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ABSTRACT

NISHA GOTTFREDSON: Evaluating Shared-Parameter Mixture Mddels
Analyzing Change in the Presence of Non-Randomly Missing Data
(Under the direction of Daniel J. Bauer)

Longitudinal researchers have been slow to adopt models for assessing the
sensitivity of their results to potentially non-randomly missing data, @ptstead to rely
exclusively on more traditional approaches to modeling growth like latent curve
modeling (LCM). Implicit in this choice is the strict assumption that mgsdata are
missing at random (MAR). Failure to meet this assumption leads to inaccueaénas
regarding growth. A number of models for assessing the impact of non-randomly
missing data on growth trajectory estimates have been presented over theagast
century. These models are briefly discussed, and a new variation on some recently
developed models is introduced. The shared parameter mixture model (SPMM)
described here is preferable to some other models for a few reasons. Most notably, it
approximates the dependence between the missing data process and the repeated
measures without requiring an explicit specification of the missingnessamesm while
simultaneously allowing conditional independence between the growth model and the
missing data.

Performance of the SPMM is evaluated using simulation methodology across a
range of plausible missingness mechanisms and across a range of longitudinal da
conditions. SPMM performs well when the missing data mechanism is ettémr la



class- or growth coefficient- dependent. Fixed effect recovery is morstribiaun
variance component recovery. The SPMM performs best with longer observation lengths
and with erratically spaced missing data than with dropout.

Finally, this manuscript illustrates how the SPMM might be used in practiceby
analyzing change over time in psychological symptoms of patients enrolled in
psychotherapy.

Results are generally encouraging for SPMM performance undereaating
simulated data conditions, and for feasibility with real data. Researchersuspect the
presence of random coefficient-dependent missing data are urged to considereusing th

SPMM to assess sensitivity of their model results to the MAR assumption.
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CHAPTER 1
INTRODUCTION

Missing data is difficult to avoid in longitudinal social science res$esitadies.
Participant data can be missing for an entire wave of longitudinatdi¢ation. Wave-
level missingness might occur for relatively benign reasons (e.g., desgd-ba
missingness or inconvenient timing of data collection), or it might occur feomeahat
are related to the research question of interest (e.g., death or hospitalizatstady of
dementia-related outcomes; relapse in a study of alcohol treatmentusBeca
longitudinal models are often used to make inferences about inter-individuallitgriab
intra-individual change over time, longitudinal studies are vulnerable to kiasmg
from a type of missing data that is uniquely troubling: missingness due to latent
individual differences in growth trajectories (i.e., random coefficieneddent
missingness).

The studies presented in this manuscript evaluate a promising staisticattie
for handling random coefficient-dependent missing data in longitudinal studies under a
variety of real world data conditions. The introduction is organized as followst, the
latent curve model (LCM) is described and different missing data meclsaarism
defined within this context. Next, the relative strengths and weaknesses of popular
models for handling non-randomly missing data will be discussed. The shared paramete

mixture model (SPMM), a promising model for flexibly handling a variety of non-



random missing data mechanisms, will then be described. Finally, hypothesdsgega
the performance of the SPMM under several data conditions will be stated.
The Latent Curve Model and Missing Data

In the LCM, individual growth over time is modeled as follows (McArdle &

Epstein, 1987; Meredith & Tisak, 1990; Bollen & Curran, 2006):

yi :Anl +8I (1 1)
N =o+IX +§ .

wherey, is aT x 1 vector of repeated measures for individuater T measurement
occasionspy, is amx 1 vector of latent growth scores (e.qg., intercept, linear slope,
guadratic slope) with mn x 1 intercept vectos and am x 1 vector of individual
deviations{ that define the individual growth trajectories. A vectog of
predictors/covariatey; is related to individual growth factors througma g matrix of
regression weights;,. Ais aT x mmatrix of factor loadings (which are usually

constrained by the analyst to define the shape of growth) that regressethiedep

measures on latent growth factors, and aT x 1 vector of time-specific residuals.

Growth factors are usually assumed to be conditionally multivariate normal

(& ~N(0,¥)), and they are generally allowed to covary with one another. Time-specific
residuals are also assumed to be conditionally normally distribgtedN(0,@)) and are

often assumed to be independent (I@is a diagonal matrix); the last constraint may be

relaxed. Further, it is assumed that the residuals are uncorrelated witbwitie fgctors.



The equivalence of the latent curve model with mixed-effect, hierarcbrcal,

multilevel growth models is well-established (Mehta & West, 2000; Bauer, 20083n,

2003; Singer & Willett, 2003). The parameters withimnd ' are the fixed effect<

andg are the random effects / residuals, &dind ©® contain the variance components

and covariance parameters. Thus, issues discussed with respect to the latenbdalve
are equally applicable for growth models fit as mixed-effect, mudtijeor hierarchical

linear models.

LCMs can be estimated using direct maximum likelihood (ML), resulting i
unbiased growth parameter estimates when missing data are missindahr(MAR;
Rubin, 1976) if the variables related to the missingness mechanism are measured and
included in the data model (Arbuckle, 1996; Wothke, 2000; Enders, 2001). Similarly, if
the causes of missingness are included in an imputation model prior to data attegsis
multiple imputation will lead to valid inferences under a MAR mechanism (8chaf
2003; Rubin, 2004). However, when analyzing longitudinal data, there are many
situations in which the MAR assumption for missing data would be untenable. As noted
earlier, for instance, when studying change over time, it is possible thatunaivi
differences in growth are directly related to missingness protebife.g., dropout in a
longitudinal treatment study may be related to the progression of a diseasga®é&m

Schafer, 2003).

In general, the MAR assumption is violated when the cause of missingness is
related to the outcome of interest and this cause is not included as a measabdel ivari

the analytic model (or imputation model, if multiple imputation is used to account for a



missing data process that is MAR). If the MAR assumption is violated, then the

probability that a given repeated meagyg is missing depends on the underlying
value of y, itself, even after accounting for measured variabj¢s(d X, , wherey®

includes only the subset of observed repeated measuyek iln this case, the missing
data process is referred toascome-dependent and is ‘nonignorable’ (Rubin, 1976).
Alternatively, the missing data can be said to be missing not at random (MNIAR).
LCM is used to analyze data in which non-random missingness is present, biascomay

in fixed effect estimatesa( or I') and variance estimate¥6r 0).

Reflecting on Equation (1.1), there are two potential sources for non-ignorable
outcome-dependent missingness in a longitudinal model: the random coeff{gjgnts
that reflect inter-individual variability in change over time, or the tgpeeific residual
errors (g,) that reflect intra-individual deviations from the individual's growth trajectory

Random coefficient-dependent missingness indicates a systematic treisgingness
across individuals (e.g., patients who experience little improvement in attimat may
drop out earlier than average), and error-dependent missingness indicatesrsef
observations within individuals (e.g., a participant in a daily diary study of paymot

report on particularly difficult days).

Modeling Growth in the Presence of Non-Randomly Missing Data
Any method for handling non-randomly missing data must somehow incorporate
information about the missing data process into the model for the data. An in-depth

review and illustration of several approaches for accomplishing this gdeh wit



longitudinal models was recently provided by Enders (2011). A more cursogwrsvi
offered here, leading up to a model that is particularly promising, the SPMM.

Selection models (Heckman, 1976; Heckman, 1979; Diggle & Kenward, 1984)
and traditional shared parameter models (Wu & Carroll, 1988; Albert & Follman, 2009)
require the analyst to specify an explicit model for the missing data andddion the
longitudinal model estimates on the missingness model. Whereas selection models
condition the probability that a repeated measure is missing on the value of thhedepea
measure itself, shared parameter models condition the probability of messsngn
individual growth trajectories. Thus, shared parameter models are parnicelaviant
for handling random coefficient dependent missingness. In shared parametes, thedel
growth parameters are ‘shared’ between the missingness model and thellnabi
model such that the missing data indicators are conditionally independent from the
repeated measures after conditioning on the growth trajectories. Selectida amutle
shared parameter models have the benefit of being conceptually straighdfdrutahey
are heavily model-dependent and sensitive to misspecification of the missngatiel
(e.g., omitted covariates, misspecification of the form of missingness,lations to
distributional assumptions; Kenward, 1998; Winship & Mare, 1992; Vonesh, Greene, &
Schlucher, 2006; Tsonaka, Verbeke, & Lesaffre, 2009).

Pattern mixture models (Little, 1993) and latent pattern mixture models (Roy
2003) condition the longitudinal model parameters on observed or latent patterns of
missingness so that a separate trajectory is estimated for each gnoigging data
patterns. In practice, this means estimating a growth model with an indisidual

missingness pattern included as a predictor (Hedeker & Gibbons, 1997; and possibly



reducing the observed patterns to a smaller set of latent classes; Roy, 20E8)isthe
multiple groups latent curve model for handling MAR missingness with an éstithat
utilizes only sufficient statistics, a technique suggested by McArdle an@dam
(1992). Group-specific trajectory estimates are aggregated to obtasbsalesd
trajectory estimate for the total population. The PMM and LPMM have thetzdea
that noexplicit specification of the unknown missing data mechanism is required.
However, these models suffer from the drawback that trajectories iegetlfdor
indirectly) conditioned upon observed (and sample-dependent) missing data patterns.
This may be problematic because the inclusion of missing data pattemagaates in
the trajectory model reduces the validity of ML-based inferences undgnamable
missing data mechanism (Demirtas & Schafer, 2003). According to smamt
Schafer, the inclusion of indicators of missingness (e.g., dropout occasion) aopsedi
in a growth model reduces the generalizability of inferences so thaathewly valid
under the specific growth mechanism that is implied by the model (includingettisepr
form in which the indicators enter the model).

