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ABSTRACT

Sayan Dasgupta: Non-parametric and semi-parametric methods for
parsimonious statistical learning with complex data

(Under the direction of Michael R. Kosorok)

In clinical research, non-parametric and semi-parametric methods are increasingly

gathering importance as statistical tools to infer on accumulated data. They require

fewer assumptions and their applicability is much wider than the corresponding para-

metric methods. Being robust, these methods are seen by some statisticians as leaving

less room for improper use and misunderstanding. In this dissertation we study some

of these nonparametric and semiparametric methods in statistical learning and their

applications to various areas of biomedical research.

In the first part of our dissertation, we study the application of temporal process

regression in the study of medical adherence. Adherence refers to the act of conforming

to the recommendations made by the provider with respect to timing, dosage, and

frequency of medication taking. Here we assess the effect of drug adherence in the

study of viral resistance to antiviral therapy for chronic Hepatitis C. We use Temporal

Process Regression (Fine, Yan, and Kosorok 2004) to model adherence as a longitudinal

predictor of SVR. We show that adherence has a significant effect on SVR and this

analysis can serve as an archetype for more statistically efficient analyses of medical

adherence in studies where the common theme till now has been to report summary

statistics.

In the second part of the dissertation, we develop an approach for feature elimination

in support vector machines, based on recursive elimination of features. We present
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theoretical properties of this method and show that this is uniformly consistent in

finding the correct feature space under certain generalized assumptions. We present

case studies to show that the assumptions are met in most practical situations and give

simulation studies to demonstrate performance of the proposed approach.

In the third part of the dissertation we focus our attention to feature selection in

Q-learning. Here we discuss three different methods for feature selection, based on the

same vital idea of feature screening through ranking in a sequential backward selection

scheme. We discussed the applicability of the methods, reasoned on heuristics stemming

from our previous work on feature selection in support vector machines and gave results

showing their performance in various simulated settings.
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CHAPTER 1: INTRODUCTION

Supervised learning deals with the task of inferring a function from labeled training

data. When the training data contains the subgroup information and we want to

predict the future subgroups, it is a classification problem. And in cases where the

training data contains the continuous response values and our aim is to predict future

responses, it is a regression problem. In this dissertation we study properties of three

of these supervised learning methods and their applicability in clinical studies in depth.

1.1 Temporal Regression and Medical Adherence

Adherence to, or compliance with a medication regimen, is defined as the extent to

which patients take medications as prescribed by their health care providers (Osterberg

and Blaschke 2005). In recent years, adherence has become a serious area of research in

medicine. In this part of the dissertation we use temporal processes to study adherence

and its relationship with the medical end-point in the VIRAHEP-C study. Typically

information on medical adherence is gathered over time and most of the previous re-

search on this topic has failed to incorporate this longitudinal component of adherence

in their analysis. This dissertation aims to rectify this and provide an interesting insight

into efficient handling of adherence data.

The data for this analysis was obtained from the NIDDK-funded VIRAHEP-C

study, which enrolled 401 adults with chronic hepatitis C and genotype 1 infection

at eight U.S. medical centers (Conjeevaram et al. 2006). All participants were on the

combination therapy of Peginterferon and Ribavirin for up to 48 weeks. One hundred
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and forty-seven of them, who showed detectable viremia at week 24, were discontinued

from the therapy, while the remaining 254 participants with undetectable or indeter-

minate HCV RNA by 24 weeks, continued for a total of 48 weeks. Patients attended a

baseline visit and then follow-ups at treatment weeks 2, 4, 8, 12 and then monthly up to

48 weeks. In this analysis, however, we only concentrate on the first 24 week window.

The endpoint of focus is Sustained Virologic Response (SVR) measured six months post

treatment, defined as undetectable viremia (HCV RNA < 50 IU/mL). Details of the

VIRAHEP-C protocol can be found at https://www.niddkrepository.org/niddk/

jsp/public/dataset.jsp#VIRAHEP-C. Baseline data included socio-demographic vari-

ables (e.g., age, gender, race, marital status, education level, employment status, health

insurance status, etc.) and medical variables (e.g., fibrosis level, alcohol consumption,

presence of baseline antidepressant use, etc.). The Center for Epidemiologic Studies-

Depression (CES-D) (Radloff (1977)) scale was used to measure depression symptoms

and a visual analog scale was used to measure symptoms including (i) fatigue, (ii)

headache, (iii) muscle aches and pains, (iv) irritability, (v) depression, and an (vi)

overall symptom score.

Adherence (daily adherence to Ribavirin and weekly adherence to Peginterferon)

was measured by the Medication Event Monitoring System (MEMS, AARDEX, Sion,

Switzerland) (for details regarding the MEMs system see Liu et al. (2001)) as a weekly

count for Peginterferon and a daily count for Ribavirin. If individual i took the Pegin-

terferon shot at week j, they were considered adherent (Xij = 1) and non adherent

otherwise (Xij = 0). Similarly if individual i took both counts of the prescribed doses

of Ribavirin on day j, she/he was considered fully adherent (X̃ij = 2). If she/he took

only one count of the prescribed doses on day j, she/he would be considered partly

adherent (X̃ij = 1) and otherwise he will be considered to be nonadherent for that day

(X̃ij = 0). If a participant was prescribed to refrain from dosing for either Peginterferon
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or Ribavirin and did not open the MEMS cap, she/he was considered fully adherent

(See Evon et al. (2013) for details).

Thus one important goal of this analysis is to apply a method that can be general-

ized and implemented in situations similar to this, and that it provides an efficient and

informative approach to examine adherence data. For this, we propose to use temporal

processes to study adherence. The term ‘temporal process’ refers to a functional pro-

cess that is completely specified over time. The idea of extending the marginal mean

model to incorporate regression for response and covariates that are temporal processes

observed over compact intervals was developed by Fine et al. (2004). It was originally

intended as a robust substitute for intensity models in time-to-event data, since only

the mean instead of the full stochastic structure of the processes needs to be specified.

However temporal process regression is a useful formulation in longitudinal studies as

well, where the response as well as covariates are observed multiple times over an in-

terval. Conceptually, the modeling strategy is functional data analysis (Ramsay and

Dalzell 1991) and is closely related to varying-coefficient models (Hastie and Tibshi-

rani 1993) for longitudinal data at finite irregularly spaced times. The cross-sectional

data at each time point is used to formulate an estimating equation in a typical linear

model set-up, and the time-varying coefficients at that time point are estimated by

solving it. Temporal processes have been used before in analyses in medicine. Yan

et al. (2010) applied temporal process regressions to analyze progressive symptoms in a

case study of the Cystic Fibrosis Foundation Patient Registry data, as an alternative to

the commonly employed proportional hazards models. However, as mentioned, the set

up for this analysis was right censored data, and to our knowledge, temporal processes

have not been employed in linear models involving longitudinal data before. Hence this

dissertation shows the importance of temporal processes in such a set up.
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In analyses involving adherence data, we typically encounter data that are longitu-

dinal in nature. For example in the VIRAHEP C study, 401 patients were followed for

24 weeks, and adherence for Peginterferon was recorded once each week, while that for

Ribavirin was recorded each day. As observed above, studies on adherence, whether

looking at the importance of adherence on medical end-points or analyzing factors that

affect adherence in general, mostly involve sample summaries of these longitudinal data.

But the drawback of this type of cross-sectional approach is multifold. First of all, it

suffers from an immense loss of information, affected by compiling summary statistics

pooled over the entire length of the study. Hence hypothesis tests typically proposed to

objectify the causal relationships in such analyses are far less powerful. Second of all,

by incorporating the temporal nature of adherence, we can observe the covariate effects

across the study period which can provide further insight into the dynamic nature of

this relationship across time.

The main contribution of this dissertation is providing an insightful approach to

analyzing adherence data. In this dissertation, we study the effect of adherence on

sustained virologic response, the end point in the VIRAHEP C study, using temporal

process regression. Hence in this case, adherence is incorporated as a time-varying

covariate in the regression set up and SVR is incorporated as the response and remains

constant over time. It is worthwhile to note that a similar approach can be used in

reverse studies where adherence is analyzed as the response while looking for mean-

ingful factors contributing to varying trends of adherence over time. Another novel

contribution of this dissertation is the approach used to create the confidence bands

for the processes. In Fine et al. (2004), the authors employ bootstrapping to simulate

from the empirical distribution of
√
n(β̂(t) − β0(t)) (the centered covariate effects) to

create confidence bands for β0(t), the true parametric process. In this dissertation we

modify this approach by utilizing the empirical distribution of sup
t∈[l,u]

√
n|β̂(t) − β0(t)|
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to bootstrap from. This method actually helps in establishing a direct relationship

between these confidence bands and our proposed hypothesis tests.

1.2 Feature Elimination in Support Vector Machines

In recent years it has become increasingly easy to collect large amounts of infor-

mation, especially with respect to the number of explanatory variables or ‘features’.

However the additional information provided by each of these features may not be sig-

nificant for explaining the phenomenon at hand. Learning the functional connection

between the explanatory variables and the response from such high-dimensional data

can itself be quite challenging. Moreover some of these explanatory variables or fea-

tures may contain redundant or noisy information and this may hamper the quality of

learning. One way to overcome this problem is to use variable selection or feature elim-

ination techniques to find a smaller set of variables or features that is able to perform

the learning task sufficiently well.

In this work we discuss feature elimination in support vector machines. The popu-

larity of support vector machines (SVM) as a set of supervised learning algorithms is

motivated by the fact that SVM learning methods are easy-to-compute techniques that

enable estimation under weak or no assumptions on the distribution (see Steinwart and

Chirstmann 2008). SVM learning methods, which we review in detail in Section 3.1,

are a collection of algorithms that attempt to minimize a regularized version of the em-

pirical risk over some reproducing kernel Hilbert space (RKHS) with respect to some

loss function. The standard SVM decision function typically utilizes all the input vari-

ables. Hence, when the input dimension is large, it can suffer from the so-called ‘Curse

of Dimensionality’ (Hastie et al. 2001). A procedure for variable selection is thus of

importance to obtain a more intelligible solution with improved efficiency. The advan-

tages of variable selection are multi fold: it increases the generalized performance of
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the learning, it clarifies the causal relationship in the input-output space, and results

in reduced cost of data collection and storage and better computational properties.

One of the earliest works on variable selection in SVM was formulated by Guyon

et al. (2002). They developed a backward elimination procedure based on recursive

computation of the SVM learning function, known widely as recursive feature elimina-

tion (RFE). The RFE algorithm performs a recursive ranking of a given set of features.

At each recursive step of the algorithm, it calculates the change in the RKHS norm

of the estimated SVM function after deletion of each of the features remaining in the

model, and removes the one with the lowest change in such norm, thus performing an

implicit ranking of features. A number of modified approaches have been developed

since then, inspired by RFE (see Rakotomamonjy 2003, Aksu et al. 2010, Aksu 2012).

Alternate wrapper -based selection methods have also been formulated like in Weston

et al. (2001), Chapelle et al. (2002). Filters have been used for feature elimination

in SVMs in many previous works (see for example Mladenic et al. 2004, Peng et al.

2005). Embedded methods for variable selection include redefining the SVM training

to include sparsity (Weston et al. 2003, Chan et al. 2007). For example, Bradley and

Mangasarian (1998) suggested the use of the l1 penalty to encourage feature sparsity.

Zhu et al. (2003) suggested an algorithm to compute the solution path for this l1-norm

SVM efficiently. Other methods include introducing different penalty functions like the

SCAD penalty (Zhang et al. 2006), the lq penalty (Liu et al. 2007), a combination of

l0 and l1 penalty (Liu and Wu 2007), the elastic net (Wang et al. 2006), the f∞ norm

(Zou and Yuan 2006), and using a penalty functional in the framework of the smoothing

spline ANOVA (Zhang 2006).

Some of the common drawbacks of these methods include, (i) they might lack ver-

satility in application, or (ii) might lack concrete theoretical justifications. Like, most

of embedded methods work only in linear SVMs, that is, only when we consider a linear
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functional class for the optimization. Hence the main drawback for these penalized

methods (with penalty functions like l1, lq, elastic net, etc.) is that they can only work

in linear kernels, as these become ineffectual concepts in the framework of more complex

function classes like RKHSs with non linear kernels. RFE and RFE derived methods

however help to address this issue, as these methods can work in complex problems as

well, where we might need a larger class of functions (than just the linear space) for

the optimization. Another key feature of RFE is that it does feature selection, that is,

when a feature is removed, all its effects (main effects and interactions with other fea-

tures) are removed. However, the most important drawback for these methods is that

arguments for them have mostly been heuristic, and their ability to produce success-

ful data-driven performances have been examined only in simulated or observed data.

Hence, the theoretical properties of them have never been studied in rigorous detail.

A key reason behind this lack of theory is the absence of a well-established framework

for building, justifying, and collating the theoretical foundation of such a feature elim-

ination method. This part of the dissertation aims at building such a framework and

modifying RFE to create a recursive technique that can be validated as a theoretically

sound procedure for feature elimination in SVMs.

Developing a theoretical structure that validates recursive feature elimination in

non-linear SVMs is challenging. At each stage of the feature elimination process, we

move down to a ‘lower dimensional’ feature space and the functional spaces need to

be adjusted to cater to the appropriate version of the problem in these subspaces.

Euclidean spaces, for example, as well as many specialized functional classes admit a

nested structure in this regard, but that is not true in general. The SVM algorihtm

attempts to minimize the empirical regularized risk within an RKHS of functions.

Starting with a given RKHS, one daunting task is then to redefine the functional space

on the lower dimensional domain so that it retains the reproducing property and that
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these spaces remain cognate to one another. The basis for the theory on RFE depends

heavily on specifying these pseudo-subspaces, and a contribution of this part of the

dissertation is to formulate a way to do this.

Another contribution of this part of the dissertation is a modification of the crite-

rion for deletion and ranking of features in Guyon et al.’s RFE to enable theoretical

consistency. Here we develop a ranking of the features based on the lowest difference

observed in the regularized empirical risk after removing each feature from the exist-

ing model. It is important to understand that removing a feature from the functional

model, means not only that the main effect of the feature are removed, but also all

complex interactions the feature might have had with the remaining ones in the model,

are eliminated as well. The heuristic reasoning behind this is that if any of the features

do not contribute to the model at all, the increase in the regularized risk will be incon-

sequential. This allows RFE to be generalized to the much broader yet simpler setting

of empirical risk minimization where we can apply the same idea to empirical risk. This

can thus serve as a useful starting point for the analysis of feature elimination in SVM

(details are given in Appendix B.1).

In this part of the dissertation, we show that if the functional space is either nested

or dense, then assumption of a null model is enough to guarantee that modified RFE is

asymptotically consistent in finding the ‘correct’ feature space, under reasonable reg-

ularity conditions. The notion of consistency in such a context has not been defined

previously, and this work aims at positing a basis for which such results are meaningful.

We also show through interesting examples that in risk minimization settings for any

general functional space, existence of a null model may not be enough to guarantee

consistency of an algorithm based on a recursive search, and certain additional restric-

tions are required that may not hold in generality. The notations and the oracle bounds

used in this work will closely follow the ones used and derived in the text Steinwart
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and Chirstmann (2008) (hereafter abbreviated SC08).

The main body of the work is given in Section 3. We present the proposed version

of RFE for SVMs, and discuss the concept of feature elimination in this framework.

We discuss the assumptions required to establish consistency of RFE in the simpler yet

practical settings of nested or dense models. The main consistency results are provided

following that, and the implications of these results in some known settings of risk

minimization in nested or dense models are discussed in depth, including the setting

of risk minimization in linear models and SVM for classification with a Gaussian RBF

kernel. Next, we relax the earlier assumptions to allow us to establish consistency of

the algorithm in more complex functional spaces. Then we study two more interesting

applications of kernel machines in imaging and protein classification and discuss how

our method can be useful for feature selection there. Finally, we prove our main result

under this most general setting. We provide some simulation results to demonstrate how

RFE works and how it can be used in intelligent selection of features, and compare it

with penalized methods for feature selection. A general discussion is provided followed

by detailed proofs for important results.

1.3 Feature Elimination in Q Learning

Personalized medicine can be defined as the medical model that can adapt itself to

appropriate needs of a patient, with treatments and medical decisions suited to his/her

requirements. The traditional ‘one size fits all’ approach to treatment have been re-

placed with a more adaptive or ‘personalized’ approach. The best clinical regimes are

adaptive to patients over time and tailored to the specific requirements of the indi-

vidual patient. Treatment individualization and adaptation over time is also crucial

for management of chronic diseases and conditions. In many cases the one treatment

for the entire population strategy is not only suboptimal, but also unrealistic (see
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Zhao et al. 2014). An ideal treatment rule should be adaptive, robust and tailored to

the requirement of a given individual based on his/her prognosis information. With

steady advance in treatment methods and a better understanding of human genetics,

researchers have been able to incorporate this new information into clinical diagno-

sis. Research projects into human genetics have paved way for better understanding

of genes in an individual’s physiology and development. Researchers have now been

able to discern the role of single nucleotide polymorphisms (SNPs), that account for

genetic variabilities between individuals and as a result genome-wide association stud-

ies (GWAS) have been conducted to examine genetic variation and risk for common

diseases.

The training data usually contains three types of information: the treatment given

to the patient, the prognostic factors for the patient, and the outcome, some kind of

measurement of the well-being of the patient. Dynamic treatment regimes are indi-

vidually tailored treatments that are designed to provide treatment to individuals only

when and if they need the treatment. Dynamic treatments explicitly incorporate the

heterogeneity in need for treatment across individuals and the heterogeneity in need for

treatment across time within an individual. Dynamic treatment regimes are attractive

also because they only treat subjects who need them (see Murphy 2003). In treating

cystic fibrosis, clinicians routinely update therapy according to the risk of toxicity and

antibiotics resistance and hence adaptive treatment regimens work well here (Flume

et al. 2007). This type of framework is also natural for cancer applications, where the

initiation of the next line of therapy depends on the disease progression and thus the

number of treatments is flexible. For example, in advanced nonsmall cell lung cancer

(NSCLC), patients receive one to three treatment lines. The timing of the second and

third lines of treatment is determined by the disease progression and by the ability

of patients to tolerate therapy (see Stinchcombe and Socinski 2008, Krzakowski et al.
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2010).

In a dynamic treatment regime, decision rules are specified before the beginning of

treatment, and these rules are based on time-varying measurements of subject-specific

needs. The set of decision rules comprises the treatment regime. A big challenge in

identifying the optimal dynamic treatment regime (DTR) is that the optimal treatment

sequence is unknown in the training data since the patients are given the treatments

randomly. Incorporating patient information accrued over time into the decision rules

is also challenging, and we also want to avoid treatments which may appear optimal

in the short term, but may lead to poor final outcome in the long run. Censoring

might be present as well due to loss to follow-up and hence the final outcome of those

who reached the end of the study alive may be unknown. The number of decision

points and the timing of these decision points can be different for different patients as

well. All these challenges make estimating the effects of dynamic treatment regimes

difficult. Nevertheless, it has been studied at length (see Robins 1993; 1997), and

many approaches have been developed to optimally evaluate them since. One of the

foremost methods to study the dynamic treatment regimes was formulated through the

potential outcomes approach, that is, modeling the counter factual response observed

by the patient if he/she had been assigned to a different treatment (see Rubin 1974,

Robins 1986). The sequential multiple assignment randomized trial (SMART) designs

(see for instance, Lavori and Dawson 2000; 2004, Murphy 2005a, Murphy et al. 2006,

Moodie et al. 2007) was developed to relate the potential outcomes with the observed

data. In this design, patients are randomized at every decision point, that is, the

treatment assignments are independent of the future outcomes, conditional on the

current history. Thus Murphy (2003)’s ‘no unmeasured confounders’ assumption, the

essential condition guarantying the validity of the inferred optimal DTRs from the

observed data, is satisfied.

11



A number of methods have been proposed to estimate the optimal DTRs. Lavori

and Dawson (2000) proposed multiple imputation to estimate the potential outcomes

and the best strategy is selected among all strategies by comparing their imputed

outcomes. Murphy et al. (2001) proposed a structural mean response model to estimate

the the unobserved latent responses for a particular DTR. Thall et al. (2000; 2002;

2007), proposed likelihood based methods incorporating both frequentist and Bayesian

approaches to estimate parameters and thus the optimal regimes. Machine learning

methods have been proposed as an alternative approach to estimating DTRs, and these

methods have gained popularity due to their relatively model-free approach. The most

important of them is Q-learning (Murphy et al. 2006, Zhao et al. 2009; 2011). The

Q-learning algorithm, originally proposed by Watkins (see Watkins 1989, Watkins and

Dayan 1992) in the computer science literature, has become a powerful tool to discover

optimal DTRs in the clinical research arena. The Q learning algorithm can convert

the multistage problem to a array of single stage problems, so that we can estimate

the optimal rules sequentially in a pseudo-single stage setting. It finds the optimal

decision rule at a given stage by first estimating the expectation of the sum of current

and future rewards conditional on the current patient history assuming that the patient

always receive optimal decisions at all future decision points, and then maximizing this

empirical conditional expectation over the current set of decision rules. The estimated

conditional expectations are known as Q-functions. Q learning is one of the most

widely accepted methods to solve the reinforcement learning problem. Reinforcement

learning is an area of machine learning in computer science, concerned with how an

agent is supposed to take actions in an environment, so as to maximize some notion

of cumulative reward. It is different from supervised learning which deals exclusively

in learning from examples provided by a knowledgeable external supervisor. However,

it alone is not adequate for learning from interaction. In interactive problems it is
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often impractical to obtain examples of desired behavior that are both correct and

representative of all the situations in which the agent has to act. In uncharted territory

where one would expect learning to be most beneficial an agent must be able to learn

from its own experience.

Finding therapies tailored to each individual in settings involving multiple decision

times is a major challenge, and Q-learning can be used for maximizing the average sur-

vival time of patients as a function of prognostic factors, past treatment decisions, and

optimal timing. Zhao et al. (2009) introduced the clinical reinforcement trial concept

based on Q-learning for discovering effective therapeutic regimens in potentially irre-

versible diseases such as cancer. The concept is an extension and melding of dynamic

treatment regimes in counter factual frameworks (Murphy 2003, Robins 2004) and se-

quential multiple assignment randomized trials (Murphy 2005a) to accommodate an ir-

reversible disease state with a possible continuum of treatment options. This treatment

approach falls under the general category of personalized medicine. The generic cancer

application developed in Zhao et al. (2009) takes into account a drugs efficacy and

toxicity simultaneously. The authors demonstrate that reinforcement learning method-

ology not only captures the optimal individualized therapies successfully, but is also

able to improve longer-term outcomes by considering delayed effects of treatment.

In Q-learning, the optimal DTRs are estimated sequentially in a two-step procedure:

the first step involves estimating the Q-functions at each stage using the prognosis

history of the patient till that stage; and the next step involves maximizing these fitted

functions over all the current decision rules to infer the optimal rule at that stage. One

important problem that we typically face in this format is that the information about

prognosis is sometimes very rich. And due to the Q-learning framework, this prognosis

information (or history) grows with the number of stages in the trial. The effects of

this redundant information in the history on which the Q functions are fitted are in fact
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multifold. We can incur serious cost in collection and storage of this information but

more importantly, this increases significantly the chances of overfitting. In presence of

high-dimensional information, it is possible then that the Q-functions are poorly fitted

or even grossly overfitted, and an overfitted model is not generalizable for predicting

optimal treatments for future patients. In presence of noise or misspecification of the

models for the Q functions, the fitted Q-functions may not necessarily result in maximal

long-term clinical benefit. Like in any other learning problem, overfitting is an issue

that needs to be addressed, and hence feature elimination is of significant importance

in reinforcement learning frameworks and this is the primary focus for this part of the

dissertation.

Feature selection hasn’t been studied in great detail in the Q learning framework.

The estimation phase in Q learning involves specifying a model for the Q functions

and estimating them. The models for the Q functions can be specified parametrically,

semiparametrically and even non-parametrically. Zhao et al. (2009) proposed two non

parametric methods for the estimation phase of the Q learning algorithm, namely the

support vector machines (regression) and extremely randomized trees. The advantage

of using non parametric methods for estimation is that it lessens the scope for mis-

specification of the Q functions, in the presence of which it has been shown that the

estimated DTRs may be suboptimal (see Murphy 2003). Here we have adopted the

support vector machines framework with the Gaussian RBF kernel, which is sufficiently

rich and produces an RKHS which is dense in the space of all continuous functions,

and thus allow to capture any meaningful relationship the Q functions exhibit in the

feature space satisfactorily. However as mentioned before, in presence of noise, there

might still be significant amount of overfitting that may result in poor performance in

prediction. Hence feature selection techniques can improve the performance of the Q

learning algorithm sufficiently. The main contribution of this part of the dissertation is
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to study three such methods for feature selection in Q learning. The idea stems from

our earlier work (see Dasgupta et al. 2013), where we studied a backward feature selec-

tion method called the recursive feature elimination in support vector machines, and

showed its generability in a variety of complex settings, when standard methods fail.

We even showed that under certain regularity conditions, the method we proposed is

consistent in finding the correct subset of features in these situations, thus establishing

the usefulness of such a method in this regard.

The first method we study is the simple extension of our method in Q learning,

using RFE at each estimation stage by finding a subset of features from the history

variables at that stage. The second method introduced here uses a different version

of the RFE algorithm that we propose here, called the RFE test algorithm. It differs

from the original RFE algorithm we proposed in (Dasgupta et al. 2013) in the criterion

of deletion of the features. At each recursive step of the algorithm, the RFE algorithm

calculates the change in the empirical regularized risk of the estimated SVM function

after deletion of each of the features remaining in the model, and then it removes

the feature that observes the lowest difference in the regularized empirical risk, thus

performing an implicit ranking of features. In the original RFE algorithm, the risk

estimates were obtained from the same data that was used for training the models.

In this new proposed approach, we get our risk estimates from a separate data fold,

that is, we employ a separate set of data for model building (training set) and then a

separate set of data to evaluate the model performance (test set). The heuristics for

the proposed modification comes from the observation that when the input dimension

of the feature space is high compared to the number of signals in the model, it is likely

that for the observed data, the model might overfit itself within the noisy dimensions

satisfactorily, thus inflating the risk of elimination of the relatively weaker signals, while

random variations in the data might be misclassified as important patterns.
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The third method differ significantly from the first two methods, but in essence is

a backward selection method as well. Two important differences include,

(1) Unlike the first two methods, this method works on the entire model building

procedure, and not sequentially on each estimation phase.

(2) The model evaluation criterion is not regularized risk, but the optimal value function

itself.

At each step of the feature selection procedure here, given the current size of the

histories (H1, . . . , HT ), we train the entire Q learning algorithm to obtain the empirical

estimates of the stage 1 value function on submodels created sequentially by removing

one feature at a time from the cumulative history, and then choosing the one that

produces the highest estimate of the stage 1 value function for deletion. Heuristically

this makes sense, as one of the main goals of the Q learning algorithm is to maximize

the optimal stage 1 reward or value function.

1.4 Overview of the dissertation

In Chapter 2 we propose a statistically efficient way to handle medical adherence

using temporal process regression. Chapter 3 is a detailed study of recursive feature

elimination in support vector machines. In Chapter 4 we study different feature selec-

tion techniques in Q learning. And finally in Chapter 5, we summarize our findings in

this dissertation and discuss future topics briefly.
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CHAPTER 2: USING TEMPORAL REGRESSION TO STUDY
ADHERENCE IN HEPATITIS C

2.1 Methods

In this section we review temporal process regression. We start off with a brief

review of the model and assumptions, and explain how to produce pointwise confidence

intervals and confidence bands for the processes. We also discuss how to use smooth-

ing to getter better estimators of these processes and their confidence bands. Lastly

we propose some hypothesis tests to test for the significance of the effects of these

parametric processes in the given framework.

2.1.1 Model

Fine et al. (2004) proposed the following functional generalized linear model as

an extension of standard linear models. The mean of the response Y (t) at time t is

specified conditionally on a p× 1 vector of time-dependent covariates X(t). That is,

µ(t) = E (Y (t)|X(t)) = g−1{β(t)′X(t)} (2.1)

where the link function g is monotone, differentiable, and invertible, and β(t) =

{β1(t), . . . , βp(t)} is a p× 1 vector of time-dependent coefficients. The parameter β(t)

has a clear meaning in the model at time t and because the link is time-independent,

β(s) and β(t) are comparable for s 6= t.

In our case, Yi(t) is constant for each patient i, and is the binary indicator for
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whether that patient attained SVR at the end of the study. Xi(t) is the covariate

vector for patient i at time t (which includes adherence) and the link function is given

as g−1 = exp /(1 + exp). Hence this actually gives us a time-indexed logistic model

with β(t) denoting the change in the log odds ratios for SVR per unit increase in the

covariates at time t. Hence this can be interpreted as a cluster of generalized linear

models, one for each time point t. We obtain estimates for the changes in the log odds

ratios for SVR for different covariates for each time point t and these estimated effect

sizes can be interpreted as processes varying over time. In practice, the data processes

may be missing at some times. We only take into consideration those time points t

where {Y (t), X(t)} is fully observed at t.

Within a time interval [l, u], we continuously observe n independent and identically

distributed copies of {Y (t), X(t) : R(t) = 1}, where Y is the response, X is a p × 1

covariate vector, and R is the data availability indicator, which permits both missing

response and missing covariates. The estimator for β(t) may be computed separately

at each t. Denote β̂(t) as the root of U{β(t), t} =
n∑
i=1

Ai(β(t), t), where

Ai{β(t), t} = Ri(t)D
′
i{β(t)}Vi{β(t), t}[Yi(t)− µi(t)}]

D′i{β(t)} = ∂[g−1{β(t)′Xi(t)}]/∂{β(t)} and Vi{β(t), t} is a weight matrix possibly ran-

dom.

The estimator potentially jumps at those M times where {Yi(t), Xi(t) : Ri(t) = 1}

and Ri(t) jumps. Let j1 < · · · < jM be the jump points. Finding β̂(t) involves

solving U{β(t), t} at the M points. According to Fine et al. (2004), in theory, when the

processes vary between ji, smoothing is not required. But in practice, the equations

are solved on a grid and the estimators are interpolated via smoothing. If Yi(t) and

Xi(t) are piecewise constant, then so is the estimator.
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2.1.2 Pointwise Confidence Intervals

Under appropriate conditions (See Liang and Zeger (1986)), for each t, β̂(t) is

consistent for β0(t), the true value of β(t) and for any K < ∞ points with l < t1 <

· · · < tK < u, n1/2[{β̂(t1)′, . . . , β̂′(tK)}′−{β0(t1)′, . . . , β0(tK)′}] is asymptotically normal

with covariance consistently estimated by the sandwich estimator.

