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ABSTRACT 

Melanie Fawaz Alazzam: Murine Transgene Insertional Mutation Involving Runx1t1 and 
Gm11823 Genes and their Contribution to Cleft Palate and Rib Anomalies 

(Under the direction of Eric Everett)  
 
 

Objective: Cleft Palate (CP) is a common birth defect in humans occurring in 6.35/10,000 

live births and it has been repeatedly shown that animal models are useful in dissecting 

molecular etiologies of CP. The OVE1328 mouse line develops CP as a consequence of 

transgene (Tg) insertion mutagenesis. Preliminary data shows Tg complex integration at 

chromosome 4 band A2. The goal of this work was to characterize the mutation in the OVE1328 

transgenic mouse line. Methods: Genotyping microarrays and RNA-seq were used to identify the 

Tg insertion site. The insertion site was further validated by conventional PCR. Histology and 

skeletal staining were used to phenotype CP (OVE1328 (Tg/Tg)) and Wt embryos. Results: In 

OVE1328 embryos the transgene disrupts Runx1t1 gene at intron 12 (13,876,840 bp). The 

integration is associated with a deletion mutation of part of intron 12 and whole exons 13 and 14 

of Runx1t1. Runx1t1 (also known as Cbfa2t1h, Eto, Mtg8) is mainly studied for its role in acute 

myelogenous leukemia as a fusion gene in humans and gut development in mice. The Tg 

insertion disruption extends to the Gm11823 gene which encodes a long non coding RNA. Little 

is known regarding the normal function and expression of Gm11823.  The Tg integrates at intron 

2 (13,949,713 bp) of Gm11823 and induces the ectopic expression of an altered message. 

Homozygous disruption of both genes is associated with CP (100% of OVE1328 (Tg/Tg) 

embryos) and rib anomalies (supernumerary ribs, 86% of OVE1328 (Tg/Tg) embryos. 
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Furthermore, OVE1328 (Tg/Tg) embryos are ~13% smaller by weight than Wt and 

OVE1328 (Tg/+) littermates indicting growth delay. Supported by NIH/NIDCR DE015180. 
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CHAPTER 1: REVIEW OF THE LITRETURE 

1.1 Development of the Oral Cavity; an Overview 

The formation of the orofacial region in the developing embryo is demarcated by the 

appearance of the oropharyngeal membrane and subsequently the primary mouth (also known as 

the stomodeum). The oropharyngeal membrane seen at stage 11 Carnegie, 24 days of 

gestation in human, and E9 mouse embryo, is formed from a region that is cranial to the 

notochord where the ectoderm and endoderm fuse together in the trilaminar embryo. The 

ectoderm of the membrane will form the mucosal lining of the future oral cavity and the 

endoderm will form the future lining of the pharyngeal mucosa. The oropharyngeal membrane, a 

temporary weak membrane, separates the primary mouth from the foregut. The membrane 

becomes perforated at this stage where the oral cavity and the pharyngeal space become 

connected.1-3   

The primary mouth is limited by 5 developing processes (or prominences). The processes 

are composed of a mesenchyme covered by an ectoderm. The mesenchyme is populated by 

cranial neural crest cells (CNC) (originating from the crest of the folding neural tube) which start 

migrating at stage 10 towards their future destination. The CNC cells contribute to the formation 

of the facial skeleton. In addition to CNC cells, cells of mesodermal origin populate the 

mesenchyme which will contribute to the formation of facial musculature. These processes are; 1 

median frontonasal process (rostrally), 2 maxillary processes (laterally) and 2 mandibular 
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processes (caudally) (the maxillary and mandibular processes develop from the first branchial 

arch).2-4 

1.1.1 Development of the Upper Lip 

At stage 13-15 Carnegie, fourth to fifth week of gestation in human, the formation of 

the paired telencephalic vesicles (future cerebral hemispheres) from the forebrain results in the 

widening of the frontonasal process with the formation of the median groove. Meanwhile, the 2 

mandibular processes grow and merge together in a caudal to rostral aspect. The fusion of those 

processes results in the formation of lower jaw and the low lip.2,4  

  At stage 14 Carnegie, around 32 days of gestation in human, and E10 mouse 

embryo, two ectodermal thickenings form at the inferior lateral corners of the frontonasal 

processes. Those thickenings will form the nasal placodes. The placodes will develop into nasal 

pits due to the growth and bulging of the frontonasal processes and the formation of a horseshoe 

like medial and lateral nasal processes. The medial and lateral nasal processes are separated and 

the nasal pit is in continuity with the stomodeum. Furthermore, the median groove is seen in 

between the two medial nasal processes. At this stage the maxillary processes become 

discernable.2,4 

  At stage 15 Carnegie, 35 days of gestation in human, and E10.5 mouse embryo, 

further growth of the maxillary process pushes the medial nasal processes medially and results in 

the wedging of the lateral nasal process between the maxillary and medial nasal processes. By 

this stage, nasal pits are seen as distally pointed slits.2,4  

  At stage 16 Carnegie, 38 days of gestation in human, and E11 mouse embryo, rapid 

growth of the maxillary processes and the medial nasal processes results in two fusion events: 1. 
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Fusion of the medial nasal process and the lateral nasal process 2. Fusion of the medial nasal 

process and the maxillary process. These fusion events continue through stage 16-18 Carnegie, 

beginning in the seventh week of human gestation, and to E11.5 to E12 in a mouse embryo. 

The aforementioned fusion events require the involvement of the epithelial cells in several 

cellular processes represented by apoptosis, formation of filopodia and epithelial mesenchymal 

transformation (EMT). However, for the median groove, growth and confluence of the medial 

nasal and maxillary processes will fill and smoothen the median groove in between the medial 

nasal processes.2,4,5  

  At Stage 19, around 48 days of gestation in human, and in E12.5 mouse embryo, the 

upper lip development is complete. The distal part of the medial nasal processes, the 

intermaxillary segment, forms the central part of the lip. Further growth of the intermaxillary 

segment into the oral cavity results in the formation of the primary palate which later fuses with 

the secondary palate. 2 
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1.1.2 Development of the Secondary Palate (Palatogenesis) 

  At 6 weeks of gestation in human and E11 mouse embryo, palatogenesis starts as an 

oral outgrowth of the developing maxillary processes known as palatal shelf primordia. Palatal 

shelf primordia, as other facial primordia, is composed of a mesenchyme (mainly of cranial 

neural crest (CNC) origin) with an overlying epithelium of an ectodermal origin. 6-8  

  In the same week (6 weeks of gestation) in human and at E12.5-14 mouse embryo, 

the palatal shelves will grow downward (however, it should be noted that there is growth in the 

antero-posterior and medio-lateral aspects as well) around the developing tongue.6-8   

  At 7-8 weeks of gestation in human and E14.5-15 in mouse embryo, palatal shelves 

will undergo rapid morphological changes that will eventually result in reorienting the growth 

pattern of the shelves from vertical to horizontal plane. It was proposed that the elevation of 

palatal shelves is due to remodeling in which a protrusion of the medial wall and a regression in 

the ventral end of the shelves results in their elevation.6 Recent evidence has indeed revealed that 

cells expressing medial edge epithelium (MEE) markers were detected along the medial side of 

the developing palatal shelves.6,9 Furthermore, a recent study supported the tissue remodeling 

hypothesis for certain regions of the elevating shelves (mid-posterior region) but suggested that 

there might be other mechanisms involved in the elevation of the anterior and most posterior end 

of the shelves.9 It was noticed that the elevation starts at the mid-posterior region of the palatal 

shelves and then moves to the anterior region, and once elevated, the elevation of the most 

posterior end region of the shelves is achieved.10 The elevation process is associated with other 

morphological changes in the craniofacial region where the head is extended and there is an 

increase in the vertical dimension of the head with the downward positioning of the tongue.11  
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  By this time the palatal shelves are in the horizontal plane. The two layered epithelium on 

the medial side of the pre-fusion palatal shelves is known as the medial edge epithelium (MEE) 

and is composed of a basal layer of cuboidal cells lying on a basal lamina and an outer layer of 

flat cells facing the amniotic fluid, known as the periderm.7,12It is agreed that the fusion of the 

basal layer of both shelves contributes to the formation of the midline epithelial seam (MES).12 

On the other hand, the fate of the periderm layer is still not ascertained. Several mechanisms 

were suggested: the periderm layer undergoes desquamation (peeling off), can be trapped in the 

MES, and undergo apoptosis or migrates to the oral and nasal epithelial triangles.7,12,13 Once the 

MES forms it will undergo degeneration to allow for the confluence of the mesenchyme in order 

for the fusion process to be completed.6,7However, there is still inconclusive evidence of how the 

MES is removed. There has been evidence supporting different fates of the MES. The MES can 

undergo apoptosis as some studies demonstrated that many MES cells were terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive and Caspase 3 

positive.6,14 Other studies showed the MES cells in the middle palatal region had strong TUNEL 

positive staining while in the anterior region (where the primary and the secondary palate fuse in 

the anterior palate region) had few TUNEL positive cells.15 In addition to apoptosis, it was 

proposed that MES cells can also undergo migration.7,16 or epithelial mesenchymal 

transformation. However, the available evidence regarding the latter fate is still controversial.6 

  By 8 weeks of gestation in human and E15.5 in mouse embryo, the MES has 

disappeared and the palatal mesenchyme is confluent with the initiation of palatal bone 

formation by intramembranous ossification. The adult hard palate (of secondary palate origin) is 

formed of the palatal process of the maxilla and the horizontal plate of the palatine.6,17 In the 

developing embryo bone formation of the palatal process of the maxilla starts at a new 
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ossification center which is initially separate from the maxillary ossification center. The 

horizontal plate of palatine bone formation occurs as an extension of the osteogenic front of the 

palatine6,18. By 10 weeks of gestation in human and E16.5 in mice, palate formation has been 

completed and successful separation of the developing oral and nasal cavities takes place.8,19,20  

  Though the formation of the oral cavity seems straightforward, development and 

morphogenesis of oral structures depend on successful spatiotemporal regulation of different 

cellular processes. A disruption or alteration at any of the stages explained above will prevent the 

normal fusion of the lip and/or the palate resulting in a cleft. 

1.1.3 Human vs Mouse; A Comparison of Lip and Palate Structures  

  In spite of the prominent external differences between humans and mice, lip and palate 

structures demonstrate many similarities. The next section will focus on comparing humans and 

mice in 3 aspects: lip and palate development, lip and palate anatomy and lip and palate cleft 

types.  

Lip and Palate Development 

  During early craniofacial development, 32 day human and E10 mouse embryos, not only 

are human and mouse embryos similar in their shape and size but the formation of cleft and 

palate structures is basically the same.20  However, lip and palate formation in humans (lip: ~4 

weeks and palate: ~4-6 weeks) requires more time to complete when compared to that of mice 

(lip: ~2.5 days and palate: ~4-4.5 days).20 Other developmental differences are seen during 

palatal shelf elevation. There is evidence that the site of palatal shelf elevation might differ 

depending on the species studied.10 For example, in rats and humans, palatal shelves start to 

elevate in an anterior to posterior manner.10,21 On the other hand, recent histomorphological 
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analysis of palatal shelf elevation in mice has shown that the shelves start to elevate at the mid-

posterior region and then move to the anterior region. Once this takes place the most posterior 

end of the palatal shelves (presumptive soft palate) elevates.10  

  In addition to palatal shelf elevation, the fusion process might also differ between humans 

and mice. Evidence demonstrates that palatal shelves fuse first anteriorly (at the incisive foramen 

region) and then proceed posteriorly.21 Following fusion, the epithelial nests, or remnants formed 

in the midline (due to the generation of the MES), remain till birth after which they completely 

degenerate.21,22 On the other hand, there is conflicting evidence for the site of palatal shelf fusion 

in mice. Some evidence supports that fusion takes place anteriorly (at the incisive foramen 

region) and then proceeds posteriorly in a zipper like mechanism as in humans.23-25 Other 

evidence supports the notion that the fusion process posteriorly can occur independently of the 

fusion process anteriorly as seen in Shox2 knock out mice.26 Furthermore, the epithelial seam 

disappears completely and no epithelial remnants persist until birth.22 

Lip and Palate Anatomy (Selected Differences)   

  Despite the fact that lip embryogenesis in mice and humans is similar at early stages, the 

gross anatomy is clearly different. In contrast to our lips, close examination of the lips in mice 

reveal that their upper lips are normally fissured, exposing the upper incisors. Furthermore the 

lips are devoid of the vermillion border seen in humans. This border separates the skin from the 

oral mucosa and is rich in vascular supply. 27 

  As far as the anatomy of the hard palate, both species are anatomically similar. The 

anterior two thirds of the hard palate are composed of the palatal process of the maxilla and the 

posterior one third is formed by the horizontal plate of the palatine bone. The two bones are 
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joined by the transverse palatine suture. In the sagittal plane the bones of the hard palate are 

joined by the mid palatal and the interpalatine sutures, respectively. However, the midpalatal 

suture in mice is straight while in humans is interdigitated.27,28  

  Another difference is seen in the soft palate- in mice no uvula is seen at the midline 

whereas in humans, the uvula forms at the midline of the soft palate.27 

Lip and Palate Cleft Types 

  Oral clefts in humans are diverse and present with varying degrees of severity: unilateral 

or bilateral cleft lip only (CLO), unilateral or bilateral cleft lip and palate (CL/P) or cleft palate 

only (CPO). In CL/P, the cleft can involve the alveolar ridge and the primary palate or can be 

more extensive, involving the alveolar ridge, primary palate and secondary palate as well. In the 

case CPO, the cleft can involve the hard palate or the soft palate (bifid uvula) or involve both the 

hard and soft palate.20,29-32 Closer examination of the type of clefts seen in mice reveals that mice 

do have similar phenotypes to humans. For example, CPO and CL/P are seen in mice. However, 

in contrast to humans, CPO is more commonly seen in mice than CL/P.20 Furthermore, CLO is 

extremely rare in mice. Only one mouse model was found to have CLO where the cleft did not 

involve the primary palate and there was no evidence that the alveolus was involved. Though the 

cleft did not involve the primary palate, a cleft of the secondary palate was seen33. Other 

examples of CL in mice are more commonly seen involving the lip and both the primary and 

secondary palates20. Clefts of both the lip and the primary palate are seen less commonly.34,35 It 

is crucial to distinguish the fact that mouse models with midline clefts of the lip and the 

midfacial region36,37 are considered a different entity than the cleft lip mouse models discussed 

here38. The pathogenesis of a midline cleft lip differs from what was previously discussed 

regarding cleft lip. Midline cleft lip is seen when both medial nasal processes fail to fuse.38,39  
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1.1.4 Lip and Palate Development: Interspecies Variation 

The basic steps involved in palatal shelf formation vary across different species. In some 

species CP is considered as being the norm such as in birds and some reptiles. Tables (1.1 and 

1.2) address some of the known variations. The content of the tables 1.1 and 1.2 were adapted 

from Ferguson et al.40  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1 Interspecies variation in the embryonic origin of the 
secondary palate. Content adapted from Ferguson et al.40 

Vertebrate Hard palate Embryonic origin 

Mammals Primary and 
secondary palate 

Medial nasal processes 
(frontonasal origin) & 
maxillary processes

Birds
Primary and 
secondary palate 

Medial nasal processes 
& maxillary processes

Amphibians 
and some 
reptiles 
(certain species 
of snakes & 
turtiles)

Posterior growth 
of primary palate Frontonasal origin

Reptiles 
(lizards)

Primary and 
secondary palate 

Maxillary processes

Reptiles Primary and 
secondary palate 

Maxillary processes

 Crocodilians 
(alligators &
crocodiles)

Primary and 
secondary palate Maxillary processes
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1.2 Oral Clefts in Humans 

Oral clefts are among the most common congenital anomalies in humans with a 

prevalence of 1/700 live births.41-44 Oral clefts include a group of anomalies in which a cleavage 

of the lip and/or the palate is seen due to the abnormal embryonic development of these 

structures. Oral clefts can be divided based on the embryological origin of the affected structures 

into: 1. Cleft lip with/without cleft palate (CL/P) 2. Cleft palate (CP). There is a great variation in 

the prevalence of CL/P and CP among different geographical regions, races, ethnic groups and 

socioeconomic status. For example, higher prevalence of CL/P was seen in Latin America and 

Asia compared with lower prevalence in  Israel, South Africa and Southern Europe44. On the 

other hand, higher prevalence rates of CP were seen in Canada and parts of Northern Europe and 

lower rates were seen in pats of Latin America and South Africa. Furthermore, the prevalence of 

CL/P was the highest among Asians and Native Americans (1/500), intermediate among 

Europeans (1:1000) and the lowest among African American populations (1:2500).30,32,44,45  

Depending on the severity/ extent of the defect, CL/P can be divided into cleft lip only 

(CLO) and Cleft lip and Palate (CLP) (Fig 1.2). In CLO, the cleft can be complete (extending to 

the nostril and loss of Simonarts band) or incomplete (in which the nostril is not affected and 

Simonarts band is seen).46-48 As CLO, cleft lip and palate (CLP) has variable manifestations 

based on the severity: cleft lip combined with clefting of the alveolar ridge, cleft lip combined 

with clefting of both alveolar ridge and primary palate, cleft lip combined with clefting of the 

alveolar ridge, primary palate and the secondary palate (Fig 1.1). CP shows such variations in 

severity in which the cleft affects both the hard and soft palate or in which the hard palate only or 

the soft palate only are affected (Fig 1.1). CL/P is further categorized, based on the side being 

affected, into unilateral and bilateral clefts. Unilateral clefts are seen in 90% of CLO with the left 
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side being mostly affected (2/3 of the cases). However, a greater proportion of CLP patients 

(30.2%) show a bilateral involvement of the lips compared to the bilateral involvement seen in 

CLO patients (10.3%).20,41,44,49 CL/P is seen more in males compared to females at a 2:1 ratio. In 

contrast, CP tends to be more frequently seen in females compared to males.44  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Types of oral clefts in humans. A. a schematic representation of oral clefts 
in humans. B. Clinical cases representing variable severity of oral clefts in humans. 
Figure reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 
Genetics (Dixon, M. J., Marazita, M. L., Beaty, T. H. & Murray, J. C. Cleft lip and 
palate: understanding genetic and environmental influences. Nat Rev Genet 12, 167-
178, doi:10.1038/nrg2933 (2011), copyright 2011. 
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CL/P and CP can be associated with other anomalies and can be classified accordingly. 

The greatest prevalence of associated anomalies are seen with CP, followed by CLP, and the 

least prevalence is seen in CL. Congenital cardiac defects, limb and vertebral anomalies were the 

anomalies often seen in CL/P and CP.44 If no other anomalies are associated with CL/P and CP, 

then the cleft is known as isolated-non syndromic CL/P or CP.30,45,50 The frequency of isolated 

CL/P was around (76.8%). The rest of CL/P cases were either associated with other anomalies 

(15.9%) or were recognized as part of a syndrome (7.3%) in such case known as syndromic 

CL/P. On the other hand, the frequency of isolated-non syndromic CP was (54.8%), while the 

frequency of CP with other anomalies was (27.2%) and CP with anomalies as part of a 

recognizable syndrome (syndromic CP) were (18%).44 

1.3 Common Problems Associated with Oral Clefts 

Patients born with oral clefts suffer from different problems and complications. This 

section comes across the common problems associated with oral clefts in humans. These are:                  

Feeding problems: Proper feeding in a newborn requires normal sucking and swallowing 

mechanisms. A negative intraoral pressure is required to produce efficient sucking. The negative 

pressure is formed by a lip seal, elevation of the soft palate to close the nasopharynx, and 

expanding the intraoral cavity through contraction of the tongue or the movement of the mandible. 

A baby with CL/P will have an inefficient sucking mechanism because this negative intra oral 

pressure is lost. CL/P baby, depending on the type and affected structures, will not have a lip seal 

and/or will have abnormal anatomy of the soft palate muscles, the most important ones are levator 

veli palatani and tensor veli palatani. Because of the abnormal anatomy of the lip and palate the 

baby can have inefficient negative pressure and sucking, excessive air intake, regurgitation of milk 
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into the nasal cavity, choking, inadequate milk intake, failure to gain weight, prolonged feeding 

time and fatigue.51,52  

Upper respiratory tract infections, recurrent ear infections and hearing loss: the lack 

of separation between the oral and nasal cavities in CLP and CP patients results in the regurgitation 

of food and milk into to the nasal cavity and aspiration, inducing upper and lower respiratory tract 

infections.53,54 Furthermore, CLP and CP patients suffer continuous or recurrent otitis media with 

effusion (OME) that can lead to conductive hearing loss. In OME, the fluids build up in the middle 

ear for 3 months or more results in recurrent ear infections and damage to the ear drum. Patients 

with CLP and CP are more prone to OME due to A. regurgitation of food and milk into the nasal 

cavity that induces edema and inflammation of the orifice of the tube causing its blockage. B. the 

structure of the Eustachian tube due to multiple reasons one of which is the abnormal anatomy of 

the levator veli palatani and tensor veli palatani.55,56 

Dental anomalies: CL/P patients are known to have a higher prevalence of dental 

anomalies compared to non-cleft population.57-60 Some of the dental anomalies encountered in 

CL/P patients are missing teeth (with the lateral incisor to be the most common tooth to be absent), 

supernumerary teeth, microdontia (such as peg shaped lateral incisors, malformed teeth (enamel 

hypoplasia), taurodontism, dilacerations and others.57-60 It is evident that the prevalence of those 

anomalies varies between different studies in different populations. For example, several studies 

demonstrate that that agenesis of lateral incisors at the cleft side and supernumerary teeth are the 

most common and the second most common anomalies encountered in CL/P patients, 

respectively.57,58 On the other hand, the developmentally missing lateral incisor at the cleft side 

and taurodontism were the most common and the second most common dental anomalies 

encountered in a group of CL/P patients.61 Furthermore, there is evidence that the type of 
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anomalies seen can vary among different types of oral clefts.57 For example, Ackam et al found 

that dilaceration, taurodontism and dens evaginatus was only seen in unilateral left cleft lip and 

palate patients (UCLP).57  

Dental malocclusion: CL/P patients suffer abnormal growth of the craniofacial structures. 

