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Nonlinear Convective Instability of Turing-Unstable Fronts near Onset: A Case
Study∗

Anna Ghazaryan† and Björn Sandstede‡

Abstract. Fronts are traveling waves in spatially extended systems that connect two different spatially homo-
geneous rest states. If the rest state behind the front undergoes a supercritical Turing instability,
then the front will also destabilize. On the linear level, however, the front will be only convectively
unstable since perturbations will be pushed away from the front as it propagates. In other words,
perturbations may grow, but they can do so only behind the front. The goal of this paper is to
prove for a specific model system that this behavior carries over to the full nonlinear system.
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1. Introduction. Propagating fronts are of interest in many different applications. In this
manuscript, we are interested in the transition from stable to convectively unstable fronts:
An initial perturbation to a convectively unstable front grows in time in any translation
invariant norm but is simultaneously transported either to the right or to the left toward
infinity in such a way that it decays pointwise at every fixed point in space as time goes to
infinity [3]. It is worth pointing out that a convective instability can justifiably be viewed as
a form of stability since perturbations decay pointwise: Consequently, we will use the terms
“convective instability” and “convective stability” as synonyms. Whether or not an instability
is convective depends strongly on the coordinate frame in which we measure the growth of
perturbations. A natural reference frame for fronts is the comoving frame in which the front
becomes stationary. Our aim is to show for a model system that the convective nature of
certain front instabilities can be captured analytically.

The general situation can be described as follows. Consider a reaction-diffusion system

∂tU = D∂2
xU + F (U ;α), x ∈ R, t > 0, U ∈ R

N ,(1.1)

with a control parameter α ∈ R, where D is a diagonal matrix with strictly positive entries,
and F is a smooth function. We assume that the system exhibits a front, i.e., a nonlinear
wave U(x, t) = Uh(x − ct) that travels with positive speed c > 0 and connects two different
homogeneous rest states U± so that Uh(ξ) → U± as ξ → ±∞. Once we specified that the
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320 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

front velocity c is positive so that the front travels toward x = ∞, we may refer to the rest
states U+ and U− as being, respectively, ahead of and behind the front.

We say that a front is stable if every solution that starts near the front converges to the
front, or one of its spatial translates, as time goes to infinity. A sufficient criterion for stability
is that the spectrum of the linearization L of (1.1) about the front, computed in the comoving
frame ξ = x− ct, lies in the left half-plane except for a simple eigenvalue at the origin, which
arises due to translational symmetry. Fronts become unstable when a subset of the spectrum
of L crosses the imaginary axis. The effect of such instabilities on the dynamics near a given
front depends on which part of the spectrum crosses the imaginary axis. If isolated eigenvalues
cross the imaginary axis, then the problem can be analyzed using Lyapunov–Schmidt reduction
or, alternatively, center-manifold theory. The two generic bifurcations that occur are saddle-
nodes and Hopf bifurcations. At a Hopf bifurcation, a unique modulated front bifurcates, i.e.,
a solution that becomes time periodic in an appropriate comoving coordinate frame. It is
also possible that part of the essential spectrum crosses the imaginary axis. The boundary of
the essential spectrum of L coincides with the spectra of the asymptotic rest states U±, and
we concentrate here exclusively on Turing bifurcations of one of the asymptotic rest states:
Turing bifurcations lead to stationary spatially periodic patterns whose deviation from the
rest state is small; these patterns are commonly referred to as Turing patterns. If the rest state
U+ ahead of the front destabilizes, then there exists a continuum of modulated fronts which
connect the rest state U− behind the front with the Turing patterns ahead of the front [23].
The bifurcating modulated fronts are spectrally stable provided the periodic patterns are
spectrally stable [22, 23]. For a certain model system that shares the main features of general
reaction-diffusion systems, they have also been shown to be nonlinearly stable [10]. It should
be emphasized that nonlinear stability does not follow from spectral stability, because the
essential spectrum of the linearization about the modulated front touches the imaginary axis.
The proof of nonlinear stability in [10] is based on exponential weights [4, 8, 9, 24] to handle the
essential spectrum and on renormalization techniques [2, 7, 8] to take care of the nonlinearity.

In this paper, we are interested in the case where the rest state U− behind the front
destabilizes. It has been proved in [23] that modulated fronts that connect the Turing patterns
behind the front to the rest state ahead cannot exist in this situation (see also [25] for related
formal results). Thus, while the front is linearly unstable, there are no stable coherent front
structures nearby. Numerical simulations and formal arguments give the following picture:
The Turing bifurcation behind the front leads to stationary patterns. In the frame that moves
with the front (which has speed c), we therefore expect, at least on the linear level, that
initial perturbations to the front are transported with speed c to the left toward x = −∞. In
other words, the front can be thought of as pushing any perturbation away to the left. On the
nonlinear level, we expect that growth saturates at the Turing pattern. Numerical simulations
indeed show that initial data near the linearly unstable front evolve to a superposition of two
fronts that move with different speeds, namely, a small Turing front which connects the Turing
patterns far to the left with the unstable rest state U−, and the primary linearly unstable front
which travels faster and leaves the Turing front behind in its wake; see Figure 1. Sherratt [25]
investigated in great detail the dynamics in the wake of convectively unstable fronts using
formal arguments. Our goal is to make the above picture rigorous, at least for a model
system similar to that considered in [10]: Our approach involves a priori estimates that we are
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 321

Figure 1. A schematic illustration of the expected dynamics near a convectively unstable front is shown:
The speeds satisfy ĉ < c.

currently able to establish only in specific cases using restrictive tools such as the maximum
principle and energy methods. We nevertheless believe that our general approach to nonlinear
convective stability will apply more widely, which is why we carry out this case study. We
certainly expect the overall phenomenon to be general for supercritical Turing bifurcations.

We consider the system

∂tu1 = ∂2
xu1 +

1

2
(u1 − c)(1 − u2

1) + γ1u
2
2,(1.2)

∂tu2 = −(1 + ∂2
x)

2u2 + αu2 − u3
2 − γ2u2(1 + u1),

where x ∈ R, t ≥ 0, and U = (u1, u2). The parameters γ1 ∈ R, γ2 > 0, and c ∈ (0, 1) are
fixed, while the parameter α is a bifurcation parameter which varies near zero. For every α,
the system (1.2) admits the traveling-wave solution

Uh(x− ct) =

(
h(x− ct)

0

)
, h(ξ) = tanh

ξ

2
,

which connects the rest state U− = (−1, 0) at x = −∞ with the rest state U+ = (1, 0) at
x = ∞. The idea of considering the Chafee–Infante equation coupled to the Swift–Hohenberg
equation is adopted from [10], where a similar system has been used to investigate the nonlinear
stability of modulated fronts which bifurcate when the rest state ahead of the primary front
becomes unstable.

A standard bifurcation argument (see, for instance, [4]) has been used in [11] to show that
spatially periodic equilibria bifurcate at α = 0 from the rest state U−. More precisely, assume
that the parameters γ1 and γ2 satisfy

γ1γ2 > −3(1 + c)(5 + c)

11 + 3c
;(1.3)

then (1.2) has spatially periodic equilibria Uper for α > 0 sufficiently close to zero which are
given by

Uper(x) =

(
−1

0

)
+

√
α

a0

(
0

cosx

)
+ O(α), a0 =

3

4
+

γ1γ2

2

(
1

1 + c
+

1

2(5 + c)

)
.(1.4)
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322 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

Figure 2. A schematic picture of the spectrum of the front Uh of (1.2) in the comoving frame ξ = x − ct
is shown in the complex plane C for α = 0 in spaces with (right) and without (left) exponential weight eβξ

with β > 0. Upon increasing α, the spectrum moves in the direction indicated by the arrows on spaces without
exponential weights but stays to the left of the imaginary axis in spaces with exponential weight.

In particular, the bifurcation is supercritical provided (1.3) holds. The following result shows
that the periodic patterns are nonlinearly stable with respect to perturbations in the space
H2(2) defined to be the set of L2-functions for which the norm

‖U‖H2(2) :=

(
2∑

j=0

∫
R

|∂j
xU(x)|2(1 + x2)2 dx

) 1
2

is finite.

Theorem 1 (see [11, Theorem 3.2]). Assume that γ2 > 0 and c ∈ (0, 1) are fixed and that
(1.3) is met. For each α > 0 sufficiently small, there are positive numbers K and δ such that,
for every V0 ∈ H2(2) with ‖V0‖H2(2) ≤ δ, (1.2) with initial data Uper + V0 has a unique global

solution U(t) = Uper + V (t), and ‖V (t)‖C0 ≤ K(1 + t)−1/2 for t ≥ 0.

The proof of the preceding theorem is essentially identical to that of [10, Theorem 2.4],
where a slightly different system was studied, and we therefore refer the reader to [11] for
details.

