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ABSTRACT

SYDNEY J. BRONSON: ASSESSING THE MINIMUM ENTROPY
PRODUCTION RATE PRINCIPLE FOR MULTIPHASE FLOW USING THE

THERMODYNAMICALLY CONSTRAINED AVERAGING THEORY
APPROACH

(Under the direction of William G. Gray)

The thermodynamically constrained averaging theory (TCAT) approach was

used to derive a general model for multiphase flow in porous media. Additionally,

an entropy inequality was derived which provides an expression for the entropy

production rate of the system. Non-equilibrium thermodynamic theory aims to

characterize systems away from equilibrium where irreversible processes produce

entropy, while classical thermodynamics characterizes equilibrium states. The

maximum entropy principle of classical thermodynamics allows equilibrium states

to be described using entropy, and the minimum entropy production rate prin-

ciple (MEPRP) attempts to serve the same role for non-equilibrium systems at

steady-state. The MEPRP is highly debated and has not been investigated for

hydrologic systems, so to serve this purpose, simplifying assumptions were applied

to the multiphase flow model to arrive at a standard model for unsaturated flow:

Richards’ equation. Then, using two common pressure-saturation-permeability

models, Richards’ equation was numerically simulated and found to satisfy the

MEPRP under infiltration conditions.
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CHAPTER 1

INTRODUCTION

1.1 Entropy and the Minimum Entropy Production Rate Principle

1.1.1 Entropy Overview

Referred to by some as the most abused word in science [32, 37], entropy as

a homonym, and a thermodynamic concept requires a brief introduction. The

thermodynamic entropy shares its name with Shannon’s entropy, sometimes called

information entropy, which was introduced by Claude E. Shannon in 1948 for use

in information theory; information entropy is a measure of the uncertainty in

a random variable [29]. Even within thermodynamic theory, entropy has been

used with multiple meanings, most notably by Clausius, Gibbs, and Boltzmann;

the interrelations between these entropies has been discussed at length by Jaynes

[29–31].

While defining and interpreting entropy has been an existential pursuit for

many, Lambert informally describes the entropy as a measure of energy’s diffusion

at a given temperature [37]; this definition aims to provide some physical intuition

to a classic statement of the second law of thermodynamics. Another useful

interpretation is entropy as a measure of the extent to which a system’s energy is
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distributed over the range of possible states [23]; as with the previous example,

this definition makes use of the second law when referencing the possible states

of a system.

Following the Gibbsian approach to thermodynamics, the entropy function is

assumed to be known, and can therefore be directly postulated along with the

internal energy function, as was done by Callen [9, 33]. This approach allows en-

tropy to be interpreted mathematically, rather than observationally as in the early

development of thermodynamics by Clausius and Kelvin [23]. Classical thermo-

dynamic theory seeks to describe systems at equilibrium; therefore, characterizing

equilibrium states is a fundamental task. Adopting the postulational framework,

we will say that equilibrium states exist that are completely characterized by

the extensive variables of the phase E,V, and Mi; these are the internal energy,

volume, and mass of each of the chemical species i in the phase respectively [28].

Additionally, we will postulate that there exists a function S called entropy

which has can be written as

S = S∗ (E,V,M1, · · · ,MN) (1.1)

Eq. (1.1) is often called the fundamental relation. It is postulated that the

dependent variables assume values which maximize S in the absence of constraints

[9]; this is a statement of the entropy maximum principle. It’s important to note

that Eq. (1.1) applies to fluid-phase equilibrium thermodynamics; thermodynamic
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statements for solid phases, and away from equilibrium require further analysis

which will not be considered here, but exists elsewhere [23, 28].

The third postulate is that entropy is a homogeneous first-order function of

the extensive variables for a simple system, which is continuous, differentiable,

and a monotonically increasing function of the internal energy [9]. This postulate

implies that the entropy function can be inverted, revealing the other form of the

fundamental relation

E = E∗ (S,V,M1, · · · ,MN) (1.2)

Eq. (1.2) obeys a minimum energy principle which states that the variables assume

values which will minimize E in the absence of constraints. Systems at equilibrium

can be characterized using the entropy maximum and energy minimum principles;

however, classical thermodynamic theory doesn’t describe the entropy producing

irreversible processes that govern systems away from equilibrium. Many real-

world systems approach equilibrium very slowly, or alternatively, are kept from

achieving equilibrium due to external boundary conditions; these systems have

gradients in quantities such as temperature and composition which drive heat

flow and diffusion, i.e. dynamic irreversible processes.

Traditional thermodynamics, or perhaps more accurately thermostatics, does

not provide us with any knowledge of non-equilibrium processes, so tackling in-

teresting real-world problems requires extending classical theory [53]. The second
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law, which can be stated as

dS
dt
≥ 0 (1.3)

provides a natural bridge between equilibrium and non-equilibrium thermody-

namic theory because it provides information about the entropy production rate

of all systems.

Eq. (1.3) is an equality at equilibrium where S achieves a maximum, while

away from equilibrium we simply know that the entropy production rate must

be greater than zero; this suggests that extending classical thermodynamics to

non-equilibrium, irreversible processes requires forming an explicit expression for

the entropy production rate [52]. A foundational concept in non-equilibrium ther-

modynamics is that of local equilibrium which asserts that for systems away from

equilibrium, thermodynamic quantities remain well-defined locally, or in some

neighborhood of equilibrium. One can picture a system divided up into smaller

elemental volumes as in Figure 1.1, within which the system can be characterized

via intensive thermodynamic quantities like temperature, pressure, and concen-

tration even if these variables are not well-defined globally [36].

The local equilibrium assumption is not universally applicable, as systems with

large spatial and/or temporal gradients in intensive variables will not be in equi-

librium locally, or globally. However, for systems for which it is appropriate the

local equilibrium assumption asserts that entropy remains dependent on the same

variables as at equilibrium [53]. Extensive thermodynamic variables expressed

locally correspond to density quantities such as entropy and internal energy per
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volume; these local quantities, along with the idea of thermodynamic forces and

fluxes which describe irreversible processes, can be used to extend Eq. (1.3) to

non-equilibrium systems [36].

Figure 1.1: Visualization of the local equilibrium assumption [8].

The idea is that thermodynamic fluxes (or flows), such as heat flow or diffusive

flux, occur because of a corresponding thermodynamic force or gradient such

as a temperature or concentration gradient. This means that the total entropy

production rate is the sum of these force-flux pairs, or irreversible processes, such

that we have

Λ =
dS
dt

=
n∑
i=1

JiXi ≥ 0 (1.4)

where n is the number of force-flux pairs, Ji terms correspond to the i thermody-

namic fluxes, Xi are their corresponding forces, and Λ is the entropy production

rate [36]. Of course at equilibrium, just as in Eq. (1.3), we have Ji = 0 and Xi = 0

for all i. Thermodynamic forces and fluxes are assumed to be related linearly, and

homogeneously such that

Ji =
n∑
j=1

LijXj (1.5)
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where

Lij = Lji (1.6)

Lij are phenomenological coefficients, and Eq. (1.6) is a statement of Onsager’s

reciprocity relations between corresponding forces and fluxes [49]. For example,

eqn (1.5) can be written for a system with n force-flux pairs as

J1 = L11X1 + L12X2 + · · ·+ L1nXn

J2 = L21X1 + L22X2 + · · ·+ L2nXn

...
...

...
...

Jn = Ln1X1 + Ln2X2 + · · ·+ LnnXn (1.7)

and eqn (1.6) states that the cross-coefficients are equal such that

L12 = L21, · · · , L1n = Ln1, and L2n = Ln2 (1.8)

Empirically derived laws such as Fourier’s law of heat conduction, written as

Ji = −k∇θ (1.9)

are consistent with the assumption of linear relations implied by eqn (1.5) [53].

In eqn (1.9) Ji is the heat flux, which is linearly related to the gradient in

temperature ∇θ (the force), and k is the phenomenological coefficient called the
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thermal conductivity. The concept of linear relations between thermodynamic

forces and fluxes as expressed in Eq. (1.5) is important for understanding the

minimum entropy production rate principle.

1.1.2 Minimum Entropy Production Rate Principle

In an effort to characterize non-equilibrium systems beyond the description pro-

vided in Eqs. (1.5) and (1.6), the minimum entropy production rate principle was

derived. Many systems are constrained by boundary conditions which prevent a

global equilibrium state from being reached, where the entropy production rate

would be zero via the second law [36]. The minimum entropy production rate

principle (MEPRP) attempts to describe such systems. It asserts that in lieu of

an equilibrium state, a state of least dissipation, or a steady-state (as opposed

to a time-dependent state) will be achieved which can be described as a state at

which the entropy production rate is a minimum [14, 53].

More formally, the MEPRP states that the steady state of an irreversible

process is characterized by a minimum value of the entropy production rate with

respect to other possible states with the same boundary conditions [4, 34]. This

principle is naturally intuitive in that we know the entropy production rate is zero

at equilibrium, so if a constraint such as an externally maintained temperature

gradient prevents the system from attaining equilibrium the next closest state is

a steady-state where the entropy production is a minimum [34]. However, the

MEPRP requires restrictions beyond the linear relations that were assumed in

7



Eq. (1.5) in that it applies in a small neighborhood around equilibrium such that

the phenomenological coefficients are constants [53]. This restriction makes the

MEPRP a highly debated variational principle in that it requires thermodynamic

gradients within the system to be sufficiently small without formally establishing

how small they should be, or in other words, how close to equilibrium the system

needs to be [4].

The principle has had some success in identifying the steady-state for irreversible-

processes. For instance, it has been shown that for simple systems involving sta-

tionary heat conduction, the MEPRP accurately predicted the steady-state as the

state that minimizes the entropy production [12, 14, 34, 35]. Although, some of

these results, particularly those of Ferchmin [12], have been called into question

[4, 26]. It has been shown that with a small jump in complexity from stationary

heat conduction, a system with steady state shear flow with heat conduction is

not properly described using the MEPRP [4].

In fact, the MEPRP fails to adequately characterize steady-states for a few

notable systems. Landauer asserts that the MEPRP is only a “frequently useful

approximation;” he showed that even for a very simple system of linear circuits

the MEPRP does not correctly predict the steady-state [38]. This has led many

to conclude that without establishing a domain over which the MEPRP applies,

it should not be considered a universal principle [4, 39]. It has also been estab-

lished that the MEPRP is not suited for Benard problems which have applications

in hydrodynamic stability [14]. These investigations highlight the mixed success
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of MEPRP to properly describe a steady-state for numerous flow and transport

systems, and serve to explain the theory’s mixed reception in the scientific com-

munity.

1.2 Multiphase Flow Modeling in Porous Media

Porous media systems are characterized by a division of the volume into a con-

tinuous solid matrix and a connected pore space which can be filled with one or

more fluid phases [3]. Multiphase systems include a solid phase and multiple fluid

phases; typical two-fluid-phase models are composed of a solid s-phase, a wetting

w-phase, and a non-wetting n-phase where the wetting phase is that which pref-

erentially wets the solid [45]. Subsurface systems like groundwater aquifers are a

common example of a multiphase system that involves flow through porous media.

Modeling the subsurface is used to assess groundwater supply and quality, develop

resource management strategies, and assist remediation efforts of contaminated

groundwater sources [44].

The modeling approach ideally combines a mature theoretical understanding

of the system physics with developed numerical methods; together these form

a mathematical description of the system that can be supplemented via experi-

mental approaches. The mathematical model can then be simulated to provide

predictions of real-world system behavior in lieu of constructing costly field-scale

experiments [42]. The type and level of sophistication of the model depends on

the phenomena of interest. For example, porous media models can describe single-
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phase or multiphase fluid flow; alternatively, they can describe single or multiphase

flow and species transport [27]. For instance, flow and transport models are often

needed when characterizing contaminated sites in order to capture the fate and

transport of the pollutants, whereas a simpler flow model is more appropriate

for homogeneous systems (systems in which compositional effects are unimpor-

tant). Single and multiphase flow and transport models can also incorporate heat

transfer effects by utilizing a conservation of energy equation.

Identifying the scale of interest is also a key aspect of model development as

the length and time scales over which processes occur must be identified and incor-

porated into a model for it to be useful [41]. Resolving system phenomena down

to the smallest spatial and temporal scales may be necessary when describing

small-scale laboratory experiments but may prove to be unnecessary and compu-

tationally burdensome, if not impossible, when modeling field-scale systems like

county and citywide groundwater networks. For this reason, a brief discussion of

the hierarchy of length scales used in porous media applications is warranted.

The scales, from smallest to largest may be represented as

`mo � `mi � `r
r � `ma � `me (1.10)

where

• `mo is the molecular scale which is identified as the average distance a

molecule travels between collisions with other molecules, or the mean free
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path [23]; this scale is too small to incorporate into porous media models.

• `mi is the microscale, which is also referred to as the pore scale [45]. The

microscale is much larger than the molecular scale, and as such, each mic-

roscale point incorporates an ensemble of molecules. Pore morphology and

topology is completely resolved at this scale, and fluids are considered con-

tinuous [2]; this is the smallest length scale at which a continuum model can

be applied [41].

• `r
r is the resolution scale. This scale is system specific, in that it relates to

the natural length scale of the system; for a porous media system this could

be the average grain size [23]. At this scale the features of interest of a given

flow are resolved; these features depend on system phenomena [41].

• `ma is the macroscale, or the Darcy scale for porous medium systems. Each

macroscale point represents a continuum of microscale entities; the distri-

bution of individual phases is no longer resolved, and is instead represented

on average [17]. The concept of a representative elementary volume (REV)

applies here in that average characteristics of the porous media, such as the

porosity ε which can be measured experimentally, arise at this scale [16].

• `me is the megascale, or the system scale. As the name suggests, this scale

is the length scale of the domain of the system of interest which can vary in

different directions [17].

In other words, a broad range of multi-scale problems are relevant in subsurface
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porous media modeling. Incorporating length and time scale considerations into

mathematical models based on the system of interest and computational resources

is an important part of the modeling process. Macroscale multiphase models will

be covered in this work, first by presenting the traditional macroscale models and

their merits, and then by exploring the thermodynamically constrained averag-

ing theory (TCAT) approach which provides a general framework for developing

closed mathematical models based on conservation and thermodynamic principles.

1.2.1 Traditional Approaches

Standard macroscale multiphase flow models involve writing conservation of mass

equations for each phase, using a multiphase form of Darcy’s law as an approx-

imate conservation of momentum equation, and specifying constitutive pressure-

saturation-permeability (p-S-k) relations and equations of state (EOS) for a sim-

plified system [27, 42].

For typical two-phase-flow systems with w, n, and s-phases, common simpli-

fications include assuming that compositional effects are unimportant such that

the conservation equations can be written on a phase basis; assuming the solid is

immobile and inert, meaning conservation equations only need to be written for

the w and n-phases; and assuming the system is isothermal such that conserva-

tion of energy equations aren’t formulated. These assumptions reduce traditional

models to the following equations:

• Conservation of Mass:
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∂
(
εαρα

)
∂t

+∇·
(
εαραvα

)
= 0 for α = {w, n} (1.11)

where ρα is the density, εα is the volume fraction (the fraction of the pore

space filled by the α-phase), and vα is the velocity. The assumption that the

fluid phases do not exchange mass was also utilized in writing Eq. (1.11).

• Approximate Conservation of Momentum, Darcy’s Law:

εα
(
vα − vs

)
= −K̂α (∇pα − ραg) for α = {w, n} (1.12)

where pα is the pressure, K̂α is the scalar hydraulic conductivity which is

written assuming the media is isotropic, and g is the gravitational acceler-

ation. Eq. (1.12) can also be written as

εα
(
vα − vs

)
= − k̂

sk̂αrel
µα

(∇pα − ραg) for α = {w, n} (1.13)

where k̂s is the intrinsic permeability, k̂αrel is the relative permeability, and µα

is the dynamic viscosity. The intrinsic permeability is a material property of

the solid phase and is related to the hydraulic conductivity via the relation

K̂α =
k̂sραg

µα
for α = {w, n} (1.14)

The relative permeability is a function of sw and is a dimensionless quantity
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which assumes values from 0 to 1; it accounts for the reduction of the in-

trinsic permeability due to the incomplete saturation of fluid phase α [27].

The relative permeability it is related to the intrinsic permeability via the

relation

k̂wrel =
k̂αs

k̂s
for α = {w, n} (1.15)

where k̂αs is the apparent intrinsic permeability which is dependent on the

material properties of the solid and the presense of the other fluids in the

multiphase system [51]. When the system if fully saturated the apparent

permeability is equal to the intrinsic permeability. Eq. (1.13), which in-

corporates the permeability terms rather than the hydraulic conductivity, is

useful when introducing the pressure-saturation-permeability relations.

• Equations of State:

Equations of state are constitutive relations which describe the relationship

between intensive state variables like temperature, pressure, and chemical

potential [13]. More specifically, the intensive variables are functions of the

independent extensive variables (S,V, and Mi), and the functional relation-

ships which express the intensive variables in terms of extensive variables

are called equations of state [9]. One classic example of an EOS is the ideal

gas law which relates the pressure, volume, temperature, and the number

of moles of an ideal gas. For porous medium systems it is common for the

chemical composition to be constant and the system to be isothermal. With
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these facts in mind the remaining EOS is

ρα = ρα (pα) for α = {w, n} (1.16)

which relates the pressure and density at the macroscale. Eq. (1.16) is a

functional form that is typical at the microscale, and is derived from the

microscale energy’s dependence on independent variables. Using the TCAT

approach it can be shown that microscale functional forms may not be appro-

priate at the macroscale. Microscale and macroscale thermodynamic forms

will be discussed later, but this subtlety is not incorporated into standard

models.

• Pressure-saturation-permeability (p-S-k) relations:

The functional relationships between the capillary pressure, saturation, and

permeability need to be specified in order to form a closed model. These

functions are

pn − pw = pcwn

(
sα
)

for α = {w, n} (1.17)

where the saturation of each phase sα follows

sn + sw = 1 (1.18)

and

k̂αrel = k̂αrel

(
sα
)

for α = {w, n} (1.19)
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where k̂αrel is the relative permeability which was introduced in the multi-

phase form of Darcy’s law (Eq. (1.13)). Eq. (1.19) must be specified be-

cause constitutive saturation-permeability relations are typically expressed

in terms of the relative permeability. The capillary pressure and relative

permeability are most commonly assumed to be functions of the saturation

alone (as is presented here), but these variables may also depend on quanti-

ties such as interfacial area which are used in full TCAT formulations [41].

Eq. (1.17) originates from microscale equilibrium conditions which relate

the capillary pressure, defined as

pcwn = − (∇′·nw) γwn (1.20)

to the difference in phase pressures evaluated at the fluid-fluid interface.

As with the equation of state posited at the macroscale, Eq. (1.17) is based

on a microscale equilibrium form and therefore ignores dependences that

arise at the macroscale. Eqs. (1.17) and (1.19) are specified via constitutive

relationships which are often empirically based and hysteretic in nature [42];

the hysteresis highlights that the functional dependence of capillary pressure

at the macroscale shown in Eq. (1.17) is incomplete.

Eqs. (1.11)–(1.12) can be combined to form Richards’ equation under some

simplifying conditions, including the assumption that the w-phase is incompress-

ible. Richards’ equation is a standard model for flow in the unsaturated zone, and
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can be written as

ε
∂sw

∂t
= ∇·

[
K̂w (∇pw − ρwg)

]
(1.21)

where sw is the saturation of the w-phase, and ε is the porosity such that

εw = εsw (1.22)

More generally, utilizing mass conservation equations and Darcy’s law, or a

multiphase form or Darcy’s law, is a standard approach taken by researchers in

academia [42–44] for single and multiphase problems. Consultants in practice

almost exclusively take a similar, although more simplified approach when using

the popular groundwater code MODFLOW which was developed by the USGS

[24]. Some issues with using this approach to develop multiphase models include

the foundational assumptions that underlie Darcy’s law.

Originally, Darcy’s law was formulated at the megascale where spatial vari-

ability wasn’t considered, but instead average conditions of the entire system and

its boundaries were observed [19, 21]. However, Eq. (1.12) is written at the mac-

roscale where spatial variability is important. In other words, using Darcy’s law

in place of a macroscale conservation of momentum equation means that the con-

nection between microscale variables, which are well defined and understood, and

macroscale variables is lost. There are implicit approximations in a multiphase

model using Darcy’s law, but these approximations are difficult to identify and

refine if model behavior is considered unsatisfactory [17, 44]. Additionally, the
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use of Darcy’s Law has become such a standard approach that it is often used in

an ad-hoc fashion.

Another potential concern regarding the use of Darcy’s law for multiphase

systems is that it was developed empirically based on experiments involving single-

phase flow in low Reynolds number conditions [44]. Most flow in aquifers operates

under this regime, so Darcy’s law has proved effective for single-phase flow models

of this type; however, its multiphase extension (Eq. (1.12)) was not formulated on

strong theoretical ground [41]. The form of Darcy’s law shown in Eq. (1.12) is an

extension of Darcy’s original law to multiphase flow which assumes the pressure

gradients of individual phases are driving forces for those phases alone [48]. The

limitations of this approach have been acknowledged [42, 46], and work to move

beyond this formulation exists [20, 28], although so far, little progress has been

made in changing the equations used in practice.

Beyond problems with Darcy’s law, formulating and solving equations like

Richards’ eqn (1.21) requires constitutive p-S-k relations and EOS which are un-

known and often posited in an crude manner; this also contributes to the lost

connection between microscale and macroscale variables [44]. The fact that the

most popular p-S-k relations exhibit hysteretic behavior suggests that the existing

approximations for these functional relationships is incomplete at best [5, 6, 22].

The issues with classical models discussed here point to problems with incomplete

physical descriptions of the systems of interest, and empirically based closure rela-

tions which include variables that aren’t connected to their microscale precursors
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[17]. These shortcomings indicate that a more systematic approach to mutli-scale

model development which is based on known microscale theory and experimenta-

tion is needed to improve upon the existing multiphase models.

1.2.2 TCAT Approach

The thermodynamically constrained averaging theory (TCAT) provides a frame-

work which allows for a flexible and systematic approach for developing a vast ar-

ray of multiscale and multiphase flow and transport models. The TCAT approach

involves formulating microscale conservation principles and thermodynamics along

with an entropy inequality, which ensures the second law of thermodynamics is

satisfied, for each entity in the system (phases, interfaces, common curves, and

common points). Then, the microscale equations are systematically averaged to

the desired scale(s) using averaging theorems [27], thus generating equations which

are precisely connected to their microscale counterparts.

Developing a TCAT model first requires identifying the entities within the

given system; next, the TCAT approach can be carried out using the following

general steps:

• Formulate microscale equations for the identified entities within the system

of interest:

1. Conservation of mass

2. Conservation of momentum
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3. Conservation of energy

4. Balance of entropy

5. Thermodynamic forms based on chosen microscale thermodynamic the-

ory

• Form the entropy inequality (EI) by adding together the entropy balance

equations

• Average the microscale conservation and thermodynamic equations to a

larger scale using averaging theorems [16]

• Form the augmented entropy inequality (AEI) using Lagrange multipliers

multiplied by the macroscale conservation and thermodynamic equations

• Form the constrained entropy inequality (CEI) by solving for Lagrange mul-

tipliers such that time derivatives are eliminated from the AEI

• Form the simplified entropy inequality (SEI) by using evolution equations,

derived from geometric identities and approximations, to eliminate remain-

ing time derivatives from the CEI

• Posit closure relations based on the SEI and available microscale and mac-

roscale theory, simulation, and/or experimentation

A flowchart of this process is visible in Figure 1.2. The TCAT method provides

an alternative to the classical approach by retaining the connection between scales
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through rigorous averaging; using the averaging process macroscale variables are

precisely defined in terms of averages of microscale precursors. Additionally, the

framework is flexible in that the CEI, which is the final exact expression in the

TCAT approach, serves as a point of return to examine and refine applied as-

sumptions and approximations that were used to yield a closed model.

Figure 1.2: Flow chart for the TCAT modeling approach [23].

1.3 Research Objectives

Elements of traditional modeling approaches can be expanded upon and verified

using the TCAT framework. For instance, work has been done to compare the

standard megascale formulation of Darcy’s law with a similar macroscale formu-

lation derived using TCAT [21]. The goal of this work is interact with the TCAT

method, while also incorporating elements of the standard modeling approach
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to evaluate Richards’ equation in light of the minimum entropy production rate

principle.

The specific research objectives of this work are:

1. Using the TCAT framework, derive a hierarchy of macroscale models for

two-fluid-phase flow in a porous medium system using averaging theorems

which transform equations with variability in three microscale dimensions,

to those with one dimension of macroscale variability while the remaining

dimensions are averaged over the system at the megascale.

2. Working from the CEI, formulate a closed simplified model for flow through

unsaturated media, applying traditionally used approximations to yield

Richards’ equation (RE) and an SEI.

3. Simulate RE numerically and calculate the global entropy production of

the system using the SEI for different formulations of commonly used p-S-k

relations.

