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ABSTRACT 

NISHA GOTTFREDSON:  Evaluating Shared-Parameter Mixture Models for  
Analyzing Change in the Presence of Non-Randomly Missing Data 

(Under the direction of Daniel J. Bauer) 

 

  Longitudinal researchers have been slow to adopt models for assessing the 

sensitivity of their results to potentially non-randomly missing data, opting instead to rely 

exclusively on more traditional approaches to modeling growth like latent curve 

modeling (LCM).  Implicit in this choice is the strict assumption that missing data are 

missing at random (MAR).  Failure to meet this assumption leads to inaccurate inferences 

regarding growth.  A number of models for assessing the impact of non-randomly 

missing data on growth trajectory estimates have been presented over the past quarter 

century.  These models are briefly discussed, and a new variation on some recently 

developed models is introduced.  The shared parameter mixture model (SPMM) 

described here is preferable to some other models for a few reasons.  Most notably, it 

approximates the dependence between the missing data process and the repeated 

measures without requiring an explicit specification of the missingness mechanism while 

simultaneously allowing conditional independence between the growth model and the 

missing data.   

 Performance of the SPMM is evaluated using simulation methodology across a 

range of plausible missingness mechanisms and across a range of longitudinal data 

conditions.  SPMM performs well when the missing data mechanism is either latent 
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class- or growth coefficient- dependent.  Fixed effect recovery is more robust than 

variance component recovery.  The SPMM performs best with longer observation lengths 

and with erratically spaced missing data than with dropout.  

 Finally, this manuscript illustrates how the SPMM might be used in practiceby 

analyzing change over time in psychological symptoms of patients enrolled in 

psychotherapy.   

 Results are generally encouraging for SPMM performance under a range of 

simulated data conditions, and for feasibility with real data.  Researchers who suspect the 

presence of random coefficient-dependent missing data are urged to consider using the 

SPMM to assess sensitivity of their model results to the MAR assumption. 
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CHAPTER 1 

INTRODUCTION 

 Missing data is difficult to avoid in longitudinal social science research studies.  

Participant data can be missing for an entire wave of longitudinal data collection.  Wave-

level missingness might occur for relatively benign reasons (e.g., design-based 

missingness or inconvenient timing of data collection), or it might occur for reasons that 

are related to the research question of interest (e.g., death or hospitalization in a study of 

dementia-related outcomes; relapse in a study of alcohol treatment).  Because 

longitudinal models are often used to make inferences about inter-individual variability in 

intra-individual change over time, longitudinal studies are vulnerable to bias resulting 

from a type of missing data that is uniquely troubling: missingness due to latent 

individual differences in growth trajectories (i.e., random coefficient-dependent 

missingness). 

 The studies presented in this manuscript evaluate a promising statistical technique 

for handling random coefficient-dependent missing data in longitudinal studies under a 

variety of real world data conditions.  The introduction is organized as follows.  First, the 

latent curve model (LCM) is described and different missing data mechanisms are 

defined within this context.  Next, the relative strengths and weaknesses of popular 

models for handling non-randomly missing data will be discussed.  The shared parameter 

mixture model (SPMM), a promising model for flexibly handling a variety of non-
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random missing data mechanisms, will then be described.  Finally, hypotheses regarding 

the performance of the SPMM under several data conditions will be stated. 

The Latent Curve Model and Missing Data 

 In the LCM, individual growth over time is modeled as follows (McArdle & 

Epstein, 1987; Meredith & Tisak, 1990; Bollen & Curran, 2006): 

 i i i

i i i

= +

= + +

y Λη ε

η α Γx ζ
 (1.1) 

where iy is a T × 1 vector of repeated measures for individual i over T measurement 

occasions, iη is a m × 1 vector of latent growth scores (e.g., intercept, linear slope, 

quadratic slope) with a m × 1 intercept vector α and a m × 1 vector of individual 

deviations iζ   that define the individual growth trajectories. A vector of q 

predictors/covariates ix is related to individual growth factors through a m × q matrix of 

regression weights,Γ . Λ is a T × m matrix of factor loadings (which are usually 

constrained by the analyst to define the shape of growth) that regress the repeated 

measures on latent growth factors, and iε is a T × 1 vector of time-specific residuals.  

Growth factors are usually assumed to be conditionally multivariate normal

( ~ ( , ))i Nζ 0 Ψ , and they are generally allowed to covary with one another.  Time-specific 

residuals are also assumed to be conditionally normally distributed (~ ( , )i Nε 0 Θ ) and are 

often assumed to be independent (i.e., Θ is a diagonal matrix); the last constraint may be 

relaxed.  Further, it is assumed that the residuals are uncorrelated with the growth factors. 
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 The equivalence of the latent curve model with mixed-effect, hierarchical, or 

multilevel growth models is well-established (Mehta & West, 2000; Bauer, 2003; Curran, 

2003; Singer & Willett, 2003).  The parameters within α  and Γ  are the fixed effects, iζ  

and iε  are the random effects / residuals, and Ψ  and  Θ  contain the variance components 

and covariance parameters.  Thus, issues discussed with respect to the latent curve model 

are equally applicable for growth models fit as mixed-effect, multilevel, or hierarchical 

linear models. 

LCMs can be estimated using direct maximum likelihood (ML), resulting in 

unbiased growth parameter estimates when missing data are missing at random (MAR; 

Rubin, 1976) if the variables related to the missingness mechanism are measured and 

included in the data model (Arbuckle, 1996; Wothke, 2000; Enders, 2001).  Similarly, if 

the causes of missingness are included in an imputation model prior to data analysis, then 

multiple imputation will lead to valid inferences under a MAR mechanism (Schafer, 

2003; Rubin, 2004).  However, when analyzing longitudinal data, there are many 

situations in which the MAR assumption for missing data would be untenable.  As noted 

earlier, for instance, when studying change over time, it is possible that individual 

differences in growth are directly related to missingness probabilities (e.g., dropout in a 

longitudinal treatment study may be related to the progression of a disease; Demirtas & 

Schafer, 2003).   

In general, the MAR assumption is violated when the cause of missingness is 

related to the outcome of interest and this cause is not included as a measured variable in 

the analytic model (or imputation model, if multiple imputation is used to account for a 
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missing data process that is MAR).  If the MAR assumption is violated, then the 

probability that a given repeated measure( )ity  is missing depends on the underlying 

value of tiy itself, even after accounting for measured variables (o
iy and ix , where oy

includes only the subset of observed repeated measures in iy ).  In this case, the missing 

data process is referred to as outcome-dependent and is ‘nonignorable’ (Rubin, 1976).  

Alternatively, the missing data can be said to be missing not at random (MNAR).  If 

LCM is used to analyze data in which non-random missingness is present, bias may occur 

in fixed effect estimates (α  or Γ ) and variance estimates (Ψor Θ).   

Reflecting on Equation (1.1), there are two potential sources for non-ignorable 

outcome-dependent missingness in a longitudinal model: the random coefficients ( )iη  

that reflect inter-individual variability in change over time, or the time-specific residual 

errors ( )tε  that reflect intra-individual deviations from the individual’s growth trajectory.  

Random coefficient-dependent missingness indicates a systematic trend of missingness 

across individuals (e.g., patients who experience little improvement in a clinical trial may 

drop out earlier than average), and error-dependent missingness indicates selection of 

observations within individuals (e.g., a participant in a daily diary study of pain may not 

report on particularly difficult days).   

Modeling Growth in the Presence of Non-Randomly Missing Data 

 Any method for handling non-randomly missing data must somehow incorporate 

information about the missing data process into the model for the data.  An in-depth 

review and illustration of several approaches for accomplishing this goal within 
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longitudinal models was recently provided by Enders (2011).  A more cursory review is 

offered here, leading up to a model that is particularly promising, the SPMM.  

 Selection models (Heckman, 1976; Heckman, 1979; Diggle & Kenward, 1984) 

and traditional shared parameter models (Wu & Carroll, 1988; Albert & Follman, 2009) 

require the analyst to specify an explicit model for the missing data and to condition the 

longitudinal model estimates on the missingness model.  Whereas selection models 

condition the probability that a repeated measure is missing on the value of the repeated 

measure itself, shared parameter models condition the probability of missingness on 

individual growth trajectories.  Thus, shared parameter models are particularly relevant 

for handling random coefficient dependent missingness.  In shared parameter models, the 

growth parameters are ‘shared’ between the missingness model and the longitudinal 

model such that the missing data indicators are conditionally independent from the 

repeated measures after conditioning on the growth trajectories.  Selection models and 

shared parameter models have the benefit of being conceptually straightforward, but they 

are heavily model-dependent and sensitive to misspecification of the missing data model 

(e.g., omitted covariates, misspecification of the form of missingness, or violations to 

distributional assumptions; Kenward, 1998; Winship & Mare, 1992; Vonesh, Greene, & 

Schlucher, 2006; Tsonaka, Verbeke, & Lesaffre, 2009). 

 Pattern mixture models (Little, 1993) and latent pattern mixture models (Roy, 

2003) condition the longitudinal model parameters on observed or latent patterns of 

missingness so that a separate trajectory is estimated for each group of missing data 

patterns.  In practice, this means estimating a growth model with an individual’s 

missingness pattern included as a predictor (Hedeker & Gibbons, 1997; and possibly 
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reducing the observed patterns to a smaller set of latent classes; Roy, 2003), similar to the 

multiple groups latent curve model for handling MAR missingness with an estimator that 

utilizes only sufficient statistics, a technique suggested by McArdle and Hamagami 

(1992).  Group-specific trajectory estimates are aggregated to obtain a less biased 

trajectory estimate for the total population.  The PMM and LPMM have the advantage 

that no explicit specification of the unknown missing data mechanism is required.  

However, these models suffer from the drawback that trajectories are (directly or 

indirectly) conditioned upon observed (and sample-dependent) missing data patterns.  

This may be problematic because the inclusion of missing data patterns as covariates in 

the trajectory model reduces the validity of ML-based inferences under an ignorable 

missing data mechanism (Demirtas & Schafer, 2003).  According to Demirtas and 

Schafer, the inclusion of indicators of missingness (e.g., dropout occasion) as predictors 

in a growth model reduces the generalizability of inferences so that they are only valid 

under the specific growth mechanism that is implied by the model (including the precise 

form in which the indicators enter the model).1 

 A number of recent publications have combined the idea of a shared parameter 

model with the LPMM in order to induce conditional independence between the missing 

data indicators and the trajectory model of interest (Lin, McCulloch, and Rosenheck, 

2004; Morgan-Lopez & Fals-Stewart, 2007; Beunckens, Molenberghs, Verbeke, & 

Mallinckrodt, 2008; Tsonaka et al., 2009; Muthén, Asparouhov, Hunter, & Leucter, 

                                                           
1
 Conditional independence models (i.e., shared parameter models) are preferable to the alternative 

pattern mixture approach because, according to Demirtas and Schafer (2003), conditioning the growth 

trajectory on missingness indicators limits the validity of the growth model beyond that implied by the 

(sample-dependent) model-implied mechanism.  Pilot simulation work has verified that conditional 

independence models (e.g., shared parameter models) are more stable than conditional models like the 

PMM and LPMM. 
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2011).  Lin et al. (2004) added a survival model for dropout.  Others have taken Roy’s 

(2003; LPMM) idea of using latent classes, initially viewed as a pattern reduction device, 

a step further by suggesting that the latent classes represent natural subgroups of 

individuals who differ qualitatively with respect to their missing data patterns and their 

growth trajectories.  Some methodologists, however, have cautioned that seemingly 

distinct groups can often be estimated with such models even when heterogeneity is 

strictly continuous in nature, potentially resulting in misleading conclusions (Bauer & 

Curran, 2003; Sampson, Laub, & Eggleston, 2004; Bauer, 2007). 

The Shared Parameter Mixture Model 

 The shared parameter mixture model draws on the models reviewed above to 

achieve several objectives.  First, the model should not require the explicit specification 

of the missing data mechanism.  The assumption underlying the first objective is that an 

analyst may have difficulty forming a correctly specified shared parameter model for the 

process underlying their missing data.  Second, it is preferable to specify the growth 

model to be conditionally independent from the missing data indicators after accounting 

for exogenous variables and shared parameters (the idea behind traditional shared 

parameter models).  Thus, an optimal model for random coefficient-dependent 

missingness would use a separate latent variable, distinct from the growth parameters, as 

the shared parameter between indicators for missingness and random growth coefficients.   

 To maximize flexibility in accounting for the missing data process without having 

to form an explicit model, the shared parameter should be discretely-distributed (i.e., a 

relatively small number of latent classes).  The shared-parameter is a central part of the 

model because of its role in creating conditional independence between the trajectory and 
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the missing data indicators (Tsonaka et al., 2009).  Traditional shared parameter models 

rely on growth factors as the shared parameters, which are typically specified to be 

normally distributed.  Misspecification of the shared-parameter distribution and its 

relation to other variables may lead to violation of the conditional independence 

assumption, leading to bias in trajectory estimates (Tsonaka et al., 2009).  It is possible to 

circumvent this problem by conditioning the growth factors and the missing data patterns 

on discrete latent classes (the new shared-parameters) in order to approximate the 

unknown joint distribution between the growth factors and the missing data patterns.  

Indeed, latent mixture distributions are often used to semi-parametrically approximate 

unknown continuous densities (Heckman & Singer, 1984; Nagin, 1999).  By using latent 

classes as an intermediary between growth factors and missing data patterns, it is possible 

to approximate the non-random missing data process semi-parametrically.  The quality of 

the resulting approximation is the topic of Chapters 2 and 3 of this document. 

 Mathematically, the way that the SPMM factors the joint likelihood for the 

repeated measures and the missing data indicators can be expressed as follows: 

 

 

 ( , , , | ) ( | , ) ( | , ) ( | , ) ( )i i i i i i i i i i i i i i if f f f f=y R η C x y η x η C x R C x C  (1.2) 

where Ri is a vector of missing data indicators (e.g., a T x 1 vector of binary indicators of 

missingness for every observation t where 1itr = if ity is missing and 0itr = if ity is 

observed).  Ri could also be a one-number summary for the missingness patterns, as 

suggested by Roy (2007).  When the number of repeated measures becomes large, 

Trajectory model, 

conditional  on latent class, 

C 

Semi-parametric missing 

data model 
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estimation of SPMMs with binary indicators of missingness may become difficult. 

Examples of potential summary indicators are the number of total observations for 

individual i or the occasion of dropout for individual i. 2  Note that both the growth 

parameter and the missing data patterns are conditioned on the latent class variables, Ci, 

as well as on the covariates Xi .  Ci is a set of latent, shared-parameter variables for the 

non-ignorable missing data mechanism.  The effects of observed predictors may be 

included in the conditional distribution for Ri to account for a MAR mechanism, in order 

to make the model more efficient.   

 In the SPMM, covariates influence growth factors and missing data indicators 

directly, rather than indirectly via latent class probabilities.  Although similar models 

presented in the literature allow covariates to affect class probabilities, this practice is not 

recommended for the SPMM because it complicates computation of the aggregate model 

parameters. Allowing covariates to predict class membership implies that marginal 

covariate effects depend on the values of the covariates themselves (Dantan, Proust-

Lima, Letenneur, & Jacqmin-Gadda, 2008).  Although true effects of covariates could be 

computed with some effort, estimation of the standard errors for covariate effects is 

intractable (Dantan et al., 2008).3   

 SPMMs can be specified as structural equation mixture models (SEMMs; 

Arminger, Stein, & Wittenberg, 1999; Dolan & van der Maas, 1998; Jedidi, Jagpal, & 

DeSarbo, 1997; Yung, 1997), and they can be estimated by ML with the EM algorithm 

                                                           
2
 Rose, von Davier, and Xu (2010) found empirical support for the practice of using summary indicators 

when implemented with a traditional PMM. 

 
3
 The SPMM is meant for modeling continuously varying heterogeneity in a population, so classes are used 

as a statistical tool for approximating the missing data process.  In a direct latent class pattern mixture 

modeling application in which discrete heterogeneity is assumed to exist, it may make sense to allow 

latent class predictors (e.g., Morgan-Lopez & Fals-Stewart, 2007). 
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using conventional software.  With ML estimation, the optimal number of classes is 

determined by fitting a series of SEMMs, varying the number of latent classes present in 

each model, and comparing model fit.  To estimate a SPMM, one specifies a mixture of 

latent curve models (i.e., growth mixture model (GMM); Verbeke & LeSaffre, 1996; 

Muthén & Shedden, 1999) with the form of growth that characterizes individual 

trajectories (e.g., linear, quadratic, piecewise), as shown below: 

 i i i

i k i i

= +

= + +

y Λη ε

η α Γx ζ
 (1.3) 

where ~ ( , )i Nζ 0 Φ , ~ ( , )i Nε 0 Θ , and the k subscript indicates a class-varying 

parameter.  Unlike a conventional GMM, the SPMM jointly includes missing data 

indicators for the shared latent class variables via the equation  

 i k i= +ν β Κx  (1.4) 

where iν  is a vector of values for the linear predictor of iR , kβ  is a vector of intercepts 

and Κ is a matrix containing the direct effects of the covariates ix  on the missingness 

indicators.  For instance, if binary missing data indicators are present, then iν  might be 

specified as a vector of logits.  An example path diagram for a SPMM with ten repeated 

measures and binary indicators of missingness is shown in Figure 1 (measurement 

parameters not annotated).    
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Figure 1. Path diagram of Binary SPMM.  Circles represent latent variables and rectangles 
represent measured variables. Uni-directional arrows represent regression paths and bi-directional 
paths represent variances or covariances.  The triangle represents the growth factor intercepts. 

 

 Note that the class-varying parameters in the SPMM of Equations (1.3) and (1.4) 

are kα  and kβ .  Allowing these parameters to vary across classes enables the model to 

capture the dependence of the individual trajectories and the missing data.  That is, joint 

differences in these parameter vectors allow certain types of trajectories (represented 

through kα ) to be associated with certain patterns of missing data (represented through

kβ ).  Although, in principle, some other parameters could also be permitted to vary 

across classes, limiting the number of class-varying parameters helps to retain parsimony, 
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makes interpretation more straightforward (Dantan et al., 2008), and reduces the 

likelihood of some estimation problems (Hipp & Bauer, 2006). 

 When fitting a SPMM, one question is how many classes to include in the 

analysis.  Numerous fit indices, including the Akaike Information Criterion (AIC, 

Akaike, 1974), the Bayesian Information Criterion (BIC; Schwarz, 1978), and many 

others, have been compared via simulation to determine the index with the optimal 

performance for GMMs (Lubke & Muthén, 2007; Tofighi & Enders, 2007).  However, 

these studies have examined direct applications of mixtures and class recovery when true 

classes exist, whereas the goal of class enumeration is quite different here.   The primary 

purpose of the latent classes in the SPMM is to explain the dependence between missing 

data patterns and growth parameters; the aim of class enumeration is to include enough 

latent classes to achieve this goal.  The goal is not to determine the ‘correct’ number of 

latent classes.  Therefore, it may be preferable to base class enumeration for SPMMs on 

the AIC, rather than the BIC, because AIC tends to prefer slightly more latent classes 

than BIC (McLachlan & Peel, 2000).  That is, because the goal is to have a sufficient 

number of classes, more liberal selection indices, like AIC, may be preferable to more 

conservative ones, like BIC.  On the other hand, including more latent classes than are 

necessary to achieve approximate conditional independence between the missing data 

indicators and the growth parameters may lead to imprecise estimates due to larger 

standard errors resulting from estimation of more parameters.  From this perspective, the 

BIC may be the optimal index of fit. 
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Recovery of Fixed Effects and Variance Components 

 Once the number of classes have been selected, the next step is to aggregate over 

class estimates to obtain population level effects.  Aggregate growth parameter means or 

intercepts are calculated by applying the following formula (Vermunt & van Dijk, 2001; 

Bauer, 2007): 

 
1

K

k k
k

π
=

=∑α α  (1.5) 

where K is the total number of latent classes and kπ represents the class probability 

(mixing proportion, or weight) for class k.  That is, class-specific means (for 

unconditional models) or intercepts (for conditional models),kα , are weighted by their 

associated class probabilities, kπ , to obtain a population-average vector of growth factor 

means/intercepts.   

