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1. Abstract
Networks play an important role in modelling the interactions of people, and how this can lead to the spread
of ideas, influence, products, and disease. For my first semester of research, I focus on modelling social
networks as Finite Horizon Markov Decision Processes, so that I can find the optimal set of activations using
Backwards Iteration. In particular, I focus on Linear Threshold social networks and Independent Cascade
social networks. For the second semester of research, I focus on working with a compartmental model created
by Housni et al., to model the spread of Covid-19 in North Carolina [3]. I make three major adjustments to
the model: including a parameter that accounts for the possibility of False Negative tests, and eliminating
the effects of contact tracing. The former adjustment does not result in any significant changes in outcome,
while the latter results in a highly unrealistic predictions.

2. Introduction
In this thesis, I start by giving background information on Discrete Time Markov Chains and Finite Horizon
Markov Decision Processes (Finite Horizon MDPs). Then, I describe the typical optimization problem for
Finite Horizon MDPs, and how this problem can be solved using Backwards Iteration. I give the Parking
Problem as an example of how this process works. Afterwards, I give background information on both Linear
Threshold and Independent Cascade social networks. Then, I describe how they can be modelled as Finite
Horizon MDPs, and how this set-up can be used to find the optimal set of activations Switching focus, I
describe the compartmental model developed by Housni et al. to predict the spread of Covid-19 [3]. Then, I
suggest three modifications, in addition to adding new training data. First, I suggest that based on recent
events, we should adjust the dates when the social distancing parameters are modified. Second, I suggest
that the compartmental model should be adjusted to account for the possiblility of False Negatives. Third,
I suggest eliminating the effect of contact tracing from the model. I then give theresults of each of these
modifications, and discuss their implications in the Conclusion.

3. Finite Horizon Markov Decision Processes
A. Background
i. Discrete Time Markov Chains

A stochastic process describes a system that evolves randomly over time. Assuming the system is observed at
times n = 0, 1, 2, ..., then the sequence of random variables

{
Xn|n ≥ 0

}
is known as a discrete time stochastic

process [5]. The set of values S that Xn can take is referred to as the state space [5].

A Discrete Time Markov Chain (DTMC) is a discrete time stochastic process on a finite state space S, with
the following property [5]:

P (Xn+1 = j|Xn = i,Xn−1, ..., X0) = P (Xn+1 = j|Xn = i), ∀i, j ∈ S, ∀n ≥ 0 (1)

This means that all that matters in determining the state of the system at time n + 1 is the state of the
system at time n. A DTMC is time-homogenous if the probability of transitioning between any two states is
not dependent on the time n, so [5]:

P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i), ∀i, j ∈ S, ∀n ≥ 0 (2)

ii. Finite Horizon Markov Decision Processes

A Finite Horizon Markov Decision Process with a discrete state space S is a DTMC that is only allowed to
occur for a finite number of periods N , known as the time horizon [2]. Also, at each point in time, an action
a must be taken, where a ∈ A(s), the set of admissable actions for state s [2]. As with the state space S , we
assume A(s) is discrete. Finite Horizon MDPs have the Markov property in that the state of the system at

2



time n+ 1 only depends on the state of the system and the action taken at time n [2]. We also assume Finite
Horizon MDPs to be time homogenous, where ∀s, j ∈ S, a ∈ A(s), the probability of transitioning from state
s to state j given action a is taken is psja [2]. The effective probability is qsja = αqsj

a, where α ∈ (0, 1], and
1− α represents the probability that the process “stops” and yields no returns [2]. The immediate return for
taking action a while in state s is r(s, a) [2].

A decision rule δ is a function defined on S that gives the set of appropriate actions for each state, so
δ(s) ∈ A(s) [2]. Also, δ ∈ ∆, the set of all admissible decision rules [2]. A strategy π = (δ1, δ2, ..., δN ) gives a
sequence of decision rules to use for each period [2]. We define the strategy space Π = ∆X∆X...∆, as the set
of all admissible strategies [2].

iii. Optimization

In a typical optimization problem for Finite Horizon MDPs, you want to find a strategy π ∈ Π that maximizes
vt(π, s), the expected present values of returns from times t, t+ 1, ..., N , where:

vt(π, s) = E

{
N∑
i=t

αi−tr(si, δi(si))
}

(3)

,si is the random state of the system at time i, and δi is the decision rule prescribed by strategy π for period
i [2].

A strategy π∗ is optimal for state s in period t, if [2]:

vt(π∗, s) ≥ vt(π, s), ∀π ∈ Π (4)

A strategy is optimal for period t if it is optimal for state s in period t for all s ∈ S [2].

