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Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was identified in 2012 as the 

causative agent of a severe, lethal respiratory disease occurring across several countries in the 

Middle East. To date there have been over 1,600 laboratory confirmed cases of MERS-CoV in 26 

countries with a case fatality rate of 36%. Given the endemic region, it is possible that MERS-

CoV could spread during the annual Hajj pilgrimage, necessitating countermeasure development. 

In this report, we describe the clinical and radiographic changes of rhesus monkeys following 
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infection with 5×106 PFU MERS-CoV Jordan-n3/2012. Two groups of NHPs were treated with 

either a human anti-MERS monoclonal antibody 3B11-N or E410-N, an anti-HIV antibody. 

MERS-CoV Jordan-n3/2012 infection resulted in quantifiable changes by computed tomography, 

but limited other clinical signs of disease. 3B11-N treated subjects developed significantly reduced 

lung pathology when compared to infected, untreated subjects, indicating that this antibody may 

be a suitable MERS-CoV treatment.
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Introduction

In September of 2012, a novel coronavirus was discovered in a patient suffering from a 

severe acute respiratory disease termed Middle East Respiratory Syndrome (MERS) (Zaki et 

al., 2012), subsequently the virus was renamed MERS-CoV (de Groot et al., 2013). Thus far, 

26 nations have reported over 1600 MERS cases with a case fatality rate of 36% (http://

www.who.int/emergencies/mers-cov/en/). Fortunately, MERS-CoV has yet to demonstrate 

sustained human to human transmission. However, given the estimated 2.5 million pilgrims 

to the MERS-CoV endemic region for the Hajj, MERS-CoV represents a continued global 

health risk. Despite a substantial response by health agencies, MERS-CoV infections 

continue and have spread geographically due to travel as evidenced by the recent outbreak in 

the Republic of Korea (186 cases with 36 deaths), and single cases in Thailand, Philippines, 

and China (http://www.who.int/emergencies/mers-cov/mers-cov-republic-of-korea-and-

china-risk-assessment-19-june-2015.pdf?ua=1). Unfortunately, the definitive reservoir has 

yet to be identified, although camels are heavily implicated and may at least serve as an 

intermediate host. If so, then camels may provide an intervention point to prevent human 

disease (Adney et al., 2014; Gossner et al., 2014; Khalafalla et al., 2015; Yusof et al., 2015). 

If MERS-CoV was able to establish efficient human to human transmission and maintain 

pathogenicity, then the increased number of patients and the special care they require could 

rapidly place a strain on healthcare resources. Treatment thus far has been supportive with 

reports of patients placed on extracorporeal membrane oxygenation, commonly known as 

ECMO, to maintain their health (Pebody et al., 2012). To date, no MERS-CoV-specific 

countermeasures or treatment programs have been developed.

MERS countermeasure development depends on appropriate animal models. An ideal 

laboratory animal model would uniformly recapitulate the most severe outcome of human 

disease. To date, three murine models have been reported that express the MERS-CoV 

receptor, human dipeptidyl peptidase 4 (DPP4 or CD26) in the respiratory track through 

adenovirus transduction of the airway (Zhao et al., 2014) or construction of transgenic or 

humanized mice through genomics techniques (Agrawal et al., 2015; Pascal et al., 2015). 

These mouse models serve complementary roles in the evaluation of medical 

countermeasures (Channappanavar et al., 2014a; Channappanavar et al., 2014b), MERS-

CoV respiratory disease (Agrawal et al., 2015) and lung pathology (Pascal et al., 2015). 
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Common marmosets (Callithrix jacchus) have also been evaluated as a MERS model 

(Falzarano et al., 2014; Johnson et al., 2015). They develop limited disease as shown by 

histopathological analysis, radiological analysis, and qRT-PCR evidence of virus replication 

in the lung, but do not develop a severe respiratory disease that faithfully replicates the 

human condition.

A nonhuman primate model is an important part of any drug discovery process because of 

the close phylogenetic relatedness to humans and their use in being granted regulatory 

approval to move into human clinical trials. The nonhuman primate (NHP) (Macaca 

mulatta) model of MERS has been described by two groups (de Wit et al., 2013; Yao et al., 

2014). In this model, exposure of rhesus monkeys to MERS-CoV leads to a transient lung 

infection that results in variable lung pathology consisting of inflammatory infiltrates as well 

as transient radiological lung findings. However, to date, there are no reports of using this 

model to evaluate a new anti-MERS drug. There is renewed interest in the use of 

monoclonal antibodies to treat viral infections (reviewed in (Bossart et al., 2009; Marasco 

and Sui, 2007; Qiu and Kobinger, 2014; Shadman and Wald, 2011). We and others have 

identified neutralizing antibodies against MERS-CoV (Jiang et al., 2014; Tang et al., 2014; 

Ying et al., 2015). In this study we describe intratracheal inoculation of rhesus monkeys 

with MERS-CoV Jordan-n3/2012 as well as a pilot study demonstrating efficacy of 3B11-N, 

a human monoclonal antibody against MERS-CoV spike protein to reduce lung pathology 

following MERS-CoV infection.

