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ABSTRACT 
 

IVANA SEMOVA: The role of microbiota and diet in lipid metabolism 
(Under the direction of Dr. John Rawls) 

 
 

The large community of microorganisms in the intestine (microbiota) has been 

identified as an additional metabolic organ in our body. However, the microbial role in dietary 

lipid absorption in the intestine is unclear. Improved understanding of the trialogue between 

dietary nutrients, microbiota and host lipid metabolism can help develop strategies for 

decreased or increased absorptive capacity as respective treatments for obesity or 

malnutrition.  

Here, we use in vivo imaging of fluorescent fatty acid analogues to investigate the 

effect of microbiota and nutrients on dietary fatty acid absorption in a zebrafish host. Our 

results demonstrate that the microbiota stimulates fatty acid uptake and lipid droplet 

accumulation in the intestinal epithelium. The microbiota promotes an increase in enterocyte 

lipid droplet number, but not size in a diet-dependent manner. We show that the presence of 

microbial community also results in enhanced dietary fatty acid absorption into the liver and 

non-gastrointestinal tissues. These findings show that the microbiota stimulates intestinal 

and extra-intestinal fatty acid absorption in a diet-dependent manner. 

To determine whether diet affects the zebrafish microbial community composition, 

we performed sequencing of the bacterial 16S ribosomal RNA gene in gut and water 

samples from colonized zebrafish under different dietary conditions. Our analysis of bacterial 

community composition is the first one to show that dietary nutrients promote intestinal 

Firmicutes abundance in the zebrafish host. Even in the absence of bacterial competition, 
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the Firmicutes primary isolate Exiguobacterium sp. canʼt survive and colonize the intestine 

under starved conditions. These findings indicate that Firmicutes survival and growth may 

require a nutrient-rich environment.  

Finally, we tested whether the diet-induced increase in intestinal Firmicutes 

abundance could be partially responsible for the observed increase in lipid droplet number in 

fed zebrafish colonized with the microbiota. Colonization of germ-free zebrafish with single 

bacterial strains revealed that lipid droplet number is increased by Firmicutes and lipid 

droplet size is increased by other bacterial types. These results indicate that the microbiota 

stimulates intestinal and extra-intestinal fatty acid absorption and that different microbial 

members mediate intestinal fatty acid absorption via distinct mechanisms. This work 

demonstrates novel interactions between nutrients and microbiota that enhance dietary fat 

absorption.  
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CHAPTER ONE 

 

INTRODUCTION 

 

The trialogue between microbiota, dietary nutrients and metabolic function 

 Beginning at birth, we are colonized with a complex microbial community that 

changes in density, composition and function throughout our lives. The trillions of 

microorganisms residing in our intestines, collectively called the gut microbiota, impact 

numerous biological processes in our bodies. The dynamic interactions with these microbial 

members influence physiological processes involved in nutrient metabolism. For example, 

the gut microbiota is an important environmental factor in energy storage (Bäckhed et al., 

2004), and diseases of energy imbalance such as obesity (Bäckhed et al., 2007; Ley et al., 

2006) and diabetes (Wen et al., 2008). The host-microbe interactions that affect host energy 

homeostasis and pathogenicity are mediated by dietary nutrients (Musso et al., 2011). 

Dietary nutrients can contribute to microbial regulation of metabolic function in three major 

ways: 1) dietary nutrients affect the microbial community composition and structure, 2) the 

microbiota in turn affects the metabolic fates of dietary nutrients in the intestine and whole 

body or 3) diet modifies host physiology that impacts the composition or activity of the 

microbiota.  
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Dietary effect on microbial community composition 

Numerous studies in hosts from worm to human showed that different nutrients (fats, 

proteins, carbohydrates) affect bacterial abundance of certain microbial species (Ley et al., 

2008; Wu et al., 2011; Muegge et al., 2011). In zebrafish (Figure 3.4), pythons (Secor et al., 

2008) and mammals (Ley et al., 2005; Turnbaugh et al., 2009) we and others have shown 

that an increase in caloric input promotes the abundance of a major bacterial phylum called 

Firmicutes in the intestine. In rodents fed a “Western diet” (high-fat/high-carbohydrate diet), 

increase in Firmicutes levels has been associated with increased energy harvest from 

polysaccharides and fat storage in the body (Turnbaugh et al., 2006). Our zebrafish studies 

suggest similar effects of Firmicutes on intestinal lipid absorption, as a single Firmicutes 

strain induced fatty acid uptake in the intestinal epithelium (Figure 3.6). Increased Firmicutes 

abundance has been associated with both diet and genetic mouse models of obesity 

(Turnbaugh et al., 2008; Ley et al., 2005). Collectively, these studies suggest that Firmicutes 

may affect the development of obesity; however, more direct evidence is needed to 

determine the contribution of this bacterial phylum to energy harvest from different types of 

nutrients.   

While the presence of diet appears to be sufficient to induce changes in the microbial 

community structure, the specific nutrient content of the diet is also a factor. Most studies 

investigating the development and pathobiology of obesity and related metabolic diseases 

have used high-fat/high-carbohydrate diets. However, other nutrients have also been 

evaluated for their ability to alter microbial composition and gene expression. A simpler 

community of 10 bacterial species was monitored in gnotobiotic mice to determine changes 

in species abundance as a result of perturbations of four different major nutrients (casein, 

starch, sucrose and oil) (Faith et al., 2011). The authors showed that changes in casein 

levels were highly correlated with total community abundance and abundance of each 
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species. High levels of dietary protein also had an impact on the microbiota of domesticated 

cats (Lubbs et al., 2009). Surprisingly, reduced dietary protein levels did not have a 

significant impact on the zebrafish gut or water microbiota (Figure 3.4). In addition, studies 

have shown that dietary fiber can alter the microbial community of mice (Neyrinck et al., 

2010), dogs (Middelbos et al., 2010), and humans (De Filippo et al., 2010). Together, these 

findings suggest that both caloric value and nutrient content of diet affect the microbial 

community composition in the intestine. 

 

Microbiota impacts intestinal metabolic processes 

The microbiota can impact nutrient metabolism along the intestinal length. In 

humans, the microbiota has been shown to modify bile acids and stimulate lipid 

emulsification in the small intestine (Ridlon et al., 2006; Martin et al., 2007). Members of the 

microbial community in the distal intestine, on the other hand, possess genes that encode 

enzymes involved in digestion of complex carbohydrates (Xu et al., 2003; Xu et al., 2007). 

Therefore, the distal gut microbiota may complement some of the human digestive functions 

by degrading carbohydrates that cannot be digested otherwise due to lack of human 

hydrolytic enzymes (Flint et al., 2008; Louis et al., 2007). In mice, the microbiota affects gut 

permeability which is important in fatty acid diffusion and lipopolysaccharide-mediated 

inflammatory response (Cani et al., 2009). Another study in germ-free (GF; animals without 

any microbes) mice suggested that increased excretion of fat in the intestine could 

contribute to the observed obesity-resistance phenotype of these animals (Rabot et al., 

2010). Altogether, these findings clearly demonstrate the microbial impact on nutrient 

digestive and absorptive processes in the intestinal lumen and epithelium.  

Microbial factors also regulate transcript levels of metabolic genes, such as fatty acid 

binding proteins and transporters, as demonstrated in the intestine and other organs of 
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zebrafish and mice (Rawls et al., 2004; Rawls et al., 2006; Larsson et al., 2012). One of 

these microbially-regulated genes, called Angiopoietin-like protein 4/Fasting-induced 

adipose factor (Angptl4/Fiaf), is an important mediator of host lipid metabolism (Yoshida et 

al., 2002). The microbiota regulates energy storage in adipose tissue via suppression of 

intestinal Fiaf transcript levels in a mouse host (Bäckhed et al., 2004). Therefore, 

understanding the mechanisms involved in microbial regulation of Fiaf expression in the 

intestine is of great importance for obesity prevention and treatment strategies. My work 

presented in the appendix shows preliminary results of bacterial factors that regulate 

transcript levels of fiaf as well as another biomarker of lipid metabolism (fatty acid 

binding protein 2) and innate immune function (myeloperoxidase) in a zebrafish host.   

 

Microbiota impacts metabolism in non-intestinal tissues 

The microbiota also regulates peripheral organ metabolism as determined by 

quantification of transcript, protein and metabolite levels in non-intestinal tissues. Since this 

is a broad research topic, my focus will be on microbial regulation of lipid metabolites. A 

study using mass spectrometry suggested increased uptake of circulating triglycerides in 

adipose tissue of conventionally-raised (CONVR; raised in the presence of microbes) mice 

in comparison to GF mice potentially due to increased activity of lipoprotein lipase (LPL) 

which hydrolyzes triglyceride-rich lipoproteins in circulation (Velagapudi et al., 2010; 

Bäckhed et al., 2004). Colonization of GF mice increased glucose and short-chain fatty 

acids in serum, which are thought to stimulate hepatic de novo synthesis of fatty acids 

(Bäckhed et al., 2004). In addition to the metabolic effects of the microbiota, individual 

microbial community member Bifidobacterium breve alters the fatty acid composition profile 

by increasing levels of the bioactive conjugated linoleic acid in mouse and pig livers and 

omega-3 fatty acid levels in adipose tissue (Wall et al., 2009). These results demonstrate 
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microbial roles in regulation of lipid metabolite levels systemically; however, it is not always 

clear whether the studied metabolites are derived from exogenous (dietary) or endogenous 

lipid sources. In addition, there is lack of in vivo evidence for microbial stimulation of dietary 

lipid absorption in the intestine. In order to distinguish between the microbial effects on 

exogenous versus endogenous lipids, I summarize our current understanding of the 

metabolic fates of these two types of lipid in the body as well as the microbial 

contribution to some of these processes in chapter 2 of my dissertation. In chapter 3, 

I elucidate the role of the microbiota and individual bacterial species on dietary fatty 

acid absorption in zebrafish intestinal and extra-intestinal tissues.   

 

Zebrafish as a model organism to study host-microbe interactions and lipid 

metabolism 

Model organisms are valuable surrogate hosts for understanding host-microbe 

interactions that occur in humans and other mammals. Zebrafish have proven to be an 

excellent model organism for in vivo studies and high-throughput genetic and chemical 

screens for several reasons. Studies show extensive similarities between mammalian and 

zebrafish intestinal development, organization and function (Ng et al., 2005; Wallace et al., 

2005; Hama et al., 2009). Similar to mammals, zebrafish early development occurs in a 

sterile environment and includes differentiation of intestinal epithelial cells into absorptive 

enterocytes, secretory goblet cells and enteroendocrine cells (Bates et al., 2006). The 

digestive tract consists of intestine, liver, endocrine and exocrine pancreas and gallbladder. 

The zebrafish intestine has specialized regions (segments) that perform similar functions to 

the small and large intestines in mammals. Segment 1 is responsible for lipid absorption, 

segment 2 for protein and macromolecule pinocytosis and segment 3 may play a role in 

water and ion absorption (Bates et al., 2006). Zebrafish development is rapid and the 
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intestine is fully functional by 5 days post fertilization (dpf) when lipid and protein digestion 

and absorption commence (Farber et al., 2001; Hama et al., 2009). Dietary lipid 

composition, digestive physiology and lipid metabolic processes are generally conserved 

among zebrafish and humans (Carten and Farber, 2009). As a result, the zebrafish is an 

attractive model organism for human diseases including cardiovascular disease, fatty liver 

disease and obesity (Carten and Farber, 2009; Hölttä-Vuori et al., 2010). Zebrafish have a 

large advantage over mammalian models for in vivo studies of the hostʼs metabolic 

processes since the optical transparency of the larvae allows for observation of digestive 

and absorptive function using fluorescent protein and lipid probes (Farber et al., 2001; Hama 

et al., 2009; Carten et al., 2011; Chapter 3). We took advantage of available fluorescent lipid 

and protein substrates to show that the microbiota can regulate some of these digestive and 

absorptive processes in the intestine (Chapter 3).    

In addition, the zebrafish rapid growth and body transparency allow for high 

throughput screening for bacterial and host factors involved in metabolic function. In the 

appendix, I show that Pseudomonas aeruginosa products regulate transcript levels 

of several fatty acid metabolic and innate immune genes. In our future studies, we 

intend to utilize a P. aeruginosa PA14 strain mutant library (Liberati et al., 2006) to screen 

for bacterial genes and mechanisms required for regulation of metabolic activity using 

quantitative RT-PCR and in vivo assays of digestive and absorptive function. 

In summary, the work presented in my dissertation identifies several novel roles for 

the gut microbiota in dietary lipid metabolism. First, we demonstrate microbial stimulation of 

dietary fatty acid absorption in intestinal and extra-intestinal tissues of a zebrafish host. 

Second, we also provide important insights into the effects of dietary nutrient levels on 

zebrafish microbial community composition. Third, we present novel findings that individual 

microbial members regulate distinct aspects of dietary fatty acid absorption in the intestine. 
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These results have broad implications for the field of host-microbe interactions because they 

provide the foundation for future characterization of bacterial and host metabolic 

mechanisms involved in microbial regulation of dietary lipid absorption. Identification of 

these molecular mechanisms could contribute to the development of treatment strategies for 

human metabolic diseases of energy imbalance such as obesity and malnutrition.   

 



 

 

 

CHAPTER TWO 

INTESTINAL MICROBIOTA IN LIPID METABOLISM 

 

SUMMARY 

The metabolic fates of exogenous (dietary) and endogenous (de novo synthesized) 

lipids are affected by environmental challenges such as dietary nutrients and the large 

intestinal community of microorganisms (gut microbiota). Despite previous research efforts, 

our understanding of the trialogue between the microbiota, dietary lipids and host lipid 

metabolism is incomplete. This review summarizes our current knowledge of the molecular 

mechanisms involved in dietary lipid processing in the small intestine as well as the 

generation of lipoprotein particles from exogenous and endogenous lipid substrates in 

peripheral tissues. Later in the review, we discuss the impact of the microbiota on host lipid 

metabolism and the effect of dietary nutrient composition on microbial community structure 

and metabolic function.   

 

INTRODUCTION 

 Fat is a major macronutrient in animal diet. Dietary fat metabolism is affected by host 

digestive physiology and anatomy, as well as by environmental factors such as ingested 

dietary nutrients and the gut microbiota. In mammals, dietary lipid digestion occurs primarily 

in the stomach and the anterior region of the small intestine (duodenum) by gastric and 

pancreatic lipases, respectively. Emulsification of fat by bile acids is important for efficient 

lipase hydrolysis and uptake of fatty acids by enterocytes. Once taken up, dietary fatty acids 
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get activated as acyl-CoA derivatives to be used as energy sources, get reassembled into 

triglycerides and stored in cytosolic lipid droplets or packaged in lipoprotein particles 

(chylomicrons) for exocytosis and extra-intestinal metabolism. Once transported out of the 

intestine, chylomicrons (CMs) circulate through the lymphatics and enter the vasculature via 

the portal vein. In circulation, CMs interact with lipoprotein lipase (LPL) that hydrolyzes 

triglycerides and releases free fatty acids (FFAs) for uptake into peripheral tissues 

(Borensztajn, 1979). After LPL hydrolysis, the smaller, cholesteryl ester-rich chylomicron 

remnant circulates to the liver where it enters the pool of endogenous lipid to be used for 

hepatic very low density lipoprotein (VLDL) formation (see Figure 2.1). Secreted VLDLs 

circulate and undergo hydrolysis by LPL resulting in generation of intermediate density 

lipoprotein (IDL) and low density lipoprotein (LDL) particles. Another lipoprotein (high density 

lipoprotein, HDL) is responsible for cholesterol transport from peripheral tissues to the liver 

for excretion (Fava et al., 2006). These metabolic processes are summarized in Figure 2.1 

and described in more depth throughout this review, with emphasis on their regulation by 

environmental factors such as dietary nutrients and the gut microbiota.  

The microbiota can contribute to lipid metabolism by affecting both intestinal and 

extra-intestinal metabolic processes. In the intestinal lumen, the microbiota is thought to 

contribute to increased lipid digestion (Kosa and Ragauskas, 2011) and bile salt modification 

that improves fatty acid emulsification and absorption (Martin et al., 2008). In the intestinal 

epithelium, the microbiota affects the absorptive capacity via changes in intestinal 

permeability (Cani et al., 2008). The microbiota also provides bacterial or nutrient-derived 

ligands that can regulate the hostʼs transcriptional machinery by interaction and activation of 

host transcription factors in intestinal and extra-intestinal tissues (Sanderson et al., 2009). 

Finally, on a systemic level, the presence of microbiota regulates circulating levels of lipid 

metabolites, fat storage in adipose tissue and liver (Velagapudi et al., 2010), and immune 
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system development and response (Sharma et al., 2010). However, currently there is very 

little distinction between the microbial impact on exogenous versus endogenous lipid 

sources. Improving our understanding of how the microbiota mediates dietary lipid 

absorption in the intestine can provide us with new preventative and treatment strategies for 

diet-induced obesity and malnutrition. The purpose of this review is to summarize the most 

current findings on lipid metabolism with a more in-depth coverage of dietary lipids and the 

role of gut microbiota in mediating these metabolic processes on a systemic level.    

 

Fat metabolism in various animals  

 

Lipid is a major macronutrient for humans that provides 40-55% of the caloric value 

in Western diet (Binder and Reuben, 2009). At birth, human infants switch from glucose-rich 

to lipid-rich food source as almost half of the energy content in human milk comes from fat 

(Lindquist and Hernell, 2010). It has been hypothesized that the high fat content in our diet is 

partially due to our high level of encephalization (large brain:body mass). In comparison to 

other primates and mammals of similar size, we allocate a larger portion of our daily calories 

as energy for the brain. As a result, we have increased our demands for energy-dense food 

which is typically rich in fats. This dietary change may have also altered our gastrointestinal 

tract, resulting in expansion of our small intestine and reduction of the colon as well as 

enhanced capacity to digest and metabolize higher fat diets in comparison to chimpanzees 

and gorillas (Leonard et al., 2010).   

Despite these differences in GI anatomy and dietary fat preferences between us and 

our closest relatives, most of our knowledge of the lipid metabolic fates in humans is based 

on discoveries made in cell culture and animal studies. It is important to note that each 

model has similarities and differences with human physiology and metabolism. Intestinal cell 
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culture studies have allowed for an important initial characterization of cellular metabolic 

processes; however, most cell lines do not express many of the metabolic genes found in 

vivo (Shulzhenko et al., 2011) and fail to recapitulate the effect of the surrounding luminal 

environment that includes bile, mucus and microbiota. Research in worms, flies, fish, mice, 

pigs and many other animals has generated a more complete picture of the mechanisms 

involved in lipid metabolism at a systemic level. It is important to note that interspecies 

differences in gastrointestinal (GI) physiology and diet preferences affect lipid metabolic 

processes, which is the reason why animal hosts used in the summarized studies are 

highlighted throughout this review. Despite innate differences in GI physiology and nutrition, 

animal models have provided us with important discoveries of evolutionarily conserved 

molecular factors involved in lipid metabolism such as fatty acid binding proteins and 

transporters. These findings emphasize the importance of lipid metabolic processes for the 

survival of different species. 

 

Metabolic routes of exogenous (dietary) lipids in the intestine 

 

 Types of dietary lipids: Dietary lipid composition factors (such as saturation and 

length of the FA acyl chain) are important for determining physiological outcomes and 

disease development in humans. Cholesterol, saturated and trans-fatty acid levels in diet 

have been linked to coronary heart disease (Austin, 1991) and atherosclerosis (Katan, 2000). 

On the other hand, (ω-3) polyunsaturated fatty acids eicosapentaenoic and 

docosahexaenoic acid protect against macrophage-induced inflammation and stimulate 

systemic insulin sensitivity (Oh et al., 2010). Dietary fat content consists primarily of 

triglycerides (TGs), phospholipids and cholesterol. In energetic terms, the typical Western 

diet consists of approximately 14% of saturated fatty acids (mostly palmitic acid), 14% of 
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monounsaturated fatty acids and 6% of polyunsaturated fatty acids (Nassir and Abumrad, 

2009).   

In addition to saturation, the acyl chain length also has an impact on fatty acid 

metabolic fate. Short-chain fatty acids (SCFA; C2-C5) get absorbed via sodium-coupled 

transporter SLC5A8 in the ileum and colon to mediate many beneficial functions in epithelial 

biology and metabolism (Cresci et al., 2010). Medium-chain fatty acids (MCFA; C6-C16), the 

predominant fat form in infant diet, are thought to enter enterocytes via diffusion where they 

get used primarily as energy source (Papamandjaris et al., 1998). Long-chain fatty acids 

(LCFA; C17-C22), representing the majority of dietary fatty acids found in human diet, are 

thought to be actively transported by fatty acid translocases and binding proteins discussed 

below. MCFA, which are saturated, are rarely found in human food; however, in the past 

decade there has been an effort to synthesize structured triglycerides with lower fat-

producing value by chemical interesterification of medium- and long-chain FAs onto the 

same glycerol backbone (Phan and Tso, 2001). Previous studies in rodents and humans 

have reported reduced body weight, fat storage and increase in plasma triglyceride levels on 

a medium-chain vs long-chain triglyceride diet which may be a result from a shift towards 

increased use of medium-chain fatty acids for energy and de novo lipogenesis in the liver 

rather than storage in the body (Geliebter et al., 1983; Hill et al., 1989). It has been argued 

that this increase in lipogenesis on medium-chain triglyceride diet is due to faster intestinal 

absorption, hepatic portal transport, carnitine-independent mitochondrial metabolism 

(peroxisomal and omega-oxidation) and a low affinity for esterification, all of which lead to a 

faster and greater oxidation of MCFA in comparison to LCFA (Papamandjaris et al., 1998).  

Together, these findings indicate that differences in fatty acyl chain length and saturation 

impact the metabolic fates of FAs in the body, and that MCFA could be useful as agents for 

obesity treatment.                   
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 Dietary fat digestion: In humans, fat digestion begins in the mouth with lingual 

lipase, produced by salivary glands in the tongue, and continues in the stomach with the 

activity of both lingual and gastric lipase produced by chief cells. However, the majority of fat 

digestion occurs in the small intestine, as only 15% of digestion occurs prior gastric 

emptying (Binder and Reuben, 2009). Triglyceride digestion in the stomach plays an 

important role especially for neonates. Human milk fat contains a considerable amount of 

medium-chain triglycerides and acid lipases (lingual and gastric) are more efficient at 

digestion of medium- vs long-chain triglycerides. In addition, the lingual and gastric lipases 

are the primary enzymes involved in neonatal fat digestion as the pancreatic lipase system 

is still not fully functional (Hamosh, 1996). The stomach is also the location where most of 

the fat emulsification aided by dietary phospholipids occurs, which is required for efficient 

digestion by the pancreatic lipase.  

