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Abstract 
 

SUZY M. VASA: Systems Approach to Microbial Pathogenesis: Complex 
Patterns Emerge from Simple Interactions 

(Under the direction of Morgan C. Giddings) 
 
 

Biological organisms are complex systems and modeling can provide 

insight into their behavior by the process of recreating it.  All elements may not 

be known of the system under study and thus, hypotheses must be made in 

order to create an appropriate model.  These hypotheses can lead to interesting 

modeling results and help guide in vitro experiments.  However, modeling 

complexity does not necessarily require complex techniques.  By modeling the 

simplest elements of a biological system and by defining how the elements 

interact, it is possible to model complex behavior as emergent properties of the 

system.  In this manner, I model simple interactions between biological elements.  

First, at the lowest level of complexity, is a single molecule such as an RNA.  

Determining RNA secondary structure is a necessary step to understand how it 

interacts with other molecules to affect the biological system as a whole. The 

structure of an RNA is formed through simple interactions between nucleotides.  I 

developed software that aids the process of identifying sites in an RNA where 

nucleotide-nucleotide or nucleotide-protein binding occurs to predict RNA 

secondary structure more accurately.  The next level of complexity is molecule-

molecule interactions that result in the emergence of patterns within an organism, 
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such as phenotypes expressed by a cell.  Using agent-based modeling, I model 

the proteins, RNAs, and enzymes involved in a gene regulatory network that is 

responsible for the emergence of the competence phenotype in Bacillus subtilis. 

Competence is stochastically expressed due to the variable expression of genes. 

My agent-based model identified several possible sources for this variation: 

dilution events like cell division, inheritance of molecules involved in competence 

and most importantly, spatial temporal interactions of molecules.  And lastly, I 

model the simple interactions between two organisms, a virus and a host cell, to 

understand the molecular interactions between host and pathogen that result in 

the replication and assembly of a virus.  In this model, I successfully modeled the 

self-assembly of BK Virus using an agent-based model that models from 

transcription to translation to the encapsidation of the BKV genome within a T=7, 

icosahedral structure all by simple molecule-molecule interactions. 
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Chapter 1 
Introduction 

 
 

A biological organism is a complex system of multiple interacting molecular 

pathways comprised of numerous biochemical interactions.  Self-organization or 

complexity in biology occurs through seemingly simple biochemical interactions that 

give rise to complex patterns and phenotypes such as stripes on a zebra, bacterial 

phenotypes or viral capsid assembly [1, 2].  These not easily predicted biological 

patterns manifest over time from seemingly simple interactions, Figure 1.1. Modeling 

the underlying complexity of these biological patterns remains a challenge and can 

be quite daunting. Approaches to dissect the biology of a cell range from the study of 

a specific molecule to the study of gene and protein interaction networks in an 

attempt to break such a large, complex problem into more manageable, smaller 

pieces. Computational modeling approaches such as top-down methods like 

mathematical modeling tend to take the latter approach and tackle the problem by 

attempting to identify patterns, motifs or modules in a biological system and model 

these components [3].  
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Figure 1.1. Simple interactions between molecules lead to the expression of 
different phenotypes. 

Instead of modeling individual components, my work attempts to find a 

balance between simplification and complexity of biological systems by modeling the 

simple biochemical interactions.  These simple interactions result in the emergence 

of a global phenotype or complex structures.  First, simple interactions between 

nucleotide bases of the HIV-1 genome were studied to solve its secondary structure.  

Second, simple interactions involved in a gene regulatory network were modeled to 

unravel the sources of variability in the expression of the competence phenotype of 

the gram-positive bacteria Bacillus subtilis.  Lastly, the interaction of host cell 

machinery with the viral replication and assembly process of BK virus was studied to 

comprehend the pathogenesis of BKV within salivary gland cells. 

1.1 Simple Interactions of a Single Molecule, HIV-1 Genome 

Most RNAs perform their biological function(s) only after they fold to form two 

and three-dimensional structures, Figure 1.1. As an RNA forms a preferred 

secondary or tertiary structure, a subset of nucleotides becomes conformationally 

constrained by the simple interaction of bases pairing and tertiary interactions, while 

other nucleotides are left unpaired and unconstrained. The HIV genome consists of 

a single stranded RNA molecule consisting of 9 genes coding for 19 proteins [4]. The 
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function of the HIV genome is tightly linked to its structure in terms of conformational 

changes during the progression of infection while interacting with transcription 

factors, replication complexes and structural proteins during transcription, replication 

and packaging [5].  For instance, the structure of the primer binding site (PBS) as 

seen in Figure 3.1 undergoes a conformation change when the tRNA primer binds to 

the large loop region [6].  This binding stabilizes the tRNA primer, which then is 

incorporated into viral particles and is necessary for the initiation of reverse 

transcription [4].   

I developed a software system to aid in secondary structure prediction of an 

RNA in order to help identify biological function of domains of the HIV genome as 

described in Chapters 2-4. The software takes a chromatogram of a Selective 2'-

Hydroxyl Acylation analyzed by Primer Extension (SHAPE) experiment [6-8]. The 

cDNA products from each reaction are combined and separated on an automated 

capillary electrophoresis instrument of the type commonly used for high-throughput 

DNA sequencing. A single SHAPE experiment measures backbone flexibility of 

more than 300 RNA nucleotides at a time; multiple experiments can be combined for 

the analysis of RNAs of any length. The quantified results can then be used as input 

to third party secondary structure prediction algorithms. 

SHAPE provides valuable information about local backbone flexibility, but 

quantifying the per nucleotide flexibility information is a difficult, time-consuming 

task. rnafit, a software tool to aid this process, is a command line application that 

processes SHAPE experiments by aligning sequencing peaks with the RNA 

sequence and calculating peak areas to quantify per-nucleotide flexibility. Figure 1.2 
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shows example output from rnafit.  Previously, users would search through this 

output to determine peak finding accuracy and sequence alignment accuracy. To 

provide a more user-friendly, graphical user interface (GUI) and to provide a more 

integrated signal-processing platform, I integrated rnafit into BaseFinder and created 

additional signal processing tools.  BaseFinder is a software system originally 

designed to analyze spectral data output from DNA sequencing equipment [9].  It is 

based on an extensible, modular software architecture that easily allows the addition 

of new analysis algorithms in the form of "tools".  

 

Figure 1.2 rnafit version 0.82 output.  Column 1 is the RNA sequence.  Column 2 is the 
aligned sequence.   Columns 3 and 4 give feedback on the alignment of the sequencing 
lanes.  A), B) and C) give examples of alignment and misalignment. An X indicates the 
algorithm was uncertain of the nucleotide in the alignment. 

I created a new tool called Align and Integrate that incorporated the rnafit 

algorithm, described in Chapter 2. In addition, I performed the statistical analysis as 

well as create the new signal processing tools of Scale Factor, Mobility Shift: Cubic 

and Signal Decay Correction, also described in Chapter 2, resulting in the new 

software platform ShapeFinder based on BaseFinder [10].  
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Chapter 3 details improvements I developed for the sequence alignment 

algorithm of the original rnafit software integrated within the Align and Integrate tool.   

Lastly, there are two published reagents which bind to the 2'-OH of a 

nucleotide used in SHAPE chemistry:  N-methylisatioic anhydride (NMIA) and 1-

methyl-7-nitroisatoic anhydride (1M7) [7, 11]. However, a detailed statistical analysis 

was needed to determine whether or not the reagents exhibit sensitivity to base 

identity.  In other words, do the reagents react equally independent of nucleotide 

type?  Thus, a series of experiments were performed to obtain denatured SHAPE 

reactivity data of four different RNAs: 976 nts from the 5' end of the HIV-1 genome, 

the 154 nt specificity domain of Bacillus subtilis RNase P, and ~400 nt internal 

segments of the Escherichia coli 16S and 23S rRNAs.  Both NMIA and 1M7 data 

was obtained for each RNA and the statistical analysis was performed using a 

Bootstrap ANOVA detailed in Chapter 4 [12].  

Bootstrapping [13, 14] is based on the theory that even though the distribution of 

the population our data was collected from is unknown, the empirical distribution is a 

close approximation.  Essentially, I estimated the true distribution by repeated 

sampling from the empirical distribution of the data set. It is a computationally 

expensive, yet distribution free technique I used to simulate repeated SHAPE 

experiments to determine if the differences seen between the groups of nucleotides 

were due to the reagent or were due merely to chance.  Given that the SHAPE 

measurements are independent and by using the pivotal F-statistic, the bootstrap 

procedure is robust for SHAPE data. 
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1.2 Simple Interactions of a Gene Regulatory Network, Competence in 
B. subtilis 

The study of a single molecule does not provide significant insight into the 

complex interactions involved in gene regulatory networks, but is useful to identify 

function and interaction partners.  Many proteins, RNAs and enzymes interacting 

with one another lead to the emergence of phenotypes and patterns in nature, 

Figure 1.1. Following this principle, I modeled a gene regulatory network in order to 

understand the stochastic nature of the emergence of differing phenotypes in 

genetically identical bacteria cells. I selected to model the competence gene 

regulatory network of Bacillus subtilis as described in Chapter 5 as it is a well-

studied phenomenon.  

Genetically identical bacterial cell populations can express various 

phenotypes due to stochastic events and environmental input [15]. There is a growing 

body of evidence demonstrating that transitions from one bacterial cell phenotype to 

another are often governed by regulatory feedback loops [16].  This is called bi-stable 

switching where we have a system with two states, enabled or disabled.  

In a B. Subtilis cell, a bi-stable switch controls the competence phenotype that 

enables the uptake of DNA from the environment. Approximately, 10-20% of a B. 

subtilis population will express the competence phenotype [17]. The metabolic 

pathway that enables the competence switch is controlled by cell density and 

nutritional status and it is highly regulated [17]. It has been shown that the random 

expression of the competence phenotype is due to the variable expression of the 

comK gene [18]. ComK acts as its own transcription factor and thus positively auto-

regulates itself.  ComK is the “switch” that enables the competence switch. 
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Identifying the mechanisms that lead to the random expression of the comK gene is 

difficult to identify experimentally and the agent-based model (ABM) I created helps 

visualize this process in order to understand the operation of this system. 

In Chapter 5, I describe an ABM of the metabolic pathways that control the 

competence switch in B. subtilis to study the simple interactions of proteins and 

other molecules that comprise a gene regulatory network.  At the lowest level, my B. 

subtilis cell ABM, agents represent the proteins and regulatory elements of the 

competence metabolic pathway. A virtual 3-D environment is created where an 

agent diffuses throughout the cell landscape and is influenced by random 

interactions with other agents.  When an agent “bumps” into another agent, rules for 

interaction between agents are exercised when applicable, such as dimerization, 

protein binding, transcription, translation, protein or mRNA degradation, etc.  The 

ABM easily models the stochastic events in the molecular pathway, thus, allowing 

observations on the emergence of competence phenotypic behavior. 

At the next level, colony growth by cell division is then modeled by 

considering each “Cell ABM” as an agent. Changing nutrient levels in the model and 

colony growth influence each cell agent’s metabolic pathways such that the 

competence state randomly emerges in a subpopulation of the B. subtilis colony 

ABM. The model demonstrates the transition of 10-20% of the B. subtilis colony 

ABM to the competence phenotype and highlights three interesting observations: (i) 

spatial temporal interactions control the competence switch, (ii) molecules inherited 

by daughters cells influence the emergence of competence and (iii) cell division 

regulates competence emergence. 
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1.3 Simple Interactions of Interacting Organisms, Virus-Host Cell 

Finally, modeling interacting biological networks is another method of 

understanding how complex patterns, motifs or modules arise from simple 

biochemical interactions.  In the case of virus-host cell interactions, I describe in 

Chapter 6 a model of the interaction between two organisms to study the emergence 

of disease. 

It is well established that viruses have cell transforming properties and can 

induce tumor formation and diseases [4]. One such virus is the BK Virus (BKV). BKV, 

a polyomavirus family member, is a non-enveloped, small, double-stranded DNA 

virus.  BKV is believed to cause a harmless latent infection in healthy people but 

may reactivate if the immune system has been compromised [19]. Recently, BKV has 

been detected in HIV positive patients with HIV associated salivary gland disease 

(HIV SGD) and shown capable of reproducing in salivary gland cells [20]. As salivary 

gland diseases such as HIV SGD or Sjögren’s Syndrome do not have a known 

etiological agent, I developed a computational model to pursue this relationship with 

BKV. 

To understand further the association of BKV with salivary gland disease, I 

modeled BKV replication in a salivary gland cell in order to create simulations of viral 

pathogenesis.  I created a spatial-temporal molecular model using agent-based 

modeling (ABM).  Agents were used to model the synthesis of the capsid proteins 

and the BKV genome interacting with host molecular agents.   Additionally, agents 

via interactions by simple rules of attraction, repulsion and movement form complete 

capsid bound infectious and non-infectious BKV particles.   
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This model focused on the synthesis of the capsid proteins and self-assembly 

of the BKV virion to capture viral rates of production.  Host cells essentially 

determine the growth rate of a virus, and this model mimics the salivary gland cell 

support and hindrance of the BKV life cycle.  There is so little understood about the 

replication cycle of BKV and it has just recently been associated with SGD [20].  

Eventual additions to this model of the complete BKV replication cycle will yield 

insights into the pathogenesis of this disease.  Eventually, the goal is to create a 

model of the organ leading to a model of the infection of the human host. 



Chapter 2 
ShapeFinder: A software system for high-throughput 

quantitative analysis of nucleic acid reactivity information 
resolved by capillary electorphoresis 

 
 

2.1 ABSTRACT1 

Analysis of the long-range architecture of RNA is a challenging experimental 

and computational problem.  Local nucleotide flexibility, which directly reports 

underlying base pairing and tertiary interactions in an RNA, can be comprehensively 

assessed at single nucleotide resolution using high-throughput selective 2'-hydroxyl 

acylation analyzed by primer extension (hSHAPE).  hSHAPE resolves structure-

sensitive chemical modification information by high-resolution capillary 

electrophoresis and typically yields quantitative nucleotide flexibility information for 

300-600 nts per experiment.  The electropherograms generated in hSHAPE 

experiments provide a wealth of structural information; however, significant 

algorithmic analysis steps are required to generate quantitative and interpretable 

data. We have developed a set of software tools called ShapeFinder to make 

possible rapid analysis of raw sequencer data from hSHAPE, and most other 

classes of nucleic acid reactivity experiments.  The algorithms in ShapeFinder (1) 

convert measured fluorescence intensity to quantitative cDNA fragment amounts, (2) 

                                            
1 This work was published in RNA (2008) 14(10):1979-90.  Reproduced with 
permission from Cold Spring Harbor Laboratory Press. 
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correct for signal decay over read lengths extending to 600 nts or more, (3) align 

reactivity data to the known RNA sequence, and (4) quantify per nucleotide 

reactivities using whole-channel Gaussian integration.  The algorithms and user 

interface tools implemented in ShapeFinder create new opportunities for tackling 

ambitious problems involving high-throughput analysis of structure-function 

relationships in large RNAs. 

2.2 INTRODUCTION 

An absolute prerequisite for understanding the function of any RNA is an 

accurate picture of its higher order structure.  Analysis of in-solution nucleic acid 

structural information often requires that RNA or DNA fragment lengths be analyzed 

at single nucleotide resolution.  Important examples in this class include 

"footprinting", chemical modification and modification-interference experiments [8, 21-

25] These experiments can be performed in a wide variety of ways designed to 

analyze local nucleotide conformational differences, solvent accessibility, and the 

effects of functional group modifications on RNA and DNA folding and interactions 

with protein and small molecule ligands. For over three decades, these classes of 

experiments have been evaluated by resolving nucleic acid fragments on 

polyacrylamide slab gels [26].  Gel electrophoresis has significant advantages 

including good nucleotide resolution of nucleic acid fragments and low material 

costs.  However, gel electrophoresis is time consuming, single nucleotide-resolution 

separation is typically limited to 80-100 nts per gel, and band overlap and 

compression artifacts occur for many fragments. 
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In contrast to the limited read lengths obtained by gel electrophoresis, 

commercially available capillary electrophoresis instruments of the type commonly 

used for DNA sequencing routinely yield read lengths of 300 to 1000 positions at 

single nucleotide resolution. However, the absence of an appropriate set of software 

algorithms that address the unique quantitative properties of raw electropherograms 

generated by structure-probing experiments has prevented the use of capillary 

electrophoresis for high-throughput, single-nucleotide resolution, analysis of nucleic 

acid folding, dynamics, and ligand binding. 

To address this problem, we have created a new software suite called 

ShapeFinder that automates the steps required to extract quantitative, single 

nucleotide resolution reactivity information for 300-650 nts in a single capillary 

electrophoresis run. We focus here on the analysis of SHAPE (selective 2'-hydroxyl 

acylation analyzed by primer extension) experiments [7, 8, 27].  However, the 

algorithms created in this work can also be used to analyze raw capillary 

electrophoresis data from other classes of nucleic acid reactivity experiments, 

including those that use other chemical modification agents or hydroxyl radicals to 

map structure and solvent accessibility (unpublished data). 

2.2.1 RNA Structure and hSHAPE Chemistry.  

SHAPE chemistry holds considerable promise for rapidly determining the 

structure of any RNA, under a variety of functionally important states, with single 

nucleotide resolution [28-37]. SHAPE chemistry involves measuring local backbone 

flexibility at nearly every position in an RNA by forming sparse 2'-O-adducts with 

using a hydroxyl-selective electrophile.  This modification reaction can be made 
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exquisitely sensitive to local nucleotide flexibility [7] (Figure 2.1A).  Nucleotides that 

are constrained by base pairing or tertiary interactions are unreactive, while 

conformationally flexible (and likely single-stranded) nucleotides preferentially form 

2'-O-adducts (Figure 2.1A,B).  Sites of modification are located by annealing a 5'-

end labeled primer to the RNA and then extending the primer to the nearest site of 

modification using reverse transcriptase in an optimized primer extension reaction [7, 

8]. The product of this experiment is a series of extended, 5'-end labeled cDNA 

fragments whose length and amount correspond to the position and degree of 

modification -- and hence local nucleotide flexibility -- at every nucleotide in an RNA 

(Figure 2.1C). In order to assess RNA degradation and position-dependent 

processivity of the primer extension reaction, a control omitting the reagent is 

performed in parallel. Third, in addition to the (+) and (–) reagent reactions, one or 

two dideoxy sequencing reactions are used to map reactivity to the RNA sequence 

(Figure 2.1D). 

In high-throughput SHAPE (hSHAPE), each of the three components of a 

SHAPE experiment is implemented using the same primer sequence but labeled 

with a color-coded fluorophore. The cDNAs from the reactions are combined and run 

in a single capillary on a capillary electrophoresis sequencing instrument using 

procedures analogous to high-throughput DNA sequencing [6, 11, 38]. Raw capillary 

electrophoresis profiles typically contain 300-500 nts of SHAPE reactivity information 

and thus provide a comprehensive, nucleotide-resolution view of RNA secondary 

and tertiary structure in a single experiment. However, the raw electropherograms 
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are complex and require substantial processing before they can be used to infer 

RNA structural information.  

 

Figure 2.1. Overview of high-throughput Selective 2'-Hydroxyl Acylation analyzed by 
Primer Extension (hSHAPE) and data processing using ShapeFinder. 
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2.2.2 Algorithmic Challenges for Nucleic Acid Structure Analysis Resolved by 
Capillary Electrophoresis.  

The output of an hSHAPE experiment resolved by capillary electrophoresis is 

an electropherogram, or trace. A typical trace contains 3 to 4 individual channels of 

fluorescence intensity versus elution time data; where each channel roughly 

corresponds to one of the SHAPE reactions (Figure 2.1E). The results of hSHAPE 

and DNA sequencing experiments resemble each other in that both experiments 

generate a series of measured fluorescence intensities versus elution time and must 

be processed extensively in order to yield useful nucleotide resolution information. 

However, extracting reactivity versus nucleotide position information for an hSHAPE 

or any other nucleic acid reactivity experiment requires the use of unique algorithms 

and data processing strategies. 

The first and most important difference is that peak magnitude in DNA 

sequencing contains little meaning other than to indicate which nucleotide is present 

at a position. In contrast, both peak intensity and position are meaningful for all 

peaks in the (+) and (–) reagent channels in an hSHAPE experiment. Peak intensity 

spans a dynamic range of 50-fold and reports the structure-sensitive yield of the 2'-

O-adduct, and thus local nucleotide flexibility (Figure 2.1A).  The position reflects the 

length of the extended primer, and hence the nucleotide position in the RNA.  

Critically, the processing steps applied to hSHAPE data must not disturb relative 

intensity or distribution features of peaks in the electropherogram. 

Second, 2-3 meaningful peaks in distinct channels [in the (+) and (–) reagent 

channels, and potentially in one sequencing channel] are observed per nucleotide in 

an hSHAPE electropherogram, versus one peak per nucleotide in a sequencing 
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experiment. Thus, hSHAPE peaks must be aligned with each other with greater 

precision because quantitative analysis of reactivity information requires greater 

alignment accuracy and it is not possible to base alignment on the expectation that 

there is only one intense peak per trace position.   

Third, peak position and area must be determined for every position in the (+) 

and (–) reagent channels to quantify nucleotide reactivity; whereas, sequencing only 

requires locating the most intense peak per position. Importantly, the absence of a 

peak in the (+) reagent channel in an hSHAPE experiment represents significant 

information and indicates that a nucleotide is constrained by base pairing or tertiary 

interactions.  Thus, accurate identification and quantitative analysis of noisy, barely 

detectable, peaks is an absolute requirement for successful hSHAPE analysis.  

Finally, fully automated analysis of hSHAPE data requires that sparse sequencing 

data be aligned to a known input sequence.  This is the opposite of DNA 

sequencing, where the goal is to determine a precise sequence of nucleotides. 

2.3 RESULTS 

2.3.1 ShapeFinder 

The initial processing steps required to convert raw capillary electrophoresis 

profiles into useful reactivity information are similar to those involved in analysis of 

DNA sequencing traces.  We therefore extended the BaseFinder platform[9], a 

framework originally designed for DNA trace processing, analysis and base-calling, 

for analysis of nucleic reactivity information as resolved capillary electrophoresis.  

ShapeFinder is a modular, extensible software package in which each signal-

processing algorithm is implemented as a tool.  The results of each analysis step are 



 17 

immediately displayed to the user in a straightforward graphical user interface 

(Figure 2.2). 

 

Figure 2.2. ShapeFinder at the Align and Integrate stage.  The Data View Window 
(center) provides graphical feedback on each data processing step.  The Tool 
Inspector window (upper right) displays the user-definable parameters for the tool 
selected in the Scripting Inspector.  The Scripting Inspector (lower right) displays the 
tools thus far applied to the data. 