However, there are few differences seen in the type of malocclusion among operated and non-

operated CP patients. In general, operated CL/P patients have concave faces, midfacial deficiency 

and Class III skeletal relation with varying degrees in severity (mild to severe). The antero-

posterior, transverse and vertical dimensions of the maxilla are deficient. Dentally, anterior and 

posterior cross bites are seen as well50,62. It is believed that the maxillary deficiency in operated 

cleft patients is due to: the tissue deficiency associated with cleft itself, the scarring associated 

with the corrective surgery, or the inherited genetic makeup of the patient.62 On the other hand, 

the maxilla in non-operated cleft patients (specifically UCLP) is normal or prognathic. The 

prognathism of the maxilla is seen on the non-cleft side therefore resulting in a hemifacial 

maxillary prognathism with the cleft side being retruded. Posterior molar relation tend to be normal 

with less frequency of posterior cross bites.62 In addition, there is evidence that the severity of 

malocclusion increases with the severity of the cleft.63 For example, in one study the frequency of 

Class III malocclusion with CLP (5.5 times) CP (3.5 times) higher than that seen in CL patients.64  

Speech problems: the anatomic abnormalities affecting the velopharyngeal function, the 

chronic/recurrent ear infections and hearing loss, dental abnormalities and malocclusion in CL/P 

patients contribute to a wide variety of speech problems. Some of the speech problems 

encountered in CL/P patients are resonance disorders (hyper and/or hyponasality), dentalizing 

alveolars (s,t).65,66 
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1.4 Etiology of CP 

It is agreed that the etiology of oral clefts (CL/P and CP) is multifactorial involving genetic 

and environmental factors. The etiology is even more complex as both genetic and environmental 

factors interact to modify the risk for developing oral clefts.20,30,45,67,68 Furthermore, CL/P and CP 

are not only developmentally distinct anomalies but also etiologically distinct.30,68 This belief 

originates from the observation that CL/P and CP do not segregate in the same family indicating 

that each of them has distinct etiologic factors. However, exceptions are seen where CL/P and CP 

are segregating in the same family with the same mutation contributing to CL/P or CP (known as 

mixed clefting).30,43,68 Mixed clefting is seen in cases involving mutations of IRF6, Msx1, and 

FGFR1.30,68 Since CP and the genetic factors regulating palatogenesis are within the scope of 

interest of this thesis, I will be focusing on the contribution of genetic factors to CP. I will touch 

on some of the environmental factors associated with increased risk of CP in humans. 

1.4.1. Genetic Factors 

 It was observed that the risk of CP is 56 times higher in the first degree relatives of a 

patient with CP compared to individuals with no family history of CP.41 There is a higher 

concordance rate in the CP phenotype in monozygotic twins (33%) compared with dizygotic 

twins (7%).69 These observations indicate that the genetic make-up of humans contributes 

greatly, but not solely, to the CP phenotype in humans.41,69   

CP in humans is seen with other developmental or cognitive defects where it is known as 

syndromic CP.30,67 More than 275 syndromes have oral clefting as a primary feature and are due 

to single gene mutations, chromosomal abnormalities or teratogens. About 75% of these 
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yndromes have an identified genetic component.67,70 Some examples of human syndromes with 

CP are presented in (Table 1.3) which was adapted and modified from Gritli- Linde20  

 

CP can be seen as an isolated anomaly i.e. with no other structural, cognitive 

abnormalities where it is known as non-syndromic CP. (Table 1.4) shows genes that are 

implicated in non-syndromic CP in humans.  

As shown in (Table 1.3) and (Table 1.4), the products of the genes implicated in 

syndromic and non-syndromic CP can be subdivided into 4 categories (Fig 1.2): 1. Signaling 

proteins and receptors. 2. Transcription factors and nuclear proteins. 3. Cytoplasmic and 

membrane bound proteins.4. Extracellular matrix proteins.20,71 An example of each subcategory 

is given in the following section. The genes that are chosen represent those associated with CP in 

humans and mice.  

Table 1.3. Examples of syndromic CP in humans. Note that the mouse model in some examples has either no cleft 
phenotype or different phenotype than human species. The table demonstrates that some syndromic CP genes can 
contribute to non-syndromic forms of CP. Content adapted from Gritli-Linde.20 

Gene Syndromic oral clefting, oral cleft type Gene product  Non‐syndromic  Mouse model

DHCR Smith–Lemli–Opitz syndrome, CL/P or CPO 3‐β‐hydroxysterol‐  
Delta 7‐reductase

No Yes, CPO

FGFR1 Kallmann syndrome (KAL2) , CL/P or CPO, TK receptor Yes Yes, CPO
FGFR2 Apert syndrome , CPO (in 44% of cases) TK receptor Yes Yes, no clefting
FOXE1 Bamforth–Lazarus syndrome , CPO TF Yes Yes, CPO

IRF6 Van der Woude (VWS), CL/P or CPO.         
Popliteal Pterygium syndromes (PPS) CL/P, 

TF Yes Yes, CPO

P63

Autosomal dominant Ectrodactyly–ectodermal 
dysplasia–cleft syndrome (EEC) syndrome, 
CL/P.   Hay‐Wells syndrome, CL/P.                                          
limb-mammary syndrome, CPO.

TF Yes Yes, truncated palate

TCOF1 Treacher–Collins syndrome, CPO Treacle              
(nucleolar protein)

No Yes, CPO

TFAP2A Branchio‐ oculo‐facial syndrome, CL and/or CP TF No Yes, midline clefting
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Table 1.4 Genes associated with non-syndromic CP in humans. Note that some of those genes are associated with 
syndromic forms of CP in humans.* PTCH associated mouse model is a conditional knock out. *SUMO1 associated 
mouse model is a haploinsufficient. Content adapted and updated from Gritli-Linde.20  

Figure 1.2 Functional classification of genetic factors contributing to 
oral clefts (including CP) in humans and mice. An example for each sub-
category and its contribution to CP in humans and mice is provided in 
the following section. 

Gene Human (Oral cleft type) Cytogenetic location Gene function Available mouse model, (Oral cleft type)
FGFR1 CL and CP or CP  8p11.23-p11.22   Receptor Yes, CP
FGFR2 CL and CP or CP 10q26 Receptor Yes, CP
IRF6 CL or CP 1q32.3-q41 Transcription factor Yes, CP
MSX1 CL or CP 4p16.2 Transcription factor Yes, CP
PTCH CL/P or CP 9q22.3  Receptor Yes, CL*
SATB2 CL/P or CP 2q33 Transcription factor Yes, CP
TBX22 CP Xq21.1 Transcription factor Yes, SMCP and ~7% CP
TGFβ3 CP 14q24 Signaling protein (growth factor) Yes, CP
TGFA CP 2p13 Signaling protein (growth factor) Yes, no clefting defect
SUMO1 CLP or CP 2q33 cytoplasmic and membrane bound protein Yes, CLP*
ESR1 CL or CP 6q25.1 Transcription factor (estrogen receptor) Yes, no clefting defect
PVR CL/P or CP 19q13.2 Poliovirus receptor Yes, no clefting defect
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Cell Surface Receptors: FGFR1 and FGFR2 Mutations 

In humans, loss of function mutations in FGFR1 are associated with Kallman syndrome 

in which CP or CLP is one of its features. Gain of function mutation in FGFR1 is associated with 

craniosynostosis features in humans.72 Mutations in FGFR2 specifically (S252W, S252F, and 

P253R) are seen in most cases of Apert syndrome.72 It is proposed that syndromes associated 

genetic mutations could contribute to non-syndromic CP by having hypomophic variants of these 

genes.72 Mutations in FGFR1 and FGFR2 were shown to contribute to non-syndromic CP and 

CLP in humans. 73,74 The role of these genes in human CP can possibly be better understood 

from Fgfr2b (-/-) and Fgf10 (-/-) mouse models which demonstrate CP phenotype beside other 

craniofacial and general abnormalities.75,76 In these murine models, it appears that the FGF 

signaling pathway plays an important role in palatal shelf growth. A significant reduction in the 

proliferation of epithelial (where Fgfr2 is highly expressed) and mesenchymal cells (where 

Fgf10 expression is limited) of palatal shelves contributes to the CP phenotype. Another 

observation was the reduced expression of Shh in the epithelium of both Fgfr2b (-/-) and Fgf10 (-

/-) mice. This observation revealed a possible role for FGF-SHH signaling network in palatal 

shelf growth. The positive feedback between FGF and SHH signaling is also demonstrated in 

mesenchymal knockout of SMO. In this case it was shown that Fgf10 expression was 

significantly reduced in the mesenchyme.6  

Transcription Factors and Nuclear Proteins: IRF6 Mutations  

Mutations in IRF6 gene are associated with van der Woude syndrome (VWS) and 

popliteal pterygium (PPS) syndromes in humans in which CL/P or CP is a major characteristic 

feature in humans. Mutations in IRF6 were also found to be associated with non-syndromic 

forms of CP in humans.77 The possible role of Irf6 in palatogenesis was discovered by studying 
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Irf6 (-/-) and Irf6 (R84C) knock in mouse models.6,78 Irf6 mutant mice showed an abnormally 

hyperproliferative epithelium which did not differentiate. The associated epithelial defect 

resulted in abnormal oral adhesions, CP and other associated abnormalities (abnormal limbs and 

skin).78 In addition, studies demonstrated that Irf6 (epithelial expression) is regulated by p63 

transcription factor (epithelial expression). In humans, mutations in p63 are associated with 

syndromic CP such as ectrodactyly ectodermal dysplasia-cleft lip/palate syndrome (EEC), 

ankyloblepharon ectodermal dysplasia clefting (AEC), and nonsyndromic split-hand/foot 

malformation (SHFM).79 In Mice, a null mutation for p63 results in abnormally thin, 

undifferentiated epidermis and CP. In p63 (-/-) mice, the expression of Irf6 in the palatal 

epithelium is reduced and p63 is found to bind to an enhancer sequence upstream of Irf6 and to 

promote a luciferase reporter expression driven by an Irf6 enhancer.6,77     

Nuclear Membrane Bound Proteins: SUMO1 

SUMO1 (small ubiquitin-related modifier) is part of the SUMO family (SUMO1-4). The 

SUMO family are responsible for the reversible posttranslational modification of proteins by 

SUMOlyation. As in ubiquitination, SUMOlyations requires will require other enzymes that 

results in the activation of SUMO and its addition to its target protein. In most of the cases a 

single SUMO is added or sometimes a poly-SUMO chain is added.20,80 In humans mutations in 

SUMO1 were found to be associated with both non-syndromic CL/P and CP.81,82 Interestingly, 

haploinsufficiency of SUMO1 in a mouse model (Sumo1Gt/+ heterozygous) resulted in an 

incompletely penetrant CP or oblique facial cleft (8.7%).83 Furthermore, SUMO1 is expressed in 

both the mesenchyme and the epithelium of mouse palatal sheleves.20,83 There is evidence that 

several proteins important for palatogenesis are being SUMOylated.20 
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Extracellular Matrix Proteins: Collagens (COL2A1 and COL11A2) 

In humans, mutations in collagens (COL2A1 or COL11A2) are associated with Robin 

sequence. Robin sequence has a combination of 3 out of 4 features: micrognathia, glossoptosis, 

obstructive apnea, cleft palate. Robin sequence is commonly seen as part of a syndrome (80%) 

such as Stickler syndrome, velocardiofacial syndrome. Non-syndromic forms of Robin sequence 

are less frequent (20%).84The role of collagens and their relevance to palatogenesis is 

demonstrated by examining the (cho/cho) homozygous mice which carry an autosomal recessive 

mutation in collagen (Col11a1). These mice demonstrate shortened heads and mandibles, U 

shaped cleft palates, short limbs. The cleft phenotype in these mice is believed to be due to the 

abnormal skeletal growth leading to a smaller mandible and a higher tongue position which 

prevents the palatal shelves from adhering. It was shown that cultured palatal shelves of 

(cho/cho) mice were able to adhere and fuse normally (no remnants of MES).71,85 

1.4.2. Environmental Factors 

The finding that the concordance rate of CP and CL/P phenotypes did not reach 100% in 

monozygotic twins demonstrates that non-genetic factors (such as environmental factors) 

contribute to such birth defects.45,68,69 This does not exclude the possibility that such dis-

concordance can be due to genetic and cytogenetic and epigenetic differences in one of the 

twins.69 However, the finding that the concordance in dizygotic twins is higher than the 

concordance rate among singleton siblings further supports the role of environmental factors in 

such birth defects.69  

Multiple environmental factors are associated with higher risk of CP or had a potential 

association with CP  in the population studied such as smoking,49,86,87 alcohol (well established 
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with oral clefts in fetal alcohol syndrome),49,86 vitamin A,88 maternal hyperthermia and viral 

infections during the first trimester49, anticonvulsant drugs such as diazepam, phenobarbital and 

phenytoin,49,86 corticosteroid therapy during pregnancy,49,86 nutritional deficiencies such vitamin 

B6 and zinc.49 Other environmental factors are associated with a lower risk of developing CP or 

possibly having a protective effect against CP such as folic acid supplements, multivitamin 

supplements.49  

Identifying environmental factors contributing to CP helps to identify the metabolic 

pathways that could be possibly altered and could be contributing to the formation of such 

defects.45  

1.4.3. Gene-Environment Interaction 

The cross talk between genetic and environmental factors and their effect on oral clefting 

was demonstrated in humans and mice. For example, evidence suggested that mothers who 

smoke have an increased risk (2 fold) of having babies with CP.86,89 However, if the infant had 

TGFα TaqI C2 allele variant and the mother was a smoker during pregnancy (≤10 cig/day) there 

was an increased risk of (6.16 fold) to have CP.86,90 Furthermore in the same study, if this 

specific polymorphism in TGFα was present but the mother was not a smoker the risk for having 

CP (0.9) fold higher therefore showing how the presence of an environmental factor can modify 

the risk for developing CP with specific genotype.90 

Moreover, experiments using mouse models demonstrated such cross talk. For example, 

upon examining the effect of cortisone on CP frequency in two mouse strains (different genetic 

backgrounds) A/J strain and C57BL/6, 100% of A/J mice offspring had a CP phenotype while 
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only 17% of C57BL/6 had CP. The two mouse strains obviously had different responses to the 

same teratogen under similar experimental conditions.20,91 

1.5 Types of Cleft Palate Mouse Models 

Mouse models are very useful for dissecting the genetic basis of palatogenesis.20,92 Our 

knowledge of how genetic factors contribute to oral clefts in humans was greatly advanced by 

studying CP murine models.20 Mouse models used to study CP can be divided into two main 

categories: Spontaneous CP mouse models and Induced CP mouse models (Fig 1.3).93 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Types of CP murine models. CP mutations studied in mice are either spontaneous 
(no intervention) or Induced (i.e. manmade mutations). 
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1.5.1 Spontaneous CP Mouse Models  

Mouse models in which CP occurs spontaneously (without human intervention) at a 

stable frequency are known as spontaneous CP mouse model.94 Examples of CP mouse models 

with the frequency of CP are: SW/Fr (6%), CF1 (3%), J/Glw (25%). The genetic cause of CP in 

theses strains has not been studied yet.50,95  

1.5.2 Induced CP Mouse Models 

Induced CP mouse models are produced through human intervention. Induced mutations 

are further subdivided into 4 main subcategories based on the strategy used: radiation induced 

mutation, chemical mutagenesis, targeted mutagenesis and insertional mutagenesis. 

Ionizing Radiation Induced Mutations 

Ionizing radiation is known to induce DNA damage (base pair damage, single and double 

strand breaks). Mutations induced by ionizing radiation can vary from point mutations to small 

deletion mutations, and can be more severe and result in major genomic rearrangement.96-98  An 

example of ionizing radiation induced CP mouse model is (p4THO-I/ p4THO-I) line which has a 

radiation induced deletion mutation at pink eyed dilution locus (p). These mice had pink eyes 

and CP with no other craniofacial abnormality (95%). The mutation was mapped Gabrb3 locus   

(β3 subunit of GABAA receptor). 20,99 

Chemical Mutagen Induced Mutations 

The N-ethyl-N-nitrosourea (ENU) is the most potent chemical mutagen in mice. ENU is 

an alkylating agent which can add an alkyl group to different atoms in a DNA molecule such as 

N-1, N-3, and N-7 groups of adenine; the O2 and N-3 groups of cytosine; the N-3, O6, and N-7 
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groups of guanine; the O2, N-3, and O4 groups of thymine; and the phosphate groups of the DNA 

backbone.100,101 ENU is known to induce point mutations, rarely small deletion mutations, 

randomly all around the genome.100,101 An optimal ENU dose can result in one mutation every 1-

1.5 Mb.100 The point mutations are mostly seen at A-T base pairs resulting in a transversion 

mutations (AT or TA) or transition mutations (A-TG-C).100,101 An example of a CP 

mouse model due to ENU mutagenesis is the cleft secondary palate 1 (csp1) mutant mice due to 

a point mutation in Prdm16 gene. The CP is due to the failure of palatal shelves elevation as a 

consequence to tongue obstruction and micrognathia.102 

Targeted Gene Mutations 

Gene targeting involves modifying a specific genetic locus by the use of homologous 

recombination between a targeting vector and an endogenous gene in mouse embryonic stem 

(ES) cells.103 The genetically modified ES cells are then microinjected into embryos at the 

blastocyst stage (8 cell stage) and are then transferred to a pseudopregnant female mouse. The 

resulting chimeric progeny (with the targeted mutation) are then crossed with mice of the same 

genetic background from which ES cells were derived.104 If the gene of interest is no more 

functional, i.e. not expressed or altered then the mouse model is known as a knockout model. On 

the other hand, if the line has a duplication of a target gene or a tailored mutation (such as point 

mutations) then the mouse model is known as a knockin model.104,105 The TGFβ3106 and Msx1107 

mouse models and Irf6R84C 108mouse model are examples of knockout and knockin CP mouse 

models, respectively. 

Ubiquitous gene targeting is sometimes associated with early embryonic lethality, 

therefore preventing researchers from examining the effects of gene targeting on the developing 

palatal shelves.93,104 A solution to this problem was the advent of conditional gene targeting in 
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which the target gene is modified only in a specific tissue and at a certain developmental stage. 

An example of a conditional gene targeting system is the Cre-loxP system. In this system, mice 

expressing the Cre recombinase enzyme in a specific tissue or cell line (i.e. driven by tissue 

specific promoter) are bred to another loxP mouse harboring loxP sites flanking the gene of 

interest. Breeding a Cre-mouse and a loxP mouse results in a progeny expressing Cre and having 

a target gene flanked with loxP sites. If the loxP sites are oriented in the same direction, the Cre 

recombinase would result in deleting the DNA segment. If the loxP sites are directed in opposite 

directions, the Cre recombinase would result in inverting the DNA segment flanked by the loxP 

sites.104 Tgfβr2 (K14- Cre)109 and Shox2 (Wnt1-Cre).110  

Insertional Mutagenesis 

Insertional mutations take place when the integration of an exogenous DNA results in the 

disruption or alteration of a functional gene; the mutation seen is due to the physical damage at 

the integration site rather than the expression of the transgene itself.111,112 Random insertions can 

be produced by microinjection of the transgene or viral infection (retroviral/lentiviral infection) 

into a zygote (single cell embryo).111 One example of an insertional mutant CP mouse model, 

generated by microinjection technique, is OVE427113. A detailed explanation of insertional 

mutations produced by this microinjection technique is present in chapter 2.  