Upon entry into the duodenum, pancreatic lipase hydrolyzes the fatty acids on the 

sn-1 and sn-3 positions of a triglyceride and produces two free fatty acids (FFA) and a 2-

monoacylglycerol (2-MG). Further hydrolysis results in a release of another FFA and a 

glycerol backbone. Phospholipid and cholesteryl ester digestion also occurs in the small 

intestine by the activity of pancreatic phospholipase A2 (PLA2) and cholesterol esterase, 

respectively. Released FFA and mostly 2-MG get taken up by enterocytes, a process which 

is enhanced by micellar solubilization by bile salts (Westergaard and Dietschy, 1976). In 

order for single molecules to reach the epithelial brush border, they need to diffuse across 

an unstirred water layer, which is a challenge for hydrophobic FA and MG molecules. Mixed 

micelles, which result from bile salt emulsification of FFA, 2-MG, cholesterol and 

phospholipids, are important vesicles that get sensed by enterocytes via scavenger receptor 

SR-BI/CLA-1 (Béaslas et al., 2009). A study in pig intestinal explants incubated with lipid 

mixture of corn oil, cholesterol, bile and pancreatin showed that 3 hrs after incubation, SR-
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BI/CLA-1 was endocytosed from the brush border and accumulated in cytosolic lipid droplets 

but not secreted lipoproteins (Hansen et al., 2003). The role of these lipid droplet structures 

is discussed below.  

Lipid uptake in enterocytes: Intestinal intracellular trafficking and processing of 

fatty acids is not completely understood and controversial. Once fatty acids in mixed 

micelles reach the brush border, they become protonated and leave the micelle to be taken 

up via passive diffusion or active transport by binding proteins. The exact fatty acid uptake 

mechanisms are unresolved. Studies in rats suggest that active transport is the major route 

for linoleate (derived from ω-6 linoleic acid) uptake at low concentrations, while passive 

diffusion predominates at high concentrations (Chow and Hollander, 1979). Furthermore, the 

length of the acyl chain affects FA solubility and transport across the epithelium. MCFA are 

less hydrophobic than LCFA and are therefore, thought to diffuse more freely across the 

epithelium and enter the portal venous blood that transports it directly to the liver. On the 

other hand, longer FA need active transport by proteins such as fatty acid translocase 

(FAT/CD36) and fatty acid binding protein at the plasma membrane (FABPpm). Fatty acid 

transport proteins (FATP2-FATP4) were originally thought to contribute to FA transport, 

however FATP4 was later shown to have a CoA acylase function that serves to activate FA 

prior storage or use as energy via FA oxidation (Jia et al., 2009; Milger et al., 2006). 

Cholesterol uptake is mediated by adenosine-triphosphate binding cassettes A1, G5 and G8 

and Niemann-Pick C1 like 1 transporter (Plösch et al., 2005).   

Regulation of transport proteins is dependent on dietary fat levels. As a consequence, 

one of the frequent problems in obesity is intestinal adaptation to high-fat diet and increased 

absorptive capacity (Lynes and Widmaier, 2011). However, the mechanisms that mediate 

epithelial transport capacity in response to dietary fat levels are only partially understood. A 

mouse study showed that a diet rich in linoleic acid induced colonic expression of the 
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transcription factor peroxisome proliferator-activated receptor γ (PPARγ) and CD36 

(Bassaganya-Riera et al., 2004). In humans, however, CD36 mRNA levels did not correlate 

with protein levels along the length of the intestine since the ileum showed the highest 

protein expression, with lower mRNA levels than in the duodenum, jejunum and colon 

(Masson et al., 2010). Therefore, transcript levels of fatty acid transporters do not 

necessarily correlate with protein expression at least in human subjects.  

Intestinal fatty acid fates: Free fatty acids that get taken up have several metabolic 

fates, which are partially dependent on their site of entry (apical or basolateral side of the 

enterocyte). FAs bind the intestinal FA binding protein (FABP2) and liver FA binding protein 

(FABP1). The two proteins are expressed in the intestine, and are thought to be 

transcriptionally regulated by C/EBP (Cohn et al., 1992), although their expression might be 

regulated by genetic and not dietary factors. These proteins belong to a larger family of 

intracellular binding proteins that evolved after the animal kingdom separated from plants 

and fungi and is present in both invertebrates and vertebrates (Haunerland and Spener, 

2004). Their known roles include protecting cells from cellular damage induced by excess 

FA and increasing the FA concentration gradient by binding FFAs in the cell (Haunerland 

and Spener, 2004). However, FABP2 overexpression and knock-out in both cells and mice 

have lead to inconclusive results about the function of this binding protein in fat absorption, 

suggesting that there might be compensatory mechanisms involved in such a critical 

process. On the other hand, FABP1 KO mice on a western diet were resistant to obesity 

(Newberry et al., 2006), suggesting that this protein influences fat storage in the body. 

An additional intestinal enzyme has been implicated in nutrient absorption in the 

small intestine. Intestinal alkaline phosphatases (IAP) are metalloenzymes that hydrolyze a 

spectrum of phosphomonoesters such as the 5ʼ terminal phosphate group of DNA and RNA, 

the terminal phosphate of ATP and phosphate groups on serine and threonine residues 
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(Millán, 2006). IAP is expressed at the brush border (Xie et al., 1997; Bates et al., 2007), the 

membranes of particles secreted by enterocytes basolaterally and at the apical membrane 

after their passage through tight junctions (Mahmood et al., 2003), and around lipid droplets 

in enterocytes (Moss, 1982; Narisawa et al., 2007; Warnes, 1972). Furthermore, IAP 

expression increases in the duodenum and jejunum of rats (Kaur et al., 2007), piglets 

(Dudley et al., 1994) and mice (Millán, 2006; Nakano et al., 2007) in response to increased 

dietary fat levels. IAP dephosphorylates the fatty acid translocase CD36 in murine 3T3 

fibroblasts, which suggests functional interaction between CD36 and IAP (Ho et al., 2005). 

CD36 phosphorylation is thought to be important for its function, since Luiken and 

colleagues (2002) showed that cAMP phosphodiesterase inhibitors increase cAMP levels 

and the CD36 activity potentially via increased phosphorylation in skeletal muscle cells. 

Based on these findings, it is predicted that CD36 physically interacts with IAP to potentially 

regulate LCFA uptake in the small intestine. This interaction between CD36 and IAP is 

thought to be responsible for the adaptation of the distal intestine and increased absorptive 

capacity in mammals in response to high-fat diet (Lynes and Widmaier, 2011). 

Bound fatty acids get trafficked to the endoplasmic reticulum (ER), which is the site 

of triglyceride re-esterification and prechylomicron formation. The transfer mechanism is 

unresolved. At the ER, FFA and MG are used as substrates to re-synthesize TG primarily 

via the MG pathway and with the activity of MG acyltransferases (MGAT1, 2 and 3) and DG 

acyltransferases (DGAT1 and 2) (Buhman et al., 2002). A DGAT1 knockout mouse model 

showed that there might be compensatory mechanisms that involve DGAT2 and DG 

transacylase activity in FA uptake and TG formation in enterocytes (Buhman et al., 2002). 

The FAs used in TG formation usually reflect the ones found in the diet (Redgrave and 

Dunne, 1975; Parks et al., 1981), and TG synthesized from dietary FA is preferentially 

transported into chylomicrons (CM) due to different route of delivery by different acyl-CoA 
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synthetases (Mansbach and Nevin, 1998). The exception was observed during fasting when 

very low density lipoprotein (VLDL)-size particles are formed in enterocytes consisting of 

lipids derived from bile, sloughed enterocytes and plasma FAs (Hussain, 2000).   

Another metabolic fate of fatty acyl-CoA is its use as an energy source via fatty acid 

oxidation. Even though only a small portion of the dietary FA pool is oxidized in enterocytes, 

it becomes an important energy source during fasting. This process is compartmentalized to 

the mitochondrion during β-oxidation and requires a membrane transport system facilitated 

by carnitine palmityl transferase-1α (CPT-1α) for LCFA substrates. Medium-chain FA on the 

other hand, can cross the mitochondrial membrane freely to be oxidized (Friedman et al., 

1990).            

FA metabolic fate in the enterocyte depends on the uptake route from the lumen. 

Studies in humans and rodents have shown that the site of cellular entry can impact the 

intracellular metabolic fate of FA and MG (Gangl and Renner, 1978; Storch et al., 2008). 

Both palmitate and oleate substrates undergo oxidation at higher rates when taken up via 

the basolateral than apical surface of enterocytes, which the authors speculate is due to the 

subcellular localization of mitochondria (even distribution at the apical and basolateral side) 

and ER (primarily at the apical side). Furthermore, FAs taken up on the apical side get 

incorporated into TG, DG or MG more often than into phospholipids in comparison to FAs 

that get taken up basolaterally (Storch et al., 2008).   

Intestinal lipid droplet formation: Lipid droplets (LDs) have been recognized as 

important organelles in the body that serve as temporary TG stores that can get depleted or 

replenished depending on dietary fat levels. In addition to their storage function, LDs also 

play a role as building elements for organelles by providing phospholipids and sterols 

(Farese and Walther, 2009). During feeding, progressively larger TG-rich lipid droplets form 
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in the ER lumen independent of synthesis of CM lipoprotein apolipoproteinB (apoB) 

(Hamilton et al., 1998). In fact, lack of apoB synthesis resulted in larger LD formation in the 

ER (Mak and Trier, 1975). A study in suckling mice identified cytosolic LDs that lacked cell 

membrane (Young et al., 1995), which suggests of two separate lipid pools – an ER-

independent TG stored in cytosolic LD and an ER-dependent TG used in CM formation. 

Both lipid droplet pools (cytosolic LD and CM) have various size distribution, which is 

thought to increase with fat feeding and independent of apoB levels (Davidson et al., 1987; 

Davidson et al., 1988).  

Cytosolic LDs get coated with proteins of the PAT (perilipin, adipophilin, TIP47) 

family that play various functions in LD biogenesis (Bickel et al., 2009). For example, TIP47 

mediates the incorporation of newly-synthesized TG into LDs, while perilipin and adipophilin 

associate only with pre-existing LDs so they get degraded through a proteosome-depedent 

pathway when LDs are absent from cells (Masuda et al., 2006). Furthermore, LD-associated 

PAT protein levels are dependent on the duration of the dietary fat challenge in mice, as 

TIP47 expression is higher after an acute than chronic challenge, while adipophilin 

expression follows the opposite trend. Localization was also affected, with TIP47 but not 

adipophilin coating LDs after an acute high-fat feeding, while adipophilin but not TIP47 is 

observed on LDs after a chronic exposure to high-fat diet (Lee et al., 2009). Therefore, these 

proteins are unique to cytosolic LDs and get regulated by the amount and the duration of 

dietary fat feedings.   

Chylomicron assembly: The process of CM formation begins at the ER where re-

synthesized TG binds the microsomal triglyceride transfer protein (MTP) and gets 

transferred to newly-synthesized ApoB protein and cholesterol esters to form a primordial 

chylomicron. MTP is a protein complex localized to the ER that consists of protein disulfide 

isomerase (PDI) and a unique 97 kDa subunit with lipid transfer activity. Mutations in the 
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MTP large subunit are the cause of the metabolic disease abetalipoproteinemia in humans 

(Wetterau et al., 1992), mice (Raabe et al., 1998) and zebrafish (Schlegel et al., 2006). 

These studies demonstrate that MTP is an essential protein in the initial assembly of 

intestinal lipoproteins in several different vertebrate species. 

ApoB is another important protein involved in CM formation. It exists in two forms, 

ApoB100 and ApoB48. The larger protein, ApoB100 is enriched in the liver and the prenatal 

small intestine and has a low density lipoprotein-binding domain (Black, 2007). The other 

form, ApoB48 is enriched in the small intestine and lacks the low density-binding domain. 

Both forms are produced by the same gene with ApoB48 being generated by 

posttranscriptional mRNA editing (Davidson and Shelness, 2000). While ApoB48 is required 

for primordial CM assembly in the ER, ApoB100 is required for VLDL assembly in 

hepatocytes. Lipidation of ApoB48 by MTP activity is important to prevent nascent ApoB 

degradation and lipoprotein assembly (Hussain et al., 2012). In addition to MTP and ApoB48, 

another protein Apo A-IV is also added to the surface of the forming particle (van 

Greevenbroek and de Bruin, 1998). Additional factors that regulate CM formation include 

rate of TG synthesis, the size of the intracellular lipid pool and lipid trafficking and 

translocation in cells (van Greevenbroek and de Bruin, 1998), all of which are dependent on 

the amount of dietary FA taken up from the lumen.   

The primordial CM gets transported from the ER to the cis-Golgi in a prechylomicron 

transport vesicle, which is the rate-limiting step in lipid absorption in a rat model (Siddiqi et 

al., 2006). This process is mediated by FABP2 that assists the budding off of the ER, while 

the trafficking and fusion with the Golgi is mediated by the coating protein II (COPII) family 

members Sar1 and Sec23/24 and the soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor (SNARE) fusion complex which consists of vesicle-associated membrane 

protein 7 (VAMP7), syntaxin 5, Bet1 and vti1a (van Greevenbroek and de Bruin, 1998). This 



	
   20	
  

process is well-conserved even in human newborns that adapt to large dietary lipid loads by 

adjusting gene expression levels.  

The final step of mature CM formation in the Golgi is followed by basolateral 

secretion of these lipoprotein particles into the lymphatic lacteals of humans and suckling 

pigs whose GI tracts are closely related to ours. In contrast, in suckling rodents the portal 

vein is the primary lipid transport route, since suckling rats exhibit inefficient dietary lipid 

transport in lymphatic chylomicrons (Black, 2007). Once chylomicrons exocytose into the 

lymphatics, they enter circulation through the thoracic duct, circulate in the vasculature and 

interact with lipases such as lipoprotein lipase (LPL) for TG hydrolysis and uptake of FA into 

tissues such as the muscle and adipose tissue.       

               

Endogenous lipid synthesis (de novo lipogenesis) in the liver  

 

 The liver supplies both exogenous- and endogenous-derived lipid substrates to 

peripheral tissues via uptake of FFA from chylomicron remnants or de novo fatty acid 

synthesis, respectively. Both lipid substrates get packaged into VLDL particles and released 

into the circulation. Hepatic lipid levels are affected by metabolic imbalances in insulin 

resistance, type 2 diabetes (Adiels et al., 2007; Adiels et al., 2008), obesity and fatty liver 

diseases (Dumas et al., 2006). In hepatocytes, like in enterocytes, there are several different 

lipid pools: cytosolic LDs, ER-luminal apoB-free LDs and apoB-containing VLDL precursors 

(Olofsson et al., 2000; Shelness and Sellers, 2001). These lipid pools serve as substrates 

during lipolysis and TG generation for VLDL particles.   

Hepatic enzymes involved in lipolysis: The well-studied lipases such as hormone-

sensitive lipase and adipose triglyceride lipase are absent (Holm et al., 1987) or expressed 

at very low levels in the mammalian liver, respectively (Zimmermann et al., 2004). One ER-
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associated lipase that is expressed at high levels in the liver is the triacylglycerol hydrolase 

(TGH). Knockout of this enzyme in mice resulted in smaller cytosolic LDs in primary 

hepatocytes. Furthermore, absence of TGH had no effect on nascent LD formation which 

colocalized with TIP47, while ADPR colocalized with the surface of pre-formed LDs that 

were larger in size. When the authors looked at the LD maturation process, they observed 

that colocalization and lipid transfer from nascent into preformed LDs was delayed but not 

absent in TGH KO hepatocytes. Therefore, these findings suggest that TGH is important in 

determining the dynamics of lipid transfer from newly synthesized to preformed LDs in 

hepatocytes (Wang et al., 2010). In addition to its role in lipid transfer, lack of TGH also 

resulted in a shift in the lipid metabolite pool with increased DG levels in the ER, which is 

thought to recruit CTP:phosphocholine cytidyltransferase to the active membrane-

associated lipid pool and increase phosphotidylcholine (PC) synthesis (Jamil et al., 1993). 

The increase in PC levels is correlated with increased surface area and reduced size of LDs, 

which may be due to failure to form new LDs or defective fusion process as suggested by a 

study in Drosophila S2 cells (Guo et al., 2008).            

Hepatic VLDL production: The process of VLDL formation is similar to CM 

production in the intestine, and occurs in the ER where lipids are transferred from cytosolic 

LD pools in an MTP-dependent manner. The lipid substrates used in VLDL formation are 

dependent on the nutritional status and hormonal factors. Under fed conditions, VLDL lipids 

are derived from TG hydrolysis in LDs or CM remnants. Under fasted conditions, the 

substrates include circulating FFA from adipose tissue lipolysis, de novo TG synthesis and 

phospholipids hydrolysis (Xiao et al., 2011). These conditions also regulate the intracellular 

FA fates, with elevated FFA flux to the liver and elevated de novo lipogenesis priming the 

liver to store and secrete lipids as VLDL particles. This phenotype is observed in insulin-

resistant states. Hormonal regulation of exogenous and endogenous lipids is beyond the 
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scope of this review (for further reading, please refer to Xiao et al, 2011). Circulating FFA 

are taken up in hepatocytes and re-esterified by DGAT1 to contribute to the cytosolic LD 

pool. Lipid transfer from LDs to the site of VLDL formation is mediated by TGH.      

Apolipoproteins involved in VLDL formation: Like in the intestine, ApoB is 

involved in VLDL in its longer form, ApoB100. This protein is exclusively expressed in the 

liver of humans, while it is found in both the liver and intestine of rodents. Unlike intestinal 

apoB formation, hepatic apoB molecule quality is regulated by several mechanisms that 

involve ER-associated degradation (ERAD) and post-ER proteolysis pathway (PERPP) 

mechanisms (Xiao et al., 2011). Additional apolipoproteins associated with VLDL particles 

include apoC-III which helps recruit TG to nascent apoB and promotes larger VLDL 

formation (Sundaram et al., 2010). 

Upon generation of a nascent particle in the ER, VLDL exits in an ER-derived vesicle, 

which fuses with the Golgi in a SNARE complex-dependent manner (Siddiqi et al., 2010). 

After lipidation is completed in the Golgi, VLDL is secreted into the vasculature and 

circulates to provide lipid substrates to peripheral tissues via LPL-mediated lipolysis. Since 

both CM and VLDL particles require the same removal machinery from circulation and 

therefore compete for LPL activity in humans (Brunzell et al., 1973) and rats (Karpe and 

Hultin, 1995).          

      

Lipid metabolism in peripheral tissues 

 

 Lipid is an energy-rich nutrient whose metabolism is dependent on the overall energy 

status and homeostasis of the organism. Secreted exogenous lipids from the intestine 

(chylomicrons) and endogenous lipids from the liver (VLDL) circulate in the vasculature 

where they interact with lipoprotein lipase (LPL) and TG get hydrolyzed to FFA that enter 
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peripheral tissues based on energy demands. For example, intestinal chylomicron 

production is stimulated not only by an increase in intestinal luminal fat content but also by 

circulating FFA levels (Xiao et al., 2011). Similarly, circulating FFA can also stimulate VLDL 

production in the liver, while prolonged exposure to FFA in the plasma leads to hepatic 

insulin resistance which causes increased VLDL production (Lewis et al., 2002).   

 Fed vs fasted states: Lipid metabolism is sensitive not only to dietary lipid but also 

carbohydrate and protein levels. During overnight fasting, circulating FFA released from 

adipose tissue fat hydrolysis lead to increased VLDL production, while prolonged fasting 

results in an increase in adipose tissue hydrolysis that provides more than 90% of FFA in 

VLDL particles (Barrows and Parks, 2006). Circulating VLDL particles get hydrolyzed to 

provide FFA as energy source in peripheral tissues resulting in the formation of intermediate 

density lipoproteins (IDL) and low density lipoproteins (LDL). After feeding, chylomicrons are 

the predominant lipoprotein particles secreted from the intestine into the lymphatics (Tso et 

al., 1984). VLDL production is decreased in comparison to fasted state, while circulating 

lipoproteins get hydrolyzed and FFA get taken up for storage primarily in adipose tissue. 

Therefore, dietary nutrient availability mediates the metabolic fates of exogenous and 

endogenous lipids in the body.                

 

The intestinal microbiota as a metabolic partner 

 

 Our microbial self: Our mammalian ancestors evolved ~160 million years ago in a 

microbe-dominated world. In order to ensure our survival, we learned to co-exist with this 

large microbial community that outnumbers us. In particular, we form a very intimate bond 

with the group of microorganisms that reside on and within our body, including the large and 

complex community that colonizes our intestine (gut microbiota). The gut microbiota 



	
   24	
  

represents the largest microbial community on our body, and outnumbers the total number 

of human cells in an adult human. The biological impact of this microbial community has 

been demonstrated in biological events such as intestinal cell proliferation (Cheesman et al., 

2011), vascular remodeling (Reinhardt et al., 2012), nutrient metabolism (Claus et al., 2011), 

and immune function (Round et al., 2011) in numerous hosts.      

  

The role of intestinal microbiota in human health and disease 

 

 The role of the intestinal community of microorganisms in metabolism has been 

established to the point where the gut microbiota is now accepted as an additional metabolic 

organ in our body. Studies in vertebrates and invertebrates have identified the importance of 

gut microbiota in host physiology (Sekirov et al., 2010) as well as pathologies related to 

metabolism such as the ones presented in obesity (DiBaise et al., 2008), diabetes (Musso et 

al., 2010), metabolic syndrome (Tilg, 2010), fatty liver disease (Abu-Shanab and Quigley, 

2010). Part of the culprit for the recent high prevalence of these metabolic diseases in 

humans is the increased consumption of high-calorie diets such as the Western diet (30-

40% of its caloric value comes from fat) that has high levels of saturated and trans fatty 

acids and low levels of the anti-inflammatory n-3 PUFAs (Kris-Etherton et al., 2002; 

Simopoulos, 2002). As a result of these recent dietary changes, diseases of energy 

imbalance have become a major health concern in developed and a growing concern in 

developing countries. The effects of diet and microbiota on the development and 

progression of these metabolic diseases is discussed in further detail below. 
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The effect of diet on microbiota 

 

 Microbial ecology: Evolutionary studies show that changes in environmental 

conditions (particularly dietary habits) caused our microbial partners to co-evolve with us. 

Ley and colleagues used bacterial 16S ribosomal RNA gene analysis of 60 mammalian 

species from several different locations around the globe to show that the host diet and 

phylogeny both influence the gut microbial community composition and diversity (2008). 

Herbivores showed the highest genus-level richness in comparison to omnivores and 

carnivores. The authors suggested that this dietary effect on microbial diversity is due to 

functional and anatomical adjustments in the intestine of these dietary groups. In order to 

digest dietary nutrients from plants, herbivores adapted by extending their gut retention time 

to allow for microbial fermentation in the foregut or the hindgut. Microbial communities in 

omnivores on the other hand, cluster separately into hindgut fermenters and ones with 

simple guts (Ley et al., 2008).   

Another study sampled fecal DNA from 33 mammalian species and used shotgun 

and targeted sequencing of bacterial 16S ribosomal RNA genes to compare the gut 

microbial communities. Principal coordinates analysis plots of microbial communities 

showed that bacterial communities associated with herbivores clustered separately from 

those in omnivores and carnivores, further emphasizing the importance of plant-based 

versus meat-based diet in mediating microbial community composition (Muegge et al., 2011). 