If you let,

ft(s) := max
∀π∈Π

vt(π, s) (5)

then we want to find π∗ such that vt(π∗, s) = ft(s), ∀s ∈ S [2].

In the case of a discrete state space, we can write:

ft(s) = max
a∈A(s)

r(s, a) +
∑
j∈S

qasjft+1(j) (6)

which are known as the optimality equations [2].

According to the optimality conditions, π∗ can be considered the optimal strategy if and only if π∗t (s) attains
the maximum in the optimality equations for all t and s [2].

iv. Backwards Iteration

To find the optimal strategy π∗, you start by finding the optimal decision rule δN for the one-horizon problem
starting at time N . Assuming fN+1(s) = 0, the optimality equation for this problem reduces to:

ft(s) = max
a∈A(s)

r(s, a) = max
a∈A(s)

∑
j∈S

qasjr
a
sj (7)

where rasj is the return of taking action a in state s and ending up in state j [2]. After finding the optimal
solution for the one-period problem starting at period t = N , you then find the optimal solution for the
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two-period problem starting at period t = N − 1. To do this, you find the decision rule δN−1 that satisfies
the optimality equation:

fN−1(s) = max
a∈A(s)

r(s, a) +
∑
j∈S

qasjfN (s), (8)

for all s ∈ S where fN (s) can be defined using δN . Thus, the optimal strategy for the two-period problem
starting at period t = N − 1 is (δN−1, δN ). In general, for T ∈

{
t, t + 1, ...N

}
, δT can be defined is the

decision rule that satisfies the optimality equation:

fT (s) = max
a∈A(s)

r(s, a) +
∑
j∈S

qasjfT+1(s) (9)

for all s ∈ S, where fT+1(s) can be calculated using δT+1. By continuing to iterate backwards, you can find
the optimal strategy π∗ = (δt, .., δN ) [2].

B. Example: Parking Problem
As an illustration of how Backwards Iteration can be used to solve optimization problems for Finite Horizon
MDPs, I consider the Parking Problem. In the Parking Problem, you are driving to work and start to pass
parking spots, each of which are open with probability p [2]. At each spot, if that spot is open, you have the
choice of either parking in that spot, or continuing on to find a better spot. The cost of parking x spots away
from work is x [2]. If you reach work without having found a spot, you have to park in the parking deck,
which has cost c > 1 [2]. The goal is to find a strategy that minimizes the expected cost of parking.

In order to make this problem a Finite Horizon MDP, you define the state s = (x, i), where x ≥ 0 is the
number of the of the space you are approaching, and i = 0 if the space is available and i = 1 if the space is
not available [2]. The possible actions a are 0 = park or 1= move on [2]. If the space is open, you can take
both of these actions, so A(x,0) =

{
0, 1
}
; if the space is not open, then you must move on, so A(x,1) =

{
1
}
[2].

If f(s) = f(x, i) gives the minimum expected cost of parking starting at space x with availability i, then
f(0, i) = c [2]. For x = 1 [2]:

f(1, i) =
{
min(1, c) = 1 if i = 0
c if i = 1

If i = 0, then spot 1 is available, so you have the choice of parking there, incurring cost 1, or moving on to
the parking lot, incurring cost c. Since c > 1, then f(1, 0) = 1. If i = 1, then spot 1 is occupied, so you must
park in the parking lot, incurring cost f(1, 1) = c. You can define:

F (x) = pf(x, 0) + qf(x, 1) (10)

where q := 1− p [2]. The function F gives the minimum expected cost of parking when you are approaching
space x, but don’t know whether or not it is occupied [2]. You can define f using F , where [2]:

f(x, i) =
{
min(x, F (x− 1)) if i = 0
F (x− 1) if i = 1

If i = 0, then space x is open, so you have the choice of either parking there, incurring cost x, or moving on
to the next spot, incurring a minimum expected cost of F (x− 1). If i = 1, then space x is not open, so you
must move on to the next space, incurring a minimum expected cost F (x− 1). Using the above equation,
you can redefine F (x) in terms of F (x− 1) as [2]:

F (x) = pmin(x, F (x− 1)) + qF (x− 1) (11)

In order to determine the optimal strategy for choosing a parking spot, you define [2]:

g(x) = F (x− 1)− x (12)
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Using the above equation, you can re-write f as [2]:

f(x, i) =
{
x+ min(0, g(x)) if i = 0
x+ g(x) if i = 1

If g(x) ≥ 0, then F (x− 1) ≥ x, so the minimum expected cost of moving on to spot x− 1 is greater than the
cost at parking at spot x. Thus, if space x open, then you should park in it, incurring cost x. Conversely, if
g(x) < 0, then the minimum expected cost of moving on to spot x − 1 is less than the cost at parking at
x. Thus, even if space x open, you should move on to the next spot, incurring a minimum expected cost of
F (x− 1).