Hence pointwise confidence intervals for β0(t) may be constructed using the normal

approximation and the sandwich variance estimate

Σ̂(t, t) = {Ĥ(t)−1}Ĝ(t, t){Ĥ(t)−1}′,

where Ĥ(t) and Ĝ(t, s) are given by

Ĥ(t) = n−1

n∑
i=1

Ri(t)D
′
i{β̂(t)}Vi{β̂(t), t}Di{β̂(t)},

Ĝ(s, t) = n−1

n∑
i=1

Ai{β̂(s), s}Ai{β̂(t), t}′.

A 100(1 − α)% confidence interval at time t for βk0(t) is β̂k(t) ± n−1/2zα/2Σ̂k(t, t)
1/2

where zα/2 is the (1− α/2) percentile of the standard normal distribution and Σ̂k(t, t)

is the kth diagonal element of Σ̂(t, t).

2.1.3 Confidence Bands

In Fine et al. (2004), the authors show that the consistency and weak convergence

results hold uniformly in t, that is, β̂(t) converges uniformly to β0(t) for t ∈ [l, u]

and n1/2{β̂(t) − β0(t)} converges weakly to a tight zero mean Gaussian process G(·)

with continuous sample paths at continuity points of β0(t) with the covariance function

Σ(s, t) =
[
n1/2{β̂(t)− β0(t)}, n1/2{β̂(t)− β0(t)}

]
= {H(s)−1}G(s, t){H(t)−1}′, where

G(s, t) and H(t) are asymptotic limits of Ĝ(s, t) and Ĥ(t) respectively.
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However, constructing confidence bands for β(t) for t ∈ [l, u] is analytically difficult

since the Gaussian process G(·) does not have a canonical representation. Instead, we

can employ resampling, either by bootstrapping the empirical data distribution and

solving U{β(t), t} repeatedly, or by simulating directly from the process, as in Lin,

Fleming, and Wei (1994). For a better understanding of this, one may refer to Chap-

ter 22, Section 3 of Kosorok (2008) which studies this particular case in detail. In

this analysis we however use a conservative approach. We sample from the empirical

distribution of a standardized version of supt |β̂(t) − β0(t)|. This results in wider con-

fidence bands. The importance of this approach lies in the fact that we can obtain a

direct correspondence between these confidence bands and hypotheses tests which will

be explained later. The way we generate these confidence bands is as follows:

We use the fact that n1/2{β̂(t)− β0(t)} = n−1/2
∑n

i=1 ψi(t) + otp(1) where

ψi(t) = {H(t)}−1Ai{β0(t), t}

is the influence function for the process β̂(t). Note that the sandwich variance estimator

is given by Σ̂(s, t) as before. Now we can define ψ̂i(t) as

ψ̂i(t) = [diag(Σ̂(t, t))]−1/2{Ĥ(t)}−1Ai{β̂(t), t}.

Hence we can create 100(1− α)% simultaneous confidence bands of the form

β̂k(t)± n−1/2bk,α/2Σ̂k(t, t)
1/2, (2.2)

where bk,α/2 is the (1−α/2)-th quantile of the empirical distribution of the kth compo-

nent of Bn where,

Bn = sup
t

{
n−1/2

∣∣∣∣∣
n∑
i=1

ziψ̂i(t)

∣∣∣∣∣ }
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from repeatedly sampling z1, . . . , zn ∼ i.i.d. N(0, 1).

2.1.4 Smoothing the estimated parametric function

Smoothing is a class of regression techniques to estimate a real valued function f(X)

over the domain R by using its noisy observations, and fitting a different but simple

model separately at each query point x0. This is done by using observations close to

the target point x0 to fit the simple model, in such a way that the resulting estimated

function is smooth in R.

Here we assign weights that die off smoothly with distance from the target point.

For each t0, the Nadaraya-Watson kernel-weighted average is defined as

˜̂
β(t0) =

∑n
i=1Kλ(t0, ti)β̂(ti)∑n

i=1Kλ(t0, ti)
.

We use the triangular kernel for smoothing, defined as

Kλ(t0, t) = D

(
|t0 − t|
λ

)
,

where

D(t) = (1− t) if |t| < 1

= 0 otherwise

The amount of smoothing that we want can be controlled by the kernel width λ, where

λ is typically chosen using cross validation.
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(A)

(B)

Figure 2.1: (A) 95% Pointwise Confidence Intervals for effects of adherence (compliance) on
the log odds for SVR for the first 24 weeks in separate analyses of the two drugs. (B) 95%
Confidence Band for effects of adherence (compliance) on the log odds for SVR for the first
24 weeks in separate analyses of the two drugs.

Figure 2.2: 95% Confidence Band for effects of adherence (compliance) on the log odds for
SVR for the first 24 weeks in separate analyses of the two drugs smoothed over time.

2.1.5 Confidence bands using the smoothed estimators

As before, we can produce confidence bands for the parametric processes using the

smoothed versions of the estimated parametric function.
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We have

n1/2{β̂(t)− β0(t)} = n−1/2

n∑
i=1

ψi(t) + otp(1),

where ψi(t) is defined as before. Now if ψ̂i(t) is the estimated influence function, then

define
˜̂
ψi(t) to be the smoothed version of ψ̂i(t). Hence we can produce smoothed

version of the Sandwich variance estimator as
˜̂
Σ(t, t) = n−1

∑n
i=1

[
˜̂
ψi(t)

] [
˜̂
ψi(t)

]′
. Now

define
˜̂
ψi(t) as

˜̂
ψi(t) = [diag

˜̂
Σ(t, t)]−1/2 ˜̂

ψi(t), and hence we can create 100(1 − α)%

smoothed simultaneous confidence bands of the form

˜̂
βk(t)± n−1/2b̃k,α/2

˜̂
Σk(t, t)

1/2,

where b̃k,α/2 is the (1−α/2)-th quantile of the empirical distribution of the kth compo-

nent of B̃n where,

B̃n = sup
t

{
n−1/2

∣∣∣∣∣
n∑
i=1

zi
˜̂
ψi(t)

∣∣∣∣∣ }
from repeatedly sampling z1, . . . , zn ∼ i.i.d. N(0, 1). This follows from the continuous

mapping theorem.

2.1.6 Non-parametric hypothesis tests

Fine et al. (2004) proposed three different non parametric tests for testing the null

hypothesis H0 : C(t)β(t) = c(t), where at each t, C(t) is an r × p contrast matrix

and c(t) is an r× 1 vector of constants. This general framework allows global tests for

multiple hypotheses. In this analysis, we consider only two of them. The first statistic

is an integrated difference statistic (IDS). Defining M(t) := C(t)β̂(t)− c(t) we have,

T1 =

ˆ u

l

M(t)W (t)dt,
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where W is a non-negative weight function, possibly random. Under mild conditions

T ′1Σ̂−1
1 T1 is asymptotically χ2

r under H0, where

Σ̂1 = n−2

n∑
i=1

(ˆ u

l

C(s)Ĥ(s)−1Ai{β̂(s), s}W (s)ds

)⊗2

,

and for a vector v, v⊗2 = vv′. The second statistic is the supremum difference statistic

(SDS), based on the sup-norm distance,

T2 = sup
t∈[l,u]

∣∣∣∣M(t)′
{
C(t)Σ̂(t, t)C(t)

}−1
M(t)

∣∣∣∣ .
Similarly to most Kolmogorov-Smirnov type statistics, the distribution of T2 is rather

complex and is typically approximated by resampling.

A simple test of βj = 0 can be visually determined by looking at the confidence

band of βj and determining whether at any time point the whole portion of the band

lies above or below 0.

2.2 Results

Our primary focus is the first 24 weeks of treatment. And our aim is to analyze the

effect of adherence to Ribavirin and Peginterferon on the outcome sustained virologic

response (SVR). For simplicity, we model Ribavirin as a binary predictor, and hence

create a pseudo score, where no or partial adherence to the drug is given the score 0

while full adherence is given the score 1. We start off with an initial analysis where

we model adherence to the two drugs separately. We give plots and use the proposed

tests to test for their significance. We also look for other covariates that affect SVR

significantly in this set up. We then conduct a combined analysis of adherence to

the drugs in a single framework and look for substantial effects of interaction between

them. Based on our results, we conduct a few additional analyses to look for meaningful
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conclusions.

2.2.1 Initial Plots

We begin by using temporal process regression to model Ribavirin and Peginterferon

separately. Figure 2.1(A) shows the estimated effect sizes for adherence on SVR in

the two analyses. Hence for the Ribavirin analysis, the estimated effect size β(t) for

the tth day (as seen in the plot) is the log odds for an individual under complete

compliance with Ribavirin on the tth day, to attain SVR over an individual under

partial or no compliance with the drug on that day. Similarly for the Peginterferon

analysis, the estimated effect size for the ith week is the log odds for an individual

under compliance with Peginterferon on the ith week, to attain SVR over an individual

under no compliance with the drug during that week. In Figure 2.1(A), we also plot the

95% pointwise confidence intervals for these processes. Figure 2.1(B) is a plot of the

95% confidence bands for the change in log odds for SVR under complete compliance for

the two drugs. As expected, the confidence bands are wider than pointwise confidence

intervals.

As is evident from Figures 2.1(A) and 2.1(B), the estimated processes are quite

noisy, since we estimate the effects on a daily or a weekly grid (depending on the drug

we are analyzing) and interpolate over rest of the interval. Hence to obtain a better

estimate of the processes, we employ kernel smoothing (refer to Section 2.1.4). The

results are presented in Figure 2.2. We provide the estimated processes smoothed over

time along with their 95% confidence bands.

2.2.2 Results of Non Parametric Hypothesis Tests

Results for T1 (IDS): Separately, adherence to Ribavirin (p = 8.413 × 10−7) and

adherence to Peginterferon (p = 0.000473) are found to be highly associated with SVR
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by the integrated difference statistic.

Results for T2 (SDS): As we see in Figure 2.2(D), the lower confidence bands cross 0

indicating that the effects are found to be positively significant for both Ribavirin and

Peginterferon by the supremum difference statistic.

Figure 2.3: Plots for Hypothesis test T2.

2.2.3 Backward Selection of Covariates

We fit a full model considering other predictors, and follow a gradual step down

procedure to remove the ones which weren’t found to be significantly associated with

SVR, after controlling for the other predictors. The covariates considered for the full

model are listed below:

• SEX : Gender

• RACEW: Whether caucasian/african-american

• MXAD: History of anti-depressant use

• Age: Age of the subject

• ISHAK: Indicator of severity of disease (fibrosis score)

• Infect: Source of infection
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• Education: Education level of the subject

• Insurance: Insurance provider for the subject

• Employ: Employment Status

• Marital: Marital Staus

• Alcohol: Alcoholic Status

• Vload: Baseline Viral Load Score

A flow chart of the Backward Selection procedure is given in Figure 2.4. The steps

are performed for analyses of both drugs. The final models after the step down process

Figure 2.4: Backward Selection Procedure for choosing the significant covariates in the
model.

are found to consist of the same covariates and are shown in Table 2.1.

2.2.4 Plots for other significant covariates

It is clear that adherence (or compliance) to the drug regimes is extremely important

and is positively associated with log odds for SVR. Table 2.1 shows that apart from
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Covariates Ribavirin Analysis Peginterferon Analysis
SEX 0.029 0.016
RACE 4.71e-05 2.81e-05
ISHAK 0.009 0.009

Table 2.1: Final Model P-Values

Figure 2.5: Effect of Race = Caucasian on the log odds for SVR for the first 24 weeks
in separate analyses of the two drugs.

adherence, SEX, RACEW and ISHAK are significantly associated with SVR too. We

plot the estimated effects in Figures 2.5–2.7.

Note that the plots are almost straight lines which is expected since these covariates

are constant over time. Figure 2.5 shows that race (= Caucasian) is positively asso-

ciated with SVR which means that Caucasian patients are significantly more likely to

attain SVR than non-Caucasians. Figure 2.6 shows that gender (= Male) is negatively

associated with SVR which means that Female patients are significantly more likely to

attain SVR than Males. And lastly Figure 2.7 shows that fibrosis score is negatively

associated with SVR. The fibrosis score denotes the severity of the disease so it makes

sense that more severe cases of Hepatitis C have a significantly lower probability of

attaining SVR.
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Figure 2.6: Effect of Gender = Male on the log odds for SVR for the first 24 weeks in
separate analyses of the two drugs.

Figure 2.7: Effect of Fibrosis Score on the log odds for SVR for the first 24 weeks in
separate analyses of the two drugs.

Figure 2.8: Plot for the main effects and interaction of adherence (compliance) to the
drugs on SVR
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2.2.5 Combined Analysis

Since the prescribed regimen is really a combination of the two drugs, we now

conduct an analysis on the combined Ribavirin-Peginterferon data. We first incorporate

only the fixed effects for adherence to the drugs (Peginterferon and Ribavirin) and the

covariates (SEX, RACEW and ISHAK) found significant in the separate analyses. Since

Peginterferon is taken once every week, the analysis is done across weeks. The daily

information on the Ribavirin drug is introduced as a score vector of length 7 for each

week, with the ith element recording the score for ith day of the week (i = 1, . . . , 7). The

first hypothesis that we test is H0 : β1 = · · · = β7, where the parameter βi represents

the effect of adherence to Ribavirin on SVR for the ith day of the week. Hence we test

whether the effect of adherence to drug Ribavirin on SVR is the same across different

days of a week. Both the Integrated Effect Test T1 (p = 0.863) and the Supremum

Effect Test T2 (p = 0.561) showed lack of sufficient evidence against the null hypothesis,

meaning that the Ribavirin adherence can be adequately summarized by the weekly

average.

Accordingly, we now create a single covariate for adherence to Ribavirin for each

week by taking the average of the daily scores for each week. We then test for the signif-

icance of adherence to the drugs in the same model. The integrated difference statistic

shows that the individual effects of the drugs Ribavirin (p = 0.0202) and Peginterferon

(p = 0.009) are still both significant, though the more conservative supremum differ-

ence statistic did not find sufficient evidence at 5% level of cut-off to support that (p

0.258 and 0.081 for Ribavirin and Peginterferon respectively). However both tests, IDS

and SDS found the joint effect of the drugs to be highly significant (p = 0.00026 and

0.007 respectively).

As the next logical step, we introduce an interaction term in this combined analysis

(the effect of interaction between the two drugs Ribavirin and Peginterferon on the
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change of log odds for SVR). We make a very interesting observation from the analysis

as seen in Figure 2.8, where we see huge peaks in the estimated main effects of adher-

ence for the two drugs, and a huge dip in the estimated interaction effect on week 3.

On further investigation of SVR on week 3, we realize that there is a perfect separation

of the data based on the interaction of the two drugs Ribavirin and Peginterferon. All

of the subjects who were non-adherent to Peginterferon for that week and were at best

partially adherent to Ribavirin for the whole week, didn’t show Sustained Virologic

Response at the end of the study. Also interestingly, only 1 among 22 patients (4.55%)

who were non-adherent to Peginterferon for that week showed Sustained Virologic Re-

sponse at the end of the study, while the percentage of SVR among those who did

adhere to Peginterferon on week 3 was 41.11%. This calls for further analysis on these

22 patients who failed to adhere to the drug Peginterferon on week 3.

2.2.6 Diagnostic analysis

On week 3, 22 patients did not adhere to Peginterferon (group 1) while the remaining

individuals did (group 2) adhere to Peginterferon. We want to compare these two groups

with respect to several criterion scores, both physical and physiological. The physical

scores include various symptom scores, (i) Muscle Ache, (ii) Irritability, (iii) Headache,

(iv) Fatigue, (v) Depression, and (vi) Overall. And the physiological scores include

various internal measurements such as, (i) WBC count, (ii) NPC count, (iii) Platelet

count, and (iv) Viral Load scores.

In Figures 2.9 – 2.13, we look at the cumulative distribution plots of these scores,

pooled across the entire length of study.

The only interesting plot is for the viral load scores in Figure 2.13(B). The lower

curve representing group 1 shows that the viral load scores of group 1 tend to have

higher values than that of group 2 as we would expect. We use the Cramer Von-Mises
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(A) (B)

Figure 2.9: Plots for the pooled (across weeks) cdf for the two groups (group 1 consist of
patients not adhering to Peginterferon on week 3, while group 2 consist of the remaining
patients who did adhere to the drug during that week) for the physical scores: (A)
muscle ache, and (B) irritability.

(A) (B)

Figure 2.10: Plots for the pooled (across weeks) cdf for the two groups (group 1 consist
of patients not adhering to Peginterferon on week 3, while group 2 consist of the re-
maining patients who did adhere to the drug during that week) for the physical scores:
(A) headache, and (B) fatigue.

criterion to test whether these differences are significant, where the null distribution is

simulated using bootstrap samples from the data itself to adjust for repeated measures.

As expected from the plots, the Cramer Von-Mises criterion did not bear any evi-

dence to reject the null hypothesis of no difference in distribution, for all the attributes
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(A) (B)

Figure 2.11: Plots for the pooled (across weeks) cdf for the two groups (group 1 consist
of patients not adhering to Peginterferon on week 3, while group 2 consist of the re-
maining patients who did adhere to the drug during that week) for the physical scores:
(A) depression, and (B) overall symptom scores.

except the viral load scores. A 5000 simulation run gave a p. value of 0.0094, demon-

strating that the distribution of the pooled viral load scores for the two groups are

significantly different. Viral Load scores being a response criterion for our study indi-

cates that early adherence to Peginterferon is extremely important. In Table 2.2, we

give results from the Cramer von Mises test on the difference in viral load scores be-

tween the two groups on individual readings. The Cramer von Mises criterion showed

non-significant results for the initial two time points. At the 3rd time point (week 2) it

approaches statistical significance and is significant by week 4.

2.3 Summary of Chapter 2

The initial analyses showed that adherence to both drugs has a significant effect

on the treatment end-point (SVR), with higher adherence significantly increasing the

chance of achieving SVR. This confirms the fact that adherence is crucial for effective-

ness of the medication regimen for treating chronic hepatitis C. We also found other

significant factors that affect SVR. It was seen that women have higher probability of
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(A) (B)

Figure 2.12: Plots for the pooled (across weeks) cdf for the two groups (group 1 con-
sist of patients not adhering to Peginterferon on week 3, while group 2 consist of the
remaining patients who did adhere to the drug during that week) for the physiological
scores: (A) WBC counts, and (B) NPC counts.

attaining SVR than men. We also saw that race plays an important role in determin-

ing chances for a positive drug response and that Caucasians have significantly higher

chances of attaining SVR than others. We further saw that the severity of infections

(fibrosis score) does affect SVR and patients with higher baseline infection scores have

less chances of a full recovery (this reaffirms results found in Conjeevaram et al. (2006)).

The combined analysis showed some interesting results as well. The individual effects

of the drugs were found significant by the IDS test while the joint effect was found

significant by both the IDS and SDS tests. This shows that adherence to the combined

regimen is important to improve chances of achieving SVR, confirming results obtained

from the Phase-II drug trials. Figure 2.8 showed that the effect of interaction between

adherence to the drugs can also have a serious impact on SVR. Our results showed that

adherence on week 3 has tremendous bearing on the final outcome, which supports the

conclusion that adherence in the first few weeks of the regimen is extremely important.
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(A) (B)

Figure 2.13: Plots for the pooled (across weeks) cdf for the two groups (group 1 con-
sist of patients not adhering to Peginterferon on week 3, while group 2 consist of the
remaining patients who did adhere to the drug during that week) for the physiological
scores: (A) platelet counts, and (B) viral load scores.

Vload Score Reading Cramer V Mises P-value
Day 1 0.2765
Week 1 0.2208
Week 2 0.0769
Week 4 0.0030
Week 8 0.0833
Week 12 0.1932

Table 2.2: Viral Load score difference P-Values across Weeks

35



CHAPTER 3: CONSISTENCY RESULTS FOR RECURSIVE
FEATURE ELIMINATION IN SVM

3.1 Preliminaries

We begin by introducing some notations and discussing support vector machines

(and empirical risk minimization as a related concept).

Let the input space (X ,A) be measurable, such that X ⊆ B ⊂ Rd, where B is an

open Euclidean ball centered at 0. Let Y be a closed subset of R and P be a measure on

X ×Y . A function L : X ×Y ×R 7→ [0,∞] is called a loss function if it is measurable.

We say that a loss function is convex if L(x, y, ·) is convex for every x ∈ X and y ∈ Y .

A loss function is called locally Lipschitz continuous with Lipschitz local constant cL(·)

if for every a > 0,

sup
x∈X ,y∈Y

|L(x, y, s)− L(x, y, ś)| < cL(a) |s− ś| , s, ś ∈ [−a, a].

L is said to be Lipschitz continuous if there is a constant cL such that cL(a) ≤ cL

∀a ∈ R.

For any measurable function f : X 7→ R, we define the L-risk of f with respect

to the measure P as RL,P (f) = EP [L(X, Y, f(X)]. The Bayes Risk R∗L,P is defined

as inff RL,P (f), where the infimum is taken over the set of all measurable functions,

L0(X ) = {f : X 7→ R, f is measurable}. A function f ∗P that achieves this infimum is

called a Bayes decision function.
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Let F ⊆ L0(X ) be a non-empty functional space, and L be any loss function. Let

fP,F = arg min
f∈F

EP [L(X, Y, f(X)] = arg min
f∈F

RL,P (f) (3.1)

be the minimizer of infinite-sample risk within the space F . We define the minimal

risk within the space F as R∗L,P,F = RL,P (fP,F). The empirical risk is denoted by

RL,D (where the subscript D denotes the empirical measure invoked by the data D =

{(X1, Y1), . . . , (Xn, Yn)} ∈ (X × Y)n), and is given as, RL,D(f) ≡ Pn(L(X, Y, f(X)) =

1

n

n∑
i=1

L(Xi, Yi, f(Xi)).

Empirical Risk Minimization: A learning method whose decision function fD,F

minimizes empirical risk RL,D(f) among the class of functions {f : f ∈ F}, for all

n ≥ 1 and data D is called empirical risk minimization (ERM) with respect to L and

F .

Now let H be an R-Hilbert space over X . A function k : X × X 7→ R is called

a reproducing kernel of H if k(·, x) ∈ H for all x ∈ X , and has the reproducing

property f(x) = 〈f, k(·, x)〉 for all f ∈ H, and all c ∈ X . The space is called a real-

valued Reproducing Kernel Hilbert Space (RKHS) over X (For a better understanding

of RKHSs, we refer our readers to SC08).

Support Vector Machines: Let H be a separable RKHS of a measurable kernel

k on X , and fix a λ > 0. Let L be convex and locally Lipschitz continuous. Then the

empirical SVM decision function can be defined as,

fD,λ,H = arg min
f∈H

λ ‖f‖2
H +RL,D(f). (3.2)

For a given λ, the SVM learning method L is the map (X × Y)n ×X 7→ R defined

by (D, x) 7→ fD,λ,H(x) for all n ≥ 1. Like before, we can define the infinite sampled

version of the regularized minimizer as fP,λ,H = arg min
f∈H

λ ‖f‖2
H + RL,P (f). Then the

37



approximation error is given by,

AH2 (λ) = λ ‖fP,λ,H‖2
H +RL,P (fP,λ,H)− inf

f∈H
RL,P (f). (3.3)

Note: The results developed in this paper are valid not only for classification,

but also for regression under certain general assumptions on the output space Y . For

simplicity however, we will refer to both these variants in this paper as SVM, unless

otherwise mentioned.

3.2 Feature Elimination Algorithm

The original recursive feature elimination (RFE) algorithm was proposed for SVMs

by Guyon et al. (2002), the performance of which was evaluated under experimental

settings. Limitations of this method as a margin-maximizing feature elimination was

studied explicitly in Aksu et al. (2010). The version proposed here is similar in structure

to Guyon et al., but differ in the elimination criterion. While Guyon et al. used the

Hilbert space norm λ‖f‖2
H to eliminate features recursively, we use the entire objective

function (the regularized empirical risk) for deletion.

3.2.1 The Algorithm

We begin by proposing a way such that starting off with a space F , we are able to

create lower dimensional versions of it. As mentioned before, this is indeed necessary,

since at each stage of the feature elimination process, we move down to a ‘lower di-

mensional’ feature space and the functional spaces need to be adjusted to cater to the

appropriate version of the problem in these subspaces. A detailed discussion on these

will be given in Section 3.3.

Definition 1. For any set of indices J ⊆ {1, 2, .., d} and a given functional space F ,
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define FJ = {g : g = f ◦πJc ,∀f ∈ F}, where πJ
c

is the projection map from x 7→ xJ

(x, xJ ∈ Rd), such that xJ is produced from x by replacing those elements in x which

are indexed in the set J , by zero.

We can hence define the space X J = {πJc(x) : x ∈ X}, such that πJ
c

: X 7→ X J is

a surjection. Now we are ready to provide the algorithm. Assume the support vector

machine framework, where we are given an RKHS H indexed by a kernel k.

Algorithm 2. Start off with J ≡ [·] empty and let Z ≡ [1, 2, ..., d].

STEP 1: In the kth cycle of the algorithm choose dimension ik for which

ik =arg min
i∈Z\J

λ
∥∥fD,λ,HJ∪{i}

∥∥2

HJ∪{i} +RL,D

(
fD,λ,HJ∪{i}

)
− λ

∥∥fD,λ,HJ

∥∥2

HJ −RL,D

(
fD,λ,HJ

)
. (3.4)

STEP 2: Update J = J ∪ {ik}. Go to STEP 1.

Continue this until the difference

min
i∈Z\J

λ
∥∥fD,λ,HJ∪{i}

∥∥2

HJ∪{i}+RL,D

(
fD,λ,HJ∪{i}

)
−λ

∥∥fD,λ,HJ

∥∥2

HJ−RL,D

(
fD,λ,HJ

)
becomes

larger than a pre-determined quantity δn, and output J as the set of indices for the

features to be removed from the model.

See Appendix B.1.1 for a version of the algorithm for empirical risk minimization

problems.

3.2.2 Cycle of RFE

We define ‘cycle’ of the RFE algorithm as the number of ‘features’ deleted in one

step of the algorithm. The algorithms in 3.2.1 has cycle = 1. But one can define it for

cycles of value greater than 1 in which case one deletes chunks of features at a time,

equal to the size of the cycle. It can also be defined adaptively such that in different
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runs of the algorithm the cycle sizes are different. The theoretical results derived in

this paper will hold for cycles of any size. Here for the sake of simplicity, we set the

cycle size to 1.

3.3 Functional Spaces on Lower Dimensional Domains

The aim of this section is to provide a detailed reasoning behind Definition 1 in

Section 3.2.1.

3.3.1 Feature Elimination in SVM

In empirical risk minimization problems our primary focus is empirical riskRL,D(f),

while in support vector machines our main concern is the regularized version of this

risk, λ‖f‖2
F +RL,D(f). The minimization in case of SVMs is typically computed over

special functional classes called RKHSs (denoted by H here). Our objective is then

to find fD,λ,H ≡ arg min
f∈H

λ‖f‖2
H +RL,D(f). The regularization term λ‖f‖2

H is used to

penalize functions f with a large RKHS norm. Complex functions f ∈ H which model

the output values in the training data set D too closely, tend to have larger H-norms

(Refer to Exercise 6.7 in SC08 for a clear motivation).

Now consider the setting of empirical risk minimization in general (and SVM as a

special case). Consider L∞(X ), the space of all bounded measurable functions from

X 7→ R and suppose we start off with a functional class F ⊆ L∞(X )1 (or, H ⊆ L∞(X )),

where X is as defined in Section 3.1. Let our goal be to find a function f within F

(or within H) that minimizes the given empirical criterion, empirical risk in ERMs (or

regularized risk in SVMs). Now if the dimension d of the input space is too large, it

might lead to solutions that are too complex than what is sufficient for our purpose.

1Note that the loss functions we consider in this paper (unless otherwise mentioned) are convex
and locally Lipschitz with RL,P (0) <∞, and hence by (2.11) and Proposition 5.27 of SC08, we have
R∗L,P,L∞(X ) = R∗L,P . Hence instead of L0(X ) it suffices to consider the smaller subspace L∞(X ).
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Suppose now that the minimizer of infinite-sampled risk with respect to the oracle

measure P and the functional class L∞(X ), actually resides in L∞(X ∗), where X ∗ is

a lower dimensional version of X . Then it may actually suffice to find the empirical

minimizer in a suitably defined lower dimensional version of F (or the RKHS H),

and to avoid overfitting it might become a necessity. The need for defining the lower

dimensional adaptations of a given arbitrary functional class (or a given RKHS) in

the way of Definition 1 arises from this observation itself. Now the motivation for our

algorithm stems from the heuristic belief that if some of the covariates are unimportant

or superfluous for the problem at hand, the contribution of each of these variables

in the functional relationship between the output variable and the covariate space in

terms of the solution might be small at best, that is the incremental risk associated

with a solution defined on a subset of the covariate space (by ignoring these surplus

variables), when compared to the solution in the original covariate space, might indeed

be minimal.

3.3.2 Further discussions on the lower dimensional spaces FJ (or HJ)

First note that for a given input space X , X J may not be a subspace of X . However

the assertion holds trivially for any Euclidean open ball B centered at 0. So we assume

that X ⊆ B ⊂ Rd. We will also assume that we can sufficiently extend F(X ) to F(B)

(or, HX to HB when H is a RKHS), such that the domain of functions in F(B) (or in

the RKHS HB) is B instead of X . In case of the RKHS H, this in turn extends the

domain of the kernel k from X ×X to B×B. Hence from here onwards we will assume

X J ⊆ X . Note also that FJ may not be a subspace of F (that is, HJ may not be a

subspace of the RKHS H). Although it is more desirable for these functional classes to

accept a nested structure between each other, so that as we go down from a space to

its lower dimensional version, it may not hold in general.
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We now provide a few results that connect these lower dimensional spaces with the

original one. In view of Definition 1, we can define LJ∞(X ) = {f ◦ πJc : f ∈ L∞(X )}.