 Aggregate growth factor variances and covariances (or residual variances and 

covariances) can be calculated by combining the between-class covariance matrix 

(created by mean differences across classes) with the within-class covariance matrix, as 

shown below (Vermunt & van Dijk, 2001; Bauer, 2007): 

 '

1 1

( )( )
K K

k j k j k j
k j k

π π
= = +

= − − +∑ ∑Ψ α α α α Φ

.
 (1.6) 

For both Equations (1.5) and (1.6), aggregate estimates are obtained by substituting 

sample estimates for population parameters.  Standard errors for the aggregate estimates 

can be computed via the delta method (e.g., Raykov & Marcoulides, 2004). 
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 A number of researchers have noted that misspecification of the random-effects 

distribution can result in serious finite sample bias in variance component estimates, but 

that fixed effect estimates are typically unbiased (at least for normally distributed 

outcomes; e.g., Verbeke & Lesaffre, 1997; Litiѐre, Alonso, & Molenberghs, 2007).  Most 

research on the consequences of random effect misspecification has focused on assuming 

a continuous random effect distribution when the population generating model is a 

mixture; this manuscript deals with the opposite scenario.  In a sense, the SPMM 

purposefully misspecifies the random effect distribution by imposing a mixture model 

when the true random effect distribution may be believed to be normal.  Some recent 

manuscripts suggest that this type of misspecification may be just as troublesome for 

recovering variance component estimates (e.g., Sterba, 2010; Sterba, Baldasaro, & Bauer, 

2010).4   

 In practice the ‘true’ population generating model is unknown, and a number of 

generating models are plausible.  Thus, it is necessary to evaluate how well the SPMM is 

able to semi-parametrically approximate the population generating parameters under a 

variety of population generating mechanisms. This can be done via simulation 

methodology. 

Evaluating the Performance of SPMMs 

Enders (2011) showed that different approaches for accommodating MNAR data 

can provide widely varying substantive results.  This is true in part because of the 

different assumptions required by each model, and in part because some models were 

created to handle slightly different forms of missingness (e.g., traditional selection 
                                                           
4
 The normal mixture that is implied by the SPMM is not exactly identical to the model analyzed in Sterba 

(2010) and Sterba et al. (2010).  These studies used a discrete mixture, rather than a normal mixture, to 

approximate growth trajectories. 
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models were intended for outcome-dependent missingness and shared parameter and 

pattern mixture models were intended for random coefficient-dependent missingness).  It 

should thus be emphasized that SPMM is intended to ameliorate parameter bias 

specifically due to random-coefficient-dependent missing data.  Where SPMMs may fail 

is with outcome-dependent missing data (as opposed to strict random coefficient-

dependent missing data).  SPMMs cannot be expected to mitigate parameter bias 

associated with this type of problem entirely because, although the repeated measures are 

in part due to covariates and random coefficients, they also include residual error, a time-

varying unmeasured effect.  A similar observation may be made concerning more 

traditional pattern mixture models (with observed patterns) and it is noteworthy that these 

models have sometimes performed poorly with outcome-dependent missingness (Yang 

and Maxwell, 2009; Maxwell & Yang, 2010). 

Overall, there has been very little published empirical work evaluating the 

performance of SPMM-type models.  One exception is a study conducted by Morgan-

Lopez and Fals-Stewart (2008), who simulated data under a discrete missing data 

mechanism (i.e., a mechanism in which there are a small number of groups with distinct 

missingness patterns).  Specifically, they generated data from three groups: consistent 

attenders, dropouts, and erratic.  The groups differed with respect to their probability of 

observation on each measurement occasion.  In the population generating model, 

treatment predicted group membership, and both treatment group and latent group 

membership predicted the growth variables.  The groups did not differ with respect to 

their overall growth trajectories, but they differed with respect to the treatment effect.  

The authors’ analyzed the artificial data using: (a) the population-generating model (a 
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latent class shared-parameter model with three latent classes), (b) a latent class shared-

parameter model with two latent classes, and (c) a standard LCM.   Morgan-Lopez and 

Fals-Stewart (2008) found that both the two- and three- class shared-parameter models 

resulted in acceptable parameter estimates, but that analyzing the data using a LCM 

resulted in unacceptable levels of bias when dropout rates were high and when class-

specific treatment effects were well separated. The finding that even the two-class model 

recovered the aggregate parameters fairly well is consistent with the idea that one need 

not identify the true number of groups present in the data (in this case, three), so long as a 

sufficient number of groups is included in the model. 

Study Overview 

 This study evaluated the performance of SPMMs for linear models of growth 

under a variety of population and modeling conditions.  Predictors of growth are included 

to maximize the external validity of the results—in most real-world data analysis settings, 

researchers are more interested in making inferences about predictor effects than about 

modeling the shape of unconditional growth.  Two versions of the SPMM are considered: 

the Binary SPMM and the Summary SPMM. 

 The major components of the study are described below. 

Study 1: Evaluating Performance of the SPMM under a Variety of Missing Data 

Mechanisms 

 SPMMs are not designed to draw precise conclusions about the nature of the 

missing data mechanism; rather, they are designed to statistically approximate the joint 

distribution between observed missing data patterns and growth factors.  As such, in 

order for the methodology to be useful in an applied context, it is necessary for the model 
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to provide a good approximation to the missing data process under a wide range of 

missing data mechanisms in the population.  Study 1 assessed the SPMM under a variety 

of missing data mechanisms: ignorable missingness (MAR), latent class-dependent non-

ignorable missingness (SPMM-consistent missingness), growth coefficient-dependent 

missingness that is either monotonically (RC-MNAR-M) or non-monotonically (RC-

MNAR-NM) related to the growth factor, and outcome-dependent missingness (OD-

MNAR). 

 Two alternative SPMM specifications were evaluated: a model with a one-number 

summary of missingness (i.e., the number of repeated measures observed for each 

individual; a ‘summary’ SPMM) or a model with dichotomous missing data indicators for 

every repeated measure (a ‘Binary’ SPMM).  Two models were considered for a couple 

of reasons.  First, it is possible that relative model performance may differ by missing 

data mechanism.  For instance, a summary SPMM might work well with a monotonic 

mechanism, but the same model might not work well with a non-monotonic (e.g., a U-

shaped) missing data mechanism.  The reason for this is as follows: if a mid-ranged 

random effect value is related to the lowest probability of missing data, with high 

probabilities of missingness on either tail of the random effect distribution, then the 

number of missing observations will be virtually uncorrelated with the growth factors.  In 

this case, it might be more informative to use a Binary SPMM in order to adequately 

approximate the missingness process.  The second reason to evaluate the performance of 

two models is practical: as the number of repeated measures increases, the computational 

feasibility of the Binary SPMM decreases. 
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Study 2: Evaluating the Effect of Missingness Mechanism Severity on SPMM 

Performance 

 Random coefficient-dependent missingness is expected to result in the most 

growth parameter bias when little information is available with which to accurately 

determine random coefficient estimates (conditions influencing growth factor 

determinacy are described below).  Study 2 tested the hypothesis that the higher the 

determinacy of the random coefficients, the less severe the MNAR mechanism; as growth 

coefficients approach determinacy, they should become more like observed variables, and 

the MNAR mechanism should therefore approach a MAR mechanism.  Longitudinal data 

characteristics that lead to good growth factor determinacy include: a high correlation 

between growth factors, a low proportion of unexplained variance (for both items and 

factors), and many repeated measures (e.g., Guttman, 1955; Mulaik & McDonald, 1978; 

Acito & Anderson, 1986).    

 When conducting an empirical research study, it is impossible to manipulate the 

correlation between growth factors, and control over the reliability of measures is limited.  

The number of repeated measures can be (relatively) easily manipulated by the 

researcher, so this was included as a measure of growth factor determinacy in Study 2.  

Five, 10, and 20 repeated measures were included as study conditions in order to simulate 

data across a realistic range of longitudinal studies.  As recognized by Mulaik and 

McDonald (1978), infinitely adding observed variables does not additively contribute to 

factor determinacy.  Thus, it might be expected that the difference between including five 
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and ten repeated measures in a study is greater than the difference between ten and 

twenty indicators. 

 When data are missing, factor score determinacy will be influenced not only by 

the number of repeated measurement occasions, but also by the frequency with which the 

measures are actually observed.  In Study 2, the proportion of missing data was 

manipulated so that the proportion is either .30 or .60.  This range was chosen so that the 

proportion of MNAR missingness was high enough to substantially bias parameter 

estimates if MAR is assumed (Collins, Kam, & Schafer, 2001), and low enough to be 

realistic. 

 The nature of the random coefficient-dependent mechanism may influence factor 

score determinacy, holding constant the number of repeated measures observed.  That is, 

even if the proportion of missing data were held constant, it would be reasonable to 

expect that an SPMM might have more trouble with a dropout mechanism than with an 

erratic missingness mechanism, particularly when the number of repeated measures is 

low.  In instances of complete attrition, information about growth trajectories is 

concentrated in the initial part of the study, so growth factor estimates rely on a severely 

restricted range of information with which to provide inference about a parameter 

describing the entire time range in the study.  The problem may be compounded if the 

proportion of unexplained variance is lowest at the intercept (i.e., if growth coefficients 

contribute more explained variance over time).  However, the problem of dropout might 

be ameliorated if many repeated measures exist so that enough observations exist to 

develop a relatively precise trajectory estimate for individuals in the sample.  Therefore, 

while holding the percentage of missing data constant, Study 2 varied the missingness 
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mechanism to result in either erratic missingness or complete dropout.  Simultaneously, 

the number of repeated measures were varied. 

 The same characteristics that influence growth factor determinacy in a LCM may 

also influence performance of SPMMs for a different reason.  When a study collects a 

small number of repeated measures, when dropout is present (as opposed to erratically 

missing data), or when there is a high proportion of missing data, it is expected that fewer 

latent classes will be extracted from the data, thereby limiting the ability of the SPMM to 

fully account for dependence between the missingness mechanism and the growth 

factors. 

Study 3: A Real-World Application of the SPMM 

 The final component of this manuscript is an empirical application of the SPMM 

to real data.  Data are from a longitudinal study of patients while they were enrolled in 

psychotherapy.  Past research has assumed that response to therapy treatment is 

independent from the dose of therapy received (Baldwin, Berkeljon, Atkins, Olsen, & 

Nielsen, 2009).  Baldwin et al. showed that psychotherapy outcomes are not independent 

from dose (i.e., the number of psychotherapy sessions attended).  They included total 

number of sessions attended as a predictor of psychotherapy outcomes in a growth model.  

An alternative strategy for modeling Baldwin et al.’s (2009) psychotherapy is to 

implement a SPMM, using number of sessions attended as a latent class indicator.  The 

benefit of using the SPMM approach to modeling the psychotherapy data is that it 

provides a single model for the population that is not conditional on the number of 

sessions attended.  Such information might be useful for understanding the average 

change over time that might be expected for an individual entering treatment, without a 
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priori knowledge of the dose of psychotherapy that will be received.  This knowledge 

would be useful in planning psychotherapy interventions. 

 The psychotherapy dataset analyzed in Study 3 is one example of many possible 

uses for SPMM methodology.  In this case, participant data are structured using therapy 

sessions as the time metric.  In a sense, patients who leave therapy before the final 

measurement occasion can be considered as dropping out of the study early; the full 

hypothetical trajectory (had the patients stayed in therapy until the end of the study) is 

unobserved for most participants.  If time of dropout is related to participants’ change 

trajectories, then the LCM-implied population average trajectories, and the variation 

around the average, will be biased toward the patients who stayed in therapy longer.5

                                                           
5
 Trajectory estimates will be biased under an MAR approach assuming that the research question relates 

to the expected rate of change for individual patients enrolled in therapy, without a priori knowledge of 

their length in treatment. 
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Chapter 2 

STUDY 1: QUALITY OF SPMM APPROXIMATION  
OF A VARIETY OF MISSING DATA MECHANISMS 

 

 Study 1 was designed primarily to assess SPMM performance under a variety of 

missing data mechanisms: MAR (i.e., ignorable) missingness, latent class-dependent 

missingness (i.e., SPMM-consistent missingness), growth coefficient-dependent 

missingness that is either monotonic (RC-MNAR-M) or non-monotonic (RC-MNAR-

NM) with respect to the relationship between the growth coefficient and the probability 

of missingness, and outcome-dependent missingness (OD-MNAR). 

 Two alternative SPMM specifications were evaluated: a model with a one-number 

summary of missingness (i.e., the number of repeated measures observed for each 

individual; a ‘Summary SPMM’) and a model with binary missing data indicators for 

every repeated measure (a ‘Binary SPMM’).  The secondary purpose of Study 1 was to 

compare performance of the Binary SPMM with the Summary SPMM across a range of 

conditions under which the summary model would be expected to work as well as or 

better than the Binary model (MAR, SPMM-consistent, and RC-MNAR-M missingness 

mechanisms), and under conditions in which the binary model might provide some 

additional information regarding the missing data process with which to obtain less 

biased parameter estimates than the summary model could obtain (RC-MNAR-NM and 

OD-MNAR missingness mechanisms).    

 



23 

 

 

 Hypotheses regarding model performance under the missingness mechanisms 

tested in Study 1 are listed below: 

1.  The LCM and the SPMM should both provide unbiased estimates of the average 

trajectories (i.e. α  and γ ) and variability around averages (i.e., Ψ ) when the missingness 

mechanism is MAR.  The LCM should provide more efficient estimates than the SPMM 

since it relies on fewer parameters. 

2.  Both versions of the SPMM should provide less biased estimates of the population 

average trajectory than the LCM when the missing data mechanism is random coefficient 

dependent (i.e., SPMM-consistent, RC-MNAR-M, or RC-MNAR-NM).  SPMM 

performance will be best when the non-ignorable mechanism is SPMM-consistent but it 

will provide a reasonable approximation to any random coefficient-dependent 

missingness mechanism. 

3.  SPMM-generated estimates will be less biased than LCM-generated estimates under 

an OD-MNAR mechanism to the extent that missingness depends on the random 

coefficients.  However, given the presence of substantial residual variation, it is 

hypothesized that neither of the models will provide acceptable estimates under outcome 

dependent missingness. 

 Bias is considered for both fixed effects (α and γ ) and variance components (Ψ ) 

in turn.  With respect to the fixed effects, the greatest bias is anticipated for 1α in the RC-

MNAR conditions since the missing data generation mechanism is random slope 

dependent, and the greatest bias is anticipated for 0α in the OD-MNAR condition since 

the missing data mechanism depends on levels of tiy .  For fixed effects, bias in standard 

error estimates is also examined. 
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 Hypotheses regarding the relative performance of the Summary SPMM and 

Binary SPMM are: 

4.  The Binary SPMM may be better able to accommodate a non-monotonic mechanism 

than the Summary SPMM, but both models will be equivalently unbiased (or biased) in 

all other conditions. 

5.  The Summary SPMM should be more efficient than the Binary SPMM when both 

equivalently capture information about the missing data process (i.e., under a MAR 

mechanism, a RC-MNAR-M, and SPMM-consistent missingnes). 

Data Generation 

 Parameter generating values were chosen to match the linear form of growth in a 

naturalistic psychotherapy study that was described in Baldwin et al. (2009).6  In this 

study, patients were suspected to have left therapy, and thus stopped providing outcome 

information, as a function of their growth trajectories, suggesting a random-coefficient-

process for study termination. Five hundred replicated samples of size 300 were 

generated for each missing data mechanism condition.7 

 For most of the conditions, data generation occurred in two steps.  First, complete 

data ( )c
iy  were generated, and then the observed repeated measures o

iy were selected based 

on the missingness mechanism.  An overall probability of 35% missingness was retained 

across all study conditions.  Data on ten repeated measures were generated to be 

consistent with the following conditional LCM with a linear form:  

                                                           
6
 These data are analyzed in Chapter 4 using the SPMM. 

 
7
 A sample size of 300 was chosen to balance between the complexity of the model (necessitating 

relatively large sample sizes) and the practical constraints of most psychological studies (necessitating 

relatively small sample sizes).  Pilot research with larger sample sizes showed the same pattern of results, 

but with less variability and with more classes, on average. 
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where c
tiy denotes complete data at time t for individual i, 0iη denotes the random intercept, 

tλ is time ( {0,1,...,9}tλ = ), 1iη is the random slope, and itε is the time-varying residual 

term, ~ (0,180)ti Nε .  The baseline intercept was set to 0 69α = and random slope 

intercept was set to 1 2.5α = − .  Both were conditioned on the same binary time-invariant 

covariate, ix  ( ~ (.5))ix Ber , where the effect of the covariate is measured by regression 

parameters 0 10γ = (a moderate Cohen’s d effect size of .52) and 1 1.13γ = −  (a moderate 

Cohen’s d effect size of .42).  Both growth factors were influenced by a randomly 

distributed disturbance term, 0iζ and 1iζ , respectively.  The disturbances were distributed 

as follows: 

 0
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0  375      -10.38
~ ,

0 -10.38      7.18
i

i

N
ζ

ζ
      
     
       .

 (2.2)  

 Because time was coded to begin at zero, these values imply that the average 

individual with 0ix = begins the study with a score of 69 and declines by 2.5 units per 

time point, and the average individual with 1ix = begins the study with a score of 79 and 

declines by 3.63 units per time point. Individuals vary in their initial values and rates of 

change, as represented by the variation in random intercept and slope terms. Further, 

individuals whose intercepts are higher than average tend to decline at a faster rate than 

average, as implied by the negative covariance between oiζ and 1iζ ( .20)ρ = − .  
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 Data for the SPMM-consistent, discrete missing data process was generated 

somewhat differently.  Data in this condition were generated from three groups, each 

with a different probability of missingness (retaining an overall missingness probability 

of 35%).  Each group also differed with respect to the average slope, but not with respect 

to the average intercept or covariate effects.  Group 1 was characterized by a relatively 

flat rate of change (11 .7α = when 0ix = ) and a high probability of missingness1( .68).p =

Group 2 was characterized by a moderately negative rate of change 12( 2.5α = − when

0)ix =  and a moderate probability of missingness (2 .35p = ).  Group 3 was characterized 

by a steeply negative rate of change (13 5.7α = − when 0ix = ) and a low probability of 

missingness 3( .02)p = .  Each group comprised 1/3 of the population.  The overall 

population mean trajectory for this condition matched other conditions.  Also, the 

population-level observed rate of change was -3.58, which is equivalent to the observed 

rate of change in the RC-MNAR-M condition .  The within-class covariance matrix was 

specified as 

 
 375      -10.38

-10.38      6.79

 
=  
 

Φ

.
 (2.3)  

 Data deletion for the four SPMM-inconsistent conditions is described below.  

 MAR. Within each replication, the probability that a repeated measure was 

missing depended only on time (where t = 0 to 9). 
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 Outcome dependent MNAR (OD-MNAR). The probability of missingness 

increased as the value of c
tiy  increased.  A one standard deviation increase in c

tiy  was 

related to a 2.23 factor increase in the odds of item missingness.  In Equation (2.5), ytiσ is 

the standard deviation of ctiy
.
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 Random coefficient dependent MNAR - monotonic process (RC-MNAR-M).  The 

model for inducing monotonically increasing random coefficient-dependent MNAR was 

the following: 
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For this condition, an SD increase in 1iζ was related to a 7.39 factor increase in the odds 

of item missingness.8 

 Random coefficient-dependent MNAR - nonmonotonic process (RC-MNAR-NM).  

Missingness for the nonmonotonic random coefficient-dependence condition differed 

from the other non-random conditions because, although the mechanism was severe in 

that a strong relationship existed between the random coefficient and the probability of 

missingness, this relationship selected out information on both tails of the random effect 

distribution.  Like the other conditions, overall missingness was fixed at 35%.  A piece-

                                                           
8
 MNAR severity is intentionally high; a more severe missing data mechanism provides a stronger test of 

SPMM (and LCM) performance. 
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wise function with five nodes was used to model missingness in this condition.  In 

Equation (2.7), 
1

Z
iζ represents the standardized value of the individual slope from the 

average slope (
1

1

11
i

iZξ

ζ
ψ

= ): 
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Figure 2 illustrates the relationship between an individual’s random slope deviation 1( )iζ

and the probability that an item is missing for the two RC-MNAR conditions. 