ShapeFinder reads and displays files from most common sequencing 

platforms, including generic tab-delimited .txt files, the Beckman .esd and .dat files, 

and the ABI .fsa, .abi, and .ab1 formats.  ShapeFinder also implements a new file 

format (.shape) that stores the raw and processed hSHAPE data along with the tool 

parameters that have been applied to the data set. The .shape file allows for review 

and re-execution of trace processing steps and facilitates testing the effects of 

different parameter choices. 

The net output of ShapeFinder -- a table of quantitative reactivity information 

as a function of position in the nucleotide sequence (Figure 2.1F) -- can then be 
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used in numerous ways in the analysis of nucleic acid reactivity experiments.  In the 

case of an hSHAPE experiment, reactivity information has thus far been used to 

develop models for an RNA secondary structure, to monitor RNA folding reactions, 

and to evaluate the effects of protein binding and macromolecular complex formation 

[6, 11, 38]. 

2.3.2 ShapeFinder Tools 

ShapeFinder implements the algorithms required to convert raw capillary 

electrophoresis electropherograms into useful reactivity information through the 

execution of a specific sequence of tools, called a script. Each tool in a script 

accomplishes a specific data processing step by applying user-definable parameters 

to the electropherogram. The current script is displayed in the Scripting Inspector 

window in the ShapeFinder user interface (Figure 2.2, lower right). Tools are added 

and run using the Tool Inspector window, which also displays the parameter values 

associated with each tool (Figure 2.2, upper right). A processing tool is added using 

the "Append" button; tools already in a script may be changed and rerun by selecting 

"Replace."  An individual step and its associated parameters may be reviewed by 

selecting the tool entry in the Scripting Inspector window. 

Complete analysis of an hSHAPE raw capillary electrophoresis profile 

involves three major processing steps.  First, the raw electropherogram is subjected 

to pre-processing to account for fluorescent background, correct for spectral overlap 

between the fluorescent channels, correct for the mobility shift imparted by tagging 

the primers used in the primer extension steps with different dyes, and adjust for 

signal decay at long read lengths. Second, channels are aligned so that all peaks in 
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the (+) and (–) reagent channels are identified and linked to the input RNA 

sequence, including those "peaks" corresponding to zero reactivity (peak alignment).  

Finally, quantitative nucleotide reactivities are obtained by performing a whole-

channel Gaussian integration for all peaks in the (+) and (–) reagent channels (peak 

integration).  Subtracting the integrated values for the (–) reagent from the (+) 

reagent profiles yields the absolute nucleotide-resolution reactivity for every RNA 

position over read lengths typically spanning 300-600 nts.  An experienced individual 

can perform the data processing steps in approximately 1-2 hours.   

We will illustrate these processing steps using an experiment performed on a 

transcript corresponding to the first 976 nts for the NL4-3 strain of the HIV-1 

genome.  Although any combination of detectable fluorophores or color-coding may 

be used to identify the individual reactions of an hSHAPE experiment, we will use a 

scheme in which blue and green channels represent the (+) reagent and (–) reagent 

experiments, and black and red represent RNA sequencing ladders (reflecting chain 

termination by ddGTP or ddTTP, respectively) (Figure 2.3).  Data are collected from 

the capillary electrophoresis instrument such that the small fragments representing 

the 3'-end of the RNA read elute first.  
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Figure 2.3. Electropherogram analysis as implemented using ShapeFinder tools. (A) 
Unprocessed capillary electrophoresis electropherogram. (B) Net result after 
application of the Fitted Baseline Adjust and Matrixing tools. (C) After the Mobility 
Shift: Polynomial tool (from four serial executions of the tool). (D) After Signal Decay 
Correction and Rescaling. (E) Whole-channel Gaussian integration of the (+) and (–) 
reagent channels obtained using the Align and Integrate tool.  Solid bars show 
absolute SHAPE reactivities after subtracting background.  For clarity, sequencing 
channels are offset from the (+) and (–) reagent channels. 
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2.3.3 Data Preprocessing 

Fitted Baseline Adjust, Matrixing and Smoothing. Channels in raw 

capillary electropherograms are convoluted by detector background, overlapping 

emission spectra, detector noise, and horizontal offset between channels (Figure 

2.1E, Figure 2.3A, and Figure 2.6A). Since these traits are common to all 

electropherogram data, initial processing of the raw electropherograms involves 

steps analogous to those used for DNA sequencing experiments. 

Fluorescent background noise causes the baseline in each channel to drift, 

which imparts an idiosyncratic vertical offset to each channel. The Fitted Baseline 

Adjust tool adjusts each channel to a common baseline by zeroing each channel 

over a window of detector readings, typically ten times the average peak width.  

The fluorescent dye used to distinguish the channels in a capillary 

electrophoresis electropherogram excite at similar wavelengths and have 

overlapping emission spectra. Thus, some dye signals are detected in several 

fluorescent channels by the instrument detector. For example, in the sample data 

set, the (+) reagent peaks are detected in both the blue and green channels (Figure 

2.3A).  The Matrixing tool determines the unique quantitative contribution of each 

fluorophore to signal intensity in each channel (Figure 2.3B). Parameters for the 

Matrixing tool must be calibrated once for each set of dyes (described in the 

Methods section).  Some commercial instruments implement these steps using 

instrument-specific software and these alternative algorithms can be used in place of 

those in ShapeFinder, provided they correct completely for spectral overlap and do 

not leave significant residuals in other channels.   
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Trace data from a DNA sequencer contains fluctuations due to detector noise 

so that each major peak may have minor peaks and valleys of its own, which 

complicates downstream peak finding. Smoothing can increase read length and 

peak detection by ~10% for datsets with low signal to noise ratios.  The result of the 

Baseline Correction, Matrixing and Smoothing tools on the HIV-1 NL4-3 transcript 

are shown in Figure 2.3B. 

Mobility Shift. In an hSHAPE experiment, each reaction is analyzed using a 

DNA primer labeled with a different fluorophore (Figure 2.1D). The dyes alter the 

electrophoretic migration rate of the cDNA products so that cDNAs of the same 

length have slightly different elution times (Figure 2.3B). For hSHAPE data, 

correction for mobility shifts must be performed more accurately than is generally 

required for DNA sequencing to facilitate accurate location and linking of 

corresponding peaks between channels. ShapeFinder implements several mobility 

shift tools that can be combined in serial to account for horizontal offset without 

significantly altering peak shapes. Two to four serial applications of the Mobility Shift: 

Cubic tool typically places all channels on a consistent x-axis (Figure 2.3C). 

Parameters for an initial mobility shift must be set once for each set of primers.  

These parameters can also be fine-tuned on a trace-by-trace basis. 

Signal Decay Correction. Inspection of all of the channels in an hSHAPE 

experiment indicates that peak intensities decay with increasing read length (best 

visualized in Figure 2.6A).  There are three sources of this decline, depending on the 

reaction channel.  (1) Reverse transcriptase is not perfectly processive and fails to 

elongate at every position with an unmodified 2'-hydroxyl, such that the probability of 
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adding an additional nucleotide to a cDNA is slightly less than one.  (2) The (+) 

reagent reaction is designed that, on average, only one in every 300 nts is modified. 

However, because modification is random over long RNA lengths, some RNAs react 

two or more times. For RNAs containing multiple adducts, only the first site of 

modification is detected, thus favoring short cDNAs.  (3) In the sequencing reactions, 

the population of extending primers decreases by a small factor each time a 

dideoxynucleotide is incorporated.  Thus, the signal decays exponentially to zero in 

all channels at read-lengths of 400-650 nts. This decay is also observed in DNA 

sequencing experiments and is corrected by normalizing peak intensities across all 

channels to consistent heights [9].   

In the case of hSHAPE experiments, fluorescence intensity is meaningful, so 

the decay correction must be performed using a statistical model of signal decay.  

We find that signal decay is well modeled as: 

 D(x) = Aqx + C (1) 
where D is the signal intensity as a function of primer elongation, A is the amplitude 

of the decay, C represents the measured intensity at the end of the channel, and q is 

the probability of extension at position x [30].  

The user sets (i) the range of data points, (ii) the channel which to apply the 

tool, and (iii) a scaling factor to maintain the scale of the corrected channel relative 

to the other channels. The algorithm calculates new values with roughly even 

reactivities over a 300-650 nt read length. A properly corrected channel is readily 

verified by visually inspecting the data: intense peaks in the beginning, middle and 

end of the channel should be of uniform height.  
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Scaling. Experimental variations in performing primer extension, inherent 

differences in dye intensity (compare black and red channels, Figure 2.6A) and 

second-order effects of the ShapeFinder Smoothing and Signal Decay Correction 

tools can cause the channels to be on different scales. The channels are adjusted 

manually such that the smallest 5-10% of the peaks throughout the (+) channel 

match corresponding (–) channel intensity (Figure 2.3D, compare blue and green 

channels).  This correction assumes that there are always a few completely 

unreactive nucleotides in an hSHAPE read whose peak intensities should exactly 

match the corresponding (–) peak intensities. For ease in data viewing and further 

analysis, sequencing peaks are set to match moderately intense peaks in the (+) 

channel (Figure 2.3D, compare red and black to blue channels). After preprocessing, 

all channels have a baseline set to zero, peaks in different channels corresponding 

to the same nucleotide have the same elution time, and well-defined peak intensities 

correspond quantitatively to cDNA amounts (Figure 2.3D).  

2.3.4 Whole-Channel Peak Alignment and Integration 

The heart of the new ShapeFinder program is the Align and Integrate tool, 

which calculates hSHAPE reactivities for every analyzable nucleotide in an 

electropherogram (Figure 2.3E). There are four phases to the algorithm: (1) peak 

finding and linking, (2) alignment to the RNA sequence, (3) user editing of the 

alignment by adding or deleting peaks, and (4) quantification of 2'-O-adduct 

formation by peak-by-peak Gaussian curve fitting (Figure 2.4). The ShapeFinder 

Align and Integrate tool implements these steps in the Setup, Modify and Fit panels 

(Figure 2.2, upper right). Phases 1 and 2 are performed using the Setup panel; the 
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Modify panel allows the user to add and remove peaks in phase 3; and the Fit panel 

is used to manage phase 4.  The tool is iterative and alignments are recalculated 

after each round of user input.  Subtracting the (–) from the (+) reagent peaks is 

performed automatically and yields absolute hSHAPE reactivities for every 

nucleotide in the capillary electrophoresis read (bars, Figure 2.3E). 

 

Figure 2.4. Flow chart of the Align and Integrate algorithm, which involves three 
phases:  (1) peak finding and linking of (+) reagent, (–) reagent, and sequencing 
peaks, (2) peak alignment to the RNA sequence, and (3) calculation of per 
nucleotide SHAPE reactivities by Gaussian integration. 
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Primer extension stops at the base preceding the nucleotide containing a 2'-

O-adduct; thus, the (+) and (–) reagent peaks are one nucleotide longer than the 

cDNA fragments generated by dideoxy sequencing [7]. Therefore, the sequencing 

alignment is shifted by one nucleotide relative to the (+) and (–) reagent channels. 

To avoid confusion, the ShapeFinder display shows the sequencing peaks without 

an offset.  Text output files show the offset. 

Setup. In the Setup phase, the user assigns each channel to one of the four 

SHAPE reactions [(+) and (–) reagent, and sequencing ladders] and specifies the 

region of the trace to be analyzed using either numerical trace positions or by 

selecting a region of the trace in the main window.  A Refine option enables 

automatic interpolation of peaks in the (+) reagent or (–) reagent channels based on 

the expected spacing in a given region of the trace.  The Setup phase also reads a 

text file containing the RNA sequence in the 5' to 3' direction that is used to align the 

trace data to the RNA nucleotide position. 

A preliminary alignment is initiated after these parameters have been set. The 

data view window displays the four channels and demarcates identified peaks with 

squares (Figure 2.2). Vertical lines show peaks in the four channels that have been 

linked with each other and with the input sequence. Light-shaded squares in either 

the (+) or (–) reagent channels indicate unlinked peaks. For the sequencing 

channels, light-shaded squares report peaks that were identified but were not 

accepted as part of the sequencing ladder. 

Modify. In portions of a run with strong signal, low-noise, and good 

alignment, the results of the first alignment step are typically satisfactory.  However, 
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in some regions, especially near the ends of a read, meaningful peaks may be 

missed, not aligned, or assigned incorrectly. However, these regions often contain 

high quality and quantitative SHAPE structural information that can be gleaned with 

operator supervision. To this end, ShapeFinder allows manual editing and extension 

of the automatically generated alignment using the Modify panel (illustrated 

schematically in Figure 2.4).  

The ShapeFinder-determined sequence alignment is displayed at the bottom 

of the data window (Figure 2.2). The top sequence is determined from the 

sequencing channels, while the bottom sequence shows the loaded sequence. For 

completely aligned data, letters coincide vertically between the two datasets. When 

the data are partially misaligned relative to the input sequence, there will be a 

horizontal offset between the two sequences. The addition or deletion of a peak in 

the (+) reagent channel is usually required to correct the alignment. Finding the 

location of a missed or incorrectly added peak is accomplished in a straightforward 

way by locating the position where horizontal offset begins. 

Peaks to be deleted or added are selected by clicking on the square at the 

top of each peak, or clicking at the desired position for a new peak in any channel, 

respectively. The tool window displays a spreadsheet-style list of peak positions that 

have been added or deleted (left panel, Figure 2.2).  Data that is ready for Gaussian 

fitting (center, Figure 2.2) is correctly aligned to the sequence and has all (+) and (–) 

peaks linked to each other and to the sequence, as indicated by filled boxes. 

Depending on the quality of the data, zero to ~20 peaks may need to be deleted or 

added at either end of a trace to allow a complete alignment. Particularly difficult or 
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unalignable regions may be removed in the Setup panel by adjusting the Trace 

Range.  For the HIV-1 example dataset, three unaligned (+) reagent peaks were 

deleted at the beginning of the trace. This correction then allowed complete 

alignment of >400 continuous nucleotides in the RNA.  

Fit. Once all peaks to be analyzed have been identified and linked with the 

input sequence, the Fit phase of the Align and Integrate tool performs whole-channel 

Gaussian peak integration for the (+) and (–) reagent channels (Figure 2.3E).  Each 

peak is fit to 

  (2) 

where Ai is the peak area and µi and σi are the center and width of peak i, 

respectively.  The tool has both fast and optimize modes. The Optimize option 

provides a more accurate peak fitting, but is more computationally demanding 

(Figure 2.5). 

Once fitting is complete, ShapeFinder displays the calculated peaks 

superimposed upon the (+) and (–) reagent channels in the data view window 

(Figure 2.2, bold lines). The fitted Gaussian curves for all peaks, the calculated peak 

areas, the net absolute reactivity at every position, the alignment to the input 

sequence, and identified peak positions are output in tab delimited ASCII text files. 
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Figure 2.5. Whole-channel peak integration. (A) Preliminary local fit to initialize 
values for Ai and σi.  (B) Final globally optimized fit. 

2.3.5 Example of a Complete hSHAPE Experiment, Quantified by ShapeFinder 

A complete hSHAPE electropherogram contains structural information for 

several hundred RNA nucleotides (Figure 2.6A).  As outlined above, the raw data for 

the HIV-1 example RNA includes all of the typical characteristics of raw 

electropherogram sequencing data, including baseline offset, fluorescent overlap, 

channels on different intensity scales (black and red channels, Figure 2.6A), mobility 

offset for cDNAs of the same length, and signal decay such that peaks at the left of 

the channel are 4 times more intense as those at the right (blue and red channels, 

Figure 2.6A). After applying the preprocessing tools, all channels have a baseline 
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set to zero, peak intensities correspond quantitatively to cDNA amounts, and overall 

peak heights are distributed evenly throughout each channel (Figure 2.6B). 

 

Figure 2.6. Overview of a complete hSHAPE data set, processed using 
ShapeFinder and representing a total read length of 415 nts from an HIV-1 transcript 
RNA. (A) Raw electropherogram from a DNA sequencer. The data consists of four 
channels of fluorescence intensity information as a function of elution time.  (B) 
Preprocessed SHAPE data. Each channel now represents dye amount, not 
fluorescence, as a function of elution time for each of the four channels.  For clarity, 
channels corresponding to the A and C sequencing ladders are offset from the (+) 
and (–) reagent channels. (C) Sequence alignment and whole-channel Gaussian 
peak integration using the Align and Integrate tool to calculate absolute SHAPE 
reactivities. 

ShapeFinder then implements a whole-trace Align and Integrate algorithm 

that (i) aligns the sequencing ladders and the (+) and (–) reagent channels with the 

input sequence and (ii) calculates the areas under all analyzable peaks in the (+) 
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and (–) channels by whole-trace Gaussian integration.  Subtracting the (–) peak 

areas from the (+) reagent peaks yields the absolute hSHAPE reactivity for every 

nucleotide in the capillary electrophoresis electropherogram (bars, Figure 2.6C).  In 

this typical experiment, single nucleotide resolution SHAPE reactivities were 

obtained for positions 491–905 in the HIV-1 transcript, for a total read length of 415 

nts. 

2.3.6 Analysis of Accuracy and the Reproducibility of hSHAPE and 
ShapeFinder 

The most important criteria by which to judge ShapeFinder is whether its 

algorithms yield reproducible and accurate RNA structure information.  We first 

analyzed SHAPE reactivities for the well-studied tRNAAsp molecule.  After performing 

a SHAPE experiment on tRNAAsp, cDNA fragments were resolved either (i) using 

radiolabeled DNA primers and detection by denaturing gel electrophoresis or (ii) by 

capillary electrophoresis and ShapeFinder.  The tRNA molecule was imbedded in a 

previously described structure cassette to facilitate analysis by primer extension [7].  

The net length of this RNA is 132 nts, which is close to the limit in RNA size that will 

yield a single-nucleotide resolution banding pattern in routine sequencing gels.  

cDNAs resolved by gel electrophoresis were quantified using SAFA, which has been 

independently validated to calculate accurate band intensities [39].  We compare 

these experimental results to a SHAPE experiment performed under the same 

conditions on the same RNA, but analyzed using fluorescent primers, capillary 

electrophoresis, and ShapeFinder.  For both datasets, SHAPE reactivity data are 

normalized to a scale that spans 0 to ~1.5 and in which 1.0 is defined as the average 

reactivity of highly reactive positions.  
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Inspection of the two datasets indicates that quantitative analysis of cDNA 

fragments obtained from a SHAPE analysis of the tRNAAsp transcript yielded nearly 

identical reactivities at almost all positions, regardless of the separation and analysis 

platforms (compare solid and open columns, Figure 2.7A). The linear relationship 

correlation coefficient, R, between the two datasets is 0.91, indicating 83% (R2) of 

the variability of the hSHAPE data can be predicted by the variability of the gel data.  

This correlation is significant at the p < 0.0001 level.  Comparison of the differences 

in reactivities between the two datasets yielded a Student t-test p-value of 0.84, 

indicating the group reactivities are statistically equivalent.  

The only significant differences in measured nucleotide reactivity occurred at 

positions 29-32.  The differences reflect the difficulty in calculating intensities in the 

context of band compression that occurs when cDNA fragments for this RNA are 

resolved by gel electrophoresis [27, 40] (labeled, Figure 2.7A); these positions were 

therefore not included in the correlation analysis.  In contrast, positions 29-32 were 

readily interpretable in the capillary electrophoresis trace.  Thus, ShapeFinder yields 

quantitative values for per nucleotide reactivities that are as accurate as the 

conventional approach using gel electrophoresis.  The only difference is that 

capillary electrophoresis is less sensitive to band compression artifacts. 

Second, we analyzed the reproducibility of SHAPE reactivities for five data 

sets, three corresponding to a primer binding at position 342 and two for a primer 

binding at position 535 (Figure 2.7B).  These primers bind 193 nts apart and yield 

overlapping reads of ~200 nts.  The region of overlap corresponds to the 3' portion 

of one primer read, and the 5'-most end of the second primer read (see dashed 
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arrows, Figure 2.7B).  The overlapping regions therefore also correspond to sets of 

peaks that have been differentially adjusted by the Signal Decay Correction 

algorithm. 

 

Figure 2.7. Accuracy and reproducibility of hSHAPE and ShapeFinder. (A) 
Comparison of nucleotide reactivity as quantified by ShapeFinder (closed bars) and 
denaturing gel electrophoresis (open bars).  Loops in tRNAAsp are indicated 
explicitly.  The tRNAAsp sequence was flanked by 5' and 3' structure cassette 
sequences [7].  Due to strong band compression [27, 40], some positions cannot be 
visualized by gel electrophoresis.  Bands visualized by gel electrophoresis were 
quantified using SAFA [39].  (B) Overlapping reads for HIV-1 genome transcripts.  
Primers, shown as solid and open arrows, anneal to the RNA 193 nts apart and 
reads therefore overlap by ~200 nucleotides (dashed lines).  (C) Mean hSHAPE 
reactivities and standard deviations calculated from overlapping and replicate reads.  
Primers annealed at positions 342-363 (solid columns) and 535-555 (open columns). 
Data shown report three experiments from the 342-363 primer and two experiments 
from the 535-555 primer for five experiments total, whiskers report standard 
deviations. Due to high background, no data was available at nt 219. 
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We performed several statistical tests to evaluate how similar calculated peak 

intensities are across data sets.  Correlation coefficients calculated between the 10 

possible pairs of the 5 datasets indicated a very strong correlation between the 

datasets, with R2 values ranging from 0.86 to 0.97 (p-values < 0.0001).  A one-way 

ANOVA (analysis of variation) performed between the 5 datasets showed the 

SHAPE reactivities to be statistically equivalent (p = 0.77). Furthermore, Levene’s 

Test indicated constant variance between the five datasets (p-value = 0.26).  Finally, 

we calculated the standard deviation for each measurement in the 181-230 window.  

A plot of the per position standard deviation as a function of mean SHAPE reactivity 

is linear (R = 0.73; p < 0.0001). Linear regression indicates that the average 

measurement error at any one nucleotide is 0.04 + 0.11 × (per position 

measurement) in SHAPE units.  Thus, for representative low and high SHAPE 

reactivities of 0.1 and 0.7, measurement errors are expected to be ±0.05 and ±0.12 

SHAPE units, respectively. 

In sum, these statistical tests indicate that SHAPE reactivities as quantified 

using ShapeFinder (i) are calculated accurately over hundreds of nucleotides, (ii) are 

accurately corrected for signal decay as modeled by Eqn. 1, and (iii) exhibit small 

absolute measurement errors.  Combining quantitative reactivities from individual 

reads of 300-650 nts can therefore robustly monitor the structures of long RNAs, 

potentially spanning thousands of nucleotides. 