Then Lemma 3 below says that LJ∞(X J) ≡ LJ∞(X )
∣∣
XJ is isomorphic to the space

L∞(X J). Lemma 4 below, observes some results connecting the original RKHS with

its lower dimensional versions. A related lemma, Lemma 33 is given in Appendix B.1

noting similar results for any general space. These aim to show that many of the nice

properties of a given functional space are carried forward to their re-adaptations under

Definition 1. We prove Lemma 3 and 33, while proof for Lemma 4 is omitted as it

follows from Lemma 33 trivially. The proofs can be found in Appendix B.3.1 and B.3.2

respectively.

Lemma 3. LJ∞(X J) = L∞(X J).

Lemma 4. Let H ⊂ L∞(X ) be a non-empty RKHS on X . Then for any J ⊂

{1, 2, . . . , d},

1. If H is dense in L∞(X ), then HJ is dense in L∞(X J).

2. If the ‖ · ‖∞ closure BH of the unit ball BH is compact, then so is BHJ .

3. If H is separable, then so is HJ .

4. ei(id : HJ 7→ L∞(X )) ≤ ei(id : H 7→ L∞(X )), where ei(id : H 7→ L∞(X )) is

the ith entropy number of the unit ball BH of the RKHS H, with respect to the

‖ · ‖∞-norm (see Appendix B.2.2 for a definition of entropy numbers).

3.3.3 RKHS in lower dimensions

Note that in SVMs, the minimization is computed over an RKHS, and the properties

of RKHSs dictate a lot of the statistical properties of SVMs. Hence, while defining these

lower dimensional spaces we need to ensure that these spaces are RKHSs as well. To
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that effect, we begin this section by providing an alternate way to define the lower

dimensional versions of a given RKHS that preserves the reproducing property.

Definition 5. For a given RKHS H indexed by a kernel k and a set of indices J ⊆

{1, 2, .., d}, define HJ ≡ Hk◦πJc (X ), where k ◦ πJc(x, y) := k(πJ
c
(x), πJ

c
(y)).

Note immediately that Definition 5 allows us to create lower dimensional versions of

an RKHS H in a way which ensures that these spaces are RKHS as well. This inevitably

questions the validity of Definition 1. We however show below that both Definitions 1

and 5 actually yield the same RKHS space HJ . We begin with the following result due

to Paulsen (2009).

Proposition 6. Let S be any set and ϕ : S 7→ X be a map. Let k : X ×X 7→ R be the

kernel on X . If we define the map k ◦ ϕ : S × S 7→ R as, k ◦ ϕ(s, t) = k(ϕ(s), ϕ(t)),

then k ◦ ϕ is a kernel on S. (Paulsen 2009, Proposition 5.13).

The next theorem then gives a natural relationship between RKHSs H(k) on X and

H(k ◦ ϕ) on S. It also implies that when S is a subset of X and ϕ is the inclusion id

map of S into X , the kernel k ◦ ϕ becomes the restriction of the kernel k on S × S.

Theorem 7. Let X and S be two sets and let k : X × X 7→ R be a kernel function on

X and let ϕ : S 7→ X be a function. Then H(k ◦ ϕ) = {f ◦ ϕ : f ∈ H(k)}, and for

g ∈ H(k ◦ ϕ) we have that ‖g‖H(k◦ϕ) = inf{‖f‖H(k) : g = f ◦ ϕ}.

See Paulsen (2009) for a proof of Theorem 7.

Now let X0 be a subset of X and k(0)(x, y) be the restriction of a kernel k on X0. Let

Hk(X ) be the RKHS with respect to k(x, y), and Hk(0)(X ) be the one with respect to

k(0)(x, y). Then by the above theorem, if we define ϕ to be the inclusion id map from X0

to X , we have Hk(0)(X0) = {f |X0 : f ∈ Hk(X )} and ‖g‖H
k(0)

= min{‖f‖Hk : f |X0 = g}

for g ∈ Hk(0)(X0).
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Taking X0 ≡ X J and k(0)(x, y) ≡ k(πJ
c
(x), πJ

c
(y)), we immediately obtain our

assertion.

3.3.4 Notion of risk in Lower Dimensional Versions of the Input Space

Note that the functional space FJ (and equivalently RKHS HJ) is defined on the en-

tire input space X and not only on X J . So we can define risk for a function fJ ∈ FJ (or

fJ ∈ HJ) for the entire input space X and not just for X J . Hence for a probability dis-

tribution P on X ×Y , define RL,P (fJ) as RL,P (fJ) =
´
Y

´
X L(y, x, fJ(x))P (x, y)dxdy.

This allows us to compare the risk of functions in different lower dimensional versions

of the original functional space.

3.4 RFE in nested or dense models

In this section we discuss the consistency of our feature elimination algorithm (for

both ERM and SVM), when the functional space considered for the problem admits

nice properties, like nestedness or denseness. We begin this section by defining these

properties and citing important situations when we encounter these spaces. We then

discuss our inherent assumption for existence of a null model in these frameworks,

and show how that translates to the idea of variable selection through our backward

elimination algorithm.

3.4.1 Nested spaces in risk minimization

Often in risk minimization, the space of functions F we consider for optimization will

admit the nested property. To explain it mathematically, for a pair J1, J2 ∈ {1, 2, . . . , d}

with J1 ⊆ J2, the subspaces will satisfy the condition that FJ2 ⊆ FJ1 . This in turn

translates to admitting nested inequalities between risk of the minimizers in these

spaces of the form R∗
L,P,FJ1 ≤ R

∗
L,P,FJ2 . One simple example of such is the linear space,
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where coefficients are allowed to take values in a compact interval containing 0, that

is, F =
{
f(x1, . . . , xd) =

∑
i aixi : |ai| ≤M, M <∞

}
.

In empirical risk minimization problems with relative flexibility on the choice of the

functional space F , we can enforce the nested property even when F does not satisfy

the nested criterion to begin with, by considering unions of it with its lower dimensional

versions. Noting that F ≡ F∅, we can create them as follows:

F̃J =
⋃

J⊆J∗⊆{1,...,d}

FJ∗ . (3.5)

It can be seen that the properties of F and FJs with respect to Lemma 33 are carried

forward in our new definitions too.

Unfortunately, in general, RKHSs need not be nested in each other. And given any

RKHS H, we cannot create unions of RKHSs to use them in learning, because unions of

RKHSs may not be a RKHS. The question is when can these naturally occurring RKHSs

be nested within each other? We will see below that dot-product kernels actually have

this property.

Lemma 8. Dot product kernels produce nested RKHSs.

See Appendix B.3.3 for a proof. Dot product kernels (eg: linear kernels) are often

very common in formulation of a SVM problem. Other kernels might also satisfy the

nested criterion. We will see through discussions in Section 3.4.3 the usefulness of the

nestedness property.

3.4.2 Dense spaces in risk minimization

Another wide class of functional spaces we typically consider in risk minimizaion are

dense spaces. If F is dense in L∞(X ), it means that F represents the space of bounded

functions sufficiently well, and that any function in L∞(X ) is well approximated by
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some function in F . Many times in SVMs, the RKHS we consider for optimization

will be dense in L∞(X ). Note that all universal kernels produce RKHSs that are

dense in L∞(X ) with respect to convex, locally Lipschitz continuous losses and that all

non-trivial radial kernels (eg: Gaussian RBF kernel) share this property as well (see

Micchelli et al. 2006).

3.4.3 Existence of a null model

In this section we show that by starting off with the assumption of the existence of

a null model, we can validate our recursive elimination algorithm if the functional space

F (or the RKHS H) satisfy any of the above properties. What we mean by existence

of a null model is that, there exists an index set J∗, such that

R∗L,P,F = R∗L,P,FJ∗ (3.6)

holds.

Remark 9.

1. First, note that this is not really an assumption, since J∗ can be the empty set. What

we mean is that if the above condition holds for a J∗, our algorithm will be able to pick

it up.

2. Note that this assumption tells us that in terms of risk, we do not lose anything at

all if we consider the pair
(
X J∗ ,FJ∗

)
instead of (X ,F) for the problem at hand. And

as mentioned before, to avoid overfitting this indeed becomes necessary.

3. We strengthen our assumption of a null model by further claiming that no other J

with J ⊃ J∗ satisfies the above property. This says that the rest of the covariates (given

by the index set J c∗ ≡ Z \ J∗) in the model are all important for the learning problem,

and cannot be considered for redundancy.
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4. Also note that the above assumptions do not claim the uniqueness of J∗. Rather we

say that for any set of covariates with the above property (3.6), there always exist a

maximal set in terms of it.

Nested Models: Simple observation then shows that in nested spaces R∗L,P,F =

R∗L,P,FJ∗ transcribes into saying that there exists a minimizer (fP,F) of infinite-sample

risk in F , which also lives in FJ∗ , that is, fP,F ∈ FJ∗ . This then trivially implies that

fP,F ∈ FJ for any J ⊆ J∗, which implies that (3.6) holds for any J ⊂ J∗. Now further

assume that FJ∗ is the smallest such subspace admitting this relationship. Hence in

nested spaces under the assumption of a null model, we expect equality of risks in the

form of R∗L,P,F = R∗L,P,FJ = R∗L,P,FJ∗ whenever J ⊆ J∗, and then we also have that for

any J◦ * J∗, R∗L,P,FJ◦ ≥ R
∗
L,P,FJ∗+ε0 for some ε0 > 0. This essentially substantiates the

elimination of features in a backward recursive manner with a given stopping criterion.

Dense Models: Now if we admit F to be dense in L∞(X ), Lemma 33 tells us

that FJ is dense in LJ∞(X ) for any J ∈ {1, 2, . . . , d}. First note that for J1 and J2 with

J1 ⊆ J2, we trivially have a nested property of the form LJ2∞(X ) ⊆ LJ1∞(X ) ⊆ L∞(X ).

This then implies R∗
L,P,FJ2 ≥ R

∗
L,P,FJ1 . Now ‘denseness’ does not necessarily imply

‘nestedness’, but we do have the ‘almost nested’ property in the sense that for any g ∈

FJ2 , and for any ε > 0, ∃ fε ∈ FJ1 with ‖fε − g‖∞ ≤ ε. This means that if we start off

with the assumption that there exists a J∗ such that R∗L,P,F = R∗L,P,FJ∗ , then it implies

that ∃ {fn} ∈ F , such that fn → fP,FJ∗ . Since the loss functions we consider are locally

Lipschitz continuous, by Lemma 2.17 of SC08 we have RL,P (fn)→ R∗L,P,FJ∗ = R∗L,P,F .

This then implies that for any J ⊆ J∗, R∗L,P,FJ ≥ R
∗
L,P,F = R∗L,P,FJ∗ ≥ R

∗
L,P,FJ . Hence

for every J ⊆ J∗, R∗L,P,FJ = R∗L,P,FJ∗ . Now if we further assume that FJ∗ is the smallest

such subspace admitting this relationship, then we again come up with the relationship

that, for any J◦ * J∗, R∗L,P,FJ◦ ≥ R
∗
L,P,FJ∗ + ε0 for some ε0 > 0. Again, the premise

here allows for elimination of features in a backward recursive manner with a given
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stopping criterion.

3.5 Consistency Results for RFE

The main aim of this section is to show that Algorithm 2 defined in Section 3.2.1,

is consistent in finding the correct feature space in nested or dense spaces.

We now state the main result of our paper. Note that ei (id : H 7→ L∞(DX )) is the

ith entropy number for the inclusion id map of RKHS H into L∞(DX ) for the input

data DX := {X1, . . . , Xn} (see Appendix B.2.2 for a definition of entropy numbers).

We also assume condition 1 below:

Condition 1.

1. The functional space is either nested or dense.

2. There exists a J∗, such that R∗L,P,F = R∗L,P,FJ∗ and that J∗ is the maximal set

satisfying this property.

Theorem 10. Let P be a probability measure on X ×Y, where the input space X is a

valid metric space. Let L : X ×Y×R 7→ [0,∞] be a convex locally Lipschitz continuous

loss function satisfying L(x, y, 0) ≤ 1 for all (x, y) ∈ X × Y. Let H be the separable

RKHS of a measurable kernel k on X with ‖k‖∞ ≤ 1. Let, for fixed n ≥ 1, ∃ constants

a ≥ 1 and p ∈ (0, 1) such that EDX∼PnX ei (id : H 7→ L∞(DX )) ≤ ai−
1
2p , i ≥ 1, where

EDX∼PnX is defined as the expectation with respect to the product measure P n
X under the

assumption that the input data DX ≡ {X1, . . . ,Xn} are i.i.d. copies of X ∼ PX . For

a given sample size n, let {λn} ∈ [0, 1] be such that λn → 0 and lim
n→∞

λnn = ∞. We

assume that there exists a c > 0 and a β ∈ (0, 1] such that AJ2 (λ) ≤ cλβ for any J and

for all λ ≥ 0 (where AJ2 (λ) ≡ AH
J

2 (λ)).

There exists {δn} such that δn = ε0−O(n−
β

2β+1 ), for which the following statements

hold:
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1. The Recursive Feature Elimination Algorithm for support vector machines, defined

for {δn} given above, will find the correct lower dimensional subspace of the input

space (X J∗) with probability tending to 1.

2. The function chosen by the algorithm achieves the best risk within the original

RKHS H asymptotically.

Remark 11.

1. Note as mentioned before, we do not need (3.6) to necessarily hold for a non-trivial

J∗. If X is full, that is, if all covariates in the model are important, then J∗ = {0}, and

our algorithm shall pick X Jc∗ ≡ X .

2. Also note that the conditions L(x, y, 0) ≤ 1, and ‖k‖∞ ≤ 1 for the kernel k in

Theorem 10 are assumed for simplicity and might be too restrictive in some settings,

but equivalent conditions like L(x, y, 0) ≤M and ‖k‖∞ ≤ ksup for constants M, ksup > 1

are good enough for the proofs and will result in bounds differing from the ones derived

here only up to some constants.

We refer to Appendix B.1.2 for a version of this result in empirical risk minimization

setting. The proof is postponed to Section 3.8.

3.6 Case Studies I

In this section we show the validity of our results in many practical cases of risk

minimization by discussing the results in some known settings.

3.6.1 CASE STUDY 1: Feature Elimination in Linear Regression

In this case study we present our results for the simple setting of linear regression.

This example shows that the consistency results achieved in this paper can be applied to

many different situations ranging from simple to complex risk minimization problems
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and in some cases can substantiate known techniques that are in practice in such

contexts for feature elimination. Linear regression is one of the most frequently used

statistical techniques for data analysis. It is also a simple example of an empirical risk

minimization problem.

In a linear regression model, we assume that the functional relationship can be

expressed as y = 〈α, x〉+b0, where 〈α, x〉 denotes the Euclidean inner product of vectors

α and x and b0 is the bias. The prediction quality of this model can be measured by

the squared-error loss function LLS given as LLS(x, y, f(x)) = (f(x) − y)2 and our

goal is to find linear weights α̂ and b̂0 for the observed data D that minimize the

empirical risk. We assume that the input space X ⊆ B ⊂ Rd. We further assume

that Y ⊂ R is a closed set. The functional space Flin is given by Flin = {fα,b0 :

fα,b0(x) = 〈α, x〉+ b0, (α, b0) ∈ Rd+1, ‖(α, b0)‖∞ ≤M, for some M <∞}. We can now

observe that the regularity conditions2 required for the consistency for the recursive

algorithm in this setting hold for this problem. The Least Squares Loss function LLS

is convex, and as observed in SC08, LLS is locally Lipschitz continuous when Y is

compact. Existence of M and B follows from the observations that X ⊆ B ⊂ Rd,

Y ⊂ R is a closed set, and that for some M < ∞, ‖(α, b0)‖∞ ≤ M for any function

fα,b0 within Flin. Compactness follows trivially since Flin is non-empty. We assume an

exponential bound on the average entropy number. Many analyses have been done on

covering numbers for linear function classes (see Zhang and Bartlett 2002, Williamson

2000) and under quite general assumptions it was proved that exponential bounds can

be imposed on the ε-entropies of such functional classes, which is actually stronger than

our bound (Refer to Theorems 4 and 5 in Zhang and Bartlett (2002)).

Thus the RFE procedure presented in this paper translates in the linear regression

case as a non-parametric backward selection method based on the value of the ‘average

2Refer to Appendix B.1.2 for these regularity conditions.
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sum of squares of error’ or R2/n. Indeed, the average empirical risk of the estimator

f̂(x) for the sample is exactly R2/n. In a non-parametric setup, under restrictive

distributional assumptions on the output vector Y , the idea of using penalized versions

of logR2 like AIC, AICc or BIC are well accepted ad-hoc methodologies for model

selection (and hence feature elimination), although it is not always trivial to know

which penalty should be used in a given situation, or which is best in that regard. This

paper produces a theoretical basis for using the non-penalized criterion R2/n as a tool

for feature elimination in linear regression. Suppose we start with a set of covariates

X = {X1, . . . , Xd} and let’s assume without loss of generality that the covariates are

pre-ordered on the basis of their importance. Then null model assumption can be

interpreted as claiming the existence of an r ∈ {1, 2, . . . , d} such that the following null

hypothesis is true H0 : {αd = · · · = αr+1 = 0, αr, . . . , α1 6= 0}. So this paper establishes

consistency for RFE based on the criterion R2/n and a pre-determined stopping rule

in finding the correct feature space X0 = {X1, . . . , Xr} under this null hypothesis H0.

3.6.2 CASE STUDY 2: Support Vector Machines with a Gaussian RBF
Kernel

Here we provide a brief review of the application of RFE in the classic SVM premise

for classification using a Gaussian RBF kernel. Assume that Y = {1,−1}. We want

to find a function f : X 7→ {1,−1} such that for almost every x ∈ X , P (f(x) =

Y
∣∣X = x) ≥ 1/2. In this case, the desired function is the Bayes decision function

f ∗L,P with respect to the loss function LBC(x, y, f(x)) = 1{y · sign(f(x)) 6= 1}. In

practice, since LBC is non convex, it is usually replaced by the hinge loss function

LHL(x, y, f(x)) = max{0, 1 − yf(x)}. For SVMs with a Gaussian RBF kernel, we

minimize the regularized empirical criterion λ‖f‖2 + 1
n

∑n
i=1 max{0, 1−yif(xi)} for the

observed sample D = {(x1, y1), . . . , (xn, yn)} within the RKHS Hγ(X ) with the kernel
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kγ defined as kγ(x, y) = e
− ‖x−y‖

2
2

γ2 .

Lemma 12. For classification using support vector machines with a Gaussian RBF

kernel, the RFE defined for δ = ε0−O(n−
β

2β+1 ) where β = βdτd
dβd+dτd+βdτd

, with βd ∈ (0,∞)

being the margin-noise exponent of the distribution P on Rd×{−1, 1} and τd ∈ ( 0,∞ ]

being the tail exponent of the marginal distribution PX , is consistent in finding the

correct feature space3.

In order to prove Lemma 12, we need to verify the regularity conditions given before

Theorem 10 in this setup. First note that LHL is Lipschitz continuous and bounded for

all 3-tuples of the form (x, y, 0) (see Example 2.27 in SC08). Separability of Hγ holds

since an RKHS over a separable metric space having a continuous kernel is separable

(Lemma 4.33 of SC08) and since X ∈ Rd is separable. It is also easy to see that

|kγ(x, y)| ≤ 1 is true for all x, y ∈ X and all γ > 0 and hence ‖kγ‖∞ ≤ 1.

From the proof of Proposition 17 (also see results in chapter 7 of SC08) we can see

that the assumption on the bound on the average entropy of the RKHS space given

before Theorem 10, can be replaced by the following:

• We assume that for fixed n ≥ 1, ∃ constants a ≥ 1 and p ∈ (0, 1) such that for

any J ⊆ {1, 2, . . . , d}, EDX∼PnX ei
(
id : HJ 7→ L2(DX )

)
≤ ai−

1
2p , i ≥ 1.

It is easily seen from the steps in (5.8) in Appendix B.3.5 that results will hold if we

replace the earlier assumption with the latter. Then we see that Theorem 7.34 with

Corollary 7.31 of SC08 along with the fact that d/(d+ τ) is an increasing function in d,

yields a bound as given here with a := maxd1≤d cε,pγ
− (1−p)(1+ε)d1

2p for γ ≤ 1, for all ε > 0,

d/(d+ τ) < p < 1 and a constant cε,p depending only on p and a given ε. We however

preferred to use the former in our theoretical derivations because it can be potentially

weaker in many situations.

3For a discussion on margin-noise exponents and tail exponents of a distribution refer to Chapter
8 of SC08
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The bound on the approximation error follows from results obtained in Theorem

8.18 of SC08 (see also Theorem 2.7 in Steinwart and Scovel 2007). Note that this bound

is not required for consistency results, as we already have that A2(λ)→ 0 when λ→ 0

from Lemma 5.15 of SC08. It however helps us to obtain explicit rates for the RFE

and we show that it holds here which will help us to derive rates in this framework.

Without going into explicit details, we can see from Theorem 8.18 of SC08 that the

approximation error for a SVM using Gaussian RBF kernel of width γ on Rd can be

bounded by a function given as

A2(λ, d, γ) ≤ max{cd,τd , c̃d,βdcd}
(
λ

τd
d+τd γ

− dτd
d+τd + γβd

)
, (3.7)

where P is a distribution on Rd × {−1, 1} that has margin-noise exponent βd ∈ (0,∞)

and whose marginal distribution PX has tail exponent τd ∈ ( 0,∞ ], cd,τd , c̃d,βd > 0 are

constants and cd is the constant occurring in equation (8.10) in SC08. So for a given pair

(λ, d) if we choose γ(λ, d) = λ
τd

dβd+dτd+βdτd then it can be seen that A2(λ, d, γ(λ, d)) �

λ
βdτd

dβd+dτd+βdτd (where � denotes ‘less than or equal to’ up to constants). Hence the bound

on the approximation error is satisfied for any J .

So for a sequence of SVM objective functions λn‖f‖2
Hγ(λn)

+ 1
n

∑n
i=1 max{0, 1 −

yif(xi)} defined for a sequence λ−1
n = o(n) with λn → 0 the assumptions for the

theoretical results on consistency of RFE are met, and thus Lemma 12 is proved.

3.7 Assumptions for RFE in general function spaces

In this section we discuss assumptions that are inherently needed for consistency

of our algorithm under more general settings. We also discuss the necessity of these

assumptions for our recursive search through appropraite examples.
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3.7.1 Assumptions

Consider the setting of risk minimization (regularized or non regularized) with re-

spect to a given functional space F (which are typically RKHSs in case of SVM). Our

aim in this section is to provide a framework where the modified recursive feature elim-

ination method is consistent in finding the correct lower dimensional subspace of the

input space. First we note the following assumptions:

(A1). Let J be a subset of {1, . . . , d}. Let fP,FJ be the function that minimizes risk

within the space FJ with respect to the measure P on X × Y . Define F∅ =

F . We assume that there exists a J∗, that is, |J∗| = d − d0 (where d0 is the

number of significant signals in the model) with d0 ≥ 0, such that it satisfies the

criterion that for any pair (d1, d2) satisfying d1 ≤ d2 ≤ d − d0, ∃ Jd1 and Jd2

with Jd1 ⊆ Jd2 ⊆ J∗ and |Jd1| = d1 and |Jd2 | = d2, we have the condition that

R∗L,P,FJ∗ = R∗
L,P,FJd1

= R∗
L,P,FJd2

.

Remark 13.

1. In other words, Assumption (A1) says that there exists a ‘path’ from the original

input space X to the correct lower dimensional space X J∗ in the sense of equality of

the minimized risk within FJs along this ‘path’. So there exists a sequence of indices

J from Jstart = ∅ to Jend = J∗, where J :=
{
{Jstart ≡ J1, J2, . . . , Jend} : J1 ⊆ J2 ⊆

· · · ⊆ Jend, |Ji| = |Ji−1|+ 1
}

, such that R∗L,P,FJ is the same for all J ∈ J .

2. Note that J may not be unique and there might be more than one path leading to

X J∗.

3. Also note that J∗ may not be unique in general, but any one of them would work for

our purpose. So we will assume it to be unique in this paper.

(A2). Let J1,J2, . . . ,JN be the exhaustive list of such paths from X to X J∗ , and let

J̃ :=
N⋃
i=1

Ji. There exists ε0 > 0 such that whenever J /∈ J̃ , R∗L,P,FJ ≥ R
∗
L,P,FJ∗ +
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ε0.

Note trivially from discussions we had in Section 3.4.3, that assumptions (A1) and (A2)

are satisfied for nested or dense models. Now at first glance these assumptions might

look restrictive, but these do help define the premise for consistency of the resursive

algorithm in any general setting. In Section 3.5 we will show how Assumptions (A1)

and (A2) are sufficient for a recursive feature elimination algorithm like RFE to work (in

terms of consistency). The following examples however are used to show the necessity

of these assumptions in order for a well-defined recursive feature elimination algorithm

to work.

3.7.2 Necessity of existence of a path in (A1)

Example 14. Consider the empirical risk minimization framework. Let X = [−1, 1]2

and let Y = 0. Let X1 ∼ U where U is some distribution on [−1, 1] and X2 ≡ −X1.

Let the functional space F be {c(X1 +X2), c > 0}. Let the loss function be the squared

error loss, i.e., L(x, y, f(x)) = (y − f(x))2. By Definition 1, F{1} = {cX2, c > 0} and

F{2} = {cX1, c > 0} and F{1,2} = {0}. We see that RL,P (fP,F) = RL,P (fP,F{1,2}) = 0

but both RL,P (fP,F{1}) and RL,P (fP,F{2}) 6= 0. Hence even if the correct low-dimensional

functional space may have minimized risk the same as that of the original functional

space, if there does not exist a path going down to that space, the recursive algorithm

will not work. Note that the minimizer of the risk belongs to F{1,2} but there is no path

from F to F{1,2}, in the sense of (A1).

3.7.3 Necessity of Equality in (A1)

It would appear that for the algorithm to work, we don’t have to necessarily work

with equalities along the path and that we can relax (A1) to include inequalities as well.

Suppose we redefine (A1) such that the equality of minimized risk along the path is
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replaced by the inequality ‘≤’. So now we assume that minimized risk is not necessarily

constant along the path, but that it does not increase. We show below that under this

modified assumption, our recursive search algorithm might fail to find the correct lower

dimensional subspace of the input space.

Example 15. Consider the empirical risk minimization framework again. Let Y ∼

U(−1, 1) and X ⊂ R3 such that Y = X3 = X2 + 1 = X1 − 1. Let F = {c1X1 +

c2X2 + c3X3, c1, c2, c3 ≥ 1}, and let the loss function be squared error loss. Now

by definition, F{1} = {c2X2 + c3X3, c2, c3 ≥ 1}, F{2} = {c1X1 + c3X3, c1, c3 ≥ 1},

F{3} = {c2X2 + c1X1, c1, c2 ≥ 1}, F{1,2} = {c3X3, c3 ≥ 1}, F{1,3} = {c2X2, c2 ≥ 1},

F{2,3} = {c1X1, c1 ≥ 1}, and F{1,2,3} = {0}.

By simple calculations, we see that R∗L,P,F = R∗
L,P,F{1} = R∗

L,P,F{2} = 4/3, R∗
L,P,F{3}

= R∗
L,P,F{1,2,3} = 1/3, R∗

L,P,F{1,3} = R∗
L,P,F{2,3} = 1 and R∗

L,P,F{1,2} = 0. Note that the

correct dimensional subspace of the input space is X{1,2} and there exists paths leading

to this space via X → X{1} → X{1,2} since R∗L,P,F = R∗
L,P,F{1} > R

∗
L,P,F{1,2} or via

X → X{2} → X{1,2} since R∗L,P,F = R∗
L,P,F{2} > R

∗
L,P,F{1,2} in the sense of Assumption

(A1*). But there also exists the blind path X → X{3} since R∗L,P,F > R∗L,P,F{3} which

does not lead to the correct subspace. Hence the recursive search in this case may not

be guaranteed to lead to the correct subspace.

Hence equality in (A1) guarantees that the recursive search will never select an

important dimension j ∈ J∗ for redundancy because then the Assumption (A2) would

be violated. Hence the equality in (A1) will ensure that we will follow a path recursively

to the correct input space X J∗.

3.8 Theoretical Results

Our main goal for this section is to prove Theorem 10 in Section 3.5. Note that it

was stated under Condition 1, for nested or dense spaces. The result will continue to
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hold if we replace Condition 1 by the following Condition 2.

Condition 2.

1. The functional space is general.

2. Assumptions (A1) and (A2) hold.

As seen in discussions in Section 3.4.3, note that under Condition 1, Assumptions

(A1) and (A2) are satisfied trivially. Our goal here is to then prove the main result

under the most general setting of Condition 2. Before that however, let us provide a

few relevant results that will help us in proving this theorem.

3.8.1 Additional Results

We start off with the following lemma:

Lemma 16. Let (F , ‖ · ‖F) be a separable functional space, such that the metric ‖ · ‖F

dominates pointwise convergence. Also we assume sup ‖f‖F ≤ C for some C <∞ for

all f ∈ F . Let L be a convex, locally Lipschitz loss function such that L(x, y, f(x)) ≤ B

for some B < ∞ for all f ∈ F . Also assume that for fixed n ≥ 1, ∃ constants a ≥ 1

and p ∈ (0, 1) such that EDX∼PnX ei (F , L∞(DX )) ≤ ai−
1
2p , i ≥ 1. Then, we have with

probability greater than or equal to 1− e−τ ,

sup
f∈F
|RL,P (f)−RL,D(f)| ≤ 2B

√
2τ

n
+

10Bτ

3n

+ 4 max
{
C1(p)cL(C)papB1−pn−

1
2 , C2(p)cL(C)

2p
1+pa

2p
1+pB

1−p
1+pn−

1
1+p

}
.

See Appendix B.3.4 for a proof. This Lemma gives us a bound for comparing the

empirically obtained decision function with the omniscient oracle, having an infinite

number of observations, in the case of minimizing the L-risk over F , under the given

conditions. We now assume the premise of Section 3.7.1, that is we assume (A1) and

(A2) both hold. The above Lemma then helps set up the next proposition, which aims
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to bound the difference in the empirical decision function in SVMs, when we move

between spaces, lying in the pathway hypothesized in Assumption (A1).

Proposition 17. Again we assume P to be a probability measure on X × Y, and that

the input space X is a valid metric space. We will assume L : X ×Y×R 7→ [0,∞] to be

convex and locally Lipschitz continuous, satisfying L(x, y, 0) ≤ 1 for all (x, y) ∈ X ×Y.