 

Figure 2.  A Depiction of Monotonic and Non-Monotonic RC-MNAR Conditions: The 
Relations between 1iζ  and P( 1tir = ) 
 

Data Analysis 

 One- through five-class Binary and Summary SPMMs were estimated for each 

replicated dataset according to Equation (1.3).  The missing data indicator in the 

Summary SPMM, the number of repeated measures observed for individual i, was treated 
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as a continuous indicator and was assumed to be normally distributed within class.  The 

assumption of normality is known to be violated, but with ten repeated measures the 

assumption violation is not egregious, and this assumption assists with computational 

feasibility (which is the impetus for using a summary indicator in the first place).  

Further, pilot research suggests that treating the summary indicator as a count variable 

(and modeling it with a Poisson distribution) does not improve model results. 

For each replication, a class solution was removed if the solution was not positive 

definite, if the solution was a clear outlier upon visual inspection, or if the solution 

contained a class with probability less than .10.9  Aggregate point estimates and delta-

method standard error estimates were generated by Mplus (version 6) using Equations 1.4 

and 1.5.  Class enumeration was determined on a replication-by-replication basis; the 

models with the lowest AIC and BIC values were selected for comparison.  A standard 

LCM, which assumes MAR, was also estimated for each replicated dataset for 

comparative purposes.   

Table 1 reports rates of convergence to a positive definite solution and 

frequencies of positive definite solutions removed due to being an outlier or having a low 

class probability, by missing data mechanism and by model (Summary or Binary 

SPMM).  The frequency with which one- through five-class solutions were selected by 

the AIC and BIC are also reported in Table 1.   

                                                           
9
 Solutions with small class proportions tend to produce very large standard error estimates that would in 

practice be rejected in favor of a solution with fewer classes, regardless of information criteria.  

Preliminary analyses indicated that solutions containing very small classes produced variance component 

estimates that were more upwardly biased than the estimates produced by solutions with more equal 

class proportions.  Furthermore, Lubke and Neale (2006) found that small class sizes lead to difficulty in 

correct model detection, when a correct model exists. 
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As shown in Table 1, estimating up to five classes appears to have been more than 

sufficient for reaching conditional independence between growth factors and missing data 

indicators, at least as suggested by the AIC and BIC.  Many high-class solutions were 

removed due to low class proportions, particularly when the missing data mechanism was 

MAR or OD-MNAR.   

As expected, the BIC consistently chose fewer classes than the AIC.  This is 

because the BIC contains a penalization for the number of independent observations (i.e., 

individuals, n) in the sample and the AIC does not: 

 
2 2ln( )

ln( ) 2ln( )

AIC q L

BIC q n L

= −

= −
, (2.8) 

where q denotes the number of parameters and L is the likelihood. 

Figure 3 shows the AIC- and BIC-based distributions of class enumeration for the 

MAR conditions in Study 1.  Both the AIC and the BIC choose one class most of the time 

(59.00% for the AIC and 72.80% for the BIC) and both choose more than one class a 

good portion of the time, considering that it is known that a single class generated the 

sample data.  This finding implies that neither the AIC nor the BIC should be used as an 

empirical test for whether MAR is a reasonable assumption for missing data, and it is a 

replication of earlier findings (e.g., Bauer & Curran, 2003; Tofighi & Enders, 2008). 
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Table 1.  Rates of Convergence to a Proper Solution, Solution Deletion, and AIC and BIC Model Selection for Study 1 
 Full SPMM Summary SPMM 
Classes Converged Low kπ  Outlier Remain AIC  BIC  Converged Low kπ  Outlier Remain AIC  BIC  

MAR Mechanism 
1 468 NA 0 468 295 364 499 NA 0 499 257 305 
2 467 42 0 425 79 55 498 121 10 367 88 74 
3 466 155 2 309 35 20 492 236 4 252 78 78 
4 459 321 0 138 46 25 476 342 0 134 51 38 
5 457 409 0 48 13 4 469 445 0 24 7 4 
SPMM Consistent Mechanism 
1 500 NA 0 500 0 0 500 NA 0 500 0 0 
2 500 0 1 499 0 176 500 0 0 500 0 1 
3 500 0 1 499 368 220 500 0 0 500 186 195 
4 499 254 15 230 91 73 497 31 21 445 233 227 
5 500 410 0 90 41 31 500 279 0 221 81 77 
RC-MNAR-M Mechanism 
1 500 NA 0 500 0 0 500 NA 0 500 2 2 
2 500 0 1 499 6 11 500 0 0 500 0 0 
3 493 0 5 488 210 415 495 0 2 493 15 45 
4 493 99 8 332 198 0 483 2 9 472 332 305 
5 365 179 6 180 86 74 425 125 3 297 151 148 
RC-MNAR-NM Mechanism 
1 500 NA 0 500 109 171 500 NA 0 500 98 112 
2 500 140 0 360 195 304 500 136 0 364 196 251 
3 498 257 1 240 118 6 499 259 0 240 173 117 
4 479 367 0 112 50 0 461 407 0 54 25 13 
5 447 403 0 44 28 19 387 103 0 10 8 7 
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 Full SPMM Summary SPMM 
Classes Converge Low kπ  Outlier Remain AIC  BIC  Converge Low kπ  Outlier Remain AIC  BIC  

OD-MNAR Mechanism 
1 500 NA 0 500 1 2 500 NA 0 500 356 428 
2 500 0 1 499 93 488 500 0 0 500 0 1 
3 500 89 5 406 222 2 411 54 0 357 64 1 
4 500 230 0 270 174 0 496 338 2 156 70 63 
5 177 152 0 25 10 8 177 156 0 21 10 7 
 

 

 

 

Figure 3.  Class enumeration based on AIC (left) and BIC (right) when missing data are MAR 
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It is encouraging to note that a single class was never selected by the AIC or BIC 

with a Binary SPMM and a single class was very rarely selected with a Summary SPMM 

when the missing data mechanism was SPMM Consistent or RC-MNAR-M.  The 

frequency distribution of class enumeration for the OD-MNAR condition is somewhat 

surprising; a single class was never selected by the AIC, and a single class was only 

chosen once by the BIC.  It appears that the non-random censoring of the tiy values led to 

a skewed distribution that resulted in multiple classes being selected.  Also, OD-MNAR 

contains a RC-MNAR mechanism: individual differences in intercept, and to a lesser 

extent slopes, explain some variation in tiy .  Indeed, more classes were selected on 

average when the missing data mechanism was OD-MNAR than when the missing data 

mechanism was RC-MNAR-NM. 

Standardized bias (SB) and root mean squared error (RMSE) were used as 

performance criteria for evaluating bias and precision of the fixed effect and variance 

component estimates from the LCM and SPMM in Study 1.  Appendix A presents 

additional results comparing standardized, raw, and relative bias measures.  SB was 

calculated as follows, where 
ˆ

jθ is the estimate for θ in the jth repetition, and N is the total 

number of replications that are properly converged: 

 1

ˆ
100

*
ˆ( )

N

j
j

j
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NSE

θ
θ

θ
=

 
 
 = −
 
 
 

∑
 (2.9) 

SB measures the magnitude of parameter bias as a percentage of the standard error for 

each parameter.  It can be interpreted as the distance (in percentage of standard deviation 
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units) that the estimate is off from the true parameter (Collins et al., 2001).  According to 

Collins et al., SB values falling within ± 40% are considered ‘acceptable.’  This is 

equivalent to bias within ± .4 SD units for parameter estimates.  Because SB is scaled by 

each parameter’s standard error, it is useful in this study for comparing bias in parameter 

estimates across missing data conditions.
 

RMSE is a measure of the variation / imprecision of estimation that was 

calculated as follows: 

 

2

1

ˆ( )

RMSE

N

j
j

N

θ θ
=

−

=
∑

.
 (2.10)  

 Accuracy of inferences related to predictor effects and growth factor means were 

further assessed by examining the ratio between the standard error estimates and the true, 

empirical standard deviations of the sampling distribution for each point estimate. 

 Study 1 results are presented below, organized by hypotheses.  First, the LCM is 

compared with the Binary SPMM (according to the first set of hypotheses), and then the 

Binary SPMM is compared with the Summary SPMM (according to the second set of 

hypotheses).  The LCM is compared with the Binary SPMM first because the Binary 

SPMM is similar to most latent mixture model formulations that have been presented in 

the literature for handling non-randomly missing data (e.g., Roy, 2003; Morgan-Lopez & 

Fals-Stewart, 2007, 2008).  The Summary SPMM is compared with the Binary SPMM 

because it was introduced later in time in an effort to reduce computational complexity 

(e.g., Roy, 2007). 
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Results for Hypothesis 1: Trajectory Recovery under MAR 

The first hypothesis posited that both LCM- and SPMM-implied trajectories 

would be equivalently unbiased in the fixed effects under a MAR mechanism, but that the 

LCM would be more precise than the SPMM.   

Table 2 compares SB and RMSE of fixed effect trajectory estimates implied by 

the LCM, and by the (Binary) SPMM (both the best / lowest AIC and best / lowest BIC 

are reported), and Figure 4 shows that the average LCM- and SPMM-implied trajectories 

are both indistinguishable from the generating model. 

Table 2.  Bias and Efficiency of Trajectory Recovery under a MAR Mechanism 
 LCM SPMM (Best AIC) SPMM (Best BIC) 
 SB (%) RMSE SB (%) RMSE SB (%) RMSE 

Fixed Effects       
Conditional Intercept ( 0α ) 4.89 1.84 .55 1.82 0 1.83 
Conditional Slope ( 1α ) 0 .33 0 .35 2.86 .35 
Intercept Predictor 0( )γ  -1.89 2.65 0 2.68 .75 2.71 
Slope Predictor 1( )γ  2.22 .46 4.26 .47 2.13 .48 
Variance Components       
Intercept Variance  
( 00ψ ) -10.30 37.43 -16.49 56.01 -15.84 49.22 
Slope Variance  
( 11ψ ) -9.82 1.12 -17.76 1.69 -16.67 1.50 
Covariance ( 01ψ ) 2.28 4.82 10.73 6.68 8.98 6.09 
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Figure 4.  Comparison of LCM- and Binary SPMM-Implied Trajectories for xi = 0 and xi 
= 1 when the ‘missing at random’ assumption is met; results from best AIC are shown 
here 

 

Table 2 illustrates that both the LCM and the SPMM produce fixed effect and 

variance component estimates with little bias (recall that SB is considered acceptable 

within the range of ± 40%), The RMSE values presented in Table 2 also indicates that 

LCM is slightly more efficient in recovering variance components than the SPMM, but 

that efficiency is about equivalent for fixed effect estimates.  The finding that the LCM 

more efficiently recovers variance component estimates, but not fixed effects, might 

result from the fact that the SPMM misspecifies the random effects (e.g., Verbeke & 

Lesaffre, 1997; Litiѐre, Alonso, & Molenberghs, 2008).  Table 2 further indicates that 
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there is no strong empirical reason to rely on the AIC or the BIC when the missing data 

mechanism is MAR.   

Results for Hypotheses 2 and 3: Trajectory Recovery under MNAR 

It was expected that the SPMM would recover trajectory estimates better than the 

LCM when the missing data mechanism was random coefficient-dependent, but that 

neither model would recover trajectories well under an outcome dependent MNAR 

process.  Table 3 compares SB and RMSE values across MNAR study conditions and 

models, and Figure 5 shows the average LCM and Binary SPMM performance under the 

four MNAR conditions. 

 

Figure 5.  Comparison of LCM- and Binary SPMM-Implied Trajectories for xi = 0 and xi 
= 1 under a variety of non-random missing data mechanisms: SPMM consistent (top left), 
RC-MNAR-M (top right), RC-MNAR-NM (bottom left), and OD-MNAR (bottom right); 
results from best AIC are shown here 
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Beginning with the condition most favorable to the SPMM relative to the LCM 

(SPMM-consistent missingness), Table 3 shows that LCM-implied fixed effect estimates 

of the growth factor means are substantially biased, but that regression parameters are 

relatively unbiased, whereas SPMM-implied fixed effect estimates are all within the 

acceptable range for SB.  Additionally, RMSE values are also moderately lower for the 

SPMM-implied fixed effect estimates of growth factor means.  Except for estimated 

variation in the random slope, the LCM-implied variance component estimates are within 

the acceptable bias range.  The SPMM-implied variance component estimates are all 

relatively unbiased, and the RMSE is moderately lower for the SPMM-implied 

parameters than for the LCM-implied parameters. 

Moving to the RC-MNAR-M condition, the next most favorable condition for the 

SPMM, the same pattern of results is observed for the LCM (i.e., growth factor means 

and variance component estimates are substantially biased but regression parameters are 

unbiased).  Comparing these results with the SPMM-implied estimates shows that 

SPMM-implied fixed effect and variance component estimates are substantially less 

biased than the estimates implied by the LCM.   Indeed, bias in SPMM-generated 

estimates reach an ‘acceptable’ level of bias for almost all parameter estimates (the 

exception being a marginally unacceptable level of bias in the random slope variance 

when the AIC is used for class enumeration).  However, the RMSE of the random slope 

variance and the covariance between the random intercept and random slope is more 

efficient under the LCM.   

Moving next to the RC-MNAR-NM condition, Table 3 shows that the brunt of the 

bias induced by this missingness mechanism lies in the variance component estimates, 
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rather than in the fixed effects.  This is expected since the RC-MNAR-NM removes cases 

from either tail of the random slope distribution, leaving the mean relatively unchanged 

but substantially reducing the observed population variability.  In this condition, bias in 

the SPMM-implied fixed effect estimates and variance component estimates are both 

lower than the LCM-implied estimates, but SPMM-implied variance component 

estimates never reach an acceptable level of bias.   

Finally, as expected, fixed effect estimates for the intercept are substantially 

biased, regardless of whether the LCM or SPMM is used under an OD-MNAR missing 

data process.  Variance component estimates are also biased under OD-MNAR, and 

SPMM is not useful for correcting these.  In this case, RMSE values suggest that LCM 

performs better than the SPMM because the estimates are less variable. 

 It is important to note that a researcher who is not privy to the process underlying 

the missing data would not be able to distinguish between an OD-MNAR process and a 

MAR process because both would result in similar parameter estimates under LCM and 

SPMM. 
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Table 3.  Bias and Efficiency of Trajectory Recovery under Several MNAR Mechanisms 
 LCM SPMM (Best AIC) SPMM (Best BIC) 
 SB (%) RMSE SB (%) RMSE SB (%) RMSE 

SPMM-Consistent 
      

Fixed Effects       
Conditional Intercept ( 0α ) 76.84 2.4 1.60 1.88 10.53 1.90 
Conditional Slope ( 1α ) -128.57 .57 11.43 .35 -5.56 .36 
Intercept Predictor 0( )γ  -1.85 2.70 -1.14 2.73 2.63 2.76 
Slope Predictor 1( )γ  6.25 .48 0 .45 .44 .45 
Variance Components       
Residual Intercept Variance (00ψ ) -2.87 43.59 -5.88 44.76 -6.68 44.04 
Residual Slope Variance (11ψ ) -60.81 5.74 -2.48 1.26 -19.02 1.30 
Covariance ( 01ψ ) 27.79 6.41 2.45 5.10 10.99 5.09 
RC-MNAR-M       
Fixed Effects       
Conditional Intercept ( 0α ) 163.16 3.63 15.57 2.22 10.91 2.14 
Conditional Slope ( 1α ) -404.00 1.05 -37.84 .41 -25.64 .40 
Intercept Predictor 0( )γ  6.92 2.61 8.33 2.66 7.49 2.62 
Slope Predictor 1( )γ  -2.70 .37 -2.00 .50 0 .47 
Variance Components       
Residual Intercept Variance (00ψ ) -21.22 42.26 -6.81 50.82 .21 47.95 
Residual Slope Variance (11ψ ) -335.80 2.84 -40.54 6.23 -18.49 5.93 
Covariance ( 01ψ ) 129.86 6.92 8.72 9.84 -1.00 9.42 
       
    

4
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 LCM SPMM (Best AIC) SPMM (Best BIC) 
 SB (%) RMSE SB (%) RMSE SB (%) RMSE 
RC-MNAR-NM       
Fixed Effects       
Conditional Intercept ( 0α ) 22.60 1.81 2.76 1.81 2.76 1.81 
Conditional Slope ( 1α ) -37.50 .26 -3.57 .28 -3.57 .28 
Intercept Predictor 0( )γ  3.28 2.44 5.20 2.48 4.08 2.44 
Slope Predictor 1( )γ  -8.82 .34 -9.09 .34 -9.09 .34 
Variance Components       
Residual Intercept Variance (00ψ ) -29.54 38.41 -24.22 50.58 -24.96 41.37 
Residual Slope Variance (11ψ ) -270.51 2.25 -118.97 3.74 -166.34 2.69 
Covariance ( 01ψ ) 130.15 6.52 71.03 8.10 90.70 6.96 
OD-MNAR       
Fixed Effects       
Conditional Intercept ( 0α ) -152.78 3.29 -126.29 3.12 -138.50 3.19 
Conditional Slope ( 1α ) 28.00 .26 23.08 .27 32.00 .37 
Intercept Predictor 0( )γ  -15.66 2.52 -12.41 2.79 -12.88 2.64 
Slope Predictor 1( )γ  8.33 .36 18.42 .39 10.81 .37 
Variance Components       
Residual Intercept Variance (00ψ ) -85.80 52.03 -79.56 188.30 -84.93 144.71 
Residual Slope Variance (11ψ ) -55.17 .99 -51.69 2.23 -53.41 1.49 
Covariance ( 01ψ ) 14.87 4.64 19.41 8.39 15.37 7.97 
Note.  Standardized bias (SB) values above 40% or below -40% are bolded to indicate severe bias 
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It was expected that bias in variance components might lead to bias in the 

standard errors of the fixed effects.  Standard error bias of the fixed effects, which is 

presented as a ratio of the the standard error estimates (where a ratio of one means that 

the estimates are unbiased) to empirical standard deviation of the point estimates, is 

presented in Table 4.  As a baseline measure, the average standard errors estimated using 

LCM when the missing data mechanism is MAR is slightly lower than the empirical 

standard deviations of the sampling distributions for the fixed effect point estimates.  

Compared with LCM results, the SPMM-implied ratio of average standard error 

estimates to the empirical standard deviations of the sampling distributions for the four 

fixed effects parameters are approximately equivalent under all of the missing data 

mechanisms.  However, the ratio of estimated standard errors tends to be empirical 

standard errors is on the small side (indicating increased risk for Type I errors) when the 

Binary SPMM is used. 