However, the lack of correlation between mammalian phylogeny and overall distribution of 

microbial species and function suggests that there may not be a significant co-evolution 

between mammals and their gut microbiota and microbiome. The authors argue that this 

discrepancy between microbial composition and function may be due to differences in 

abundance of shared enzymes. For example, the microbiomes of herbivores are enriched in 
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enzymes involved in amino acid biosynthesis, while the carnivore samples have increased 

levels of enzymes involved in amino acid degradation. 

Microbial community composition and function has also been extensively studied in 

lean versus obese hosts in order to identify which bacterial phyla are enriched under excess 

nutrient availability. Both diet (high-fat, high-carbohydrate) and genetic (ob/ob) models of 

obesity show increased abundance of Firmicutes vs Bacteroidetes, which represent the two 

major phyla in human and mouse gut microbiota (Ley et al., 2005; Ley et al., 2006; 

Turnbaugh et al., 2008). Microbiota transplantation from obese mouse donors into ex-GF 

mice showed that the obese microbiota increases adiposity in a lean host, which suggested 

that the microbiota from obese hosts has increased energy harvesting capacity relative to 

the microbiota from lean mouse hosts (Turnbaugh et al., 2008). Another study showed that 

the distal microbiome of obese twins is enriched in pathways involved in fatty acid 

biosynthesis and phosphotransferase system (Turnbaugh et al., 2009), which could alter the 

levels and composition of carbohydrate and fatty acid metabolites that become available to 

the host. Therefore, host dietary habits can modify nutrient metabolism via direct transfer of 

calories from nutrients and indirect effects on host energy storage via alterations of microbial 

community structure and function.              

     

The effect of microbiota on metabolism of exogenous lipids 

 

 The microbial role in complex carbohydrate metabolism in the colon has been 

studied extensively (Turnbaugh et al., 2008; Turnbaugh et al., 2009; Flint et al., 2012) and 

will not be covered in detail here. Briefly, bacterial genes, enzymes and metabolites are 

thought to complement the function of host digestive enzymes that cannot digest complex 

plant carbohydrates. This microbial enhancement of digestion in the lumen results in release 
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of short-chain fatty acids (acetate, propionate and butyrate) that serve as an energy source 

in the intestine and other organs. The microbial enhancement of polysaccharide digestion 

and increase in nutrient availability is thought to be partially responsible for larger fat storage 

observed in mouse and human hosts (Bäckhed et al., 2004; Turnbaugh et al., 2008). 

However, a comparative study in children on a modern Western diet or on a rural African 

diet showed that the children on African diet had higher levels of SCFA than the children on 

Western diet (De Filipo et al., 2010). Furthermore, SCFA have beneficial effects on intestinal 

health as these nutrients contribute to differentiation of epithelial cells, provide fuel for 

colonocytes, modulate ion and water transport and decrease colorectal cancer incidence 

(Topping and Clifton, 2001; Wong et al., 2006; Sellin, 1999). Propionate specifically has 

been shown to have beneficial effects on a systemic level by lowering liver and plasma fatty 

acid levels and inflammation and increasing satiety, therefore potentially contributing to 

improved insulin sensitivity and weight reduction (Al-Lahham et al., 2010). However, it is 

acetate and butyrate levels that are increased in the ceca of obese versus lean 

conventionalized (CONVD; ex-GF mice colonized with microbiota) mice, while propionate 

levels are low at least in this host organism (Turnbaugh et al., 2006).      

The microbial role in exogenous lipid metabolism is not well understood, since the 

majority of lipid digestion and absorption is completed in the small intestine, which is a 

difficult anatomical region to study in vivo especially in rodents and humans. However, as 

mentioned earlier, under high fat feedings, the distal intestine also becomes involved in lipid 

absorption (Lynes and Widmaier, 2011) to enhance energy harvest from diet despite an 

efficient lipid uptake in the small intestine (>90% uptake in vertebrates) (Labonté et al., 

2008; Karasov and Hume, 1997). As summarized below, our current understanding of the 

role of gut microbiota in lipid metabolism comes primarily from genomic, transcriptomic and 

metabolomic findings that indicate of microbial regulation of host lipid metabolites. 
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 Microbial role in lipid metabolism:  The microbiota can potentially regulate lipid 

metabolism by providing microbial genes encoding proteins involved in lipid metabolism 

(Turnbaugh et al., 2006), which could contribute to lipid digestion and increased lipid 

bioavailability to the host.  Another possibility is that the microbiota regulates the expression 

of host genes involved in lipid metabolism. Larsson and colleagues (2011) showed that the 

gut microbiota regulates transcript levels of genes along the length of the mouse intestine 

and liver, which include genes involved in fatty acid activation (Fatp4), TG reesterification 

(Dgat1 and 2), fatty acid and phospholipid binding (Fabp2, phospholipid transfer protein - 

Pltp) and chylomicron formation (Apob precursor, Mtp). Analysis of enriched groups among 

the 500 most significantly regulated genes by gene ontology shows lipid, fatty acid and 

cholesterol biosynthetic and metabolic processes amongst the microbially-regulated 

metabolic mechanisms. The majority of genes involved in lipid metabolism are 

downregulated in the presence of microbiota, while many of the adaptive immunity genes 

are upregulated.   

Another recent study showed similar trend of microbial transcriptional regulation of 

host genes involved in intestinal steroid, lipid, cholesterol metabolic processes and lipid 

transport in immunodeficient mice (Shulzhenko et al., 2011). The authors showed that in the 

absence of B cells or IgA, the intestinal epithelium upregulates interferon-inducible immune 

responses as a protective mechanism against the microbiota. This leads to decreases in 

metabolic function and lipid malabsorption as observed in immunodeficient humans. 

However, subjects with a normal function of their immune system and consuming a high-fat 

diet do not present with malabsorption, but rather hyperlipidemia, hypercholesterolemia and 

increase in fat storage in the presence of microbiota, suggesting that the microbial 

suppression of transcript levels of lipid metabolic genes does not correlate with decreased 

lipid availability to the host.   
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Metabolomic studies have also shown differences in the lipidomes of serum, adipose 

tissue and liver of GF and CONVR mice (Velagapudi et al., 2010). Specifically, serum 

cholesterol, TG and FFA were reduced while liver and adipose tissue TG levels were 

increased in CONVR versus GF mice, which is indicative of increased lipid clearance from 

the circulation and stimulated tissue storage. Furthermore in the presence of microbiota, 

there were detectable increases in serum cholesteryl esters, sphingomyelins, and 

phosphatidylcholines. Serum lipoprotein profiles showed reduced serum chylomicron levels 

in CONVR mice after a 4 hr fast, which are thought to be the result of increased clearance of 

serum TG and not decreased absorption from the intestine of CONVR animals. On the other 

hand, serum VLDL and HDL levels were similar between GF and CONVR mice despite 

increased VLDL production in the liver, which also suggests increased clearance rates of the 

endogenous lipid supplies from the circulation of colonized mice. However, these altered 

lipid profiles could be due to effects of microbiota on intestinal absorption or metabolism of 

exogenous dietary lipids or on hepatic production or metabolism of endogenous lipids. 

Therefore, the relative contribution of the microbiota to exogenous and endogenous lipid 

metabolism in not fully understood. 

 The microbiota has also been shown to modulate luminal lipid metabolism via 

modification of bile acids released into the intestinal lumen from the gallbladder. Bile acids 

are derivatives of cholesterol metabolism and facilitate absorption of dietary lipids and lipid-

soluble vitamins in the intestine (Martin et al., 2007). Bile acids also maintain the integrity of 

the intestinal epithelial barrier to prevent entry of enteric bacteria and inflammatory response. 

The ability of microbiota to process bile acids has been examined in numerous studies 

(Martin et al., 2007; Martin et al., 2008; Blaut et al., 2007). Martin and colleagues performed 

microbial and metabolic profiling using H1-NMR and bile acid profiling of liver, plasma, urine 

and ileum using ultra performance liquid chromatography – mass spectroscopy (UPLC-MS) 
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(2007). The results from this study show a variety of bile acid modifications (tauro- and 

glyco-conjugation as well as unconjugation) in response to microbial processing. The tauro-

conjugation reduces the hydrophobic/hydrophilic ratio and increases their ability to emulsify 

lipids. Lipid emulsification results in increased uptake of lipid by the intestinal epithelial cells.  

In addition, tauro-conjugation also increases the amount of bile acids that re-enter 

enterohepatic circulation and therefore decrease the synthesis of bile acids and cholesterol 

by the liver (Martin et al., 2007).  

  Microbial processing of another dietary lipid (phosphatidylcholine) has been 

associated with an animal model of non-alcoholic fatty liver disease (NAFLD). Choline is the 

primary source for hepatic phosphotidylcholine production. Dietary choline gets processed 

by the gut microbiota (al-Waiz et al., 1992), which releases methylamines (dimethylamine, 

trimethylamine and trimethylamine-N-oxide or TMAO). Dumas and colleagues (2006) tested 

the effects of high-fat diet on plasma and urine metabolic 1H NMR profiles in BALB/c 

(resistant to NAFLD and insulin resistance) and 129S6 (susceptible to NAFLD and insulin 

resistance) mice and showed that NAFLD is associated with low plasma phosphotidylcholine 

and high urinary methylamine levels, which is the microbiota-mediated phenotype. The 

authors interpreted the low plasma levels of phosphotidylcholine to be a consequence of 

microbial degradation of choline into methylamines. These findings suggest that microbiota 

of NAFLD- and insulin resistance-susceptible hosts are partially responsible for the disease 

progression by mimicking choline-deficient conditions.            

  

The hostʼs response to microbially-regulated nutrient metabolism  

 

The evidence for the hostʼs response to microbial regulation of nutrient metabolism 

comes from gnotobiotic rodent studies that investigate regulation of metabolic processes in 
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the host upon microbial colonization. Studies by Bäckhed et al. showed that in GF mice 

there is increased activity of AMP-activated protein kinase (AMPK) compared to CONVD 

animals (2007). This enzyme senses metabolic energy levels via AMP/ATP ratios and is 

activated during a nutrient deprivation and energy depletion state. The authors showed that 

GF animals are protected against diet-induced obesity in two major, but independent ways: 

(i) increase in AMPK activity and (ii) induction in peroxisomal proliferator-activated receptor 

coactivator (Pgc-1α) and enzymes involved in fatty acid oxidation, such as Carnitine 

palmitoyltransferase1a (Cpt1a) and Medium chain acyl-CoA dehydrogenase (Mcad) in an 

Fiaf-dependent manner (Bäckhed et al., 2004; Bäckhed et al., 2007). Fiaf is a circulating 

peptide that inhibits the LPL activity in vascular endothelial cells. As described earlier, this 

lipase hydrolyzes serum TG, releasing free fatty acids and glycerol into heart, adipose or 

muscle tissue. The FFA enter lipogenesis and get stored in the form of fat or get oxidized in 

tissues like muscle or heart. Therefore, the microbial role in intestine-specific suppression of 

Fiaf results in alleviated suppression of lipoprotein lipase (LPL) in the vasculature, and 

increase in TG hydrolysis from chylomicrons and FA uptake in peripheral tissues (Bäckhed 

et al., 2004). A study of transcriptional regulation of fiaf shows that different cis-intronic 

modules are responsible for tissue-specific expression in a zebrafish host (Camp et al., 

2012). Interestingly, the gut microbiota regulates the cis-intronic modules that regulate 

intestinal fiaf expression, suggesting that the microbiota may suppress the intestine-specific 

transcriptional enhancer.  

The microbiota and diet also contribute to transcriptional activity and lipid metabolic 

gene expression. The microbiota stimulates polysaccharide digestion and absorption, which 

initiates hepatic de novo lipogenesis (Bäckhed et al., 2004). Conventionalization of mice 

also increased hepatic mRNA expression of sterol-responsive element-binding protein 

(SREBP-1) and carbohydrate-responsive element-binding protein (ChREBP), which are two 
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transcription factors that regulate lipogenic enzymes (Bäckhed et al., 2004). Microbial 

colonization has been shown to induce intestinal alkaline phosphatase expression in a 

zebrafish host (Bates et al., 2007), which as mentioned earlier activates CD36 to stimulate 

LCFA uptake from the lumen. Bates and colleagues showed that zebrafish IAP protects 

against LPS toxicity and neutrophil infiltration into the intestinal epithelium as a response to 

microbial colonization (2007). These findings suggest that the gut microbiota regulate 

metabolic processes involved in exogenous and endogenous lipid fates, which is closely 

associated with immune function and inflammation induced by high-fat diet. However, direct 

evidence of the impact of microbial induction of IAP on lipid metabolism has not been 

explored.  

 

Molecular mechanisms involved in gut microbiota- and diet-mediated inflammation  

 

 Metabolic endotoxemia: The gastrointestinal tract is under constant low-grade 

inflammation that worsens with excess of caloric intake and is thought to precede and 

contribute to obesity and insulin resistance in CONVD but not GF mice (Ding et al., 2010). 

One proposed method for HFD-mediated endotoxemia is by LPS absorption and 

incorporation into chylomicrons (Ghoshal, 2009; Laugerette, 2011), indicating that the gut 

microbiota and dietary lipids can mediate intestinal lipid absorption and host responses to 

elevated lipid and LPS uptake. LPS is the breakdown product of Gram-negative bacteria that 

activates the toll-like receptor-4 (TLR4) to initiate secretion of proinflammatory cytokines 

(Sweet and Hume, 1996). Obese Sprague-Dawley rats on a high-fat diet showed increased 

ileal TLR4 expression, which mediates the intestinal inflammatory response (de La Serre et 

al., 2010).   
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High fat diets have also been shown to affect epithelial integrity and permeability, 

which leads to systemic inflammation also known as metabolic endotoxemia (Cani et al., 

2007; Cani et al., 2008). The mechanisms mediated by high-fat diet involve changes in gut 

microbiota and reduced expression of the tight junction proteins ZO-1 and occludin in the 

intestine (Cani et al., 2008). Furthermore, prebiotic treatment with fermentable dietary fiber 

oligofructose ameliorated the effects of endotoxemia in ob/ob mice and improved intestinal 

permeability via induction of intestinotrophic proglucagon-derived peptide (GLP-2) (Cani et 

al., 2009). These and other studies establish the interactions between gut microbiota, high-

fat diet and inflammation that mediate diet-induced obesity and insulin resistance.   

Therefore, understanding the microbial and dietary signals that regulate FA uptake, 

LD and chylomicron formation and secretion into the lymphatics could potentially lead to new 

approaches for limiting HFD-associated endotoxemia and associated disorders. Similarly, 

microbial pathways could be targeted to limit the intestinal absorption of potentially harmful 

products of microbial lipid metabolism, such as TMAO, the atherogenic microbial metabolite 

of dietary choline (Wang, 2011).  

    

 

 

FUTURE DIRECTIONS    

                     

The role of microbiota in exogenous lipid metabolism has only recently been 

examined, despite significant independent evidence of dietary fat and microbiota as two 

environmental factors involved in numerous metabolic processes and diseases in humans. 

The importance in studying microbial regulation of lipid metabolism lies in the fact that the 

microbiota stimulates excess energy harvest and storage in the host, and lipid is the only 
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macronutrient that can be stored at large capacities in the body (Papamandjaris et al., 1998). 

Therefore, in order to improve our knowledge of the role of microbiota in lipid metabolism we 

need to better understand microbial regulation of different metabolic fates of exogenous and 

endogenous lipids under various dietary conditions.   

The role of gut microbiota in the development and progression of obesity and other 

metabolic diseases has also been established; however, it is important to note that 

additional environmental (high-fat, high-carbohydrate diet) or host genetic factors are 

important mediators of this microbial role. Metabolic diseases are complex pathologies that 

affect multiple tissues and involve numerous biological pathways (Ashley et al., 2010). Our 

current evidence for the microbial regulation of disease development and progression is 

mostly based on metabolomic studies and tissue metabolic profiles, which provide us with 

snapshots of the dynamic and complex interactions between the gut microbiota, dietary 

nutrients and host physiology.  

In order to better understand the microbial contribution to human metabolism, we 

need to take a more direct and systemic approach for studying the physiological response to 

changing dietary nutrients and microbial community composition. In vivo studies of the 

metabolic fates of exogenous lipids provide a more complete picture of the microbial impact 

on dietary lipid metabolism at a systemic level. Zebrafish have proven to be important model 

organisms for such investigations due to their transparency prior adulthood, and same lipid 

metabolic mechanisms (Carten and Farber, 2009) and microbial community members (at 

the phyla level) as humans (Rawls et al., 2006; Chapter 3). We have utilized fluorescent lipid 

analogues to show that the gut microbiota stimulates fatty acid uptake from the lumen into 

the epithelium in live zebrafish (Semova et al., submitted). Furthermore, our studies also 

indicate that Firmicutes enrichment under nutrient-rich conditions is partially responsible for 

the epithelial lipid absorption phenotype observed in fish. One of the important implications 
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of this report is that the diet-dependent selective pressures governing Firmicute abundance 

in the gut might be conserved across diverse vertebrate lineages, and that 

probiotic/antibiotic/prebiotic strategies for manipulating Firmicute abundance and associated 

community function might be applicable to a diversity of vertebrate hosts. Since Firmicute-

enriched communities arising from genetic or diet-induced obesity have been shown to 

promote positive energy balance (Turnbaugh et al., 2006; Turnbaugh et al., 2008), such 

strategies might be effective at controlling energy balance in humans and other animals.  
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Figure 2.1. Novel and known roles of microbiota on lipid metabolism. Roles for the 
microbiota have been previously defined in multiple steps in exogenous and endogenous 
lipid metabolism (red arrows). Our data reveal new roles for microbiota in absorption of 
dietary lipid into the intestine, and export to the liver perhaps via chylomicrons (green 
arrows). Triglyceride, TG; VLDL, very low density lipoprotein; IDL, intermediate density 
lipoprotein; LDL, low density lipoprotein; HDL, high density lipoprotein; LPL, lipoprotein 
lipase. Adapted from Sheridan, M.A. (1988). Comp. Biochem. Physiol. 90B (4). 679-690.  



 

 

 

CHAPTER THREE 

MICROBIOTA AND DIET REGULATE FATTY ACID ABSORPTION  
IN THE ZEBRAFISH INTESTINE1 

 
 

 

SUMMARY 

The intestinal microbiota is known to impact host nutrition and energy balance. 

However, its role in dietary fat absorption in the intestine is unclear. Here, we use in vivo 

imaging of fluorescent fatty acid (FA) analogs delivered into gnotobiotic zebrafish to reveal 

that the microbiota stimulates FA uptake and lipid droplet (LD) formation in the intestinal 

epithelium. Comparison of animals that were starved or fed a sterile diet reveals that the 

microbiota promotes epithelial LD number, but not size, in a diet-dependent manner. The 

presence of food results in Firmicutes enrichment in the microbiota of the zebrafish intestine, 

but not in the surrounding water. Monoassociation studies reveal that LD number is 

increased by diet-enriched Firmicutes and LD size is increased by other bacterial types. 

These results indicate that members of the gut microbiota regulate intestinal FA absorption 

via distinct mechanisms and that diet-induced alterations in gut microbiota composition 

might indirectly influence FA absorption. 
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  Co-authors: Carten, J.D., Stombaugh, J., Mackey, L.C., Knight, R., Farber, S.A., Rawls,       
J.F. 
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INTRODUCTION 

 

Dietary fat absorption in the intestine is a key determinant of energy balance. Dietary 

lipids supply 45-55% of the energy requirements in breastfed human infants (Boudry et al., 

2010) and 40-55% of the calories in Western diet (Binder and Reuben, 2009; Meek et al., 

2010). In vertebrates, dietary fats in the form of triglycerides are digested by lipases within 

the intestinal lumen and the released free fatty acids (FAs) and monoglycerides are 

absorbed with a high efficiency (>90%) by enterocytes in the intestinal epithelium (Labonté 

et al., 2008; Karasov and Hume, 1997). FA absorption at the brush border of enterocytes is 

enhanced by solubilization in bile salt micelles or liposomes (Kindel et al., 2010). Once 

absorbed by enterocytes, FAs are either oxidized to generate energy or reesterified into 

triglycerides temporary storage as cytoplasmic lipid droplets (LDs), or incorporation into 

chylomicrons for secretion into the lymph. Lipid droplets provide cells with the ability to store 

potentially toxic FAs during energy excess and use the stored lipids as an energy source 

during starvation (Farese and Walther, 2009). The mechanisms underlying FA uptake into 

enterocytes and their subsequent assembly into LDs and chylomicrons are unresolved due 

in part to the limitations of the mammalian animal and cell culture models often used to 

study these dynamic physiologic processes (Carten and Farber, 2009). An improved 

understanding of factors controlling dietary FA absorption and LD formation could lead to 

new approaches for decreasing the efficiency of dietary energy harvest in the context of 

obesity and increasing efficiency in the context of malnutrition.  

 Environmental factors such as intestinal microorganisms and diet represent attractive 

targets for controlling dietary lipid absorption and energy balance. The digestive tract is 

colonized beginning at birth by complex assemblages of microorganisms (gut microbiota) 
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that profoundly influence intestinal and extra-intestinal physiology (Sekirov et al., 2010). The 

ability of the gut microbiota to modify dietary nutrient metabolism has emerged as a key 

feature of host-microbe relationships in the intestine (Musso et al., 2011). This capability has 

been most extensively described in the ruminant foregut and in the human and rodent 

hindgut (colon), where microbial fermentation of otherwise indigestible plant polysaccharides 

produces monosaccharides and short chain FAs that can then be absorbed by the host 

(Flint et al., 2008). In contrast, the potential impact of the microbiota on intestinal absorption 

of dietary lipids remains relatively unexplored. The presence of a gut microbiota in mice 

increases fat storage in adipose tissue (Bäckhed et al., 2004) and causes significant 

alterations in secondary lipid metabolites in serum, liver, and adipose tissue (Martin et al., 

2009; Velagapudi et al., 2010). However, it remains unknown if the microbiota regulates 

intestinal absorption of dietary lipid. 

 Although the microbiota can influence dietary nutrient harvest, the diet can also 

strongly impact microbial community composition and function. Gut microbial community 

membership is strongly correlated with diet composition in humans and other mammalian 

hosts (Ley et al., 2008; Wu et al., 2011; Muegge et al., 2011; Neyrinck et al., 2011; 

Sonnenburg et al., 2010). Although not all studies have reported similar associations, an 

emerging pattern is that caloric intake can influence the relative abundance of the Firmicutes 

and Bacteroidetes phyla that dominate the intestines of mammals (Ley et al., 2008). For 

example, mice starved for 24 hours show a reduction of Firmicutes and increase of 

Bacteroidetes in their gut microbiota (Crawford et al., 2009). Conversely, obese humans 

(Ley et al., 2006), humans consuming a high-calorie diet (Jumpertz et al., 2011), 

hyperphagic obese ob/ob mice (Ley et al., 2005), mice fed high-calorie Western diets 

(Turnbaugh et al., 2008; Hildebrandt et al., 2009; Murphy et al., 2010), and postprandial 

pythons (Costello et al., 2010) assemble gut microbial communities with an enrichment of 
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Firmicutes at the expense of Bacteroidetes and other major phyla. Diet-induced enrichment 

of Firmicutes in the gut microbiota has been associated with a positive energy balance in 

gnotobiotic mouse hosts (Turnbaugh et al., 2006; Turnbaugh et al., 2008) and with 

alterations in the relative abundance of bacterial genes involved in a wide range of metabolic 

processes (Hildebrandt et al., 2009; Turnbaugh et al., 2009; Turnbaugh et al., 2006). 

