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ABSTRACT 

Jason Thomas Doherty:  Focal Adhesion Kinase and ARHGAP26 in Cardiac and Skeletal 

Muscle Development 

(Under the direction of Joan M. Taylor, Ph.D.) 

Cardiac and skeletal muscle are highly specialized tissue types and the normal development 

of these striated muscles during embryogenesis requires very tightly regulated processes such 

as cell-type specific proliferation, expression of relevant marker genes, and formation of 

functional sarcomeres. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase which 

has been shown in various model systems to regulate processes required for both cardiac and 

skeletal muscle development. While FAK has been shown to regulate late-phase cardiogenic 

steps such as ventricular septation and cardiac compaction, it is currently unknown whether 

FAK regulates earlier steps of cardiogenesis. In order to address this possibility, we utilized 

an antisense morpholino strategy to deplete FAK during frog embryogenesis. The data 

described herein demonstrate that FAK morphant embryos exhibited markedly diminished 

cardiomyocyte proliferation in pre-looped heart tubes and that these heart tubes failed to fully 

undergo looping morphogenesis.  

FAK interacts with a variety of binding partners including ARHGAP26, which is also 

referred to as, GTPase activating protein for Rho associated with FAK, (Graf). This Rho-

specific GAP protein has been demonstrated to regulate actin cytoskeleton dynamics and is 

known to be expressed in terminally differentiated tissue types. However, very little is known 

about what role Graf might play during embryogenesis. Herein we demonstrate that Graf is 
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expressed during frog embryogenesis in a variety of tissue types including heart, brain, and 

somites. Utilizing an antisense morpholino approach, we establish for the first time that Graf 

is required during embryogenesis since all Graf-deficient embryos died during tadpole stages. 

Furthermore, Graf morphant embryos exhibited cardiac dysmorphogenesis and aberrant 

somite formation leading to a dystrophic phenotype resulting in swimming defects and 

paralysis. Our studies indicate that Graf depletion leads to markedly decreased muscle 

marker gene expression, aberrant sarcomere formation, and disruption of cellular attachments 

to the extracellular matrix. Taken together, the data provided in this dissertation greatly 

enhance our understanding of the roles of FAK and Graf in regulating the proper 

development of both the heart and skeletal muscle during embryogenesis.  
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INTRODUCTION 

In this thesis, I describe my work highlighting the importance of focal adhesion 

kinase (FAK) and its binding partner, ARHGAP26, in cardiac and skeletal muscle 

development.  ARHGAP26 is also referred to as GTPase Regulator Associated with FAK 

(Graf) and, for simplicity, will be referred to as Graf throughout this thesis. I begin with an 

introduction to cardiac and skeletal muscle development, integrin signaling, FAK, and Graf. I 

further describe the known roles for these proteins in cardiac and skeletal muscle 

development and disease and define important gaps in our current understanding. In Chapter 

II, I investigate a specific role for FAK in the early cardiac development of the African 

clawed frog, Xenopus laevis. Therein, I demonstrate that deletion of FAK protein leads to 

gross cardiac dysmorphogenesis and embryonic lethality. In Chapter III, I examine a role for 

Graf in cardiac and skeletal muscle differentiation and development. In this chapter, I 

demonstrate that Graf is required for normal morphological development of the heart and 

somites, which give rise to swimming muscle in tadpoles. Furthermore, I demonstrate that 

Graf-depletion during embryogenesis induces paralysis and a defect in somite structure and 

integrity that closely phenocopies the skeletal muscle defects found in models of muscular 

dystrophy. 

CARDIAC AND SKELETAL MUSCLE DEVELOPMENTAL DEFECTS (OVERVIEW) 

Congenital Heart Disease (CHD) affects at least 1 in every 100 live births and leads 

to more infant deaths than any other developmental defect (Hoffman, 1995; Hoffman and 
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Kaplan, 2002). Furthermore, more than one-fourth of all infants born with a congenital heart 

defect will require invasive treatment or will die in the first year of life (Rosamond et al., 

2008). The most common congenital cardiac defect is the ventricular septal defect. Other 

defects include atrial septal defects, pulmonary and aortic stenosis, transposition of the great 

arteries, and patent ductus arteriosus.  

Muscular dystrophy is a heterogenous group of skeletal muscle disorders caused by at 

least 30 known genetic disruptions in humans (Stenson et al., 2003). The highest incidence of 

these disorders is Duchenne muscular dystrophy (DMD), an X-linked  disease caused by 

mutation in dystrophin, which represents the most common lethal pediatric disease in 

humans (Guglieri and Bushby).  Muscular dystrophies are characterized by progressive loss 

of muscle strength, often beginning at birth, and typically lead to paralysis during childhood 

and death by the 2nd decade of life. While there are a variety of therapeutic approaches to 

disease treatment currently under investigation, the clinical approach to the disease at present 

consists of management of symptoms (Guglieri and Bushby). A better understanding of the 

mechanisms involved in the pathogenesis of these striated muscle disorders could lead to 

novel treatment options in the future.  

CARDIAC DEVELOPMENT  

The heart is the first organ to form in the embryo and, in mammals, a functioning 

heart is prerequisite for life during early embryogenesis. In fact, congenital heart defects are 

the most common birth defect and account for most of the heritable during the first year of 

life and their frequency in miscarried pregnancies is estimated to be tenfold higher (Hoffman, 

1995; Hoffman and Kaplan, 2002).  Although in the past decade, much has been discovered 
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regarding the molecular mechanisms underlying cardiac morphogenesis, there are many 

details that remain to be revealed. Discovering these critical mechanisms will provide new 

therapies to restore cardiac function in patients with congenital heart disease. 

While the final form of the adult heart varies amongst vertebrate species, the 

mechanisms that regulate the early steps of heart formation are remarkably conserved 

(Harvey, 2002; Mohun et al., 2003; Olson, 2006; Srivastava and Olson, 2000). Furthermore, 

the basic morphogenesis of the embryonic heart is surprisingly similar between species even 

though adult hearts can have two chambers, as in fish, three chambers in frogs, or four 

chambers in mammals. The initial step of heart formation occurs during gastrulation when 

two bilateral patches of cells originating in the anterior lateral mesoderm become specified 

and begin an anterior and ventral migration toward the embryonic ventral midline. During 

this midline migration, a variety of transcription factors begin to be expressed that regulate 

further steps of cardiac proliferation and differentiation. These include the evolutionarily 

conserved members of the NKX, GATA, T-box, myocyte enhancement factor (MEF2), and 

Hand families of transcription factors (Olson, 2006). The bilateral patches of specified 

cardiac precursor cells (cardioblasts) continue to migrate until they eventually fuse at the 

ventral midline to form a continuous epithelial sheet. Failure of midline migration and fusion 

often leads to cardia bifida, a condition in which two separate hearts develop. Cardia bifida 

can be caused by defects in cardiomyocyte differentiation, endoderm-derived signaling 

interactions, and/or cardioblast migration (Alexander et al., 1999; Christine and Conlon, 

2008; Dickmeis et al., 2001; Kikuchi et al., 2001; Kikuchi et al., 2000; Reiter et al., 1999; 

Schier et al., 1997; Trinh and Stainier, 2004b; Yelon et al., 2000). After fusion at the ventral 

midline, the heart field undergoes intricate morphogenetic processes that result in the rolling 
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up of the cardiac field into a linear heart tube. Subsequently, the heart undergoes cardiac 

looping which is required to bring the atria in alignment with the ventricles to form the four-

chambered mammalian heart (or the three-chambered frog heart). Recent evidence suggests 

that proper cardiac looping requires both cardiomyocyte proliferation and directed 

cardiomyocyte migration; however, the precise mechanisms have not been fully elucidated 

and require additional investigation. 

SKELETAL MUSCLE DEVELOPMENT 

Skeletal muscle development is also a tightly regulated process involving the 

specification of mesodermal precursors into proliferating myoblasts which are induced to exit 

the cell cycle and undergo differentiation and fusion into multinucleated myotubes. 

Vertebrate skeletal muscle derives from tissues known as somites which eventually give rise 

to embryonic skeletal muscle, dermis, and bone. Notably, in Xenopus leavis, the somites 

appear to give rise almost exclusively to embryonic swimming muscles (Mohun T, 1994). 

For excellent reviews of various aspects of early vertebrate somitogenesis, see the works of 

Hamilton, Keller, and Pourquie (Hamilton, 1969; Keller, 2000; Pourquie, 2001). Skeletal 

muscle is initially specified in a tissue compartment of the gastrula embryo termed the 

presomitic mesoderm. During gastrulation, the somitic precursor tissue is localized in a ring-

shape around the circumference of the embryo and somitogenesis proceeds by 

morphogenetic movements of this tissue to the dorsal aspect of the embryo along the 

anteroposterior axis adjacent to the notochord (Mohun T, 1994). Xenopus laevis somites are 

arranged as blocks of cells which undergo rotation in a coordinated anterior to posterior wave 

during the stages of neurulation (Hamilton, 1969). These blocks of cells then elongate along 
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the anteroposterior axis and undergo further terminal differentiation but do not undergo 

myotube fusion to become multinucleated skeletal muscle, as occurs in mammals and fish.  

The early specification and differentiation of the somites is regulated by the MyoD 

family of muscle regulatory factors (MRFs) which includes MyoD, Myf5, Myogenin, and 

MRF4. These transcription factors bind to the E-box target sequence of many skeletal muscle 

genes. A variety of transgenic mouse models have helped to elucidate the specific roles of 

these transcription factors. Mice deficient in both MyoD and Myf5 contain no myoblasts and 

do not form skeletal muscle (Rudnicki et al., 1993) suggesting that MyoD and Myf5 are 

required for initial specification of skeletal myoblasts. Disruption of myogenin in the 

developing mouse led to defects in muscle differentiation and embryonic or perinatal 

lethality (Hasty et al., 1993; Nabeshima et al., 1993). Mrf4 was also traditionally thought to 

regulate the differentiation of specified cells; however, recent evidence has determined that 

Mrf4 can regulate skeletal muscle specification as well (Kassar-Duchossoy et al., 2004). 

The MRFs interact with proteins such as myocyte enhancement factor-2 (MEF2) and 

serum response factor (SRF) to regulate skeletal muscle gene expression. The interaction 

with SRF is mediated by the myocardin family of cofactors which includes myocardin and 

the myocardin related transcription factors A and B (MRTF-A and MRTF-B). Additionally, a 

fourth member of the family, MASTR, has been identified in Xenopus which can cooperate 

with MyoD and Myf5 to induce skeletal muscle differentiation (Meadows et al., 2008). The 

interactions of MRFs, MEFs, and SRF (along with the myocardin-family members) lead to 

upregulation of skeletal muscle-specific genes that contribute to formation of mature 

sarcomeres that provide skeletal muscle integrity and regulate stretch and force-transmission. 

INTEGRINS AND THEIR ROLE IN DEVELOPMENT  
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Cells interact with the extra-cellular matrix (ECM) via adhesive complexes, termed 

focal adhesions. At focal adhesions, the actin cytoskeleton links to the ECM through a 

variety of transmembrane proteins. One important class of cell surface receptors capable of 

connecting the ECM to the actin cytoskeleton is the group known as integrins. Experimental 

evidence from flies, worms, chicks, frogs, and mammals demonstrates that integrins are 

required for numerous developmental processes such as cellular adhesion, migration, 

proliferation, differentiation, and survival. Notably, integrins have been implicated in the 

pathogenesis of a variety of cardiac and skeletal muscle congenital and adult-onset disorders.  

Integrins are heterodimeric transmembrane receptors composed of one α and one β 

subunit and generally contain a single membrane spanning segment and a short cytoplasmic 

tail (Giancotti and Ruoslahti, 1999; Guan, 1997). At least 18 α-subunits and 8 β-subunits are 

known to exist in mammals and can combine in at least 24 known configurations (van der 

Flier and Sonnenberg, 2001). The specific α/β configurations direct ligand specificities to 

such extracellular matrix components as fibronectin and laminin (Mayer, 2003).  

Within this large family of integrins, a small number of α and β chains are specific to 

the heart. In cardiomyocytes, six distinct α  subunits (α 1, α 3, α 5, α 6, α 7, and α 10) are 

expressed (van der Flier and Sonnenberg, 2001; Zhidkova et al., 1995). Some integrins, 

including α1 and α5 (fibronectin-binding) are expressed embryonically but are downregulated 

in the adult, when α7 (laminin-binding) becomes the predominant form (Mayer, 2003; Ross 

and Borg, 2001).  

Similar to their role in cell:ECM interactions in cardiomyocytes, integrins are the 

major cell surface adhesion receptors in skeletal muscle and have been shown to coordinate 

many steps of skeletal muscle development including myoblast migration, differentiation, 
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and subsequent fusion into myotubes  (Mayer, 2003). The α5 and α6 integrins are down-

regulated after myotube formation and, thereafter, α7 integrin predominates in adult skeletal 

muscle. The β1 integrin is the most common form in skeletal muscle. This form is 

alternatively spliced into several variants found in skeletal muscle with the embryonic form, 

β1A, eventually being replaced by the β1D form in adult muscle. 

Upon ligand binding, integrins cluster into focal contacts, areas enriched in specific 

cytoskeleton proteins such as talin, vinculin, α-actinin, and actin (Burridge et al., 1988). 

While integrins play a vital structural role in connecting the cell to the ECM, they also 

regulate a variety of downstream biological pathways through signaling mechanisms via 

kinases such as FAK (Ilic et al., 2004). 

FAK COORDINATES INTEGRIN SIGNALING  

FAK is recruited to sites of focal adhesions and becomes activated upon integrin 

clustering (Guan, 1997) and by activation of certain growth factors, G-protein coupled 

receptor agonists, and mechanical stimuli (Hildebrand et al., 1993). FAK contains an N-

terminal integrin-binding domain, a C-terminal focal adhesion targeting (FAT) domain, and a 

central kinase domain. Activation of FAK, predominantly at tyrosine 397 (Y397) can induce 

the tyrosine phosphorylation of FAK-binding partners such as p130Cas and paxillin 

(Hildebrand et al., 1993). FAK regulates a variety of biological processes via interactions 

with these binding partners and through signaling mechanisms downstream of FAK, such as 

the MAP kinase pathway. Such biological processes include cellular adhesion, migration, 

proliferation, and survival.  FAK is also thought to regulate the turnover of focal adhesions 

and actin cytoskeleton dynamics, in part through modulating signaling via the small GTPases 



 8 

of the Rho-family. This process may involve the FAK binding partner Graf, as discussed 

later in this thesis (Hildebrand et al., 1996).   

In developing mouse embryos, FAK is ubiquitously expressed and this expression 

gradually increases from E8.0 onward (Furuta et al., 1995). FAK is required for mammalian 

embryonic development and viability as the germline deletion of FAK in mice results in 

embryonic lethality between E8.5-10.5 (Furuta et al., 1995). The FAK deficient embryos 

exhibited a general mesodermal deficiency similar to that induced by fibronectin deficiency 

(George et al., 1997; George et al., 1993; Georges-Labouesse et al., 1996) and died as a 

result of generalized cardiovascular and mesodermal defects. In vitro analyses of cells 

derived from FAK-null mice displayed defects in cell proliferation, differentiation, and 

migration. 

GRAF IS A FAK BINDING PARTNER  

Graf was initially discovered using an expression cloning technique in an effort to 

identify binding partners for FAK and was determined to exhibit GAP activity toward the 

small-molecular weight GTPase, Rho (Hildebrand et al., 1996; Taylor et al., 1998; Taylor et 

al., 1999). Graf (Graf1) has two related family members, Graf2 and Oligophrenin-1. 

Oligophrenin-1 has been implicated in cases of X-linked mental retardation (Ramakers, 

2002); however, little is currently known about the function of Graf1 and Graf2. 

RHO-FAMILY GTPASES AND THEIR REGULATION  

The Rho-family GTPases comprise a group of small molecular weight intracellular 

signaling molecules that have well-demonstrated importance in regulating actin cytoskeleton 



 9 

dynamics. The best characterized of these are RhoA, Rac, and CDC42. Rac and CDC42 are 

known to induce formation of lamellapodia and filopodia, respectively. RhoA regulates the 

formation of stress fibers and focal adhesions (Ridley and Hall, 1992). In addition to their 

effects on cytoskeletal dynamics, Rho family members have been shown to alter gene 

expression via p38/Jun NH2-terminal kinase and serum response factor (SRF) activity and 

G1-S cell cycle progression (Ridley, 1996). Finally, RhoA has been implicated in striated 

muscle differentiation and organogenesis, as described in greater detail in Chapters I and III.  

The activity of Rho-family proteins is regulated by the binding of GTP (guanine 

triphosphate), in the active state, or GDP (guanine diphosphate), in the inactive state. The 

binding of GTP and GDP is tightly regulated by three classes of proteins, GEFs (Guanine 

Exchange Factors), GDIs (Guanine Dissociation Inhibitors), and GAPs (GTPase Activating 

Proteins) which each have specific affinities toward one or more Rho-family members. GEFs 

upregulate GTPase activity by promoting the release of GDP and the binding of GTP. GDIs 

serve to switch off GTPase activity in two ways: by promoting GDP binding and by 

sequestering the GTPase in the cytosol where it is less accessible to downstream effectors. 

Finally, GAPs typically serve to downregulate the activity of GTPases by promoting the 

hydrolysis of GTP to GDP. Notably, the intrinsic rate of GTP hydrolysis by small GTPases is 

much lower than that observed in heterotrimeric G-proteins; thus GAPs are critical for 

maintaining the fine balance between the active- and inactive- states of the small GTPases of 

the Rho-family.  