Again we assume H to be the separable RKHS of a measurable kernel k on X with

‖k‖∞ ≤ 1, and that for fixed n ≥ 1, ∃ constants a ≥ 1 and p ∈ (0, 1) such that

EDX∼PnX ei (id : H 7→ L∞(DX )) ≤ ai−
1
2p , i ≥ 1. Now for a fixed λ > 0, ε > 0, τ > 0,

and n ≥ 1, and for J1, J2 ∈ J̃ such that J1 ⊆ J2 ⊆ J∗, we have with probability P n not

less than 1− 2e−τ ,

∣∣∣λ∥∥fD,λ,HJ2

∥∥2

HJ2
+RL,D

(
fD,λ,HJ2

)
− λ

∥∥fD,λ,HJ1

∥∥2

HJ1
−RL,D

(
fD,λ,HJ1

)∣∣∣
< AJ12 (λ) + AJ22 (λ) + 12B

√
2τ

n
+ 20B

τ

n
+ 24K2B

1−p
(
a2p

λpn

) 1
2

, (3.8)

where AJ12 (λ) and AJ22 (λ) are the approximation errors for the two separate RKHS

classes HJ1 and HJ2, B := cL(λ−1/2)λ−1/2 + 1, and

K2 := max
{
Bp/4, C1(p)cL(λ−

1
2 )p, C2(p)cL(λ−

1
2 )

2p
1+p

}

is a constant depending only on B, p and the Lipschitz constant cL(λ−1/2).

See Appendix B.3.5 for a detailed proof of Proposition 17.

Note that since B ≥ 1 and K2 ≥ Bp/4, we have that if a2p > λpn,

∣∣∣λ∥∥fD,λ,HJ

∥∥2

HJ +RL,D

(
fD,λ,HJ

)
−R∗L,P,HJ

∣∣∣ ≤ RL,D(0) +RL,P (0) ≤ 2

< 3B ≤ 12K2B
1−p
(
a2p

λpn

) 1
2

. (3.9)
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Similarly, since B ≥ 1 and K2 ≥ Bp/4, we have for a2p > λpn,

λ
∥∥fD,λ,HJ

∥∥2

HJ +RL,P

(
fD,λ,HJ

)
−R∗L,P,HJ

≤λ
∥∥fD,λ,HJ

∥∥2

HJ +RL,D

(
fD,λ,HJ

)
+RL,P

(
fD,λ,HJ

)
≤RL,P (0) +RL,P

(
fD,λ,HJ

)
≤ 1 +B ≤ 2B

≤8K2B
1−p
(
a2p

λpn

) 1
2

. (3.10)

Now note that for any J , we have

∣∣∣λ∥∥fD,λ,HJ

∥∥2

HJ +RL,D

(
fD,λ,HJ

)
−R∗L,P,HJ

∣∣∣
≤
∣∣∣λ∥∥fD,λ,HJ

∥∥2

HJ +RL,P

(
fD,λ,HJ

)
−R∗L,P,HJ

∣∣∣+
∣∣RL,P

(
fD,λ,HJ

)
−RL,D

(
fD,λ,HJ

)∣∣
≤AJ2 (λ) + 2 sup

‖f‖
HJ
≤λ−1/2

|RL,P (f)−RL,D(f)|+ sup
‖f‖

HJ
≤λ−1/2

|RL,P (f)−RL,D(f)| .

(3.11)

Consequently we obtain the following two corollaries:

Corollary 18. Assume the conditions of Proposition 17. For any J and all ε > 0,

τ > 0, and n ≥ 1, we have with P n probability > 1− e−τ ,

∣∣∣λ∥∥fD,λ,HJ

∥∥2

HJ +RL,D

(
fD,λ,HJ

)
−R∗L,P,HJ

∣∣∣
<AJ2 (λ) + 6B

√
2τ

n
+ 10B

τ

n
+ 12K2B

1−p
(
a2p

λpn

) 1
2

,

where K2 is as before. Additionally, if J ∈ J̃ , we can replace R∗L,P,FJ in the above

inequality by R∗L,P,F .

Corollary 19. Oracle Inequality for SVM: Assume the conditions of Proposi-

tion 17. For any J and all ε > 0, τ > 0, and n ≥ 1, we have with P n probability
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> 1− e−τ ,

λ
∥∥fD,λ,HJ

∥∥2

HJ +RL,P

(
fD,λ,HJ

)
−R∗L,P,HJ

<AJ2 (λ) + 4B

√
2τ

n
+

20Bτ

3n
+ 8K2B

1−p
(
a2p

λpn

) 1
2

,

where K2 is as before.

Proposition 17 and Corollaries 18, 19 developed for SVM will be used to prove the

following Lemma 20, that will set up the premise for proving Theorem 10.

We now provide Lemma 20, which is the last result that we need before proving

Theorem 10. We will now further assume that the regularization constant λn converge

to 0 and assume the rate for such convergence is as given in Theorem 10. To explicitly

establish rates for our algorithm we also assume that the bound on the approximation

error AJ2 (λ) is as given in the aforementioned theorem.

Lemma 20. Assume the conditions of Theorem 10. Then the following statements

hold:

i. For J1, J2 ∈ J̃ such that J1 ⊆ J2 ⊆ J∗, ∃ ({εn} > 0)→ 0 such that we have with

P n probability greater than 1− 2e−τ ,

λn
∥∥fD,λn,HJ2

∥∥2

HJ2
+RL,D

(
fD,λn,HJ2

)
≤ λn

∥∥fD,λn,HJ1

∥∥2

HJ1
+RL,D

(
fD,λn,HJ1

)
+ εn.

ii. For J1 ∈ J̃ and J2 /∈ J̃ and for J1 ⊂ J2, ∃ ({εn} > 0) → 0, such that we have

with P n probability greater than 1− 2e−τ ,

λn
∥∥fD,λn,HJ2

∥∥2

HJ2
+RL,D

(
fD,λn,HJ2

)
≥λn

∥∥fD,λn,HJ1

∥∥2

HJ1
+RL,D

(
fD,λn,HJ1

)
+ ε0 − εn.
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iii. Oracle Property for RFE in SVM: The infinite-sampled regularized risk

for the empirical solution fD,λn,HJ , λn
∥∥fD,λn,HJ

∥∥2

HJ +RL,P

(
fD,λn,HJ

)
converges

in measure to R∗L,P,H (and hence to R∗L,P if the RKHS H is dense in L∞ (X )) iff

J ∈ J̃ .

The proof of Lemma 20 is given in Appendix B.3.6. We are now ready to prove The-

orem 10. The proof is for any general setting and hence, we assume that assumptions

(A1) and (A2) hold.

3.8.2 Proof of Theorem 10

Proof. (1) Let X J∗ be the correct input space and J∗ be the correct set of dimensions

to be removed with |J∗| = d − d0. To prove the first part of Theorem 10, we show

that, starting with the input space X , the probability that we reach the space X J∗ is 1

asymptotically. First let us assume that there exists only one correct ‘path’ from X to

X J∗ . Let J ◦ be that correct path and J ◦ = {J◦0 ≡ {·}, J◦1 , . . . , J◦d−d0 ≡ J∗}.

From the proof of (i) in Appendix B.3.6, we have

λn

∥∥∥f
D,λn,H

J◦
i+1

∥∥∥2

H
J◦
i+1

+RL,D

(
f
D,λn,H

J◦
i+1

)
≤λn

∥∥∥f
D,λn,H

J◦
i

∥∥∥2

HJ◦
i

+RL,D

(
f
D,λn,H

J◦
i

)
+ εn

with probability at least 1−2e−τ for εn = (2c+24
√

2τ+48K2a
2p)n−

β
2β+1 +40τn−

4β+1
2(2β+1) .

Now let Ji+1 6= J◦i+1 be any other J such that J◦i ⊂ Ji+1 with ‖Ji+1‖ = ‖J◦i ‖ + 1, we

have from (5.15) and (5.16) in Appendix B.3.6 that

λn

∥∥∥fD,λn,HJi+1

∥∥∥2

HJi+1
+RL,D

(
fD,λn,HJi+1

)
>λn

∥∥∥f
D,λn,H

J◦
i

∥∥∥2

HJ◦
i

+RL,D

(
f
D,λn,H

J◦
i

)
+ ε0 − εn
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with probability at least 1 − 2e−τ . Now if we choose τ = o(n
2β

2β+1 ) with τ → ∞, then

we see εn = O(n−
β

2β+1 ), and hence δn ≡ ε0 − εn satisfies the second inequality with the

condition that δn = ε0 − O(n−
β

2β+1 ) with δn → 0. Now since ε0 is a fixed constant,

∃Nε0 > 0 such that ∀n ≥ Nε0 , 2εn ≤ ε0. Without loss of generality we assume that

n ≥ Nε0 . Then we have the condition that

λn

∥∥∥f
D,λn,H

J◦
i+1

∥∥∥2

H
J◦
i+1

+RL,D

(
f
D,λn,H

J◦
i+1

)
≤ λn

∥∥∥f
D,λn,H

J◦
i

∥∥∥2

HJ◦
i

+RL,D

(
f
D,λn,H

J◦
i

)
+ δn

with probability at least 1− 2e−τ .

For notational ease, let us define,

RR (J1, J2) :=λn
∥∥fD,λn,HJ1

∥∥2

HJ1
+RL,D

(
fD,λn,HJ1

)
− λn

∥∥fD,λn,HJ2

∥∥2

HJ2
−RL,D

(
fD,λn,HJ2

)
,

and RR (J) := λn
∥∥fD,λn,HJ

∥∥2

HJ +RL,D

(
fD,λn,HJ

)
−R∗L,P,H .

Then,

P (‘RFE finds the correct dimensions’ )

≥ P (‘RFE follows the path J ◦ to the correct dimension space’ )

= P
(
J0 := J◦0 , J1 := J◦1 , . . . , Jd−d0 := J◦d−d0 , Jd−d0+1 := ∅

)
= P (J0 := J◦0 )P

(
J1 := J◦1

∣∣J◦0) · · ·
· · ·P

(
Jd−d0 := J◦d−d0

∣∣J◦0 , . . . , J◦d−d0−1

)
P
(
Jd−d0+1 := ∅

∣∣J◦0 , . . . , J◦d−d0) ,
where ‘Jd−d0+1 := ∅’ means the algorithm stops at that step. Note that P (J0 := J◦0 ) = 1
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and then observe,

P
(
Ji+1 := J◦i+1

∣∣J◦0 , . . . , J◦i )
=P

(
Ji+1 := J◦i+1

∣∣J◦i ) ( ∵ {J◦0 , . . . , J◦i−1} have already been removed from the model)

=P
(
RR

(
J◦i+1, J

◦
i

)
≤ δn , RR

(
J◦i+1, J

◦
i

)
< RR

(
J•i+1, J

◦
i

)
∀J•i+1 6= J◦i+1

)
≥P
(
RR

(
J◦i+1, J

◦
i

)
≤ δn , δn < RR

(
J•i+1, J

◦
i

)
∀J•i+1 6= J◦i+1

)
≥1− P

(
RR

(
J◦i+1, J

◦
i

)
> δn

)
−

∑
J•i+1 6=J◦i+1

P
(
RR

(
J•i+1, J

◦
i

)
≤ δn

)
≥1− 2e−τ − 2(d− i− 1)e−τ = 1− 2(d− i)e−τ .

Also see that,

P
(
Jd−d0+1 := ∅

∣∣J◦0 , . . . , J◦d−d0) = P
(
RR

(
Jd−d0+1, J

◦
d−d0

)
> δn ∀Jd−d0+1

)
≥ 1− 2d0e

−τ .

Hence,

P (‘RFE finds the correct dimensions’ ) ≥
d−d0∏
i=0

(
1− 2(d− i)e−τ

)
.

Now for τ = o(n
2β

2β+1 ) with τ → ∞, P (‘RFE finds the correct dimensions’ ) → 1 as

n→∞.

Now let us prove the same assertion for the case when there is more than one correct

‘path’ from X to X J∗ . Let J1, . . . ,JN be an enumeration of all possible such paths.

Define ‘C-sets’ for a Ji (where index i denotes the ith cycle of RFE) as CS(Ji) := {Ji+1 :

Ji, Ji+1 ∈ Jk for some k}. Now,

P (‘RFE finds the correct dimensions’ )

≥ P (J0 := J◦0 , J1 := J◦1 ∈ CS(J◦0 ), . . .

. . . , Jd−d0 := J◦d−d0 ∈ CS(J◦d−d0−1), Jd−d0+1 := ∅
)

= P (J0 := J◦0 )P
(
J1 := J◦1 ∈ CS(J◦0 )

∣∣J◦0) · · ·P (Jd−d0+1 := ∅
∣∣J◦d−d0) .
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Again as before P (J0 := J◦0 ) = 1 and P
(
Jd−d0+1 := ∅

∣∣J◦d−d0) ≥ 1− 2d0e
−τ . Now note,

P
(
Ji+1 := J◦i+1 ∈ CS (J◦i )

∣∣J◦i )
≥ P

(
RR

(
J◦i+1, J

◦
i

)
≤ δn ∀J◦i+1 ∈ CS (J◦i ) , δn < RR

(
J•i+1, J

◦
i

)
∀J•i+1 /∈ CS (J◦i )

)
≥ 1−

∑
J◦i+1∈CS(J◦i )

P
(
RR

(
J◦i+1, J

◦
i

)
> δn

)
−

∑
J•i+1 /∈CS(J◦i )

P
(
RR

(
J•i+1, J

◦
i

)
≤ δn

)
≥ 1− 2 |CS (J◦i )| e−τ − 2 |CS (J◦i )c| e−τ = 1− 2(d− i)e−τ ,

since |CS (J◦i )|+ |CS (J◦i )c| = d− i. Hence again we have that,

P (‘RFE finds the correct dimensions’ ) ≥
d−d0∏
i=0

(
1− 2(d− i)e−τ

)
.

Hence for τ = o(n
2β

2β+1 ) with τ → ∞, P (‘RFE finds the correct dimensions’ ) → 1 as

n→∞.

(2) To prove the second part of Theorem 10 just observe that if Jend is the last cycle

of the algorithm in RFE, then from (5.19) in Appendix B.3.6, and recycling arguments

given at the beginning of the first part of the proof we have that

P (|RR (Jend)| ≤ δn)

=P (|RR (J∗)| ≤ δn)P (Jend = J∗) + P
(
|RR (Jend)| ≤ δn

∣∣Jend 6= J∗
)
P (Jend 6= J∗)

≥P (|RR (J∗)| ≤ δn)P (Jend = J∗)

≥(1− e−τ )
d0∏
i=0

(
1− 2(d− i)e−τ

)
.

So for τ = o(n
2β

2β+1 ) with τ →∞,

P
(∣∣∣λn ∥∥fD,λn,HJend

∥∥2

HJend
+RL,D

(
fD,λn,HJend

)
−R∗L,P,H

∣∣∣ ≤ δn

)
→ 1 with n→∞.

Note: Although (5.19) in Appendix B.3.6 was asserted for ηn, we do have ηn < εn <

δn ∀n ≥ Nε0 , so the proof for the second part of the theorem will hold true for δn.
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3.9 Case Studies II

Here we further study the usage of two very important kernels in classification using

support vector machines and we discuss the usefulness of our algorithm in such settings.

3.9.1 CASE STUDY 3: Protein classification with Mismatch String Ker-
nels

A very fundamental problem in computational biology these days is the classification

of proteins into functional and structural classes based on homology of protein sequence

data. A new class of kernels, called the mismatch string kernels, are increasingly being

used with support vector machines (SVMs) in a discriminative approach to the protein

classification problem. These kernels measure sequence similarity based on shared

occurrences of k length subsequences, counted with up to m mismatches. This is

again a typical classification problem, where Y = {1,−1} and the hinge loss function

LHL(x, y, f(x)) = max{0, 1− yf(x)} is again used as the surrogate loss.

The (k,m) mismatch kernel (see Leslie et al. 2004, for details) is based on a feature

map from the space of all finite sequences from an alphabet A with C(A) = l to Z≥0
lk ,

where lk denotes the dimensions spanned by the set of k-length subsequences (‘k-mers’)

from A. For a fixed k-mer α = a1a2 . . . ak, with each ai a character in A, the (k,m)-

neighborhood generated by α is the set of all k-length sequences β from A that differ

from α by at most m mismatches. We call this set N(k,m)(α).

The feature map Φ(k,m) for a k-mer α is defined as Φ(k,m)(α) = (φβ(α))β∈Ak , where

φβ(·) is a indicator function such that, φβ(α) = 1 if β ∈ N(k,m)(α), and 0 otherwise.

Then for a sequence x of any length, the feature map Φk,m is defined as follows:

Φ(k,m)(x) =
∑

k−mers α in x

Φ(k,m)(α),
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that is, we extend the feature map additively by summing the feature vectors for all

the k-mers in x. The (k,m)-mismatch kernel K(k,m)(x, y) is then the Euclidean inner

product in feature space of feature vectors:

K(k,m)(x, y) =
〈
Φ(k,m)(x),Φ(k,m)(y)

〉
For m = 0, we retrieve the k-spectral kernel. The kernel can be further normalized as,

Knorm
(k,m)(x, y) =

K(k,m)(x, y)√
K(k,m)(x, x)

√
K(k,m)(x, y)

.

Feature selection in the context of protein classification is conducted on the k-mers

obtained from a protein sequence instead of the original one (see Leslie et al. 2004,

Iqbal et al. 2014). It is obvious that the RKHS H produced by the string kernel is finite

dimensional, and hence, the coordinates of the transformed space (the k-mers) can be

used directly for feature selection. Hence the problem reduces down to feature selection

in linear SVMs (produced by the Euclidean inner product), and the applicability of

recursive feature selection becomes clear in context of the discussions we had in Case

Studies 3.6.1 and 3.6.2.

3.9.2 CASE STUDY 4: Image classification with χ2 kernel

Indexing or retrieving images is one of the main challenges in pattern recognition

problems. Using color histograms as an image representation technique is useful because

of the reasonable performance that can be obtained in spite of their extreme simplicity

(see Swain and Ballard 1992). Image classification using their histogram representation

has become an popular option in many such settings. The support vector machine

(SVM) approach is considered a good classification technique in this setting because

of its high generalization performance without any prior model assumption, even when

66



the dimension of the input space is very high (see Chapelle et al. 1999).

Selecting the kernel is important as in any classification method with SVMs, and

generalized RBF kernels of the form Kd−RBF
ρ (x, y) = e−ρd(x,y) are have been proven to

be useful for classification in this context. In the case of images as input, the L2 norm

that generates the Gaussian RBF kernel seems to be quite meaningful here. However, as

histograms are discrete densities, other suitable comparison functions exist, especially

the χ2 function, which has been used extensively for histogram comparisons (Schiele

and Crowley 1996). The χ2 distance is given as dχ2(x, y) =
∑

i
(xi−yi)2
xi+yi

, and hence the

χ2 kernel has the form,

Kχ2−RBF
ρ (x, y) = e

−ρ
∑
i
(xi−yi)

2

xi+yi .

In order to establish the consistency of our algorithm in this setting, we would need

to verify the regularity conditions given before Theorem 10 in this setup. Look from

the discussions in Case Study 3.6.2, we already established the conditions of the Hinge

loss function LHL. The input space X in image classification are histograms which can

be represented as h × w vectors for grayscale images and 3 × h × w vectors, where h

and w are the height and width of the images in pixels. It is easy to see that the kernel

Kχ2−RBF
ρ is continuous, and the input space is separable, hence separability of Hχ2−RBF

ρ

follows from Lemma 4.33 of SC08. It is also easy to see that ‖Kχ2−RBF
ρ ‖∞ ≤ 1.

Note that the input space X can be included in a Euclidean ball and the kernel

Kχ2−RBF
ρ is infinitely many times differentiable. Then by Theorem 6.26 of SC08, we

have explicit polynomial bounds on the ith entropy number of RKHS generated by

these kernels in essence of the assumption given in Theorem 10. Also note that the

polynomial bound we assume on the approximation error A2(λ) helps us to obtain

explicit rates for the RFE, but there hasn’t been much work done on the theoretical

derivations of properties of support vector machine classification with a χ2 kernel, and
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this still remains an open problem in this domain. However consistency follows in spite

of any such assumption on the approximation error as A2(λ) → 0 when λ → 0 from

Lemma 5.15 of SC08. The above discussions validate RFE as a useful technique for

feature selection in image classification problems.

3.10 Simulation Study

In this section we present a short simulation study to illustrate the use of risk-RFE

for feature elimination in SVMs and compare it with penalized methods, like LASSO.

3.10.1 Consistency and selection of features

Note that the use of RFE for feature selection has been in practice for well over

a decade and it is a well-accepted technique in classification. The main aim of this

section is to evaluate our consistency results, and a method for selection of the subset

of features. We consider two different data-generating mechanisms, one in the classical

classification setting and the other in regression. For each of these examples we again

look at three different scenarios. For the first scenario, the total number of covariates is

15 of which only 4 are important. For the second scenario, there are 30 covariates with

only 7 important ones. The third scenario has 50 covariates with 3 that are important.

For the classification example we consider the hinge loss LHL as the surrogate

loss and the SVM function is computed using the Gaussian RBF kernel kγ(x1, x2) =

exp{− 1
γ2
‖x1−x2‖2

2}. The covariates X were generated uniformly on the segment [−1, 1]

and the output vector Y was generated as Y = sign(ω′X), where ω is the vector of co-

efficients with the first few elements non-zero, corresponding to the important features,

chosen at random from a list of coefficients [−1,−0.5, 0.5, 1] and the rest are zero. We

initialize the original SVM function using a 5-fold cross validation on the kernel width
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SVM-RBF d = 15, d0 = 4 d = 30, d0 = 7 d = 50, d0 = 3

(vs LASSO) n=100 n=200 n=400 n=100 n=200 n=400 n=100 n=200 n=400

Prop no errors (a) 0.97 (0.94) 1 (1) 1 (1) 0.62 (0.46) 1 (0.96) 1 (1) 0.95 (0.97) 1 (1) 1 (1)
Prop 1 error (b) 0.03 (0.06) 0 (0) 0 (0) 0.34 (0.49) 0 (0.04) 0 (0) 0.05 (0.93) 0 (0) 0 (0)
Prop > 1 error (c) 0 (0) 0 (0) 0 (0) 0.04 (0.05) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

SVR-Linear d = 15, d0 = 4 d = 30, d0 = 7 d = 50, d0 = 3

(vs LASSO) n=100 n=200 n=400 n=100 n=200 n=400 n=100 n=200 n=400

Prop no errors (a) 1 (0.93) 1 (1) 1 (1) 1 (0.47) 1 (0.91) 1 (1) 1 (0.98) 1 (1) 1 (1)
Prop 1 error (b) 0 (0.07) 0 (0) 0 (0) 0 (0.48) 0 (0.09) 0 (0) 0 (0.02) 0 (0) 0 (0)
Prop > 1 error (c) 0 (0) 0 (0) 0 (0) 0 (0.05) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table 3.1: Accuracy of RFE (vs LASSO)

γ and the regularization parameter λ and they were chosen from the set of values

(
2

nλ
, γ

)
= (0.01× 10i, j) i = {0, 1, 2, 3, 4}, j = {1, 2, 3, 4} (3.12)

where n is the sample size for the given setting.

In the second case we used an SVR function with a linear kernel k(x1, x2) = 〈x1, x2〉

to treat the regression setting. The loss function we considered is the ε-insensitive Loss

Lε(x, y, f(x)) = max{0, |y− f(x)|− ε} with ε = 0.1. Covariates are generated as before

while Y is now generated as Y = ω′X + 1
3
Ndim(X)(0, 1). As before we initialize with a

5-fold Cross Validation on λ.

We repeat the process for different sample sizes n = {100, 200, 400}. We also repeat

the simulations 100 times each to note down the proportion of times the RFE made

no errors (a), made only one error (b) or made more than 1 error (c) (See Table 3.1),

where a mistake is made if the rank of any non-important feature is found to be higher

than that of any important one. We compare the performance of RFE with LASSO

in both settings (logistic regression with LASSO or linear regression with LASSO de-

pending on the example), and the results for LASSO are given in the parentheses. The

simulated relationships between the output Y and the input X being linear, we should
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Figure 3.1: Reverse Scree Graph for one run of the simulations for (a) SVM with
Gaussian Kernel (b) SVR with Linear Kernel with d = 30, d0 = 7

expect LASSO to work as well in these settings. However as seen in Table 3.1, RFE

dominates LASSO in smaller sample sizes, while in larger sample sizes both perform

equally well. The entire methodology was implemented in the MATLAB environment.

For the implementation we used the SPIDER library for MATLAB4, which already has

a feature elimination algorithm based on RFE and we modified it accordingly to suit

our criterion for reduction. The codes for the algorithm and the simulations are given

in 3.13.

One important question we inevitably face in feature elimination is when to stop.

Note that our theoretical results suggest the existence of a gap ε0 and our results show

that asymptotically the difference in the empirical versions of the objective functions

exceed it whenever we move beyond the correct dimension. Practically it is almost

impossible to characterize this gap for a given setting, but the existence of this gap can

be observed from the values of the objective function at each stage of the algorithm.

One idea that can be implemented is that of a ‘reverse Scree graph’ (See section on

Scree graphs in chapter 6 of Jolliffe (2002)). Implementation of the Scree graph is a

4The Spider library for Matlab can be downloaded from http://www.kyb.tuebingen.mpg.de/bs/

people/spider/
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Figure 3.2: Linear-Quadratic mixture change point analysis for (a) SVM with Gaussian
Kernel for comparable cross validation values of λ and kernel width γ and (b) SVR
with Linear Kernel for comparable cross validation values of λ, with d = 30, d0 = 7 for
varying sample sizes. The bold dots represent the estimated change points.

Figure 3.3: Linear-Quadratic mixture change point analysis for (a) SVM with Gaussian
Kernel for comparable cross validation values of λ and kernel width γ and (b) SVR
with Linear Kernel for comparable cross validation values of λ, with d = 50, d0 = 3 for
varying sample sizes. The bold dots represent the estimated change points.

well-formulated idea in choosing the correct number of Principal Components in PCA

and that same idea can be applied here as well. We plot the values of the objective

function inf
i∈Z\J

λ
∥∥fD,λ,HJ∪{i}

∥∥2

HJ∪{i} +RL,D

(
fD,λ,HJ∪{i}

)
at each run of the algorithm in

a graph. Figure 3.1 justifies such an argument.

For a further exploratory analysis of this gap and to characterize the number of

71



features to be eliminated, we tried some ad-hoc model diagnostic tools. From a heuristic

standpoint, the phenomenon captured in Figure 3.1 seems to suggest that if we fit a

regression model to the observed objective function values in the scree plot, we will

expect a change in the slope of the regression line right after we start eliminating

significant covariates because of the aforementioned gap. One plausible way to analyze

this gap is to fit a change point regression model of the observed values on the number

of cycles of RFE and to infer that the estimated change point is the ad-hoc stopping

rule, so as to eliminate all features ranked below that point. For the asymptotic belief

that the change in the objective function is negligible to the left of the change point,

we fit a linear trend there. However to the right of the change point, these changes

might show non-linear trends, and hence we tried linear and quadratic trends to model

that. The quadratic trend seemed to work better. Some plots (see Figures 3.2, 3.3) are

given here to show our analysis where we show the mixture of linear-quadratic fits.

So heuristically it is possible to justify the choice of the correct dimensions (features)

based on a reverse scree graph. Otherwise some other user-defined choices for the gap

size can be used to determine how many features are required in a specific setting.

3.10.2 RFE vs penalized methods

In this section, we look at some non-linear settings to establish the generability of

RFE vs l1 penalized methods. As we mentioned before, lp penalized methods fail to

find the correct subset of features in general non-linear relationships as these following

simulation examples will hope to prove.

We again consider two settings: classification and regression. The covariates X is

generated uniformly from the [−2, 2]10 in both settings. In the classification example,

the output variable Y depends only on table the first two features as the following: Y

takes the value 1 inside the smaller square (−1 ≤ X1 ≤ 1,−1 ≤ X2 ≤ 1), and takes the
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Test Misclassification Error
Method Mean Standard Error
SVM with RFE 0.051 0.0264
SVM without RFE 0.242 0.0476
Logistic Regression with Lasso 0.286 0.0734
L1 SVM 0.262 0.0567

Table 3.2: SVM-wRFE v SVM-woRFE v Lasso v l1 SVM

Test Measurement Error
Method Mean Standard Error
SVR with RFE 15.523 0.5885
SVR without RFE 16.293 0.0448
Linear Regression with Lasso 17.754 1.3258

Table 3.3: SVR-wRFE v SVR-woRFE v Lasso

value −1 inside the annulus formed between this smaller square and the larger square

given as (−2 ≤ X1 ≤ 2,−2 ≤ X2 ≤ 2). In the regression setting, Y again depends only

on the first two features, defined by the functional relationship Y = a1X1X2

(1+a2X1)2
, where

a1, a2 are strictly positive constants. In classification, we compare RFE (with Gaussian

RBF kernel and hinge loss) with logistic regression with LASSO and L1-SVM, and in

regression, we compare RFE (with Gaussian RBF kernel and ε-insensitive loss) with

linear regression with LASSO. The results are given in the tables below. RFE was able

to pick the first two features for the model satisfactorily, while the penalized methods

struggled to find the same. The misclassification error in the classification setting and

the measurement error in tables 3.2 and 3.3 respectively shows that RFE performs

much better than these penalized methods.
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3.11 High dimensional framework when p grows with n

Most of our results in the body of the draft assume the premise that we have a fixed

design at hand, that is, we assume that dimension d of the input data X remains fixed.

We derived our asymptotic results for consistency of the feature selection algorithm

under this premise. High dimensional settings (when d grows with n) are becoming more

and more vogue in supervised learning problems and hence, one interesting question is

then to study the properties of our algorithm when both n, d → ∞ (however we still

assume that the number of significant signals in the design remain fixed, that is, d0 is

fixed and finite). In this section, our goal is to discuss our algorithm in light of this

new premise, and modify arguments to achieve consistency like in fixed design settings.