In other words, the Binary SPMM (but not the Summary SPMM) leads to false 

confidence in the aggregate growth parameter values.  This only occurs when the SPMM 

is used as an approximation, and not when it is literally true (i.e., MAR or SPMM-

consistent).  Perhaps the summary indicator is a more reliable measure of missingness 

than the binary indicators, leading to more precise estimates. 
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Table 4.  Comparison of Average Standard Error Estimates and Empirical Standard Deviation of Sampling Distributions for Fixed 
Effect Parameters by Missingness Condition and Model 
 LCM Binary SPMM Summary SPMM 

 Average jSE  Empirical SD 
 

Ratio Average jSE  Empirical SD 
 

Ratio Average jSE  Empirical SD 
 

Ratio 
MAR          

0α  
1.74 1.84 .94 1.73 1.83 .94 1.74 1.87 .93 

1α  
.30 .33 .91 .30 .35 .86 .31 .34 .91 

0γ  2.46 2.65 .93 2.46 2.64 .93 2.47 2.66 .93 

1γ  .43 .45 .96 .43 .48 .90 .43 .50 .86 

SPMM-Consistent         

0α  
1.85 1.90 .97 1.87 1.89 .99 2.03 1.90 1.07 

1α  
.35 .35 1.00 .33 .36 .92 .36 .33 1.09 

0γ  2.61 2.71 .96 2.60 2.65 .98 2.63 2.62 1.00 

1γ  .49 .48 1.02 .42 .45 .93 .42 .41 1.02 

RC-MNAR-M         

0α  
1.88 1.90 .99 1.97 2.08 .95 2.03 2.11 .96 

1α  
.25 .25 1.00 .28 .36 .78 .30 .32 .94 

0γ  2.66 2.60 1.02 2.63 2.63 1.00 2.63 2.67 .99 

1γ   .36 .37 .97 .33 .48 .69 .31 .36 .86 

RC-MNAR-NM         

0α  
1.78 1.77 1.01 1.78 1.82 .98 1.78 1.81 .98 

1α  
.24 .24 1.00 .25 .28 .89 .25 .28 .89 

0γ  2.51 2.44 1.03 2.51 2.45 1.02 2.51 2.46 1.02 

1γ  .35 .34 1.03 .34 .33 1.03 .33 .33 1.00 
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 LCM Binary SPMM Summary SPMM 

 Average jSE  Empirical SD 
 

Ratio Average jSE  Empirical SD 
 

Ratio Average jSE  Empirical SD 
 

Ratio 
OD-MNAR         

0α  
1.76 1.80 .98 1.74 1.87 .93 1.84 1.79 1.03 

1α  
1.74 1.90 .92 .27 .25 1.08 .26 .27 .96 

0γ  2.50 2.49 1.00 2.44 2.64 .92 2.44 2.65 .92 

1γ   .38 .36 1.06 .38 .37 1.03 .38 .37 1.03 

Note.  SPMM results are based on the solution with the lowest BIC for each replication. 
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Results for Hypotheses 4 and 5: Summary SPMM versus Binary SPMM 

 It was hypothesized that the Binary SPMM would be better able to accommodate 

a non-monotonic mechanism than the Summary SPMM, but that both models would be 

equivalently unbiased (or biased) in all other conditions.  It was also hypothesized that 

the Summary SPMM would be more efficient than the Binary SPMM when both 

equivalently capture information about the missing data process (i.e., under a MAR 

mechanism, a RC-MNAR-M, and a SPMM-consistent mechanism).   

 SB and RMSE bias of the Binary and Summary SPMM-implied estimates are 

reported in Table 5, and Figure 6 compares the Binary and Summary SPMMs across the 

four MNAR conditions (trajectories implied under a MAR mechanism were on top of the 

generating lines).  Results show support for Hypotheses 4; there are no meaningful or 

consistent differences across the two models with respect to parameter bias.  Both models 

recover all parameters well under MAR and SPMM-consistent mechanisms, both recover 

parameters adequately well under an RC-MNAR-M mechanism, both struggle with 

variance component recovery under RC-MNAR-NM, and both produce quite biased 

parameter estimates under an OD-MNAR mechanism.  It was expected that the Summary 

SPMM might provide somewhat more biased estimates under a RC-MNAR-NM 

mechanism when compared with the Binary SPMM, but this was not the case.  This 

result is probably due to the fact that the Binary SPMM does a poor job at recovering 

variance component estimates, and is not an improvement over the LCM; thus, the 

Summary SPMM does not perform any worse (or better) than the Binary SPMM. 
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Figure 6.  Comparison of and Binary SPMM- (i.e., “Full”) and Summary SMM- Implied 
Trajectories for xi = 0 and xi = 1 under a variety of non-random missing data mechanisms: 
SPMM consistent (top left), RC-MNAR-M (top right), RC-MNAR-NM (bottom left), 
and OD-MNAR (bottom right); results from best AIC are shown here  
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Table 5.  Standardized Bias and Root Mean Squared Error of Binary and Summary SPMM- Implied Parameter Estimates 
 Binary SPMM Summary SPMM 
 Best AIC Best BIC Best AIC Best BIC 
 SB (%) RMSE SB (%) RMSE SB (%) RMSE SB (%) RMSE 
MAR 

0α  .55 1.82 0 1.83 -3.26 1.84 -1.64 1.83 

1α  0 .35 2.86 .35 -2.94 .34 -2.94 0.34 

0γ  0 2.68 .75 2.71 9.70 2.70 14.13 2.67 

1γ   4.26 .47 2.13 .48 0.00 .48 0.00 .48 

00ψ  -16.49 56.01 -15.84 49.22 -18.14 63.38 -18.48 61.44 

11ψ  -17.76 1.69 -16.67 1.50 -25.45 1.62 -25.69 1.58 

01ψ  10.73 6.68 8.98 6.09 13.54 6.81 9.90 6.54 
SPMM-Consistent 

0α  1.60 1.88 10.53 1.90 8.25 1.95 7.73 1.95 

1α  11.43 .35 -5.56 .36 17.65 .34 17.65 0.34 

0γ  -1.14 2.73 2.63 2.76 -8.89 2.75 -8.89 2.75 

1γ   0 .45 .44 .45 9.30 .42 7.14 .42 

00ψ  -5.88 44.76 -6.68 44.04 -4.66 45.22 -3.97 45.19 

11ψ  -2.48 1.26 -19.02 1.30 1.85 1.10 1.85 1.10 

01ψ  2.45 5.10 10.99 5.09 -4.07 5.23 -3.30 5.20 
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 Binary SPMM Summary SPMM 
 Best AIC Best BIC Best AIC Best BIC 
 SB (%) RMSE SB (%) RMSE SB (%) RMSE SB (%) RMSE 
RC-MNAR-M 

0α  15.57 2.22 10.91 2.14 2.40 2.09 0.48 2.09 

1α  -37.84 .41 -25.64 .40 -18.18 .33 -18.18 0.33 

0γ  8.33 2.66 7.49 2.62 5.56 2.60 4.87 2.60 

1γ   -2.00 .50 0 .47 5.26 .35 5.26 .35 

00ψ  -6.81 50.82 .21 47.95 -20.90 47.72 -21.16 47.78 

11ψ  -40.54 6.23 -18.49 5.93 -33.53 5.38 -34.50 5.37 

01ψ  8.72 9.84 -1.00 9.42 14.73 8.90 14.75 8.90 
RC-MNAR-NM 

0α  2.76 1.81 2.76 1.81 8.29 1.81 8.84 1.81 

1α  -3.57 .28 -3.57 .28 -3.57 .28 -7.14 0.28 

0γ  5.20 2.48 4.08 2.44 9.64 2.45 9.64 2.44 

1γ   -9.09 .34 -9.09 .34 3.03 .33 3.03 .33 

00ψ  -24.22 50.58 -24.96 41.37 -26.52 60.96 -26.71 53.33 

11ψ  -118.97 3.74 -166.34 2.69 -108.13 3.74 -113.82 3.52 

01ψ  71.03 8.10 90.70 6.96 75.11 8.36 76.43 7.76 
OD-MNAR 

0α  -126.29 3.12 -138.50 3.19 -118.13 2.86 -117.49 2.87 

1α  23.08 .27 32.00 .37 23.08 .27 26.92 0.27 

0γ  -12.41 2.79 -12.88 2.64 -15.33 2.75 -15.56 2.73 

1γ   18.42 .39 10.81 .37 2.78 .37 5.56 .37 

4
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 Binary SPMM Summary SPMM 
 Best AIC Best BIC Best AIC Best BIC 
 SB (%) RMSE SB (%) RMSE SB (%) RMSE SB (%) RMSE 

00ψ  -79.56 188.30 -84.93 144.71 -60.43 114.56 -61.34 86.63 

11ψ  -51.69 2.23 -53.41 1.49 -52.27 1.29 -51.72 1.19 

01ψ  19.41 8.39 15.37 7.97 18.46 5.81 18.62 5.17 
Note.  0α  is the average growth intercept;  1α  is the average slope of growth; 0γ is the effect of xi on the random intercept; 1γ is the 

effect of xi on the random slope; 00ψ  is the variance of the random intercept; 11ψ  is the variance of the random slope; 01ψ  is the 
covariance of the random intercept and slope; SB bias above 40% or below –40% is bolded. 
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 It was hypothesized that the Summary SPMM would provide more efficient 

estimates than the Binary SPMM.  Efficiency was operationalized using the RMSE. 

Table 5 shows that this hypothesis is not generally true.  When the missing data 

mechanism is MAR or SPMM-consistent, both models are about equally efficient.  

However, when the missing data mechanism is RC-MNAR-M or OD-MNAR, the 

Summary SPMM is more efficient than the Binary SPMM.  When the missing data 

mechanism is RC-MNAR-NM, both models are equally efficient for recovery of the 

fixed effects, but the Binary model recovers variance component estimates more 

efficiently.  This effect is most prominent when the BIC is used for class enumeration, 

suggesting that fewer classes are better for recovering variance components more 

efficiently (at least when the model is not sufficient for approximating the missing data 

mechanism well). 

 In sum, both models perform equally well when the SPMM is the ‘true’ model 

(i.e., under MAR or SPMM-consistent MNAR missingness), and the Summary SPMM is 

more efficient than the Binary SPMM when the SPMM provides some approximation of 

the missing data mechanism, whether it is a good approximation (i.e., RC-MNAR-M), or 

a bad approximation (i.e., OD-MNAR).   

Summary and Discussion of Study 1 

 The goal of Study 1 was to test relative performance of the LCM, the Binary 

SPMM, and the Summary SPMM under a variety of realistic data conditions that might 

be encountered when analyzing longitudinal data.  The first point to take away from 

Study 1 is the SPMM does not solve the problem of missing data.  In the words of 
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Demirtas and Schafer (2003), “the best way to handle missing values is to not have them” 

(pp. 2573).  Barring that possibility, Study 1 makes it clear that, when random 

coefficient-dependent missingness is suspected, the SPMM is a helpful tool in testing the 

sensitivity of the MAR assumption that is implied by the LCM.   

 Results from Study 1 show that the LCM, which assumes that missing data are 

MAR, produces biased estimates of growth factor fixed effects and variances whenever 

the MAR assumption is violated.  As a caveat, Study 1 also showed that regression 

effects are robust to violations of the MAR assumption, at least for the conditions tested 

here.10  Study 1 showed that the SPMM, whether Binary or Summary, produces badly 

biased fixed effect estimates only when the missing data mechanism is OD-MNAR (i.e., 

a time-varying process).  Further, the SPMM is not able to recover variance components 

well when the missing data mechanism is RC-MNAR-NM.  The SPMM provides 

improved parameter estimates over the LCM when a non-ignorable random coefficient-

dependent missing data process is present, if the process is monotone or discrete.  These 

results were generally expected given that SPMMs are designed specifically to 

accommodate random coefficient dependent missing data processes. 

 Under no condition did the SPMM provide worse parameter estimates than the 

LCM; however, variance component estimates were less efficient when the SPMM was 

used with MAR missingness.  In other words, there is no serious harm done when the 

SPMM is used instead of the LCM, even when the data are MAR.  However, a researcher 

who obtains effectively identical point estimates when comparing results obtained using 

                                                           
10

 It is possible to imagine an MNAR scenario in which the regression coefficients might be biased.  For 

example, the regression coefficients might be biased if the severity of non-random selection depends on 

the level of ix . 
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an LCM with results obtained using a SPMM should rely on LCM results for the sake of 

parsimony and efficiency. 

 The Summary SPMM was shown to perform as well as the Binary SPMM under 

all conditions, and results suggested that the Summary SPMM provides slightly more 

efficient estimates than the Binary SPMM when the missing data process is 

monotonically random coefficient dependent, but it not exactly consistent with the model 

(i.e., RC-MNAR-M). 

Limitations and Future Directions 

 Study 1 assessed relative SPMM and LCM performance under only five of many 

possible missing data conditions.  While the five conditions tested represent a broad 

range of conditions that would possibly be encountered with longitudinal social science 

data, this simulation study was necessarily limited in its generalizability.  Most notably 

absent from the conditions tested in Study 1 were more asymmetric nonmonotone 

random coefficient dependent mechanisms, conditions containing multiple mechanisms 

operating simultaneously, and conditions involving the regression parameters.  In spite of 

this limitation, the results here are informative, at least for predicting what might happen 

in real world data conditions.  Real world situations involving multiple missing data 

mechanisms would be prey to multiple types of parameter bias, and more complex 

missing data mechanisms that involved multiple growth factors would contain bias in 

more of the parameters. 

 A more pressing limitation of Study 1 is its failure to consider monotone dropout, 

a commonly observed type of missingness in longitudinal research.  Study 2 will compare 

dropout with the erratic mechanism studied in this chapter, in addition to examining the 
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role that observation length and proportion of missing data play in LCM and SPMM 

performance. 
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Chapter 3 

STUDY 2: A CLOSER LOOK AT SPMM  
PERFORMANCE ACROSS DATA CONDITIONS 

 

 Study 1 compared LCM and SPMM performance across a range of missing data 

mechanisms; however, it was limited in the range of data conditions that were assessed.  

To further investigate LCM and SPMM performance across a range of data conditions, 

Study 2 crossed number of observation occasions (5, 10, or 20) with erratically spaced 

missing data or complete attrition, and with proportion of missing data (.30 or .60), 

resulting in a 3 x 2 x 2 full factorial design (i.e., 12 conditions).  The missingness 

mechanism studied was the RC-MNAR-M mechanism from Study 1.11  Because it was 

determined from Study 1 that the Summary SPMM performs better than the Binary 

SPMM under RC-MMNAR-M in the sense that Summary SPMM-generated estimates 

are more efficient than Binary SPMM-generated estimates and Summary SPMM-

generated standard errors are generally unbiased, and because the Summary SPMM is 

faster to implement, only the Summary SPMM performance was compared with LCM 

performance in Study 2. 

 The following hypotheses were tested in Study 2: 

1.  The LCM-implied trajectories will be least efficient when growth factors are poorly 

determined (i.e., when there are fewer repeated measures due to few measurement 

                                                           
11

 RC-MNAR-M is the mechanism that is typically described when random coefficient dependent 

missingness is discussed in the missing data literature (e.g., Little, 2009). 
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occasions or a higher proportion of missingness and when subjects drop out rather than 

providing erratic information across the span of measurement occasions).  The hypothesis 

that growth factor parameter estimates will be less efficient when less information is 

available with which to determine the growth factors is not unique to the problem of non-

randomly missing data; data conditions leading to higher factor determination should be 

the same whether missing data are randomly missing or not.   

 In addition to the efficiency hypothesis, however, it may be reasonable to expect 

that growth factor means and variance components will also be less biased when the 

factors are better determined.  As the correlation between the observed information (i.e., 

the observed repeated measures) and the growth factor approaches unity, the random 

coefficients become less ‘latent’ and more determined.  In turn, the random coefficient-

dependent missingness mechanism should approach ignorability, resulting in less biased 

parameter estimates when ignorability is assumed. 

 The amount of available information (e.g., observation length) is directly linked to 

growth factor determinacy (i.e., the reliability of a factor score estimate based on the 

manifest variables, or the correlation between a factor score estimate and a true factor 

score, which can be measured as follows: 

 2 ' 1ρ −= yλ Σ λ ; (3.1) 

Brown, 1910; Spearman, 1910; Guttman, 1955; Mulaik, 1976; Green, 1976; Mulaik & 

McDonald, 1978; Bollen, 1980; Grice, 2001), where 2ρ is the reliability, λ contains 

factor loadings, and yΣ is the covariance matrix of the manifest variables.  The 

relationship between the nature of missingness and growth factor determinacy / reliability 
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is less obvious.  The effects of the two processes (erratic missingness or dropout) on 

reliability would differ to the extent that the communality of observed measures changes 

systematically over time.  In this instance, an increasing proportion of the variance in 

repeated measures is explained by individual differences in development (i.e., by the 

growth factors), and a decreasing proportion of the variance is due to residual variation.  

This is the case because the factor loading matrix for the slope coefficient is structured so 

that the intercept is located at the first observation occasion, with an increasing 

contribution of the slope for each repeated measure.12  That is, a larger proportion of the 

variation in the items that have been observed is due to unique variance for the items that 

are observed than for the items that were not observed when a dropout mechanism is 

operating.  Figure 7  shows the relationship between the proportion of variance explained 

in the items that were generated using the simulation values in this manuscript, as a 

function of time, up to 9t = . 

 

                                                           
12

 Variance explained by the random slope increases in magnitude as the factor loadings increase in 

magnitude, regardless of sign.  
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Figure 7.  The relationship between time (on the x-axis) and the proportion of item 
variance explained (on the y-axis) by the growth factors in Study. 
 

Since more of the item variance is noise at the early time points, it is expected that 

growth factors should be less determined when missing data are missing due to 

monotonic dropout than if missing data are erratically missing.13 

 In a sense, any effect of the nature of missingness that is observed in Study 2 thus 

depends on an increase in the contribution of the random slope on proportion of variance 

explained in the items.  That is, it is assumed here that dropout results in the failure to 

observe items that are most informative about the growth process.  The same effect might 

not be observed if random coefficient dependent missingness were, for instance, random 

intercept dependent. 

2.  The second main hypothesis of Study 2 is that SPMM may have difficulty recovering 

a sufficient number of classes to accommodate informative missingness when there are 

few observed repeated measures (i.e., when there are few measurement occasions or 

when there is a high proportion of missing data) and when the missingness mechanism is 

dropout rather than erratic.  Particularly when only five repeated measures are observed 

and when 60% of the items are missing when ten or fewer repeated measures are 

observed for an individual, it may be impossible to extract four- or five-classes in the 

SPMM because there will not be enough information available with which to identify 

growth factor means for each class separately.  Hedeker and Gibbons (1997) and Little 

(1993, 1994, 1995) have described difficulty with empirical identification of separate 

                                                           
13

 The relationship between item reliability and time is not linearly / monotonically increasing because 

there is a negative covariance between the growth factors in the data generating mechanism.  The 

proportion of variance explained is equal to: 
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growth patterns in traditional PMM when an insufficient number of repeated measures 

are observed with which to identify a trajectory within certain classes.  It is therefore 

expected that this situation will be ameliorated to some extent when latent classes are 

used in place of deterministic, observed patterns because individuals with longer 

observation lengths will contribute some information to shorter growth groups; however, 

the problem of empirical underidentification is not likely to be completely solved when 

many classes are extracted and there are few repeated measures per individual, or when 

observed repeated measures are located in close proximity with one another (i.e., with 

monotone dropout).  On the opposite side of the observation length spectrum, Eggleston, 

Laub, and Sampson (2004; using a single dataset) found that an increased observation 

length was related to the extraction of more latent classes, so it is expected that having 

more information (i.e., 30% as opposed to 60% missingness, or 20 repeated measures), 

will be related to the extraction of additional classes. 

 In turn, it is expected that the extraction of additional classes will be linked to 

better SPMM performance due to an improved ability to establish conditional 

independence from individual growth trajectories and the missing data indicator. 

Data Generation 

 The same population-generating model that was used in Study 1 was also used in 

Study 2, except that the number of repeated measures varied between five and 20.  The 

proportion of variance in the repeated measures that was explained at the intercept was 

68.87% across conditions, and the proportion of variance explained by the conditional 

model was 74.72% for the fifth repeated measure, 87.97% for the tenth repeated measure, 

and 96.49% for the twentieth repeated measure. 
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 After generation of the complete data, observations were selectively deleted 

according to a RC-MNAR-M mechanism so that the overall probability of missingness 

was .30 or .60.  The erratic RC-MNAR-M  mechanism conditions were constructed so 

that the log odds of missingness for any given data point for an individual was a linear 

function of their random slope, varying the intercept of the linear function to achieve 

30% or 60% missingness, as shown below14: 
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 The dropout RC-MNAR-M mechanism conditions were constructed so that the 

first missing observation was expected to occur either 40% of the way through the study 

(leading to 60% missingness) or 70% of the way through the study (leading to 30% 

missingness) for an average individual, with dropout expected to occur earlier for 

individuals with higher random slopes.  To maintain consistency with the erratic 

missingness condition with respect to severity of informativeness, the same regression 

coefficient was used to relate 1iζ to the log odds of missingness.  Intercept terms for the 

linear model varied by percent of missingness in order for the probability of missingness 

                                                           
14

 The severity of informativeness did not vary by proportion of missingness in the sense that 

coefficients linking 1iζ with ( 1)tip r = remain constant across conditions.  More severe 

informativeness has predictable implications for bias of model parameters under LCM.  The 

purpose of altering the proportion of missing data was to test the limit of the SPMM’s capability 

to draw information regarding dependencies between missing data patterns and repeated 

measures when many observations are missing and to study the effect of proportion 

missingness on growth factor determinacy in LCM. 
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for a given occasion to reach an expected survival time (defined as the first occasion of 

missingness, because missingness is monotone in the dropout conditions) at the desired 

measurement occasion.  Expected survival time and probability of missingness for each 

occasion are listed in Table 6. 