Using g(1) ≥ 0, g(x) < 0 ∀x ≥ c, and that g is a strictly decreasing function of x, then there exists S ≥ 1
such that g(S) ≥ 0 and g(S + 1) < 0 [2]. Thus, ∀x > S, g(x) < 0, so the optimal decision would be to move
on from spot x even it is open. By similar reasoning, ∀x ≤ S, g(S) ≥ 0, so the optimal decision would be to
park in these spots if possible. Thus, the optimal strategy in the parking problem is to ignore all spots x > S
where g(x) < 0, and park in the first available spot x where g(x) ≥ 0 [2]. Using F (0) = c, and the recursive
formula for F (x) in Equation 11, you can calculate max{g(S)≥0} S, the spot where a person should first start
looking to park. The value of S for various values of p and C can be seen in Table 1 below.

p|c 5 10 100
0.25 3 5 12
0.5 2 3 6
0.75 2 2 4

Table 1: Solution S to Parking Problem for p = 0.25, 0.5, 0.75 and c = 5, 10, 100

As can be seen in Table 1, S is directly proportional to c, because as c increases, the cost of not finding a
parking spot increases, so you should take a more risk averse strategy and start looking for spots earlier.
Also, S is inversely proportional to p, because as p increases, the risk of not finding an open spot decreases,
so you can start looking for spots closer to work.

C. Modelling Social Networks as Finite Horizon MDPs
i. Background: Social Networks

Social networks are defined as graphs that can be used to model the interactions of groups of individuals [1].
They have a wide variety of applications including modelling the spread of infectious disease or determining
how a product should be marketed so as to maximize the number of people that purchase it. In my research,
I focus on two fundamental types of social networks: Linear Threshhold and the Independent Cascade [1]. In
both, you define a directed graph G, where each node is either active or not active [1]. Additionally, I only
consider the progressive case, where nodes can be switched from being inactive to active, but not vice versa
[1]. In both of these networks, a node v will start out inactive, but as more neighbors of v become active over
time, v will eventually become active.

a. Linear Threshold

In a Linear Threshold social network, a node v is influenced by its neighbors w according to the weight bv,w,
where [1]: ∑

w neighbor of v

bv,w ≤ 1 (13)

Each node v also has threshhold θv ∼ Uniform[0, 1] [1]. In the model, you start out with a set of initially
active nodes A0, and then iterate through the finite horizon via the following process [1]:

1. All nodes that are active at time t− 1 remain active at time t
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2. All nodes that are inactive at time t− 1 only become active at t if:∑
w active neighbor of v

bv,w ≥ θv (14)

b. Independent Cascade

As with the Linear Threshhold social network, in the Independent Cascade social network, you start with an
initial set of activated nodes A0 [1]. However, in this case, when a node v becomes activated at time t, it has
exactly one chance to activate each of its neighbors w with probability pv,w [1]. If v succeeds, then w becomes
activated at time t+ 1, but regardless of outcome, v cannot make any further attempts to activate w [1].

ii. Problem Set-Up

For both Linear Threshhold and Independent Cascade social networks, a typical optimization problem is to
find the most “influential” nodes, i.e. the set of nodes A0 such that the number of activated nodes at the
end of the horizon is maximized [1]. Because of the probabilistic nature of node infection in both types of
networks, you can solve this problem by considering social networks to be Finite Horizon MDPs, with some
qualifications and modifications. First, I decide to make it possible for the user to activate a node at any
period within the time horizon, so that I can define an action for any period within the time horizon. Also, I
set a limit on the number of nodes the user can activate themselves; otherwise, the problem becomes trivial.

a. Problem Set-Up- Linear Threshhold

To start, I assume there are N nodes, I available activations, and a horizon H. Then, for v, w ∈
{

1, 2, ..., N
}
,

I define bv,w that satisfies Equation (13), and the random variables θv ∼ Uniform(0, 1). The random nature
of θv is what allows Linear Threshhold social networks to be modelled as Finite Horizon MDPs.

I define the state space S ⊆ RN+1, where:

s(i) =
{

1 if node i is active
0 if node i is inactive

∀i ∈
{

1, 2, ..., N
}
, and s(N + 1) is the number of available activations.

For each node , I define the action ai = 0 to be to not activate node i, and ai = 1, to be to activate node i. If
node i is inactive, then ai ∈

{
0, 1
}
; if node i is active, then ai ∈

{
0
}
. Thus, for each period t, I define the

action a as an N -vector such that a(i) = ai, and:
n∑
i=1

ai ≤ s(N + 1) (15)

namely, that the total number of nodes activated cannot exceed the number of activations available.