However, the mechanisms by which certain bacterial taxa such as Firmicutes become 

enriched in the gut as a function of dietary caloric intake remain unresolved. Furthermore, 

the potential impact of diet-induced alterations in microbiota composition on dietary lipid 

absorption in the intestine is completely unknown.  

 In this study, we use the zebrafish model to investigate how the microbiota and diet 

interact to regulate lipid absorption in the intestinal epithelium. Digestive tract anatomy and 

physiology as well as lipid metabolism pathways in the zebrafish are similar to mammals 

and other vertebrates (Babin and Vernier, 1989; Carten and Farber, 2009; Hölttä-Vuori et 

al., 2010). Moreover, the optical transparency of the zebrafish permits visualization of 

fluorescent lipid analogs and lipophilic probes in the intact physiologic context of a living 

vertebrate (Farber et al., 2001; Schlegel and Stainier, 2006; Flynn et al., 2009; Hama et al., 

2009; Fang et al., 2011; Carten et al., 2011). Previous work comparing zebrafish raised 

germ free (GF) to those colonized with a normal zebrafish microbiota (conventionalized, 

CONVD) revealed roles for the microbiota on diverse aspects of host physiology (Rawls et 

al., 2004; Bates et al., 2006; Rawls et al., 2006; Kanther et al., 2011; Cheesman et al., 

2011). The zebrafish gut microbiota, like that of humans and other mammals, is dominated 

by the bacterial phyla Proteobacteria, Firmicutes, and Bacteroidetes (Rawls et al., 2004; 

Rawls et al., 2006; Roeselers et al., 2011). However, the impact of diet on the zebrafish gut 

microbiota, and its relationship to the microbiota in the surrounding aqueous environment, is 

unknown. We recently developed a new method to monitor FA absorption into the intestinal 
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epithelium by incubating zebrafish in liposomes containing FA analogs fluorescently labeled 

with BODIPY (BODIPY-FL) (Carten et al., 2011). Here, we used this method to investigate 

the impact of microbial colonization and diet on intestinal FA absorption. Our work reveals a 

novel diet-dependent role for the microbiota in stimulating dietary FA absorption and LD 

formation in the intestinal epithelium. We find that the composition of the zebrafish gut 

microbiota varies in a diet-dependent manner, with feeding inducing a gut-specific 

enrichment of Firmicutes. Colonization of GF zebrafish with individual bacterial species 

uncovers two distinct pathways by which the microbiota stimulates dietary lipid absorption: a 

Firmicutes-specific induction of LD number, and a non-Firmicutes bacterial induction of LD 

size. These results identify the gut microbiota as a new target for controlling dietary fat 

absorption and provide an ecological explanation for the diet-dependent nature of this host-

microbe interaction.  

 

MATERIALS AND METHODS 

 

Gnotobiotic zebrafish husbandry 

All experiments using zebrafish were conducted in conformity with the Public Health Service 

Policy on Humane Care and Use of Laboratory Animals using protocols approved by the 

Institutional Animal Care and Use Committee of the University of North Carolina at Chapel 

Hill. All zebrafish were TL wild-type strain unless otherwise noted. Zebrafish embryos were 

derived germ-free and maintained in sterile conditions or colonized according to published 

protocols (Pham et al., 2008). Zebrafish were maintained in gnotobiotic zebrafish media 

(GZM) at 28.5°C in 50 mL and 250 mL sterile tissue culture flasks (VWR International, LLC) 

on a 14 hr light cycle with daily 80% media changes. Colonization with microbiota and 

individual bacterial strains was achieved by inoculating the GZM at approximately 104 colony 
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forming units (CFU)/mL at 3 dpf. For the monoassociation studies, we used primary bacterial 

isolates from zebrafish adults (Exiguobacterium sp. ZWU0009 and Pseudomonas sp. 

ZWU0006) (Rawls et al., 2006) and 3 dpf embryos (Chryseobacterium sp. ZOR0023; a 

generous gift from E. Mittge and K. Guillemin) (see Table 3.S5). Overnight cultures grown in 

Brain Heart Infusion broth (aerobic; 30°C) were used to inoculate the GZM at a final density 

of 104 CFU/mL. Sterility of GF zebrafish flasks was assessed using culture-based methods 

as previously described (Pham et al., 2008). All zebrafish were treated with 0.015 mg/L 1-

phenyl-2-thiourea (PTU)(Lancaster Synthesis, Inc.) to reduce melanin synthesis. Control (C) 

and Low-Calorie (LC) diets (Table 3.S1) were custom formulated and ground to a pellet size 

of 50-100 µm (Ziegler Brothers Inc.) and were then sterilized by irradiation (absorbed dose 

range 106.5-135.2 kGy; Neutron Products Inc.). Zebrafish were either fed once per day 

beginning 3 dpf with approximately 2.5 and 4 mg sterilized C or LC diet (for the 50 and 250 

mL flasks, respectively) or not fed for the duration of the experiment (starved). At 6 dpf, 

intestines of colonized animals were dissected and homogenized for 1 min using a Tissue-

Tearor (Biospec Products). Homogenized intestinal and water samples were serially diluted 

in phosphate buffered saline (PBS) and plated on Tryptic Soy (for the CONVD condition) or 

Brain Heart Infusion (for the monoassociated conditions) agar, grown overnight at 28.5°C, 

and CFU density was determined.  

 

Liposome delivery assay 

Preparation of fluorescent liposome solution was performed as described (Carten et al., 

2011). Briefly, liposomes were generated by sonicating 5% chicken egg yolk solution in 

sterile GZM and BODIPY-FL C5 (Invitrogen, D-3834) or C16 (Invitrogen, D-3821) at a final 

concentration of 6.4 µM. Fluorescent liposome formation was confirmed by confocal 
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microscopy (data not shown). Zebrafish were first washed 3 times in GZM, and then the 

medium was replaced with freshly-prepared fluorescent liposome solution. For live imaging 

experiments, the labeled fish were then washed 3 times with GZM after liposome incubation, 

anaesthetized with 0.4% tricaine (w/v) (Argent Chemical Laboratories) and mounted in 3% 

methylcellulose (Sigma-Aldrich) on a coverslip (Surgipath Medical Industries INC.) for 

imaging. For the lipid droplet measurements, zebrafish were fixed in freshly-made 4% 

paraformaldehyde (PFA) (Acros) in PBS for 1 hr at room temperature to preserve LD 

structure (DiDonato and Brasaemle, 2003) and arrest peristalsis, washed 3 times in PBS 

and stored in a sterile 12-well plate at 4°C in the dark. Fixed zebrafish were mounted on 

Superfrost Plus microscope slides (Fisher Scientific) in 1% low melting temperature agarose 

(Fisher Scientific) and sealed with high vacuum grease (Dow Corning). For confocal imaging 

methods and lipid droplet quantification, see Supplemental Information. 

 

Statistical methods 

The significance of diet and microbial status on lipid absorption, digestive enzyme activity, 

growth, and feeding behavior was determined by two-way ANOVA (p values reported in 

Results section). Statistical significance between individual conditions was based on 

individual Studentʼs t test adjusted for unequal variances (determined by the Bartlettʼs test) 

and corrected by Bonferroniʼs method for multiple comparisons (p values reported in 

Figures). We used ANOVA corrected for false discovery rate (Benjamini and Hochberg, 

1995) to identify significant differences in relative abundance of bacterial taxa based on the 

Ribosomal Database Project (RDP) classifier version 2.2 (Wang et al., 2007) and in 

normalized alpha diversity distances (p values reported in Results). Any p values less than 

0.05 with correction were considered significant. 
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Supplemental Information 

Supplemental Information accompanying this manuscript includes Supplemental Results, 

Supplemental Experimental Procedures, Supplemental References, six Figures, and five 

Tables.  

 

RESULTS 

 

The microbiota promotes intestinal fatty acid accumulation in a diet-dependent 

manner 

To determine the impact of the microbiota on dietary lipid absorption in the intestine, 

we used our recently developed BODIPY-FL delivery assay to study the metabolic fates of 

dietary FA analogs in zebrafish larvae (Carten et al., 2011). We used BODIPY-labeled 

palmitic acid (BODIPY-FL C16), which represents the most common saturated long-chain FA 

found in triglycerides, and medium chain pentanoic acid (BODIPY-FL C5; the BODIPY 

fluorophore effectively adds 2-3 carbons in length to the C5:0 FA backbone), which is more 

rapidly absorbed in the intestine (Carten et al., 2011). We incubated 6 dpf GF and CONVD 

animals with BODIPY-FL C5 or BODIPY-FL C16 emulsified in egg yolk liposomes for 6 hrs 

(Figure 3.1A). To test whether the prior nutritional status of the animal can impact dietary 

lipid absorption, we performed this assay on GF and CONVD zebrafish that were either fed 

a control diet since 3 dpf (C-fed) or never fed (starved). Confocal imaging of the proximal 

intestine in live zebrafish revealed luminal and epithelial fluorescence under all microbial and 

dietary conditions, indicating FA analog ingestion and absorption respectively (Figure 

3.1B,C). Quantification of intestinal epithelial fluorescence revealed higher levels of 

BODIPY-FL C5 and C16 fluorescence in CONVD compared to GF zebrafish (p<0.001 for both 
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C5 and C16), which was enhanced by the presence of diet (Figure 3.1D,F). In contrast, we 

observed a consistent trend of higher luminal fluorescence in GF than CONVD animals 

(p<0.05 for C5, n.s. for C16)(Figure 3.1E,G). These results suggest that the microbiota 

promotes dietary FA accumulation in the intestinal epithelium in a diet-dependent manner.  

 

The microbiota increases lipid droplet number and size in the intestinal epithelium 

We next sought to determine if the observed BODIPY-FL accumulation in the 

intestinal epithelium was due to alterations in LD formation in the enterocytes. Because 

microbial colonization and feeding appeared to have similar effects on epithelial 

accumulation of BODIPY-FL medium- and long-chain FAs (Figure 3.1), we used the 

medium-chain FA analog BODIPY-FL C5 to develop a quantification assay for LD formation 

in the intestinal epithelium (see Supplemental Experimental Procedures and Figure 3.S1). 

After a 3 hr incubation with BODIPY-FL C5, LDs accumulated in enterocytes of GF and 

CONVD fish (Figure 3.S2A) and were detected in circulation (indicated by arrows in Figure 

3.S2A). Longer, 6 hr incubation resulted in increased LD numbers only in animals that were 

both colonized with a microbiota and fed control diet (Figure 3.2A,B), confirming that 

interactions between microbial colonization and diet stimulate FA absorption (p<0.01)(Figure 

3.2B). By analyzing the relative frequency of LD sizes, we observed a high percentage of 

small LDs after the 3 hr incubation in all conditions (Figure 3.S2C). The percentage of very 

large LDs was increased in all CONVD conditions after the 6 hr incubation (i.e., 5.6-11 µm2 

area, p<0.01), whereas the percentage of small (i.e., <0.55 µm2 area, p<0.001) and medium 

LDs (i.e., 0.55-1.64 µm2 area, p<0.001) was strongly altered by diet (Figure 3.2C). These 

results suggest that the presence of microbiota promotes two distinct phenotypes of 

epithelial LD formation: increased LD size regardless of dietary status and increased LD 

number only in fed animals. Intriguingly, the microbiota also increased LD number and size 
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in zebrafish fed a low calorie diet (LC-fed) that has 31.4% fewer calories than the control diet 

due to a 55.6% reduction in protein content (Table 3.S1 and data not shown), suggesting 

that diet-dependent microbial stimulation of FA absorption is not determined by the caloric 

value or protein content of the diet. Furthermore, the increase in epithelial LD accumulation 

in fed CONVD animals was not associated with significant differences in ingestion rates, 

digestive organ size, or in the in vivo activity of digestive enzymes phospholipase and 

protease in the intestinal lumen (Figures 3.S3 and 3.S4). 

 

Microbial stimulation of intestinal epithelial lipid droplet accumulation is associated 

with increased lipid absorption into extra-intestinal tissues 

We postulated that the increased LD number and size in CONVD fed zebrafish could 

be due to either delayed lipid clearance via exocytosis of chylomicrons into the circulation or 

increased absorption of FAs from the lumen. Indeed, previous studies in mice have shown 

that accumulation of large LDs can be associated with reduced chylomicron exocytosis 

(Buhman et al., 2002). To test the possibility that chylomicron exocytosis is impaired in 

CONVD fed zebrafish, we performed a washout experiment to compare the ability of GF and 

CONVD zebrafish to clear LDs from their epithelium after BODIPY-FL C5 incubation. We 

incubated 6 dpf GF and CONVD C-fed zebrafish with BODIPY-FL C5 liposomes for 3 hrs, 

and subsequently washed a subset of animals from each condition in sterile GZM for an 

additional 5 hrs (Figure 3.3A). Consistent with our prior observations (Figure 3.2), the 3 hr 

labeling resulted in similar LD numbers in the intestines of both GF and CONVD animals 

(Figure 3.3B-D). The 5 hr washout reduced the number of LDs in the epithelium of both GF 

and CONVD zebrafish; however, this reduction was more prominent in CONVD fish 

(p<0.001)(Figure 3.3B-D). This indicates that the rate of chylomicron export in CONVD 

animals is similar to, and perhaps even more robust than, GF zebrafish. Analysis of LD size 
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frequency following the 5 hr washout in GF and CONVD animals revealed similar reductions 

in small LDs (i.e., <0.55 µm2, p<0.01) and increases in medium (i.e., 1.65-5.5 µm2, p<0.01) 

and large LDs (i.e., 5.6-11 µm2, p<0.0001; 11-27.4 µm2, p<0.05) (Figure 3.3D). This 

indicates that the significant reduction in LD number in CONVD animals (Figure 3.3C) is not 

due to enhanced LD fusion in the presence of microbiota. These data suggest that the 

observed increase in LD number and size in CONVD fish observed in Figure 3.2 is not due 

to impaired chylomicron exocytosis. 

We next asked whether the increases in intestinal epithelial LD accumulation elicited 

by the microbiota are associated with increased FA export from the intestine to other 

tissues. After BODIPY-FL C5 molecules are absorbed and exported from the zebrafish 

intestine, a primary site of accumulation is in LDs within the liver (Carten et al., 2011). We 

found that the presence of a microbiota resulted in increased BODIPY fluorescence in liver 

LDs after a 6 hr incubation in BODIPY-FL C5 liposomes (Figure 3.2D,E). This was observed 

both starved and C-fed zebrafish larvae (Figure 3.2E), suggesting that the microbiota 

promotes intestinal absorption and export of FA to liver irrespective of diet history and diet-

dependent effects of the microbiota on intestinal LD number (Figure 3.2B). Additionally, 

CONVD animals displayed a significant increase in accumulation of BODIPY C5 

fluorescence in non-GI tissues compared to GF controls (82 ±16% increase, p<0.02) (Figure 

3.2F). Based on these results, we conclude that the ability of the microbiota to induce 

accumulation of LDs in the intestinal epithelium is associated with increased absorption of 

dietary FAs into extra-intestinal tissues.  

 

Diet determines bacterial community composition in the zebrafish gut 

Our results show that the microbiota promotes intestinal LD formation in fed but not 

in starved zebrafish. We hypothesized that diet-dependent microbial stimulation of intestinal 
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LD number may be due to diet-induced alterations in gut microbial community composition. 

Diet-dependent differences in zebrafish gut microbiota composition could be due to direct 

effects of diet on the selective pressures present in the host gut habitat (e.g., alterations in 

host digestive tract physiology) or to indirect effects of diet on the selective pressures in the 

surrounding aqueous environment (e.g., altered water chemistry and nutrient availability) 

that would modify the microbial community in the water that is available to colonize the 

zebrafish gut. We therefore analyzed the impact of diet on the bacterial communities that 

form in the zebrafish gut and in the surrounding water (Figure 3.S5). GF zebrafish embryos 

were colonized at 3 dpf with a common conventional zebrafish microbiota (inoculum, Figure 

3.S5) and subsequently either starved, or fed C or LC diet until 6 dpf. Microbial genomic 

DNA was extracted from zebrafish guts and the housing water from each flask (3 biological 

replicates flasks/diet condition), and the respective bacterial communities were analyzed 

using 16S rRNA gene pyrosequence-based surveys (61,429 sequences in total; Figure 3.S5 

and Table 3.S3). UniFrac principal coordinates analysis (PCoA) plots derived from both 

unweighted (an evaluation of community composition) and weighted algorithms (an 

evaluation of community structure) (Lozupone et al., 2007) provided several insights. First, 

biological replicates from each of the sample groups consistently clustered together (Figure 

3.4A,B), suggesting that the principles governing bacterial community composition are 

reproducible. Second, we observed a striking separation of gut and water samples, revealing 

that the zebrafish gut selects or enriches a distinctive subset of bacteria from the 

surrounding water. Notably, the inoculum sample appeared central to all other samples, 

reflecting the fact that the majority of operational taxonomic units (OTUs) observed in the 

inoculum sample were also detected in other samples (108/111 or 97.3%; Figure 3.S6). 

Third, fed samples clustered together and were separate from the starved samples for both 

the gut and water environment, suggesting that feeding markedly alters the gut and water 
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bacterial communities in distinctive ways. Furthermore, the clustering of LC-fed and C-fed 

samples indicates that the effect of diet on those communities is not strongly determined by 

the caloric and protein content of the diet.  

The distinct separation of gut and water samples observed in the PCoA analysis was 

accompanied by significant differences in the relative abundances of several bacterial taxa 

(Figure 3.4C,D and Table 3.S3). Although all samples were dominated by Proteobacteria 

phylum sequences, sequences from the β-Proteobacteria class were enriched in water 

(mean 49.7% vs. 6.4% of all water and gut samples, respectively; p<0.0001). Bacteroidetes 

phylum sequences were also enriched in water (mean 19% vs. 3.3% of all water and gut 

samples, respectively; p<0.01), through increases in classes Flavobacteria and 

Sphingobacteria. In contrast, Firmicutes phylum sequences were enriched in gut samples 

(mean 30.2% vs. 0.6% of all gut and water samples, respectively; p<0.05) through increases 

in classes Bacilli and Clostridia. Strikingly, gut-specific enrichment of Firmicutes occurred 

only in animals that had been fed, and not in starved animals (Figure 3.4C,D), which 

indicates that feeding results in gut-specific enrichment of Firmicutes in zebrafish hosts. 

In addition to affecting the relative abundance of specific bacterial taxa, the overall 

diversity of these bacterial communities also varied as a function of diet and environment. In 

the gut, bacterial diversity and richness were markedly lower in starved animals compared to 

those fed C or LC diet (e.g., mean phylogenetic distances of 5.41 vs. 1.87 in starved vs. 

C/LC-fed gut samples, respectively, p<0.005; Figure 3.4E,F and Table 3.S4). In contrast, 

diversity and richness in water communities were not significantly different between fed and 

starved conditions. These diet-induced increases in gut microbiota diversity were not 

accompanied by significant alterations in the density of culturable microorganisms in the gut 

(Figure 3.5A). These results reveal that the presence of diet promotes diversity of bacterial 
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communities in the zebrafish gut, without inducing similar alterations in the surrounding 

water. 

Although the trends among biological replicates were largely consistent, there were 

two instances in which one replicate deviated significantly from the others (C-Fed gut 1 and 

Starved gut 3; Figure 3.4A-C; Table 3.S5). The sequences in these samples grouped into 

OTUs that were also present in other samples (data not shown), suggesting that these 

deviations are not due to contamination from external sources but due to differences in 

abundance. These two deviant samples may be the result of technical variation or may 

reflect unappreciated stochasticity in gut microbial community assembly (Robinson et al., 

2010).  

 

A Firmicutes strain isolated from the zebrafish intestine is sensitive to exogenous 

nutrient levels in the absence of microbial competition 

Although diet-dependent enrichment of Firmicutes has been observed in the 

intestines of multiple vertebrate hosts, the ecological processes underlying this enrichment 

remain unknown. We speculated that the Firmicutes enrichment is due in part to their 

improved ability to initiate or maintain colonization of the intestine in the presence of dietary 

nutrients. To test this possibility, we inoculated GF zebrafish at 3 dpf with individual, 

culturable members of the zebrafish microbiota (a process called monoassociation; Table 

3.S5) and fed them a C or LC diet, or starved them, until 6 dpf. Then, we measured 

colonization efficiency in the zebrafish gut and surrounding water in the absence of 

competition from other microbes. Notably, colony forming unit (CFU) densities of a 

representative Firmicutes Exiguobacterium sp. ZWU0009 (class Bacilli) were below the level 

of detection in both gut and water under starved conditions but established robust 

colonization under fed conditions (Figure 3.5B). In contrast, the strains Chryseobacterium 
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sp. ZOR0023 (Bacteroidetes class Flavobacteria; Figure 3.5C) and Pseudomonas sp. 

ZWU0006 (γ-Proteobacteria; Figure 3.5D) were able to colonize the gut and water under 

starved conditions, with only modest increases in CFU density under fed conditions. This 

finding reveals that even in a simple community without microbial competition, the 

Firmicutes species we tested (Exiguobacterium sp.) requires nutrient-rich conditions to 

survive and colonize the intestine, whereas other species (Chryseobacterium sp. and 

Pseudomonas sp.) can successfully colonize even in the absence of dietary nutrients. These 

results suggest that diet-dependent Firmicutes enrichment in the intestines of CONVD 

animals might occur due to increased colonization efficiency of Firmicutes, independent of 

competition from other microbes. 

 

Monoassociations reveal two distinct pathways for bacterial stimulation of intestinal 

fatty acid absorption 

Our BODIPY-FL C5 labeling experiments revealed that the microbiota stimulated two 

phenotypes in intestinal FA absorption: a diet-dependent increase in LD number and a diet-

independent increase in LD size. This result raised the possibility that bacterial taxa that 

were enriched in a diet-dependent manner, such as Firmicutes, might promote LD number. 

To test this hypothesis, we performed monoassociation experiments on C-fed GF zebrafish 

using the same bacterial strains as above and performed the BODIPY-FL C5 delivery assay 

(Figure 3.6A-D). Intriguingly, monoassociation with the Firmicutes strain Exiguobacterium 

sp. ZWU0009 (Figure 3.6B), but not with the other two tested bacterial strains (Figure 

3.6C,D), resulted in a significant increase in LD number (Figure 3.6E) compared to GF 

controls (Figure 3.6A). In contrast, monoassociation with Exiguobacterium sp. had no effect 

on LD size frequency, whereas the other two tested bacterial strains induced increases in 

the relative frequency of large LDs in the intestinal epithelium compared to GF controls 
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(Figure 3.6F). These results suggest two novel mechanisms for bacterial induction of 

intestinal FA absorption: a Firmicutes-specific induction of LD number and a non-Firmicutes 

bacterial induction of LD size (Figure 3.7). 