4. Evaluate whether Richards’ equation satisfies the MEPRP for the chosen

constitutive relations and simulation conditions.

22



CHAPTER 2

SYSTEM DESCRIPTION AND MODEL DERIVATION

2.1 Primary Restrictions

Within the TCAT approach, primary restrictions are used to specify the system

to be modeled; the entities within the system and the scale at which they are to

be modeled, the phenomena to be modeled, and the thermodynamic theory to be

used are all explicitly specified under this category of restrictions [23].

In this work, the following primary restrictions will be used:

1. The entities of interest are two fluid phases w, and n, a relatively immobile

solid phase s, three interfaces wn, ws, and ns, and a common curve wns.

Additionally, modeling will take place at the macroscale.

2. The transport of mass, momentum, and energy will be modeled on an entity

basis.

3. The non-equilibrium thermodynamic theory to be used is classical irre-

versible thermodynamics (CIT).
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2.2 Averaging Theorems

Averaging theorems are used to transform equations from one spatial scale to

another scale, or combination of other scales, and are an important tool used in

TCAT analysis to facilitate the development of macroscale conservation, balance,

and thermodynamic equations from their microscale precursors [23]. The most

common of these theorems are the transport and divergence theorems which trans-

form three-dimensional microscopic equations into three-dimensional macroscale

equations; these theorems appear often in the study of fluid mechanics, among

other fields [16]. These theorems become necessary when averaging microscale

equations to larger scales because averages of spatial and temporal derivatives are

often impossible to evaluate. Usable models can be derived by exchanging the or-

der of averaging (integration) and differentiation via the averaging theorems; this

process yields equations which include derivatives of averaged microscale quanti-

ties and boundary terms [23].

Modeling porous media systems at the macroscale or the megascale is not

only computationally necessary, it is also more useful when describing real world

systems such as groundwater aquifers which are often modeled on a city-wide

scale or larger [41]. On a city-wide scale, information about the location of each

phase, including details of flow within individual pores, is not only inaccessible,

but largely irrelevant. With TCAT the goal is to comply with microscale physical

principles while scaling-up to the system of interest, thereby retaining enough

information to yield an accurate model. Even if microscale information were
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available for a system at the field scale, the computational effort to model such a

system would be impossibly large, thus further necessitating an averaging process.

Before introducing the averaging theorems, a general averaging operator can be

defined as

〈Pα〉Ωβ ,Ωγ ,W =

∫
Ωβ

WPα dr∫
Ωγ

W dr
for dim Ωβ > 0, dim Ωγ > 0 (2.1)

where 〈〉Ωβ ,Ωγ ,W is the averaging operator, and Pα is the microscale property

being averaged, W is a weighting function, and Ω is a domain of integration.

As seen on the right side of Eq. (2.1), the subscripts on the averaging operator

designate the domain of integration of the microscale property Ωβ, the domain

over which the quantity will be normalized by (for example, the REV) Ωγ, and

the weighting function W respectively. If no third subscript is provided, then W

is equal to one.

The subscripts α, β and γ are entity qualifiers which correspond to phases, in-

terfaces, common curves, and common points. Phase entities are three-dimensional

at the microscale, while interfaces (which are formed when two phases meet, i.e.

they exist at the boundary between two phases) are two-dimensional. Common

curves are formed when three phases meet, and are one-dimensional, and finally

common points are zero-dimensional entities formed when four or more phases

meet. When dealing with common points the definition of the averaging operator

includes a summation over the set of points rather than integration over some
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domain Ω, but common points don’t exist for the three phase system described

in this work, so Eq. (2.1) is sufficient.

For convenience, microscale properties and macroscale properties are given

subscripts and superscripts to quickly distinguish between them. Furthermore,

more than one notation is used for the macroscale superscripts to concisely differ-

entiate between the different types of averages that exist. The two most common

types have specific definitions; these include

Intrinsic Averages :


fβα = 〈fα〉Ωβ ,Ωβ for α 6= β

fα = 〈fα〉Ωβ ,Ωβ for α = β

(2.2)

and

Mass Averages :


fβα = 〈fα〉Ωβ ,Ωβ ,ρα for α 6= β

fα = 〈fα〉Ωβ ,Ωβ ,ρα for α = β

(2.3)

Unique averages also exist, and are indicated by a double overbar, fα; the

definitions for these averaged quantities will be presented as they appear. Now

that the notation for microscale and macroscale quantities has been introduced,

and a general averaging operator has been defined, the averaging theorems used

in this work can be introduced.

The naming convention of the theorems follows [16, 23], and is of the form

< letter > [i, (j, k), l]. In this work the theorems of the family [i, (1, 0), 2] will be

used, which means i microscale dimensions will be converted into equations that

26



have one macroscale dimension, and two megascale dimensions. The letter will be

a G, D, or T corresponding to gradient, divergence, or transport theorems. The

sum of the indices j+k corresponds to the number of resulting macroscale dimen-

sions, but in this case k = 0. Many more theorems and information for deriving

them using generalized functions exists in [16]; the results will be presented here.

A convenient averaging volume for this set of theorems which converts equa-

tions with i microscale dimensions into those with one macroscopic, and two

megascopic dimensions, is a slab with thickness D, as shown in Figure 2.1. The

macroscopic dimension aligns with the unit vector N which is normal to the face

of the representative averaging volume (RAV), while the megascopic dimensions

are tangent to the face of the RAV. The edge boundaries of the RAV, designated

with the notation ΓαM , allow for flux terms across the edge of the slab in the

megascopic directions.

Starting from the averaging theorem notation provided in [16], updated no-

tation which is consistent with the averaging notation used in TCAT theory is

provided. The required theorems are spatial operator theorems in the [3, (1, 0), 2]

family.

Spatial Operator Theorems:

G[3,(1,0),2]:

〈∇fα〉Ωα,Ω = ∇88〈fα〉Ωα,Ω +
∑
β∈Icα

〈nαfα〉Ωβ ,Ω + 〈efα〉ΓαM ,Ω for α ∈ IP (2.4)
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Figure 2.1: RAV for [i, (1, 0), 2] theorems; adapted from [16].

D[3,(1,0),2]:

〈∇·fα〉Ωα,Ω = ∇88·〈fα〉Ωα,Ω +
∑
β∈Icα

〈nα·fα〉Ωβ ,Ω + 〈e·fα〉ΓαM ,Ω for α ∈ IP (2.5)

T[3,(1,0),2]:

〈
∂fα
∂t

〉
Ωα,Ω

=
∂88

∂t
〈fα〉Ωα,Ω −

∑
β∈Icα

〈
nα ·vβfα

〉
Ωβ ,Ω
− 〈e·wfα〉ΓαM ,Ω for α ∈ IP

(2.6)
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where the 88 symbol indicates a macroscale spatial operator, Γ designates the

boundary of a domain in TCAT, and ΓαM specifically designates the portion of

the RAV at the edge boundaries that is occupied by the α-phase; the M signifies

that these edge boundaries align with the megascale dimensions. The quantity fα

or fα represents a general scalar or vector function respectively, which is defined

in the α-phase, nα is the unit vector that is outward normal to the α phase, e

is the unit vector that is outward normal to the external boundary of the RAV,

and w is the velocity of the boundary. When moving from the microscale to the

macroscale these boundary terms appear which represent the transfer of fα out

of the domain. Additionally, inter-entity transfer terms appear which describe

the transfer of fα between entities; these are the terms with summations in Eqs.

(2.4)–(2.6). To understand the summations in Eqs. (2.4)–(2.6) a brief overview

of TCAT set notation is required.

The symbol I represents the set of entity indices which could include phase,

interface, common curve, and common point indices; for this three phase sys-

tem, I = {w, n, s, wn,ws, ns, wns}. More specific notation refers to just the set

of phase, interface, and common curve indices as the sets IP, II, and IC respec-

tively; for instance, IC = {wns} because one common curve is present. There

are also connected sets Icα which refer to the set of entities which are bounding,

or connected to entity α, thus Iwn = {w, n, wns}. It is often necessary to refer

to the set of higher or lower dimensional entities in the connected set, and I+
cα

and I−cα are used for this purpose. For example, if α = wn, then I−cwn = {wns}
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and I+
cwn = {w, n}, which also means that I+

cα ∪ I−cα = Icα. Using this logic, the

notation β ∈ Icα in Eqs. (2.4)–(2.6) means that the summation is occurring over

the members β in the connected set of α.

The spatial and curvilinear theorems won’t be explicitly needed because at

the macroscale the form of the conservation and balance equations is the same

for phases, interfaces, and common curves. This is because the entity type is not

observable at the macroscale, in that the location and distribution of individual

entities isn’t known; that information is lost when moving from the microscale to

the macroscale. At the macroscale we have information at the scale of the REV,

meaning quantities such as ρα exist which could be a mass per volume, area, or

length depending on which set entity α belongs to. For this reason, it is important

to remember that although the forms of the macroscale equations for each entity

type are the same, the variable definitions will not be identical.
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2.3 Conservation, Balance, and Thermodynamic Equations

The set of conservation, balance, and thermodynamic equations needed to carry

out a full TCAT analysis will be presented below, starting with the microscale

forms, and averaging up to the macroscale using the [i,(1,0),2] family of averaging

theorems. These macroscale equations will then be used to form an entropy

inequality for the system that will be used to guide closure of the equations.

2.3.1 Mass Conservation Equation

The microscale mass conservation equation for a phase can be written as

Mα =
∂ρα
∂t

+∇·(ραvα) = 0 for α ∈ IP (2.7)

Applying an averaging operator to all terms yields

〈
∂ρα
∂t

〉
Ωα,Ω

+ 〈∇·(ραvα)〉Ωα,Ω = 0 for α ∈ IP (2.8)

By utilizing the transport and divergence theorems from the [3,(1,0),2] family we

can obtain a conservation equation which includes macroscale quantities averaged

from the microscale. Applying eqns (2.5) and (2.6) yields

∂88

∂t
〈ρα〉Ωα,Ω −

∑
β∈Icα

〈
nα ·vβρα

〉
Ωβ ,Ω
− 〈e·wρα〉ΓαM ,Ω +∇88·〈ραvα〉Ωα,Ω

+
∑
β∈Icα

〈nα · (ραvα)〉Ωβ ,Ω + 〈e·(ραvα)〉ΓαM ,Ω = 0 for α ∈ IP (2.9)
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This equation simplifies to

∂88

∂t
〈ρα〉Ωα,Ω +∇88·〈ραvα〉Ωα,Ω −

∑
β∈Icα

〈
ρα(vβ − vα)·nα

〉
Ωβ ,Ω

− 〈ρα(w − vα)·e〉ΓαM ,Ω = 0 for α ∈ IP (2.10)

If A is the cross sectional area being considered, Eq. (2.10) can be written

AMα =
∂(εαραA)

∂t
+∇88·(εαραvαA)−

∑
β∈I−cα

A
β→α
M +A

α→
MM = 0 for α ∈ I (2.11)

Alternatively, using the product rule, Eq. (2.11) can be written in material deriva-

tive form as

AMα
∗ =

Dα(εαραA)

Dt
+ (εαραA)I88:dα−

∑
β∈I−cα

A
β→α
M +A

α→
MM = 0 for α ∈ I (2.12)

where

εα = 〈1〉Ωα,Ω (2.13)

β→α
M A =

〈
ρα
(
vβ − vα

)
·nα
〉

Ωβ ,Ω
(2.14)

and

α→
MMA = 〈ρα(vα −w)·e〉ΓαM ,Ω (2.15)
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The macroscale material derivative and rate of strain tensor are defined as

dα =
1

2

[
∇88vα +

(
∇88vα

)T
]

(2.16)

and

Dα

Dt
=
∂88

∂t
+ vα·∇88 (2.17)

Eqs. (2.11) and (2.12) are written for the set of all entities because each entity

equation takes the same form at the macroscale, as previously mentioned.

2.3.2 Momentum Conservation Equation

The microscale conservation of momentum equation for a phase can be written as

Pα =
∂(ραvα)

∂t
+∇·(ραvαvα)− ραgα −∇·tα = 0 (2.18)

Applying an averaging operator to all terms yields

〈
∂ραvα
∂t

〉
Ωα,Ω

+ 〈∇·(ραvαvα)〉Ωα,Ω − 〈∇·tα〉Ωα,Ω − 〈ραgα〉Ωα,Ω = 0 (2.19)

Then, applying the transport and divergence theoremseqns (2.5) and (2.6) yields

∂88

∂t
〈ραvα〉Ωα,Ω −

∑
β∈Icα

〈
nα ·vβ(ραvα)

〉
Ωβ ,Ω
− 〈e·w(ραvα)〉ΓαM ,Ω

+∇88·〈ραvαvα〉Ωα,Ω +
∑
β∈Icα

〈nα · (ραvαvα)〉Ωβ ,Ω + 〈e·(ραvαvα)〉ΓαM ,Ω
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− 〈ραgα〉Ωα,Ω −∇
88·〈tα〉Ωα,Ω −

∑
β∈Icα

〈nα · tα〉Ωβ ,Ω − 〈e·tα〉ΓαM ,Ω

= 0 for α ∈ IP (2.20)

This equation simplifies to

∂88

∂t
〈ραvα〉Ωα,Ω +∇88·〈ραvαvα〉Ωα,Ω −∇

88·〈tα〉Ωα,Ω − 〈ραgα〉Ωα,Ω

−
∑
β∈Icα

〈
ραvα(vβ − vα)·nα

〉
Ωβ ,Ω
− 〈ραvα(w − vα)·e〉ΓαM ,Ω

−
∑
β∈Icα

〈nα · tα〉Ωβ ,Ω − 〈e·tα〉ΓαM ,Ω = 0 for α ∈ IP (2.21)

Here we consider Ω to be the macroscale length in the direction of flow. Thus,

evaluation of the averaging operators yields

APα =
∂88

∂t
(εαραvαA) +∇88·(εαραvαvαA)−∇88·(εαtαA)− εαραgαA

−
∑
β∈Icα

vβα
β→α
M A−

∑
β∈Icα

β→α
T A

+ vαM
α→
MMA+

α→
TMA = 0 for α ∈ IP (2.22)

or, rewriting Eq. (2.22) in material derivative form and changing the velocity vβα

to its generic form which applies for all entities leaves the final form

APα∗ =
Dα(εαραvαA)

Dt
+
(
εαραvαA

)
I88:dα −∇88·(εαtαA)− εαραgαA

−
∑
β∈Icα

vα,β
β→α
M A−

∑
β∈Icα

β→α
T A

34



+ vαM
α→
MMA+

α→
TMA = 0 for α ∈ I (2.23)

where

vα,β =


vβα if β ∈ I−cα

vαβ if β ∈ I+
cα

(2.24)

vαM = 〈vα〉ΓαM ,Ω (2.25)

εαtαA =
〈
tα − ρα(vα − vα)(vα − vα)

〉
Ωα,Ω

(2.26)

β→α
T A =

〈[
tα + ρα

(
vα − vα,β

) (
vβ − vα

)]
·nα
〉

Ωβ ,Ω
(2.27)

α→
TMA = −

〈[
tα − ρα

(
vα − vαM

)
(vα − vext)

]
·e
〉

ΓαM ,Ω
(2.28)

2.3.3 Energy Conservation Equation

The microscale energy conservation equation for a phase can be written as

Eα =
∂
(
Eα + 1

2
ραvα·vα + ραψα

)
∂t

+∇·
[(

Eα +
1

2
ραvα·vα + ραψα

)
vα

]
−∇· (tα·vα + qα)− hα − ρα

∂ψα
∂t

= 0 (2.29)

Applying an averaging operator to all terms yields

〈
∂
(
Eα + 1

2
ραvα·vα + ραψα

)
∂t

〉
Ωα,Ω

+

〈
∇·
[(

Eα +
1

2
ραvα·vα + ραψα

)
vα

]〉
Ωα,Ω
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− 〈∇· (tα·vα + qα)〉Ωα,Ω − 〈hα〉Ωα,Ω −
〈
ρα
∂ψα
∂t

〉
Ωα,Ω

= 0 (2.30)

The full derivation of the macroscale energy equation proceeds like that of the

mass and momentum equation, but requires many more manipulations. For this

reason, the full derivation is provided in the appendix. The macroscale energy

equation can be written as

AEα =
∂88

∂t

(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

+∇88·
[(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

vα − Aεαqα − Aεαtα·vα
]

−
∑
β∈Icα

([
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

]
A
β→α
M + A

β→α
T ·vβα + A

β→α
Q

)

−

([
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

]
A

α→
MM + A

α→
TM ·vαM + A

α→
QM

)

− εαhαA−
〈
ρα
∂ψα
∂t

〉
Ωα,Ω

= 0 for α ∈ IP (2.31)

In order to write Eq. (2.31) in a generic form that applies to all entities, the

following identity is employed

〈
ρα
∂ψα
∂t

〉
Ωα,Ω

=

〈
ρα
∂(n)ψα
∂t

〉
Ωα,Ω

+
〈
vα·

(
I− I(n)

α

)
·gα
〉

Ωα,Ω
(2.32)

Eq. (2.32) describes the relationship between the partial time derivative and that

which is fixed to a surface (n = 1) or a curve (n = 2) where n corresponds to

the number of primes. From Eq. (2.32) it’s apparent that when n = 0 as for a

36



volume, the second term on the right vanishes, which is why it does not appear

in Eq. (2.31).

Applying Eq. (2.32), using the definition of the material derivative, and rewrit-

ing terms in Eq. (2.31) of the form fβα into generic form (as was done when forming

the momentum equation) yields the macroscale total energy equation

AEα∗ =
Dα

Dt

(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

+

(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

I88:dα −∇88·
(
Aεαtα·vα + Aεαqα

)
−
∑
β∈Icα

([
E
α,β

+
1

2
vα,β·vα,β +Kα,β

E + ψα,β
]
A
β→α
M + A

β→α
T ·vα,β + A

β→α
Q

)

−
((

E
α

M +
1

2
vαM ·vαM +Kα

EM + ψαM

)
A

α→
MM + A

α→
TM ·vαM + A

α→
QM

)
− εαhαA−

〈
ρα
∂(n)ψα
∂t

〉
Ωα,Ω

+
〈
vα·

(
I− I(n)

α

)
·gα
〉

Ωα,Ω
= 0 for α ∈ I (2.33)

where

Kα,β
E =


Kβ
Eα if β ∈ I−cα

Kα
Eβ if β ∈ I+

cα

(2.34)

ψα,β =


ψβα if β ∈ I−cα

ψαβ if β ∈ I+
cα

(2.35)
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E
α,β

=


Eβα
εαρα

if β ∈ I−cα

Eαβ

εαρα
if β ∈ I+

cα

(2.36)

and

E
α

M =
Eα
M

εαρα
(2.37)

2.3.4 Entropy Balance Equation

The microscale entropy balance equation can be written as

Sα =
∂ηα
∂t

+∇· (ηαvα)−∇·ϕα − bα = Λα ≥ 0 (2.38)

Applying an averaging operator to all terms yields

〈
∂ηα
∂t

〉
Ωα,Ω

+ 〈∇· (ηαvα)〉Ωα,Ω − 〈∇·ϕα〉Ωα,Ω − 〈bα〉Ωα,Ω = 〈Λα〉Ωα,Ω ≥ 0 (2.39)

Then, applying the transport and divergence theorems eqns (2.5) and (2.6) yields

∂88

∂t
〈ηα〉Ωα,Ω −

∑
β∈Icα

〈nα ·vβηα〉Ωβ ,Ω − 〈eα·wηα〉ΓαM ,Ω +∇88·〈ηαvα〉Ωα,Ω

+
∑
β∈Icα

〈nα ·vαηα〉Ωβ ,Ω + 〈eα·vαηα〉ΓαM ,Ω −∇
88·〈ϕα〉Ωα,Ω

−
∑
β∈Icα

〈nα ·ϕα〉Ωβ ,Ω − 〈eα·ϕα〉ΓαM ,Ω − 〈bα〉Ωα,Ω

= 〈Λα〉Ωα,Ω (2.40)
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Now we can average this equation; evaluating the operators term by term

yields

∂88

∂t
〈ηα〉Ωα,Ω =

∂88

∂t

(
ηαA

)
(2.41)

〈bα〉Ωα,Ω = εαbαA (2.42)

〈Λα〉Ωα,Ω = ΛαA (2.43)

The divergence terms require some manipulation. Starting with the entropy term

and expanding the velocity gives

∇88·〈ηαvα〉Ωα,Ω = ∇88·
〈
ηα
[
vα +

(
vα − vα

)]〉
Ωα,Ω

= ∇88·
〈
ηαv

α
〉

Ωα,Ω
+∇88·

〈
ηα
(
vα − vα

)〉
Ωα,Ω

(2.44)

The first term in eqn (2.44) evaluates to

∇88·
〈
ηαv

α
〉

Ωα,Ω
= ∇88·

(
ηαvαA

)
(2.45)

Continuing with the divergence terms, we can combine the entropy flux vector

term with the last term in eqn (2.44) which leaves

∇88·
〈
ϕα − ηα

(
vα − vα

)〉
Ωα,Ω

= ∇88·
(
εαϕαA

)
(2.46)
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Moving on to the unit normal vector terms, we have

−
∑
β∈Icα

〈nα ·vβηα〉Ωβ ,Ω +
∑
β∈Icα

〈nα ·vαηα〉Ωβ ,Ω −
∑
β∈Icα

〈nα ·ϕα〉Ωβ ,Ω

= −
∑
β∈Icα

〈[ϕα + ηα (vβ − vα)] ·nα〉Ωβ ,Ω

= −
∑
β∈Icα

〈[
ϕα +

[
ηβα
εαρα

+
ηα
ρα
− ηβα
εαρα

]
ρα (vβ − vα)

]
·nα

〉
Ωβ ,Ω

= −
∑
β∈Icα

ηβα
εαρα

A
β→α
M −

∑
β∈Icα

〈[
ϕα +

[
ηα
ρα
− ηβα
εαρα

]
ρα (vβ − vα)

]
·nα

〉
Ωβ ,Ω

(2.47)

We can define the last quantity in eqn (2.47) as

A
β→α
Φ =

∑
β∈Icα

〈[
ϕα +

[
ηα
ρα
− ηβα
εαρα

]
ρα (vβ − vα)

]
·nα

〉
Ωβ ,Ω

(2.48)

which reduces eqn (2.47) to

−
∑
β∈Icα

〈nα ·vβηα〉Ωβ ,Ω +
∑
β∈Icα

〈nα ·vαηα〉Ωβ ,Ω −
∑
β∈Icα

〈nα ·ϕα〉Ωβ ,Ω

= −
∑
β∈Icα

(
ηβα
εαρα

A
β→α
M + A

β→α
Φ

)
(2.49)

That leaves the unit tangent vector terms from eqn (2.40)

−〈eα·wηα〉ΓαM ,Ω + 〈eα·vαηα〉ΓαM ,Ω − 〈eα·ϕα〉ΓαM ,Ω

= −〈[ϕα + ηα (w − vα)] ·eα〉ΓαM ,Ω
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= −

〈[
ϕα +

[
ηαM
εαρα

+
ηα
ρα
− ηαM
εαρα

]
ρα (w − vα)

]
·eα

〉
ΓαM ,Ω

= − ηαM
εαρα

A
α→
MM −

〈[
ϕα +

[
ηα
ρα
− ηαM
εαρα

]
ρα (w − vα)

]
·eα

〉
ΓαM ,Ω

(2.50)

We can define the last quantity in eqn (2.50) as

A
α→
ΦM =

〈[
ϕα +

[
ηα
ρα
− ηαM
εαρα

]
ρα (w − vα)

]
·eα

〉
ΓαM ,Ω

(2.51)

which reduces eqn (2.50) to

−〈eα·wηα〉ΓαM ,Ω + 〈eα·vαηα〉ΓαM ,Ω − 〈eα·ϕα〉ΓαM ,Ω

= −

(
ηαM
εαρα

A
α→
MM + A

α→
ΦM

)
(2.52)

Now we can collect all of the defined terms from eqn (2.40) to form the mac-

roscale entropy equation:

〈Sα〉Ωα,Ω =
∂88

∂t

(
ηαA

)
+∇88·

(
ηαvαA

)
−∇88·

(
εαϕαA

)
−
∑
β∈Icα

(
ηβα
εαρα

β→α
M A+

β→α
Φ A

)

−

(
ηαM
εαρα

α→
MMA+

α→
ΦMA

)
− εαbαA = ΛαA for α ∈ IP (2.53)

Summing the entropy balance eqn (2.53) over all entities yields an entropy in-

equality which satisfies the second law of thermodynamics [17]. This yields the
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macroscale entropy balance equation

∑
α∈I

〈Sα〉Ωα,Ω =
∑
α∈I

[
∂88

∂t

(
ηαA

)
+∇88·

(
ηαvαA

)
−∇88·

(
εαϕαA

)
−

(
ηαM
εαρα

α→
MMA+

α→
ΦMA

)
− εαbαA

]
= ΛαA ≥ 0 for α ∈ I (2.54)

Comparing Eq. (2.53) with Eq. (2.54), it is important to point out that when

summing over all entities the inter-entity exchange terms cancel (this exchange

is equal and opposite), but the edge terms remain. Eq. (2.54) can be written in

material derivative form as

ASα =
∑
α∈I

(
Dα

Dt

(
ηαA

)
+
(
ηαA

)
I88:dα −∇88·

(
εαϕαA

)
−

(
ηαM
εαρα

α→
MMA+

α→
ΦMA

)
− εαbαA

)
= ΛαA ≥ 0 for α ∈ I (2.55)

2.3.5 Thermodynamic Equations

The thermodynamic properties of system entities contribute to the overall sys-

tem behavior and provide equally important information for model development

as that contributed by the conservation and balance equations [23]. The laws of

thermodynamics describe how energy delocalizes or spreads; gradients in composi-

tion, temperature, and pressure, among others drive dynamic, or non-equilibrium

system behavior [56]. Real world systems are often away from equilibrium, and

the entropy producing dissipative processes that occur as systems tend toward an
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equilibrium state are those that we would like to describe.