The human genome is predicted to encode a large number of GAP-domain containing 

proteins. Further, the number of RhoGAP-containing proteins exceeds the number of  Rho-

GTPases by 2-3 fold (Tcherkezian and Lamarche-Vane, 2007). The abundance of RhoGAPs 
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is partially explained by the specificity of many GAPs for only certain Rho GTPases. 

Additionally, many GAPs are expressed in a time- or tissue-dependent manner. Furthermore, 

GAP activity is regulated by a variety of mechanisms including lipid binding, protein-protein 

interactions, and phosphorylation via upstream signaling mechanisms such as MAP kinases.   

Graf, like many GAP proteins, contains numerous functional domains which may be 

important to its biological function. These include an N-terminal BAR and PH domain, both 

of which may serve to bind phospholipid membranes, a proline/serine rich domain which 

may regulate Graf‟s activity, and a C-terminal SH3 domain through which Graf interacts 

with FAK  (Hildebrand et al., 1996; Longenecker et al., 2000; Taylor et al., 1998; Taylor et 

al., 1999). Cell culture experiments have demonstrated that Graf overexpression leads to 

clearance of Rho-mediated stress fibers and that the GAP domain of Graf is both necessary 

and sufficient for this effect. Further evidence suggests that Graf may be regulated by 

phosphorylation by mitogen activating protein (MAP) Kinase at serine 510, which is 

localized within the serine/proline rich domain. Such activation could lead to an “open” 

conformation, as suggested by band-shifting evident by Western blot analysis, which could 

increase Graf‟s ability to bind FAK through its SH3 domain.  

Graf has been shown in adult mammals to be highly expressed in terminally 

differentiated tissues such as heart and brain. In addition, evidence has emerged recently that 

Graf may have possible tumor-suppressor activity. Notably, several reports suggest that some 

cases of acute myeloid leukaemia and myelosdysplastic syndrome are caused by 

downregulation of Graf through genetic mutation, deletions, translocations, and aberrant 

methylation of the Graf promoter region (Bojesen et al., 2006; Borkhardt et al., 2000; 
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Panagopoulos et al., 2004). Despite these advances, little is known about how Graf is 

regulated during development or what role it plays in vivo. 

INTEGRINS AND THE DYSTROPHIN-GLYCOPROTEIN COMPLEX ARE DEFECTIVE IN VARIOUS 

MUSCULAR DYSTROPHIES  

Strong interactions between the actin cytoskeleton and the ECM are necessary in 

order to generate force-transmission and stretch responsiveness. In the absence of these 

interactions, severe muscular degeneration occurs as seen in muscular dystrophies. Indeed, 

mutations in genes encoding members of the integrin family (e.g. integrin α7β1) and/or the 

dystrophin-glycoprotein complex (DGC) (e.g. β–dystroglycan) leads to dystrophic 

phenotypes in humans and mice.  

Mature skeletal muscle is surrounded by a basement membrane containing 

extracellular matricies including laminin, collagen IV, perlecan, and nidogen-1 (Timpl and 

Brown, 1996). Laminin-binding is primarily mediated through interactions with the laminin-

specific receptors α7β1-integrin and the α-sarcoglycan component of the DGC. Mutation of 

dystrophin leads to Duchenne‟s and Becker muscular dystrophy and mutations of other DGC 

components have also been implicated in human muscular dystrophy (Mayer, 2003). The α7-

integrin subunit is also mutated in certain forms of human muscular dystrophy and this 

finding was corroborated in an α7-integrin mouse model (Hayashi et al., 1998; Mayer et al., 

1997). Notably, the combined disruption of both dystrophin and α7-integrin in mice led to a 

more severe dystrophic phenotype than either mutation alone and resulted in death by four 

weeks of age (Rooney et al., 2006). Furthermore, overexpression of α7-integrin reduced the 

dystrophic phenotype of mice lacking both dystrophin and the dystrophin homolog, utrophin 

(Burkin et al., 2001). Finally, mutations in the ECM components, collagen IV and laminin, 
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have been implicated in various forms of congenital muscular dystrophies (Lisi and Cohn, 

2007). Taken together, these findings firmly demonstrate the requirement for strong 

interactions between the actin cytoskeleton and the extracellular matrix (especially laminin) 

via the laminin-receptors integrin α7β1 and the DGC. 

FAK IN CARDIAC AND SKELETAL MUSCLE DEVELOPMENT  

As noted above, the germline deletion of FAK in mice induces embryonic lethality 

between E8.5 and E10. This phenotype was characterized by defects in mesoderm formation 

and generalized cardiovascular defects; however, a more specific investigation of later stages 

of cardiac development was precluded due to the early timing of lethality. A more specific 

role for FAK in cardiac development has been aided greatly by the use of conditional 

knockouts, which allow for tightly controlled temporal activation and deletion of FAK in a 

tissue-specific manner. Specifically, our lab recently reported that FAK deletion in NKX2.5-

expressing cells, which contribute to the primary and secondary heart fields, leads to defects 

in ventricular septation, outflow tract alignment, and persistent truncus arteriosus (Hakim et 

al., 2007).  Utilizing a different strategy, our lab showed that overexpression of FAK-related 

non-kinase (FRNK), which can serve as a dominant negative inhibitor of FAK, in cardiac 

progenitor cells beginning at E10.5 leads to a severe ventricular noncompaction defect 

associated with reduced cardiomyocyte proliferation (DiMichele et al., 2009).  

In addition to its role in heart development, FAK has been shown to play a vital role 

in the development of skeletal muscle. In Xenopus, FAK mRNA expression increases 

between stages 20-26, concomitant with increased skeletal muscle differentiation (Zhang et 

al., 1995) and FAK protein was found to localize at the myotendinous junction (MTJ) of 
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Xenopus somites (Baker et al., 1994). Inactivation of FAK in the developing Xenopus 

somites by injection of FRNK into the presumptive somites (at the 4-cell stage) led to defects 

in somite rotation and disruption of somite boundaries and fibronectin deposition (Kragtorp 

and Miller, 2006). Furthermore, in vitro differentiation experiments utilizing the C2C12 

myoblast cell line demonstrated that dynamic regulation of FAK activity (FAK inactivation 

followed by increased FAK activation) promoted myoblast differentiation into 

multinucleated myotubes (Clemente et al., 2005). FAK signaling has also been shown to 

specifically promote myotube fusion, potentially through upregulation of pro-fusion genes 

such as caveolin-3 and the β1D integrin subunit (Quach et al., 2009). Notably, while FAK 

appears to regulate cell proliferation (via cyclinD-mediated processes) and myotube fusion, 

no evidence was found in these studies to suggest that FAK altered the myogenic 

differentiation of C2C12 or primary myocytes as assessed by skeletal marker gene expression 

analyses. Thus, FAK may serve a biphasic role in muscle maturation but not through direct 

regulation of muscle marker gene expression.  

FAK interacts with a variety of proteins localized at cellular focal adhesions and 

many of these also play a vital role in the development of mesodermally-derived tissues such 

as heart and skeletal muscle. Fibronectin is a major component of the extracellular matrix 

and is the strongest upstream activator of FAK.  Disruption of fibronectin during 

development leads to embryonic lethality in both frogs and mouse. In the frog, injection of 

fibronectin-interfering antibodies into single-cell embryos caused defects in gastrulation and 

blastopore closure, eye formation, anterior-posterior axis elongation, and pericardial edema 

(Marsden and DeSimone, 2001). In the fibronectin-deficient mouse, early development 

through gastrulation was relatively unperturbed; however, at later stages of development, 
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severe defects were observed in tissues of mesodermal origin. Most notably, fibronectin-null 

mouse embryos displayed a dysmorphic heart and defects in somite formation, despite 

normal specification of precursor cells (George et al., 1997; George et al., 1993; Georges-

Labouesse et al., 1996).  The similarities between the fibronectin- and FAK-null phenotypes 

suggests that cell:ECM interactions via FAK and fibronectin are crucial for proper cardiac 

and skeletal muscle development.  

Other FAK binding partners exhibiting critical functions during embryonic 

development include p130CAS, paxillin, and vinculin. p130cas is an adaptor molecule that is 

activated by FAK and serves roles in cell migration and proliferation. CAS null embryos die 

by embryonic day 12.5, exhibit marked growth retardation, and develop abnormal hearts with 

myofibrillar disorganization and disruption of the Z-disks (Honda et al., 1998).  Paxillin is 

phosphorylated after integrin activation and mediates signals downstream of integrins. 

Paxillin-null mice displayed a similar phenotype to fibronectin-null mice, as described above. 

Paxillin-null cells cultured from these embryos exhibited defects in focal adhesion formation, 

FAK localization to focal adhesions, and cell migration (Hagel et al., 2002).  Finally, 

vinculin-null mice demonstrated embryonic lethality between E8-10 (Xu et al., 1998). 

Vinculin knockout caused severe defects in neural structures such as the neural tube and 

resulted in small and dysfunctional cardiac tissue. Fibroblasts derived from homozygous null 

mice were deficient for adhesion to a number of ECM proteins and exhibited diminished 

migratory capacity. 

RHO IN CARDIAC AND SKELETAL MUSCLE DEVELOPMENT – IMPLICATIONS FOR GRAF  
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As described previously, Rho plays a variety of biological roles including regulation of actin 

cytoskeleton dynamics, cell proliferation, migration, and differentiation. Perhaps the earliest 

known functions of Rho during embryogenesis relate to its role in coordinating cellular 

adhesion during gastrulation (Wunnenberg-Stapleton et al., 1999) and these processes are 

thought to operate downstream of Wnt-derived signals (Habas et al., 2001). Indeed, Rho has 

been shown to act downstream of Wnt-signals emanating from the organizer region of the 

gastrula embryo to coordinate migratory movements of cardiac precursor cells, perturbation 

of which results in cardia bifida (Yue et al., 2008). Other roles for Rho during cardiogenesis 

have also been demonstrated in a variety of experimental systems. For example, inhibition of 

Rho by cardiomyocyte-specific overexpression of the Rho-GDIα, led to decreased 

cardiomyocyte proliferation and disrupted cardiac morphogenesis (Wei et al., 2002) and 

similar results were obtained by treatment of embryonic hearts with an inhibitor of the Rho-

effector, Rho-associated coiled-coil kinase (ROCK) (Zhao and Rivkees, 2003). Studies in 

isolated chick cardiomyocytes suggest that Rho also plays a specific role in 

myofibrillogenesis, as treatment with the Rho-inhibiting toxin, C3, led to disaggregation of 

both focal adhesions and myofibrils (Wang et al., 1997). While these studies are intriguing, 

much remains unknown about the various roles of Rho during the intricate process of cardiac 

development.  

In addition to its role in cardiogenesis, Rho has been extensively studied with respect 

to its role in skeletal muscle differentiation. Rho has been found to both promote and block 

differentiation of skeletal muscle in a variety of experimental contexts. It is unclear to what 

extent these differences can be attributed to differences in model organism and experimental 

design (e.g. methods and timing of genetic perturbation); however, recent evidence suggests 
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that Rho activity must be very tightly regulated during skeletal muscle differentiation. For 

example, while Rho activity appears to be necessary for maintenance of myogenic potential 

(Castellani et al., 2006) and can coordinate myogenic marker gene expression through SRF 

(Carnac et al., 1998; Hill et al., 1995; Wei et al., 1998), it also must be later downregulated 

for optimal differentiation and myotube fusion (Charrasse et al., 2006; Meriane et al., 2000; 

Nishiyama et al., 2004). The specific effectors which regulate this dynamic modulation of 

Rho activity during these critical processes remain mostly undefined. Chapter III of this 

thesis describes intriguing evidence that Graf is a key Rho-effector during embryogenesis 

and plays specific roles in the differentiation and morphogenesis of cardiac and skeletal 

muscle. 

MODELS UTILIZED HEREIN  

In order to study the roles of FAK in cardiac development and of Graf in cardiac and 

skeletal muscle development, I have employed translational inhibition of FAK and Graf 

protein through the use of antisense morpholinos in the developing frog (Xenopus laevis). In 

this section I will briefly describe these model systems, the rationale for their use in my 

studies, and some important information to provide further insight into the experiments 

described in the remainder of this thesis.  

Xenopus laevis is a well-characterized model system of early embryonic development 

and has been extensively utilized in the study of embryonic heart and skeletal muscle 

development. Some of the attractive features of using this species are: high fecundity 

(females can lay up to 1000 eggs/day), large egg size which allows for ease of micro-

injection experiments, embryos develop externally for ease of observation, and embryonic 
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development occurs rapidly (embryos develop a fully functioning heart within 72 hours post-

fertilization). In addition, as opposed to mammalian development which requires a fully-

functioning cardiovascular system early during embryogenesis, frogs do not have a similar 

requirement until at least the late tadpole stages because they are capable of nutrient 

exchange via simple diffusion.  

In order to determine an in vivo role for FAK and Graf during embryonic 

development, I have utilized an antisense morpholino-based approach to deplete developing 

frog embryos of these proteins. This approach is a well-established experimental 

methodology for examining protein function during embryonic development. Morpholinos 

are anti-sense oligonucleotides which recognize their cognate sequence (the transcript 

encoding the protein of interest) and bind with high specificity and affinity. The morpholin-

ring attached to these oligos sterically hinders ribosomal attachment and, thus, generation of 

functional protein. Morpholinos are diluted in an appropriate buffer and micro-injected into 

single-cell fertilized embryos. As cellular divisions proceed during development, the 

morpholino is evenly distributed to all cells of the embryo, which allows for depletion of the 

protein of interest in all tissue types. In addition, individual blastomeres may be targeted for 

micro-injection. For example, unilateral micro-injection of morpholinos into only one 

blastomere at the two-cell stage leads to distribution of the morpholino into only one half of 

the embryo.  

Frog development is temperature-dependent and, therefore, developmental 

progression is tracked according to stages of development (as assessed by consistent 

morphological cues) rather than in hours or days post-fertilization. Germane to this body of 

work are the stages of gastrulation (stages 9-12), neurulation (stages 12-24), tailbud (stages 
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24-32), and tadpole (stage 32 onward). Both the FAK- and Graf- deficient phenotypes are 

embryonic lethal during tadpole stages (by stage 42) and subsequent staging will not be 

described. Specific information concerning the relevant timing of important development 

processes in cardiac and skeletal muscle development will be described within chapters II 

and III, as necessary. 

GOAL OF THESIS  

While FAK has been demonstrated to play a role in both cardiac and skeletal muscle 

development, much remains unknown about its exact function in these processes. As noted 

above, germ-line and tissue-specific deletion of FAK leads to various cardiovascular defects 

in the mouse, yet confers no obvious phenotype in the fly. We were interested in determining 

whether FAK plays an important role in cardiac development in the frog model, Xenopus 

laevis, since frogs have a more complex, three-chambered heart than the linear heart tube of 

the fly. In Chapter II of this thesis, I utilized an antisense morpholino approach to block 

translation of FAK in developing frog embryos in order to test the hypothesis that FAK is 

required for normal heart development in the frog. I demonstrate that FAK morphant 

embryos undergo normal early development, express several markers of cardiac specification 

and differentiation in a specified spatiotemporal pattern, and develop a normal cardiac heart 

tube. However, by later stages, FAK-depletion leads to disruption of normal cardiac 

morphology, pericardial edema, and early embryonic lethality. Our mechanistic data suggests 

that the abnormal looping morphogenesis induced by FAK-depletion is likely due, in part, to 

impaired cardiomyocyte proliferation via an FGF-dependent pathway. 
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In Chapter III of this thesis, I examine a novel role for Graf in the development of 

cardiac and skeletal muscle. Previous studies have demonstrated that Graf serves to 

downregulate Rho activity (via its Rho-GAP domain) and that this downregulation leads to 

cytoskeletal rearrangements in cultured cells. However, to date, no research has been 

conducted on a specific in vivo role for Graf. Due to the tissue-specific expression of Graf 

and its role in modulating Rho activity, a protein known to be important for skeletal and 

cardiac muscle differentiation, we hypothesized that Graf may play a vital role in early 

cardiac and skeletal muscle development. We used antisense morpholinos to block Graf 

translation in frog embryos and our studies revealed that Graf is required for normal somite 

formation. Graf-depleted embryos are partially paralyzed and exhibit diminished cardiac and 

skeletal muscle marker gene expression, aberrant sarcomeric structure, and dysregulated 

intersomitic junction formation and/or maintenance. These skeletal muscle defects, coupled 

with the disruption of laminin and β-dystroglycan deposition in the intersomitic space 

strongly demonstrates that Graf-depletion phenocopies many of the skeletal muscle 

abnormalities seen in models of muscular dystrophy. Furthermore, Graf-depleted embryos 

exhibit marked pericardial edema, aberrant cardiac morphology, and die during tadpole 

stages of development, suggesting that Graf plays an essential role for both cardiac and 

skeletal muscle development.  



 

FOCAL ADHESION KINASE IS ESSENTIAL FOR CARDIAC LOOPING AND MULTI-CHAMBER 

HEART FORMATION  

ABSTRACT  

Focal adhesion kinase (FAK) is a critical mediator of matrix- and growth factor-

induced signaling during development.  Myocyte-restricted FAK deletion in mid-gestation 

mice results in impaired ventricular septation and cardiac compaction.  However, whether 

FAK regulates early cardiogenic steps remains unknown.  To explore a role for FAK in 

multi-chambered heart formation, we utilized anti-sense morpholinos to deplete FAK in 

Xenopus laevis.  Xenopus FAK morphants exhibited impaired cardiogenesis, pronounced 

pericardial edema, and lethality by tadpole stages.  Spatial-temporal assessment of cardiac 

marker gene expression revealed that FAK was not necessary for midline migration, 

differentiation, fusion of cardiac precursors, or linear heart tube formation.  However, 

myocyte proliferation was significantly reduced in FAK morphant heart tubes and these tubes 

failed to undergo proper looping morphogenesis. Collectively our data imply that FAK plays 

an essential role in chamber outgrowth and looping morphogenesis likely stimulated by 

fibroblast growth factors (and possibly other) cardiotrophic factors. 

