSE, nTest=11, iniSize=1,

prev=results1$Prevalence, a1=a1.0, a0=a0.0, R1=R1.0, R0=R0.0,

ndraw=1500, burniter=10, burndraw=1000, thin=2, nboot=1000,

bootseed=1:200, thresh=0.001, stable=5, print=FALSE)

By specifying count=FALSE, the data input is reconstructed to group subjects by

response profiles, so that subjects with all the same test results are processed together

to ease the computation burden of the PX-MCEM algorithm. The reconstructed data

set is stored in the list object as results2$countdata along with other results.

R> msi2 <- results2$countdata

R> head(msi2)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 n

1 0 0 0 0 0 0 0 0 0 0 0 166

2 0 0 0 0 0 0 0 0 0 0 1 11

3 0 0 0 0 0 0 0 0 0 0 99 28

4 0 0 0 0 0 0 0 0 0 1 0 1

5 0 0 0 0 0 0 0 0 0 1 1 1

6 0 0 0 0 0 0 0 0 0 99 0 6

R> tail(msi2)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 n

882 99 99 99 99 99 99 0 0 99 99 99 1

883 99 99 99 99 99 99 0 99 99 99 99 1

884 99 99 99 99 99 99 1 1 99 1 0 1

885 99 99 99 99 99 99 1 99 99 99 99 1

886 99 99 99 99 99 99 99 99 99 0 99 1

887 99 99 99 99 99 99 99 99 99 99 0 3
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There is a total of 887 response profiles for the C-CFR data. The total number of

possible profiles is 311 − 1 = 177146 with three possible test results (1, 0, 99). Thus,

many profiles have very few subjects, and many more profiles are not observed. We

assume ignorable missing data assumptions for the missing profiles. The final results

are:

R> results2$iter

[1] 100

R> results2$Prevalence

[1] 0.1485005

R> results2$Sensitivity

[,1]

[1,] 0.6982015

[2,] 0.9393666

[3,] 0.9314466

[4,] 0.9267739

[5,] 0.8433803

[6,] 0.8153116

[7,] 0.7881319

[8,] 0.7967001

[9,] 0.8444460

[10,] 0.6294338

[11,] 0.7419136

R> results2$Specificity
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[,1]

[1,] 0.9679827

[2,] 0.9958260

[3,] 0.9986460

[4,] 0.9868597

[5,] 0.9977364

[6,] 0.9787428

[7,] 0.9543197

[8,] 0.9822086

[9,] 0.9766155

[10,] 0.9899994

[11,] 0.9348244

R> results2$R1

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 0.3210300 0.2516105 0.11474140 0.3642791 0.60076510

[2,] 0.3210300 1.0000000 0.4445768 0.33700505 0.4629772 0.32020180

[3,] 0.2516105 0.4445768 1.0000000 0.33464877 0.4140617 0.28471884

[4,] 0.1147414 0.3370051 0.3346488 1.00000000 0.4651138 0.09528937

[5,] 0.3642791 0.4629772 0.4140617 0.46511382 1.0000000 0.35668883

[6,] 0.6007651 0.3202018 0.2847188 0.09528937 0.3566888 1.00000000

[7,] 0.6048265 0.4777211 0.4692013 0.36592877 0.5990494 0.58777314

[8,] 0.5551875 0.2486382 0.1848360 0.22614256 0.4852895 0.52871200

[9,] 0.4213350 0.3469771 0.4110545 0.28561179 0.3758858 0.44980459

[10,] 0.4657090 0.2448462 0.2903905 0.10111881 0.2574552 0.50680537

[11,] 0.4588924 0.2614890 0.4034129 0.29552066 0.4999776 0.60891431
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[,7] [,8] [,9] [,10] [,11]