Let us assume that X ∈ Rd, and we observe data D = {(X1, Y1), . . . , (Xn, Yn)} ∼

i.i.d. P d
X×Y , where the probability distribution of the design now depends on the di-

mension d of the input space X . Note that P d denotes the measure for the initial

input-output space X × Y , and as we traverse down in the feature space for our algo-

rithm, we will assume that the probability measure on the reduced input spaces are just

restrictions of P d on these spaces (like we do for a fixed design). Henceforth, we will

denote the problem by P d. The modified feature selection algorithm is given below.

Algorithm 21. Start off with J ≡ [·] empty and let Z ≡ [1, 2, ..., d].

STEP 1: In the kth cycle of the algorithm choose dimension ik for which

ik = arg min
i∈Z\J

λ
∥∥fD,λ,HJ∪{i}

∥∥2

HJ∪{i} +RL,D

(
fD,λ,HJ∪{i}

)
−λ
∥∥fD,λ,HJ

∥∥2

HJ −RL,D

(
fD,λ,HJ

)
.

STEP 2: Update J = J ∪ {ik}. Go to STEP 1.
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Figure 3.4: Stopping rule for the modified algorithm in the limiting design size setting

Continue this until the difference

min
i∈Z\J

λ
∥∥fD,λ,HJ∪{i}

∥∥2

HJ∪{i} +RL,D

(
fD,λ,HJ∪{i}

)
− λ

∥∥fD,λ,HJ

∥∥2

HJ −RL,D

(
fD,λ,HJ

)
> δP

d

n (d− |J |) ,

where δP
d

n (·) is a known positive function intrinsic to the design, and output J as the

set of indices for the features to be removed from the model.

So the main modification of the algorithm lies in the stopping rule. In the fixed

design problem, the stopping rule was a fixed constant δn, while in this modified version

it is a function δP
d

n (·) : {1, . . . , d} 7→ R. Figure 3.4 shows a visual representation of the

stopping condition in this case. δP
d

n (·) acts as an envelop function and our algorithm is

stopped if and when the difference function jumps above δP
d

n (·).

To achieve consistency for this algorithm, we will now have to modify our assump-

tions and we will briefly discuss these modifications here. Let us consider the most

general framework (Condition 2). We keep assumption (A1) fixed, that is, while mov-

ing down between spaces that always contain all the significant features, we still believe

in the existence of a path of equality of risk like before. Assumption (A2) needs to be
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modified however, since the assumption of a fixed gap ε0 between risks in models that

contain all significant features vs all other sub-optimal models makes sense only in a

fixed design problem. In a varying design problem, heuristically this gap should dimin-

ish as well and shrink to 0 as d tends to ∞. Hence assumption (A2) is modified to

(A2*) and is given below:

(A2*). Let J1,J2, . . . ,JN be the exhaustive list of such paths from X to X J∗ , and let

J̃ :=
N⋃
i=1

Ji. There exists a monotonically decreasing discrete function εP
d

0 (·) > 0

intrinsic to the problem and reaching 0 in limit, such that for J1 ∈ J̃ , J2 /∈ J̃

with |J2| = |J1|+ 1, we have

R∗L,P d,FJ2 ≥ R
∗
L,P d,FJ1 + εP

d

0 (d− |J1|) . (3.13)

So we modify our assumption to reflect the varying gap size with the size of the de-

sign. Heuristically what this gap-size assumption says is the following: For a prob-

lem P d, with starting design size d, εP
d

0 (·) is a strictly positive, monotonically de-

creasing function from {1, . . . , d} 7→ R, such that εP
d

0 (d̃) → 0 in limit when both

d, d̃→∞. Hence there are two different asymptotic conditions working on δP
d

n (·) here,

with δP
d

n (·)→ εP
d

0 (·) as n→∞, and additionally δP
d

n (d̃)→ 0 as d, d̃, n→∞.

3.11.1 Under universal bounds for entropy and approximation error

We still have some work left before we can argue consistency for this algorithm. For

now, we assume that regularity conditions given in Theorem 10 will hold for any given

design d, that is, there are universal constants a, c such that the entropy bound and the

approximation error bound continue to hold universally. Then in lieu of our discussions

in this section, simple observation will show that results stated in Lemma 16 – Corollary

19 continue to hold under slightly restated versions (P n is replaced with P d,n to denote
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the appropriate probability measure for the starting design). Statements (i) and (iii)

in Lemma 20 will continue to hold, while (ii) can be changed to the following:

ii*. For J1 ∈ J̃ and J2 /∈ J̃ and for |J2| = |J1| + 1, ∃ ({εn} > 0) → 0, such that we

have with P d,n probability greater than 1− 2e−τ ,

λn
∥∥fD,λn,HJ2

∥∥2

HJ2
+RL,D

(
fD,λn,HJ2

)
≥ λn

∥∥fD,λn,HJ1

∥∥2

HJ1
+RL,D

(
fD,λn,HJ1

)
+εP

d

0 (d− |J1|)− εn.

Under the premise of this modified statement, we can sufficiently move on to estab-

lish the consistency arguments. It can be easily observed that the initial steps in the

proof of Theorem 10 in section 3.8.2 (which has been presented for a fixed design size)

continue to hold by taking δP
d

n (d− |J |) = εP
d

0 (d− |J |) − εn for design X J , and now

we further assume that supd∈N,d̃≤d lim inf
n→∞

εP
d

0 (d̃)

εn
> 2. This allows us to define a sequence

{N1, . . . , Nd, . . . }, such that 2εn ≤ εP
d

0 (d̃), whenever n > Nd and for all d̃ ≤ d. The

subsequent steps follow and see that we arrive at,

P (‘RFE finds the correct dimensions’ ) ≥
d−d0∏
i=0

(
1− 2(d− i)e−τ

)
&
(
1− 2de−τ

)d
,

where the last approximate inequality follows assuming 2de−τ < 1 for sufficiently large

n, and τ = o(n
2β

2β+1 ) with τ →∞. Now for the limiting infinite product to converge to

1 when n, d→∞, see that

(
1− 2de−τ

)d
=

((
1− 2d

eτ

)− eτ
2d

)− 2d2

eτ

.
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Hence if we assume d2e−τ → 0, see that the above quantity converge to 1 in limit.

Hence for consistency results to hold, d needs to grow slower than a certain rate in

terms of the sample size n. See that restricting the growth of τ to be o(n
2β

2β+1 ) implies

that we can choose τ ≈ n
2βk
2β+1 for some k < 1. This implies that de−τ/2 ≈ de−0.5n

2βk
2β+1

,

and hence d ≈ o

(
e0.5n

2βk
2β+1

)
suffices.

3.11.2 Under relaxed bounds for entropy and approximation error

It can be well reasoned that the entropy bounds (and the approximation error

bounds) should depend on the size of the design d. A look at the bounds derived for

the Gaussian RBF kernel in section 3.6.2 makes it clear. It is however difficult to obtain

explicit bounds in terms of the design size and is currently beyond the scope of this

discussion. We will then assume very relaxed rates for these bounds in terms of the

design size, and try to establish our consistency arguments under that premise. Let us

restate our main theorem now.

Theorem 22. Let P d be a probability measure on X ×Y, where the input space X is a

valid metric space. Let L : X ×Y×R 7→ [0,∞] be a convex locally Lipschitz continuous

loss function satisfying L(x, y, 0) ≤ 1 for all (x, y) ∈ X × Y. Let H be the separable

RKHS of a measurable kernel k on X with ‖k‖∞ ≤ 1. Let, for fixed n ≥ 1, ∃ constants

ã ≥ 1, α ≥ 0 and p ∈ (0, 1) such that EDX∼P d,nX ei (id : H 7→ L∞(DX )) ≤ aeαdi−
1
2p , i ≥ 1.

For a given sample size n, let {λn} ∈ [0, 1] be such that λn → 0 and lim
n→∞

λnn = ∞.

We also assume that there exists a c > 0, α̃ and a β ∈ (0, 1] such that AJ2 (λ) ≤ c̃eα̃dλβ

for any J and for all λ ≥ 0 (where AJ2 (λ) ≡ AH
J

2 (λ)).

For d = O(log n), there exists δP
d

n (·) = εP
d

0 −O(n−γ) where γ ∈
(

0, β
2β+1

)
, for which

the following statements hold:

1. The Recursive Feature Elimination Algorithm for support vector machines, defined

for δP
d

n (·) given above, will find the correct lower dimensional subspace of the input
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space (X J∗) with probability tending to 1.

2. The function chosen by the algorithm achieves the best risk within the original

RKHS H asymptotically.

Now it is then well understood that the modifications needed to reflect these changes

is look at our bounds in Lemma 16 – Corollary 19 by replacing a by ãeαd and c by

c̃eα̃d. Lemma 20 can now be restated by replacing εn by εn,d = (2ceα̃d + 24
√

2τ +

48K2a
2pe2αpd)n−

β
2β+1 + 40τn−

4β+1
2(2β+1) . Now we need to ensure that asymptotically εn,d

goes to 0. Observe first for τ = o(n
2β

2β+1 ), this reduces to εn,d = K̃eαdn−
β

2β+1 + o(1), for

a constant K̃ and α = max(α̃, 2αp). Now if we fix a constant γ ∈
(

0, β
2β+1

)
, such that

εn,dn = O(n−γ), we must have eαd ≤ C1n
β

2β+1
−γ, or that d = O(log n). All subsequent

steps follow similarly as discussed in the previous section, where we continue to assume

supd∈N,d̃≤d lim inf
n→∞

εP
d

0 (d̃)

εn,d
> 2.

Now since log n grows slower than e0.5n
2βk
2β+1

, we have de−τ → 0 for d = O(log n)

automatically, and hence we can arrive at our consistency results.

3.12 Concluding remarks

We proposed an algorithm for feature elimination in empirical risk minimization

and support vector machines. We studied the theoretical properties of the method,

discussed the necessary assumptions, and showed that it is universally consistent in

finding the correct feature space under these assumptions. We provided case studies of

a few of the many different scenarios where this method can be used. Finally, we give

a short simulation study to illustrate the method and discuss a practical method for

choosing the correct subset of features.

Note that Lemma 20(ii) establishes the existence of a gap in the rate of change of the

objective function at the point where our feature elimination method begins removing
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essential features of the learning problem. This motivated us to use a scree plot of the

values of the objective function at each cycle, and indeed our simulation results support

our approach by visually exhibiting this gap. Moreover, the graphical interpretation of

the scree plot motivated the use of change point regression to select the correct feature

space. It would be interesting to conduct a more detailed and formal analysis of this

gap in real life settings to facilitate more efficient, automated practical solutions.

As far as our knowledge goes, not much analysis have been done on the proper-

ties of variable selection algorithms under such general assumptions on the probability

generating mechanisms of the input space, especially in support vector machines. So

the results generated in this paper can act as a good starting point for similar analy-

ses in other settings. It would also be interesting to analyze RFE for other settings,

including censored support vector regression (See Goldberg and Kosorok (2013)) or

other machine learning problems, including reinforcement learning or other penalized

risk minimization problems.

3.13 Supplementary Materials

Details on the codes are given in the html page

http://www.bios.unc.edu/~kosorok/RFE.html.

80



CHAPTER 4: FEATURE SELECTION IN Q LEARNING

4.1 Reinforcement Learning: Methods and concepts

Let us briefly discuss the history and development of reinforcement learning (and

Q learning) in the context of dynamic treatment regime.

4.1.1 Reinforcement Learning

Reinforcement learning is a computational approach to understanding and automat-

ing goal-directed learning and decision-making, and is distinguished from other ap-

proaches by its emphasis on learning from the direct interaction between an individual

and its environment. A detailed account of the history of reinforcement learning is

given in Sutton and Barto (1998).

In a typical reinforcement learning design, we consider a multistage decision problem

with say T decision points. Let St be the (random) state of the patient at stage

t ∈ {1, . . . , T+1} and let St = {S1, . . . , St} be the vector of all states up to and including

stage t. Similarly, let At be the action chosen in stage t, and let At = {A1, . . . , At} be

the vector of all actions up to and including stage t. Lower case letters, such as s and

a, are used to denote the realizations of the random variables S and A, respectively.

Hence we have st = {s0, s1, . . . , st}, and at = {a0, a1, . . . , at}. We assume that the finite

longitudinal trajectories are sampled at random from a distribution P and we denote

the expectation by E.

After each time step t, the patient receives a reward Rt for the treatment he/she

receives, denoted possibly as a random function of the state variables up to the current

81



state St, the actions taken each stage up to the current state At, and the resultant next

state St+1. When t = 0, 1, . . . , T , the reward is given by Rt = r(St,At, St+1), where

r is the time-dependent deterministic function specifying the relationship between the

reward and the state and action variables.

In reinforcement learning, at each stage t our goal is to choose at so as to maximize

or minimize the expected discounted return:

R̃t = Rt + γRt+1 + γ2Rt+2 + · · ·+ γTRt+T =
T−t∑
k=0

γkRt+k,

where γ is the discount rate (0 ≤ γ ≤ 1) and controls the balance between a patient’s

immediate reward and future rewards.

Another important aspect of a reinforcement learning process is the exploration pol-

icy or a probability assignment p, which is defined as a map (st, at−1) 7→ pt(a|st, at−1).

The policy can possibly be a deterministic action as well, that is πt(st, at−1) = at. The

entire sequential policy, or the sequence of deterministic decision rules {π1, . . . , πT} is

called a dynamic treatment regime. Let Pπ be the distribution, from which the train-

ing data are sampled, when the policy π is used to generate actions. Based on the

conditional history (st, at−1) before the start of treatment at time t, we formulate a

value function to account for the total reward a patient is expected to achieve over the

future:

Vt(st, at−1) = Eπ

[
T−t∑
k=0

γkRt+k|St = st,At−1 = at−1

]
.

Then the optimal value function can be defined as

V ∗t (st, at−1) = max
π∈Π

Vt(st, at−1) = max
π∈Π

Eπ

[
T−t∑
k=0

γkRt+k|St = st,At−1 = at−1

]
, (4.1)

where Π denote the collection of all policies. The main goal of any reinforcement
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Estimation step:

Q̂T ← [
{RT , (ST ,AT )}

Line T

Estimation step:

Q̂T−1 ← [
{RT−1+maxAT

Q̂T , (ST−1,AT−1)}

Line T − 1

Estimation step:

Q̂1 ←[
{R1 + maxA2

Q̂2, (S1,A1)}

Line 1

Optimal
policies

{π̂1, . . . , π̂T }

Evaluation step:
π̂T =

arg maxAT
Q̂T

Evaluation step:
π̂T−1 =

arg maxAT−1
Q̂T−1

Evaluation step:

π̂2 = arg maxA2
Q̂2

Evaluation step:

π̂1 = arg maxA1
Q̂1

Figure 4.1: Steps of Q Learning

learning algorithm is to estimate the optimal value function efficiently. The Bellman

equation (Bellman 1956) characterizes the optimal policy π∗ as one that satisfies the

following recursive relation:

π∗t (st, at−1) ∈ arg max
at

E
[
Rt + γV ∗t+1(St+1,At)|St = st,At = at

]
. (4.2)

The main goal of reinforcement learning is to find a policy that leads to a high ex-

pected cumulative reward. Naively, one could learn the transition distribution functions

and the reward function using the observed trajectories, and then solve the Bellman

equation recursively. However, this approach is inefficient both computationally and

memory-wise. In the following section, we introduce the Q-learning algorithm, which

requires less memory and less computation.

4.1.2 Q Learning

One of the most important algorithms to solve the reinforcement learning prob-

lem is Watkins’ Q-learning (Watkins 1989, Watkins and Dayan 1992). Q-learning uses

backward recursion to compute the Bellman equation without the need to know the full

dynamics of the process. Hence, Q-learning does not estimate the value function di-

rectly, it however estimates a Q-function instead. More formally, we define the optimal
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time-dependent Q-function as:

Q∗t (st, at) = E[Rt + γV ∗t+1(St+1,At)|St = st,At = at].

Now, since V ∗t (st, at−1) = maxat Q
∗
t (st, at−1, at), it is then relatively easy to see that an

optimal policy will satisfy π∗t (st, at−1) = arg maxat Q
∗
t (st, at−1, at). Then the one-step

Q-learning has the simple recursive form

Q∗t (st, at) = E[Rt + γmax
at+1

Q∗t+1(St+1,At, at+1)|St = st,At = at]. (4.3)

The recursive form of Q-learning above allows the Qt’s to be estimated backwards

through time t = T, T − 1, . . . , 1, 0. For convenience, QT+1 is set equal to 0 and the

estimate beginning at the last time point Q̂T is estimated and the rest are estimated

recursively using the estimates from the later time points, back to Q̂0 at the beginning.

Once the backwards estimation process is done, the sequence of {Q̂0, Q̂1, . . . , Q̂T} can

be used for estimating optimal policies

π̂t(st, at−1) = arg max
at

Q̂t(st, at−1, at)

where t = 0, 1, . . . , T , and these optimal policies can therefore be used to test or predict

for a new data set. Unless otherwise mentioned, we would assume γ = 1.

4.2 Recursive Feature Elimination

With recent development in the ease of collection and handling of large amounts

of data, more often than not we have huge information at our disposal, especially

with respect to the number of explanatory variables or ‘features’. The incremental

information provided by each of these features may often be redundant, and learning
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the functional connection between the explanatory variables and the response from such

high-dimensional data can be quite challenging. One way to overcome this problem is

to use feature elimination techniques to find a smaller set of features that is able to

perform the learning task sufficiently well.

Recursive Feature Elimination as a technique to rank features and select the optimal

subset of features for learning in support vector machines (SVM) was first formulated

by Guyon et al. (2002). They developed this as a backward elimination procedure based

on recursive computations of the SVM learning function. At each recursive step of the

algorithm, the change in the RKHS norm of the estimated SVM function is calculated

after deletion of each of the features remaining in the model, and then removing the

one that shows the lowest change in such norm, thus performing an implicit ranking

of features. RFE and other methods derived out of RFE are generalizable in the sense

that they can work in learning in a variety of complex functional classes (not just

the linear space as do most of the embedded methods for feature learning in SVMs).

However, arguments for RFE have mostly been heuristic, and their ability to produce

successful data-driven performances have been examined only in simulated or observed

data. Theoretical properties of it has never been studied in rigorous detail.

To create a method in the spirit of the generability achieved by Guyon et al. but with

concrete theoretical properties, we developed a modified RFE procedure in Dasgupta

et al. (2013), using a different criterion for deletion and ranking of features to enable

theoretical consistency. The ranking of the features are done based on the lowest

difference observed in the regularized empirical risk after removing each of those features

from the existing model. The heuristic reasoning behind this is that if any of the

features do not contribute to the model at all, the increase in the regularized risk will

be inconsequential. This allows RFE to be generalized to the much broader yet simpler

setting of empirical risk minimization where we can apply the same idea to empirical
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risk.

4.2.1 The support vector machine algorithm

Let H be an R-Hilbert space over the input space X . A function k : X ×X 7→ R is

called a reproducing kernel of H if k(·, x) ∈ H for all x ∈ X , and has the reproducing

property f(x) = 〈f, k(·, x)〉 for all f ∈ H, and all c ∈ X . The space is called a

real-valued Reproducing Kernel Hilbert Space (RKHS) over X .

Let H be a separable RKHS of a measurable kernel k on X , and fix a λ > 0. Let

L be a convex and locally Lipschitz continuous loss function. Then the empirical SVM

decision function can be defined as,

fD,λ,H = arg min
f∈H

λ ‖f‖2
H +RL,D(f), (4.4)

where D is the data D := {(X1, Y1), . . . , (Xn, Yn)} ∈ (X × Y)n, and RL,D(f) is the

empirical risk of the function f in estimating the output variable Y .

Calculate the empiri-
cal criterion R1 in the

model without X(1)

- - - - - -

- - - - - -

- - - - - -

Calculate the em-
pirical criterion
Rd−k in the model

without X(d−k)

Features left Zk =
{X(1), . . . ,X(d−k)},

features to remove = Sk

Start with features left
Z0 = {X1, . . . ,Xd},

features to re-
move S0 = {0}.

Find feature Xik+1

which produces
lowest regularized

empirical risk Rik+1

Is Rik+1
−Rik

too large?

Stop

Update features left
Zk+1 = {X(1), . . . ,X(d−k−1)},

update features to remove
Sk+1 = Sk ∪ Xik+1

Features left Zk, and
features to remove Sk

yes

no

Figure 4.2: Schematics of RFE in nonparametric estimation
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The infinite sampled version of the regularized minimizer is given as fP,λ,H =

arg min
f∈H

λ ‖f‖2
H + RL,P (f), where P is the underlying probability distribution of the

product space (X × Y).

4.2.2 Feature Elimination Algorithm

We began by proposing a way such that starting off with an arbitrary space F , we

are able to create lower dimensional versions of it. This is indeed necessary, since at

each stage of the feature elimination process, we move down to a ‘lower dimensional’

feature space and the functional spaces need to be adjusted to cater to the appropriate

version of the problem in these subspaces.

Definition 23. For any set of indices J ⊆ {1, 2, .., d} and a given functional space F ,

define FJ = {g : g = f ◦πJc ,∀f ∈ F}, where πJ
c

is the projection map from x 7→ xJ

(x, xJ ∈ Rd), such that xJ is produced from x by replacing those elements in x which

are indexed in the set J , by zero.

We can hence define the space X J = {πJc(x) : x ∈ X}, such that πJ
c

: X 7→ X J is

a surjection. Now we are ready to provide the algorithm. Assume the support vector

machine framework, where we are given an RKHS H indexed by a kernel k.

Algorithm 24. Start off with J ≡ [·] empty and let Z ≡ [1, 2, ..., d].

1. In the kth cycle of the algorithm choose dimension ik for which

ik = arg min
i∈Z\J

λ
∥∥fD,λ,HJ∪{i}

∥∥2

HJ∪{i} +RL,D

(
fD,λ,HJ∪{i}

)
(4.5)

−λ
∥∥fD,λ,HJ

∥∥2

HJ −RL,D

(
fD,λ,HJ

)
.

2. Update J = J ∪ {ik}. Go to STEP 1.
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Continue this until the difference

min
i∈Z\J

λ
∥∥fD,λ,HJ∪{i}

∥∥2

HJ∪{i} +RL,D

(
fD,λ,HJ∪{i}

)
− λ

∥∥fD,λ,HJ

∥∥2

HJ −RL,D

(
fD,λ,HJ

)
becomes larger than a pre-determined quantity δn, and output J as the set of indices

for the features to be removed from the model.

4.3 Feature elimination in Q learning

Before going further, let us give a more detailed account of the mechanisms of Q-

learning. Typically Qts are modeled as a function of a set of parameters θ, where the

estimator are allowed to have different parameter sets for different time points t. For

example, Qt(st, at) may be of the form

Qt(st, at; θt) =
k∑
j=1

θtjφtj(st, at)

where θt = (θt1, . . . , θtk) and {φt1, . . . , φtk} are selected basis functions (See Zhao

et al. 2009). The estimated optimal policies π̂t(st, at−1) = arg maxat Q̂t(st, at; θt),

t = 0, 1, . . . , T , can therefore be used to test or predict for a new data set.

Our next aim is to estimate the Q-function for finding the optimal policy. However,

that is often challenging for the structure of the true Q-functions may be complex, the

maximization in equation (4.3) may be non-smooth, or the state and the action spaces

may be high-dimensional. A number of different approaches have been employed to

obtain the estimator of interest in recent years. Murphy (2005b), Blatt et al. (2004)

and Tsitsiklis and Van Roy (1996) showed that Q-learning estimation can be viewed

as approximate least-squares value iteration. The parameter estimators θ̂t for the tth
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Q-function satisfy

θ̂t ∈ arg min
θ

En
[
Rt + max

at+1

Q̂t+1(St+1,At, at+1; θ̂t+1)−Qt(St,At; θt)

]2

, (4.6)

where En is the empirical expectation. This is precisely the one-step update of Sut-

ton and Barto (1998) when γ = 1. In Murphy et al. (2006), Q-learning was modeled

as a generalization of the familiar regression model. Linear regression methods can

work well, but for that the dimension of the action space needs to be small. Other-

wise nonparametric or semi-parametric regression become desirable for estimating the

Q-functions. In Zhao et al. (2009) the authors considered two flexible techniques from

the machine learning literature, Support Vector Regression (SVR) and Extremely Ran-

domized Trees (ERT), as methods to fit Q-functions and to learn an optimal policy

using a training data set.

As is true with all other learning methods, reinforcement learning can suffer from

‘Curse of Dimensionality’. Although support vector regression is a penalized risk min-

imization method and does allow for some control on the over-complexification of the

estimated Q-functions, it is still necessary for some form of feature selection procedure

to effectively control for overfitting and redundancy. The foremost aim of the reinforce-

ment learning procedure is maximization of the value function, which is equivalent to

minimizing risk in a related framework. It is obvious then that each stage Q-function

estimation is basically a risk minimization problem. In our future research, we want to

find out if the recursive feature elimination procedure that we introduced in the first

part of this dissertation might be an interesting idea in this scenario, and that remains

the main question of interest. Since the Q-function estimation is done recursively in a

multistage format, one interesting question is whether we can tailor the RFE procedure

effectively to cater to this multistage risk minimization procedure, i.e., utilize RFE on

the entire multistage format to eliminate features that are surplus to the problem and
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redundant in this regard.

4.4 Methods for feature selection in Q learning

In Zhao et al. (2009), they explored the use of support vector regression (SVR) and

extremely randomized trees (ERT), as methods to fit Q-functions and to learn an opti-

mal policy using a training data set. The popularity of support vector machines (SVM)

as as a set of supervised learning algorithms is motivated by the fact these methods are

easy-to-compute techniques that enable estimation under weak or no assumptions on

the distribution (see Steinwart and Chirstmann 2008). Although the results given in

Section 3 cater to the framework of support vector machines, we showed in Dasgupta

et al. (2013) that RFE can be implemented in estimation methods involving empirical

risk minimization as well. Hence an interesting idea in terms of feature selection in Q

learning with support vector machines or other non parametric methods of estimation,

can be to use RFE at each stage of estimation of the Q functions.

4.4.1 Recursive feature elimination on the estimation steps

Recursive feature elimination (RFE) discussed in section 4.2, is a technique for fea-

ture elimination in various risk minimization problems. In Dasgupta et al. (2013) we

explicitly established results for consistency of the algorithm in choosing the right sub-

set of features in support vector machines or empirical risk minimization problems (and

hence in randomized trees), and potentially it can be adapted to other estimation sce-

narios as well. In Q learning (See Figure 4.1), we sequentially estimate the Q-functions

backwards in time. At each stage of estimation t, we fit a function non parametrically

to characterize the relationship between the current history Ht (where Ht = (St,At−1)),

current treatment At and the pseudo response Rt + maxat Q̂t+1(St+1,At, at+1). Hence

at each stage of estimation, we can use RFE to eliminate a subset of features (given
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by the index set Ĵ∗t ), such that the updated history H
Ĵ∗t
t contains only those features

that have been deemed important by our algorithm. And then the estimation of the

Q-function Qt is then conducted on the updated history H
Ĵ∗t
t instead of initial history

Ht.

Now we give our first algorithm. It uses RFE on each estimation stage of the Q

learning algorithm.

Algorithm 25 (RFE). Assume Q̂T+1 = 0. Let us denote Ht = (St,At−1). For

t = T, T − 1, . . . , 1,

1. Use Algorithm 24 to obtain subset H
Ĵ∗t
t ⊆ Ht.

2. Estimate Q̂t based on the updated history (H
Ĵ∗t
t , At) and pseudo response Rt +

maxat+1 Q̂t+1(h
Ĵ∗t+1

t+1 , at+1).

3. Obtain π̂t = arg maxat Q̂t(h
Ĵ∗t
t , at).

The version of the algorithm we proposed in Dasgupta et al. (2013) utilizes the

trained risk (trained regularized risk in support vector machines) as the criterion for

elimination. At each stage of the algorithm, we calculate the risk (or regularized risk)

in the trained submodels created by removing the remaining features in the model, one

at a time. The submodel that achieves the minimum risk (or regularized risk) among

them is chosen and becomes the new model for the next stage of the algorithm. Thus

sequentially it ranks features, and with a valid stopping rule, it can perform feature

selection and select the correct subset of features. Our theoretical results suggest the

existence of a gap that separates submodels having the correct subset of features as a

subset, from the submodels that do not contain all the necessary features. In Dasgupta

et al. (2013) we used a change point regression model to select this subset of features.

The trained regularized risk achieved from the chosen submodel at each stage of the

algorithm is plotted in a graph, and then a change point model is fit to estimate the
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cycle of the algorithm where the graph of the objective function changes slope, and all

features with lower ranks than the feature removed at that stage of the algorithm are

removed for redundancy.

4.4.2 Recursive feature elimination on estimation steps using separate data
folds for model training and testing

The next algorithm we propose for feature selection in Q learning is similar in

essence to the one proposed earlier, but differs in the criterion for deletion. Algorithm 24

proposes and algorithm 25 utilizes the version of RFE that uses regularized risk obtained

from the trained model as a rule to eliminate features. The new algorithm we propose

uses separate models for training the data and testing the error rate. Before running the

feature selection algorithm, we divide the observed data D = {(X1, Y1), . . . , (Xn, Yn)}

into two random splits Dtrain and Dtest. We fit our submodels in the same way as before

using the training data Dtrain, but obtain estimates of the measurement error (or risk)

from the test data Dtest. Hence in support vector machines say, the regularized risk is

created by adding the RKHS norm of the estimated function times the regularization

parameter to the risk estimate from the test data, and is used as the criterion for

deletion. This modified RFE (we call it the test-RFE) algorithm is given below:

Algorithm 26. Start off with J0 ≡ [·] empty and let Z ≡ [1, 2, ..., d]. Divide the

observed data D = {(X1, Y1), . . . , (Xn, Yn)} into two random splits Dtrain and Dtest, the

training and the test data respectively.

In the kth cycle of the algorithm,

1. Choose dimension ik for which

ik = arg min
i∈Z\Jk−1

λ
∥∥∥fDtrain,λ,H

Jk−1∪{i}

∥∥∥2

HJk−1∪{i}
+RL,Dtest

(
f
Dtrain,λ,H

Jk−1∪{i}

)
. (4.7)
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2. Update Jk = Jk−1 ∪ {ik}.

3. If |Z \ Jk| > 1, go to STEP 1.

Find kstop such that,

kstop = arg min
k
λ
∥∥fDtrain,λ,H

Jk

∥∥2

HJk
+RL,Dtest

(
fDtrain,λ,H

Jk

)
and output Jkstop as the set of indices for the features to be removed from the model.