2.4 Discussion 

Experiments that probe nucleotide reactivity and solvent accessibility 

represent powerful approaches for analyzing conformational changes and protein 
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and ligand binding for RNAs of known structure, and for developing models for 

RNAs whose structures are not known.  A critical limiting step in such analyses has 

been the use of gel electrophoresis technology to visualize the results of these 

experiments.  In many cases, more effort is required to obtain, manipulate, and 

quantify information by gel electrophoresis than is spent actually performing the 

experiment or interpreting its result. 

The algorithms implemented in ShapeFinder dramatically lower the barriers to 

monitoring the structure of large RNAs.  Depending on the characteristics of an 

RNA, we routinely obtain read lengths of ~400 nts, with reads of up to 650 nts under 

optimal conditions.  This means that single nucleotide resolution structure 

information can now be obtained for entire large catalytic and regulatory RNAs or 

domains of larger RNAs like ribosomal RNAs in a single experiment. 

While ShapeFinder accelerates the ability to interrogate RNA structure in 

solution at single nucleotide resolution, we are continuing to develop new methods 

and algorithms to further improve the speed, accuracy and automation of hSHAPE 

analysis. Important objectives include improved and automatic mobility shift 

alignment and algorithmic optimizations to reduce the computational overhead for 

peak curve fitting.  It is our hope that ShapeFinder will make it possible to tackle new 

classes of problems related to the role of long-range RNA structure in biological 

function. 



 36 

2.5 MATERIALS AND METHODS 

2.5.1 SHAPE Data.   

SHAPE experiments were performed on an HIV-1 transcript or tRNAAsp 

exactly as described [6, 7]. Most of the SHAPE reactivity data on HIV-1 sequences 

presented here was reported previously [6]. Briefly, DNA templates encoding the 5'-

most 976 nts of the HIV-1 NL4-3 strain (Gen Bank AF324493) or tRNAAsp were 

generated by PCR. The RNA construct was produced by in vitro transcription and 

purified by gel electrophoresis. The HIV-1 RNA and tRNAAsp (1 pmol) were refolded 

in 50 mM HEPES (pH 8.0), 200 mM potassium acetate (pH 8), and 5 mM MgCl2; or 

100 mM HEPES (pH 8.0), 100 mM NaCl, 10 mM MgCl2, respectively, at 37 ˚C for 30 

min. (+) and (–) reagent SHAPE reactions were initiated by treating the RNA with N-

methylisatoic anhydride (NMIA, 32.5 mM in DMSO) or DMSO, respectively. After the 

NMIA hydrolyzed completely (60 min) [7], the RNA was recovered by ethanol 

precipitation and mixed with fluorescently labeled DNA primers (Proligo or LI-COR) 

that annealed at either positions 342-363, 535-555 or 956-976. Primer extension 

was initiated by addition of Superscript III reverse transcriptase (Invitrogen). 

Sequencing markers were generated using unmodified RNA by performing primer 

extension in the presence of dideoxy NTPs.  Dyes for the (+) and (–) reagent and 

sequencing lanes were Cy5, WellRed D3, WellRed D2 and LI-COR IR 800, 

respectively. cDNA products from the four reactions were mixed, purified, and 

separated on a Beckman CEQ2000XL capillary electrophoresis DNA sequencer. 

tRNAAsp experiments were performed both using a 5'-radiolabeled primer and 

resolving primer extension fragments on electrophoresis gels [7, 27] or using 

fluorescently labeled (Proligo or LI-COR) primers and capillary electrophoresis, in 



 37 

the same manner as HIV-1, except that 130 mM NMIA was used. Fluorescence 

intensity over the 4 channels was monitored at a rate of 2 Hz and yielded an 

average of ~10 points per peak position. Raw electropherograms were output from 

the capillary electrophoresis instrument in the Beckman .txt format and read directly 

into ShapeFinder. 

2.5.2 ShapeFinder Software 

ShapeFinder is a derivative of the BaseFinder trace-processing platform and 

is written in Objective-C [9]. It is distributed as a Universal Binary, and runs on 

Macintosh PowerPC or Intel computers running Max OS X 10.4 or later. 

ShapeFinder is freely available for non-commercial use. A comprehensive Help File 

is also available in the software package for new users of hSHAPE technology and 

ShapeFinder. Both the ShapeFinder software and help package, as well as all HIV-1 

data and example scripts used in this work are available at: 

http://bioinfo.unc.edu/downloads/. 

Fitted Baseline Adjust. The Fitted Baseline Adjust tool calculates a common 

baseline for each channel while keeping the experimentally recorded data intact [9]. 

The local minima in a channel are found after dividing the channel into windows 

representing 5-20 times the average peak width. For the HIV-1 dataset, the window 

size was 200 because peak widths usually are ~10±5 data points.  

Matrixing.  The multiple fluorescent dyes excite at different wavelengths and 

have overlapping emission spectra, such that each channel contains contributions 

from more than one dye in multi-fluor runs. Spectral overlap was removed using a 

linear transformation matrix so that each channel represents dye amount as a 
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function of position. The transformation matrix is calibrated using four extension 

reactions run in separate capillary columns, which need be performed only once per 

dye set. The extension reactions must generate a series of intense, but not 

saturating, peaks for each fluorophore, and is most easily achieved by generating 

sequencing channels. The extension products are resolved in independent capillary 

runs, such that each electropherogram contains fluorescence from a single dye. The 

user selects an intense peak for each of the dyes and ShapeFinder automatically 

calculates a transformation matrix that can be used for all experiments using the 

same dye set. 

Smoothing. Trace data from a DNA sequencer contains fluctuations due to 

detector noise.  The peak-fitting and alignment algorithm implements an internal 

smoothing step to correct such noise and we find that this smoothing is sufficient for 

optimal processing in most cases.  However, in cases where trace data are very 

noisy, or the user prefers the displayed data to be smoothed, a separate smoothing 

step can be applied using the Filter-Convolution [9] tool. Recommended parameters 

are a Gaussian width σ = 1 and window size of 10.  Judicious noise reduction by 

smoothing is helpful; however, it is important that this step not be overdone or 

adjacent peaks can blend together. 

Mobility Shift.  Mobility shift parameters are calculated using a sequencing 

experiment in which all four dye labeled primers are extended in the presence of the 

same dideoxy nucleotide and resolved in a single capillary.  Tool parameters are 

initialized by dragging portions of channels so that they all align to a user-chosen 

reference channel. The algorithm calculates coefficients to fit a polynomial equation 
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to the data. These parameters need be determined only once for a given primer set, 

but individual electropherograms may require fine-tuning. Two to three iterations of 

the Mobility Shift: Cubic tool are usually sufficient for an hSHAPE electropherogram. 

Signal Decay Correction. This tool corrects the decay in peak intensity due 

to the stochastic nature of 2'-hydroxyl modification and the imperfect processivity of 

reverse transcriptase. At each nucleotide position, there is a probability p that a 

reagent-modified nucleotide will stop reverse transcriptase.  The probability that the 

reaction will continue, q [q = (1 – p)], yields the exponential form observed for peak 

drop-off that we model with Eqn. 1. 

For each hSHAPE experiment, the algorithm determines the best-fit 

parameters from equation 1 in two steps.  First, it identifies peak locations, 

calculates their height, and removes outliers.  Peaks are identified by considering 

seven consecutive points, calculating the slope of the line connecting each 

sequential pair of neighboring points, and then averaging the six consecutive slopes.  

Peak maxima are identified as the points where the derivative transitions from 

positive to negative.  Anomalously high outlier peaks are identified and excluded 

using a box plot model in which outliers fall outside 1.5 times the inter-quartile range 

of the data [41].  Second, the algorithm fits the remaining peak heights to Eqn. 2 to 

determine A, C and q using Levenberg-Marquardt non-linear least squares 

parameter estimation [42, 43]. The probability of extension, q, is typically ~0.999 for a 

broad range of datasets, whereas A and C vary significantly due to the arbitrary 

instrument units that describe fluorescence intensity. Correction of the HIV-1 dataset 

yielded coefficients A=0.09, q=0.9994, and C=0.002 for the (+) reagent channel. 
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Each channel in the hSHAPE electropherogram is corrected independently for signal 

decay. 

After parameter estimation, the reagent and control channels are then 

corrected for signal decay using: 

 Inew(x) = N × Iold(x)/D(x) (3) 

where Iold is the original measured intensity, D(x) is from Eqn. 1, and N is a user-

definable rescaling factor that maintains overall peak intensity relative to the other 

non-corrected channels.  

Scale Factor. This simple tool is used to rescale individual channels in a 

trace.  This may be necessary because fluorescent intensity values measured in 

distinct channels depend on the properties of the fluorophores and detector, 

resulting in an arbitrary relative scaling between channels.  The tool takes the user-

specified channel scaling factors and multiplies them against the intensity values for 

the specified channel, adjusting each channel to be on the same relative vertical 

scale. Data should be scaled so that peak heights range above 100 (arbitrary) units 

to improve the accuracy of subsequent peak fitting. 

2.5.2.1 Align and Integrate 

(1) Peak finding and linking. This first phase accepts user input that 

specifies (i) which extensions [(+), (–), or sequencing] were performed in each 

channel, (ii) the region of the preprocessed data to analyze, and (iii) the sequence. 

The sequence is read from an ASCII-formatted text file where white space 

characters, non-A, G, C, U, T or N characters, and FASTA headers are ignored. 

Once loaded, the sequence is reversed to correspond to the SHAPE experiment, in 
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which cDNAs elute in the 3' to 5' direction with respect to the RNA sequence.  Prior 

to peak finding, data are smoothed over a three-point window (dashed lines Figure 

2.8).  The algorithm first identifies the peaks in each channel by identifying those that 

are the highest point centered within a range of ±3 neighboring points. The most 

frequent distance between peaks is then calculated, and additional peaks 

interpolated when the distance between two peaks is greater then the most frequent 

peak distance (initially identified and interpolated peaks are shown by the open and 

closed circles in Phase A of Figure 2.8).  Since the linearly interpolated location may 

not lie on a local maximum, interpolated peaks are then shifted left or right to a 

maximal position [for example, position 2845 in the (+) channel in Phase B of Figure 

2.8].  Peaks in the (+) and (–) reagent channels are aligned with each other if they 

are positioned near each other on the elution time axis, defined by a distance 

threshold t that is iteratively incremented from zero to a maximum value k/2, where k 

is the median distance between neighboring peaks in the channel.  In sum, this 

algorithm matches the best-aligned peaks first and then incrementally allows for 

misalignment of peaks that do not initially match (illustrated by lines linking the 

circles in Figure 2.8). A preliminary alignment for 600 nts requires 2 seconds on a 

1.5 GHz Power PC processor.   

In some cases, there may remain unlinked peaks in the (+) and (–) reagent 

channels. The Setup phase implements a Refine option that creates a peak in the (-) 

reagent channel when a matching peak is not found for a (+) reagent peak (Phase C 

in Figure 2.8; for example, position 2627).   Also, if a matching (+) reagent peak is 

not found for an identified (–) reagent peak, the (–) reagent peak is automatically 
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deleted.  When the Modify option is used to add or delete peaks (see Figure 2.4) the 

algorithm adds these peaks and automatically creates the appropriate new peaks 

links (Phase D in Figure 2.8).  

 

Figure 2.8. Peak finding.  The electropherogram shows the (+) and (–) reagent 
channels (blue and green, respectively). The (–) reagent intensities have been 
inverted and are plotted on an expanded scale to facilitate visualization of peak 
synchronization. Preprocessed channels are shown as solid lines, channels 
smoothed over a 3-nt window are dashed. (A) Identification of peak positions by 
analysis of (i) signal amplitude and (ii) interpolation are illustrated by open and 
closed circles, respectively.  (B) Refinement of interpolated peaks positions.  (C) 
Automatic addition of missing peaks (blue circles) after comparison of the (+) and (–) 
reagent channels.  (D) Incorporation of peaks added (red circles) or deleted by the 
user and subsequent refinement of peak positions.  Positions of synchronized (+) 
and (–) reagent peaks that will be used during the integration phase are emphasized 
with solid lines. 

Peaks in the sequencing channels are identified and aligned in a similar 

fashion (Figure 2.9, Phases A and B). Sequencing channels contain two classes of 

peaks:  small background peaks due to imperfect processivity of the reverse 
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transcriptase and RNA degradation, as well as intense peaks indicating the 

presence of the sequenced nucleotide. These two classes are separated using a 

user-definable sensitivity level: peaks are part of the sequencing ladder only if their 

height is greater than the median channel intensity multiplied by the sensitivity level. 

By decreasing the sensitivity, more sequencing peaks are identified as part of a 

sequencing ladder; conversely, by increasing the sensitivity, fewer sequencing 

peaks are found.  In the final step of this phase, sequencing peaks are linked to the 

(+) and (–) reagent peaks if the peak is within ±2 points on the x-axis of a (+) or (–) 

reagent peak (Figure 2.9, Phase C).  

(2) Alignment to the RNA sequence. The next step in this algorithm is to 

align the trace data with the known RNA sequence (see Alignment steps in Figure 

2.4). A sequence, Slink, is derived by correspondence of the sequence ladder from 

the ddNTP channels to the (+) reagent peaks, in which an N indicates the positions 

of non-sequenced nucleotides and the appropriate A, G, C, or U indicates the linked 

ddNTP peak.  An example sequence for a reaction using ddUTP and ddGTP might 

be NCAANCNNNCNCAC. A sequence Strue  is created from the known RNA 

sequence by including the positions corresponding with the sequenced nucleotides 

in the hSHAPE experiment, and replacing the non-sequenced nucleotides with N.  

Slink is then compared with Strue by sliding Slink along the length of Strue. The algorithm 

accepts the alignment that contains the most matching positions between Slink and 

Strue (illustrated in Phase C of Figure 2.9). In Figure 2.2, Strue is at the bottom of the 

data window (as the Input sequence) and Slink appears immediately above (Aligned 

sequence). Comparing the two sequences readily identifies a correct alignment.  
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Consistent horizontal offsets signify an incorrectly identified peak or unidentified 

peaks and are corrected by editing the alignment. 

 

Figure 2.9. Sequence alignment.  Electropherogram showing the (+) reagent 
(bottom) and the ddNTP (top) channels.  Sequencing channels have been inverted 
to facilitate visualization of peak synchronization with the reagent channel. Reagent 
peaks assigned in the alignment step (Figure 2.8) are highlighted with blue dotted 
lines. Results of the four phases of sequence assignment are plotted together with 
their respective spectra. (A,B) Detection of peaks corresponding to the first and 
second sequencing channels, respectively. Peaks not accepted as valid sequencing 
positions are shown with black and red filled circles. (C) Assignment of input 
sequence to the identified sequencing peaks.  (D) Complete alignment of the input 
RNA sequence.  This alignment is offset by one nucleotide to reflect that dideoxy 
sequencing fragments are 1 nucleotide longer then the cDNA fragments that identify 
2'-O-adduct sites. 

 (3) Editing of the alignment. After the initial alignment, mismatches in the 

alignment of Slink with Strue may be observed.  The alignment can be edited by 

manually adding or deleting peaks in the channels in the Modify panel.  When 

adding a (+) reagent peak, adding a corresponding (–) reagent peak is often 
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necessary.  Generating a correct alignment by adding and deleting peaks is an 

iterative process. 

(4) Whole Channel Gaussian Peak Fitting. Once the alignment is correct, 

the intensity of each peak in the (+) and (–) reagent channels is quantified by fitting a 

Gaussian curve to each peak in the entire channel (Eqn. 2).  The three variables that 

characterize each peak are the peak area (Ai) and the center and width of peak i (µi 

and σi, respectively). Since the center of the peak, µi, was determined during the 

peak finding phase, this equation has two unknowns for each peak: area, Ai, and 

peak width, σi. ShapeFinder implements an exhaustive search algorithm to optimize 

A and σ for each peak.  The search algorithm is executed several times, with each 

iteration refining the search space for Ai and σi. 

Initial estimates of Ai and σi for a given peak are calculated from a local three-

peak Gaussian fit of the target peak and the neighboring peaks on each side.  Initial 

values of Ai are taken from γi/2 ≤ Ai ≤ 10γi , where γi is the amplitude of the peak 

fluorescence intensity. σi estimates are taken from the range 0.8 ≤ σi ≤ 4.5.  The 

estimation is repeated for 16 iterations where the sample space of A is adjusted 

each round to Ai,best – 0.5Ai,best ≤ Ai ≤ Ai,best + 0.5Ai,best, where Ai,best is the 

area calculation from the previous round which best fit the data. The next iteration of 

the search algorithm refines estimates for Ai and σi by using a different sample 

space for σi, 0.4σmed ≤ σi ≤ σi + 0.5σmed, where σmed is the peak width median 

calculated from all σi estimated previously.  These steps yield good agreement 
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between the experimental and fit intensities, although the peak area is slightly 

underestimated (Figure 2.5A). 

If the Optimize option is enabled, estimates of A and σ are improved further at 

the cost of increased processor time.  New parameters are estimated by sampling Ai 

≤ Anew ≤ Ai + 10Ai, and fixing the width, ω, as the minimum σi computed thus far; 

each σi is retained as σi,old for the future.  As the initial new ω is taken as the 

minimum σi computed so far, the new A estimates are larger to compensate for the 

smaller ω.  In the final phase of the Optimize algorithm, peak widths are improved in 

two stages. In the first stage, peak widths are optimized by sampling a new σi from ω 

≤ σi,new ≤ σi,old, starting with the peak with the worst fit. After each selected peak is 

optimized, then a new peak with the worst fit is determined. This is repeated n times, 

where n is equal to 3 times the number of identified peaks. In the second stage, the 

peak with the worst fit is again determined and peak width is optimized by sampling, 

σi ≤ σi,new ≤ σi + 0.1σi,old, provided σi + 0.1σi,old < σi,old. The new width is saved 

if it improves the fit, otherwise the old information is retained.  Results of this final 

optimization step are shown in Figure 2.5B. Fitting ~400 nts of the HIV-1 sample 

data requires ~16 min on a 1.5 GHz Power PC processor versus 3 min with the 

Optimize option disabled. 

The absolute reactivities for all analytical peaks in the trace are then 

calculated by subtracting the (–) reagent areas from those for the (+) reagent 

channel.  Absolute reactivities as a function of nucleotide position are output in text 

files. The Input versus Fit File contains the calculated curve fit to the (+) reagent 

(reagent) and (–) reagent (background) channels. The Integrated Peaks File 
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contains a tab-delimited spreadsheet of the calculated peak positions, widths, areas, 

and RMS errors for the (+) reagent (RX) and (–) reagent (BG) channels, as well as 

their alignment to the target RNA sequence. This file also contains a column where 

the (–) peak areas are subtracted from their corresponding (+) peak areas to 

determine absolute hSHAPE reactivity (Figure 2.6C). 

Since the lengths of each cDNA fragment in the sequencing channel is 1 

nucleotide longer the (+) reagent channel, the sequencing alignment is shifted by 

one nucleotide such that (+)/(–) reagent reactivity information is attributed to the 

correct nucleotide position (Figure 2.9, Phase D).  Only the Integrated Peaks File 

reflects this shift; previous processing steps do not account for this offset. 

2.5.3 Statistical Analyses.   

All statistical analyses were performed using R [44].  For all analyses, if a 

nucleotide was present in one data set, but absent in the others, the nucleotide was 

removed from the analysis. Pearson’s correlation coefficients were computed for 

each possible pairing of the 5 HIV-1 data sets, resulting in 10 calculated correlation 

coefficients per position.  One-way ANOVA and Levene’s tests were employed for 

determining mean reactivity differences and differences in reactivity variation among 

the 5 HIV data sets, respectively. 



Chapter 3 
Application of Sequence Alignment Algorithm to High-

Throughput RNA Structure Analysis 
 

3.1 Abstract 

Selective 2’-hydroxyl acylation by primer extension (SHAPE) is a chemical 

modification technique used in the analysis and prediction of RNA secondary 

structure.  Currently, the ShapeFinder software suite facilitates analysis of SHAPE 

experiments.  After post-processing of the data captured by DNA sequencing 

equipment, the ShapeFinder tool Align and Integrate is used to identify peak 

positions, align the peaks to the known RNA sequence, and then finally quantify per 

nucleotide flexibility information.  The alignment step of the tool requires a manual 

editing by the user as the peak identification step can incorrectly or mis-identify 

peaks.  This can be a very time consuming step for the experimenter and thus we’ve 

developed a new alignment algorithm to aid in the automation of the alignment 

process.  The new algorithm is based on the classic global sequence alignment 

algorithm, resulting in a significant improvement of the overall alignment step and 

minimal editing by the user, by proposing a more accurate alignment as well as 

possible errors in peak identification. 

3.2 Introduction 

Selective 2’-hydroxyl acylation by primer extension or SHAPE is a technique 

combined with computational analysis methods to predict RNA secondary structures 
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as shown in Figure 3.1. SHAPE, as described in Chapter 2, is a chemical 

modification technique which targets all four nucleotide types of an RNA to identify 

paired and unpaired regions [7, 8, 27].  The output of a SHAPE experiment is a 

spectrogram collected from DNA sequencing equipment [6].  A signal processing 

software suite, ShapeFinder (described in Chapter 2), was developed to process the 

SHAPE spectra in order to identify and quantify per nucleotide reactivity information 

[9, 10].  The per nucleotide reactivity data is used as a pseudo-free energy constraint 

in secondary structure prediction algorithms such as RNAstructure [45, 46]. From this, 

more accurate RNA structures are produced, in a high-throughput manner[6]. 

 
  
Figure 3.1. Block diagram of steps involved in determining RNA secondary structure 
using SHAPE.  The output of SHAPE is a spectrogram whose signal is then 
processed by the ShapeFinder tool set.  ShapeFinder produces quantified per 
nucleotide flexibility information.  RNAstructe, a secondary structure prediction 
algorithm, takes the SHAPE data as a pseudo-free energy constraint producing a 
secondary structure prediction such as this predicted structure of the primer binding 
site of the HIV-1 genome. 



 50 

  
Before quantifying per nucleotide flexibility information, the ShapeFinder 

algorithm aligns the experiment to the known RNA sequence being analyzed.  This 

step is necessary to ensure that the correct SHAPE modification is attributed to the 

correct nucleotide. First, the algorithm identifies the experimental sequence.  The 

algorithm then attempts to match the experimental sequence to the RNA sequence 

by finding the position with the most matching nucleotides.  If the experimental 

sequence has been incorrectly identified by mis-identifying, overlooking or including 

extra nucleotides, the matching algorithm will incorrectly align the sequences. A 

manual editing step is then required by the experimenter to manually align the 

experiment to the RNA sequence.  