Results

Experimental Design

The experiment was performed in two parts. The initial part was establishment of the rhesus 

MERS-CoV infection model using MERS-CoV Jordan-n3/2012 (MERS-JOR). The second 

part was evaluation of the anti-MERS-CoV monoclonal antibody 3B11-N. In total, five 

groups of NHPs were evaluated as shown in Figure 1. Computed Tomography (CT) was 

chosen over standard radiography because 1) CT is quantifiable, which allows for direct 

comparisons between groups with reduced bias, and 2) CT provides a 3-dimensional 

representation of the region of interest whereas standard radiography compresses 3-

dimensional images into 2 dimensions and may misrepresent pathology. In this study, two 

subjects (Group 1) were inoculated with γ-irradiated 5×106 PFU MERS-JOR and received 

periodic bronchoalveolar lavage (BAL) to determine the impact of the infection procedures 

and viral antigens would have on lung pathology as measured by CT. Group 2 consisted of 

two subjects that received 5×106 PFU MERS-JOR by intratracheal (IT) inoculation without 

BAL to determine the impact of virus on lung pathology and two subjects (Group 3) that 

received 5×106 PFU of infectious MERS-JOR with periodic BAL to determine the impact of 

BAL on the observed lung pathology. Group 2 and 3 subjects were re-challenged at days 26 

and 88 to determine if there was immune enhanced disease and to match pathology findings 

with radiology findings; BALs were also performed on Group 3 subjects following re-

challenge. Group 4 consisted of three subjects that received 5×106 PFU of infectious virus 

by IT inoculation preceded by treatment with 311B-N 1 day prior to infection. Finally, 

Group 5 was comprised of 3 subjects that received 5×106 PFU of infectious virus by IT 
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inoculation preceded by treatment with an antibody against HIV-1 (4E10-N, (Zwick et al., 

2001)) 1 day prior to infection as a non-specific control antibody.

MERS-JOR infected rhesus do not develop clinical signs of disease

Physical examination and daily observations indicate that MERS-CoV infected rhesus did 

not develop obvious clinical signs of MERS. Body temperature was measured rectally and 

was within the normal range for rhesus monkeys (Figure 2A). Peripheral oxygen saturation, 

a measure of respiratory function, did not decrease below normal values (Figure 2A). Signs 

of respiratory disease such as tussis and dyspnea were not observed. Although mild, 

increases in respiratory rate were sporadically observed for the Group 2 subjects (Figure 

2A). The data indicates that MERS-JOR infection did not adversely impact lung function.

Complete blood count with differential (CBC/Diff) reinforced the physical examination data 

and no clinically significant changes were observed (Figure 2B). A slight lymphopenia 

could be observed for groups 2 and 3 1 day post-infection, a slight neutropenia between days 

2 and 6 post-infection for groups 2 and 3, and a mild leukopenia between days 2 and 9 post-

infection. CBC/Diff of the Groups 2 and 3 following re-challenges were comparable to the 

initial 2–9 day post–infection period. These data suggest that overt immune enhanced 

disease did not occur in these MERS-JOR infected rhesus monkeys.

qRT-PCR of whole blood, nasal swabs, and BAL samples were performed to determine viral 

load and dissemination from the site of infection. qRT-PCR results were below the limit of 

detection on all days across all groups in these samples indicating that there was no 

detectable dissemination of MERS-CoV from the lung to peripheral organs and limited virus 

replication. To obtain data at the acute phase of disease progression, subjects from Groups 2 

and 3 were challenged a third time on study day 88 and one subject each from Groups 2 and 

3 were necropsied on days 91 and 93 post-infection. Plaque assay of lung, liver, and kidney 

homogenate were negative as was serial passage of the tissue homogenate on MRC-5 cells, 

suggesting that MERS-JOR replication is restricted in these tissues.

Computed Tomography indicates mild respiratory disease

To evaluate changes in lung architecture as a result of MERS-JOR infection, visual and 

quantitative analyses were performed. Briefly, lung volumes of interest were automatically 

extracted and quantified using a pathological lung delineation algorithm with high 

sensitivity and specificity (Mansoor et al., 2014). This procedure was followed by a 

statistical machine-learning scheme, called random forest classification, for pathological 

tissue identification and tissue morphology quantification including volume and density 

properties. The total lung capacity was refined by adding pathological tissues into the lung 

regions of interest (ROIs) and pathology percentage was computed using total lung capacity 

as a disease severity index. Averages of these values were compared between the groups 