The established classical thermodynamic theory is somewhat of a misnomer,

in that it describes systems at equilibrium, but doesn’t describe system evolution

between time-independent equilibrium states at which the entropy production rate

is zero. For this reason, non-equilibrium thermodynamic theory is needed; this

is an area of research that is still ongoing. The effort to extend classical thermo-

dynamics has led to multiple diverging theoretical approaches including classical

irreversible thermodynamics (CIT), extended irreversible thermodynamics (EIT),

rational thermodynamics (RT), rational extended thermodynamics (RET), and

the theory of internal variables (TIV) [23].

The TCAT framework is flexible in terms of incorporating a non-equilibrium

thermodynamic theory for model development, yet up to the present CIT theory

(which is the simplest extension of classical Gibbsian equilibrium thermodynam-

ics) has proved sufficient in guiding closure relations and keeping conservation

and thermodynamic principles consistent within a given model. In other words,

many systems are consistent with CIT such that a more sophisticated theory is

unnecessary. Information regarding basic classical thermodynamic theory and the

non-equilibirium thermodynamic theories mentioned can be found in many good

resources ([9, 13, 33, 36, 52]), but won’t be given further attention here; the nec-

essary elements for this work will be presented below. As before, we will start

with microscale theory, and work to average up to the macroscale. The definitions

of the microscale and macroscale remain consistent with those discussed in the

43



introduction, and depart from the typical thermodynamic language in which the

microscale refers to the molecular scale, and the macroscale describes the smallest

continuum scale [23].

2.3.5.1 Fluid Phase Thermodynamics

In natural porous medium systems, the most common components are the fluids,

air and water, and some indigenous solid which forms a connected matrix. Put

simply, fluids and solids respond differently to applied forces, and therefore deform

differently which necessitates different thermodynamic descriptions for each. For

the system studied here the solid is assumed to behave like a highly viscous fluid

and can therefore be described within the same framework. However, if this

assumption is not made solid phase deformation, which is dependent on the type

of solid (elastic or inelastic), would have to be accounted for differently. Resources

that explicitly account for solid phase dynamics are available elsewhere [23, 28].

The fundamental microscale thermodynamic equation for a fluid phase can be

written as

Sα = Sα (Eα,Vα,Mα) (2.56)

or, conversely

Eα = Eα (Sα,Vα,Mα) (2.57)

where the functions Sα and Eα are the phase entropy and internal energy respec-

tively, while the extensive variables Vα and Mα are the phase volume and mass.
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The entropy and internal energy functions can be inverted, meaning eqns (2.56)

and (2.57) are equally valid. It’s important to note that the phase composition

is not being considered in these equations, i.e. the dependence on phase mass is

considered rather than individual species mass.

Normalizing Eq. (2.57) by volume yields

Eα = Eα (ηα, 1, ρα) (2.58)

where

ηα =
Sα
Vα

(2.59)

The microscale Euler equation for the intensive form of the fundamental equation,

eqn (2.58), can be written as

Eα = θαηα + ραµα − pα (2.60)

where the intensive thermodynamic variables of temperature θα, chemical poten-

tial µα, and pressure pα appear. These are defined as

θα =

(
∂Eα
∂Sα

)
Vα,Mα

(2.61)

pα =

(
∂Eα
∂Vα

)
Sα,Mα

(2.62)
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and

µα =

(
∂Eα
∂Mα

)
Sα,Vα

(2.63)

where the subscripts outside of the parenthesis are used to explicitly indicate which

variables are being held constant. This is common practice in thermodynamics,

as many alternative energy forms (potentials) exist that are used when other

functional forms are more convenient for experimentation and measurement [36].

Applying an averaging operator to all terms yields

〈Eα〉Ωα,Ω = 〈θαηα + ραµα − pα〉Ωα,Ω (2.64)

Evaluation of the averaging operators term by term yields

〈Eα〉Ωα,Ω = EαA (2.65)

Next, we have the entropy and temperature term

〈θαηα〉Ωα,Ω = Aηα〈θα〉Ωα,Ωα,ηα = θαηαA (2.66)

where

〈ηα〉Ωα,Ω = ηαA (2.67)

and

〈θα〉Ωα,Ωα,ηα = θα (2.68)
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Then we have the chemical potential and density term

〈ραµα〉Ωα,Ω = εαραµαA (2.69)

where

〈ρα〉Ωα,Ω = εαραA (2.70)

and

〈µα〉Ωα,Ωα,ρα = µα (2.71)

Finally, the pressure term can be defined as

〈pα〉Ωα,Ω = εαpαA (2.72)

which means the macroscale Euler equation for internal energy is

Eα = θαηα + εαραµα − εαpα (2.73)

In order to get a macroscale form of the Gibbs-Duhem equation, we will first

differentiate Eq. (2.60) which yields

dEα = θα dηα + ηα dθα + ρα dµα + µα dρα − dpα (2.74)
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The first differential of eqn (2.58) is

dEα = θα dηα + µα dρα (2.75)

Subtracting Eq. (2.75) from Eq. (2.74) yields the microscale Gibbs-Duhem equa-

tion

0 = ηα dθα + ρα dµα − dpα (2.76)

which will be useful when manipulating the averaged thermodynamics. Eq. (2.75)

can be rewritten by adding and subtracting macroscale variables as follows

dEα = θα dηα + µα dρα +
(
θα − θα

)
dηα +

(
µα − µα

)
dρα (2.77)

Using the product rule the last two terms in Eq. (2.77) can be expanded which

yields

dEα = θα dηα + µα dρα + d
[
ηα

(
θα − θα

)]
+ d

[
ρα
(
µα − µα

)]
− ηα d

(
θα − θα

)
− ρα d

(
µα − µα

)
(2.78)

We would like to get Eq. (2.78) into material derivative form in order to incorpo-

rate the thermodynamics into the entropy inequality along with the conservation
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equations. This can be accomplished by rewriting Eq. (2.78) as

∂Eα
∂t

+ vα·∇Eα − θα
∂ηα
∂t
− vα·θα∇ηα − µα

∂ρα
∂t

+ vα·∇ρα

− ∂

∂t

[
ηα

(
θα − θα

)]
− vα·∇

[
ηα

(
θα − θα

)]
− ∂

∂t

[
ρα
(
µα − µα

)]
− vα·∇

[
ρα
(
µα − µα

)]
− ηα

∂
(
θα − θα

)
∂t

− vα·
[
ηα∇

(
θα − θα

)]
+ ρα

∂(µα − µα)

∂t
+ vα·

[
ρα∇

(
µα − µα

)]
= 0 (2.79)

Now, we can use the transport and gradient theorems from the [3,(1,0),2]

family on the time and space derivatives to obtain a thermodynamic equation

which includes macroscale quantities averaged from the microscale. Applying

eqns (2.4) and (2.6) yields

∂88

∂t

(
〈Eα〉Ωα,Ω

)
−
∑
β∈Icα

〈nα·vβEα〉Ωβ ,Ω − 〈e·wEα〉ΓαM ,Ω + vα·∇88〈Eα〉Ωα,Ω

+
∑
β∈Icα

vα·〈nαEα〉Ωβ ,Ω + vα·〈eEα〉ΓαM ,Ω − θ
α∂

88

∂t

(
〈ηα〉Ωα,Ω

)
+
∑
β∈Icα

θα〈nα·vβηα〉Ωβ ,Ω + θα〈e·wηα〉ΓαM ,Ω − µ
α∂

88

∂t

(
〈ρα〉Ωα,Ω

)
+
∑
β∈Icα

µα〈nα·vβρα〉Ωβ ,Ω + µα〈e·wρα〉ΓαM ,Ω +
∑
β∈Icα

〈
nα·vβ

[
ηα

(
θα − θα

)]〉
Ωβ ,Ω

+
〈
e·w

[
ηα

(
θα − θα

)]〉
ΓαM ,Ω

+
∑
β∈Icα

〈
nα·vβ

[
ρα
(
µα − µα

)]〉
Ωβ ,Ω

+
〈
e·w

[
ρα
(
µα − µα

)]〉
ΓαM ,Ω

+

〈
ηα

∂
(
θα − θα

)
∂t

〉
Ωα,Ω

+

〈
ρα
∂(µα − µα)

∂t

〉
Ωα,Ω

49



− vα·
(
θα∇88〈ηα〉Ωα,Ω

)
− vα·

(
µα∇88〈ρα〉Ωα,Ω

)
−
∑
β∈Icα

vα·
(
θα〈nαηα〉Ωβ ,Ω

)
− vα·

(
θα〈eηα〉ΓαM ,Ω

)
−
∑
β∈Icα

vα·
(
µα〈nαρα〉Ωβ ,Ω

)
− vα·

(
µα〈eρα〉ΓαM ,Ω

)
−
∑
β∈Icα

vα·
〈
nα

[
ηα

(
θα − θα

)]〉
Ωβ ,Ω
− vα·

〈
e
[
ηα

(
θα − θα

)]〉
ΓαM ,Ω

+
〈
ηα∇

(
θα − θα

)〉
Ωα,Ω
−
∑
β∈Icα

vα·
〈
nα
[
ρα
(
µα − µα

)]〉
Ωβ ,Ω

− vα·
〈
e
[
ρα
(
µα − µα

)]〉
ΓαM ,Ω

+
〈
ρα∇

(
µα − µα

)〉
Ωα,Ω

= 0 (2.80)

Grouping like terms, evaluating averages when possible, and combining terms to

form material derivatives yields

Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt

+

〈
ηα

Dα
(
θα − θα

)
Dt

〉
Ωα,Ω

+

〈
ρα

Dα (µα − µα)

Dt

〉
Ωα,Ω

+
∑
β∈Icα

〈
nα·

(
vα − vβ

)
Eα
〉

Ωβ ,Ω

+
〈
e·
(
vα −w

)
Eα
〉

ΓαM ,Ω
−
∑
β∈Icα

θα
〈
nα·

(
vα − vβ

)
ηα
〉

Ωβ ,Ω

− θα
〈
e·
(
vα −w

)
ηα
〉

ΓαM ,Ω
−
∑
β∈Icα

µα
〈
nα·

(
vα − vβ

)
ρα
〉

Ωβ ,Ω

− µα
〈
e·
(
vα −w

)
ρα
〉

ΓαM ,Ω
−
∑
β∈Icα

〈
nα·

(
vα − vβ

) [
ηα

(
θα − θα

)]〉
Ωβ ,Ω

−
〈
e·
(
vα −w

) [
ηα

(
θα − θα

)]〉
ΓαM ,Ω

−
∑
β∈Icα

〈
nα·

(
vα − vβ

) [
ρα
(
µα − µα

)]〉
Ωβ ,Ω

−
〈
e·
(
vα −w

) [
ρα
(
µα − µα

)]〉
ΓαM ,Ω

= 0 (2.81)
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Using Eq. (2.73), Eq. (2.81) can be rewritten as

Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt

+

〈
ηα

Dα
(
θα − θα

)
Dt

〉
Ωα,Ω

+

〈
ρα

Dα (µα − µα)

Dt

〉
Ωα,Ω

−
∑
β∈Icα

〈
nα·

(
vα − vβ

)
pα
〉

Ωβ ,Ω

−
〈
e·
(
vα −w

)
pα
〉

ΓαM ,Ω
= 0 (2.82)

Eq. (2.82) can be simplified for use in the formulation of the constrained entropy

inequality using the identity

Dα

Dt
=

Ds

Dt
+
(
vα − vs

)
·∇88 (2.83)

where the mass-averaged solid phase velocity vs can be introduced which is used

to reference the material derivatives and velocities to a common frame. Eq. (2.83)

and the Gibbs-Duhem equation (eqn (2.76)) can be used to rewrite Eq. (2.82) as

AT α∗ =
Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt

+

〈
ηα

Ds
(
θα − θα

)
Dt

+ ρα
Ds (µα − µα)

Dt

〉
Ωα,Ω

−
[
ηαA∇88θα + ραA∇88µα −∇88

(
εαpαA

)]
·
(
vα − vs

)
+
∑
β∈Icα

〈
pα
(
vβ − vs

)
·nα
〉

Ωβ ,Ω

−
〈
pα
(
vs −w

)
·e
〉

ΓαM ,Ω
= 0 for α ∈ IP (2.84)
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Averaging operators remain on the deviation terms and two pressure terms in Eq.

(2.84), and they will be left in this form for now. This is the final form of the

thermodynamics for a fluid phase which will be incorporated into the augmented

entropy inequality.

2.3.5.2 Solid Phase Thermodynamics

As previously mentioned, the solid phase will be treated as a highly viscous fluid;

therefore, the thermodynamics for a fluid phase Eq. (2.84) applies.

2.3.5.3 Interface Thermodynamics

The procedure for deriving the thermodynamics for the interface is analogous

to that of the phase, but surficial operators will be used, and the functional

dependence of internal energy will change slightly. The thermodynamic relation

for the microscale internal energy per unit area which comes from the fundamental

equation (eqn (2.58)) can be written as

Eα = θαηα + ραµα + γα (2.85)
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for an interface; here the interfacial tension γα replaces the pressure term in the

phase equation (eqn (2.60)), and is defined as

γα =

(
∂Eα
∂Aα

)
Sα,Mα

for α ∈ II (2.86)

where Aα is the interfacial area. Interfaces are two-dimensional entities meaning

Aα will replace Vα as an extensive variable in the definition of temperature and

chemical potential as well, such that

θα =

(
∂Eα
∂Sα

)
Aα,Mα

for α ∈ II (2.87)

and

µα =

(
∂Eα
∂Mα

)
Sα,Aα

for α ∈ II (2.88)

Applying an averaging operator to all terms in Eq. (2.85) yields

〈Eα〉Ωα,Ω = 〈θαηα + ραµα + γα〉Ωα,Ω (2.89)

We can evaluate the averaging operators in Eq. (2.89) in accordance with the

definitions established for the phase equation, and define the macroscale interfacial

tension as follows

〈γα〉Ωα,Ω = εαγαA (2.90)

53



Eq. (2.90) can be used to write the macroscale Euler equation for internal energy

per area as

Eα = θαηα + εαραµα + εαγα (2.91)

Similarly, the Gibbs-Duhem equation for an interface can be written as

0 = ηα dθα + ρα dµα + dγα (2.92)

The definition for the material derivative that acts on a surface and is referenced

to the solid phase velocity is

D′s

Dt
=
∂′

∂t
+ vs·∇′ for x ∈ Ωα, α ∈ II (2.93)

Eq. (2.93) is related to the material derivative via the identity

Dα

Dt
=

D′s

Dt
+
(
vα − vs

)
·∇−

(
vα − vs

)
· (I− I′α) ·∇ for x ∈ Ωα, α ∈ II (2.94)

Using eqns (2.92)–(2.94), applying the transport and gradient theorems (eqns

(2.4) and (2.6)) to Eq. (2.79), and combining like terms yields the final expression

AT α∗ =
Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt

+

〈
ηα

D′s
(
θα − θα

)
Dt

+ ρα
D′s (µα − µα)

Dt

〉
Ωα,Ω
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−
[
ηαA∇88θα + ραA∇88µα +∇88·〈I′αγα〉Ωα,Ω

]
·
(
vα − vs

)
+∇88·

〈
(I− I′α) ·

(
vα − vα

)
γα
〉

Ωα,Ω
+ 〈(I− I′α) γα〉Ωα,Ω:dα

+
〈
∇·I′α·

(
vα − vs

)
γα
〉

Ωα,Ω
+
〈
ηα
(
vα − vs

)
· (I− I′α)

〉
Ωα,Ω
·∇θα

+
〈
ρα
(
vα − vs

)
· (I− I′α)

〉
Ωα,Ω
·∇µα −

〈
γα
(
vwns − vs

)
·nα
〉

Ωwns,Ω

+
〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω
= 0 for α ∈ II (2.95)

where vwns is the velocity of the common curve.

2.3.5.4 Common Curve Thermodynamics

The process of deriving the common curve equation is analogous to the fluid and

interface procedures. Using the fundamental equation eqn (2.58) and normalizing

by Lα for a one-dimensional entity, we get an expression with variables defined

in terms of Lα instead of Vα or Aα, as for phases or interfaces. Moving from Eq.

(2.95), the variable γα is now the lineal tension and is opposite in sign to the

interfacial tension; it is defined as

−γα =

(
∂Eα
∂Lα

)
Sα,Mα

for α ∈ IC (2.96)

Additionally, now the curvilinear operators designated by ′′ will be used. Using

these changes and the transport and gradient theorems (eqns (2.4) and (2.6)), Eq.
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(2.95) can be modified to write the common curve equation

AT α∗ =
Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt

+

〈
ηα

D′′s
(
θα − θα

)
Dt

+ ρα
D′′s (µα − µα)

Dt

〉
Ωα,Ω

−
[
ηαA∇88θα + ραA∇88µα −∇88·〈I′αγα〉Ωα,Ω

]
·
(
vα − vs

)
−∇88·

〈
(I− I′′α) ·

(
vα − vα

)
γα
〉

Ωα,Ω

− 〈(I− I′′α) γα〉Ωα,Ω:dα −
〈
∇·I′′α·

(
vα − vs

)
γα
〉

Ωα,Ω

+
〈
ηα
(
vα − vs

)
· (I− I′′α)

〉
Ωα,Ω
·∇θα

+
〈
ηα
(
vα − vs

)
· (I− I′′α)

〉
Ωα,Ω
·∇θα

+
〈
ρα
(
vα − vs

)
· (I− I′′α)

〉
Ωα,Ω
·∇µα

−
〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω
= 0 for α ∈ IC (2.97)

2.4 Augmented Entropy Inequality

Now that we have all of the macroscale conservation equations, the entropy in-

equality, and the macroscale thermodynamics, we can write an augmented en-

tropy inequality (AEI). We know that the material derivatives contained within

the aforementioned equations will equal zero at equilibrium, but even a small

distance away from equilibrium this is not guaranteed; therefore, using Lagrange

multipliers we can augment the EI to eliminate the material derivatives while

still satisfying all of the individual conservation and thermodynamic equations
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[18]. Technically, the Lagrange multipliers are arbitrary as they multiply equa-

tions which are each equal to zero, but if they are carefully selected they will

cancel most of the material derivatives. The entropy inequality augmented with

Lagrange multipliers can be written as

∑
α∈I

(
Sα + λαMMα + λαP ·Pα + λαEEα + λαT T α

)
= Λα ≥ 0 (2.98)

Substituting the corresponding equations into Eq. (2.98) for each of the system

entities yields

∑
α∈I

[
Dα

Dt

(
ηαA

)
+
(
ηαA

)
I88:dα −∇88·

(
εαϕαA

)
−

(
ηαM
εαρα

α→
MMA+

α→
ΦMA

)
− εαbαA

]

+
∑
α∈I

λαM

Dα(εαραA)

Dt
+ (εαραA)I88:dα −

∑
β∈I−cα

A
β→α
M + A

α→
MM


+
∑
α∈I

λαP ·
[

Dα(εαραvαA)

Dt
+
(
εαραvαA

)
I88:dα −∇88·(εαtαA)− εαραgαA

−
∑
β∈Icα

vα,β
β→α
M A−

∑
β∈Icα

β→α
T A+ vαM

α→
MMA+

α→
TMA

]

+
∑
α∈I

λαE

[
Dα

Dt

(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

+

(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

I88:dα −∇88·
(
Aεαtα·vα + Aεαqα

)
−
∑
β∈Icα

([
E
α,β

+
1

2
vα,β·vα,β +Kα,β

E + ψα,β
]
A
β→α
M + A

β→α
T ·vα,β + A

β→α
Q

)
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−
((

E
α

M +
1

2
vαM ·vαM +Kα

EM + ψαM

)
A

α→
MM + A

α→
TM ·vαM + A

α→
QM

)
−εαhαA−

〈
ρα
∂(n)ψα
∂t

〉
Ωα,Ω

+
〈
vα·

(
I− I(n)

α

)
·gα
〉

Ωα,Ω

]

+
∑
α∈IP

λαT

Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt

+

〈
ηα

Ds
(
θα − θα

)
Dt

+ ρα
Ds (µα − µα)

Dt

〉
Ωα,Ω

−
[
ηαA∇88θα + ραA∇88µα −∇88

(
εαpαA

)]
·
(
vα − vs

)
+
∑
β∈Icα

〈
pα
(
vβ − vs

)
·nα
〉

Ωβ ,Ω
−
〈
pα
(
vs −w

)
·e
〉

ΓαM ,Ω

]

+
∑
α∈II

λαT

Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt

+

〈
ηα

D′s
(
θα − θα

)
Dt

+ ρα
D′s (µα − µα)

Dt

〉
Ωα,Ω

−
[
ηαA∇88θα + ραA∇88µα +∇88·〈I′αγα〉Ωα,Ω

]
·
(
vα − vs

)
+∇88·

〈
(I− I′α) ·

(
vα − vα

)
γα
〉

Ωα,Ω
+ 〈(I− I′α) γα〉Ωα,Ω:dα

+
〈
∇·I′α·

(
vα − vs

)
γα
〉

Ωα,Ω

+
〈
ηα
(
vα − vs

)
· (I− I′α)

〉
Ωα,Ω
·∇θα +

〈
ρα
(
vα − vs

)
· (I− I′α)

〉
Ωα,Ω
·∇µα

−
〈
γα
(
vwns − vs

)
·nα
〉

Ωwns,Ω
+
〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

]
+
∑
α∈IC

λαT

Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt

+

〈
ηα

D′′s
(
θα − θα

)
Dt

+ ρα
D′′s (µα − µα)

Dt

〉
Ωα,Ω

−
[
ηαA∇88θα + ραA∇88µα −∇88·〈I′αγα〉Ωα,Ω

]
·
(
vα − vs

)
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−∇88·
〈
(I− I′′α) ·

(
vα − vα

)
γα
〉

Ωα,Ω
− 〈(I− I′′α) γα〉Ωα,Ω:dα

−
〈
∇·I′′α·

(
vα − vs

)
γα
〉

Ωα,Ω

+
〈
ηα
(
vα − vs

)
· (I− I′′α)

〉
Ωα,Ω
·∇θα +

〈
ρα
(
vα − vs

)
· (I− I′′α)

〉
Ωα,Ω
·∇µα

−
〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

]
= ΛαA ≥ 0 (2.99)

Selecting the Lagrange multipliers such that the material derivatives vanish is

accomplished by looking at each derivative separately. Solving for the multipliers

becomes much easier when they are chosen in a particular order, starting with the

thermodynamic Lagrange multipliers and the entropy time derivatives as shown

below.

1. Entropy Time Derivatives:

Dα
(
ηαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

λαT = 0 (2.100)

The equations for each of the entities (α = {w, n, s, wn,ws, ns, wns}) have

the same form, so for compactness we will remain in generic notation; how-

ever, it’s important to remember that a Lagrange multiplier exists for each

entity. Solving Eq. (2.100) for the Lagrange multiplier gives

λαT =
1

θα
(2.101)
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2. Energy Time Derivatives:

In order to solve for the energy Lagrange multipliers it is necessary to re-

arrange the energy material derivative. This is accomplished by using the

product rule and splitting up the material derivative as follows

Dα
(
EαA+ εαραA

[
1
2
vα·vα +Kα

E + ψα
])

Dt

=
Dα
(
EαA

)
Dt

+
Dα
(
εαραA1

2
vα·vα

)
Dt

+
Dα
(
εαραA

[
Kα
E + ψα

])
Dt

=
Dα
(
EαA

)
Dt

+ vα·
Dα
(
εαραAvα

)
Dt

+

(
Kα
E −

1

2
vα·vα + ψα

) Dα
(
εαραA

)
Dt

+ εαραA
Dα
(
Kα
E + ψα

)
Dt

(2.102)

Now we can isolate the internal energy material derivative which appears in

the energy and thermodynamic equations; this gives

Dα
(
EαA

)
Dt

λαE +
Dα
(
EαA

)
Dt

λαT = 0 (2.103)

which means

λαE = −λαT (2.104)

Therefore, the energy Lagrange multiplier is

λαE = − 1

θα
(2.105)
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3. Momentum Time Derivatives:

λαP ·
Dα
(
εαραAvα

)
Dt

+ λαEv
α·

Dα
(
εαραAvα

)
Dt

= 0 (2.106)

which simplifies to

λαT + λαEv
α = 0 (2.107)

This means the momentum time derivative is

λαP =
vα

θα
(2.108)

4. Mass Time Derivatives:

Mass time derivatives appear in the mass, momentum, and energy equa-

tions; it is for this reason that these time derivatives are eliminated last.