To define the transition probabilities, I consider the possible transitions for each node v:

1. If s(v) = 1 at t− 1, then s(v) = 1 at t with probability 1.

2. If s(v) = 0 and a(v) = 1 at t− 1, then s(v) = 1 at t with probability 1.

3. If s(v) = 0 and a(v) = 0 at t− 1, then s(v) = 1 at t with probability:

P (
∑

w neighbor of v, s(w)=1

bv,w ≥ θv) =
∑

w neighbor of v, s(w)=1

bv,w (16)

4. (Not node related) If s(N + 1) = l at t− 1, then s(N + 1) = l −
∑n
i=1 ai at time t with probability 1.
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Using the above probabilities, you can calculate pasj , ∀a ∈ A, ∀s, j ∈ S. I define r(s, a) as the expected
number of newly activated nodes after taking action a while in state s, and:

r(s, a) =
N∑
i=1

ai +
∑

v,s(v)=0,a(v)=0

∑
w neighbor of v,s(w)=1

bv,w (17)

the number of nodes that are manually activated plus the expected number of inactive nodes that are activated
by their neighbors. Using α = 1, I can now define:

vt(π, s) = E

{ H∑
i=1

r(si, δi(si))
}

(18)

as the expected number of activations at the end of the horizon, using strategy π and starting state s. I want
to find a strategy π∗ that maximizes vt for all initial states s. I can do this using Backwards Iteration as
described above, working back from the one-horizon problem to the H-horizon problem.

b. Problem Set-Up Independent Cascade

For Independent Cascade social networks, I define N , I, and H the same as for Linear Threshhold social
networks. I also define an NXN matrix P , where Pij is the probability the node i infects node j. We define
the state space S ⊆ RN+1:

s(i) =


0 if node i is inactive
1 if node i is active and can activate other nodes
2 if node i is active and cannot activate other nodes

where ∀i ∈
{

1, 2, ..N
}
and s(N + 1) is the number of infections remaining. The action space is the same

as that for the Linear Threshhold social networks, with the same restrictions. To define the transition
probabilities, I consider the possible transitions for each node v:

1. If s(v) = 2 at time t− 1, then s(v) = 2 at time t with probability 1.

2. If s(v) = 1 at time t− 1, then s(v) = 2 at time t with probability 1.

3. If s(v) = 0 and a(v) = 1, then s(v) = 2 at time t with probability 1.

4. If s(v) = 0 and a(v) = 0, then s(v) = 1 with probability:

1−
∏

w neighbor of v, s(w)=1

1− Pwv (19)

and s(v) = 0 with probability

∏
w neighbor of v, s(w)=1

1− Pwv (20)

5. (Not node related) If s(N + 1) = l at t− 1, then s(N + 1) = l −
∑N
i=1 ai at time t with probability 1.

Using these five statements, you can calculate pasj , ∀a ∈ A, ∀s, j ∈ S. If you define r(s, a) the same as above,
then you have

r(s, a) =
N∑
i=1

ai +
∑

v, s(v)=0, a(v)=0

1−
∏

w neighbor of v, s(w)=1

1− pwv (21)
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I can define vt using Equation 18, with my new definition for r(s, a) in Equation 21, and again solve the
maximization problem using Backwards Iteration.

4. Covid-19 Compartmental Model
A. Background
In this model, the entire population of North Carolina (N = 10, 490, 000), is split up into 13 compartments.
Nine of these compartments are created by classifying individuals through two dimensions. For the first
dimension, individuals are classified as [3]:

1. Unknown Not Infected (N)

2. Unknown Infected (I)

3. Unknown Recovered (R)

For the second dimension, individuals are classified as [3]:

1. Symptomatic Isolated (Si)- individual shows symptoms of some illness, may be COVID-19, and
self-isolates

2. Asymptomatic Isolated (Ai)- individual does not show symptoms of any illness, but self-isolates due to
potential contact with infected individuals

3. Asymptomatic Nonisolated (An)- individual does not show symptoms of any illness, does not self-isolate

Thus, an example of a compartment is IAn, which includes individuals who are infected with Covid-19, but
have not yet begun to show any symptoms, and are not self-isolating.