A number of recent publications have combined the idea of a shared parameter
model with the LPMM in order to induce conditional independence between the missing
data indicators and the trajectory model of interest (Lin, McCulloch, and Rosenheck,
2004; Morgan-Lopez & Fals-Stewart, 2007; Beunckens, Molenberghs, Verbeke, &

Mallinckrodt, 2008; Tsonaka et al., 2009; Muthén, Asparouhov, Hunter, & Leucter,

! Conditional independence models (i.e., shared parameter models) are preferable to the alternative
pattern mixture approach because, according to Demirtas and Schafer (2003), conditioning the growth
trajectory on missingness indicators limits the validity of the growth model beyond that implied by the
(sample-dependent) model-implied mechanism. Pilot simulation work has verified that conditional
independence models (e.g., shared parameter models) are more stable than conditional models like the
PMM and LPMM.



2011). Lin et al. (2004) added a survival model for dropout. Others have taken Roy’s
(2003; LPMM) idea of using latent classes, initially viewed as a patduction device,
a step further by suggesting that the latent classes represent natgralipalof
individuals who differ qualitatively with respect to their missing dataepadgtand their
growth trajectories. Some methodologists, however, have cautioned that sgeming|
distinct groups can often be estimated with such models even when heterogeneity i
strictly continuous in nature, potentially resulting in misleading conclusiensef &
Curran, 2003; Sampson, Laub, & Eggleston, 2004; Bauer, 2007).
The Shared Parameter Mixture Model

The shared parameter mixture model draws on the models reviewed above to
achieve several objectives. First, the model should not require the explodicstien
of the missing data mechanism. The assumption underlying the first objectheaé an
analyst may have difficulty forming a correctly specified sharedrpater model for the
process underlying their missing data. Second, it is preferable to siecgyowth
model to be conditionally independent from the missing data indicators afteméog
for exogenous variables and shared parameters (the idea behind traditiormhl share
parameter models). Thus, an optimal model for random coefficient-dependent
missingness would use a separate latent variable, distinct from the groariefes, as
the shared parameter between indicators for missingness and random geffitrents.

To maximize flexibility in accounting for the missing data proce#isout having
to form an explicit model, the shared parameter should be discretely-dedrilnet, a
relatively small number of latent classes). The shared-parameteentral part of the

model because of its role in creating conditional independence betweendti®ityagnd



the missing data indicators (Tsonaka et al., 2009). Traditional shared panaoedts
rely on growth factors as the shared parameters, which are typicalifjesbtxrbe
normally distributed. Misspecification of the shared-parameter distibatd its
relation to other variables may lead to violation of the conditional independence
assumption, leading to bias in trajectory estimates (Tsonaka et al., 20@®odsible to
circumvent this problem by conditioning the growth factors and the missing ditanpa
on discrete latent classes (the new shared-parameters) in order torapprdkie
unknown joint distribution between the growth factors and the missing data patterns.
Indeed, latent mixture distributions are often used to semi-parametapaltgximate
unknown continuous densities (Heckman & Singer, 1984; Nagin, 1999). By using latent
classes as an intermediary between growth factors and missing dataspdtis possible
to approximate the non-random missing data process semi-parametrid¢edigudlity of
the resulting approximation is the topic of Chapters 2 and 3 of this document.
Mathematically, the way that the SPMM factors the joint likelihood for the
repeated measures and the missing data indicators can be expressedss foll

Trajectory model, Semi-parametric missing
conditional on latent class, data model

a A N

fFOy, R G Ix)=f@n x )Xol xR ExFGC . (1.2)

whereR;is a vector of missing data indicators (e.gl,»al vector of binary indicators of
missingness for every observationherer, =1if y, is missing and;, =0if Y, is
observed).R; could also be a one-number summary for the missingness patterns, as

suggested by Roy (2007). When the number of repeated measures becomes large,



estimation of SPMMs with binary indicators of missingness may become difficul
Examples of potential summary indicators are the number of total observations for
individuali or the occasion of dropout for individuaf Note that both the growth
parameter and the missing data patterns are conditioned on the latentrcdddss@;,

as well as on the covariat¥s. C; is a set of latent, shared-parameter variables for the
non-ignorable missing data mechanism. The effects of observed predictors may b
included in the conditional distribution f&; to account for a MAR mechanism, in order
to make the model more efficient.

In the SPMM, covariates influence growth factors and missing data ioidicat
directly, rather than indirectly via latent class probabilities. Althougiai models
presented in the literature allow covariates to affect class probabitltiepractice is not
recommended for the SPMM because it complicates computation of the aggregdte mode
parameters. Allowing covariates to predict class membership intpéesnarginal
covariate effects depend on the values of the covariates themselves (Deouan, P
Lima, Letenneur, & Jacgmin-Gadda, 2008). Although true effects of covariatesbeoul
computed with some effort, estimation of the standard errors for covariatts effe
intractable (Dantan et al., 2008).

SPMMs can be specified as structural equation mixture models (SEMMs;
Arminger, Stein, & Wittenberg, 1999; Dolan & van der Maas, 1998; Jedidi, Jagpal, &

DeSarbo, 1997; Yung, 1997), and they can be estimated by ML with the EM algorithm

’ Rose, von Davier, and Xu (2010) found empirical support for the practice of using summary indicators
when implemented with a traditional PMM.

* The SPMM is meant for modeling continuously varying heterogeneity in a population, so classes are used
as a statistical tool for approximating the missing data process. In a direct latent class pattern mixture
modeling application in which discrete heterogeneity is assumed to exist, it may make sense to allow
latent class predictors (e.g., Morgan-Lopez & Fals-Stewart, 2007).

9



using conventional software. With ML estimation, the optimal number of classes is
determined by fitting a series of SEMMSs, varying the number of lateneslasssent in
each model, and comparing model fit. To estimate a SPMM, one specifies a mixture
latent curve models (i.e., growth mixture model (GMM); Verbeke & Li&#&at996;
Muthén & Shedden, 1999) with the form of growth that characterizes individual

trajectories (e.g., linear, quadratic, piecewise), as shown below:

yi = Anl +8i (1 3)
n, =a,+I'X +¢ '

whereg, ~ N(0,®@), & ~N(0,0), and thek subscript indicates a class-varying

parameter. Unlike a conventional GMM, the SPMM jointly includes missing data

indicators for the shared latent class variables via the equation

v, =B, + KX (1.4)

wherev, is a vector of values for the linear predictorR®f, B, is a vector of intercepts
and K is a matrix containing the direct effects of the covariatesn the missingness

indicators. For instance, if binary missing data indicators are present; theght be

specified as a vector of logits. An example path diagram for a SPMM witepeated
measures and binary indicators of missingness is shown in Figure 1 (measure

parameters not annotated).

10
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Figure 1. Path diagram of Binary SPMM. Circles represent latent variainésectangles
represent measured variables. Uni-directional arrows represerssiegrpaths and bi-directional
paths represent variances or covariances. The triangle reptésegitswth factor intercepts.

Note that the class-varying parameters in the SPMM of Equations (1.3) and (1.4)
area, andp,. Allowing these parameters to vary across classes enables the model to

capture the dependence of the individual trajectories and the missing datas, jdat |
differences in these parameter vectors allow certain types ofttragsc(represented

througha, ) to be associated with certain patterns of missing data (represented through

B.). Although, in principle, some other parameters could also be permitted to vary

across classes, limiting the number of class-varying parametersdedpain parsimony,

11



makes interpretation more straightforward (Dantan et al., 2008), and reduces the
likelihood of some estimation problems (Hipp & Bauer, 2006).

When fitting a SPMM, one question is how many classes to include in the
analysis. Numerous fit indices, including the Akaike Information Crited@ ,(
Akaike, 1974), the Bayesian Information Criterion (BIC; Schwarz, 1978), and many
others, have been compared via simulation to determine the index with the optimal
performance for GMMs (Lubke & Muthén, 2007; Tofighi & Enders, 2007). However,
these studies have examined direct applications of mixtures and class redosetyug
classes exist, whereas the goal of class enumeration is quite different The primary
purpose of the latent classes in the SPMM is to explain the dependence betwegn miss
data patterns and growth parameters; the aim of class enumeration isde gr@bugh
latent classes to achieve this goal. The goal is not to determine thet'cuureber of
latent classes. Therefore, it may be preferable to base class emmferssPMMs on
the AIC, rather than the BIC, because AIC tends to prefer slightly mon tdésses
than BIC (McLachlan & Peel, 2000). That is, because the goal is to have a sufficient
number of classes, more liberal selection indices, like AIC, may be preféoainlore
conservative ones, like BIC. On the other hand, including more latent classes than are
necessary to achieve approximate conditional independence between thg datsi
indicators and the growth parameters may lead to imprecise estimatesldiger
standard errors resulting from estimation of more parameters. From s$pegere, the

BIC may be the optimal index of fit.

12



Recovery of Fixed Effects and Variance Components

Once the number of classes have been selected, the next step is to aggregate over
class estimates to obtain population level effects. Aggregate growth parameens or
intercepts are calculated by applying the following formula (Vermuna& ijk, 2001;

Bauer, 2007):
K
o= Zﬂ'k(lk (1.5)
k=1

whereK is the total number of latent classes andepresents the class probability
(mixing proportion, or weight) for clasgs That is, class-specific means (for

unconditional models) or intercepts (for conditional models),are weighted by their

associated class probabilities, , to obtain a population-average vector of growth factor

means/intercepts.

Aggregate growth factor variances and covariances (or residual \eariand
covariances) can be calculated by combining the between-class noeamatrix
(created by mean differences across classes) with the within-olassatice matrix, as

shown below (Vermunt & van Dijk, 2001; Bauer, 2007):

K K
Y =
k=1 j=k

=1 j=k+1

T T (ak_aj)(uk_uj)""q) (1.6)

For both Equations (1.5) and (1.6), aggregate estisnare obtained by substituting
sample estimates for population parameters. Stdreteors for the aggregate estimates

can be computed via the delta method (e.g., Ragkib\arcoulides, 2004).