At this point we have definitions for the momentum and energy Lagrange

multipliers, so solving for the mass multiplier is much easier. We have

Dα
(
εαραA

)
Dt

λαM − µα
Dα
(
εαραA

)
Dt

λαT

+

(
Kα
E −

1

2
vα·vα + ψα

) Dα
(
εαραA

)
Dt

λαE = 0 (2.109)

which simplifies to

λαM − µαλαT +

(
Kα
E + ψα − 1

2
vα·vα

)
λαE = 0 (2.110)
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Substituting in the definitions of the momentum and energy Lagrange mul-

tipliers gives

λαM =
1

θα

(
Kα
E + ψα + µα − 1

2
vα·vα

)
(2.111)

The remaining material derivatives that could not be eliminated via Lagrange

multipliers will survive into the constrained entropy inequality; these derivatives

include the body force potential and the kinetic energy due to velocity fluctuations.

Now we can substitute the definitions of the Lagrange multipliers into Eq.

(2.99) which gives the expanded AEI where the phase, interface, and common

curve terms are labeled to make the equation more readable. The expanded

equation without any algebraic manipulations is

Phase Terms:∑
α∈IP

Dα

Dt

(
ηαA

)
+
∑
α∈IP

(
ηαA

)
I88:dα −

∑
α∈IP

εαbαA−
∑
α∈IP

∇88·
(
εαϕαA

)
+
∑
α∈IP

ηαM
α→
MMA+

∑
α∈IP

α→
ΦMA

+
∑
α∈IP

1

θα

(
µα +Kα

E + ψα − 1

2
vα·vα

)Dα
(
εαραA

)
Dt

+ εαραAI88:dα

−
∑
β∈Icα

β→α
M A+

α→
MMA

]

+
∑
α∈IP

vα

θα
·

Dα
(
εαραvαA

)
Dt

+ εαραvαAI88:dα −∇88·
(
εαtαA

)
− εαραgαA


+
∑
α∈IP

vα

θα
·
[
−
∑
β∈Icα

vα,β
β→α
M A−

∑
β∈Icα

β→α
T A+ vαM

α→
MMA+

α→
TMA

]
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−
∑
α∈IP

1

θα

{
Dα

Dt

[
EαA+ εαραA

(
vα·vα

2
+Kα

E + ψα
)]

+

[
EαA+ εαραA

(
vα·vα

2
+Kα

E + ψα
)]

I88:dα
}

+
∑
α∈IP

1

θα

{[
εαhαA+∇88·

(
εαqαA+ εαtα·vαA

)]
+

〈
ρα
∂ψα
∂t

〉
Ωα,Ω

}

+
∑
α∈IP

1

θα

{ ∑
β∈Icα

(
E
α,β

+
1

2
vα,β·vα,β +Kα,β

E + ψα,β
)
β→α
M A

}

+
∑
α∈IP

1

θα

{ ∑
β∈Icα

vα,β·
β→α
T A+

∑
β∈Icα

β→α
Q A

}

−
∑
α∈IP

1

θα

{(
E
α

M +
1

2
vαM ·vαM +Kα

EM + ψαM

)
α→
MMA+ vαM ·

α→
TMA+

α→
QMA

}

+
∑
α∈IP

1

θα

Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt


+
∑
α∈IP

1

θα

〈ηαDs
(
θα − θα

)
Dt

+ ρα
Ds (µα − µα)

Dt

〉
Ωα,Ω


−
∑
α∈IP

1

θα

(
vα − vs

)
·
[
ηαA∇88θα + εαραA∇88µα −∇88

(
εαpαA

)]
+
∑
α∈IP

1

θα

∑
β∈I−cα

〈
pα
(
vβ − vs

)
·nα
〉

Ωβ ,Ω
−
∑
α∈IP

1

θα

〈
e·
(
vs −w

)
pα
〉

ΓαM ,Ω

Interface Terms:

+
∑
α∈II

Dα

Dt

(
ηαA

)
+
∑
α∈II

(
ηαA

)
I88:dα −

∑
α∈II

εαbαA−
∑
α∈II

∇88·
(
εαϕαA

)
+
∑
α∈II

ηαM
α→
MMA+

∑
α∈II

α→
ΦMA

+
∑
α∈II

1

θα

(
µα +Kα

E + ψα − 1

2
vα·vα

)Dα
(
εαραA

)
Dt

+ εαραAI88:dα

−
∑
β∈Icα

β→α
M A+

α→
MMA

]
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+
∑
α∈II

vα

θα
·

Dα
(
εαραvαA

)
Dt

+ εαραvαAI88:dα −∇88·
(
εαtαA

)
− εαραgαA


+
∑
α∈II

vα

θα
·
[
−
∑
β∈Icα

vα,β
β→α
M A−

∑
β∈Icα

β→α
T A+ vαM

α→
MMA+

α→
TMA

]

−
∑
α∈II

1

θα

{
Dα

Dt

[
EαA+ εαραA

(
1

2
vα·vα +Kα

E + ψα
)]

+

[
EαA+ εαραA

(
1

2
vα·vα +Kα

E + ψα
)]

I88:dα
}

+
∑
α∈II

1

θα

{[
εαhαA+∇88·

(
εαqαA+ εαtα·vαA

)]
+

〈
ρα
∂′ψα
∂t

〉
Ωα,Ω

}

+
∑
α∈II

1

θα
〈ραvα· (I− I′α) ·gα〉Ωα,Ω

+
∑
α∈II

1

θα

{ ∑
β∈Icα

(
E
α,β

+
1

2
vα,β·vα,β +Kα,β

E + ψα,β
)
β→α
M A

}

+
∑
α∈II

1

θα

{ ∑
β∈Icα

vα,β·
β→α
T A+

∑
β∈Icα

β→α
Q A

}

−
∑
α∈II

1

θα

{(
E
α

M +
1

2
vαM ·vαM +Kα

EM + ψαM

)
α→
MMA+ vαM ·

α→
TMA+

α→
QMA

}

+
∑
α∈II

1

θα

Dα
(
EαA

)
Dt

− θα
Dα
(
ηαA

)
Dt

− µα
Dα
(
εαραA

)
Dt


+
∑
α∈II

1

θα

〈ηαD′s
(
θα − θα

)
Dt

+ ρα
D′s (µα − µα)

Dt

〉
Ωα,Ω


−
∑
α∈II

1

θα

(
vα − vs

)
·
[
ηαA∇88θα + εαραA∇88µα +∇88·〈I′αγα〉Ωα,Ω

]
+
∑
α∈II

1

θα

[
∇88·
〈
(I− I′α) ·

(
vα − vα

)
γα
〉

Ωα,Ω
+ 〈(I− I′α) γα〉Ωα,Ω:dα

]
+
∑
α∈II

1

θα

〈
∇·I′α·

(
vα − vs

)
γα
〉

Ωα,Ω
+
∑
α∈II

1

θα

〈
ηα
(
vα − vs

)
· (I− I′α)

〉
Ωα,Ω
·∇θα

+
∑
α∈II

1

θα

〈
ρα
(
vα − vs

)
· (I− I′α)

〉
Ωα,Ω
·∇µα
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−
∑
α∈II

1

θα

〈
γα
(
vwns − vs

)
·nα
〉

Ωwns,Ω
+
∑
α∈II

1

θα

〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

Common Curve Terms:

+
Dwns

Dt

(
ηwnsA

)
+
(
ηwnsA

)
I88:dwns − εwnsbwnsA

−∇88·
(
εwnsϕwnsA

)
+ ηwnsM

wns→
MM A+

wns→
ΦM A

+
1

θwns

(
µwns +Kwns

E + ψwns − 1

2
vwns·vwns

)Dwns
(
εwnsρwnsA

)
Dt

+εwnsρwnsAI88:dwns
]

+
1

θwns

(
µwns +Kwns

E + ψwns − 1

2
vwns·vwns

)[
−
∑

β∈Icwns

β→wns
M A+

wns→
MM A

]

+
vwns

θwns
·

Dwns
(
εwnsρwnsvwnsA

)
Dt

+ εwnsρwnsvwnsAI88:dwns

−∇88·
(
εwnstwnsA

)
− εwnsρwnsgwnsA

]
+

vwns

θwns
·
[
−
∑
β∈Icα

vwns,β
β→wns
M A−

∑
β∈Icwns

β→wns
T A+ vwnsM

wns→
MM A+

wns→
TM A

]

− 1

θα

{
Dwns

Dt

[
EwnsA+ εwnsρwnsA

(
1

2
vwns·vwns +Kwns

E + ψwns
)]}

− 1

θα

{[
EwnsA+ εwnsρwnsA

(
1

2
vwns·vwns +Kα

E + ψα
)]

I88:dwns
}

+
1

θwns

{[
εwnshwnsA+∇88·

(
εwnsqwnsA+ εwnstwns·vwnsA

)]
+

〈
ρwns

∂′′ψwns
∂t

〉
Ωwns,Ω

}

+
1

θwns
〈ρwnsvwns· (I− I′′wns) ·gwns〉Ωwns,Ω

+
1

θwns

{ ∑
β∈Icwns

(
E
wns,β

+
1

2
vwns,β·vwns,β +Kwns,β

E + ψwns,β
)
β→wns
M A

}
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+
1

θα

{ ∑
β∈Icwns

vwns,β·
β→wns

T A+
∑

β∈Icwns

β→wns
Q A

}

− 1

θwns

{(
E
wns

M +
1

2
vwnsM ·vwnsM +Kwns

EM + ψwnsM

)
wns→
MM A+ vwnsM ·

wns→
TM A+

wns→
QM A

}

+
1

θwns

Dwns
(
EwnsA

)
Dt

− θwns
Dwns

(
ηwnsA

)
Dt

− µwns
Dwns

(
εwnsρwnsA

)
Dt


+

1

θwns

〈ηwnsD′′s
(
θwns − θwns

)
Dt

+ ρwns
D′′s (µwns − µwns)

Dt

〉
Ωwns,Ω


− 1

θwns

(
vwns − vs

)
·
[
ηwnsA∇88θwns + εwnsρwnsA∇88µwns +∇88·〈I′′wnsγwns〉Ωwns,Ω

]
− 1

θwns

[
∇88·
〈
(I− I′′wns) ·

(
vwns − vwns

)
γwns

〉
Ωwns,Ω

+ 〈(I− I′′wns) γwns〉Ωwns,Ω:dwns
]

− 1

θwns

〈
∇·I′′wns·

(
vwns − vs

)
γwns

〉
Ωwns,Ω

+
1

θwns

〈
ηwns

(
vwns − vs

)
· (I− I′′wns)

〉
Ωwns,Ω

·∇θwns

+
1

θwns

〈
ρwns

(
vwns − vs

)
· (I− I′′wns)

〉
Ωwns,Ω

·∇µwns

− 1

θwns

〈
e·
(
vs −w

)
γwns

〉
ΓwnsM ,Ω

= AΛα ≥ 0 (2.112)

2.5 Constrained Entropy Inequality

Within the TCAT framework, formulating the constrained entropy inequality

(CEI) is the final exact expression, limited only by the documented primary re-

strictions. The CEI is one of the most important equations derived with the

TCAT approach because from the CEI secondary restrictions and approximations

are applied which lead to a simplified entropy inequality (SEI), closure relations,

and finally a closed model [18]. In other words, the CEI is a starting point for a

large set of possible closed models, and is an equation to return to when a cho-
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sen set of approximations and closure relations fails to produce a model which

describes a given system adequately. We would like to derive a CEI which is com-

posed of force-flux pairs (entropy generation terms due to irreversible processes)

that vanish at equilibrium [18].

Forming the CEI from Eq. (2.112) requires a significant number of manipu-

lations, most of which include combining like terms, and using the product rule

to expand terms with the goal of getting terms in a force-flux form. While these

algebraic manipulations are technically simple, they can be far from intuitive;

further guidance is available in [23].

Eq. (2.112) contains the terms

Terms = −vα

θα
·∇88·

(
εαtαA

)
+∇88·

(
εαtα·vαA

)
= −vα

θα
·∇88·

(
εαtαA

)
+∇88·

(
εαtαA

)
·vα +∇88vα:

(
εαtαA

)
= I88·∇vα:

(
εαtαA

)
= I88·dα:

(
εαtαA

)
=
(
εαtα·I88A

)
:dα (2.113)

where the product rule was used moving from the first line of Eq. (2.113) to the

second, the first two terms in line two cancel, and finally the remaining term can

be reexpressed to a convenient final form. This form is convenient because we

are left with the rate of strain tensor (a force) multiplying a quantity which can

be considered a flux term. The type of manipulations present in Eq. (2.113) are
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typical of those that will be utilized to get a final CEI. Another useful manipulation

involves the macroscale Euler equation

Eα = θαηα + εαραµα − εαpα (2.114)

Eq. (2.114) can be used to combine terms, along with Eq. (2.113). For example,

we can collect like terms in Eq. (2.112), and simplify using Eq. (2.114) which

gives

Combined Terms =
1

θα
A
[(
θαηα − Eα + εαραµα

)
I88 + tα

]
:dα

=
1

θα

[
εαpαI88A+ εαtαA

]
:dα (2.115)

We can manipulate the exchange terms by introducing a reference velocity vs

and grouping like terms. Additionally, the relationship between phase to interface

and interface to phase transfer as stated by eqn (2.116) will be used to group

terms.

α→αβ
X = −

αβ→α
X (2.116)

Further rearrangement and cancelation of like terms can be used in conjunction

with Eq. (2.116) to rewrite Eq. (2.112) as

Phase Terms:∑
α∈IP

1

θα

[
pαI88A+ εαtα·I88A

]
:dα
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−
∑
α∈IP

{
εαbαA− 1

θα

[
εαhαA

+

〈
ηα

Ds
(
θα − θα

)
Dt

+ ρα

Ds
(
µα + ψα − µα − ψα −Kα

E

)
Dt

〉
Ωα,Ω


−
∑
α∈IP

1

θα

(
vα − vs

)
·
[
ηαA∇88θα + εαραA∇88

(
µα + ψα +Kα

E

)
+εαραAgα −∇88

(
εαApα

)]
−
∑
α∈IP

∇88·
[
εαϕαA− εαqαA

θα

]
−
∑
α∈IP

[
εαqαA·∇88

(
1

θα

)]

+
∑
α∈IP

[
α→
ΦMA−

1

θα

α→
QMA

]

+
∑
α∈IP

1

θα

[
µα + ηαMθ

α − Eα

M +Kα
E −Kα

EM + ψα − ψαM

−1

2

(
vα − vαM

)
·
(
vα − vαM

)] α→
MMA

+
∑
α∈IP

∑
β∈Icα

α→β
M A

[
1

θα

(
µα +Kα

E + ψα
)
− 1

θβ

(
µβ +Kβ

E + ψβ
)]

−
∑
α∈IP

∑
β∈Icα

[(
E
β

α +K
β

Eα + ψ
β

α

)
α→β
M A+

α→β
Q A+

(
vβα − vs

)
·
α→β
T A

+
1

2

(
vβα − vs

)
·
(
vβα − vs

) α→β
M A

](
1

θα
− 1

θβ

)
+
∑
α∈IP

∑
β∈Icα

〈
pα
(
vβ − vs

)
·nα
〉

Ωβ ,Ω

(
1

θα
− 1

θβ

)

+
∑
α∈IP

∑
β∈I−cα

1

θα

{
α→β
T A− 1

2

(
vα − vs

) α→β
M A+

(
vβα − vs

) α→β
M A

}
·
(
vα − vs

)
−
∑
α∈IP

1

θα

〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

Interface Terms:

+
∑
α∈II

1

θα

[(
〈−I′αγα〉Ωα,Ω·I

88 + εαtα·I88A
)

:dα
]
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−
∑
α∈II

{
εαbαA− 1

θα

[
εαhαA

+

〈
ηα

D′s

Dt

(
θα − θα

)
+ ρα

D′s

Dt

(
µα + ψα − µα −Kα

E − ψα
)〉

Ωα,Ω

]}

−
∑
α∈II

∇88·
(
εαϕαA− εαqαA

θα

)

−
∑
α∈II

1

θα

(
vα − vs

)
·
{
〈ηαI′α〉Ωα,Ω·∇

88θα + 〈ραI′α〉Ωα,Ω·∇
88
(
µα +Kα

E + ψα
)

+∇88·〈I′αγα〉Ωα,Ω + εαραgαA
}

+
∑
α∈II

[
−εαqαA·∇88

(
1

θα

)]

+
∑
α∈II

1

θα

[〈
ρα
(
vα − vα

)
· (I− I′α) ·∇

(
Kα
E + ψα

)〉
Ωα,Ω

]

+
∑
α∈II

1

θα

[
∇88·
〈
(I− I′α) ·

(
vα − vα

)
γα
〉

Ωα,Ω

]
+
∑
α∈II

1

θα

[〈
ηα
(
vα − vα

)
· (I− I′α)

〉
Ωα,Ω
·∇θα

]
+
∑
α∈II

1

θα

[〈
ρα
(
vα − vα

)
· (I− I′α)

〉
Ωα,Ω
·∇µα

]
+
∑
α∈II

1

θα

[〈
ρα
(
vα − vs

)
· (I− I′α) ·gα

〉
Ωα,Ω

]
+
∑
α∈II

1

θα

〈
∇·I′α·

(
vα − vs

)
γα
〉

Ωα,Ω

+
∑
α∈II

1

θα

[
µα + ηαMθ

α − Eα

M +Kα
E −Kα

EM

+ψα − ψαM −
1

2

(
vα − vαM

)
·
(
vα − vαM

)] α→
MMA

+
∑
α∈II

(vα − vαM)

θα
·
α→
TMA+

∑
α∈II

[
α→
ΦMA−

1

θα

α→
QMA

]

+
∑
α∈II

α→wns
M A

[
1

θα

(
µα +Kα

E + ψα
)
− 1

θwns

(
µwns +Kwns

E + ψwns
)]
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−
∑
α∈II

[(
E
wns

α +K
wns

Eα + ψ
wns

α

) α→wns
M A+

α→wns
Q A+

(
vwnsα − vs

)
·
α→wns

T A

+
1

2

(
vwnsα − vs

)
·
(
vwnsα − vs

) α→wns
M A

+
〈
γα
(
vwns − vs

)
·nα
〉

Ωwns,Ω

]( 1

θα
− 1

θwns

)
+
∑
α∈II

1

θα

[
α→wns

T A− 1

2

(
vα − vs

) α→wns
M A+

(
vwnsα − vs

) α→wns
M A

]
·
(
vα − vs

)
−
∑
α∈II

∑
β∈I+cα

1

θα

[
β→α
T A− 1

2

(
vα − vs

) β→α
M A+

(
vαβ − vs

) β→α
M A

]
·
(
vα − vs

)
+
∑
α∈II

1

θα

〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

Common Curve Terms:

+
1

θwns

[
〈I′′wnsγwns〉Ωwns,Ω·I

88 + εwnstwns·I88A
]

:dwns

−
{
εwnsbwnsA− 1

θwns

[
εwnshwnsA

+
〈
ηwns

D′′s

Dt

(
θwns − θwns

)
+ρwns

D′′s

Dt

(
µwns + ψwns − µwns −Kwns

E − ψwns
)〉

Ωwns,Ω

]}
−∇88·

(
εwnsϕwnsA− εwnsqwnsA

θwns

)

− 1

θwns

(
vwns − vs

)
·
{
〈ηwnsI′′wns〉Ωwns,Ω·∇

88θwns

+〈ρwnsI′′wns〉Ωwns,Ω·∇
88
(
µwns +Kwns

E + ψwns
)

−∇88·〈I′′wnsγwns〉Ωwns,Ω + εwnsρwnsgwnsA
}

− εwnsqwnsA·∇88

(
1

θwns

)
+

1

θwns

[〈
ρwns

(
vwns − vwns

)
· (I− I′′wns) ·∇

(
Kwns
E + ψwns

)〉
Ωwns,Ω

]
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− 1

θwns

[
∇88·
〈
(I− I′′wns) ·

(
vwns − vwns

)
γwns

〉
Ωwns,Ω

]
+

1

θwns

[〈
ηwns

(
vwns − vwns

)
· (I− I′′wns)

〉
Ωwns,Ω

·∇θwns
]

+
1

θwns

[〈
ρwns

(
vwns − vwns

)
· (I− I′′wns)

〉
Ωwns,Ω

·∇µwns
]

+
1

θwns

[〈
ρwns

(
vwns − vs

)
· (I− I′′wns) ·gwns

〉
Ωwns,Ω

]
− 1

θwns

〈
∇·I′′wns·

(
vwns − vs

)
γwns

〉
Ωwns,Ω

+
wns→
ΦM A− 1

θwns

wns→
QM A+

(vwns − vwnsM )

θwns
·
wns→
TM A

+
1

θwns

[
µwns + ηwnsM θwns − Ewns

M +Kwns
E −Kwns

EM + ψwns − ψwnsM

−1

2

(
vwns − vwnsM

)
·
(
vwns − vwnsM

)] wns→
MM A

−
∑

β∈I+cwns

1

θwns

[
β→wns

T A− 1

2

(
vwns − vs

) β→wns
M A

+
(
vwnsβ − vs

) β→wns
M A

]
·
(
vwns − vs

)
− 1

θwns

〈
e·
(
vs −w

)
γwns

〉
ΓwnsM ,Ω

= AΛα ≥ 0 (2.117)

Eq. (2.117) will be considered the final form of the CEI for this work. With the

CEI secondary restrictions and approximations can be introduced to formulate a

simplified entropy inequality comprised only of force-flux pairs.

2.6 Simplified Entropy Inequality

With Eq. (2.117) we have exhausted the available exact algebraic manipulations

to achieve a form of the entropy inequality that is in strictly force-flux form, the
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SEI. The simplifications and approximations introduced to derive the SEI serve to

reduce the generality of the CEI and arrive at a system-specific equation that can

serve as a guide for positing closure relations; therefore, it supports a hierarchy

of possible closed models. Secondary restrictions, which narrow down the system

of interest, and SEI approximations, which are physically guided mathematical

approximations, will be introduced systematically to show how each restriction

can further simplify the entropy inequality to attain a final SEI.

It is important to note that many approximations that are made to reduce the

CEI to an SEI are guided by equilibrium conditions. Using variational methods

it’s possible to derive conditions which apply at equilibrium at the microscale

and then the macroscale; these conditions are important to identify in order to

formulate a model that satisfies equilibrium thermodynamics, in addition to being

helpful for positing closure relations to yield a solvable model. One logical result

of this analysis is the condition that the temperature gradient in a system is zero

at equilibrium, but many other conditions are less straightforward [23].

Other guides in moving from the CEI to the SEI are the evolution equations

which describe the changes in geometric properties such as porosity, fluid satura-

tions, and specific entity measures εα. The evolution of these quantities cannot

be derived using the conservation or thermodynamic equations, but instead relies

upon differential geometry considerations [23]. The derivation of a full set of equi-

librium conditions and evolution equations necessary to guide SEI approximations

is beyond the scope of this work, and instead the resources [18, 23, 28] are relied
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upon while the necessary results will be presented here.