(Figure 3A). To adjust for the differences in total lung volume between the subjects the 

percent of pathologic lung volume was also calculated (Figure 3A). These data also support 

a mild respiratory disease. CT abnormalities are shown at the peak value for the most 

effected member of each group and demonstrates the differences in observed lung pathology 

across the groups (Figure 3B).
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The two subjects in Group 1, and one or two subjects each from Group 2 and Group 3 was 

imaged per day on the schedule shown in Figure 1. The peak observed lung pathology for 

subjects within each group were averaged from their peak responses for the initial 14 days 

following challenge. CT quantification indicated that peak lung pathology was observed for 

Group 1 at an average of 3 days post-infection (St. Dev 2.82). Group 2 peak lung pathology 

was observed at an average day 7.5 (St. Dev. 2.12) and an average of day 3.5 (St. Dev 3.5) 

for Group 3. Mean peak percentage of abnormal lung volume for Group 1 was 1.89% (St. 

Dev 1.36), Group 2 was 6,59% (St. Dev 3.3%, and Group 3 19.8% (St Dev. 6.54)). These 

data suggest that 1) the inoculation procedures can result in lung pathology, 2) MERS-JOR 

infection results in limited virus specific disease and 3) that BAL may exacerbate lung 

pathology.

For Groups 2 and 3 that were re-challenged on days 26 and 88 post-inoculation, a similar 

pattern of increased abnormal lung volume occurring 1–6 days post-infection following re-

challenge on day 26. Similar to the initial challenge, subjects did not develop increased lung 

disease when compared to the initial infection which suggests that immune-enhanced 

disease did not occur in this experiment.

Following the second infection, serial CTs indicated that the average peak percentage of 

abnormal lung volume was 2.64% (St. Dev 1.54) that occurred on average day 2 (St. Dev 

2.83) post-second infection for Group 2 subjects and 9.6% (St. Dev 0.85) which also 

occurred 2 days (St. Dev 2.83) post-second infection for Group 3 subjects. Following the 3rd 

infection, 88 days after the initial infection, the peak lung pathology occurred on average 2 

days (St. Dev 1.4) post-infection with an average abnormal lung volume percentage of 4.1% 

(St. Dev 2.53) for Group 2 and an average of 1 day post-infection with an average abnormal 

lung volume of 0.6% (St. Dev 0.2) for Group 3 (Figure 3A).

MERS-CoV specific antibody treatment reduces lung pathology

In the first part of the experiment, we demonstrated that MERS-JOR exposure results in 

quantifiable lung pathology, therefore, we sought to determine the efficacy of a human anti-

MERS-CoV monoclonal antibody, 311B-N. Groups 4 and 5 were treated with 311B-N or 

4E10-N (an anti-HIV antibody), respectively, 1 day prior to infection. The subjects were 

given periodic physical exams, blood draws and CT’s to monitor disease progression and 

311B-N’s potential efficacy (Supplemental Figure 1). Representative CT’s are shown in 

Figure 4A. Quantification of the serial CT indicated that 311B-N treatment resulted in 

reduced lung pathology when compared to the control antibody (Figure 4B). Pathologic lung 

volume for Group 4, 311B-N treated, peaked on average day 5 post-infection (St. Dev 1.4) 

with an average abnormal lung volume percentage of 0.9% (St. Dev 1.0) with one of 3 

subjects demonstrating no abnormal lung volume. Group 5 subjects demonstrated a peak 

increase in abnormal lung volume percentage 7 days post-infection for all 3 subjects with an 

average of 4.3% (St Dev 3.86) of abnormal lung volume. These data support the conclusion 

that pre-treatment with MERS-CoV specific monoclonal antibody inhibited MERS-JOR 

induced lung pathology in this model. Comparison between the antibody treated groups by 

an unpaired, two-tailed t-test using GraphPad Prism indicated no significant difference 

(p=0.1122) between 311B-N and 4E10-N. Comparison of 311B-N treated subjects to 
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untreated, MERS-CoV infected subjects by unpaired, two-tailed t-test using Graphpad Prism 

indicated a significant difference in observed lung pathology (p<0.0001) when evaluated 

based on pathologic lung volume (Figure 4B). When the diseased lung volume is calculated 

as a percentage of the total lung volume (Figure 4B) a similar pattern is observed, no 

statistically significant difference was observed between the antibody treatments was found 

(p= 0.0877). However, a significant difference was observed between 311B-N treated group 

(Group 4) and the infected, untreated subjects (Group 2) (p=0.0017) by unpaired, two-tailed 

t-test using Graphpad Prism 6.0. A statistical difference between these groups was also 

supported by linear mixed model analysis p=0.023 (Figure 4C).