13



A number of researchers have noted that misspatitn of the random-effects
distribution can result in serious finite samplasin variance component estimates, but
that fixed effect estimates are typically unbiaggdeast for normally distributed
outcomes; e.g., Verbeke & Lesaffre, 1997;drii, Alonso, & Molenberghs, 2007). Most
research on the consequences of random effect ecifisption has focused on assuming
a continuous random effect distribution when thpysation generating model is a
mixture; this manuscript deals with the oppositenseio. In a sense, the SPMM
purposefully misspecifies the random effect disttidn by imposing a mixture model
when the true random effect distribution may bedved to be normal. Some recent
manuscripts suggest that this type of misspecifinanay be just as troublesome for
recovering variance component estimates (e.g.b&t@010; Sterba, Baldasaro, & Bauer,
2010)¢

In practice the ‘true’ population generating modalnknown, and a number of
generating models are plausible. Thus, it is resrggo evaluate how well the SPMM is
able to semi-parametrically approximate the popategenerating parameters under a
variety of population generating mechanisms. Thislze done via simulation
methodology.

Evaluating the Performance of SPMMs

Enders (2011) showed that different approacheadoommodating MNAR data
can provide widely varying substantive resultsisTif true in part because of the
different assumptions required by each model, angiit because some models were

created to handle slightly different forms of miggiess (e.g., traditional selection

* The normal mixture that is implied by the SPMM is not exactly identical to the model analyzed in Sterba
(2010) and Sterba et al. (2010). These studies used a discrete mixture, rather than a normal mixture, to
approximate growth trajectories.
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models were intended for outcome-dependent missggand shared parameter and
pattern mixture models were intended for randonffiodent-dependent missingness). It
should thus be emphasized that SPMM is intendednigliorate parameter bias
specifically due to random-coefficient-dependergsimg data. Where SPMMs may fail
is with outcome-dependent missing data (as oppimsstlict random coefficient-
dependent missing data). SPMMs cannot be expeztadigate parameter bias
associated with this type of problem entirely beea@lthough the repeated measures are
in part due to covariates and random coefficightsy also include residual error, a time-
varying unmeasured effect. A similar observaticayrbe made concerning more
traditional pattern mixture models (with observedtgrns) and it is noteworthy that these
models have sometimes performed poorly with outede@endent missingness (Yang
and Maxwell, 2009; Maxwell & Yang, 2010).

Overall, there has been very little published eroginwork evaluating the
performance of SPMM-type models. One exceptianstudy conducted by Morgan-
Lopez and Fals-Stewart (2008), who simulated datkeua discrete missing data
mechanism (i.e., a mechanism in which there araa slumber of groups with distinct
missingness patterns). Specifically, they gendrdéta from three groups: consistent
attenders, dropouts, and erratic. The groupsrddfevith respect to their probability of
observation on each measurement occasion. Inojn@ation generating model,
treatment predicted group membership, and botintex® group and latent group
membership predicted the growth variables. Themgalid not differ with respect to
their overall growth trajectories, but they diffdr@ith respect to the treatment effect.

The authors’ analyzed the artificial data usingjiti@ population-generating model (a
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latent class shared-parameter model with threatlatasses), (b) a latent class shared-
parameter model with two latent classes, and &tqadard LCM. Morgan-Lopez and
Fals-Stewart (2008) found that both the two- amdahclass shared-parameter models
resulted in acceptable parameter estimates, buatiadyzing the data using a LCM
resulted in unacceptable levels of bias when drbpias were high and when class-
specific treatment effects were well separated.fifténg that even the two-class model
recovered the aggregate parameters fairly webhisistent with the idea that one need
not identify the true number of groups presenhmdata (in this case, three), so long as a
sufficient number of groups is included in the mode
Sudy Overview

This study evaluated the performance of SPMMéii@ar models of growth
under a variety of population and modeling condgio Predictors of growth are included
to maximize the external validity of the results—nmost real-world data analysis settings,
researchers are more interested in making infesegloeut predictor effects than about
modeling the shape of unconditional growth. Twusians of the SPMM are considered:
the Binary SPMM and the Summary SPMM.

The major components of the study are describkhbe

Study 1: Evaluating Performance of the SPMM und€agety of Missing Data

Mechanisms

SPMMs are not designed to draw precise conclusibost the nature of the
missing data mechanism; rather, they are designsthtistically approximate the joint
distribution between observed missing data pattanasgrowth factors. As such, in

order for the methodology to be useful in an appdientext, it is necessary for the model
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to provide a good approximation to the missing gateess under a wide range of
missing data mechanisms in the population. Stualgséssed the SPMM under a variety
of missing data mechanisms: ignorable missingndsd(), latent class-dependent non-
ignorable missingness (SPMM-consistent missingngssivth coefficient-dependent
missingness that is either monotonically (RC-MNAR-®&1 non-monotonically (RC-
MNAR-NM) related to the growth factor, and outcomependent missingness (OD-
MNAR).

Two alternative SPMM specifications were evaluagethodel with a one-number
summary of missingness (i.e., the number of repaatasures observed for each
individual; a ‘'summary’ SPMM) or a model with didleonous missing data indicators for
every repeated measure (a ‘Binary’ SPMM). Two ni®dere considered for a couple
of reasons. First, it is possible that relativadeigperformance may differ by missing
data mechanism. For instance, a summary SPMM migtk well with a monotonic
mechanism, but the same model might not work with & non-monotonic (e.g., a U-
shaped) missing data mechanism. The reason #isths follows: if a mid-ranged
random effect value is related to the lowest prditalof missing data, with high
probabilities of missingness on either tail of tardom effect distribution, then the
number of missing observations will be virtuallycorrelated with the growth factors. In
this case, it might be more informative to use maBy SPMM in order to adequately
approximate the missingness process. The secardmr¢o evaluate the performance of
two models is practical: as the number of repeatedsures increases, the computational

feasibility of the Binary SPMM decreases.
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Study 2: Evaluating the Effect of Missingness Mettim Severity on SPMM

Performance

Random coefficient-dependent missingness is eggddotresult in the most
growth parameter bias when little information isidable with which to accurately
determine random coefficient estimates (conditiofisencing growth factor
determinacy are described below). Study 2 testedhypothesis that the higher the
determinacy of the random coefficients, the leseethe MNAR mechanism; as growth
coefficients approach determinacy, they should imecmore like observed variables, and
the MNAR mechanism should therefore approach a M#dhanism. Longitudinal data
characteristics that lead to good growth factoewsinacy include: a high correlation
between growth factors, a low proportion of unekpd variance (for both items and
factors), and many repeated measures (e.g., GuttrAdh; Mulaik & McDonald, 1978;
Acito & Anderson, 1986).

When conducting an empirical research study,iihjgossible to manipulate the
correlation between growth factors, and controlrdalie reliability of measures is limited.
The number of repeated measures can be (relatigaily manipulated by the
researcher, so this was included as a measurewflgfactor determinacy in Study 2.
Five, 10, and 20 repeated measures were includstiidg conditions in order to simulate
data across a realistic range of longitudinal gsidiAs recognized by Mulaik and
McDonald (1978), infinitely adding observed varibboes not additively contribute to

factor determinacy. Thus, it might be expected ttna difference between including five
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and ten repeated measures in a study is greatethtealifference between ten and
twenty indicators.

When data are missing, factor score determinatiyowinfluenced not only by
the number of repeated measurement occasionslsbubyathe frequency with which the
measures are actually observed. In Study 2, thygoption of missing data was
manipulated so that the proportion is either .3®0r This range was chosen so that the
proportion of MNAR missingness was high enoughufossantially bias parameter
estimates if MAR is assumed (Collins, Kam, & Scha?801), and low enough to be
realistic.

The nature of the random coefficient-dependentiaeism may influence factor
score determinacy, holding constant the numbeepéated measures observed. That is,
even if the proportion of missing data were heldstant, it would be reasonable to
expect that an SPMM might have more trouble witliagpout mechanism than with an
erratic missingness mechanism, particularly whemtimber of repeated measures is
low. In instances of complete attrition, infornmatiabout growth trajectories is
concentrated in the initial part of the study, sovgh factor estimates rely on a severely
restricted range of information with which to prdgiinference about a parameter
describing the entire time range in the study. pitedlem may be compounded if the
proportion of unexplained variance is lowest atitttercept (i.e., if growth coefficients
contribute more explained variance over time). Eesv, the problem of dropout might
be ameliorated if many repeated measures existas@hough observations exist to
develop a relatively precise trajectory estimatdridividuals in the sample. Therefore,

while holding the percentage of missing data conistudy 2 varied the missingness
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mechanism to result in either erratic missingnesomplete dropout. Simultaneously,
the number of repeated measures were varied.

The same characteristics that influence growttofadeterminacy in a LCM may
also influence performance of SPMMs for a diffenez@ison. When a study collects a
small number of repeated measures, when droppuésent (as opposed to erratically
missing data), or when there is a high proportibmissing data, it is expected that fewer
latent classes will be extracted from the datagethelimiting the ability of the SPMM to
fully account for dependence between the missirggmeschanism and the growth
factors.

Study 3: A Real-World Application of the SPMM

The final component of this manuscript is an eiogirapplication of the SPMM
to real data. Data are from a longitudinal stublpatients while they were enrolled in
psychotherapy. Past research has assumed thahsesj therapy treatment is
independent from the dose of therapy received (BaldBerkeljon, Atkins, Olsen, &
Nielsen, 2009). Baldwin et al. showed that psylcli@py outcomes are not independent
from dose (i.e., the number of psychotherapy sessattended). They included total
number of sessions attended as a predictor of pyetapy outcomes in a growth model.
An alternative strategy for modeling Baldwin etsa{2009) psychotherapy is to
implement a SPMM, using number of sessions atteadedlatent class indicator. The
benefit of using the SPMM approach to modelingpgigchotherapy data is that it
provides a single model for the population thatasconditional on the number of
sessions attended. Such information might be Umfunderstanding the average

change over time that might be expected for arviddal entering treatment, without a
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priori knowledge of the dose of psychotherapy thi#ltbe received. This knowledge
would be useful in planning psychotherapy interigrg.

The psychotherapy dataset analyzed in Study Beésegample of many possible
uses for SPMM methodology. In this case, partitighata are structured using therapy
sessions as the time metric. In a sense, patidrideave therapy before the final
measurement occasion can be considered as drapytiad the study early; the full
hypothetical trajectory (had the patients stayeith@mapy until the end of the study) is
unobserved for most participants. If time of drapis related to participants’ change
trajectories, then the LCM-implied population awgrdrajectories, and the variation

around the average, will be biased toward the petieho stayed in therapy longer.