The intuitive idea behind the rationale to replace the training set risk estimate with

the test set risk estimate in the objective function is to further minimize the possibility

of overfitting of the data to affect the elimination procedure. For moderate sample

sizes, when the input dimension of the feature space is high compared to the number

of signals in the model, it is likely that for the observed data, the model might overfit

itself within the noisy dimensions satisfactorily. In that case using the training data

to calculate the risk estimates in the initial steps of the algorithm might inflate the

risk of elimination of the relatively weaker signals, while random variations in the data

might be misclassified as important patterns. To safeguard against this possibility, we

utilize the test data to calculate the risk associated with the fitted submodels, and use

this as a surrogate for the training risk in the objective function. Heuristically, the

test data would be free of any signature of the random patterns that contributes to

overfitting in the training set, and hence perhaps gives a more coherent importance

of the deleted features through the risk estimates. And as we go down in the feature

space, the chances of overfitting diminishes in steps as we reach the correct dimension

of features, and hence the estimate of risk in the test data is expected to decrease all

the way down to this subspace of the input space. However, as we go down further

below the subspace representing the significant features in the model, the risk estimate

in the test set is expected to increase again, displaying a sharp bend in the objective
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function right after we cross this boundary. This actually allows more ease in selection

of the stopping rule, which can be the cycle of the algorithm where the sharp bend, or

the minima is observed.

In Q learning then, RFE test can be used similarly to eliminate features at each

estimation phase. We present the second algorithm below:

Algorithm 27 (RFE test). Assume Q̂T+1 = 0. Let us denote Ht = (St,At−1). For

t = T, T − 1, . . . , 1,

1. Use Algorithm 26 to obtain subset H
Ĵ∗t
t ⊆ Ht.

2. Estimate Q̂t based on the updated history (H
Ĵ∗t
t , At) and pseudo response Rt +

maxat+1 Q̂t+1(h
Ĵ∗t+1

t+1 , at+1).

3. Obtain π̂t = arg maxat Q̂t(h
Ĵ∗t
t , at).

4.4.3 Recursive feature elimination on the final maximization step

The final goal of the Q learning algorithm is to estimate the optimal treatment

sequence {π̂1,i, . . . , π̂T,i} for individual i. The optimal value function at time t = 1

is given as V ∗1 (S1) ≡ V ∗(S1), and for individual i with baseline history s1,i, it can

be calculated from the estimated Q-function Q̂1 as V̂ (s1,i) = maxa1 Q̂1(s1,i, a1). Our

goal is then to find the optimal trajectory of treatment rules for each individual based

on his/her history, such that the sumtotal of rewards the individual receives at the

end of the trial achieves the highest among all such possible treatment trajectories.

Hence the optimal reward defines a complex relationship within the history variables

S1×(S2, A1)×· · ·×(ST+1, AT ). Heuristically we can extend the theoretical justification

of our feature elimination algorithm from the framework of function estimation by

minimizing a criterion function to the ultracomplex sequential network of stepwise
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function estimation and maximization of the estimated function along a given direction

in Q learning.

If the relationship within the history space defined by the optimal reward function

can be meaningfully expressed by a lower dimensional subspace of the space spanned

by the history variables, then we can meaningfully get rid of the rest and concentrate

on this lower dimensional subspace for the entire algorithm. Or in other words, if there

are redundant variables in the history space (then so called noise), then the information

loss would not be significant for the purpose of finding the optimal regimes, if we can

somehow shrink the estimation space to represent only these essential variables. This

would significantly decrease the chances of overfitting, and hence could potentially

result in improved optimal rewards. So intuitively if we solve the problem in this

reduced space we would expect the estimated Q functions at each stage of estimation

to mimic the Q functions estimated from the entire history space, and resultantly the

estimated optimal rewards for both these problems should be similar.

Suppose Ht = (St,At−1) as defined in Algorithm 25, and suppose that H
J∗t
t represent

the valid (or the sufficient) subspace of Ht for the estimation stage at time t, such

that the estimation procedure or the evaluation procedure associates similar risk or

evaluation error for the assessed functions, that is,

min
ft:(Ht,at)7→R
ft measurable

RL,P (ft) = min
ft:(H

J∗t
t ,at) 7→R

ft measurable

RL,P (ft) (4.8)

where RL,P (ft) denotes the evaluation error or risk of the function ft. Now since the

space of measurable functions are nested, hence Ft = {ft : (Ht, at) 7→ R, ft measurable}

⊇ FJ
∗
t

t = {ft : (H
J∗t
t , at) 7→ R, ft measurable} and hence

ft,P,Ft := arg min
ft∈Ft

RL,P (ft) = arg min
ft∈F

J∗t
t

RL,P (ft) := f
t,P,F

J∗t
t

, (4.9)
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where P is the oracle probability measure on the input-output space.

Then maxat ft,P,Ft(Ht, at) = maxat ft,P,FJ
∗
t
t

(H
J∗t
t , at). On the other hand in the Q

learning setup, under the assumption of ‘no unmeasured confounders’, if the evalu-

ation error RL,P (ft) is the risk associated with predicting the pseudo response Rt +

maxat+1 Q
∗
t+1 by the function ft, then it is easy to see that ft,P,Ft is the optimal Q-

function Q∗t . And if our belief about the subspace H
J∗t
t ⊆ Ht is true, then the assump-

tion of ‘no unmeasured confounders’ holds true for the space H
J∗t
t as well and hence

f
t,P,F

J∗t
t

should also be the optimal Q-function Q∗t . Hence, it follows that,

V ∗t (Ht) = max
at

ft,P,Ft(Ht, at) = max
at

f
t,P,F

J∗t
t

(H
J∗t
t , at) = V ∗t (H

J∗t
t ).

This tells us that, the infinite sampled version of the value function remains same

if we can meaningfully trim out features that do not contribute towards the outcome,

either directly or through interactions with the treatment. Hence, as long as the subset

of features we preserve at the end of each run of the elimination mechanism satisfy

the ‘no unmeasured confounders’ assumption, we can also preserve the optimal value

function. However, what we observe in practicality (see section 3.10), is that the

estimated value function increases monotonically as the size of the history gradually

diminishes, as long as we keep all the significant features intact. This behavior is

probably due to the high overfitting that is typically present in high-noise models

resulting in poor estimation performance. As overfitting decreases, the meaningful

signals get magnified, and the estimation performance gets better and hence results in

improved estimates of the average value function.

Our goal at the tth stage of Q learning is to characterize the stage t pseudo reward

function in terms of variables in H
J∗t
t meaningfully, so that, for a given patient i with

observed history h
J∗t
t,i , we can obtain his/her tth optimal treatment by maximizing this

pseudo reward function along the treatment rule at. Often this maximization depends
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on a further subset of features H
J∗t
t,1 of H

J∗t
t , which contains features that contribute

to the reward function necessarily through interactions with the treatment rule, or in

other words, features that are sufficient to fully specify the optimal decision rules. H
J∗t
t

can thus be partitioned into [H
J∗t
t,1,H

J∗t
t,2], such that d∗t (H

J∗t
t,1,H

J∗t
t,2) = d∗t (H

J∗t
t,1), where H

J∗t
t,1

is the minimal subset of H
J∗t
t satisfying this property. For creating optimal dynamic

treatment regimes, we are more interested in H
J∗t
t,1, as only features contained in this

set help in creating the decision rules.

Now it is not entirely obvious what happens to the value function when a feature

belonging to H
J∗t
t,2 is removed from the model. We however will come back to this

discussion later, but it is not entirely important for our purpose. As we said before, we

are more interested in filtering out the set H
J∗t
t,1. Now observe that if a feature X0 ∈ H

J∗t
t,1

is removed from the model, the decision rule d∗t (H
J∗t
t,1\X0) is necessarily suboptimal, and

hence the optimal reward V ∗t (H
J∗t
t,1 \ X0) is suboptimal as well, which would then imply

that V ∗t (H
J∗t
t,1) > V ∗t (H

J∗t
t,1 \ X0). Hence we come to an important conjecture needed to

develop our third feature selection algorithm, which states that for some ε0 > 0 (specific

to the design), the following holds:

V ∗t (H
J∗t
t,1) ≥ V ∗t (H̃t) + ε0,

whenever H̃t ⊂ H
J∗t
t,1. Here is what we believe so far:

• The estimated value function at stage t, V̂t will increase (or remain the same) if

we delete features from the set Ht \H
J∗t
t .

• V̂t will decrease if we delete features from the set H
J∗t
t,1.

First of all note that the above condition holds for the Q learning algorithm at each

individual stage of the trial, and now see that the correct specification of the Q function

at each stage (or that of the value function at that stage) depends on the correct
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specifications of the optimal rules at all subsequent stages. In Q learning algorithm, the

value function at stage t is reached sequentially through iterating the dual framework

of estimating the Q function and evaluating the optimal rule (or maximizing the reward

function) backwards from stage T till t+ 1, and hence if we misspecify models for the

decision rule in any particular stage of the algorithm, not only would the value function

for that stage be suboptimal, all estimates of the value functions for the earlier stages

would be suboptimal as well. Or in other words, if we evaluate the optimal rule at stage

t based on H ⊂ H
J∗t
t,1, and then continue through the subsequent stages of the Q learning

algorithm, all our estimates {V̂ ∗t , V̂ ∗t−1, . . . , V̂
∗

1 } would be suboptimal. This idea allows

us to extend our logic to the stage 1 value function, and our belief, that it captures the

interactions at all stages sufficiently well, so that the estimated stage 1 value function

would increase as if we remove non significant features from the history at any stage

of the trial, and that this estimated stage 1 value function would be suboptimal (and

hence decrease) if we remove a feature from the history at any particular stage that

helps to define the optimal rule at that stage of the trial.

So one important idea in terms of feature selection in Q learning would be to imple-

ment the sequential mechanism of the recursive feature elimination algorithm to the es-

timated value function at stage 1. So at the k+1th stage of the algorithm, given the cur-

rent history space {HJ1,k1
1 ,H

J2,k2
2 , . . . ,H

JT,kT
T }, such that |J1,k1|+|J2,k2|+· · ·+|JT,kT | = k,

we construct the new Q-functions on the updated history spaces created by removing

one variable at a time from the cumulative history and then estimate the value function

V ∗(h
J1,k+11
1 ) at stage 1 for each of these updates. The variable or feature (say feature

X(jk+1) which originally belonged to history Ht(k+1)
) for which the empirical expectation

of the estimated value function at stage 1 is largest is then eliminated from the system,

and the history is revised as {HJ1,k1
1 ,H

J2,k2
2 , . . . ,H

Jt(k+1),kt(k+1)
∪jk+1

, . . . ,H
JT,kT
T }. The

elimination process is continued till the empirical expectation of the estimated value
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function at stage 1, EnV̂ k(·) attains its maxima.

Now we are ready to give the third algorithm for feature selection in Q learning.

To explain the details more clearly, we denote the estimated optimal value function at

stage 1, V̂ as a function of the entire history to represent the entire input history over

which the algorithm computing the optimal value function is conducted. So for history

{H1,H2, . . . ,HT}, the estimated optimal value function is given as V̂ (H1,H2, . . . ,HT ).

Algorithm 28 (RFE Vpred). Start off with J1,0, . . . , JT,0 ≡ [·] empty and the input

history set H = {H1,H2, . . . ,HT}. Let Z1, . . . , ZT be the index sets of the variables

remaining in the history, such that we can initialize Zt ≡ {1, 2, . . . , |Ht|}.

Let after k steps of the algorithm, the updates for the index sets be J1,k1 , . . . , JT,kT ,

such that |J1,k1| + |J2,k2| + · · · + |JT,kT | = k. Let the updates for the input history be

HJk = {HJ1,k1
1 ,H

J2,k2
2 , . . . ,H

JT,kT
T }.

Then at the k + 1th step,

1. For t ∈ {1, 2, . . . , T} with |Zt \ Jt,kt | > 1, find index jt,k+1 and V max
t,k+1 such that,

jt,k+1 = arg max
jt∈Zt\Jt,kt

En
(
V̂ k+1

(
h
J1,k1
1 , . . . , h

Jt,kt∪jt
t , . . . , h

JT,kT
T

))
.

V max
t,k+1 = max

jt∈Zt\Jt,kt
En
(
V̂ k+1

(
h
J1,k1
1 , . . . , h

Jt,kt∪jt
t , . . . , h

JT,kT
T

))
.

2. Now let,

tk+1 = arg max
t∈{1...,T}
|Zt\Jt,kt |>1

V max
t,k+1,

V max
k+1 = max

t∈{1...,T}
|Zt\Jt,kt|>1

V max
t,k+1.
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3. Update

Jtk+1,k+1tk+1
= Jtk+1,ktk+1

∪ jtk+1,k+1.

Jt,k+1t = Jt,kt ∀t 6= tk+1.

And

H
Jtk+1,k+1tk+1

k+1 = H
Jtk+1,ktk+1

∪jtk+1,k+1

k .

H
Jt,k+1t
k+1 = H

Jt,kt
k ∀t 6= tk+1.

4. If |Zt \ Jt,k+1t | > 1 for any t ∈ {1, . . . , T}, go to STEP 1.

Find kstop such that

kstop = arg max
k
V max
k .

Now let kstop1 , . . . , kstopT be the subsequent updates for the index sets at the kstop step,

and output J1,kstop1
, . . . , JT,kstopT

as the sets of indices for features that are to be removed

from history H1,H2, . . . ,HT respectively.

4.5 Simulation Results

To determine the performance of the proposed methods for feature selection in Q

learning, we conduct simulations under different settings imitating a multistage ran-

domized clinical trial. We roughly follow the simulation settings given in Zhao et al.

(2014). We create two scenarios with two-stages and one with three-stages.

4.5.1 Simulation settings

The mechanisms generating the settings are described below:
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1. The first setting is a two stage randomized trial with covariate information col-

lected only at baseline.

• We generate p (p = 10, 30, 50) dimensional baseline covariates X1,1, . . . , X1,p

from N(0, 1) and treatments A1, A2 are randomly generated from {−1, 1}

with probability 0.5.

• Stage 1 outcome R1 is generated according to N (2X1,3A1 + 1.5X1,4, 1).

• Stage 2 outcome R2 is generated according to N((2X1,1 + 1.5X1,2 +R1)A2 +

X2
1,5, 1).

2. The second setting is also a two stage randomized trial, but with covariate infor-

mation collected at the start of both stages. Here we incorporate time varying

covariates in the stage 2 history. We create two additional binary covariates col-

lected after the first line, the values of which depends on the baseline covariates

and the treatment received at stage 1.

• Like scenario 1, we generate p (p = 10, 30, 50) dimensional baseline covariates

X1,1, . . . , X1,p from N(0, 1). Also, similarly treatments A1, A2 are randomly

generated from {−1, 1} with probability 0.5.

• Stage 1 outcome R1 is generated in a slightly modified setting from scenario

1, according to N ((1 + 1.5X1,3)A1 +X1,4, 1).

• Two intermediate variables X2,1 ∼ I{N (1.25X1,1A1, 1) > 0} and X2,2 ∼

I{N (−1.75X1,2A1, 1) > 0} are generated; Also another p − 2 covariates

X2,3, . . . , X2,p are generated from N(0, 1), to make up for the information

collected before the beginning of the second stage.

• Stage 2 outcome R2 is generated according to N((0.5 + 1.5R1 + 1.5A1 +

2(X2,1 −X2,2))A2 +X2,3, 1).
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3. In the third scenario, we consider a three-stage SMART design, with the data

generating mechanism as follows:

• We generate p (p = 10, 30, 50) dimensional baseline covariates X1,1, . . . , X1,p

from N(45, 52), and the treatments A1, A2, A3 are randomly generated from

{−1, 1} with probability 0.5.

• For stage 2, one intermediate variable X2,1 ∼ N (1.5X1,1, 1) is generated;

The rest of the p− 1 covariates X2,3, . . . , X2,p are generated from N(45, 52).

• At stage 3, another intermediate variable X3,1 ∼ N (0.5X2,1, 1) is generated;

The rest X3,3, . . . , X3,p are again generated from N(45, 52).

• Stage 1 and 2 outcomes R1, R2 = 0 and R3 is generated according to R3 ∼

20 − |0.6X1,1 − 35|{I(A1 > 0) − I(X1,2 > 45)}2 − |0.8X2,1 − 60|{I(A2 >

0)− I(X2,2 > 45)}2 − |1.4X3,1 − 55|{I(A3 > 0)− I(X3,2 > 45)}2.

In this scenario, the regret for stage 1 is |0.6X1,1 − 35|{I(A1 > 0) − I(X1,2 > 45)}2,

the regret for stage 2 is given by |0.8X2,1 − 60|{I(A2 > 0) − I(X2,2 > 45)}2 and the

regret for stage 3 is given by |1.4X3,1 − 55|{I(A3 > 0)− I(X3,2 > 45)}2. We can easily

obtain the optimal decision rule by setting the regret to zero at each stage. That is,

d∗1(h1) = sign(x1,2 − 45), d∗2(h2) = sign(x2,2 − 45) and d∗3(h3) = sign(x3,2 − 45). In the

simulations, we vary sample sizes between 200, 400 and 800, and repeat each scenario

20 times.

The entire methodology was implemented in the MATLAB environment. For the

implementation we used the LS-SVMLab library for MATLAB. The LS-SVMLab li-

brary can be downloaded from http://www.esat.kuleuven.be/sista/lssvmlab/.
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4.5.2 Estimation through support vector machines with Gaussian RBF
kernel

Q learning is implemented to solve the multistage decision problem, and feature

selection is conducted on the Q learning algorithm using the three methods proposed in

section 4.3. To estimate the Q functions at each stage, we implement the support vector

machines (regression) algorithm with the least squares loss function LLS(x, y, f(x)) =

(y − f(x))2. For the optimization of the regressors, we chose the Gaussian RBF kernel

kγ(x1, x2) = exp{− 1
γ2
‖x1 − x2‖2

2}. We initialize the original SVM function using a

5-fold cross validation on the kernel width γ, chosen from the set of values, 2i−3, i =

{1, . . . , 10}. and the regularization parameter λ is chosen according to Cherkassky

and Ma (2004). The regularization factor λ chosen in this way is much more stable,

as opposed to when it is chosen through cross validation, which may often result in

excessive overfitting when the input dimension is large compared to the true signals.

In regression, our goal is to find an estimator that has risk as close to the Bayes

risk R∗L,P as possible without being overly complex. The Bayes function or fL,P is

the minimizer of risk within L0(X ), the space of all measurable functions from the

input space X to R. This balance plays an important role in the choice of the kernel

for the optimization. The Gaussian RBF kernel generates a very rich RKHS. If X is

compact, the RKHS it produces is dense in the space of all continuous functions C(X )

from X 7→ R. In fact, it is also dense in the space of all bounded functions on X ,

L∞(PX ) = {f : X 7→ R, f bounded}. Now since least squares loss LLS is P -integrable

Nemitsky loss, we have the relationship that R∗LLS ,P,L∞(PX ) = R∗LLS ,P .
1

1R∗LLS ,P,L∞(PX ) is the minimized risk attained within the space L∞(PX ) for the least squares loss
LLS .
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In Q learning, the estimation of the stage 1 value function depends on sequentially

estimating and maximizing the Q functions from t = T, T − 1, . . . , 1. Under misspecifi-

cation of the models for the Q functions, the estimated stage 1 value function can differ

from the true stage 1 value function significantly. For correct implementation of our

algorithm, we need to correctly specify the functional relationships in the Q functions.

It is thus clear from the discussions in the above paragraph that specifying an RKHS

with the Gaussian RBF kernel allows us to closely emulate any complex relationship

that the Q functions might have in the feature space.

4.5.3 Stopping rule

Again, the important question we inevitably face in feature elimination is when to

stop. Note that for our first method which we also implemented for feature selection

for a single stage randomized trial in Dasgupta et al. (2013), we used a change point

regression model to obtain the correct set of covariates. The reasoning stemmed from

the theoretical standpoint of our derived results for RFE in SVMs that suggested the

existence of a gap ε0, and our results further show that asymptotically the difference

in the empirical versions of the objective functions exceed this gap whenever we move

beyond the correct dimension. Hence if a regression model is fit to the observed ob-

jective function values of the algorithm in a scree plot, we will expect a change in the

slope of the regression line right after we start eliminating significant covariates because

of the aforementioned gap. One plausible way to analyze this gap is to fit a change

point regression model of the observed values on the number of cycles of RFE and to

infer that the estimated change point is the ad-hoc stopping rule, so as to eliminate

all features ranked below that point. For the asymptotic belief that the change in the

objective function is negligible to the left of the change point, we can fit a linear trend

there. However to the right of the change point, these changes might show non-linear

trends, and hence we can fit linear or other polynomial trends to model that. Hence
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n=200 n=400 n=800
RFE

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 1 1 1 1 1 1 1 1 1
Prop. 1 error (b) 0 0 0 0 0 0 0 0 0
Prop. > 1 error (c) 0 0 0 0 0 0 0 0 0

Stage 2
Prop. no errors (a) 1 1 0.75 1 1 1 1 1 1
Prop. 1 error (b) 0 0 0.15 0 0 0 0 0 0
Prop. > 1 error (c) 0 0 0.1 0 0 0 0 0 0

n=200 n=400 n=800
RFE test

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 1 1 1 1 1 1 1 1 1
Prop. 1 error (b) 0 0 0 0 0 0 0 0 0
Prop. > 1 error (c) 0 0 0 0 0 0 0 0 0

Stage 2
Prop. no errors (a) 1 0.95 0.75 1 1 1 1 1 1
Prop. 1 error (b) 0 0.05 0.15 0 0 0 0 0 0
Prop. > 1 error (c) 0 0 0.1 0 0 0 0 0 0

n=200 n=400 n=800
RFE Vpred

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 1 0.95 0.8 1 1 1 1 1 1
Prop. 1 error (b) 0 0.05 0.2 0 0 0 0 0 0
Prop. > 1 error (c) 0 0 0 0 0 0 0 0 0

Stage 2
Prop. no errors (a) 0.8 0.7 0.35 1 1 0.85 1 1 1
Prop. 1 error (b) 0.2 0.3 0.35 0 0 0.15 0 0 0
Prop. > 1 error (c) 0 0 0.3 0 0 0 0 0 0

Table 4.1: Accuracy of RFE methods in Setting I

this method can be adopted here as well for feature selection at each individual line of

treatment.

For the second method using separate data folds for model training and testing,

our heuristic belief suggests that overfitted models with high amount of noise tend to

produce higher risk estimates on the test data. However, if we can correctly trim out

the redundant information and remove the noisy features, that is, if at each stage of the

elimination procedure, we can descend down to a subspace of the original feature space

that contains the important features, the amount of overfitting diminishes gradually

until we reach the only set of features contributing to the relationship. And as argued

before, we expect the risk in the test set to start increasing as soon as we start removing

any of these significant features. Hence the simple rule for selection of the correct set of

covariates in this scenario is to observe the graph of the objective function and choose
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n=200 n=400 n=800
RFE

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 1 1 0.95 1 1 1 1 1 1
Prop. 1 error (b) 0 0 0 0 0 0 0 0 0
Prop. > 1 error (c) 0 0 0.05 0 0 0 0 0 0

Stage 2
Prop. no errors (a) 0 0.55 0.3 0 1 0.85 0 1 1
Prop. 1 error (b) 0.05 0.35 0.45 0 0 0.15 0 0 0
Prop. > 1 error (c) 0.95 0.1 0.25 1 0 0 1 0 0

n=200 n=400 n=800
RFE test

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 1 1 0.95 1 1 1 1 1 1
Prop. 1 error (b) 0 0 0.05 0 0 0 0 0 0
Prop. > 1 error (c) 0 0 0 0 0 0 0 0 0

Stage 2
Prop. no errors (a) 1 0.6 0.35 1 1 0.85 1 1 0.95
Prop. 1 error (b) 0 0.35 0.4 0 0 0.15 0 0 0.05
Prop. > 1 error (c) 0 0.05 0.25 0 0 0 0 0 0

n=200 n=400 n=800
RFE Vpred

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 0.8 0.35 0.15 0.9 0.8 0.5 1 1 0.9
Prop. 1 error (b) 0.2 0.65 0.85 0.1 0.2 0.5 0 0 0.1
Prop. > 1 error (c) 0 0 0 0.04 0 0 0 0 0

Stage 2
Prop. no errors (a) 0.45 0.25 0 0.65 0.4 0.1 0.7 0.55 0.35
Prop. 1 error (b) 0.35 0.45 0.2 0.35 0.3 0.35 0.3 0.25 0.4
Prop. > 1 error (c) 0.2 0.3 0.8 0 0.3 0.55 0 0.2 0.25

Table 4.2: Accuracy of RFE methods in Setting II

the set of covariates remaining in the model when it attains its minima.

Finally for the third method, again we can implement a very simple stopping rule for

our algorithm. As discussed in section 4.4.3 heuristically it is expected that as we move

down in the feature space keeping the significant features intact, the regression function

(Q function here) minimizing the infinite sampled criterion function (risk, regularized

risk or other penalized risks) at each step of the elimination algorithm (and for each

stage of the trial) should be the same, and hence the value functions obtained by

maximizing these regressors over a given decision rule should be expected to be similar

as well. Since we get the stage 1 value function through these sequential estimation

and maximization steps, we expect that the stage 1 value function to remain same as

we move down in the feature space keeping all significant features intact. However,

in the presence of high noise in the model, overfitting can substantially decrease the
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empirical estimates of the value function. Hence, as we start removing these redundant

features, the amount of overfitting diminishes magnifying the correct relationships and

hence increasing the estimated value function. Also as expected the stage 1 value

function will start decreasing as soon as we start removing features that directly affect

the relationship of the stage 1 value function with the sequence of optimal decision

rules. Hence since our final objective is to maximize the stage 1 value function, and

that being our criterion of elimination of features as well, the simple rule for selection

of the correct set of covariates in this method is to observe the graph of the estimated

stage 1 value function and choose the set of covariates remaining in the model when it

attains its maxima.

For all three proposed methods in question however, we decide to implement a

more conservative selection approach by allowing for a few more features to be selected

than the ones obtained using the stopping rules described above. Hence, we allow for a

predetermined (and possibly user-defined) percentage to be incorporated with selection

mechanism that defines the amount of extra features we want to include in the selection

set to safeguard against the chance of losing any important feature on the boundary

of the graph. That is, to allow for an α% error, we select the features given by the

stopping rule and additionally allow for another bαpc many highest ranked features to

be chosen from the remaining ones. Here throughout the different settings, we have

allowed for a 5% error rate.

4.5.4 Results

The results of our simulations for Settings 1, 2 and 3 are summarized in Tables 4.1,

4.2 and 4.3 respectively. They display the proportion of times the algorithms (RFE,

RFE test and RFE Vpred) were able to pick out all the correct features, made only one

error, or made multiple errors in their selection sets at each line of treatment for each
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artificially created setting. From the results, it is apparent that the first two methods

(RFE and RFE test) work well in all situations, while the third method (RFE Vpred)

struggles most of the times, and we will revisit this later, but for now let us concentrate

on the first two methods. A few graphs are given in figures 4.3 – 4.10 at the end of

discussion in section 4.7, plotting the objective functions (as opposed to the criterion

function or the difference function which is the difference between the objective function

in two subsequent steps of the algorithm) for single runs of the algorithm in some of

the settings.

RFE & RFE test: As mentioned before, RFE and RFE test algorithms are im-

plemented in the estimation phase at each line/stage of treatment of the Q-learning

algorithm, and both these methods focus on the correct specification of the Q functions,

that is, out of the set of input features, they focus on selecting the entire set of features

that correctly specify the Q functions. Setting I being the simplest of the three with

covariate information collected only at baseline, both methods work perfectly well (see

Table 4.1), except for the n = 200, p = 50 case, where both of them are prone to some

errors, owing to the higher covariate to sample size ratio.

In Setting 2, except for the p = 10 case, both these methods perform well and

almost at par with each other, with RFE test marginally dominating the RFE method

in some settings. Apparently from the results for this Setting (see Table 4.2), it does

seem that RFE fails to work here when the number of covariates is quite small, while

RFE test seem to work perfectly well. This might appear surprising to say the least,

but the actual difficulty lie in the manner of choosing the stopping rule. RFE does work

in these examples, and does rank the features correctly like the RFE test method, but

the change point model that we fit to select the stopping rule becomes unstable, since

the number of features (and hence, the number of observations to fit the change point

model) is low, owing to which, it sometimes picks a smaller set of features than the
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n=200 n=400 n=800
RFE

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 1 0.95 0.9 1 1 1 1 1 1
Prop. 1 error (b) 0 0.05 0.1 0 0 0 0 0 0
Prop. > 1 error (c) 0 0 0 0 0 0 0 0 0

Stage 2
Prop. no errors (a) 0.95 0.9 0.4 1 1 1 1 1 1
Prop. 1 error (b) 0.05 0.05 0.25 0 0 0 0 0 0
Prop. > 1 error (c) 0 0.05 0.35 0 0 0 0 0 0

Stage 3
Prop. no errors (a) 0.7 0.8 0.25 0.75 1 1 0.7 1 1
Prop. 1 error (b) 0.3 0 0.15 0.25 0 0 0.3 0 0
Prop. > 1 error (c) 0 0.2 0.6 0 0 0 0 0 0

n=200 n=400 n=800
RFE test

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 0.95 0.85 0.75 1 0.95 0.95 1 1 1
Prop. 1 error (b) 0.05 0.1 0.15 0 0.05 0 0 0 0
Prop. > 1 error (c) 0 0.05 0.1 0 0 0.05 0 0 0

Stage 2
Prop. no errors (a) 0.95 0.7 0.55 1 0.95 0.9 1 1 1
Prop. 1 error (b) 0.05 0.3 0.4 0 0.05 0.1 0 0 0
Prop. > 1 error (c) 0 0 0.25 0 0 0 0 0 0

Stage 3
Prop. no errors (a) 0.6 0.5 0.25 0.65 0.8 0.75 0.65 1 1
Prop. 1 error (b) 0.3 0.25 0.1 0.35 0.1 0.2 0.35 0 0
Prop. > 1 error (c) 0.1 0.25 0.65 0 0.1 0.1 0 0 0

n=200 n=400 n=800
RFE Vpred

p=10 p=30 p=50 p=10 p=30 p=50 p=10 p=30 p=50

Stage 1
Prop. no errors (a) 0.9 0.8 0.6 1 1 0.95 1 1 1
Prop. 1 error (b) 0.1 0.2 0.4 0 0 0.05 0 0 0
Prop. > 1 error (c) 0 0 0 0 0 0 0 0 0

Stage 2
Prop. no errors (a) 0.9 0.4 0.25 1 0.8 0.15 1 1 0.8
Prop. 1 error (b) 0.1 0.6 0.75 0 0.2 0.85 0 0 0.2
Prop. > 1 error (c) 0 0 0 0 0 0 0 0 0

Stage 3
Prop. no errors (a) 0.9 0.1 0 1 0.2 0.1 1 0.6 0.2
Prop. 1 error (b) 0.1 0.7 0.35 0 0.7 0.7 0 0.4 0.8
Prop. > 1 error (c) 0 0.2 0.65 0 0.1 0.2 0 0 0

Table 4.3: Accuracy of RFE methods in Setting III

actual size of the correct set (that is, selects a subset of the actual correct set). This is

most apparent in the second line, as the number of important features in the model are

higher compared to the total number of features in the model (6 out of 23). Figure 4.8(b)

actually plots the values of the objective function, and visual inspection does show that

the curve changes at the 17th cycle, and hence the rest of the features (23 − 17 = 6)

should be chosen as per our belief, but practically speaking, fitting the best change

point model (among all linear-quadratic mixtures) doesn’t really help to pick out all

6 of them. Probably higher order polynomial mixtures (linear-cubic, linear-quartic or

109



even higher ones) might help here, but really it becomes a matter of trying different

mixtures through trial and error. Hence, we might benefit from a better method to pick

out the change in the slope of the objective function for RFE, or in other words, we can

use RFE test. The biggest advantage of this method over the former is its simplified

and unambiguous stopping rule. In RFE test, we select the stopping rule by virtue of

observing the objective function, and inspecting the point where it is at its lowest (see

section 4.5.3). Figure 4.8(d) does reflect this phenomenon perfectly, and shows why

in this scenario, RFE test performs better than RFE, owing to a better stopping rule.