Statistical analysis indicates that BAL may exacerbate lung pathology

Because the experiments were performed in separate stages, statistical analysis using a linear 

mixed model was used to evaluate the abnormal lung volume measurements (Laird and 

Ware, 1982) and are shown in Figure 4C. Statistically significantly differences were 

observed between Groups 1 and 3 (p=0.0005), Groups 2 and 3 (p=0.007), Groups 3 and 4 

(p=0.0002), and Groups 3 and 5 (p=0.004). The statistical significance between Group 3 and 

the other groups indicates that BALs may exacerbate lung pathology and the impact of BAL 

must be accounted for in respiratory disease models. The lowest observed p-value 

(p=0.0002) for the comparison between Groups 3 and 4 suggests that the MERS-CoV 

antibody does inhibit development of abnormal lung pathology. No statistically significant 

difference was established between Group 4 and Group 1 (p=0.71), Group 4 and Group 5 

(p= 0.051), but a significant difference between Group 4 and Group 2 (p=0.023) was 

observed.

Pathological findings

Group 1 subjects were not euthanized and Group 4 and 5 subjects were euthanized between 

days 153–155 post-infection and no significant pathological changes were observed in these 

groups. For groups 2 and 3 CT data indicated medial lung pathology that may have followed 

the track of inoculum deposition therefore lung lobes were histologically evaluated 

individually. Histopathological results are summarized in Table 1. Histological examination 

of the lung revealed multifocal interstitial lymphohistocytic infiltrates, pulmonary 

congestion, and pulmonary edema with some epithelial cell degeneration.

Grossly, no major differences were observed between the day 91 and day 93 necropsied 

subjects. All 4 subjects’ demonstrated diffuse pulmonary congestion of varying degree, 3 of 

4 demonstrated tracheobronchial lymph node enlargement. One subject from Group 3 had 

hepatic discoloration and this subject was retrospectively diagnosed with amyloidosis. No 

signal of MERS-CoV antigen was detected by immunohistochemistry in select lung samples 

examined. BAL samples were evaluated histologically and contained predominantly 

alveolar macrophages (approx. 14–16 microns in diameter), many with pseudopodia, with 

few lymphocytes, red blood cells and few ciliated respiratory epithelial cells on background 

of proteinaceous/mucinous material with small amounts of surfactant and cellular debris. 

There were no clinically significant pathogens seen in lung examined under EM.

Johnson et al. Page 6

Virology. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

The goal of this experiment was to establish the rhesus model of MERS in our laboratory 

and determine the efficacy of 3B11-N, a human monoclonal antibody against MERS-CoV. 

In our experiment, NHPs developed limited clinical signs of disease, but did develop 

quantifiable virus-induced changes in lung architecture following IT exposure of rhesus 

monkeys with MERS-JOR. We also demonstrate that the 3B11-N monoclonal antibody 

against MERS-CoV significantly reduces virus-induced lung pathology as measured by CT 

when compared to untreated subjects, thus warranting further investigation as a potential 

MERS-CoV countermeasure. The present study varies from previous studies of MERS-CoV 

in rhesus monkey due to 1) the use of MERS-JOR, 2) CT for evaluating structural changes 

in the lung, 3) comparison of subjects that received BAL and those that did not, 4) subjects 

were not euthanized at early timepoints post-infection to evaluate pathology and viral loads, 

and 5) subjects were re-challenged to determine if immune enhanced infection may occur. 

MERS-JOR infection of rhesus has not been previously described and the differences 

observed between our study and Munster and Yao’s (Munster et al., 2013; Yao et al., 2014) 

indicated that other MERS-CoV isolates should be evaluated to determine if an improved 

model could be developed.

Overall, MERS-JOR inoculation of rhesus monkeys results in a mild disease. Our results in 

conjunction with Munster et al and Yao et al.’s MERS-CoV EMC rhesus monkey 

experiments demonstrate mild disease with no striking clinical features, this lack of overt 

clinical signs limits the utility of the MERS-rhesus monkey model (Munster et al., 2013; 

Yao et al., 2014). However, medical imaging such as standard radiography and CT may 

provide alternate biomarkers of disease. Munster et al., de Wit et al. and Yao et al. also 

reported structural changes to the lung using standard radiography (de Wit et al., 2013; 

Munster et al., 2013; Yao et al., 2014). However, standard radiography is limited because it 

does not provide a 3-dimensional view of the region of interest and subject to interpretation 

biases. An improvement on standard radiography is use of CT, which provides a quantifiable 

measure of pathology which can be standardized between studies, depending upon available 

equipment.