The front Uh exists for all values of α but it will be spectrally unstable for α > 0, since
part of its essential spectrum will then lie in the open right half-plane. To repeat the reasoning
outlined above, we might expect that waves bifurcating from the front at α = 0 resemble a
pattern obtained by gluing together the front Uh and the Turing patterns Uper that emerge in
its wake. Such waves would be time-periodic, rather than stationary, in a frame that moves
with the front. It was shown though in [23] that, for small α > 0, such waves cannot bifurcate.
Thus, it is natural to ask how perturbations of the front will evolve in time for α > 0. We
shall see that the spectrum of the front can actually be moved into the left half-plane in the
comoving frame ξ = x − ct, provided it is computed in an exponentially weighted function
space with norm ‖eβξU(ξ)‖ for some appropriate β > 0; see Figure 2 for an illustration. Thus,
if perturbations are localized ahead of the front, while being allowed to grow behind the front,
then they will decay exponentially in time as t → ∞. The main result of this paper asserts
that the same statement is true for the full nonlinear problem: The front is only convectively
unstable for α > 0 in that perturbations are pushed away from the front toward its wake.
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 323

The results on nonlinear convective instability of the front Uh are formulated in the spaces
H1

ul(R,R2) of uniformly local functions (see [16, section 3.1]) whose definition we recall in
section 2. These spaces contain, in particular, all differentiable bounded functions such as
fronts or periodic solutions. The results furthermore utilize the smooth weight functions

ρβ(x) :=

{
eβx, x ≤ −1,
1, x ≥ 1,

(1.5)

defined for β > 0, with ρ′β(x) ≥ 0 for all x.
Theorem 2. Assume that γ2 > 0 and c ∈ (0, 1) are fixed, that (1.3) is met, and further that

either γ1 ≥ 0 or else γ2 < γ1 +
√

2 <
√

2. There are then positive constants α∗, β∗, ε∗, K,
and Λ∗ so that the following is true for all (α, ε) with |α| < α∗ and 0 < ε < ε∗: For every
function V0 = (v0

1, v
0
2) with

‖v0
1‖H1

ul
≤ ε2, ‖v0

2‖H1
ul
≤ ε, ‖ρβ∗V0‖H1

ul
≤ ε2,

(1.2) with initial data U0 = Uh + V0 has a unique global solution U(t), which can be expressed
as

U(x, t) = Uh(x− ct− q(t)) + V (x, t)

for an appropriate real-valued function q(t), and there is a q∗ ∈ R so that

‖V (·, t)‖H1
ul

+ |q(t)| ≤ K
[
ε +

√
|α|

] 1
2
, ‖ρβ∗(· − ct)V (·, t)‖H1

ul
+ |q(t) − q∗| ≤ Ke−Λ∗t(1.6)

for t ≥ 0.
Upon setting η∗ := ε2∗/2 and K∗ := K[ε∗ +

√
α∗]

1
2 /η∗, we obtain the following slightly

weaker, but also less technical, corollary of Theorem 2 which we formulate in the comoving
frame.

Corollary 1. Under the assumptions of Theorem 2, there are positive constants α∗, β∗, η∗,
K∗, and Λ∗ so that the following is true for all α with |α| < α∗: For each function V0 with
‖V0‖H1

ul
≤ η∗, (1.2) with initial data U0 = Uh + V0 has a unique global solution U(t), which

can be expressed as

U(x, t) = Uh(x− ct− q(t)) + V (x− ct, t)

for an appropriate real-valued function q(t), and there is a q∗ ∈ R so that

‖V (·, t)‖H1
ul

+ |q(t)| ≤ K∗η∗, ‖ρβ∗(·)V (·, t)‖H1
ul

+ |q(t) − q∗| ≤ K∗e
−Λ∗t

for t ≥ 0.
Thus, the conclusion of the preceding theorem and corollary is that the dynamical behavior

of the front does not change at all near α = 0 provided we measure perturbations in the
weighted norm: Perturbations stay bounded in the C0-norm and decay exponentially to zero
as t → ∞ when they are multiplied by eβ∗(x−ct) for some appropriate β∗ > 0, so that the
front is nonlinearly stable in this norm for all values of α near zero. Note that our results
say nothing about the detailed dynamics behind the front. Indeed, our approach, outlined in
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324 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

detail below, relies only on a priori estimates and does not take the specific dynamics behind
the front into account.

We comment briefly on the scalings in ε and α that appear in Theorem 2. The components
v1 and v2 of the perturbation V scale with different powers in ε because the instability mani-
fests itself on a linear level only in the v2-component, while the v1-component is affected only
through the quadratic nonlinearity. The estimates (1.6) for the perturbation V are certainly

not optimal as we expect solutions to saturate at order |α| 12 . The weaker estimates (1.6) are
an artifact of our method which requires a supercritical bifurcation, but not necessarily its
genericity, and which consequently will not yield sharp estimates.

As already mentioned, nonlinear stability of the front Uh in the weighted spaces cannot
be inferred from spectral stability because the nonlinearity does not map the weighted spaces
into themselves. Indeed, if we define W = eβxV and use W = (w1, w2) as the new dependent
variable, then we would like to find bounds for W in C0 or H1

ul. If we transform the equation
for the initial perturbation V to the new weighted variable W , then the nonlinear term un1
becomes

eβx[e−βxw1]
n = e(1−n)βxwn

1 ,

which is unbounded as x → −∞ for n > 1. To overcome this difficulty, we use a method
introduced originally in [19] in the Hamiltonian context. If we can obtain a priori estimates
for the solution in the space without weight, for instance, in C0 or H1

ul, and show that it
stays bounded and sufficiently small, then the nonlinear terms unj , written as unj = un−1

j uj ,

become un−1
j wj when transformed to the weighted functions W , which are now well behaved

due to the a priori estimates for uj . This interplay of the spatially uniform norm and the
exponentially weighted norm is the key for the proof of nonlinear stability of the front. An
example of a successful application of this technique has also been given independently in [1],
where a reaction-diffusion-convection system is considered that has essential spectra up to
the imaginary axis for all values of the bifurcation parameter while an isolated pair of simple
eigenvalues crosses the imaginary axis at the bifurcation point.

The plan of the paper is as follows. In section 2, we discuss the spectral stability of the
front and state several auxiliary results that we need later. Section 3 contains the proof of
Theorem 2. Numerical simulations and some further implications of our results are given in
section 4, and we end with conclusions and a discussion in section 5.

2. Linear convective instability. We begin by introducing the spaces L2
ul(R) from [16]

in which we shall work. Pick any positive and bounded function σ ∈ C2(R) for which∫
R
σ(x) dx = 1 and |σ′(x)|, |σ′′(x)| ≤ σ(x) for x ∈ R: We may, for instance, set σ(x) = 1

π sechx.
For each 0 < b < 1, we define σb(x) := σ(bx) and record that

∫
R
σb(x) dx = 1/b.

Using the weight function σ, we define the Banach space L2
ul of uniformly local weighted

L2 functions to be

L2
ul(R) =

{
u ∈ L2

loc(R) : ‖u‖2
L2

ul
:= sup

y∈R

∫
R

σ(x + y)|u(x)|2 dx < ∞

and ‖Tyu− u‖L2
ul
→ 0 as y → 0

}
,
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 325

where [Tyu](x) := u(x + y) is the translation operator. We denote the associated Sobolev
spaces by Hk

ul(R) and remark that different choices for σ result in the same spaces with
equivalent norms. We collect various properties of these spaces in the following lemma.

Lemma 2.1 (see [16, Lemmas 3.1 and 3.8]). There is a constant K0 with the following prop-
erties:

(i) H1
ul is an algebra and embeds continuously into C0

unif with ‖u‖2
C0 ≤ K0‖u‖L2

ul
‖u‖H1

ul

for all u ∈ H1
ul.

(ii) For each 0 < b < 1, let σb(x) := σ(bx); then ‖u‖2
L2

ul(σ)
≤ K0(1 + b)‖u‖2

L2
ul(σb)

for all

u ∈ L2
ul(σ).

(iii) We have −
∫

R
σbu(1 + ∂2

x)
2u dx ≤ 7b2

2

∫
R
σbu

2 dx for all u ∈ H4
ul.

We return now to the partial differential equation (1.2). Upon transforming (1.2) into the
comoving coordinate ξ = x− ct, we obtain the system

∂tu1 = ∂2
ξu1 + c∂ξu1 +

1

2
(u1 − c)(1 − u2

1) + γ1u
2
2,(2.1)

∂tu2 = −(1 + ∂2
ξ )

2u2 + c∂ξu2 + αu2 − u3
2 − γ2u2(1 + u1).

The linearization of (2.1) about a stationary solution of the form U∗ = (u∗, 0) is given by the
diagonal operator

L0[U∗] :=

(
∂2
ξ + c∂ξ + 1

2(1 + 2cu∗ − 3u2
∗) 0

0 −[1 + ∂2
ξ ]

2 + c∂ξ + α− γ2(1 + u∗)

)
.(2.2)

The operator L0[U∗] is sectorial on X0 := H1
ul ×H1

ul with dense domain H3
ul ×H5

ul. We shall
also consider (2.2) in exponentially weighted spaces: For β > 0, we defined in (1.5) the weight
function

ρβ(ξ) =

{
eβξ, ξ ≤ −1,
1, ξ ≥ 1,

where ρ′β(ξ) ≥ 0 for all ξ. We then set

W (ξ) := ρβ(ξ)V (ξ)

so that W satisfies Wt = Lβ[U∗]W with

Lβ[U∗] = ρβL0[U∗]ρ
−1
β

whenever V satisfies Vt = L0[U∗]V . It is easy to check that the operator Lβ[U∗] is again
sectorial on X0. From now on, we shall denote by Lβ := Lβ[Uh] the linearized operator
belonging to the front Uh.