Secondary Restriction 1 (Isothermal, No Mass Exchange)

• The temperature of the system is constant, meaning θα = θ for α ∈ I

• There is no mass exchange between entities, i.e. all terms of the form

α→β
M = 0 for α ∈ I, β ∈ I−cα

Using Secondary Restriction 1 the CEI (Eq. (2.117)) can be simplified to

Phase Terms:∑
α∈IP

1

θ

[
pαI88A+ εαtα·I88A

]
:dα

−
∑
α∈IP

εαbαA− 1

θ

εαhαA+

〈
ρα

Ds
(
µα + ψα − µα − ψα −Kα

E

)
Dt

〉
Ωα,Ω


−
∑
α∈IP

1

θ

(
vα − vs

)
·
[
εαραA∇88

(
µα + ψα +Kα

E

)
+ εαραAgα −∇88

(
εαApα

)]
−
∑
α∈IP

∇88·
[
εαϕαA− εαqαA

θ

]
+
∑
α∈IP

[
α→
ΦMA−

1

θ

α→
QMA

]
+

(vα − vαM)

θα
·
α→
TMA

+
∑
α∈IP

1

θ

∑
β∈I−cα

〈
pα
(
vβ − vs

)
·nα
〉

Ωβ ,Ω

−
∑
α∈IP

1

θα

〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

Interface Terms:

+
∑
α∈II

1

θ

[(
〈−I′αγα〉Ωα,Ω·I

88 + εαtα·I88A
)

:dα
]

−
∑
α∈II

{
εαbαA− 1

θ

[
εαhαA+

〈
ρα

D′s

Dt

(
µα + ψα − µα −Kα

E − ψα
)〉

Ωα,Ω

]}
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−
∑
α∈II

∇88·
(
εαϕαA− εαqαA

θ

)

−
∑
α∈II

1

θ

(
vα − vs

)
·
{
〈ραI′α〉Ωα,Ω·∇

88
(
µα +Kα

E + ψα
)

+∇88·〈I′αγα〉Ωα,Ω + εαραgαA
}

+
∑
α∈II

1

θ

[〈
ρα
(
vα − vα

)
· (I− I′α) ·∇

(
Kα
E + ψα

)〉
Ωα,Ω

]

+
∑
α∈II

1

θ

[
∇88·
〈
(I− I′α) ·

(
vα − vα

)
γα
〉

Ωα,Ω

]
+
∑
α∈II

1

θ

[〈
ρα
(
vα − vα

)
· (I− I′α)

〉
Ωα,Ω
·∇µα

]
+
∑
α∈II

1

θ

[〈
ρα
(
vα − vs

)
· (I− I′α) ·gα

〉
Ωα,Ω

]
+
∑
α∈II

1

θ

〈
∇·I′α·

(
vα − vs

)
γα
〉

Ωα,Ω

+
∑
α∈II

(vα − vαM)

θ
·
α→
TMA+

∑
α∈II

[
α→
ΦMA−

1

θ

α→
QMA

]

−
∑
α∈II

1

θ

〈
γα
(
vwns − vs

)
·nα
〉

Ωwns,Ω
+
∑
α∈II

1

θα

〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

Common Curve Terms:

+
1

θ

[
〈I′′wnsγwns〉Ωwns,Ω·I

88 + εwnstwns·I88A
]

:dwns

−
{
εwnsbwnsA− 1

θ

[
εwnshwnsA

+

〈
ρwns

D′′s

Dt

(
µwns + ψwns − µwns −Kwns

E − ψwns
)〉

Ωwns,Ω

]}

−∇88·
(
εwnsϕwnsA− εwnsqwnsA

θ

)

− 1

θ

(
vwns − vs

)
·
{
〈ρwnsI′′wns〉Ωwns,Ω·∇

88
(
µwns +Kwns

E + ψwns
)
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−∇88·〈I′′wnsγwns〉Ωwns,Ω + εwnsρwnsgwnsA
}

+
1

θ

[〈
ρwns

(
vwns − vwns

)
· (I− I′′wns) ·∇

(
Kwns
E + ψwns

)〉
Ωwns,Ω

]
− 1

θ

[
∇88·
〈
(I− I′′wns) ·

(
vwns − vwns

)
γwns

〉
Ωwns,Ω

]
+

1

θ

[〈
ρwns

(
vwns − vwns

)
· (I− I′′wns)

〉
Ωwns,Ω

·∇µwns
]

+
1

θ

[〈
ρwns

(
vwns − vs

)
· (I− I′′wns) ·gwns

〉
Ωwns,Ω

]
− 1

θ

〈
∇·I′′wns·

(
vwns − vs

)
γwns

〉
Ωwns,Ω

+
wns→
ΦM A− 1

θ

wns→
QM A+

(vwns − vwnsM )

θ
·
wns→
TM A

−
∑

β∈Icwns

(
vwns − vwns,β

)
θ

·
β→wns

T A

−
∑
α∈IP

∑
β∈Icα

(
vα − vα,β

)
θα

·
β→α
T A−

∑
α∈II

∑
β∈Icα

(
vα − vα,β

)
θα

·
β→α
T A

− 1

θ

〈
e·
(
vs −w

)
γwns

〉
ΓwnsM ,Ω

= AΛα ≥ 0 (2.118)

SEI Approximation 1 (Macroscopically Simple System)

• The entropy source and the heat source plus the deviation terms balance

each other such that the following relation applies

εαbαA− 1

θ

[
εαhαA+

〈
ρα

D(n)s

Dt

(
µα + ψα − µα −Kα

E − ψα
)〉

Ωα,Ω

]

= 0 for α ∈ I (2.119)
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• The entropy and non-advective heat and mechanical energy flux terms bal-

ance such that

εαϕαA− εαqαA

θα
= 0 for α ∈ I (2.120)

• The corresponding exchange terms at the megascale boundary balance such

that [
α→
ΦMA−

1

θ

α→
QMA

]
= 0 for α ∈ I (2.121)

Using SEI approximation 1, Eq. (2.118) can be written as

Phase Terms:∑
α∈IP

1

θ

[
pαI88A+ εαtα·I88A

]
:dα

−
∑
α∈IP

1

θ

(
vα − vs

)
·
[
εαραA∇88

(
µα + ψα +Kα

E

)
+ εαραAgα −∇88

(
εαApα

)]
+

(vα − vαM)

θα
·
α→
TMA

+
∑
α∈IP

1

θ

∑
β∈I−cα

〈
pα
(
vβ − vs

)
·nα
〉

Ωβ ,Ω

−
∑
α∈IP

1

θα

〈
e·
(
vs −w

)
pα
〉

ΓαM ,Ω

Interface Terms:

+
∑
α∈II

1

θ

[(
〈−I′αγα〉Ωα,Ω·I

88 + εαtα·I88A
)

:dα
]

−
∑
α∈II

1

θ

(
vα − vs

)
·
{
〈ραI′α〉Ωα,Ω·∇

88
(
µα +Kα

E + ψα
)

+∇88·〈I′αγα〉Ωα,Ω + εαραgαA
}
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+
∑
α∈II

1

θ

[〈
ρα
(
vα − vα

)
· (I− I′α) ·∇

(
Kα
E + ψα

)〉
Ωα,Ω

]

+
∑
α∈II

1

θ

[
∇88·
〈
(I− I′α) ·

(
vα − vα

)
γα
〉

Ωα,Ω

]
+
∑
α∈II

1

θ

[〈
ρα
(
vα − vα

)
· (I− I′α)

〉
Ωα,Ω
·∇µα

]
+
∑
α∈II

1

θ

[〈
ρα
(
vα − vs

)
· (I− I′α) ·gα

〉
Ωα,Ω

]
+
∑
α∈II

1

θ

〈
∇·I′α·

(
vα − vs

)
γα
〉

Ωα,Ω

+
∑
α∈II

(vα − vαM)

θ
·
α→
TMA

−
∑
α∈II

1

θ

〈
γα
(
vwns − vs

)
·nα
〉

Ωwns,Ω
+
∑
α∈II

1

θα

〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

Common Curve Terms:

+
1

θ

[
〈I′′wnsγwns〉Ωwns,Ω·I

88 + εwnstwns·I88A
]

:dwns

− 1

θ

(
vwns − vs

)
·
{
〈ρwnsI′′wns〉Ωwns,Ω·∇

88
(
µwns +Kwns

E + ψwns
)

−∇88·〈I′′wnsγwns〉Ωwns,Ω + εwnsρwnsgwnsA
}

+
1

θ

[〈
ρwns

(
vwns − vwns

)
· (I− I′′wns) ·∇

(
Kwns
E + ψwns

)〉
Ωwns,Ω

]
− 1

θ

[
∇88·
〈
(I− I′′wns) ·

(
vwns − vwns

)
γwns

〉
Ωwns,Ω

]
+

1

θ

[〈
ρwns

(
vwns − vwns

)
· (I− I′′wns)

〉
Ωwns,Ω

·∇µwns
]

+
1

θ

[〈
ρwns

(
vwns − vs

)
· (I− I′′wns) ·gwns

〉
Ωwns,Ω

]
− 1

θ

〈
∇·I′′wns·

(
vwns − vs

)
γwns

〉
Ωwns,Ω

+
(vwns − vwnsM )

θ
·
wns→
TM A−

∑
β∈Icwns

(
vwns − vwns,β

)
θ

·
β→wns

T A
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−
∑
α∈IP

∑
β∈Icα

(
vα − vα,β

)
θα

·
β→α
T A−

∑
α∈II

∑
β∈Icα

(
vα − vα,β

)
θα

·
β→α
T A

− 1

θ

〈
e·
(
vs −w

)
γwns

〉
ΓwnsM ,Ω

= AΛα ≥ 0 (2.122)

Secondary Restriction 2 (Velocity Conditions)

• The solid is immobile such that vs = 0

• The average horizontal velocity is zero

• Fluid-solid interface velocities averaged over a fluid phase, and fluid phase

velocities averaged over fluid-solid interfaces, are zero, i.e. vα,β = 0 for

α = w, n, β = ws, ns

• Macroscale Fluid-solid interface velocities are zero such that vws = vns = 0

SEI Approximation 2 (Velocity Difference Terms)

• Expressions involving the product of microscale quantities and the difference

(vα − vα) for α ∈ I are assumed to be negligible [23].

Using these restrictions and approximations Eq. (2.122) becomes

Phase Terms:∑
α∈IP

1

θ

[
pαI88A+ εαtα·I88A

]
:dα

−
∑
α∈IP

1

θ

(
vα − vs

)
·
[
εαραA∇88

(
µα + ψα +Kα

E

)
+ εαραAgα −∇88

(
εαApα

)]
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+
(vα − vαM)

θα
·
α→
TMA

+
∑
α∈IP

1

θ

∑
β∈I−cα

〈
pα
(
vβ − vs

)
·nα
〉

Ωβ ,Ω

−
∑
α∈IP

1

θα

〈
e·
(
vs −w

)
pα
〉

ΓαM ,Ω

−
∑
α∈IP

∑
β∈Icα

(
vα − vα,β

)
θ

·
β→α
T A

Interface Terms:

+
∑
α∈II

1

θ

[(
〈−I′αγα〉Ωα,Ω·I

88 + εαtα·I88A
)

:dα
]

−
∑
α∈II

1

θ

(
vα − vs

)
·
{
〈ραI′α〉Ωα,Ω·∇

88
(
µα +Kα

E + ψα
)

+∇88·〈I′αγα〉Ωα,Ω + εαραgαA
}

+
∑
α∈II

1

θ

[〈
ρα
(
vα − vs

)
· (I− I′α) ·gα

〉
Ωα,Ω

]
+
∑
α∈II

1

θ

〈
∇·I′α·

(
vα − vs

)
γα
〉

Ωα,Ω

+
∑
α∈II

(vα − vαM)

θ
·
α→
TMA

−
∑
α∈II

1

θ

〈
γα
(
vwns − vs

)
·nα
〉

Ωwns,Ω
+
∑
α∈II

1

θα

〈
e·
(
vs −w

)
γα
〉

ΓαM ,Ω

−
∑
α∈II

∑
β∈Icα

(
vα − vα,β

)
θ

·
β→α
T A

Common Curve Terms:

+
1

θ

[
〈I′′wnsγwns〉Ωwns,Ω·I

88 + εwnstwns·I88A
]

:dwns

− 1

θ

(
vwns − vs

)
·
{
〈ρwnsI′′wns〉Ωwns,Ω·∇

88
(
µwns +Kwns

E + ψwns
)
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−∇88·〈I′′wnsγwns〉Ωwns,Ω + εwnsρwnsgwnsA
}

+
1

θ

[〈
ρwns

(
vwns − vs

)
· (I− I′′wns) ·gwns

〉
Ωwns,Ω

]
− 1

θ

〈
∇·I′′wns·

(
vwns − vs

)
γwns

〉
Ωwns,Ω

+
(vwns − vwnsM )

θ
·
wns→
TM A−

∑
β∈Icwns

(
vwns − vwns,β

)
θ

·
β→wns

T A

− 1

θ

〈
e·
(
vs −w

)
γwns

〉
ΓwnsM ,Ω

= AΛα ≥ 0 (2.123)

Now we can expand the summations in Eq. (2.123) to make further simplifi-

cations. Additionally, the two phases which comprise each interface have normal

vectors that are in opposite directions such that the following relation applies

nβ = −nα for x ∈ Ωαβ, α, β ∈ IP (2.124)

Using Eq. (2.124), and remembering that for this three phase system IP =

{w, n, s}, II = {wn, ns, ws}, and IC = {wns}, the summations in Eq. (2.123)

can be expanded, which yields

1

θ

[
pwI88A+ εwtw·I88A

]
:dw +

1

θ

[
pnI88A+ εntn·I88A

]
:dn

− (vw − vs)

θ
·
[
εwρwA∇88

(
µw + ψw +Kw

E

)
+ εwρwAgw −∇88

(
εwApw

)]
− (vn − vs)

θ
·
[
εnρnA∇88

(
µn + ψn +Kn

E

)
+ εnρnAgn −∇88

(
εnApn

)]
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+
(vw − vs)

θ
·
w→
TMA+

(vn − vs)

θ
·
n→
TMA

+

(
vw − vw,wn

)
θ

·
w→wn

T A+

(
vn − vn,wn

)
θ

·
n→wn

T A

− 1

θ

〈
e·
(
vs −w

)
pw
〉

ΓwM ,Ω
− 1

θ

〈
e·
(
vs −w

)
pn
〉

ΓnM ,Ω
− 1

θ

〈
e·
(
vs −w

)
ps
〉

ΓsM ,Ω

+
1

θ

[(
〈−I′wnγwn〉Ωwn,Ω·I

88 + εwntwn·I88A
)

:dwn
]

− (vwn − vs)

θ
·
{
〈ρwnI′wn〉Ωwn,Ω·∇

88
(
µwn +Kwn

E + ψwn
)

+∇88·〈I′wnγwn〉Ωwn,Ω + εwnρwngwnA
}

+
(vwn − vs)

θ
·
wn→
TMA+

(
vwn − vwn,w

)
θ

·
w→wn

T A+

(
vwn − vwn,n

)
θ

·
n→wn

T A

+
1

θ

〈
[(pw − pn) ·nw + γwn (∇·I′wn) + ρwngwn· (I− I′wn)] ·

(
vwn − vs

)〉
Ωwn,Ω

+
1

θ

〈
[(pw − ps) ·nw + γws (∇·I′ws) + ρwsgws· (I− I′ws)] ·

(
vws − vs

)〉
Ωws,Ω

+
1

θ

〈
[(pn − ps) ·nn + γns (∇·I′ns) + ρnsgns· (I− I′ns)] ·

(
vns − vs

)〉
Ωns,Ω

+
1

θ

〈
e·
(
vs −w

)
γwn
〉

ΓwnM ,Ω
− 1

θ

〈
e·
(
vs −w

)
γns
〉

ΓnsM ,Ω

− 1

θ

〈
e·
(
vs −w

)
γws
〉

ΓwsM ,Ω

+
1

θ

[
〈I′′wnsγwns〉Ωwns,Ω·I

88 + εwnstwns·I88A
]

:dwns

− (vwns − vs)

θ
·
{
〈ρwnsI′′wns〉Ωwns,Ω·∇

88
(
µwns +Kwns

E + ψwns
)

−∇88·〈I′′wnsγwns〉Ωwns,Ω + εwnsρwnsgwnsA
}

− 1

θ

〈
[γwnnwn + γwsnws + γnsnns + γwns (∇·I′′wns)

−ρwnsgwns· (I− I′′wns)] ·
(
vwns − vs

) 〉
Ωwns,Ω

+
(vwns − vs)

θ
·
wns→
TM A−

(
vwns − vwns,wn

)
θ

·
wn→wns

T A

− 1

θ

〈
e·
(
vs −w

)
γwns

〉
ΓwnsM ,Ω
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= AΛ ≥ 0 (2.125)

Microscale averages over the interfaces and the common curve have been

grouped, and subsequently require further attention. The following relations for

the surface divergence and unit surface tensor prove useful in rearranging terms

that are averaged over an interface.

I− I′αβ = nαnα for x ∈ Ωαβ, α, β ∈ IP (2.126)

and

∇′·I′αβ = − (∇′·nα) nα for x ∈ Ωαβ, α, β ∈ IP (2.127)

Using Eqs. (2.126) and (2.127), we know

1

θ

〈
[(pw − pn) ·nw + γwn (∇′·I′wn) + ρwngwn· (I− I′wn)] ·

(
vwn − vs

)〉
Ωwn,Ω

=
1

θ

〈
(pw − pn + γwn∇′·nw + ρwngwn·nw) nw·

(
vwn − vs

)〉
Ωwn,Ω

=
1

θ

〈
(Pwn − γwnJw) nw·

(
vwn − vs

)〉
Ωwn,Ω

(2.128)

where we have defined

Pwn = pw − pn + ρwngwn·nw (2.129)
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and the microscale curvature

Jw = ∇′·nw (2.130)

We can now define macroscale averages of these terms as

Pwn = pwnw − pwnn + ρwn (gwn·nw)wn = 〈Pwn〉Ωwn,Ωwn (2.131)

and

Jwnw = 〈Jw〉Ωwn,Ωwn (2.132)

Expanding Eq. (2.128) by adding and subtracting these macroscale quantities as

we have done before yields

1

θ

〈
(Pwn − γwnJw) nw·

(
vwn − vs

)〉
Ωwn,Ω

=
1

θ

〈
([Pwn + (Pwn − Pwn)]− [γwn + (γwn − γwn)]

[Jwnw + (Jw − Jwnw )]) nw·
(
vwn − vs

) 〉
Ωwn,Ω

=
1

θ
(Pwn − γwnJwnw )

〈
nw·

(
vwn − vs

)〉
Ωwn,Ω

−
〈
γwn (Jw − Jwnw ) nw·

(
vwn − vs

)〉
Ωwn,Ω

+
〈
(Pwn − Pwn) nw·

(
vwn − vs

)〉
Ωwn,Ω

−
〈
(γwn − γwn) Jwnw·

(
vwn − vs

)〉
Ωwn,Ω

(2.133)
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Eq. (2.133) can be condensed by defining some new variables:

ewnJ =
〈
γwn (Jw − Jwnw ) nw·

(
vwn − vs

)〉
Ωwn,Ω

(2.134)

ewnP =
〈
(Pwn − Pwn) nw·

(
vwn − vs

)〉
Ωwn,Ω

(2.135)

and

ewnγ =
〈
Jw (γwn − γwn) nw·

(
vwn − vs

)〉
Ωwn,Ω

(2.136)

where eqns (2.134)–(2.136) represent deviation terms between microscale and mac-

roscale variables [23]. Now Eq. (2.133) can be rewritten as

1

θ

〈
(Pwn − γwnJw) nw·

(
vwn − vs

)〉
Ωwn,Ω

=
1

θ

[
(Pwn − γwnJwnw )

〈
nw·

(
vwn − vs

)〉
Ωwn,Ω

− ewnJ + ewnP − ewnγ
]

(2.137)

The terms that appear in Eq. (2.137) can be simplified using an additional set of

SEI approximations.

SEI Approximation 3 (Fluid-Fluid Interface Conditions)

• The average of the velocity difference can be approximated as

〈
nw·

(
vwn − vs

)〉
Ωwn,Ω

=
Dsεw

Dt
− χwss

Dsε

Dt
(2.138)

where

χαss = 〈1〉Ωαs,Γs for αs ∈ II, α ∈ If (2.139)
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and

εs = 1− ε (2.140)

Eq. (2.139) is the wetted fraction, or the fraction of the solid surface that is

wet by the α fluid phase forming the αs interface [23], and ε is the porosity,

which is defined as

ε =
∑
α∈If

εα = εw + εn (2.141)

• Now, approximating the ewn terms in Eq. (2.137) we can say that ewnJ

(the term accounting for changes in the curvature of the interface) can be

written as a first-order approximation in the deviation from equilibrium.

Introducing a positive coefficient k̂wn, and εwneq , which is the area of the

interface at equilibrium, we can write

ewnJ = −k̂wnγwn
(
εwn − εwneq

)
(2.142)

where

εwneq = εwneq

(
sw, Jwnw

)
(2.143)

In Eq. (2.143), sw is the saturation of the wetting phase; in general, the

fluid saturation is defined as

sα = 〈1〉Ωα,Ωf for α ∈ If (2.144)
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Eq. (2.141) can be interpreted as the relaxation rate of the wn interface due

to changes in curvature of the interface [23].

• We know that ewnP and ewnγ will be much smaller than ewnJ in that the re-

laxation rates due to the pressure and interfacial tension changes at the

interface will occur much faster than the relaxation rate due to curvature

changes. For this reason, ewnP and ewnγ will both be approximated such that

they are equal to zero.

Using SEI approximation 3, Eq. (2.137) becomes

1

θ

[
(Pwn − γwnJwnw )

〈
nw·

(
vwn − vs

)〉
Ωwn,Ω

− ewnJ + ewnP − ewnγ
]

=
1

θ
(Pwn − γwnJwnw )

[
Dsεw

Dt
− χwss

Dsε

Dt

]
+

1

θ
k̂wnγwn

(
εwn − εwneq

)
(2.145)

which is now in terms of all macroscale quantities. From equilibrium conditions

defined at the macroscale [28], we know

Pwn − γwnJwnw = 0 → 0 =
γwnJwnw
Pwn

− 1 (2.146)

at equilibrium, so we can define another coefficient k̂wn1 such that

k̂wn =

(
γwnJwnw
Pwn

− 1

)
k̂wn1 (2.147)

87



Using this coefficient in Eq. (2.145) we can write

1

θ
(Pwn − γwnJwnw )

[
Dsεw

Dt
− χwss

Dsε

Dt

]
+

1

θ
k̂wnγwn

(
εwn − εwneq

)
=

1

θ
(Pwn − γwnJwnw )

[
Dsεw

Dt
− χwss

Dsε

Dt
− γwn

Pwn
k̂wn1

(
εwn − εwneq

)]
(2.148)

where we will substitute the definition of Pwn into Eq. (2.148) for subsequent use.

In arriving at Eq. (2.148), some sophisticated assumptions were made regarding

the capillary effects at the fluid-fluid interface which are beyond the scope of this

work; more detailed information regarding capillary pressure dynamics is available

[22].

Similarly, the ws and ns interfaces terms will take the form

1

θ

(
pαsα + (ns·ts·ns)

αs
s + ραs (gαs·ns)

αs
s + γαsJαss

)
χαss

Dsε

Dt
for α ∈ If (2.149)

Although fluid-solid interfaces are inherently different than fluid-fluid interfaces

based on solid deformation properties, Eq. (2.149) will be taken to be valid. A

full derivation of Eq. (2.149) exists in [23].

At the common curve we can also use some geometric relationships to simplify

Eq. (2.125). The terms which need to be evaluated are

Terms =
1

θ

〈
[γwnnwn + γwsnws + γnsnns + γwns (∇·I′′wns)

−ρwnsgwns· (I− I′′wns)] ·
(
vwns − vs

) 〉
Ωwns,Ω

(2.150)
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In this analysis we will make the assumption that the solid is smooth such that

it has a unique normal direction at every point on the surface, which means the

normal vectors for the fluid-solid interfaces and for the solid phase can be related

as follows

nns = −nws for x ∈ Ωwns (2.151)

nwn = cosϕws,wnnws − sinϕws,wnns for x ∈ Ωwns (2.152)

where ϕws,ws is the contact angle between the ws and wn interfaces. Additionally,

along the common curve the following relation holds

∇·I′′wns = κNwnsns + κGwnsnws for x ∈ Ωwns (2.153)

where κNwns is the normal curvature, and κGwns is the geodesic curvature. The

unit vectors normal to the common curve can be related as follows

I− I′′wns = nsns + nwsnws for x ∈ Ωwns (2.154)

Eq. (2.154), along with Eqs. (2.151)–(2.153) can be used to rewrite Eq. (2.150)

as

1

θ

〈
[γwnnwn + γwsnws + γnsnns + γwns (∇·I′′wns)
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−ρwnsgwns· (I− I′′wns)] ·
(
vwns − vs

) 〉
Ωwns,Ω

=
1

θ

〈 (
γwn cosϕws,wn + γws − γns + γwnsκGwns

−ρwnsgwns·nws) nws·
(
vwns − vs

) 〉
Ωwns,Ω

− 1

θ
〈
(
γwn sinϕws,wn − γwnsκNwns + ρwnsgwns·ns

)
ns·
(
vwns − vs

) 〉
Ωwns,Ω

(2.155)

The following approximation can be made at this point:

SEI Approximation 4 (Common Curve Conditions)

• The product of factors in the averages over wns can be rewritten as averages

of the product of factors.

• The following approximations are valid

〈
nws·

(
vwns − vs

)〉
Ωwns,Ω

= A
(
εws + εns

) Dsχwss
Dt

(2.156)

and 〈
ns·
(
vwns − vs

)〉
Ωwns,Ω

= −A εwns

εws + εns
Dsε

Dt
(2.157)

• The correlations of γwn with cosϕws,wn and sinϕws,wn are negligible.

• The correlations of γwns with κGwns and κNwns are negligible.