Random insertions can be produced by the gene trap approach in embryonic stem cells 

which uses a trapping vector that has promoter-less marker/reporter with an upstream splice 

acceptor site and downstream poly-A signal.114,115 The trapping vector can integrate into an exon/ 

intron of a gene.116 Transcriptional activation of the trapped gene results in a fusion transcript 

containing part of the original transcript fused to the reporter.  The resulting fusion transcript 

represents an alteration of the original gene and at the same time a readout for the pattern of this 
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altered expression (due to the expression of the reporter).114,115 An example of a CP mouse model 

generated by gene trap approach is Sumo1(Gt/+) mutants.83 

Another approach for the generation of random insertions (random to a certain extent) is 

the use of DNA transposons, as the Sleeping Beauty (SB) transposon system.93,114 The system is 

composed of the transposase enzyme and the transposon substrate. The transposase identifies 

inverted repeats that flank the transposable element and then cuts the transposable element. This 

is followed by pasting the element (inserting) at another site with a TA dinucleotide. Therefore 

the transposition is done in a “cut-paste”.93,114 An example of a CP mouse model generated by 

such approach is the Smoc1 mouse model.117 
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1.6 Development of the Vertebral Column and the Ribs   

The term axial skeleton refers to head (skull and facial bones), vertebral column, and rib 

cage (ribs and sternum).118 This section focuses on the development of the vertebral column and 

the ribs due to their relevancy to the thesis. During gastrulation, paraxial mesoderm forms on 

each side of the axial structures (notochord and neural tube) due to the ingression of the 

epiblastic cells in the developing embryo.119,120  Paraxial mesoderm undergoes segmentation (is 

chopped off) to form blocks of epithelial cells known as somites.120,121 The pace of the 

segmentation process is unique across different species. For example in humans a new pair of 

somites is formed every 4-5 hours while in mice every 120 min.120,122,123 Somitogenesis (the 

formation of somites) is seen between 25-35 days post conception in humans and E8-E13 in 

mice.121,124 After the formation of the somites, 42 pairs in humans and around 65 pairs in mice125, 

they undergo differentiation. The cells on the ventromedial aspect of the somite will differentiate 

into the sclerotome while cells on the dorso-lateral part of the somite will differentiate in to the 

dermomyotome. The dermomyotome further differentiates into dermatome (produces the dermis 

of the back) and the myotome (gives rise to the body and limb musculature). The sclerotomal 

cells delaminate then surround the neural tube and the notochord. These cells will condense and 

differentiate into chondrocytes that form the cartilaginous skeleton which is then replaced by 

bony tissue i.e. the vertebral skeleton and the ribs which are formed by endochondral 

ossification.120,126 

The development of vertebra does not follow one somite one vertebra relation, but rather 

each vertebra is formed by a caudal half of one somite and the rostral half of the following 

somite.120 This takes place due to another segmentation process known as re-segmentation which 

happens in the sclerotomal compartment. The sclerotomal cells will rearrange into two cellular 
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compartments, rostral and caudal cells. The caudal cells from one somite will fuse with the 

rostral cells from the following somite and both contribute to the formation of the developing 

vertebra.121  

The resulting vertebrae differ in their shape and size and can be generally categorized 

based on their anatomical position to the cervical, thoracic, lumbar, sacral and coccygeal (caudal) 

vertebrae. The formula in humans is 7 cervical, 12 thoracic, 5 lumbar, 5 sacral and 4 coccygeal. 

The ribs are attached to the thoracic vertebrae and are classified as true ribs (1-7), false ribs (8-

10) and floating ribs (11-12).127,128 On the other hand, the mouse vertebral formula is 7 cervical, 

13 thoracic, 6 lumbar, 4 sacral and 30 caudal vertebrae. As in humans, ribs attach to the thoracic 

vertebrae whereas only the first 7 ribs are attached to the sternum.120,129 

1.6.1 Patterning the Axial Skeleton 

 During somitogenesis, the somites that are formed look similar. However, the somites 

eventually contribute to the formation of the vertebral column with characteristic morphological 

features.130 Genetic factors are known to regulate the segmental identity i.e. the type of vertebra 

each somite pair will form and its position along the anterior-posterior axis. Genetic factors 

regulating segmental identity and therefore the patterning of the axial skeleton can be subdivided 

mainly to transcription factors and signaling molecules.120  

Transcription Factors 

The classical example of a transcription factor regulating the identity of the developing 

vertebra is the Hox genes.120 These homeo-box containing genes are considered of the major 

players regulating the patterning of the developing vertebral column.129 In humans and mice, 

there are 39 Hox genes clustered in 4 groups (A, B, C, D) found on chromosomes (6, 11, 15, 2), 
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respectively. There are 13 paralogous groups with 2-4 members in each group. 131-133 Hox genes 

generally demonstrate a spatial-temporal colinearity in terms of their expression; the 3’ genes in 

each cluster are expressed earlier and contribute to determining the identity of anterior structures 

and the 5’ genes are expressed later and contribute to identity formation of more posterior 

structures.120,133 Little is known about how exactly Hox genes regulate the identity of the 

developing vertebral column.120,133  

Targeting Hox genes in mice revealed the significance of Hox3-Hox11 to the normal 

development of the axial skeleton. Some single Hox genes mutants in mice had phenotypes 

consistent with their colinear expression such as Hoxd3 which had defects in C1 and C2 vertebra 

and Hoxd11 had defects in patterning the sacral vertebra. On the other hand, other single and 

multiple mutants demonstrated a phenotype not consistent with the colinear expression pattern of 

the Hox genes. for example, single and multiple mutants of Hox5, Hox6, Hox7, Hox8, and Hox9 

group genes had defects in the rib on T1.133  

Loss of function mutations of single or multiple mutants are sometimes associated with 

anterior homeotic transformation. An example of such anterior homeotic transformation is seen 

in the case of Hoxb9 mutants (14th rib on first lumbar vertebra) and in Hoxa7/b7 double mutants 

(T1 to C7 transformation). Posterior homeotic transformations are also seen due to the loss of 

function of single mutants such as the extra rib seen on C7 in Hoxa5 and Hoxa6 mutants.133 

Evidence revealed that there is functional redundancy among paralogous Hox genes. It 

was also demonstrated that a synergistic phenotype is seen when more than one gene in a 

paralogous group is mutated.133 For example, single mutants of Hox4a, Hox4b and Hox4d had 

incompletely penetrant defects in C1 and C2 vertebrae. However, a combined triple mutant of 

Hox4a, Hox4b and Hox4d result in a fully penetrant anterior homeotic transformation in C2-C5. 
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By now, complete paralogous mutants have been generated for Hox5, Hox6, Hox7, Hox8, Hox9, 

Hox10 and Hox11 paralogous gene groups. In these mutants anterior homeotic transformation is 

seen.133  

Another example of transcription factors regulating the identity of the developing 

vertebral column is Caudal type homeobox gene family composed of Cdx1,2and 4.120 Cdx1 null 

mutants show anterior homeotic transformations, not as severe as those with Hox mutants, in the 

cervical and upper thoracic vertebrae. Cdx2 null mutation is embryonically lethal but 

heterozygote null mutants demonstrate anterior homeotic transformation in the cervical to 

thoracic vertebra transition. Cdx4 null mutants did not affect the axial skeleton. However, a 

combined null mutants of Cdx1 and 4 or Cdx2(+/-) and 4 resulted in a more severe anterior 

transformations.134 

Signaling Molecules and Receptors 

An example of cell surface receptors regulating the anterior posterior patterning is Fgfr1. 

Fgfr1 null mutation results in early embryonic lethality. However, hypomorphic Fgfr1 mutations 

were associated posterior truncations and anterior homeotic transformations (L1 has an extra pair 

of ribs). On the other hand, gain of function mutations in Fgfr1 were associated with posterior 

homeotic transformations (such as C7 vertebrae with ribs attached, T13 vertebrae lacking their 

ribs and becoming like L1 vertebrae).120,135 

1.7 Rib Anomalies (Supernumerary Ribs) 

Rib anomalies in humans include supernumerary ribs (SNR), forked ribs, fused ribs and 

pseudoarthrosis of the first rib.118,136 These anomalies are seen either in isolation or in association 

with other anomalies and as part of other syndromes.118,136 This section will focus on SNR due to 
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its relevance to this project. SNR (known as accessory ribs, extra ribs) can be categorized based 

on their anatomic position into cervical SNR, intrathoracic SNR, lumbar SNR, pelvic ribs. 

Intrathoracic and pelvic ribs are rare anomalies.118,136 Cervical ribs can be unilateral or bilateral 

and have a prevalence ranging from (0.04-4.5%).118 Lumbar SNR manifest as a unilateral or 

bilateral extra ribs with a prevalence ranging in (0.04%-5.8%) with one study reporting a 

prevalence as high as 15.8%.118,137 Cervical and lumbar ribs are commonly asymptomatic. 

However, their presence can cause some problems.118 For, example cervical ribs can cause a 

condition known as thoracic outlet disease which has vascular (cerebral embolism) and 

neurologic symptoms (extreme pain, migraine, and Parkinson’s like symptoms). The vascular 

symptoms seen are due to compression and associated reduction in the blood flow through 

subclavian artery and vein, and carotid arteries. The neurologic symptoms are associated with 

altered positioning of stellate ganglia, sympathetic ganglia and C7-T1 nerve roots.118,136,138 

Moreover, lumbar ribs can be associated with pain in the lumbar region and disc degeneration in 

L4-5.118,138 

1.8 Etiology of Supernumerary Ribs 

Little is known about the etiology of SNR in humans.118,137 However, evidence from 

animal models and humans suggests that both genetic and environmental factors contribute to the 

formation of SNR.118 For example, supernumerary cervical ribs were seen in a family across two 

generations. Furthermore, different mouse models targeting Hox genes (single and multiple) and 

other genes (Cdx and Fgfr1) demonstrate SNR (cervical and lumbar). The role of environmental 

factors in the etiology SNR is inferred mainly from animal models.118 Exposure to certain 

environmental factors was shown to cause SNR in mice, such as retinoic acid, valproic acid, 

salicylate and maternal stress.118,138  
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1.9 SNR Mouse Models 

As in CP mouse models, spontaneous SNR mouse models are available. For example, 

CD1 mice in which the frequency of SNR was between 14.3%- 25%. 118 SNR induced mutations 

in mice are also seen such as the radiation induced SNR model Pgap1oto mice have 

supernumerary cervical rib at C7, 139 ENU induced SNR model such as Rpl38Rbt mice which have 

an lumbar rib140, targeted SNR models such as Hoxa9 and Hoxb9 single and double mutants141 

and gene trap induced SNR models such as BC055757-/-  line which had an extra pair of ribs on 

L1.142 
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1.10 Specific Aims 

 

OVE1328 line, is an insertional mutant mouse model generated by microinjecting the 

tyrosinase transgene complex into an FVB/NJ single cell embryo. The integration site of the 

transgene is mapped to chromosome 4 (near the centromere). The recessive homozygous 

mutation in OVE1328 mice is initially found to be associated with perinatal lethality and CP. 

This projects aims to: 

• Aim 1: identify the phenotypic differences between OVE1328 (homozygous and 

hemizygous) line and the wild type FVB/NJ strain. 

• Aim 2: determine the gene/genes disrupted by the transgene integration and characterize 

the resulting mutation. 
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CHAPTER 2: PHENOTYPIC CHARACHTERISTICS OF OVE1328 TRANSGENIC 
LINE 

2.1 Introduction 

2.1.1 Insertional Mutagenesis in Mice  

In the early 1980s, successful delivery and integration of exogenous foreign DNA into 

the mouse genome was achieved. Mice harboring the exogenous material were known as 

transgenic mice.143Transgenic mice can be generated by either microinjecting the exogenous 

DNA into the pronuclei of a single cell embryo (zygote) or by lentiviral or retroviral infection of 

the developing embryo (at different stages of embryonic development) or by genetic alteration of 

embryonic stem cells (using transfection or viral infection).111,144    

 Pronuclear microinjection is mainly used to study the effect of expressing exogenous 

genetic material.144In this strategy, which is used to develop the mouse model studied in this 

chapter, the transgene randomly integrates into the genome, though there might be some bias to 

regions with open chromatin.143The transgene will integrate at one site or few other sites in the 

founder transgenic mice. One to hundreds of copies of the transgene can integrate in the genome 

in a tandem head to tail array. However, other less common arrangements are also seen (head to 

head or tail to tail). Little is known about the integration process of the transgenes.112,143,145,146 

Upon integration, the transgene will result in an injury at the insertion site: deletion, duplication 

mutations, rearrangements, translocations involving the insert and host genetic material.111,112,146 

These injuries induced at integration site can range from simple insertion 147 to extensive
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 deletions (in excess of 500kb) and complex rearrangements and chromosomal translocations.145 

This differs from viral infection strategy for gene transfer which results in a short (4-6bp) 

duplication in the host genome at the integration site with no other rearrangements or alterations 

in these sequences.111,112,144     

During transgenic mice generation, there is a 5-10% chance that the transgene 

(exogenous DNA) integration will disrupt a functional gene or alter its expression resulting in an 

insertional mutation. The actual frequency is probably higher since the reported frequency is 

based on observed mutations and prenatal lethal phenotypes.112,143,145 A major advantage of 

studying such mutations pertains to the presence of the transgene which can be used as a cloning 

tag to determine the mutation at the molecular level: a feature lacking in both spontaneous and 

induced mutations (chemical and radiation).111,148 Studying mouse insertional mutants provided a 

great tool to identify genes important for normal development (Table 2.1). Though studying such 

mutations is of great benefit, insertional mutations are sometimes hard to dissect and 

challenging. This is more of a problem in the presence of complex rearrangements or 

translocations or extensive deletions that might disrupt a group of genes.111,112   
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Insertional mutation phenotype  Gene   Reference 
Severe progressive glomerulonephritis Col4a4  and  Col4a3   149 
XX sex reversal Ods  150 
Vestibular and cochlear defects and 
hearing problems Sfswap  151 
Fragile stratum corneum, perinatal 
death due to dehydration Spink5 152 
Cleft palate Ap2β1 113 
Left-right reversal of abdominal 
visceral organs,polycystic kidney 
disease, severe jaundice, and die by 
seven days of age 

Invs 

 153 
Cryptorchidism and complete sterility Crsp  154 
No spermatids production in male and 
no eggs production in females 

Stag3 
 155 

 

2.1.2 General Background of OVE1328 Transgenic Line 

OVE1328 line, produced in Dr. Overbeek lab (Baylor College of Medicine) is one of 

many transgenic lines (>250 lines) generated by microinjecting tyrosinase minigene construct 

(alone or as a subcloned component of other plasmid constructs) into a zygote (Dr. Overbeek 

personal communication). The tyrosinase mini gene encodes tyrosinase enzyme, which is the 

first enzyme in the melanin synthesis pathway156. Melanin is responsible for skin, hair bulbs and 

eyes (retinal pigment epithelial cells) pigmentation in mammals156. The integration and 

expression of the tyrosinase transgene in the FVB/N mice rescues the albino phenotype (white 

fur and red eyes) resulting in an animal that has a pigmented fur and black eyes157. Because of 

these distinct physical characteristics, the use of the tyrosinase transgene represents a useful tool 

for distinguishing wild type mice from transgenic ones.157 

The transgenic mice generated were bred to homozygosity and examined for recessive 

insertional mutations. The breeding outcome in most of the cases resulted in normal progeny (Dr. 

Table 2.1. Murine insertional mutations are helpful to understand developmental processes. 
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Overbeek personal communication). However, several lines showed insertional mutations (Table 

2.1). About 15 lines had no viable adult homozygotes and 8 of these lines demonstrated perinatal 

lethality (Dr. Overbeek personal communication). Four of the lines with perinatal lethality had a 

CP phenotype (OVE lines 270,427,1226b and 1328) (Dr. Overbeek personal communication). 

These lines were kindly provided to our lab for further interrogation as our lab is interested in 

understanding the genetic basis of craniofacial development.  

Until now, 2 of these lines, OVE427 and OVE1226b, have been characterized while 

OVE270 line went extinct and was not studied. In OVE427 line113, the insertional mutation was 

mapped to the Ap2β1 gene located on mouse chromosome 11. This gene encodes β2 adaptin 

subunit of the heterotetrameric adaptor protein 2 (AP2) complex which is a player in the clathrin 

dependent endocytosis. The mutation associated with the transgene integration prevents the 

expression of β2 adaptin at mRNA and protein levels in homozygous mutants. Homozygous 

mutants did not have developmental defects other than CP.  

In OVE1226b line158, the transgene integration was mapped to the intergenic region near 

the 3’ end of collagen, type XI, alpha 1 (Col11a1) gene on mouse chromosome 3. The 

integration results in significant reduction of Col11a1 gene expression at both mRNA and 

protein levels. In addition to CP, homozygous mutants demonstrate micrognathia and 

chondrodysplasia.  

2.1.3 Generation of OVE1328 Transgenic Line 

OVE1328 founder mouse was generated by the pronuclear microinjection of tyrosinase 

minigene transgene complex in to an FVB/N albino single cell embryo (Dr. Overbeek personal 

communication). OVE1328 line was then generated by mating the OVE1328 founder mouse 
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(hemizygous for the transgene complex) and a Wt (FVB/N) albino mouse. The line was maintained 

for more than 20 generations. Homozygous mutants were generated by intercrossing OVE1328 

hemizygous male and female mice. Using fluorescent in situ hybridization (FISH), the transgene 

integration in OVE1328 line was mapped to chromosome 4 band A2, near the centromere159. 

The transgene complex used in generating OVE1328 line is composed of the 4.1 Kb 

tyrosinase minigene insert ( C57BL/6 tyrosinase cDNA driven by the Balb/c tyrosinase promoter 

(2.25Kb)) 157subcloned into an MSCV-neo vector driven by the human phosphoglycerate kinase 

promoter160and (Dr. Overbeek personal communication) . 

2.1.4 General Characteristics of OVE1328 Transgenic Line 

As seen in (Fig 2.1) there are few physical features that distinguish the OVE1328 

transgenic line from the Wt counterpart. The Wt albino phenotype (white fur, red eyes) is 

rescued in OVE1328 hemizygous mutant mice (grey fur and black eyes). Furthermore, there are 

no viable adult homozygous mutants as they demonstrate perinatal lethality. Some of the 

aforementioned differences during adulthood are also demonstrated during embryonic 

development. For example, transgenic OVE1328 embryos demonstrate black pigmented retina 

while Wt embryos lack pigmentation in their retina. 

The presence of CP in OVE1328 homozygous embryos distinguished them from 

hemizygous mutants which had normal palates.   
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This chapter aims to characterize the phenotypic differences between OVE1328 

homozygous mutant (Tg/Tg) embryos and their hemizygous mutant (Tg/+) and Wt counterparts.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 General physical differences between transgenic OVE1328 line and Wt mice. 
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2.2. Materials and Methods 

Husbandry and Timed Matings of OVE1328 Mice 

Founder mice were provided as gifts from Dr. Paul Overbeek (Molecular and Cellular 

Biology, Baylor College of Medicine, Houston, Texas). Mice were housed in the Division of 

Laboratory Animal Medicine (DLAM) facility, Koury Oral Health Sciences Building at UNC at 

a 12 hour light/dark cycle with ad libitum access to water and food. OVE1328 (Tg/Tg) embryos 

were generated by intercrossing OVE1328 (Tg/+) females and OVE1328 (Tg/+) males which 

were allowed to mate for 4-8 hours. Females were checked for vaginal plugs and the day the plug 

was detected was designated E 0.5. At E18 pregnant dams were euthanized using CO2 inhalation 

and death assured by cervical dislocation. Embryos were harvested by Cesarean section and 

euthanized using Ketamine 90mg/kg/ Xylazine 14mg/kg. Upon harvest litter size and embryo 

related information (position within the uterine horn, weight, eye color and the presence of CP) 

were recorded. Animal studies were approved by the University of North Carolina at Chapel Hill 

Animal Care and Use Committees.  

Genotyping OVE1328 Transgenic Line   

Genomic DNA was extracted from 174 pieces of embryo tails according to 

manufacturer’s instructions (Puregene Core Kit A, Qiagen Inc., Valencia, CA, USA). The 

presence of the transgene in embryos was confirmed by PCR (Promega Kit, Madison, WI, USA) 

using primer pairs designed across exon 1 and 2 of tyrosinase minigene as shown in 

(APPENDIX 2.1,2.2 and 3.9). In the presence of the transgene the primer pair amplifies a 700 bp 

product. However, the primer pairs are unable to amplify a product from genomic endogenous 

tyrosinase sequences (chromosome 7) as the amplification is hindered by the presence of intron 1 
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(8.495 kb) between the primer pair target sites in gDNA. This makes the primer pair very useful 

in distinguishing between Wt (no amplification product) and transgenic (700bp product) 

embryos. Furthermore, OVE1328 (Tg/+) embryos were distinguished from OVE1328 (Tg/Tg) 

embryos based on the CP phenotype. Embryo palates were checked for a cleft after each harvest.    

Histological Analyses of OVE1328 Line    

Wt, OVE1328 (Tg/+) and OVE1328 (Tg/Tg) E18 embryos were fixed in 10% neutral 

buffered formalin (1 week at 4oC), stored in 70% v/v ethanol at 4oC. Each embryo was cut into 

four parts (head, upper body third, middle body third, lower body third) and processed overnight 

to paraffin wax (containing DMSO) according to standard protocols. Paraffin infiltrated samples 

were embedded in DMSO free paraffin. Paraffin blocks were stored at -20oC. Both coronal head 

(from the snout through the posterior segment of the eye) and transverse body sections of the 

embryos were cut (6µm) and stained with H&E according to standard protocols. An optical 

microscope (Nikon, Alphaphot 2) was used to examine the sections at 40X and 100X 

magnification. 