Proposition 2.2. Given γ2 > 0 and c ∈ (0, 1), there are positive numbers α0 and β0 and a
strictly positive function Λ0(β) defined for 0 < β < β0 so that the following holds for |α| ≤ α0:
The spectrum of Lβ satisfies

spec(Lβ) = {0} ∪ Σ with Re Σ ≤ −Λ0(β),
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326 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

and λ = 0 is the simple eigenvalue of Lβ and L0. Furthermore, the spectrum of L0 satisfies

spec(L0) = {0} ∪ Σ with Re Σ < 0 for α < 0,

spec(L0) ∩ {λ : Reλ ≥ 0} = {0} ∪ {±i} for α = 0,

and spec(L0) ∩ {λ : Reλ > 0} �= ∅ for α > 0.
In particular, the front Uh is orbitally stable for α < 0 due to [12, section 5.1], while it is

spectrally unstable for α > 0.
Proof. For each β, the spectrum of Lβ on X0 is the disjoint union of the essential spectrum

and the point spectrum, where the latter consists, by definition, of all isolated eigenvalues with
finite multiplicity. It follows from [12, appendix to section 5] or [17] that the essential spectrum
of Lβ on X0 is, for any β ≥ 0, bounded to the right by the essential spectra of the asymptotic
operators

L−
β := Lβ[U−] =

(
(∂ξ − β)2 + c(∂ξ − β) − (1 + c) 0

0 −[1 + (∂ξ − β)2]2 + c(∂ξ − β) + α

)

and L+
0 := L0[U+]. Indeed, the weight function ρβ is equal to one for ξ ≥ 1 and therefore has

no effect on the asymptotic coefficients when ξ → ∞.
Thus, to determine the rightmost elements in the essential spectrum of L0, it suffices to

compute the essential spectra of the operators L±
0 on the space X0. On account of multiplier

theory [16, Lemma 3.3], these spectra can be calculated using the Fourier transform: A
complex number λ is in the spectrum of L±

0 if and only if there are a vector V0 ∈ C
2 and a

number k ∈ R so that

λeikξV0 = L±
0 eikξV0,

that is, if and only if

det

(
−k2 + ikc + 1

2(1 + 2cu± − 3u2
±) − λ 0

0 −(1 − k2)2 + ikc + α− γ2(1 + u±) − λ

)
= 0,

where u± = ±1. In particular, we see that the spectrum of L+
0 is given by

spec(L+
0 ) =

{
λ ∈ C; λ = λ+

1 (k) := −k2 + ikc− (1 − c) or

λ = λ+
2 (k) := −(1 − k2)2 + ikc + α− 2γ2 for some k ∈ R

}
and therefore lies in the left half-plane and is uniformly bounded away from the imaginary
axis for all α near zero. Similarly, the spectrum of the operator L−

0 associated with the rest
state behind the front is given by

spec(L−
0 ) =

{
λ ∈ C; λ = λ−

1 (k) := −k2 + ikc− (1 + c) or

λ = λ−
2 (k) := −(1 − k2)2 + ikc + α for some k ∈ R

}
.(2.3)

It lies in the left half-plane, bounded away from the imaginary axis, except for the curve
λ = λ−

2 (k) which crosses into the right half-plane for α ≥ 0 and k ∈ R near kc = ±1.
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 327

The spectrum of L−
β can be computed either analogously or, more directly, by replacing k

with k + iβ in the above expression for spec(L−
0 ). The rightmost part of the spectrum of L−

β

is therefore given by the linear dispersion curve

λ = λ−
2 (k + iβ) = −(1 − k2 + β2)2 + α− cβ + 4β2k2 + i[ck − 4βk(1 − k2 − β2)]

for k ∈ R, and we have

max
k∈R

Reλ−
2 (k + iβ) = α− cβ + 4β2(1 + 2β2),(2.4)

which is achieved at k = ±
√

1 + 3β2. Choosing β = c
8 , we obtain the bound

Λ−
ess = α− c2

16

(
1 − c2

32

)
< 0

for the maximal real part of spec(L−
β ), which is strictly negative for fixed c ∈ (0, 1) and

|α| ≤ c2

32 .
In summary, the essential spectrum of L0 lies in the open left half-plane for α = 0, touches

the imaginary axis at λ = ±i when α = 0, and crosses into the right half-plane for α > 0.
Having discussed the essential spectrum, we now turn to the point spectrum. The situation

here is similar to the one considered in [10]. The eigenfunctions associated with isolated
eigenvalues of L0 necessarily decay exponentially as |ξ| → ∞. The origin λ = 0 is always in
the point spectrum of L0 with eigenfunction U ′

h(ξ) = (hξ(ξ), 0).
For α < 0, any isolated eigenvalue λ of L0 satisfies either Reλ < 0 or λ = 0. To prove

this claim, we assume that there is an eigenvalue λ with eigenfunction V = (v1, v2) which
therefore satisfies the decoupled system

λv1 = ∂2
ξ v1 + c∂ξv1 +

1

2
(1 + 2ch− 3h2)v1,(2.5)

λv2 = −(1 + ∂2
ξ )

2v2 + c∂ξv2 + αv2 − γ2(1 + h)v2.(2.6)

We see that λ = 0 is an eigenvalue of (2.5) with positive eigenfunction hξ(ξ) = 1
2 sech2 ξ

2 .
Sturm–Liouville theory implies that λ = 0 is simple for (2.5) and that all other eigenvalues of
(2.5) are strictly negative. To analyze (2.6), we multiply by v̄2 and integrate over R to obtain

Reλ‖v2‖2
L2 ≤ −‖(1 + ∂2

ξ )v2‖2
L2 + α‖v2‖2

L2 ≤ α‖v2‖2
L2 ,

where we used that γ2(1+h(ξ)) ≥ 0. Thus, either Reλ ≤ α or v2 = 0, which proves the claim.
Next, we consider the isolated eigenvalues of Lβ for 0 < β < β0 for an appropriate

β0 > 0. We claim that there are no eigenvalues on or to the right of the imaginary axis
for all α with |α| sufficiently small, except for a simple eigenvalue at the origin. To prove
this claim, we first record that eigenfunctions associated with isolated eigenvalues of Lβ in
the closed right half-plane decay exponentially as ξ → ∞ with a rate that does not depend
on the eigenvalue. In particular, there is a β0 > 0 so that the following is true for each
0 < β ≤ β0: if (w1, w2) = ρβ(v1, v2) is an L2-eigenfunction of Lβ belonging to an eigenvalue λ

D
ow

nl
oa

de
d 

01
/0

9/
14

 to
 1

34
.5

3.
24

.2
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



328 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

with Reλ ≥ 0, then eβξ(v1, v2) will also be in L2. Thus, it suffices to prove the claim for the
operator eβξL0(∂ξ)e

−βξ = L0(∂ξ − β): the associated eigenvalue problem is given by

λw1 = (∂ξ − β)2w1 + c(∂ξ − β)w1 +
1

2
(1 + 2ch− 3h2)w1,(2.7)

λw2 = −(1 + (∂ξ − β)2)2w2 + c(∂ξ − β)w2 + αw2 − γ2(1 + h)w2.(2.8)

Multiplying (2.8) by w̄2 and integrating over R, we obtain

Reλ‖w2‖L2 ≤ (α− cβ)‖w2‖L2 ≤ 0,

and therefore either Reλ ≤ α− cβ < 0 or w2 = 0. It remains to consider (2.7), which has an
eigenvalue at the origin with bounded positive eigenfunction eβξhξ(ξ). Sturm–Liouville theory
implies again that all other eigenvalues are strictly negative: In fact, the largest negative
eigenvalue is equal to −3

4(1 − c2). Thus, for eigenvalues λ of (2.7)–(2.8), we have λ = 0 or
Reλ ≤ max{α− cβ, −3

4(1 − c2)} < 0, and as mentioned above the same statement holds for
the eigenvalues of Lβ.

Finally, we remark that solutions V of (2.5)–(2.6) and W of (2.7)–(2.8) are in one-to-one
correspondence via W (ξ) = eβξV (ξ). This shows that L0 cannot have any isolated eigenvalues
in the closed right half-plane except at λ = 0.

In the nonlinear stability analysis of our model, we need the semigroup estimates for the
operators

A1 := ∂2
x − (1 + c), A2 := −(1 + ∂2

x)
2

provided by the following lemma, which is a straightforward application of multiplier theory
[16, Lemma 3.3].

Lemma 2.3. The operators A1 and A2 are sectorial and thus generate holomorphic semi-
groups eA1t and eA2t. There is a positive constant K0 with

‖eA1t‖L2
ul→H1

ul
≤ K0(1 + t−

1
4 )e−t, ‖eA1t‖H1

ul→H1
ul

≤ K0e
−t,

‖eA2t‖L2
ul→Hs

ul
≤ K0(1 + t−

s
4 ), ‖eA2t‖H1

ul→H1
ul

≤ K0

uniformly in t > 0.

3. Nonlinear convective instability. This section contains the proof of Theorem 2. We
want to show that the front is convectively stable in the comoving frame for initial pertur-
bations which are small in H1

ul. In the comoving frame ξ = x − ct, the front is a stationary
solution of

∂tu1 = ∂2
ξu1 + c∂ξu1 +

1

2
(u1 − c)(1 − u2

1) + γ1u
2
2,(3.1)

∂tu2 = −(1 + ∂2
ξ )

2u2 + c∂ξu2 + αu2 − u3
2 − γ2u2(1 + u1).

The proof of Theorem 2 is divided into two parts. First we show that suitable a priori estimates
imply the nonlinear stability of the front in appropriate exponentially weighted norms imposed
in the comoving frame. Afterward, we establish these a priori estimates. We focus exclusively
on the case γ1 ≥ 0 and refer the reader to [11] for the modifications that are necessary for the
case γ2 < γ1 +

√
2 <

√
2. Recall that γ2 > 0 and c ∈ (0, 1) are both fixed.
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 329

3.1. A priori estimates imply nonlinear stability. We expect that initial data close to the
front will converge to an appropriate translate of the front but not necessarily to the primary
front Uh itself. To capture this behavior, we introduce a time-dependent spatial shift function
q(t) in the argument of the front Uh and write solutions to (3.1) as

U(ξ, t) =

(
u1(ξ, t)
u2(ξ, t)

)
=

(
h(ξ − q(t))

0

)
+

(
v1(ξ, t)
v2(ξ, t)

)
,(3.2)

with h(ξ) = tanh ξ
2 . We may assume that q(0) = 0 since our system is translationally invariant.