The experimental sequence is found by identifying peaks in the spectra that 

correspond to the sequenced nucleotides.  If a peak has been missed or incorrectly 

identified this causes the experimental sequence to be incorrect with either extra or 

missing nucleotides.  The manual editing step used by the experimenter involves, 

manually adding or deleting identified peaks with a simple click on the computer 

screen, (Figure 2.2, gray boxes on top of peaks).  At present, this is a very time 

consuming, manual process and detracts from the high-throughput aims of the 

SHAPE technique. To automate this process, a new technique using a dynamic 

programming algorithm adapted from the global sequence alignment algorithm is 

presented. Results are presented showing reduced involvement of an experimenter 

to manipulate the data, as well as an improvement in accuracy over the previous 

method. 
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3.3 Results 

The new alignment algorithm was tested on SHAPE traces from two different 

RNAs.  One trace was a relatively noise-free, clean trace.  The other contained a 

great deal of noise. The global alignment was implemented in the programming 

language Objective-C.  It was integrated within the ShapeFinder software 

architecture as part of the Align and Integrate Tool [10]. 

The first dataset consisted of relatively clean data captured on a portion of 

RNA analyzed from the 5’ end of the HIV-1 genome (provided by Kevin Wilkinson 

from the Weeks lab) [6].  This dataset was relatively clean and noise free and 

contained a strong signal. The new alignment was performed and compared to the 

old best-matches algorithm.  There is an obvious improvement in the alignment.  

Insertions are denoted with a ‘-’ sign as shown in Figure 3.2a, New.  In the old 

alignment, the ‘X’ represents both sequencing nucleotides, Figure 3.2a, Old.  Since 

there are peaks in both sequencing lanes in the same position, the old peak 

detection and alignment algorithm cannot determine which nucleotide to attribute to 

the peak.  However, in the new alignment algorithm, the ‘X’ is replaced with the 

aligned nucleotide as determined in the back trace.  The new alignment algorithm 

found the correct starting position of the experimental sequence to the RNA 

sequence.  The results of the new alignment algorithm are very close to the final 

alignment produced with the older algorithm after the addition and deletion of peaks 

(data not shown).  

The second dataset was from of the third intron of the cytochrome B transcript 

of the Saccharomyces cerevisiae mitochondrial genome.  This RNA is composed of 

approximately 85% A’s and U’s (provided by Caia Duncan of the Weeks lab) [38].  
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This dataset was extremely noisy.  However, with the new alignment algorithm we 

see a significant improvement in the alignment, Figure 3.2b.  The correct region of 

the RNA sequence is aligned and exactly matching the start position when 

comparing with the old alignment after peaks have been added or deleted (data not 

shown).  

For both these datasets the gap penalty for insertions in the experimental 

sequence was set to 2 and a gap extension penalty was not used. 

 
 
Figure 3.2. This is a portion of the alignment captured from the algorithm.  The top 
sequence alignment is the new global alignment routine.  The second sequence 
alignment is the old best matches algorithm. Red is used to highlight mismatches.  
A) HIV-1 B) Saccharomyces cerevisiae. 

3.4 Discussion 

The new alignment algorithm correctly identifies the portion of the true RNA 

sequence to align to the sequenced RNA.  This is significant as the experimental 

RNA sequence is typically a subset of the true RNA sequence as SHAPE typically 
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can only analyze 300-500 nucleotides in an experiment.  The length of the 

experimental RNA sequence is usually less then the true RNA sequence. Gaps in 

the alignment were inserted and a visual indication was given in the ShapeFinder 

software in order to aid the experimenter. However, the interpolation of new peaks 

remains in the hands of the user who will still have to manually add or remove 

peaks. 

An additional challenge in this implementation was the determination of gap 

penalties.  At the moment the gap penalty for gaps in the true RNA sequence is set 

very high in order to ‘discourage’ gaps. Please see Materials and Methods for more 

information.  However, a proper gap penalty for the experimental RNA sequence 

gaps is still under study.  The need for a gap extension penalty has not been ruled 

out and has been implemented in the code. 

There is still some error in the association of the reagent peak intensity to a 

specific nucleotide. Both algorithms, best matches and the global alignment, are 

very sensitive to the alignment of peaks between the channels.  However, with the 

new alignment algorithm the time it takes to correct the alignment by adding or 

deleting peaks is greatly improved.  Once the peak detection and peak channel 

alignment algorithms have been improved, there will be even less user interaction 

required to process RNA SHAPE data. 

Overall, this is viewed as a major improvement over the previous best 

matches algorithm.  When using the older algorithm on noisy data, it was difficult for 

a user to determine where to start with the process of manually editing the peaks.  

With this new algorithm, alignment with the correct portion of the true RNA sequence 
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along with the identified gaps will greatly facilitate and reduce the time involved in 

manually identifying peaks to add or remove.  The association of a reagent peak to 

the correct nucleotide will provide more accurate nucleotide flexibility information. 

3.5 Material and Methods 

For the sequence alignment performed in SHAPE experiments, we are 

comparing the same RNA sequence with itself, Figure 3.3.  In a sense, the 

experimentally determined sequence is a sub-portion of the RNA sequence, 

contained within.  A global alignment algorithm that handles an alignment within a 

sequence was implemented [47]. 

A matrix, F, is created to calculate the score of the alignment between each 

position of the experimentally determined sequence and the true RNA Sequence 

based on the Needleman-Wunsch global alignment algorithm [48].  The recursion 

relationship is as follows where there are separate gap penalties for each sequence. 

  

         (1) 

 
The matrix is initialized as in the Smith-Waterman local alignment algorithm 

[49], where F(i,0) and F(0,j) are set to 0, where i = 1, …, n and j = 1, …, m.  F(0,0) is 

set to 0.  The maximum score, Fmax, is found on either the bottom or right border of 

the matrix, i.e., (i,m) or (n,j), i = 1, .., n and j = 1,..,m. 
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Figure 3.3. An example of a global alignment of a sequence, x, contained within a 
sequence, y. 

Once Fmax has been found on one of the edges of the matrix, the trace back 

begins forming the best alignment of the two sequences in reverse.  

The score matrix used in the first equation of the relation in equation 1, is a 

simple 4x4 matrix construct as follows: 

  (2) 

 
NT1 and NT2 represent the sequencing channels in the experiment, i.e, the 

black and red channels in Figure 2.2, [6, 7].  The choice of nucleotide for the 

sequencing channels can change from experiment to experiment and are generically 

represented by NT1 and NT2.  With this generic representation, the score matrix will 

not change from experiment to experiment. The experimental sequence is extracted 

from the alignment of the reagent peaks to the sequencing channels, Figure 2.2.  

Peaks not linked to a sequencing peak are generically represented as N in the 

derived sequence as they are nucleotides in the sequenced RNA.  For example, 

CACNCCCNAANNCNNCCNCCNCAAA… is an example of a derived sequence.  In 

this example, A is NT1 and C is NT2.  The current experimental sequence identifying 

algorithm cannot resolve a peak as either NT1 or NT2 when there is a strong peak at 
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the same position in both NT1 and NT2 channels. It is then represented as an ‘X’.  

Since it could be either NT1 or NT2 in the sequence, it is considered a match but it is 

given a lower match score, i.e., s(NT1,X) = 1, while s(NT1,NT1) = 2. 

The RNA sequence is originally extracted from an input file containing the 

complete RNA sequence.  In order to perform the alignment it is converted such that 

all non-NT1 and non-NT2 nucleotides are transformed to N.  For example, 

CACGCGCGAAGU is converted to CACNCNCNAANN, if NT1=A and NT2=C. 

The last portion of the alignment algorithm is the definition of the gap 

penalties. There are two separate gap penalties for insertions and deletions.  The 

gap penalty for insertions, e, in the true RNA sequence is set very high in order to 

discourage insertions.  At present, e is set to 50.  However, deletions or insertions in 

experimental sequence will be allowed, as it is an indication of a possible missed 

peak in the peak identification portion of the algorithm.  The gap opening penalty of 

d=2 was used.  A gap extension penalty, f, is implemented in the algorithm, but 

unused at this time.  



Chapter 4 
Influence of Nucleotide Identity on Ribose 2’-hydroxyl 

Reactivity in RNA 
 

4.1 Abstract2 

Hydroxyl-selective electrophiles, including N-methylisatoic anhydride (NMIA) 

and 1-methyl-7-nitroisatoic anhydride (1M7), are broadly useful for RNA structure 

analysis because they react preferentially with the ribose 2'-OH group at 

conformationally unconstrained or flexible nucleotides. Each nucleotide in an RNA 

has the potential to form an adduct with these reagents to yield a comprehensive, 

nucleotide-resolution, view of RNA structure. However, it is possible that factors 

other than local structure modulate reactivity. To evaluate the influence of base 

identity on the intrinsic reactivity of each nucleotide, we analyze NMIA and 1M7 

reactivity using four distinct RNAs, under both native and denaturing conditions. We 

show that guanosine and adenosine residues have identical intrinsic 2'-hydroxyl 

reactivities at pH 8.0 and are 1.6 and 1.3 times more reactive than uridine and 

cytidine, respectively. These subtle, but statistically significant, differences do not 

impact the ability of SHAPE (selective 2'-hydroxyl acylation analyzed by primer 

extension) based methods to establish an RNA secondary structure or monitor RNA 

                                            
2 This work was published in RNA (2009) 15(7):1314-21.  Reproduced with 
permission from Cold Spring Harbor Laboratory Press. 



 58 

folding in solution because base-specific influences are much smaller than the 

reactivity differences between paired and unpaired nucleotides. 

4.2 Introduction 

Chemical and enzymatic probing of RNA are critical tools in structural biology 

and have contributed enormously to our understanding of RNA structure and 

dynamics and of complex formation with proteins and other ligands. Central to these 

methods are probes that react with RNA, usually to induce cleavage or modification 

at flexible, unpaired, or solvent-accessible regions. Ideally, probe reactivity should 

depend exclusively on RNA structure or solvent accessibility, take place in vivo or 

under physiologically relevant conditions, be independent of nucleotide identity, and 

not require significant RNA-to-RNA optimization.  

SHAPE, or selective 2'-hydroxyl acylation analyzed by primer extension, is 

well suited for analysis of local nucleotide structure and dynamics because it 

interrogates all four RNA nucleotides in a single, robust experiment [7]. SHAPE uses 

hydroxyl-selective electrophiles such as N-methylisatoic anhydride (NMIA) and 1-

methyl-7-nitroisatoic anhydride (1M7) [7, 11] that react with the 2'-hydroxyl group at 

conformationally flexible or disordered nucleotides [7, 50] to form a 2'-O-ester product 

(Figure 4.1A). Sites of modification are then identified by primer extension. SHAPE 

chemistry reports the positions of unpaired or otherwise conformationally 

unconstrained nucleotides under mild, structure-reinforcing conditions; shows good 

reactivity towards all four RNA nucleotides on the minute timescale; is suitable for in 

vivo RNA structure analysis; and does not require significant optimization because 

concurrent reagent hydrolysis makes a separate quench step unnecessary. 
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Figure 4.1. Reaction of electrophiles with the 2'-hydroxyl position in RNA. (A) 
Scheme for SHAPE chemistry. (B,C) Secondary structures and normalized SHAPE 
reactivities analyzed under native and denaturing conditions. A representative region 
of 16S rRNA is shown. 

Although the overall correlation between local nucleotide flexibility and 

SHAPE is now well established [7, 11, 50], there are at least three current observations 

that suggest factors other than RNA structure might influence the reactivity of NMIA 

or 1M7. First, cytidine residues in flexible regions sometimes have lower SHAPE 

reactivities than other nucleotides with similar apparent local structures [29, 30, 36]. 

Second, the pKa of the ribose 2'-hydroxyl group varies by as much as 0.5 units, as a 

function of the nucleobase in RNA mono- and dinucleotides [51-53]. Third, the rate of 
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base-catalyzed in-line cleavage, which is also sensitive to the 2'-hydroxyl pKa, varies 

by up to 4-fold as a function of nucleotide sequence [54]. 

The most general model that explains the strong relationship between 

SHAPE reactivity and local nucleotide flexibility is that 2'-hydroxyl acylation occurs 

preferentially at rare conformations that are sampled more frequently at flexible or 

disordered sites [7]. Any factor that modulates the nucleophilicity of the 2'-hydroxyl 

group, including potential electronic crosstalk between the RNA base and 2'-

hydroxyl, will in turn modulate the yield of 2'-O-ester adducts and measured SHAPE 

reactivity. 

In this work, we develop a systematic approach to explore the extent to which 

nucleotide identity modulates NMIA and 1M7 reactivity with the 2'-hydroxyl in diverse 

RNAs. Using a bootstrap analysis of variance (ANOVA), we show that all four RNA 

nucleotides react similarly with both NMIA and 1M7 but that there are small, 

statistically significant, differences such that purines are slightly more reactive than 

pyrimidines. 

4.3 Results  

4.3.1 Strategy.  

To assess the influence of base identity on SHAPE reactivity, we analyzed 

four structurally diverse RNAs. For each RNA, structure was interrogated both under 

conditions that stabilize native secondary and tertiary folding and also under strongly 

denaturing conditions. The four RNAs included a transcript corresponding to the 5' 

end of an HIV-1 genome, the specificity domain of Bacillus subtilis RNase P, and 

portions of the Escherichia coli 16S and 23S rRNAs. The HIV-1 transcript includes 
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the first 976 nucleotides from the 5' end of the genome and contains both a highly 

structured regulatory region as well as less structured RNA coding regions [6]. The 

RNase P specificity domain (154 nts) from the thermophilic prokaryote B. subtilis 

forms a compact, well-defined, and highly constrained structure [55]. Finally, we 

analyzed ~400 nt internal segments from authentic 16S and 23S rRNAs, isolated 

from E. coli [45]. These diverse RNAs represent a cross section of many typical RNA 

motifs. 

Using these four RNAs, we obtained structural constraints using both the 

NMIA and 1M7 SHAPE reagents for a total analysis of 5,128 nucleotides. This 

dataset is sufficiently large to establish rigorously the intrinsic SHAPE reactivities of 

each RNA nucleotide. 

4.3.2 Statistical analysis of intrinsic reactivity in denatured RNA.  

To measure the intrinsic reactivity of each of the four nucleotides, we 

performed SHAPE experiments on all four RNAs using both 1M7 and NMIA under 

denaturing conditions [20 mM Hepes (pH 8.0) at 90 ˚C]. As expected, nucleotides 

are consistently more reactive than is observed for the natively folded RNAs (for 

example, compare Figure 4.1B and C). However, some nucleotides (green and 

black bars, Figure 4.1C) remained unreactive under denaturing conditions. The 

existence of these unreactive positions may indicate that base pairs or other 

structural constraints still form in RNA under our denaturing conditions. In order to 

make clear conclusions regarding intrinsic nucleotide reactivities not confounded by 

residual RNA structure, we analyzed two subsets of our 2,411 denaturing condition 

measurements. The first group consists of the entire dataset, which assumes that 
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the RNA is completely denatured and that low reactivities do reflect unconstrained 

positions (Figure 4.2). The second group exluded nucleotides that form internal 

Watson-Crick base pairs in the accepted secondary structure for these RNAs.  Our 

assumption was that nucleotides in internal pairs form the strongest interactions and 

are therefore the most likely to remain paired under denaturing conditions.  

 

Figure 4.2. Box plot analysis of SHAPE reactivities for the entire denatured RNA 
dataset. Upper and lower panels illustrate experiments performed with NMIA and 
1M7. Equalities at the bottom left of each group emphasize nucleotides showing 
statistically equivalent reactivities. Boxes outline the middle 50% of each dataset; 
medians are indicated with bold lines. Whiskers above and below each box give the 
largest or smallest non-outlier values; outliers are indicated by open circles and are 
>1.5 times the interquartile range (box). 

We report our reactivity data using box plots [56], a convenient way to visualize 

statistics for large datasets (Figure 4.2). The box spans the central half (from 25% to 
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75%) of the data and the median is shown with a heavy line. The vertical distance 

between the upper and lower box edges is termed the interquartile range (IQR). 

Whiskers in the box plot illustrate 1.5 times the IQR. Values outside this range are 

commonly taken to be outliers [56] and are shown explicitly as circles.  We also report 

the mean (µ) and standard deviation (σ) for each dataset. 

Visual inspection of box plots showing nucleotide reactivities under 

denaturing conditions suggests that reactivities follow a clear trend, G ≈ A > U > C, 

for both reagents and all four RNAs (Figure 4.2 and data not shown). We evaluated 

the statistical significance of these differences using bootstrap analysis of variance 

(ANOVA) [57] and multiple comparison procedures [58]. The bootstrap ANOVA 

showed statistically significant (p<0.05) differences in nucleotide reactivity for the 

group consisting of the entire dataset, see Table 4-1. 

Table 4-1. Reagent statistics. = indicates react equally; ≠ indicates don't react 
equally 

Reagent RNA Homoscedastic ANOVA MCP 

HIV Yes, p = 0.195 p < 0.0001 G=A 

RNAseP No, p = 0.031 p < 0.0001 G=A, U=C 

16S rRNA No, p <0.0001 p < 0.0001 G=A 

NMIA 

23S rRNA Yes, p=0.729 p < 0.0001 G=A, U=C 

HIV No, p < 0.0001 p < 0.0001 ≠ 

RNAseP Yes, p = 0.063 p = 0.0048 C=A=G,U=C 

16S rRNA No, p < 0.0001 p < 0.0001 G=A,U=C 

1M7 

23S rRNA No, p = 0.0009 p < 0.0001 G=A,U=C 

 

The results of the multiple comparison procedures (summarized at lower left 

of analysis, Figure 4.2 and in Table 4-1) emphasize that the two purine residues, 

guanosine and adenosine, had statistically equivalent reactivities and that the 
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pyrimidines also reacted similarly. A few datasets, notably RNase P with 1M7, 

showed a small departure from this trend because all nucleotides showed equal 

reactivity.  

The most critical result is how robust the overall reactivity trends are. The 

overall reactivity trend and mean reactivities are nearly identical for both the NMIA 

and 1M7 electrophiles, independent of whether internal pairs are removed (Figure 

4.2 and data not shown). These results emphasize that we are measuring intrinsic 

nucleotide reactivities that are not influenced by residual structure under denaturing 

conditions. 

4.3.3 Analysis of native state RNA.  

To determine whether nucleotide identity influences SHAPE reactivity in fully 

folded RNAs, we also analyzed nucleotide reactivities for the four RNAs equilibrated 

under conditions that enforce native structure (in the presence of Mg2+ at 37 ˚C) prior 

to reaction with NMIA or 1M7.  

For the folded native RNAs, reactivities vary dramatically because nucleotides 

experience many different local nucleotide environments. We therefore separated 

nucleotide reactivities for each RNA into four groups (i) unpaired; (ii) paired, but 

adjacent to unpaired or non-canonically paired nucleotides (termed externally 

paired); (iii) paired, and adjacent to other canonically paired nucleotides (internally 

paired); and (iv) non-canonically paired. As expected, unpaired nucleotides exhibited 

the highest mean (~0.66 SHAPE units) and standard deviation (~0.60) in reactivities, 

followed by the external pairs. Internal base pairs showed the lowest mean reactivity 

(~0.09) and reactivity variability (σ ~0.17) (Figure 4.3). Non-canonically paired 
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nucleotides had idiosyncratic profiles, characterized by variability in measurement 

means and standard deviations for each RNA. 

 

Figure 4.3. Differential reactivity of unpaired (un) and internally (int) paired 
nucleotides towards NMIA and 1M7. Paired nucleotides react within a tighter range 
and have a smaller mean reactivity than do unpaired nucleotides. 

Multiple comparison procedures confirmed that unpaired and internal pairs 

have very different reactivities (Figure 4.3) consistent with the basic model that 

SHAPE measures nucleotide flexibility. The statistical analysis also confirmed that 

SHAPE measures small differences in nucleotide environment because most 

datasets also exhibited statistically significant differences between unpaired and 

externally paired nucleotides.  

We also assessed intrinsic nucleotide reactivities for unpaired nucleotides 

(group i) in the context of the folded RNAs (Figure 4.4). These datasets were 

relatively small because fully unpaired nucleotides comprised only 32–48% of each 

RNA. Statistical differences between nucleotide reactivities are less pronounced 
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than those for the denatured RNAs and it was not possible to detect base-specific 

trends at the p<0.05 level. However, qualitative inspection of the reactivity datasets 

for unpaired nucleotides under native conditions reveals the same overall trend as 

observed under denaturing conditions. Adenosine and guanosine nucleotides are 

generally, but not always, more reactive than cytidine and uridine; cytidine residues 

were consistently the least reactive in all datasets (Figure 4.4). 

 

Figure 4.4. Box plots of nucleotides that are single stranded in natively folded RNAs. 
Reactivities towards NMIA and 1M7 are shown in the upper and lower panels, 
respectively. Statistical equalities are indicated at the lower left of each plot. 
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4.4 Discussion 

4.4.1 SHAPE chemistry is much more sensitive to RNA structure than to 
nucleotide identity.  

SHAPE chemistry reports local nucleotide flexibility and disorder via reaction 

at the ribose 2'-hydroxyl position, consistent with a mechanism in which flexible 

nucleotides are better able to sample relatively rare, but highly reactive, 

conformations (Figure 4.1A). We establish, based on an analysis of over 5000 

nucleotide reactivity measurements, that the nucleobase has only a weak influence 

on SHAPE reactivity (summarized in box, Figure 4.5), and that this influence is 

small relative to the contribution of local RNA structure. Two lines of evidence 

support these conclusions.  

First, stably paired nucleotides consistently react to a lower yield and exhibit a 

smaller range in reactivities than do unpaired nucleotides (Figure 4.3). The average 

ratio of mean SHAPE reactivity for unpaired and internally paired nucleotides is 7.3. 

Thus, SHAPE chemistry has a strong positive predictive ability for differentiating 

paired and unpaired nucleotides.  

Second, no consistent, statistically enforceable trend in reactivity as a 

function of nucleotide identity can be discerned based on unpaired nucleotides in 

natively structured RNAs. Thus, the weak structural interactions that occur in the 

single stranded regions of typical folded RNAs have a larger effect on reactivity than 

any intrinsic difference imposed by nucleotide identity (Figure 4.4). If nucleotide 

reactivity were more important, a consistent trend would be obvious in the single 

stranded regions of native-state RNAs.  
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Figure 4.5. Nucleotide-specific reactivities for NMIA and 1M7. Reactivities for NMIA 
and 1M7 are reported as the mean plus an error term (root mean square of the 
coefficient of variation). These values are compared with other reagents that form 
stable covalent adducts with RNA. Numerical estimates for the relative nucleotide-
specific reactivity of each reagent were obtained from: DMS [59], bisulfite and 
kethoxal [60], DEPC [61], CMCT [62]. 
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Intrinsic nucleotide reactivities are also independent of the choice of SHAPE 

electrophile. In general, we recommend the use of 1M7 for routine analysis of RNA 

structures at equilibrium. 1M7 is less sensitive to variations in ion concentrations [11] 

and to the possible contributions of slow conformational dynamics at specific RNA 

nucleotides [63]. 