[1,] 0.6048265 0.5551875 0.4213350 0.4657090 0.4588924

[2,] 0.4777211 0.2486382 0.3469771 0.2448462 0.2614890

[3,] 0.4692013 0.1848360 0.4110545 0.2903905 0.4034129

[4,] 0.3659288 0.2261426 0.2856118 0.1011188 0.2955207

[5,] 0.5990494 0.4852895 0.3758858 0.2574552 0.4999776

[6,] 0.5877731 0.5287120 0.4498046 0.5068054 0.6089143

[7,] 1.0000000 0.5734948 0.5443290 0.4654053 0.6166252

[8,] 0.5734948 1.0000000 0.3714795 0.3231993 0.4738745

[9,] 0.5443290 0.3714795 1.0000000 0.3757601 0.4171032

[10,] 0.4654053 0.3231993 0.3757601 1.0000000 0.5228118

[11,] 0.6166252 0.4738745 0.4171032 0.5228118 1.0000000

R> results2$R0

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 0.3885253 0.3885319 0.3880731 0.3922833 0.4179660

[2,] 0.3885253 1.0000000 0.4548361 0.4195803 0.4625262 0.4471870

[3,] 0.3885319 0.4548361 1.0000000 0.4500090 0.4604344 0.4297889

[4,] 0.3880731 0.4195803 0.4500090 1.0000000 0.4325155 0.4052659

[5,] 0.3922833 0.4625262 0.4604344 0.4325155 1.0000000 0.4446123

[6,] 0.4179660 0.4471870 0.4297889 0.4052659 0.4446123 1.0000000

[7,] 0.3868106 0.4147975 0.4439540 0.3794102 0.4190582 0.4628957

[8,] 0.4138077 0.4158910 0.4603657 0.4488452 0.4376806 0.4689404

[9,] 0.4274973 0.4536899 0.4513213 0.4322316 0.4669834 0.4257487

[10,] 0.4235997 0.4559045 0.4804309 0.4432340 0.4420838 0.4818607

[11,] 0.2730062 0.3593206 0.3832185 0.3429687 0.3665439 0.3122027
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[,7] [,8] [,9] [,10] [,11]

[1,] 0.3868106 0.4138077 0.4274973 0.4235997 0.2730062

[2,] 0.4147975 0.4158910 0.4536899 0.4559045 0.3593206

[3,] 0.4439540 0.4603657 0.4513213 0.4804309 0.3832185

[4,] 0.3794102 0.4488452 0.4322316 0.4432340 0.3429687

[5,] 0.4190582 0.4376806 0.4669834 0.4420838 0.3665439

[6,] 0.4628957 0.4689404 0.4257487 0.4818607 0.3122027

[7,] 1.0000000 0.4440690 0.4786316 0.4862578 0.3583231

[8,] 0.4440690 1.0000000 0.4561418 0.4546393 0.3854386

[9,] 0.4786316 0.4561418 1.0000000 0.4643155 0.4075752

[10,] 0.4862578 0.4546393 0.4643155 1.0000000 0.3566871

[11,] 0.3583231 0.3854386 0.4075752 0.3566871 1.0000000

The PX-MCEM algorithm converges after 100 iterations. The PLC model estimates

are similar to the TLC model estimates but closer to the true parameter values as

simulation studies have shown. The results confirm T2 and T3 as the two best tests

with superior diagnostic accuracy. The estimates for R1 and R0 are less accurate due

to the lack of good starting values. Hence they must be viewed with caution.

We assess the convergence of Markov chains with the following example for MC

samples of T1, which is denoted by
∑K

k=1 nkd
(m)
k z

(m)
k1 . results2$cumZ1 is an array

containing all MC samples. The 1st dimension of the array is set to 1 for T1, the 2nd

dimension is left blank as all MC samples during the PX-MCEM iteration are utilized,

and the 3rd dimension is set to 100, meaning we only include MC samples during the

final PX-MCEM iteration.