Table 6.  Expected Survival Time and Probability of Missingness for tiy  

 Expected Survival Time Missingness Probability  
Five Repeated Measures 
30% missing 3.5 .18 
60% missing 2 .29 
Ten Repeated Measures 
30% missing 7 .09 
60% missing 4 .16 
Twenty Repeated Measures 
30% missing 14 .05 
60% missing  8 .08 
Note.  Expected survival time denotes the observation occasion at which there is a 50% 
cumulative probability of a missing observation (the intercept is located at t = 0).  This 
corresponds with individual item missingness probabilities in the right-hand column. 
 

 Five hundred replications of sample size 300 were generated for each population 

condition. 

Data Analysis 

 Data analysis in Study 2 matched the Study 1 procedure, except that only the 

Summary SPMM (one through five classes per replication)15 and the LCM were applied 

to each dataset.  When estimating the Summary SPMM, there were two options for 

constructing the summary indicator: time of last measurement occasion and number of 

observations.  In the dropout condition, these alternative summaries would provide 

identical information.  In the erratic missingness condition, the last observation occasion 

                                                           
15

 Only four classes were estimated in the conditions with five repeated measures because, in SPMM and 

related latent mixture modeling approaches, the number of latent classes K is less than the number of 

observed patterns of missingness.  For the dropout conditions, this means that K < 5 in the conditions 

with only 5 observation occasions.   
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would not be as meaningful as the number of observations; thus, number of observations 

was used as a summary indicator for all conditions. 

 Within a replication, a solution was removed from possible AIC / BIC selection if 

it: 1) did not converge to a positive definite solution; 2) was a visual outlier, or 3) 

contained a class with ˆ .10kπ < .  These were the same criteria that were used in Study 1. 

 Raw bias (RB), standardized bias (SB) and root mean squared error (RMSE) were 

calculated for each study condition, along with coverage rates and class enumeration 

based on the AIC and BIC. 

Results for Hypothesis 1:  Higher Factor Score Determinacy is Related to Less Biased 

and More Efficient LCM Estimates in the Presence of Non-Randomly Missing Data 

 It was hypothesized that circumstances leading to increased growth factor 

determinacy would decrease the severity of the effects of random coefficient dependent 

missingness on parameter estimates when an LCM is used for data analysis, controlling 

for the strength of the association between the random coefficient and the probability of 

missingness.  Specifically, more observations (resulting from more repeated measures or 

from a smaller proportion of missing data) were expected to increase the accuracy and 

precision of LCM-based trajectory estimates in the presence of random coefficient 

dependence missingness.  Further, the nature of the pattern of missingness was expected 

to affect factor score determinacy; controlling for the proportion of missing data and the 

magnitude of the association between the random coefficient and the probability of 

missingness, erratically spaced missingness was expected to be related to higher factor 

score determinacy (and therefore more accuracy and precision) than monotonic 

missingness (i.e., dropout). 
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 Figures 8 and 9 show RB, SB, and RMSE values, respectively, for the random 

slope mean (Figure 8) and variance (Figure 9) by percent of missingness (left) and nature  

 

Figure 8.  Raw bias (top), standardized bias (middle), and RMSE (bottom) of LCM-
implied fixed effect estimates for the slope by percent of missingness (30% or 60%; left) 
and nature of missingness (erratic (E) or dropout (D); right) and by number of 
observation occasions (5, 10, or 20).  A horizontal reference line is drawn at SB = -40 to 
indicate the cutoff for “acceptable” bias.   
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Figure 9.  Raw bias (top), standardized bias (middle), and RMSE (bottom) of LCM-
implied variance component estimates for the slope by percent of missingness (30% or 
60%; left) and nature of missingness (erratic (E) or dropout (D); right) and by number of 
observation occasions (5, 10, or 20).  A horizontal reference line is drawn at SB = -40 to 
indicate the cutoff for “acceptable” bias. 
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of missingness (i.e., erratic missingness or dropout; right), conditional on the number of 

observation occasions (each cell).16    

Effect of Number of Observation Occasions.  It was hypothesized that more observation 

occasions would lead to less biased and more efficient parameter estimates due to 

increased factor determinacy.  The top panel of Figure 8 (RB) suggest a mild effect of the 

number of observation occasions on fixed effect bias in the expected direction, and the 

same is true for the variance shown in Figure 9.  This effect appears to be reversed for the 

SB, but this is an artifact due to the decrease in standard errors resulting from more 

observations.  The RMSE, shown in the bottom row of both Figures, concurs with the 

hypothesis that having more repeated measures leads to more precise estimates of growth 

(with respect to both mean change and population variation around the mean).   

 Effect of Percent of Missingness.  It was hypothesized that growth factors would 

be better determined with more observed information, and thus that parameters related to 

growth would be more biased and less efficient as the percentage of missingness 

increased, even controlling for severity of the missingness mechanism.  However, the 

left-hand panels of Figures 8 and 9 suggest that there is no substantial effect of the 

percent of missing data on parameter bias or RMSE.  Hindsight suggests that the random 

subtraction of missing data should not lead to increased parameter bias, although the 

deletion of additional data should lead to less efficient parameter estimates.  An 

inspection of the empirical standard deviations of the LCM-based estimates, shown in 

Table 7, suggests that the effect of proportion of missing data on efficiency depends on 

                                                           
16

 Because the random coefficient dependent mechanism was solely dependent upon the random slope, 

emphasis is placed on recovery of the fixed effect estimate of the rate change over time, and on the 

recovery of the variance of the random slope.  These were the parameters that were affected in Study 1.   
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observation length and on the nature of missingness.  For erratically missing data, a 

higher proportion of missing data is linked to larger empirical standard deviations (and 

standard error estimate) only when five repeated measures are present.  For dropout, 

more missing data is linked to lower empirical standard deviations when five repeated 

measures are present.  There is no effect of proportion of missing data as the number of 

repeated measures increases. 

 Table 7 also shows that the efficiency of variance component estimates is 

dramatically improved as the observation length increases; fixed effect estimates are 

more robust to study length. 

Table 7.  Comparison of Empirical Standard Deviations for LCM-Based Slope Estimates 
 30% Missing 60% Missing 
 Dropout Erratic Dropout Erratic 
Five Observations 
Fixed Slope .57 .48 .54 .65 
Slope Variance 3.60 3.59 3.44 4.37 
Ten Observations 
Fixed Slope .36 .25 .27 .28 
Slope Variance .94 .78 .69 .85 
Twenty Observations 
Fixed Slope .23 .21 .24 .21 
Slope Variance .57 .57 .55 .50 
 

 Nature of Missingness.  It was expected that the LCM would have more trouble 

accommodating missingness due to dropout than erratic missingness.  This hypothesis 

was supported for both the fixed effect estimate and for the variance component, except 

for the cells with a high proportion of missing data and five repeated measures.  In this 

case, dropout produces estimates that are about equally biased, but that have smaller 

standard errors. 
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 Although results are largely consistent with the hypothesis regarding trends in 

bias as a function of growth factor determinacy, the fixed effect estimates generated by 

the LCM are severely biased under the MNAR mechanism imposed in this study, 

regardless of study condition.  These results suggest that it is not safe to assume that a 

MNAR process can be ignored, even when study conditions are favorable for increasing 

growth factor score determinacy. 

 Both the fixed effect (Figure 8) and variance component estimates (Figure 9) are 

always downwardly biased (in the sense that growth trajectories are estimated to be 

decreasing more steeply than they actually are).  The fixed effect estimates are 

downwardly biased because higher levels of the random slope were related to an 

increased probability of missingness.  Variance components are downwardly biased 

because the removal of observations leads to less observed variation in the population. 

 Another general point to observe in Figures 8 and 9 is that trends in RB and SB 

are not always aligned.  The SB of the point estimates is scaled by the standard error of 

the estimates; thus, it is not necessarily meaningful to compare SB across estimates 

derived from conditions with different lengths of observation.  This is because SB will be 

larger as the number of observation occasions increases, simply because standard errors 

decrease as the number of observations increase.  When comparing results across 

observation lengths, it may be more appropriate to compare RB and RMSE. 

Results for Hypothesis 2:  SPMM Should Perform Worse when Fewer Classes are 

Supported 

 Tables 8 – 10 show rates of convergence to a proper solution and case removal 

due to low class probability estimates (ˆkπ ) or due to being a visual outlier for conditions 
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with five, 10, and 20 observation occasions, respectively.  These tables also include 

information about AIC- and BIC-based model selection.  It is difficult to clearly express 

results of a study with 12 separate conditions.  In an attempt to maximize lucidity, results 

are discussed in the following order: first, effects of observation length will be discussed.  

Next, effects of nature of missingness will be discussed conditional on occasion length.  

Finally, effects of proportion of missing data will be discussed conditional on occasion 

length.   

It was expected that more classes would be supported as the observation length 

increased.  This hypothesis was met in the sense that the range of classes that could be 

estimated was limited for the five repeated measure conditions.  On the other hand, the 

same average number of classes were selected by the AIC and BIC across all observation 

length conditions.   

It was also expected that more classes would be supported and extracted with an 

erratic missing data mechanism than with monotone dropout.  This hypothesis was 

supported in the same sense that the hypothesis about the effect of the observation length 

was supported; more classes converged to proper, reasonable solutions with erratic 

missingness than with dropout, but only slightly more classes were chosen by the 

information criteria when the missing data mechanism was erratic.  There was an 

interaction between the number of observation occasions and the nature of missingness 

with respect to class extraction.  Regardless of whether the missingness mechanism was 

dropout or erratic, it was difficult for a SPMM to support more than two or three classes 

when only five repeated measures were present.  As the number of repeated measures 
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increased, more classes were supported with erratic missingness, but the SPMM still has 

difficult extracting many classes with dropout. 
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Table 8.  Rates of Convergence to a Proper Solution, Solution Deletion, and AIC and BIC Model Selection with 5 Observations 
 Monotone Dropout Erratic Missingness 
Classes Converged Low kπ  Outlier Remain AIC  BIC  Converged Low kπ  Outlier Remain AIC  BIC  

30% Missing 
1 408 NA 0 408 2 2 433 NA 0 433 11 12 
2 407 0 0 407 38 38 412 0 0 412 23 23 
3 404 15 20 369 367 367 383 1 0 383 283 303 
4 387 384 0 3 2 2 278 42 8 228 143 122 
60% Missing 
1 416 NA 1 415 24 25 416 NA 2 414 24 25 
2 383 0 1 381 13 15 382 0 1 381 13 15 
3 370 0 1 369 248 254 370 0 1 369 248 254 
4 351 17 12 322 185 176 351 17 13 321 185 176 
 

Table 9.  Rates of Convergence to a Proper Solution, Solution Deletion, and AIC and BIC Model Selection with 10 Observations 
 Monotone Dropout Erratic Missingness 
Classes Converged Low kπ  Outlier Remain AIC  BIC  Converged Low kπ  Outlier Remain AIC  BIC  

30% Missing 
1 500 NA 0 500 0 0 500 NA 0 500 0 0 
2 500 0 1 499 78 79 500 0 0 500 3 3 
3 499 17 4 468 356 356 498 1 2 495 142 153 
4 496 402 3 91 42 41 485 10 6 469 317 309 
5 487 432 2 53 24 24 428 318 2 108 38 35 
60% Missing 
1 500 NA 0 500 0 0 500 NA 0 500 0 0 
2 500 0 0 500 125 143 500 0 0 500 11 11 
3 500 63 2 435 299 281 487 0 1 486 42 161 
4 462 344 20 98 37 37 476 13 10 453 396 313 
5 473 427 2 44 39 39 427 254 0 173 51 15 

6
9
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Table 10.  Rates of Convergence to a Proper Solution, Solution Deletion, and AIC and BIC Model Selection with 20 Observations 
 Monotone Dropout Erratic Missingness 
Classes Converged Low kπ  Outlier Remain AIC  BIC  Converged Low kπ  Outlier Remain AIC  BIC  

30% Missing 
1 500 NA 0 500 0 0 500 NA 0 500 0 0 
2 500 0 1 499 13 13 500 0 0 500 0 0 
3 500 8 5 487 384 389 500 0 1 499 31 31 
4 488 360 0 128 59 61 498 10 5 483 203 205 
5 499 428 0 71 44 37 500 200 3 297 266 264 
60% Missing 
1 500 NA 0 500 0 0 500 NA 1 499 0 0 
2 500 0 0 500 11 11 500 0 1 499 5 5 
3 500 7 6 487 372 378 500 4 1 495 106 107 
4 485 346 1 138 70 70 493 72 13 408 195 198 
5 500 433 0 67 47 41 500 185 2 313 194 190 
 

  

 

7
0
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Finally, it was expected that more classes would be supported with 30% missing 

data than with 60% missing data.  While the same average number of classes were 

extracted across these conditions, more classes are supported with 60% missingness in 

the five repeated measure conditions (particularly when dropout was present).  This trend 

is not as apparent when ten or twenty repeated measures are observed.  This is an 

unexpected finding, and might possibly be explained if class extraction in the 60% 

dropout condition with five repeated measures purely reflects level differences in the 

intercept, rather than differences in the random slope.17   

Study 2 hypotheses are related to SPMM performance via  the number of classes 

supported by the data.  Thus, results are primarily analyzed by class rather than by AIC- 

or BIC- implied solutions (as in Study 1).  For the sake of parallelism, Figures 10 and 11 

show parameter bias (RB and SB) and RMSE for the fixed slope (Figure 10) and slope 

variance (Figure 11), when the AIC is used for class enumeration on a replication-by-

replication basis. 

There is a clear trend for fixed effect estimates to be more efficient as the number 

of repeated measures increase; however, SB appears worse as the number of repeated 

measures increase.  RB, the more reliable metric in the case of different observation 

lengths, does not show this trend.  There is no clear trend in the effect of observation 

length on RB for fixed effect estimates, but variance component estimates appear highly 

biased when only five repeated measures are present.  Interestingly, variance component 

bias is in the upward direction with five repeated measures, whereas variance 

                                                           
17

 For the 60% dropout condition with five observation occasions, it is expected that only 2 repeated 

measures are observed for the average individual.  The random slope contributes to none of the 

explained variance in the first observation, and only a small amount to the second observation.  This 

hypothesis was explored with individual replications and support was found for this explanation. 
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components are always downwardly biased when LCM is applied in the presence of 

random coefficient dependent missingness.   

Similar to the LCM, nature of missingness had a larger influence on SPMM-based 

parameter estimates than the proportion of missingness.  The dropout mechanism results 

in more biased and less efficient fixed parameter estimates; this trend grows larger as the 

number of observation occasions increases.  Interestingly, the reverse trend is apparent 

for the variance component estimates.  This finding warrants a more detailed analysis of 

the by-class solutions. 

 Figures 12-17 show average parameter estimates with error bars marking ± 1 

empirical SD across the reps that were analyzed for the fixed slope (Figures 12, 14, and 

16) and slope variance estimates (Figures 13, 15, and 17), by number of classes.  The 

average number of classes selected by the BIC is marked with a blue triangle for each cell 

in the figures, and the average number of classes selected by the AIC is marked with a 

red square.  Figures 12 and 13 correspond to conditions with five repeated measures, 

Figures 14 and 15 correspond to conditions with ten repeated measures, and Figures 16 

and 17 corresponds to conditions with twenty repeated measures.  Dropout conditions are 

shown on the top row and erratic conditions are shown on the bottom row.  Conditions 

with 30% missingness are shown on the left and conditions with 60% missingness are 

shown on the right.  Standard error bias in the fixed slope is represented in Table 11 as 

the ratio of the average standard error estimate to the observed standard deviation of fixed 

slope estimates. 
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Figure 10.  Raw bias (top), standardized bias (middle), and RMSE (bottom) of SPMM-
implied fixed effect estimates for the slope by percent of missingness (30% or 60%; left) 
and nature of missingness (erratic (E) or dropout (D); right) and by number of 
observation occasions (5, 10, or 20).  A horizontal reference line is drawn at SB = -40 to 
indicate the cutoff for “acceptable” bias.   
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Figure 11.  Raw bias (top), standardized bias (middle), and RMSE (bottom) of SPMM-
implied variance component estimates for the slope by percent of missingness (30% or 
60%; left) and nature of missingness (erratic (E) or dropout (D); right) and by number of 
observation occasions (5, 10, or 20).  A horizontal reference line is drawn at SB = -40 to 
indicate the cutoff for “acceptable” bias. 
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Figures 12 and 13 suggest that, practically speaking, only two classes are 

supported when five repeated measures are present (particularly when a dropout 

mechanism is operating).  Although the AIC and BIC suggest fitting a larger number of 

classes, a reasonable data analyst would probably not choose to interpret a SPMM with 

several classes that result in very wide standard error estimates in favor of a solution with 

fewer classes and smaller standard error estimates, particularly when the fixed effects are 

stable across solutions.  Table 11 provides corroborating evidence that it is not 

appropriate to extract more than two classes when only five repeated measures are 

present, particularly when the missingness mechanism is monotone dropout.  In the 

dropout conditions, standard error estimates were over-estimated (over and above the 

already large empirical standard deviations shown in the figures).18  Given that the 

MNAR mechanism imposed in Study 2 was quite severe, these result imply that it may be 

practical for a data analyst with a small observation length to rely only on two latent 

classes when conducting a sensitivity analysis for LCM results in the presence of 

potentially non-randomly missing data. 

The second piece of information to glean from Figures 12 and 13 is that fixed 

effect estimates tend to approach the true parameter value (and rather quickly) as the 

number of classes increase, but variance component estimates that are initially 

downwardly biased quickly pass through the true parameter value and become upwardly 

biased in an unbounded fashion.  This explains results displayed in Figure 11; AIC 

consistently selects too many latent classes, and the BIC selects too many latent classes 

when 60% of the data are missing due to dropout. 