The decomposition (3.2) can be made unique by requiring that the perturbation V = (v1, v2)
be “perpendicular,” in an appropriate way that we specify below, to the one-dimensional
subspace spanned by the derivative of the front.

The perturbation V = (v1, v2) of the front satisfies the system

∂tv1 = ∂2
ξ v1 + c∂ξv1 +

1

2
[1 − 3h2(ξ − q(t)) + 2ch(ξ − q(t))]v1 +

1

2
[c− 3h(ξ − q(t))]v2

1

− 1

2
v3
1 + q̇(t)hξ(ξ − q(t)) + γ1v

2
2,(3.3)

∂tv2 = −(1 + ∂2
ξ )

2v2 + c∂ξv2 + αv2 − v3
2 − γ2(1 + h(ξ − q(t)))v2 − γ2v1v2

with initial data v1(ξ, 0) = v0
1(ξ), v2(ξ, 0) = v0

2(ξ), and q(0) = 0. Using the notation

A =

(
∂2
ξ + c∂ξ 0

0 −(1 + ∂2
ξ )

2 + c∂ξ + α

)
,

R(ξ) =

(
R1 0
0 R2

)
=

(
1
2 [1 − 3h2(ξ) + 2ch(ξ)] 0

0 −γ2(1 + h(ξ))

)
,

N (V ) =

(
N1(V )
N2(V )

)
=

(
1
2 [c− 3h(ξ − q(t))]v1(ξ, t) − 1

2v
2
1(ξ, t) γ1v2(ξ, t)

0 −v2
2(ξ, t) − γ2v1(ξ, t)

)
,

system (3.3) becomes

∂tV = AV + R(ξ − q(t))V + N (V )V + q̇(t)hξ(ξ − q(t))e1, e1 = (1, 0).(3.4)

Next, we introduce the weighted solution W = (w1, w2) via

W (ξ, t) = ρβ(ξ)V (ξ, t),

with ρβ as defined in (1.5), which satisfies the system

∂tW = LβW + [R(ξ − q(t)) −R(ξ)]W + N (V )W + q̇(t)hξ(ξ − q(t))ρβ(ξ)e1(3.5)

with Lβ = ρβAρ−1
β + R(ξ) being the linearization of the front Uh discussed in section 2

whenever V (ξ, t) satisfies (3.4).
Throughout the remainder of the proof, we fix β with 0 < β < β0 as in Proposition 2.2: We

then know that λ = 0 is a simple isolated eigenvalue of Lβ with eigenfunction ρβ(ξ)∂ξUh and
the rest of the spectrum has real part less than Λ0 with Λ0 from Proposition 2.2. We define
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330 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

Pc
β : H1

ul ×H1
ul → H1

ul ×H1
ul to be the spectral projection onto the one-dimensional eigenspace

of Lβ corresponding to the zero eigenvalue and denote by Ps
β = 1 − Pc

β the complementary
projection onto the stable eigenspace.

Lemma 3.1. For 0 < β < β0, there are constants K0 > 0 and α0 > 0 such that the
following is true for any α with |α| < α0. The spectral projection Pc

β is given by

Pc
βW =

(
P c
β 0

0 0

)
W = 〈ψc

1,W1〉L2ρβ∂ξUh,(3.6)

where

ψc
1(ξ) =

ecξρβ(ξ)hξ(ξ)∫
R

ecζhξ(ζ)2 dζ
,

and we have

‖ePc
βLβt‖H1

ul
≤ K0e

−Λ0t, t ≥ 0,(3.7)

with Λ0 as in Proposition 2.2.
Proof. It is easy to check that, in the space of bounded functions, the kernel of the operator

adjoint to Lβ is spanned by (hξ(ξ)e
cξρβ(ξ), 0). Upon normalizing this function, we end up

with the expression (3.6) for the center projection. The estimate (3.7) is a consequence of
Proposition 2.2 once we observe that the constant K0 does not depend on α despite the
presence of α in the definition of Lβ. Indeed, when α = 0, the spectrum of Pc

βLβ belongs to
{λ ∈ C : Reλ < −βc}, and an estimate of the form (3.7) holds for some K0. The operator for
α �= 0 is a bounded perturbation of order O(α) of the α = 0 operator, and [18, Theorem 1.1]
implies that K0 can be chosen to be independent of α for α sufficiently close to zero.

To fix q(t), we require that Pc
βW (t) = 0 for all t for which the decomposition (3.2) exists.

In other words, we require that W (t) ∈ Range(Ps
β) for all t. Applying the projections Pc

β and
Ps
β to (3.5), we obtain the evolution system

∂tV = AV + R(ξ − q(t))V + N (V )V + q̇(t)hξ(ξ − q(t))e1,(3.8)

∂tW = Ps
βLβW + Ps

β ([R(ξ − q(t)) −R(ξ)]W + N (V )W + q̇(t)hξ(ξ − q(t))ρβ(ξ)e1) ,(3.9)

q̇(t) = −〈ψc
1, [R1(ξ − q(t)) −R1(ξ)]W1 + N1(V )W 〉L2

〈ψc
1, hξ(ξ − q(t))ρβ(ξ)〉L2

(3.10)

for V = (v1, v2), W = (w1, w2), and q. It is easy to see that the linear parts of the right-
hand sides in (3.8)–(3.9) are sectorial operators on H1

ul(R,R2) with dense domain H3
ul ×H5

ul.
The nonlinearity is smooth from Y := H1

ul(R,R2) ×H1
ul(R,R2) × R into itself, and there is a

constant K1 such that

‖R1(· − q) −R1(·)‖H1
ul

+ ‖N (V )‖H1
ul
≤ K1(|q| + ‖V ‖H1

ul
)(3.11)

and

|q̇| ≤ K1(|q| + ‖V ‖H1
ul
)‖W‖H1

ul
(3.12)
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 331

for all (V,W, q) ∈ Y with norm less than one, say. We therefore have the methods introduced
in [12] at our disposal which give local existence and uniqueness of solutions for initial data
in Y as well as continuous dependence on initial conditions, thus proving local existence and
uniqueness of the decomposition (3.2).

These arguments also allow us to claim that, for each given 0 < η0 ≤ 1, there exist a
δ0 > 0 and a time T > 0 such that the decomposition (3.2) exists for 0 ≤ t < T with

|q(t)| + ‖V (t)‖H1
ul
≤ η0(3.13)

provided ‖V (0)‖H1
ul
≤ δ0. Let Tmax = Tmax(η0) be the maximal time for which (3.13) holds.

Lemma 3.2. Pick Λ with 0 < Λ < Λ0 and η̂0 > 0 so that

2K0K1(1 + K0)

Λ0 − Λ
η̂0 < 1;(3.14)

then there are positive constants K2 and K3 that are independent of α such that for any
0 < η0 ≤ η̂0 we have

‖W (t)‖H1
ul
≤ K2e

−Λt‖W (0)‖H1
ul
, |q(t)| ≤ K3‖W (0)‖H1

ul

for all 0 ≤ t < Tmax(η0) and any solution that satisfies (3.13). If Tmax(η0) = ∞, then there
is a q∗ ∈ R with

|q(t) − q∗| ≤
K1K2

Λ
e−Λt‖W (0)‖H1

ul
(3.15)

for t ≥ 0.

Thus, to complete the proof of Theorem 2 once the lemma has been proved, it suffices to
establish a priori estimates which guarantee that V (t) stays so small that Tmax = ∞ for our
particular choice (3.14) of η̂0.

Proof. The variation-of-constants formula applied to (3.9) gives

W (t) = eP
s
βLβtW (0)

+

∫ t

0
eP

s
βLβ(t−s)Ps

β [(R(ξ − q(s)) −R(ξ) + N (V (s)))W (s) + q̇(s)hξ(ξ − q(s))ρβ(ξ)e1] ds.

The estimates (3.7) and (3.11) give

‖W (t)‖H1
ul
≤ K0e

−Λ0t‖W (0)‖H1
ul

+ K0

∫ t

0
e−Λ0(t−s)

[
K1η0‖W (s)‖H1

ul
+ |q̇(s)| ‖hξ(ξ − q(s))ρβ(ξ)‖H1

ul

]
ds,

which due to (3.12) and ‖hξ(ξ − q(s))ρβ(ξ)‖H1
ul
≤ K0 implies

‖W (t)‖H1
ul
≤ K0e

−Λ0t‖W (0)‖H1
ul

+ 2K0K1(1 + K0)η0

∫ t

0
e−Λ0(t−s)‖W (s)‖H1

ul
ds(3.16)
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332 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

for 0 < t < Tmax. Let

M(T ) := sup
0≤t≤T

eΛt‖W (t)‖H1
ul
,

where 0 ≤ T ≤ Tmax with T < ∞. Equation (3.16) gives

eΛt‖W (t)‖H1
ul
≤ K0e

−(Λ0−Λ)t‖W (0)‖H1
ul

+ 2K0K1(1 + K0)η0

∫ t

0
e−(Λ0−Λ)(t−s)eΛs‖W (s)‖H1

ul
ds

≤ K0‖W (0)‖H1
ul

+ 2K0K1(1 + K0)η0M(T )

∫ t

0
e−(Λ0−Λ)(t−s) ds,

from which we conclude that

M(T ) ≤ K0‖W (0)‖H1
ul

+
2K0K1(1 + K0)η0

Λ0 − Λ
M(T ) ≤ K0‖W (0)‖H1

ul
+

2K0K1(1 + K0)η̂0

Λ0 − Λ
M(T ).