R> traceplot(results2$cumZ1[1,,100], iter=100, type = "l",

xlab = "Iteration", ylab = "")
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Figure 4.2 shows the chain is mixing very well. We also plot PX-MCEM algorithm

iterations vs. all sensitivity estimates with the statement below. results2$cumSens

is a matrix with rows for PX-MCEM algorithm iterations and columns for sensitivities

at each PX-MCEM algorithm iteration.

R> convergplot(results2$cumSens, type = "l", xlab = "Iterations",

ylab = "", ylim=c(0.62, 0.94), main="Sensitivity", xlab="Iteration",

col=1:11, abline=results2$Sensitivity, ablcol=1:11)

In Figure 4.3, all sensitivity estimates stabilize after about 50 PX-MCEM iterations

with tiny fluctuation around final estimates before convergence. Finally, we assess

standard error estimation by checking the QQ plot of all bootstrap estimates for the

prevalence. results2$bootMLE is a matrix with columns corresponding to model pa-

rameters (first column is for prevalence) and rows corresponding to bootstrap samples.

R> qqplot(results2$bootMLE[,1], main ="Prevalence")

Figure 4.4 indicates approximate normality of bootstrap samples for prevalence.

4.4.5 Simulate Data Sets for Simulation Studies

We demonstrate how to simulate data sets for three simulation studies under the

conditional dependence assumption. First, we simulate 200 data sets under the MCAR

mechanism. Each data set contains J = 5 tests andN = 3, 500 subjects. miss=rep(1,5)

defines the missing data mechanism for all 5 tests as MCAR.

R> prev.0 <- 0.25

R> se.0 <- c(0.7, 0.9, 0.8, 0.6, 0.75)

R> sp.0 <- c(0.9, 0.85, 0.9, 0.9, 0.8)

R> R1.0 <- matrix(0.6, J, J, byrow=TRUE) + diag(0.4, J)
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R> R0.0 <- matrix(0.45, J, J, byrow=TRUE) + diag(0.55, J)

R> missprob <- c(0.05, 0.1, 0.2, 0.5, 0.9)

R> simMCAR <- simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,

prev=prev.0, se=se.0, sp=sp.0, R1=R1.0, R0=R0.0, CDA=TRUE,

miss=rep(1,5), missprob=missprob)

simMCAR is an array object. The first 6 records of the first data set (simMCAR[,,1])

is showcased below. Notice that the simulated data sets contain one extra column D

for true disease status.

R > head(simMCAR[,,1])

SUBJID T1 T2 T3 T4 T5 M1 M2 M3 M4 M5 D

[1,] 001-0001 1 1 1 1 99 1 1 1 1 0 1

[2,] 001-0002 0 99 99 99 99 1 0 0 0 0 0

[3,] 001-0003 1 1 1 99 99 1 1 1 0 0 1

[4,] 001-0004 0 0 0 99 0 1 1 1 0 1 0

[5,] 001-0005 0 0 1 99 99 1 1 1 0 0 0

[6,] 001-0006 0 0 0 0 99 1 1 1 1 0 0

For the second simulation study, we simulate 200 data sets under the MAR mecha-

nism. The true parameter values are the same as above. miss=c(0,0,1,2,2) denotes

that T1 and T2 have no missing values; T3 is MCAR; T4 and T5 are MAR. Missing

probabilities of T4 depend on T1 whereas missing probabilities of T5 depend on T1 and

T2. missprob=2 defines the missing probability for T3. parameter4 and parameter4

define the logistic regression model parameters for missing probabilities of T4 and T5.

R> parameter4 <- c(1.5, -2.5, -2, -1.5, 0, -0.7)

R> parameter5 <- c(2, -2, 0, -3, 0, 0)

93



R> simMAR <- simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,

prev=prev.0, a1=a1.0, a0=a0.0, R1=R1.0, R0=R0.0, CDA=TRUE,

miss=c(0,0,1,2,2), missprob=0.2, missmodel=c(parameter4,parameter5))

Here we list the last 6 records of the 200th data set (simMAR[,,200]).