Skeletal Clearing and Staining     

Wt, OVE1328 (Tg/+) and OVE1328 (Tg/Tg) E18 embryos were cleared and stained 161 

with slight modifications of incubation times as shown in (APPENDIX 2.3). Alcian blue 8GS 

and alizarin red were used for staining cartilage and bone, respectively. Stained skeletons were 

examined. Bones of right forelimbs (humerus, radius, and ulna) and hindlimbs (femur, tibia, and 

fibula) were dissected, mounted flat beside a calibrated ruler, and imaged using a dissection 

microscope with a digital image capture. Using an image and photo editing software (Paint.NET) 

a line was drawn through the central longitudinal axis of the bones and 3 repeated measurements 
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(in pixels) were recorded per bone. The average length of each bone in pixels was converted to 

millimeters using the imaged calibrated ruler. For rib cage examination, ribs on each side were 

counted 3 times on 3 isolated occasions. 

Cephalometric Measurements of Embryo Heads  

Wt, OVE1328 (Tg/+) and OVE1328 (Tg/Tg) E18 embryo heads were fixed in 10% 

neutral buffered formalin (1 week at 4oC), stored in 70% v/v ethanol at 4oC. Three images where 

taken for each head and a calibrated ruler was included in all of the captured images. Using an 

image and photo editing software (Paint.NET), 3 lines were drawn and were designated as the 

interpupillary distance (IPD, a line drawn between the centers of the pupil of both eyes), snout-

occiput distance (SOD, a line drawn from the tip of the snout to the mid-occipital margin), snout 

width (SW) (measured at a line demarcating the end of the thickened epidermis of the muzzle). 

The average length of each line in pixels was converted to millimeters using the imaged 

calibrated ruler.  

Micro-CT Scanning and Analysis 

Upper body third of Wt, OVE1328 (Tg/+) and OVE1328 (Tg/Tg) embryos (stored in 

70% v/v ethanol / 4oC) were scanned in air using the Skyscan 1074HR micro-CT (Skyscan, 

Aartselaar, Belgium). Pixel size (µm) =20.7. Scanning conditions were as following; Source 

Voltage (kV) = 40, Source Current (µA) = 1000, Exposure (ms) = 420. Reconstruction was done 

using NRecon program (Skyscan, Aartselaar, Belgium). Following reconstruction, CTAn 

software® (Version 1.9.1.0, Skyscan, Aartselaar, Belgium) was used to determine the tissue 

mineral density (TMD) of embryo humerii. TMD measurements were performed following 

calibration to hydroxyapatite phantoms (250mg/cc and 750mg/cc) (CIRS Inc., Norfolk ,VA, 
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USA). The cortical bone 1 mm below the deltoid tuberosity (right and left humerii) was selected 

as the region of interest (ROI). The selected ROI contained 49 contiguous transverse slices (each 

20.7µm thick). For every ROI a binary threshold was determined. An average binary 

threshold/genotype was calculated and named the universal threshold. Mean TMD was 

determined for the entire selection of slices/ sample based on the universal threshold calculated 

per genotype.  

Statistical Analysis 

For multiple comparisons one-way ANOVA followed by Bonferroni post hoc test was 

done. P values ≤ 0.05 were considered statistically significant. For limb measurement data, 

Generalized Estimating Equation (GEE) approach was used. 
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2.3 Results 

Phenotypic Characteristics of OVE1328 Transgenic Mouse Line 

Cleft of the Secondary Palate (CP) 

A total of 174 embryos were examined. Validated by PCR, 112 embryos were transgene 

positive (Tg) and 57 embryos were transgene negative (Wt). Among transgene positive embryos, 

74 embryos had normal palates (OVE1328 (Tg/+)) while 38 embryos had a V shaped CP 

(OVE1328 (Tg/Tg)) (Fig 2.2.A). Intercrossing OVE1328 (Tg/+) mice revealed that CP was 

inherited as an autosomal recessive trait. The genotype frequencies of Wt, OVE1328 (Tg/+) and 

OVE1328 (Tg/Tg) embryos were 32.8%, 42.5%, 21.8%, respectively (Fig 2.3). 

 

 

 

 

 

 

 

 

 

  

Figure 2.2. CP phenotype in OVE1328 line A. Oral view of Wt (+/+), OVE1328 
(Tg/+) and OVE1328 (Tg/Tg) embryo heads sans the mandibles (E18). Black 
arrow pointing to nasal cavity. Scale bar (distance between 2 horizontal lines) 
=0.86 mm. B. H&E stained coronal sections of anterior secondary palate for Wt, 
OVE1328 (Tg/+) and OVE1328 (Tg/Tg) embryos (E18). Scale bar =200um.   
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Histological examination of the palatal shelves in OVE1328 (Tg/Tg) embryos show 

elevated palatal shelves. However, the palatal shelves fail to make contact and fuse compared to 

Wt and OVE1328 (Tg/+) embryos which had intact palates (Fig 2.2.B).   

Histological Analyses 

Examination of histological sections of E18 embryo major organs including: heart and 

lungs (Fig 2.4 A); thymus (Fig 2.4 B); liver (Fig 2.5 A); kidneys and spleen (Fig 2.5 C); stomach 

(Fig 2.5 B) and intestines (Fig 2.6) did not reveal any significant differences in their 

morphologies among Wt and OVE1328 (Tg/Tg) E18 embryos.  

 

 

 

 

 

Figure 2.3. E18 Embryo genotype frequencies of OVE1328 (Tg/+) intercrosses. A 
total of 174 embryos were produced.  
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Figure 2.4. Histological analysis (H&E stained) of the heart, lungs, 
and thymus gland. A. Heart and lungs. B. Thymus gland. No 
differences were seen in general between Wt (n=3), upper panel, and 
OVE1328 (Tg/Tg) (n=3), lower panel, E18 embryos. Scale bar = 200 
um. 

Figure 2.5. Histological analysis (H&E stained sections) of some major organs A. Liver B. 
Stomach C. Kidney and spleen. No significant difference was seen between Wt (n=6), upper 
panel, and OVE1328 (Tg/Tg) (n=6), lower panel, E 18 embryos. Scale bar=200 um.  
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Growth delay 

Embryos with CP, OVE1328 (Tg/Tg), appear smaller than OVE1328 (Tg/+) and Wt 

littermates. As part of phenotyping and characterizing the OVE1328 line, OVE1328 (Tg/Tg) 

embryos (n=25) weighed on average ~13% less (P<0.001) than Wt (n=36) and OVE1328 (Tg/+) 

embryos (n=60) (Fig 2.7).   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Histological analysis (H&E stained sections) of the intestines in Wt and 
OVE1328 (Tg/Tg) E18 embryos. A. Wt (n=6) a B. OVE1328 (Tg/Tg) (n=6). No significant 
difference was seen in the intestinal structure. Scale bar=200 um.   

Figure 2.7. Average E18 embryo weights. OVE1328 (Tg/Tg) 
embryos weighed ~ 13% less (P<0.001) than Wt and OVE1328 
(Tg/+) embryos of same gestational age. Data presented as Mean± 
SD. (*): statistically significant difference. 
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Furthermore, examination of the cleared skeletons demonstrated that OVE1328 (Tg/Tg) 

embryos (E18) were generally smaller compared to Wt and OVE1328 (Tg/+) embryos (Fig 2.8). 

Reduced weight and size in OVE1328 (Tg/Tg) was an indication of probable growth delay. 

 

 

 

 

 

 

 

 

 

 

 

Further characterization of the cleared skeletons of E18 OVE1328 (Tg/Tg) embryos 

revealed shorter forelimb bones (humerus, radius, ulna), when controlling for the side, compared 

to Wt (P=0.0011, P=0.0008, P=0.0014) and OVE1328 (Tg/+) (P=0.0006, P=0.0022, P=0.0033) 

embryos. On the other hand, the mean lengths of hindlimb bones were not statistically 

significantly different across all genotypes (femur (P=0.0775), tibia (P=0.0767) and fibula (P= 

0.0972)) (Fig 2.9) and (APPENDIX 2.5, 2.6).        

    

Figure 2.8. Cleared skeletons of E18 embryos. 
OVE1328 (Tg/Tg) skeletons were generally smaller than 
Wt and OVE1328 (Tg/+) counterparts.  

Wt (Tg/+) (Tg/Tg) 
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Limb Mineralization  

Occasionally the cleared skeletons of OVE1328 (Tg/Tg) E18 embryos showed 

diminished mineralization (reduced alizarin staining) of metatarsals, metacarpals and phalanges 

compared to the Wt and OVE1328 (Tg/+) groups. To assess the degree of mineralization micro-

CT analysis of right (n=6) and left humerii (n=6) of OVE1328 (Tg/Tg) E18 embryos was 

performed and showed no significant differences in the mean TMD compared to Wt and 

OVE1328 (Tg/+) groups (n=6/genotype/side) (one way ANOVA, right humerus P=0.807, left 

humerus P=0.154) (Fig.2.10) and (APPENDIX 2.7).  

 

 

 

 

 

 

Figure 2.9.Mean lengths of forelimb and hindlimb bones of E18 Wt (n=10), OVE1328 (Tg/+) 
(n=12) and OVE1328 (Tg/Tg) (n=12) embryos. Controlling for the side, OVE1328 (Tg/Tg) 
embryos had shorter forelimb bones compared to Wt and OVE1328 (Tg/+) embryos. Data 
presented as Mean± SE. (*): statistically significant difference. 
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Cephalometric Measurements  

As part of interrogating size differences between OVE1328 line and Wt mice, E18 fixed 

embryo heads were examined. Mean head measurements of OVE1328 (Tg/Tg) embryo heads 

were similar to Wt and OVE1328 (Tg/+) groups as shown in (Fig 2.11) and (APPENDIX 2.8). 

There was no statistically significant difference between all genotypes with respect to mean 

length of inter-pupillary distance (IPD) (one way ANOVA, P= 0.062), snout width (SW) (one 

way ANOVA, P=0.811) and snout-occiput distance (SOD) (one way ANOVA, P= 0.146).  

 

 

 

 

 

 

 

 

Figure 2.10. Average TMD of right and left humerii from E18 Wt, 
OVE1328 (Tg/+) and OVE1328 (Tg/Tg) embryos (n=6/genotype/side). 
There were no significant differences in TMD between all genotypes. Data 
presented as Mean ± SE.  
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Supernumerary Ribs 

Thoracic cage of mice normally contains 13 pairs of ribs that originate from the vertebral 

bodies of 13 thoracic vertebrae. General examination of E18 embryo cleared skeletons showed 

that 85.71% of OVE1328 (Tg/Tg) embryos (n=7) had rudimentary supernumerary ribs (extra 

ribs, accessory ribs) (Fig2.12 and 2.13) and (APPENDIX 2.4). The unilateral (50%) or bilateral 

Figure 2.11. Comparison of E18 embryo head measurements between Wt, 
OVE1328 (Tg/+) and OVE1328 (Tg/Tg) embryos. Data presented as Mean± 
SE. IPD: inter-pupillary distance. SOD: snout occiput distance. SW: snout 
width.    
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(50%) accessory ribs arose from the vertebral bodies of the first lumbar vertebrae (Fig 2.14). All 

of Wt (n=5) and OVE1328 (Tg/+) (n=9) embryos had normal rib counts (13 pairs).        

Figure 2.12. A. Supernumerary ribs in OVE1328 (Tg/Tg) E18 
embryos. A. General view. Scale bar = 1 mm. B. Enlarged image 
of the rectangles. The supernumerary ribs are seen either 
unilaterally or bilaterally (black arrowhead). Scale bar= 0.5mm. 

Figure 2.13. Micro-CT X-ray projection image 
of OVE1328 (Tg/Tg) E18 embryo rib cage. Note 
the rudimentary accessory rib on the right side 
(white arrowhead). 
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Figure 2.14. Supernumerary ribs in OVE1328 (Tg/Tg) embryos. 
The pie chart shows the percentage of OVE1328 (Tg/Tg) embryos 
(n=7) having supernumerary ribs and depicts the variation in the 
supernumerary rib phenotype; unilateral, bilateral or absent. Pie 
chart key: 13/13 rib count (right side/left side).  
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2.4 Discussion 

Several phenotypic differences were observed between OVE1328 (Tg/Tg) embryos and 

Wt embryos. While OVE1328 (Tg/+) embryos were phenotypically similar to Wt embryos, 

OVE1328 (Tg/Tg) demonstrated growth delay, cleft of the secondary palate and supernumerary 

lumbar ribs (bilateral or unilateral).  

Examination of harvested embryo heads and H&E stained head sections revealed that 

palatal shelves successfully elevated but failed to fuse. A cleft of the secondary palate can be due 

to factors intrinsic to palatal shelves, such as lack of growth of palatal shelves, delayed or failed 

elevation, or in ability of the shelves to adhere and fuse properly. Additionally, cleft of the 

secondary palate can be due to factors extrinsic to the developing shelves such as small 

mandible, abnormally large tongue, and aberrant craniofacial growth.11,20,40 It would be useful to 

histologically examine the development of palatal shelves in OVE1328 (Tg/Tg) at different time 

points starting at E11.5-E16. By comparing palatogenesis (growth, elevation, horizontal growth, 

adhesion and fusion) in OVE1328 (Tg/Tg) to that of wild type, it would be possible to determine 

at which stage during secondary palate formation did the shelves deviate from the norm. Gross 

examination of the OVE1328 (Tg/Tg) embryo heads with dissected mandibles did not reveal 

significant differences in head dimensions compared to Wt group. However, it would be useful 

to examine the intermaxillary relations and the mandibular size in OVE1328 (Tg/Tg) embryos 

compared to Wt counterparts by examining µCT sagittal sections and skeletally cleared embryo 

heads.162   

Other than CP, OVE1328 (Tg/Tg) embryos had lumbar SNRs seen on L1 vertebrae. The 

lumbar vertebrae were seen either unilateral or bilateral and was not fully penetrant (85%). The 

presence of a lumbar rib on L1 indicates that L1 vertebrae are gaining a different identity that is 
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similar to T13 vertebrae, such transformation is known as anterior homeotic transformation. Hox 

genes are major regulators of anterior-posterior patterning.129 The lumbar rib phenotype is seen 

in several single, double and paralogous murine mutants of Hox genes (Table 2.2).163-167  

  

 

 

 

  

 

It is possible that the lumbar supernumerary rib phenotype seen in OVE1328 (Tg/Tg) 

embryos is associated with a defective Hox gene (code) or expression pattern. However, the 

phenotype in OVE1328 (Tg/Tg) does not fully capture the phenotype in any of the Hox mutants. 

This could be due to the effect of examining the phenotype in mice with different genetic 

backgrounds168 or the reduced expression of the Hox gene in OVE1328 (hypomorphic 

variant).However, the mutation in OVE1328 (Tg/Tg) might have affected other transcription 

factors (possibly unidentified yet) or other proteins known to be important for determining 

segmental identity. For example, hypomorphic Fgfr1 mutant mice (targeted mutation) 

demonstrate supernumerary rib phenotype at the lumbar vertebra L1, in addition to other 

developmental defects.135 It would be useful to examine the expression pattern of relevant Hox 

genes (in which an alteration is associated with lumbar SNR phenotype, (Table 2.2))  and the 

expression pattern of Fgfr1 and Fgf1 signaling pathway in OVE1328 (Tg/Tg). Using RNA 

extracted from dissected palatal shelves 

Table 2.2. Single, double and paralogous null mutations in Hox genes that contribute to L1 
supernumerary ribs. 

Hox gene null mutations L1 rudimentary or supernumerary rib Reference
c8 Yes 163
c8 & d8 Yes 163
b8 & c8 & d8 Yes 163
a9 Yes 164
c9 Yes, transitional L1 vertebrae 165
a10 Yes 166
a10 & c10 & d10 Yes, involving all lubar vertebrae 167
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CHAPTER 3: MOLECULAR CHARACHTERIZATION OF THE INSERTION 
MUTATION IN OVE1328 TRANSGENIC LINE 

3.1. Introduction 
 

During the process of generating transgenic mice there is a 5-10% chance that integration 

of the transgene complex results in a secondary mutation not related to the transgene 

phenotype112. During integration of the transgene complex in the mouse genome there can be 

genomic rearrangements that include deletions and inversions112.  When bred to homozygosity 

transgenic mice can display abnormal phenotypes most likely due to disruption a functional gene 

preventing or altering its expression112. In OVE1328 line, expression of the tyrosinase enzyme 

from the transgene complex rescued the albino phenotype in both hemizygous and homozygous 

mice. In addition to the rescued albino phenotype OVE1328 (Tg/Tg) mice had other phenotypic 

characteristics not related to the ectopic tyrosinase expression. This was confirmed by the fact 

that OVE1328 (Tg/+) mice did not show those phenotypic characteristics. Therefore it was of 

great interest to determine accurately the transgene integration site in the OVE1328 line and to 

identify potential gene/genes in which disruption is associated with the phenotype seen. To better 

understand the molecular basis of the mutation in OVE1328 line, a brief and general introduction 

to the transgene integration process and its sequelae at insertion site will be presented in the 

following section. 
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3.1.1 Transgene Integration Process 
 

 During the generation of transgenic mice, the plasmid DNA injected in the pronucleus of 

mouse zygotes can undergo concatenation followed by illegitimate recombinaton.146,169 

Concatenation is the formation of an array (concatemers) of exogenous DNA molecules. The 

associations of the DNA molecules can take different forms (head to tail, head to head and tail to 

tail).169 Head to tail association is seen more than the other forms at a ratio of 2:1:1, 

respectively.169 Furthermore, there is evidence that linear exogenous DNA undergoes 

circularization and random linearization.170 Extrachromosomal homologous recombination is 

believed to be involved in the process of joining exogenous DNA molecules in head to tail 

association. For the less frequent random associations (head to head, tail to tail) non-homologous 

end joining (NHEJ) is believed to be responsible for the formation of such random 

concatemers.146,171 In NHEJ, short sequence homology or deletions or insertions of up to 25 

nucleotides is involved in the process of joining the ends of two recombining DNA molecules.146  

The injected transgene or transgene array randomly integrates into the host (mouse) 

genome. The integration is mostly at one site or might be at few sites.146 In general, little is 

known about transgene integration mechanisms. 

3.1.2 Transgene Integration: Effects on Transgene and Genomic Loci at Insertion Site 

There is evidence that mutations such as point mutations, deletions and complex 

rearrangements (insertion of gDNA) modify the transgene sequence.111,112 It is however 

unknown whether such modification take place before or during the integration process.146 

Furthermore, genomic loci at insertions sites can also be mutated and rearranged. Such mutations 

include deletions, duplications and translocations.146 The disruption at a genomic locus could 

involve genes (coding sequence or the non-coding sequence) or predicted genes.146  
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3.1.3 Transgene Integration in OVE1328 Transgenic Line 

 OVE1328 mice homozygous for the transgene complex die during the perinatal period 

suggesting that the transgene complex integrated is a critical region of the genome. Fluorescent 

in situ hybridization (FISH) was used to localize the transgene complex to chromosome 4 band 

A2 (chr4:14,882,674-17,763,191 bp ± 2,000,000 bp).159 This significantly reduced the number of 

candidate genes to ~52 (NCBI Map Viewer as of 8.2014) (Table 3.1).  

 

 

Table 3.1. List of candidate genes present on chromosome 4 band A2 ± 2,000,000bp.  

Gene Symbol Genomic locus/strat Genomic locus/stop Gene Symbol Genomic locus/strat Genomic locus/stop
Triqk 12906837 12981485 Decr1 15917240 15945507

LOC102640073 13091351 13108752 Mir6400 15942900 15942991
LOC102640185 13283930 13307483 Nbn 15957967 15992589
LOC102639470 13444763 13447593 LOC102638365 15969473 15970509

Gm11826 13482690 13483193 Osgin2 15997121 16014725
LOC102640424 13515142 13584228 LOC102631758 16010943 16013487
LOC102640354 13585545 13592621 Ripk2 16122741 16163676

Runx1t1 13743302 13895056 A530072M11Rik 16164110 16266225
D930021N14 13919954 13995193 Gm11865 16246060 16250256

Gm11824 14170063 14170911 Gm11864 16390462 16391664
LOC102640675 14240289 14298100 Gm11862 16714956 16715620

Gm11836 14433877 14434481 Gm11848 17032691 17033656
Slc26a7 14502430 14621990 LOC102631866 17547344 17559733
Lrrc69 14623618 14796463 Mmp16 17853482 18118926
Otud6b 14809505 14826587 Gm11860 18009236 18010245

Tmem55a 14864219 14915260 Gm11853 18472198 18481668
Gm11837 14929908 14953031 Cnbd1 18767985 19122566
Necab1 14952245 15149804 Gm11868 18844205 18845679

LOC102640902 15021890 15031776 Gm12393 19259090 19259943
LOC102640824 15092189 15126287 Cngb3 19280850 19510623

Tmem64 15265820 15286753 Gm11877 19298257 19299183
LOC102631581 15287985 15328393 Cpne3 19519252 19570104
LOC102631507 15309164 15317408 Rmdn1 19575066 19606932

Gm11857 15636169 15636485 LOC102632171 19590105 19593590
Gm11855 15819062 15821373 Wwp1 19608296 19709004

Calb1 15881264 15906709 LOC102632246 19716576 19720179
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To further narrow down the number of candidate genes genotyping microarrays were 

used. The rationale for performing genome-wide profiling of single nucleotide polymorphisms 

(SNPs) was based upon the hypothesis that transgene complex integration in the OVE1328 line 

resulted in deletion of genomic DNA, including single nucleotide polymorphisms (SNPs). SNPs 

are normal variations in the nucleotide sequence of the genome.172 Microarrays are designed to 

identify such variations utilizing the principle of hybridization between different DNA 

molecules. If no hybridization takes place a single spot in the microarray, a no call is retrieved 

from that spot. Therefore, based on the hypothesis a pattern of lost SNPs (seen as a no call on a 

microarray) would be only seen with gDNA of OVE1328 (Tg/Tg) samples but not Wt samples.  