The choice (3.14) of η̂0 shows that there is a constant K2 such that

sup
0≤t≤T

eΛt‖W (t)‖H1
ul
≤ K2‖W (0)‖H1

ul

and therefore

‖W (t)‖H1
ul
≤ K2e

−Λt‖W (0)‖H1
ul

(3.17)

for 0 ≤ t ≤ T as desired. From (3.12) and (3.17), we conclude that

|q̇(t)| ≤ 2K1e
−Λt‖W (0)‖H1

ul
(3.18)

for 0 ≤ t ≤ T . To obtain an estimate for q(t), we write

q(t) = q(s) +

∫ t

s
q′(τ) dτ(3.19)

and, setting s = 0 and using (3.18), we obtain

|q(t)| ≤
∫ t

0
|q̇(s)|ds ≤ 2K1K2‖W (0)‖H1

ul

∫ t

0
e−Λs ds ≤ 2K1K2

Λ
‖W (0)‖H1

ul
.

Setting K3 = 2K1K2/Λ, we get the desired estimate

|q(t)| ≤ K3‖W (0)‖H1
ul

(3.20)

for 0 ≤ t ≤ T .
Finally, if Tmax = ∞, then (3.17), (3.12), and (3.20) are valid for all times since the

constants K2 and K3 do not depend upon T or η0. Thus, (3.18) implies that the limit
q∗ = limt→∞ q(t) exists, and (3.20) shows that |q∗| ≤ K3‖W (0)‖H1

ul
. We can therefore take

the limit s → ∞ in (3.19) and get

q(t) = q∗ +

∫ t

∞
q′(τ) dτ,

which, together with (3.18), gives the estimate (3.15).
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 333

3.2. Establishing the necessary a priori estimates. To complete the proof of Theorem 2,
it suffices to prove that, for sufficiently small 0 < η0 ≤ 1, there exists a δ0 > 0 such that

|q(t)| + ‖V (t)‖H1
ul
≤ η0

for all t ≥ 0 provided ‖V (0)‖H1
ul

≤ δ0. Throughout this section, we consider initial data

q(0) = 0 and V (0) ∈ H1
ul for which W (0) = ρβV (0) ∈ H1

ul.
Proposition 3.3. There exists a constant ε0 > 0 such that, if 0 < ε ≤ ε0 and

‖v1(0)‖H1
ul
≤ ε2, ‖v2(0)‖H1

ul
≤ ε, ‖W (0)‖H1

ul
≤ ε2,

then

|q(t)| + ‖V (t)‖H1
ul
≤

[
ε +

√
|α|

] 1
2

for t ≥ 0 and, in particular, Tmax(η0) = ∞ for η0 > 0 sufficiently small.
Theorem 2 follows now from Proposition 3.3. Indeed, the proposition implies that (3.13)

holds for all t > 0 so that (3.17) and (3.20) are valid for all positive times. In the remainder
of this section, we prove Proposition 3.3.

Recall that v1 satisfies (3.3), which we write as

∂tv1 = ∂2
ξ v1 + c∂ξv1 − (1 + c)v1 + R̃1(ξ − q(t))ρβ(ξ)−1w1 + q̇(t)hξ(ξ − q(t))(3.21)

+
1

2
[c− 3h(ξ − q(t))]v2

1 − 1

2
v3
1 + γ1v

2
2,

where R̃1(ξ) = [32(1 − h(ξ)) + c][1 + h(ξ)] and w1 = ρβv1.

We claim that the term R̃1(ξ − q(t))ρβ(ξ)−1 is bounded in H1
ul which will allow us to

control the term linear in w1 in (3.21) using the estimate (3.17) for w1. To show that
R̃1(ξ − q(t))ρβ(ξ)−1 is bounded, we recall that q(t) is bounded on [0, T ] on account of (3.20),
0 < 3

2(1 − h(ξ − q(t))) ≤ 3 + c, and

0 < [1 + h(y)]ρβ(ξ)−1 =
[
1 + tanh

y

2

]
e−βξ, ξ < −1,

is bounded, which, taken together, proves boundedness in H1
ul as claimed. Using this result,

we find that there is a positive constant K4 such that

G̃1(ξ, q,W ) := R̃1(ξ − q)ρβ(ξ)−1w1 + q̇hx(ξ − q)

satisfies

‖G̃1(·, q,W )‖H1
ul
≤ K4‖W‖H1

ul

for all (q, V ) = (q, ρ−1
β W ) with norm less than one, say. For any solution (q, V ) satisfying

(3.13) with η0 as in Lemma 3.2, Lemma 3.2 then implies that

‖G̃1(·, q(t),W (t))‖L2
ul
≤ K4‖W (t)‖H1

ul
≤ K2K4e

−Λt‖W (0)‖H1
ul
≤ K2K4‖W (0)‖H1

ul
(3.22)
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334 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

for t ∈ [0, Tmax). In particular, we have

sup
0≤t<Tmax

‖G̃1(·, q(t),W (t))‖L2
ul
≤ 1

20K2
0

√
π

(3.23)

provided

‖W (0)‖H1
ul
≤ 1

20K2
0K2K4

√
π
.(3.24)

Finally, the nonlinear term

Ñ1(q, v1) =
1

2
[c− 3h(ξ − q)]v2

1 − 1

2
v3
1

can be estimated by

‖Ñ1(q, v1)‖H1
ul
≤ 5

2
δ1‖v1‖2

H1
ul
≤ 1

2K0
‖v1‖H1

ul
(3.25)

for all (q, v1) ∈ R ×H1
ul with |q| ≤ 1 and ‖v1‖H1

ul
≤ 1

5K0
.

Since the H1
ul-norm is invariant under translations, we may as well consider (3.21) in the

laboratory frame (x, t) in which it becomes

∂tv1 = A1v1 + G̃1(x− ct, q(t),W (t)) + Ñ1(q(t), v1) + γ1v
2
2,(3.26)

where A1 = ∂2
x − (1 + c). The coupling term γ1v

2
2 makes it difficult to obtain estimates for v1

without dealing with v2 at the same time. Thus, our goal is to compare v1 to the solution v̄1

of the equation

∂tv̄1 = A1v̄1 + G̃1(x− ct, q(t),W (t)) + Ñ1(q(t), v̄1)(3.27)

with initial condition

v̄1(x, 0) = v1(x, 0)

for which estimates are easier to obtain. As a first step toward estimating v̄1, we state the
following lemma.

Lemma 3.4. There exists a constant K5 > 0 with the following property. Consider the
equation

∂tv̄1 = A1v̄1 + G(x, t) + Ñ1(q(t), v̄1),(3.28)

where G(x, t) is a given function with

sup
0≤t≤T1

‖G(·, t)‖L2
ul
<

1

20K2
0

√
π
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 335

for some T1 > 0, and solve it with an initial condition v̄1(0) with ‖v̄1(0)‖H1
ul
≤ 1

20K2
0
; then the

solution v̄1 of (3.28) exists for t ∈ [0, T1] and

‖v̄1(t)‖H1
ul
≤ K5(‖v̄1(0)‖H1

ul
+ sup

0≤s≤T1

‖G(·, s)‖L2
ul
)

for 0 ≤ t ≤ T1.

Proof. Since A1 is sectorial on H1
ul (see Lemma 2.3) and the initial condition satisfies

‖v̄1(0)‖H1
ul

≤ 1
20K2

0
, we see that there is a maximal number T2 with 0 < T2 ≤ T1 such that

the solution to the initial-value problem (3.28) exists on [0, T2) with ‖v̄1(t)‖H1
ul

≤ 1
5K0

for

t ∈ [0, T2). We claim that T2 = T1. Indeed, the variation-of-constants formula for v̄1 reads

v̄1(t) = eA1tv̄1(0) +

∫ t

0
eA1(t−s)G(·, s) ds +

∫ t

0
eA1(t−s)Ñ1(q(s), v̄1(s)) ds.

Using Lemma 2.3 and (3.25), we obtain

‖v̄1(t)‖H1
ul
≤ K0e

−t‖v̄1(0)‖H1
ul

+ K0 sup
0≤s≤T1

‖G(·, s)‖L2
ul

∫ t

0
e−(t−s)(t− s)−

1
2 ds +

1

2
sup

0≤s≤t
‖v̄1(s)‖H1

ul

≤ K0e
−t‖v̄1(0)‖H1

ul
+ K0

√
π sup

0≤s≤T1

‖G(·, s)‖L2
ul

+
1

2
sup

0≤s≤t
‖v̄1(s)‖H1

ul

for 0 ≤ t ≤ T2. Using the assumptions on v̄1(0) and G, we find that ‖v̄1(T2)‖H1
ul
≤ 1

5K0
from

which we conclude that T2 = T1 as claimed. The above inequality then gives

sup
0≤t≤T1

‖v̄1(t)‖H1
ul
≤ 2K0

√
π(‖v̄1(0)‖H1

ul
+ sup

0≤t≤T1

‖G(·, t)‖L2
ul
),

which completes the proof of the lemma.