This does make the second method more robust and less sensitive to the number of

features in the original model and departures from a perfect separation of the correct

set of features from the ones that are superfluous.

In the third setting involving three lines of treatment, both RFE and RFE test

perform relatively well, although performance of RFE dominates that of RFE test in

most scenarios, especially when the sample size is smaller. It is also worthwhile to

note that the performance of both methods drop from the first line to the second line,

and from second line to the third line, owing to the accumulative effect of history in

the Q-learning algorithm. For example in the p = 50 case, history at second line has

103 covariates, and at third line has 155 covariates. Hence for smaller sample sizes,

both methods struggle in the third line, but the effect diminishes when the sample size

increases. This demonstrates that with increased number of lines of treatment, sample

size needed to maintain the same level of performance for both methods is also higher.

Also another worthy point of mention is both of their relative poor performance in the

third lines when the dimension of the covariates is small (when p = 10). The reason

for this phenomenon is largely unexplained, and steady inspection did show that it is

not due to the stopping rule, as was in the previous setting.
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RFE Vpred: RFE Vpred is implemented in the final evaluation phase of the Q-

learning algorithm (maximizing Q̂1, the Q function estimated at first line, to obtain V̂1

or the estimated stage 1 value function), and although the reasoning behind implemen-

tation of the stage 1 value function as an elimination criterion is completely ad hoc,

but the heuristics for this method are well reasoned and is discussed in detail in Section

4.4.3. The real advantage of this method over the former two, we believe, is in the set

of features that this method is able to capture (see a detailed discussion in Appendix

B.3.6). While RFE and RFE test focus on the estimation stage and arguably pick out

all features for correct specification of the Q functions, RFE Vpred focus on the final

maximization/evaluation stage and picks out only those features required for correct

specification of that part of the Q function which contain only the features involved

in decision specific interactions. This aspect sets this method apart from the former

two, and can be useful in obtaining features that directly help set up the decision rules

at each line. Hence, the performance of this method is evaluated in its ability to pick

up the features that interact with the treatment rule, and the results are displayed

in Tables 4.1, 4.2 and 4.3. As observed, currently this method does not perform as

well as expected, but it does show some promise for future modifications, to develop a

more robust and consistent methodology that can achieve the same. It does perform

relatively well in Setting I, but the performance gradually deterioriates with increased

number of covariates and increased number of lines in the trials (like in Setting II and

Setting III) much more drastically than RFE or RFE test. One important reason for

this might be in the current implementation of the algorithm which conducts the elim-

ination procedure over the entire trial and the entire history, and makes it a lot more

sensitive than RFE and RFE test on smaller sample sizes (for a run on the p = 50

case in Setting III, it actually performs the elimination algorithm on the accumulated

history containing 155 + 103 + 51 = 309 covariates which becomes difficult in smaller
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sample sizes like n = 200, 400). This opens up discussions on a number of interesting

modifications that we can try in the future, to make it less sensitive in a way to generate

better performance.

Another point to note from the plots displaying the graphs of the objective function

for RFE Vpred (see figure 4.9(g) for example), the estimated average stage 1 value

function increases, sometimes sharply, as we continually remove insignificant features

from the model, as discussed in section 4.5.3. This makes the stopping rule very

intrinsic owing to our final goal of maximizing the stage 1 value function, in choosing

the stopping rule at the point when this estimated stage 1 value function reaches its

maxima. This observed increase in the value function might be due to high overfitting

in the model under high noise to signal ratio, and implies that even under the most

general specification of the Q functions, misspecification in the set of features that we

include in the model (even if it contains the correct features as a subset) can generate

rules that might be suboptimal. This enhances greatly the need for feature selection in

Q learning, and establishes the very importance of this project.

4.6 Summary of Chapter 4

In this work, we focus our attention at a very important aspect of analysis opportu-

nities using these methods, that is, feature selection. With the amount of data available

at our disposal these days, feature selection indeed becomes a necessary tool to trim the

surplus and redundant information. Here we discussed three different methods for fea-

ture selection in Q learning, based on the same vital idea of feature screening through

ranking in a sequential backward selection scheme. We discussed the applicability of

the methods, reasoned on heuristics stemming from our previous work on feature selec-

tion in support vector machines, and gave results showing their performance in various

simulated settings.

112



4.7 Plots for single runs of the algorithm in some of the settings

(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE test on Stage 1 (d) RFE test on Stage 2

(e) RFE Vpred

Figure 4.3: Setting I, n = 200, p = 50
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(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE test on Stage 1 (d) RFE test on Stage 2

(e) RFE Vpred

Figure 4.4: Setting I, n = 800, p = 30
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(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE test on Stage 1 (d) RFE test on Stage 2

(e) RFE Vpred

Figure 4.5: Setting I, n = 400, p = 10
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(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE test on Stage 1 (d) RFE test on Stage 2

(e) RFE Vpred

Figure 4.6: Setting II, n = 400, p = 50
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(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE test on Stage 1 (d) RFE test on Stage 2

(e) RFE Vpred

Figure 4.7: Setting II, n = 200, p = 30
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(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE test on Stage 1 (d) RFE test on Stage 2

(e) RFE Vpred

Figure 4.8: Setting II, n = 800, p = 10
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(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE on Stage 3 (d) RFE test on Stage 1

(e) RFE test on Stage 2 (f) RFE test on Stage 3

(g) RFE Vpred

Figure 4.9: Setting III, n = 800, p = 50
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(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE on Stage 3 (d) RFE test on Stage 1

(e) RFE test on Stage 2 (f) RFE test on Stage 3

(g) RFE Vpred

Figure 4.10: Setting III, n = 400, p = 30
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(a) RFE on Stage 1 (b) RFE on Stage 2

(c) RFE on Stage 3 (d) RFE test on Stage 1

(e) RFE test on Stage 2 (f) RFE test on Stage 3

(g) RFE Vpred

Figure 4.11: Setting III, n = 200, p = 10
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CHAPTER 5: DISCUSSIONS AND FUTURE PROJECTS

In this dissertation, we focused on three different nonparametric and semiparametric

methods used in statistical learning. The first project deals with analyzing medical

adherence data in Hepatitis C patients using a semiparametric method called temporal

process regression. The second and the third projects are related through the common

goal of feature selection in two nonparametric methods in vogue today, namely support

vector machines and Q learning, respectively.

5.1 Using temporal process regression to study medical adherence

In Chapter 2, the initial analyses showed that adherence to both drugs has a sig-

nificant effect on the treatment end-point (SVR), with higher adherence significantly

increasing the chance of achieving SVR. This confirms the fact that adherence is cru-

cial for effectiveness of the medication regimen for treating chronic hepatitis C. We also

found other significant factors that affect SVR. It was seen that women have higher

probability of attaining SVR than men. We also saw that race plays an important role

in determining chances for a positive drug response and that Caucasians have signifi-

cantly higher chances of attaining SVR than others. We further saw that the severity

of infections (fibrosis score) does affect SVR and patients with higher baseline infection

scores have less chances of a full recovery (this reaffirms results found in Conjeevaram

et al. (2006)). The combined analysis showed some interesting results as well. The

individual effects of the drugs were found significant by the IDS test while the joint

effect was found significant by both the IDS and SDS tests. This shows that adherence
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to the combined regimen is important to improve chances of achieving SVR, confirming

results obtained from the Phase-II drug trials.

Figure 2.8 showed that the effect of interaction between adherence to the drugs

can also have a serious impact on SVR. Our results showed that adherence on week

3 has tremendous bearing on the final outcome, which supports the conclusion that

adherence in the first few weeks of the regimen is extremely important. This certainly

is a new discovery with regards to existing knowledge about adherence in treatment for

chronic hepatitis C, and gives a better perception of the temporal relationship of early

adherence with the medical end-point SVR. It would thus be interesting to see whether

a similar trend is noticed in the proposed triple therapy which is the current point of

focus in the medical community for treatment of chronic hepatitis C, and care should

be taken to remedy factors that influence early adherence.

Overall, these analyses show a much clearer picture of the relationship between

adherence to the drug regimen in the context of achieving a positive end-point after

hepatitis C treatment. It reveals trends of this relationship and shows the importance

of early adherence in such a context. In addition, it shows that methods used here can

be used as a generalize framework for similar analyses in other medical trials and drug

regimens. It also illustrates that simply knowing whether adherence is important may

not be good enough, and it may be equally important to quantitatively characterize

this relationship over the length of the study.

The method we used here does not assume a Markovian structure, and the param-

eters are interpreted conditionally on covariates at t, and not all s < t. Hence the

formulation for the conditional mean model will still hold true in absence of a Markov

structure, that is, in situations where the response Y (t) depends on covariates at times

s < t. This might often be true in analyses where adherence is modeled in a temporal

framework, conditional on the factor contributing to it. Some of these factors might
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have a delayed effect on adherence but that would not hamper the foundation of the

functional generalized linear model proposed here. Temporal Process Regression can

also be used to magnify these temporal relationships over any subintervals of the actual

length of the study and conduct analyses within them. This allows for better under-

standing of these patterns with respect to different stages of the treatment regime,

and allows us to correct for factors that might only affect the response within those

intervals in concern. Also as we saw in this analysis, temporal process regression does

allow us to model the temporal nature of interactions between factors, like, in our case,

interactions between adherence to different drugs in a multi-drug therapy.

However, there are still concerns with regards to usage of these methods in spe-

cific situations, and certain necessary assumptions that we inherently make in such a

framework. One basic necessity is full availability of data at most of the times of mea-

surements, and higher percentages of missing data may raise a few issues that need to

addressed. In certain cases, imputations or other Bayesian or frequentist methods may

work well, and in some other cases, like ours, where the response was in fact a measure-

ment done post treatment, assumption of it being constant across the study duration

might be a good solution. The hypothesis tests used here (SDS and IDS) work in most

situations, but however not any one of them dominates the other in terms of power.

SDS might be too conservative in some situations, but it can potentially be more pow-

erful than IDS in others. Hence it is better to use both tests in any given analysis, and

to use one of them to re-evaluate results obtained from the other. Also since temporal

process regression is a functional version of the generalized linear model, it does suffer

from a few parametric assumptions, especially on the link, and the variance function.

But as is the case in generalized linear models, misspecifications of these assumptions

can be easily remedied by known techniques.
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5.2 Consistency results for RFE in SVM

In our second chapter (Chapter 3), we proposed an algorithm for feature elimination

in empirical risk minimization and support vector machines. We studied the theoretical

properties of the method, discussed the necessary assumptions, and showed that it is

universally consistent in finding the correct feature space under these assumptions. We

provided case studies of a few of the many different scenarios where this method can

be used. Finally, we give a short simulation study to illustrate the method and discuss

a practical method for choosing the correct subset of features.

Note that Lemma 20(iii) establishes the existence of a gap in the rate of change

of the objective function at the point where our feature elimination method begins

removing essential features of the learning problem. This motivated us to use a scree

plot of the values of the objective function at each cycle, and indeed our simulation

results support our approach by visually exhibiting this gap. Moreover, the graphical

interpretation of the scree plot motivated the use of change point regression to select

the correct feature space. It would be interesting to conduct a more detailed and formal

analysis of this gap in real life settings to facilitate more efficient, automated practical

solutions.

As far as our knowledge goes, not much analysis have been done on the properties

of variable selection algorithms under such general assumptions on the probability

generating mechanisms of the input space, especially in support vector machines. So

the results generated in this dissertation can act as a good starting point for similar

analyses in other settings. It would also be interesting to analyze RFE for other settings,

including censored support vector regression (See Goldberg and Kosorok (2013)) or

other machine learning problems, including reinforcement learning (which we study in

Chapter 4) or other penalized risk minimization problems.
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5.3 Feature selection in Q learning

Reinforcement learning methods are gradually gathering momentum in their appli-

cability in medical research. In Chapter 4, we focus our attention at a very important

aspect of analysis opportunities using these methods, that is, feature selection. With the

amount of data available at our disposal these days, feature selection indeed becomes

a necessary tool to trim the surplus and redundant information. Here we discussed

three different methods for feature selection in Q learning, based on the same vital idea

of feature screening through ranking in a sequential backward selection scheme. We

discussed the applicability of the methods, reasoned on heuristics stemming from our

previous work on feature selection in support vector machines, and gave results showing

their performance in various simulated settings.

We showed that the first two methods work quite well for feature selection in Q

learning. These methods allow feature selection in the estimation phase of the algo-

rithm, and hence they try to retain all of the meaningful signals in the Q functions.

As discussed in section 4.5, this means that these methods typically allow to retain all

important features necessary for correct specification of the Q functions, but cannot

distinguish between features that directly interact with the decision rules in generating

the reward, from those that do not. Our simulation results showed that both these

methods work quite well, and although using usual RFE over RFE test might benefit

slightly in some situations, we saw that RFE test is much more robust, and benefits

from a natural stopping rule unlike RFE.

We developed the third method RFE Vpred to utilize the evaluation step for feature

selection in Q learning. First of all, this works on the entire algorithm (a backward

selection based on the estimated stage 1 value function to be precise), and not sequen-

tially on individual lines of the trial. And second of all, since the elimination is based

directly on the stage 1 value function, that is achieved by sequentially estimating and
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maximizing along the decision rules, heuristically it should be able to select the fea-

tures that directly interact with the decision rules. The results do show some promise,

however it fails to match the performance of the first two methods. However we do

think it is a very important starting point for the problem at hand, that is, to pick out

those signals from the history that directly interact with the decision rules to generate

rewards, and we do believe ideas developed in creating RFE Vpred can lead to a more

tangible solution in the future.

Also recent methods like A-learning (see Almirall et al. 2005), BOWL/SOWL (see

Zhao et al. 2014) have been developed that concentrate only on features that affect the

reward functions through interaction with the decision rules. A Learning models only

the advantages, µt = Qt(Ht, At)−Vt(Ht) (that is, departure from the tth optimal value

function while taking decision rule At at time t). Hence it makes fewer assumptions

on the underlying data distribution as compared to Q Learning because here only a

portion of the true model for Qt needs to be specified. Modeling only the advantage is

analogous to modeling only the decision-specific interaction terms in the regression set-

ting, while leaving the main effects of history Ht unspecified. BOWL/SOWL methods

are generalized multi-stage versions of Outcome Weighted Learning (Zhao et al. 2012)

that propose to forgo the estimation phase altogether in bid to maximize the optimal

rewards directly. Hence these methods also concentrate locally on features interacting

with the decision rule in generating rewards. Feature selection is vital in these settings

as well, as is evident from our plots in section 4.5, that shows poor performance in

estimation of the optimal rewards when the noise to signal ratio is high. Hence, in our

future work, it might be interesting to see if RFE Vpred can be effectively modified to

work in these settings, or whether it can motivate to generate more optimal methods

for feature extraction in these settings.
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APPENDIX A: Technical Details for Chapter 2

We require the following regularity conditions for proving the asymptotic validity

of the confidence bands given by (2.2) in Section 2.1.3.

A1 (Ri, Xi, Yi), i = 1, . . . , n, are i.i.d. and all component processes are cadlag. We

require R, X to have total variation over [l, u] bounded by a fixed constant c <∞,

and we require Y to have total variation Ỹ over [l, u] with finite second moment.

A2 t 7→ β(t) is cadlag on [l, u].

A3 h ≡ g−1 and ḣ = ∂h(u)/(∂u) are Lipschitz continuous and bounded above and

below on compact sets.

A4 We require inft∈[l,u] eigminP [R(t)X(t)X ′(t)] > 0, where eigmin denotes the min-

imum eigenvalue of a matrix.

A5 For all bounded B ⊂ Rp, the class of random functions {V (b, t) : b ∈ B, t ∈ [l, u]}

is bounded above and below by positive constants and is BUEI (Bounded in uni-

form entropy integral) and PM (Pointwise measurable). (for detailed discussions

on BUEI and PM processes, refer to Sections 9.1.2 and 8.2 of Kosorok (2008)).

First we note the following Lemma.

Lemma 29. Suppose the class of functions

{ψθ,h − ψθ0,h : ‖θ − θ0‖ < δ, h ∈ H}

is P -Donsker for some δ > 0 and

sup
h∈H

P (ψθ,h − ψθ0,h)
2 → 0, as θ → θ0.
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Then if θ̂n
P−→ θ0, we have

sup
h∈H

∣∣∣G̃nψθ̂n,h − G̃nψθ0,h

∣∣∣ = oP (1),

where G̃n ≡ n−1/2
∑n

i=1

(
ξi − ξ̄

)
δXi and ξ1, . . . , ξn ∼ i.i.d. mean 0, variance 1 random

variables.

We omit the proof for Lemma 29 here, as this is a minor modification of Lemma

13.3 of Kosorok (2008). Gn ≡
√
n (P− P ) in Lemma 13.3 is replaced by G̃n here, and

the proof follows similarly by the multiplier central limit theorem (Theorem 10.4 of

Kosorok (2008)).

Theorem 30. The 1−α-level simultaneous confidence bands given by (2.2) in Section

2.1.3 are asymptotically valid for the true process β0(t).

Proof. Define Aγi (β, t) = Ri(t)D
′
i{γ(t)}Vi{γ(t), t}[Yi(t) − h{β′(t)Xi(t)}], where γ, β ∈

{`∞c ([l, u])}p and `∞c (A) is the set of real valued bounded functions on A with absolute

measure ≤ c; and `∞∞(A) ≡ `∞(A). Now let U := {Aγ1(β, t) : γ, β ∈ {`∞c ([l, u])}p, t ∈

[l, u]}.

Firstly we show that U is BUEI with square integrable envelope and is PM for each

c <∞. For that, first observe that,

{β′(t)X(t) : β ∈ {`∞c ([l, u])}p, t ∈ [l, u]} and {b′X(t) : b ∈ [−c, c]p, t ∈ [l, u]}

are equivalent. Next note that Cadlag processes bounded in total variation are both

BUEI and PM (by Lemma 22.4 Kosorok (2008)). Now by applying Lemma 9.17 of

Kosorok (2008) we have that the class U is BUEI and PM with square integrable

envelope and hence is P -Donsker by Theorem 8.19 of Kosorok (2008).
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Next note that from Theorem 22.5 of Kosorok (2008), we have

n1/2{β̂(t)− β0(t)} = n−1/2

n∑
i=1

ψi(t) + otp(1)

where ψi(t) = −{H(t)}−1Ai{β0(t), t} is the influence function for the process β̂(t) and

H(t) = P (R1(t)D′1{β0(t)}V1{β0(t), t}D1{β0(t)}). Now see that the class {ψ1(t) : t ∈

[l, u]} is P -Donsker, since U0 := {Ai{β0(t), t} : t ∈ [l, u]} is a subclass of the P -

Donsker class U and H(t) is a uniformly bounded measurable function (see Corollary

9.32 of Kosorok (2008)). Then by Theorem 10.4 of Kosorok (2008), we have that

n−1/2
∑n

i=1 (zi − z̄)ψi(t)  G, for zi’s defined in Section 2.1.3, and G, the mean zero

Gaussian process and the asymptotic limit of n1/2{β̂(t)− β0(t)}. Now note that,

n−1/2

n∑
i=1

ziψi(t) = n−1/2

n∑
i=1

(zi − z̄)ψi(t) + z̄n−1/2

n∑
i=1

ψi(t)

= n−1/2

n∑
i=1

(zi − z̄)ψi(t) + oP (1) (5.1)

since n−1/2
∑n

i=1 ψi(t) is asymptotically bounded and z̄ goes to zero in probability.

Hence the whole remainder term goes to zero in probability, and we have,

n−1/2

n∑
i=1

ziψi(t) G.

Note that Theorem 22.3 of Kosorok (2008) gives us that Ĥ(t) is the average of i.i.d.

processes indexed by β ∈ {`∞c ([l, u])}p and t ∈ [l, u], for all c ≥ supt∈[l,u] |β0(t)| at β := β̂

and all n large enough. These independent and identically distributed processes are

themselves P -Glivenko-Cantelli (P -G-C) and sufficiently smooth, which in turn implies

that supt∈[l,u] |Ĥ(t)−H(t)| → 0 in probability. From earlier arguments we saw that U0

is P -Donsker with square-integrable envelope and hence by extension P -G-C as well.
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The fact that the class of pair-wise products in a P -G-C class is a P -G-C class by itself

(see Corollary 9.32 of Kosorok (2008)) gives us uniform consistency of ψ̂1, Ĝ and in

turn that of Σ̂. Now note trivially that,

n−1/2

n∑
i=1

ziψ̂i(t) = n−1/2

n∑
i=1

ziψi(t) + n−1/2

n∑
i=1

zi

(
ψ̂i(t)− ψi(t)

)
.

Then to show n−1/2
∑n

i=1 ziψ̂i(t) G, we only need to confirm that

n−1/2

n∑
i=1

zi

(
ψ̂i(t)− ψi(t)

)
→ 0 in probability ∀t ∈ [l, u]. (5.2)

To see this, first note that by recycling arguments given above, we can show that {ψ̂1(t) :

t ∈ [l, u]} lives in a donsker class for n large enough with probability approaching 1,

which in turn implies that {ψ̂1(t)−ψ1(t) : t ∈ [l, u]} lives in a donsker class for n large

enough. Now,

sup
s,t∈[l,u]

∣∣∣∣∣n−1

n∑
i=1

(
ψ̂i(s)− ψi(s)

)(
ψ̂i(t)− ψi(t)

)′∣∣∣∣∣
≤ sup

s∈[l,u]

∣∣∣∣∣n−1

n∑
i=1

(
ψ̂i(s)− ψi(s)

)⊗2

∣∣∣∣∣
1/2

sup
t∈[l,u]

∣∣∣∣∣n−1

n∑
i=1

(
ψ̂i(t)− ψi(t)

)⊗2

∣∣∣∣∣
1/2

→ 0 in probability,

(5.3)

since each term separately converges to 0 in probability. Since {ψ̂1(t)−ψ1(t) : t ∈ [l, u]}

is a P -Donsker class with bounded square envelopes for large enough n, it is also P -

G-C for large enough n, and the preservation properties of P -G-C classes give us that

P‖ψ̂i(t)− ψi(t)‖2
∞ → 0 in probability for all t ∈ [l, u].

Hence the conditions of Lemma 29 are satisfied. Now then Lemma 29, along with

(5.1) gives us our desired result.
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APPENDIX B: Technical Details for Chapter 3

Here we give some additional results for Chapter 3.

B.1 Results for RFE in empirical risk minimization

As mentioned before, the results derived for SVMs can easily be extended into the

ERM setting.

B.1.1 The Recursive Feature Elimination Algorithm for ERM

For an empirical risk minimization framework with respect to a given functional

space F , Algorithm 2 can be modified to match the setting of ERM.

Algorithm 31. Replace the regularized empirical risk λ
∥∥fD,λ,HJ

∥∥2

HJ +RL,D

(
fD,λ,HJ

)
in Algorithm 2, (defined for a given set of indices J) by the empirical risk RL,D

(
fD,FJ

)
.

B.1.2 The version of the main result in ERM

Theorem 32. Let L be a convex locally Lipschitz continuous loss function. Let F ⊂

L∞(X ) be non-empty and compact. Let M > 0 satisfies ‖f‖∞ ≤M , f ∈ F . Let B > 0

be such that it satisfies L(x, y, f(x)) ≤ B, (x, y) ∈ X ×Y, f ∈ F . Assume that for fixed

n ≥ 1, there exists constants a ≥ 1 and p ∈ (0, 1) such that EDX∼PnX ei (F , L∞(DX )) ≤

ai−
1
2p , i ≥ 1.

There exists {δn} such that δn = ε0 − O(n−
1
2 ), for which the following statements

hold:

1. The Recursive Feature Elimination Algorithm for empirical risk minimization,

defined for {δn} given above, will find the correct lower dimensional subspace of

the input space with probability tending to 1.
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2. The function chosen by the algorithm achieves the best risk within the original

functional space F asymptotically.

Note that the above results hold under either of Condition 1 or 2.

B.1.3 Additional results in ERM

Here we provide a few additional results for ERM, similar to the ones we develop

for SVM.

Lemma 33. Let F ⊂ L∞(X ) be a non-empty functional subspace. Then for any

J ⊆ {1, 2, . . . , d},

1. If F is dense in L∞(X ), then FJ is dense in LJ∞(X ).

2. If F is compact, then so is FJ .

3. ei(FJ , ‖.‖∞) ≤ ei(F , ‖.‖∞), ∀i ≥ 1 where ei(F , ‖.‖∞) is the ith entropy number

of the set F with respect to the ‖.‖∞-norm as defined in Section 3.1.

The next few results are similar to the ones we develop for support vector machines

in Section 3.8. This would set us up to prove Theorem 32.

Proposition 34. Assume conditions of Theorem 32. For all measurable ERMs and all

ε > 0, τ > 0, and n ≥ 1, and for J1, J2 ∈ J̃ such that J1 ⊆ J2 ⊆ J∗, we have with P n

probability > 1− e−τ ,

∣∣RL,D

(
fD,FJ2

)
−RL,D

(
fD,FJ1

)∣∣ < 12B

√
2τ

n
+

20Bτ

n
+ 24K1

(
a2p

n

) 1
2

where K1 := max
{
B/4, C1(p)cL(C)pB1−p, C2(p)cL(C)

2p
1+pB

1−p
1+p

}
.

Consequently we obtain the following two corollaries:
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Corollary 35. Assume conditions of Theorem 32. For any J and all measurable ERMs

and all ε > 0, τ > 0, and n ≥ 1, we have with P n probability > 1− e−τ ,

|RL,D

(
fD,FJ

)
−R∗L,P,FJ | < 6B

√
2τ

n
+

10Bτ

n
+ 12K1

(
a2p

λpn

) 1
2

,

where K1 is as before. Additionally if J ∈ J̃ , we can replace R∗L,P,FJ in the above

inequality by R∗L,P,F .

Corollary 36. Oracle Inequality for ERM: Assume conditions of Theorem 32.

For any J and all ε > 0, τ > 0, and n ≥ 1, we have with P n probability > 1− e−τ ,

RL,P

(
fD,FJ

)
−R∗L,P,FJ < 4B

√
2τ

n
+

20Bτ

3n
+ 8K1B

1−p
(
a2p

λpn

) 1
2

,

where K1 is as before.

We now provide Lemma 37 for ERM:

Lemma 37. Assume conditions of Theorem 32. Then the following statements hold:

i. For J1, J2 ∈ J̃ and J1 ⊆ J2 ⊆ J∗, ∃ ({εn} > 0) → 0 such that we have with P n

probability greater than 1− 2e−τ , RL,D

(
fD,FJ2

)
≤ RL,D

(
fD,FJ1

)
+ εn.

ii. For J1 ∈ J̃ , J2 /∈ J̃ such that J1 ⊂ J2, ∃ ({εn} > 0)→ 0, such that we have with

P n probability greater than 1− 2e−τ , RL,D

(
fD,FJ2

)
> RL,D

(
fD,FJ1

)
+ ε0 − εn.

iii. Oracle Property for RFE in ERM: For a given J ⊆ {1, . . . , d} the infinite-

sample risk of the function fD,FJ , RL,P

(
fD,FJ

)
, converges in measure to R∗L,P,F

(and hence to R∗L,P if F is dense in L∞ (X )) iff J ∈ J̃ .
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B.2 Additional materials on RFE

B.2.1 A further discussion on Projected Spaces

In order to provide a heuristic understanding of the importance of the projec-

tion spaces in feature selection, we give an alternative definition of lower dimen-

sional versions of the input space. First, define the map σJ : Rd 7→ R|J | such that

for x = {x1, . . . , xd} ∈ Rd, σJ(x) = {xJmin
, . . . , xJmax} ∈ R|J |. So σJ(x) is the

|J | dimensional vector containing only those elements of x, the coordinates of which

are given in the index set J . Hence we can now define the deleted space X−J as,

X−J := {σJc(x) = {xJcmin
, . . . , xJcmax} : x ∈ X}.

Now consider the set up of Theorem 7 with S ≡ X−J and X ≡ X J . We equip

X J with the restricted kernel kJ , such that kJ(x, y) = k(x, y) for all x, y ∈ X J . Now

for any y ∈ X−J , define the map ϕ ≡ φJd : X−J 7→ X J as φJd (y) = πJ
c
(x), where

x ∈ X satisfies the relation y = σJ
c
(x). Or in other words the map φJd takes an element

from the deleted space, fills in the gaps with zeros and returns an element from the

projected space. Note then that φJd is a bijection, and hence the spaces X J and X−J

are isomorphic to each other.