• Negligible correlations imply that the average of the product of the factors

can be written as the product of the averages.
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Using SEI approximation 4, Eq. (2.155) can be written as

1

θ

〈 (
γwn cosϕws,wn + γws − γns + γwnsκGwns

−ρwnsgwns·nws) nws·
(
vwns − vs

) 〉
Ωwns,Ω

− 1

θ

〈(
γwn sinϕws,wn − γwnsκNwns + ρwnsgwns·ns

)
ns·
(
vwns − vs

)〉
Ωwns,Ω

=
1

θ
A
[
γwnswn cosϕws,wn + γwnsws − γwnsns + γwnsκwnsG

−ρwns (gwns·nws)
wns
] (
εws + εns

) Dsχwss
Dt

+
1

θ
A
[
γwnswn sinϕws,wn − γwnsκwnsN + ρwns (gwns·ns)

wns
] εwns

εws + εns
Dsε

Dt
(2.158)

We can also make use of the geometric orientation tensors when simplifying in-

terface and common curve terms. These are

Gα = I− I′α for α ∈ II (2.159)

and

Gwns = I− I′′wns (2.160)

SEI Approximation 5 (Geometric Orientation Tensor Products)

• For a general microscsale property fα, the following relations apply

〈Gαfα〉Ωα,Ω = εαGαfαA (2.161)
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and

〈Gwnsfwns〉Ωwns,Ω = εwnsGwnsfwnsA (2.162)

where G are symmetric tensors which provide a measure of the average orientation

of a surface or a curve [23]. Making the approximations in Eqs. (2.161) and (2.162)

on the products appearing in Eq. (2.125) implies that the geometric orientation

tensors are independent of the properties fα that they multiply; therefore, the

average of products can be split into a product of averages. If these products are

found to be dependent via experimentation then SEI approximation 5 would no

longer be valid.

An additional restriction will be imposed to limit the system of interest:

Secondary Restriction 3 (Massless Interfaces and Common Curves)

• The interfaces and the common curve will be considered massless such that

ρα = 0 for α ∈ II and IC

Using the outlined approximations and making use of secondary restriction 3, Eq.

(2.125) becomes

1

θ

[
pwI88A+ εwtw·I88A

]
:dw +

1

θ

[
pnI88A+ εntn·I88A

]
:dn

− (vw − vs)

θ
·
[
εwρwA∇88

(
µw + ψw +Kw

E

)
+ εwρwAgw −∇88

(
εwApw

)
−

w→wn
T A

]
− (vn − vs)

θ
·
[
εnρnA∇88

(
µn + ψn +Kn

E

)
+ εnρnAgn −∇88

(
εnApn

)
−

n→wn
T A

]
+

(vw − vs)

θ
·
w→
TMA+

(vn − vs)

θ
·
n→
TMA

− 1

θ

〈
e·
(
vs −w

)
pw
〉

ΓwM ,Ω
− 1

θ

〈
e·
(
vs −w

)
pn
〉

ΓnM ,Ω
− 1

θ

〈
e·
(
vs −w

)
ps
〉

ΓsM ,Ω
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+
1

θ

[(
− (I− Gwn) εwnγwn·I88A+ εwntwn·I88A

)
:dwn

]
− (vwn − vs)

θ
·

∇88·
[
(I− Gwn) εwnγwnA

]
+

∑
wn∈I+cα

wn→α
T A−

wn→wns
T A


+

(vwn − vs)

θ
·
wn→
TMA

+
1

θ
(pwnw − pwnn − γwnJwnw )A

Dsεw

Dt
− χwss

Dsε

Dt
−
γwnk̂wn1

(
εwn − εwneq

)
pwnw − pwnn


+

1

θ
(pwsw − pwss − γwsJwsw )A

Dsεw

Dt
− χwss

Dsε

Dt
−
γwsk̂ws1

(
εws − εwseq

)
pwsw − pwss


+

1

θ
(pnsn − pnss − γnsJnsw )A

Dsεn

Dt
− χnss

Dsε

Dt
−
γnsk̂ns1

(
εns − εnseq

)
pnsw − pnsn


+

1

θ

〈
e·
(
vs −w

)
γwn
〉

ΓwnM ,Ω
+

1

θ

〈
e·
(
vs −w

)
γns
〉

ΓnsM ,Ω

+
1

θ

〈
e·
(
vs −w

)
γws
〉

ΓwsM ,Ω

+
1

θ

[
(I− Gwns) εwnsγwns·I88A+ εwnstwns·I88A

]
:dwns

+
(vwns − vs)

θ
·
{
∇88· (I− Gwns) εwnsγwnsA−

wn→wns
T A

}
− 1

θ
A
[
γwnswn cosϕws,wn + γwnsws − γwnsns + γwnsκwnsG

] (
εws + εns

) Dsχwss
Dt

− 1

θ
A
[
γwnswn sinϕws,wn − γwnsκwnsN

] εwns

εws + εns
Dsε

Dt

+
(vwns − vs)

θ
·
wns→
TM A

− 1

θ

〈
e·
(
vs −w

)
γwns

〉
ΓwnsM ,Ω

= AΛ ≥ 0 (2.163)

The final secondary restriction is

Secondary Restriction 4 (System Specification)
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• The RAV will be considered a rigid column such that the velocity of the

boundary w = 0.

Additionally, the observation can be made that

Dsε

Dt
= 0 (2.164)

because

ε = 1− εs = constant (2.165)

Using secondary restriction 4, and Eqs. (2.164) and (2.165), Eq. (2.163) becomes

the final simplified entropy inequality

1

θ

[
pwI88A+ εwtw·I88A

]
:dw +

1

θ

[
pnI88A+ εntn·I88A

]
:dn

+
1

θ

[(
− (I− Gwn) εwnγwn·I88A+ εwntwn·I88A

)
:dwn

]
+

1

θ

[
(I− Gwns) εwnsγwns·I88A+ εwnstwns·I88A

]
:dwns

− (vw − vs)

θ
·
[
εwρwA∇88

(
µw + ψw +Kw

E

)
+ εwρwAgw

−∇88
(
εwApw

)
−

w→
TMA+

w→wn
T A

]
− (vn − vs)

θ
·
[
εnρnA∇88

(
µn + ψn +Kn

E

)
+ εnρnAgn

−∇88
(
εnApn

)
−

n→
TMA+

n→wn
T A

]

+
1

θ
(pwnw − pwnn − γwnJwnw )A

Dsεw

Dt
−
γwnk̂wn1

(
εwn − εwneq

)
pwnw − pwnn


− (vwn − vs)

θ
·

∇88·
[
(I− Gwn) εwnγwnA

]
+

wn→
TMA+

∑
wn∈I+cα

wn→α
T A−

wn→wns
T A
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+
(vwns − vs)

θ
·
{
∇88· (I− Gwns) εwnsγwnsA+

wns→
TM A−

wn→wns
T A

}
− 1

θ
A
[
γwnswn cosϕws,wn + γwnsws − γwnsns + γwnsκwnsG

] (
εws + εns

) Dsχwss
Dt

= AΛ ≥ 0 (2.166)

The efficacy of Eq. (2.166) in describing a system of interest is subject to the

validity of the approximations made to form it. Each of the approximations can

be verified via computational and/or experimental approaches at the microscale

and can then be adjusted if necessary.

2.7 Closure Relations

Now we have a Simplified Entropy Inequality (SEI) which is comprised of force-

flux pairs that are zero at equilibrium, and away from equilibrium they are non-

negative quantities which can contribute to entropy generation. We need to specify

closure relations for the force-flux pairs which satisfy these two conditions, and

to do so we will use a conjugate force-flux closure scheme where the fluxes are

linear functions of the forces. A full cross-coupled closure scheme is also possible

if cross-coupling effects are considered to be significant, but the simpler conjugate

force-flux closure will be used here; additional information regarding cross-coupled

closure exists in [23]. The SEI (Eq. (2.166)) is used to guide the selection of

non-unique closure relations which ultimately produce closed thermodynamically

consistent models [27].

Although many restrictions and approximations were applied to produce the
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SEI, it is still a general equation which supports a hierarchy of closed models

which are system specific, and depend on the level of refinement that is desired.

Here we are considering two-fluid-phase flow in a porous medium as the system

of interest; a system which is often modeled by the classic Richards’ equation.

Eq. (2.166) contains fluxes multiplied by the rate of strain tensors. Considering

the fact that the macroscale stress tensor depends on interphase interactions more

than macroscale velocity gradients, we will use the approximation that the forces

have a zero-order dependence on the rate of strain. This means that the fluxes

can be written as

tw·I88 = −pwI88 (2.167)

tn·I88 = −pnI88 (2.168)

twn·I88 = (I− Gwn) γwn·I88 (2.169)

and

twns·I88 = − (I− Gwns) γwns·I88 (2.170)

Eqs. (2.167)–(2.170) physically mean that the flow is being modeled as macro-

scopically inviscid. These approximations simplify Eq. (2.166) to

− 1

θ

[
εwρwA∇88

(
µw + ψw +Kw

E

)
+ εwρwAg88w

−∇88
(
εwApw

)
−

w→
TMA+

w→wn
T A

]
·
(
v88w − v88s

)
− 1

θ

[
εnρnA∇88

(
µn + ψn +Kn

E

)
+ εnρnAg88n
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−∇88
(
εnApn

)
−

n→
TMA+

n→wn
T A

]
·
(
v88n − v88s

)
+

1

θ

Dsεw

Dt
A−

γwnk̂wn1

(
εwn − εwneq

)
pwnw − pwnn

A

 (pwnw − pwnn − γwnJwnw )

− 1

θ

{
∇88·

[
(I− Gwn) εwnγwnA

]
+

wn→
TMA

+
∑

wn∈I+cα

wn→α
T A−

wn→wns
T A

 ·(v88wn − v88s
)

+
1

θ

{
∇88·

[
(I− Gwns) εwnsγwnsA

]
+

wns→
TM A−

wn→wns
T A

}
·
(
v88wns − v88s

)
− 1

θ

(
εws + εns

) Dsχwss
Dt

A
[
γwnswn cosϕws,wn + γwnsws − γwnsns + γwnsκwnsG

]
= AΛ ≥ 0 (2.171)

It should be noted that the velocity vectors only have components in the macro-

scale direction; the horizontal components are assumed to be zero as previously

mentioned. The 88 notation was introduced for vector quantities to indicate that

only macroscale components survive; this notation is consistent with the nota-

tion for the macroscale operators that has been used throughout this study. The

flux terms in Eq. (2.171) which are multiplied by the velocities relative to the

solid-phase velocity will be approximated as first-order dependent as follows

−εwρwA∇88
(
µw + ψw

)
− εwρwAg88w +∇88

(
εwApw

)
+

w→
TMA+

w→wn
T A

= AR̂
88w
·
(
v88w − v88s

)
(2.172)
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−εnρnA∇88
(
µn + ψn

)
− εnρnAg88n +∇88

(
εnApn

)
+

n→
TMA+

n→wn
T A

= AR̂
88n
·
(
v88n − v88s

)
(2.173)

where R̂
88α

are resistance coefficients which are in general, symmetric second-order

positive, semi-definite tensors [23]. Additionally, the Kα
E terms were neglected

from Eqs. (2.172) and (2.173) because of higher order smallness. For the interface

and common curve we have

∇88·
[
(I− Gwn) εwnγwnA

]
+

wn→
TMA+

∑
wn∈I+cα

wn→α
T A−

wn→wns
T A

= −AR̂
88wn
·
(
v88wn − v88s

)
(2.174)

and

∇88·
[
(I− Gwns) εwnsγwnsA

]
+

wns→
TM A−

wn→wns
T A

= AR̂
88wns
·
(
v88wns − v88s

)
(2.175)

Cross-coupling effects could be considered when positing the approximations in

Eqs. (2.172)–(2.175) which would incorporate the effects of adjacent entities

through the use of a more general resistance tensors R̂
88α

α and R̂
88α

β summed over
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the relevant connected set; this is the approach presented in [23]. However, cross-

coupling will be neglected here.

A first-order closure relationship is also posited for the flux describing changes

in volume fraction where the corresponding force relates the relaxation of capillary

pressure to its equilibrium value. This approximation is

Dsεw

Dt
−
γwnk̂wn1

(
εwn − εwneq

)
pwnw − pwnn

= ĉwn (pwnw − pwnn − γwnJwnw ) (2.176)

We’ll go further by assuming that the volume fraction and interface kinematics

occur at a much shorter time scale then the system physics, which means the

pressure at the interface will always be balanced such that

pwnw − pwnn = γwnJwnw (2.177)

The last force-flux pair in Eq. (2.166) describes a balance of surface tension

forces at the common curve, tangent to the solid. A first-order dependence of the

flux on the force yields the approximation

Dsχwss
Dt

= −ĉwns
[
γwnswn cosϕws,wn + γwnsws − γwnsns + γwnsκwnsG

]
(2.178)

where ĉwns is a closure coefficient. Following the simplifications made at the wn
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interface, Eq. (2.178) will be further simplified to a steady state condition

[
γwnswn cosϕws,wn + γwnsws − γwnsns + γwnsκwnsG

]
= 0 (2.179)

2.8 Model Formulation

In order to formulate a closed model, the closure relations, along with the doc-

umented restrictions and approximations will be applied to the conservation of

mass and momentum equations.

2.8.1 Closed Conservation Equations

2.8.1.1 Mass Conservation

The interfaces and common curve are massless, there is no interentity mass ex-

change, and the solid is immobile, so the only non-trivial mass conservation equa-

tions are for the wetting and non-wetting phases; these take the form

Dα
(
εαραA

)
Dt

+
(
εαραA

)
I88:dα = 0 for α ∈ {w, n} (2.180)

2.8.1.2 Momentum Conservation

The properties of the interfaces and common curve are not being modeled, so the

momentum conservation equations for these entities reduce to a trivial condition.

If we were considering cross-coupling between the movement of the interface and

the adjacent phases, or the common curve and the adjacent interfaces due to
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inter-entity momentum transfer, then these equations would include resistance

tensor terms accounting for this interaction; these tensors would appear in Eqs.

(2.174) and (2.175). However, since these entities are considered massless, and no

inter-entity momentum transfer terms survived in the SEI, we have no momentum

conservation equations for the interfaces or common curve.

Additionally, we are considering an immobile solid treated as a highly viscous

fluid, so solid-phase deformation is not being modeling. In this case, the solid-

phase conservation of momentum, which is often accounted for by employing a

total system momentum conservation equation, isn’t needed. This leaves the

conservation equations for the fluid phases which are

Dw
(
εwρwv88wA

)
Dt

+
(
εwρwv88wA

)
I88:dw + εwρwA∇88

(
µw + ψw

)
+ AR̂

88w

w ·
(
v88w − v88s

)
= 0 (2.181)

and

Dn
(
εnρnv88nA

)
Dt

+
(
εnρnv88nA

)
I88:dn + εnρnA∇88

(
µn + ψn

)
+ AR̂

88n

n ·
(
v88n − v88s

)
= 0 (2.182)

For slow flow the inertial terms drop out and Eqs. (2.181) and (2.182) become

εαραA∇88
(
µα + ψα

)
+ AR̂

88α

α ·
(
v88α − v88s

)
= 0 for α ∈ {w, n} (2.183)
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We would like to get an expression in terms of gravity, which can be accomplished

using the relation between the body force potential and gravity at the microscale

∇88ψα = −g88α (2.184)

Multiplying Eq. (2.184) by ρα, adding and subtracting the macroscale body force

potential, and applying an averaging operator to yields

εαρα∇88ψα +
〈
ρα∇88

(
ψα − ψα

)〉
Ωα,Ω

= −εαραg88α (2.185)

We can write the Gibbs-Duhem equation for constant temperature

εαρα∇88µα − εα∇88pα − 〈∇88 (pα − pα)〉Ωα,Ω

+
〈
ρα∇88

(
µα − µα

)〉
Ωα,Ω

= 0 for α ∈ {w, n} (2.186)

Now, moving the last three terms in Eq. (2.186) to the right side, and adding Eq.

(2.185) yields

εαρα∇88
(
µα + ψα

)
= εα

(
∇88pα − ραg88α

)
+ 〈∇88 (pα − pα)〉Ωα,Ω

−
〈
ρα∇88

(
µα + ψα − µα + ψα

)〉
Ωα,Ω

for α ∈ {w, n} (2.187)

Neglecting the deviation terms in Eq. (2.187) via the assumption that the gradi-

ents of the deviations are small, and neglecting the gradients in volume fractions
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leaves the first two terms. This allows the fluid phase momentum equations for

slow flow, represented inEq. (2.183), to be written as

εw
(
∇88pw − ρwg88w

)
+ R̂

88w
·
(
v88w − v88s

)
= 0 (2.188)

and

εn
(
∇88pn − ρng88n

)
+ R̂

88n
·
(
v88n − v88s

)
= 0 (2.189)

Using the definition of the material derivative, the conservation of mass equations

represented by Eq. (2.180) can be rewritten as

∂88
(
εαραA

)
∂t

+∇88·
(
εαραAv88α

)
= 0 for α ∈ If (2.190)

Using the product rule on the partial derivative yields

ρα
∂88
(
εαA

)
∂t

+ εαA
∂88ρα

∂t
+∇88·

(
εαραAv88α

)
= 0 for α ∈ If (2.191)

We can also use the product rule to expand the third term in Eq. (2.191) which

leaves

ρα
∂88
(
εαA

)
∂t

+ εαA
∂88ρα

∂t
+ ρα∇88·

(
εαAv88α

)
+
(
εαAv88α

)
·∇88ρα = 0 for α ∈ If (2.192)

Considering the final term in Eq. (2.192) negligibly small compared to the first
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three terms, dividing by ρα, and using the relationship between the porosity and

saturation

εα = sαε for α ∈ If (2.193)

Eq. (2.192) can now be written as

εA
∂88
(
sα
)

∂t
+
sαεA

ρα
∂88ρα

∂t
+∇88·

(
εsαAv88α

)
= 0 for α ∈ If (2.194)

We need to use equations of state to relate the phase densities to the macroscale

fluid-phase pressures; for this isothermal system these take the form

β̂α =
1

ρα

(
dρα

dpα

)
for α ∈ If (2.195)

where β̂α is the fluid compressibility. Substituting Eq. (2.195) into Eq. (2.194)

yields

ε
∂88sα

∂t
+ sαεβ̂α

∂88pα

∂t
+∇88·

[
εsαv88α

]
= 0 for α ∈ If (2.196)

We will assume that the pressure equilibrates very quickly as compared to the

saturation, and we can transform the divergence term by subtracting the solid

phase velocity which is equal to zero, so Eq. (2.196) becomes

ε
∂88sα

∂t
+∇88·

[
εsα
(
v88α − v88s

)]
= 0 for α ∈ If (2.197)

This equation can be combined with the conservation of momentum equation
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for the fluid phases, but first some additional simplifying assumptions will be

made. We will consider the case where the porous medium is isotropic which

means the resistance tensors reduces to scalars

R̂
88α

= R̂αI88 (2.198)

Now we will define a coefficient K̂α

K̂α =
εα

2

R̂α
(2.199)

where K̂α is refered to as the hydraulic conductivity. Eq. (2.199) allows Eqs.

(2.188)–(2.189) to be rewritten as

εw
(
v88w − v88s

)
= −K̂w

(
∇88pw − ρwg88w

)
(2.200)

and

εn
(
v88n − v88s

)
= −K̂n

(
∇88pn − ρng88n

)
(2.201)

Eqs. (2.200) and (2.201) are momentum equations in the so-called Darcian form;

Eq. (2.201) represents the typical form of Darcy’s Law [23]. Eqs. (2.200)–(2.201)

can now be substituted into Eq. (2.197), which leaves

ε
∂88sα

∂t
= ∇88·

[
K̂α
(
∇88pα − ραg88α

)]
for α ∈ If (2.202)
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Eq. (2.202) written for the w phase is one form of the standard Richards’ equa-

tion, used to model single-fluid-phase flow in porous media with the unknowns sw

and pw. The hydraulic conductivity is a function of saturation: K̂α = K̂α
(
sα
)

,

as is the capillary pressure. This means solving Eq. (2.202) requires the speci-

fication of a pressure-saturation relationship as well as a saturation-permeability

relationship; two of the most common constitutive p-S-k relations will be used

here, the van Genunchten Mualem (VGM) model [60], and the Brooks-Corey

Burdine (BCB) model [7, 57] which will be explained in the next chapter.

Based on the pressure balance at the interface, stated by Eq. (2.177), and the

fact that we we neglected any cross-coupling of the velocity when we formed the

closed fluid-phase momentum equations, we will be modeling capillary pressure

as a function of saturation only. As it stands we have the statement

pc
(
sw
)

= −γwnJwnw = pwnn − pwnw (2.203)

However, we aren’t modeling interfacial properties, so we will approximate the

pressures averaged over the interface as macroscale fluid-phase pressures, meaning

Eq. (2.203) becomes

pc
(
sw
)

= −γwnJwnw = pn − pw (2.204)
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2.9 Entropy Generation

The entropy producing terms which have survived thus far are

− 1

θ

[
εwρwA∇88

(
µw + ψw +Kw

E

)
+ εwρwAg88w

−∇88
(
εwApw

)
−

w→
TMA+

w→wn
T A

]
·
(
v88w − v88s

)
− 1

θ

[
εnρnA∇88

(
µn + ψn +Kn

E

)
+ εnρnAg88n

−∇88
(
εnApn

)
−

n→
TMA+

n→wn
T A

]
·
(
v88n − v88s

)
+

1

θ

Dsεw

Dt
A−

γwnk̂wn1

(
εwn − εwneq

)
pwnw − pwnn

A

 (pwnw − pwnn − γwnJwnw )

− 1

θ

{
∇88·

[
(I− Gwn) εwnγwnA

]
+

wn→
TMA

+
∑

wn∈I+cα

wn→α
T A−

wn→wns
T A

 ·(v88wn − v88s
)

+
1

θ

{
∇88·

[
(I− Gwns) εwnsγwnsA

]
+

wns→
TM A−

wn→wns
T A

}
·
(
v88wns − v88s

)
− 1

θ

(
εws + εns

) Dsχwss
Dt

A
[
γwnswn cosϕws,wn + γwnsws − γwnsns + γwnsκwnsG

]
= AΛ ≥ 0 (2.205)

Neglecting interface and common curve properties as we did when forming

the closed conservation equations, and applying the outlined closure relations

simplifies Eq. (2.205) to
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1

θ
AR̂wv88w·v88w +

1

θ
AR̂nv88n·v88n = AΛ ≥ 0 (2.206)

At this point we will consider the non-wetting phase to be passive, which is

common in standard air-water two phase flow porous media models [46]. This

means the non-wetting phase no longer needs to be modeled. We will also reduce

the vector notation with primes to one-dimensional scalar notation; for example,

v88w will be written as vw. Using these conditions, Eq. (2.206) simplifies to a

one-dimensional equation

1

θ
R̂w
(
vw
)2

= Λ ≥ 0 (2.207)

or, using the definition of R̂w, Eq. (2.208) can be rewritten as

1

θ

(
εw

2

K̂w

)(
vw
)2

= Λ ≥ 0 (2.208)

Once a velocity field is obtained using the solution to Eq. (2.202), Eq. (2.208)

can be solved for the entropy production rate Λ = Λ (z, t) for position z, and time

t. Using numerical integration, the global entropy production rate ΛT (t) for the

system can be obtained from the values of Λ for each time t; this will be discussed

further in the next chapter.
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2.10 Discussion

Using the TCAT framework, a constrained entropy inequality for two-phase flow

was derived using conservation, thermodynamic, and entropy balance equations

averaged up from the microscale. Based on the family of averaging theorems

used, the model has one dimension of macroscale variability and is megascale in

the remaining dimensions. This form is useful for systems where spatial variability

only needs to be accounted in one direction for such as flow in rivers or channels,

or when modeling vertical infiltration through a column.

The derived two-phase flow model was reduced to RE, a standard unsaturated

flow model, and a simplified entropy inequality with the goal of numerically sim-

ulating RE and verifying whether it satisfies the MEPRP. However, the CEI is

general and exact and therefore provides a point of return for others to provide

theoretical extensions, such as incorporating more general p-S-k relations to form

a novel two-phase flow model.
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CHAPTER 3

NUMERICAL SIMULATION OF RICHARDS’ EQUATION

To determine whether Richards’ equation satisfies the minimum entropy produc-

tion rate principle, the entropy generation equation and RE will need to be dis-

cretized and numerically simulated. Two common p-S-k relations will be tested us-

ing a set of simulation conditions that have been used as a benchmark for RE; solu-

tions using finite differences and finite elements with low-order temporal discretiza-

tion, and the method of lines have been explored extensively [11, 40, 54, 58, 59].

This benchmark problem models vertical infiltration into a soil column under con-

stant surface ponding, or surface water conditions which create a sharp infiltration

front [59].