To apply the preceding lemma to (3.27) on the time interval [0, Tmax), we need to prove
that

‖G̃1(·, q(t),W (t))‖L2
ul
<

1

20K2
0

√
π

on [0, Tmax). Equation (3.23) shows that this estimate holds for any solution (q, V ) that
satisfies (3.13) with η0 as in Lemma 3.2 provided W (0) satisfies (3.24). In this case, we
therefore have

‖v̄1(t)‖H1
ul
≤ K5(‖v̄1(0)‖H1

ul
+ K2K4‖W (0)‖H1

ul
)(3.29)

for t ∈ [0, Tmax).

We shall now use the preceding estimate for v̄1 to obtain estimates for v1 on the interval
[0, Tmax), where Tmax is the maximal time for which the inequality (3.13) holds for some η0

satisfying (3.14) and for all initial conditions for which ‖V0‖H1
ul

and ‖W0‖H1
ul

are small enough.
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336 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

Lemma 3.5. Assume that γ1 ≥ 0. There are positive numbers K7, α0, and ε0 such that the
following is true for all (α, ε) with |α| < α0 and 0 < ε < ε0: If (V,W, q) = (v1, v2, w1, w2, q)
satisfies (3.8)–(3.10) with initial data for which

‖v1(0)‖H1
ul
≤ ε2, ‖v2(0)‖H1

ul
≤ ε, ‖W (0)‖H1

ul
≤ ε2,(3.30)

then the v2-component of the solution satisfies

‖v2(t)‖L2
ul
≤ K7

[
ε +

√
|α|

] 1
2

for all t with 0 < t < Tmax.
Proof. Using (3.30), we infer from (3.29) that ‖v̄1(t)‖C0 ≤ K0‖v̄1(t)‖H1

ul
≤ K6ε

2, where
K6 = K0K2K4K5 does not depend on ε, and therefore

v̄1(x, t) ≥ −K6ε
2

for all x ∈ R and 0 < t < Tmax. Next, (3.26) and (3.27) together with the assumption γ1 ≥ 0
show that

∂tv̄1 −A1v̄1 − G̃1(x− ct, q(t),W (t)) − Ñ1(q(t), v̄1)
(3.27)
= 0

≤ γ1v
2
2

(3.26)
= ∂tv1 −A1v1 − G̃1(x− ct, q(t),W (t)) − Ñ1(q(t), v1).

The comparison principle [4, Theorem 25.1 in section VII] gives v̄1(x, t) ≤ v1(x, t) for 0 ≤ t <
Tmax and x ∈ R, and therefore

v1(x, t) ≥ v̄1(x, t) ≥ −K6ε
2(3.31)

for 0 ≤ t < Tmax and x ∈ R. Having established the lower pointwise bound (3.31) for v1, we
return to the equation

∂tv2 = −(1 + ∂2
x)

2v2 + αv2 − v3
2 − γ2[1 + h(x− ct− q(t))]v2 − γ2v1v2

for v2, written in the laboratory frame. Using Lemma 2.1(iii) and the bounds (3.31), γ2 ≥ 0,
and [1 + h(y)] ≥ 0 for all y ∈ R, we obtain

1

2
∂t‖v2‖2

L2
ul(σb)

≤
[
7

2
b2 + |α|

] ∫
R

σbv
2
2 dx−

∫
R

σbv
4
2 dx−

∫
R

σbγ2[1 + h(x− ct− q(t))]v2
2 dx

+ γ2K6ε
2

∫
R

σbv
2
2 dx

≤
[
7

2
b2 + K6γ2ε

2 + |α|
] ∫

R

σbv
2
2 dx−

∫
R

σbv
4
2 dx.

Next, we record that ∫
R

aσbv
2
2 dx−

∫
R

σbv
4
2 dx ≤ a2

b
−

∫
R

aσbv
2
2 dx
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 337

for any constant a > 0 since∫
2aσbv

2
2 −

∫
σbv

4
2 ≤

∫ √
2aσ

1/2
b

√
2σ

1/2
b v2

2 −
∫

σbv
4
2 ≤

∫
a2σb +

∫
σbv

4
2 −

∫
σbv

4
2 ≤ a2

b
.

Therefore,

1

2
∂t‖v2‖2

L2
ul(σb)

≤ [7b2 + 2(K6γ2ε
2 + |α|)]2

4b
− 1

2
[7b2 + 2(K6γ2ε

2 + |α|)]‖v2‖2
L2

ul(σb)
.

This is a differential inequality of the form 1
2f

′(t) ≤ d1 −d2f(t) for which Gronwall’s estimate
[13, Theorem 1.5.7] gives

f(t) ≤ e−2d2tf(0) +
d1

d2
(1 − e−2d2t) ≤ f(0) +

d1

d2

for d2 > 0. In our case, this estimate becomes

‖v2(t)‖2
L2

ul(σb)
≤ ‖v2(0)‖2

L2
ul(σb)

+
7b2 + 2(K6γ2ε

2 + |α|)
2b

≤ 2K2
0ε

2 + [7b2 + 2(K6γ2ε
2 + |α|)]

2b
,

where we used that

‖v2(0)‖2
L2

ul(σb)
≤ 1

b
‖v2(0)‖2

L2
ul(σ) ≤

K2
0

b
‖v2(0)‖2

H1
ul
≤ K2

0ε
2

b
.

Setting b =
√

ε2 + |α| and using Lemma 2.1(ii), we finally get

‖v2(t)‖2
L2

ul
≤ K2

7

√
ε2 + |α|, 0 ≤ t < Tmax,

for an appropriate constant K7 that depends only on K0, K6, and γ2 but not on α, ε, or t.
Next, we estimate v1 and v2 in the H1

ul-norm.
Lemma 3.6. Assume that γ1 ≥ 0. There are positive numbers K8, α0, and ε0 such that the

following is true for all (α, ε) with |α| < α0 and 0 < ε < ε0: If (V,W, q) = (v1, v2, w1, w2, q)
satisfies (3.8)–(3.10) with initial data for which (3.30) holds, then

‖V (t)‖H1
ul
≤ K8

[
ε +

√
|α|

] 1
2

(3.32)

uniformly in t ∈ [0, Tmax).
Proof. First, we shall estimate ‖v1‖H1

ul
. Assumption (3.30) allows us to apply Lemma 3.4,

and we conclude

‖v2(t)‖L2
ul
≤ K7

[
ε +

√
|α|

] 1
2

on [0, Tmax). Furthermore, from the definition of Tmax, we know that ‖V (t)‖H1
ul

≤ η0 on

[0, Tmax). Taken together, these estimates show that

‖v2
2(t)‖L2

ul
≤ η0K0K7

[
ε +

√
|α|

] 1
2

(3.33)
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338 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

on [0, Tmax). To find an estimate for ‖v1(t)‖H1
ul
, we wish to apply Lemma 3.4 to (3.26) which

means that we have to set

G(x, t) := G̃1(x− ct, q(t),W (t)) + γ1v2(x, t)
2

in Lemma 3.4. The estimates (3.22) and (3.33) give

‖G(·, t)‖L2
ul
≤ K9

(
‖W (0)‖H1

ul
+

[
ε +

√
|α|

] 1
2

)

for some constant K9 that does not depend on α, ε, or t. Lemma 3.4 and (3.30) now show
that

‖v1(t)‖H1
ul
≤ K5K9

(
‖v1(0)‖H1

ul
+ ‖W (0)‖H1

ul
+

[
ε +

√
|α|

] 1
2

)
≤ K5K9

[
ε +

√
|α|

] 1
2

on [0, Tmax).
Next, we employ energy methods to estimate ‖v2(t)‖H1

ul
, and we begin by collecting the

bounds

‖V (t)‖H1
ul
≤ η0, ‖v2(t)‖L2

ul
≤ K7

[
ε +

√
|α|

] 1
2
, ‖W (t)‖H1

ul
≤ K2‖W (0)‖H1

ul
≤ K2ε

2,

which we established so far on the time interval [0, Tmax). We write the equation for the
v2-component in the form

∂tv2 = −(1 + ∂2
x)

2v2 + αv2 − v3
2 + R2(x− ct− q(t))ρβ(x− ct)−1w2 − γ2v1v2,

where we recall that R2(y − q(t))ρβ(y)−1 is bounded in H1
ul, and consider also the equivalent

integral equation

v2(t) = eA2tv2(0) +

∫ t

0
eA2(t−s)

[
αv2(s) − v3

2(s) − γ2v1(s)v2(s)(3.34)

+ R2(x− cs− q(s))ρβ(x− cs)−1w2(s)
]
ds

with A2 = −(1 + ∂2
x)

2. Lemma 2.3 shows that

‖eA2t‖H1
ul
≤ K0, ‖eA2t‖L2

ul→H1
ul
≤ K0t

− 1
4 , t > 0,

and applying these estimates together with (3.17) to (3.34) gives

‖v2(t)‖H1
ul
≤ K0‖v2(0)‖H1

ul
+ K0

∫ t

0
(t− s)−

1
4

[
|α|‖v2(s)‖L2

ul
+ ‖v2(s)‖2

L2
ul
‖v2(s)‖H1

ul

+ ‖v1(s)‖H1
ul
‖v2(s)‖L2

ul
+ ‖W (0)‖H1

ul

]
ds,

where we used that

‖v3
2‖L2

ul
≤ K0‖v2‖L2

ul
‖v2‖2

C0 ≤ K2
0‖v2‖2

L2
ul
‖v2‖H1

ul
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 339

on account of Lemma 2.1(i).
We set T1 := min{Tmax, 1}. For 0 < t < T1, we then have

‖v2(t)‖H1
ul
≤ K0K7

[
‖v2(0)‖H1

ul
+

∫ t

0
(t− s)−

1
4

(
|α|

[
ε +

√
|α|

] 1
2

+
[
ε +

√
|α|

] [
1 + sup

0≤s≤t
‖v2(s)‖H1

ul

])
ds

]
,

and therefore

sup
0≤t≤T1

‖v2(t)‖H1
ul
≤ K10

(
‖v2(0)‖H1

ul
+

[
ε +

√
|α|

] 1
2

+
[
ε +

√
|α|

]
sup

0≤t≤T1

‖v2(t)‖H1
ul

)

for an appropriate constant K10 that does not depend on α, ε, or T1 (as long as T1 ≤ 1).
We now choose positive bounds α0 and ε0 for α and ε, respectively, that are so small that
K10[ε0 +

√
α0] ≤ 1

2 . For all (α, ε) with |α| < α0 and |ε| < ε0 we then have

sup
0≤t≤T1

‖v2(t)‖H1
ul
≤ 2K10

[
‖v2(0)‖H1

ul
+

[
ε +

√
|α|

] 1
2

]
.