Hence from Theorem 7, we see that kJ ◦ φJd is a kernel defined on X−J with the

corresponding RKHS HkJ◦φJd
. Suppose now that instead of X , our input space is X−J .

We want to know whether we can define a kernel, say k−J on X−J , such that it is the

natural abridgment of the kernel k on X (in the sense of being aptly defined on deleted

vectors). And in cases when such a natural connect does exist, we want to know if

there also exists an inherent connection between k−J and kJ ◦ φJd .

The motivation for the definition of k−J stems from previous works on feature elim-

ination in Support Vector Machines. The Recursive Feature Elimination procedure
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developed in Guyon et al. (2002) and subsequently revisited and modified in Rako-

tomamonjy (2003) starts off with a given input space X and eliminates features using

a weight criteria recursively computed by re-training the SVM on the lower dimen-

sional spaces X−J . From their discussion, it is seen that if the Gram matrix of the

training vectors {x1, . . . , xn} is given by {k(xk, xj)}nk,j=1, then the Gram matrix of the

training vectors {x−i1 , . . . , x
−i
n } after deleting a particular variable say Xi is taken to be

{k−i(xk, xj)}nk,j=1 where k−i(xk, xj) = k(x−ik , x
−i
j ). This clearly takes into account the

assumption that the kernel k can be defined on deleted vectors as well, that is, k is well

defined for any pair of vectors x and y where x, y ∈ Rd0 and d0 ≤ d. It is intuitively

clear that this may not be true for any general kernel k on Rd. Hence we prefer to

work with the projected space X J instead of the deleted space X−J , as this approach

is more general. Through the following lemma however (Lemma 38), we show that in

most practical cases (as discussed in Guyon et al. (2002), and Rakotomamonjy (2003)),

the kernels we work with satisfy an intrinsic relationship between k−J and kJ ◦φJd that

makes it appropriate to work with either of the setups.

Lemma 38. For Radial Kernels and Dot Product Kernels, k−J = kJ ◦ φJd .

The proof is simple and therefore omitted.

Also note that for kernels defined on weighted norms, (k(x, y) = g(‖x−y‖W ) where

‖x − y‖W := (x − y)′W (x − y), with W being a positive d × d diagonal matrix), the

above condition is also satisfied.

B.2.2 Entropy Numbers

Let us define the nth entropy number for a metric space. It helps us characterize

the complexity of the space and is formally defined as the following:

1. Entropy Numbers: For (T, d) a metric space and for any integer n ≥ 1, the
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n−th entropy number of (T, d) is defined as

en(T, d) := inf

{
ε > 0 : ∃s1, . . . , s2n−1 ∈ T such that T ⊂

2n−1⋃
i=1

Bd(si, ε)

}
(5.4)

where Bd(s, ε) is the ball of radius ε centered at s, with respect to the metric d. If

S : E 7→ F is a bounded linear operator between normed spaces E and F , we write

en(S) = en(SBE, ‖ · ‖F ), where BE is the unit ball in E.

B.3 Proofs

B.3.1 Proof of Lemma 3

Proof. The direction LJ∞(X J) ⊆ L∞(X J) is obvious since co-ordinate projection maps

are continuous. To show that LJ∞(X J) ⊇ L∞(X J) let us take g ∈ L∞(X J). Then

g : X J 7→ R is measurable with ‖g‖∞ < ∞. Extend g to g̃ to include the whole

domain X by defining g̃(x) = g
(
πJ

c
(x)
)
. Since g̃ is measurable with ‖g̃‖∞ = ‖g‖∞, we

have that g̃ ∈ L∞(X ) and g̃ ◦ πJc = g̃, so g = g̃
∣∣
XJ ∈ L

J
∞(X J).

B.3.2 Proof of Lemma 33

Proof. (1) For any function f ∈ L∞(X ), by the denseness of F we can find a sequence

of functions {gn} ∈ F such that gn → f uniformly. Now fix an arbitrary function

f ∈ LJ∞(X ) ⊂ L∞(X ) and consider any sequence of functions {gn} ∈ F that converges

to f uniformly. Construct the new sequence of functions {gJn} where for any function

f ∈ F , fJ is defined by fJ(x) = f(πJ
c
(x)). Observe trivially that {gJn} ∈ FJ .

Now {gn} 7→ f uniformly ⇒ for any ε > 0, ∃ N such that ∀ n ≥ N ,

sup
x∈X
|gn(x)− f(x)| < ε ∀n ≥ N ⇒ sup

x∈πJc (X )

|gn(x)− f(x)| < ε ∀n ≥ N

⇒ sup
x∈X
|gn(πJ

c

(x))− f(πJ
c

(x))| < ε ∀n ≥ N
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⇒ sup
x∈X
|gJn(x)− f(x)| < ε ∀n ≥ N (∵ f(πJ

c

(x)) = f(x))

⇒ {gJn} 7→ f uniformly.

Hence FJ is dense in LJ∞(X ).

(2) Since F is compact, for any ε > 0, ∃ {fn}Nεn=1 ∈ F such that F ⊂
Nε⋃
n=1

B‖·‖∞(fn, ε)

(where B‖·‖∞(fn, ε) is a ‖ · ‖∞ ball of radius ε with center fn). We now fix f ∈ FJ and

note that ∃ an equivalent class of functions {gf} in F such that for any two functions

gf1 and gf2 ∈ {gf} we have that gf1 ∼ gf2 in the sense that gf1 ◦ πJ
c

= gf2 ◦ πJ
c

= f . Fix

one such g̃f ∈ {gf}. Since g̃f ∈ F , ∃ fi ∈ {fn}Nεn=1 such that d(fi, g̃
f ) < ε, that is,

sup
x∈X
|fi(x)− g̃f (x)| < ε ⇒ sup

x∈πJc (X )

|fi(x)− g̃f (x)| < ε

⇒ sup
x∈X
|fi(πJ

c

(x))− g̃f (πJc(x))| < ε

⇒ sup
x∈X
|fJi (x)− f(x)| < ε (∵ g̃f (πJ

c

(x)) = f(x))

⇒ {fJn }Nεn=1 forms a finite ε-cover for the set FJ .

Hence FJ is compact.

(3) To see (3), note that if f1, . . . , f2n−1 is an ε-net of F , then for any f ∈ F , we

have i ∈ {1, . . . , 2n−1} such that ‖f − fi‖∞ < ε. Then,

‖f ◦ πJc − fi ◦ πJ
c‖∞ = sup

x∈X

∣∣f ◦ πJc(x)− fi ◦ πJ
c

(x)
∣∣ = sup

x∈XJ
|f(x)− fi(x)|

≤ sup
x∈X
|f(x)− fi(x)| = ‖f − fi‖∞ < ε.

Hence f1 ◦ πJ
c
, . . . , f2n−1 ◦ πJc is an ε-net of FJ .
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B.3.3 Proof of Lemma 8

Proof. To see this, let us consider a dot-product kernel k such that k(x, y) = g(〈x, y〉)

where 〈· , ·〉 is the usual Euclidean inner-product. Now consider the pre-RKHSs Hpre

and HJ
pre. We show here that HJ

pre ⊆ Hpre which will imply that HJ ⊆ H. To show

this, take f ∈ HJ
pre. This implies that f can be written as f(·) =

n∑
i=1

αik
J(·, xi) for

n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ X . Hence,

f(·) =
n∑
i=1

αik
J(·, xi) =

n∑
i=1

αik
(
πJ

c

(·), πJc(xi)
)

=
n∑
i=1

αig
(〈
πJ

c

(·), πJc(xi)
〉)

=
n∑
i=1

αig
(〈
·, πJc(xi)

〉)
=

n∑
i=1

αik
(
·, πJc(xi)

)
Noting that πJ

c
(x1), . . . , πJ

c
(xn) ∈ X , we have that f ∈ Hpre. In a similar way, we can

show that for any J1 ⊆ J2, HJ2 ⊆ HJ1 .

B.3.4 Proof of Lemma 16

Proof. Note that if we define gf := L◦f−EP (L◦f), then G = {gf : f ∈ F} is a separable

Carathéodory set (for a discussion on Carathéodory families of maps, refer to Definition

7.4 in SC08). To see this, first note that ‖gf‖∞ ≤ sup
(x,y)∈X×Y

|L ◦ f − EP (L ◦ f)| ≤ 2B

for B defined in the statement of the Lemma. Also by assumption, ‖ · ‖F dominates

the pointwise convergence of functions (so fn → f in ‖ ·‖F ⇒ fn → f pointwise). Then

the fact that L is locally-Lipschitz continuous coupled with Lebesgue’s Dominated

Convergence Theorem (since ‖L ◦ f‖∞ ≤ B) gives us the above assertion.

Now note that EP (gf ) = 0 and EPg
2
f ≤ (2B)2 = 4B2 for B as before, so we

can apply the Talagrand’s Inequality given in Theorem 7.5 of SC08 on G defined as
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G : Zn ≡ (X × Y)n 7→ R such that

G(z1, . . . , zn) := sup
gf∈G

∣∣∣∣∣ 1n
n∑
j=1

gf (zj)

∣∣∣∣∣ = sup
f∈F
|RL,D(f)−RL,P (f)| , (5.5)

and hence, for γ = 1 and for all τ > 0, we have

P n

({
z ∈ Zn : G(z) ≥ 2EPn(G) + 2B

√
2τ

n
+

10Bτ

3n

})
≤ e−τ . (5.6)

So now we need to bound the term EPn(G) := EPn

{
sup
f∈F
|RL,D(f)−RL,P (f)|

}
.

Defining the new Carathéodory set H as H = {hf := L ◦ f : f ∈ F}, for a

probability distribution P on Z ≡ (X × Y), we can use the idea of symmetrization

given in Proposition 7.10 in SC08 to bound EPn

{
sup
f∈F
|RL,D(f)−RL,P (f)|

}
. We have

for all n ≥ 1,

ED∼Pn

{
sup
f∈F
|RL,D(f)−RL,P (f)|

}
= ED∼Pn sup

hf∈H
|EPhf − EDhf |

≤ 2ED∼PnRadD(H, n),

where RadD(H, n) is the n-th empirical Rademacher average of the set H for D :=

{z1, . . . , zn} ∈ Zn with respect to the Rademacher sequence {ε1, . . . , εn} and the dis-

tribution ν, which is given by RadD(H, n) = Eν sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

εih(zi)

∣∣∣∣∣. So we see now that

it suffices to bound ED∼PnRadD(H, n).

For that we use theorem 7.16 of SC08, but before that note that the entropy bound

means we have for fixed n ≥ 1, that ∃ constants a ≥ 1 and p ∈ (0, 1) such that

EDX∼PnX ei (F , L∞(DX )) ≤ ai−
1
2p , i ≥ 1. (5.7)

First observe that H ⊂ L2(P ). Now since Lipschitz continuity of L gives us that
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|L(x, y, f1(x))− L(x, y, f2(x))|2 ≤ cL(C)2|f1(x)− f2(x)|2, it is easy to see that

ei(H, ‖ · ‖L2(P )) ≤ cL(C)ei(F , ‖ · ‖L2(PX )). Hence we have

ED∼Pn
(
ei(H, ‖ · ‖L2(D))

)
≤ cL(C)EDX∼PnX

(
ei(F , ‖ · ‖L2(DX ))

)
(5.8)

≤ cL(C)EDX∼PnX
(
ei(F , ‖ · ‖L∞(DX ))

)
≤ cL(C)ai−

1
2p .

Now noting that ‖hf‖∞ ≤ B and EPh
2
f ≤ B2 for B defined as before, the conditions

of Theorem 7.16 of SC08 are satisfied with ã = cL(C)a and hence we have,

ED∼PnRadD(H, n) ≤ max
{
C1(p)ãpB1−pn−

1
2 , C2(p)ã

2p
1+pB

1−p
1+pn−

1
1+p

}
(5.9)

for constants C1(p), C2(p) depending only on p. Hence we finally have, that with

probability ≥ 1− e−τ ,

sup
f∈F
|RL,P (f)−RL,D(f)| ≤ 2B

√
2τ

n
+

10Bτ

3n

+ 4 max
{
C1(p)cL(C)papB1−pn−

1
2 , C2(p)cL(C)

2p
1+pa

2p
1+pB

1−p
1+pn−

1
1+p

}
.

That concludes the proof.

B.3.5 Proof of Proposition 17

Proof. First note that since B ≥ 1 and K ≥ Bp/4, we have 24KB1−p ≥ 6B > 2. Now

if a2p > λpn, the inequality trivially follows from the fact that

∣∣∣λ∥∥fD,λ,HJ2

∥∥2

HJ2
+RL,D

(
fD,λ,HJ2

)
− λ

∥∥fD,λ,HJ1

∥∥2

HJ1
−RL,D

(
fD,λ,HJ1

)∣∣∣
≤

∣∣∣λ∥∥fD,λ,HJ2

∥∥2

HJ2
+RL,D

(
fD,λ,HJ2

)∣∣∣+
∣∣∣λ∥∥fD,λ,HJ1

∥∥2

HJ1
+RL,D

(
fD,λ,HJ1

)∣∣∣
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≤ 2RL,D(0) ≤ 24KB1−p
(
a2p

λpn

) 1
2

,

since RL,D(0) ≤ 1. Hence we assume from here on that a2p ≤ λpn. Now observe

that since H is separable, from Lemma 4 we have that the HJs are also separable.

Hence from Lemma 6.23 of SC08 we have that the SVMs produced by these RKHSs

are measurable.

Now note that L(x, y, 0) ≤ 1 ⇒ for any distribution Q on X × Y , we have that

RL,Q(0) ≤ 1. Since, inf
f∈HJ

λ‖f‖2
HJ +RL,Q(f) ≤ RL,Q(0), we have that

∥∥fQ,λ,HJ

∥∥
HJ ≤√

RL,Q(0)

λ
. Now since by Lemma 4.23 of SC08 ‖f‖∞ ≤ ‖k‖∞‖f‖HJ for all f ∈ HJ , we

have that
∥∥fQ,λ,HJ

∥∥
∞ ≤

∥∥fQ,λ,HJ

∥∥
HJ ≤ λ−1/2. So, consequently, for every distribution

Q on X × Y , we have

∣∣RL,P

(
fQ,λ,HJ

)
−RL,D

(
fQ,λ,HJ

)∣∣ ≤ sup
‖f‖

HJ
≤λ−1/2

|RL,P (f)−RL,D(f)| . (5.10)

Now,

∣∣∣λ∥∥fD,λ,HJ2

∥∥2

HJ2
+RL,D

(
fD,λ,HJ2

)
− λ

∥∥fD,λ,HJ1

∥∥2

HJ1
−RL,D

(
fD,λ,HJ1

)∣∣∣
≤
∣∣∣λ∥∥fD,λ,HJ2

∥∥2

HJ2
+RL,P

(
fD,λ,HJ2

)
−R∗L,P,HJ2

∣∣∣
+
∣∣RL,D

(
fD,λ,HJ2

)
−RL,P

(
fD,λ,HJ2

)∣∣
+
∣∣∣λ∥∥fD,λ,HJ1

∥∥2

HJ1
+RL,P

(
fD,λ,HJ1

)
−R∗L,P,HJ1

∣∣∣
+
∣∣RL,D

(
fD,λ,HJ1

)
−RL,P

(
fD,λ,HJ1

)∣∣ ,
since from (A1), R∗

L,P,HJ1
= R∗

L,P,HJ2
= R∗L,P,H . Noting that

λ
∥∥fD,λ,HJ

∥∥2

HJ +RL,P

(
fD,λ,HJ

)
−R∗L,P,HJ ≥ 0, we have from (6.18) of SC08 that

∣∣∣λ∥∥fD,λ,HJ

∥∥2

HJ +RL,P

(
fD,λ,HJ

)
−R∗L,P,HJ

∣∣∣
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≤ AJ2 (λ) +RL,P

(
fD,λ,HJ

)
−RL,D

(
fD,λ,HJ

)
+RL,D

(
fP,λ,HJ

)
−RL,P

(
fP,λ,HJ

)
≤ AJ2 (λ) + 2 sup

‖f‖
HJ
≤λ−1/2

|RL,P (f)−RL,D(f)| . (5.11)

From (5.10) and (5.11) and the fact that J1, J2 ∈ J̃ such that J1 ⊆ J2 ⊆ J∗, we have

that

∣∣∣λ∥∥fD,λ,HJ2

∥∥2

HJ2
+RL,D

(
fD,λ,HJ2

)
− λ

∥∥fD,λ,HJ1

∥∥2

HJ1
−RL,D

(
fD,λ,HJ1

)∣∣∣
≤ AJ12 (λ) + AJ22 (λ) + 3 sup

‖f‖
HJ1
≤λ−1/2

|RL,P (f)−RL,D(f)|

+ 3 sup
‖f‖

HJ2
≤λ−1/2

|RL,P (f)−RL,D(f)| .

First note that for f ∈ λ−1/2BHJ and B := cL(λ−1/2)λ−1/2 +1, we have |L(x, y, f(x))| ≤

|L(x, y, f(x))−L(x, y, 0)|+L(x, y, 0) ≤ B for all (x, y) ∈ X ×Y . Also note that the en-

tropy bound assumption implies that EDX∼PnX
(
ei(λ

−1/2BH , ‖ · ‖L∞(DX ))
)
≤ λ−1/2ai−

1
2p .

Now note from Lemma 4 that the conditions of Lemma 16 are satisfied for F :=

λ−1/2BHJ ‖ · ‖F := ‖ · ‖HJ , C := λ−1/2 and B := cL(λ−1/2)λ−1/2 + 1 for each of the

RKHS classes HJ . Also since a2p ≤ λpn and B ≥ 1, we have
(
a2p

λpn

)1/2

≥
(
a2p

λpn

)1/(p+1)

and B1−p ≥ B
1−p
1+p for p ∈ (0, 1). Hence we have our assertion.

B.3.6 Proof of Lemma 20

Proof. (i) Fixing a λ ∈ [0, 1], we have that B := cL(λ−1/2)λ−1/2 + 1 ≤ 2λ−1/2. Now

since |X| ≤ x⇒ X ≤ x for any x ≥ 0, we see from Proposition 17 that

λ
∥∥fD,λ,HJ2

∥∥2

HJ2
+RL,D

(
fD,λ,HJ2

)
− λ

∥∥fD,λ,HJ1

∥∥2

HJ1
−RL,D

(
fD,λ,HJ1

)
< AJ12 (λ) + AJ22 (λ) + 24λ−1/2

√
2τ

n
+ 40λ−1/2 τ

n
+ 48K2λ

− p−1
2

(
a2p

λpn

) 1
2

= AJ12 (λ) + AJ22 (λ) + 24
√

2τ(λn)−
1
2 + 40τ(λ

1
2n)−1 + 48K2a

2p(λn)−
1
2 (5.12)
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with probability at least 1−2e−τ . Also from Corollary 18, for J ∈ J̃ similarly, we have

∣∣∣λ∥∥fD,λ,HJ

∥∥2

HJ +RL,D

(
fD,λ,HJ

)
−R∗L,P,H

∣∣∣
< AJ2 (λ) + 12

√
2τ(λn)−

1
2 + 20τ(λ

1
2n)−1 + 24K2a

2p(λn)−
1
2 (5.13)

with probability at least 1 − e−τ . Now since λn → 0 and lim
n→∞

λnn = ∞, Lemma 5.15

along with (5.32) of SC08 gives us that the right hand side of the above inequality

converges to 0. So the denseness assumption of the RKHSs additionally gives us the

universal consistency of our feature elimination algorithm. To establish the convergence

rate of our algorithm we further assume that there exists c > 0 and β ∈ (0, 1] such that

AJ2 ≤ cλβ for any J and for all λ ≥ 0. Then it can be seen that asymptotically the

best choice for λn in (5.12) or (5.13) is a sequence that behaves like n−
1

(2β+1) and then

the inequalities in (5.12) and (5.13) are satisfied with the l.h.s. replaced by εn and εn/2

respectively, where εn is given by (2c + 24
√

2τ + 48K2a
2p)n−

β
2β+1 + 40τn−

4β+1
2(2β+1) . This

proves (i) for {εn} for a suitable choice of τ .

(ii) Observe from Corollary 18 along with the conditions on λn, AJ2 , and steps in

the proof of (i) given above that,

∣∣∣λn ∥∥fD,λn,HJ

∥∥2

HJ +RL,D

(
fD,λn,HJ

)
−R∗L,P,HJ

∣∣∣ < εn/2 (5.14)

occurs with P n probability greater than 1 − eτ for any J ⊂ {1, 2, . . . , d} where εn is

given as before.

Also note that from Assumption (A2) we have that R∗
L,P,HJ2

− ε0 ≥ R∗L,P,HJ∗ =

R∗
L,P,HJ1

. So for HJ2 for D ∈ (X × (Y ))n we have,

P n
(∣∣∣λn ∥∥fD,λn,HJ2

∥∥2

HJ2
+RL,D

(
fD,λn,HJ2

)
−R∗L,P,HJ2

∣∣∣ < εn/2
)
> 1− e−τ

⇒ P n
(
λn
∥∥fD,λn,HJ2

∥∥2

HJ2
+RL,D

(
fD,λn,HJ2

)
+ εn/2 > R∗L,P,HJ2

)
> 1− e−τ , (5.15)

144



and for HJ1 we have

P n
(∣∣∣λn ∥∥fD,λn,HJ1

∥∥2

HJ1
+RL,D

(
fD,λn,HJ1

)
−R∗L,P,HJ1

∣∣∣ < εn/2
)
> 1− e−τ

⇒ P n
(
λn
∥∥fD,λn,HJ1

∥∥2

HJ1
+RL,D

(
fD,λn,HJ1

)
< R∗L,P,HJ1 + εn/2

)
> 1− e−τ

⇒ P n
(
λn
∥∥fD,λn,HJ1

∥∥2

HJ1
+RL,D

(
fD,λn,HJ1

)
+ ε0 − εn/2 < R∗L,P,HJ2

)
> 1− e−τ .

(5.16)

Then (5.15) and (5.16) from above jointly imply that

λn
∥∥fD,λn,HJ2

∥∥2

HJ2
+RL,D

(
fD,λn,HJ2

)
(5.17)

> λn
∥∥fD,λn,HJ1

∥∥2

HJ1
+RL,D

(
fD,λn,HJ1

)
+ ε0 − εn (5.18)

with P n probability greater than 1− 2e−τ .

Also it is easy to see that since εn → 0 with n → ∞, the gap ε̃n = ε0 − εn −→

ε0 > 0.

(iii) From Assumption (A1), Corollary 19, conditions on λn, AJ2 , and steps in the

proof of (i) given above, the ‘if’ condition of (iii) follows since for any J and for all

ε > 0, τ > 0 and n ≥ 1 we have,

P n
(
D ∈ (X × Y)n :

∣∣∣λn ∥∥fD,λn,HJ

∥∥2

HJ +RL,P

(
fD,λn,HJ

)
−R∗L,P,H

∣∣∣ < ηn

)
> 1− e−τ ,

(5.19)

where ηn = (c+ 8
√

2τ + 16K2a
2p)n−

β
2β+1 + 40/3τn−

4β+1
2(2β+1) .

Now for J1 ∈ J̃ and J2 /∈ J̃ we have R∗
L,P,FJ2 − ε0 ≥ R

∗
L,P,FJ∗ = R∗

L,P,FJ1 and hence

the ‘only if’ condition of (iii) also follows since

P n
(
λn
∥∥fD,λn,HJ2

∥∥2

HJ2
+RL,P

(
fD,λn,HJ2

)
−R∗L,P,HJ1 > ε0 − ηn

)
> 1− e−τ
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⇒ P n
(
λn
∥∥fD,λn,HJ2

∥∥2

HJ2
+RL,P

(
fD,λn,HJ2

)
−R∗L,P,H > ε0 − ηn

)
> 1− e−τ . (5.20)

Now since ηn → 0 with n→∞, the gap ˜̃εn = ε0 − ηn −→ ε0 > 0.
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APPENDIX C: Technical Details for Chapter 4

In this section, we discuss more on the mechanisms of the method RFE Vpred for

features that help define the Q functions, but do not interact with the treatment rules

in characterizing the rewards. We show here that in the models defined below, if the

tth value function is used for feature selection at stage t in the recursive manner typical

of the RFE, we may be able to pick out features that only interact with the treatment

rule at stage t.

C.1 A further discussion on the mechanisms of RFE Vpred

As we argued before in section 4.4.3, we believe the following:

• The estimated value function at stage t, V̂t will increase (or remain the same) if

we delete features from the set Ht \H
J∗t
t .

• V̂t will decrease if we delete features from the set H
J∗t
t,1.

However we did not really discuss what would happen if we delete features from the set

H
J∗t
t,2, and deferred it for later. We argued that the above observations seem to suggest

that if we follow the stopping criterion of our algorithm, we should successfully remove

all noisy features (from the set Ht \ H
J∗t
t ) and would ultimately reach a subspace of

features that would necessarily contain the features in H
J∗t
t,1, which for our purpose is

good enough.

However our main interest in this method stems from our belief that this method

can inherently pick out only features that necessarily characterize the decision rule,

i.e. features that affect the reward through interactions with the treatment rule. In

this section we will discuss the heuristics that guide our belief which might help in

modification of this method to boost its performance. For that however, we need to

understand the mechanisms of the algorithm in dealing with features from H
J∗t
t,2. Below
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we consider two different models for the characterization of the partitions of the history

in defining the Q function. For notational ease, we will denote the Q function at tth

stage as f(·), and the ‘correct’ history space at stage t, H
J∗t
t will be denoted simply as

H the partitions [H
J∗t
t,2,H

J∗t
t,2] will be denoted by simply [H1, H2] respectively, and the

treatment at stage t will be denoted by A (lower case letters will be used to denote

realizations of the respective random variables). We will assume H1 and H2 to be

independent of each other.

1. F = {f : f(h1, h2, a) = f1(h1, a) + f2(h2) + c}.

2. F = {f : f(h1, h2, a) = f2(h2)f1(h1, a)}.

Note that here f1(·) actually characterize the decision rule. Suppose the actual solutions

in the original space F are the following:

1. fF(h1, h2, a) = f1(h1, a) + f2(h2) + c.

2. fF(h1, h2, a) = f2(h2)f1(h1, a).

Now deleting or removing any number of features from history H2, or for that matter

the entire history H2 amounts to transforming the problem onto the projected space

spanned by features only in H1. In other words, in this case, we look for the constrained

solution f(·) inside the space FJH2 . Hence if we remove H2 from the feature set, we

are left with solutions from the projected space FJH2 of the form

1. fFJH2
(h1, 0, a) = f̃1(h1, a) + c̃.

2. fFJH2
(h1, 0, a) = c1f̃1(h1, a).

Note that for model 1, the intercept term c in (1) denotes the grand mean effect when

both H1 and H2 are present in the model, while the term c̃ in (1) denotes the grand

mean when only H1 is present. In the least squares formulation of this problem (our
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loss function is LLS here), the model grand mean represents the averaged out effect

of the functional relationships between all covariates in the system with the response

except for the ones present in the model. The solution in the deleted history space

(1) would be the one that minimizes infinite sampled risk, that is, we minimize the

criterion below:

argmin
c̃∈R, f̃1 measurable

E
(
Y − f̃1(h1, a) + c̃

)2

= argmin
c̃∈R, f̃1 measurable

E
(
f1(h1, a) + f2(h2) + c− f̃1(h1, a) + c̃

)2

= argmin
c̃∈R

E (f2(h2) + c− c̃)2 + argmin
f̃1 measurable

E
(
f1(h1, a)− f̃1(h1, a)

)2

+ argmin
c̃∈R

E (f2(h2) + c− c̃) argmin
f̃1 measurable

E
(
f1(h1, a)− f̃1(h1, a)

)
,

where the last term in the last equality follows from our independence assumption. It

is easy to see that f̃1 ≡ f1 and c̃ = c+EH2f2 is the solution for the problem in the space

FJH2 . It is interesting to note that the function f1 remains the same for both solutions

(before and after removing H2). Let us now look at the least squares formulation of

the problem through model 2, and aim to reach at a solution like before:

argmin
c1∈R, f̃1 measurable

E
(
Y − c1f̃1(h1, a)

)2

= argmin
c1∈R, f̃1 measurable

E
(
f2(h2)f1(h1, a)− c1f̃1(h1, a)

)2

= argmin
c1∈R, f̃1 measurable

E
(
f2(h2)f1(h1, a)− c1f1(h1, a) + c1f1(h1, a)− c1f̃1(h1, a)

)2

= argmin
c1∈R, f̃1 measurable

EH1f1(h1, a)EH2 (f2(h2)− c1)2

+ argmin
c1∈R, f̃1 measurable

EH1

[
c1

(
f1(h1, a)− f̃1(h1, a)

)
f1(h1, a)EH2 (f2(h2)− c1)

]
+ argmin

c1∈R, f̃1 measurable

c1EH1

(
f1(h1, a)− f̃1(h1, a)

)2
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where again the last term in the last equality follows from our independence assumption.

Now it is easy to see f̃1 ≡ f1 and c1 = EH2f2 is the solution for the problem in the

space FJH2 . Let us now look at the behavior of the expectation of the tth stage value

function Vt when we remove H2 from the history.

For model 1, EHtVt is given by the following:

• Keep H2 intact: EH maxa fF(h1, h2, a) = EH1 maxa f1(h1, a) + EH2f2(h2) + c.

• Delete H2: EH maxa fFJH2
(h1, 0, a) = EH1 maxa f1(h1, a) + c̃.

And for model 2, EHtVt is given by the following:

• Keep H2 intact: EH maxa fF(h1, h2, a) = EH2f2(h2)EH1 maxa f1(h1, a).

• Delete H2: EH maxa fFJH2
(h1, 0, a) = c1EH1 maxa f1(h1, a).

In lieu of our discussions above, it is now easy to see that in both models 1 and 2, the

expected value function for stage t remains the same when we delete features from H2,

which in lieu of our discussion in section 4.4.3 means only the features in H1 will remain

in the model if we use the stage t value function to eliminate features from history at

stage t.

This shows in an ad hoc sense, why using the tth value function for feature selection

at stage t might be useful in picking out features that only interact with the treatment

rule at stage t. Our method currently uses the stage 1 value function to delete features

from the entire history, which is much more complicated than what this formulation

suggests. A possible modification of this method by using the value functions at each

stage to select features at individual stages of the trial might be helpful in the future

in increasing its performance.
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