The purpose of this work is to verify the MEPRP for RE rather than improving

upon existing numerical methods, so a standard mass conserving finite difference

approach was formulated which uses the mixed form of RE as outlined by [11], and

solved by many others [11, 40, 47, 50, 55]. This well-tested method will be briefly

outlined, along with the constitutive relation formulations for the VGM and BCB

models, the numerical differentiation of the pressure head field, and finally the

numerical integration of the local entropy production rate. After the numerical

model is summarized, the results for the two p-S-k relations will be presented and
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discussed.

3.1 Preliminaries: Model Equations and p-S-k Relations

The equations derived in chapter 2 that will be used in the numerical model

include Richards’ equation, Darcy’s Law, and the entropy generation equation;

these will be collected, and expressed in a convenient form below.

1. Richards’ Equation

Using the definition of pressure head hw:

hw =
pw

ρwgw
(3.1)

Richards’ equation can be written in 1-D as

ε
∂sw

∂t
=

∂

∂z

[
K̂w

(
∂hw

∂z
+ 1

)]
(3.2)

Eq. (3.2) can be rewritten using the definition of moisture content θw:

θw = εsw (3.3)

It’s important to differentiate the moisture content (θw) from the macroscale

temperature (θα) that appears in chapter two, or the system temperature

(θ) which appears in the entropy generation equation, eqn (3.6). Using Eq.

(3.3), Eq. (3.2) can be written in the standard 1-D mixed form of Richards’
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equation

∂θw

∂t
=

∂

∂z

[
K̂w

(
∂hw

∂z
+ 1

)]
(3.4)

2. Darcy’s Law

εw
(
vw − vs

)
= −K̂w

(
∂hw

∂z
+ 1

)
(3.5)

3. Entropy Generation

1

θ

(
εw

2

K̂w

)(
vw
)2

= Λ ≥ 0 (3.6)

In order to solve Eq. (3.2) p-S-k relations are needed. The two that will be

used here are the van Genuchten Mualem (VGM) model, and the Brooks-Corey

Burdine (BCB) model. The van Genuchten (VG) pressure-saturation relationship

is

Se (hw) =
θw − θwr
θws − θwr

= (1− |αvhw|nv)−mv (3.7)

with

mv = 1− 1

nv
(3.8)

where Se is the effective saturation, θwr is the residual volumetric water content,

θws is the saturated volumetric water content, and nv and αv are experimental co-

efficients. The VG relation is often paired with Mualem’s saturation-permeability
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relation

K̂w(hw) = K̂sS0.5
e

[
1−

(
1− S1/mv

e

)mv]2

(3.9)

where K̂w is the hydraulic conductivity of the wetting phase, and K̂s is the sat-

urated hydraulic conductivity. Together, Eqs. (3.7) and (3.9) form the VGM

model. Alternatively, the Brooks-Corey pressure-saturation relation is

Se (hw) =
θw − θwr
θws − θwr

=

(
hwb
hw

)λ
for hw > hwb (3.10)

where hwb is the air entry pressure head, and λ is an experimental coefficient called

the pore size distribution index [42]. The BC relation can be paired with Burdine’s

saturation-permeability relation

K̂w(hw) = K̂sS2
e

[
1−

(
1− S1/mv

e

)mv]
(3.11)

Eqs. (3.10) and (3.11) comprise the BCB p-S-k model. The parameters in the

BCB model are related to the VGM parameters via the approximate relationships

[60]:

hwb ≈
1

αv
(3.12)

and

λ ≈ nv − 1 (3.13)
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when

mv = 1− 1

nv
(3.14)

The simulation parameters and conditions which were used for both the VGM

and BCB models are included in Table 3.1. The BCB parameters were matched

with the VGM parameters using Eqs. (3.12)–(3.14).

Table 3.1: Simulation Parameters and Conditions
Variable Problem A
∆z (m) .00125
z (m) [0,0.3]
hw0 (m) -10
hw1 (m) -10
hw2 (m) -.750
t (days) [0,1.0]

Ks(m/day) 7.97
nv 2.00
αv 3.35
θws .368
θwr .102
θ(K) 283.15

The pressure head values listed in Table 3.1 come from the initial and boundary

conditions of the form

• hw(z, t = 0) = hw0

• hw(z = 0, t > 0) = hw1 (t)

• hw(z = Z, t > 0) = hw2 (t)

These are constant head, or Dirichlet boundary conditions, which will be incor-

porated into the numerical model.
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3.2 Numerical Development

Richards’ equation is a partial differential equation which is highly nonlinear due

to the dependence of permeability on capillary pressure and saturation. Because

of this nonlinearity, analytical solutions to RE are limited to very restricted sys-

tems [25]; this necessitates a numerical solution. Common numerical solutions

to RE involve low-order finite difference, or finite element spatial discretizations

coupled with a nonlinear iterative solution method like Newton, Picard, or Mod-

ified Picard iteration [62]. Similarly, temporal discretization is often done using

a low-order fixed time-step method like backward Euler. More sophisticated ap-

proaches exist [58, 59], but a straightforward numerical model was adequate for

the one-dimensional system modeled in this work.

A Modified Picard iteration scheme was chosen because it has been shown to

be perfectly mass conservative [11, 62]. Finite difference approximations which

use this iteration scheme were developed to discretize the spatial and temporal

domain for the mixed form of RE, Eq. (3.4).

3.2.1 Finite Difference Approximations

Formulating the numerical model first requires discretizing the spatial and tem-

poral domain into a set of interior and boundary nodes, where an approximate

solution to RE will be calculated. Then the finite difference approximation is writ-

ten for each node in the interior of the domain, while the boundary node treatment

depends on the boundary type. In finite difference methods, functional derivatives
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are replaced with finite difference operators to produce an approximation to the

equation. The approximations, term by term are outlined below.

∂θw

∂t
≈ θn+1 − θn

∆t
(3.15)

∂hw

∂z
≈ hi+1 − hi

∆z
(3.16)

∂K̂w

∂z
≈
K̂i+1/2 − K̂i−1/2

zi+1/2 − zi−1/2

(3.17)

∂

∂z
K̂w ∂h

∂z
≈
K̂i+1/2

hn+1
i+1 −h

n+1
i

zi+1−zi − K̂i−1/2
hn+1
i −hn+1

i−1

zi−zi−1

zi+1/2 − zi−1/2

(3.18)

where n designates the time level, and i designates the location in space, such

that

tn = n∆t (3.19)

and

zi = (i− 1) ∆z (3.20)

with

∆z =
Z

(nn − 1)
for 1 ≤ i ≤ nn (3.21)
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where a fixed time step ∆t, and a fixed node spacing ∆z will be used. The

notation of [59] for the one-dimensional spatial domain [0, Z] was used in Eqs.

(3.20) and (3.21) which corresponds to nn spatial nodes where approximations

will be written.

In Eqs. (3.15)–(3.18) the w superscript was dropped on the right side for

clarity with the discretized notation, but θn and θn+1 in Eq. (3.15) should not be

confused with the temperature.

The hydraulic conductivity in Eqs. (3.17) and (3.18) appears in between spa-

cial nodes at i±1/2, and will be evaluated using the average between neighboring

nodes; this was established as an accurate method by [11], and [1], although other

averages exist. This averaging method for i± 1/2 yields

Kn+1,m
i−1/2 =

1

2
(Kn+1,m

i−1 +Kn+1,m
i ) (3.22)

Kn+1,m
i+1/2 =

1

2
(Kn+1,m

i+1 +Kn+1,m
i ) (3.23)

Using Eqs. (3.15)–(3.18) to replace the derivatives in Richards’ eqn (3.4) yields

the finite difference model

θn+1
i − θni

∆t
=

K̂n+1
i+1/2

(
hn+1
i+1 − hn+1

i

)(
zi+1/2 − zi−1/2

)
(zi+1 − zi)

−
K̂n+1
i−1/2

(
hn+1
i − hn+1

i−1

)(
zi+1/2 − zi−1/2

)
(zi − zi−1)

+
K̂n+1
i+1/2 − K̂

n+1
i−1/2

zi+1/2 − zi−1/2

(3.24)

117



or, in condensed form

θn+1
i − θni

∆t
=
K̂n+1
i+1/2

(
hn+1
i+1 − hn+1

i

)
(∆z)2 −

K̂n+1
i−1/2

(
hn+1
i − hn+1

i−1

)
(∆z)2

+
K̂n+1
i+1/2 − K̂

n+1
i−1/2

∆z
(3.25)

This approximate form of RE (Eq. (3.25)) is still nonlinear, and therefore

must be linearized and solved iteratively. The Modified Picard iterative scheme

can be applied to Eq. (3.25) following the development outlined in [62], which

yields

θn+1,m+1
i − θni

∆t
=
K̂n+1,m
i+1/2

(
hn+1,m+1
i+1 − hn+1,m+1

i

)
(∆z)2

−
K̂n+1,m
i−1/2

(
hn+1,m+1
i − hn+1,m+1

i−1

)
(∆z)2 +

K̂n+1,m
i+1/2 − K̂

n+1,m
i−1/2

∆z
(3.26)

where m is the iteration level, which means variables at the (m+ 1) level are the

unknowns being solved for. Eq. (3.26) is then modified by expanding θn+1,m+1
i in

order to yield obtain the moisture content at the current iteration level m. This is

expansion is achieved using the truncated Taylor series which appears in [11, 62]

as

θn+1,m+1
i = θn+1,m

i +
dθn+1,m

i

dh
(hn+1,m+1

i − hn+1,m
i ) +O(h2) (3.27)

where Eq. (3.27) can be rewritten using the definition of the specific moisture
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capacity C (h):

Cw (hw) =
dθw

dhw
(3.28)

Using Eq. (3.28), Eq. (3.27) becomes

θn+1,m+1
i = θn+1,m

i + Cn+1,m
i (hn+1,m+1

i − hn+1,m
i ) +O(h2) (3.29)

This expansion contributes to the mass conservative quality of the modified Picard

method [10, 61]. Substituting Eq. (3.27) into Eq. (3.26) and rearranging terms

yields the equation

−
K̂n+1,m
i−1/2

(∆z)2

(
hn+1,m+1
i−1 − hn+1,m

i−1

)
+

(
K̂n+1,m
i−1/2

(∆z)2 +
K̂n+1,m
i+1/2

(∆z)2 +
Cn+1,m
i

∆t

)(
hn+1,m+1
i − hn+1,m

i

)
−
K̂n+1,m
i+1/2

(∆z)2

(
hn+1,m+1
i+1 − hn+1,m

i+1

)
=
θni − θ

n+1,m
i

∆t
+ K̂n+1,m

i+1/2

(
hn+1,m
i+1 − hn+1,m

i

)
(∆z)2

− K̂n+1,m
i−1/2

(
hn+1,m
i − hn+1,m

i−1

)
(∆z)2 +

K̂n+1,m
i+1/2 − K̂

n+1,m
i−1/2

∆z
(3.30)

Writing Eq. (3.30) for each node in the system yields a system of algebraic

equations which can be written generally in matrix form as

[
A
(
hn+1,m

)] [
hn+1,m+1 − hn+1,m

]
=
[
r
(
hn+1,m

)]
(3.31)
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where the dependence of the tridiagonal coefficient matrix A, and the residual

vector r on the pressure is explicitly noted to reiterate that this is a nonlinear

system. However, the modified Picard iterative scheme allows A and r to be

written in terms of the iteration level m, which effectively linearizes the system.

It should be noted that the coefficient matrix is tridiagonal because of the three

point stencil of the finite difference approximations used here.

The first and last rows of the matrix system Eq. (3.31), correspond to bound-

ary nodes which require special attention. The constant head boundary condi-

tions, which are listed in Table 3.1, require that the equations written for the

lower and upper boundaries (i = 0) and (i = nn − 1) be modified; these nodes are

shown in red in Figure 3.1. After incorporating these boundary conditions, the

matrix structure of Eq. (3.31) becomes



b1 c1 0 0 · · · 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 · · · 0

...
...

...
. . .

0 0 0 · · · ann−1 bnn−1



n+1,m 

δh1

...

...

...

...

δhnn−1



n+1,m

=



b1 − a1 ∗ h0

...

...

...

...

bnn−1 − cnn−1 ∗ hnn



n+1,m
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where

δhn+1,m = hn+1,m+1 − hn+1,m (3.32)

The terms a, b, and c represent the coefficients written at (i − 1), i, and (i + 1)

nodes. The boundary conditions at the first and the last node become part of the

next row denoted by h0 and hn above.

The convergence of the modified Picard scheme was established, using the

criteria found in [54]:

max
|hn+1,m+1 − hn+1,m|
|hn+1,m+1|

≤ 1× 10−5 (3.33)

At this point, the system Eq. (3.32) can be solved for pressure head hw along

the column; however, what we are really interested in is the velocity field which

will allow us to solve for the global entropy production rate of the system as it ap-

proaches a steady state. This can be accomplished by numerically differentiating

the pressure field, and using Eq. (3.5) to solve for the velocity.

3.2.2 Numerical Differentiation of Pressure Field

A standard three-point central difference formula can be used to approximate the

derivative of the pressure field as follows

∂hw

∂z
=
hwi+1 − hwi−1

2∆z
+O

(
∆z2

)
(3.34)
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Figure 3.1: Example discretized 1-D domain for RE simulation; created using the
TikZ LATEX package.

Substituting Eq. (3.34) into Eq. (3.5) yields

εwvwi = −K̂w
i

(
hwi+1 − hwi−1

2∆z
+ 1

)
(3.35)

where we can solve for the Darcy velocity εw (vw)i at each node. It is important

to verify that the solution converges as the grid spacing is decreased because if

the solution was oscillatory, or had unbounded error, then the computed velocity

field would propagate numerical error into the solution of the entropy generation

rate. The relative error E, defined using the L2-norm, is

E =
‖εwvw − εwvwdense‖2

‖εwvw‖2

(3.36)
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where vdense is the dense-grid solution. Using Eq. (3.36), the relative error of the

approximate velocity values can be monitored as the numerical grid is refined. We

expect the global error to approach zero as the grid spacing goes to zero if the

method is convergent. Additionally, the order of convergence is expected to be

approximately first order, as the local truncation error of the central difference

formula is second order [15] (as shown in eqn (3.34)) and can be calculated using

E (∆z) ≈ C (∆z)p (3.37)

where p is the order of convergence, and C is a constant. Using Eq. (3.37),

and the values from Table 3.2, the velocity estimate was calculated as scaling

linearly with the step-size which can be seen in Figure 3.2; higher-order methods

exist for better performance, but Eq. (3.34) provided a sufficient estimate for the

small-scale simulations performed in this work.

Table 3.2: Velocity Convergence Analysis
grid spacing, ∆z (m) Relative Error

0.025 9.33× 10−4

0.0125 6.35× 10−4

0.00625 8.62× 10−5

0.000125 (dense grid) - - -

3.2.3 Numerical Integration of Local Entropy Production Rate

Using Eq. (3.34), the Darcy velocity at each node is known. Now, we can use the

entropy generation equation (eqn (3.6)) to solve for the global entropy production

of the system which will be used to verify the MEPRP.
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Figure 3.2: DataTank log-log best fit plot of error versus work (time step) for
the central difference velocity estimate using the finite difference modified Picard
scheme (FD-MP).

Global entropy production (ΛT ):

ΛT (t) =

Z∫
0

Λ (zi, t) dΩ =

Z∫
0

1

θ

(
εw

2

K̂w

)(
vw
)2

dz (3.38)

Eq. (3.38) can be calculated for each time t, and the value of ΛT can be examined

as the system approaches steady state. The Composite Simpson’s rule was used

to estimate the solution to Eq. (3.38) for different times t.

Composite Simpson’s rule [15]:

Z∫
0

Λ (zi, t) dΩ ≈ ∆z

3

(nn−1)/2∑
i=0

[Λ (z2i−2, t) + 4Λ (z2i−1, t) + Λ (z2i, t)] +O
(
∆z4

)
(3.39)

Steady-states were characterized by the change in volumetric moisture content
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θw such that

‖θn+1 − θn‖2 ≤ 1× 10−5 (3.40)

The equations discussed in this section, including a 1-D mixed form of Richards’

Eq. (3.30), the Darcy velocity estimate Eq. (3.35), and the global entropy pro-

duction Eq. (3.39) were implemented in C++, and simulated under the conditions

provided in Table 3.1; the results will be discussed next.

3.3 Results

The results of the numerical simulations for the van Genuchten Mualem model,

and the Brooks-Corey Burdine model will be compared and discussed in light of

the minimum entropy production rate principle. The MEPRP predicts that the

global entropy production rate will be a minimum when the system achieves a

steady-state. All plots were created using the dense grid solution ∆t = 0.00001

hours, and ∆z = 0.00125 meters unless otherwise stated.

First, the effective saturation profiles for a time during infiltration and at

steady-state are shown for both models in Figure 3.3. The van Genuchten Mualem

curves were generated using the parameters in Table 3.1, while the Brooks-Corey

Burdine parameters were matched using Eqs. (3.12) and (3.14). The BCB model

predicts a larger effective saturation of 0.396 at z = 0 meters as compared to the

VGM model’s prediction of 0.367, while both models predict the same value of

0.029 at z = 0.3 meters. The fact that the two models predict different saturation

profiles under the chosen simulation conditions should be noted when comparing
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the entropy production rate results.

Figure 3.3: Effective saturation profiles versus depth plot for BCB and VGM
models

The dense grid solution in time of ∆t = 0.00001 hours was established by

plotting the total entropy production rate over time for each model using progres-

sively smaller ∆t values, and observing convergence to a common solution; this is

shown for the BCB model in Figure 3.4. Similarly, the VGM model also converges

by this time step. Figures 3.4 and 3.5 show how the total entropy production rate

decreases as the system approaches a steady state. The BCB and VGM mod-

els exhibit similar behavior, with the total entropy production rate reaching a

minimum at steady state. The VGM model predicts a smaller total entropy pro-

duction rate over time (1.94 × 10−4 versus 3.83 × 10−4 for the BCB model), but

the two model solutions are on the same order of magnitude. If it were necessary
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to make the two models match exactly more precise parameter matching between

the models could have been used.

Figure 3.4: The total entropy production versus time plot for the BCB model is
shown for different discretizations in time. The solution for ∆t = 0.00002 hours
isn’t visible, but is included to illustrate that the solution has converged by the
dense discretization.

To visualize how the local entropy production along the column contributed to

the total entropy production rate over time the entropy production rate (EPR) was

plotted for the beginning of the simulation (0-5 minutes) and (0-10 minutes), at an

intermediate time (20-30 minutes), and at steady state which was achieved around

20 hours for both models. This was done rather than plotting the different time

intervals together because the EPR changes range over two orders of magnitude,

so the behavior wasn’t clear when the data was plotted together.

The entropy production rate for the first 5 minutes (0.083 hours) is shown
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Figure 3.5: The total entropy production versus time comparison plot for BCB
and VGM models is shown.
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in Figure 3.6 along the column. The pressure front moves through the system

quickly at the beginning of the simulation, which contrbutes the moving front

shown. The y-axis begins at 2.0×10−5 to highlight the plot shape, but the front

extends down to zero, as is visible in Figure 3.11. The apparent increase in the

entropy production rate at the front in Figures 3.6 and 3.10 is superficial; the

discretization in the z-direction is 0.00125 meters, so although the rate decreases

monotonically along the column, when the values jump to zero the graph’s shape

becomes distorted. This point is further illustrated when viewing the transient

behavior of the Darcy velocity (Figure 3.9), the saturation (Figure 3.7), and the

hydraulic conductivity (Figure 3.8) along the column, as these values dictate the

entropy production rate via Eq. (3.38) and no anomalous behavior is visible in

either figure.

The last time shown in Figure 3.6 (0.083 hours) is the first time shown in Figure

3.11. After 0.083 hours the entropy production rate plot changes concavity and

begins to increase in an exponential fashion, while the effects of the front are still

visible as it nears the end of the column at 0.3 meters. The transition for the VGM

model exhibits the same behavior, but with a faster moving front, as evidenced

by the comparison in Figure 3.10.

From twenty to thirty minutes (0.33 - 0.50 hours) the entropy production rate

front has reached the end of the column and approaches an exponential curve, as

shown in Figure 3.13. The VGM model reaches steady state more quickly than

the BCB model, so the values are smaller. This plot provides an intermediate
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Figure 3.6: The entropy production rate versus depth for plot for the BCB model
is shown for the first 5 minutes of the simulation.
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Figure 3.7: The transient behavior of the saturation profile along the column
is shown. The column saturation increases above the residual saturation as the
infiltration continues, as evidenced by Figure 3.9 which shows the Darcy velocity
front.
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Figure 3.8: The transient behavior of the hydraulic conductivity along the column
is shown. This graph, along with Figure 3.9, supports the assertion that the visible
increase in the entropy production rate at the front in Figure 3.6 is superficial, as
no irregular behavior is present.
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Figure 3.9: The darcy velocity front along the column is shown for the first 5
minutes of the simulation.

comparison between the first five minutes of the simulation in Figure 3.10 and the

steady-state behavior shown in Figure 3.13.

The system reached a steady state by 19.2 hours for the VGM model and 22.5

hours for the BCB model, as shown in Figure 3.13; this state was characterized by

no further changes in saturation, where the effective saturation profile at steady

state is visible in Figure 3.3. The VGM model predicts smaller final values of the

entropy production rate which manifests in the lower total entropy production

rate for the system which is shown in Figure 3.5.
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Figure 3.10: The entropy production rate for the first 5 minutes (.083 hours)
is shown along the column. This plot provides a comparison between the BCB
model (also shown in Figure 3.6) and the VGM model, and illustrates that the
VGM model predicts a faster moving front.
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Figure 3.11: The entropy production rate versus depth plot for the first 10 minutes
of the simulation using the BCB model is shown.

Figure 3.12: The entropy production rate versus depth from 20 to 30 minutes in
the simulation is shown for the VGM and BCB models.
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Figure 3.13: The entropy production rate versus depth for the VGM and BCB
models is shown at steady-state.

3.4 Discussion

Based on the results of the numerical simulations, both the VGM and BCB

pressure-saturation-permeability relations used in conjunction with the

one-dimensional mixed form of Richards’ equation satisfy the minimum entropy

production rate principle. The total entropy production rate for both models de-

creased monotonically over time, and reached a minimum at steady-state which

was verified using Eq. (3.40). All simulations were performed using a set of

simulation parameters which model vertical infiltration into a soil column under

constant surface ponding; conditions which create a sharp infiltration front. From

these results, it seems likely that simpler simulation conditions for which analyt-
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ical solutions exist would satisfy the MEPRP as well, although this needs to be

verified.

The fact that the MEPRP is satisfied under the current formulation of RE,

p-S-K relations, and simulation conditions, is interesting not only because the

MEPRP has not been investigated for hydrologic systems, but also because the

relationship between pressure, saturation, and permeability is highly nonlinear.

Reflecting on the information provided in the first chapter, satisfying the MEPRP

requires thermodynamic gradients within a system to be sufficiently small; this

stipulation was satisfied for this homogeneous and isothermal model.

It is possible that the empirical p-S-k relations, which are simplified models

that exhibit hysteric behavior, contribute to the entropy production rate such

that RE satisfies the MEPRP. With that in mind, an interesting extension of this

work would be to incorporate a more complete formulation of capillary pressure

dynamics into the two-phase flow model, as described in [22], such that a more

inclusive pressure-saturation relationship could be simulated and compared to the

results predicted by the MEPRP.

This work adds to the body of research which examines the scope of the

MEPRP, but further analysis would be useful in determining to what degree mul-

tiphase flow systems satisfy this principle. Richards’ equation could be examined

under different simulation (boundary) conditions, or perhaps more interestingly,

a more general two-phase flow model could be developed using the constrained

entropy inequality derived in chapter two.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

Each of the elements discussed in this work: entropy, the MEPRP, and the TCAT

approach to multiphase modeling are nuanced topics which require significant

study to master. The goal of this research was to connect each of these topics co-

herently, rather than provide a comprehensive review of them individually. Using

the TCAT framework, a macroscale two-phase flow model was derived for use in

a variety of porous medium systems; this model was then simplified to Richards’

equation, a standard model for unsaturated flow.

Although this model was reduced to a simplified case, the TCAT approach

ensured that the macroscale variables were well-defined averages from microscale

precursors, thereby maintaining a connection between scales. Additionally, the

rigorous averaging procedure inherent to TCAT was applied to the thermody-

namics which ensured a thermodynamically consistent model which was used to

track the entropy production rate of the system. The constrained entropy inequal-

ity provided in Chapter 2 remains an exact expression for a two-fluid-phase flow

model, and can be used to provide theoretical extensions to a hierarchy of closed

models incorporating phase, interface, and common curve entity dynamics.