The other four compartments are [3]:

1. Death (D)

2. Hospitalization (H)

3. Known Infected (KI)- tests positive, but not yet hospitalized

4. Known Recovered (KR)- tests positive, but recovers.

Five of these compartments have sub-compartments [3]:

1. ISi
• ISi(recovered)-will recover naturally, with no hospitalization

• ISi(hospitalized)- will require hospitalization

• ISi(death)- will die without access to Covid-19 diagnostic test

2. IAi
• IAi(recovered)- will never develop Covid-19 symptoms

• IAi(show symptoms)- will show symptoms, currently pre-symptomatic

3. IAn- same as IAi
4. H

• H(die)- will eventually die

• H(recovered)- will eventually recover

5. KI

• KI(hospitalized)- will require hospitalization
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• KI(recovered) - will recover without visiting hospital

An explanation of the flow between compartments can be seen below in the Appendix (Section 6).

B. Modifications
The parameter β is defined as the contact rate between infected and non-infected individuals [3].

In the compartmental model, Housni et al. defines two values for β:

1. βh = R0
N∗sympToRecoveryT ime

2. βl = 2
3βh

where R0 is the number of new infections produced by each infected individual, N = 10, 490, 000 is the total
population of North Carolina, and sympToRecoveryT ime is the amount of time it takes a symptomatic
individual to recover from Covid-19 [3]. The parameter βh gives the contact rate between infected and
non-infected individuals, both non-isolating, while βl gives the contact rate between infected and non-infected
individuals, where at least one of them is self-isolating [3].

For this model, which starts with t = 1 being March 13, the β parameters are modified as follows [3]:

1. March 27- βh and βl are reduced by a factor of 1
2 in correspondence with stay at home measures.

2. May 8- Phase 1 relaxes social distancing to 25 percent of stay at home levels

3. May 22- Phase 2 relaxes social distancing to 50 percent of stay at home levels

To update the model to the current date August 22, I keep social distancing at 25% of stay at home levels
on May 22, and add a fourth date, September 11, when social distancing is relaxed to 50% of stay at home
levels, in accordance with moving to Phase 3. Additionally, while the model is currently trained on data from
only up until June 15, with the new model, I train on data from up until August 10.

Also, in the original compartmental model, it is assumed that the Covid-19 Diagnostic Tests have 100%
accuracy, which ignores the possibility of false negatives. Studies indicate that the False Negative Rate
(FNR) for Covid-19 diagnostic tests ranges from about 2% to 30% [4].This means that there is a segment of
the population unaccounted for in the original model who are infected, but test negative, and thus maintain
normal interactions. If this is the case, then the original model should be underestimating the number of
infections, and thus the number of deaths. To correct for this, I include a parameter in the model for the
Sensitivity (Sens = 1− FNR) of the Covid-19 diagnostic tests, and adjust the update equations so that the
proportion of postive tests for the infected compartments are:

1. ISi-πSiSens

2. IAn-πAnSens

3. IAi-πAiSens

where πSi, πAn, and πAi are the proportion of the Symptomatic Isolated, Asymptomatic Non-Isolated, and
Asymptomatic Isolated populations respectively that are tested [3].

To examine the effects of contact tracing, I remove the three compartments IAi, RAi, NAi, so now individuals
can only be Asymptomatic Non-Isolated (An) or Symptomatic Isolated (Si). Thus, indivuduals will now
only isolate themselves if they develop Covid 19-like symptoms.

C. Results
i. Finding R_0 and InitialInf

The values for R0 and InitialInf (initial amount of individuals infected), are determined by minimizing:
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T∑
i=1

5 ∗ (newDeath[i]− historicAvgDeath[i])2 + (H[i]− historicHosp[i])2 (22)

where T is the final day of training data, NewDeath[i] is the predicted deaths on day i, historicAvgDeath[i]
is the actual number of deaths on day i, H[i] is the number of predicted hospitalizations on day i, and
historicHosp[i] is the actual number of hospitalizations on day i [3]. Thus, we find the values of R0 and
InitialInf that minimize the weighted sum of the square error loss in predicting the number of deaths and
hospitalizations, with most of the weight placed on accurately predicting the number of deaths.

ii. New Training Data and Beta-Factor Update Dates

When adjusting for the new data up to August 10, and for keeping social distancing at 25% of stay at home
levels until September 11, you have R0 = 3.15 and InitialInf = 547. The resulting predictions can be seen in
Figures 1 and 2, and the predicted cumulative totals for each compartment can be seen in Table 2. In Figure
1, the daily number of individuals in each compartment only increases gradually until September 11, when
social distancing is relaxed to 50% of stay at home levels. At this point, you start seeing a particularly sharp
exponential increase in both the Infected Asymptomatic and Known Infected compartments. There is also a
noticeable, though less pronounced increased in the daily number of hospitalized and Infected Symptomatic
individuals.
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Figure 1: Daily Projections R0 = 3.15 and InitialInf = 547