INTRODUCTION 
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Heart formation involves an intricate and complex series of events that must occur in 

a coordinated spatial and temporal manner.  The heart develops from bilaterally symmetric 

cardiogenic primordia that migrate and fuse at the embryonic midline, proliferate, and form a 

primitive heart tube (Dehaan, 1963; Goetz and Conlon, 2007; Kolker et al., 2000; Mohun et 

al., 2003; Mohun et al., 2000; Trinh and Stainier, 2004a).  In species with multi-chambered 

hearts the primitive heart tube rapidly undergoes looping morphogenesis and maturation to 

form a fully functioning heart with outflow tracts aligned with the vasculature.   

Appropriate cardiac morphogenesis requires regional coordinated recruitment, 

differentiation, and proliferation of cardiomyocytes.  A large body of evidence indicates that 

signals secreted from the endoderm including soluble factors (e.g. fibroblast growth factors 

(FGFs), bone morphogenic proteins (BMPs) and extracellular matrix (ECM) proteins (e.g. 

fibronectin) are prominent inducers of the cardiogenic field (Ahuja et al., 2007; Chen et al., 

2004; Choi et al., 2007; Lavine and Ornitz, 2008; Lavine et al., 2005). Via incompletely 

understood mechanisms, these signals induce the expression of critical myocardial 

transcription factors in discrete (often chamber-specific) locales.  Notably, genetic studies in 

chick, zebrafish, frogs, and mice have revealed that spatiotemporal induction of myocyte 

enhancement factor 2 (MEF2) and GATA factors are necessary for regulated myocyte 

differentiation, while Nkx2.5, Tbx2, and Tbx3 are required for coordinating myocyte 

proliferation (Moorman and Christoffels, 2003; Srivastava and Olson, 2000; Zaffran and 

Frasch, 2002).  

The non-receptor tyrosine kinase, focal adhesion kinase (FAK) is strongly activated 

by fibronectin-binding integrins (α5β1) and growth factors (Parsons, 2003) and is a likely 

candidate to integrate downstream signals from these diverse pathways during myocardial 



 22 

development.  Indeed, studies by our group and others have indicated that myocyte-specific 

depletion of FAK (or inactivation of FAK) leads to early embryonic lethality associated with 

left ventricular non-compaction (DiMichele et al., 2009; Peng et al., 2008).  Although these 

studies highlight an essential role for FAK during mid-gestational cardiac growth, a 

limitation of these studies is that FAK signaling is not significantly depleted in these hearts 

until embryonic day 13.5 (E13.5) or later, precluding determination of whether FAK activity 

is necessary for earlier stages of cardiac morphogenesis.  Importantly, FAK is expressed in 

the mouse mesoderm prior to cardiogenesis (E7.5) and germ-line deletion of FAK in the 

mouse induces a variety of mesodermal defects and early embryonic death within a time 

frame either prior to or during looping morphogenesis (between E8.5-10.5 in mice) (Furuta et 

al., 1995).  In stark contrast, depletion of the FAK ortholog FAK56 in Drosophila does not 

affect viability of this organism and no defects in heart formation were reported (Grabbe et 

al., 2004).  Since the Drosophila heart consists of a linear tube that does not undergo the 

marked morphological changes that occur during multi-chambered heart formation, we 

speculated that looping morphogenesis may be a key developmental process regulated by 

FAK in higher organisms.   

To study the possible requirement for FAK in this intricate morphogenetic event, we 

depleted FAK in Xenopus laevis by microinjection of inhibitory antisense morpholino 

oligonucleotides.  This model system is particularly suited to studying cardiac development 

because of the ease of temporal analysis of morphogenetic events and because Xenopus do 

not require heart function to survive (at least until the late tadpole stage of development) 

since nutrient exchange readily occurs by diffusion.  Herein, we show that FAK-depleted 

tadpoles exhibit abnormal myocardial morphogenesis accompanied by pericardial edema and 
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early embryonic lethality.  Our mechanistic studies reveal that FAK activation, likely by 

FGFs, facilitates myocyte proliferation in the pre-looped heart tube, thus contributing to the 

complex process of looping morphogenesis.  

RESULTS  

Inhibition of FAK by morpholino-injection  

FAK plays a critical function in murine development and is necessary for myocardial 

compaction. However, no studies to date have addressed a specific role for FAK in early 

cardiac development, specifically in regulating cardiac morphogenesis ((DiMichele et al., 

2009; Furuta et al., 1995; Peng et al., 2008).  To study the time-dependent requirements
 
for 

FAK during this intricate process, we depleted FAK protein in Xenopus, which develop a 

fully functioning three-chambered heart by 72 hr post-fertilization.  To this end, we designed 

two FAK-specific antisense morpholinos to target sequences either upstream of, or flanking, 

the start codon of Xenopus fak (denoted FAK Mo and xFAKst, respectively). Both 

morpholinos significantly reduced flag-tagged FAK protein production in an in vitro 

transcription/translation assay, with FAK Mo being slightly more potent (data not shown).  

To establish that FAK Mo effectively blocks FAK translation in vivo, we injected 

standard quantities (20 and 40ng) into single-cell fertilized Xenopus embryos. Western blot 

analysis of stage 22, 26, and 39 embryos confirmed that FAK protein levels were reduced in 

a dose-dependent manner (Fig. 2.1A).  We next performed further temporal analysis of FAK 

levels during development in embryos injected with 40 ng of either control morpholino (Con 

Mo) or FAK Mo.  As previously reported we found that a low level of maternal FAK was 

apparent in fertilized eggs which persisted throughout the onset of gastrulation (stage 10.5) at 
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which time embryonic FAK protein was markedly induced (Hens and DeSimone, 1995). As 

expected, maternal FAK was not depleted by FAK Mo, which was designed to block 

translation of nascent transcripts. However, injection of FAK Mo at the one-cell stage did 

reduce embryonic FAK levels by stage 10.5 and FAK protein was nearly undetectable by 

Western analysis in the morphants during cardiogenesis (stage 28-39) (Fig. 2.1A, B).   

Densitometric analysis of Western blot band intensities demonstrated that FAK protein 

expression in FAK morphant embryos was reduced by greater than 80% as compared to 

controls by stage 28 (Fig. 2.1C). FAK activity was also ablated in FAK-depleted embryos at 

these stages as assessed by Western blotting for phospho-FAK with Y-397 antibody (data not 

shown).  Importantly, no changes in FAK expression were evident after injection of a control 

five-base mismatch morpholino (data not shown). Moreover, Western blot analysis for the 

protein tyrosine kinase, PYK2, demonstrated that FAK Mo did not disrupt the translation of 

this closely related FAK family member (Fig. 2.1D). 

FAK-depletion results in abnormal cardiac morphogenesis  

FAK morphant embryos exhibited a slight developmental delay beginning around 

stage 10 but underwent normal gastrulation and neurulation as assessed by gross morphology 

(data not shown).  Furthermore, in situ hybridization analysis demonstrated that the 

mesodermal markers, chordin, brachyury, and Myo-D were expressed in the appropriate 

spatiotemporal pattern in both Con Mo- and FAK Mo-injected embryos at stages 10, 16, and 

22 (Fig. 2.2) suggesting that early mesodermal development was also unperturbed in the 

FAK morphants. The lack of effect on these early developmental processes is not surprising 

given that heterozygous FAK null mice are viable (Ilic et al., 1995) and that FAK protein 
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Figure 2.1. Depletion of FAK in Xenopus laevis leads to pericardial edema.  A) FAK 

or Control morpholinos (20 and 40 ng) were injected into fertilized oocytes and 

embryonic FAK protein levels were assessed at the indicated stages by Western blotting. 

Levels of ERK are shown as a control for loading. B) Western blot analysis for FAK in 

Con Mo- and FAK Mo-injected embryos (40 ng/embryo) at the indicated stages of 

development.  Levels of ERK are shown as a control for loading. C) Densitometric 

analysis of Western blots comparing FAK band intensity relative to ERK.  Data are 

presented as FAK levels in FAK Mo-embryos relative to Con Mo-embryos (set to 1) at 

each developmental stage analyzed. D) Western blot analysis for PYK2 (and ERK) in 

stage 30 Con Mo- and FAK Mo-injected embryos.  E) Gross morphology of Control and 

FAK morphant tadpoles at stage 37. FAK morphants exhibit a slightly shortened 

anteroposterior axis and pericardial edema (arrow). 
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Table 2.1. FAK depletion leads to marked pericardial edema. Embryos were 

scored for pericardial edema between stages 34-39 in three separate trials. 
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Table 2.2. Phenotypic analysis of gross morphological abnormalities in FAK 

morphant embryos. Embryos exhibiting truncated or bent anteroposterior body axis (A/P 

axis defects) or anterior defects (such as small head) were scored between stages 27-30 in 

at least three separate experiments and aggregate totals for each phenotype are reported. 

As noted in the text, these embryos (and embryos exhibiting developmental arrest prior to 

stage 30) were not utilized for later analysis of heart development. 
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levels in our model system were not reduced by greater than 50% until after commencement 

of these critical developmental stages (Fig. 2.1C). 

Interestingly, by stage 34, a large percentage of FAK-depleted embryos (79.6%) 

showed pronounced pericardial edema (Fig. 2.1E and Table 1), indicating a morphogenetic 

cardiac abnormality. Indeed, whole mount immunohistochemical staining of stage 39 hearts 

with cardiac myosin heavy chain (MHC) or tropomyosin antibodies revealed marked dys-

morphogenesis in the majority of FAK morphant embryos.  Although all hearts in Con Mo-

injected embryos were fully looped with three distinct chambers, FAK Mo-injected 

embryonic hearts exhibited bent or twisted heart tubes that failed to fully undergo looping 

(Fig. 2.3).  Other less penetrant phenotypes included anterior defects (such as decreased head 

size), a shortened antero-posterior axis, and developmental arrest prior to stage 30 

(Supplemental Table 1).   Embryos that exhibited signs of these less frequent abnormalities 

were excluded from subsequent analysis of cardiac morphology.  Notably, all FAK-depleted 

tadpoles died by stage 42 indicating an essential role for FAK in Xenopus development. 

To further confirm that looping morphogenesis was dependent on FAK, we utilized a 

phenotypic rescue approach. After aligning the sequences of Xenopus and chicken fak, we 

reasoned that FAK Mo would not interfere with chicken FAK translation, and subsequent in 

vitro transcription/translation assays confirmed this assertion (data not shown). Thus, we 

injected embryos at the one cell stage with either FAK Mo or a combination of FAK Mo and 

2ng chicken FAK capped-RNA (cFAK; denoted „rescue‟) and assessed cardiac morphology 

at stage 37-39. Importantly, Western blot analysis confirmed that rescued embryos expressed 

FAK protein at near endogenous levels (Fig. 2.3B). We next assessed cardiac morphology 

using whole-mount MHC antibody staining and quantified properly looped hearts. As shown 
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Figure 2.2. Gastrulation and neurulation proceed normally in FAK morphant 

embryos. In situ hybridization analysis for chordin (a, b) and brachyury (xBra) (c, d) 

were performed at stage 10. Views for a-d are vegetal with dorsal to the top. Myo-D in 

situ hybridization was performed at stage 16 (e, f – dorsal view) and stage 22 (g, h – 

dorsal view with anterior to the left). 
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in figure 2.3C and D, expression of 2ng cFAK induced a demonstrable rescue of the 

morphant phenotype, as 67% of dually-injected embryos exhibited normal three-chambered 

hearts, compared to only 30% observed following injection of FAK Mo alone. Collectively, 

these results demonstrate that FAK is required for appropriate morphogenesis of the multi-

chambered heart. 

FAK morphants exhibit appropriate specification, midline migration and differentiation of 

cardiac precursors  

To define the FAK-dependent mechanisms involved in chamber morphogenesis, we 

analyzed control and FAK-depleted hearts at various stages of development. As noted above, 

the initial step of heart formation involves the bilateral movement of cardiac progenitors 

(cardioblasts) to the ventral midline of the embryo where they fuse prior to formation of the 

linear heart tube, a process that occurs between stages 28 and 32 in Xenopus embryos.  We 

performed in situ hybridization to examine the spatiotemporal expression pattern of several 

cardioblast marker genes to determine whether the cardiac precursors were specified and 

properly redistributed in the FAK morphants.  The nkx2.5, tbx5, and tbx20 expression 

domains of Con Mo- and FAK Mo-injected embryos were comparable between stage 26-32 

and semi-quantitative PCR analysis confirmed similar transcript levels of these cardioblast 

markers in Con Mo- and FAK Mo-injected embryos at stages 30 and 32 (Fig. 2.4A, B and 

data not shown).  Moreover, the myocyte differentiation markers tropomyosin and troponin I 

were expressed at similar levels in FAK Mo- and Con Mo- injected embryos as assessed by 

semi-quantitative RT-PCR and immunohistochemistry (Figure 2.4C and data not shown).  

Indeed, 3-D rendering of MHC-stained stage 30 FAK morphant embryos revealed a 

continuous sheet of myocytes, confirming appropriate differentiation and fusion at the ventral 
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Figure 2.3. FAK morphant embryos exhibit marked cardiac dysmorphogenesis.  A) 

Lateral view of whole-mount immunohistochemistry for tropomyosin  reveals a fully 

looped three-chambered heart in Con Mo- injected embryos while those injected with 

FAK Mo appear distended and partially looped (middle panel) or unlooped (right panel).  

Anterior is to the left and dorsal toward the top in all panels. Regions of interest are 

labeled as follows: i= inflow tract, v=ventricle, o=outflow tract. B) Western blot analysis 

for FAK in uninjected, Con Mo-injected,  FAK Mo-injected, and rescue embryos at stage 

37.  Levels of ERK are shown as a control for loading. C) Lateral view of whole-mount 

immunohistochemistry for MHC reveals rescue of the FAK morphant phenotype is 

achieved by co-expression of 2ng chicken FAK. D) Heart morphology analysis of Con 

Mo-injected, FAK Mo-injected, rescue (FAK Mo and 2 ng chicken FAK co-injection), 

and 2ng chicken FAK alone demonstrates that while FAK morphant embryos exhibit full 

looping in only 30% of embryos examined, rescue embryos exhibit full looping 

morphology in 67%. Total number of embryos analyzed were n=27 (Con Mo), n=34 

(FAK Mo), n=42 (Rescue), n=20 (2ng c-FAK), collected from two separate experiments. 
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midline (Fig. 2.4D).  Moreover, despite subsequent aberrant morphogenesis, FAK-depleted 

cardiac tissue exhibited normal rhythmic contractions (data not shown).  Collectively, these 

results indicate that specified cardiac precursors migrated to the ventral midline and 

expressed markers of terminal differentiation in a FAK-independent manner. 

FAK morphants form linear heart tubes but fail to undergo appropriate looping 

morphogenesis  

Considering that the initial stages of cardiogenesis were not affected by FAK 

depletion, we hypothesized that FAK may play an integral role in looping morphogenesis.  

To test this possibility, we performed additional whole-mount tropomyosin antibody staining 

and analyzed cardiac morphology using laser scanning confocal microscopy and 3D 

isosurfacing.  By stage 32, when the heart tube is undergoing closure at the dorsal surface, 

Con Mo- and FAK Mo- injected embryos appeared similar (Fig. 2.5A); however analysis of 

the dorsal aspect of the heart revealed that complete closure of the heart tube had not 

occurred in FAK morphant embryos at this time (Fig. 2.6). Despite this delay, all FAK 

morphant embryos analyzed at later stages exhibited fully closed heart tubes (Fig. 2.6).  

However, analysis of FAK morphants at stage 34 onward demonstrated a marked deficiency 

in heart tube looping.   Indeed, the majority of stage 34 FAK morphant hearts exhibited a 

straight or only slightly bent appearance (Fig. 2.5B and Fig. 2.6).  Notably, injection with 

either Con Mo or five-base mismatch morpholinos did not affect cardiac morphogenesis 

when compared to uninjected embryos, indicating that the phenotypes observed were due to 

FAK depletion. 
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Myocyte proliferation is reduced in FAK morphant heart tubes  

Figure 2.4 FAK depletion does not impact cardiac specification or differentiation. A) 

In situ hybridization of stage 30 embryos for TBX5 and NKX2.5. Ventral views (left 

panels) are oriented with anterior toward the top, lateral views (right panels) are oriented 

with anterior to the left and dorsal to the top.  B and C) RT-PCR analysis at stages 30 (left 

panels) and 32 (right panels) for TBX5, TBX20, NKX2.5 (B), and tropomyosin (tm), and 

Troponin T (TnT) (C). Histone H4 (H4) serves as a control. Data represent results from 

10 embryos per condition and experiments were repeated at least twice.  D) Ventral and 

front views of whole-mount immunohistochemistry for MHC reveals a continuous and 

fused sheet of differentiated myocytes at the ventral midline (indicated by white arrow) in 

FAK Mo-injected embryos. Images represent 3D reconstructions of confocal z-stack 

sections.. 
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Since differential rates and/or locales of cell proliferation within the heart tube have 

been correlated with appropriate looping morphogenesis (Ribeiro et al., 2007), we 

determined whether cardiomyocyte proliferation was impaired in FAK-depleted embryos. To 

test this possibility, we immunostained Con Mo- and FAK Mo- injected embryonic heart 

tubes for tropomyosin and phospho-specific histone H3 (pH3) and imaged the hearts using 

laser scanning confocal microscopy.  As shown in figure 2.7, we observed a significant 

decrease in the total number of pH3-positive cardiomyocytes in pre-looped (stage 32) FAK 

Mo hearts relative to controls. Notably, pH3 staining in the surrounding non-cardiac tissue 

was comparable between Con Mo- and FAK Mo- injected embryos, indicating that FAK 

depletion did not induce a global reduction in cellular proliferation (Fig. 2.7B).  Double-

immunolabeling with tropomyosin and cleaved caspase 3 antibodies revealed no significant 

difference in cardiomyocyte apoptosis between Con Mo- and FAK Mo-injected embryos 

(Fig. 2.8), consistent with our previous findings that FAK depletion does not induce 

apoptosis in developing mouse hearts (Hakim et al., 2007).  Collectively, these data indicate 

that the looping defect found in FAK morphant embryos may be due, at least in part, to 

impaired cardiomyocyte proliferation.   