To test the hypothesis a JAX Mouse Diversity Genotyping Array (The Jackson 

Laboratory, Bar Harbor, ME) was used. This custom Affymetrix array interrogated 623,124 

single nucleotide polymorphisms (SNPs) and 916,269 invariant genomic probes (IGPs) in a 

mouse DNA sample. The average no call rate across 623,124 SNPs was 0.695% for Wt gDNA 

samples (n=3) and 0.635% for OVE1328 (Tg/Tg) gDNA (n=3) samples. Counting the no call 

rate across all chromosomes (excluding Y chromosome), chromosome 4 had the highest no call 

rate in OVE1328 (Tg/Tg) gDNA (52/36,748 SNPs) compared to Wt gDNA (26/36,748 SNPs). 

One group of contiguous SNPs (10 SNPs) showed a pattern of no call on chromosome 4 in 

OVE1328 (Tg/Tg) samples only. This group included a region of 34,443 bp (13,881,698-

13,916,141bp/ GRCm Build 38) of genomic DNA. Two of the SNPs in this group (rs28297363 

and rs28297360) were located in intron 13 of Runx1t1gene. The remaining SNPs were located in 

the intergenic region 3’ to Runx1t1gene.159 This preliminary data lead to the interrogation of 

Runx1t1 gene in OVE1328 (Tg/Tg) embryos (Fig 3.1).  
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3.1.4 Runx1t1 a Member of ETO (Eight Twenty One) Gene Family  

Runx1t1 is the murine ortholog of human RUNX1T1 (Table 3.2). RUNX1T1 a member of 

ETO gene family of transcriptional co-factors. The family is composed of closely related 

members; RUNX1T1 (also known as CDR; ETO; MTG8; AML1T1; ZMYND2; CBFA2T1), 

CBFA2T2 (also known as EHT; p85; MTGR1; ZMYND3) and CBFA2T3 (also known as ETO2; 

MTG16; MTGR2; ZMYND4). A great degree of homology is shared between ETO family 

members (Table 3.3). Furthermore, ETO family members structurally share 4 conserved 

domains/regions known as nervy homology region (NHR) due to their homology to Drosophila  

 

 

Figure 3.1 Diversity genotyping microarray data. A. SNP genotyping microarray data showing a group of no 
calls from contiguous SNPs across chromosome 4. The pattern of no calls is only seen with gDNA of 
OVE1328 (Tg/Tg) samples but not Wt samples. B. A schematic representation of the position of the 
contiguous SNPs with no calls seen among OVE1328 (Tg/Tg) gDNA samples. Key: red rods are SNPs with 
no calls and yellow rods are SNPs with calls.  
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Nervy protein and are discussed in the following section.173,174 Murine orthologs of ETO family 

members are presented in Table (3.2). Protein alignments of murine (C57BL/6J strain) ETO 

family members are 99%, 96% and 88% identical to human ETO family members (Table 3.3), 

respectively (Homologene, NCBI database 8.2014).  

 

 

 

 

 

 

 

 

 

 

 

 

Similarity to RUNX1t1 Isoform 1 Query Coverage Percent Identity    
RUNX1t1 Isoform 1 100% 100%
RUNX1t1 Isoform 2 95% 99%
RUNX1t1 Isofrom 3 95% 99%
CBFA2t2 Isoform 1 89% 66%
CBFA2t2 Isoform 2 89% 66%
CBFA2t2 Isoform 3 57% 59%
CBFA2T3 Isoform 1 94% 71%
CBFA2T3 Isoform 2 93% 71%
CBFA2T3 Isoform 3 93% 74%

Table 3.3 ETO family members are closely related proteins. The table demonstrates the 
high homology between murine family members when compared to RUNX1T1 isoform 1. 
Refer to (APPENDIX 3.13) for defining terms used in this table. 

ETO family member Chromosome Murine Ortholog Chromosome
RUNX1T1 8q22 Runx1t1 (aliases RP23-134H12.1, Cbfa2t1h, Eto Mtg8) 4 band A
CBFA2T2 20q11 Cbf2t2 (aliases RP23-109C16.1, A430091M07, C330013D05Rikh, Mtgr1) 2 band C
CBFA2T3 16q24 Cbfa2t3 (aliases A630044F12Rik, AI465270, AW229127h, Eto-2, Eto2, Mtgr2) 8 band E

Table 3.2. Murine orthologs of ETO family members and their aliases. 
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3.1.5 ETO Gene Family and Acute Myelogenous Leukemia (AML) 

The discovery of RUNX1T1 gene (Runt related transcription factor 1 translocated to 1; 

cyclin D related) goes back to early nineties where it was first identified in humans as part of the 

translocation (8; 21) (q22:q22); a commonly seen chromosomal abnormality in AML.175,176. 

AML is a clonal malignant expansion of hematopoietic stem cells in the bone marrow.177,178 

Chromosomal aberrations are commonly seen in AML with frequencies reaching up to 55% in 

adulthood AML and 76% in childhood AML.179 One of the most common translocations in AML 

involve RUNX1T1 gene in t (8;21) (q22;q22) where RUNX1-RUNX1T1 (also known as AML1-

MTG8, AML1-ETO) fusion gene is formed.180 CBFA2T3 gene is involved in the translocation t 

(16; 21) (q24; q22) where AML1-MTG16 fusion gene is formed.181 Recently, CBFA2T2 was 

found to be involved the insertional translocation ins (21; 20)(q22.12;q11.22q13.33).182  

3.1.6 Murine Runx1t1 Gene, mRNA and Protein Structure  

Murine Runx1t1 (NCBI Reference Sequence: NC_000070.6) gene was then cloned by 

Erickson et al in 1994.183 Runx1t1, formerly known as eight twenty one (Eto) gene or myeloid 

translocation chromosome 8 gene (Mtg8), is located on mouse chromosome 4 band A1 near the 

centromere (chr4:13,743,302-13,895,056/ + strand, GRCm Build 38) encompassing 151.75 kb of 

DNA. The gene is composed of 14 exons and 13 introns. Alternative splicing of the first 4 exons 

results in 3 distinct mRNA variants184 encoding 3 protein isoforms (Fig3.2) and (APPENDIX 

3.11,3.12).  
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As previously mentioned, RUNX1T1 protein (Fig 3.3) APPENDIX (3.12) is composed of 

4 conserved domains known as Nervy Homology Region (NHR) since homology to Drosophila 

protein Nervy.173,174 NHR1 (also known as TAFH) has homology to a few TATA binding protein 

associated factors ,such as human  hTAF 130 and Drosophila TAF110, and is required for 

subnuclear localization of RUNX1T1.185 NHR2 domain (also known as hydrophobic heptad 

repeat region) is required for homodimerization of RUNX1T1, heterodimerization of RUNX1T1 

with other ETO family members and binding to the co-repressor protein Sin3a.186 NHR3 domain 

is unremarkable but its presence is required for binding N-CoR.186 NHR4 domain has two zinc-

finger motifs. However, there is no evidence of DNA binding activity of RUNX1T1.187-189 On 

the other hand, there is evidence that NHR4 is required for RUNX1T1 interaction with other co-

repressors such as N-CoR, SMRT and for histone deactylases.174,186,190In addition to NHR 

domains there are several Proline-Serine-Threonine (PST) rich regions especially at the N and C 

termini of RUNX1T1. RUNX1T1is a phosphorylated protein and kinases phosphorylating 

Figure 3.2. Runx1t1 gene, mRNA structure. Alternative splicing of the first 4 exons results in 3 
distinct mRNA variants. All variants share exons 5-14. However, exon 2 and 3 are included in 
variant (1) only, the largest variant. While exons 1 and 4 are included in variants 2 and 3, 
respectively. 
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RUNX1T1 were discovered. However, little is known about the kinases and the physiological 

significance of RUNX1T1 phosphorylation.180,188,191,192  

 

 

3.1.7 Orthologs of Runx1t1 

Runx1t1 has orthologs in human, rat, chimpanzee, monkey, dog, chicken, and zebra fish 

species (Table 3.4). (Homologene, NCBI database 8.2014) 

 

3.1.8 Runx1t1 Expression  

In mouse species, Runx1t1 message is detected in whole mouse embryo extracted 

RNA.193 RT-PCR demonstrates an expression of Runx1t1 as early as Theiler stage 1 (E0-0.5) 

(Gene Expression Database, Aug 2014)194. Runx1t1 expression showed a pattern where the gene 

expression greatly increased in developing embryo at E7 to E11. The expression was maintained 

Species Percent Identity Query Coverage M.Musculus (Runx1t1 Isoform 1)
D.rario (Zebra fish) 91% 92%
G.gallus (Chicken) 97% 93%

C. lupus  (Dog) 98% 96%
M.Musculus (Mouse)    100% 100%

R.norvegicus (Rat) 99% 95%
H.sapiens (Human) 99% 95%

P.troglodytes (Chimpanzee) 99% 95%
M.mulatta (Monkey) 96% 95%

Table 3.4. Orthologs of Runx1t1. (Homologene, NCBI database 8.2014) 

Figure 3.3. Domain structure of RUNX1T1 protein.  
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through E17.193Furthermore, Runx1t1 is expressed in the brain, lung, ovary, testis, heart, spleen 

based on northern blot195 and RNA-seq data (EMBL-EBI Expression Atlas, Aug 2014 

http://www.ebi.ac.uk/gxa/genes/ENSMUSG00000006586)196.  The highest expression for 

Runx1t1 is found in mouse brain as was demonstrated by northern blot data 183 and RNA-seq 

data (EMBL-EBI Expression Atlas, Aug 2014 

http://www.ebi.ac.uk/gxa/genes/ENSMUSG00000006586)196. However, the expression is higher 

in the developing mouse brain when compared to the adult one as demonstrated by northern blot 

data.183 Runx1t1 message is also moderately expressed in the axial skeleton and in the 

developing limb buds at around E14 as was shown by in situ hybridization and whole mount in 

situ hybridization (Gene Expression Database, Aug 2014)194 and EMAGE gene expression 

database (http://www.emouseatlas.org/emage/)197 

3.1.9 Subcellular Location of Runx1t1  

RUNX1T1 is mostly seen in the nucleus.173,191,198 Evidence supports the presence of 

RUNX1T1 in specific nuclear bodies known as ETO-nuclear bodies (ENB).185 It was 

demonstrated that a RUNX1T1 (241-280 a.a), located between NHRI and NHRII domains, 

contain the nuclear localization signal (NLS) and is required for the nuclear entry of RUNX1T1 

through an importin dependent pathway.185 In addition, RUNX1T1 (114-216 a.a), most of which 

is represented in NHRI domain), was shown to be required but not sufficient for the formation of 

ENB.185 

Immunohistochemical staining of RUNX1T1 demonstrated its presence in the 

cytoplasmic and nuclear compartments of neural cells.199 For example, the presence of 

RUNX1T1 in the cytoplasm was demonstrated in Purkinje cells and the nuclei of the neurons in 

the molecular layer of adult mouse and human cerebellum.199 Furthermore, RUNX1T1 was 
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localized in the nucleus of the developing brain of E12.5 mouse embryo. However, primary 

culture of hippocampal neurons of newborn mice showed both nuclear and cytoplasmic 

localization of RUNX1T1.199Based on the available evidence nuclear and cytoplasmic 

localization of RUNX1T1 seems to be cell type dependent and developmental stage 

dependent.200  

3.1.10 Biological Functions of Runx1t1 

 

Cancer 

Most of the studies looking into the biological functions of RUNX1T1 has examined its 

role as part of the fusion protein RUNX1-RUNX1T1 in AML with t (8; 21). The fusion protein 

seems to regulate hematopoietic stem cell differentiation, proliferation and apoptosis.201For 

example, expression of RUNX1-RUNX1T1 inhibited the differentiation of several hematopoietic 

stem cell lines such as 32D , L-G, MEL, U937 and K562.201 Furthermore, the fusion protein was 

shown to enhance G-CSF dependent cellular proliferation in L-G and 32D myeloid progenitor 

cell lines202,203 and induce apoptosis as seen in U937 cell line through JNK signaling pathway.204 

in addition to the pro-apoptotic roles there is evidence that the fusion protein induces the 

expression of BCL2 (anti-apoptotic factor) as seen in U937 cell line expressing RUNX1-

RUNX1T1.205   

In vivo studies, on the contrary to the aforementioned in vitro studies, demonstrated that 

the expression of RUNX1-RUNX1T1 is unable to promote leukemogenesis on its own and that 

additional secondary mutations are needed for AML formation.201,206 

Other than AML, RUNX1T1 may have potential roles in certain solid cancers as such as 

ovarian207, breast, lung, colorectal and head208,209 and neck squamous cell carcinoma.210 In those 
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studies, RUNX1T1 was significantly down-regulated207, up-regulated210 or had somatic point 

mutations.208,209   

 Development  

Neurogenesis: though RUNX1T1 has been implicated in few developmental processes 

little is known about how RUNX1T1 regulates those processes.  For example, RUNX1T1 and 

other ETO family members have distinct expression patterns in developing nervous system as 

was demonstrated in mouse and chick developing spinal cords.211,212Specifically the expression 

pattern of RUNX1T1 changes from being expressed ventrally (in motor neurons) to dorsal 

expression (involving post-mitotic neurons) between E4-E7 embryonic days as was 

demonstrated in chick embryo spinal cord. In the same study, transcription assay revealed that 

RUNX1T1 inhibited the transcription of NEUROG2 and ASCL1, neuronal differentiation bHLH 

transcription factors, however to a lesser extent compared to other ETO family members.211  

Adipogenesis: RUNX1T1 has been shown to regulate early adipogenesis. RUNX1T1 

was shown to inhibit the transcription from C/CAAT-enhancer binding protein /alpha (C/EBPα), 

a master regulator of adipogenesis, by preventing the binding of C/CAAT-enhancer binding 

protein /beta (C/EBPβ), to C/EBPα promoter and therefore preventing the activation of the 

adipogenic program required for the formation of the differentiated adipocytes.198 

Pancreatic development: recently, RUNX1T1 has been implicated in the normal and 

ectopic development of pancreatic beta cells of Xenopus species.213 

Gut development: the role of RUNX1T1 in normal gut development was demonstrated 

in Runx1t1 knockout murine model.214 The midgut was absent in 25% of the knockout animals. 

The rest of the knockouts had an abnormal gut structure where they had thin intestinal walls and 
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widened lumens. The villi were reduced in length, disorganized, thicker and fewer in number. A 

closer examination of the knockout model is discussed in the following section.  

3.1.11 OVE1328 Transgenic Line and Runx1t1 Knockout Model  

Calabi et al214 generated a Runx1t1 knockout model by targeted disruption of exon 2. The 

disruption of exon 2 was shown to knockout RUNX1T1. Homozygous mutants had other 

problems in addition to the gut problems just discussed. Homozygous mutant (knockout) mice 

had reduced survival While 100% of the homozygous mutants (knockouts) viability. While 

100% of homozygous mutants survived at birth only ~19% survived till postnatal day 15 (P15). 

Furthermore, growth impairment was seen in pups surviving beyond postnatal day (P2) where 

the weights of homozygous mutants were 30-50% less than wild type counterparts. Furthermore, 

sterility was seen in male homozygous mutants only albeit having normal testicular size and 

morphology. There were no abnormalities detected in other organs where RUNX1T1 is known to 

be expressed.  

When comparing OVE1328 model to Runx1t1 knockout model several major differences 

are seen. These are summarized in (Table 3.5). 

  

 

Mouse Model OVE1328 Model Runx1t1 Knockout Model
Genetic bacground FVB/NJ strain Mixed background (129/Sv and C57BL/6)
Viability no viable adults (perinatal lethal) Reduced viability, few mice make it till adulthood

Growth 
OVE(Tg/Tg) have growth delay and 
weigh ~13% less than Wt counterparts

Growth retardation in > 2 days old pups. 
Homozygous mutants weigh 30-50% less than Wt 
conterparts.  

Cleft palate  Cleft of secondary palate No evidence 

Gut phenotype Normal gut Missing midgut (25%) and abnormal structure 
(75%) 

Table 3.5. Comparison of OVE1328 and Runx1t1 knockout models. 
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3.1.12 Runx1t1 Neighborhood: Gm11823 Gene 

 

Downstream (26.305 kb) of Runx1t1 resides a long intergenic non coding RNA predicted 

gene (lincRNA gene) known as Gm11823.The gene (75.24 kb) is located on the minus strand at 

13,919,954-13,995,193 bp , GRCm build 38. Gm11823 (also known as D930021N14,RP23-

134H12.2) has 3 exons and 2 introns and is predicted to encode a single transcript (2.278 kb). 

Little is known about the function and expression of Gm11823. Till present no knockout mouse 

model is available for Gm11823. (NCBI data base, Gene ID: 329797 and Ensembl data base, 

release 76, Aug 2014)215 

3.1.13 Gm11823: Potential Roles as a Long Intergenic Non-Coding RNA Gene 

Long non coding RNAs (LncRNA) are RNA species that are more than 200 nucleotides 

(Nt) in size with no protein coding ability.216-218 This size limit distinguishes lncRNA from small 

RNAs (such as miRNA, siRNA, snRNA, piwiRNA) based on RNA preparation methods.216-218 

There are some caveats with this definition as some lncRNA have both coding and non-coding 

abilities.219-221 Furthermore, many of  lncRNAs are transcribed by RNA polymerase II (pol II) 

and might be polyadenylated.222With regard to their cellular location, lncRNAs are detected in 

both the nuclear and cellular compartments.216There are around ~14,000 and ~5,000 lncRNA 

genes in humans and mice species (GENCODE data base version 20/2013, M3/2013), 

respectively.  

LncRNA can be categorized into 5 main groups223 based on the genomic locus from 

which these RNAs are transcribed with respect to the surrounding genomic markers: (1)Stand-

alone RNA (also known as long intergenic or intervening non coding RNA (lincRNA)). This 

group of RNA is transcribed from genomic loci that are outside the boundaries of protein coding 
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genes. They are transcribed by pol II and polyadenylated and can be spliced. The average size for 

such RNAs is 1 kb. Gm11823 gene belongs to this group. (2) Natural antisense transcripts (NAT) 

are RNA molecules transcribed from the opposite DNA strand of coding and non-coding genes. 

224 The NAT are usually clustered around the 5’ end or the 3’ end of the sense transcript. 

Splicing and polyadenylation is seen few NAT. (3) Transcripts from pseudogenes: pseudogenes 

are genes with structural similarity to other coding genes with mutations that render them unable 

to produce fully functional proteins. Those genes can be produced by gene duplication or 

retrotransposition.225About 2-20% of those genes have transcripts. (4). Long intronic non coding 

RNA: those are RNAs transcribed from introns of annotated genes. (5) Divergent, promoter 

associated and enhancer RNA: group is sense or antisense RNA species (20-2500 nt in size) that 

are transcribed from regions close to the transcription start sites such as promoter and enhancer 

regions.223  

Little is known about the biological functions of lncRNA.219 LncRNA have been 

implicated in X chromosome inactivation such as (XIST), genomic imprinting such as (AIRN), 

neuronal development such as (EVF2) and in many types of cancer including breast, liver, 

pancreatic, colorectal, prostate such as (MALAT1, HOTAIR).216,223  The mechanism of action of 

lncRNA is not fully understood but there is evidence that lncRNA can function in cis or trans.219 

Epigenetic (specifically chromatin modulation), transcriptional and posttranscriptional regulation 

of gene expression is seen with different lncRNAs (Fig 3.4).226 
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3.1.14 Runx1t1, Gm11823 and Their Alignment to Human Genome 

Runx1t1 human ortholog (RUNX1T1) is present on chromosome 8q22 (chr8: 91,954,967-

92,103,226/ minus strand). Furthermore, Gm11823 gene aligns as well to part of another 

lincRNA gene present on chromosome 8 (chr8: 91,542,924-91,907,619/ minus strand) and is 

known as RP11-122C21.1, ENSG00000253901 (Ensembl Database, release 76, Aug 2014)215 

(Fig 3.5). Closer examination of these orthologs reveals that the order of these genes is 

conserved between human and mouse chromosomes (synteny) (Ensembl Database, release 76, 

Aug 2014)215 as shown in (Fig 3.6).  