In this study, MERS-CoV induced disease progression and regression was measured by CT 

and subjects developed lung pathology that could be observed up to 22 days post-infection, 

but peaked between days 3 and 7 post-infection and followed a similar pattern after 

subsequent re-challenge in Group 2 and 3 subjects. A difference between Group 2 and 

Group 3 animals was observed and is likely due to continued BAL procedures that were 

performed on Group 3 subjects. Furthermore, the comparison of Group 3 subjects to the 

other groups suggest that procedures such as BAL likely induce increased lung pathology 

that may confound study results, which has been described previously (Haley et al., 1989; 

Von Essen et al., 1991). de Wit et al. performed BAL on days 1, 3, and 6 post-infection and 

Yao et al. did not perform BAL and less respiratory disease was observed by radiography by 

Yao et al., supporting our findings that BAL does influence radiological findings. However, 

such a cross-laboratory comparison is difficult due to differences in methodology, available 

equipment, and inherent variability in interpretation of radiograms.
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3B11-N was chosen based on initial characterization of the antibody in which no escape 

mutants were isolated, highest virus neutralizing ability, and the ability to produce large 

quantities. We have demonstrated that pre-treatment with a monoclonal antibody against the 

MERS-CoV spike protein significantly reduced severity of lung pathology when compared 

to untreated subjects. Lung pathology in 3B11-N treated subjects was roughly 10% of that in 

control antibody treated subjects and roughly equal to subjects that received ɣ-irradiated 

virus and BAL (Group 1). The lack of statistical significance between the control antibody 

and 3B11-N is likely due to the small and variable volume of lung pathology induced by 

MERS-CoV and the small group size (n=3). The p-value of the comparison between 3B11-

N to 4E10-N treatments nearly reached significance (p=0.051) which further supports that 

larger group sizes may provide statistically significant differences. This pilot study paves the 

way for experiments utilizing larger group sizes with varying treatment strategies to include 

post exposure treatment and “trigger to treat” based on CT findings. Such experiments 

would also need to include control groups of “media only” and ɣ-irradiated virus to account 

for the possibility that ɣ-irradiated virus may also induce an inflammatory response.

We must note that two subjects were of advanced age and were assigned to Groups 4 (15 

years old) and 5 (19 years old). The aged subject from Group 5 did demonstrate roughly 

three times the elevated abnormal lung pathology (34ml, 8.6% of total lung volume) when 

compared to the other two subjects in the group (10mL average, 2% of total lung volume), 

through the course of this study, this subject was diagnosed with diabetes. Although 

speculative, this finding supports human clinical observations that comorbidities such as 

diabetes may increase disease severity in humans. Further development of this potential anti-

MERS-CoV treatment in NHP models would also involve potential use of subjects with 

comorbidities.

Similar findings to Munster’s laboratory and Yao et al. include: transient respiratory disease 

that is primarily medial, lack of sustained fever development, mild changes in white blood 

cell counts, limited changes in peripheral oxygen saturation, and inflammatory infiltrates in 

the lungs (Munster et al, de Wit et al, and Yao et al.). Our findings contrast with the 

previously published results in that viral RNA and infectious virus could not be detected in 

BAL, lung, nasal, or oral swabs by qRT-PCR. Attempts to isolate infectious virus and qRT-

PCR data indicate that virus replication is limited following MERS-JOR infection, which 

may be due to differences between rhesus DPP4/CD26 and human DPP4/CD26, the receptor 

for MERS-CoV (Raj et al., 2013).

MERS-CoV infections have steadily continued since its identification and the region most 

affected continues to be the Middle East, but the recent outbreak in the Republic of Korea 

reinforces the need for continued monitoring of MERS-CoV, development of 

countermeasures and a greater understanding of viral pathogenesis. Animal models that 

faithfully mimic human disease need to be developed for identification and evaluation of 

potential countermeasures as well as understanding disease processes. Rhesus monkeys and 

marmosets do not develop the severe disease that is observed in humans (Munster, Yao, 

Falzarano, Johnson), but to date are the available nonhuman primate models. Small animal 

models, particularly mice, have been explored as well. These models provide greater 

accessibility than NHP models and the availability of knockout mice, transgenic mice, and 
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transduction models provide opportunities to study specific disease processes. Thus far, the 

two most commonly studied isolates are MERS-EMC and MERS-JOR. Other isolates 

should be evaluated in the available models to identify isolates that may provide a higher 

degree of pathogenesis in the relatively restricted hosts evaluated to date so that an improved 

model of this emerging viral pathogen can be developed.

Materials and Methods

Virus and cells

MERS-CoV Jordan-n3/2012 was propagated in MRC-5 cells at a multiplicity of infection 

(MOI) of 0.1 for 5 days. MRC-5 cells were maintained in Eagle’s Modified Essential 

medium (EMEM) (HyClone, Logan, UT) supplemented with 5% fetal bovine serum (FBS) 

(Sigma St. Louis MO) at 37°C with 5% CO2. MRC5 cells were maintained in EMEM 

supplemented with 10% FBS and 1% penicillin and streptomycin at 37°C with 5% CO2. 

Virus was recovered by removal of the tissue culture media followed by a low speed 

centrifugation, 500g for 10 minutes (min) at 4°C to remove cellular debris stored at −80C, 

titered by limiting dilution plaque assays on Vero E6 cells (ATCC) and evaluated for 

mycoplasma and endotoxin contamination.