> Trajectory estimates will be biased under an MAR approach assuming that the research question relates
to the expected rate of change for individual patients enrolled in therapy, without a priori knowledge of
their length in treatment.
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Chapter 2
STUDY 1: QUALITY OF SPMM APPROXIMATION

OF A VARIETY OF MISSING DATA MECHANISMS

Study 1 was designed primarily to assess SPMMpednce under a variety of
missing data mechanisms: MAR (i.e., ignorable) mggsess, latent class-dependent
missingness (i.e., SPMM-consistent missingnessyytlr coefficient-dependent
missingness that is either monotonic (RC-MNAR-Mhon-monotonic (RC-MNAR-
NM) with respect to the relationship between thengh coefficient and the probability
of missingness, and outcome-dependent missing@E39NAR).

Two alternative SPMM specifications were evaluagethodel with a one-number
summary of missingness (i.e., the number of repaatasures observed for each
individual; a ‘Summary SPMM’) and a model with hipanissing data indicators for
every repeated measure (a ‘Binary SPMM’). The sdaoy purpose of Study 1 was to
compare performance of the Binary SPMM with the 8uary SPMM across a range of
conditions under which the summary model would>jmeeted to work as well as or
better than the Binary model (MAR, SPMM-consistamii RC-MNAR-M missingness
mechanisms), and under conditions in which thergimadel might provide some
additional information regarding the missing datacpss with which to obtain less
biased parameter estimates than the summary modlel abtain (RC-MNAR-NM and

OD-MNAR missingness mechanisms).



Hypotheses regarding model performance under tbgimgness mechanisms
tested in Study 1 are listed below:
1. The LCM and the SPMM should both provide unésibsstimates of the average
trajectories (i.ea andy) and variability around averages (i.®.) when the missingness
mechanism is MAR. The LCM should provide morecadint estimates than the SPMM
since it relies on fewer parameters.
2. Both versions of the SPMM should provide lesséd estimates of the population
average trajectory than the LCM when the missirtg daechanism is random coefficient
dependent (i.e., SPMM-consistent, RC-MNAR-M, or RIBKAR-NM). SPMM
performance will be best when the non-ignorablelhmaism is SPMM-consistent but it
will provide a reasonable approximation to any mndoefficient-dependent
missingness mechanism.
3. SPMM-generated estimates will be less biasad LHCM-generated estimates under
an OD-MNAR mechanism to the extent that missingdegends on the random
coefficients. However, given the presence of auligl residual variation, it is
hypothesized that neither of the models will prevatceptable estimates under outcome
dependent missingness.

Bias is considered for both fixed effectsand y ) and variance component¥ {
in turn. With respect to the fixed effects, theajest bias is anticipated faf in the RC-
MNAR conditions since the missing data generati@cmanism is random slope
dependent, and the greatest bias is anticipatedfiorthe OD-MNAR condition since
the missing data mechanism depends on levelg offor fixed effects, bias in standard
error estimates is also examined.
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Hypotheses regarding the relative performanca@Summary SPMM and
Binary SPMM are:
4. The Binary SPMM may be better able to accomn@adaon-monotonic mechanism
than the Summary SPMM, but both models will be egjently unbiased (or biased) in
all other conditions.
5. The Summary SPMM should be more efficient tteenBinary SPMM when both
equivalently capture information about the misgiatg process (i.e., under a MAR
mechanism, a RC-MNAR-M, and SPMM-consistent migsas).
Data Generation

Parameter generating values were chosen to ntadmear form of growth in a
naturalistic psychotherapy study that was describ&hldwin et al. (2009). In this
study, patients were suspected to have left thewpythus stopped providing outcome
information, as a function of their growth trajes, suggesting a random-coefficient-
process for study termination. Five hundred reptidaamples of size 300 were
generated for each missing data mechanism condition

For most of the conditions, data generation oeclim two steps. First, complete
data(y’) were generated, and then the observed repeatesliragéwere selected based
on the missingness mechanism. An overall proligufi35% missingness was retained
across all study conditions. Data on ten repeateaisures were generated to be

consistent with the following conditional LCM withlinear form:

® These data are analyzed in Chapter 4 using the SPMM.

[y sample size of 300 was chosen to balance between the complexity of the model (necessitating
relatively large sample sizes) and the practical constraints of most psychological studies (necessitating
relatively small sample sizes). Pilot research with larger sample sizes showed the same pattern of results,
but with less variability and with more classes, on average.
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Yi =1 + A0y + &
Mo = Ao+ 7% +< g (2.1)
Ny = +y% +¢;5

wherey¢denotes complete data at titfer individuali, 7, denotes the random intercept,
Ais time (4 ={0,1,...,9}), 7, is the random slope, arg} is the time-varying residual
term, &; ~ N(0,180]. The baseline intercept was settp=69and random slope
intercept was set ta, =—-2.5. Both were conditioned on the same binary timeirant
covariate,x (X ~ Ber(.5)), where the effect of the covariate is measurerkgyession

parametery, =10(a moderate Cohentseffect size of .52) angt =—-1.13 (a moderate
Cohen’sd effect size of .42). Both growth factors werduehced by a randomly

distributed disturbance ternd,; andg;; , respectively. The disturbances were distributed

E} N[BM%S% 13?@ 2.2

as follows:

Because time was coded to begin at zero, these valubstivapthe average

individual with x =0begins the study with a score of 69 and declines by 2§ per

time point, and the average individual with=1begins the study with a score of 79 and

declines by 3.63 units per time point. Individuals vary in timgilal values and rates of
change, as represented by the variation in random intemdiope terms. Further,

individuals whose intercepts are higher than averagetoethecline at a faster rate than

average, as implied by the negative covariance betgeand ¢, (o =-.20).
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Data for the SPMM-consistent, discrete missing data precesgenerated
somewhat differently. Data in this condition were generfited three groups, each
with a different probability of missingness (retaining an alfenissingness probability
of 35%). Each group also differed with respect to theageeslope, but not with respect

to the average intercept or covariate effects. Groupsicivaracterized by a relatively

flat rate of changed;, =.7whenx =0) and a high probability of missingndss =.68).
Group 2 was characterized by a moderately negativefatengdq,, =—2.5when

x =0) and a moderate probability of missingneps#£.35). Group 3 was characterized
by a steeply negative rate of changg,&—5.7whenx =0) and a low probability of

missingnesép, =.02). Each group comprised 1/3 of the population. The tivera

population mean trajectory for this condition matched otheritond. Also, the
population-level observed rate of change was -3.58, whiefuivalent to the observed
rate of change in the RC-MNAR-M condition . The within-cleggariance matrix was

specified as

375 -10.3
D= (2.3)
-10.38 6.7

Data deletion for the four SPMM-inconsistent conditions isrilesd below.
MAR. Within each replication, the probability that a repeated nmeagas
missing depended only on time (whéreO to 9).

o6 A4
p(rti :1|t): 1+ e7'64+'qt74) (24)
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Outcome dependent MNAR (OD-MNAR). The probability of missingness

increased as the value gf increased. A one standard deviation increasg wwas
related to a 2.23 factor increase in the odds of item missssgrin Equation (2.5, is

the standard deviation gf

_64+ E[ Yi — Vi ]
e o-ylt

64t { Yi —Yhi ]
l+e i

p(r, =1y, )= (2.5)

Random coefficient dependent MNAR - monotonic process (RC-MNAR-M). The

model for inducing monotonically increasing random coefficidependent MNAR was

the following:
G
e i)
p(r, :1|771i):—§_- (2.6)
di)
1+ e Y1

For this condition, an SD increasedpwas related to a 7.39 factor increase in the odds

of item missingness.

Random coefficient-dependent MNAR - nonmonotonic process (RC-MNAR-NM).
Missingness for the nonmonotonic random coefficient-degrecel condition differed
from the other non-random conditions because, althougméicbanism was severe in
that a strong relationship existed between the random coeftfanel the probability of
missingness, this relationship selected out information on botlotaile random effect

distribution. Like the other conditions, overall missingnessfixad at 35%. A piece-

® MNAR severity is intentionally high; a more severe missing data mechanism provides a stronger test of
SPMM (and LCM) performance.
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wise function with five nodes was used to model missingnesssicondition. In

Equation (2.7),z, represents the standardized value of the individual slope the
average slopeZ, = ﬁ):
L Wn

ifZ, <-2thenp ¢ = 1k, = .6

if -2<Z, <-15therp ;= 1§, »— .2 4*Z
if -1.5<Z <Otherp = 1¢; » .178 .145%Z
ifO<Z <1thenp (= 1, ¥ .178 .156*Z
ifl<Z, <2thenp §; = 1¢;)=—.134+ .467*Z
ifZ, >2thenp(; =1L, » .8

2.7)

Figure 2 illustrates the relationship between an individual's rarglope deviatior(¢;;)

and the probability that an item is missing for the two RC-MNo8Rditions.

= =
— —

Probability Missing
Probability Missing

M W
L] L]
= _] = _]
= T T T T T T =T T T T T T T
3 -2 1 0 1 2 3 3 2 1 0 1 2 3
Individual Slope Deviation (Z-Score) Individual Slope Dewviation (Z-Score)

Figure 2. A Depiction of Monotonic and Non-Monotonic RC-MNAR Conditioiitie
Relations betweed ; and P¢; =1)

Data Analysis
One- through five-class Binary and Summary SPMMs wstienated for each
replicated dataset according to Equation (1.3). The migsitagindicator in the

Summary SPMM, the number of repeated measures obsenviadividuali, was treated
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as a continuous indicator and was assumed to be nornstiputed within class. The
assumption of normality is known to be violated, but with tpeated measures the
assumption violation is not egregious, and this assumption asglstsomputational
feasibility (which is the impetus for using a summary indicatdhe first place).
Further, pilot research suggests that treating the summargtodas a count variable
(and modeling it with a Poisson distribution) does not improveeine@sults.