R> tail(simMAR[,,200])

SUBJID T1 T2 T3 T4 T5 M1 M2 M3 M4 M5 D

[3495,] 200-3495 1 1 1 99 99 1 1 1 0 0 1

[3496,] 200-3496 0 0 0 0 0 1 1 1 1 1 0

[3497,] 200-3497 0 0 0 0 0 1 1 1 1 1 0

[3498,] 200-3498 1 1 99 99 99 1 1 0 0 0 1

[3499,] 200-3499 0 0 0 0 0 1 1 1 1 1 0

[3500,] 200-3500 1 1 1 99 99 1 1 1 0 0 1

Finally we simulate 200 data sets under the MNAR mechanism. Same as the 2nd

simulation study, T1 and T2 have no missing values and T3 is MCAR. The logistic

regression model parameters parameter4 and parameter4 are also unchanged. The

only difference is that miss becomes c(0,0,1,3,3), which means T4 and T5 are MNAR:

missing probabilities of T4 depend on T1 and T3; missing probabilities of T5 depend on

T1, T2, T3, as well as the latent disease status D. Again we showcase the last six records

of the 200th data set.

R> simMNAR <- simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,

prev=prev.0, a1=a1.0, a0=a0.0, R1=R1.0, R0=R0.0, CDA=TRUE,

miss=c(0,0,1,3,3), missprob=0.2, missmodel=c(parameter4,parameter5))

R> tail(simMNAR[,,200])
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SUBJID T1 T2 T3 T4 T5 M1 M2 M3 M4 M5 D

[3495,] 200-3495 0 0 0 0 0 1 1 1 1 1 0

[3496,] 200-3496 0 0 0 0 0 1 1 1 1 1 0

[3497,] 200-3497 0 0 0 0 99 1 1 1 1 0 1

[3498,] 200-3498 1 1 1 99 99 1 1 1 0 0 1

[3499,] 200-3499 0 1 1 0 99 1 1 1 1 0 0

[3500,] 200-3500 0 1 1 1 99 1 1 1 1 0 1

We can also simulate data sets under the conditional independence assumption by

specifying CDA=FALSE and dropping R1 and R0. For example, the statement below

simulates data sets under the MCAR mechanism and the conditional independence

assumption.

R> simMCAR <- simudata(seed=1:200, nTest=5, nSubj=3500, nData=200,

prev=prev.0, se=se.0, sp=sp.0, miss=rep(1,5), missprob=missprob)

4.5 Summary

Evaluation of multiple diagnostic tests without a gold standard yet with abundant

missing data is important in diagnostic medicine but no software handling missing

tests has been known to authors. Our DiagLCA is the first R package to this end. We

first introduced the two useful latent class models, the traditional latent class (TLC)

model for conditionally independent tests and the probit latent class (PLC) model for

conditionally dependent tests. The utility of DiagLCA package is demonstrated in

detail using a real-world example data set in the diagnosis of HNPCC. We fit a TLC

model under the conditional independence assumption, and subsequently fit a PLC

model under the conditional dependence assumption using the TLC model estimates

as starting values for the PX-MCEM algorithm. We further examined how to simulate
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data sets under different missing data mechanisms.

The current version has its limitations. We are committed to continuous improve-

ment of the package to make it more accessible to medical researchers and applied

statisticians. For example, the runtime for depPLC is quite extensive with a large num-

ber of tests due to the time-consuming nature of the PX-MCEM algorithm. For future

work, we aim to reduce runtime by improving computing efficiency.
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Figure 4.1: Observed vs. Model Based Kappa for Model Checking
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Figure 4.2: Trace Plot of
∑K

k=1 nkd
(m)
k z

(m)
k1 over the Last PX-MCEM Algorithm Iteration
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Figure 4.3: Convergence Plot of Sensitivity Estimates
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Figure 4.4: QQ Plot of Prevalence Estimates from 1000 Bootstrap Samples
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Chapter 5