 

 

 

DISCUSSION 

 

Studies identifying the gut microbiota as a key environmental factor regulating energy 

balance have suggested that an improved understanding of the microbial contributions to 

host metabolism could lead to novel therapies for disorders such as obesity and malnutrition 

(Musso et al., 2011). Although microbial contributions to degradation of complex dietary 

carbohydrates have been studied extensively (Flint et al., 2008), the impact of the microbiota 

on dietary lipid metabolism has received relatively little attention. Previous investigations of 

dietary lipid metabolism in gnotobiotic mammals suggested that the presence of a 

microbiota results in reduced or unaltered dietary lipid harvest. However, these studies 

performed evaluations of serum lipid metabolites (Bäckhed et al., 2004; Bäckhed et al., 

2007), serum chylomicrons (Velagapudi et al., 2010) or fecal crude fat (Yoshida et al., 

1968), which do not distinguish between exogenous and endogenous lipid sources or 

between dietary and microbe-produced lipids. Here, we use an in vivo imaging strategy in 

transparent zebrafish larvae to uncover a novel role for the microbiota in stimulating dietary 

FA absorption in the intestinal epithelium.  

Fatty acid absorption, intracellular LD assembly in enterocytes, and subsequent 

secretion as chylomicrons have been extensively studied. However, our mechanistic 

understanding of these in vivo physiologic processes remains incomplete (Phan and Tso, 
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2001), which poses challenges for understanding how they are regulated by environmental 

factors such as the microbiota. Our data reveals that colonization with a microbiota 

promotes epithelial absorption of FAs, resulting in increased number and size of LDs in 

enterocytes and increased accumulation of dietary FAs in extra-intestinal tissues. Our 

washout experiments indicate that the accumulation of LDs in the intestines of CONVD 

animals is not due to impaired export of chylomicrons, consistent with previous studies in 

mice (Bäckhed et al., 2007; Velagapudi et al., 2010). We propose three nonexclusive 

mechanisms by which microbes might stimulate FA absorption into enterocytes. First, 

microbes might increase bioavailability of FAs by modifying the production or composition of 

bile salts. Gut microbes can convert primary bile acids to a variety of secondary bile acids 

with different characteristics (Ridlon et al., 2006; Martin et al., 2007); however, the effect of 

secondary bile acids on enterocyte FA absorption has not been explored. Second, microbes 

could directly contribute to luminal lipolytic activity that promotes release of FAs from dietary 

triglycerides for potential absorption by the intestinal epithelium (Ringø et al., 1995). Finally, 

microbes might enhance FA absorption indirectly by stimulating pancreatic enzyme activity 

or the inherent absorptive capabilities of the intestinal epithelium. We anticipate that in vivo 

imaging and genetic analysis in the gnotobiotic zebrafish system will provide useful means 

of distinguishing between these possibilities. 

Our results show that the presence of a microbiota promotes two distinct phenotypes 

of LD formation within the enterocyte: increased LD number and increased LD size. That 

these increases in LD size and number are detected 6 hrs after liposome exposure and not 

at the 3 hr timepoint suggests that the microbial colonization may increase enterocyte 

capacity for LD accumulation instead of accelerating LD formation. Enterocyte LD size and 

number are used here as distinct quantifiable phenotypes of FA absorption, but it is likely 

that the mechanisms regulating LD size and number are connected. Previous genetic 
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analyses of LD formation have established that these dynamic organelles are under 

complex regulatory control and functionally linked to other organelles and pathways (Guo et 

al., 2008; Beller et al., 2008). This is supported by our observation that LD size and number 

can be induced by distinct bacterial species and have distinct sensitivity to dietary status 

(see below), suggesting that these phenotypes are regulated at least in part by distinct 

mechanisms. Investigation of the mechanisms underlying the microbial and dietary 

regulation of these phenotypes could provide new insights into the complex process of 

enterocyte lipid metabolism. 

In addition to revealing a novel role for the microbiota in stimulating FA absorption, 

our data establish a major role for diet in mediating that interaction. Although enterocyte LD 

size and hepatic LD accumulation was increased by the microbiota regardless of dietary 

status, increases in enterocyte LD number were only observed in fed, but not starved, 

animals. This finding raised the intriguing possibility that diet-induced alterations in gut 

microbiota composition might lead to enrichment of microbial species that promote 

increased LD number. A frequently observed pattern in humans, mice, and pythons is that 

the relative abundance of Firmicutes in the intestine is positively correlated with dietary 

caloric intake (see Introduction). Our evaluation of intestinal bacterial communities in fed and 

starved zebrafish revealed that this ecological principle also applies to bony fishes. 

Strikingly, diet-dependent enrichment of Firmicutes bacteria in the zebrafish intestine was 

not accompanied by a parallel enrichment in the surrounding water, which provides strong 

evidence that the presence of diet exerts different selective pressures on microbial 

communities in the zebrafish gut versus the surrounding water. In the future, longitudinal 

analyses of the zebrafish gut and surrounding water could help resolve temporal 

relationships between the respective diet-induced alterations in microbial community 

composition in these different habitats. Because Firmicutes-enriched communities arising 
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from genetic or diet-induced obesity have been shown to promote positive energy balance, 

the mechanisms underlying diet-dependent enrichment of Firmicutes could be targeted to 

control energy balance in humans and other animals.  

The mechanisms that promote Firmicutes abundance in nutrient-rich environments 

remain unknown. Our monoassociation experiments suggest that the diet-dependent 

enrichment of Fimicutes may be due, at least in part, to an autonomous bacterial 

requirement for diet-derived nutrients to allow colonization. In contrast, the non-Firmicutes 

bacteria tested here colonized in both starved and fed conditions, suggesting that nutritional 

niches provided by the host are sufficient for these organisms to colonize the zebrafish 

intestine. It will be interesting to determine if diet-dependent enrichment of Firmicutes in the 

context of a more complex microbial community is also mediated in part by inter-microbe 

competitions. Furthermore, it will be important to determine whether the impact of diet on 

bacterial colonization of the gut is mediated by permitting initial gut colonization and/or 

maintenance of colonization over time. 

Strikingly, the diet-dependent effects on FA absorption, microbial community 

composition and diversity, and bacterial colonization efficiency were observed in animals fed 

a control or low-calorie diet. The low-calorie diet was generated by specifically depleting 

protein, which is one of the major energy sources in the zebrafish diet. Our results indicate 

that these diet-dependent events are not mediated by gross caloric value or protein content 

in the diet and that they may instead be mediated by other dietary nutrients. Identification of 

the specific nutrients that regulate these aspects of gut microbial ecology and host FA 

absorption could provide new dietary approaches for controlling these processes to promote 

health in a diversity of vertebrate hosts.  

Our results also reveal that different bacterial species are capable of eliciting distinct 

FA absorption phenotypes in fed zebrafish: a Firmicutes strain induced increased LD 
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number, and the other two tested non-Firmicutes strains induced increased LD size. 

Although it remains unknown if these findings are generalizable to other members of their 

respective phyla, these data are consistent with our observations that fed CONVD animals 

enriched with gut Firmicutes display increased LD number and all CONVD animals display 

increased LD size.  Based on these results, we propose two distinct mechanisms to explain 

the observed diet-dependent interactions between gut microbial ecology and host FA 

absorption. First, Firmicutes are enriched in the intestines of fed animals, where they 

enhance the ability of host enterocytes to create or retain LDs from absorbed FAs. Second, 

other non-Firmicutes bacteria that colonize the intestine regardless of dietary status induce 

an increased accumulation of large LDs within host enterocytes. In animals that are fed, 

these two bacterial signals combine to stimulate FA absorption through increases in both LD 

size and number (Figure 3.7). Because the enterocyte LDs evaluated here are likely to 

include both the temporary storage organelles under conditions of high-fat feedings (Glatz et 

al., 2010) and chylomicrons, the relative impact of microbial status on these two types of 

enterocyte LDs will require investigation. Future work will need to define the specific 

bacterial factors or activities that elicit these distinct phenotypes and to reveal how the host 

perceives and responds to these bacterial cues to modify distinct aspects of dietary lipid 

absorption.  
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FIGURES 

 

Figure 3.1.  Liposome delivery assay shows that fatty acids accumulate in the 
intestinal epithelium in the presence of microbiota and diet. 
(A) Schematic of BODIPY-FL delivery assay in gnotobiotic zebrafish. We derive zebrafish 
embryos germ-free (GF) at 0 days post-fertilization (dpf) and either rear them GF (top) or 
inoculate their water at 3 dpf with a normal microbiota (conventionalized, CONVD; bottom). 
From 3-6 dpf, fish are either starved (all figures except 3.3 and 3.6), or are fed a control (C) 
(all figures) or low calorie (LC) (Figures 3.4,3.6,3.S1-6) diet. At 6 dpf, we incubate zebrafish 
with BODIPY-FL liposomes for 6 hrs and image or fix them for later imaging.  
(B,C) Representative confocal images of the intestines of live 6 dpf GF and CONVD 
zebrafish incubated with BODIPY-FL liposomes. Scale bar, 50 µm.  
(B) The intestinal lumen (Lum) and epithelium (Epi; dotted line) of GF and CONVD zebrafish 
incubated with BODIPY-FL C5 liposomes. The epithelium shows apical (arrow) and 
basolateral accumulation of lipid droplets (arrowhead).  
(C) Incubation with BODIPY-FL C16 liposomes shows fluorescent signal accumulation in the 
intestinal epithelium that is similar to, but more diffuse than, that observed with BODIPY-FL 
C5.  
(D-G) Quantification of total epithelial (D,F) and luminal (E,G) fluorescence expressed in 
relative fluorescence units (RFU). Values represent the means ± SEM from 3 independent 
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experiments, with significance by Studentʼs t test using Bonferroniʼs correction for multiple 
comparisons: *, p<0.05; **, p<0.01.  



	
   59 

Figure 3.2. The microbiota stimulates lipid absorption into intestinal epithelial lipid 
droplets and extra-intestinal tissues.  
(A) Representative confocal images of fixed 6 dpf Tg(-4.5fabp2:DsRed) GF and CONVD 
zebrafish fed a control diet and incubated with BODIPY-FL C5 liposomes for 6 hrs. Scale 
bar, 20 µm. Intestinal epithelial cells identified by DsRed expression show BODIPY-FL 
accumulation as lipid droplets (LDs) in the epithelium (arrowheads) and as secretion in 
chylomicrons (arrow; A). Large LDs are detected in the epithelium of CONVD zebrafish 
(arrowhead; A).  
(B,C) Lipid droplet quantification assay was developed using Volocity software (see Figure 
3.S1) to determine LD number (B) and size frequency (C) in an epithelial region of interest 
(7500 µm2). The graphs depict the mean ± SEM of at least two independent experiments (3-
15 fish/condition/experiment). Results of Studentʼs t test with the Bonferroniʼs correction for 
multiple comparisons: a, significant vs. GF fed same diet; b, significant vs. starved in same 
microbial condition. See Figure 3.S2 for data from the 3 hr timepoint.  
(D) Representative confocal images from the livers of 6 dpf GF and CONVD zebrafish that 
were starved or fed a control diet and incubated with BODIPY-FL C5 FA liposomes for 6 hrs. 
The images are maximum fluorescence projections from 10 Z-stack slices (total Z-depth = 
12.5 µm). Scale bar, 20 µm.  
(E) Fluorescence quantification in livers of 6 dpf GF and CONVD zebrafish that were starved 
or fed control diet and incubated with BODIPY-FL C5 FA liposomes for 6 hrs. The graph 
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depicts the mean ± SD of two independent experiments (3-5 fish/condition/experiment) that 
were scored blindly (score scale 0-5; based on LD number, size, and fluorescence intensity).  
(F) Non-GI BODIPY-FL C5 FA fluorescence in GF and CONVD C-fed zebrafish. The data 
represents mean ± SD of two experiments (20-30 carcasses or 9-10 whole 
larvae/condition/experiment). Significance was determined by Studentʼs t test: *, p<0.05 
(E,F).        
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Figure 3.3. Lipid droplet clearance is more efficient in the presence of microbiota. 
(A) Schematic representation of the BODIPY-FL C5 washout experiment. We incubate 6 dpf 
zebrafish with BODIPY-FL C5 for 3 hrs. A subgroup is briefly washed and fixed for confocal 
imaging (Pre-wash), and the remainder are transferred to sterile GZM for additional 5 hrs 
prior to fixation and imaging (Post-wash).  
(B) Representative confocal images of control-fed GF and CONVD zebrafish pre- and post-
wash. Scale bar, 10 µm. 
(C,D) Quantification of lipid droplet (LD) number (C) and relative size frequency (D), shown 
as the mean ± SEM from two independent experiments (4-14 fish/condition/experiment). 
Results of Studentʼs t test using Bonferroniʼs correction for multiple comparisons: ***, 
p<0.001; a, significant vs. pre-wash in same microbial condition; b, significant vs. same 
wash in other microbial condition.  
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Figure 3.4. 16S rRNA gene sequencing reveals distinct bacterial communities in the 
zebrafish gut and water that are strongly influenced by dietary status.  
(A,B) UniFrac principal coordinates analysis (PCoA) plots using unweighted (A; community 
composition) and weighted (B; community structure) algorithms. Each replicate sample is 
represented by a single shape, as shown in the legend at right, with the solid grey ellipsoid 
around each shape indicating the confidence interval from 100 jackknife replicates of 500 
sequences per sample. Apparent clusters of samples are indicated with open ovals. 
Samples C-Fed gut 1 (a) and Starved gut 3 (b) are labeled.  
(C) Stacked bar graph showing relative abundance (Y-axis) of 16S rRNA gene sequences 
from different bacterial classes (legend at right) observed in different samples (X-axis).  
(D) Percentage of 16S rRNA gene sequences classified as Proteobacteria, Firmicutes, and 
Bacteroidetes, shown as the mean ± SD across different replicate sample groups and the 
inoculum sample. See also Table 3.S3. Alpha diversity measures of (E) Phylogenetic 
distance and (F) Chao1 richness are shown as the mean ± SD across different replicate 
sample groups and the inoculum sample. See also Figure 3.S4 and Table 3.S4. 
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Figure 3.5. Monoassociation with individual community members reveals diet-
dependent colonization of a representative Firmicutes species. 
(A-D) Colony forming units (CFU) in the intestine (per dissected gut; n=4-5 per condition) or 
surrounding water (per mL; n=3 per condition) of 6 dpf zebrafish. The results represent the 
mean ± SEM of at least two independent experiments (n.d., not detected). Results of 
Studentʼs t test using Bonferroniʼs correction for multiple comparisons: *, p<0.05; **, p<0.01; 
***, p<0.001. 
(A) Density of the conventional microbiota in CONVD zebrafish.  
(B-D) Bacterial densities in GF zebrafish monoassociated with (B) Exiguobacterium sp. 
ZWU0009 (Firmicutes), (C) Chryseobacterium sp. ZOR0023 (Bacteroidetes), or (D) 
Pseudomonas sp. ZWU0006 (γ-Proteobacteria).  
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Figure 3.6. Monoassociations reveal distinct bacterial mechanisms for inducing fatty 
acid absorption in the intestinal epithelium.  
(A-D) Representative confocal images of the intestinal epithelium of 6 dpf C-fed zebrafish 
raised GF (A) or monoassociated with Exiguobacterium sp. ZWU0009 (Firmicutes) (B), 
Chryseobacterium sp. ZOR0023 (Bacteroidetes) (C), or Pseudomonas sp. ZWU0006 (γ-
Proteobacteria) (D). Prior to imaging, zebrafish are incubated with BODIPY-FL C5 liposomes 
for 6 hrs and then treated as described in Figure 3.2A. 
(E) Lipid droplet quantification shows increased epithelial LD number in zebrafish 
monoassociated with Exiguobacterium sp. but not with other bacterial species compared to 
GF controls.  
(F) Analysis of the relative frequency of LD sizes shows an increased frequency of medium 
and large lipid droplets in the zebrafish monoassociated with Chryseobacterium sp. or 
Pseudomonas sp. but not with Exiguobacterium sp.. The data represent the mean ± SEM of 
at least two independent experiments (5-16 fish/condition/experiment). Significant 
differences to GF controls were identified by Studentʼs t test using Bonferroniʼs correction for 
multiple comparisons: *, p<0.05; ***, p<0.001.   
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Figure 3.7. Model for diet-dependent microbial regulation of intestinal fatty acid 
absorption.  
The microbiota promotes epithelial LD size independent of diet (dashed violet arrow). The 
presence of diet promotes LD number in CONVD and in zebrafish monoassociated with a 
Firmicutes strain (i.e., Exiguobacterium sp. ZWU0009; dashed brown arrow). 
Monoassociation with other bacterial strains from Bacteroidetes (i.e., Chryseobacterium sp. 
ZOR0023) or γ-Proteobacteria (i.e., Pseudomonas sp. ZWU0006) promotes LD size. 
Although the extent to which these findings are generalizable to their respective phyla 
remains unclear, these data suggest two bacterial mechanisms that promote distinct LD 
phenotypes: a Firmicutes-induced increase in LD number and a non-Firmicutes bacterial 
induction in LD size. 
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SUPPLEMENTAL INFORMATION 
 

SUPPLEMENTAL RESULTS 

The microbiota and diet do not affect feeding behavior or digestive organ size in 6 

dpf zebrafish 

To explain the observed diet-dependent microbial regulation of dietary lipid 

accumulation in the zebrafish intestine (Figures 3.1, 3.2), we tested several working 

hypotheses. We first tested the hypothesis that C-fed CONVD fish are hyperphagic and 

ingest more liposome substrate than GF controls, leading to increased levels of fatty acids 

available for uptake in the intestine. Using a fluorescent bead-eating assay to measure 

feeding behavior, we found a small effect of diet on ingestion rates between all tested 

microbial conditions (p<0.05), suggesting that feeding increases ingestion behavior 

independent of microbial colonization (Figure 3.S3A). We next tested the hypothesis that 

microbial colonization and feeding promote dietary lipid absorption in 6 dpf zebrafish larvae 

by altering the overall body size or the size of digestive organs. Although the presence of 

microbiota affected body length (measured as standard length) (p<0.05) (Figure 3.S3B), 

liver, pancreas and pancreatic islet size revealed no significant effect of microbial or dietary 

status through 6 dpf (Figure 3.S3C-H). Therefore, diet-dependent microbial stimulation of 

fatty acid accumulation in the intestinal epithelium (Figures 3.1, 3.2) is not due to effects of 

microbiota on feeding behavior or digestive organ size. 

 

The microbiota and exogenous food do not stimulate phospholipase or protease 

activity in the 6 dpf zebrafish intestine 

Because digestive organ size and ingestion rates were similar between GF and 

CONVD zebrafish, we next tested the hypothesis that the microbiota stimulates digestive 
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function. We recently showed that BODIPY-FL fatty acid analog absorption into the intestinal 

epithelium requires emulsification in phosphatidylcholine liposomes, suggesting that 

digestive enzymes acting on liposomes might promote epithelial absorption of fatty acid 

analogs (Carten et al., 2011). We previously developed a method for measuring the activity 

of digestive enzymes phospholipase and protease in the intestinal lumen by feeding 

zebrafish caged fluorescent substrates PED6 and EnzChek, respectively (Farber et al., 

2001; Hama et al., 2009). We fed PED6 and EnzChek reporters to 6 dpf GF and CONVD 

zebrafish to investigate how the microbiota and diet affect digestive function. Fluorescent 

PED6 and EnzChek products were observed in both the intestinal lumen as well as the 

gallbladder (Figure 3.S4A-F). Quantification of luminal fluorescence revealed that feeding 

increased PED6 fluorescence in GF but not CONVD zebrafish (effect of microbiota and diet 

p<0.0001) (Figure 3.S4G). Feeding also increased luminal EnzChek fluorescence in GF and 

in CONVD animals, although CONVD levels were consistently lower than GF controls (effect 

of microbiota and diet p<0.0001)(Figure 3.S4H). This result suggests that phospholipase 

and protease activity levels in the intestine are reduced in CONVD compared to GF 

zebrafish, which is consistent with previous studies in other gnotobiotic vertebrate hosts 

(Reddy et al., 1969; Lepkovsky et al., 1964; Pollak and Montgomery, 1994). Our 

observations that phospholipase activity is reduced by microbes only in fed but not in 

starved zebrafish is consistent with a previous report (Bates et al., 2006). These results are 

inconsistent with the hypothesis that the microbiota increases digestive function in fed 

zebrafish and suggest that diet-dependent microbial induction of lipid accumulation in the 

epithelium occurs through other mechanisms. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Confocal imaging of live BODIPY-FL labeled zebrafish 

Live imaging of BODIPY-FL labeled zebrafish was performed on the Leica TCS SP2 

at the Carnegie Institution of Embryology. Anaesthetized zebrafish larvae were mounted on 

a coverslip in 3% methylcellulose as previously described (Carten et al., 2011). Another 

coverslip was gently added, and the larvae were imaged. Images were taken using HCX 

APO L W 40x (3.3 WD, 0.8 NA) and 63x (2.2 WD, 0.9 NA) oil-immersion objectives. 

Fluorescence quantification was performed in ImageJ by box analysis and was normalized 

to controls that were not incubated with liposomes. Quantified results are expressed as the 

mean ± SEM (n≥5 fish per condition; at least two independent experiments).  

 

Confocal imaging of fixed BODIPY-FL labeled zebrafish 

Imaging of fixed BODIPY-FL labeled zebrafish was performed on the Olympus 

FV1000 laser scanning microscope at the UNC-Olympus Research Imaging Center at UNC-

Chapel Hill. For these experiments, we used the Tg(-4.5fabp2:DsRed)pd1000	
  zebrafish line 

that expresses DsRed specifically in intestinal enterocytes (Kanther et al., 2011), facilitating 

confident identification of BODIPY-FL LDs that accumulate in the epithelial monolayer. 

Imaging was performed with a 60x water-immersion objective (0.28 WD, 0.9 NA). We took 

Z-stacks through the same region of intestinal segment 1 in every fish using the multi Ar 

laser (488 nm excitation) and LD laser (559 nm excitation) at laser capacity of 3% and 6.9%, 

respectively. Z-stacks were collected using unidirectional laser scanning at 1.0–1.5 µm per 

slice. The image size was 640x640 pixels in the XY direction for quantified Z-stacks and 

1600x1600 pixels for the images shown in Figures 3.2, 3.3 and 3.6. 
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Lipid droplet quantification protocol 

Three independent epithelial regions of interest in each fish were selected randomly 

from sagittal Z slices near the middle of the intestine that contained a single layer of DsRed-

positive epithelial cells below a clear luminal space. Quantification of BODIPY-FL 

fluorescence in the intestinal epithelium was performed in three individual slices from the 

overlay Z-stacks using the Volocity Visualization+Quantification module (Improvision) (see 

Figure 3.S1). For each slice, we identified a region of interest (ROI, 2500 µm2) and applied a 

measurement protocol (Figure 3.S1F) to identify individual objects (lipid droplets) and their 

size (represented by area). The LD identification and measurement protocol consisted of the 

following steps, which are presented in order: find objects using % intensity (lower: 50%; 

upper: 100%); clip objects to ROIs; separate touching objects (object size guide: 5 µm2); and 

filter measurements (ID > 3). Collected measurement values were exported to Microsoft 

Excel to determine total LD number and the number of LDs for each size category (as 

defined in Figures 3.2, 3.3 and 3.6). The total LD number is presented as the mean ± SEM 

of at least two independent experiments. The relative frequency of LD size categories was 

determined as a percentage of the total LD number from each individual fish and is 

presented as the mean ± SEM of at least two independent experiments. 