For each replication, a class solution was removed if thé@olvas not positive
definite, if the solution was a clear outlier upon visual inspe, or if the solution
contained a class with probability less than®.18ggregate point estimates and delta-
method standard error estimates were generated by Mglissan 6) using Equations 1.4
and 1.5. Class enumeration was determined on a replidgtiogplication basis; the
models with the lowest AIC and BIC values were selecteddoparison. A standard
LCM, which assumes MAR, was also estimated for each e¢pticdataset for
comparative purposes.

Table 1 reports rates of convergence to a positive defoliidien and
frequencies of positive definite solutions removed due to kingutlier or having a low
class probability, by missing data mechanism and by m8dehary or Binary
SPMM). The frequency with which one- through five-clsslitions were selected by

the AIC and BIC are also reported in Table 1.

? Solutions with small class proportions tend to produce very large standard error estimates that would in
practice be rejected in favor of a solution with fewer classes, regardless of information criteria.
Preliminary analyses indicated that solutions containing very small classes produced variance component
estimates that were more upwardly biased than the estimates produced by solutions with more equal
class proportions. Furthermore, Lubke and Neale (2006) found that small class sizes lead to difficulty in
correct model detection, when a correct model exists.

29



As shown in Table 1, estimating up to five classes appe&@sve been more than
sufficient for reaching conditional independence betweentyréagtors and missing data
indicators, at least as suggested by the AIC and BIC. Mahmyclass solutions were
removed due to low class proportions, particularly whemrtissing data mechanism was
MAR or OD-MNAR.

As expected, the BIC consistently chose fewer classaghbaAlC. This is
because the BIC contains a penalization for the numbedependent observations (i.e.,
individuals,n) in the sample and the AIC does not:

AIC = 2g- 2In(L)

, (2.8)
BIC =qlIn(n)-2In(L)

whereq denotes the number of parameters lamnglthe likelihood.

Figure 3 shows the AIC- and BIC-based distributions ofsaesimeration for the
MAR conditions in Study 1. Both the AIC and the BIC choose class most of the time
(59.00% for the AIC and 72.80% for the BIC) and bdtbase more than one class a
good portion of the time, considering that it is known that desicigss generated the
sample data. This finding implies that neither the AIC nor tiiedBould be used as an
empirical test for whether MAR is a reasonable assumptiomissing data, and it is a

replication of earlier findings (e.g., Bauer & Curran, 200&fighi & Enders, 2008).
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Table 1. Rates of Convergence to a Proper Solution, Solution Deletion, and AIC and BIC Model Selection for Study 1
Full SPMM Summary SPMM
Classes Converged | ow 7, Outlier Remain AIC BIC Converged Low 7, Outlier Remain AIC BIC

MAR Mechanism

1 468 NA 0 468 295 364 499 NA 0 499 257 305
2 467 42 0 425 79 55 498 121 10 367 88 74
3 466 155 2 309 35 20 492 236 4 252 78 78
4 459 321 0 138 46 25 476 342 0 134 51 38
5 457 409 0 48 13 4 469 445 0 24 7 4
SPMM Consistent Mechanism

1 500 NA 0 500 0 0 500 NA 0 500 0 0

2 500 0 1 499 0 176 500 0 0 500 0 1

3 500 0 1 499 368 220 500 0 0 500 186 195
4 499 254 15 230 91 73 497 31 21 445 233 227
5 500 410 0 90 41 31 500 279 0 221 81 77
RC-MNAR-M Mechanism

1 500 NA 0 500 0 0 500 NA 0 500 2 2

2 500 0 1 499 6 11 500 0 0 500 0 0

3 493 0 5 488 210 415 495 0 2 493 15 45
4 493 99 8 332 198 O 483 2 9 472 332 305
5 365 179 6 180 86 74 425 125 3 297 151 148
RC-MNAR-NM Mechanism

1 500 NA 0 500 109 171 500 NA 0 500 98 112
2 500 140 0 360 195 304 500 136 0 364 196 251
3 498 257 1 240 118 6 499 259 0 240 173 117
4 479 367 0 112 50 0 461 407 0 54 25 13
5 447 403 0 44 28 19 387 103 0 10 8 7




Full SPMM Summary SPMM
Classes Converge Low 7, Outlier Remain AIC BIC Converge Low 7, Outlier Remain AIC BIC

OD-MNAR Mechanism

[43

1 500 NA 0 500 1 2 500 NA 0 500 356 428
2 500 0 1 499 93 488 500 0 0 500 0 1
3 500 89 5 406 222 2 411 54 0 357 64 1
4 500 230 0 270 174 O 496 338 2 156 70 63
5 177 152 0 25 10 8 177 156 0 21 10 7
AlC BIC
S - S -
o - | e— o -  — [ I
1 2 3 4 5 1 2 3 4 ]

Figure 3. Class enumeration based on AIC (left) and BIC (rigi&n missing data are MAR



It is encouraging to note that a single class neaer selected by the AIC or BIC
with a Binary SPMM and a single class was very raregcsetl with a Summary SPMM
when the missing data mechanism was SPMM Consistent d1IRER-M. The
frequency distribution of class enumeration for the OD-MN&&Rdition is somewhat
surprising; a single class was never selected by theaki€a single class was only

chosen once by the BIC. It appears that the non-racéasoring of they, values led to

a skewed distribution that resulted in multiple classes beingiséleAlso, OD-MNAR

contains a RC-MNAR mechanism: individual differences in infgrand to a lesser
extent slopes, explain some variationyjn Indeed, more classes were selected on

average when the missing data mechanism was OD-MNAR#than the missing data
mechanism was RC-MNAR-NM.

Standardized bias (SB) and root mean squared erkd8ER were used as
performance criteria for evaluating bias and precisicdhefixed effect and variance
component estimates from the LCM and SPMM in Study 1peAdix A presents

additional results comparing standardized, raw, and relatigentgasures. SB was
calculated as follows, whe@is the estimate fofin thejth repetition, and\ is the total
number of replications that are properly converged:

N .
100 2.0

*|

_ =1
@) | N

"y (2.9)

SB measures the magnitude of parameter bias as a fagre@h the standard error for

each parameter. It can be interpreted as the distanger@ientage of standard deviation
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units) that the estimate is off from the true parameter (Colliak,e2001). According to
Collins et al., SB values falling within40% are considered ‘acceptable.” This is
equivalent to bias within + .4 SD units for parameter estimd@esause SB is scaled by
each parameter’s standard error, it is useful in this sardyomparing bias in parameter
estimates across missing data conditions.

RMSE is a measure of the variation / imprecision of estimatianwas

calculated as follows:

(2.10)

Accuracy of inferences related to predictor effects andiip factor means were
further assessed by examining the ratio between the stagmarestimates and the true,
empirical standard deviations of the sampling distribution foln @@int estimate.

Study 1 results are presented below, organized by hygesthé-irst, the LCM is
compared with the Binary SPMM (according to the first sétypbtheses), and then the
Binary SPMM is compared with the Summary SPMM (accorthnipe second set of
hypotheses). The LCM is compared with the Binary SP#t because the Binary
SPMM is similar to most latent mixture model formulations that leen presented in
the literature for handling non-randomly missing data (Rgy, 2003; Morgan-Lopez &
Fals-Stewart, 2007, 2008). The Summary SPMM is cordpaith the Binary SPMM
because it was introduced later in time in an effort to redoggutational complexity

(e.g., Roy, 2007).
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Results for Hypothesis 1: Trajectory Recovery under MAR

The first hypothesis posited that both LCM- and SPMM-impliefttories

would be equivalently unbiased in the fixed effects unddA& mechanism, but that the

LCM would be more precise than the SPMM.

Table 2 compares SB and RMSE of fixed effect trajeastynates implied by

the LCM, and by the (Binary) SPMM (both the best / lowd& and best / lowest BIC

are reported), and Figure 4 shows that the average aG¥MSPMM-implied trajectories

are both indistinguishable from the generating model.

Table 2. Bias and Efficiency of Trajectory Recovery under a MAR Mechanism

LCM SPMM (Best AIC)] SPMM (Best BIC)
SB (%) RMSE| SB (%) RMSE| SB (%) RMSE

Fixed Effects

Conditional Interceptd,) 489 184 | 55 1.82 0 1.83

Conditional Slope ¢, ) 0 .33 0 35 2.86 .35

Intercept Predicto(y,) -1.89 265 | 0O 2.68 75 2.71

Slope Predictofy,) 2.22 4.26 47 2.13 48

Variance Components

Intercept Variance

(Ywo) -10.30 37.43| -16.49 56.01| -15.84 49.22

Slope Variance

(¥11) 982 112 | -17.76  1.69 -16.67 1.50

Covariance ¥,) 228 4.82 | 10.73 6.68 8.98 6.09
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Figure4. Comparison of LCM- and Binary SPMM-Implied TrajectoriesXo= 0 andx;
= 1 when the ‘missing at random’ assumption is met; resolts frest AIC are shown
here

Table 2 illustrates that both the LCM and the SPMM produce ftfect and
variance component estimates with little bias (recall that SB sdened acceptable
within the range ot 40%), The RMSE values presented in Table 2 also inditaes
LCM is slightly more efficient in recovering variance comeots than the SPMM, but
that efficiency is about equivalent for fixed effect estimafidse finding that the LCM
more efficiently recovers variance component estimateg)di fixed effects, might
result from the fact that the SPMM misspecifies the randoectsf{e.g., Verbeke &

Lesaffre, 1997; Ligre, Alonso, & Molenberghs, 2008). Table 2 further intlisahat
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there is no strong empirical reason to rely on the Al@emBIC when the missing data

mechanism is MAR.