Future Research

Clustered data are common in diagnostic medicine when the clusters that are tested

for the targeted condition are positively correlated, such as the data from multiple

lesions of the same patient, from multiple teeth of the same mouth, and from multiple

subjects in the same family. For the C-CFR data, there are a total of 6, 131 subjects

from 4, 494 families. Table 5.1 summarizes the distribution of the number of subjects

per family. For our research, we considered only the 3, 487 subjects from families with a

single subject per family. However, 22.4% families have two or more subjects, and 1.3%

families have five or more subjects. Here, the families constitute the cluster, and the

subjects constitute the diagnostic unit of study within a cluster. In another word, we

have N = 6, 131 subjects distributed in C = 4, 494 clusters. The clusted data created

a unique statistical challenge for future research.

In the analysis of such clustered data, if observations from the same cluster are

assumed independent, point estimates can still be derived without adjusting for cor-

relation within clusters. However, the standard errors likely are biased and lead to

incorrect test statistics and confidence intervals. For our study, if correlation within

clusters is ignored, the standard error for the diagnostic accuracy is likely to be over-

estimated when subjects from the same family are in different disease status, while it



is likely to be underestimated when subjects have the same disease status. Thus to

avoid biased statistical inference, we must take the correlation within clusters into con-

sideration. To the best of our knowledge, there is no particular method that addresses

clustering data in estimating the diagnostic accuracy of medical tests. We propose to

extend the methods in Chapter 3 by adding another level of random effect for each

cluster in our diagnostic models. In other words, there are two levels of random effects,

i.e., one is an individual-level random effect accounting for within-subject correlation

among multiple tests, which is denoted by Zi = (Z1, · · · , ZJ) for the ith subject as in

Chapter 3, and the other is a cluster-level random effect accounting for within-cluster

correlation among multiple subjects, which can be denoted as Wi for the ith subject

and Wi|Di = d ∼ N(µd,Σd).

Other methods, such as the Bayesian approach, may also be explored. We can

specify the joint prior distribution of Θ as a multivariate normal distribution with

a certain mean vector and variance-covariance matrix based on expert knowledge or

previous study results. The joint posterior distribution can be introduced as well as

latent variables, and then we can use Gibbs sampling to draw samples from the posterior

distribution. Based on Bayes’ rule, we may further derive the predictive probability

of colon cancer for an individual subject. The predictive 95% credible intervals for

the predictive probability of having cancer given the test results can be computed via

MCMC methods.
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Table 5.1: The Distribution of the Number of Subjects per Family

Number of Subjects Frequency Percentage (%)
1 3487 77.59
2 668 14.86
3 208 4.63
4 73 1.62
≥ 5 58 1.29
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Appendix

Derivation of Information Matrices for Louis

Formula

For simplicity, we will first derive the components of information matrices for each

individual subject, and then sum them up. For subject i, the complete-data log-

likelihood is logLc(θ) = logL(θ|Yi) = logL(θ|T,Di) = dilog(π1hi1) + (1− di)log(π0hi0),

where hi1 =
∏J

j=1 Se
tijδij
j (1− Sej)(1−tij)δij ; hi0 =

∏J
j=1(1− Spj)tijδijSp

(1−tij)δij
j .

Thus Sc(Yi; θ) is

∂logLc(θ)

∂π1

=
di
π1

− 1− di
1− π1

∂logLc(θ)

∂Sej
=
ditijδij
Sej

− diδij − ditijδij
1− Sej

∂logLc(θ)

∂Spj
=

(1− di)(1− tij)δij
Spj

− (1− di)tijδij
1− Spj

and Ic(θ;Yi) is

−∂Sc(Yi; θ)
∂π1

=
di
π2

1

+
1− di

(1− π1)2

−∂Sc(Yi; θ)
∂Sej

=
ditijδij
Se2

j

+
diδij − ditijδij

(1− Sej)2

−∂Sc(Yi; θ)
∂Spj

=
(1− di)(1− tij)δij

Sp2
j

+
(1− di)tijδij
(1− Spj)2

Notice that we took the conditional expectation of Sc(Yi; θ) given T to derive the
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point estimates (1) – (3):