 

Quantification of BODIPY fluorescence in liver  
 

The Olympus FV1000 confocal microscope (60x objective) was used to create liver 

Z-stacks (Z-depth = 1.25 µm). The stacks were opened in the FluoView10-ASW viewer 

(version2.0) and exported as RAW data (16 bit; TIFF file). The same number of slices (10) 

were imported in ImageJ and Z-projections were created based on maximum fluorescence 
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intensity. All projections were clipped to the same area, randomized and blinded. Four 

subjects scored the images based on lipid droplet number and size. The individual scores 

were averaged per condition and then per experiment. The results are mean ± SEM from 

two experiments (3-5 animals per condition per experiment).     

 

Quantification of ingested BODIPY in extra-intestinal tissues  

GF and CONVD 6 dpf zebrafish were incubated with BODIPY-FL C5 FA liposomes 

for 6 hrs. After incubation, the animals were washed three times with GZM. While kept on 

ice, the GI tracts (including intestine, liver, pancreas, gall bladder, and swim bladder) were 

microdissected and the rest of the animal (the carcass) was collected in Tris-EDTA 

extraction solution (20 mM Tris and 1 mM EDTA, pH 8.0; 100 µL of solution per 10 animals 

pooled, 20-30 animals per condition). In parallel, whole larvae were collected from each 

condition to calculate total ingested BODIPY and control for inter-experimental variation in 

BODIPY-FL C5 loading. The carcasses were disrupted with a microtip sonicator on ice (5 

second cycle; 1 sec ON/1 sec OFF) and lipid was extracted in a chemical hood at room 

temperature following a modified Bligh and Dyer method (1959). The following specified 

volumes are based on 10 carcasses per condition, except for the final resuspension volume. 

Briefly, the organic phase was extracted after mixing with 375 µL of Chloroform:Methanol 

(1:2, v/v). The samples were vortexed for 30-60 sec and spun at low speed to remove 

solvent from the cap. The mixture was left for 10 min at room temperature to permit 

complete lipid dissociation and interrupt enzyme activity. Chloroform and Tris-EDTA solution 

were added (125 µL each) subsequently to the mixture, and the samples were vortexed for 

30 sec and spun at low speed to remove liquid from the cap. The samples were centrifuged 

at 2000 x g for 5 min to separate the aqueous (upper) from the organic (lower) phase. Upon 
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discarding the aqueous phase, the organic phase containing lipids was collected in a new 

microcentrifuge tube with a pipette tip pre-calibrated in chloroform. The middle phase (larval 

debris) was avoided. The total volume of the organic phase was measured and the samples 

were stored at -80°C overnight. Same volume from each condition was completely dried in a 

speed vacuum and the samples were resuspended in a final volume of 50 µL of 

Chloroform:Methanol (2:1, v/v). Ten microliters were immediately transferred to a new 

microcentrifuge tube, dried and resuspended in ethanol. BODIPY-FL C5 FA standards were 

prepared in ethanol, and fluorescence from samples and standards was determined using 

FluoroMax-4 compact spectrofluorometer (HORIBA Scientific). Total lipid amount per 

carcass was determined based on a standard curve and the leftover volume in the organic 

phase. The percentage of non-GI BODIPY fluorescence was determined based on the ratio 

of fluorescence in the carcass preparation and the fluorescence in the whole animal 

preparation from a given experiment, which was then normalized to the respective GF 

sample.      

 

Gross developmental measurements 

Feeding behavior was determined using a bead-eating assay as previously 

described (Farber et al., 2001). Briefly, zebrafish were washed 3 times in GZM and 

transferred to 15 mL conical tubes, where they were incubated with a 0.5% solution of 

FluoresbriteTM YG 2.0 µm microspheres (18338, Polysciences, Inc.). The fish were washed 

in GZM after a 45 min incubation, fixed in 4% PFA and 1% dimethyl sulfoxide (DMSO) for 1 

hr, and washed prior to storage (4°C, O/N). Bead counting and imaging was performed on a 

Leica MZ 16F fluorescence stereomicroscope. Standard length was measured from the 

snout to the end of the notochord (Parichy et al., 2009). For digestive organ size 
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measurements, Tg(lfabp:dsRed; elaA:EGFP)gz15 zebrafish (Korzh et al., 2008) were used to 

calculate the area of the liver and pancreas. The transgenic line Tg(in3.3-Mmu.Fos:GFP) 

(Camp et al., 2012) was used to determine the area of the endocrine pancreas in 6 dpf 

zebrafish. The area of each digestive organ was measured using ImageJ.    

 

Preparation of fluorescent substrates 

PED6 [N-((6-(2,4-dinitrophenyl)amino)hexanoyl)-1-palmitoyl-2-BODIPY-FL-

pentanoyl-sn-glycero-3-phosphoethanolamine, D23739], EnzChek [BODIPY-TxR casein, 

E6639] and BODIPY FL C5 [4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-

pentanoic acid, D3834] were purchased from Invitrogen, CA. PED6 was dissolved in 

chloroform and was TLC-purified as previously described (Hama et al., 2009). Purified PED6 

was dissolved in chloroform (1 mg/mL) and stored long term at -80°C. EnzChek was 

dissolved in 0.1 M sodium bicarbonate (pH 8.3) at 1 mg/mL and stored at -20°C. BODIPY-

FL C5 was dissolved in chloroform at 1 mg/mL and stored at -80°C. Immediately prior to 

treatment, PED6 aliquots were dried and resuspended in 0.5% EtOH in sterile GZM (v/v). 

BODIPY-FL C5 aliquots were also dried and resuspended in 0.1% EtOH in sterile GZM (v/v), 

prior to emulsification with egg yolk.  

 

In vivo assay of phospholipase and protease activity 

6 dpf zebrafish were washed with GZM and transferred to a 6-well plate at 40 fish/mL 

GZM. Both PED6 and EnzChek were added to the media at a final concentration of 2 µg/mL 

and 5 µg/mL, respectively. The fish were incubated with the reporters for 3 hrs at room 

temperature on a rocker. After incubation, the fish were washed 3 times with pre-chilled 

GZM that served as anaesthetic because it was previously shown that tricaine treatment 
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reduces the intestinal fluorescent signal of both reporters (Hama et al., 2009). Fish were 

mounted in 3% methylcellulose and imaged at identical short and long exposure times with 

Leica MZ 16F fluorescence stereomicroscope using GFP and DsRed filter sets. The short 

exposure time images were used to quantify the intestinal fluorescence in ImageJ, to limit 

pixel saturation. Briefly, a rectangular ROI was placed over the whole intestinal region, and a 

pixel intensity threshold was set to include all intestinal pixels but minimize the number of 

background pixels. Any fish that displayed hallmarks of developmental delay, including the 

presence of yolk or lack of inflated swim bladder, were excluded from the analysis. 

Normalized integrated density was generated against the average integrated density of the 

respective GF starved control. The data presented in box-and-whiskers plot represent the 

combination of three independent experiments (8-20 fish per condition were analyzed in 

each experiment).  

 

Analysis of gut and water microbiota by pyrosequencing of 16S rRNA gene sequences 

A large, single clutch of embryos was derived GF, split into sterile vented flasks, and 

raised until 3 dpf in sterile GZM. At 3 dpf, a sample of housing water was collected from our 

conventional aquaculture facility and was used to inoculate all sterile flasks using our 

standard protocols (Pham et al., 2008). A 2 mL aliquot of this inoculum was snap frozen for 

subsequent analysis. From 3-6 dpf, each flask was also fed with sterilized Zeigler Control or 

Low-Calorie diet or was starved (3 biological replicate flasks/diet, 25 larvae/flask). On 6 dpf, 

one 1 mL sample of housing water and one pool of 10 dissected digestive tracts from each 

flask were collected and snap frozen, and additional gut and water samples were taken for 

CFU analysis. Genomic DNA was extracted from the inoculum, gut, and water samples 

using established protocols (Ley et al., 2008). To evaluate the composition of the gut and 

water microbiota, the V1-V3 region of the 16S rRNA gene was amplified from genomic DNA 
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extracts using bar coded universal PCR primers 8F and 518R containing the A and B 

sequencing adaptors (454 Life Sciences). The forward primer (A-8FM) was 5'-

gcctccctcgcgccatcag-AGAGTTTGATCMTGGCTCAG-3', where the lowercase is the A 

sequencing primer. The reverse primer (B-518) was 5'-gccttgccagcccgctcag-

NNNNNNATTACCGCGGCTGCTGG-3ʼ, where the lowercase is the B sequencing primer 

and N represents a 6-base bar code that is unique for each sample. Prior to sequencing, 

amplicons from the individual PCR reactions samples were gel purified and quantified using 

the Quant-IT Pico-green dsDNA assay (Invitrogen). Final sample quality was assessed on 

an Agilent 2100 Bioanalyzer. For sequencing, amplicons from each reaction were mixed in 

equal amounts, based on concentration and subjected to emulsion PCR as recommended 

by 454 Life Sciences. Using the 454/Roche B sequencing primer kit, sequencing was 

performed from the “B” end on the Roche Genome Sequencer GS-FLX. Samples were 

combined in a single region of the pico-titre plate, and approximately 1000-2000 sequences 

were obtained from each sample. The data analysis pipeline removed low quality sequences 

(i) that do not perfectly match the PCR primer at the beginning of a read, (ii) that are shorter 

than 150 bp in length, (iii) that contain ambiguous nucleotides, or (iv) that do not match a 

barcode (allowing for 1.5 errors). Sequences were quality controlled and then binned 

according to bar codes.  

 

Sequence analysis 

Sequences were denoised and analyzed with the software package Quantitative 

Insights into Microbial Ecology (QIIME) version 1.3.0 using default parameters (Caporaso et 

al., 2010), except for allowing a minimum sequence length of 150 bp. Sequences were 

assigned to samples according to their barcodes (Table 4.S2), and similar sequences with a 

minimum pairwise identity of 97% were binned into OTUs using UCLUST 
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(http://www.drive5.com/usearch/) (Edgar, 2010). The most abundant sequence in each OTU 

was chosen to represent its OTU. Taxonomy was assigned using the Ribosomal Database 

Project (RDP) classifier version 2.2 (Wang et al., 2007), which was retrained on the 

February 4, 2011 Greengenes dataset 

(http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/Caporaso_Reference

_OTUs/gg_otus_4feb2011.tgz) (McDonald et al., 2011). Sequences belonging to singleton 

OTUs or OTUs classified as plant chloroplasts were considered contaminants and were 

removed from the analysis.
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SUPPLEMENTAL FIGURES 

 

 

Figure 3.S1. Development of a lipid droplet quantification assay for the zebrafish 
intestine.  
(A) Z-stack movies collected on the Olympus FV1000 laser scanning microscope were 
scanned using the FV1000 FLUOVIEW software. To determine single epithelial layers, we 
overlayed the GFP signal from the BODIPY-FL C5 fatty acid and the DsRed signal from the 
Tg(-4.5fabp2:DsRed) line, which expresses DsRed in intestinal epithelial cells. We selected 
three slices with independent regions of interest per fish and extracted the GFP signal only 
in Volocity 5.5.1.  
(B-F) Lipid droplet number and size quantification in Volocity. We imported the Z-stacks from 
individual fish in Volocity and opened the selected slices (B) to quantify the fluorescent 
signal. (C) Scale arrow, 20 µm. The red box shows the magnified region in D and E. After 
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the region of interest was selected (purple box in D), we applied our quantification protocol 
(F) to identify individual lipid droplets as objects (E,F) with displayed size (Area, µm2). (F) 
Scale arrow, 45 µm. The selected slice shows a medium (green arrow) and a large LD 
(black arrowhead, E,F). 
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Figure 3.S2. A short (3 hr) incubation with BODIPY-FL C5 liposomes results in lipid 
droplet formation in 6 dpf GF and CONVD zebrafish.  
(A) Representative confocal images of fixed 6 dpf Tg(-4.5fabp2:DsRed) GF and CONVD 
zebrafish fed a control diet and incubated with BODIPY-FL C5 liposomes for 3 hrs. The 
lumen is at the top and epithelium at the bottom of all images. Scale bar, 20 µm. Intestinal 
epithelial cells are identified by DsRed expression, and BODIPY-FL is detected in the 
epithelium as small lipid droplets (LDs) and secreted as chylomicrons (arrow; A).  
(B and C) Lipid droplet quantification assay was developed using Volocity software (see 
Supplemental Experimental Procedures and Figure 3.S1) to determine LD number (B) and 
relative size frequency (C) in an epithelial region of interest (7500 µm2). The graphs 
represent the mean ± SEM in starved and control-fed (C-Fed) zebrafish (at least two 
independent experiments; 4-10 fish/condition/experiment). Results of Studentʼs t test 
corrected by Bonferroniʼs method for multiple comparisons: a, significant vs. same microbial 
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condition on different diets. The LD number (B) and size frequency (C; area) are similar 
between GF and CONVD zebrafish after the 3 hr incubation.  
(C) Lipid droplet size (represented as %LD from total) shows high abundance of small LDs 
(<0.55 µm2) in all microbial and dietary conditions. Similar data from longer 6 hr incubations 
with BODIPY-FL C5 liposomes are shown in Figure 3.2.
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Figure 3.S3. GF and CONVD zebrafish have similar feeding behavior, growth rates 
and development of the GI tract.  
(A) A bead-eating assay was used to determine the feeding behavior of 6 dpf GF and 
CONVD zebrafish reared under different dietary conditions. We counted the number of 
fluorescent microspheres in the intestines of individual fixed zebrafish. Zebrafish under the 
different microbial and dietary stimuli show similar number of ingested beads. The results 
show individual samples and the means from two independent experiments.  
(B) Body size was determined by measuring the length from the snout to the end of the 
notochord (standard length). The graph represents means from at least two independent 
experiments.  
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(C-E) Transgenic zebrafish lines were used to measure the area of GI tract organs – liver, 
pancreas and pancreatic islet. We used the Tg(lfabp:DsRed; elaA:GFP) line (C,D) to 
determine the size of the liver and pancreas. Scale bar, 200 µm. We used Tg(in3.3-
Mmu.Fos:GFP) fish to measure the area of the single pancreatic islet (E). Scale bar, 50 µm. 
(F-H) Quantification of area size for liver, pancreas and islet. Measurements were collected 
from two independent experiments. The data analysis was performed in ImageJ and shows 
no significant effects of the microbiota and exogenous food on the development of liver (F), 
pancreas (G) and the islet (H) in 6 dpf zebrafish. Each circle represents results from a single 
animal. Studentʼs t tests adjusted with Bonferroniʼs correction for multiple comparisons 
revealed no significant differences.  
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Figure 3.S4. The presence of microbiota and host diet does not stimulate digestive 
function in 6 dpf zebrafish.  
(A-F) Representative images of live 6 dpf GF and CONVD zebrafish fed a control diet that 
were simultaneously soaked in quenched phospholipid PED6 and casein EnzChek (EC) for 
3 hrs. Brightfield images (A,B) show the intestinal region of GF and CONVD zebrafish.  
(C,D) Overexposed images of unquenched PED6 show fluorescence in the intestinal lumen 
and gallbladder of GF (C) and CONVD (D) zebrafish (arrowhead).  
(E,F) Overexposed images of unquenched EnzChek shows that TxRed signal is primarily 
detected in the intestinal lumen. Scale bar, 200 µm.  
(G,H) Box-and-whiskers plots of total intestinal fluorescence in GF and CONVD zebrafish 
under three dietary conditions: starved, fed low-calorie (LC-Fed) or control diet (C-Fed). The 
fluorescent signal was quantified using underexposed images in ImageJ software as 
integrated density (area x mean fluorescence). The data were normalized to the mean of the 
GF starved condition for each substrate. PED6- (G) and EnzChek- (H) normalized integrated 
densities show reduced fluorescent signal in CONVD zebrafish fed LC or C diet vs. their GF 
controls. Results of Studentʼs t test corrected with Bonferroniʼs method for multiple 
comparisons: *, p<0.05; **, p<0.01; ***, p<0.001.  
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Figure 3.S5. Schematic depiction of experimental design for 16S rRNA gene 
sequence-based evaluations of gut and water bacterial communities under different 
diet conditions.  
A single cohort of GF zebrafish embryos were split into multiple sterile flasks and colonized 
at 3 dpf by inoculating their housing water with a common conventionalizing medium 
containing a zebrafish microbiota (inoculum). From 3 to 6 dpf, flasks containing CONVD 
zebrafish were either starved or fed a C or LC diet. At 6 dpf, we extracted genomic DNA 
from dissected zebrafish guts and housing water from each flask and analyzed the 
respective bacterial communities using culture-independent 16S rRNA gene pyrosequence-
based surveys (61,429 sequences in total; Table 3.S3). A single inoculum sample was 
collected, and biological triplicate samples were collected for all other sample types.  
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Figure 3.S6. Distribution of bacterial operational taxonomic units (OTUs) across 
samples.  
We defined bacterial OTUs as 16S rRNA gene sequences that share a minimum pairwise 
identity of 97%. An OTU was called present in a sample type if it was observed in at least 
one of the respective samples.  
(A) OTUs within different gut sample types referenced against the inoculum sample.  
(B) OTUs within different water sample types referenced against the inoculum sample.  
(C) OTUs within the inoculum sample referenced against those in all gut samples and all 
water samples.  
(D) OTUs within the inoculum sample referenced against those in all fed samples and all 
starved samples. 
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SUPPLEMENTAL TABLES 
 

 
 

Table 3.S1. Calculated proximate composition of custom Zeigler zebrafish 
larval diets 

 



 
 
               Table 3.S2. Description of samples subjected to 16S rRNA gene pyrosequencing 
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   Table 3.S3. Bacteria taxon abundance as defined by 16S rRNA gene sequences 
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             Table 3.S4. Alpha diversity of 6 dpf zebrafish gut and water samples 
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   Table 3.S5. Bacterial strains used in this study 



	
  
	
  
	
  
	
  
	
  

CHAPTER FOUR 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
Conclusions 

 My dissertation research focuses on how microbial colonization impacts dietary lipid 

metabolism in a zebrafish host. In Chapter 2, I reviewed our current understanding of dietary 

and de novo synthesized lipid metabolism in various hosts. I emphasized the dietary and 

microbial challenges that affect lipid metabolism along the gastrointestinal tract and 

elsewhere in the body. I also summarized important gaps in our knowledge that I addressed 

in my dissertation research. In Chapter 3, I presented my main research study that explored 

the effects of microbes and diet on fatty acid digestion and absorption in intestinal and extra-

intestinal tissues in zebrafish. The work presented in the Appendix shows some preliminary 

but highly intriguing findings on bacterial factors that regulate transcript levels of two fatty 

acid metabolism genes, fiaf and fabp2, and the innate immune gene myeloperoxidase 

(mpo). Altogether, my work identifies novel roles for the microbiota in stimulating intestinal 

fatty acid uptake and accumulation in lipid droplets, as well as promoting absorption in extra-

intestinal tissues. In addition, our work is the first to report diet-induced alterations in 

zebrafish gut microbiota composition, including diet-dependent increases in Firmicutes 

abundance. This finding complements previous studies in humans and mice, which 

highlights the utility of zebrafish as a model organism to study dietary impact on microbial 

community composition and function. We also showed that when deprived of dietary 

nutrients, one tested Firmicutes strain could not survive and colonize the intestine at 
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detectable levels using culture-based methods. This finding is the first in any host to show 

that Firmicutes fitness in the intestine might be reduced in nutrient-poor conditions 

independent of microbial competition. Finally, we dissected the bacterial effects on intestinal 

fatty acid uptake and lipid droplet accumulation. Monoassociation with a Firmicutes strain 

recapitulated the increase in lipid droplet number seen with a complex microbiota. 

Conversely, colonization with two non-Firmicutes bacterial strains recapitulated the lipid 

droplet size phenotypes that were observed with the conventional microbiota (Figure 3.6).  

 

Future directions  

 There are several important implications of my work that can be tested to further 

elucidate the factors involved in regulating dietary lipid metabolism. The lipid metabolism 

field has acknowledged the paucity of in vivo methods and models to study physiological 

responses to dietary and microbial challenges. Our analysis confirms the importance of in 

vivo approaches to study complex and dynamic host-microbe interactions that impact the 

metabolic fates of lipids in the intestine. In my dissertation, I present a novel experimental 

approach that can be utilized to dissect both microbial and host factors involved in mediating 

these metabolic processes. Using this approach, we demonstrate a novel role of the 

microbiota in dietary lipid absorption in intestinal and extra-intestinal tissues in a zebrafish 

host (Semova et al., submitted).     

 

Microbe-centric approaches to study diet-mediated lipid metabolism 

The zebrafish is an excellent model for high-throughput screens to identify primary 

bacterial isolates and lab strains that replicate the changes triggered by larger microbial 

communities on intestinal digestive and absorptive function. In our lab, we found several 

Pseudomonas aeruginosa lab strains (PAK, PA14, PAO1) that modulated transcript levels of 
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lipid metabolism and immune genes including fiaf, fabp2 and mpo in a manner comparable 

to the complex microbiota (Figure A.2A,B). P. aeruginosa is one of the best studied Gram-

negative bacteria due to its pathogenic role in opportunistic infections of 

immunocompromised patients (Wood, 1976; Bodey, 1983). In zebrafish, however, P. 

aeruginosa does not present as pathogen when administered orally (Rawls et al., 2007; 

Clatworthy et al., 2009). One advantage of P. aeruginosa is that there are widely available 

libraries of non-essential gene mutants (Jacobs et al., 2003; Lewenza et al., 2005; Liberati et 

al., 2006). These mutant collections could be utilized in genetic screens to identify the 

specific bacterial factors and mechanisms required for lipid metabolism changes in the 

zebrafish intestine. One of the candidate bacterial mechanisms is quorum sensing. 

 Quorum sensing (QS) is a bacterial cell communication mechanism that involves 

release of small diffusible signal molecules (autoinducers) to sense bacterial community 

density and regulate numerous functions (Keller and Surette, 2006; Williams et al., 2007). 