In Figure 2, the graphs of the predicted cumulative deaths versus actual cumulative deaths match well until
May 22nd. Then, the predicted cumulative deaths continues to increase exponentially, while the actual
cumulative deaths continues to increase in a linear manner.

iii. Sensitivity

When refitting the model using a sensitivity of 70%, I obtain an R0 = 3.07 and InitialInf = 547. The results
can be seen in Figures 3 and 4 below, and the predicted cumulative totals for each compartment can be seen
in Table 3.
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Figure 2: Predicted Cumulative Deaths vs. Actual Cumulative Deaths R0 = 3.15 and InitialInf = 547
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Figure 3: Daily Projections R0 = 3.07 and InitialInf = 547, Sens=0.7
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Compartment Cumulative
Hospitalized 871296

Infected Symptomatic 541117
Infected Asymptomatic 5810419

Known Infected 3817062
Deaths 26815

Table 2: Cumulative predicted number of individuals in each compartment for entire year, R0 = 3.15 and
InitialInf = 547
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Figure 4: Predicted vs Actual Deaths R0 = 3.07, InitialInf = 547, Sens=0.7

Compartment Cumulative Diff. from Sens.=1
Hospitalized 809286 -62010

Infected Symptomatic 650652 +109535
Infected Asymptomatic 5465766 -344653

Known Infected 3374302 -442760
Deaths 24955 -1860

Table 3: Cumulative predicted number of individuals in each compartment for entire year, R0 = 3.07,
InitialInf = 547, Sens. = 0.7

The only two compartments that show a significant difference when the sensitivity is decreased to 0.7 are the
Infected Symptomatic compartments and the Known Infected compartments. The Infected Symptomatic
compartments shows a 20% increase in the number of individuals, which makes sense intuitively, as individuals
from this compartment are less likely to leave the compartment for testing positive. The Known Infected
compartments shows a 12% decrease, which makes sense, as infected individuals are less likely to test positive.
However, the total number of people infected asymptomatic, hospitalized, or dead all slightly decrease, which
does not make sense, as one would expect all of these values to increase if we were to allow more infected
people to interact normally with the population
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iv. No Contact Tracing

After eliminating the Asymptomatic Isolated compartments and all contact tracing parameters, I refit the
model with Sens = 1, obtaining R0 = 5 and InitialInf = 2347.

In Figure 5, you see the daily number of infected asymptomatic, infected symptomatic, and hospitalized
people peaking at the beginning of the second phase. The daily number of known infected peaks about a
month later. By September 1st, all of these compartments have flatlined at 0.

Figure 5: Projections Sens = 1, R0 = 5, and InitialInf = 2347

In Figure 6, you see the number of deaths follows a sharp exponential increase, exiting the chart at about
April 1.

Compartment Cumulative
Hospitalized 8920658

Infected Symptomatic 28678315
Infected Asymptomatic 44155091

Known Infected 10190576
Deaths 276112

Table 4: Cumulative predicted number of individuals in each compartment for entire year, Sens. = 1, R0 = 5,
and InitialInf = 2347

From Table 4, you can see the model predicts that the cumulative number of Infected Symptomatic and
Infected Asymptomatic Individuals will both exceed the total population of North Carolina, 85% of the
population will be hospitalized, 97% will be known infected, and 2.6% will die from Covid-19.
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Figure 6: Predicted Deaths vs Actual Deaths Sens = 1, R0 = 5, and InitialInf = 2347

5. Conclusion
When adding the additional training data, one of the main things that I found was that in the middle of May,
the number of deaths per day stopped increasing. This may be in part due to increased social distancing
measures, beyond that which was recommended by the government. Thus, perhaps in order to achieve
better predictive power for the model, I should further decrease the social distancing parameter β during
this period of time, in order to decrease the amount of predicted deaths. However, doing so may cause the
model to underpedict the number of infections. Thus, I should also consider other ways to decrease the
amount of predicted deaths without decreasing the predicted amount infected, that is also in accordance
with some recent observed trend in the spread of the disease. For example, I could decrease the parameters
deathOutofSympFrac and deathoutofHospFrac (See Appendix), if I find that the medical community has
become better equipped to handle the Covid-19 pandemic.

I observe a number of seemingly counterintuitive results when I decrease the sensitivity of the Covid-19
tests. First, I observe a decrease in the number of hospitalizations, which may be due to reduced inflow
from the KI compartment. Second, I observe opposite effects for the Infected Symptomatic and Infected
Asymptomatic compartments, despite the fact that both groups get tested at the same rate. This result may
be related to the differing recovery times for the two groups, which is 14 days for the Symp. group and 10
days for the Asymp. group. Thus, for individuals in the Asymp. group it is possible that by decreasing the
outflow to the KI compartment, the outflow to the Recovery compartments also increases. While this may
also occur for the Symp. compartment, since the recovery time is longer, in this case, the outflow to the
Recovery compartment may not be enough to counterract the additional inflow of infected individuals and
the continued presence of infected individuals who test negative.