 

Figure 3.4. Gene regulation by lncRNAs. Gene regulation by lncRNAs can take place at different 
levels; epigenetics, transcriptional, posttranscriptional and posttranslational levels. Figure content 
adopted from Geisler et al.226 
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Figure 3.6. Syntenic regions between mouse chromosome 4 and 
human chromosome 8. Screenshot adapted with permission from 
Ensembl database (release 76, August 2014). 
http://Oct2014.archive.ensembl.org/info/website/archives/index.html  

 

Figure 3.5 Graphical alignment of Gm11823 (lincRNA) to RP11-122C21.1 human (lincRNA) on 
chromosome 8. RP11-122C21.1 is downstream of RUNX1T1 gene. Screenshot adapted with permission from 
Ensembl database (release 76, August 2014). 
http://Oct2014.archive.ensembl.org/info/website/archives/index.html  
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3.2 Materials and Methods 

 

RNA Extraction 

Total RNA was extracted from Wt, OVE1328 (Tg/+) and OVE1328 (Tg/Tg) E18 embryo 

heads using RNeasy Midi Kit (Qiagen Inc., Valencia, CA, USA) according to manufacturer 

recommendations. Extracted RNA was dissolved in RNase free water. RNA quality (RIN cutoff 

value = 9) and quantity was assessed using Agilent Bioanalyzer 2100 (Lineberger 

Comprehensive Cancer Center Genomics Core Facility) and NanoDrop 1000 ® 

spectrophotometer NanoDrop Technologies Inc., Wilmington, DE, USA), respectively. RNA 

samples were stored at -80 °C.  

Conventional PCR 

RNA samples were subjected to cDNA synthesis using (High Capacity cDNA reverse 

transcription kit, Applied Biosystems, Grand Island, NY, USA). Custom oligonucleotide primers 

(APPENDIX 3.1-3.10) were designed using Primer 3® software227 and generated by (Invitrogen, 

Grand Island, NY, USA).  PCR products were generated (APPENDIX 3.9) using (Go Taq ® 

PCR Core System I, Promega, Madison, WI, USA) and electrophoresed in 2% agarose gel at 100 

Volts (V) for 2-3 hours. Fidelity of PCR products were confirmed by DNA sequencing (Eton 

Bioscience Inc., Durham, NC, USA). 

RNA-Seq 

Total RNA was extracted from E18 Wt (n=3) and OVE1328 (Tg/Tg) (n=3) embryo 

heads. RNA was checked for quality and quantity as previously mentioned. cDNA libraries were 

constructed for RNA samples after rRNA depletion (RiboZero Magnetic kit, Epicenter, Madison, 
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WI, USA) at the High Throughput Sequencing Facility (HTSF)/UNC. The libraries (SMARTer 

Universal Low Input RNA Library Prep Kit, Mountain View, CA, USA) were subjected to 100 

bp paired end sequencing using Illumina platform (Illumina HiSeq 2500). Samples were 

multiplexed in a single flow cell. Reads were aligned to mm10 genome assembly using TopHat2 

(2.0.11).228 To determine the transgene insertion site, the following reads from the three 

OVE1328 (Tg/Tg) mice were pooled: unmapped reads, reads aligning to a region containing 

Runx1t1 and GM11823 (chr4:13,743,102-13,995,393), and reads aligning to a region containing 

Tyr (chr7:87,427,205-87,493,611) (aligned reads extracted using SAMtools 0.1.19)229. De novo 

assembly of the selected reads was conducted using Velvet 1.2.10230 and Oases 0.2.08231, 

merging transcripts built using 27- and 29-mers. The resulting contigs were aligned (BLAST+ 

2.2.29)232 to a custom BLAST database consisting of mm10 genome assembly and sequences 

known to be contained in the transgene construct. The BLAST results were filtered to find 

contigs that align to part of the transgene construct and at least one other sequence (from mm10 

genome assembly or transgene). Only 2 contigs had part of the transgene and Runx1t1 (contig 

15360) or the transgene and Gm11823 (contig 4450). PCR was used to validate the contigs using 

custom oligonucleotide primers (APPENDIX 3.7 & 3.8).   

Northern Blot  

Total RNA (30ug) was electrophoresed in formaldehyde-agarose gel (1.8% -1.2%, 

respectively) pre-stained with 0.4% Gel Red (TM) Nucleic Acid Gel Stain (Biotium Inc., 

Hayward, CA, USA). The samples were allowed to run for 4-4.5 hours at 45-50 V. 

Electrophoresed RNA was subjected to alkaline treatment (0.05 N sodium hydroxide (NaOH)) 

for 20 min,233 transferred to uncharged nylon membrane (MagnaGraph, M.S.I., Westboro, MA, 

USA) in 20X saline-sodium citrate (SSC) buffer for 4 hours. Pre-hybridization/ hybridization (at 
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62 °C) were done using DIG Easy Hyb (Roche Diagnostics Corporation, Indianapolis, IN, USA) 

according to manufacturer instructions.  Digoxigenin (DIG)-labelled cDNA probes (1-2ul/ml 

hybridization buffer) were used for hybridization. The DIG-labelled probes were generated using 

Go Taq ® PCR Core System I (Promega, Madison, WI, USA) and Digoxigenin-11-dUTP 

(Roche Diagnostics Corporation, Indianapolis, IN, USA). Runx1t1 cDNA custom primers (5-16) 

(APPENDIX 3.1& 3.2) were used for probe generation. Membranes were washed at high 

stringency conditions (0.1X SSC, 1% w/v sodium dodecyl sulfate (SDS) at 62 °C). 

Chemiluminescent detection (CSPD, Roche Diagnostics Corporation, Indianapolis, IN, USA) 

was used according to manufacturer instructions. Blots were exposed to film (Amersham 

Hyperfilm TM ECL, GE Healthcare, Pittsburgh, PA, USA) for 4 hours. The membranes were then 

stripped and reprobed with DIG- labelled β-actin RNA probe (Roche, Roche Diagnostics 

Corporation, Indianapolis, IN, USA) according to manufacturer instructions.    

Western Blot 

Wt, OVE1328 (Tg/+) and OVE1328 (Tg/Tg) embryo heads (with cut snouts and 

mandibles) were homogenized with SDS buffer (0.1% w/v SDS, 2.42% tris-base, 3.5% sodium 

chloride (NaCl), 0.117% ethylenediaminetetraacetic acid (EDTA)) and using a tissue 

homogenizer (Tissue Tearor, Biospec Products Inc., Bartlesville, OK, USA). Protein 

concentration was determined using BCA Protein Assay Kit (Pierce/Thermo Scientific, 

Rockford, IL, USA) according to manufacturer instructions. Protein samples (20-25µg) were 

resolved on NuPAGE 4-12% Bis-Tris gel (Novex®, Life Technologies, Grand Island, NY, USA) 

and transferred on to a (0.45 µm) nitrocellulose membrane (Protran BA 85 Nitrocellulose, GE 

Healthcare, Pittsburgh, PA, USA) at 250V, for 2 hours. The membranes were blocked with 5% 

skim milk + 2% goat serum (Santa Cruz Biotechnology Inc., Dallas, TX, USA) in phosphate 
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buffered saline with tween (PBST) (0.1% Tween 20 ®) at room temperature for 1 hour. The 

blots were then incubated with Runx1t1 primary antibody (1:1000, Cell Signaling cat# 4498, 

Beverly, MA, USA) in 5% skim milk/PBST for 1 hour/room temperature. The blots were 

washed 3-4 times each 5 minutes (min) in PBST and incubated with a secondary antibody 

(1:10,000, Promega cat# W401B, Madison, WI, USA) in PBST(0.1% Tween 20 ®) for 1 hour/ 

room temperature. Chemiluminescent detection (SuperSignal West Pico Chemiluminescent 

Substrate, Pierce/ Thermo Scientific, Rockford, IL, USA) was used according to manufacturer 

instructions. Blots were exposed to film (Amersham Hyperfilm TM ECL, GE Healthcare, 

Pittsburgh, PA, USA) for 5min. Membranes were stripped and reprobed with β-Actin antibody 

(1:3000, Abcam cat# ab8227, Cambridge, MA, USA) according to standard protocols.  
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3.3 Results 

Disruption of the Runx1t1 Gene by Transgene Integration in the OVE1328 Mouse Line  

Deletion Mutation of the 3’ End of Runx1t1 Gene 

Prior studies of the OVE1328 mouse line have mapped the transgene integration site to 

chromosome 4 band A2.159 Genomic SNP microarrays of Wt and OVE1328 (Tg/Tg) embryos 

identified a series of no calls (absence SNP hybridization signals) involving OVE1328 (Tg/Tg) 

embryos but not Wt embryos indicating that the 3’ end of Runx1t1 gene was disrupted (Fig 

3.1).159  

To validate this, a set of primers were designed to amplify exon-intron junctions and 

exons of the 3’end of Runx1t1 starting at intron 11-exon12-intron 12 junction of Runx1t1. Since 

the no calls in the microarray were detected from SNPs in intron 11, the primers were designed 

starting at intron11-exon12-intron12 junction (APPENDIX 3.3 and 3.4). Using OVE1328 

(Tg/Tg) gDNA, no amplification products were seen with primers amplifying part of Runx1t1 

exon 13 (primer pair 132), exon 14 (primer pairs 143-147), or primers amplifying intron 12-

exon13-intron13 (primer pair 131) or intron 13-exon14 junctions (primer pairs 141,142) 

compared to Wt gDNA (Fig 3.7), (Fig 3.8).  

 

 

 

 

 

Figure 3.7. Primer map for Runx1t1 exon-intron junction primers. Key: (*) primer pairs amplifying 
intron 11-exon12-intron 12 junction. (**) primer pairs amplifying intron 12-exon13-intron 13 
junction. (***) primer pairs amplifying intron 13-exon14 junction. (****) primer pairs amplifying 
exon14 up to Chr4: 13,891,269 (GRCm38). Red shaded region represent parts of Runx1t1 gene that 
were not successfully amplified using the respective primer pairs with OVE1328 (Tg/Tg) gDNA.     
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Altered Runx1t1 mRNA in the OVE1328 Mouse Line 

To examine the effect of the deletion mutation on the mRNA, custom primers were 

designed to amplify overlapping regions of the longest mRNA variant of Runx1t1 (variant 1) 

(Fig 3.9) and APPENDIX 3.1, 3.2.  Interrogation of Runx1t1 transcript (variant 1) revealed that 

(Tg/Tg) and Wt transcripts share the 5’ end of the message but not the 3’ end (Figure 3.10). 

Primer pairs amplifying exons 2, 3,5,6,7,8,9,10,11 and12 successfully produced PCR products 

with both OVE1328 (Tg/Tg) and Wt cDNA. However, primers amplifying exons 13 and 14 

failed to amplify products with OVE1328 (Tg/Tg) samples indicating that the intragenic deletion 

Figure 3.8. Conventional PCR data of exon-intron junction amplifications. PCR 
data demonstrate failure of amplification of exon13, exon14 (up to 
chr4:13,891,269), intron 12-exon13 and intron 13-exon14 junctions with 
OVE1328 (Tg/Tg) gDNA. Key: (*) primer pairs amplifying intron 11-exon12-
intron 12 junction. (**) primer pairs amplifying intron 12-exon13-intron 13 
junction. (***) primer pairs amplifying intron 13-exon14 junction. (****) primer 
pairs amplifying exon14 up to Chr4: 13,891,269 (GRCm38). L: molecular 
weight marker (50bp DNA ladder).   
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of Runx1t1 gene resulted in the disruption of the 3’end of Runx1t1 transcript; a transcript lacking 

exons 13 and 14 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Primer map for Runx1t1 message (variant1). The primer pairs 
amplify overlapping regions of the message. (P1-16): primer pairs 1-16. (*): 
primer pairs that failed to produce PCR products with OVE1328 (Tg/Tg) cDNA 
only. Red shaded region represents the region being amplified by the asterisk 
labeled primer pairs.  

Figure 3.10. Conventional PCR data of Runx1t1 message. The data shows 
failure of amplification with OVE1328 (Tg/Tg) cDNA upon using primer pairs 
amplifying part of exon 13 and exon14. (*): primer pairs that failed to produce 
PCR products with OVE1328 (Tg/Tg) cDNA. (+): positive control. (-): 
negative control. (L): molecular weight marker (50bp DNA ladder).  
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Determination of Transgene Flanking Sequences: Runx1t1-Transgene Junction  

RNA-seq data confirmed previous PCR findings. Close examination of the RNA-seq data 

using UCSC genome browser (UCSC)234 showed an abrupt loss of reads, in general, retrieved 

from the 3’end of Runx1t1 message of OVE1328 (Tg/Tg) RNA (n=3). Specifically, no reads 

were retrieved beyond chr4: 13,876,840 bp (intron 12) of OVE1328 (Tg/Tg) RNA compared to 

Wt group (n=3) (Fig 3.11).  

  

 

 

 

 

 

 

 

 

 

  

In addition, the transgene insertion site at Runx1t1 was determined by bridging paired end 

reads that mapped to Runx1t1and those reads that mapped to the transgene sequence. One contig 

(contig-15360) 437 bp mapped to Runx1t1 chr4:13876578-13876840bp and Tyrosinase (Tyr) 

Figure 3.11. RNA-Seq data. Reads from OVE1328 (Tg/Tg) and Wt RNA (n=3/genotype) mapped 
to GRCm38/mm10 mouse assembly showing Runx1t1 and a downstream neighborhood gene 
Gm11823. Red rectangles represent regions where a difference in read mapping is detected 
between(Tg/Tg) and Wt groups.  Screenshot modified from UCSC genome browser 
(http://genome.ucsc.edu), assembly Dec. 2011(GRCm38/mm10).  
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complement 2108-2284bp (Fig 3.12). To validate the contig, custom primers were designed to 

flank Runx1t1-transgene complex junction (Fig 3.12) and (APPENDIX 3.7, 3.8). The primer pair 

successfully produced a PCR product with OVE1328 (Tg/Tg) gDNA (n=3) but not with Wt 

gDNA (n=1). Furthermore, the primer pair successfully amplified a product with OVE1328 

(Tg/Tg) cDNA (gDNA free) (n=3) but not with Wt cDNA (n=3) (Fig3.13). This indicated that 

Runx1t1 message contained part of the transgene in OVE1328 (Tg/Tg) embryos.  

 

 

 

 

 

 

 

 

 

 

  

  

 

Figure 3.12. Contig 15360 primer map. The contig is 437 bp in size where 1-262 bp correspond to 
intron 12 of Runx1t1 chr4: 13,876,578-13,876,840 bp, respectively. The next 261-437 bp 
correspond to Tyr complement (part of the TYBS transgene complex) 2284-2108 bp, respectively. 
Bold sequence: mouse Runx1t1 sequence (intron12). Grey sequence: Tyr complement of the 
transgene complex. Green shaded sequence: forward primer. Red shaded sequence: reverse primer.     
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The data presented above showed the integration site of the transgene complex in 

OVE1328 line. The integration site was mapped to Runx1t1 gene (intron 12, chr4:13,876,840bp). 

The integration resulted in a deletion mutation of Runx1t1 gene starting at intron 12 

(chr4:13,876,841bp). Furthermore, there is compelling evidence that the transgene integration 

affected the splicing of intron 12. The PCR data with OVE1328 (Tg/Tg) cDNA (Fig3.13.B 

/lane3) indicated the presence of part of intron 12 in Runx1t1 message. For further validation, 

previous exon-intron primer pairs amplifying exon12 junctions (Fig 3.14) were used this time 

with OVE1328 (Tg/Tg) cDNA. The data demonstrated that Runx1t1 message not only contained 

part of intron 12 but also part of the 3’ end of intron 11 (chr4 13,875,423-13,875,476) as seen 

with primer pairs 121 and 122 (Fig 3.15). 

 

 

Figure 3.13. Conventional PCR data of 15360 contig primer pair. A. Successful 
amplification of contig (15360) when using 15360 contig primer pair and 
OVE1328 (Tg/Tg) gDNA (n=3). No amplification products were detected with Wt 
gDNA (n=1). B. Amplification products of (4550 and 15360) contig primer pairs 
(lanes 2 and 3, respectively) with OVE1328 (Tg/Tg) cDNA (gDNA free) (n=3). 
(+): positive control (β-actin). (++): positive control Gapdh. Lane1: OVE1328 
(Tg/Tg) RNA with 4550 contig primer pair. (L): molecular weight marker (50bp 
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Figure 3.15. Interrogation of exon 12- intron 12 
junction of Runx1t1. PCR data demonstrates 
amplification products with OVE1328 (Tg/Tg) 
cDNA (gDNA free) (lanes 1, 3, 6) and gDNA 
(lanes 2, 4, 7) when using 121 and 122, 123 
primer pairs. Amplification products with 
OVE1328 (Tg/Tg) cDNA are only seen 121and 
122 primer pairs. Lane5: Wt cDNA (non-gDNA 
f )  

 

Figure 3.14. Map for exon–intron junction primer pairs 121,122 and 123. 
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Closer examination of the RNA-seq data in (Fig 3.11) revealed that the transgene 

integration not only disrupted Runx1t1 gene but also a downstream gene, Gm11823 which 

normally resides 26.305 kb from Runx1t1.  Gm11823 is located on chr4:13919954-13995193 bp 

and predicted to be transcribed on the opposite strand from Runx1t1. Gm11823 is predicted to 

encode a large intergenic non-coding RNAs (lincRNAs). There are a number of reads mapping 

to Gm11823 gene from OVE1328 (Tg/Tg) RNA (n=3) but only a few sporadic reads mapping to 

Wt RNA. The interrogation of the effect of the transgene complex on Gm11823 gene will be 

discussed in the GM11823 section.  

 Absence of Runxt1t1 Message in OVE1328 (Tg/Tg) Embryos; Northern Blot Data 

To further investigate the findings of PCR and RNA-seq data, northern blot was done to 

interrogate the effects of the transgene integration on Runx1t1 message in OVE1328 (Tg/Tg) 

embryos. Runx1t1 message was detected with Wt and OVE1328 (Tg/+) RNA at the expected 

molecular weight. No message was detected in OVE1328 (Tg/Tg) embryos (Fig 3.16). 

 

 

 

 

 

 

 

 

Figure 3.16. Northern blot data. A. Blot probed with 
Runx1t1-DIG labeled PCR probe. No message is 
detected in OVE1328 (Tg/Tg) embryo heads compared 
to Wt and OVE1328 (Tg/+) groups. B. Blot probed with 
β-actin-DIG labeled RNA probe.    
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No Differences in RUNX1T1 Protein among OVE1328 Transgenic Line and Wt Embryos 

Interrogation of RUNX1T1 in OVE1328 (Tg/Tg) revealed no differences from Wt 

RUNX1T1 which showed two isoforms at the expected molecular weights (Fig 3.17). The size 

and the number of isoforms detected in Western blot were consistent with previous data 

presented by Calabi et al 214.   

 

 

 

 

  

 

 

 

 

 

 

 

  

Figure 3.17. Western blot data. A. Blot probed with anti-
RUNX1T1 (Cell Signaling 4498) antibody. No difference 
detected between all genotypes in RUNX1T1 
immunoreactive band. B. Blot probed with anti β-ACTIN 
antibody.  

Figure 3.18. Epitope map for RUNX1T1 antibodies used for Western blotting. Cell Signaling 
and Sigma antibodies bind to an epitope close to the N-terminal end. Santa Cruz antibody 
recognizes an epitope close to the C-terminal end of RUNX1T1. 
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The antibody (Cell Signaling 4498) used for probing RUNX1T1 in (Fig 3.17) recognizes 

an epitope close to the N-terminal end of RUNX1T1 (Fig 3.18) and (APPENDIX 3.10). To 

further validate the previous findings with Cell Signaling Ab, other blots were probed with 2 

different anti-RUNX1T1 antibodies those were: (SIGMA C5616) and (Santa Cruz sc-9737). As 

seen in (Fig 3.18) and the antibodies recognize an epitope in proximity to the N-terminal and C-

terminal ends of RUNX1T1 (APPENDIX 3.10), respectively. Interestingly, blots with those 

antibodies did not reveal any differences in RUNX1T1 between all genotypes. Furthermore, 

blots probed with each of the aforementioned antibodies did not show any difference in the 

banding pattern between Wt, OVE1328 (Tg/+) and OVE1328 (Tg/Tg) samples.   