π
(n+1)
1 =

∑N
i=1

π
(n)
1

∏J
j=1(Se

(n)
j )tijδij (1−Se(n)j )(1−tij)δij

π
(n)
1

∏J
j=1(Se

(n)
j )tijδij (1−Se(n)j )(1−tij)δij+(1−π(n)

1 )
∏J
j=1(1−Sp(n)j )tijδij (Sp

(n)
j )(1−tij)δij

N

(5.1)

Se
(n+1)
j =

∑N
i=1

tijδijπ
(n)
1

∏J
j=1(Se

(n)
j )tijδij (1−Se(n)j )(1−tij)δij

π
(n)
1

∏J
j=1(Se

(n)
j )tijδij (1−Se(n)j )(1−tij)δij+(1−π(n)

1 )
∏J
j=1(1−Sp(n)j )tijδij (Sp

(n)
j )(1−tij)δij∑N

i=1

δijπ
(n)
1

∏J
j=1(Se

(n)
j )tijδij (1−Se(n)j )(1−tij)δij

π
(n)
1

∏J
j=1(Se

(n)
j )tijδij (1−Se(n)j )(1−tij)δij+(1−π(n)

1 )
∏J
j=1(1−Sp(n)j )tijδij (Sp

(n)
j )(1−tij)δij

(5.2)

Sp
(n+1)
j =

∑N
i=1

(1−tij)δij(1−π
(n)
1 )

∏J
j=1(1−Sp(n)j )tijδij (Sp

(n)
j )(1−tij)δij

π
(n)
1

∏J
j=1(Se

(n)
j )tijδij (1−Se(n)j )(1−tij)δij+(1−π(n)

1 )
∏J
j=1(1−Sp(n)j )tijδij (Sp

(n)
j )(1−tij)δij∑N

i=1

δij(1−π
(n)
1 )

∏J
j=1(1−Sp(n)j )tijδij (Sp

(n)
j )(1−tij)δij

π
(n)
1

∏J
j=1(Se

(n)
j )tijδij (1−Se(n)j )(1−tij)δij+(1−π(n)

1 )
∏J
j=1(1−Sp(n)j )tijδij (Sp

(n)
j )(1−tij)δij

(5.3)

Now take the conditional expectation of Ic(θ;Yi) given Ti and ∆i, we have

Ic(π1;Ti,∆i) =
E[di|Ti,∆i]

π2
1

+
N − E[di|Ti,∆i]

(1− π1)2
(5.4)

Ic(Sej;Ti,∆i) =
E[di|Ti,∆i]tijδij

Se2
j

+
E[di|Ti,∆i]δij − E[di|Ti,∆i]tijδij

(1− Sej)2
(5.5)

Ic(Spj;Ti,∆i) =
(1− E[di|Ti,∆i])(1− tij)δij

Sp2
j

+
(1− E[di|Ti,∆i])tijδij

(1− Spj)2
(5.6)
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where

E[di|Ti,∆i] =
π1hi1∑1
d=0 πdhid

1− E[di|Ti,∆i] =
π0hi0∑1
d=0 πdhid

Using EM algorithm we already obtained the point estimates of θ. Plug these

estimates and T , ∆i into Ic(θ;Yi), we can get diagonal elements of Ic(θ̂;Ti,∆i) de-

rived above. It is obvious that all off-diagonal elements are zero since −∂logLc(θ)
∂π1∂Sej

= 0,

−∂logLc(θ)
∂π1∂Spj

= 0, and − ∂logLc(θ)
∂Sej∂Spj

= 0. Therefore Ic(θ̂;Ti,∆i) is a (2J + 1) × (2J + 1)

diagonal matrix in which the entries outside the main diagonal are all zero.