4.4.2 Accurate prediction of RNA structure based on experimental chemical 
modification information requires a pseudo-free energy change 
approach.  

SHAPE reactivities strongly discriminate between paired and unpaired 

nucleotides, regardless of nucleotide identity (Figure 4.3). However, it is also evident 

that some unpaired nucleotides have reactivities of zero (lower whiskers on un-

labeled box plots, Figure 4.3), while some internally paired nucleotides have 

moderate to high reactivities (upper whiskers on int-labeled box plots, Figure 4.3). 

There is no clear demarcation between paired and unpaired nucleotides. Thus, any 

RNA structure prediction algorithm that imposes a hard cutoff between paired and 

unpaired nucleotides is guaranteed to introduce inaccuracies in a structure 

calculation. Although we have performed our statistical analysis using SHAPE 

information, this result likely applies even more strongly to conventional chemical 

probes for RNA structure like base-selective chemical probes and nucleolytic 

enzymes [11, 46, 64].  

SHAPE reactivities can be converted into pairing probabilities or pseudo-free 

energy change terms and used to constrain existing thermodynamic models for RNA 

folding to determine RNA secondary structures with accuracies often greater than 

95% correct [45]. This pseudo-energy approach is highly tolerant of experimental and 
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other errors because each reactivity measurement provides an energetic bias to the 

final structure calculation, but does not impose an abrupt cut-off [6, 45]. 

We investigated whether correcting the observed SHAPE reactivities by the 

difference in intrinsic reactivities for the four nucleotides changes or improves 

secondary structure prediction for the HIV-1, RNase P or ribosomal RNAs when 

energy biases are introduced as a base pair stacking term [45, 65]. The predicted 

structures are essentially identical and exhibit the same overall topology as those 

reported previously [6, 11, 45, 55]. Small differences were observed at the ends of some 

helices and at multi-helix junctions. We infer that nucleotide-to-nucleotide variation in 

reactivity is not a significant source of error in SHAPE-directed RNA structure 

prediction. 

4.4.3 Comparison of NMIA and 1M7 reactivities to other reagents used to map 
RNA structure.  

We developed general parameters for the intrinsic nucleotide reactivities for 

NMIA and 1M7 (Figure 4.5). These relative reactivities were calculated from 

experiments performed under denaturing conditions (Figure 4.2) and therefore 

represent the largest possible difference in reactivity between the four RNA 

nucleotides. The key result is that NMIA and 1M7 react broadly with all four 

nucleotides. The intrinsic reactivity order is A ≈ G > U > C.  However, the maximal 

bias between purines and pyrimidines is less than 2-fold. This even reactivity stands 

in stark contrast to traditional structure-selective reagents that also react to form 

stable covalent adducts with RNA (Figure 4.5). The local nucleotide environment 

can also be probed in degradative reactions using the lead(II) ion [66] and base 

catalyzed in-line probing [67].  Both of these approaches share with SHAPE the 
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feature that they react broadly with the four RNA nucleotides. Structure-specific 

cleavage with lead(II) is influenced by ion affinity towards specific RNA structures [68] 

and in-line probing reactivities vary by up to 4-fold as a function of base identity [54]. 

The physical basis for the differences in SHAPE reactivities between purine 

and pyrimidine residues is not completely clear.  The pKa of the 2'-hydroxyl in 

dinucleotides is higher for the pyrimidines (at ~12.8) than for adenosine (~12.5) or 

guanosine (~12.7) [52]. Since 2'-O-adduct formation involves loss of this proton, the 

trend in pKa values offer a partial explanation for differing intrinsic reactivities.  In 

some RNAs, a subset of cytidine residues, drawn as single stranded, have low 

SHAPE reactivities [29, 30, 36]. Given that the intrinsic reactivity of this nucleotide is, at 

most, only 2-fold different from the other nucleotides, we postulate that these 

cytidines may participate in a locally constraining interaction that remains to be fully 

characterized. 

In sum, the differential effects of base identity on 2'-hydroxyl reactivity, while 

statistically significant, are small compared to the larger influence of local RNA 

structure on 2'-hydroxyl reactivity. That the least structured nucleotides show the 

largest reactivities strongly supports the initial model [7, 27] that SHAPE reactivity is 

primarily governed by local nucleotide flexibility. 

4.5 Materials and Methods  

4.5.1 SHAPE on HIV-1, RNase P, and ribosomal RNAs.  

The general procedures for SHAPE analysis of the four RNAs studied in this 

work – the HIV-1, RNase P, and 16S and 23S rRNAs – were described previously. 

The HIV-1 RNA is a transcript of the 5'-most 975 nucleotides from the NL4-3 strain 
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[6]; the RNase P specificity domain RNA is imbedded in 5' and 3' structure cassette 

sequences [7, 11]; and 16S and 23S rRNA are authentic ribosomal RNA, purified from 

E. coli [45]. Accepted secondary structures for these RNAs were taken from the 

following sources [6, 55, 69]. Experiments performed under denaturing conditions 

employed 20 mM Hepes (pH 8.0) at 90 ˚C for 4 min. Native-state modification 

experiments were performed at 37 ˚C in 50 mM Hepes (pH 8.0), 200 mM potassium 

acetate and 5 mM MgCl2, except for the RNase P RNA which were performed in 100 

mM Hepes (pH 8.0), 100 mM NaCl, and 10 mM MgCl2. RNAs were generally 

allowed to equilibrate in buffer for 30 minutes prior to addition of reagent. RNAs were 

initially incubated in a buffer containing 10/9 of these concentrations and reactions 

were initiated by addition of 1/10 volume of DMSO containing 1M7 or NMIA. No-

reaction controls contained neat DMSO. The 10× NMIA stock concentration was 130 

mM for all RNAs. The 1M7 stock (10×) concentration was 30 mM for 16S and 23S 

rRNAs, 100 mM for RNase P, and 50 mM for the HIV-1 RNA. Following modification, 

RNAs were recovered by ethanol precipitation and resuspended in 1/2× TE [5 mM 

Tris (pH 8.0), 0.5 mM EDTA]. Each SHAPE reaction product [(+) and (–) reagent and 

1 or 2 sequencing ladders] was analyzed using primers labeled with distinct 

fluorophores as described [6, 11, 45]. 

4.5.2 SHAPE data processing.  

Primer extension products were resolved on an ABI 3130 capillary 

electrophoresis DNA sequencer using custom fluorescence spectral calibration. 

Runs typically yielded more than 400 nts of structural information for the long RNAs. 

Raw electropherograms were analyzed using the signal processing framework in 
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ShapeFinder [10]; areas were calculated for all peaks in the (+) and (–) reagent 

channels by Gaussian peak fitting. Absolute SHAPE reactivities were calculated by 

subtracting the (–) peak areas from the (+) peak areas. Positions exhibiting high 

background were discarded; reactivities that were slightly less than zero were reset 

to zero. SHAPE datasets were scaled such that a generic reactive nucleotide has an 

intensity of 1.0 and an unreactive nucleotide is 0. Reactivities for the native datasets 

were therefore normalized by dividing by the average of the 10% of the most 

reactive positions, after discarding points with reactivities greater than the third 

quartile plus 1.5 times the interquartile range. For denatured data, we assume that 

nearly all nucleotides are unconstrained: peak areas were normalized by dividing 

each data point by the average reactivity of all peaks. 

4.5.3 Statistical analysis of intrinsic nucleotide reactivities.  

A standard one-way Analysis of Variance (ANOVA) relies on assumptions of 

independence, normality, and homogeneous variances between groups (termed 

homoscedasticity) [41]. Quantile-Quantile (Q-Q) plots and the randomized Levene's 

test [70] indicated that SHAPE data are not normally distributed and can be 

heteroscedastic. Therefore, a bootstrap ANOVA [57], which does not rely on 

assumptions of normality, was used to assess if the observed reactivities reflect 

intrinsic reactivity differences or chance. In the bootstrap ANOVA, reactivities, 

independent of nucleotide identity, were randomly sampled from the measured 

SHAPE reactivities and used to re-form the original group sizes. Resampling was 

performed 15,000 times and an F statistic calculated for each iteration. The 

proportion of F values that are greater than or equal to the F statistic for the original 
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data is reported as a p-value; p-values less than 0.05 indicate that differences 

observed between groups in the original data are statistically significant. When the 

bootstrap ANOVA found statistically significant differences in reactivity as a function 

of nucleotide type, randomized multiple comparison procedures for homoscedastic 

and heteroscedastic nucleotide groups were performed to identify statistically 

equivalent or unequal groups [58]. For Figure 4.5, nucleotide reactivities are reported 

as the mean and the root mean square coefficient of variation. Statistical analyses 

were performed using R [44]. 

4.5.4 Structure prediction.  

SHAPE-directed structure determination was performed using RNAstructure 

[46] using SHAPE reactivity information as a pseudo-free energy change term [45]. 



Chapter 5 
Agent-based model of the dynamics of phenotype 

switching in Bacillus subtilis 
 

5.1 Abstract3 

Competence is a DNA uptake phenotype in Bacillus subtilis expressed by 

bistable switching in genetically identical bacteria populations. The nature of “noise” 

in the stochastic emergence of the competence phenotype has been difficult to 

examine directly by lab experimentation. Computational modeling is an alternative 

approach that can be used to examine the sources of noise in the gene regulatory 

network responsible for the emergence of competence.  We developed a multi-scale 

agent-based model to examine competence switching both at the molecular and 

population levels in B. subtilis.  At the bottom level, our model consists of an agent-

based model of the intracellular molecules involved in regulating the competence 

network to produce the phenotype switching behavior of a single cell.  Multiple cell 

models are then incorporated into a cell culture model, with feedback between the 

multi-cellular model and intracellular model driven by extracellular nutrient 

concentrations and cell density conditions.  From the model, we observe that (i) 

spatio-temporal randomness in initial agent (molecule) placement may explain the 

stochasticity of the competence switch, (ii) molecular concentrations of key 

                                            
3 This chapter has been submitted for publication with the authors Suzy M. Vasa and 
Morgan C. Giddings. 
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competence molecules inherited through cell division influences the emergence of 

competence to provide a type of epigenetic heritability and (iii) the dilution effect of 

cell division upon protein concentrations may explain why competence only emerges 

in stationary phase. 

5.2 Introduction  

The notion that a bacterial genotype is the sole driver of its phenotype has 

been challenged by the soil bacterium B. subtilis.  This organism exhibits a DNA 

uptake phenotype in a fraction of genetically identical bacteria during stationary 

phase growth.  This competence phenotype is driven by changes in gene and 

protein expression states rather than changes in genotype. This phenotype appears 

to be a cell survival strategy to obtain new genetic information, repair DNA or obtain 

DNA as food [17]. Competence emergence is correlated with high cell density and 

nutrient limiting conditions [17], where approximately 10-20% of a B. subtilis 

population will express the competence phenotype under these conditions [17]. 

Through such examples observed in bacteria, evidence has accumulated that 

genetically identical cells can express differential phenotypes without having 

differential genotypes. Phenotype switching can be due to stochastic intracellular 

molecular interactions, or due to environmental inputs like changing nutrients or cell 

density [15, 71-73]. Such mechanisms are called “bistable” switches, implying that there 

are two stable genetic regulatory states, between which the cell can switch with 

appropriate input.  Bistable switching is thought to be a mechanism by which 

bacteria may rapidly adapt to changing environments without the need for slower 

and perhaps more costly genetic change [74].  
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Bistability can be viewed as a simple two state system consisting of an on 

state (phenotype expressed) and an off state (no phenotype) (Figure 5.1a). The two 

states are the ‘stable states’, whereas in-between states are unstable and transient. 

The ability of a bistable switch to transition to an on-state is governed in part by 

intracellular noise, i.e., random variations in biochemical reactions [18, 75, 76]. There is 

also a growing body of evidence demonstrating that transitions from one bacterial 

cell phenotype to another are often governed by regulatory auto-feedback loops 

(e.g. Figure 5.1b) [16, 71].  In the simple feedback loop illustrated, the system is 

comprised of a protein product of geneX, which binds at its own promoter site to 

enhance expression.  The two stable states of the system are OFF, where little or no 

protein is present, hence there is little or no protein being produced, and ON, where 

there is enough of the protein present to bind at its promoter and prompt further 

expression of itself.  While the ON state would theoretically drive towards infinite 

expression, it is usually kept in check by mechanisms of protein degradation, co-

factors that regulate gene expression, and others. 

 

Figure 5.1. Bistable switching in bacteria. A) switching between wild type and a 
phenotype whether or not a bistable switch has been activated. B) bistability in 
positive feedback gene regulation. The gene product acts at the promoter to enable 
its own transcription. 
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The competence phenotype in B. subtilis is driven by bistable expression of 

the comK transcription factor [18], which is involved in a feedback loop that regulates 

its own expression and controls the downstream phenotype. Accumulation of ComK 

protein (the ON state) enables downstream transcription of the DNA transport genes 

[77] that lead to the observed competence phenotype.  Since comK is a “switch” that 

drives a key phenotypic state, its expression is tightly regulated [78] at both the 

transcript and protein levels (Figure 5.2).  Yet despite the strong regulation of this 

circuit, the semi-random appearance of the competence phenotype under stationary 

growth conditions indicates stochasticity in the regulatory network involving ComK 

and ancillary actors like ComS.  This stochasticity may derive from the very low 

expression levels of ComK, where a change in presence or absence of only a few 

ComK molecules may lead to a phenotypic state change.  Varying spatial 

arrangements and temporal interactions of low-abundance molecules like ComK are 

suspected to be a factor in the variable expression of the phenotype. 

However, the stochastic nature of bistable switching in the B. subtilis 

competence mechanism has been difficult to tease apart.  Mathematical modeling 

has been employed in an attempt to understand the nature of this process [18, 79-81]. 

These models address the stochastic nature of competence by modeling noise in 

the system with varying degrees of specificity using pre-defined noise terms as well 

as the Gillespie stochastic modeling algorithm [82]. While such models have led to 

further insights, there have been several challenges.  First, it is difficult to represent 

concentrations of a molecule like ComK with a bulk rate equation since it is present 

in such small quantities.  For example, if only one ComK copy is present and 
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another one is then produced, the concentration is immediately doubled in a discrete 

(non-linear) fashion.   Second, the noise terms to drive state changes are added 

explicitly to the model rather than derived from the model’s inherent structure.  This 

has the limitation that one must define those noise terms correctly ahead of time, 

and may not yield insight into the underlying nature and/or source of noise in the real 

cell. 

 

Figure 5.2. Regulation of competence by a bistable circuit centered on ComK. 
Significant quantities of ComK will activate downstream competence genes. 
However, ComK expression is regulated pre-transcriptionally by repressor proteins 
and regulated post-translationally by degradation by the MecA/ClpC/ClpP protease 
complex. ComS competes with ComK to bind to the MecA adapter protein. 
Increased ComS production will then decrease degradation of the ComK protein. 
The transcription regulator DegU is shown in yellow. 

To address these challenges and gain further insight into the molecular 

mechanisms of phenotype switching, we applied a novel agent-based modeling 

technique (ABM) to study bistable switching in B. subtilis. In ABM, the entities of 

interest in the model are defined as 'agents'.  Each agent is an independent, 

information carrying, decision-making entity representing an individual molecular 
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entity such as a protein, DNA, or RNA. In the ABM, agents interact with each other 

and their environment based on a set of well-defined, biologically related rules. 

Through the myriad of interactions that occur over time, larger patterns of behavior 

emerge that are not readily predictable from the individual rules, a phenomenon 

called 'emergence' [2].  Observing the emergent, aggregate behaviors of a model as 

it responds to adjustment of rules governing individual agents provides a powerful 

hypothesis-testing mechanism for exploring phenomena such as bistable switching 

in B. subtilis. 

For the past two decades, ABMs have been applied to problems in biology 

mainly within the field of ecology [83]. Here it is often referred to as either individual-

based modeling or pattern-oriented modeling [83, 84]. Recently, ABMs have been used 

to model problems in molecular biology such as biofilm development [85-89], the 

transmission dynamics of antibiotic resistance [90] and antibiotic resistance 

mechanisms in Staphylococcus aureus [91].   

In our ABM, we defined autonomous agents that mirrored key components of 

the competence switch.  Agents representing key proteins, DNAs and RNAs were 

implemented with rules governing their behavior according to known biological 

behaviors including stochastic (Brownian) motion, binding, transcription or 

translation.  Since the modeling technique is inherently stochastic due to the initial 

random placement of agents mirroring the random location of proteins in a cell, we 

run repeated simulations to determine how initial conditions drive stochastic 

emergent behaviors like competence. 
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Here we report our examination of several attributes of the B. subtilis 

competence switch with the ABM, including: how spatial arrangements of the 

proteins involved in competence can drive the system to distinct end states, the 

pattern of epigenetic heritability of the competence phenotype, and the effects of 

nutrient limitation and intracellular signaling on the competence switch in populations 

of B. subtilis.  The resulting bottom-up, multi-scale ABM of the B. subtilis 

competence phenotype switching consists of (i) a single cell model, modeling the 

intracellular interactions of molecules in the gene expression pathway that leads to 

the transition to the competence state and (ii) a cell culture model consisting of many 

single cell models interacting with extracellular molecules that influence the 

competence phenotype, such as nutrients and cell population density.  We make the 

model source code fully available for exploration at http://bioinfo.med.unc.edu, for 

use with the Open Source modeling platform Repast Simphony [92]. 

5.3 Results  

5.3.1 Intracellular competence models  

First, we developed a 3-D intracellular agent based model representing the 

key molecular players in competence switching in B. subtilis, in order to study the 

mechanisms driving competence. This allowed us to study the sources of the 

variability in gene expression  (noise) that determine switching to and from the 

competent state.  While noise is thought to be a key driver of the phenotype 

transition to competence, its source and nature has remained ill defined.  Using its 

direct, bottom-up representation of the molecules involved in competence switching, 
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the ABM allowed us to directly examine the sources of noise in molecular positioning 

and stochastic interaction.  

In the model, we explicitly represent proteins, genes, transcripts, and 

ribosomes as agents that move and interact in a simulated cellular environment 

(Figure 5.2). Agent movement follows Brownian motion and is simulated by a 

random walk implementation (Figure 5.4c and Figure 5.7).  When agents bump into 

other agents during a simulation, they interact stochastically according to their 

defined behaviors. Agent behaviors (rules) and binding partners are shown in Table 

5-3 and discussed in the Methods section. We model the processes of transcription 

and translation leading from gene to protein, including agents that represent genes, 

transcripts and ribosomes.  By specifying the rules for each agent according to its 

known properties and interactions, we can see how individual behaviors at the 

molecular level led to system-wide emergent behaviors like the competent state.    

Random transcription of comK is a key factor in the build up of large amounts 

of ComK to trigger transcription of the competence genes [18, 93].  ComK is degraded 

by a protease complex to keep its levels in check [94].  Another protein, ComS, 

competes with ComK for degradation [95].  High levels of ComS act to sequester the 

protease complex to allow further transcription of comK [94].  As such, the simulations 

monitored the concentrations of the ComK and ComS protein agents over time.  

Time is represented as discrete updates to the state of all agents in the model. A 

time step is completed when all agent rules have been executed in a random order.    

Models were initialized with the agents placed randomly within the simulated 

3D grid environment, and were run repeatedly to assess outcomes given different 
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initial configurations. Emergent competence behavior was monitored by quantifying 

the overall populations of molecules, particularly ComK and ComS, the former which 

drives the cell's competence state.  

5.3.2 The impact of random spatio-temporal agent arrangement on 
competence outcome 

In an experiment to determine whether the spatial-temporal arrangement of 

molecules contributes to the determination of the competence state, intracellular 

model simulations were run with identical parameters and molecular population 

sizes.  The only difference in each run of the simulation was the random initial 

spatial placement of the agents.  Figure 5.3 shows the ComK and ComS population 

sizes through time in two such intracellular simulations (note the differing y-axis 

scales). Notably the two simulations diverged significantly in expression of both the 

modeled ComK and ComS proteins, with Figure 5.3B representing a system being 

driven to the competence state and Figure 5.3A representing the more frequent case 

of a system that remains non-competent.  We repeatedly observed this 

phenomenon, with initial parameters and population sizes being identical, yet 

simulations resulting in significantly different outcomes. Given the parameter 

settings, the over-production of ComK was observed in approximately 3-5 out of 100 

simulations in a given run, as illustrated in Figure 5.3b. It is important to note that 

these models were run without explicit simulation of starvation conditions that cause 

a higher density of competence emergence, as shown in the multi-scale, multi-

cellular model below.    
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Figure 5.3. Intracellular model where model starts with the same initial 
concentrations but agents are placed randomly in the environment.  A) ComS 
production exceeds ComK.  B) ComK production exceeds ComS. 

In a careful study of individual simulation runs, we noted that a chance 

encounter of a single ComK mRNA transcript with a ribosome before it was 

degraded would produce ComK protein. This agrees with prior in vivo results 

indicating that an increased probability of competence switching can be driven by 

fluctuation of the ComK protein by a few molecules [18].   On average, only one 

mRNA was observed at any given time in the model (data not shown), so cell fate 

was determined not by its quantity as much as its location and chance encounters 

with a Ribosome.    

These results provide evidence that a random, spatial arrangement of 

molecules is an important contribution to the variable comK gene expression (noise) 

that drives the competence phenotype.  While noise was known to play a key role in 

bistable switching [16], most prior top-down bulk-rate computational models 

introduced noise terms that had to be set a priori.  In our ABM, noise was a natural 
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outcome of random agent positions and agent interactions.  While we cannot assert 

that random molecular positioning is the exclusive source of the intracellular "noise" 

that drives competence in B. subtilis, the simulation indicated that the random 

placement of molecules in a cell is perhaps sufficient to drive the random switching 

seen in B. subtilis populations.  

5.3.3 Multi-scale, Multi-cellular simulations of nutrient limitation effects on 
competence 

It has been previously shown that nutrient limitation and cell culture density 

affect the propensity of B. subtilis cells to enter the competent state [17].  Our goal 

was to leverage the intracellular model into a multi-scale model of both intra- and 

inter-cellular interactions, to examine the cellular population level effects on 

competence. The model consists of two layers--an intracellular layer and an 

extracellular layer. The first layer consists of the intracellular model previously 

described (Within-Cell Model, Figure 5.4). The second layer consists of cell agents 

representing the whole cell's interaction with extracellular environmental factors such 

as nutrients and the quorum sensing pheromones (Culture Model, Figure 5.4). 