Monoclonal antibodies

The genes encoding 3B11 and 4E10 were expressed as IgG1 using a viral-based transient 

expression system (magnICON) (Giritch et al., 2006) was used as the host plant for transient 

expression after infection with recombinant Agrobacterium tumefaciens (Strasser et al., 

2008). The mAbs (3B11-N and 4E10-N) were purified as previously described (Zeitlin et 

al., 2013) to greater than 99% purity as assessed by SDS/PAGE and HPLC–size-exclusion 

chromatography.

Challenge and monitoring of NHPs

Twelve rhesus monkeys (Macaca mulatta), ranging in weight from 5.2 to 6.3 kg and 3–19 

years old were screened prior to enrollment for simian retrovirus (SRV), simian T-

lymphotrophic virus (STLV). The subjects were divided into five groups. Group 1 received 

γ-irradiated, proven inactivated virus, Group 2, 4 and 5 received 5×106 PFU of MERS-JOR, 

and Group 3 received 5×106 PFU of MERS-JOR and bronchoalveolar lavage. Inocula was 

performed with 2.5mls of EMEM by placement of an endotracheal tube 4–5cm above the 

carina followed by 2.5mls of PBS and air flush to ensure delivery of the inoculum. Groups 4 

and 5 received 13mg/kg of antibody by IV infusion. All animal procedures were performed 

at the National Institute of Allergy and Infectious Diseases Division of Clinical Research 

Integrated Research Facility and approved by the National Institute of Allergy and 

Infectious Diseases Division of Clinical Research Animal Care and Use Committee, and 

adhered to National Institutes of Health (NIH) policies.

Prior to and post inoculation, computed tomography (CT), physical exams, including 

temperature, weight, were performed, and blood draws and swabs from oral and nasal 

cavities were taken on days -18 to -14, 0, 3, 6, 9, 12, 15, 18, 21 and 28 days post-

inoculation. For Group 3 subjects, pediatric bronchoscope guided bronchoalveolar lavage 
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was performed. Subjects were maintained on isoflurane during CT procedures. NHPs were 

monitored at least twice daily and euthanized when they met established endpoint criteria. A 

pre-established scale was used to evaluate subject health and disease progression, these 

criteria included: (1) overall clinical appearance, (2) labored breathing, (3) activity and 

behavior, (4), responsiveness, and (5) core body temperatures. No subjects met moribund 

clinical endpoint criteria. At days 91 and 93 post initial inoculation and (days 3 and 5 post 

third inoculation) NHPs were humanely euthanized. Blood, oral and nasal swabs were 

collected and select tissues were excised for virological and histopathological analysis as 

described below. Group 1 subjects were not euthanized.

Computed Tomography (CT)

We acquired high resolution breath-hold chest CT data with a hybrid Philips Precedence 16P 

SPECT/CT scanner specifically designed to function in a BSL4 environment. We used 

140kVp at 300mAs with a 160 mm axial field of view at a 0.8mm slice thickness and 0.4 

mm increment covering the whole lung. Reconstruction was performed on a 512 by 512 

matrix using a Lung filter.

CT Image analysis

For each individual subject, lung region of interest (ROI) was initially segmented and the 

normal lung parenchyma’s volume was determined using fuzzy connectedness based image 

segmentation algorithm (Mansoor et al., 2014). Subsequently, a random-forest based 

machine-learning algorithm was applied for determining the volume and spatial extent of the 

pathological regions and added into the lung ROI. Mainly, ground glass opacities and 

consolidations were observed as pathological tissues; therefore, the machine-learning 

algorithm was tuned to optimally detect these abnormal imaging patterns apart from normal 

tissues. Once normal and all pathological tissues were identified, percent of the abnormal 

lung was computed through total pathological tissue volume divided by the total lung 

capacity. Airways and airway walls were also delineated using a graph-based segmentation 

algorithm (Xu et al., 2013) for exploring whether the infection reaches and affects the 

airways; however, we did not find significant volume or density changes either on airways 

or airway walls. Similar routine was used to evaluate candidate vaccine approaches in 

MERS-CoV (Wang et al., 2015).

Hematology and Serology

Complete blood cell differential count (CBC/diff) was determined from blood samples 

collected in ethylenediaminetetraacetic acid (EDTA)-coated blood tubes and analyzed using 

a Sysmex XT2000V™ (Sysmex America, Mundelein, IL). Serum chemistry values were 

assayed using the Piccolo CMP panel.

Plaque Assay

Plaque assays were performed on the tissue samples excised at necropsy. At necropsy 

tissues were flash frozen, and stored at −80°C. A w/v homogenate between 10 and 30% was 

generated and serial 10 fold dilutions were made and incubated on confluent VeroE6 cells 

overlayed with 1.6% tragacanth. Following incubation, Tragacanth overlays were removed, 
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the monolayers were stained with crystal violet (0.1% crystal violet, 20% ethanol 10% 

formalin v/v), and plaques were enumerated.