FAK regulates FGF-dependent myocyte proliferation  

Proper development of the myocardium is dependent on the close interaction with (and 

signaling from) the endo- and epi-cardium.  FGFs are potent regulators of embryonic 

myocyte proliferation (Lavine and Ornitz, 2008; Lavine et al., 2008), and given evidence 

from our lab that FAK activity is required for FGF-induced Map kinase signaling (DiMichele 

et al., 2009) and that inactivation of FAK phenocopies the non-compaction defects observed 
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Figure 2.5 FAK depletion impairs looping morphogenesis. Whole mount 

immunohistochemical staining for tropomyosin was performed on stage 32 (A), and 34 

(B) embryos that were injected with either Con Mo (left) or FAK Mo (right) at the one-

cell stage.  Images represent 3D reconstructions of confocal z-stack sections (top) and 

Imaris isosurfacing (bottom).   Stage 32 view is from the posterior looking through the 

heart tube toward the anterior end; dorsal is to the top. Stage 34 view is lateral with 

anterior to the left, dorsal to the top.  Note that looping is perturbed in stage 34 FAK 

morphants. Arrows point to region of interest where the heart takes on a spiral shape 

indicative of looping morphogenesis. 
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Figure 2.6 Isosurfacing of Con Mo and FAK Mo hearts revealed a delay in closure of 

the heart tube at the dorsal surface at stage 32 but not 34. A) Dorsal view of 

isosurfaced and 3-D rendered images from stage 32 hearts (anterior is to the top).  Note 

that FAK morphant hearts have only begun to close at the dorsal aspect of the heart tube, 

while controls have undergone complete closure. B) By stage 34, closure of the heart tube 

is complete (dorsal view). 
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Figure 2.7 Myocyte mitosis is attenuated in FAK morphant heart tubes. A. Whole 

mount immunohistochemical staining for tropomyosin (green) and phospho-Histone H3 

(red) was performed on pre-looped (stage 32) embryos that were injected with either Con 

Mo (left) or FAK Mo (right) at the one-cell stage.  Images represent 3D reconstructions of 

confocal z-stack sections (top panels) or a single optical section (bottom panels). B.  Total 

number of pH3 positive myocytes and non-cardiac cells were counted in each optical 

section of Con Mo- and FAK Mo-injected embryos (19 embryos were analyzed per 

condition, collected from at least 3 separate experiments). 
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Figure 2.8 FAK deficiency does not alter myocyte survival.  Whole mount 

immunohistochemical staining for tropomyosin and cleaved caspase 3 was performed on 

pre-looped (stage 32) embryos that were injected with either Con Mo (left) or FAK Mo 

(right) at the one-cell stage.  Total number of cleaved caspase 3- positive myocytes per 

unit area of myocardium were counted as described in figure 5 (3 embryos for each 

condition were analyzed in three separate experiments). 
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in FGF Receptor 1 (FGFR1) knock-out mice, we reasoned that FAK may play a major role in 

regulating cardiac morphogenesis mediated by epicardial-derived FGFs.  

To test whether FGF signaling was required for Xenopus heart looping, we treated 

embryos with a selective FGFR1 tyrosine kinase inhibitor, SU5402 (Langdon et al., 2007; 

Mohammadi et al., 1997).   As shown in figure 2.9, continuous exposure of embryos to 

SU5402 (50 M) during cardiogenesis (stage 25-37) resulted in small and dysmorphic hearts, 

although the embryos appeared relatively normal in size and shape (Fig. 2.9A, B).  

Importantly, the hearts of the SU5402-treated embryos resemble the FAK morphant hearts in 

that they fail to undergo looping (Fig. 2.9B and Table 2.3). This phenotype was highly 

penetrant (observed in 94% of treated embryos) while no looping defects were observed in 

embryos treated with DMSO (vehicle).  These data indicate that both FGF- and FAK-

dependent signals play an important role in coordinating chamber growth and 

morphogenesis. 

To determine whether FAK might coordinate mitogenic cues initiated by FGF, we 

first determined whether FGF stimulates FAK activity in rat primary cardiomyocytes in 

culture. Importantly, Western blot analysis showed that basic fibroblast growth factor (bFGF) 

induced a marked increase in FAK activity in cardiomyocytes and that SU5402, dramatically 

reduced this response (Fig. 2.10A). It is well established that the FAK splice variant, FAK-

related non-kinase (FRNK), can serve as a dominant interfering mutant that downregulates 

FAK-mediated signaling pathways (Richardson and Parsons, 1996). We previously generated 

FRNK adenoviruses that are well-suited for studying FAK-dependent processes in cultured 

cardiomyocytes.  Therefore, to determine whether FAK was essential for FGF-stimulated 

myocyte proliferation, we infected embryonic rat cardiomyocytes with 10 multiplicity-of-
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infection (m.o.i) green fluorescent protein (GFP) or GFP-FRNK adenovirus (Figure 2.10B) 

and examined the rate of proliferation of these cells in serum-free (SF) medium in the 

absence or presence of bFGF. GFP and GFP-FRNK were efficiently expressed in 100% of 

the cardiomyocyte population as determined by immunofluorescence (data not shown). 

Under these conditions, bFGF induced the rate of 5-bromo-2-deoxyuridine (BrdU) 

incorporation in GFP-infected cells by approximately 20%, whereas only 4% of FRNK-

infected cells were BrdU-positive (Fig. 2.10C). Collectively, these data indicate that FAK 

activity is necessary for mediating FGFR-dependent cardiomyocyte proliferation, an event 

that may control both looping morphogenesis and growth of the embryonic heart. 
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Figure 2.9 Treatment with the FGFR1-inhibitor, SU5402, impairs cardiac looping. 

Widefield microscopic analysis (A) of gross morphology of untreated control, DMSO-

treated (2.5 µM), or SU5402-treated (50 µM) embryos at stage 37 reveals that SU5402 

treatment induces edema in the middle-ventral region of the embryo (top right panel) or 

pericardial edema (bottom right panel) in some embryos. Arrows point to regions of 

edema. B) Lateral view of whole-mount immunohistochemistry for MHC reveals a fully 

looped three-chambered heart in untreated and DMSO-treated embryos while those 

treated with SU5402 appear unlooped. Anterior is to the left and dorsal is to the top in all 

panels. Total number of embryos analyzed for heart morphology were: n=22 (untreated), 

n=34 (DMSO), and n=35 (SU5402) and were collected from 3 separate experiments. 
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Table 2.3.  Treatment with SU5402 causes defects in cardiac looping morphology. 

Embryos were scored for gross morphology in three separate experiments. As shown, 

SU5402 induced edema and cardiac looping defects. Several embryos exhibited both 

edema and an unlooped heart, therefore the totals do not add up to 100%.   
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Figure 2.10 FAK is activated by FGF and is necessary for FGF-dependent myocyte 

proliferation.  A) Western blot analysis of cell lysates isolated from primary embryonic 

rat cardiomyocytes. Cells were maintained in serum free (SF) media and treated with 

bFGF (100ng/ml) or vehicle (veh.) for 30 min with or without 10 min pre-treatment with 

the specific FGFR-inhibitor, SU5402 (10 µM). Lysates were immunoblotted with 

antibodies directed towards phospho-specific Y397-FAK or total FAK B) BrdU 

incorporation in isolated embryonic cardiomyocytes infected with GFP- or GFP-FRNK 

adenovirus (10 m.o.i). Cells were maintained in serum-free medium and treated with 

vehicle (not shown) or bFGF (100 ng/ml) for 24 hr. Costaining with anti–cardiac troponin 

T (cTnT) was performed to identify cardiomyocytes. C, Quantification of BrdU- positive 

cardiomyocytes (means±SEM; N=3; minimum of 300 cells/condition). Scale bar is 20 

µm. 
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DISCUSSION  

Previous studies have demonstrated an essential role for FAK during embryonic 

development in mice but not flies (Grabbe et al., 2004; Ilic et al., 1995).  FAK null mice 

exhibit general cardiovascular defects that were not reported in FAK-depleted Drosophila. A 

major notable difference between the cardiovascular systems of these two species is that 

Drosophila contains a simple linear heart tube that does not undergo looping morphogenesis.  

Although recent studies in myocyte-restricted FAK-depleted mouse hearts revealed that FAK 

is necessary for growth of the four chambered heart (DiMichele et al., 2009; Peng et al., 

2008), no studies to date have addressed a role for FAK in regulating cardiac looping.  Our 

current findings show that FAK-depleted Xenopus embryos exhibit pronounced pericardial 

edema, cardiac dysmorphogenesis, and embryonic death.  Temporal assessment of cardiac 

morphogenesis revealed that FAK depletion did not affect the midline migration or 

differentiation of cardiac precursors.  However, depletion of FAK markedly reduced 

proliferation in pre-looped hearts in comparison to stage-matched controls and induced a 

profound defect in looping morphogenesis. 

We found that FAK-depleted Xenopus embryos died by stage 42, which is relatively 

late in development in comparison to FAK-depleted mice (E8-10.5).  Prolonged survival in 

FAK-depleted Xenopus may be due, in part, to the enhanced nutrient exchange that is known 

to permit uncoupling of heart and embryonic development in this species until late tadpole 

stages.  However, it is also possible that the presence of maternal FAK (which is refractory to 

the FAK morpholino) may have been sufficient to drive early FAK-dependent 

morphogenetic processes in the studies presented herein.  Indeed, we found a low level of 

maternal FAK protein in both Con Mo- and FAK Mo- injected embryos until at least stage 
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10.5 (the onset of gastrulation), consistent with previous studies of FAK expression during 

Xenopus development (Hens and DeSimone, 1995). Therefore, while FAK-depleted Xenopus 

embryos gastrulate and neurulate normally, the role of FAK in gastrulation has not been 

addressed in this study.  Nonetheless, the translation of embryonically expressed FAK 

protein was dramatically reduced in the FAK morphants from stage 10.5 onwards, and FAK 

protein was nearly undetectable in these embryos during cardiogenesis.  Thus, our findings 

that the migration of specified cardioblasts from the bilateral heart fields to the ventral 

midline and their differentiation into mature cardiomyocytes was not altered in the FAK 

morphants, indicates that these processes are both FAK-independent. 

The finding that cardioblast migration was FAK-independent was somewhat 

surprising given that several published studies from our laboratory and others have indicated 

that FAK is essential for cell motility (Parsons, 2003).  Notably, we previously showed that 

directional motility of cardiomyocytes requires FAK (Hakim et al., 2007).  Moreover, 

previous studies in zebrafish have revealed that the coordinated motility of cardioblasts to the 

midline is regulated by fibronectin (Trinh and Stainier, 2004b) and studies in Drosophila 

revealed a strong genetic interaction between the Drosophila 1 integrin and the guidance 

cue, Slit, in regulating cardioblast movement (Engel et al., 2005; MacMullin and Jacobs, 

2006). However, consistent with our finding that midline fusion of cardioblasts occurs 

normally in FAK-depleted Xenopus embryos, MacMullin et. al. found no phenotypic 

interaction between FAK and Slit (MacMullin and Jacobs, 2006), leading us to reason that 

distinct integrin-induced signals regulate cardioblast and cardiomyocyte motility.  Indeed, 

cardioblast motility involves a sheet-like movement that is known to be dependent on cell-

cell interactions, whereas we have shown that myocytes exhibit directional motility that 
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requires FAK-dependent lamellipodial protrusions (Hakim et al., 2007). While previous 

studies have indicated a role for FAK in scratch wound closure of a confluent monolayer of 

fibroblasts (Hsia et al., 2003; Sieg et al., 1999) we have found that FAK is not necessary for 

wound closure in smooth muscle cells, indicating that the mechanisms that regulate sheet-

like movements may be cell type specific (unpublished observations, JMT).    

Our mechanistic studies herein indicate that FAK is essential for regulating myocyte 

proliferation within the developing heart tube.  We found that FAK morphant hearts 

exhibited a decrease in mitotically active myocytes relative to controls prior to looping. This 

finding is significant because recent studies in zebrafish have demonstrated that looping 

morphogenesis is associated with a shift from homogeneous proliferation to increased 

proliferation within the presumptive atrial and ventricular chambers (Ribeiro et al., 2007).   

Several studies suggest that members of the FGF family (Itoh and Ornitz, 2004), 

including FGF-1 (Engelmann et al., 1991, , 1993), bFGF (David et al., 2003; Pasumarthi et 

al., 1996), and FGF9 (Lavine et al., 2005) are critical endoderm-derived mediators of 

myoycte proliferation during myocardial development.  Interestingly, our previous studies 

indicated that myocyte-restricted inactivation of FAK in mice phenocopies the non-

compaction defects observed in mice with myocyte-restricted deletion of FGFR-1 and 

FGFR-2 (DiMichele et al., 2009).  We now show that inhibition of either FAK or FGFR 

signaling in Xenopus leads to a failure of heart looping, that FGF stimulates FAK activity, 

and that FAK activation is necessary for FGFR-dependent myocyte proliferation in vitro.  

Since SU-5402 is an effective inhibitor of FGFR1, we hypothesize that FGFR1-dependent 

FAK activation is necessary for heart looping.  However, it is formally possible that this 

compound may also inhibit other FGF receptor subtypes including FGFR4 and FGFR2 which 
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have been reported to be expressed at higher levels than FGFR1 in the developing Xenopus 

heart (Lea et al., 2009).  In terms of signaling, FGF receptors
 
are linked to the MAPK 

signaling pathways which terminate in activation
 
of ERK, c-Jun N-terminal kinase, and p38. 

Interestingly, several recent studies
 
have indicated that p38 may function at the G2/M 

checkpoint to block
 
cardiomyocyte cell cycle progression (Engel et al., 2006; Engel et al., 

2005) and we recently showed that expression
 
of FRNK (or inactivation of FAK) promotes 

p38 activity and regulates
 
expression of the p38-dependent cell cycle modifier, p27

kip
 

(DiMichele et al., 2009).  Thus, we hypothesize that FGFR-stimulated FAK activation leads 

to p38 repression and induction of the proliferative signals that may be necessary
 
to drive 

looping morphogenesis. 

Although FGFs provide mitogenic signals to embryonic cardiomyocytes, recent 

evidence in zebrafish indicates that FGFs are also necessary for recruitment and 

differentiation of the secondary heart field (SHF) (de Pater et al., 2009).  This population of 

cells contributes to right ventricle and outflow tract formation in zebrafish, chick, and mouse 

hearts, and was also recently identified in Xenopus (Brade et al., 2007; de Pater et al., 2009; 

Martinsen et al., 2004; Sadaghiani and Thiébaud, 1987). Although the precise timing and 

extent of SHF contribution during frog heart development remains unclear, studies performed 

in chick and mouse indicate that SHF is not typically recruited until after looping 

morphogenesis (de Pater et al., 2009; Martinsen et al., 2004; Sadaghiani and Thiébaud, 

1987). Thus, while it is formally possible that the abnormal morphogenesis observed in FAK 

morphant hearts may, in part, arise from a defect in this FGF-dependent process, this is 

unlikely the primary cause of dysmorphogenesis, since FAK morphants exhibit defects in 

pre-looped heart tubes.  
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In summary, our studies are the first to indicate that FAK is necessary for viability 

and cardiogenesis in Xenopus.  FAK-depleted cardiac precursor cells migrated to the ventral 

midline, fused, and formed a linear heart tube. However, FAK morphant heart tubes 

exhibited a marked reduction in proliferating myocytes and a concomitant failure to undergo 

looping.  Our studies in cultured cardiomyocytes confirmed that FAK regulates myocyte 

proliferation in a cell autonomous fashion and that FAK acts downstream of FGFRs to 

regulate this critical function. 