The debated MEPRP was presented, and examined for Richards’ equation
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using the VGM and BCB pressure-saturation-permeability relations. Under sim-

ulation conditions typical of RE, it was determined that RE does satisfy the

MEPRP, while further research is needed to verify this assertion using alternative

p-S-k relations, and boundary conditions. Using the entropy generation expres-

sions developed from TCAT models, perhaps the MEPRP will be examined for

other hydrologic systems to contribute to the dialogue surrounding its position as

a true thermodynamic principle.
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APPENDIX

Energy Conservation Equation Derivation

The microscale energy conservation equation for a phase can be written as

Eα =
∂
(
Eα + 1

2
ραvα·vα + ραψα

)
∂t

+∇·
[(

Eα +
1

2
ραvα·vα + ραψα

)
vα

]
−∇· (tα·vα + qα)− hα − ρα

∂ψα
∂t

= 0 (4.1)

Applying an averaging operator to all terms yields

〈
∂
(
Eα + 1

2
ραvα·vα + ραψα

)
∂t

〉
Ωα,Ω

+

〈
∇·
[(

Eα +
1

2
ραvα·vα + ραψα

)
vα

]〉
Ωα,Ω

− 〈∇· (tα·vα + qα)〉Ωα,Ω − 〈hα〉Ωα,Ω −
〈
ρα
∂ψα
∂t

〉
Ωα,Ω

= 0 (4.2)

or, more compactly

〈
∂ETα
∂t

〉
Ωα,Ω

+ 〈∇· (ETαvα)〉Ωα,Ω − 〈∇· (tα·vα + qα)〉Ωα,Ω

− 〈hα〉Ωα,Ω −
〈
ρα
∂ψα
∂t

〉
Ωα,Ω

= 0 (4.3)

where

ETα =
1

2
ραvα·vα + ραψα + Eα (4.4)
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Then, applying the transport and divergence theorems eqns (2.5) and (2.6) yields

∂

∂t
〈ETα〉Ωα,Ω −

∑
β∈Icα

〈
nα ·vβETα

〉
Ωβ ,Ω
− 〈eα·wETα〉ΓαM ,Ω

+∇88·〈ETαvα〉Ωα,Ω +
∑
β∈Icα

〈nα ·ETαvα〉Ωβ ,Ω + 〈eα·ETαvα〉ΓαM ,Ω

−∇88·〈tα·vα + qα〉Ωα,Ω −
∑
β∈Icα

〈nα · (tα·vα + qα)〉Ωβ ,Ω

− 〈eα· (tα·vα + qα)〉ΓαM ,Ω

− ∂

∂t
〈ραψα〉Ωα,Ω +

∑
β∈Icα

〈
nα ·vβ (ραψα)

〉
Ωβ ,Ω

+ 〈eα·w (ραψα)〉ΓαM ,Ω − 〈hα〉Ωα,Ω = 0 for α ∈ IP (4.5)

Working with the first term of equation Eq. (4.5):

Term 1 =
∂

∂t

〈
1

2
ραvα·vα + ραψα + Eα

〉
Ωα,Ω

(4.6)

Breaking up this term and averaging leaves

∂
(
EαA

)
∂t

=
∂

∂t
〈Eα〉Ωα,Ω (4.7)

∂
(
ραεαψαA

)
∂t

=
∂

∂t
〈ραψα〉Ωα,Ω (4.8)

and finally, the kinetic energy portion, which can be manipulated by adding and

subtracting vα. This is a valid operation because we are adding and subtracting

the same quantity, but more importantly, it’s a useful operation because mac-
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roscale variables don’t depend on the microscale variable of integration in the

averaging operators, or symbolically

〈fα〉Ωα,Ωα = fα (4.9)

This manipulation will help create products of terms that we have already

defined which is helpful because we would like to work with a minimum number

of uniquely defined quantities, remembering that the end goal is to scale-up mic-

roscale equations while retaining the physical meaning of the variables. This way

the resulting model can be verified and supplemented with microscale experiments

and simulations. Adding and subtracting vα yields

∂

∂t

〈
1

2
ραvα·vα

〉
Ωα,Ω

=

〈
1

2
ρα
[
vα + (vα − vα)

]
·
[
vα + (vα − vα)

]〉
Ωα,Ω

(4.10)

Expanding the right side of Eq. (4.10) gives

〈
1

2
ρα
[
vα + (vα − vα)

]
·
[
vα + (vα − vα)

]〉
Ωα,Ω

=

〈
1

2
ραv

α·vα
〉

Ωα,Ω

+
〈
ρα
[
vα·(vα − vα)

]〉
Ωα,Ω

+

〈
1

2
ρα(vα − vα)·(vα − vα)

〉
Ωα,Ω

(4.11)
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Evaluating the averaging operators term by term leaves

〈
1

2
ραv

α·vα
〉

Ωα,Ω

=
1

2
ραεαvα·vαA (4.12)

〈
1

2
ρα(vα − vα)·(vα − vα)

〉
Ωα,Ω

= ραεαKα
EA (4.13)

and 〈
ρα
[
vα·(vα − vα)

]〉
Ωα,Ω

= 0 (4.14)

Now we have

∂

∂t
〈ETα〉Ωα,Ω =

∂

∂t

[
EαA+ εαραA

(
1

2
vα·vα +Kα

E + ψα
)]

(4.15)

or

∂

∂t
〈ETα〉Ωα,Ω =

∂

∂t

(
Eα
TA
)

(4.16)

where

Eα
TA = EαA+ εαραA

(
1

2
vα·vα +Kα

E + ψα
)

(4.17)

Moving on to the second line of equation Eq. (4.5) we have the term

Term = ∇88·〈ETαvα〉Ωα,Ω (4.18)

which needs to be expanded as we have done before to get products of terms that

can be evaluated. In order to get the product ρα [vα + (vα − vα)] we will add and
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subtract vα and divide ETα by ρα, which yields

∇88·〈ETαvα〉Ωα,Ω =

〈(
ETα
ρα

)
ρα
[
vα + (vα − vα)

]〉
Ωα,Ω

(4.19)

Now we can further manipulate the right side of Eq. (4.19) by adding and sub-

tracting
EαT
ραεα

which gives

∇88·〈ETαvα〉Ωα,Ω = ∇88·
〈[

Eα
T

ραεα
+

(
ETα
ρα
− Eα

T

ραεα

)]
ρα
[
vα + (vα − vα)

]〉
Ωα,Ω

(4.20)

Expanding the products on the right side of Eq. (4.20) leaves

∇88·〈ETαvα〉Ωα,Ω = ∇88·
〈
Eα
T

ραεα
ραv

α

〉
Ωα,Ω

+∇88·
〈
Eα
T

ραεα
ρα(vα − vα)

〉
Ωα,Ω

+∇88·
〈(

ETα
ρα
− Eα

T

ραεα

)
ραv

α

〉
Ωα,Ω

+∇88·
〈(

ETα
ρα
− Eα

T

ραεα

)
ρα(vα − vα)

〉
Ωα,Ω

(4.21)

Now we can evaluate the averaging operators term by term in equation Eq. (4.21)

as follows

∇88·
〈
Eα
T

ραεα
ραv

α

〉
Ωα,Ω

= ∇88·
(
Eα
T

ραεα
Avα〈ρα〉Ωα,Ω

)

= ∇88·
(
Eα
T

ραεα
vαAραεα

)

= ∇88·
(
Eα
TvαA

)
(4.22)
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The second and third terms in Eq. (4.21) can be evaluated as follows

∇88·
〈
Eα
T

ραεα
ρα(vα − vα)

〉
Ωα,Ω

= 0 (4.23)

∇88·
〈(

ETα
ρα
− Eα

T

ραεα

)
ραv

α

〉
Ωα,Ω

= 0 (4.24)

The last term can be expanded by substituting the definitions of Eα
T and ETα into

Eq. (4.20) and adding and subtracting vα. This yields

∇88·
〈(

ETα
ρα
− Eα

T

ραεα

)
ρα(vα − vα)

〉
Ωα,Ω

=

∇88·
〈(

Eα
ρα

+
1

2

[
vα +

(
vα − vα

)]
·
[
vα +

(
vα − vα

)]
+ ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

−∇88·
〈(

Eα

ραεα
+

1

2
vα·vα +Kα

E + ψα

)
ρα(vα − vα)

〉
Ωα,Ω

(4.25)

The first term on the right side of Eq. (4.25) can be expanded as follows

∇88·
〈(

Eα
ρα

+
1

2

[
vα +

(
vα − vα

)]
·
[
vα +

(
vα − vα

)]
+ ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

= ∇88·
〈(Eα

ρα
+

1

2
vα·vα + vα·

(
vα − vα

)
+

1

2

(
vα − vα

)
·
(
vα − vα

)
+ ψα

)
ρα
(
vα − vα

) 〉
Ωα,Ω

(4.26)

Now, substituting equation Eq. (4.26) into equation Eq. (4.25), and canceling
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like terms leaves

∇88·
〈(

ETα
ρα
− Eα

T

ραεα

)
ρα(vα − vα)

〉
Ωα,Ω

= ∇88·
〈(Eα

ρα
+ vα·

(
vα − vα

)
+

1

2

(
vα − vα

)
·
(
vα − vα

)
+ ψα

)
ρα
(
vα − vα

) 〉
Ωα,Ω

−∇88·
〈(

Eα

ραεα
+Kα

E + ψα

)
ρα(vα − vα)

〉
Ωα,Ω

(4.27)

The right side of Eq. (4.27) can be combined with the other divergence term from

equation Eq. (4.5) to try and get quantities which we have already defined, like

the macroscale stress tensor; this will leave only boundary terms to evaluate. The

divergence terms are the following

Term 1 = ∇88·
〈(Eα

ρα
+ vα·

(
vα − vα

)
+

1

2

(
vα − vα

)
·
(
vα − vα

)
+ ψα

)
ρα
(
vα − vα

) 〉
Ωα,Ω

(4.28)

Term 2 = −∇88·
〈(

Eα

ραεα
+Kα

E + ψα

)
ρα(vα − vα)

〉
Ωα,Ω

(4.29)

and

Term 3 = −∇88·〈tα·vα + qα〉Ωα,Ω +∇88·
(
Eα
TvαA

)
(4.30)

The stress tensor/heat flux term can be rearranged as follows

∇88·〈tα·vα + qα〉Ωα,Ω = ∇88·
〈
qα + tα·

[
vα +

(
vα + vα

)]〉
Ωα,Ω
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= ∇88·
〈
qα + tα·vα + tα·

(
vα − vα

)〉
Ωα,Ω

(4.31)

We can combine equation Eq. (4.31) and the remaining divergence term

∇88·
(
Eα
Tvα

)
which will be expanded to leave

∇88·〈ETαvα − qα − tα·vα〉Ωα,Ω

= ∇88·
〈(
−Kα

E + ψα − ψα
)
ρα(vα − vα) + tα·

(
vα − vα

)〉
Ωα,Ω

−∇88·
〈

qα +

(
Eα
ρα
− Eα

ραεα
+

1

2

(
vα − vα

)
·
(
vα − vα

))
ρα
(
vα − vα

)〉
Ωα,Ω

−∇88·
〈[
tα − ρα

(
vα − vα

) (
vα − vα

)]
·vα
〉

Ωα,Ω
+∇88·

(
Eα
TvαA

)
(4.32)

Now, we can see the definition for the macroscale stress tensor (Eq. (2.26)) which

we defined in forming the macroscale momentum equation. The remaining terms

will be used to define the macroscale heat flux vector as

εαqαA

= ∇88·
〈

qα +

(
Eα
ρα
− Eα

ραεα
+

1

2

(
vα − vα

)
·
(
vα − vα

))
ρα
(
vα − vα

)〉
Ωα,Ω

+∇88·
〈(
−Kα

E + ψα − ψα
)
ρα(vα − vα) + tα·

(
vα − vα

)〉
Ωα,Ω

(4.33)

All of the divergence terms are now defined, so pulling all of the definitions to-
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gether leaves the macroscale terms

∇88·〈ETαvα − qα − tα·vα〉Ωα,Ω

= ∇88·
[(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

vα − Aεαqα − Aεαtα·vα
]

(4.34)

Combining equation Eq. (4.34) with the boundary terms from equation Eq. (4.5)

and all of the previously defined quantities leaves

〈Eα〉Ωα,Ω =
∂
(
EαA+ εαραA

[
1
2
vα·vα +Kα

E + ψα
])

∂t

+∇88·
[(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

vα − Aεαqα − Aεαtα·vα
]

−
∑
β∈Icα

〈
nα ·vβETα

〉
Ωβ ,Ω
− 〈eα·wETα〉ΓαM ,Ω

+
∑
β∈Icα

〈nα ·vαETα〉Ωβ ,Ω + 〈eα·ETαvα〉ΓαM ,Ω

−
∑
β∈Icα

〈nα · (tα·vα + qα)〉Ωβ ,Ω − 〈eα· (tα·vα + qα)〉ΓαM ,Ω

+
∑
β∈Icα

〈
nα ·vβ (ραψα)

〉
Ωβ ,Ω

+ 〈eα·w (ραψα)〉ΓαM ,Ω − 〈hα〉Ωα,Ω

− ∂

∂t
〈ραψα〉Ωα,Ω = 0 for α ∈ IP (4.35)
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Working with the unit normal vector terms yields

∑
β∈Icα

〈nα ·vαETα〉Ωβ ,Ω −
∑
β∈Icα

〈
nα ·vβETα

〉
Ωβ ,Ω

= −
∑
β∈Icα

〈
ETα

(
vβ − vα

)
·nα
〉

Ωβ ,Ω
(4.36)

Substituting the definition for ETα and adding and subtracting Eβ
Tα yields

−
∑
β∈Icα

〈
ETα

(
vβ − vα

)
·nα
〉

Ωβ ,Ω

= −
∑
β∈Icα

〈[(
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

)
+

((
Eα
ρα

+
1

2
vα·vα + ψα

)

−

(
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

))]
ρα
(
vβ − vα

)
·nα

〉
Ωβ ,Ω

(4.37)

which simplifies to

−
∑
β∈Icα

〈
ETα

(
vβ − vα

)
·nα
〉

Ωβ ,Ω

= −
∑
β∈Icα

(
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

)
A
β→α
M

−
∑
β∈Icα

〈[(Eα
ρα

+
1

2
vα·vα + ψα

)

−

(
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

)]
ρα
(
vβ − vα

)
·nα
〉

Ωβ ,Ω
(4.38)

The last term in equation Eq. (4.38) includes the dot product of the microscale
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phase velocity which can be expanded as follows

−
∑
β∈Icα

〈[(Eα
ρα

+
1

2
vα·vα + ψα

)

−

(
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

)]
ρα
(
vβ − vα

)
·nα
〉

Ωβ ,Ω

= −
∑
β∈Icα

〈(Eα
ρα

+
1

2

[
vβα +

(
vα − vβα

)]
·
[
vβα +

(
vα − vβα

)]
+ψα) ρα

(
vβ − vα

)
·nα
〉

Ωβ ,Ω

+
∑
β∈Icα

〈(
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

)
ρα(vβ − vα)·nα

〉
Ωβ ,Ω

= −
∑
β∈Icα

〈(Eα
ρα

+ vβα·
(
vα − vβα

)
+

1

2

(
vα − vβα

)
·
(
vα − vβα

)
+ψα) ρα

(
vβ − vα

)
·nα
〉

Ωβ ,Ω

+
∑
β∈Icα

〈(
Eβ
α

ραεα
+Kβ

Eα + ψβα

)
ρα(vβ − vα)·nα

〉
Ωβ ,Ω

(4.39)

Substituting equation Eq. (4.39) into equation Eq. (4.38) and adding and ex-

panding the stress tensor term
∑

β∈Icα
〈nα · (tα·vα + qα)〉Ωβ ,Ω and∑

β∈Icα

〈
nα ·vβ (ραψα)

〉
Ωβ ,Ω

leaves

∑
β∈Icα

〈nα ·vαETα〉Ωβ ,Ω −
∑
β∈Icα

〈
nα ·vβETα

〉
Ωβ ,Ω

−
∑
β∈Icα

〈nα · (tα·vα + qα)〉Ωβ ,Ω

= −
∑
β∈Icα

〈(Eα
ρα

+ vβα·
(
vα − vβα

)
+

1

2

(
vα − vβα

)
·
(
vα − vβα

)
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+ψα) ρα
(
vβ − vα

)
·nα
〉

Ωβ ,Ω

+
∑
β∈Icα

〈(
Eβ
α

ραεα
+Kβ

Eα + ψβα

)
ρα(vβ − vα)·nα

〉
Ωβ ,Ω

−
∑
β∈Icα

(
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

)
A
β→α
M

−
∑
β∈Icα

〈(
tα·
[
vβα +

(
vα − vβα

)
+ qα

])
·nα
〉

Ωβ ,Ω

+
∑
β∈Icα

〈
nα ·vβ (ραψα)

〉
Ωβ ,Ω

(4.40)

Grouping terms to get the momentum transfer term defined in Eq. (2.27) yields

∑
β∈Icα

〈nα ·vαETα〉Ωβ ,Ω −
∑
β∈Icα

〈
nα ·vβETα

〉
Ωβ ,Ω

−
∑
β∈Icα

〈nα · (tα·vα + qα)〉Ωβ ,Ω

=−
∑
β∈Icα

〈(
Eα
ρα

+
1

2

(
vα − vβα

)
·
(
vα − vβα

)
+ ψα

)
ρα
(
vβ − vα

)
·nα
〉

Ωβ ,Ω

+
∑
β∈Icα

〈(
Eβ
α

ραεα
+Kβ

Eα + ψβα

)
ρα(vβ − vα)·nα

〉
Ωβ ,Ω

−
∑
β∈Icα

(
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

)
A
β→α
M

−
∑
β∈Icα

A
β→α
T ·vβα −

∑
β∈Icα

〈[
tα·
(
vα − vβα

)
+ qα

]
·nα
〉

Ωβ ,Ω

+
∑
β∈Icα

〈
nα ·vβ (ραψα)

〉
Ωβ ,Ω

(4.41)
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The terms inEq. (4.41) can be regrouped to define a heat transfer term

A
β→α
Q =

∑
β∈Icα

〈
nα ·qα + nα · tα·

(
vα − vβα

)〉
Ωβ ,Ω

+
∑
β∈Icα

〈(
Eα
ρα
− Eβ

α

ραεα

)
ρα
(
vβ − vα

)
·nα

〉
Ωβ ,Ω

+
∑
β∈Icα

〈
1

2

(
vα − vβα

)
·
(
vα − vβα

)
ρα
(
vβ − vα

)
·nα
〉

Ωβ ,Ω

+
∑
β∈Icα

〈(
ψα − ψβα −K

β
Eα

)
ρα
(
vβ − vα

)
·nα
〉

Ωβ ,Ω

+
∑
β∈Icα

〈
nα ·vβ (ραψα)

〉
Ωβ ,Ω

(4.42)

Now equation Eq. (4.41) reduces to

∑
β∈Icα

〈nα ·vαETα〉Ωβ ,Ω −
∑
β∈Icα

〈
nα ·vβETα

〉
Ωβ ,Ω

−
∑
β∈Icα

〈nα · (tα·vα + qα)〉Ωβ ,Ω +
∑
β∈Icα

〈
nα ·vβ (ραψα)

〉
Ωβ ,Ω

= −
∑
β∈Icα

([
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

]
A
β→α
M + A

β→α
T ·vβα + A

β→α
Q

)
(4.43)

Grouping the unit tangent vector terms from equation Eq. (4.35) yields

〈eα·vαETα〉ΓαM ,Ω − 〈eα·wETα〉ΓαM ,Ω

= −〈ETα (w − vα) ·eα〉ΓαM ,Ω (4.44)
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Substituting the definition for ETα and adding and subtracting Eα
TM yields

−〈ETα (w − vα) ·eα〉ΓαM ,Ω

=−

〈[(
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

)
+

((
Eα
ρα

+
1

2
vα·vα + ψα

)

−

(
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

))]
ρα (w − vα) ·eα

〉
ΓαM ,Ω

=−

(
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

)
A

α→
MM

−
〈[(Eα

ρα
+

1

2
vα·vα + ψα

)
−

(
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

)]
ρα (w − vα) ·eα

〉
ΓαM ,Ω

(4.45)

The dot product of the microscale phase velocity in the last term in equation Eq.

(4.45) can be expanded as follows

−
〈[(Eα

ρα
+

1

2
vα·vα + ψα

)
−

(
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

)]
ρα (w − vα) ·eα

〉
ΓαM ,Ω

= −
∑
β∈Icα

〈(Eα
ρα

+
1

2

[
vαM +

(
vα − vαM

)]
·
[
vαM +

(
vα − vαM

)]
+ψα) ρα (w − vα) ·eα

〉
Ωβ ,Ω

+
∑
β∈Icα

〈(
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

)
ρα(w − vα)·eα

〉
Ωβ ,Ω

= −
∑
β∈Icα

〈(Eα
ρα

+ vαM ·
(
vα − vαM

)
+

1

2

(
vα − vαM

)
·
(
vα − vαM

)
+ψα) ρα (w − vα) ·eα

〉
Ωβ ,Ω
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+

〈(
Eα
M

ραεα
+Kα

EM
+ ψαM

)
ρα(w − vα)·eα

〉
ΓαM ,Ω

(4.46)

Substituting equation Eq. (4.46) into equation Eq. (4.45), and adding and ex-

panding the stress tensor term 〈eα· (tα·vα + qα)〉ΓαM ,Ω and 〈eα·w (ραψα)〉ΓαM ,Ω

leaves

〈eα·vαETα〉ΓαM ,Ω − 〈eα·wETα〉ΓαM ,Ω − 〈eα· (tα·vα + qα)〉ΓαM ,Ω

= −
〈(Eα

ρα
+ vαM ·

(
vα − vαM

)
+

1

2

(
vα − vαM

)
·
(
vα − vαM

)
+ψα) ρα (w − vα) ·eα

〉
ΓαM ,Ω

+

〈(
Eα
M

ραεα
+Kα

EM
+ ψαM

)
ρα(w − vα)·eα

〉
ΓαM ,Ω

−

(
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

)
A

α→
MM

−
〈(
tα·
[
vαM +

(
vα − vαM

)
+ qα

])
·eα
〉

ΓαM ,Ω
+ 〈eα·w (ραψα)〉ΓαM ,Ω (4.47)

Grouping terms to get the momentum transfer term yields

〈eα·vαETα〉ΓαM ,Ω − 〈eα·wETα〉ΓαM ,Ω − 〈eα· (tα·vα + qα)〉ΓαM ,Ω

= −
〈(

Eα
ρα

+
1

2

(
vα − vαM

)
·
(
vα − vαM

)
+ ψα

)
ρα (w − vα) ·eα

〉
ΓαM ,Ω

+

〈(
Eα
M

ραεα
+Kα

EM
+ ψαM

)
ρα(w − vα)·eα

〉
ΓαM ,Ω

−

(
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

)
A

α→
MM

− A
α→
TM ·vαM −

〈[
tα·
(
vα − vαM

)
+ qα

]
·eα
〉

ΓαM ,Ω
+ 〈eα·w (ραψα)〉ΓαM ,Ω (4.48)
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The remaining terms in Eq. (4.48) can be regrouped to define a heat transfer

term

A
α→
QM =

〈
eα·qα + nα · tα·

(
vα − vαM

)〉
ΓαM ,Ω

+

〈(
Eα
ρα
− Eα

M

ραεα

)
ρα (w − vα) ·eα

〉
ΓαM ,Ω

+

〈
1

2

(
vα − vαM

)
·
(
vα − vαM

)
ρα (w − vα) ·eα

〉
ΓαM ,Ω

+
〈(
ψα − ψαM −Kα

EM

)
ρα (w − vα) ·eα

〉
ΓαM ,Ω

+ 〈eα·w (ραψα)〉ΓαM ,Ω (4.49)

Now equation Eq. (4.48) reduces to

〈eα·vαETα〉ΓαM ,Ω − 〈eα·wETα〉ΓαM ,Ω − 〈eα· (tα·vα + qα)〉ΓαM ,Ω

+ 〈eα·w (ραψα)〉ΓαM ,Ω

= −

([
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

]
A

α→
MM + A

α→
TM ·vαM + A

α→
QM

)
(4.50)

We have now dealt with the boundary terms, so equations Eq. (4.6) and Eq. (4.50)

can be combined with the rest of the defined macroscale terms in Eq. (4.35). The

macroscale energy equation can finally be written as

AEα =
∂
(
EαA+ εαραA

[
1
2
vα·vα +Kα

E + ψα
])

∂t

+∇88·
[(
EαA+ εαραA

[
1

2
vα·vα +Kα

E + ψα
])

vα − Aεαqα − Aεαtα·vα
]
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−
∑
β∈Icα

([
Eβ
α

ραεα
+

1

2
vβα·vβα +Kβ

Eα + ψβα

]
A
β→α
M + A

β→α
T ·vβα + A

β→α
Q

)

−

([
Eα
M

ραεα
+

1

2
vαM ·vαM +Kα

EM
+ ψαM

]
A

α→
MM + A

α→
TM ·vαM + A

α→
QM

)

− εαhαA−
〈
ρα
∂ψα
∂t

〉
Ωα,Ω

= 0 for α ∈ IP (4.51)
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