The removal of the Asymptomatic Isolated compartments and any form of contact tracing results in
an unrealistic model. Of particular note is how the model predicts that in both the Symptomatic and
Asymptomatic compartments, there are more individuals infected than the entire population of North
Carolina. This indicates that this model is allowing individuals to be infected twice, which should be
impossible. While I did expect that eliminating contact tracing to increase the potency of the disease, I did
not necessarily expect it to do so to this degree.

14



6. Appendix
A. Flow between Compartments
The inflow and outflow of each compartment is as follows:

1. ISi
Inflow:

• NSi → ISi- not tested, becomes infected

• IAn → ISi- becomes symptomatic

• IAi → ISi- becomes symptomatic

Outflow:

• ISi → RAn- recovers

• ISi → H- becomes hospitalized

• ISi → D- dies

• ISi → KI- tests positive

2. IAi
Inflow:

• NAi → IAi- not tested, becomes infected

• IAn → IAi- identified as close contact

Outflow:

• IAi → RAn- recovers

• IAi → ISi- starts showing symptoms

• IAi → KI- tests positive

3. IAn
Inflow:

• NAn → IAn- not tested, becomes infected

Outflow:

• IAn → RAn- recovers

• IAn → ISi- becomes symptomatic

• IAn → IAi- identified as close contact

• IAn → KI- tests positive

4. NSi
Inflow:

• NAn → NSi- not tested, develops symptoms of other condition or disease

• NAi → NSi- develops symptoms of other condition or disease

Outflow:

• NSi → NAn- tests negative, or leaves self-quarantine

• NSi → ISi- not tested, becomes infected
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• NSi → NAi- leaves self-quarantine

5. NAi
Inflow:

• NAn → NAi- identified as close contact

Outflow:

• NAi → NAn- tests negative, or leaves self-quarantine

• NAi → IAi- not tested, becomes infected

• NAi → NSi- develops non-Covid 19 symptoms

6. NAn
Inflow:

• NSi → NAn- recovers from non-Covid 19 symptoms, or tests negative

• NAi → NAn- leaves self-quarantine, or tests negative

Outflow:

• NAn → NAi- identified as close contact

• NAn → NSi- develops non-Covid 19 symptoms

• NAn → IAn- becomes infected

7. RSi
Inflow:

• RAn → RSi- not tested, develops non-Covid 19 symptoms

• RAi → RSi- not tested, develops non-Covid 19 symptoms

Outflow:

• RSi → RAn- recovers from non-Covid 19 illness

8. RSi
Inflow:

• RAn → RAi- identified as close contact

Outflow:

• RAi → RAn-leaves self-quarantine

RAi → RSi- not tested, develops non-Covid 19 symptoms

9. RAn
Inflow:

• ISi → RAn-recovers naturally

• IAi → RAn-recovers naturally

• IAn → RAn-recovers naturally

• RAi → RAn- tests negative or leaves self-quarantine

• RSi → RAn- tests negative or recovers from non-Covid 19 symptoms

Outflow:
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• RAn → RAi- identified as close contact

• RAn → RSi- develops non-Covid 19 illness

10. KI

Inflow:

• ISi → KI-tests positive

• IAi → KI-tests positive

• IAn → KI-tests positive

Outflow:

• KI → H- hospitalized

• KI → R-recovers

11. H

Inflow:

• ISi → H- hospitalized

• KI → H- hospitalized

Outflow:

• H → D- dies

• H → KR- recovers

12. KR

Inflow:

• KI → KR- recovers

• H → KR- recovers

13. D

Inflow:

• H → D- dies

• ISi → D-dies

B. Update Equations and Parameters-No Contact Tracing
1. ISi

It+1
Si (recovered) = ItSi(recovered)(1− πSiSens)(1−

1
sympToRecoveryT ime

)

+recoverOutOfSympFrac[βl(IAn(1−πAn∗Sens)+ISi(1−πSiSens)]N t
Si(1−πSi)+

IAn(show symptom)(1− πAnSens)
infToSympTime

]

• It+1
Si (hospitalized)- same as It+1

Si (recovered), except recoverOutOfSympFrac becomes
hospOutOfSympFrac and sympToRecoveryT ime becomes sympToHospT ime

• It+1
Si (death)- same as It+1

Si (recovered), except recoverOutOfSympFrac becomes deathOutOfSympFrac
and sympToRecoveryT ime becomes sympToDeathT ime