MATERIALS AND METHODS 

Embryo culture and microinjection  

Preparation and injection of X. laevis embryos was carried out as previously 

described (Wilson and Hemmati-Brivanlou, 1995). Staging was performed according to 

Nieuwkoop and Faber (Nieuwkoop and Faber, 1994). Anti-sense morpholino 

oligonucleotides were designed against either the start site (xFAKst Mo) or the 5‟-

untranslated region (xFAKup Mo) of Fak. Sequences used were: xFAKup, 5‟ CTG ATG 

CTA GGT GTC TGT CAT ATT C 3‟ and xFAKst, 5‟ TCC AGG TAA GCC GCA GCC 

ATA GCC T 3‟. We utilized two control morpholinos, a five-base mismatched morpholino, 

in which five nucleotides of the xFAKup Mo sequence were changed such that the 

morpholino no longer reacted with Xenopus fak, and a standard control morpholino (Con 

Mo) (Gene Tools, Philomath, OR, USA). Morpholinos were injected at a concentration of 

40ng/embryo at the one-cell stage, except where indicated. All in vivo data shown herein 

represent experiments performed with xFAKup (hereafter referred to as FAK Mo). Similar 

results were obtained with xFAKst Mo (data not shown).  
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Capped chicken FAK RNA used for rescue experiments was first generated using the 

mMessage/mMachine capped RNA kit (Ambion), according to the manufacturer‟s 

instructions.  RNA was quantified by spectrophotometry and diluted in RNase-free water. 

For overexpression, RNA was microinjected at a concentration of 2ng/embryo in a 10nL 

injection volume. For rescue experiments, FAK capped-RNA was mixed with FAK Mo in 

order to achieve 40ng FAK Mo and 2ng FAK capped-RNA per embryo (10nL injection 

volume). 

Inhibitor treatments  

Embryos for inhibitor experiments were cultured in normal culture media until stage 

25, at which time the culture media was supplemented with 2.5mM dimethyl sulfoxide 

(DMSO) or 50μm SU5402 (Pfizer) (Langdon et al., 2007). Embryos were cultured under 

these conditions until stage 37 and processed for immunohistochemical analysis to analyze 

heart morphology. 

In vitro transcription/translation assays  

In vitro transcription/translation assays were performed using the TnT Quick-Coupled 

Transcription/Translation System according to the manufacturer‟s instructions (Promega, 

Madison, WI, USA). 

Whole mount- immunohistochemistry and -in situ hybridization  

Embryos were prepared for whole-mount immunohistochemistry by fixation in 

Dent‟s fixative (80% methanol/20% dimethyl sulfoxide) or 4% paraformaldehyde and were 

then processed as previously described (Kolker et al., 2000), except that the rehydration steps 
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were omitted for embryos fixed in paraformaldehyde. Fixed embryos were incubated 

overnight at 4
o
C with a primary antibody against α-myosin heavy chain (α–MHC) (Abcam, 

Cambridge, MA, USA) (1:500), tropomyosin (DSHB, Iowa City, Iowa, USA) (1:200), 

phospho-Histone H3 (pH3) (1:250) (Millipore, Billerica, MA, USA), or cleaved caspase 3 

(1:250) (Cell Signaling, Danvers, MA, USA). Embryos were then washed and incubated 

overnight at 4
o
C with the appropriate Cy-3 or Alexa-488 conjugated secondary antibodies 

(1:200) and Topro-3 (1:1000) (Molecular Probes, Carlsbad, CA, USA) to stain the nuclei.  

Whole-mount in situ hybridization was performed as previously described (Harland, 

1991). Plasmids for MyoD, chordin, xBra, NKX2.5, TBX5, and Tbx20 were linearized and 

used to generate digoxigenin-UTP-labeled (Roche, Mannheim, Germany) antisense RNA 

probes using the appropriate restriction endonuclease and polymerase. Color detection was 

determined by BM Purple substrate (Roche) after incubation with alkaline-phosphatase 

conjugated anti-digoxigenin antibody. 

Western Blot Analysis  

Embryos (n=5-10) were snap-frozen in liquid nitrogen and protein lysates were 

generated as previously described (Kragtorp and Miller, 2006). Briefly, 5-10 embryos were 

lysed by brief (1-2 second) sonication in a modified RIPA buffer (10mM Tris pH 7.5, 

100mM NaCl, 1mM EDTA, 1mM EGTA, 20mM Na4P2O7, 1% Triton X-100).  

Cardiomyocytes were lysed in modified radioimmune precipitation assay buffer (50 mM 

Hepes, 0.15 M NaCl, 2 mM EDTA, 0.1% Nonidet P-40, 0.05% sodium deoxycholate, pH 

7.2).  Each lysis buffer contained a cocktail of protease and phosphatase inhibitors including 

1 mM Na3VO4, 40 mM NaF, 10 mM Na2 pyrophosphate, 100 μM leupeptin, 1 mM 4-(2-

aminoethyl)benzenesulfonyl fluoride hydrochloride, 0.02 mg/ml soybean trypsin inhibitor, 
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and 0.05 trypsin inhibitory units/ml aprotinin. Samples were clarified by centrifugation twice 

at 14,000 x g at 4
o
C and the supernatant was retained. Fifty micrograms of total protein was 

boiled in sample buffer and loaded onto a 10% SDS-acrylamide gel. Separated proteins were 

transferred onto nitrocellulose, blocked in 5% dry milk in Tris-Buffered Saline (TBS) + 

0.1%Tween (TBST), and incubated overnight with primary antibody diluted in blocking 

solution. The following antibodies were utilized at a dilution of 1:1000 : FAK Clone 4.47 

(Millipore), phospho-FAK Y397 (Invitrogen, Carlsbad, CA, USA), PYK2 (Cell Signaling), 

and ERK-CT (Millipore). Blots were incubated with the appropriate horseradish peroxidase-

conjugated secondary antibodies (1:2000 dilution) (GE Healthcare, Piscataway, NJ, USA) 

and proteins were visualized by chemiluminescence (Thermo Scientific, Rockford, IL, USA). 

Densitometry of Western blot band intensities was performed using ImageJ 1.37v software 

(NIH). 

RT-PCR Analysis  

RNA was isolated from 10 embryos following lysis in Trizol according to the 

manufacturer‟s specifications (Invitrogen). Reverse transcription reactions were performed 

using the iScript cDNA kit (Bio-Rad, Hercules, CA, USA) and PCR reactions were 

performed using ExTaq polymerase (Takara Bio, Japan) following previously published 

primer sets and cycling parameters (Meadows et al., 2008; Small et al., 2005). Histone H4 

primers were as follows: Forward 5‟ GGG ATA ACA TTC AGG GTA TC 3‟ and Reverse 5‟ 

CAT GGC GGT AAC TGT CTT C 3‟. 

Myocyte cell isolation, culture, infection, and treatment  
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Cardiomyocytes were isolated from embryonic day 13.5 (E13.5) rats with trypsin and 

collagenase digestion and were purified as described previously (Taylor et al., 2000). The 

cells were re-suspended in medium containing a 4:1 mixture of Dulbecco‟s Modified Eagle 

Medium (DMEM):Media 199 containing 10% fetal calf serum and 1% penicillin-

streptomycin and plated on tissue culture plastic for two consecutive 1-hr periods to remove 

non-cardiomyocyte cells, resulting in cultures with >95% myocytes. The cardiomyocytes 

were then plated on tissue culture dishes pre-coated with fibronectin (10 μg/ml). For 

adenoviral infection, cells were infected with replication-defective Ad5- GFP or GFP-FRNK 

at a concentration of 10 multiplicity of infection (m.o.i) for the indicated times in serum-

containing media. Cells were then serum starved overnight and treated for the indicated times 

with FGF-2 (100ng/ml) or vehicle. 5-bromo-2-deoxyuridine (BrdU) labeling was performed 

as previously described (DiMichele et al., 2009). The FGF-receptor 1 (FGFR1) inhibitor, 

SU-5402, was a generous gift from Pfizer (Kalamazoo, MI). 

Widefield and laser scanning confocal microscopy, image deconvolution, and 3D rendering  

Embryos were cleared for microscopic analysis in 2:1 benzyl benzoate:benzyl alcohol 

and placed on a glass coverslip. Embryos were analyzed by widefield microscopy using a 

Leica MZFLIII fluorescence dissecting scope or Olympus IX81 microscope or by confocal 

microscopy using an Olympus FV500 laser scanning confocal microscope (Olympus, USA) 

and Fluoview v5.1 software. Confocal z-stacks were obtained using a 1.24µm step-size.  Z-

series stacks were deconvolved using Autodeblur Gold v. X.1.4.1 software (Autoquant, 

Media Cybernetics, Bethesda, MD, USA). Deconvolved images were then imported to Imaris 

x64 6.1.5 software (Bitplane AG, St. Paul, MN, USA) for 3D rendering and isosurfacing.  
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To assess proliferation and apoptosis in Xenopus hearts, we immunostained embryos 

for tropomyosin (to label cardiomyocytes) and either pH3, to label proliferating cells, or 

cleaved caspase-3, to label cells undergoing apoptosis. Z-stack images of each heart were 

obtained by laser scanning confocal microscopy and each optical slice was examined 

individually throughout the thickness of the heart. Each cell that was immunoreactive for 

both tropomyosin and pH3 or cleaved caspase 3 was scored as a positive cardiomyocyte. In 

order to ensure that cells were not counted twice, we confirmed our results by counting all 

double-immunoreactive cells from optical sections that were 12 steps (14.88μm) apart (the 

approximate size of the embryonic myocyte). The surface area of the heart (μm
2
) was 

calculated by isosurfacing the tropomyosin positive area using Imaris software. This 

calculated value was then multiplied by 28μm (the approximate thickness of the heart wall at 

this stage of development), resulting in a calculation of total heart volume (μm
3
). Total non-

cardiomyocytes were scored and compared to the volume of the tissue section analyzed. 

Statistical analyses were performed using a two-tailed t-test (two-sample, equal variance-

homoscedastic). 



GRAF IS REQUIRED FOR EMBRYONIC CARDIAC AND SKELETAL MUSCLE DEVELOPMENT 

INTRODUCTION  

Cells interact with the extra-cellular matrix (ECM) via adhesive complexes, termed 

focal adhesions, predominantly through interactions with integrins. Integrins serve both a 

structural role and are required for transduction of signaling pathways that regulate cellular 

adhesion, migration, proliferation, and differentiation. Notably, integrins have been 

implicated in a variety of model organisms to regulate embryonic cardiac and skeletal muscle 

development. 

A key transducer of integrin signaling is the non-receptor tyrosine kinase, focal 

adhesion kinase (FAK). Integrin clustering induces FAK localization to focal adhesions and 

leads to its activation. Activated FAK binds a variety of focal adhesion proteins and can 

activate downstream signaling mechanisms such as those of the MAP kinase pathway. 

Through these and other mechanisms, FAK has been shown to be important for a variety of 

cellular processes such as cellular adhesion, migration, and regulation of cytoskeleton 

dynamics. In addition, FAK plays a vital role in organogenesis including cardiac and skeletal 

muscle development. Specifically, inactivation of FAK in Xenopus impairs somite rotation 

(Kragtorp and Miller, 2006) and we have recently shown that FAK is required for proper 

cardiac morphogenesis (see Chapter II of this thesis).  

Striated (cardiac and skeletal) muscle development requires fine spatiotemporal 

coordination of multiple cellular processes including myoblast specification, exit from the 
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cell cycle, expression of muscle-specific transcripts, cellular attachment to the extracellular 

matrix (ECM), and elongation of myofibers (via maturation of the contractile apparatus).  

Skeletal and cardiac muscle cell-fate is controlled by the combinatorial activities of a variety 

of transcription factors which regulate specification and differentiation. For example, in 

skeletal muscle, myogenic basic helix-loop-helix transcription factors including MyoD 

induce specification and myogenin and MEF factors (MEF2a, MEF2c) induce differentiation 

by upregulation of muscle marker gene expression. Proper myogenic differentiation is a vital 

step in the development of the skeletal muscle and the heart as demonstrated in a variety of 

experimental systems.  

RhoA has been demonstrated in cultured myoblasts to play critical roles during 

skeletal muscle differentiation. While early studies appeared controversial in that RhoA was 

found to both promote (Carnac et al., 1998; Charrasse et al., 2002; Kontaridis et al., 2004; 

Sordella et al., 2003; Takano et al., 1998; Wei et al., 1998) and interfere with (Beqaj et al., 

2002; Castellani et al., 2006; Charrasse et al., 2006; Meriane et al., 2000; Travaglione et al., 

2005) the skeletal muscle differentiation program, more recent studies indicate that RhoA 

activity must be tightly regulated in a finely coordinated time-dependent manner during the 

intricate process of skeletal muscle development (Castellani et al., 2006; Iwasaki et al., 

2008). Specifically, it appears that RhoA activity is necessary for the specification of 

myoblasts but RhoA activity must be down-regulated for the subsequent differentiation and 

fusion of myotubes. 

RhoA is a member of a large family of small molecular weight GTPases which serve 

diverse roles in cytoskeletal dynamics, cell-cycle progression, cellular adhesion and 

migration, gene transcription, and differentiation (Etienne-Manneville and Hall, 2002). Rho-
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family members switch between an active GTP-bound state and an inactive GDP-bound 

state. The intrinsic rate of hydrolysis of GTP- to GDP-binding can be accelerated by GTPase 

Activating Proteins (GAPs) and this typically leads to downregulation of Rho activity and 

downstream signaling events.  

We previously cloned and characterized a GTPase activating protein for RhoA 

termed Graf that is poised to regulate and fine tune integrin- and Rho-dependent signals since 

it interacts directly with the C-terminus of focal adhesion kinase (Hildebrand et al., 1996; 

Taylor et al., 1998). Graf (GTPase regulator associated with FAK) is a 116-kDa protein that 

is comprised of an N-terminal BAR domain, a PH domain, a central Rho-GAP domain, a 

serine/proline rich domain, and a C-terminal SH3 domain. We previously reported that Graf 

is a specific GAP for RhoA (i.e. induces inactivation of GTP-RhoA) and that Graf is 

particularly abundant in terminally differentiated cells such as cardiomyocytes and neurons 

(Taylor et al., 1999).  We show for the first time that Graf is also specifically expressed in 

embryonic skeletal muscle concomitant with differentiation of this tissue type, suggesting 

that Graf may play a vital role in modulating Rho activity during this crucial time. We 

utilized antisense morpholinos to block Graf translation during Xenopus embryonic 

development and determined that Graf-depletion leads to decreased skeletal muscle marker 

expression, defective somite formation, and partial paralysis. In addition, Graf morphant 

embryos exhibited pericardial edema, cardiac dysmorphogenesis, and embryonic lethality by 

tadpole stages. Taken together, our data strongly suggest that Graf plays an essential role in 

myogenic differentiation in vivo and implicate Graf as a crucial regulator of Rho during 

embryonic cardiac and skeletal muscle development. 

RESULTS  
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Expression of Graf in Xenopus embryos  

Given our previous findings that Graf was most abundantly expressed in terminally 

differentiated cells of mammalian adult tissues (heart and brain), and that Graf acts as a GAP 

for RhoA in cultured cells, we predicted that Graf might play an important role in facilitating 

cell cycle withdraw and promoting cellular differentiation during development.  To test this 

hypothesis, we sought to deplete Graf protein using an antisense-morphilino based approach 

in developing Xenopus embryos, a well-characterized model of early embryonic 

development.  Notably, xGraf contains each of the functional domains previously defined in 

chicken and mammalian Graf including, in tandem, an N-terminal BAR domain, PH domain, 

GAP domain and C-terminal SH3 domain.  Moreover, the overall identity/similarity of xGraf 

protein to its orthologues in human and mouse is 83.8% and 77.4%, respectively, indicating 

that the function of this protein is likely evolutionarily conserved between these species. 

As the expression profile of xGraf had not been previously reported, we first 

performed semi-quantitative RT-PCR analysis of wild-type Xenopus embryos during 

development to identify the time-course of Graf expression.  As shown in figure 3.1A, xGraf 

transcript is present at low levels throughout early development and expression increases 

from stage 25 through tadpole stages. In order to specifically assess the tissue distribution of 

Graf in Xenopus, we next performed a whole-mount in situ hybridization analysis of stage 29 

embryos using a probe directed towards the 3‟UTR of Graf.  In accordance with our previous 

findings in rodents, we observed xGraf expression in the heart and brain (Figure 3.1B).  Graf 

expression was also apparent in the neural tube, dorsal root ganglia, and somites (Figure 3.1B 

and C) 
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Figure 3.1. Graf is expressed during embryonic frog development. A) RT-PCR 

analysis was performed using RNA isolated from embryos at the indicated stages. Histone 

H4 (H4) serves as a control. B) Whole-mount in situ hybridization of Xenopus embryo at 

stage 29 using an antisense probe specific for xGraf. Dorsal is to the top, anterior to the 

left. Tissues expressing Graf are labeled: h, heart; b, brain; s, somites. C) Transverse 

section from whole-mount Graf in situ hybridization. Tissues expressing Graf are labeled: 

nt, neural tube; drg, dorsal root ganglia; s, somite; h, heart . D) Western blot analysis of 

Graf expression at the indicated stages. Erk serves as a loading control. 
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Inhibition of Graf by antisense morpholinos  

We developed an antisense morpholino-based approach to specifically block 

translation of Graf in vivo during Xenopus development. To this end, we designed two Graf-

specific antisense morpholinos to target sequences either upstream of, or flanking, the start 

codon of Xenopus graf (denoted xGrafup and xGrafst, respectively). Both xGrafup and 

xGrafst significantly reduced flag-tagged Xenopus Graf protein production in an in vitro 

transcription/translation assay but had no effect on translation of a control plasmid encoding 

human graf (Figure 3.2A). Furthermore, the mixture of the two morpholinos (hereafter 

termed Graf Mo) induced the strongest response in these assays.  