 Thus, the model is a multi-scale ABM consisting of an overall ABM of agent ABMs 

running within it.    

To model nutrients and quorum sensing pheromones in the extracellular 

environment, diffusion equation layers were used (Nutrient and Peptide Layers, 

Figure 5.4).  One of the layers represents the local concentration of the ComX 

pheromone, an intracellular signaling molecule that is involved in quorum sensing 

and regulation of the competence circuit (Figure 5.2).   The Cell agents produce and 

consume ComX throughout the simulation. Consumption of ComX by a Cell agent 
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decreases its concentration at the culture level, while resulting in the creation of a 

new ComX agent in the intracellular ABM.  Likewise, the ComX peptide is produced 

at a constant intracellular rate  [96] and is transferred stochastically to the 

extracellular environment for uptake by other cells (details in Materials and 

Methods).  As concentrations of cell agents grow, extracellular ComX concentrations 

increase, thereby increasing the likelihood of ComX uptake by other cells.  

 

Figure 5.4. The multi-scale agent based model of competence, representing both 
the intracellular pathways (bottom) and the multicellular environment (top).  There 
are two layers that represent the ComX quorum sensing pheromone and nutrient 
concentrations. 



 87 

A second layer represents consumable nutrients required for cell growth and 

division in the model. Cell agents at the culture level consume nutrients from the 

nutrient layer, depleting the quantity available in the nutrient layer.  The consumption 

of a nutrient molecule is input to the cell growth equation, based on the Logistic Map 

equation, that governs growth and division (Methods and Materials). The cellular 

agents could divide if sufficient growth has occurred according to the equation. As 

the cell agents grow and divide, daughter agents are placed at a randomly 

determined adjacent location to the parent.  If there is not a free adjacent location, 

agents are "shoved" to the side to make room for the new cell agent.  When 

nutrients become depleted at a Cell Agent's location, the agent will move in the 

direction of an increasing nutrient gradient if present, or move randomly otherwise, 

simulating chemotaxis.  If insufficient nutrients are present, a Cell Agent's probability 

of death is increased. In addition, these starvation conditions are transferred to the 

intracellular model by reducing the number of agents that repress comK and comS 

transcription, Figure 5.2.  In this manner, extracellular environmental conditions 

influence the intracellular conditions, and intracellular conditions feed back upon the 

environment and other agents within it.  

Like the intracellular model, the multi-scale model agents are placed 

randomly in a 2-D grid environment.  However, in this case the initial concentrations 

of ComK, ComS, and ComX agents for the intracellular models are randomly 

determined within pre-defined threshold levels (Materials and Methods). There are 

no ComK mRNA agents placed at the start of a model run, but these agents can be 

generated via transcription during a simulation.   
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Since individual simulations would often result in distinct outcomes, we ran 

the model repeatedly to obtain average statistics for competence-switching behavior. 

 Out of 6 simulations, the model typically reached an average of 867 cells.  We 

necessarily limited the available “plate size” and nutrient concentration for culture 

growth to limit the computing to feasible time spans.   For each of the cell agents, a 

complete intracellular model was running, which meant that a full simulation running 

on a fast desktop computer may take three weeks or more to complete.  Improved 

parallelism may reduce run times in the future. 

 

Figure 5.5. A) Growth curve of modeled cell culture. 1-lag phase, 2-exponential 
growth phase, 3-stationary phase and 4-death phase.  B) 2-D agent-based model 
showing nutrient (green) consumption by cell models (blue) early in the growth 
phase of the culture. C) A view of the intra-cellular ABM.    
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Figure 5.5a shows the growth curve for an example multi-scale simulation, 

with the resulting count of competent cells as they switched to the competence 

phenotype.   In an example simulation, the model was run with an initial seed of 20 

randomly placed cell agents that grew to a maximum of about 865 cell agents, with 

160 exhibiting the competence phenotype (18.5%) by the end of stationary phase 

(Figure 5.5a).   Execution halted within the death phase of the growth curve after 

approximately 43,000 iterations.  Figure 5.5b shows a snapshot of the simulation, 

with the blue dots representing cell agents running an independent intracellular 

ABM.  The nutrient gradient is represented in green, with the lighter shade indicating 

a full nutrient concentration and transitions to darker green indicating nutrient 

depletion.   

The model resulted in classical bacterial growth curves with the standard 

phases of bacterial culture: lag phase, exponential growth phase, stationary phase, 

and death phase (Figure 5.5a).  It has been shown in vitro that competence begins 

to emerge in abundance during stationary growth phase [17].  As shown in Figure 

5.5a, the model demonstrated similar emergence of competence during stationary 

phase, even though there was no explicit programming instructing it to do so.  After 

cell division ceased due to nutrient limitation, ComK transcripts and protein 

accumulation increased the likelihood of competence transition. Out of 6 simulations, 

the intracellular B. subtilis ABM demonstrated the emergence of 16.3% (on average) 

competent cells by the end of stationary phase. This compares with in 

vitro experiments showing 10-20% competence emergence [17].     
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5.3.4 Modeling the epigenetic heritability of competence  

Following from the result showing that the initial spatial distribution of 

molecules may affect the outcome of the intracellular model, we postulated that 

some level of epigenetic heritability might exist in the competence switching.  The 

rationale is that if a parent cell has an increased concentration of ComK compared to 

average, it might be expected that as the cell divides, the resulting progeny may also 

have elevated ComK levels.  This would be dependent in part upon the spatial 

distribution of the proteins before division, where in some cases, one of the progeny 

may have received more than their "fair share" of one or more competence-related 

molecules.  Once the competent state is reached, cell division ceases.  However, 

the precursor to competence - accumulation of ComK - may lead to an earlier switch 

than would occur by random chance alone.  There was some evidence for this type 

of heritability in the biological system presented in Veening et al [97].  

We used the multi-scale model to examine the heritability of competence. 

Each of the 20 initial intracellular models was initialized with concentrations of 

ComK, ComS, ComX, and mRNAs determined by a random draw from a uniform 

distribution from within a defined threshold (Materials and Methods).  Cells would 

grow and divide, with division resulting in a random partitioning of its molecular 

contents among the progeny. All cells were tracked throughout the simulation, and 

progeny recorded as the model progressed from a minimum of 20 agents to a 

maximum of 857 agents, with 171 showing competence at simulation termination.     
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Figure 5.6. By following the life cycle of one cell and its progeny, one can see a 
pattern of inheritance of ComK transcripts and proteins.  At the time of division, 
concentrations of ComK transcripts and proteins are divided between daughter cells. 
Protein and mRNA levels are noted at each division.  Filled squares indicate the 
daughter cells, which eventually exhibited the competence phenotype.  Branch 
lengths of non-competent cells (unfilled squares) were artificially lengthened to make 
room for the labels, otherwise they would be of zero length. 

Figure 5.6 shows the lineage following from a single Cell Agent, with ComK 

protein and mRNA levels denoted at each division.  The horizontal axis corresponds 

to the number of iterations of both the intracellular and extracellular models.  As 
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shown in the bottom branch, daughter cells that initially inherited non-zero ComK 

levels exhibited the competence phenotype significantly earlier then cells which 

inherited minimal or no ComK.  The concentration of the ComK mRNA never 

exceeded one per cell, and ComK concentrations ranged from 1 to 8 molecules 

throughout the exponential growth phase of the simulation.  Of the 18 progeny in the 

lineage shown, four eventually switched to the competent state, with the first 

transition being along the lineage that had elevated levels.    

The model therefore revealed an important feature of how growth stage 

regulates competence by diluting the mRNA and proteins essential to switching to 

the competent state.  Excepting the lineage that switched to the competent state 

early due to inheriting elevated levels of the ComK protein, the remaining competent 

cells only became so after nutrient limitation inhibited cell division and Repressor 

agents long enough for sufficient concentration of ComK agents to accumulate.  This 

explains why competence in B. subtilis typically emerges only once stationary phase 

is reached and nutrients are limited, due to build up of elements like ComK in the 

competence gene regulatory network.   

5.4 Discussion  

Our interest in phenotype switching has derived from studies of anti-microbial 

tolerant bacterial phenotypes[98].  These are non-inherited phenotypes that confer 

tolerance towards many known antibiotic drugs.  In bacterial populations, cells 

exhibiting tolerant phenotypes exist as a small fraction of the population, with the 

quantity determined in part by growth conditions.  For example, stationary phase 

growth (nutrient limitation) induces an increase in the fraction of phenotypically drug 
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tolerant cells [99]. However, at the present time little is known about the mechanisms 

underlying antimicrobial tolerance in bacteria.  So, to model and explore aspects of 

phenotypic “bistable” switching, we turned to competence switching in B. subtilis, 

where the key molecular players have already been uncovered.   

Our B. subtilis agent-based model was built from the bottom-up by specifying 

rules for individual molecules and their interactions.  Properties like the multi-cell 

growth curve and the competence phenotype were not defined a priori, but instead 

arose naturally from the model as emergent phenomena. For example, the growth 

curve for the multi-cell model was a natural consequence of basic assumptions 

about cell division and nutrient uptake.  Yet it showed resulting growth curves 

exhibiting the same features that real bacterial growth curves do: a lag phase, an 

exponential phase, a stationary phase and death phase. There was no curve fitting 

involved because this growth curve naturally arose.  

More significantly, there was nothing explicitly inserted into the model that 

indicated that competence should occur in any particular growth phase.  The 

observed fact that cells only turned competent in bulk once stationary phase was 

entered, was a consequence of the model's assumptions about basic molecular and 

cellular behaviors.  The model revealed a basic but important facet of the 

emergence of competence: that dilution of competence-determining molecules 

during cell division acts to regulate the emergence of competence.  

The model also showed a specific relationship between the phenotypic 

(emergent) outcomes of competence with the spatial arrangement of competence-

determining molecules.  The random spatial division of these molecules into two 
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subsets during cell division had a strong effect on the determination of competence 

in the model.  And, the random initial spatial arrangement of molecules had a direct 

effect on whether an individual cell became competent or not. The biological system 

likely shares similar properties, where the apparent randomness of the competence 

transitions is derived directly from the randomness of spatial distribution in 

competence-related molecules.  Noise in a biological system is typically thought of 

as events which explain variability in gene expression. The model reveals that 

random spatial arrangement of competence-determining molecules may be a major 

contributor to noise.  In the model, when initial concentrations of agents were held 

constant, a small portion of the executions of the Cell ABM model showed the 

emergence of the competence phenotype.  It appears that spatial interactions, not 

molecular quantities or agent rule execution probabilities, had the most effect on the 

emergence of the competence phenotype (e.g. Figure 5.3).     

This highlights the power of bottom-up modeling, where only very basic facts 

or hypotheses about how individual molecules behave are designed into the model, 

and all the 'complex' behaviors that occur are emergent properties of the system. 

 An emergent property is exemplified by a bacterial growth curve.  One can tease 

apart the workings of an individual cell, and never see a growth curve.  It is only by 

studying how whole populations of cells behave in a shared environment that one 

might observe the phenomenon of a growth curve which has distinct phases.  A 

primary distinction between the agent-based approach and bulk or top-down 

modeling is that we do not try to model the growth curve a priori with an equation.  It 
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is a consequence of the basic assumptions of molecular and individual cellular 

behaviors and interactions.   

The quantities of molecular agents modeled are a small fraction of the 

molecules in the live system.  Yet the model displayed many of the same properties 

as the real system, showing how robust the competence mechanism is.  We have 

found similar results in a separate effort modeling chemotaxis in E. coli with an ABM, 

where preserving biological ratios of molecules was more important than preserving 

absolute quantities, in order to produce biologically realistic results (Miller et 

al., manuscript in review for PLOS One).  In this competence model, the robustness 

is illustrated from the fact that when we incorporate molecular agents in the 

intracellular model in the estimated proportions that are thought to occur biologically, 

the model derives competent cells as 10-20% of the population, much in line with 

biological results.      

The cell division trees that monitored concentration levels of ComK displayed 

an obvious pattern of inheritance.  Cells that inherited higher concentrations of 

ComK transcripts and proteins from the parent cell tended to pass on larger 

quantities to their children than other cells. Despite the dilution occurring from cell 

division, cells that inherited ComK transcripts and/or proteins tended to switch to 

competence more quickly then cells that did not inherit initial concentrations of 

ComK.  On average, it took approximately 3695±1335 iterations for a cell to switch 

to competence from the last time it divided. The large variability in the length of time 

to switch to competence appears due to the variability of molecular inheritance. In 
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this sense, the quantities of molecules inherited in this pathway are acting in an 

epigenetic fashion upon subsequent phenotypic outcomes.    

It is intriguing that the regulation of competence emergence in stationary 

phase could be tied directly to molecular quantities and the dilution effect of cellular 

division.  During exponential growth phase, not enough time would pass between 

cell divisions to allow ComK to build up to sufficient levels, so competence does not 

occur.  While we can't know whether this is the complete explanation for how 

competence is limited to stationary phase in B. subtilis cultures, it seems like a 

sufficient explanation.  Usually we think of regulatory mechanisms as being the 

direct up- or down-regulation of one or more genes, proteins, or post-translational 

modifications.  Yet the model showed that the indirect effect of molecular dilution tied 

to cell division or lack thereof was sufficient to result in competence emergence 

during stationary phase.  No master regulator was needed. We now wonder how 

many other cellular mechanisms might work in similar ways, without any master 

regulators, but simply due to emergent features like the concentration of critical 

molecules?  

While continuous mathematical models of ordinary or partial differential 

equations model the average behavior of a system (from the top-down), the ABM 

models the discrete behavior of the components of the system (from the bottom up). 

Thus, a strength of ABMs is their innate ability to model such spatial dynamics and 

spatial heterogeneity in a population, which these results indicate as being important 

in bistable switching. The model showed that a molecular-biological system can be 

readily translated into an agent-based model where proteins, RNAs and other 
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molecules become agents; where agents move by mimicking the erratic random 

movement of soluble biological elements; and where protein interaction networks 

and metabolic pathways can then be defined by agent rules and interaction 

probability thresholds.  As a result, we gained further insight into bistable switching 

in B. subtilis as a stochastic, spatially oriented process, with several key emergent 

features deriving from only basic assumptions about individual molecular 

interactions. 

This discrete model of the competence phenotype provides a readily 

comprehensible view into each cell's behavior and provides the ability to monitor the 

variation of molecular concentrations involved in regulating competence. The 

resulting model is biologically intuitive, with ready translation from biological facts or 

hypotheses into the model and back, without the need to be translated into a system 

of equations.  We suspect that in addition to being a useful tool for biological 

research, such models will be increasingly used as educational tools in the future 

because they are straightforward to build, visualize, and comprehend.  

5.5 Material and Methods  

5.5.1 Modeling environment and overview  

All ABMs were developed using Repast Simphony [92]. Repast Simphony is a 

Java based, open-source ABM framework to facilitate model development.    

The model shown in Figure 5.4 is a multi-scale ABM consisting of a cell 

culture model comprised of bacteria cell agents. Each cell agent is also an ABM 

simulating the intracellular competence regulatory network focused on the regulation 

and production of ComK and ComS proteins, as illustrated in Figure 5.2.   
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Agents represent proteins, mRNAs, promoter sites, repressors and proteases 

critical to the regulation and emergence of competence.  The intracellular ABM is 

also represented as an agent in the Culture ABM.  At simulation start, agents are 

placed in a grid-like environment.  The grid environment simulates either the interior 

of a cell or the extracellular environment.  However, it is a discrete environment 

where an agent will occupy a single cell in the grid and can move to adjacent cell 

locations.  Agents can only occupy one cell in the grid one at a time, and each cell 

can hold only one agent.  Hence, if a cell is occupied then an agent will move to 

another location. Agents interact with the grid environment or other agents by 

stochastically executing rules.  Rules are defined by how an agent will move and 

other agents it is allowed to interact with. 

In addition to the two levels of the model, nutrients and the ComX peptide 

diffusion are mathematically modeled using diffusion equations adapted to the ABM 

environment.  These are modeled using continuous equations rather than as agents 

due to their high concentrations, and hence their continuously variable nature.  

Concentrations are monitored in each cell of the grid environment and diffusion to 

adjacent cells is calculated by the equations described below. 

5.5.2 Rules and Agents  

In the model, agent movement and interactions with other agents are defined 

by rules. Rule execution is stochastic and subject to meeting a probability threshold 

after a random draw from the Uniform distribution (see Parameter Estimation). 

For example, if two molecules have been shown to bind biologically with a 

high affinity, then their interaction probability will be high. In cases where the 
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literature was not specific enough, probabilities were estimated.  For example, 

Hamoen et al [100] reported that ComK may bind another ComK to form a 

homodimer.  This is represented in the model using an interaction probability ρ 

(Table 5-1), with the following rule executed whenever a ComK finds itself next to 

another ComK agent, listed as neighbor here:  

if neighbor=ComK then 
     random = generate random number between 0 and 1. 
     if random < ρ then 
         neighbor now moves with ComK   
     end if 
end if  

If the probability threshold is not met, then the rule is not executed.  The 

process is repeated at the next time step.  Eventually, the probability threshold will 

be met and the rule is executed.  This may take several time steps and is intended 

to simulate the time it takes for a particular process to occur, i.e., dimerization, 

transcription, translation, etc. 

5.5.3 Parameter Estimation 

There are three types of parameters that need to be estimated in this ABM.  

They are grid environment size, initial concentration of agents, and rule interaction 

probabilities. In general, the parameters were estimated using a random sweep 

parameter estimation technique, where parameter estimates were randomly 

determined followed by repeated simulation runs to validate fit to known 

experimental results [18]. 

Rule probabilities were initially estimated based on known interactions and 

then fit as simulations were run, see Supplementary Information for rule 

probabilities.  For instance, if two molecules have a high affinity then a high 
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probability of 0.8 was estimated.  For two molecules with a low affinity, a low 

probability of interaction (e.g. 0.2) was initially estimated.  As simulations were run, 

rule probabilities were adjusted to speed up or slow down a particular molecular 

reaction.   

5.5.4 Cell Agent-Based Model 

ComK protein production is regulated at transcription by repressor proteins 

and post-translationally by a protease.  The following provides an overview of the 

molecules involved in the regulation of ComK and is the basis for the Cell ABM.  

ComK Transcription: ComK binds at its own promoter as a tetramer acting 

as its own transcription factor [77, 100]. Random transcription of ComK is a key factor 

in the build up of large amounts of ComK to trigger transcription of the DNA transport 

(competence) genes [18, 93]. DegU binds to the comK promoter and strongly 

stimulates binding of ComK dimers to the comK promoter [101, 102]. More specifically, 

DegU binds in between the two ComK dimer binding sites and may possibly facilitate 

tetramerization of ComK on the comK promoter site by partial unwinding and 

bending of the DNA helix [102]. Transcription can also occur in the absence of 

ComK [103].  

The comK promoter site can have several different types of proteins bind to it.  

This is reflected in the binding rule probabilities, Table 5-1.  As DegU promotes 

ComK dimer binding, the lowest binding probability is used if the promoter agent has 

no agents bound to it. A higher probability facilitates DegU binding.  Finally, the 

highest probability is used for binding the second ComK dimer if DegU and another 

ComK dimer are present.   
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Table 5-1. Interaction probabilities when an agent encounters another agent for the 
Bind rule. 

Agent Repressor Promoter mRNA ComK ComS MecA 

Repressor   
 0.5   

    
 

 
 

Riobosome    
 
 0.9   

 
 
 

 
 

DegU   
 0.5   

   
 

 
 

ComX   
 0.5   

 
 
 

 
 

 
 

ComK   
 

0.5 
0.8(+DegU)  

 
 0.8   

   

MecA   
 

 
 

 
 0.6  0.7   

 

ClpP/ClpC   
 

 
 

 
 

 
 

 
 0.5  

 

Transcription probabilities follow a similar fashion (Table 5-2).  Transcription 

will occur at a very low probability when no ComK is bound, increasing to higher 

values with the addition of one or two bound ComK molecules as shown in Table 

5-2. Activators and repressors will disassociate upon successful completion of 

transcription. After the transcription rule is executed, an mRNA agent is generated, 

and will persist until it randomly degrades as defined by its death rule. Since the 

comK transcript has a strong Shine-Delgarno ribosome initiation sequence, the 

binding and translation probability of the ribosome is very high if it encounters a 

comK transcript (Table 5-5).  Therefore, the presence of a single transcript is often 

enough to lead to the production of several ComK proteins. 
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Table 5-2. Transcription probabilities for comK and comS promoter agents 

Agent Has Bound Probability 
ComK tetramer  0.5 
ComK dimer 0.001 

comK Promoter 

- 0.0001 
ComX 0.5 comS Promoter 
- 0.0001 

 

ComK Transcription Regulation: At present there are three known comK 

transcriptional repressors. They are Rok, AbrB and CodY. The comK promoter site 

allows simultaneous binding of AbrB and ComK [104]. The presence of AbrB acts to 

prevent binding of RNA polymerase as does CodY [105].  

In the model, all three repressors are represented by a generic repressor 

agent that binds to the comK promoter agent (Table 5-1). Nutrient limiting conditions 

down regulate both AbrB and CodY.  Thus, in the model, repressor agents are 

suppressed when nutrients are not available (see below). 

ComS Transcription and Regulation: ComS is a protein produced in 

response to quorum sensing (cell density) [106, 107]. Transcription of comS occurs in 

response to the quorum sensing signaling pathway initiated by the ComX peptide. 

ComX is produced by the cell at a constant rate during growth and accumulates in 

the cell medium reflecting cell density [17, 96]. For the purposes of the Cell ABM model 

the ComX agent is the posttranslationally modified and cleaved extracellular end 

product, which has been absorbed by the cell. ComX initiates the activation of 

several proteins, which in turn initiate transcription of comS [17]. In conjunction with 

the interaction probability, the ComX agent represents these events when it binds to 

the comS promoter although in reality it is not the actual comS transcription factor. 
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Implementation of extracellular ComX production is described further below in the 

Culture Model section.  

In addition, regulation of the quorum-sensing pathway is modeled by 

assuming a Repressor agent acts at the comS promoter site, Table 5-1.  

ComK and ComS post-translational regulation: The MecA/ClpC/ClpP 

protease complex degrades both ComK and ComS proteins. MecA, an adapter 

protein, binds with either ComK or ComS, targeting the proteins for degradation by 

ClpC/ClpP [94]. ComS competes with ComK for binding with MecA, with ComS 

having a higher affinity then ComK [95]. If ComK is bound to MecA upon encountering 

ComS, ComK disassociates, targeting ComS for degradation instead. Because 

ComK is positively auto-regulated, protection from degradation by ComS results in 

an explosive increase in ComK synthesis [94].  In this way, the up-regulation of ComS 

due to quorum sensing leads to an increased accumulation of ComK and transitions 

to the competence state.  