Results for Hypotheses 2 and 3: Trajectory Recovery under MNAR

It was expected that the SPMM would recover trajectory estinetiger than the

LCM when the missing data mechanism was random coeffidegrendent, but that

neither model would recover trajectories well under an outaependent MNAR

process. Table 3 compares SB and RMSE values ddi¢8® study conditions and

models, and Figure ghows the average LCM and Binary SPMM performanceutig

four MNAR conditions.
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Figure5. Comparison of LCM- and Binary SPMM-Implied TrajectoriesXo= 0 andx
=1 under a variety of non-random missing data mechemniSPMM consistent (top left),
RC-MNAR-M (top right), RC-MNAR-NM (bottom left), and OD-NIAR (bottom right);
results from best AIC are shown here
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Beginning with the condition most favorable to the SPMM reldtvine LCM
(SPMM-consistent missingness), Table 3 shows that LCMiéahfixed effect estimates
of the growth factor means are substantially biased, butedgedssion parameters are
relatively unbiased, whereas SPMM-implied fixed effect esémare all within the
acceptable range for SB. Additionally, RMSE values aeralsderately lower for the
SPMM-implied fixed effect estimates of growth factor medascept for estimated
variation in the random slope, the LCM-implied variance corapbastimates are within
the acceptable bias range. The SPMM-implied variance auenpestimates are all
relatively unbiased, and the RMSE is moderately lowethi®@ISPMM-implied
parameters than for the LCM-implied parameters.

Moving to the RC-MNAR-M condition, the next most favoraldadition for the
SPMM, the same pattern of results is observed for the (i@&V growth factor means
and variance component estimates are substantially biasezgbession parameters are
unbiased). Comparing these results with the SPMM-implied asgshows that
SPMM-implied fixed effect and variance component estimateswubstantially less
biased than the estimates implied by the LCM. Indeed, biaBMM-generated
estimates reach an ‘acceptable’ level of bias for almopaedimeter estimates (the
exception being a marginally unacceptable level of bias iretldom slope variance
when the AIC is used for class enumeration). HoweverRIMSE of the random slope
variance and the covariance between the random interakpaaiom slope is more
efficient under the LCM.

Moving next to the RC-MNAR-NM condition, Table 3 shows that bhunt of the

bias induced by this missingness mechanism lies in the vartameponent estimates,
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rather than in the fixed effects. This is expected sincRE®INAR-NM removes cases
from either tail of the random slope distribution, leaving themmekatively unchanged
but substantially reducing the observed population variabilityhis condition, bias in
the SPMM-implied fixed effect estimates and variance compbestimates are both
lower than the LCM-implied estimates, but SPMM-implied variaramonent
estimates never reach an acceptable level of bias.

Finally, as expected, fixed effect estimates for the intearepsubstantially
biased, regardless of whether the LCM or SPMM is usdénen OD-MNAR missing
data process. Variance component estimates are alsd bieder OD-MNAR, and
SPMM is not useful for correcting these. In this caseSEMalues suggest that LCM
performs better than the SPMM because the estimates sinalésble.

It is important to note that a researcher who is not privye@tbcess underlying
the missing data would not be able to distinguish between aR®ER process and a
MAR process because both would result in similar paramstienates under LCM and

SPMM.
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Table 3. Bias and Efficiency of Trajectory Recovery under Several MNAR Mechanisms

LCM SPMM (Best AIC) SPMM (Best BIC)
SB (%) RMSE SB (%) RMSE SB (%) RMSE

SPMM-Consistent

Fixed Effects

Conditional Interceptd,, ) 76.84 2.4 1.60 1.88 10.53  1.90

Conditional Slope ¢, ) -128.57 57 11.43 .35 -5.56 .36

Intercept Predicto(y,) -1.85  2.70 -1.14 273 2.63 2.76

Slope Predicto(y,) 6.25 48 0 45 44 45

Variance Components

Residual Intercept Variancey,) -2.87 43.59 -5.88 44.76 -6.68 44.04

Residual Slope Variancey, ) -60.81  5.74 248  1.26 -19.02  1.30

Covariance ¥,) 27.79 6.41 245 5.0 10.99 5.09

RC-MNAR-M

Fixed Effects

Conditional Intercepté,, ) 163.16  3.63 15.57 2.22 1091 2.14

Conditional Slope ¢, ) -404.00  1.05 -37.84 41 -25.64 .40

Intercept Predicto(y,) 6.92 261 8.33  2.66 749 262

Slope Predicto(y,) -2.70 37 -2.00 50 0 A7

Variance Components

Residual Intercept Variance/(,) 21,22 42.26 -6.81 50.82 21 47.95

Residual Slope Variancey(, ) -335.80 2.84 -4054  6.23 1849 5.93

Covariance ¥,) 129.86  6.92 8.72 9.84 -1.00  9.42




1%

LCM SPMM (Best AIC) SPMM (Best BIC)

SB (%) RMSE SB (%) RMSE SB (%) RMSE
RC-MNAR-NM
Fixed Effects
Conditional Interceptd, ) 2260 1.81 276 1.81 276 1.81
Conditional Slope ¢, ) -37.50 26 -3.57 28 -3.57 .28
Intercept Predicto(y,) 328 2.44 520 2.48 4.08 2.44
Slope Predictofy,) -8.82 34 -9.09 34 -9.09 34
Variance Components
Residual Intercept Variance/(,) -29.54 38.41 -24.22 50.58 -24.96 41.37
Residual Slope Variancey(, ) 27051  2.25 -11897 3.74 -166.34  2.69
Covariance ¥,) 130.15  6.52 71.03  8.10 90.70  6.96
OD-MNAR
Fixed Effects
Conditional Interceptd, ) -152.78  3.29 -126.29  3.12 -13850 3.19
Conditional Slope ¢, ) 28.00 26 23.08 27 32.00 37
Intercept Predicto(y,) -15.66  2.52 1241 2.79 -12.88 2.64
Slope Predictofy,) 8.33 36 18.42 .39 10.81 37
Variance Components
Residual Intercept Variancey,) -85.80 52.03 -79.56 188.30 -84.93 144.71
Residual Slope Variancey(,) -55.17 .99 -51.69  2.23 5341  1.49
Covariance ¥ ,) 14.87 4.64 19.41 8.39 15.37 7.97

Note. Standardized bias (SB) values above 40% or belo%s &@ bolded to indicate severe bias



It was expected that bias in variance components might ldadsn the
standard errors of the fixed effects. Standard eresr dif the fixed effects, which is
presented as a ratio of the the standard error estimdtese(@ ratio of one means that
the estimates are unbiased) to empirical standard deviatiba pbint estimates, is
presented in Table 4. As a baseline measure, the av&raglard errors estimated using
LCM when the missing data mechanism is MAR is slightly lothian the empirical
standard deviations of the sampling distributions for the fitedtepoint estimates.
Compared with LCM results, the SPMM-implied ratio of averstgadard error
estimates to the empirical standard deviations of the samplimipaiins for the four
fixed effects parameters are approximately equivalent waidef the missing data
mechanisms. However, the ratio of estimated standans éerds to be empirical
standard errors is on the small side (indicating increaseébridk/pe | errors) when the
Binary SPMM is used.

In other words, the Binary SPMM (but not the Summary SP\&slds to false
confidence in the aggregate growth parameter values.omhjiccurs when the SPMM
is used as an approximation, and not when it is literally tre.e MAR or SPMM-
consistent). Perhaps the summary indicator is a moreleetisasure of missingness

than the binary indicators, leading to more precise estimates.
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Table 4 Comparison of Average Sandard Error Estimates and Empirical Sandard Deviation of Sampling Distributions for Fixed
Effect Parameters by Missingness Condition and Model

Binary SPMM Summary SPMM

Average SE, Empirical SD Ratio Average SE, Empirical SD Ratio Average SE, Empirical SD  Ratio
MAR
a, 1.74 1.84 94 1.73 1.83 94 1.74 1.87 .93
a, .30 .33 91 .30 .35 .86 31 34 91
Yo 2.46 2.65 .93 2.46 2.64 .93 2.47 2.66 .93
% 43 45 .96 43 48 .90 43 .50 .86
SPM M -Consistent
a, 1.85 1.90 97 1.87 1.89 .99 2.03 1.90 1.07
a, .35 .35 1.00 .33 .36 .92 .36 .33 1.09
Yo 2.61 2.71 .96 2.60 2.65 .98 2.63 2.62 1.00
% 49 48 1.02 42 45 .93 42 41 1.02
RC-MNAR-M
a, 1.88 1.90 .99 1.97 2.08 .95 2.03 2.11 .96
a .25 25 1.00 .28 .36 .78 .30 .32 .94
Yo 2.66 2.60 1.02 2.63 2.63 1.00 2.63 2.67 .99
% .36 37 97 .33 48 .69 31 .36 .86
RC-MNAR-NM
a, 1.78 1.77 1.01 1.78 1.82 .98 1.78 1.81 .98
a, 24 24 1.00 .25 .28 .89 .25 .28 .89
Yo 251 2.44 1.03 251 2.45 1.02 251 2.46 1.02

.35 34 1.03 34 33 1.03 .33 33 1.00

yé
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LCM Binary SPMM Summary SPMM
Average SE, Empirical SD Ratio Average SE, Empirical SD Ratio Average SE, Empirical SD Ratio
OD-MNAR
a, 1.76 1.80 .98 1.74 1.87 .93 1.84 1.79 1.03
o 1.74 1.90 .92 27 .25 1.08 .26 27 .96
Yo 2.50 2.49 1.00 2.44 2.64 .92 2.44 2.65 .92
% .38 .36 1.06 .38 37 1.03 .38 37 1.03

Note. SPMM results are based on the solution with the lowest BI€doh replication.