We developed polyclonal antibodies directed towards a 22-mer peptide in the C-

terminal tail of Graf that is completely conserved between Xenopus, mouse, rat, and human 

Graf.  This antibody recognizes a specific band of the appropriate molecular weight (116 

kDa) in adult Xenopus heart lysates and cellular extracts derived from COS cells transfected 

with a plasmid encoding xGraf (Figure 3.2B). In order to determine the developmental 

timecourse of xGraf protein expression, we performed Western analysis of lysates derived 

from wild-type Xenopus embryos at a variety of developmental stages and determined that 

Graf protein was expressed during gastrulation and appeared to increase during late tailbud 

and tadpole stages (Figure 3.1D; see also Figure 3.6 A). 

In order to establish that Graf Mo blocked Graf translation in vivo, we next injected control 

morpholino (Con Mo) or Graf Mo into single-cell Xenopus embryos and performed Western 

blot analysis at various stages during development. Importantly, injection of Graf Mo at the 

one-cell stage resulted in a reduction of embryonic Graf levels at all stages tested between 

stage 18 and 37 (Figure 3.2C, also see Figure 3.6A, B). Injection of five-base 
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Figure 3.2. Graf Mo blocks Graf translation in vivo and results in cardiac edema and 

anteroposterior axis defects. A) In vitro transcription/translation assays (with S35-

labeling) were performed utilizing plasmids for human Graf or Xenopus Graf, as 

indicated, and with varying amounts of each Graf morpholino (xGrafup or xGrafst) as 

shown. B) Western blot analysis utilizing antibodies generated to recognize Xenopus Graf 

in lysates derived from adult Xenopus heart or from COS cells transfected with a plasmid 

encoding Xenopus Graf (xGraf) demonstrate the specificity of the antibody. C) Western 

blot analysis for Graf in Con Mo- and Graf Mo-injected embryos at the indicated stages of 

development demonstrates that Graf Mo injection leads to a decrease in Graf protein 

expression. Levels of ERK are shown as a control for loading. D) Gross morphological 

assessment of Con Mo- and Graf Mo- injected embryos at the indicated stages. Stage 10 

embryos are visualized with vegetal layer to the top. Stage 22 embryos are oriented with 

dorsal to the top, anterior to the left. No apparent defects in gross morphology were 

observed at these stages. E) Gross morphological assessment of stage 39 Con Mo- and 

Graf Mo-injected embryos demonstrates pericardial edema (b), anteroposterior axis 

defects (c), and apparent developmental arrest (d). Dorsal is the top, anterior to the left in 

all panels.  
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Table 3.1. Graf morpholino injection leads to gross morphological defects.  

Con Mo- and Graf Mo-injected embryos were analyzed for gross morphological defects 

between stages 37-39. Data are presented as a ratio of each phenotype to the total number 

of embryos examined (percentages are shown in parentheses). Data are taken from two 

separate representative batches of embryos and similar data were observed in at least five 

additional separate batches of embryos (data not shown). Note that many embryos 

exhibited more than one type of defect; therefore the percentages do not add to 100%. 
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mismatch morpholinos had no effect on Graf protein levels as assessed by Western blot 

analysis. The specificity of the Graf antibody and the in vivo specificity of Graf Mo was 

further demonstrated by reduced Graf expression in the somites as assessed by whole-mount 

Graf antibody staining (see Figure 3.9B). 

Graf depletion leads to gross morphological defects including pericardial edema and 

disrupted cardiac morphogenesis  

Gross morphological assessment of developing Con Mo- and Graf Mo-injected 

embryos indicated that gastrulation and neurulation were unperturbed by Graf Mo injection 

(Figure 3.2D). However, at tadpole stages, some Graf morphant embryos exhibited defects in 

anteroposterior axis elongation (Figure 3.2E, panel c, and Table 3.1). Some Graf Mo-injected 

embryos appeared to have arrested during development as assessed by marked 

anteroposterior axis shortening and diminished eye pigmentation (Figure 3.2E, panel d). 

These embryos were not utilized for later analyses of cardiac and skeletal muscle formation. 

Furthermore, we noted that Graf morphant embryos exhibited marked pericardial edema and 

died by the time Con Mo-injected sibling embryos reached stage 42 (Figure 3.2C, panel b 

and d (arrows), and Table 3.1).  

These findings, coupled with our in situ hybridization analysis demonstrating Graf 

expression in the heart, suggested the possibility that Graf is required during embryonic heart 

development. In order to assess this possibility, we performed whole mount 

immunohistochemical staining for myosin heavy chain (MHC) on Con Mo- and Graf Mo-

injected embryos and examined heart morphology using widefield microscopy at stage 37, 

after completion of looping morphogenesis in control embryos. Notably, we determined that 

50% (8 of 16 embryos examined) of Graf morphant embryos exhibited defects in cardiac 



 79 



 80 

Figure 3.3. Graf depletion leads to marked defects in cardiac looping morphogenesis 

and partial cardia bifida. A) Whole-mount MHC antibody staining and widefield 

microscopic analysis of stage 37 Con Mo- and Graf Mo- injected embryonic hearts 

indicates abnormal looping morphogenesis in Graf morphant embryos (6 of 16 embryos 

examined) whereas all Con Mo-injected embryos exhibited normally looped hearts (20 of 

20 embryos examined). Lateral view with dorsal to the top, anterior to the left. B)  Whole-

mount MHC antibody staining and widefield microscopic analysis of stage 37 Con Mo- 

and Graf Mo-injected embryonic hearts reveals partial cardia bifida in 2 of 16 Graf 

morphant embryos examined. Ventral view with anterior to the top. The data represent 

one experiment examining 20 Con Mo- and 16 Graf Mo-injected embryos. Similar 

cardiac morphological defects have been observed in Graf Mo-injected embryos in at least 

5 separate experiments. Scale bar in left panel of A corresponds to all panels in A and B. 

C) Whole-mount tropomyosin antibody staining of stage 34 Con Mo- and Graf Mo-

injected embryos were analyzed by laser scanning confocal microscopy and 3D rendering. 

Tropomyosin fluorescence is shown in top panel. Bottom panels represent isosurfacing of 

fluorescent images from Con Mo- and Graf Mo-injected embryos. Ventral view with 

anterior to the left. Scale bar corresponds to all panels in C. 
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morphology, whereas all control hearts appeared normal. The most prevalent cardiac 

abnormality induced by Graf depletion (6 embryos) was aberrant cardiac looping which 

caused Graf morphant hearts to appear U-shaped (Figure 3.3A). A less penetrant cardiac 

abnormality (2 embryos, 12.5%) was partial cardia bifida in which Graf-depleted embryos 

displayed hearts containing two pairs of inflow tracts and ventricles, with a single common 

outflow tract (Figure 3.3B). In order to more precisely determine the onset of the cardiac 

defect, we analyzed stage 34 Con Mo- and Graf Mo-injected embryos by whole-mount 

tropomyosin antibody staining and subsequent laser scanning confocal microscopic analysis 

(Figure 3.3C). These analyses demonstrated that Graf Mo-injected embryos exhibited 

abnormal morphology at the earliest onset of cardiac looping. Taken together, these date 

demonstrate that Graf is required for normal cardiac morphogenesis.  

Graf depletion leads to paralysis and marked somite defects  

Our analysis of swimming tadpole staged embryos (stages 35-39) demonstrated that 

Graf Mo-injected embryos exhibited a striking paralysis defect (Table 3.1). Specifically, 

whereas Con Mo-injected embryos swam normally in response to touch, Graf morphant 

embryos were either completely unable to swim or exhibited very limited movement of the 

tail. In addition, spontaneous swimming behavior as seen in control tadpoles was completely 

absent in Graf morphant embryos suggesting that the defect was likely not simply a defect in 

touch response alone. Importantly, injection of 5-basepair mismatch morpholinos (in two 

separate experiments) did not result in these observed phenotypic defects, suggesting that 

these phenotypes are specifically a result of Graf depletion. Furthermore, as shown in figure 

3.4A, unilateral injection of Graf Mo into one cell at the two-cell stage led to lateral bending 

of the embryo toward the Graf Mo-injected side (100%, n=22), a phenotype often caused by 
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Figure 3.4. Graf depletion leads to lateral bending and somite defects. A) Gross 

morphological assessment of embryos unilaterally injected with Graf Mo into one cell at 

the two-cell stage and allowed to develop to stage 30. Brightfield (left panel) and green 

fluorescence (right panel) to visualize the Graf Mo-injected (Graf Mo is conjugated with 

fluorescein isothyocyanate (FITC)) side reveals that all embryos exhibit lateral bending 

toward the Graf Mo-injected side. Graf Mo is conjugated to exhibit green fluorescence. B) 

Whole-mount tropomyosin staining and confocal microscopic analysis of these embryos 

demonstrate reduced tropomyosin staining and somite structural defects in Graf Mo-

injected side of embryo. Dorsal view.  
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defective somite formation.  To assess this possibility, we performed whole mount 

immunohistochemical staining for tropomyosin on these embryos.  As shown in figure 3.4B, 

a marked reduction in the level of tropomyosin staining (and cellular organization) was 

observed in the somites on the Graf Mo- injected side in comparison to the Con Mo-injected 

side of the embryos. These results suggest that Graf depletion induces defects in somite 

formation, possibly through disruption of myogenic differentiation. 

Graf depletion does not disrupt somite specification, rotation, or elongation  

Given the remarkable evidence that Graf-depletion led to defective somite formation 

and reduced expression of the skeletal differentiation marker, tropomyosin, we strove to 

determine whether Graf was necessary for myocyte specification and/or differentiation. 

Somite development in the frog requires tight regulation of steps involving myocyte 

specification, rotation, elongation, and maturation. In an effort to define the precise Graf 

dependent step(s) during Xenopus somitogenesis, we first assessed whether Graf depletion 

altered the early specification of the somites by whole-mount in situ hybridization analysis of 

Myo-D. At stages 25 and 34, we found no differences in the spatial distribution of Myo-D 

expression in Con Mo- or Graf Mo- injected embryos, suggesting that somites were properly 

specified in the absence of Graf (Figure 3.5A). Furthermore, the number and spacing of the 

somites in Graf morphants appeared similar to controls suggesting that Graf-depletion did not 

affect the rotation or elongation of the somites. We further confirmed that somite rotation and 

elongation were unaffected by Graf-depletion by whole-mount immunostaining of the muscle 

marker, 12-101, and the nuclear stain, Topro3, of stage 25 embryos utilizing laser scanning 

confocal microscopic analysis (Figure 3.5B). While Graf morphant myofibers appeared 

grossly normal at this stage, 12-101 staining was much less intense in these embryos as 
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Figure 3.5. Graf depletion does not affect somite specification, rotation, or elongation 

but results in a marked decrease in transcription of skeletal muscle marker genes. A) 

In situ hybridization analysis of Myo-D at stage 25 (top two panels) and 34 (bottom two 

panels) in Con Mo- and Graf Mo-injected embryos. Dorsal is to the top, anterior is to the 

left. B) Whole-mount 12-101 (red) and Topro3 (blue) antibody staining and laser 

scanning confocal microscopic analysis of Con Mo- and Graf Mo-injected embryos at 

stage 25 reveals reduced 12-101 expression in the somites (compare top right Graf Mo 

panel to Con Mo panel). Bottom Graf Mo panel light levels were increased using Adobe 

Photoshop CS4 to show detail. C) RNA from Con Mo- and Graf Mo-injected embryos 

(n=10) was isolated and utilized for RT-PCR analysis of Myo-D and MHC expression 

analysis. Histone H4 (H4) serves as a control.  
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compared to controls (reminiscent of our findings reported above for tropomyosin), and was 

nearly absent in the posterior-most somites indicating that Graf-depletion led to decreased 

skeletal muscle differentiation by stage 25. Taken together, these data indicate that early 

somite specification, rotation, and elongation are Graf-independent but that skeletal muscle 

differentiation/maturation may require Graf. 

Graf is essential for myocyte differentiation  

To further explore a role for Graf in skeletal muscle differentiation, we analyzed Con 

Mo- and Graf Mo-injected embryos by semi-quantitative RT-PCR analysis for Myo-D and 

the skeletal muscle differentiation markers, myogenin and MHC. In accordance with our in 

situ hybridization analysis of MyoD, we observed no obvious differences in the levels of 

expression of Myo-D between Con Mo- and Graf Mo- injected embryos (Figure 3.5C), 

confirming that early skeletal muscle specification was unaffected by Graf depletion. 

However, Graf-depleted embryos exhibited marked reductions in the transcription of both 

myogenin and MHC between stage 22 and 34, demonstrating that Graf depletion caused a 

disruption to skeletal muscle differentiation.  

In order to confirm that Graf-depletion caused a disruption in skeletal muscle 

differentiation, we performed Western blot analysis on lysates isolated from Con Mo- and 

Graf Mo- injected embryos at various stages during skeletal muscle development.  As shown 

in figure 3.6A, Graf depletion led to decreased expression of all myocyte marker genes 

evaluated between stages 22-37 including skeletal α-actin, tropomyosin, and MHC.  

Furthermore, at stage 37 the skeletal muscle markers α-actinin and troponin T were similarly 

reduced between Con Mo- and Graf Mo-injected embryos (Figure 3.6B). Interestingly, RhoA 

activity was significantly increased in whole embryo lysates from Graf Mo- injected embryos 
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Figure 3.6. Graf depletion leads to a marked decrease in skeletal muscle marker 

gene expression and upregulation of Rho-activity. A, B) Western blot analysis at the 

indicated stages for Graf, skeletal α-actin (sk actin), α-actinin (actinin), tropomyosin (tm), 

and MHC from lysates of Con Mo- and Graf Mo-injected embryos. Erk serves as a 

loading control.  C) ELISA-based Rho activity assays of lysates isolated from stage 22 

and 25 Con Mo- and Graf Mo-injected embryos. Rho activity was measured by a standard 

ELISA-based GST-Rhotekin assay and data are shown in relative arbitrary units. Lysates 

were isolated from 10 embryos, in batch, for each stage and treatment. Experiment was 

performed three times in triplicate. Asterisk denotes p< 0.05. 
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compared to the same stage Con Mo- injected embryos at the onset of skeletal muscle 

differentiation (stage 22 and 25), suggesting that Graf serves to downregulate Rho activity 

during these critical stages of embryonic development (Figure 3.6C).  Collectively, these data 

strongly support our contention that the marked somite defect and partial paralysis caused by 

Graf-depletion is, at least in part, due to failure to complete the myogenic differentiation 

program, an event that may be due to persistent RhoA activation in Graf-depleted embryos. 

Xenopus Graf is necessary for skeletal muscle integrity  

A detailed analysis of somite organization in the Graf morphants at stage 37 (when a 

swimming defect was readily apparent) further confirmed defective muscle formation (Figure 

3.7A and B). As analyzed by whole-mount tropomyosin antibody staining and visualized by 

laser scanning confocal microscopy, somitic myofibers of Graf morphant embryos were often 

thin and disorganized as compared to controls. A striking defect was also noted in somite 

boundary formation.  In some morphant embryos, myofibers were discontinuous across the 

length of the somite, suggesting that either the myofibers had not extended the full length of 

the somite or had torn away from the myoseptum due to lack of structural integrity. In many 

cases the typical horizontal intersomitic junctions were markedly disrupted; some myofibers 

appeared to stretch across a two-somite length, while others were terminated mid-somite.   

Ultrastructural analysis by electron microscopy confirmed myofiber disorganization 

in Graf morphant somites.  As shown in figure 3.8, the relative myofibril content was 

reduced in Graf morphant myocytes, as exemplified by more sarcoplasm and less myofibers 

per myocyte in comparison to controls.  Notably, intact skeletal muscle tissue was 

remarkably absent from Graf morphant somites (as assessed by observable intact sarcomeres) 

and the TEM views of Graf Mo-injected somites demonstrated in Figure 3.8 represent the 
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Figure 3.7. Graf morphant embryos demonstrate striking defects in somite 

morphology and sarcomeric integrity. Whole-mount tropomyosin antibody staining and 

laser scanning confocal microscopic analysis of stage 39 Con Mo- and Graf Mo-injected 

anterior (A) and posterior (B) somites. Dorsal is to the top, anterior to the left. Lower 

panels in A and B represent enlarged views of regions boxed in top panels.  
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Figure 3.8. Transmission electron microscopic analysis reveals ultrastructural 

defects in sarcomere formation in Graf Mo-injected embryos. Parasagittal sections of 

Con Mo- and Graf Mo-injected embryos were examined by transmission electron 

microscopic analysis at stage 37.  Myoseptum is denoted by thick arrows in top panels. 

Thin arrow points to  region of Graf morphant somite exhibiting abnormal M-band. 

Asterisk labels region of Graf morphant somite lacking normal sarcomeric structure.  
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most clearly recognizable sarcomeric structure within the somites. In addition, defects in 

lateral myofibril alignment were observed in Graf Mo-injected somites wherein the Z bands 

were not aligned in register with adjacent myofibers, and the accompanying sarcoplasmic 

reticulum and mitochondria appeared disorganized.  While many individual sarcomeres 

appear to have assembled properly in Graf Mo-injected somites, some M-band irregularities 

were also observed.   

Interestingly, as assessed by whole-mount Graf antibody staining and visualized by 

laser scanning confocal microscopic analysis, immunolocalization of Graf at this time point 

in development revealed that Graf was predominantly concentrated at the tips of the 

myofibers directly adjacent to the myoseptum, although low levels of Graf were also 

apparent along the lateral edges of the myofibrils (Figure 3.9A).   Importantly Graf 

immunoreactivity was markedly reduced in stage 37 Graf morphants, in further support of 

the specificity of this antibody staining (Figure 3.9B).  Collectively, these data indicate that 

Graf is necessary for skeletal muscle formation and may play a role in facilitating the 

organization and anchorage of myofibrils to the myoseptum. 