                                                           
18

 Stable individual differences may not be distinguishable from time-specific noise in these conditions, 

resulting in upwardly biased standard error estimates. 
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Table 11.  Ratio of Average Estimated Standard Errors to Empirical Standard Deviation 
for SPMM Fixed Slope Estimates by Study 2 Condition and Number of Classes 
 One Two Three Four Five 
5 Observations 
30% Dropout .96 1.01 7.31 NA NA 
60% Dropout 1.00 .96 8.43 NA NA 
30% Erratic .96 .98 1.00 1.08 NA 
60% Erratic .94 1.03 .96 .94 NA 
10 Observations 
30% Dropout .97 .93 .96 1.20 1.34 
60% Dropout .96 .98 .86 1.61 .87 
30% Erratic 1.00 1.00 1.00 .93 .97 
60% Erratic 1.00 1.00 .97 .97 1.00 
20 Observations 
30% Dropout 1.04 1.07 1.04 .99 .94 
60% Dropout .96 1.00 .96 .95 1.08 
30% Erratic 1.00 .90 .90 .86 .78 
60% Erratic 1.00 .90 .86 .86 .86 
Note.  Five class SPMMs were not estimated for the conditions with five measurement 
occasions.  Sampling distributions for point and standard error estimates were too non-
normal to extract meaningful ratio estimates for the four class SPMMs with dropout / five 
observation occasion conditions 
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Figure 12.  SPMM-implied fixed effect estimates for the slope by study condition (5 
repeated measures only).  Conditions are: 30% dropout (top left); 60% dropout (top 
right); 30% erratic missingness (bottom left); 60% erratic missingness (bottom right).  
Horizontal reference line is drawn at the true parameter.  Error bars show ±1 empirical 
SD. 
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Figure 13.  SPMM-implied variance estimates for the slope by study condition (5 
repeated measures only).  Conditions are: 30% dropout (top left); 60% dropout (top 
right); 30% erratic missingness (bottom left); 60% erratic missingness (bottom right).  
Horizontal reference line is drawn at the true parameter.  Error bars show ±1 empirical 
SD. 
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Figure 14.  SPMM-implied fixed effect estimates for the slope by study condition (10 
repeated measures only).  Conditions are: 30% dropout (top left); 60% dropout (top 
right); 30% erratic missingness (bottom left); 60% erratic missingness (bottom right).  
Horizontal reference line is drawn at the true parameter.  Error bars show ±1 empirical 
SD. 
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Figure 15.  SPMM-implied variance estimates for the slope by study condition (10 
repeated measures only).  Conditions are: 30% dropout (top left); 60% dropout (top 
right); 30% erratic missingness (bottom left); 60% erratic missingness (bottom right).  
Horizontal reference line is drawn at the true parameter.  Error bars show ±1 empirical 
SD. 
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Figure 16.  SPMM-implied fixed effect estimates for the slope by study condition (20 
repeated measures only).  Conditions are: 30% dropout (top left); 60% dropout (top 
right); 30% erratic missingness (bottom left); 60% erratic missingness (bottom right).  
Horizontal reference line is drawn at the true parameter.  Error bars show ±1 empirical 
SD. 
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Figure 17.  SPMM-implied variance estimates for the slope by study condition (20 
repeated measures only).  Conditions are: 30% dropout (top left); 60% dropout (top 
right); 30% erratic missingness (bottom left); 60% erratic missingness (bottom right).  
Horizontal reference line is drawn at the true parameter.  Error bars show ±1 empirical 
SD. 
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 Moving to Figures 14 and 15 (10 observation occasions), it is immediately 

apparent that variability of parameter estimates is substantially reduced as five additional 

observation occasions are added.  It is also apparent that SPMM performance is much 

worse when dropout is present in that the parameter estimates are highly variable across 

repititions.  As was the case with five repeated measures, fixed effects approach the true 

parameter values as two or three classes are estimated but variance component estimates 

surpass the true values and increase without bound.  Unlike the five repeated measures 

conditions, standard error estimates were relatively unbiased with ten repeated measures 

(see Table 11); however, standard error estimates were more biased in the dropout 

conditions than in the erratic missing data conditions, particularly as the number of 

classes extracted increased.  The proportion of missing data had little influence on fixed 

effect parameter estimates, but the SPMM had trouble recovering unbiased variance 

component estimates with a high proportion of missing data.  This trend was particularly 

apparent for the erratic missing data condition. 

 Finally, moving to Figures 16 and 17 (20 observation occasions), it becomes 

apparent that observation length indeed has a strong effect on SPMM performance.  

Specifically, more repeated measures are linked to much less variable parameter 

estimates.  Further, in line with the general finding that fixed effects tend to be more 

robust than variance components with respect to parameter recovery under the SPMM, it 

takes fewer repeated measures for the SPMM to obtain good fixed effects estimates than 

it takes for the SPMM to obtain good variance component estimates. 

 When 20 observation occasions are collected, fixed effect estimates are quite 

precise regardless of the nature or proportion of missingness, except that more classes are 
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required to obtain acceptable fixed effect parameter estimates when missingness is due to 

dropout.  Variance component estimates are downwardly biased when there is a high 

proportion of missing data, particularly with an erratic missingness mechanism.   

 Standard error estimates are slightly downwardly biased for the erratic 

missingness conditions, particularly as more classes are estimated.  It is interesting that 

standard errors are more biased in the erratic conditions than in the dropout conditions as 

the observation length increases; dropout does not appear to be problematic for the 

SPMM when a large number of repeated measures are present. 

Summary and Discussion of Study 2 

 Although it was not an explicit hypothesis of Study 2, it was implicitly assumed 

that the SPMM would outperform the LCM under all data conditions that were assessed.  

This was assumed because the SPMM was better at recovering fixed effect parameter 

estimates (both in terms of bias and efficiency) in Study 1.  However, it was not 

necessarily expected that the SPMM would recover the variance component of the 

random slope well based on results from Study 1.  Figure 18 provides a direct comparison 

of the (raw) bias and RMSE of LCM- and SPMM-implied fixed slope (at the minimum 

BIC because this was determined to be the superior information criterion for most data 

conditions) estimates by observation length and nature of missingness19, demonstrating 

that the SPMM does indeed provide much less biased fixed effect parameter estimates 

than the LCM across the range of study conditions tests in Study 2.  Further, Figure 18 

shows that the SPMM is only more efficient than the LCM in the recovery of fixed effect 

estimates when the missing data are erratically missing, or when many repeated measures 

                                                           
19

 Figures 18 and 19 collapse over the proportion of missing data since this manipulation had little 

influence on parameter estimates. 
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are present and missingness is due to monotone dropout.  In other words, the SPMM may 

be more accurate than the LCM in the recovery of fixed effects on average, but SPMM-

implied results are too variable to be of much use when dropout is present and when there 

are not many repeated measures. 

 Figure 19, which shows a comparison of LCM- and SPMM-implied variance 

components, tells a different story.  LCM-based variance component estimates are less 

biased and less variable than SPMM estimates.  On the other hand, results presented in 

these figures are based on results obtained using the BIC for class enumeration.  Results 

presented in Study 2 suggest that the BIC (and the AIC) overestimate the number of 

classes necessary to achieve approximate conditional independence between the missing 

data and the repeated measures; this over-extraction has serious consequences for 

inducing excessive variability in parameter estimates and for inducing positive bias in 

variance component estimates.20   

 Study 2 presented compelling evidence to suggest that the AIC and BIC are not 

optimal criteria for enumerating classes in an SPMM context.  Performance of these 

indices depends on the number of repeated measures present in a sample such that too 

many classes are selected when the number of repeated measures is small and too few 

classes are selected when the number of repeated measures is large.  The equations for 

calculating AIC and BIC (shown in Equation (2.8)) do not explicitly account for the 

number of level 1 units.  The BIC penalizes for sample size at level 2; in this case, 

however, it appears that a large level 1 sample size should be ‘rewarded’ (rather than 

                                                           
20

 If parameter bias and efficiency are used as optimal criteria, then study results suggest that it may be 

pragmatic to utilize fixed effect estimates from the SPMM and variance component estimates from the 

LCM.  However, this practice is not justifiable from an analytical standpoint.  Future research should 

evaluate the theoretical rationale and the consequences of such an approach. 
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penalized).  Other fit indices exist for comparing solutions (e.g., the Lo-Mendell-Rubin 

likelihood ratio test, Lo, Mendell, & Rubin, 2001; the consistent AIC, Bozdogan, 1987; 

the skewness and kurtosis tests; Muthėn, 2003; sample size adjusted BIC; Sclove, 1987); 

however, it is doubtful whether any of these fit indices would be an improvement over 

the AIC and BIC because level 1 sample size is not explicitly considered by any of these 

criteria.  

 

Figure 18.  Comparison of bias (top) and variability (bottom) in LCM- and SPMM- 
implied fixed effects, by nature of missingness (i.e., dropout (left) or erratic (right)) and 
observation length.  A dotted line is draw to represent -10% raw bias. 
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Figure 19.  Comparison of bias (top) and variability (bottom) in LCM- and SPMM- 
implied variance components, by nature of missingness (i.e., dropout (left) or erratic 
(right) and observation length.  A dotted line is draw to represent ±10% raw bias. 
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stacked to form a single data set, assigning a weight of 1/M to each case.  Each individual 

in the original sample then has M imputed copies of an ‘observed’ class membership 

variable.  If the conditional independence assumption is met, the missing data 

indicator(s), R, should be uncorrelated with the repeated measures, Y, conditional on 

imputed class membership, D.  This can be evaluated by estimating a growth model (e.g., 

an LCM) with D as an observed predictor of the growth factor means α (similar to a 

multiple groups model).  The missing data indicator(s) R are also included as predictors 

of growth, but their estimated effect should be zero if conditional independence exists.  

This approach has the benefit of being directly relevant to the goal of class enumeration 

in SPMM; however, its performance has not been evaluated with simulation 

methodology.  Since Study 2 showed that more classes are necessary to achieve adequate 

bias reduction as the number of observations increase (indicating that conditional 

independence is achieved more quickly with fewer repeated measures), it is likely that 

Lin et al.’s approach would work well when used in conjunction with traditional 

measures like the BIC.          

 Results from Study 2 suggest that LCM and SPMM performance is highly 

dependent upon data conditions, even when the missing data mechanism is RC-MNAR-

M with severity held constant.  LCM is never protected from the negative effects of non-

randomly missing data, but data conditions leading to less growth factor determinacy 

(i.e., dropout as opposed to erratic missingness and a small number of observation 

occasions) make parameter estimates even less trustworthy.  Unfortunately, these are the 

same conditions that are troublesome for the SPMM.  In light of these results, it is 

necessary to outline some practical guidelines for longitudinal researchers who suspect 
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that their missing data might be missing due to a random coefficient dependent 

mechanism. 

 The first piece of advice is to maximize growth factor determinacy.  This means 

establishing reliable measures, collecting as many repeated measures as possible, and 

trying to collect information from individuals throughout the range of the study (i.e., 

avoid monotone dropout, for instance by investing resources in locating persons who 

might otherwise be lost to follow up).  Particularly when fewer repeated measures are 

planned, it is important to avoid having individuals who drop out after the first few 

occasions.21  A researcher with limited resources to spend on data collection might 

consider a planned missingness approach; Study 2 results showed that estimates do not 

suffer when random missingness is added, particularly if random missingness enables 

less non-random missingness to be present. 

 Once data have been collected, if random coefficient dependent missingness is 

suspected, it is always a good idea to conduct a sensitivity analysis of LCM results using 

a SPMM.  If fixed effects are similar, then LCM results are probably trustworthy unless 

OD-MNAR is a possibility.  If fixed effects differ, and if more than five repeated 

measures were collected or if only five repeated measures are present but missing data 

are erratically spaced, then SPMM-implied fixed effect estimates are probably more 

trustworthy than LCM estimates.  If fixed effects differ but dropout is present with few 

repeated measures, then it may be wise to conduct further sensitivity analyses using other 

                                                           
21

 Although dropout did not plague parameter estimates as much when more observations were collected 

in the simulation study, researchers should be careful about extrapolating beyond the range of the 

available data during ‘real’ data analysis when the functional form cannot be assumed to remain constant 

for an indefinite period of time. 
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methods for handling non-randomly missing data (e.g., traditional PMMs or traditional 

shared parameter models with a variety of parametric assumptions imposed). 

 Fixed effects are more robust to the number of classes extracted in SPMMs than 

variance components.  That is, fixed effects estimates are generally unbiased if two or 

more classes are extracted in a SPMM (although more classes are recommended if many 

repeated measures are observed).  Particularly if erratic missingness is present, or if there 

are many repeated measures, variability of the fixed effects estimates is not too large.  On 

the other hand, variance components are highly sensitive to the number of classes that are 

extracted in an SPMM.  If variance components are of interest, it may be wise to rely on 

as few classes as possible, even fewer than are suggested by the information criteria. 

 The finding that the AIC, and particularly the BIC, tend to over-extract classes in 

the sense that they sacrifice efficiency far too much, in some cases, was surprising.  It 

was expected that the AIC would be the preferred metric for class enumeration because 

of its tendency to extract more classes than the BIC.  Instead, even the BIC was 

sometimes too lenient in class extraction.  Perhaps this finding would be different if a 

larger sample size were assessed (N = 300 is rather small, particularly when 30% - 60% 

of observations are missing), or if the number of observations per person were considered 

by the information criteria.  In practice, it may be difficult for a researcher to determine 

whether fixed effect parameters that change as the number of classes increase are 

changing because additional latent classes are reducing bias by accounting for the 

missing data process, or if they are changing because of additional variability that is 

being introduced by extra model parameters.  This problem may be aggravated with a 

growth model that is more complicated than the model tested here.  A researcher in this 
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situation should monitor standard error estimates across SPMM solutions; if a solution 

with fewer classes has much smaller standard errors than a solution with more classes, 

results from Study 2 suggest that the model with fewer classes may be a better choice. 

 It is interesting to consider what results might have looked like if all of the 

missing data mechanism that were considered in Study 1 were also assessed in Study 2.  

In all likelihood, results would have been quite similar across the range of mechanisms.  

This is because the issue of growth factor determinacy is somewhat orthogonal to the 

conditions studied in Study 1.  Specifically, growth factor determinacy should help the 

LCM generate better parameter estimates regardless of the missing data mechanism and 

the SPMM should always perform better with more information.   

  



92 

 

 

 

 

Chapter 4 

STUDY 3: A CASE STUDY OF SPMM: 
INFERRING CHANGE OVER TIME IN A SAMPLE OF  

PSYCHOTHERAPY PATIENTS 
 

 Chapters 2 and 3 considered the performance of the SPMM with artificial data.  In 

this chapter, the SPMM is applied to a real-data example to show how the model might 

be usefully applied in practice. 

 Data from this chapter are the same as those used by Baldwin et al. (2009), who 

analyzed data from a longitudinal study of psychotherapy treatment in a naturalistic 

setting.  In the Baldwin et al. manuscript, the authors critiqued the long-standing tradition 

of dose-effect models of change in psychotherapy, a model which aggregates across 

individuals (assuming no individual differences in rates of change) to test the incremental 

value added of additional psychotherapy sessions.  Baldwin and colleagues were 

concerned that the dose-effect models assume that response to therapy is equal across 

individuals, regardless of their dose.  Instead, the authors thought that individuals who 

receive a small dose of therapy might experience the largest effect per dose, and 

individuals receiving a large dose of therapy might receive the smallest effect per dose.  

By including a covariate quantifying the total number of sessions attended by each 

participant in the growth model, and by allowing that term to interact with an individual’s 

rate of change, Baldwin et al. found support for their hypothesis.  Ultimately, Baldwin 
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and his colleagues concluded that it is not appropriate to establish a fixed standard of 

treatment for individuals, given individual differences in dose-effect response. 

 It is possible to view Baldwin et al.’s (2009) problem as one of potentially 

random coefficient dependent missing data.  If one wishes to draw inferences about 

average individual trajectories and about variability in individual trajectories during 

psychotherapy treatment, which was the purpose of Baldwin et al.’s analysis, then data 

are ‘missing’ from patients after they leave psychotherapy treatment, and the data may be 

missing due to a non-random, random coefficient dependent mechanism.  Viewed in this 

context, it becomes apparent that Baldwin et al.’s approach of including number of 

sessions attended as a measured indicator of ‘missingness’ is akin to a traditional pattern 

mixture modeling approach to handling missing data.  This approach was criticized by 

Demirtas and Schafer (2003) because the explicit inclusion of an indicator of missingness 

limits growth model generalizability.  In other words, validity of inferences regarding 

individual- and population-level growth in Baldwin et al.’s model is conditional on the 

number of sessions attended in the precise way that the variables were entered into the 

model (i.e., as a main effect and as an interaction with time (measured in session units).  

Including number of sessions attended as a fixed covariate of growth implies 

homogeneity of growth trajectories for all individuals who attended the same number of 

sessions, and it implies heterogeneity of growth for individuals attending a different 

number of sessions (Hogan & Laird, 1997). 

 The SPMM might be a good alternative strategy for analyzing Baldwin et al.’s 

(2009) psychotherapy data while enabling the unconditional interpretation of growth 

coefficients in the population (i.e., marginal over individual differences in total number 
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of sessions attended).  This is beneficial for two reasons.  First, the explicit model 

specified by Baldwin and colleagues may be incorrect; there might be a nonlinear main 

effect of total sessions attended, for instance.  Second, it is more useful to have a model 

predicting change over time that does not require a priori knowledge of total sessions 

attended by a patient.  Consider a scenario in which a patient is consulting with a 

therapist to determine whether he or she might be a good candidate for receiving 

psychotherapy treatment, and the patient enquires about how quickly they can expect to 

experience clinically significant improvement.  Under the conditional model, the therapist 

would not be able to answer the question easily.  Under the SPMM, the therapist would 

be able to tell the patient an average rate of change over time given the prospective 

patient’s initial level of psychological symptoms and other (observable) background 

factors.  Further, the therapist could give an estimate of the average variability in rates of 

change over time.22,23 

This chapter walks through a data analytic strategy for the psychotherapy data that 

were previously analyzed by Baldwin et al. (2009).  Data analytic decision points are 

informed by results from Chapters 2 and 3.  The goal of this chapter was to conduct a 

sensitivity analyses about the inferences drawn regarding the expected shape of change in 

psychological symptoms over the course of psychotherapy, and about the population 

variation around the average trajectories.   

                                                           
22

 The same information is available from an LCM, but LCM-based inferences would only be accurate if 

there were no individual differences in dose-effect response, which Baldwin et al. (2009) deemed to be 

false. 

 
23

 Alternatively, a survival model might be used to predict time to dropout.  Lin et al. (2004) presented a 

joint model for growth over time and survival time; however, this can be viewed as a type of selection 

model that requires an explicit specification of the dropout mechanism.  Future research should assess Lin 

et al.’s model under misspecification using a simulation design. 
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The first step in the data analytic plan was to follow a standard procedure for 

analyzing change over time by analyzing the psychotherapy data using a LCM.  Then a 

SPMM was considered for the same data to evaluate the sensitivity of LCM results to a 

suspected random coefficient dependent missingness mechanism.  Results from Chapter 

2 suggest that the SPMM will be useful for identifying and correcting for nonignorable 

missingness resulting from a RC-MNAR mechanism, such as the one suspected here.  

Chapter 2 suggests that fixed effect estimates should be quite accurate under the SPMM, 

but that variance component estimates are likely to be biased to some degree, particularly 

if multiple nonignorable mechanisms are acting simultaneously (e.g., if both very fast and 

very slow recovery are related to dropout from therapy).24  LCM-based estimates of the 

slope mean and variance component are expected to be biased to the extent that random 

slope dependent missingness is present.  Chapter 3 results suggest that the monotone 

nature of dropout in the psychotherapy data may lead to excessive variability in 

parameter estimates, particularly the variance components.  However, the average 

individual in the sample has six or seven observed repeated measures, indicating that at 

least the fixed effect estimates should be trustworthy under the SPMM. 

Methods 

Participants and Procedure 

 Participants were drawn from an archival dataset of therapy outcomes that is 

maintained by a large university counseling center. Participants in this study were 

completing their first round of individual psychotherapy, meaning that the longest 

interval between therapy sessions had not exceeded 90 days. Patients who attended at 

                                                           
24

 Patients who attended fewer than three sessions were not included in the sample, a decision which 

likely removed the majority of study participants who would not benefit from therapy. 
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least three, but no more than 27 sessions were included in the sample (most clients 

attended fewer than 27 sessions and those attending only two sessions did not provide 

enough information to calculate growth trajectories).25  Patients discontinued therapy at 

their (and their therapists’) discretion.  Only data from the first 14 sessions are analyzed 

because the majority of patients had dropped out of therapy by this point. 

 Of the 4,676 patients analyzed in the sample, the average length in treatment was 

6.46 sessions (SD = 4.15). The majority of patients had adjustment disorders (37.96%), 

mood disorders (24.59%), or anxiety disorders (12.13%). Most patients were single 

(65.06%), White (89.07%), and female (62.32%). Ages ranged from 17-60, with a mean 

age of 22.28 (SD = 3.70). There were 204 therapists treating the sample of patients, but 

many patients were seen by multiple therapists over the course of treatment. 

Psychotherapy Outcome Measure 

 The Outcome Questionnaire-45 (OQ-45), a 45-item self-report sum score measure 

of overall psychological functioning (Lambert, Morton, Hatfield, et al., 2004), was used 

to assess patients’ symptom trajectories over time. The measure assesses three domains: 

subjective discomfort (e.g., “I feel blue”), inter-personal relationships (e.g., “I feel 

lonely”), and social role performance (e.g., “I have too many disagreements at 

work/school”). Possible scores range from 0 (high functioning) to 180 (low functioning), 

and they ranged from 0 to 166 in this sample. The OQ-45 has been shown to have high 

internal consistency, test-retest reliability, and concurrent validity (Snell, Mallinckrodt, 

Hill, & Lambert, 2001; Lambert et al., 2004; Baldwin et al., 2009;). Participants 

completed the OQ-45 at initial intake and prior to each therapy session.  