We have Im(θ;Ti,∆i) = covθ{Sc(Yi; θ)|Ti,∆i}. Thus

Im(π1;Ti,∆i) = varπ1{Sc(Yi; π)|Ti,∆i}

=
1

π2
1(1− π1)2

var{di|Ti,∆i}

Since we are assuming indepent observations, cov{di, dj|Ti,∆i} = 0 for i 6= j. Thus

above becomes

Im(π1;Ti,∆i) =
1

π2
1(1− π1)2

var{di|Ti,∆i} (5.7)

where

var{di|Ti,∆i} = E[d2
i |Ti,∆i]− (E[di|Ti,∆i])

2

=

∏1
d=0 πdhid

(
∑1

d=0 πdhid)
2
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For diagonol elements, we have

Im(Sej;Ti,∆i) = varSej{Sc(Yi;Sej)|Ti,∆i}

=
1

Se2
j(1− Sej)2

[tijδijvar{di|Ti,∆i}

+Se2
jδijvar{di|Ti,∆i} − 2Sejtijδijvar{di|Ti,∆i}]

(5.8)

Im(Spj;Ti,∆i) = varSpj{Sc(Yi;Spj)|Ti,∆i}

=
1

Sp2
j(1− Spj)2

[(1− tij)δijvar{di|Ti,∆i}

+Sp2
jδijvar{di|Ti,∆i} − 2Spj(1− tij)δijvar{di|Ti,∆i}]

(5.9)

Im(π1, Sej;Ti,∆i) = covπ1,Sej{Sc(Yi; π1, Sej)|Ti,∆i}

=
1

π1(1− π1)Sej(1− Sej)
tijδijvar{di|Ti,∆i}

− 1

π1(1− π1)(1− Sej)
δijvar{di|Ti,∆i}

(5.10)

For off-diagonal elements, we have
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Im(π1, Spj;Ti,∆i) = covπ1,Spj{Sc(Yi; π1, Spj)|Ti,∆i}

= − 1

π1(1− π1)Spj
(1− tij)δijvar{di|Ti,∆i}

+
1

π1(1− π1)(1− Spj)
tijδijvar{di|Ti,∆i}

(5.11)

Im(Sej, Sej′ ;Ti,∆i) = covSej ,Sej′{Sc(Yi;Sej, Se
′
j)}

=
1

Sej(1− Sej)Sej′(1− Sej′)
tijδijtij′δij′var{di|Ti,∆i}

− 1

Sej(1− Sej)(1− Sej′)
tijδijδij′var{di|Ti,∆i}

− 1

(1− Sej)Sej′(1− Sej′)
δijtij′δij′var{di|Ti,∆i}

+
1

(1− Sej)(1− Sej′)
δijδij′var{di|Ti,∆i} (5.12)

Im(Spj, Spj′ ;Ti,∆i) = covSpj ,Spj′{Sc(Yi;Spj, Sp
′
j)}

=
1

SpjSpj′
(1− tij)δij(1− tij′)δij′var{di|Ti,∆i}

− 1

Spj(1− Spj′)
(1− tij)δijtij′δij′var{di|Ti,∆i}

− 1

(1− Spj)Spj′
tijδij(1− tij′)δij′var{di|Ti,∆i}

+
1

(1− Spj)(1− Spj′)
tijδijtij′δij′var{di|Ti,∆i} (5.13)
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Im(Sej, Spj′ ;Ti,∆i) = covSej ,Spj′{Sc(Yi;Sej, Sp
′
j)}

= − 1

Sej(1− Sej)Spj′
tijδij(1− tij′)δij′var{di|Ti,∆i}

+
1

Sej(1− Sej)(1− Spj′)
tijδijtij′δij′var{di|Ti,∆i}

+
1

(1− Sej)Spj′
δij(1− tij′)δij′var{di|Ti,∆i}

− 1

(1− Sej)(1− Spj′)
δijtij′δij′var{di|Ti,∆i} (5.14)
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