Graf depletion leads to marked disruption of intersomitic laminin deposition  

Our striking finding that Graf morphant somites often exhibit abnormal intersomitic 

junctions suggested that Graf might regulate normal cell:ECM adhesions. In order to analyze 

this possibility, we determined whether laminin, a critical component of the intersomitic 

ECM, was properly deposited in Con Mo- and Graf Mo- injected embryos. To this end, we 

analyzed stage 25 and 37 Con Mo- and Graf Mo- injected embryos by triple whole-mount 

immunostaining of tropomyosin, laminin, and Topro3 followed by laser scanning confocal 

microscopic analysis and obtained z-stack images that we rendered into a 3D image of the 
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Figure 3.9. Graf localizes to the tips of somites near the myoseptum. A) Whole-mount 

Graf (red), tropomyosin (green), and Topro3 (blue) antibody staining and laser scanning 

confocal microscopic analysis of wild-type embryo somites at stage 37. Dorsal is to the 

top, anterior to the left. Bottom panel represents an enlarged view of the boxed region in 

the upper right panel demonstrating the precise localization of Graf to the region of the 

myotome adjacent to the myoseptum. B) Whole-mount Graf antibody staining and laser 

scanning confocal microscopic analysis of Con Mo- and Graf Mo-injected embryos at 

stage 37 reveals that Graf expression is reduced in Graf morphant embryos. Dorsal is to 

the top, anterior to the left.  

 



 98 

somites. As shown in figure 3.10, some areas of the intersomitic space in Graf morphant 

somites were completely devoid of laminin staining and the proper delineation of the 

intersomitic space was dysregulated. 

Graf appears to interact with β-dystroglycan at the myoseptum and Graf-depletion causes 

disruption to β-dystroglycan localization  

Laminin interacts with the somitic cytoskeleton through both α7β1-integrin and the 

dystrophin-glycoprotein complex (DGC). The predominant laminin receptor in the DGC is α-

dystroglycan which then binds to β-dystroglycan, for further structural linkage to the 

cytoskeleton. Since laminin deposition was disrupted in the mysepta of Graf Mo-injected 

embryos, we next determined whether deposition of β-dystroglycan was also disrupted by 

Graf-depletion. To this end, we performed whole-mount immunofluorescent staining of Graf, 

β-dystroglycan, and Topro3 and visualized the somites of stage 37 Con Mo- and Graf Mo-

injected embryos by laser scanning confocal microscopic analysis and 3D-rendering. Indeed, 

similar to our results with laminin deposition, we found that Graf morphant embryos 

exhibited large regions of the intersomitic space that were devoid of β-dystroglycan (Figure 

3.11, compare e, f). Notably, the regions of the myoseptum that lacked β-dystroglycan 

overlapped with regions where Graf staining appeared weakest (compare Figure 3.11 c, d and 

the overlay in g, h). Taken together, these remarkable findings strongly suggest that Graf-

depletion leads to dysregulation of both laminin and β-dystroglycan localization and because 

of the strong correlation between Graf and β-dystroglycan immunolocalization, we surmised 

that these proteins may functionally interact, in vivo. Indeed, our recent evidence utilizing co-

immunoprecipitation analysis corroborates the notion that Graf and β-dystroglycan do, 

indeed, form a complex in differentiating C2C12 myoblasts (unpublished data). 
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Figure 3.10. Graf depletion leads to defects in intersomitic laminin deposition. A) 

Whole-mount tropomyosin (green), laminin (red), and Topro3 (blue) antibody staining 

and laser scanning confocal microscopic analysis of stage 25 (A) and 37 (B) Con Mo- (a, 

b) and Graf Mo-injected (c, d) embryos reveals disrupted intersomitic junctions and areas 

of the intersomitic junctions lacking laminin staining in Graf morphant embryos as 

compared to controls. Laminin immunoflourescence alone is shown in grayscale in panels 

a, c and full-color overlay is depicted in b,d. Note that the red fluorescence is not apparent 

in the overlay images due to colocalization with the more intense green fluorescent signal. 

Dorsal is to the top, anterior to the left. Scale bar in A corresponds to all panels.  
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Figure 3.11. β-dystroglycan immunolocalizes with Graf, in vivo, at the intersomitic 

junctions and β-dystroglycan deposition is disrupted by Graf-depletion. Whole-

mount Graf (red) and β-dystroglycan (green) antibody staining of stage 37 Con Mo- (a, c, 

g, e) and Graf Mo-injected (b, d, f, h) embryos  and laser scanning microscopic analysis 

demonstrates that Graf and β-dystroglycan appear to interact closely at the intersomitic 

junctions. Full-color overlay (a, b) is shown at the top. Note that the red fluorescence is 

not apparent in the overlay images due to colocalization with the more intense green 

fluorescent signal. Region of interest (box, panel a, b) is enlarged in c - h to show detail. 

Graf (c, d), β-dystroglycan (e, f), are depicted in grayscale. Full-color merge (g, h) is 

shown at the bottom. Note that regions absent of intense Graf staining (red) are also 

absent of β-dystroglycan (green) in Graf morphant embryos. 

 



 103 



 104 

 

Figure 3.12. Graf depletion does not appear to disrupt neuronal outgrowth.  Whole-

mount HNK antibody staining and laser scanning microscopic analysis of stage 37 Con 

Mo- and Graf Mo- injected embryos reveal apparently normal outgrowth of anterior (left 

panels) and intersomitic (right panels) neurons. Arrows point to representative HNK-

expressing neurons 
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DISCUSSION  

We have previously demonstrated that Graf induces cytoskeletal arrangements 

mediated via its GAP activity for Rho and is a binding partner for the non-receptor tyrosine 

kinase, FAK, thus positioning Graf as a potentially key nodal point for integrin signaling 

events. In addition, we previously showed that Graf is expressed in a tissue-specific manner, 

predominantly in terminally differentiated cells in heart and brain, suggesting that Graf may 

serve to mediate Rho-dependent differentiation in specific tissue compartments. Herein, we 

confirmed by in situ hybridization that Graf was expressed in developing Xenopus laevis 

embryos in a similar tissue-specific context and utilized antisense morpholino-based 

translational inhibition of Graf to demonstrate an in vivo role for Graf during frog 

development. We found that Graf Mo-injection led to a variety of developmental defects 

including pericardial edema, anteroposterior defects, and embryonic lethality. Furthermore, 

our data demonstrate that Graf depletion leads to defects in both somitogenesis and 

cardiogenesis. 

Our finding that Graf-depletion (and the concomitant upregulation of RhoA) led to 

abnormal looping morphogenesis and cardia bifida was somewhat surprising in light of 

previous studies in chick that demonstrated that inhibition of RhoA (via injection of RhoA-

specific siRNA) led to similar gross abnormalities in heart morphogenesis (Kaarbo et al., 

2003). There are two likely explanations for this apparent discrepancy. First, it is likely that 

the activity of RhoA must be tightly regulated during the crucial phases of cardiac 

morphogenesis and that either upregulation (as seen in our model of Graf depletion) or 

disruption of RhoA translation (via siRNA-mediated inhibition) can induce cardiac 

dysmorphogenesis. Another possibility is that although GAPs downregulate GTPase activity 
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by conversion to the inactive GDP-bound state, some GAPs simultaneously send a signal that 

is required for downstream signaling from its GTPase (Kozma et al., 1996; McCormick, 

1989; Paulssen et al., 1996). Thus, while Graf depletion in our model system led to 

upregulation of Rho activity, it is possible that Graf is also required for signal transduction 

downstream of Rho during cardiogenesis. Additionally, we are unable from the studies 

conducted thus far to determine whether Graf‟s GAP activity is required during cardiogenesis 

and future studies will be required to demonstrate whether overexpression of human Graf 

and/or a GAP-dead mutant of human Graf are sufficient to rescue the heart phenotype in Graf 

morphant embryos. 

Previous studies have demonstrated that cardiac-specific inactivation of Rho 

GTPases, by overexpression of RhoGDI, led to decreased cardiomyocyte proliferation and 

small, dysmorphic hearts. The specific contribution of RhoA to this phenotype, however, is 

difficult to discern since RhoGDI has been shown to downregulate the activity of RhoA, 

CDC42, and Rac. Nonetheless, these findings suggest that future analyses of Graf morphant 

hearts should investigate to what extent Graf may regulate Rho-dependent cardiomyocyte 

proliferation.  

Clearly, further studies will be required to fully understand the mechanism by which 

Graf regulates cardiogenesis. Nonetheless, our finding that myogenic differentiation was 

reduced in Graf Mo-injected embryos is consistent with the possibility that Graf is required 

for cardiac differentiation as well as skeletal muscle differentiation. Indeed, several studies 

have implicated aberrant cardiomyocyte differentiation in both cardiac dysmorphogenesis 

and cardia bifida (Brown et al., 2005; Christine and Conlon, 2008; Reiter et al., 1999; Szeto 

et al., 2002; Yelon et al., 2000). It will be instructive in the future to isolate lysates from 
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isolated somites and hearts of both Con Mo- and Graf Mo-injected embryos and analyze 

myogenic marker gene expression in these tissues individually in order to demonstrate that 

both cardiogenesis and skeletal myogenesis are perturbed by Graf deficiency via diminished 

expression of marker genes.  

Our analyses have demonstrated that Graf Mo-injection led to a striking paralysis 

phenotype characterized by lack of spontaneous- and touch sensitive- swimming response. 

We further demonstrated that Graf morphant embryos display marked defects in 

somitogenesis including aberrant sarcomeric organization and integrity. This range of defects 

strongly suggests that the paralysis phenotype can be attributed to a developmental 

requirement for Graf-mediated skeletal muscle differentiation and somite organization. 

However, these data do not rule out the possibility that Graf may also regulate the formation 

or function of intersomitic neurons, an effect that could also contribute to the paralysis 

phenotype. Our in situ hybridization analysis did, indeed, confirm Graf expression in 

neuronal tissues such as neural tube and dorsal root ganglia and we have previously shown 

that Graf is expressed in the neuronal precursor cell line, PC12. Furthermore, the 

characterization of a Trio-deficient mouse line demonstrated that mice lacking this RhoGEF 

died during embryogenesis and exhibited skeletal muscle defects and dysregulated neuronal 

development (O'Brien et al., 2000) suggesting that the development of skeletal and neuronal 

tissues require tight regulation of Rho activity.  

In order to partially address the possibility that Graf depletion also induced defects in 

neuronal development, we performed whole-mount HNK immunostaining (an antibody 

which reacts with embryonic neurons) in Con Mo- and Graf Mo-injected embryos and 

showed no clear difference in neuronal outgrowth (including intersomitic neurons) in either 



 108 

group (Figure 3.12). Future work will be required to determine whether these neurons are 

functionally capable of innervating the somites.  Nonetheless, our analyses of somite 

structure and the demonstration that skeletal muscle marker gene expression was markedly 

reduced in Graf morphant embryos strongly suggests that the primary defect in swimming 

behavior is due to diminished skeletal muscle differentiation and sarcomeric integrity. 

Finally, our recent unpublished data analyzing the differentiation of C2C12 and L6 

myoblasts in culture have further confirmed that Graf plays a crucial and cell autonomous 

role in skeletal muscle differentiation. In these studies, we have demonstrated that Graf 

overexpression leads to precocious expression of α-actinin, skeletal α-actin, tropomyosin, 

MHC, and troponin T. In addition, we have shown that siRNA-mediated knockdown of Graf 

in these cell types (during differentiation) leads to decreased expression of MHC, further 

confirming our in vivo data.  

While our data strongly implicate Graf as a crucial mediator of skeletal muscle 

differentiation, our immunoflourescence analyses of Graf Mo-injected somites suggests that 

Graf may play a further role in somite maintenance and integrity. First, Graf morphant 

somites often exhibited sarcomeres which were thin, misaligned, and appeared unattached to 

the myoseptum. In addition, laminin deposition was absent from some regions of the 

intersomitic space in many Graf Mo-injected embryos. Notably, this range of defects is seen 

in a variety of muscular dystrophies. Furthermore, Graf appeared to colocalize with β-

dystroglycan and our unpublished data confirms that Graf immunoprecipitates with β-

dystroglycan in vitro. Taken together, our findings lead us to the intriguing conclusion that 

Graf-deficiency leads to a dystrophic phenotype and suggest that Graf may be an important 

mediator of normal skeletal muscle integrity.  Indeed, mutations in dystroglycan, laminin, 
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and α7β1-integrin are known to cause muscular dystrophies in humans and this has been 

confirmed in various animal models. Since Graf is a binding partner of FAK, which is known 

to mediate signaling downstream of integrins, and we have now shown Graf may interact 

with β-dystroglycan to strengthen cellular adhesion through laminin, our data are the first to 

suggest that Graf could mediate normal skeletal muscle formation and integrity through both 

integrin- and DGC-dependent mechanisms. 

MATERIALS AND METHODS  

Embryo culture and microinjection  

Preparation and injection of X. laevis embryos was carried out as previously 

described (Wilson and Hemmati-Brivanlou, 1995). Staging was performed according to 

Nieuwkoop and Faber (Nieuwkoop and Faber, 1994). Anti-sense morpholino 

oligonucleotides were designed against either the start site (xGrafst Mo) or the 5‟-

untranslated region (xGrafup Mo) of Graf. Sequences used were: xGrafup, 5‟ 

ACGAGATCAGGAAGGCATTGACA 3‟ and xGrafst, 5‟ 

GGTAATCCCATCCTGGCGTATAGCA  3‟.  Equal concentrations of xGrafup and xGrafst 

morpholinos were mixed (hereafter referred to as Graf Mo) and injected at a concentration of 

40ng/embryo at the one-cell stage, except where indicated. Similar results were obtained with 

each morpholino individually (data not shown). Five-base mismatched morpholinos were 

designed for both xGrafup and xGrafst, and the mixture of the two morpholinos was used as 

a control to assess the specificity of the morphant phenotype. The above morpholinos and a 

standard control morpholino (Con Mo) were obtained from GeneTools. 



 110 

In vitro transcription/translation assays  

In vitro transcription/translation assays were performed on plasmids encoding 

Xenopus Graf (xGraf) and human Graf using the TnT Quick-Coupled 

Transcription/Translation System according to the manufacturer‟s instructions (Promega). 

Generation of xGraf polyclonal antibody  

Amino acid sequences of human, mouse, and Xenopus laevis Graf were aligned and 

the conserved sequence CGTLNGKTGLIPENYVEFL corresponding to the extreme 

carboxy-terminus of Graf was selected for antibody production. Purified peptides were 

obtained commercially (Invitrogen) and rabbit polyclonal antibodies were generated 

commercially by standard procedures (Cocalico Biologicals). Sera were screened for 

immunoreactivity by Western analysis of lysates generated from COS cells transfected with 

plasmids encoding human or frog Graf and endogenous Graf isolated from mouse heart and 

brain. A consistent band of the predicted 116kDa size was also confirmed by Western 

analysis using in vitro translation assays utilizing recombinant human and frog Graf. Antisera 

were mixed with an equal volume of glycerol for long-term storage at -20
o
C. 

Whole mount- immunohistochemistry and -in situ hybridization  

Embryos were prepared for whole-mount immunohistochemistry by fixation in 

Dent‟s fixative (80% methanol/20% dimethyl sulfoxide) or 4% paraformaldehyde for 2hr at 

room temperature. PFA-fixed embryos were washed in PBS and photobleached in 5% H2O2 

in PBS for at least 4hr under bright light. Dent‟s-fixed embryos were bleached in 5% H2O2 in 

Dent‟s fixative for at least 4hr under bright light, rinsed in Dent‟s, and rehydrated in a series 

of methanol:PBS (75%, 50%, 25%, 5 minutes each).  All embryos were then rinsed with PBS 
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and treated with 1μg/ml bovine testicular hyaluronidase in 50mM sodium acetate buffer for 

45 minutes at RT. Embryos were rinsed twice in PBS, 1% Triton X-100, 1%DMSO (PBS-

TD). Embryos were blocked for 4 hours at RT in PBS-TD containing 0.1M glycine, 2% 

powdered milk, and 5% goat serum. Embryos were incubated overnight at 4
o
C with the 

appropriate primary antibodies diluted in block buffer. Antibodies used were myosin heavy 

chain (MHC) (Abcam) (1:500), tropomyosin (DSHB) (1:200), 12-101 (DSHB) (1:250), 

laminin (Sigma) 1:200, β-dystroglycan (DSHB) (1:200), and HNK (a neuronal marker, ZN12 

(DSHB)) (1:200). Embryos were then washed 6 times (1 hour each) in PBS-TD at RT and 

incubated overnight at 4
o
C with the appropriate Cy-3 or Alexa-488 conjugated secondary 

antibodies (1:250) and Topro3 (1:1000) to stain nuclei (Molecular Probes). Embryos were 

again washed 6 times (1 hour each) in PBS-TD, fixed in Dent‟s fixative, and stored in 100% 

methanol at 20
o
C.  

Whole-mount in situ hybridization was performed as previously described (Harland, 

1991). Plasmids for MyoD and xGraf were linearized and used to generate digoxigenin-UTP-

labeled (Roche) antisense RNA probes using the appropriate restriction endonuclease and 

polymerase. Color detection was determined by BM Purple substrate (Roche) after 

incubation with alkaline-phosphatase conjugated anti-digoxigenin antibody. Embryos were 

examined by wide-field microscopic analysis using an Olympus Wild microscope. For 

cryosectioning, embryos were incubated overnight at 4
o
C in a 30% sucrose solution in PBS 

and, the next morning, were embedded in Tissue Tek OCT cryosectioning compound (Sakura 

Finetek). Cryosections (14 μm) were cut on a Leica cryostat (Leica Microsystems) and fixed 

to charged glass slides. Sections were imaged on a Leica microscope. 