                                                           
25

 Excluding patients who only attended one or two sessions may limit generalizability of the study results.  

Early drop-outs may differ from people who remain in therapy for more than two sessions. 
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Data Analysis Plan 

 Baldwin et al. (2009) estimated a cubic growth model because the rate of growth 

was not linear (i.e., the rate of improvement slows over time).26  In this analysis, a variety 

of unconditional growth models were assessed using an LCM before settling on a log-

linear model for time.  The following LCM was estimated as a second step in the 

modeling process: 
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with the following random effect distributions: 
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 In this analysis and in Balwin et al.’s (2009) analysis, time was measured in 

session units rather than in chronological time.  Session attendance was not evenly spaced 

across individuals, but the sample was restricted to individuals who did not allow a long 

lapse of time (90 days or more) in between psychotherapy sessions.  Sessions were the 

preferred unit of time for this analysis because it was the most relevant to the substantive 

                                                           
26

 This is a well-established trend in literature evaluating response to psychotherapy treatment. 
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question of interest: what is the typical rate of response to the receipt of psychotherapy, 

and how much individual variation exists in response to therapy? 

 Anxiety disorder, mood disorder, and other diagnoses were included as predictors 

of the random intercept and of the random slope, with “adjustment disorder” as the 

reference group.  A relationship status of “married” or “cohabitating,” identification as an 

ethnic minority, participant age (grand mean centered), and being male were included as 

time invariant covariates of growth as well, with single people, Whites, and females as 

referents.  These predictors were all included in Baldwin et al.’s (2009) analyses. 

 The next step of the analyses involved fitting a series of SPMMs to the data, 

increasing the number of latent classes as necessary.  This involved fitting one- through 

three-class SPMMs to the data.  A decision to stop adding classes was made after small 

class proportions appeared in the four class model ( kπ = .05), and because aggregate 

parameter estimates did not change substantially as more classes were added.  A single 

summary indicator was used to indicate the ‘dropout’ occasion-- the log of the total 

number of sessions attended.  Total number of sessions attended ranged from 3 – 27 for 

the sample and was heavily skewed right.  Log number of sessions was distributed with 

Mean = 2.05, Median = 2.08, SD = .60, Skew = .07, and Kurtosis = -.74.   

 Mplus version 6 was used to estimate the models, and the Model Constraints 

command was used to calculate the population-average intercept, slope, and variance 

component parameter estimates so that standard errors would be output by the program.  

Delta method standard error estimates were obtained because bootstrapped standard 

errors are not yet available for this type of model in Mplus software.  Results from 
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Chapter 3 suggest that standard error estimates should be trustworthy, particularly if a 

conservative approach is taken to class enumeration. 

 

RESULTS 

LCM Results 

  The LCM fit relatively well ( 2(197) 2029.558,  .001pχ = < ; CFI = .941; TLI = 

.943; RMSEA = .045).  Parameter estimates are presented in Table 12.   

Table 12.  LCM-Implied Parameter Estimates 
 Estimate SE 
Fixed Effects 
Intercept 67.83*** (.63) 
Slope -6.78*** (.35) 
Intercept Regression Parameters 
Anxiety 6.97*** (1.02) 
Mood 17.85*** (.80) 
Other           1.29 (.80) 
Male -3.95*** (.66) 
Not Single -2.94*** (.66) 
Minority 4.45***  (1.00) 
Age    .12 (.09) 
Slope Regression Parameters 
Anxiety     -.54 (.56) 
Mood -3.35*** (.44) 
Other  .69 (.44) 
Male       .59 (.36) 
Not Single -1.29*** (.36) 
Minority          -1.09* (.55) 
Age  .11* (.05) 
Variance Components 
Intercept Variance 376.69*** (9.29) 
Slope Variance 73.37*** (2.73) 
Covariance -45.26*** (3.84) 
Residual Variance 102.80*** (1.03) 
Note.  * p <.05; *** p<.001 

 

 Results from the LCM analysis indicate that psychological symptoms decrease 

steadily throughout the 14 sessions that were analyzed, but that the rate of change 
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declines as sessions increase.  The LCM-implied trajectories for single, White females 

(the majority of the sample), of average age, with anxiety disorders, mood disorders, 

adjustment disorders, and all other disorders are illustrated in Figure 20. 

 Further, results suggest that the average patient entering therapy with an anxiety 

disorder is more severe than a patient entering with an adjustment disorder, and a patient 

entering therapy with a mood disorder is dramatically more severe, initially, than a 

patient presenting with an adjustment disorder.  On average, males, Whites, and people 

who are married or cohabiting begin therapy with less severe psychological symptoms 

than women, ethnic minorities, or single people.   

 People with adjustment disorders, anxiety, or other disorders (except for mood) 

improve at about the same rate on average.  People with mood disorders tend to improve 

more quickly than the other groups.  People who are married or cohabitating and ethnic 

minorities tend to improve more quickly with therapy than people who are single or 

White. 
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Figure 20.  LCM-Implied Average Trajectories for Psychological Symptoms for White, 
Single, Female Psychotherapy Patients 
 
 The LCM results suggest that there is substantial individual heterogeneity around 

baseline psychological functioning, even after accounting for the observed individual 

differences in diagnosis and demographic characteristics.  There is also substantial 

heterogeneity with respect to rate of change over time, and individuals who enter 

psychotherapy with more severe psychological symptoms are likely to improve more 

quickly than people who enter therapy with less severe symptoms.  There is also a 

substantial amount of unexplained, time-specific residual variance. 

Sensitivity Analysis with SPMM 

 To the extent that individuals who improved more quickly over time (after 

accounting for observed covariates, including diagnosis, age, gender, ethnicity, 

relationship status, and baseline OQ-45 scores) were also the patients who left therapy 

early (as suggested by Baldwin et al., 2009, who were the first to analyze this 

psychotherapy data), results from the LCM will be inaccurate.  Based on results from 

48

53

58

63

68

73

78

83

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Anxiety

Mood

Adjustment

Other



102 

 

 

Chapters 2 and 3 of this manuscript, it is expected that the fixed slope estimate generated 

by the LCM is biased to some degree, as well as the estimated variance of the slope and 

covariance between the intercept and slope. 

  As shown in Figure 21, AIC and BIC continued to improve as more 

classes were added, as often happens with large samples.  However, results from Study 2 

suggest that the AIC and BIC may sometimes overestimate the number of classes 

necessary to approximate the missingness mechanism.  Further, results suggested that it 

may be more problematic to utilize too many classes than too few in terms of RMSE / 

efficiency loss.  Finally, it is clear from Table 13 that parameter estimates are remarkably 

similar for the two- and three- class solutions.  As expected, inference regarding predictor 

effects is not changed across models, even when compared with LCM-based inference.  

This concurs with findings from Study 1.  

 

Figure 21.  AIC and BIC values as a function of the number of latent classes.  This plot 
suggests dramatic improvement in fit when moving from a one- to two-class solution, and 
slight improvement in fit when moving from a two- to three-class solution. 
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 Because the population average intercept term remains relatively constant across 

models while the average slope changes, these results are consistent with a mild random 

slope-dependent MNAR process.  For comparison, one- through three-class SPMM-

implied trajectories for single, White females of average age are compared in Figure 22.
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Table 13.  One- through Three-Class SPMM-Implied Psychotherapy Trajectory Estimates 
 1 Class SPMM 2 Class SPMM 3 Class SPMM 
 Estimate SE Estimate SE Estimate SE 
Fixed Effects 
Intercept 67.83*** .63 68.12*** .63 68.16*** .63 
Slope -6.78*** .35 -7.24*** .35 -7.34*** .35 
Intercept Regression Parameters 
Anxiety 6.97*** 1.04 6.93*** 1.04 6.93*** 1.04 
Mood 17.85*** .78 17.73*** .78 17.68*** .78 
Other    1.29 .81 1.21 .81 1.22 .81 
Male -3.95*** .66 -3.92*** .66 -3.90*** .66 
Not 
Single 

-2.94*** .66 -2.89*** .66 -2.87*** .66 

Minority 4.45*** 1.05 4.52*** 1.05 4.52*** 1.05 
Age .12 .09 .12 .09 .11 .09 
Slope Regression Parameters 
Anxiety -.54 .57 -.60 .57 -.62 .57 
Mood -3.35*** .45 -3.44*** .45 -3.50*** .45 
Other .69 .42 .59 .42 .62 .42 
Male .59 .35 .59 .35 .61*** .36 
Not 
Single 

-1.29*** .36 -1.23*** .36 -1.19*** .36 

Minority -1.09 .57 -1.03 .57 -1.05 .56 
Age .11* .04 .11* .05 .11* .05 
Log Number of Sessions Regression Parameters 
Anxiety .08** .03 .06** .02 .06** .02 
Mood .09*** .02 .06*** .02 .04** .01 
Other .06** .02 .04* .02 .04** .02 
Male -.04* .02 -.03* .01 -.03* .01 
Not 
Single 

-.03* .02 -.02 .01 -.01 .01 

Minority -.06* .03 -.04 .02 -.04* .02 
Age -.01* .00 .00 .00 .00 .00 
Variance Components 
Intercept  376.68*** 9.01 377.24*** 9.01 377.76*** 9.04 
Slope  73.36*** 3.15 72.35*** 3.09 71.87*** 3.22 
Cov -45.25*** 3.95 -45.45*** 3.92 -45.34*** 3.92 
Residual  102.81*** 2.14 102.89*** 2.14 102.89*** 2.14 
Class Proportions and Average Number of Sessions by Class 
 ˆkπ  #Sessionsa ˆkπ  #Sessionsa ˆkπ  #Sessionsa 
Class 1 1.00 5.42 .30 10.50 .31 7.35 
Class 2 - - .70 4.12 .56 3.69 
Class 3 - - - - .13 14.17 
Model Fit 
AIC 242,302.08 241,444.47 241,128.46 
BIC 242,489.14 241,657.33 241,367.12 
Note.  * p < .05; ** p < .01; ***p < .001.   
a Intercept # of sessions is the within-class average for single, White females with adjustment 
disorders who are of average age. 
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Figure 22.  A Comparison of SPMM- implied trajectories for four diagnoses by number 
of classes.  Adjustment disorder (top left); mood disorder (top right); anxiety (bottom 
left); other (bottom right). 
 
 

 In this analysis, the choice between two and three class SPMMs is not important 

because SPMM-implied trajectory estimates are not much different from one another; the 

average slope become very slightly steeper as more classes are added.  Furthermore, the 

variance component estimates remain relatively stable from two to three classes.  The 

main difference is between the LCM-implied trajectory (or the one class SPMM) and 

both of the SPMM-implied trajectories with more than one class.  However, even this 

difference is substantively very small; effect sizes (measured as the standardized 
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difference between the two class SPMM-implied tiy  at time t and the LCM- implied tiy  

at time t) are reported in Table 14 for the four diagnostic categories.   

Table 14.  Standardized Difference between LCM- and SPMM-Implied OQ-45 Scores by 
Time and Diagnostic Category 
Session Adjustment Mood Anxiety Other 
1 .01 .01 .01 .01 
2 .00 -.01 -.01 -.01 
3 -.01 -.02 -.01 -.02 
4 -.01 -.03 -.02 -.02 
5 -.02 -.04 -.02 -.03 
6 -.02 -.04 -.03 -.03 
7 -.02 -.04 -.03 -.03 
8 -.03 -.05 -.03 -.04 
9 -.03 -.05 -.03 -.04 
10 -.03 -.05 -.03 -.04 
11 -.03 -.05 -.04 -.04 
12 -.03 -.05 -.04 -.04 
13 -.03 -.05 -.04 -.04 
14 -.03 -.05 -.04 -.04 
 

Discussion of Study 3 

 A comparison of LCM- (or one- class SPMM-) implied OQ-45 scores with two- 

or three-class SPMM- implied OQ-45 scores (either using Figure 22 or Table 14) 

provides evidence for the robustness of the LCM results to the random slope dependent 

missingness that is believed to be present in the psychotherapy data.  In other words, after 

controlling for the data that are observed, the residual dependence between dropout 

occasion and rate of improvement over time is very slight.  Indeed, if one were to use the 

specified cut-off for a clinical diagnosis using the OQ-45 (a score of 63; Lambert et al., 

2004), there would be virtually no difference in the expected length of treatment, 

regardless of whether one used LCM-based or SPMM-based model results.   
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 The purpose of Baldwin et al.’s (2009) manuscript was to emphasize that 

individual differences in rates of change render average trajectories less meaningful for 

calculating psychotherapy pay-offs for individuals.  Using a traditional pattern mixture 

modeling approach, the authors showed that conditional trajectories of psychological 

functioning appear dramatically different from one another (after accounting for the 

number of sessions attended; see Figure 23, bottom).  Class-specific trajectory estimates 

are shown for the three-class SPMM that was estimated in this manuscript on the top 

panel in Figure 23.  The class-specific estimates show a similar pattern to Baldwin et al.’s 

conditional trajectories.  That is, psychological trajectories depend on the number of 

sessions attended, suggesting the presence of a severe random coefficient dependent 

mechanism that, in actuality, is quite weak.   

 Demirtas and Schafer (2003) addressed this issue, illustrating that the mere visual 

appearance of random coefficient dependent missingness does not necessarily imply that 

it exists, saying: “Relationships between R [the missing data patterns] and pre-drop-out 

responses cannot disprove the hypothesis of ignorability, which states that there is no 

residual relationship between R and the post-drop-out responses given the pre-drop-out 

values” (italics in original).  They go on to say: “Evaluating the significance of R -terms 

does not test the null hypothesis of ignorability, but the null hypothesis that drop-out is 

merely covariate-dependent” (pp. 2557).  In other words, it is not enough to show that 

individual differences in growth are associated with dropout occasion because this 

association may be explained by observed covariates (in this case, the association 

between number of sessions attended and improvement in psychological distress over 

time was mostly explained by clinical diagnosis and other demographic variables, and by 
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baseline OQ-45 measures). The analysis presented in the present chapter shows that, after 

controlling for baseline measured variables, individual mean trajectory estimates are 

largely unbiased when a traditional LCM is used.  Of course, this does not detract from 

Baldwin et al.’s (2009) ultimate conclusion, which was that individual differences in rates 

of improvement over time render average improvement rates less relevant.  On the other 

hand, a service provider has no choice but to use the information available to them before 

the initiation of therapy to estimate how long a patient might expect to remain in therapy, 

or what symptom improvement might look like. 

 Limitations.  Ideally, the sensitivity analysis conducted in this chapter would lead 

to the conclusion that patients who leave therapy earlier in the study are similar enough to 

the patients who stay for more sessions, conditional on their age, gender, ethnicity, 

diagnosis, marital status, baseline psychological functioning, and all previously observed 

repeated measures, that time of dropout is not clinically significantly related to future 

growth.  That is, it would be nice to be confident in the conclusion that the LCM-implied 

trajectories can validly predict individuals’ expected trajectories in psychotherapy, were 

they to remain in the study for fourteen sessions, regardless of their background 

characteristics.  In this study, this seems like a valid conclusion.  For sake of argument, 

however, it is important to consider other possible explanations that could have lead us to 

observe minor differences between the LCM- implied and SPMM-implied trajectories. 
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Figure 23.  Model-Implied Psychotherapy Trajectories, Conditional on Number of 
Sessions Attended: A Comparison of the SPMM-Approach using Class-Specific 
Estimates (Top) and Baldwin et al.’s (2009) Traditional Pattern Mixture Approach 
(Bottom)27 
 
                                                           
27

 Baldwin et al.’s (2009) original analysis used a cubic growth function.  The data have been re-analyzed 

using a log linear growth function in order to match the SPMM results. 
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 Chapter 2 showed that there are three situations that lead to similar fixed effect 

estimates.  The first is an MAR process, the second is a RC-MNAR-NM process whereby 

there is selection occurring from both sides of the random effect distribution, and the 

third is a OD-MNAR process.  Bias in variance component estimates is also expected to 

be similar across all of these conditions.  In other words, there is no empirical way to test 

whether dropout in the psychotherapy study is approximately conditionally random, 

whether it is due to a time-specific, outcome-dependent process (e.g., a breakthrough in 

therapy), or whether people who leave early are leaving due to two opposite, but non-

random processes (e.g., quick improvers drop out early and people for whom 

psychotherapy is ineffective also drop out early).  Unfortunately, all of these mechanisms 

are logically plausible, with the possible exception of OD-MNAR.  It is also plausible 

that a mixture of all of these processes is operating. 

 If it can be assumed that a single therapy session does not provide a breakthrough 

that ‘cures’ patients of their psychological diagnosis, regardless of prior psychological 

functioning scores (i.e., if the dropout process is not OD-MNAR), then the simulation 

results suggest that it is safe to rely on the fixed effect estimates that were obtained in the 

LCM and SPMM.  Reliance on variance component estimates is more uncertain, but 

Chapter 2 suggests that it is safe to say that the variance component estimates represent a 

lower bound of the true population variability.  True variance components will be larger 

than the estimates presented here to the extent that there are non-random forces operating 

on both sides of the random slope distribution. 

 Conclusion.  A primary purpose of Study 3 was to assess the feasibility of 

implementing the SPMM with real-world data.  Implementation was virtually seamless; 
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the models were easily estimable using user-friendly software, and conclusions of the 

sensitivity analysis were fairly robust to the number of classes that were extracted.  Thus, 

it appears that SPMM has the potential to be a useful tool for applied longitudinal 

researchers who are concerned about the presence of random coefficient-dependent 

missingness influencing their results.   

 As illustrated in this chapter, the SPMM should be used as a tool for the careful 

and thoughtful checking of the sensitivity of traditional growth model results to violations 

of the MAR assumption.  As with all statistical tools, the SPMM should not be employed 

mechanically, without regard to the theoretically plausible mechanisms underlying the 

missing data. 
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CHAPTER 5 

CONCLUSION 

 

 A variety of techniques for handling non-randomly missing data have been 

presented in the past quarter century (including major developments by Heckman, 1976; 

Wu & Carroll, 1986; Little, 1993; Diggle & Kenward, 1994; Roy, 2003; Lin et al., 2004, 

and summaries by Little, 2009, Enders, 2011, and Muthѐn et al., 2011).  Yet, it seems 

that these techniques are employed only by those who develop the methods and a handful 

of other applied methodologists in the social sciences (e.g., Morgan-Lopez & Fals-

Stewart, 2007).  Enders (2011) suggested that the slow uptake of non-ignorable missing 

data modeling in the social sciences has been in part due to the lack of availability of 

user-friendly software programs to implement these models.  Muthѐn et al. (2011) 

demonstrated how to implement a variety of missing data models that can be estimated in 

Mplus software.  This demonstration appears in the first volume Psychological Methods 

for 2011, which contains a series of articles drawing attention to the problem of non-

randomly missing data in psychological research.  Thus, it appears that new-found 

attention to non-randomly missing data reflects the current zeitgeist of psychological 

research. 

 There may be a second reason for the reluctance on the part of applied researchers 

to implement models for handling non-randomly missing data: skepticism about the 

validity of results obtained by these models.  Indeed, just as there have been numerous 
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papers promoting methodological developments for handling missing data (particularly in 

the biostatistics literature), several papers have pointed out shortcomings of these models 

(e.g., Winship & Mare, 1992; Kenward, 1998; Demirtas & Schafer, 2003; Molenberghs, 

Beunckens, & Sotto, 2008), and for good reason.  There is no question that every model 

for handling non-randomly missing data relies on untestable assumptions.   

 The SPMM, in particular, makes the following assumptions: 1) that OD-MNAR is 

not present, 2) that the missing data indicators are adequate to summarize the information 

necessary to account for nonignorability of the missing data process, 3) that conditional 

independence exists between the missing data indicators and the repeated measures 

(conditional on the latent classes), and 4) that it is meaningful to aggregate across 

missingness patterns to make inferences for the whole population. 