Some of these QS-regulated functions include regulation of fatty acid and phospholipid 

metabolism genes in strain PAO1 (Wagner et al., 2003), and release of membrane vesicles 

containing extracellular DNA, LPS and hydrolytic enzymes that are important for biofilm 

formation in P.a. strain PAO1 (Nakamura et al., 2008). QS-regulated biofilm formation is 

important in P. aeruginosa colonization of human hosts (Lowery et al., 2008). Biofilm-like 

structures have been detected in the lumen of CONVD zebrafish (Rawls et al., 2004; Rawls 

et al., 2007). In mammalian hosts, it has been proposed that microbes inhabiting the mucus 

gel layer above the epithelium form a biofilm-like community (Sonnenburg et al., 2004). 

Biofilms are thought to be sensitive to nutrient levels in the environment, since nutrient 

starvation leads to release of P. aeruginosa strain PAO1 from biofilms in vitro (Hunt et al., 

2004). However there is no evidence on the effect of in vivo nutrient abundance on QS 

signaling and gut microbial density. In our work, colonization density was lower under 
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starved conditions for both conventional microbiota and a monoassociated primary 

Pseudomonas isolate sp. ZWU0006 (Figure 3.5D and Figure A.5B). Therefore, it would be 

interesting to determine whether dietary nutrient availability affects QS signaling in P. 

aeruginosa. Our lab has obtained a QS reporter strain (PAO1 with lasR lasB::gfp(ASV) and 

Pmty::rfp) designed by Dr. Thomas Bjarnsholt (Hentzer et al., 2003; Wu et al., 2000) that 

could be utilized to evaluate QS signaling of P. aeruginosa in the zebrafish intestine under 

starved and fed conditions. These studies might provide more insight into the effects of diet 

on QS-regulated bacterial mechanisms in the intestine. Our preliminary studies suggest that 

QS mutants in the PAK strain regulate fiaf, fabp2 and mpo transcript levels in a similar 

manner as the wild-type PAK strain, raising the possibility that QS-mediated mechanisms 

are not required for transcriptional regulation of these metabolism and immune-related 

genes (Figure A.2A,B). However, we did not yet test the effect of colonization with PAK or 

QS mutants on fatty acid uptake and absorption using our novel in vivo approach described 

in chapter 3. My studies have shown that the primary Pseudomonas zebrafish isolate 

(Pseudomonas sp. ZWU0006) can affect digestive function (Figure A.5A) and lipid droplet 

formation in the intestine (Figure 3.6). Therefore, some of the future efforts in the lab will 

focus on the used Pseudomonas lab strains as well as QS and other mutants that might 

impact the dietary lipid absorption phenotype observed with the microbiota (Figures 3.1 and 

3.2).  

 In addition to P. aeruginosa, QS signaling molecules (autoinducers C4-HSL and 

C12-HSL) might also impact intestinal fatty acid uptake and absorption. Our preliminary 

results show that autoinducer treatment of GF zebrafish regulate fiaf, fabp2 an mpo 

transcript levels (Figure A.3A), suggesting that these bacterial autoinducers directly interact 

with host factors to modify host transcript profiles. Since previous cell culture study showed 

P. aeruginosa autoinducer entry and function in monkey kidney COS-1 cells, this 
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mechanism may be important not only in bacterial signaling to a zebrafish but also to 

mammalian hosts (Williams et al., 2004). Several other cell culture studies showed effects of 

C4- and C12-HSL as well as other homoserine lactones on transcriptional activation of 

immune responses (IL-8, ERK1/2, NFκB) and inhibition of TNFα and IL-12 production via 

LPS-stimulated peritoneal macrophages in animal cells (Shiner et al., 2005), suggesting that 

autoinducer signaling might mediate the immune system response to microbial colonization. 

Autoinducer treatment can also impact lipid metabolic genes in host cells, since P. 

aeruginosa autoinducer C12-HSL functioned as a PPARβ/δ agonist and PPARγ antagonist 

in murine fibroblasts and human alveolar epithelial cells (Jahoor et al., 2008). PPAR activity 

is regulated by various FA ligands and they regulate the expression of many lipid metabolic 

genes, including PPARα-induced expression of FIAF/ANGPTL4 in humans (Mandard et al., 

2004). Therefore, these studies suggest of interkingdom signaling via autoinducer-mediated 

transcriptional regulation of host lipid metabolic and immune system responses.           

 

Host-centric approaches to study microbe-mediated lipid metabolism     

One important future direction involves deciphering intestinal molecular mechanisms 

that mediate dietary and microbial effects on lipid metabolism. Our lipid droplet quantification 

protocol distinguished between number and size in the epithelium of zebrafish under 

different microbial and dietary conditions (Figures 3.2, 3.3 and 3.6). However, we did not 

provide insight on the nature of these lipid droplets (i.e., cytosolic LDs or chylomicrons) due 

to lack of zebrafish antibodies or transgenic lines to label these cellular structures. In order 

to do more proper characterization of the microbial effect on dietary FA fates in the intestinal 

epithelium, we performed quantitative PCR on genes involved in epithelial FA translocation 

(cd36), FA binding protein (fabp2), activation (fatp4) and trafficking through the ER (mtp), 



	
   98	
  

chylomicron formation (apob) and transcription factor regulation (pparγ). I pooled the 

intestines of BODIPY-FL C5 liposome-fed 6 dpf GF and CONVD zebrafish after a 6 hr 

incubation, extracted mRNA and performed quantitative RT-PCR which showed microbially-

mediated suppression of all tested genes (Figure 4.1). Therefore, similar analysis could be 

performed for genes involved in fatty acid oxidation and lipid droplet coating proteins in order 

to determine whether the microbiota regulates fatty acid usage as an energy source or the 

temporal storage in LD form in the cytoplasm. However, it is important to note that transcript 

levels do not necessarily correlate with protein levels of some of these genes along the 

intestinal length (Masson et al., 2010) and FA absorption and chylomicron synthesis are 

heavily regulated at the post-transcriptional level (Siddiqi et al., 2003; Iqbal et al., 2008; Tran 

et al., 2011).  

An additional approach that could distinguish between chylomicron- and cytosolic-

derived LDs would be to determine the subcellular localization of these organelles. As 

summarized in Chapter 2, chylomicron formation occurs at ER and Golgi sites prior 

exocytosis into the lymphatics. My confocal imaging protocol allows for visualization of 

subcellular organelles that could be identified by recently developed transgenic line 

Tg(actin:GalT-GFP; actin:ER-tdTomato) that labels Golgi and ER (generously provided by 

Dr. Kirsten Sadler Edepli, Mount Sinai School of Medicine). Alternatively, we can co-inject 

GFP-p115 and GFP-gm130 mRNA with lyndTtomato mRNA for Golgi staining (Pouthas et 

al., 2008) and ER-Tracker dyes for live-cell ER labeling (E12353, Invitrogen). LDs 

colocalized with Golgi are prechylomicrons, while ER-associated LDs could be cytosolic LDs 

or prechylomicrons. To investigate microbial impact on epithelial FA oxidative processes, 

colocalization of BODIPY-FL C5 FA with the mitochondrial marker DASPEI can be 

determined (Jonz and Nurse, 2006). These studies will help determine whether the 
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microbiota and dietary nutrients stimulate dietary fatty acid uptake for storage as 

chylomicrons or cytosolic LDs or usage as energy source.  

In addition to microbial stimulation of epithelial fatty acid uptake and LD formation, I 

also demonstrated microbial stimulation of dietary fatty acid absorption into the liver and 

non-GI tissues (Figure 3.2). This is additional important in vivo evidence of microbial 

stimulation of dietary lipid absorption. However, in my study, I did not determine the nature 

of the lipid substrates or lipoproteins carrying the BODIPY-FL C5 FA. Future efforts are 

needed to determine whether the microbiota affects the ratio of absorbed FAs in the 

intestine that get incorporated as TG, DG, MG or FFA in several compartments including 

plasma, liver and non-GI tissues. Using thin layer chromatography Carten et al. (2011) 

showed that the C5 substrate can be incorporated in all the mentioned lipids; however the 

authors did not test the effect of the microbiota on the lipid profiles. In addition to detecting 

the dietary lipids, we can also detect the effect of microbiota on endogenous lipid levels by a 

well-established charring procedure in the presence of copper salts (Fewster et al., 1969).  

The microbial stimulation of dietary fatty acid absorption in non-GI tissues could also 

affect the lipoprotein profile of CONVD zebrafish. To test this hypothesis, we could perform 

native gel electrophoresis with lipid extracts used in Figure 3.2F to determine the 

chylomicron, VLDL, LDL and HDL levels in non-GI tissues of GF vs CONVD animals. This 

method was previously pioneered in zebrafish fed a high-cholesterol diet (Fang et al., 2010). 

The results will provide some insights into how microbial stimulation of dietary fatty acid 

uptake in the intestine affects the intertwined metabolic fates of exogenous and endogenous 

lipid sources.  
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Diet-microbiota interactions are important in lipid metabolism 

 The zebrafish is an important model organism that can be used to study microbial 

community assembly and ecology as a response to dietary changes. We discovered that 

diet induced Firmicutes abundance in the intestine of fed but not starved zebrafish (Figure 

3.4). We speculated the other microbial members might outcompete Firmicutes species in 

starved animals, so we performed monoassociation studies with a Firmicutes, Bacteroidetes 

and Proteobacteria strains to eliminate microbial competition and determine each strainʼs 

fitness in response to changing dietary environments. The fact that the Firmicutes strain, but 

not Bacteroidetes or Proteobacteria strains failed to colonize the zebrafish gut or water 

under starved conditions suggest that Firmicutes fitness and survival might be diet-

dependent even in the absence of other microbes. Although these findings need to be 

repeated with increased number of representatives from each phyla, it would be equally 

interesting to perform dual and triple associations to evaluate microbial community assembly 

and maintenance in response to dietary challenges. Another possibility is that Firmicutes 

colonization is dependent on the presence of other bacteria that can survive in nutrient-poor 

environments and provide nutrients that facilitate Firmicutes growth and survival.  

It would be also interesting to determine whether the lipid droplet phenotype changes 

in zebrafish colonized with this simple microbial community of two or three members. I 

discovered two distinct bacterial mechanisms that regulate lipid droplet formation in the 

epithelium – a Firmicutes-specific increase in LD number and a non-Firmicutes induced 

increase in LD size (Figure 3.6). Our current hypothesis based on this finding is that 

Firmicutes stimulate a more efficient processing and packaging of lipids from cytosolic LDs 

into chylomicrons, which are smaller in size. Our prediction is that dual association with the 

Firmicutes and one of the other two strains would result in a more similar LD phenotype to 

that observed in CONVD fed fish (Figure 3.2B,C). Therefore, I expect that the effects of dual 
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and triple associations on the lipid droplet phenotype will provide important discoveries of 

simple community interactions that are important in mediating dietary lipid metabolism. One 

can combine in vivo and quantitative analysis techniques discussed earlier in this chapter in 

order to determine bacterial and host factors that respond to certain microbial members or 

the triple member community.    

 In summary, my dissertation describes novel microbial roles in intestinal dietary fatty 

acid uptake and accumulation in lipid droplets, as well as absorption into non-GI tissues and 

liver of a zebrafish host. Future efforts focusing on the mechanisms that regulate this 

microbial stimulation of dietary lipid metabolism in the intestine will hopefully identify some 

host and bacterial factors that can be manipulated as treatment strategy for obesity and 

malnutrition.   

 

Implications for the field of host-microbe interactions and lipid metabolism  

 The research findings summarized here set the ground for future research directions 

in the field of host-microbe interactions and lipid metabolism. The emerging patterns of 

microbial community alterations in response to dietary effectors reported in this study are 

suggestive of evolutionarily-conserved microbial responses to the hostʼs nutritional status 

despite vast differences in anatomy and physiology between zebrafish and mammals. 

Furthermore, our work also indicates the importance of the microbial regulation of dietary 

fatty acid absorption. Many studies do not distinguish between the microbial impact on 

exogenous versus endogenous lipid sources, partially due to inability to monitor digestion 

and absorption of dietary nutrients in the small intestine of rodents and humans. These 

findings have great implications for the use of zebrafish as a model organism for studying 

the microbial impact on diet-induced diseases of energy imbalance (such as obesity). Our 

work also emphasizes the importance of development of tools and substrates that can be 
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tracked throughout the body in order to monitor the impact of microbial and dietary 

perturbations on specific nutrient metabolic fates. 

Our in vivo approach showed that the microbiota stimulates dietary fatty acid 

accumulation in epithelial LDs (Figure 3.2A,B), despite decreased transcript levels of genes 

involved in fatty acid metabolism in the intestine (Figure 4.1). This finding emphasizes the 

importance of experimental approaches that determine the overall physiological response to 

dynamic microbial and dietary alterations. Expanding the extent to which we understand the 

microbial contribution to the hostʼs health status will require a more integrative approach of 

current research techniques. One such approach was recently reported by Chen and 

colleagues in an attempt to develop a more complete picture of the molecular and metabolic 

phenotypes in a human host (Chen et al., 2012). Combining genomic, transcriptomic, 

proteomic and metabolomic techniques with analysis of community composition and function 

will allow us to obtain a more mechanistic understanding of how diet-induced microbial 

community changes affect the host metabolic function and contribute to the development of 

obesity-related pathologies.  
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Figure 4.1. Transcript levels of FA metabolic genes are reduced in the GI tracts of 6 
dpf CONVD vs GF zebrafish.  
6 dpf GF and CONVD zebrafish were incubated with BODIPY-FL C5 FA liposomes for 6 hrs. 
After incubation, the zebrafish were kept on ice while their GI tracts were microdissected 
and pooled in microcentrifuge tubes of Trizol (10-12 GI tracts/tube/condition). These 
samples were used to extract mRNA and perform qRT-PCR with primers against several FA 
metabolic genes. The results show fold-changes of two independent experiments 
represented as mean ± SD. Significance was determined using Studentʼs t test (*, p<0.05; 
**, p<0.01).   
 



 

 

 

APPENDIX 

 

THE ROLE OF PSEUDOMONAS AERUGINOSA AUTOINDUCERS  
IN HOST METABOLIC AND IMMUNE GENE EXPRESSION  

 

 

ABSTRACT 

 

The current epidemic of obesity and overweight has dramatically increased the rates 

of diabetes, cardiovascular disease and metabolic syndrome. Insights from gnotobiotic 

animal models have demonstrated that the gut microbiota can influence fat storage via 

transcriptional regulation of metabolic and immune genes. More specifically, the gut 

microbiota suppresses intestinal expression of genes involved in lipid metabolism such as 

Fasting-induced adipose factor/Angiopoietin-like4 (Fiaf/Angptl4) and Intestinal fatty acid 

binding protein (Fabp2), while it induces expression of immune genes such as 

Myeloperoxidase (Mpo) and Serum amyloid A (Saa). The microbial mechanisms that 

regulate the expression of these metabolic and immune genes in the host remain unknown, 

and represent potential targets for controlling host energy balance. We showed that the 

Pseudomonas aeruginosa strain PAK can recapitulate the microbial regulation of gene 

expression for fiaf, fabp2 and mpo. Therefore, in this preliminary study we use P. aeruginosa 

as a model gut bacterium to investigate bacterial mechanisms and factors that regulate fiaf, 

fabp2 and mpo expression in 6 dpf zebrafish. Here we describe our preliminary findings of 

novel roles for the P. aeruginosa QS signaling molecules (autoinducers) in transcriptional 
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regulation of metabolic and immune markers in a zebrafish host. Quorum sensing (QS) is a 

common mechanism of bacteria-bacteria communication, however potential roles for QS in 

regulating host gene expression are untested. Our preliminary results indicate that 

autoinducer treatment can regulate fiaf, fabp2 and mpo transcript levels in both GF and 

zebrafish monoassociated with wild-type P. aeruginosa strain PAK or QS mutant, 

suggesting of a direct interaction of this bacterial factor with host epithelial cells. 

Inconsistencies with our qPCR results led us to utilize in vivo approaches to determine 

changes in immune cell recruitment and digestive function in the intestine as a response to 

PAK colonization and autoinducer treatments.   

 

INTRODUCTION 

  

 The vertebrate intestine harbors a large community of microorganisms that regulates 

diverse aspects of energy balance (Musso et al., 2011). Comparison of germ-free (GF, 

animals raised in the absence of microbes), conventionalized (CONVD, GF animals 

colonized at selected time point with microbes) and conventionally-raised (CONVR, animals 

exposed to microbes from birth) mice have identified multiple ways through which the 

microbiota modifies energy balance. First, the microbiota can enhance processing and 

uptake of otherwise indigestible nutrients in the intestinal epithelium in multiple ways. The 

microbiota possesses enzymes that digest glycans and provide short-chain fatty acids to the 

host (Gill et al., 2006). The gut microbiota also plays a role in bile salt modifications that 

improve emulsification and absorption of dietary lipids in enterocytes (Martin et al., 2007; 

Martin et al., 2008; Blaut and Clavel, 2007). The microbiota can also regulate the hostʼs 

production of digestive enzymes, but the effects shown in mice are contradictory (Lhoste et 

al., 1996; Reddy et al., 1968). In addition to mediating the digestive capacity in the lumen, 
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the microbiota has been suggested to affect the absorptive processes in the intestinal 

epithelium potentially via transcriptional regulation of fatty acid transporters and binding 

proteins such as fabp2 (Larsson et al., 2011). Second, the microbiota can stimulate de novo 

hepatic lipogenesis and production of triglycerides (TG). Third, the microbiota suppresses 

intestinal epithelial expression of Fasting-induced adipose factor (Fiaf, also known as 

angiopoietin-like 4, Angptl4)(Bäckhed et al., 2004). This circulating protein inhibits 

lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides and their storage as fat in 

peripheral tissues. Therefore, the microbiota promotes storage of serum TG in adipose 

tissues by inhibiting LPL activity through suppression of Fiaf levels (Figure A.1). Finally, the 

microbiota can regulate energy balance by evoking host pro-inflammatory signals in the 

intestine and whole body. High-fat diet is associated with microbiota-dependent intestinal 

inflammation which precedes obesity in a mouse model (Ding et al., 2010). Despite all the 

previous evidence of metabolic and immune changes to microbial colonization, the microbial 

mechanisms mediating these diverse host metabolic responses remain unclear.   

 In order to investigate how the microbiota impacts host metabolic and immune 

responses, our lab has established a protocol for rearing germ-free zebrafish through early 

adult stages (Rawls et al., 2007; Rawls et al., 2004; Pham et al., 2008). Our and other labs 

showed that the presence of gut microbiota affects intestinal motility, protein absorption and 

glycan expression, recruitment of immune cells to the intestine, increased mucosal barrier, 

but not gross anatomy in zebrafish (Rawls et al., 2004; Bates et al., 2006). Furthermore, 

reciprocal microbiota transplants into germ-free mice and zebrafish demonstrated a 

conserved host metabolic response to the zebrafish and mouse microbiota (Rawls et al., 

2006). These findings validate zebrafish as an appropriate model system for studying host-

microbe interactions and their role in metabolic and immune processes.  

 In an effort to dissect the role of the complex microbial community on metabolic 
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function and immune system development, we identified a single bacterial species that 

recapitulates many of the effects of the microbiota on nutrient and immune biomarker 

regulation. Pseudomonas aeruginosa (P.a.) is an opportunistic pathogen in susceptible 

humans, but acts as a commensal gut bacterium in zebrafish hosts (Rawls et al., 2007). 

Pseudomonads are common members of fish and some mammalian intestinal microbiotas 

(Rawls et al., 2004; Rawls et al., 2006; Roeselers et al., 2011). Our lab has shown that P.a. 

strains can stimulate transcript levels of innate immune biomarkers myeloperoxidase (mpo, 

a neutrophil marker) and serum amyloid a (saa, an acute phase protein), and suppression of 

transcript levels of nutrient metabolism biomarkers fiaf and fabp2 in a similar manner as the 

normal microbial community in gnotobiotic zebrafish hosts (Rawls et al., 2006; Kanther et 

al., 2011; Rawls et al., 2004; Camp et al., 2012). The availability of a large number of 

genetic tools and reagents for P.a. allowed us to test the potential role of 39 virulence and 

metabolic genes and pathways in regulation of host fiaf expression (data not shown). In this 

study, we focus on our preliminary findings of P.a. virulence factor regulator (vfr) and 

quorum sensing pathway as potential regulators of fiaf expression in zebrafish. Vfr is a 

global regulator of numerous bacterial genes including those involved in quorum sensing 

(Wolfgang et al., 2003). Vfr is a cAMP-dependent transcriptional regulator, and is positively 

regulated by adenylate cyclases CyaA and CyaB and negatively regulated by 

phosphodiesterase CpdA (Yahr and Wolfgang, 2006). Quorum sensing is a cell-to-cell 

communication mechanism utilized by bacteria to control gene expression in response to 

bacterial cell density (Schauder and Bassler, 2001). The two major QS systems in P.a. 

consist of synthase proteins (i.e., LasI and RhlI) that produce signaling molecules called 

autoinducers to activate the QS receptors (i.e., LasR and RhlR) (Figure A.1B,C). QS is an 

attractive bacterial mechanism for regulating host gene expression in the intestine, because 

QS has also been shown to activate signaling cascades and gene transcription in other host 
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cells (Jahoor et al., 2008; Williams et al., 2004; Fujiya et al., 2007). However this role of 

bacterial QS in regulating gene expression in the intestinal epithelium remains largely 

unknown.   

Here we describe our preliminary findings of novel roles for the P. aeruginosa QS 

signaling molecules in transcriptional regulation of metabolic and immune markers in a 

zebrafish host. Using quantitative RT-PCR methods we find that the gut microbiota, wild-

type P. aeruginosa strain PAK and QS synthases double mutant regulate transcript levels of 

fatty acid metabolic genes fiaf, fabp2 and innate immune gene mpo in a manner that doesnʼt 

require functional QS synthases. We show that treatment of GF fish with autoinducer C12-

HSL elicits similar transcript levels as the ones observed in C12-HSL treated zebrafish 

monoassociated with PAK and QS synthase mutant. Some inconsistency in our qPCR 

results led us to explore and utilize in vivo approaches to determine the metabolic and 

immune system response to PAK colonization and autoinducer treatments.  

 

MATERIALS AND METHODS 

 

Gnotobiotic zebrafish husbandry 

Experiments using zebrafish were conducted using protocols approved by the 

IACUC and Environmental Health and Safety (EHS) offices at the University of North 

Carolina – Chapel Hill.  For our experiments we used Tubingen Longfin (TL) and 

Tg(BACmpo:gfp)i114 zebrafish lines (Renshaw et al., 2006). We followed our published 

protocol for gnotobiotic zebrafish husbandry (Pham et al., 2008). Briefly, to test the sterility 

of GF zebrafish, we aerobically culture aliquots of zebrafish media on tryptic soy agar (TSA) 

at 2 days post fertilization (dpf). The sterility test at end point includes culturing zebrafish 
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media in nutrient, brain/heart infusion (BHI) and Sabouraud Dextrose (Sab-Dex) broths 

under aerobic and anaerobic conditions at 28oC.  

We colonize 3 dpf GF animals with a normal zebrafish microbiota or the bacterial 

strain of choice at a final density of 1x104 colony forming units (CFU) per mL. Overnight 

bacterial cultures of Pseudomonas aeruginosa PAK lab strains or Pseudomonas sp. 