Disruption of the Gm11823 Gene by Transgene Integration in the OVE1328 Mouse Line  

 Transgene Integration Induces Gm11823 gene expression 

RNA-seq data provided evidence that Gm11823 was another gene to be affected by the 

TYBS transgene integration. A number of reads mapped to Gm11823 gene from OVE1328 

(Tg/Tg) RNA but only a few sporadic reads mapped to Wt RNA. The reads retrieved from 

OVE1328 (Tg/Tg) RNA covered the most 5’ end of Gm11823 gene up to intron 2 

(ch4:13,949,713 bp). Analysis of RNA seq data yielded one contig (contig 4550) that had part of 

GM11823 (chr 4:13,949,452-13,949,713) and part of the transgene complex corresponding to 

MSCV-neo vector sequence 2785-2862 bp and the 3’enhancer sequence (3E:3563-3655) bp 

(Fig.3.19).  

 

 

88 
 



 

 

 

 

 

 

 

  

  

 

RNA-seq data from OVE1328 (Tg/Tg) RNA indicated that Gm11823 gene was disrupted 

by the TYBS transgene complex. The disruption induced the expression of Gm11823 in 

OVE1328 (Tg/Tg) RNA. This is in contrast to the RNA-seq data from Wt RNA where Gm11823 

was not expressed. To further interrogate these observations, custom primers were designed to 

amplify Gm11823 RNA (Fig 3.20) and (APPENDIX 3.7, 3.8).  

 

 

  

 

Figure 3.20. Gm11823 primer map. Custom primer pairs were designed to amplify 
overlapping regions of Gm11823 message. Red shaded areas represent primer pairs that 
did not amplify a product with OVE1328 (Tg/Tg) cDNA and gDNA. 

Figure 3.19. Contig 4550 primer map. The contig is 430 bp where 1-93 bp correspond to the 3’ 
enhancer sequence 3563-3655 bp of the TYBS transgene complex, respectively. The next 92-169 
bp correspond to the MSCV-neo vector sequence 2785-2862 bp of the TYBS transgene complex, 
respectively. The last 169-430 bp correspond to intron 2 chr 4:13,949,452-13,949,713 bp, 
respectively. Bold sequence: mouse Gm11823 sequence (intron 2). Grey sequence: TYBS 
transgene complex related sequences. Green shaded sequence: forward primer. Red shaded 
sequence: reverse primer.      
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The primers were tested with gDNA of Wt and OVE1328 (Tg/Tg) samples. All primer 

pairs (except primers B and C which amplify exon-exon junctions) amplified PCR products with 

Wt gDNA (Fig 3.21.A). On the other hand, only one primer pair (A), which amplifies part of 

exon1, produced a PCR product with OVE1328 (Tg/Tg) gDNA. No PCR products were detected 

when primer pairs amplifying exon 3 of Gm11823 (E-K) were used with OVE1328 (Tg/Tg) 

gDNA (Fig 3.21.B). This was consistent with the previous findings of RNA-seq data where no 

reads mapped beyond intron 2 (ch4:13,949,714 bp) of Gm11823 (Fig3.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. Conventional PCR data of Gm11823 genomic locus. 
Amplification products of GM11823 custom primers tested with Wt and 
OVE1328 (Tg/Tg) gDNA. A. Amplification with Wt gDNA (n=3).B. 
Amplification with OVE1328 (Tg/Tg) gDNA (n=3). (A-K): GM11823 
custom primer pairs. (+): positive control mouse β-Actin primer (SA 
Biosciences, Valencia, CA, USA). (L): molecular weight marker (50bp 
DNA ladder). 
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Moreover, PCR data further confirmed the RNA-seq findings with respect to Gm11823 

expression (Fig 3.22). No amplification products were detected when using GM11823 primer 

pairs with Wt cDNA (Fig 3.22.A). On the other hand, although in general no PCR products were 

detected when using Gm11823 custom primers with OVE1328 (Tg/Tg) cDNA, one primer pair 

(A) consistently yielded a PCR product at the expected size with OVE1328 (Tg/Tg) cDNA (Fig 

3.22.B). The product corresponds to part of exon 1 of Gm11823 gene and was verified by direct 

sequencing.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Conventional PCR data of Gm11823 message. Amplification 
products of GM11823 custom primers with Wt and OVE1328 (Tg/Tg) 
cDNA. A. Amplification with Wt cDNA (n=3). B. Amplification with 
OVE1328 (Tg/Tg) cDNA (n=3). White arrow: amplification product of 
primer (A) which corresponds to part of exon 1 of Gm11823. (A-K): 
GM11823 custom primer pairs. (+): positive control (Runx1t1 cDNA 
custom primer 3). (L): molecular weight marker (50bp ladder). 
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Validation of Transgene Flanking Sequences: Gm11823-Transgene Junction 

Validation of contig sequence (contig 4550) was done by testing the custom primer pair 

(contig 4550 primer pair) with OVE1328 (Tg/Tg) cDNA and gDNA. The primer pair was 

designed to flank the junction of Gm11823 and the transgene complex. In agreement with RNA-

seq data, PCR products were produced with both (Tg/Tg) gDNA (Fig 3.23) and cDNA (gDNA 

free) (Fig 3.13 lane2). This confirmed the integration site of the transgene at intron 2 

(ch4:13,949,714 bp) of Gm11823 gene. Furthermore, PCR data indicated the expression of an 

altered Gm11823 message in OVE1328 (Tg/Tg) embryos where part of the transgene sequence is 

included in the message (Fig 3.19).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Conventional PCR 
data using 4550 contig primer 
pair. Amplification products of 
contig (4550) using 4550 contig 
primer pair with OVE1328 
(Tg/Tg) gDNA (n=3). (L1): 
molecular weight marker (1kb 
DNA ladder). (L2): molecular 
weight marker (50bp DNA 
l dd )  ( )   
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3.4 Discussion  

In the OVE1328 model the transgene integration site was accurately determined. The 

data presented confirmed previous FISH analysis and microarray data. The transgene integrated 

at intron 12 of Runx1t1 gene /chr4: 13,876,840 bp. The data also indicated the disruption of a 

downstream gene known as Gm11823, lincRNA gene, where the integration took place at intron 

2 of Gm11823/chr4:13,949,713.   

An Altered Expression of Runx1t1 in OVE1328 model  

In OVE1328 model, Runx1t1 message is being formed and expressed at similar levels to 

wild type counterpart (data not shown). However, structurally the Runx1t1 message is different 

than wild type counterpart (deletion of exons 13and14, inclusion of part of intron 11-exon12 

junction inclusion of part of intron 12, and inclusion of part of the transgene complex) which was 

validated by PCR data. The deletion of exons 13 and 14 would result in the loss of two 

functional domains of Runx1t1 (NHR3 and NHR4). Both of those domains were shown to be 

important for protein-protein interactions such as its interaction with histone deacetylases and 

transcriptional corepressors N-CoR and SMRT.174 The deletion of NHR3 and NHR4 domains in 

OVE1328 would probably affect RUNX1T1 interaction with these proteins and therefore its 

function as a transcriptional cofactor. It has been shown/ predicted that RUNX1T1 can have 

various binding partners. RUNX1T1 can homodimerize with another RUNX1T1 molecules, it 

can heterodimerize with other ETO family members, and it can bind other transcription factors 

such as C/EBPbeta and Neurod1198,235  

In addition, PCR data indicated that the Runx1t1 message contains part of the transgene 

complex as shown in Fig (3. 14). It is possible that such insertion, in addition to the deletion 
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mutation, would alter RUNX1T1 secondary and tertiary structures. Alterations of a protein 

folding can significantly alter its function and its binding with other interaction partners.236  

Though PCR data indicated the presence of such message, northern blot data did not 

demonstrate the expression of Runx1t1 in homozygous mutants. A possible explanation is that 

the Runx1t1 message is very large (more than 10Kb). A large RNA species would require longer 

running time on formaldehyde agarose gels in northern blots. The running time used in the 

shown northern blot (Fig 3.16) was sufficient to detect RNA species less than 10Kb (4hours 

running time) as was demonstrated by detecting wild type Runx1t1 RNA and the 10Kb band of 

the RNA ladder in the FA gel (data not shown). The ladder successfully transferred to the nylon 

membrane but the 10kb band position was close to the well’s margin. Therefore, it would be 

useful to do another northern blotting where the RNA is allowed to run for a longer time (~7 

hours) and then probe for Runx1t1 message. 

Furthermore, another controversial piece of evidence with qRT-PCR and conventional 

PCR data is the absence of any significant difference in the size of RUNX1T1 between all 

genotypes. Moreover, no differences were detected in the banding pattern seen among all 

genotypes. We tested 3 different commercially available antibodies (2 binding to an N-terminal 

epitope and 1 binding to a C-terminal epitope of RUNX1T1). If those antibodies specifically 

bound RUNX1T1, then it would be anticipated that there will be a difference in the banding 

pattern between those binding an N-terminal epitope and C-terminal epitope. The deletion 

mutation affecting the 3’end (exon13, exon 14) of Runx1t1 would result in the loss of the epitope 

recognized by the latter antibody in the OVE1328 (Tg/Tg) protein samples and so no 

immunoreactive band will be detected. However, this was not the case. Furthermore, closer 

examination of the sequence similarity of the immunogen used for generating the Cell Signaling 
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and Sigma anti-RUNX1T1 antibodies showed high sequence identity to CBFA2T2 and 

CBFA2T3 (other ETO family members). These proteins have isoforms with molecular weights 

similar to RUNX1T1. The previous findings indicate that there could be a problem with the 

specificity of the antibodies used to RUNX1T1. Mass spectrometry can be used to verify and 

identify the RUNX1T1 immunoreactive band detected in OVE1328 (Tg/Tg) lysates.     

The finding that the transgene disrupted not only the Runx1t1 gene but also another 

downstream predicted gene known as Gm11823 (lincRNA gene) adds another layer of 

complexity to the OVE1328 model. The transgene integration at Gm11823 not only disrupted its 

structural integrity (deletion of exon3 and part of intron 2) but also induced an ectopic expression 

of Gm11823 gene in OVE1328 line. At this stage, it is not clear how would such expression 

contribute to the phenotype seen in OVE1328 (Tg/Tg) embryos. It is unclear if the phenotype in 

this model is related to Runx1t1 alteration or Gm11823 alteration or the alteration of both genes. 

OVE1328: from Genotype to Phenotype 

To date, none of the phenotypes discussed in chapter 2 have been linked to mutations in 

either Runx1t1 or Gm11823 in mouse models or humans. However, several observations and 

findings are worth mentioning here. Runx1t1 message is moderately expressed (whole embryo-in 

situ hybridization) in the palatal shelf of E14.5 (TS22) mouse embryo.194  Furthermore, the 

tongue and the anterior and lower borders of the developing mandible showed a mild to 

moderate expression of Runx1t1.194 At the same stage, Runx1t1 was shown to be moderately 

expressed in the developing axial skeleton (which includes the developing rib cage).194 

Furthermore, Runx1t1 was shown to be expressed in the developing murine fore and hindlimbs at 

E10.5, E11.5 and E14.5.194 This being said, little is known about Runx1t1 expression pattern 

during palatogenesis, rib and limb development in FVB/NJ strain. Furthermore, as far as our 
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knowledge no studies looked into the expression pattern of Runx1t1 at protein level in those 

developing structures.  

It is not known how Runx1t1 or Gm11823 or both would play a role in the pathogenesis 

of the affected structures in OVE1328 (Tg/Tg) embryos. For the time being, there is no knockout 

model of Gm11823 gene whereas for Runx1t1, Calabi et al 214 generated a knockout model for 

Runx1t1. There is no evidence for the disruption of palate development or the rib development in 

this model. However, there is a concern about the Calabi mouse model. The paper used the S1 

nuclease protection assay to demonstrate the disruption of the targeted exon (exon2). However, 

no other experiment was done to examine Runx1t1 message using northern blot which will be 

helpful to exclude the possibility of the formation of other alternative isoforms that lack exons 2, 

3 and 4 or the formation of novel Runx1t1 variant. It is predicted that a message lacking those 

exons would translate into a protein that is ~ 53 KD. The Calabi paper indeed shows Western 

blot data in which a band of similar size to the predicted protein (translated from a message 

lacking exons2, 3, and 4) is detected.  The authors pointed that this band could be another ETO 

family member detected by the antibodies. Though that could hold true, the band could also be a 

novel variant of RUNX1T1where exons 2, 3, 4 are spliced out. Such isoform has a molecular 

weight similar to the band shown in their western blot (~53Kd).  

Future Studies   

Our understanding to how Runx1t1 and Gm11823 are altered in OVE1328 (Tg/Tg) 

embryos is still limited. Further characterization of Runx1t1 and Gm11823 at the genomic DNA, 

mRNA and protein level is needed. At the mRNA level, having another RNA-seq done using 

gDNA free RNA samples will be helpful to get more information about the global gene 

expression profile in OVE1328 (Tg/Tg) mutants and to better dissect the mutation at the 
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integration site. At the protein level, mass-spectrometry can be very helpful to verify the identity 

of the band detected in the western blot and better characterize the mutation at the gene level.    

Moreover, little is known about the spatio-temporal expression pattern of Runx1t1 and 

Gm11823 in the developing palatal shelves and vertebral column. This can be characterized  in 

both the Wt (FVB/NJ) and OVE1328 (Tg/Tg) mutants using in situ hybridization of frozen head 

(coronal) and body sections (sagittal) of embryos harvested at different embryonic days .237 qRt-

PCR (using RNA extracted from dissected palatal shelves or developing vertebral column) can 

be an alternative approach to determine the expression pattern of both genes at different time 

points of these developing structures.  

In addition to characterizing the expression profile of both genes, it would be interesting 

to examine the role of each gene or both on the development of the secondary palate. This can be 

done using the palatal organ culture system.238 To understand the role of Runx1t1 on 

palatogenesis, it will be useful to examine the effect of down regulating Runx1t1 expression 

(using siRNA) in a suspension based palatal organ culture system as previously done.239 This can 

be done by dissecting the developing midfacial region from a Wt embryo. Using the same culture 

system (midfacial region of Wt embryo) can be helpful to dissect the role of Gm11823. Ectopic 

expression of Gm11823 in the developing Wt palatal shelves (using suspension based palatal 

organ culture system) can be achieved by lentiviral transduction.240 

In addition to investigating the role of each gene in palatogenesis, it would be of great 

interest to examine if Gm11823 gene regulates Runx1t1 expression. There is evidence that 

lincRNA genes can regulate the expression of other genes in cis or trans.226 The regulation can 

take place at transcriptional and posttranscriptional levels.226 This can be tested in vitro in a cell 

line that expresses Runx1t1 but not Gm11823. It was previously shown that the preadipocyte 3T3-
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L1 cell line expresses Runx1t1 but there is no evidence if this cell line expresses Gm11823.198 

Therefore, Gm11823 expression in 3T3-L1 cell line can be determined first using qRT-PCR. If the 

cell line does not express Gm11823, the cells can be transfected with a plasmid expressing 

Gm11823. RNA and protein will then be harvested from the cells to determine the expression level 

of Runx1t1 ( using qRT-PCR and Western blot, respectively) after validating the expression of 

Gm11823 gene. If the cell line expresses Gm11823 another alternative approach would be using 

primary cell line (such as mouse embryonic fibroblasts) from the Wt embryos (FVB/NJ) which 

normally does not express Gm11823.  

Moreover, it is very useful to determine RUNX1T1 binding partners during palatogenesis 

in OVE 1328 (Tg/Tg). This can be examined using co-immunoprecipitation assay241. Such assay 

will enable predicting what pathways RUNX1T1 is involved in during palatogenesis241. 

Significance and Potential Impact  

The study of OVE1328 model identifies new genes; Runx1t1 and Gm11823 which seem 

to be potentially important for normal secondary palate development and vertebral column 

development. This study demonstrates the significance and the justification for examining the 

role of Runx1t1 and Gm11823 in palatogenesis and the vertebral column development. It also 

ascertains the importance of understanding how both genes regulate each other and what 

molecular pathways they are involved in during normal palatal and vertebral column 

development in a murine model.  

 The combination of CP and supernumerary rib phenotype in OVE1328 model is of great 

interest. Using OMIM database, 3 human syndromes were identified in which CP and 

supernumerary ribs are part of their clinical manifestations (Table 3.6).  
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In humans, RUNX1T1 is potentially important for brain and heart development. A patient 

with a translocation t (5; 8) (q32; q21.3) results in a deletion mutation in RUNX1T1 near its 

5’end. The patient has congenital heart disease (ventricular septal defect) and mild to moderate 

mental retardation242. As far as CP there is no evidence that links Runx1t1 to CP in humans, 

however, this gene might have been overlooked in the genome wide association studies as till 

now there is no evidence supporting a possible role for Runx1t1 gene in human or mouse 

palatogenesis.  

Although still in its experimental phase, gene therapy seems to be a promising approach 

for treating many types of human genetic diseases 243. Till now, no human clinical trial in which 

gene therapy is/was employed to correct cleft palate in utero. However, successful correction of 

such defect in utero was demonstrated in a Tgf-β3 knockout mouse model244. Therefore 

identifying the genes essential for normal palate development would potentially be employed to 

prevent human CP in utero and help prevent the suffering associated with such anomaly.   

Table 3.6 Human syndromes with clinical manifestations of CP and supernumerary ribs. Key: SMCP: sub-
mucous cleft palate. CP: Cleft palate. CL: Cleft lip. CL&CP: Cleft lip and Cleft palate. OMIM database.  
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APPENDIX 2.1: TYROSINASE PRIMER PAIRS (SEQUENCE) 

FW 
primer Sequence 

RV 
Primer Sequence 

Product 
Size (bp) 

 TYPS-W CTGTCCAGTGCACCATCTGGACCTC TYBS-RV GATTACGTAATAGTGGTCCCTCAGG 700 
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APPENDIX 2.2: TYROSINASE PRIMER PAIRS (GENOMIC COORDINATES) 

FW primer Genomic coordinates RV Primer Genomic coordinates 
Description 

Exon 

TYPS-FW 
87,493,149-87,493,173 or TYBS 

complement (1661-1685) TYBS-RV 
87,483,956-87,483,980 or TYBS 

complement (962-986) 
Part of exons 1 

and 2 
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APPENDIX 2.3: PROTOCOL MODIFICATIONS FOR SKELETAL CLEARING AND STAINING 

Material Incubation Time 
(Days) 

Temperature     
(°C ) 

95% (v/v) Ethanol 10 22-25 
Acetone 2-3 22-25 

Alcian Blue (0.3% in 70% ethanol) 
Alizarin Red (0.1% in 95% ethanol) 3-4 37 

1% KOH 14 22-25 
20% Glycerol in 1% KOH 19 22-25 
50% Glycerol in 1% KOH 21 22-25 
80% Glycerol in 1% KOH 21-40 22-25 

100% Glycerol ∞ 22-25 102 



APPENDIX 2.4: RIB CAGE DATA 

Embryo ID Genotype   Rib Count 1    Rib Count 2      Rib Count 3 
Rt side Lt side Rt side  Lt side Rt side Lt side 

2838-1 Wt 13 13 13 13 13 13 
2838-2 Hz 13 13 13 13 13 13 
2838-3 CP 13 13 13 13 13 13 
2838-4 Hz 13 13 13 13 13 13 
2838-5 CP 13 14 13 14 13 14 
2838-6 Hz 13 13 13 13 13 13 
2838-7 Hz 13 13 13 13 13 13 
2838-8 Hz 13 13 13 13 13 13 
2838-9 Wt 13 13 13 13 13 13 
2830-1 CP 14 14 14 14 14 14 
2830-2 CP 13 14 13 14 13 14 
2830-3 CP 14 14 14 14 14 14 
2830-4 Wt 13 13 13 13 13 13 
2830-5 Hz 13 13 13 13 13 13 
2830-6 Wt 13 13 13 13 13 13 
2830-7 CP 14 14 14 14 14 14 
2830-8 Hz 13 13 13 13 13 13 
2830-9 Hz 13 13 13 13 13 13 

2830-10 Hz 13 13 13 13 13 13 
2830-11 Wt 13 13 13 13 13 13 
2843-1 Wt 13 13 13 13 13 13 
2843-2 Hz 13 13 13 13 13 13 
2843-3 Wt 13 13 13 13 13 13 
2843-4 Hz 13 13 13 13 13 13 
2843-5 Hz 13 13 13 13 13 13 
2843-6 Hz 13 13 13 13 13 13 
2843-7 Wt 13 13 13 13 13 13 
2843-8 Wt 13 13 13 13 13 13 
2843-9 Hz 13 13 13 13 13 13 

2843-10 CP 14 13 14 13 14 13 
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APPENDIX 2.5: MEAN LENGTH OF RIGHT FORELIMB AND HINDLIMB BONES 
DATA 

ID Genotype 

Rt 
Humerus 

(mm) 

Rt 
Radius 
(mm) 

Rt 
Ulna 
(mm) 

Rt 
Femur 
(mm) 

Rt 
Tibia
(mm) 

Rt 
Fibula 
(mm) 