Western Blot Analysis  
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Embryos (n=5-10) were snap-frozen in liquid nitrogen and protein lysates were 

generated by brief (1-2 second) sonication in a modified RIPA buffer (10mM Tris pH 7.5, 

100mM NaCl, 1mM EDTA, 1mM EGTA, 20mM Na4P2O7, 1% Triton X-100) containing a 

cocktail of protease and phosphatase inhibitors including 1 mM Na3VO4, 40 mM NaF, 10 mM 

Na2 pyrophosphate, 100 μM leupeptin, 1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride 

hydrochloride, 0.02 mg/ml soybean trypsin inhibitor, and 0.05 trypsin inhibitory units/ml 

aprotinin. Samples were clarified by centrifugation twice at 14,000 x g at 4
o
C and the 

supernatant was retained. Fifty micrograms of total protein was boiled in sample buffer and 

loaded onto a 10% SDS-acrylamide gel. Separated proteins were transferred onto 

nitrocellulose, blocked in 5% dry milk in Tris-Buffered Saline (TBS) + 0.1% Tween (TBST), 

and incubated overnight with primary antibody diluted (1:1000) in blocking solution. 

Antibodies used were ERK-CT (Upstate), MHC (Abcam), skeletal α-actin (), α-actinin (), 

troponin T (CT3, DSHB), tropomyosin (CH1, DSHB).  Blots were incubated with the 

appropriate horseradish peroxidase-conjugated secondary antibodies (1:2000 dilution) (GE 

Healthcare) and proteins were visualized by chemiluminescence (Thermo Scientific). 

RT-PCR Analysis  

RNA was isolated from 10 embryos following lysis in Trizol according to the 

manufacturer‟s specifications (Invitrogen). Reverse transcription reactions were performed 

using the iScript cDNA kit (Bio-Rad) and PCR reactions were performed using ExTaq 

polymerase (Takara Bio) following previously published primer sets and cycling parameters 

for xMHC and xMyogenin (Meadows et al., 2008; Small et al., 2005). Primers for Histone 

H4 and xGraf were as follows: Forward 5‟ GGG ATA ACA TTC AGG GTA TC 3‟ and 
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Reverse 5‟ CAT GGC GGT AAC TGT CTT C 3‟. xGraf-forward 5‟-GCC AGG AGT CAA 

GAA TCA AGG-3‟, xGraf-reverse 5‟-CAA CTC CAA GGT TGG CTA CAG TC-3‟ 

Widefield and laser scanning confocal microscopy, image deconvolution, and 3D rendering  

Embryos were cleared for microscopic analysis in 2:1 benzyl benzoate:benzyl alcohol 

and placed on a glass coverslip. Embryos were analyzed by widefield microscopy using a 

Leica MZFLIII fluorescence dissecting scope or Olympus IX81 microscope or by confocal 

microscopy using an Olympus FV500 laser scanning confocal microscope and Fluoview v5.1 

software. Confocal z-stacks were obtained using a 1.24µm step-size.  Z-series stacks were 

deconvolved using Autodeblur Gold v. X.1.4.1 software (Autoquant, Media Cybernetics). 

Deconvolved images were then imported to Imaris x64 6.1.5 software (Bitplane AG) for 3D 

rendering. 

Rho-activity assays  

Ten embryos for each treatment (Con Mo- and Graf Mo-injected) were collected at 

stage 22 and stage 25 and snap frozen in liquid nitrogen for use in the G-LISA luminescence-

based RhoA specific activation assay (Cytoskeleton). All buffers were supplied by the 

manufacturer and the assay performed according to the manufacturer‟s instructions. Rho 

activity was measured in triplicate and statistical analyses were performed by paired two-tail 

t-test. Data were considered statistically significant at p< 0.05. 

Transmission electron microscopy (TEM) 

Stage 37 embryos were fixed in 2% PFA and 2.5% glyceraldehyde overnight at 4
o
C.  

Embryos were then processed and visualized by TEM as previously described (Goetz et al., 
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2006). Briefly, embryos were post-fixed in ferrocyanide-reduced osmium and embedded in 

Spurr‟s epoxy resin. Parasagittal ultra-thin (70nm) sections were mounted on copper grids 

and post-stained with 4% aqueous uranyl acetate followed by Reynold‟s lead citrate. Sections 

were imaged with a LEO EM-910 transmission electron microscope. 



Discussion and Future Directions  

FAK has an established role in mammalian cardiac development as demonstrated by 

germ-line and tissue-specific conditional expression model systems (DiMichele et al., 2009; 

Hakim et al., 2007; Ilic et al., 1995). However, the evolutionary importance of FAK in 

cardiac development came into question with the finding that genetic ablation of the FAK 

gene, FAK56, in Drosophila resulted in no discernable phenotypic defect (Grabbe et al., 

2004). In order to address this disparity and to demonstrate whether FAK is required in the 

development of the 3-chambered frog heart, we used an antisense morpholino strategy to 

deplete Xenopus laevis embryos of FAK protein. We demonstrated that FAK was required 

for proper cardiac morphogenesis but not for the early specification and differentiation of 

cardiomyocytes or for the formation of the linear heart tube. We further established that 

FAK-depletion led to a reduction in cardiomyocyte proliferation in the heart tube during the 

initial steps of cardiac looping. Our analysis of cardiomyocyte proliferation in culture 

demonstrated that FGF-stimulated myocyte proliferation was FAK-dependent and strongly 

suggests that the cardiac looping defects we observed in FAK-morphant embryos is due, at 

least in part, to a reduction in FGF-stimulated cardiomyocyte proliferation.  

While this evidence is compelling, future studies will be required to fully demonstrate 

that FAK-dependent cardiomyocyte proliferation is, indeed, dependent on FGF-stimulated 

signaling pathways. To this end, valuable information could be gleaned from in situ 

hybrization analysis of known FGF-dependent genes in order to demonstrate whether FAK-

depletion causes a specific disruption to these downstream effectors. Future studies will also 
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be directed toward a better understanding of the extent to which FAK is necessary for FGF-

dependent cardiogenesis.  

To this end, we will test the hypothesis that cardiac-restricted overexpression of 

active FAK can rescue the cardiac defects observed in the cardiac-restricted FGFR1-

knockout mouse line. We have previously generated a line of mice which express SuperFAK 

(a highly activated mutant of FAK) under the direction of a cardiac-specific promoter. We 

will cross this line of mice to a second line of mice that have cardiac-restricted deletion of 

FGFR1. We will assess the gross morphology of the hearts of these double-transgenic mice 

at various stages of embryonic development and will perform immunohistochemical analysis 

of tissue sections to determine whether SuperFAK is sufficient to rescue the FGFR1-deficient 

phenotype. We will analyze cardiomyocyte proliferation by immunohistochemical analysis 

of BrdU incorporation in the developing heart. In addition, we have previously shown that 

inactivation of FAK leads to upregulation of p38 activity and regulates the expression of the 

p38-dependent cell cycle modifier, p27
kip

 (DiMichele et al., 2009) and we will assess these 

markers by Western blot analysis of heart tissue lysates.  

While cardiomyocyte proliferation has been demonstrated to play a role in the cardiac 

looping process, other processes contribute to this complex morphogenetic event. 

Specifically, studies in zebrafish have demonstrated that regionalized cardiomyocyte 

migration is required during cardiac looping. Since FAK has been shown in many cell types 

to coordinate signaling events that lead to cell migration, it is possible that the cardiac 

looping defect caused by FAK-depletion could be due, in part, to defective migration of 

terminally differentiated cardiomyocytes. The analysis of directed cardiomyocyte migration 

in zebrafish was previously demonstrated utilizing 4D laser scanning confocal microscopy in 
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transgenic zebrafish expressing fluorescently-tagged cardiac specific markers. A similar 

approach in developing frog embryos could be used to determine whether FAK-depleted 

cardiomyocytes exhibit a defect in directed migration that contributes to defective cardiac 

looping. To this end, transgenic Xenopus laevis models expressing GFP under the direction 

of the myocyte-specific MHC promoter have previously been established and are available 

for experimental use.  

The data presented in this dissertation are the first to demonstrate an in vivo role for 

Graf during development. We have established that Graf depletion in frog embryos leads to 

impaired myogenic differentiation and defective heart and somite formation. We further 

demonstrated that Graf depletion during embryogenesis led to a robust induction of Rho 

activity. The role of Rho in skeletal muscle differentiation has been contentious, in part, 

because Rho activity must be specifically and tightly regulated during this process. Our in 

vivo data strongly suggest that Graf is a critical regulator of Rho specifically during the 

intricate process of myogenic differentiation during embryogenesis. In order to further 

confirm the role of Graf in the skeletal muscle differentiation program, we have recently 

performed in vitro differentiation experiments utilizing the myoblast cell lines, C2C12 and 

L6, which are competent to spontaneously differentiate into mature myotubes under low-

serum conditions. These studies have shown that Graf overexpression leads to precocious 

expression of the skeletal muscle differentiation markers, skeletal α-actin, α-actinin, 

tropomyosin, MHC, and troponin T, as assessed by RT-PCR, Western blot, and 

immunohistochemical analyses. Furthermore, Graf-depletion by transfection with Graf-

specific siRNAs leads to a disruption of the differentiation program as assessed by myotube 

formation and by Western blot analysis of MHC. Additional Western blot analyses in Graf 
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siRNA-transfected myoblasts will be performed to confirm that expression of other markers 

of skeletal muscle terminal differentiation (e.g. tropomyosin, troponin T) is similarly 

decreased in the absence of Graf.  

As noted previously, skeletal muscle terminal differentiation culminates in the fusion 

of myocytes into multi-nucleate myotubes. Notably, our expression analyses suggest that 

Graf is upregulated during the time of skeletal muscle differentiation and fusion, suggesting 

that Graf may play a role both in skeletal marker gene expression and in regulation of fusion. 

However, we were unable to assess a role for Graf during myocyte fusion in our present 

studies because Xenopus skeletal muscle does not undergo fusion until secondary 

myogenesis, a time after which Graf-depletion by Graf Mo-injection led to embryonic 

lethality. Therefore, future studies will examine whether Graf plays a role in myotube fusion 

using the C2C12 and L6 differentiation assays described above. Indeed, preliminary evidence 

strongly suggests that transfection of differentiating L6 cells with wild-type Graf leads to a 

robust increase in the number of multinucleated myotubes. Conversely, transfection with a 

GAP-dead mutant of Graf (in which GAP activity is ablated by a point mutation in the GAP 

domain) does not induce an increase in myotube fusion as assessed by multi-nucleation.  

In order to establish a role for Graf in muscle fusion in vivo, we have begun to 

generate transgenic mouse lines which can be induced to over-express Graf (or GAP-dead 

Graf) by expression of CRE-recombinase. These mice will be crossed to established mouse 

lines expressing CRE under the direction of muscle-specific promoters and muscle fusion 

will be assessed by immunohistochemical analyses at various timepoints during 

embryogenesis and shortly after birth, a time of robust muscle fusion. We anticipate that Graf 
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(but not GAP-dead Graf) overexpression will lead to increased muscle fusion and overall 

muscle mass.  

Since muscle fusion is a necessary step in muscle repair, we are interested in further 

determining whether Graf can lead to improved muscle repair after injury. In order to 

determine whether Graf expression is increased after injury, we will utilize previously 

established methods to injure the tibialis muscle and measure Graf expression by RT-PCR 

and Western blot analyses of tissue lysates from injured and uninjured muscle. Next, we will 

determine whether Graf overexpression in satellite cells leads to improved muscle repair. 

Pax7 is a transcription factor expressed by muscle satellite cells, a quiescent population of 

muscle precursor cells within adult muscle which maintain the capacity to proliferate and 

fuse with existing skeletal muscle during injury repair (Seale et al., 2000). We will cross 

Pax7-Cre mice to our Graf-overexpressing mice to develop mice which overexpress Graf 

specifically in the satellite cells. We will then induce injury in the tibialis muscle as 

previously described in both wild-type and Pax7-Graf mice and assess the extent of repair at 

various time-points after surgery by immunohistochemical analyses of muscle biopsies.  

Our in vivo data presented herein show that Graf-depletion leads to defects in 

intersomitic laminin deposition and mis-localization of β-dystroglycan and strongly suggest 

that Graf interacts with laminin and β-dystroglycan at the myoseptum. Our recent 

immunoprecipitation assays have confirmed that Graf interacts with β-dystroglycan (data not 

shown) further suggesting that Graf physically interacts with the DGC in vivo. These findings 

coupled with the previously established interaction between Graf and FAK, establishes the 

intriguing possibility that Graf may help to coordinate cytoskeletal interactions with the ECM 

through both the DGC and integrins. Notably, it has previously been shown that mice lacking 
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both dystrophin and α7-integrin develop a more severe dystrophic phenotype than those 

lacking either dystrophin or the α7-integrin alone (Rooney et al., 2006). Furthermore, 

overexpression of α7β1-integrin can partially rescue the dystrophic phenotype of mice lacking 

dystrophin and utrophin (Burkin et al., 2001). Therefore, it appears that there is some 

functional redundancy and cross-talk between the integrin and the DGC in muscular 

dystrophy. Taken together, these findings suggest the exciting possibility that Graf may serve 

to coordinate integrin and DGC in normal muscle development and suggest that Graf could 

serve as a therapeutic target for muscle repair in these pathological conditions. Notably, the 

somite defects we observed in Graf-depleted embryos phenocopies the dystrophic 

phenotypes observed in a variety of model organisms including frog, zebrafish, and mice 

(Deniziak et al., 2007; Hanel et al., 2009; Kudo et al., 2004; Postel et al., 2008; Zoeller et al., 

2008). Future studies will assess the possibility that muscle-specific Graf overexpression can 

rescue the dystrophic phenotype in mdx mice (a dystrophin-mutant transgenic mouse line) 

and these studies are currently underway.  

The data presented herein demonstrate that both FAK and Graf are required during 

embryogenesis and the phenotypes induced by depletion of either protein are similar yet 

distinctive. Given that these proteins physically interact, it is instructive to consider how 

these findings strengthen our understanding of the in vivo functions of FAK and Graf during 

development. For example, looping morphogenesis was disrupted by depletion of either FAK 

or Graf. However, the mechanisms underlying this phenotype appear distinct in these two 

models.  

Our findings suggested that FAK depletion led to looping dysmorphogenesis due to 

diminished cardiomyocyte proliferation. By contrast, our analyses of Graf morphant embryos 
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suggested that looping morphogenesis (and cardia bifida, a phenotype not observed in FAK-

depleted embryos) was due to impaired myogenic differentiation. A caveat to this 

interpretation is that our analyses of myogenic marker gene expression were determined in 

lysates from whole embryos. Thus, future analysis of isolated heart tissues would be required 

to determine whether cardiac differentiation was specifically impaired in the absence of Graf 

(since many of our antibodies cross-react with skeletal- and cardiac- specific isoforms). In 

addition, our studies did not specifically address whether Graf depletion also caused a 

reduction in cardiomyocyte proliferation; however we consider this possibility unlikely. First, 

we have performed a small pilot-study assessing cardiomyocyte proliferation comparing Con 

Mo- and Graf Mo-injected embryos and did not observe any statistical difference between 

groups (data not shown). Furthermore, given that Graf serves to downregulate Rho, a protein 

which is known to upregulate cardiomyocyte proliferation in a variety of model systems (see, 

for example, (Wei et al., 2002; Zhao and Rivkees, 2003)), we would hypothesize that Graf 

depletion would increase, rather than decrease, cardiomyocyte proliferation. Thus, additional 

studies will need to be performed to confirm whether Graf has any effect (positive or 

negative) on cardiomyocyte proliferation. Nonetheless, our data suggest that FAK and Graf 

play distinct roles during cardiogenesis with FAK regulating cardiomyocyte proliferation and 

Graf regulating Rho-dependent myogenic differentiation.  

The similarities and differences between the FAK- and Graf-morphant somite 

phenotypes are also noteworthy. Previous studies in Xenopus have demonstrated that FAK-

inhibition (by FRNK-overexpression) in the presumptive somites leads to defects in somite 

rotation and formation (Kragtorp and Miller, 2006). Our analyses revealed no such defects; 

however, this was not unexpected since, in our model, FAK protein was not markedly 
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reduced during the early developmental stages during which somite rotation occurs. Another 

interpretation is that FAK is required for the initial specification of Xenopus somites and for 

the fibronectin binding known to regulate somite rotation but not for the further terminal 

differentiation of these tissues. Indeed, in vitro analyses in cultured myoblasts have 

previously shown that FAK is required for myoblast maintenance (specifically, proliferation 

of myoblasts prior to differentiation) and for late myotube fusion but appears not to regulate 

skeletal muscle marker gene expression (as described in Chapter I). Since FAK was not 

depleted in our frog model until after somite differentiation had begun and frog swimming 

muscle does not undergo multinucleation, we would not expect to observe a somite defect in 

FAK morphant embryos. By contrast, Graf-depletion led to a marked reduction in skeletal 

muscle differentiation and a striking somite defect. These differences suggest that Graf and 

FAK regulate different mechanisms of myogenic development with FAK responding to 

proliferative signaling and Graf regulating myogenic differentiation and sarcomerogenesis. 
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