This system was represented by implementing the interaction probabilities 

shown in Table 5-1.  Since ComS has a stronger affinity to the adapter protein 

MecA, a higher binding probability is used than for association with ComK during the 

binding rule.  

Cell ABM Agents. Agents are translated from the biological model described 

above to represent ComK, ComS, DegU and MecA proteins, the ComX peptide, 

ribosomes, ComK and ComS transcripts, repressors, ComK and ComS promoter 

sites and the ClpC/ClpP protease as shown in Table 5-3.  At model startup, a 

random number of ComK, ComS, ComX and mRNA agents are created.  The 
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number of agents is determined from a random draw within a defined threshold as 

shown in Table 5-4. The other agent populations are set at a fixed size as listed in 

Table 5-4. The agents interact with one another and their environment in a 3-D grid 

of size 40x40x40 cells. Each agent's behavior is defined by a set of rules, 

summarized in Table 5-3 and described below. 

 

Figure 5.7. 2-D random walk. An agent is moved to a randomly selected adjacent 
neighboring grid position.  

Move Rule.  The move rule simulates a random walk of an agent throughout 

the 3-D landscape to simulate molecular diffusion and Brownian motion. At each 

step, the rule execution results in a one-step move to a randomly selected 

neighboring cell on the grid, as illustrated in Figure 5.7 for the 2-D case. In a 3-D 

grid, there are 26 possible adjacent neighboring cells to choose from.  The agent will 

remain in place if the randomly selected cell is occupied.    
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Table 5-3. Agents and Rules of the Cell ABM 

Agent  Rules  Interacts with  

Promoter   transcription  ComK, ComX, DegU, 
Repressor  

Repressor   move, bind  Promoter  

Ribosome   move, bind, translation  mRNA  

mRNA  move, death  Ribosome  

ComK  move, bind  Promoter, ComK, MecA  

ComS  move  MecA  

ComX  move, bind  Promoter  

DegU  move, bind  Promoter  

MecA  move, bind,  ComK, ComS, ClpC/ClpP  

ClpC/ClpP   move, bind, death  MecA  

 

Table 5-4. Initial concentration of Agents 

Agent Initial Concentration 
Repressor 12 
Promoter 2 
mRNA 0 
Ribosome 80 
DegU 12 
ComX 0-12 
ComK 0-12 
ComS 0-12 
MecA 20 
ClpP/ClpC 20 
Cell 20 

 

Bind rule.  This rule is used for molecules that bind with other molecules 

upon an encounter during the course of the random walk. For each agent, 
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the bind rule searches for other agents at adjacent grid positions.  When there is an 

adjacent agent for which a binding rule is defined, the two can bind and then move 

together. Exceptions occur when a MecA agent encounters ComS and is already 

bound to ComK, the latter will disassociate in favor of ComS. Agents who bind with 

one another are depicted in Table 5-3. Bind rule probabilities are shown in Table 

5-1. 

Transcription rule.  The Transcription rule is executed by the Promoter 

agent and results in the production of mRNA agents. The success of this rule 

depends on what is currently bound to the Promoter agent, as specified in Table 5-1 

and Table 5-2.  

Translation rule.  The Ribosome agent executes the Translation rule 

generating ComK agents or ComS agents depending on the type of the mRNA 

agent (Table 5-5).    

Table 5-5. Additional rule probabilities 

Agent Death Translation Random 
disassociation 

mRNA 0.0001   
ClpC/ClpP 0.5   
Ribosome  0.5  
Repressor   0.0001 
DegU   0.0001 

 

Death rule.  Both the mRNA agent and the ClpP/ClpC agents implement 

a Death rule. For the mRNA agent, the Death rule represents the random 

degradation of mRNA that occurs in the cell. In the case of ClpP/ClpC protease 

complex, the Death rule initiates the removal/death of the bound ComK or ComS 

agent.  Table 5-5 lists the rule probabilities. 
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5.5.5 Culture Agent-Based Model  

Culture ABM Agents. There is technically only one agent type in the Culture 

ABM model, a Cell ABM whose internal workings were described above.  In the 

culture model, the Cell ABM acts as an agent with the rules specified in Table 5-6. It 

interacts with its environment by consuming nutrients, and it interacts with other Cell 

agents through production and consumption of the ComX pheromone. Nutrients and 

the ComX peptide are modeled by diffusion equations due to their high 

concentration. Due to the way Repast Simphony is structured, the Culture plate itself 

acts as a set of immobile agents to allow for executing the diffusion rule (Table 5-6). 

Consumption of either nutrients or ComX peptides by the Cell agent are fed to the 

internal Cell ABMs leading to reduction of Repressor agents or increasing ComX 

agents, respectively.  When a Cell ABM model reaches competence, tracked by the 

number of ComK agents generated, it is shown as a change in color as shown in 

Figure 5.4.  

Table 5-6. Agents and Rules of the Culture ABM. 

Agent  Rules  Interacts with  

Culture Model  diffuse  Nutrients, ComX 
Peptides  

Cell ABM  move, generatePeptide, 
consumePeptide, 
consumeNutrients, life, death  

Nutrients, ComX 
Peptides  

 

Cell growth equation.  The cell agent implements a growth function to 

control cell growth, division and death. The growth function is based upon the 

Logistic Map function: mn+1 =µmn-µm2
n/k, where µ=0.0058 is the growth 
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rate[108], m represents the energy of the cell and k is the maximum energy [109]. mn is 

the value of the energy function at iteration n. In the Culture ABM, m0 was initialized 

to 5 and k was set to 16.  The µmn term of the equation signifies an energy gain, 

which occurs when consuming nutrients and the µm2
n/k term decreases the energy 

as it is assumed that basic metabolism within the cell consumes energy.  The 

calculation of the growth function is split across two rules that are described further 

below: move and consumeNutrients.  The life rule uses the value of the equation to 

determine whether the cell should divide or not.  In the move rule, energy is reduced 

by µm2
n/k. Energy is increased by µmn upon consumption of a nutrient.  If there are 

no nutrients at the agent’s current location, there is no energy increase. 

Once nutrients reach a level (<1) such that they can no longer be consumed 

by Cell agents, the energy level steadily decreases instead of increasing via 

the move rule. At this stage the cell growth equation is altered and energy is reduced 

by d/(k/2), where d is the death rate, d=0.002.   

Culture ABM Rules. In the Culture ABM, agents interact with one another 

and their environment in a 2-D grid of size 40x40 cells.  Rules are executed in a 

random order for each iteration of the model, and probabilities determine whether or 

not a rule executes as shown in Table 5-7. Agent behavior is summarized in Table 

5-6.  

Table 5-7. Cell Agent rules within Culture ABM. 

Agent Death Move generatePeptide consumePeptide Life 
Cell 0.0001 0.5 0.8 0.8 0.8 
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Diffusion rule. The Culture ABM executes one rule, the diffusion rule which 

is essentially a global rule for the Culture model. This rule executes the Repast 

Simphony diffusion algorithm on both the nutrient and peptide value layers, based 

on Rucker's diffusion equation for Cellular Automata [110]. For each cell in the grid the 

difference between the current cell value and the weighted average of neighboring 

cells is calculated, multiplied by the diffusion constant and then added to the current 

cell value, thus, ensuring that the concentrations within the grid cells move down the 

concentration gradient. The diffusion constant used in this model is 0.1. 

Move rule. The Cell agent executes a move rule that simulates bacterial 

chemotaxis so that the Cell agent moves towards the most favorable nutrient 

conditions. If there are nutrients available, the Cell agent will remain at its current 

location. If not, the Cell agent selects a free neighboring location with a higher 

concentration of nutrients, following the highest nutrient concentration gradient.   

The energy reduction portion of the cell growth equation is implemented when 

this rule is executed.  It is assumed that there is a metabolic cost to a cell's energy at 

each iteration.  

The move rule also determines when nutrients can no longer be consumed at 

the Cell agent's current location and thus disables Repressor agents within the Cell 

ABM.   A randomly selected Repressor agent is then removed from the model if the 

probability threshold (0.001) is met. 

Consumption rules. The consumePeptide and consumeNutrients rules 

cause the consumption of one molecule from the current grid location of the Cell 

agent. When a ComX peptide is consumed it is added as an agent to the Cell ABM. 
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  When a nutrient is consumed a gain in energy occurs as described above.  The 

consumeNutrient rule is executed every iteration like all the other rules.  However, 

the consumePeptide rule is executed every 50 iterations if a probability of 0.8 is met. 

Generate Peptide Rule.  The generatePeptide rule produces one molecule 

of the ComX peptide. It is added to the concentration at the current grid location. 

This rule is an approximation of the constant production of the ComX peptide 

described in the literature [17].  Unlike all other rules, the generatePeptide rule is 

executed every 100 iterations and a ComX peptide is generated if a probability of 0.8 

is met.  The ComX peptides produced in this manner are independent of the ComX 

agents residing within the Cell ABM agent.  

Life Rule.  The life rule determines whether the cell is ready to divide when 

the energy exceeds a predefined threshold of 15, which is one less then k, the 

maximum energy (see growth equation parameters above). Cells which exhibit the 

competence state do not divide. A new Cell ABM is created and added to the grid in 

a neighboring, adjacent grid location. The daughter cells receive half the energy of 

the parent cell, and the parent's energy is reduced by half. 

To model inheritance, an arbitrary plane is randomly chosen which bisects the 

parent Cell ABM through its center. Agents 'above' the plane will remain in the 

parent cell and agents 'below' the plane will go with the daughter cell. The daughter 

cell is then placed in a randomly selected location adjacent to the parent cell. If that 

location is occupied then the shove rule is executed.    
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The life rule is also responsible for determining the death of a Cell agent.  If 

the Cell agent's energy is very low (< 0.5), then the Cell agent 'dies' and is removed 

from the model.    

Shove rule.  The shove rule is intended to displace Cell agents one step to 

an adjacent, randomly selected, neighboring position if more then one Cell agent 

occupies its current location. As each agent executes this rule, a one step 

displacement of Cell agents will ripple through a group of adjacent Cell agents until 

there is room for all Cell agents on the Culture Model grid.  

Death rule. This rule models random die off of cells with a high metabolism 

when nutrients are insufficient. The death rule is executed every 50 iterations 

instead of every iteration as in the other rules to decrease the death rate.  The Cell 

agent will 'die' when a probability threshold of 0.0001 is met and when the Cell's 

energy is within 0.5-7.5 (half the energy threshold needed for division). 



Chapter 6 
Stochastic Model of BK Virus Replication and Assembly 

 

6.1 Abstract 

BK Virus (BKV), a polyomavirus virus in the same family as SV40 and JC 

Virus, has recently been associated with the Salivary Gland Diseases Sjögrens 

Syndrome and an HIV associated Salivary Gland Disease.  BKV is more infamous 

for causing the rejection of kidney transplants.  As such, BKV infection of salivary 

gland cells implicates oral transmission of the virus.  Thus, a novel, intracellular, 

computational model using agent-based modeling was developed to model the 

affects the virus has on the salivary gland cell during BKV's process of replication. 

 In addition to viral proteins, host cell machinery that aids transcription, translation 

and replication of the BKV genome are modeled.  A novel application of the Boids 

algorithm was implemented to simulate molecular binding and formation of BK 

virions and BK virus like particles (VLPs).  BKV replicates slowly in salivary gland 

cells, producing infectious virus after 72-96 hours. This model enforces obtained 

experimental results indicating the processes that result in the slow accumulation of 

viral proteins.  As a result, BKV particles only form after large concentrations of 

capsid subunits have accumulated.  
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6.2 Introduction 

It is well established that certain viruses can transform a cell and induce the 

formation of tumors [4].  One such virus is the BK Virus.  BKV, a polyomavirus family 

member, is a non-enveloped, small, double-stranded DNA virus.  BKV is believed to 

cause a harmless latent infection in healthy people but may reactivate if the immune 

system has been compromised [19]. BKV is known to cause BKV nephropathy (BKN) 

a kidney transplant complication where reactivated BKV induces cell necrosis due to 

immunosuppressive drug regimens [111]. BKV sequences have been found in many 

organs in the human body—kidneys, liver, stomach, lungs, parathyroid glands, 

lymph nodes, tonsils, lymphocytes, bladder, prostate, uterine cervix, vulva, lips and 

tongue [112].  Recently, BKV has been detected in HIV positive patients with HIV 

associated salivary gland disease (HIV SGD) and shown capable of reproducing in 

salivary gland cells [20]. Since salivary gland diseases such as HIV SGD or Sjögren’s 

Syndrome do not have a known etiological agent, we are pursuing this relationship 

with BKV using a computational model to reproduce the replication and assembly of 

BKV within a salivary gland cell.  

Complex structures, patterns and phenotypes in biology are often the result of 

biochemical interactions between molecules.  The T=7 icosahedral structure of BKV 

and other polyomaviruses is an intriguing example of this. Through the interaction of 

host cell transcription and translation machinery with the BKV genome and the 

simple interactions of the capsid proteins, a complex icosahedral-shaped BK virion 

eventually forms.  We wish to study the emergent properties of these simple 

interactions using agent-based modeling (ABM) to determine salivary gland cell 

processes that influence or hinder virus replication.  
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Figure 6.1. Mock-up of BKV entry into a salivary gland cell. 

Not a great deal is known about the BKV replication cycle. Much of what is 

understood about polyomavirus replication has been inferred from studies of the 

related polyomavirus SV40 [4].  What is understood regarding BKV has come from 

studies of viral interactions with kidney cells.  More recently it has been determined 

by our group that salivary gland cells are permissive for BKV replication [20]. BKV is 

believed to enter the cell through caveolae-mediated endocytosis [113, 114] after 

binding with ganglioside GD1b or GT1b [115, 116] on the cell surface.  It is then 

believed to use the cell’s cytoskeleton [117, 118] where it is transported to the ER or 

Golgi, eventually gathering in the perinuclear region [119].  Recently, it was found that 

BKV may enter an acidic compartment after entry and travel along microtubules to 

the ER [120]. BKV disassembly occurs due to VP1 cleavages prior to reaching the 

ER [120]. BKV egress may occur by cell lysis but BK virions have also been observed 
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in vesicles in the cytoplasm [119].  The agnoprotein is believed to play a role in 

nuclear egress [121, 122]. See Figure 6.1 for a representation of BKV entry into an 

acinar cell.  

 

Figure 6.2. Biological and computational model of the BKV Life Cycle reading from 
left to right.  The computational model is indicated in red.  The arrows indicate the 
progress from one compartment to the next. 

More is known about attachment and entry of the virus then is known about 

the other phases of the BKV life cycle. It is not clear (i) how the virus releases its 

genome, (ii) how the genome is transported to the nucleus, (iii) how BKV assembly 

occurs in the cell, and (iv) how BKV exits the cell.  With this initial, single cell model 

we present the first intracellular model of BKV replication and assembly within a 

salivary gland cell to address (iii), BKV assembly.  Viral transcription and replication 

using host cell machinery is modeled leading to the eventual assembly of virus like 
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particles as well as BKV virions via an agent-based model (ABM) to capture viral 

rates of production as shown in Figure 6.2.    

Much of the previous work modeling aspects of viral replication and 

pathogenesis have used ordinary differential equation (ODE) mathematic models 

[123-125]. These models have focused on concentrations of the organism within 

various cellular and extracellular compartments.  These models have not considered 

intracellular function at the level of the organelle or viral gene product.  In the study 

described here, ABM has been used in order to elucidate the aspects of viral 

transcription, translation and replication.     

ABM is a computational modeling technique consisting of autonomous agents 

interacting with each other and their environment based on a set of simple rules.  

Each agent is an independent, information carrying, decision-making entity.  

Biological systems can easily translate to an agent-based model such that proteins, 

RNAs and other molecules become agents. Agents move by mimicking the erratic 

random movement of biological elements as if bombarded by molecules in a virtual 

cellular environment—Brownian motion. Protein interaction networks and metabolic 

pathways can then be defined by agent rules and agent interaction probabilities.  

This type of model is inherently stochastic and easily models spatial, temporal 

interactions between agents based on diffusion/movement rules. In addition, discrete 

agents are modeled as opposed to a continuous population as in mathematical 

models of ODEs. ABMs are built from the bottom-up by specifying local individual 

components such that complex behaviors emerge at the global level.  This facilitates 

the development of multi-scaled models such that an ABM can act as an agent in 
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another model, e.g., an ABM of a cell incorporated into an ABM consisting of many 

cells.  

For the past two decades, ABMs have been applied to problems in biology 

mainly within the field of ecology [83].  Here it is often referred to as either individual-

based modeling or pattern-oriented modeling [83, 84].  Recently, ABMs have been 

applied to host pathogen modeling.  Duca et al [126] created an ABM to produce a 

virtual model of the tonsils of the nasopharyngeal cavity and peripheral circulation. 

The host immune response in granuloma formation in response to tuberculosis 

infection has also been modeled using an ABM [127].  In these models, agents 

represent host cells, viral or bacterial cells and cells of the immune system.    

While the previous work focuses on cellular concentrations when modeling 

viral pathogenesis, our model represents the intracellular processes involved in the 

replication of BKV within a salivary gland cell. In order to model viral replication, a 

much more detailed agent-based model at the intracellular, molecular level was 

needed to model molecular interactions within a cell.  Host cells essentially 

determine the growth rate of a virus, and this model mimics the salivary gland cell 

support and hindrance of the BKV life cycle.  

6.3 Results 

Using the Repast Simphony agent-based modeling platform, a single-cell 

salivary gland model initially infected with one BK virion was designed [92]. At 

present, only known cellular molecules that affect viral transcription and translation 

are represented as agents in the model.  Aspects of calcium, pH, temperature and 
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salt concentrations which affect the BKV life cycle are currently excluded from the 

model [4, 120].   

A virtual cell consisting of a nucleus and cytoplasm/endoplasmic reticulum 

(CER) was represented.  Within these compartments cellular processes that lead to 

viral transcription and translation are modeled.  Initially, the nucleus compartment 

contains agents representing the BKV genome, host Transcription Factors and host 

DNA promoter sites and the CER compartment contains agents representing 

Ribosomes.  Agents change locations from one compartment to another depending 

upon their function.  For instance, mRNA agents that are eventually created are 

exported from the nucleus to the CER for translation.   

6.3.1 Intramolecular interaction  

Agent movement is performed by simulating Brownian motion (see Materials 

and Methods for implementation).  Thus, agents binding with other agents are 

caused by chance encounters due to their random movement. Biologically, 

intermolecular interactions are governed by binding affinity/repulsion, stoichiometry, 

conformational change and biochemical reactions.  Each of the former can be 

modeled by the molecular binding and interactions of agents simulated by the Boids 

Algorithm [128] which is summarized here and detailed further in Materials and 

Methods.  Agent-agent binding begins by imposing simple rules of binding similar to 

biochemical electrostatic properties of attraction and repulsion followed by a 

momentum calculation, Figure 6.3.  These calculations govern the spherical, 

icosahedral like formation of the capsid as well as other agent-agent binding 

described in detail below such that bound agents in the model will move together, in 
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the same direction with the same velocity, while marinating a separation distance 

between neighboring agents. These simple rules specify the distance the capsid 

subunits must maintain from the viral genome agent as well as the distance they 

must maintain between subunits.  This separation distance essentially governs the 

formation of the capsid and is maintained by the attraction and repulsion calculations 

to maintain the distance.  Repulsion: if the agents are too close together, the agent 

position is adjusted away. Attraction: if the agents are too far apart, the agent 

position is adjusted towards the neighboring agent.  Momentum of 'bound' agents is 

maintained by calculating the average velocity of all neighboring agents and 

adjusting the agent's position towards the average velocity.  Visually, the combined 

position adjustments determined by these rules, results in a slight jitter in the 

movement of the bound agents while maintaining the formed structure roams 

randomly around the compartment.   

 

Figure 6.3. Boids rules. Separation/Repulsion: move away from neighbors. 
Cohesion/Attraction: move towards average position of neighbors. Alignment/Momentum: 
move towards average heading of neighbors. 
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6.3.2 Viral protein transcription and translation  

Progression of the model is controlled by the regions of the BKV genome as 

depicted in Figure 6.4. Post entry and uncoating, when a host transcription factor 

agent binds with the BKV genome agent, early region transcripts are created, Figure 

6.4b and Figure 6.5a.  Many transcription factors have been identified which bind to 

the early promoter and they are represented by a single agent type [129].  Alternative 

splicing is simulated in the model resulting in the production of large T antigen (Tag) 

transcripts [130].  Small t antigen (tag) transcripts are ignored at present in the model 

and will be implemented once the cellular pathways tag interacts with have been 

implemented. For genome replication, Tag binds as a double hexamer and recruits 

DNA Polymerase to the origin of replication site of the regulatory region [4].  This is 

simply implemented by the accumulation of Tag agents binding to the BKV genome 

agent followed by a DNA Polymerase agent binding, resulting in an eventual BKV 

genome agent, Figure 6.4b and Figure 6.5c.  As BKV is a DNA virus, the cell must 

enter S-phase for DNA polymerase to accumulate initiating BKV genome 

replication [4].  Tag stimulates entry into S-phase by sequestering pRb resulting in 

the release of E2F [131, 132]. In the model, DNA polymerase agents are created by the 

binding of Tag agents to host DNA fragment agents—an indirect representation of 

this exact mechanism (Fig 5 C).  Finally, late region transcription accompanies BKV 

replication [4].  This is simulated in the model by the accumulation of Tag agents on 

the BKV genome agent resulting in a late region transcript, Figure 6.4b and Figure 

6.5b.  Alternative splicing is also simulated resulting in complete VP1, VP2 or VP3 

transcripts.  Agnoprotein is not produced at this initial phase of the model as it is not 

required for viral replication but has been implicated in egress [121, 122].   
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Figure 6.4. A) BKV circular DNA genome depicting the regulatory (RR), early and 
late regions and transcripts produced.  The early region transcribes alternatively 
splice RNA Tag or tag mRNA.  The late region transcribes alternatively splice RNAs 
for translating to VP1, VP2, VP3 and the agnoprotein.  B) The model imitates the 
transcription of early and late regions based on binding to the regulatory region of 
host transcription factors, Tag or DNA Polymerase.  Capsid assembly begins when a 
VP1 pentamer is bound. 