Histopathology and Immunohistochemistry

Group 2 and 3 subjects were necropsied on days 91, and 93 post inoculation. Forty one 

tissues from all major organ systems were collected and fixed in 10% neutral buffered 

formalin. Following fixation in 10% NBF, tissues were trimmed into 5mm thick sections 

and placed in cassettes. The tissues were then dehydrated through a series of graded 

alcohols, cleared in an organic solvent, and infiltrated with molten paraggin by the Sakura 

Tissue Tek VIP tissue processor (Sakura, VIP 6-a1). After processing, the tissues were 

placed into molds and embedded in paraffin (McCormick, Paraplast Plus). The resulting 

blocks were sectioned at 4–6μm using a rotary microtome and floated on a 48°C water bath 

before being picked up on Superfrost Plus Gold slides (Fisher, 15-188-48). The sections 

were then baked for 20 minutes at 60°C and a hematoxylin and eosin (H&E) stain was 

applied using the Leica automated staining system (Leica, ST5020). Stained slides were then 

examined via standard light microscopy. To detect MERS-CoV antigen, 

immunohistochemistry was performed using a rabbit polyclonal aniteserum against MERS-

CoV (1:1000) (Sino Biologicals) as a primary antibody for detection of antigen. Tissues 

from an uninfected control animal were used to validate all immunohistochemistry 

procedures. H&E sections were examined by light microscopy by the veterinary pathologists 

(LH).

Electron Microscopy

For ultrastructural morphological investigations, collected BAL’s were fixed in 2.5% 

glutaraldehyde (EM Sciences, Warrington, PA USA) in Millonig’s Sodium Phopshate 

Buffer (Tousimis Research, Rockville, MD USA) for 72 hours. The preserved cells were 

post-fixed in 1.0% osmium tetroxide (E.M. Sciences), en bloc stained with 2.0% uranyl 

acetate, dehydrated in a graded ethanol series up to 100%, and embedded in Spurr plastic 

resin (E.M. Sciences). Embedded blocks were sectioned using a Leica UC7 ultramicrotome 

(Leica), 60–80 nanometer ultra-thin sections were collected, mounted on 200 mesh copper 

grids, and contrasted with lead cirate. The grids were then examined and imaged using a FE 

G2 Tecnai transmission electron microscope operating at 80kB (Tecnai).

Quantification of Viremia by Quantitative PCR

Viral load in samples was determined by quantitative PCR using the UpE assay as described 

by Corman et al. (Corman 2012). Samples were extracted with Trizol and screened for the 

presence of MERS-CoV using specific primers on an ABI 7900HT. The limit of detection 

was 100 gene copies.

Statistical Analysis

To compare group difference for lung pathology, data from day 0 to day 14 was analyzed. A 

linear mixed model was used by taking the correlation within each subject into 

account(Laird and Ware, 1982). To reflect the possible nonlinear effect from days, we have 

used linear, quadratic, and cubic terms for day effect. Data analyses were performed in S-
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plus. Due to the multiple comparison problem, a more stringent P value of less than 0.01 

will be claimed to be significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

Intratracheal inoculation of rhesus monkeys with MERS-CoV Jordan-n3/2012 

results in a respiratory disease with limited clinical signs of disease.

Intratracheal inoculation of rhesus monkeys with MERS-CoV Jordan-n3/2012 

results in a respiratory disease that can be monitored by computed tomography.

Treatment of rhesus monkeys with the human monoclonal antibody 3B11-N resulted 

in decreased disease when compared to control antibody treated subjects.

Computed tomography can be used to monitor disease progression and provides 

insight into pathogenesis to aid development of animal models of human disease.
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Figure 1. 
5 Groups of rhesus monkeys were challenged by IT infection with 5×106 PFU of MERS-

JOR or γ-irradiated virus as shown. Periodic CT and blood draws were performed; N 

represents the number of subjects from each group that underwent the indicated procedures. 

The variation in number of procedures performed on a given day was logistically determined 

based on blood withdrawal limits and accessibility to the CT, Each subject was given a 

complete physical exam prior to CT or blood withdrawal.
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Figure 2. 
Rhesus monkeys demonstrated limited clinical indicators of disease in response to infection 

with MERS-CoV Jordan-n3/2012. (A) Temperature, respiratory rate and peripheral oxygen 

saturation were within normal ranges for rhesus monkeys. (B) CBC/Diff data indicating 

limited response to MERS-CoV inoculation. WBC, lymphocyte, neutrophil and monocyte 

total counts were within normal ranges, although some changes are observed. Hashed lines 

indicate normal value ranges. Group 1 Mock (blue squares), Group 2 5×106 PFU (orange 

triangles), and Group 3, Green circles (5×106 PFU w/BAL). Arrows indicate challenge and 

re-challenge days. The shaded backgrounds represent the different phases of the experiment, 

initial challenge, followed by the 2nd and 3rd challenges.
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Figure 3. 
MERS-CoV exposure of rhesus results in mild, but quantifiable lung pathology. (A) Lung 

volume quantification indicates mild, virus specific changes. Left panel is the total abnormal 

lung volume as quantified from CT data for Groups 1, 2, and 3. The data demonstrate that 

lung pathology is transient and re-challenge does not result in increased lung pathology. 