To obtain estimates for ‖v2(t)‖H1
ul

for t > 1, we use the variation-of-constants formula

v2(t) = eA2(t−τ)v2(τ)

+

∫ t

τ
eA2(t−s)

[
αv2(s) − v3

2(s) − γ2v1(s)v2(s) + R2(x− cs− q(s))ρβ(x− cs)−1w2(s)
]
ds

on [τ, t] for each τ with t− 1 ≤ τ ≤ t. As before, we obtain

‖v2(t)‖H1
ul
≤ K0(t− τ)−

1
4 ‖v2(τ)‖L2

ul
+ K0

∫ t

τ
(t− s)−

1
4

[
|α|‖v2(s)‖L2

ul
+ ‖w2(s)‖H1

ul

+ ‖v2(s)‖2
L2

ul
‖v2(s)‖H1

ul
+ ‖v1(s)‖H1

ul
‖v2(s)‖L2

ul

]
ds

and consequently

‖v2(t)‖H1
ul
≤ K0K7(t− τ)−

1
4

[
ε +

√
|α|

] 1
2

(3.35)

+ K0

[
ε +

√
|α|

] ∫ t

τ
(t− s)−

1
4

[
1 + ‖v2(s)‖H1

ul

]
ds.

Upon setting

J1(τ) :=

(∫ τ+1

τ
‖v2(s)‖3

H1
ul

ds

)1/3

,

Hölder’s inequality gives

∫ t

τ
(t− s)−

1
4 ‖v2(s)‖H1

ul
ds ≤

(∫ t

τ
(t− s)−

3
8 ds

)2/3 (∫ t

τ
‖v2(s)‖3

H1
ul

ds

)1/3

≤ K0J1(τ),
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340 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

and therefore (∫ τ+1

τ

[∫ t

τ
(t− s)−

1
4 ‖v2(s)‖H1

ul
ds

]3

dt

) 1
3

≤ K0J1(τ).(3.36)

Upon raising (3.35) to the power three, integrating both sides over t ∈ [τ, τ + 1], taking the
third root, and using (3.36), we see that

J1(τ) ≤ K11

([
ε +

√
|α|

] 1
2

+
[
ε +

√
|α|

]
J1(τ)

)

for an appropriate constant K11 that does not depend on t or τ . Making α0 and ε0 smaller if
necessary, we conclude that

J1(τ) ≤ 2K11

[
ε +

√
|α|

] 1
2
,

and using this estimate in (3.35), we finally obtain the pointwise estimate

‖v2(τ + 1)‖H1
ul
≤ K0K11

[
ε +

√
|α|

] 1
2
,

which is valid for any τ > 0. This completes the proof of the lemma.
We are now ready to complete the proof of Proposition 3.3.
Proof of Proposition 3.3. For sufficiently small ε > 0, Lemma 3.6 shows that |q(t)| +

‖V (t)‖H1
ul
‖ ≤ 1

2η0 for 0 ≤ t < Tmax, which contradicts the maximality of Tmax (see (3.13))

if Tmax is finite. Thus, (3.13) holds for any t, which in turn implies that (3.17) and (3.20)
are valid for all times. Therefore, (3.32) holds with Tmax = ∞, which completes the proof of
Proposition 3.3.

4. Implications of nonlinear stability and comparison with simulations. Throughout
this section, we consider the system

∂tu1 = ∂2
ξu1 + c∂ξu1 +

1

2
(u1 − c)(1 − u2

1) + γ1u
2
2,(4.1)

∂tu2 = −(1 + ∂2
ξ )

2u2 + c∂ξu2 + αu2 − u3
2 − γ2u2(1 + u1)

exclusively in the frame ξ = x− ct that moves with the front. In this frame, the front solution
is stationary and is given by

Uh(ξ) =

(
tanh(ξ/2)

0

)
.

We shall also assume that the coefficients appearing in (4.1) satisfy the assumptions required
in Theorem 2. This theorem then asserts that, for any function V0 for which ‖V0‖H1

ul
is

sufficiently small, the solution U(ξ, t) with initial data U(·, 0) = Uh + V0 can be written as
U(ξ, t) = Uh(ξ − q(t)) + V (ξ, t) and that there is a number q∗ so that

‖ρβ(·)V (·, t)‖H1
ul

+ |q(t) − q∗| ≤ Ke−Λ∗t, ‖V (·, t)‖H1
ul
≤ K

[
‖V0‖H1

ul
+

√
|α|

] 1
2

(4.2)
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 341

Figure 3. A schematic illustration of the interplay between the perturbation V0(ζ) and the weight ρβ(ζ+ ĉt)
in the frame ζ = ξ + ĉt that moves with the perturbation. The speed ĉ needs to be negative so that the weight
travels to the right, since (4.3) implies that the product ρβ(ζ + ĉt)V0(ζ) tends to zero as t → ∞.

for t ≥ 0.
To see what the implications of the nonlinear stability estimates (4.2) are, let us suppose

that V (ξ, t) assumes the form of a traveling wave of speed ĉ so that V (ξ, t) = V0(ξ− ĉt). Using
the coordinate ζ = ξ − ĉt that moves with the perturbation, we obtain from (4.2) that

Ke−Λ∗t ≥ ‖ρβ∗(·)V (·, t)‖H1
ul

= ‖ρβ∗(ξ)V0(ξ − ĉt)‖H1
ul

= ‖ρβ∗(ζ + ĉt)V0(ζ)‖H1
ul
,(4.3)

which implies that the speed ĉ needs to satisfy

ĉ ≤ −Λ∗
β∗

.(4.4)

In particular, ĉ is negative, meaning that any traveling wave that exists in the wake of the
stationary front Uh moves toward ξ = −∞, that is, away from the front Uh; see Figure 3 for
an illustration.

One possible candidate for perturbations of traveling wave type in the wake of the front
Uh are Turing fronts which, by definition, connect the spatially periodic Turing patterns Uper

discussed in (1.4) at ξ = −∞ to the unstable homogeneous rest state U− in the wake of the
front. We shall first derive an explicit estimate c∗ for the maximal speed with which they can
move.

The Turing patterns (1.4) have amplitude of order
√
α, and we therefore set ε = K

√
α in

Theorem 2 for a sufficiently large constant K. The proof of Proposition 2.2, and in particular
(2.4), shows that the spectrum of the linearization Lβ of (4.1) about Uh in the weighted space
lies to the left of the line Reλ = α − cβ + 4β2 + 8β4 with the exception of the translation
eigenvalue at the origin. The decay rate Λ∗ in Theorem 2 is chosen in Lemma 3.2: Choosing
η̂0 = K

√
α allows us to set Λ∗ = Λ = K

√
α− [α− cβ + 4β2 + 8β4] (we remark here that the

constants K2 and K3 in Lemma 3.2 depend only on the value of the left-hand side of (3.14)
but not on the values of Λ and η̂0). Substituting this expression for Λ∗ into (4.4), we obtain

ĉ ≤ K
√
α + α− cβ + 4β2 + 8β4

β
≤ −c +

K
√
α + α + 4β2 + 8β4

β
.

The minimum 4
√
Kα1/4 + O(α3/4) of the right-hand side over β > 0 is achieved at β =√

Kα1/4 + O(α3/4), which gives the upper bound

ĉ ≤ c∗ := −c + 4
√
Kα1/4 + O(α3/4)(4.5)
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342 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

for the speed of traveling fronts with amplitude bounded by K
√
α to the left of the stationary

front Uh. We remark that similar upper bounds for more general solutions of the Swift–
Hohenberg equation, but without the presence of a front to the right, were obtained in [5].

Next, we complement the upper bound (4.5) for ĉ by formal lower bounds using the
results in [6, 20] by van Saarloos and his collaborators who derived lower bounds c∗ for the
propagation of Turing patterns into the unstable homogeneous rest state U−. Applying the
formulas in [20, section 2.11] to the u2-component

∂tv2 = −(1 + ∂2
ξ )

2v2 + c∂ξv2 + αv2

of the linearization of (4.1) about U− = (1, 0), we obtain the lower bound

c∗ = −c + 4
√
α + O(α3/2)(4.6)

for Turing fronts. Thus, combining (4.5) and (4.6), we expect that Turing fronts in the wake
of the stationary front Uh travel at a speed ĉ with c∗ ≤ ĉ ≤ c∗ to the left.