ZWU0006 wild-type zebrafish isolate were grown in LB broth and used for 

monoassociations. To monitor bacterial density at the time of colonization and end point, we 

plate the inoculating solution on TSA plates. For gut CFUs we dissect intestines in biological 

triplicate, homogenize their respective contents, and plate technical triplicates on TSA 

plates. We incubate the plates overnight at 28oC and count CFUs per gut. Beginning at 3 

dpf, we feed daily with standard autoclaved zebrafish diet (ZM-000, ZM Ltd.), except for the 

experiments in Figure A.5 where we fed 0.06 mg of sterile irradiated Zeigler control diet per 

flask. We provide 80% water change daily using gnotobiotic zebrafish medium (GZM).  

 

Pseudomonas aeruginosa genetic manipulation  

All P. aeruginosa mutants were a generous donation by Dr. Matthew Wolfgangʼs lab 

at UNC (Wolfgang et al., 2003; Smith et al., 2004). The vfr, cyaA, cyaB and cpdA nonpolar 

deletion mutants were generated from PAK parent strain by removing internal fragments of 

coding sequence from each gene via special PCR technique (splicing by overlap extension) 

(Wolfgang et al., 2003). For complementation, the vfr gene was cloned into pMMB v1 

plasmid that carries a lacIq repressor and carbenicillin resistance cassette (Smith et al., 

2004).   
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Autoinducer treatment of GF and monoassociated PAK strains 

The P. aeruginosa autoinducer N-3-oxododecanoyl-homoserine lactone (C12-HSL) 

was a generous gift from Dr. Kendra Rumbaugh (Texas Tech University). N-Butyryl-

homoserine lactone (C4-HSL) and synthetic N-dodecanoyl-homoserine lactone C12*-HSL 

(Williams et al., 2004) were purchased from Sigma. The autoinducers were dissolved in 

dimethyl sulfoxide (DMSO) and stored at -20 °C. At 2 dpf we arrayed GF fish into 6-well 

plates (20 fish/well) in a final volume of 4 mL of GZM per well. To reduce the amount of HSL 

used in each experiment, the zebrafish were fed only once at 3 dpf by adding 20 µL of ZM-

000 to the media and no subsequent media changes were performed. At 5 dpf, the 

autoinducers were dried down, and resuspended in ethanol (final 0.2% or 0.4% for C12*-

HSL v/v) at the appropriate concentrations. We treated with the appropriate autoinducer or 

ethanol for the negative controls for 12 hrs. 

 

Quantitative RT-PCR analysis 

Whole animals were pooled at 6 dpf in Trizol for mRNA extraction and quantitative 

RT-PCR. The qRT-PCR primers used were as follows – reference gene 18S_Forward 

primer: 5ʼ-CACTTGTCCCTCTAAGAAGTTGCA-3ʼ; 18S_Reverse primer: 5ʼ-

GGTTGATTCCGATAACGAACGA-3ʼ; fiaf_Forward primer: 5ʼ-CGAGCGCATCAAGCAACA-

3ʼ; fiaf_Reverse primer: 5ʼ-TCGCTCGTTTTTCATCG-TAATCT- 3ʼ; fabp2_Forward primer: 5ʼ-

TGCCCATGACAACCTGAAGA-3ʼ; fabp2_Reverse primer: 5ʼ-

GTTAATTTCCAGTGTGCGGAAAG-3ʼ; mpo_Forward primer: 5ʼ-

TCCAAAGCTATGTGGGATGTGA-3ʼ; mpo_Reverse primer: 5ʼ-

GTCGTCCGGCAAAACTGAA-3ʼ; pla2g1b_Forward primer: 5ʼ-CCCGGTGGATGAA-

CTGGAC-3ʼ; pla2g1b_Reverse primer: 5ʼ-ATTTCAGTGTAGGGGTTGTCCAAG-3ʼ; 
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tryl_Forward primer: 5ʼ-CTGGTGTGGAGCATCTCTGA-3ʼ; tryl_Reverse primer: 5ʼ-

CTTCGACAGCTACGTTGTGC-3ʼ. 

 

Digestive function assay 

 PED6 [N-((6-(2,4-dinitrophenyl)amino)hexanoyl)-1-palmitoyl-2-BODIPY-FL-pentanoyl-

sn-glycero-3-phosphoethanolamine, D23739] and EnzChek [BODIPY-TxR casein, E6639] 

were purchased from Invitrogen, CA. PED6 was dissolved in chloroform and was TLC-

purified as previously described (Hama et al., 2009). Purified PED6 was dissolved in 

chloroform (1 mg/mL) and stored long term at -80°C. EnzChek was dissolved in 0.1 M 

sodium bicarbonate (pH 8.3) at 1 mg/mL and stored at -20°C. Immediately prior to 

treatment, PED6 aliquots were dried and resuspended in 0.5% EtOH in sterile GZM (v/v).  

 Zebrafish at 6 dpf were washed with GZM and transferred to a 6-well plate at 40 

fish/mL GZM. Both PED6 and EnzChek were added to the media at a final concentration of 

2 µg/mL and 5 µg/mL, respectively. The fish were incubated with the reporters for 3 hrs at 

room temperature on a rocker. After incubation, the fish were washed 3 times with pre-

chilled GZM that served as anesthetic because it was previously shown that tricaine 

anesthetic treatment reduces the intestinal fluorescent signal of both reporters (Hama et al., 

2009). Fish were mounted in 3% methylcellulose and imaged at identical short and long 

exposure times with Leica MZ 16F fluorescence stereomicroscope using GFP and DsRed 

filter sets. The short exposure time images were used to quantify the intestinal fluorescence 

in ImageJ, to limit pixel saturation. Briefly, a rectangular ROI was placed over the whole 

intestinal region, and a pixel intensity threshold was set to include all intestinal pixels but 

minimize the number of background pixels. Any fish that displayed hallmarks of 

developmental delay, including the presence of yolk or lack of inflated swim bladder, were 

excluded from the analysis. Normalized integrated density was generated against the 
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average integrated density of the respective GF starved control. The data presented in box-

and-whiskers plot represents a single experiment (8-20 fish per condition).  

  

 Statistical analysis 

   Significance was determined using paired Studentʼs t test for means with equal 

variances for the qPCR results (* p<0.05; ** p<0.01; *** p<0.001). For the PED6 and 

EnzChek significance, one-way ANOVA was used with a Tukeyʼs post-hoc test (Figure 

A.5A).    

  

PRELIMINARY RESULTS 

 

Colonization with P. aeruginosa regulates fatty acid metabolic and innate immune 

gene expression independent of vfr and QS synthases 

We first tested the requirement for vfr in P.a. regulation of fatty acid metabolic genes 

fiaf and fatty acid binding protein (fabp2) and the innate immune gene myeloperoxidase 

(mpo). Colonization of zebrafish with the wild-type parent P. a. strain PAK results in 

suppression of fiaf and induction of mpo mRNA levels (Figure A.2A). Colonization with vfr-

deficient (Δvfr) PAK strain resulted in similar transcript levels of fiaf, fabp2 and mpo as the 

ones detected with wild-type PAK (Figure A.2A), suggesting that vfr may not be required for 

regulation of transcript levels of these metabolic and immune genes. Despite these negative 

results, we tested the effects of upstream effectors of vfr (adenylate cyclases CyaA and 

CyaB and the only cAMP-dependent phosphodiesterase in P. aeruginosa, CpdA) and 

attempted a complementation experiment with a wild-type copy of the vfr gene to validate 
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the lack of vfr phenotype. However both of these experiments failed due to lack of fiaf 

suppression by the wild-type PAK control (data not shown).  

We screened for vfr downstream effector pathways and showed that colonization 

with a mutant carrying deletions in both quorum sensing (QS) synthase genes (ΔlasIΔrhlI) 

results in a reduction of fiaf and fabp2 mRNA levels compared to GF fish, but showed no 

difference compared to the wild-type PAK strain (Figure A.2B). These results suggest that 

QS synthases may not be required in regulation of fiaf expression in zebrafish. Similarly, 

colonization with single synthase (las or rhl) mutants in a different P.a. strain (PA14) showed 

no significant attenuation of fiaf suppression. However, the PA14 wild-type strain did not 

cause a significant suppression of fiaf in these experiments, which might be due to P.a. 

strain-dependent differences in their ability to regulate fiaf expression (data not shown). The 

QS double mutant also showed induction of mpo mRNA levels similar to the wild-type PAK 

strain, suggesting that QS synthase signaling may not be involved in transcriptional 

regulation of this immune gene (Figure A.2B).       

 

Autoinducer treatment regulates transcript levels of fiaf, fabp2 and mpo in GF and 

monoassociated zebrafish 

The QS synthases produce the signaling molecules N-butyryl homoserine lactone 

C4-HSL (produced by RhlI) and N-3-oxododecanoyl homoserine lactone C12-HSL 

(produced by LasI). These bacterial products have been previously shown to interact with 

transcription factors PPARβ and PPARγ and modulate expression of pro-inflammatory 

genes in murine fibroflast and human alveolar epithelial cell lines (Jahoor et al., 2008). 

Despite our negative results with the QS synthases double mutant in figure A.2B, we 

decided to test the effect of these QS signaling molecules on the expression of the tested 
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metabolic and immune genes in zebrafish. We treated GF animals with the P. aeruginosa 

autoinducers C4- and C12-HSL as well as a synthetic derivative N-dodecanoyl homoserine 

lactone C12*-HSL that lacks the oxygen at the third carbon in the acyl chain and can bind 

LasR in a similar manner at the natural substrate (Williams et al., 2004; Chhabra et al., 

2003). Our preliminary results suggest that treatment with C4-HSL and C12-HSL 

autoinducers causes an induction rather than suppression of fiaf expression (Figure A.3A). 

On the other hand, treatment with the synthetic autoinducer C12*-HSL suppressed fabp2 

and mpo expression (Figure A.3A). These results raise the possibility that C4- and C12-HSL 

may directly interact with host transcriptional machinery to suppress fabp2 and mpo 

expression. Furthermore, combined treatment of C4- and C12- natural or synthetic 

substrates did not suppress fiaf mRNA levels, suggesting of a lack of synergistic effect of the 

autoinducers on fiaf expression (Figure A.3B).    

 We also wanted to determine whether autoinducer treatment can have an impact on 

PAK bacterial function important in its transcriptional regulation of the metabolic and immune 

genes. Our preliminary results show that treatment of GF and monoassociated zebrafish 

with 50 µM C12-HSL induce similar expression trends as observed in Figure A.2B. The 

results were more dramatic with the treatment of zebrafish monoassociated with QS 

synthase mutants (Figure A.3C) than receptor double mutants (data not shown), suggesting 

that autoinducer activation of quorum sensing receptors and downstream signaling 

pathways might be important for regulation of fiaf, fabp2 and mpo expression. It is important 

to note that monoassociation with the wild-type strain PAK does not result in a consistent 

suppression or induction of the metabolic and immune genes, respectively. Therefore, we 

decided to complement our qPCR findings with in vivo assays that determine the metabolic 

and immune response to Pseudomonas colonization in live zebrafish hosts.           
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Treatment of GF and PAK monoassociated zebrafish with C12-HSL results in 

recruitment of mpo-positive neutrophils in the zebrafish intestine 

Since our preliminary studies suggest that C12-HSL suppresses mpo mRNA levels in 

both GF and zebrafish monoassociated with wild-type PAK and QS mutant strains, we 

hypothesized that this could be due to a decrease in the number of cells expressing mpo. As 

mentioned earlier, mpo expression is enriched in neutrophils. Therefore, we used transgenic 

zebrafish expressing GFP in neutrophils (BACmpo:gfp) to determine the effect of 

autoinducer treatment on mpo-positive cell number. The number of mpo-positive neutrophils 

in the intestine increased with colonization of wild-type PAK and QS receptor double mutant 

ΔlasRΔrhlR. To our surprise, treatment with 50 µM C12-HSL in both GF and 

monoassociated zebrafish showed further increase in neutrophil recruitment to the intestine 

(Figure A.4), despite the observed suppressing effect of the autoinducer on mpo mRNA 

levels (Figure A.3A). These findings suggest that even though treatment with the 

autoinducer molecule C12-HSL suppresses mpo transcript levels in the whole animal, this is 

not due to a decrease in total number of mpo-expressing cells. Further studies are needed 

to understand the interesting observation that C12-HSL mediates recruitment of neutrophils 

to the intestine.   

 

Pseudomonas sp. ZWU0006 zebrafish isolate regulates zebrafish digestive 

physiology 

Mammalian studies demonstrated that members of the gut microbiota possess 

digestive enzymes that complement the hostʼs enzymes (Gill et al., 2006). We used an in 

vivo fluorescent substrate feeding assay to study the effect of Pseudomonas genus 

members on zebrafish digestive physiology. Caged fluorescent phospholipid (PED6) and 

protein (EnzChek) require the respective phospholipase A2 (PLA2) and protease activity in 
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order to be cleaved and fluoresce (Hama et al., 2009). We used these reporters to assess 

phospholipase and protease activities since zebrafish utilize lipids and proteins as major 

sources of energy. Furthermore, we chose a microbiota isolate from an adult zebrafish, 

Pseudomonas sp. ZWU0006. Monoassociation of GF zebrafish with Pseudomonas sp. 

ZWU0006 resulted in a decrease in intestinal PED6 fluorescence, suggesting that 

Pseudomonas sp. ZWU0006 may mediate PLA2 activity (Figure A.5A). This effect was also 

diet- and microbe-dependent, since the presence of dietary nutrients increased PED6 

fluorescence in monoassociated but not GF zebrafish. On the other hand, Pseudomonas sp. 

ZWU0006 monoassociation did not have a significant effect on protease activity in the 

intestine. These results suggest that Pseudomonas sp. ZWU0006 may enhance PLA2 

activity in the intestine. The diet-dependent effect of Pseudomonas sp. ZWU0006 on PLA2 

activity was associated with an increase in bacterial density in the intestine but not the 

surrounding media, suggesting that the growth and fitness of at least this Pseudomonas 

strain was dependent on the availability of dietary nutrients (Figure A.5B). The presence of 

diet also mediated the Pseudomonas sp. regulation of transcript levels of two genes 

encoding the pancreas-enriched pla2 group1b (pla2g1b) and the serine protease trypsin-like 

(tryl) (Figure A.5C). These results suggest that Pseudomonas sp. ZWU0006 colonization 

stimulates in vivo digestive function of PLA2 in zebrafish larvae in a diet-dependent manner. 

The increased luminal nutrient digestion is associated with increased uptake of 

macromolecules (Rawls et al., 2004) and dietary fatty acids into intestinal epithelial cells 

(Semova et al., submitted). Taken together, these findings suggest that Pseudomonas sp. 

ZWU0006 stimulate digestion and absorption of dietary lipids.   

  

 

 



 

 117	
  

DISCUSSION AND FUTURE STUDIES 

We tested two bacterial mechanisms (vfr and quorum sensing) for their role in 

regulation of fiaf, fabp2 and mpo expression in the zebrafish host (Figure A.2A,B). Our 

preliminary observations suggest that P. aeruginosa regulates transcript levels of these 

genes independent of vfr and QS synthases. However, several of our preliminary findings 

need to be further confirmed by repeating some of the initial experiments primarily due to the 

inconsistency of wild-type P. aeruginosa strain in suppression of fiaf, fabp2 or induction of 

mpo expression. First, the effects of vfr on the tested metabolic and immune genes need to 

be validated by performing complementation with a plasmid carrying wild-type vfr gene. 

Second, the effects of the upstream effector pathways (adenylate cyclases CyaA and CyaB 

and phosphodiesterase CpdA) need to be further examined by determining fiaf, fabp2 and 

mpo transcript levels in zebrafish colonized with the ΔcyaAΔcyaB or the ΔcpdA mutant. The 

role of these mechanisms in transcript levels of the tested genes will indicate whether vfr 

regulates gene expression via cAMP-dependent or -independent mechanisms.  

To determine bacterial genes involved in regulation of these fatty acid metabolic and 

immune genes, future studies need to include additional resources in our lab such as the 

sequenced transposon insertion library for P.a. strain PA14 (Liberati et al., 2006). Previous 

microarray analysis of P.a. quorum sensing regulons identified 616 genes that are regulated 

by quorum sensing (Wagner et al., 2003). We compared this list against 206 vfr-regulated 

genes (Wolfgang et al., 2003) and identified a small subset of 31 transcripts regulated by 

both mechanisms.  We will obtain these mutants from the PA14 mutant library available in 

our lab, and screen them for aberrant host fiaf, fabp2 or mpo expression using qRT-PCR. 

Since qPCR showed some inconsistent results especially from P.a. monoassociated 

conditions, the mutants can be validated for regulation of digestive and absorptive function 

using our in vivo assays. To identify the affected genes, the transposon insertion site needs 
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to be confirmed by inverse PCR and rescue wild-type phenotype by complementation using 

standard methods.  

It has been shown that C12-HSL interacts with and regulates the activity of 

transcription factors PPARβ and PPARγ in lung epithelial cells (Jahoor et al., 2008). In the 

same model, the authors also showed that autoinducer treatment promotes up-regulation of 

pro-inflammatory cytokines, possibly via NF-κB signaling mechanisms. In our preliminary 

study, treatment with the synthetic derivative C12*-HSL suppressed fabp2 in a 

concentration-dependent manner. This intriguing finding indicates that PPARβ or γ might 

transcriptionally regulate the expression of this fatty acid binding protein enriched in the 

intestine. A previous study in a fasting mouse model showed that hepatic PPARβ/δ can 

sense plasma free fatty acid levels and upregulate expression of genes such as Lpin2 and 

St3gal5 (Sanderson et al., 2009). Furthermore, the elevation of free fatty acids in plasma 

was due to the LPL-inhibitory activity of Fiaf that stimulates adipose tissue lipolysis and 

release of fatty acids that get taken up by the liver for VLDL production. Therefore, we 

predict that autoinducers may regulate fabp2 and mpo expression by mimicking the ligand-

binding properties of fatty acids to activate transcriptional factors such as PPARs. 

Furthermore, the C12-HSL induced recruitment of neutrophils to the intestine is also a very 

interesting novel finding that suggests that autoinducer signaling may be important not only 

as a sensing mechanism for bacterial density by P. aeruginosa but also by the host that can 

regulate bacterial growth and density via neutrophil-mediated anti-bacterial function 

(Nauseef, 2007).        

Finally, these preliminary qPCR studies emphasized to us the need for other 

quantitative approaches that can test the effects of microbiota and individual bacterial 

strains. Our preliminary studies using the in vivo digestive function assay show that a 
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zebrafish microbiota isolate Pseudomonas sp. ZWU0006 can regulate zebrafish digestive 

physiology (Figure A.5A). This result would suggest that the digestive abilities of the 

intestinal bacterium might contribute to its role in regulating expression of metabolic genes 

such as fiaf and fabp2 whose expression is mediated by dietary nutrient availability. These 

preliminary results led us in the direction of using fluorescent FA substrates to determine the 

microbial impact on digestive and absorptive function in the zebrafish intestine (work 

summarized in chapter 3). The BODIPY-FL FA assay is sufficiently robust and consistent to 

permit screening of bacterial genotypes in the future.  
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Figure A.1.  (A) The role of gut microbiota in fat storage in the body via transcriptional 
regulation of Fasting-induced fatty acid (Fiaf) in the intestine. 
(B) Quorum sensing (QS) signaling mechanisms in Pseudomonas aeruginosa. Each QS 
mechanism consists of a synthase molecule that produces the signaling autoinducer that 
gets secreted. Upon reaching a certain quorum, the autoinducer binding to the receptor 
causes quorum sensing signaling that regulates various bacterial mechanisms. P. 
aeruginosa has two major QS mechanisms, Las and Rhl that use homoserine lactones 
(HSL) as autoinducer molecules. The chemical structure of P. aeruginosa Las and Rhl 
homoserine lactones (C4- and C12-HSL) is shown to the right (adapted from Williams and 
Cámara, 2009).     
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Figure A.2. P. aeruginosa bacterial mechanisms virulence factor regulator (vfr) and 
quorum sensing are not required for regulation of fiaf, fabp2 and mpo transcript 
levels in 6 dpf zebrafish.  
(A) Quantitative RT-PCR of 6 dpf GF and zebrafish colonized with zebrafish gut microbiota 
and P.a. strain PAK. Colonization with vfr mutant results in attenuated but non-significant fiaf 
and cpt1a suppression compared to wild-type PAK. Colonization with the vfr mutant further 
increases mpo expression in comparison to PAK.  
(B) Quorum sensing synthase mutants show similar transcript levels of fiaf, fabp2 and mpo 
as the ones detected in zebrafish monoassociated with wild-type P. a. strain PAK. 
Significance was against GF fish.  (* p< 0.05; ** p< 0.01, ***p<0.001). 
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Figure A.3. Treatment with P. aeruginosa autoinducers C4- and C12-homoserine 
lactone regulate fiaf, fabp2 and mpo expression in 6 dpf GF and zebrafish colonized 
with wild-type PAK and quorum sensing mutants.  
(A) Expression of fiaf, fabp2 and mpo mRNA in GF zebrafish treated with C4- and C12-HSL 
autoinducers as well as a synthetic C12-HSL molecule (C12*-HSL). 
(B) Combined treatment of GF zebrafish with C4- and the natural or synthetic C12-HSL 
show no synergistic effect of the two QS signaling molecules on fiaf expression.    
(C)Treatment with C12-HSL shows regulation of fiaf, fabp2 and mpo in GF and zebrafish 
monoassociated with wild-type PAK and QS synthase double mutants. Significance is 
shown against GF untreated condition (* p<0.05; ** p<0.01; *** p<0.001) and against PAK of 
the appropriate treatment (& p<0.05). 
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Figure A.4. Colonization with wild-type PAK and QS receptor mutant results in 
intestine-specific recruitment of mpo-positive neutrophils. The Tg(BACmpo:gfp) 
zebrafish line was used to determine neutrophil recruitment to the intestine of GF and 
zebrafish monossociated with wild-type P.a. strain PAK and the QS receptor double mutant 
(ΔlasRΔrhlR). Treatment with 50 µM C12-HSL autoinducer indicates of increased 
recruitment of mpo-positive neutrophils to the intestine (arrows) but no decrease in number 
of mpo-positive neutrophils.   
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Figure A.5. Monoassociation with Pseudomonas zebrafish strain ZWU0006 regulates 
digestive enzyme expression and activity in a diet-dependent manner.  
(A) Monoassociation with Pseudomonas sp. ZWU0006 results in a diet-dependent increase 
in phospholipaseA2 activity (** p<0.01 against GF; & p<0.05 against Pseudomonas sp. 
starved).   
(B) Intestinal bacterial density is increased by the presence of dietary nutrients in zebrafish 
monoassociated with Pseudomonas sp. ZWU0006. 
(C) Monoassociation with Pseudomonas sp. ZWU0006 results in suppression of zebrafish 
phospholipase a2 group 1b (pla2g1b) and trypsin-like (tryl) mRNA levels in a diet-dependent 
manner.   
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