Results for Hypotheses 4 and 5: Summary SPMM ver sus Binary SPMM

It was hypothesized that the Binary SPMM would be bettertataccommodate
a non-monotonic mechanism than the Summary SPMM, butdkianiiodels would be
equivalently unbiased (or biased) in all other conditiohsvak also hypothesized that
the Summary SPMM would be more efficient than the Bin&WBl when both
equivalently capture information about the missing data psqces, under a MAR
mechanism, a RC-MNAR-M, and a SPMM-consistent mechanism)

SB and RMSE bias of the Binary and Summary SPMM-imp@etthates are
reported in Table 5, and Figure 6 compares the BinatySammary SPMMs across the
four MNAR conditions (trajectories implied under a MAR maaism were on top of the
generating lines). Results show support for Hypothesiere are no meaningful or
consistent differences across the two models with respeatampter bias. Both models
recover all parameters well under MAR and SPMM-consistechanisms, both recover
parameters adequately well under an RC-MNAR-M mecharisth, struggle with
variance component recovery under RC-MNAR-NM, and Ipotiduce quite biased
parameter estimates under an OD-MNAR mechanism. lewaacted that the Summary
SPMM might provide somewhat more biased estimates undérfRAR-NM
mechanism when compared with the Binary SPMM, but thisnotthe case. This
result is probably due to the fact that the Binary SPMM dgasor job at recovering
variance component estimates, and is not an improvementheveCM; thus, the

Summary SPMM does not perform any worse (or betten) tia Binary SPMM.
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Figure 6. Comparison of and Binary SPMM- (i.e., “Full”) and Sumgna&MM- Implied
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Table 5. Sandardized Bias and Root Mean Sguared Error of Binary and Summary SPMM- Implied Parameter Estimates

Binary SPMM Summary SPMM
Best AIC Best BIC Best AIC Best BIC

SB (%) RMSE SB (%) RMSE SB (%) RMSE SB (%) RMSE
MAR
x, .55 1.82 0 1.83 -3.26 1.84 -1.64 1.83
o 0 .35 2.86 .35 -2.94 34 -2.94 0.34
Yo 0 2.68 .75 2.71 9.70 2.70 14.13 2.67
g 4.26 A7 2.13 48 0.00 48 0.00 48
Yoo -16.49 56.01 -15.84 49.22 -18.14 63.38 -18.48 61.44
Yu -17.76 1.69 -16.67 1.50 -25.45 1.62 -25.69 1.58
You 10.73 6.68 8.98 6.09 13.54 6.81 9.90 6.54
SPMM-Consistent
x, 1.60 1.88 10.53 1.90 8.25 1.95 7.73 1.95
o, 11.43 .35 -5.56 .36 17.65 .34 17.65 0.34
Yo -1.14 2.73 2.63 2.76 -8.89 2.75 -8.89 2.75
4 0 45 A4 45 9.30 42 7.14 42
Yoo -5.88 44.76 -6.68 44.04 -4.66 45.22 -3.97 45.19
Y -2.48 1.26 -19.02 1.30 1.85 1.10 1.85 1.10
Vo1 2.45 5.10 10.99 5.09 -4.07 5.23 -3.30 5.20




Binary SPMM Summary SPMM

117

Best AIC Best BIC Best AIC Best BIC

SB (%) RMSE SB (%) RMSE SB (%) RMSE SB (%) RMSE
RC-MNAR-M
, 15.57 2.22 10.91 2.14 2.40 2.09 0.48 2.09
21 -37.84 41 -25.64 40 -18.18 .33 -18.18 0.33
Yo 8.33 2.66 7.49 2.62 5.56 2.60 4.87 2.60
N -2.00 .50 0 A7 5.26 .35 5.26 .35
Yoo -6.81 50.82 21 47.95 -20.90 47.72 -21.16 47.78
Yu -40.54 6.23 -18.49 5.93 -33.53 5.38 -34.50 5.37
You 8.72 9.84 -1.00 9.42 14.73 8.90 14.75 8.90
RC-MNAR-NM
, 2.76 1.81 2.76 1.81 8.29 1.81 8.84 1.81
o -3.57 .28 -3.57 .28 -3.57 .28 -7.14 0.28
Yo 5.20 2.48 4.08 2.44 9.64 2.45 9.64 2.44
4l -9.09 34 -9.09 .34 3.03 .33 3.03 .33
Yoo -24.22 50.58 -24.96 41.37 -26.52 60.96 -26.71 53.33
Y -118.97 3.74 -166.34 2.69 -108.13 3.74 -113.82 3.52
Yo1 71.03 8.10 90.70 6.96 75.11 8.36 76.43 7.76
OD-MNAR
, -126.29 3.12 -138.50 3.19 -118.13 2.86 -117.49 2.87
21 23.08 27 32.00 .37 23.08 27 26.92 0.27
Yo -12.41 2.79 -12.88 2.64 -15.33 2.75 -15.56 2.73

Vgl 18.42 .39 10.81 37 2.78 37 5.56 37
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Binary SPMM Summary SPMM

Best AIC Best BIC Best AIC Best BIC
SB (%) RMSE SB (%) RMSE SB (%) RMSE SB (%) RMSE
Yoo -79.56 188.30 -84.93 144.71 -60.43 114.56 -61.34 86.63
Yu -51.69 2.23 -53.41 1.49 -52.27 1.29 -51.72 1.19
You 19.41 8.39 15.37 7.97 18.46 5.81 18.62 5.17

Note. «, is the average growth intercept;, is the average slope of growtpis the effect ok; on the random intercepy, is the
effect ofx on the random slopey,, is the variance of the random intercapy; is the variance of the random slopg; is the
covariance of the random intercept and slope; SB bias &@8¢er below —40% is bolded.



It was hypothesized that the Summary SPMM would providesrafficient
estimates than the Binary SPMM. Efficiency was operationalizew) the RMSE.
Table 5 shows that this hypothesis is not generally true.nWfgemissing data
mechanism is MAR or SPMM-consistent, both models aretadmually efficient.
However, when the missing data mechanism is RC-MNAR-KDB-MNAR, the
Summary SPMM is more efficient than the Binary SPMM. Witiee missing data
mechanism is RC-MNAR-NM, both models are equally efficfenrecovery of the
fixed effects, but the Binary model recovers variance amapt estimates more
efficiently. This effect is most prominent when the Bl@sgd for class enumeration,
suggesting that fewer classes are better for recoveriranea components more
efficiently (at least when the model is not sufficient for agpnating the missing data
mechanism well).

In sum, both models perform equally well when the SPMMestrue’ model
(i.e., under MAR or SPMM-consistent MNAR missingness}] the Summary SPMM is
more efficient than the Binary SPMM when the SPMM provetase approximation of
the missing data mechanism, whether it is a good approxm@eo, RC-MNAR-M), or
a bad approximation (i.e., OD-MNAR).

Summary and Discussion of Study 1

The goal of Study 1 was to test relative performance di @i, the Binary
SPMM, and the Summary SPMM under a variety of realistia donditions that might
be encountered when analyzing longitudinal data. The bist o take away from

Study 1 is the SPMM does not solve the problem of missitay da the words of
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Demirtas and Schafer (2003), “the best way to handle mgissinies is to not have them”
(pp. 2573). Barring that possibility, Study 1 makes it dieat, when random
coefficient-dependent missingness is suspected, the SPKeipful tool in testing the
sensitivity of the MAR assumption that is implied by the LCM.

Results from Study 1 show that the LCM, which assumesrtisaing data are
MAR, produces biased estimates of growth factor fixecctffand variances whenever
the MAR assumption is violated. As a caveat, Study 1 alseeghthat regression
effects are robust to violations of the MAR assumption, at feathe conditions tested
here!® Study 1 showed that the SPMM, whether Binary or Sumnpaogluces badly
biased fixed effect estimates only when the missing datdnamism is OD-MNAR (i.e.,
a time-varying process). Further, the SPMM is not abledover variance components
well when the missing data mechanism is RC-MNAR-NM. ThilERrovides
improved parameter estimates over the LCM when a nuoradple random coefficient-
dependent missing data process is present, if the processagone or discrete. These
results were generally expected given that SPMMs aigraEkspecifically to
accommodate random coefficient dependent missing datagsex

Under no condition did the SPMM provide worse parametgmates than the
LCM; however, variance component estimates were less effivizen the SPMM was
used with MAR missingness. In other words, there is rouseharm done when the
SPMM is used instead of the LCM, even when the data &fe.MHowever, a researcher

who obtains effectively identical point estimates when compaesgits obtained using

Ytis possible to imagine an MNAR scenario in which the regression coefficients might be biased. For
example, the regression coefficients might be biased if the severity of non-random selection depends on

the level of X .
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an LCM with results obtained using a SPMM should rely oMLUr@sults for the sake of
parsimony and efficiency.

The Summary SPMM was shown to perform as well as ithe8 SPMM under
all conditions, and results suggested that the Summary SPMNIps slightly more
efficient estimates than the Binary SPMM when the missing dategs is
monotonically random coefficient dependent, but it not exacthgistent with the model
(i.e., RC-MNAR-M).

Limitations and Future Directions

Study 1 assessed relative SPMM and LCM performanderwonly five of many
possible missing data conditions. While the five conditions tesprdsent a broad
range of conditions that would possibly be encounteredlaniitudinal social science
data, this simulation study was necessarily limited in its genabdliiy. Most notably
absent from the conditions tested in Study 1 were more asgimmonmonotone
random coefficient dependent mechanisms, conditions contamitigole mechanisms
operating simultaneously, and conditions involving the regnegscameters. In spite of
this limitation, the results here are informative, at least fedipting what might happen
in real world data conditions. Real world situations involvingtiple missing data
mechanisms would be prey to multiple types of parametey & more complex
missing data mechanisms that involved multiple growth factotddaemntain bias in
more of the parameters.

A more pressing limitation of Study 1 is its failure to considenotone dropout,
a commonly observed type of missingness in longitudinabrek. Study 2 will compare

dropout with the erratic mechanism studied in this chapterditi@a to examining the
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role that observation length and proportion of missing datgiplLCM and SPMM

performance.
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Chapter 3
STUDY 2: A CLOSER LOOK AT SPMM
PERFORMANCE ACROSS DATA CONDITIONS

Study 1 compared LCM and SPMM performance acroasge of missing data
mechanisms; however, it was limited in the range of data conslitiat were assessed.
To further investigate LCM and SPMM performance aceosange of data conditions,
Study 2 crossed number of observation occasions (®r 20) with erratically spaced
missing data or complete attrition, and with proportion of imgsdata (.30 or .60),
resulting in a 3 x 2 x 2 full factorial design (i.e., 12 dtinds). The missingness
mechanism studied was the RC-MNAR-M mechanism from StudyBecause it was
determined from Study 1 that the Summary SPMM perforrtiertdan the Binary
SPMM under RC-MMNAR-M in the sense that Summary SPMMegated estimates
are more efficient than Binary SPMM-generated estimateSamimary SPMM-
generated standard errors are generally unbiasethegadse the Summary SPMM is
faster to implement, only the Summary SPMM performanae @@mpared with LCM
performance in Study 2.