Right panel is the quantification of the CT as a percentage of total lung volume. Asterisks 

indicate days at which peak lung pathology was observed for individual subjects Group 1 

Mock (blue squares), Group 2 5×106 PFU (orange triangles), and Group 3, 5×106 PFU 

w/BAL (green circles) Arrows indicate challenge and re-challenge days. The shaded 

backgrounds represent the different phases of the experiment, initial challenge, followed by 

the 2nd and 3rd challenges. (B) Representative CT of selected subjects from each group 

demonstrating peak lung pathology.
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Figure 4. 
(A) Representative CT of selected subjects from each group demonstrating peak lung 

pathology. (B) Comparison between 3B11-N (Group 4, purple line) and 4E10-N (Group 5, 

grey line). Treatment with 3B11-N resulted in statistically significantly (p<0.0001) deceased 

lung pathology when compared to the untreated, infected group. Untreated, infected subjects 

(Group 2, orange line) were included for comparison. (C) Statistical comparisons between 

all groups which supports that BAL exacerbates disease. Days 0 to 14 for each group were 

analyzed by a linear mixed model. The summarized mean difference, standard error and P 

value are given in the table below. A P value of 0.01 was used to provide a stringent basis 

for significance. Comparisons with statistically significant differences are in bold.
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Table 1

Summary of histopathological examination of lymphoid and lung tissue.

Group 2 Group 3

Severity: 0 (none), 1 (minimal), 2 (mild), 3 (moderate)

Incidence Severity Incidence Severity

Spleen

 Lymphoid depletion 1 1 2 1,2

 Hyalinization 1 2 0 0

 Amyloid 1 3 0 0

Axillary Lymph Node

 Lymphoid Depletion 2 1,1 2 1,2

 Edema 0 0 0 0

 Histiocytosis 2 1,2 2 1,2

 Congestion 0 0 1 1

Mesenteric Lymph Node

 Lymphoid Depletion 1 2 2 1,1

 Edema 2 2,2 1 2

 Histiocytosis 1 2 2 3,3

 Congestion 0 0 0 0

Tracheobronchial Lymph Node

 Lymphoid Depletion 0 0 0 0

 Edema 2 2,2 1 2

 Histiocytosis 2 2,2 2 2,2

 Congestion 0 0 0 0

Mandibular Lymph Node

 Lymphoid Depletion 1 1 0 0

 Edema 0 0 2 1,1

 Histiocytosis 0 0 2 1,1

 Congestion N/A 0 0

Right Cranial Lung

Inflammation (lymphocytic/lymphohistiocytic) 1 2 1 1

 Neutrophilic Inflammation 0 0 0 0

 Pulmonary Congestion 2 2,2 2 1,3

 Edema 2 2,2 2 1,3

 Epithelial Degeneration 2 2,2 0 0

Right Medial Lung

Inflammation (lymphocytic/lymphohistiocytic) 2 2,2 1 0,2

 Neutrophilic Inflammation 1 2 1 3

 Pulmonary Congestion 1 2 1 1

 Edema 1 2 2 3,1
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Group 2 Group 3

Severity: 0 (none), 1 (minimal), 2 (mild), 3 (moderate)

Incidence Severity Incidence Severity

 Epithelial Degeneration 2 2,3 2 2,3

Right Caudal Lung

Inflammation (lymphocytic/lymphohistiocytic) 2 1,2 2 2,2

 Neutrophilic Inflammation 0 0 0 0

 Pulmonary Congestion 1 2 2 2,2

 Edema 2 2,2 1 2

 Epithelial Degeneration 2 2,2 2 3,2

Left Cranial Lung

Inflammation (lymphocytic/lymphohistiocytic) 2 2,3 2 2,2

 Neutrophilic Inflammation 0 0 0 0

 Pulmonary Congestion 2 2,2 2 1,2

 Edema 2 2,2 1 3

 Epithelial Degeneration 2 2,2 2 2,2

Left Caudal Lung

Inflammation lymphocytic/lymphohistiocytic 2 2,3 2 1,3

 Neutrophilic Inflammation 0 0 0 0

 Pulmonary Congestion 2 1,1 1 1

 Edema 1 1 2 2,2

 Epithelial Degeneration 2 2,2 2 3,2
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