 What is less obvious, perhaps, is that the LCM (and similar commonly 

implemented techniques for longitudinal data analysis) also relies on an untestable 

assumption that missing data are MAR.  In many applications, this assumption may be 

less tenable than those underlying SPMM or other models for MNAR data.  The LCM is 

therefore not a justifiable modeling choice when MNAR missingness is possibly present.  

The problem with non-randomly missing data lies in its own nature, and not in the 

models used to handle it.  As a number of methodologists have pointed out, the healthiest 

way to handle missing data is through sensitivity analyses with full awareness of the 

assumptions and limitations inherent in various models (e.g., Little, 1994; Verbeke, 

Molenberghs, Thijs, Lesaffre, & Kenward, 2001; Enders, 2011). 

 Beyond knowing the theoretical limitations of MNAR models, it is important to 

understand the practical limitations of the models under real-world data conditions.  This 
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is one of the main contributions of the present manuscript.  Chapter 2 expanded Morgan-

Lopez and Fals-Stewart’s (2008) finding that latent mixture models work well with latent 

class dependent missingness to show that SPMMs also work well with a random 

coefficient dependent missingness that depends on latent continua, not just on latent 

classes.  That is, this is the first research conducted that shows that the SPMM can 

ameliorate bias due to an MNAR process where the model provides an approximation 

(rather than literal embodiment) of this process.  As expected, the approximation is best 

with random coefficient dependence missingness, but is insufficient with OD-MNAR.  

Additionally, the model has some difficulty recovering variance components when non-

random selection operates on both ends of the random effect distribution.  Encouragingly, 

the first study showed that there is no substantial downside to estimating a SPMM even if 

data are randomly missing.  Finally, Chapter 2 showed that it is possible, and even 

desirable, to implement a more computationally feasible version of the SPMM by using a 

single summary indicator to represent the missing data, rather than using t binary missing 

data indicators. 

 Chapter 3 showed that the SPMM works better with longer longitudinal studies 

(i.e., studies that collect more repeated measures from participants), and the model works 

much better with erratically missing data than with the dropout mechanism that was 

tested, although this effect declines substantially as observation length increases.  

Generalizing from Chapter 3, it is prudent to conclude that the SPMM will perform better 

when repeated measures exhibit strong communality from the growth factors than when 

the observed indicators have low reliability.  Chapter 3 showed that the SPMM is 

relatively robust to the proportion of missing data, controlling for MNAR severity.  Thus, 
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Chapter 3 lays out some clear guidelines for researchers considering whether the SPMM 

is an appropriate choice for handling suspected random coefficient dependent 

missingness in their data.  Researchers with brief panel designs, and particularly those 

whose participants drop out of the study completely (rather than returning to the study 

erratically) might consider another choice (e.g., traditional pattern mixture models), 

whereas researchers with longer follow-ups, particularly those in which participants 

provide information throughout much of the span of the study (e.g., an experience 

sampling design), will probably obtain quite accurate results if they rely on the SPMM to 

handle missing data. 

 One shortcoming of simulation studies is that they assess model performance with 

data that are generated using relatively simple models, and with a population model that 

is already known prior to data analysis.  Chapter 4 demonstrated the implementation of a 

sensitivity analysis of LCM results with a SPMM in a psychotherapy dataset in which 

random slope dependent missingness was suspected.  The analysis suggested that the 

guidelines based on simulation results from Chapters 2 and 3 are generally easy to 

follow, and that the model is straightforward to implement with real data.  Further, 

Chapter 4 highlighted the point that random coefficient dependent missingness is not 

detectable by visual inspection, so sensitivity analyses (specifically with a model like the 

SPMM) are necessary for evaluating whether random coefficient dependent missingness 

is present. 

Limitations and Future Directions 

 As a matter of practicality, simulation studies are always limited in scope.  The 

most pressing factors to consider were varied in Chapters 2 and 3, while other factors 
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were held constant or limited in complexity.  The most obvious limitation of the 

simulation studies presented here is that the generating growth model was linear in form.  

It is possible, and even likely, that the SPMM will experience more difficulty efficiently 

accounting for random coefficient dependent missingness when the number of growth 

factors increases.  For a related model, the semi-parametric growth model (SPGM, Nagin, 

1999), Sterba, Baldasaro, and Bauer (2010) found that the approximation of variance 

components declines as the number of latent continua increases.  Unlike the SPMM, the 

SPGM does not allow within-class variability.  Therefore, the SPMM might be more 

robust to the addition of growth factors than the SPGM. 

 A second limitation of the simulation studies presented here is that, although 

factor score determinacy was considered as a factor, the relative contribution of residual 

variance to the repeated measures was fairly low.  The residual variances used in the 

simulations were based on the real data analyzed in Chapter 4; however, Chapter 4 

utilized repeated measures that were scale scores based on 45 items, and so they were 

probably more reliable than most measures used in psychology.  Increased residual 

variation in the repeated measures would probably decrease the approximating power of 

the SPMM, impeding its ability to quickly approach unbiased parameter estimates.   

 The sample size used in Chapters 2 and 3 was on the small side, and it did not 

align with the large sample size in Chapter 4.  This misalignment was brought to bear 

when the AIC and BIC continued decreasing in magnitude in Chapter 4, beyond the point 

when aggregate parameter estimates had stopped changing.  This phenomenon was not 

observed in Chapters 2 and 3 because the AIC and BIC tend to prefer fewer classes when 

sample sizes are smaller.  In practice, this issue is of little importance because, as Chapter 
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3 showed, the AIC and BIC often overestimate the number of classes that should be used, 

even with a small level 2 sample size.  A more careful strategy is advised; one that 

involves looking at standard errors and parameter change in addition to information 

criteria across SPMM solutions with different numbers of classes.  In part, a small level 2 

sample size was used in Chapters 2 and 3 in order to provide a more stringent test of the 

SPMM.  The model should only perform better with a larger sample size. 

 Future research on SPMM performance should emphasize more complex models, 

both with respect to models of growth and with respect to missing data mechanisms.  In 

addition, future work should compare performance of SPMM with other types of models 

for random coefficient dependent missingness.  For instance, it would be valuable to 

compare performance of the SPMM with traditional PMMs when a small number of 

repeated measures are present, and to compare the SPMM with a parametric selection / 

shared parameter model in the presence of dropout.  It will also be important to consider 

potential difficulties that may arise when categorical data are present. 

 The most interesting future directions will involve thoughtful, real-world 

applications of SPMM across a range of contexts.  Hopefully, the increasing awareness of 

MNAR and its implications will cause researchers to stop ignoring non-ignorable missing 

data and to make use of the many MNAR modeling approaches that now exist.  The 

practice of regularly conducting sensitivity analyses for missing data assumptions should 

be encouraged by those who engage in manuscript review, and it should be enforced by 

journal editors.
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Appendix: Raw, Relative, and Standardized Bias by Model in Study 1 

 

In the tables below, three measures of bias are reported.  The formula for Standardized Bias is shown in Equation 2.9.  Raw 

Bias is measured as follows: 

 1

ˆ

Raw Bias

N

j
j

N

θ
θ== −

∑
. 

Relative Bias scales the Raw Bias by the magnitude of the parameter: 

 
Raw Bias

Relative Bias
θ

= . 

Bias in LCM-Generated Parameter Estimates by Missingness Mechanism 
Generating Mechanism/ Parameter Raw Bias Relative Bias (%) Standardized Bias (%) 
MAR 

Conditional Intercept ( 0α ) .09 1.30 4.89 

Conditional Slope ( 1α ) 0.00 0.00 0.00 

Residual Intercept Variance (00ψ ) -3.84 -1.02 -10.30 

1
1

8
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Generating Mechanism/ Parameter Raw Bias Relative Bias (%) Standardized Bias (%) 
Residual Slope Variance 11( )ψ  -.11 -1.43 -9.82 

Covariance ( 01ψ ) .11 -1.06 2.28 

Intercept Regression (0γ ) -.05 -.50 -1.89 

Slope Regression (1γ ) .01 -.89 2.22 

SPMM-Consistent    

Conditional Intercept ( 0α ) 1.46 2.12 76.84 

Conditional Slope ( 1α ) -.45 18.00 -128.57 

Residual Intercept Variance (00ψ ) -1.25 -.33 -2.87 

Residual Slope Variance 11( )ψ  -.90 -6.61 -60.81 

Covariance ( 01ψ ) 1.72 -16.57 27.79 

Intercept Regression (0γ ) -.05 -.50 -1.85 

Slope Regression (1γ ) .03 -2.66 -1.85 

RC-MNAR-M 

Conditional Intercept ( 0α ) 3.1 4.49 1.63 

Conditional Slope ( 1α ) -1.01 40.40 -404.00 

Residual Intercept Variance (00ψ ) -8.78 -2.34 -21.22 

Residual Slope Variance 11( )ψ  -2.72 -37.88 -335.80 

Covariance ( 01ψ ) 5.48 -52.79 129.86 

Intercept Regression (0γ ) .18 1.80 6.92 

Slope Regression (1γ ) -.01 .89 -2.70 

 

1
1

9
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Generating Mechanism/ Parameter Raw Bias Relative Bias (%) Standardized Bias (%) 
RC-MNAR-NM 

Conditional Intercept ( 0α ) .40 .58 22.60 

Conditional Slope ( 1α ) -.09 3.60 -37.50 

Residual Intercept Variance (00ψ ) -10.89 -2.90 -29.54 

Residual Slope Variance 11( )ψ  -2.11 -29.39 -270.51 

Covariance ( 01ψ ) 5.18 -49.90 130.15 

Intercept Regression (0γ ) .08 .80 3.28 

Slope Regression (1γ ) .03 2.65 -8.82 

OD-MNAR 

Conditional Intercept ( 0α ) -.04 -3.99 -152.78 

Conditional Slope ( 1α ) .02 -2.80 28.00 

Residual Intercept Variance (00ψ ) -33.90 -9.04 -85.80 

Residual Slope Variance 11( )ψ  -.48 -6.67 -55.17 

Covariance ( 01ψ ) .69 -6.65 14.87 

Intercept Regression (0γ ) -.39 -3.90 -15.66 

Slope Regression (1γ ) .03 -2.66 8.33 

Note.  MAR = Missing at random; OD-MNAR = Missing not at random due to outcome dependent mechanism; RC-MNAR-M = 
Monotonic random coefficient dependent mechanism; RC-MNAR-NM = Nonmonotonic random coefficient dependent mechanism 
Values that exceed arbitrary thresholds for ‘acceptable’ levels of bias (Relative Bias > .10 or < -.10 and Standardized Bias > 40 or <-
.49) are bolded 
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Bias in Binary SPMM-Generated Parameter Estimates by Missingness Mechanism 
 Best AIC Best BIC 

Generating Mechanism/ 
Parameter 

Raw      
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Raw      
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

MAR    

Conditional Intercept 

0( )α  
.01 .01 .55 0.00 0.00 0.00 

Conditional Slope ( 1α ) 0.00 0.00 0.00 .01 -.40 2.86 

Residual Intercept 
Variance ( 00ψ ) 

-6.15 -1.64 -16.49 -6.01 -1.60 -15.84 

Residual Slope Variance

11( )ψ  
-.19 -2.65 -17.76 -.18 -2.51 -16.67 

Covariance ( 01ψ ) .53 -5.11 10.73 .45 -4.34 8.98 

Intercept Regression  
( 0γ ) 

0.00 0.00 0.00 .02 .20 .75 

Slope Regression (1γ ) .02 -1.77 4.26 .01 -.89 2.13 

SPMM Consistent       

Conditional Intercept  
( 0α ) 0.03 .04 1.60 .20 .29 10.53 

Conditional Slope ( 1α ) 0.04 -1.60 11.43 -.02 .80 -5.56 

Residual Intercept 
Variance ( 00ψ ) -2.49 -.66 -5.88 -2.83 -.76 -6.68 

Residual Slope Variance 

11( )ψ  -0.04 -.29 -2.48 -.31 -2.28 -19.02 

Covariance ( 01ψ ) 0.16 -1.54 2.45 .71 -6.84 10.99 

       

 

1
2

1
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Best AIC 

 
Best BIC 

Generating Mechanism/ 
Parameter 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Intercept Regression  
( 0γ ) -0.03 -.30 -1.14 -.04 -.40 -1.50 

Slope Regression (1γ ) 0 0.00 0.00 0.00 0.00 0.00 

RC-MNAR-M       

Conditional Intercept  
( 0α ) 

.33 .48 15.57 .24 .35 10.91 

Conditional Slope ( 1α ) -.14 5.60 -37.84 -.10 4.00 -25.64 

Residual Intercept 
Variance  
( 00ψ ) 

-3.53 -.94 -6.81 .13 .03 2.06 

Residual Slope Variance 

11( )ψ  
-.75 -10.45 -40.54 -.49 -6.83 18.49 

Covariance ( 01ψ ) .74 -7.13 8.72 -.12 1.16 -1.00 

Intercept Regression  
( 0γ ) 

.22 2.20 8.33 .20 2.00 7.49 

Slope Regression (1γ ) -.01 .89 -2.00 0.00 0.00 0.00 

RC-MNAR-NM       

Conditional Intercept  
( 0α ) 

.05 .07 2.76 .05 .07 2.76 

Conditional Slope ( 1α ) -.01 .40 -3.57 -.01 .40 -3.57 

Residual Intercept 
Variance ( 00ψ ) 

-9.08 -2.42 -24.22 -9.35 -2.49 -24.96 

 

1
2

2
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  Best AIC   Best BIC - 

Generating Mechanism/ 
Parameter 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Residual Slope Variance 

11( )ψ  
-1.38 -19.22 -118.97 -1.68 -23.40 -166.34 

Covariance ( 01ψ ) 3.31 -31.89 71.03 4.00 -38.54 90.70 

Intercept Regression  
( 0γ ) 

.13 1.30 5.20 .10 1.00 4.08 

Slope Regression (1γ ) -.03 2.65 -9.09 -.03 2.65 -9.09 

OD MNAR       

Conditional Intercept 
( 0α ) 

-2.45 -3.55 -126.29 -2.59 -3.75 -138.50 

Conditional Slope ( 1α ) .06 -2.40 23.08 .08 -3.20 32.00 

Residual Intercept 
Variance ( 00ψ ) 

-32.69 -8.72 -79.56 -33.19 -8.85 -84.92 

Residual Slope Variance 

11( )ψ  
-.46 -6.41 -51.69 -.47 -6.55 -53.41 

Covariance ( 01ψ ) .92 -8.72 19.41 .71 -6.84 15.37 

Intercept Regression  
( 0γ ) 

-.34 -3.40 -12.41 -.34 -3.40 -12.88 

Slope Regression (1γ ) .07 -6.20 18.42 .04 -3.54 10.81 

Note.  MAR = Missing at random; OD-MNAR = Missing not at random due to outcome dependent mechanism; RC-MNAR-M = 
Monotonic random coefficient dependent mechanism; RC-MNAR-NM = Nonmonotonic random coefficient dependent mechanism 
Values that exceed arbitrary thresholds for ‘acceptable’ levels of bias (Relative Bias > .10 or < -.10 and Standardized Bias > 40 or <-
.49) are bolded 

1
2

3
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Bias in Summary SPMM-Generated Parameter Estimates by Missingness Mechanism 
 Best AIC Best BIC 

Generating Mechanism/ 
Parameter 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

MAR    

Conditional Intercept 

0( )α  -0.06 -0.09 -3.26 -0.06 -0.04 -1.64 

Conditional Slope ( 1α ) -0.01 0.40 -2.94 -0.01 0.40 -2.94 

Residual Intercept 
Variance ( 00ψ ) -6.93 -1.85 -18.14 -6.93 -1.90 -18.48 

Residual Slope Variance 

11( )ψ  -0.28 -3.90 -25.45 -0.28 -3.90 -25.69 

Covariance ( 01ψ ) 0.67 -6.45 13.54 0.67 -4.62 9.90 

Intercept Regression 
 ( 0γ ) 0.26 2.60 9.70 0.26 3.80 14.13 

Slope Regression (1γ ) 0 0.00 0.00 0 0.00 0.00 

OD-MNAR       

Conditional Intercept  
( 0α ) -0.06 -3.12 -118.13 -0.06 -3.12 -117.49 

Conditional Slope ( 1α ) -0.01 -2.40 23.08 -0.01 -2.80 26.92 

Residual Intercept 
Variance ( 00ψ ) -6.93 -6.55 -60.43 -6.93 -6.61 -61.34 

Residual Slope Variance 

11( )ψ  -0.28 -6.41 -52.27 -0.28 -6.27 -51.72 

Covariance ( 01ψ ) 0.67 -8.57 18.46 0.67 -8.57 18.62 

       

1
2
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Best AIC 

 
Best BIC 

Generating Mechanism/ 
Parameter 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Intercept Regression  
( 0γ ) 0.26 -4.00 -15.33 0.26 -4.00 -15.56 

Slope Regression (1γ ) 0 -0.88 2.78 0 -1.77 5.56 

SPMM-Consistent       

Conditional Intercept  
( 0α ) -0.06 0.23 8.25 -0.06 0.22 7.73 

Conditional Slope ( 1α ) -0.01 -2.40 17.65 -0.01 -2.40 17.65 

Residual Intercept 
Variance ( 00ψ ) -6.93 -0.51 -4.66 -6.93 -0.44 -3.97 

Residual Slope Variance 

11( )ψ  -0.28 0.22 1.85 -0.28 0.22 1.85 

Covariance ( 01ψ ) 0.67 2.50 -4.07 0.67 2.02 -3.30 

Intercept Regression 
 ( 0γ ) 0.26 -2.40 -8.89 0.26 -2.40 -8.89 

Slope Regression (1γ ) 0 -3.54 9.30 0 -2.65 7.14 

RC-MNAR-M       

Conditional Intercept  
( 0α ) -0.06 0.07 2.40 -0.06 0.01 0.48 

Conditional Slope ( 1α ) -0.01 2.40 -18.18 -0.01 2.40 -18.18 

Residual Intercept 
Variance ( 00ψ ) -6.93 -2.57 -20.90 -6.93 -2.60 -21.16 

       

1
2

5
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Best AIC 

 
 

Best BIC 

Generating Mechanism/ 
Parameter 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Raw       
Bias 

Relative Bias 
(%) 

Standardized Bias 
(%) 

Residual Slope Variance 

11( )ψ  -0.28 -8.08 -33.53 -0.28 -8.22 -34.50 

Covariance ( 01ψ ) 0.67 -10.12 14.73 0.67 -10.12 14.75 

Intercept Regression  
( 0γ ) 0.26 1.50 5.56 0.26 1.30 4.87 

Slope Regression (1γ ) 0 -1.77 5.26 0 -1.77 5.26 

RC-MNAR-NM       

Conditional Intercept 
( 0α ) -0.06 0.22 8.29 -0.06 0.23 8.84 

Conditional Slope ( 1α ) -0.01 0.40 -3.57 -0.01 0.80 -7.14 

Residual Intercept 
Variance ( 00ψ ) -6.93 -2.60 -26.52 -6.93 -2.60 -26.71 

Residual Slope Variance 

11( )ψ  -0.28 -18.52 -108.13 -0.28 -19.50 -113.82 

Covariance ( 01ψ ) 0.67 -34.01 75.11 0.67 -34.68 76.43 

Intercept Regression  
( 0γ ) 0.26 2.40 9.64 0.26 2.40 9.64 

Slope Regression (1γ ) 0 -0.88 3.03 0 -0.88 3.03 

Note.  MAR = Missing at random; OD-MNAR = Missing not at random due to outcome dependent mechanism; RC-MNAR-M = 
Monotonic random coefficient dependent mechanism; RC-MNAR-NM = Nonmonotonic random coefficient dependent mechanism 
Values that exceed arbitrary thresholds for ‘acceptable’ levels of bias (Relative Bias > .10 or < -.10 and Standardized Bias > 40 or <-
.49) are bolded 

1
2
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