Viral transcripts are then exported from the nucleus when encountering the 

boundary between the nucleus and CER compartments.  Chance encounters with 

Ribosome agents with mRNA agents result in the translation of viral protein agents 

consisting of Tag, VP1, VP2 or VP3, Figure 6.5d.  Tag is imported back into the 

nucleus when the agent encounters the boundary between the compartments.  The 

model assumes that capsid subunits consisting of VP1 pentamers in complex with 

either VP2 or VP3 are assembled in the CER before being imported into the nucleus 

as shown in Figure 6.5e [4].  Again, upon encountering the boundary between the 

two compartments, the capsid subunit complex of a VP1 pentamer and VP2 or VP3 

is imported to the nucleus and translated into a single agent for ease of representing 

the capsid self-assembly process.  The import process described is intended to 
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simulate the nuclear localization signal found on the viral proteins that is recognized 

for transfer of the protein complex through the nuclear pore complex. 

 

Figure 6.5. Snapshots of agents in a simulation.  A) Early transcription: Host 
Transcription Factor (Grey) binds with BKV Genome (yellow). B) Late transcription: 
Tag (green) binds with BKV Genome (yellow).  C) Genome replication: 12 Tag 
(green) bind with the BKV genome (yellow) recruit DNA Polymerase (light gray). D) 
Translation: mRNA (red) binds with Ribosome (white). E) Assembly of capsid 
subunits.  5 VP1 agents (blue) binding to a VP3 agent (cyan).  Agents in the 
background are ribosomes (white), mRNAs (red) and VP2 (magenta). F) A 
simulation of only capsid self-assembly showing partial capsid formation of VLPs (4) 
and virions (1).  Purple represents VP2 bound VP1 pentamers and green represents 
VP3 bound VP1 pentamers.  The white lines in the simulation indicate the separation 
of the nucleus and CER components which are represented spherically. 
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The model was tuned to results obtained from BKV-salivary gland cell in 

vitro experiments.  When monitoring transcript concentrations, a slow ramp-up is 

observed in the model that coincides with in vitro results, Figure 6.6, top row [20].  

 
Figure 6.6. in vitro and in silico results showing transcripts (VP1 and Tag), protein 
(Tag), genome and BKV particle concentrations in salivary gland cells.  In vitro 
western blot (bottom row, middle) of Tag quantified using ImageJ[149]. 

6.3.3 Virion self-assembly  

The last phase of the replication process is encapsidation of the genome. 

Self-assembly of the BK virion occurs in the nucleus. The capsid is comprised of the 

structural proteins VP1, VP2 and VP3 and forms a T=7 icosahedron where 12 VP1 

pentamers are located in the 12 vertices of the icosahedron surrounded by 5 

neighboring VP1 pentamers [133, 134].  60 pentamers comprise the rest of the structure 

with 6 neighboring VP1 pentamers [133, 134]. A VP1 pentamer is bound with a VP2 or 

VP3 protein where the VP2 or VP3 side is presented internally, towards the DNA, 
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and VP1 is on the external surface of the capsid. The C-terminals of the VP1 

proteins extend to bind with neighboring VP1 pentamers solidifying the capsid 

structure. In this model it is assumed that the VP15/VP2 or VP15/VP3 capsomeres 

are formed in the CER and imported to the nucleus via the VP2 or VP3 nuclear 

localization signal (NLS). A single agent, VP123, represents the imported capsid 

subunit.    

The model assumes that the capsid subunits can bind DNA and begin 

assembling around the BKV genome agent relying on genome-subunit and subunit-

subunit interactions [135].  However, virus like particles (VLPs) can form in the 

absence of the viral genome, VP2 and VP3 and thus, aggregation of the subunits 

leads to the eventual formation of an empty capsid [134].  Empty capsid or VLP 

formation is modeled by subunit-subunit interactions.   

As stated previously, a single agent represents a capsid subunit, a VP1 

pentamer bound with either VP2 or VP3.  Color coding distinguishes between VP2 

or VP3 bound subunits as shown in Figure 6.5b. Assembly begins upon aggregation 

of capsid subunits and upon encountering the BKV genome agent.  Chance 

encounters of randomly moving capsid agents with the BKV genome agent and with 

other capsid subunit agents allows the gradual formation of the capsid.  Once capsid 

assembly is completed, the structure will continue to move randomly within the 

nucleus compartment.  The spherical, icosahedral structure formed is enforced by 

the separation distance defined by subunit-subunit and subunit-genome interaction. 

Egress is currently simulated when the structure eventually encounters the boundary 

separating the nucleus from the CER compartments.  The VLP or virion is then 
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removed from the model and a count of particles produced is maintained, Figure 6.6, 

bottom row.  

6.4 Discussion  

This work is a novel application of ABM to the modeling of intracellular viral 

infection and is the first intracellular ABM of BK virus replicating within a salivary 

gland cell.  By modeling molecular interactions within a cell during infection it is 

possible to understand how the virus affects the function of the cell, to make 

predictions about therapeutic interventions and to further knowledge about viral 

pathogenesis in general.  This model is a proof of principle that can be applied to the 

study of many other pathogens and cell types as we have done here with HSG.  

Although, modeling with ODEs is a popular technique, it is not as straight 

forward to translate a biological system into a model as it is for an ABM.  In addition, 

modeling with ODEs assumes high concentrations of molecules, uniform reaction 

rates and uniform rates of movement all of which affect reaction kinetics [136].  In our 

ABM, we had at times very small concentrations of agents that could easily be 

tracked.  Also, random spatial and temporal interactions of molecules were easily 

modeled by our ABM due to the definition of the movement and binding rules 

simulating real life reaction kinetics.  ODEs typically model the average behavior of a 

system, the ABM models the discrete behavior easily allowing us to scale the model 

into a system of several individual cell ABMs comprising a tissue and then the organ 

itself.  However, ABMs can be quite computationally intensive, as the number of 

agents increased in our model, execution speed slowed considerably.  We are 

currently working on improving the computational efficiency of our model.  
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The definition of simple rules defining agent interaction and binding can 

model the emergence of complex behavior such as transcription, translation and, 

most importantly, the self-assembly of viral capsids.  The simple interactions 

between capsid subunits and the viral genome as modeled supports the theory that 

capsid assembly occurs based on subunit interactions as well as interaction with the 

viral genome.  In this model, interacting with the viral genome enforces the T=7 

icosahedral curvature of the capsid.  Prior work has shown that without the genome, 

T=1 structures are possible when reducing disulfide bonds and removing calcium 

ions [137]. These types of structures are possible with this model by simply modifying 

the separation distances between subunit agents and genome agents.  

The icosahedral structure of BKV and other polyomaviruses is 

intriguing.  Although the protein subunits (VP1 pentamers) have a pentagonal shape, 

they are packed in 6 neighboring subunits (hexavalent) or 5 neighboring subunits 

(pentavalent) structures  [133, 134, 138, 139].   Several computational models have been 

built to understand how nature can form such a complex geometrical structure. One 

such model is built upon the theory that self-assembly of virus capsids is based on 

the interaction of structural proteins with neighboring protein subunits.  Local rules 

theory creates a model of the virus capsid based on angles and distances between 

neighboring subunits approximating the conformation changes of the capsid 

subunits [140-142].  The mathematical problem of pentagon packing has also been 

applied to the study of the virus structure making distinctions between loosely 

packed pentagons as in the case of BKV and its polyomavirus cousins and more 

densely packed pentagons as with papillomaviruses [143].  
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The ABM presented here shows a more simplified representation of viral self-

assembly where capsid subunits maintain a separation distance between 

neighboring subunits.  This results in the emergence of the capsid structure without 

the need for angle and distance calculations to force the formation of the viral 

particle.  Thus, the formation of the capsid is an emergent property based on the 

interaction of capsid subunits with neighboring subunits based solely on maintaining 

a distance from one another.  Transcription and translation that also rely on the 

same simple binding rules resulted in the production of viral proteins.  

Further, an additional emergent property of the Boids implementation was a 

change in the momentum of the forming structure as more and more agents became 

bound.  Structure movement slowed while moving in random directions as would be 

observed for larger molecules.    

The model produced non-infectious particles.  In the model, more BK virions 

were produced then VLPs as shown in Figure 6.6, bottom row, where a maximum of 

7 virions and 4 VLP were produced in this example simulation. In addition, it was 

noticed that as the capsid subunit concentrations increased and began to aggregate, 

VLPs were formed before the BK genome replicated itself and began to form BK 

virions.  This emphasizes the importance of cooperativity between capsid subuints 

during particle formation as well as that increased concentrations of capsid subunits 

encourages particle formation as seen in recent research by Muckherjee et al [144].  

This first ABM models the BKV replication process within a single cell.  The 

complete BKV replication cycle will be added to the model.  Additional cellular 

pathways such as the exocrine pathway shall also be added to further the study of 
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BKV interaction with host cell pathways to theorize methods of viral egress and to 

also model the break down of this pathway in SGD.  Once the single cell is 

complete, the next phase will incorporate multiple cell ABMs to simulate the infection 

of the salivary gland.  Next, the addition of peripheral circulation and infected 

lymphocytes to the model will aid in modeling the infection of the human host.  

6.5 Materials and Methods  

6.5.1 BKV ABM  

All the steps in the life cycle of BKV rely on host cell “cooperation”.  Thus, a 

representation of a host cell with spherical compartments representing the nucleus 

within a compartment representing the CER was designed, Figure 6.7.  Each 

compartment contains agents specific to the compartment as well as agents that can 

traverse between the two, i.e., mRNA agents exported to the CER.   The 

environment of the host cell is represented as a continuous 3-D space such that an 

agent's location is represented by its x, y and z axis floating point coordinates, i.e., 

agent b is located at location (1.1, 2.05, 30.2).  
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Figure 6.7. Screen capture of model simulation at initial start.   

The model is a rather straightforward ABM implemented using Repast 

Simphony version 1.2 [92] where agents represent various host and viral gene 

products, Table 6-1.  The agents move based on a simulation of Brownian motion in 

a 3-dimensional environment described below.  Once an agent encounters another 

agent, the movement rule changes to simulate molecular binding by using the Boids 

algorithm to simulate attraction, repulsion and momentum as detailed further 

below [128].   

Rules are scheduled for execution every clock cycle.  However, they are 

executed in a random order each cycle.  In addition, a rule is not executed unless a 

probability threshold has been met as shown in Table 6-2.   As a result it can take 

several time steps before a rule will successfully execute. Probabilities essentially 

determine how fast or how slow the production or death of an agent occurs and 

adjustments were made accordingly.   
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Table 6-1. The agents and their supported rules.  

  Agents Move  Bind  Transcription  Translation  Splice  Import  Export  Death  Egress 
V. Genome  x  x  x                 x 
H. Genome  x  x  x                  
DNA Pol  x  x                     
Tag  x  x           x         
mRNA  x  x        x     x  x   
Ribosome  x  x     x               
Host TF  x  x                     
VP1  x  x                     
VP2  x  x           x         
VP3  x  x           x         
VP123  x  x                     
VLP x x       x 

 

There are three important parameter types that are necessary to estimate in 

this ABM—size of the environment, initial concentration values of agents and rule 

probabilities.  Parameters were estimated using a random parameter sweep where 

parameters were randomly determined until the model produced virus and fit in 

vitro data.   

At the initial model startup, only Ribosome, Viral Genome, Host Genome and 

Host Transcription Factor (TF) agents exist, Figure 6.4 and Table 6-2.  These agents 

are placed in random locations within their respective areas, i.e., either the nucleus 

or the CER.  During model execution, newly created agents are placed in a random 

location within an arbitrarily selected distance of 4 units from the agent creating it.   
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Table 6-2. Agent rule probabilities and initial concentrations at model startup  

Agents Initial 
Concentration  Transcription  Translation  Splice  Import  Export  Death  Egress  

V. Genome  1  
Early 0.2 
Replicate 0.001 
Late 0.002  

     0.5  

H. Genome  2  0.001        

H. TF  10         

DNA Pol  0       0.00005   

Ribosome  280   0.4       

mRNA  0    

Tag 0.8 
tag 0.2 
VP1 0.7 
VP2 0.2 
VP3 0.2  

 0.4  0.0001   

Tag  0     0.4   0.00005   

VP1  0         

VP2  0     0.9     

VP3  0     0.9     

VP123  0         

VLP 0       0.5 

6.5.1.1 Definition of the rules  

The viral genome is a circular minichromosome, Figure 6.4a, and can be 

divided into three regions, which the model is driven by: early, late and regulatory 

regions (RR). The model follows the early and late transcription biological model by 

implementing a simple state machine, Figure 6.4b.  The output of a state is an 

mRNA or replicated viral DNA.  The input to a state is an agent binding to the 

regulatory region.  Transcription and translation occur by chance encounters of 

agents that then bind.  Successful execution of rules shown in Table 6-1 may result 

in new agents being created (i.e. proteins in the case of translation) or the changing 

of compartments.   
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All agents implement the move rule.  The move rule is a rather simple 

simulation of Brownian motion in a 3-dimensional environment where the next 

position or step the agent makes is determined based on a random draw from a 

uniform distribution from -0.5 to 0.5 determining the x, y and z coordinates of the 

direction vector.  In all cases, the agents identify the compartment they are to move 

within and next position calculations take this into account.  If a next position 

calculation oversteps a boundary it is recalculated to reverse the agents direction in 

order to remain within its compartment.  This, in many cases, results in the 

appearance of the agent "bouncing" off of the boundaries.  

Successful execution of the transcription rule results in the creation of an 

mRNA agent placed within an arbitrarily determined distance of 4 units from the 

genome agent. At this stage the mRNA agent is in an incomplete state and 

biologically represents an uncapped, unspliced mRNA.  Once transcription has 

completed successfully, bound agents will unbind and move freely once again.  

The splice rule simulates alternative splicing on an incomplete mRNA.  The 

spliced transcript is determined based on probabilities.  If a probability is met, the 

state of the mRNA is marked complete and its type is set.  For instance, if the 

probability for Tag of an early transcript is met, then the mRNA type is set to Tag 

and marked complete.    

The export rule is only executed for complete mRNAs and if the mRNA has 

encountered the boundary between the nucleus and CER containers.  Upon 

successful execution, the agent is moved to the other side of the boundary where it 

then moves freely within the CER container.  
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The translation rule is executed after the binding of an mRNA agent to a 

Ribosome agent.  Successful execution of the rule results in the creation of a new 

protein agent depending upon the type of mRNA that is translated.  Tag, VP1, VP2 

or VP3 agents are created by this rule.  The new agent is placed an arbitrarily 

determined distance of 4 units from the Ribosome agent.  The Ribosome agent then 

unbinds itself from the mRNA agent.  

The import rule is similar to the export rule in that agents are moved from the 

CER to the nucleus.  The rule is executed when the agent encounters the nucleus 

boundary.    

mRNAs are known to randomly degrade, as such a death rule was 

implemented to mimic this functionality.  DNA Polymerase and Tag also implement 

this rule in order to prevent exceedingly high accumulation of the agents to prevent 

unnecessary consumption of computational resources.  

All of the rules described previously are relatively straightforward in the sense 

that it is executed whether or not a randomly drawn probability from the uniform 

distribution has met a probability threshold, Table 6-2.  However, the bind rule is a 

bit more complex. The bind rule utilizes the Boids algorithm to simulate molecular 

binding. A typical problem in computer graphics and animation is modeling the 

movement patterns of flocks of birds and schools of fish in a life-like manner. In 

1986, Craig Reynolds developed a simple algorithm called Boids whereby each 

agent implemented 3 simple position calculations that resulted in a flocking pattern 

as an emergent behavior [128].  The simple Boids rules were (i) Separation-steering 

to avoid crowding, (ii) Alignment-steering towards the average heading of neighbors 
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and (iii) Cohesion-steering to move towards the average position of neighbors, 

Figure 6.3.  Electrostatically speaking these rules can be interpreted as repulsion 

(separation) and attraction (cohesion) steps in the binding process of two molecules. 

This algorithm provides a more realistic model of the molecular forces involved in 

binding.  

As stated previously, the move rule is essentially a random walk 

implementation.  However, each agent is constantly searching its neighbor space for 

neighboring agents within a user-defined radius.  The bind rule is executed in place 

of the move rule when a potential binding partner is found in close proximity.  The 

Boids implementation of the bind rule is a simple calculation of the next position of 

the agent based on position and velocity of neighboring agents.  If the agent is too 

close, the next position is calculated such that it moves away from the other agent a 

small amount (separation/repulsion).  If it is too far away, a position towards the 

agent is calculated (cohesion/attraction).  In addition, the average velocity of the 

neighboring agents is calculated in order to adjust the velocity of the agent to match 

its neighbors (alignment/binding).  Combined, these rules ensure that the agents 

move together in the same direction with the same velocity.  However, if an agent 

makes too large of a step when changing position it may disappear from a neighbors 

view and the agent is then unbound.  

VP2, VP3, Viral Genome and VLP agents only implement the 

alignment/binding phase of the Boids algorithm.  This is necessary to facilitate 

binding of neighboring agents on all sides of the agent.   
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In sum, the bind rule for an agent is a next position calculation based on the 

distance and velocity of neighboring agents.  

VP1 agents in the CER aggregate into pentamers binding with either VP2 or 

VP3 agents based on successful execution of the Bind rule.  Once a VP15/VP2 or 

VP15/VP3 complex is successfully formed and its position is close to the nucleus, 

successful execution of the import rule will cause the removal of the 5 VP1 agents 

and associated VP2 or VP3.  The VP15/VP2 or VP15/VP3 complex is then 

represented as a single agent, VP123, to facilitate viral self-assembly within the 

nucleus.    

The curvature of the icosahedral shape of the aggregating capsid subunits is 

enforced by the distance maintained from the genome agent.  To enforce a similar 

curvature for VLPs, an invisible agent (VLP) is created when 4 or more capsid 

subunits aggregate.  While subunits can bind arbitrarily around the genome agent, 

subunit-subunit binding is only allowed when forming the VLP around the invisible 

agent.  VP123 agents have a preference for binding with the genome agent over the 

formation of a VLP.  

Lastly, the egress rule is essentially a method to identify whether or not a 

completed virion or VLP has encountered the nucleus boundary.  This rule simplifies 

the as yet unknown process of BKV egress from the cell.  The agents involved in the 

viral complex are then removed from the model—simulating exit from the cell—and a 

count is kept of virions or VLPs produced.  
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6.5.2 BKV assays  

Material and methods for collection of BKV data assayed in submandibular 

(HSG), parotid (HSY) and cell lines is as previously described in Jeffers et al [20].   

 
 



Chapter 7 
Conclusion 

 
 
 

Modeling complexity does not necessarily require complex techniques.  By 

modeling simple interactions, it is possible to observe complex, emergent behaviors 

resulting in RNA secondary structure, the competence phenotype in B. subtilis or BK 

viral replication and self-assembly within a host cell.   

The simple interactions that form hydrogen bonds between paired nucleotides 

result in the formation of a complex RNA structure.  Determining RNA secondary 

structure is difficult both experimentally and computationally.  The SHAPE data 

analysis algorithms provided by ShapeFinder provides for a combined chemical and 

computational system for high-throughput analysis of RNA structure. The algorithms 

provided by ShapeFinder facilitate the quantification of per nucleotide flexibility and 

thus, the identification of paired regions of an RNA can be made by structure 

prediction algorithms such as RNAstructure [45, 46]. The statistical analysis strongly 

affirms that SHAPE does measure nucleotide flexibility and is especially strong in 

identifying paired regions. 

As a result, signal-processing algorithms as implemented in ShapeFinder, 

described in Chapters 2-4, can be used to aid in the prediction of RNA secondary 

structure.  RNA structure determines its function.  As such, the function of a single 

molecule such as RNAs, enzymes and proteins can then be modeled by using 
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ABMs.  The interactions between molecules leads to the resultant biological pattern, 

Figure 1.1. ABMs can easily be translated from a biological system by implementing 

the molecular agents involved in the object of study and defining or predicting how 

the molecules interact.  The simple interactions then result in emergent properties 

such as the competence phenotype in B. subtilis or self-assembly of viral particles.  

The resultant emergent property is typically shaped by the simple interaction 

between two or more molecules binding with one another. This interaction between 

two or more molecules can then result in the repression or activation of a biological 

function such as transcription, translation and degradation. Simple interactions like 

molecular binding also result in the self-assembly of large molecular structures as 

those formed by BKV particles. 

ABMs are ideal for modeling molecule-molecule interactions as demonstrated 

by Chapters 5 and 6.  Initially, the ABMs I created for the B. subtilis and BKV models 

were intended for educational purposes in order to understand the system of study 

by attempting to recreate it.  However, even with a well-studied system like 

competence in B. subtilis, there are many aspects that remain unknown that must be 

hypothesized by the model.  This resulted in the identification of additional potential 

sources of variation in gene expression like spatial-temporal interactions, molecular 

inheritance and cell division.  These were emergent properties from the model I 

created, which would have been difficult to observe in a top-down model like 

mathematical modeling.   

More complex models evolve from modeling two organisms interacting with 

one another as in the case of viral infection of a human host as described in Chapter 
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6. However, these models still rely on simple molecule-molecule interactions.  The 

recreation of the lesser-known system of BKV replication and self-assembly within a 

host-cell, relied on studies based on BKV and a sister virus, SV40, as well as 

hypothesized interactions between viral and host molecules, Chapter 6.  Much 

remains unknown about BKV interaction with the human host and the hypotheses 

implemented by my model were able to make predictions about the production of BK 

virions and BKV VLPs.  My model demonstrated the self-assembly in a 3-D 

environment of a fully formed viral capsid with or without encapsidating a BKV 

genome. Again, this was an emergent property that was revealed through simple 

molecule-molecule interactions that would be difficult to demonstrate in a top-down 

model such as mathematical modeling.  As this model progresses to implement the 

complete BKV life cycle more hypotheses can be tested in cooperation with in vitro 

experiments eventually leading to the identification of BKV’s role in the development 

of SGD and how it infects the human host. 

I used Repast Simphony [92] for the development of the aforementioned 

ABMs.  This ABM platform was selected based on ease of use and 3-D support from 

a set of ABM platforms that included Swarm [145], Ascape [146] and NetLogo [147].   

However, Repast in its current form, is not ideal for the type of biological models I 

needed to create as Repast is designed for single processor only support.  With a 

model that eventually grew to support approximately 150,000 agents each 

implementing 3 or more rules, the model execution times exceeded reasonable 

limits.   For example, the B. subtilis model can take longer than six weeks to perform 

approximately 40,000 iterations.  Parallel processing is sorely needed and research 
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in this area will continue in order for model execution to complete within a 

reasonable time frame.  

In addition, techniques to improve the parameter space search in ABMs are 

not as well developed as they are for mathematical modeling.  I used a rudimentary 

random parameter search technique that was not as efficient as it could have been.  

Genetic algorithms [148] as well as other techniques used in sociology and ecology 

ABM would be worth investigating for future models.
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