In summary, Theorem 2 shows that small perturbations to the front should move away
from the front at a speed ĉ that satisfies (4.4). If the perturbations are of order

√
α, then

the speed at which they have to move to the left satisfies the more explicit estimate (4.5).
Furthermore, if we construct an initial condition that consists of the small-amplitude Turing
patterns at ξ = −∞ with the front Uh to their right, then we expect that the solution to (4.1)
is the superposition of the stationary front Uh with a Turing front in its wake whose speed ĉ
lies between the lower and upper bounds provided by (4.6) and (4.5), respectively. This last
claim is based only on formal arguments, though.

We now compare these predictions with numerical simulations of (4.1). Throughout, we
set

γ1 = 0.5, γ2 = 0.6, c = 0.5(4.7)

and solve (4.1) on the interval (0, �) for � = 1000 with the boundary conditions

u1(0, t) = −1, u1(�, t) = 1, u2(0, t) = ∂ξu2(0, t) = u2(�, t) = ∂ξu2(�, t) = 0.

We discretized (4.1) using centered finite differences with step size 0.05 and integrated the
resulting ODE using the explicit Runge–Kutta–Chebyshev scheme developed in [27]. Through-
out, we pick the initial condition

U0(ξ) =

(
tanh[0.5(ξ − 950)] + 0.045 cos ξ

0.045 cos ξ

)
,(4.8)

which excites the most unstable linear mode over the entire domain, and comment in section 5
on other initial data.

First, we choose α = 0.001 to be very small in order to test the speed predictions from
(4.5) and (4.6). In Figure 4, we plot the difference V (ξ, t) = (v1, v2)(ξ, t) between the solution
U(ξ, t) and the front Uh(ξ − 950.024) at t = 1000 for α = 0.001. The relative offset 0.024
to the front interface at ξ = 950 for t = 0 minimizes the difference between U and Uh near
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 343

Figure 4. Plotted are the values of v1 = u1 − h(· − 950.024) (left) and of v2 = u2 (right) for α = 0.001 in
the comoving frame as functions of ξ for t = 1000: The Turing patterns behind the front have been pushed to
the left of the front interface which is located at ξ = 950.024 for t = 1000.

Figure 5. Space-time contour plots of v2 = u2 are shown for α = 0.001 (left) and α = 0.01 (right) in
the comoving frame (time t upward and space ξ horizontal). The inset illustrates that small individual Turing
patterns behind the front travel to the left as expected. For α = 0.001, the overall perturbation also travels to
the left at an approximately constant speed −0.384. For α = 0.01, the perturbation still travels to the left, but
at a much smaller speed.

ξ = 950 and accounts therefore for the shift q(t) from Theorem 2. Figure 4 indicates that
V becomes very small ahead of and near the front as expected, while it develops Turing
patterns to the left of the front, that is, in the spatial regime where the background state is
unstable. Upon measuring the slope of the Turing front interface in the contour plot shown
in Figure 5 (left plot), we find that the Turing front travels at speed −0.384 to the left. This
is in agreement with the formal lower bound (4.6) which gives the minimal speed c∗ = −0.373
upon substituting α = 0.001 into (4.6).

For larger values α, the perturbation will still evolve into Turing fronts which are pushed
to the left of the front, but the relative speed between the Turing front and the large front h
will decrease as α increases. This is illustrated in the simulation for α = 0.01 shown in the
right plot of Figure 5.

Eventually, for sufficiently large parameters α, the instability of the background state
u = 0, which is initially convective in nature, will become an absolute instability: Perturba-
tions of the background state will then no longer be convected away but will grow in amplitude
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344 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

Figure 6. The simulations in this figure are for α = 0.03. On the left, a space-time contour plot of
v2 = u2 is shown in the comoving frame (time t upward and space ξ horizontal). On the right, we plotted
v1 = u1 − h(· − 950.02) at t = 1000 in blue and v1 = u1 − h(· − 950.0135) at t = 2500 in red: Note that the two
graphs lie on top of each other which indicates that the Turing patterns have locked to the front h.

as time increases at each fixed point in space. In this situation, we can no longer expect that
perturbations will be pushed away by the front. Instead, the Turing patterns behind the front
may lock to the front, yielding a time-periodic wave in an appropriate comoving frame. The
convective instability changes to an absolute instability when the linear dispersion relation
λ = λ−(k) from (2.3) has a double root kbp ∈ C with λ ∈ iR; see, for instance, [3] or [21]
and the references therein. For our system with parameter values as in (4.7), the transition
from convective to absolute instability occurs at α = 0.015. Figure 6 shows simulations for
α = 0.03 which illustrate that the expected locking behavior between the front and the Turing
pattern in its wake indeed occurs in our system.

In summary, our numerical simulations with initial data (4.8) show that the corresponding
solution is indeed composed of two fronts—a Turing front which connects the Turing pattern
at −∞ to the unstable homogeneous rest state U− = (−1, 0), and the primary front h which
connects (−1, 0) to the stable homogeneous rest state (1, 0) at +∞. In the parameter regime
where the equilibrium U− is only convectively unstable, the relative speed between the two
fronts is positive, and the front h therefore is asymptotically stable in the weighted norm
as predicted by Theorem 2. As α increases, the relative speed between the two interfaces
decreases. For sufficiently large α, the equilibrium U− is absolutely unstable, and we then
observe locking of the front h and the Turing pattern in its wake.

5. Discussion. In this paper, we discussed the nonlinear stability of convectively unstable
fronts near supercritical Turing instabilities for the specific system (1.2). To prove nonlinear
stability, we established a priori H1

ul-estimates for solutions with initial data close to the front
and used these estimates to show exponential temporal decay of solutions when measured in
exponentially weighted H1

ul-norms. While the second part of the proof generalizes easily to
general partial differential equations, our proof of a priori estimates relies on the comparison
principle and depends therefore on the special structure of our model system.

We expect nevertheless that our nonlinear stability result remains true for general partial
differential equations, and there is indeed much numerical evidence that supports this belief.
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NONLINEAR CONVECTIVE INSTABILITY OF FRONTS 345

For instance, the Gray–Scott system

∂tU1 = d1∂
2
xU1 − U1U

2
2 + F (1 − U1),

∂tU2 = d2∂
2
xU2 + U1U

2
2 − (F + k)U1

is known to have Turing bifurcations, and direct numerical computations show that these
are supercritical in certain parameter regions [15]. The direct numerical partial differential
equation simulations in [23, section 8] show that the Gray–Scott system exhibits fronts in
parts of this parameter regime which become convectively unstable at the supercritical Turing
bifurcation. In particular, [23, Figures 14–15] indicate that the convectively unstable fronts
are nonlinearly stable in the weighted norm.

Our results should also remain true if the homogeneous equilibrium U− behind the front
undergoes a supercritical Hopf bifurcation, rather than a Turing bifurcation. In both cases,
the dynamics near U− is captured by the complex Ginzburg–Landau equation (CGL)

At = (1 + ia)∂2
xA + αA− (1 + ib)|A|2A,(5.1)

but the coefficients a and b vanish for Turing bifurcations, while they are generically nonzero
for Hopf bifurcations. Depending on the values of the coefficients a and b, the Ginzburg–
Landau equation may exhibit stable oscillatory waves or spatio-temporally complex patterns
which, beyond onset, appear behind the front. Again, we expect that the front should outrun
these structures in its wake, while leaving a growing spatial region behind it where the solution
converges to the unstable equilibrium U−. Sherratt [25] confirmed this picture, through a
formal analysis, for fronts near supercritical Hopf bifurcations in the case when these can be
described by λ-ω systems, i.e., for a = 0. We also refer the reader to [14, 25, 26] for numerical
simulations in this setup and for applications to predator-prey systems.

The numerical simulations presented in section 4 used the initial condition (4.8) which
selected a single linearly unstable spatially periodic mode. For more general initial data
close to the front h, the perturbation remains small and is still pushed to the left for α
near zero. The dynamics in the wake of the front may, however, be more complex and may,
in particular, involve amplitude-modulated Turing patterns whose spatial periods vary over
space: The evolution behind the front is, on a formal level, captured by the Ginzburg–Landau
approximation (5.1). As mentioned previously, the nonlinear stability result presented here
is valid independently of the particular dynamics behind the front, as long as a priori bounds
for solutions are available.

As illustrated in Figure 6 in section 4, we expect that the stability properties of the front
change when the equilibrium behind the front becomes absolutely unstable, since perturba-
tions will then grow pointwise in space, rather than being convected toward −∞. In our
specific model problem, the Turing patterns lock to the front, and a modulated front (time-
periodic in an appropriate moving coordinate frame) emerges which converges to spatially
periodic patterns in its wake. In particular, the original front is no longer stable in weighted
norms.

Finally, we comment on subcritical bifurcations behind the front. In this case, we cannot
expect to have nonlinear stability in weighted norms since perturbations will not necessarily
stay small in the wake of the front but may grow to finite amplitude. In particular, there is no
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346 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

reason to believe that the solution in the wake will not strongly influence the front ahead, thus
possibly precluding nonlinear stability; note though that the front may still be nonlinearly
stable if conditions are right. In the system (4.1), these different behaviors can be observed:
The Turing bifurcation is subcritical for parameters as in (4.7) with γ1 = −4 or γ1 = −8.
Numerical simulations of (4.1) for γ1 = −4 show that the solution behind the front converges
to a spatially periodic pattern of finite amplitude which is again pushed away by the front,
and the front therefore seems to be nonlinearly stable in weighted norms. For γ1 = −8, on
the other hand, the periodic patterns in the wake have much larger amplitude and lock to the
front, which is therefore no longer nonlinearly stable.
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