2838-1 Wt 2.17 1.77 2.19 1.46 1.50 1.31 
2838-9 Wt 2.00 1.64 1.99 1.51 1.58 1.28 
2830-4 Wt 2.37 1.91 2.35 1.82 1.98 1.85 
2830-6 Wt 2.43 2.11 2.53 1.87 2.17 1.94 
2830-11 Wt 2.44 2.05 2.52 1.92 2.10 1.92 
2838-2 (Tg/+) 2.20 1.62 1.98 1.62 1.60 1.32 
2838-4 (Tg/+) 2.00 1.62 1.97 1.39 1.45 1.33 
2830-5 (Tg/+) 2.26 1.81 2.28 1.75 2.01 1.77 
2830-8 (Tg/+) 2.48 2.08 2.54 1.97 2.17 1.98 
2830-9 (Tg/+) 2.47 2.20 2.64 1.90 2.12 1.92 
2830-10 (Tg/+) 2.35 1.76 2.28 1.76 1.88 1.63 
2838-3 (Tg/Tg) 2.03 1.50 1.95 1.44 1.56 1.29 
2838-5 (Tg/Tg) 2.00 1.40 1.84 1.38 1.17 0.64 
2830-1 (Tg/Tg) 2.16 1.47 1.72 1.43 1.45 1.27 
2830-2 (Tg/Tg) 1.99 1.30 1.79 1.39 1.38 0.85 
2830-3 (Tg/Tg) 2.33 1.75 2.23 1.66 1.75 1.59 
2830-7 (Tg/Tg) 2.14 1.84 2.27 1.60 1.80 1.60 
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APPENDIX 2.6: MEAN LENGTH OF LEFT FORELIMB AND HINDLIMB BONES 
DATA 

ID Genotype 

 Lt 
Humerus 

(mm) 

Lt 
Radius 
(mm) 

Lt 
Ulna 
(mm) 

Lt 
Femur 
(mm) 

Lt 
Tibia
(mm) 

Lt 
Fibula 
(mm) 

2838-1 Wt 2.28 1.64 2.08 1.54 1.46 1.03 
2838-9 Wt 2.30 1.81 2.25 1.48 1.53 1.35 
2830-4 Wt 2.61 1.99 2.44 1.86 1.86 1.73 
2830-6 Wt 2.45 2.15 2.50 1.86 1.97 1.87 
2830-11 Wt 2.54 2.01 2.50 1.83 1.99 1.89 
2838-2 (Tg/+) 2.41 1.78 2.20 1.55 1.57 1.43 
2838-4 (Tg/+) 2.19 1.71 2.15 1.45 1.51 1.30 
2830-5 (Tg/+) 2.42 1.92 2.36 1.70 1.83 1.68 
2830-8 (Tg/+) 2.56 2.09 2.51 1.88 2.07 1.97 
2830-9 (Tg/+) 2.61 2.20 2.51 1.90 1.94 1.84 
2830-10 (Tg/+) 2.39 1.89 2.32 1.60 1.75 1.63 
2838-3 (Tg/Tg) 2.01 1.68 2.20 1.49 1.52 1.32 
2838-5 (Tg/Tg) 2.06 1.50 1.92 1.27 1.07 0.47 
2830-1 (Tg/Tg) 2.12 1.52 1.92 1.47 1.47 1.22 
2830-2 (Tg/Tg) 1.97 1.43 1.72 1.28 1.25 0.77 
2830-3 (Tg/Tg) 2.18 1.70 2.07 1.64 1.68 1.51 
2830-7 (Tg/Tg) 2.31 1.81 2.26 1.74 1.68 1.51 
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APPENDIX 2.7: MEAN TMD DATA (RT AND LT HUMERUS) / UNIVERSAL 
THRESHOLD 

 ID Genotype RT TMD Threshold Lt TMD Threshold 
2616-1 Wt 0.37382 47/127 0.39672 47/127 
2619-5 Wt 0.38606 47/127 0.39855 47/127 
2619-7 Wt 0.35408 47/127 0.39773 47/127 
2616-3 Wt 0.38624 47/127 0.37717 47/127 
2875-6 Wt 0.37041 47/127 0.36471 47/127 
2875-7 Wt 0.3508 47/127 0.37434 47/127 
2606-1 (Tg/+) 0.37614 47/127 0.36748 47/127 
2616-7 (Tg/+) 0.36203 47/127 0.38328 47/127 
2616-8 (Tg/+) 0.3731 47/127 0.37672 47/127 
2619-6  (Tg/+) 0.38458 47/127 0.36362 47/127 
2875-1 (Tg/+) 0.36672 47/127 0.3636 47/127 
2875-3 (Tg/+) 0.36356 47/127 0.36323 47/127 
2606-8 (Tg/Tg) 0.3985 47/127 0.38148 47/127 
2616-9 (Tg/Tg) 0.37215 47/127 0.3797 47/127 
2619-8 (Tg/Tg) 0.37964 47/127 0.3565 47/127 
2606-7 (Tg/Tg) 0.38265 47/127 0.39765 47/127 
2879-2 (Tg/Tg) 0.38069 47/127 0.35847 47/127 
2879-4 (Tg/Tg) 0.33983 47/127 0.36108 47/127 
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APPENDIX 2.8: MEAN HEAD MEASUREMENTS DATA 

Sample 
ID Genotype 

 Muzzle width 
(mm) 

 Snout Occiput length 
(mm) 

IPD 
(mm) 

2518-4 Wt 2.82 7.26 3.68 
2518-5 Wt 3.08 7.54 3.85 
2830-4 Wt 3.65 8.18 4.13 
2830-6 Wt 3.31 7.82 4.08 
2830-11 Wt 3.35 7.80 4.05 
2838-9 Wt 3.14 7.59 4.08 
2838-6 (Tg/+) 3.08 7.64 4.07 
2518-2 (Tg/+) 3.05 7.77 3.85 
2838-7 (Tg/+) 3.38 7.41 4.00 
2838-8 (Tg/+) 3.12 7.50 4.02 
2838-4 (Tg/+) 3.12 8.01 3.83 
2830-9 (Tg/+) 3.38 7.71 4.27 
2518-3 (Tg/Tg) 2.80 6.91 3.58 
2838-5 (Tg/Tg) 3.27 7.30 3.81 
2830-2 (Tg/Tg) 3.17 7.40 3.60 
2830-1 (Tg/Tg) 3.00 7.49 3.62 
2830-3 (Tg/Tg) 3.30 7.35 4.07 
2830-7 (Tg/Tg) 3.32 7.89 3.89 
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 PPENDIX 3.1:RUNX1T1 CDNA PRIMER PAIRS (SEQUENCE)  

FW primer Sequence RV Primer Sequence Product Size (bp) 
1L GATCTGTGGGCTGGTGAACT 1R CAGGTGAGTCTGGCATTGTG 201 
2L GAGCAGCAGAGGAGATTAGCA 2R CTGGGGGAGTCAGCCTAGA 200 
3L TCCTCCAACCACTCAAGGAG 3R AGCTTGCTGAGTTGCCTAGC 204 
4L AGCTCATTTACGCCAACGAC 4R CCAAACTGCTGCAGGGTAGT 206 
5L TGTGGTGCTAGGCAACTCAG 5R AAACGGGATGACAAAAGGTC 201 
6L TGTCATCCCGTTTTTGAAGG 6R TCTGTCTGGAGTTCGCCTCT 202 
7L GTGAACGAAAACGGGAAGAG 7R CATCCAATCGGTAATGCTGA 205 
8L CCTGCTCCAGCGTGAACT 8R GGCTCTCTGTCAAAGCCATT 201 
9L TTGACAGAGAGCCTTTGCAC 9R GCTGGGGTGTCGATAGGAG 200 
10L CCACCTCAGCATTACCGATT 10R TGTCTTCTCCACCATGTCCA 228 
11L TTACATGGCACACGTCAAGAA 11R ATCACTGTACCGCCGTATCC 201 
12L TGGACATGGTGGAGAAGACA 12R GTGAAGGAATTCCCGATGTG 209 
13L CACTCCAGGCAGCAGAGTC 13R CATGTCATGGGCTTTCCTCT 201 
14L AATGACGGAGCTGCAAAAG 14R TGCACGTCTCACTTGCTTTC 200 
15L TCAACCAGCAGGAAGACTCC 15R GGGTGTGACTGAGGAGCTGA 203 
16L TGGGAGAAGCATCACCACAT 16R TTGCTTTCGTGTTGGTTGTG 237 
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APPENDIX 3.2: RUNX1T1 cDNA PRIMER PAIRS (GENOMIC COORDINATES) 

FW primer  Genomic coordinates  RV primer  Genomic coordinates Description/ Exon 
1L 13,771,384 -13,771,403 1R 13,835,652-13,835,671 Part of 3&5 
2L 13,771,421-13,771,441 2R 13,835,689-13,835,707 Part of 3&5 
3L 13,835,718-13,835,737 3R 13,837,891-13,837,910 Part of 5&6 
4L  13,835,749- 13,835,768 4R  13,837,924-13,837,943 Part of 5&6 
5L 13,837,885- 13,837,904 5R 13,841,862-13,841,881 Part of 6, Most of 7 
6L 13,841,869-13,841,888 6R 13,846,939- 13,846,957 Part of 7 and 8 
7L 13,846,923-13,846,942 7R 13,859,961-13,859,980 Part of 9 
8L 13,846,787-13,846,804 8R 13,859,821-13,859,840 Most of 8, Part of 9 
9L 13,859,828- 13,859,847 9R 13,860,009-13,860,027 Most of 9, Part of 10 
10L 13,859,956-13,859,975 10R 13,865,847-13,865,866 Part of 9, All 10, Most of 11 
11L 13,865,203-13,865,223 11R 13,865,928-13,865,947 All10, Part of 11 
12L 13,865,847-13,865,866 12R 13,875,480-13,875,499 Most of 11, Small Part of 12 
13L 13,865,987-13,866,005 13R 13,881,116-13,881,135 Part of 11, All12, Part of 13 
14L 13,881,081-13,881,098 14R 13,889,632-13,889,651 Part of 13, Small part 14 
15L 13,881,215-13,881,234 15R 13,889,769-13,889,788 Part of 14 
16L 13,889,702-13,889,721 16R 13,889,919-13,889,938 Part of 14 
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APPENDIX 3.3: RUNX1T1 EXON-INTRON JUNCTION PRIMER PAIRS PRIMER PAIRS (SEQUENCE) 

FW primer Sequence RV primer Sequence Product Size (bp) 
121 L GCAATGCTGATGGTGCTCT 121 R CAGATCTCCTCTGGCACGTA 112 
122 L ATCGGGAATTCCTTCACAGG 122 R ATTGTTGCTGTTCGCAGTGA 172 
123 L AAGTGGCAGAGTTGCTTGCT 123 R ATCAGGCCTGGTTTGAGAAT 365 
131 L TGAATGAGGTGAAGCGACAG 131 R CTGGAGTCTTCCTGCTGGTT 178 
132 L TTTGGATGAGAGCTGGGTTT 132 R AAGTTTTTCCCAGCGATCTG 400 
141 L CAGCCAGGGTCTTCTGAATC 141 R TCTATGGTAGAGGGGGTTCC 390 
142 L CTTGGAGATGTGGGAGCAGT 142 R GTCCACAGATGTGGTGATGC 207 
143 L  CTGTAACACGGCCCGATACT 143 R GTTCCCGGGGTGGTAGAC 201 
144 L CTCAGTCACACCCAGCAGTG 144 R CCGTTACTGGCCTCTGTGTT 302 
145 L GCCAGTAACGGGTCGTAATG 145 R CTGTATCCACCGCTCATGC 305 
146 L GCTGTTGAAAGCAAAAATGC 146 R ACCGCACTGGAAATCATCTT 302 
147 L GCAGCAGATTGGAAGGAGAC 147 R TGGAACCTTGCAAAAGTGAA 319 
148 L  CAGCCAGCTGCCCTAAATAA 148 R CGCATCTTCACATTTGTCCA 282 
149 L TGAGGTTTTCCCAATGGTGT 149 R ATTCCATGAAGCATGCTGGT 324 
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APPENDIX 3.4: RUNX1T1 EXON-INTRON JUNCTION PRIMER PAIRS (GENOMIC COORDINATES) 

FW primer  Genomic coordinates  RV primer  Genomic coordinates  Description Exon/Intron 
121 L 13,875,423-13,875,441 121 R 13,875,515-13,875,534 Part of Intron 11 & Most of Exon12 
122 L 13,875,483-13,875,502 122 R 13,875,635-13,875,654 Most of Exon12 and Part of Intron 12 
123 L 13,875,384-13,875,403 123 R 13,875,729-13,875,748 Part of Introns 11,12,and All Exon 12 
131 L 13,881,059-13,881,078 131 R 13,881,217-13,881,236 Most of Exon13 
132 L 13,880,949-13,880,968 132 R 13,881,329-13,881,348 Part of Introns 12,13 and All Exon 13 
141 L 13,889,482-13,889,501 141 R 13,889,852-13,889,871 Part of Intron 13 and Part of Exon 14 
142 L 13,889,523-13,889,542 142 R 13,889,710-13,889,729 Part of Intron 13 and Part of Exon 14 
143 L 13,889,656-13,889,675 143 R 13,889,839-13,889,856 Part of Exon 14 
144 L 13,889,776-13,889,795 144 R 13,890,058-13,890,077 Part of Exon 14 
145 L 13,890,067-13,890,086 145 R 13,890,353-13,890,371 Part of Exon 14 
146 L 13,890,264-13,890,283 146 R 13,890,546-13,890,565 Part of Exon 14 
147 L 13,890,456-13,890,475 147 R 13,890,755-13,890,774 Part of Exon 14 
148 L 13,890,721-13,890,740 148 R 13,890,983-13,891,002 Part of Exon 14 
149 L 13,890,946-13,890,965 149 R 13,891,250-13,891,269 Part of Exon 14 
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APPENDIX 3.5: GM11823 PRIMER PAIRS (SEQUENCE SECTION)  

FW primer Sequence RV primer Sequence Product Size (bp) 
A Left TGCAAAGAAGACAGCAGTGG A Right GCTTGGGAGCTGTTCTCTGA 257 
B Left CCAAAAGGAATGTTCGTCAGA B Right CCCAGAACTCATGTCAGGTG 304 
C Left TGTCGGATCTCCTAGAGCTTG C Right TCCTCACCAACAGAGATCACC 276 
D Left TCATCTCCCTGAAATCAGCA D Right TGCAAAGATGGTAAGCTGGTC 256 
E Left CCAACAAATCATGCCAAAAA E Right TGCCAGACATCTGTGAACCT 304 
F Left GCATCTGTGTGAAGCTGACG F Right TTTCCAACCATTGTGACAGC 287 
G Left CCACTGCACCTAGCAGAAGA G Right TTTGTGATTGGTTGCCTGAG 310 
H Left  TGAAAAATGAGGAATTGAGGAA H Right TCCCATCTGATTGTGTGGAA 300 
I Left GTTGACTCTTGGTCGCCTTG I Right TGTTTCCATGAGCCTCCAAT 360 
J Left ATTGGAGGCTCATGGAAACA J Right CCCCAGCCAAAAGGTTAAA 278 
K Left CGAAAAGCACCAGAAGCAAC K Right GAAACGTTTGGCAGTCAATG 252 
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APPENDIX 3.6: GM11823 PRIMER PAIRS (GENOMIC COORDINATES) 

FW primer  Genomic coordinates  RV primer  Genomic coordinates  Description/ Exon 
A Left  13,995,159-13,995,178 A Right 13,994,922-13,994,941 Part of exon 1 
B Left  13,994,991-13,995,011 B Right 13,967,140-13,967,159 Part of exons 1 & 2 
C Left  13,967,193-13,967,213 C Right 13,921,544-13,921,564 Part of exons 2 & 3 
D Left  13,921,577-13,921,596 D Right 13,921,341-13,921,361 Part of exon 4 
E Left  13,921,485-13,921,504 E Right 13,921,201-13,921,220 Part of exon 4 
F Left  13,921,324-13,921,343 F Right 13,921,057-13,921,076 Part of exon 4 
G Left  13,921,057-13,921,076 G Right 13,920,834-13,920,853 Part of exon 4 
H Left  13,920,893-13,920,914 H Right 13,920,616-13,920,635 Part of exon 4 
I Left  13,920,657-13,920,676 I Right 13,920,417-13,920,436 Part of exon 4 
J Left  13,920,417-13,920,436 J Right 13,920,159-13,920,177 Part of exon 4 
K Left  13,920,196-13,920,215 K Right 13,919,964-13,919,983 Part of exon 4 
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APPENDIX 3.7: CONTIG PRIMER PAIRS (SEQUENCE) 

FW primer Sequence RV Primer Sequence 
Product 
Size (bp) 

Contig 
15360L GGATGGTAATCAGTTTCCCAAG 

Contig 
15360R AGATTCTGAATACAAGCCTGTTG 303 
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APPENDIX 3.8: CONTIG PRIMER PAIRS (GENOMIC COORDINATES) 

FW primer Genomic coordinates RV Primer Genomic coordinates 
Description 
Exon/Intron 

Contig 
15360L 13,876,611-13,876,632 

Contig 
15360R 

87,493,698-87,493,720 or TYBS 
complement 2210-2232  

(Intron 12) Runx1t1-
Transgene 

Contig 
4550L MSCV-neo vector 2827-2846 

Contig 
4550R 13,949,652-13,949,671 

Transgene- (Intron 2) 
Gm11823 
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APPENDIX 3.9: THERMAL CYCLER PROGRAMMING CONDITIONS AND GENERAL PRIMER INFORMATION 

* PCR was done using Gene Amp ® PCR System 9700 (Applied Biosystems, Grand Island, NY, USA)

General primer information 

             Custom primers (Invitrogen, Grand Island, NY, USA) were received in a lyophilized form. Upon arrival primers were 
reconstituted in PCR-Water to get at 1mM concentration. To get a 1mM primer stock, X µl of PCR water were added to X nmoles of 
the primer. The nmole value was provided by the manufacturer. Primer working concentration was 10µM. The optimum MgCl2

concentration was determined for each primer pair separately by doing MgCl2 curve (1, 1.5, 2, 2.5, 3.3.5 µM). Generally, most primer 
pairs worked well at 1.5-2 µM MgCl2. An exception is contig primers that worked best at high MgCl2 concentrations 3.5 µM.   

*Step
Temperature 

(°C ) 
Time 

(minutes) Hold/ Cycles Comments 
Initial Denaturation 95 3 1 hold 3 min including preheating for (1 min) 

Denaturation 95 1 30-35 cycles 

Annealing 54-55 or 60 1 30-35 cycles 
contig primers & tyrosinase primers 
worked best at 60°C all other primers 
worked at 54-55°C 

Extension 72 1 30-35 cycles 
Final Extension 72 5 1 hold 

Soak 4 ∞ 1 hold 116 



APPENDIX 3.10: RUNX1T1 ANTIBODIES: CLONALITY I, MMUNOGEN SEQUENCE AND EPITOPE BINDING SITE 

Antibody ID Clonality Immunogen Sequence 
Cell Signaling 4498 polyclonal NGFDREPLHSEHPSKRPCTISPGQRYSPNNGLSYQPNGLPH 

Sigma C5616 polyclonal RDSYRHPSHRDLRDRNR 
Santa Cruz sc-9737 polyclonal LQAQQQGDTPAVSSSVTPNSGAGSPMDTPPAATPRSTTPGTPSTIETTPR 

Antibody ID 
Epitope Binding site 

isoform 1 
Epitope Binding site isoform 

2 
Epitope Binding site 

isoform 3 
Cell Signaling 4498 251-291 a.a 231-271 a.a 224-264 a.a 

Sigma C5616 312-328 a.a 292-308 a.a 285-301 a.a 
Santa Cruz sc-9737 555-604 a.a 535-584 a.a 528-577 a.a 
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APPENDIX 3.11: PART OF 5’ END (A) AND 3’END (B) MESSENGER RNA 
SEQUENCE ALIGNMENTS OF RUNX1T1 

A. 

B. 
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APPENDIX 3.12: PROTEIN SEQUENCE ALIGNEMNTS AND DOMAIN STRUCTURE 
OF RUNX1T1 ISOFORMS 

Isoform 2 
Isoform 1 
Isoform 3 

Isoform 2 
Isoform 1 
Isoform 3 

Isoform 2 

Isoform 2 

Isoform 2 

Isoform 1 

Isoform 1 

Isoform 1 

Isoform 3 

Isoform 3 

Isoform 3 

Isoform 2 
Isoform 1 
Isoform 3 

Isoform 2 
Isoform 1 
Isoform 3 

Isoform 2 
Isoform 1 
Isoform 3 

Isoform 2 
Isoform 1 
Isoform 3 

Isoform 2 
Isoform 1 
Isoform 3 

Isoform 2 
Isoform 1 
Isoform 3 
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APPENDIX 3.13: DEFINITIONS 

The content adopted from Fassler et al245 and NCBI data base 10.2014. 

Term Definition 
Query is the input sequence to which other data base sequences are compared to. 
Query 
coverage 

is the percentage of the query sequence that is shared with the subject 
sequence.  

Percent 
identity 

is the extent of the relation between compared sequences expressed as a 
percentage. 
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