17



2. IAn
It+1
An (recovered) = ItAn(recovered)(1− πAnSens)(1−

1
asympToRecoveryT ime

)

+(1− symptomFrac)[(βhI+
An(1− πAnSens) + βlISi(1− πSiSens))(N+

An(1− πAn))]

• It+1
An (showsymptoms)- same except replace asympToRecoveryT ime with infToSympTime and

1− symptomFrac with symptomFrac

3. NSi

N t+1
Si = N t

Si(1− πSi)(1−
1

selfQuarT ime
− βl(ItAn(1− πAnSens) + ItSi(1− πSiSens)))

+nonCOV IDSymptRate(N t
SiπSi +N t

AnπAn)

4. NAn

N t+1
An = (N t

AnπAn+N t
SiπSi)(1−nonCOV IDSymptRate−(βhItAn(1−πAnSens)+βlItSi(1−πSiSens)))

+ N t
Si(1− πSi)

selfQuarT ime

5. RSi

Rt+1
Si = RtSi(1− πSi)(1−

1
selfQuarT ime

) + nonCOV IDSymptRate(RtSiπSi +RtAnπAn)

6. RAn

Rt+1
An = (RAnπAn +RSiπSi)(1−nonCOV IDSymptRate) + RtSi(1− πSi)

selfQuarT ime
+ ItSi(1− πSiSens)
sympToRecoveryT ime

+ ItAn(1− πAnSens)
asympToRecoveryT ime

7. KI

KIt+1(recovered) = (KIt(recovered) + ItSi(recovered)πSiSens+ ItAn(recovered)πAnSens

+recoverOutOfSymptFrac(ItAn(sympt)πAnSens))(1−
1

sympToRecoveryT ime
)

KIt+1(hospitalized) = (KIt(hospitalized) + ItSi(hospitalized)πSiSens

+hospOutOfSymptFrac[ItAn(sympt.)πAnSens])(1−
1

infToHospT ime
)

8. H

Ht+1(die) = Ht(die)(1− 1
hospToDeathT ime

) + deathFrac

infToHospT ime
(ItSi(hosp) +KIt(hosp.))

+hospOutOfSymptFrac[ItAn(sympt.)πAnSens])
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• Ht+1(recovered)- same format as above, replace hospToDeathT ime with hospToRecoveryT ime,
and deathFrac with recFrac

9. KR

KRt+1 = KRt+ Ht(rec.)
hospToRecoveryT ime

+ KIt(rec.)
sympToRecoveryT ime

+Sens(ItSi(rec.)πSi + ItAn(rec.)πAn)
sympToRecoveryT ime

+

recoverOutOfSymptFrac[ItAn(sympt.)πAnSens]
sympToRecoveryT ime

10. D

Dt+1 = Dt + Ht(die)
hospToDeathT ime

+ ItSi(death)
sympToDeathT ime

Parameters:

Testing:

1. πSi: fraction of symptomatic isolated population that is tested

2. πAn: fraction of asymptomatic non-isolated population that is tested

3. Sens: sensitivity of COVID-19 tests

Rates:

1. sympToRecoveryT ime = 14: average number of days for symptomatic person to recover from disease

2. infToSympTime = 5: average number of days until infected person shows symptoms

3. sympToHospT ime = 5: average number of days from onset of symptoms to hospitalization

4. sympToDeathT ime = 14: average time from symptoms onset to death

5. asympToRecoveryT ime = 10: average time from infection to recovery

6. selfQuarT ime = 10: average time that individual self-isolates

7. nonCovidSymptRate = 1
1200 : rate than individual develops symptoms to non-COVID-19 disease

8. infToHospT ime = 5: average time until an infected person requires hospitalization

9. hospToDeathT ime = 14: average time between hospitalization and death

10. hospToRecoveryT ime = 14: average time between hospitalization and recovery

Fractions:

1. recoverOutOfSympFrac = 0.78: fraction of inflow to ISi that will recover at home

2. hospOutOfSympFrac = 0.2: fraction of inflow to ISi compartment that will require hospitalization

3. deathOutOfSympFrac = 0.02: fraction of inflow to ISi compartment that will die without being tested

4. symptomFrac = 0.5: fraction of inflow to IAn compartment that will develop symptoms

5. recoverOutOfSympFrac = 0.80: fraction of individuals from IAn(sympt.) that will recover naturally
without any hospitalization

6. hospOutOfSymptFrac = 0.20: fraction of individuals from IAn(sympt.) that will require hospitalization

7. deathFrac = 1
3 : fraction of inflow to H that will die

8. recFrac = 2
3 : fraction of inflow to H that will recover
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