The following hypotheses were tested in Study 2:
1. The LCM-implied trajectories will be least efficient wheowth factors are poorly

determined (i.e., when there are fewer repeated meatugde few measurement

" RC-MNAR-M is the mechanism that is typically described when random coefficient dependent
missingness is discussed in the missing data literature (e.g., Little, 2009).



occasions or a higher proportion of missingness and siigjects drop out rather than
providing erratic information across the span of measureaoeasions). The hypothesis
that growth factor parameter estimates will be less efficienhwdss information is
available with which to determine the growth factors is not wniquhe problem of non-
randomly missing data; data conditions leading to higher fdetermination should be
the same whether missing data are randomly missing or not.

In addition to the efficiency hypothesis, however, it maydasonable to expect
that growth factor means and variance components will @$ess biased when the
factors are better determined. As the correlation betweenberved information (i.e.,
the observed repeated measures) and the growth faptoaapes unity, the random
coefficients become less ‘latent’ and more determiriedurn, the random coefficient-
dependent missingness mechanism should apprgagstability, resulting in less biased
parameter estimates when ignorability is assumed.

The amount of available information (e.g., observationtlgrg directly linked to
growth factor determinacy (i.e., the reliability of a factayrecestimate based on the
manifest variables, or the correlation between a factoe &siimate and a true factor

score, which can be measured as follows:
PP=LE N, (3.1)

Brown, 1910; Spearman, 1910; Guttman, 1955; Mulaik, 197€e1i; 1976; Mulaik &
McDonald, 1978; Bollen, 1980; Grice, 2001), wherds the reliability, A contains
factor loadings, and  is the covariance matrix of the manifest variables. The

relationship between the nature of missingness and grovitr titerminacy / reliability
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is less obvious. The effects of the two processes (em&gingness or dropout) on
reliability would differ to the extent that the communality of alsed measures changes
systematically over time. In this instance, an increasinggption of the variance in
repeated measures is explained by individual differencgsvielopment (i.e., by the
growth factors), and a decreasing proportion of the vegigndue to residual variation.
This is the case because the factor loading matrix foldpe soefficient is structured so
that the intercept is located at the first observation occasitinan increasing
contribution of the slope for each repeated medSufiéat is, a larger proportion of the
variation in the items that have been observed is due toaumagiance for the items that
are observed than for the items that were not observed avtieopout mechanism is
operating. Figure Bhows the relationship between the proportion of varianoaierd
in the items that were generated using the simulation valueis iméimuscript, as a

function of time, up td =9.

0.9 4
0.85 -
0.8 -

0.75 A

0.65 -
0.6 -

0.55 A

0.5 T T T T 1

2 variance explained by the random slope increases in magnitude as the factor loadings increase in
magnitude, regardless of sign.
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Figure7. The relationship between time (on the x-axis) and the pliopof item
variance explained (on the y-axis) by the growth facto&tunly.

Since more of the item variance is noise at the early timespdits expected that
growth factors should be less determined when missingadataissing due to
monotonic dropout than if missing data are erratically misSing.

In a sense, any effect of the nature of missingnessstbaserved in Study 2 thus
depends on an increase in the contribution of the rarsttmme on proportion of variance
explained in the items. That is, it is assumed here that drogsults in the failure to
observe items that are most informative about the growtlegsocThe same effect might
not be observed if random coefficient dependent missisgmere, for instance, random
intercept dependent.

2. The second main hypothesis of Study 2 is that SPMMhaeg difficulty recovering

a sufficient number of classes to accommodate informatigsingness when there are
few observed repeated measures (i.e., when thefevaraeasurement occasions or
when there is a high proportion of missing data) and linemissingness mechanism is
dropout rather than erratic. Particularly when only fjgeated measures are observed
and when 60% of the items are missing when ten or fesperated measures are
observed for an individual, it may be impossible to extraat-for five-classes in the
SPMM because there will not be enough information availattlewhich to identify
growth factor means for each class separately. HedekkGibbons (1997) and Little

(1993, 1994, 1995) have described difficulty with empiridahtification of separate

B The relationship between item reliability and time is not linearly / monotonically increasing because
there is a negative covariance between the growth factors in the data generating mechanism. The

VAR(77,) + A*,VAR(17,) + 22,COV (7,77,)
VAR(77,) + A%, VAR(17,) + 22,COV (7 ,,77,) +VAR(g)

proportion of variance explained is equal to:
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growth patterns in traditional PMM when an insufficient nundfeepeated measures
are observed with which to identify a trajectory within certaissga. It is therefore
expected that this situation will be ameliorated to some extent latent classes are
used in place of deterministic, observed patterns becauseluads with longer
observation lengths will contribute some information to shor@wtp groups; however,
the problem of empirical underidentification is not likely tocbenpletely solved when
many classes are extracted and there are few repeadsdne®per individual, or when
observed repeated measures are located in close prowiithitgne another (i.e., with
monotone dropout). On the opposite side of the obseratigth spectrum, Eggleston,
Laub, and Sampson (2004; using a single dataset) foahdrihincreased observation
length was related to the extraction of more latent classésssexpected that having
more information (i.e., 30% as opposed to 60% missingne§) repeated measures),
will be related to the extraction of additional classes.

In turn, it is expected that the extraction of additional classiebe linked to
better SPMM performance due to an improved ability to estabtinditional
independence from individual growth trajectories and theingsfata indicator.

Data Generation

The same population-generating model that was used in Stweyg also used in
Study 2, except that the number of repeated measured tatigeen five and 20. The
proportion of variance in the repeated measures that wéereed at the intercept was
68.87% across conditions, and the proportion of variaxgiaieed by the conditional
model was 74.72% for the fifth repeated measure, 87f67%ie tenth repeated measure,

and 96.49% for the twentieth repeated measure.
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After generation of the complete data, observations wezetsely deleted
according to a RC-MNAR-M mechanism so that the overallgidity of missingness
was .30 or .60. The erratic RC-MNAR-M mechanismdittons were constructed so
that the log odds of missingness for any given data paiginfandividual was a linear
function of their random slope, varying the intercept of thealirfunction to achieve
30% or 60% missingness, as shown béfow

& 26y, )

1+ e_'awg% X

R e.40+2€%u)

30% missingp 1, = L, ¥
(3.2)

60% missingp I, =

The dropout RC-MNAR-M mechanism conditions were congtaiso that the
first missing observation was expected to occur either 4a%eavay through the study
(leading to 60% missingness) or 70% of the way throughttidy (leading to 30%
missingness) for an average individual, with dropout expeotedcur earlier for
individuals with higher random slopes. To maintain consisteuittythe erratic
missingness condition with respect to severity of informatisgnfe same regression

coefficient was used to relatg to the log odds of missingness. Intercept terms for the

linear model varied by percent of missingness in ordgh@probability of missingness

" The severity of informativeness did not vary by proportion of missingness in the sense that
coefficients linking & with p(I’ti =1) remain constant across conditions. More severe
informativeness has predictable implications for bias of model parameters under LCM. The
purpose of altering the proportion of missing data was to test the limit of the SPMM'’s capability
to draw information regarding dependencies between missing data patterns and repeated
measures when many observations are missing and to study the effect of proportion
missingness on growth factor determinacy in LCM.
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for a given occasion to reach an expected survival tinfenédieas the first occasion of
missingness, because missingness is monotone in the deopditions) at the desired
measurement occasion. Expected survival time and probaifiliyssingness for each
occasion are listed in Table 6.

Table 6. Expected Survival Time and Probability of Missingness for vy,

Expected Survival Time  Missingness Probability

Five Repeated Measures

30% missing 3.5 .18
60% missing 2 .29
Ten Repeated Measures

30% missing 7 .09
60% missing 4 .16
Twenty Repeated Measures

30% missing 14 .05
60% missing 8 .08

Note. Expected survival time denotes the observation occasighieh there is a 50%
cumulative probability of a missing observation (the interceloiciated at = 0). This
corresponds with individual item missingness probabilities in tlin-Hgnd column.

Five hundred replications of sample size 300 were getefat each population

condition.

Data Analysis

Data analysis in Study 2 matched the Study 1 procedweptthat only the
Summary SPMM (one through five classes per replicdfiamd the LCM were applied
to each dataset. When estimating the Summary SPMM, tleeestwo options for
constructing the summary indicator: time of last measuremeasioccand number of
observations. In the dropout condition, these alternative suiesnwvould provide

identical information. In the erratic missingness condition, thteolaservation occasion

15 Only four classes were estimated in the conditions with five repeated measures because, in SPMM and
related latent mixture modeling approaches, the number of latent classes K is less than the number of
observed patterns of missingness. For the dropout conditions, this means that K < 5 in the conditions
with only 5 observation occasions.
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would not be as meaningful as the number of observatians; tiamber of observations
was used as a summary indicator for all conditions.

Within a replication, a solution was removed from possible /MBGC selection if
it: 1) did not converge to a positive definite solution; 2) waisaaV outlier, or 3)

contained a class with, <.10. These were the same criteria that were used in Study 1.

Raw bias (RB), standardized bias (SB) and root reqaared error (RMSE) were
calculated for each study condition, along with coverage aamg@<€lass enumeration
based on the AIC and BIC.

Results for Hypothesis 1. Higher Factor Score Determinacy is Related to Less Biased
and More Efficient LCM Estimates in the Presence of Non-Randomly Missing Data

It was hypothesized that circumstances leading to incregsadh factor
determinacy would decrease the severity of the effegndbm coefficient dependent
missingness on parameter estimates when an LCM is usédtéoanalysis, controlling
for the strength of the association between the randomaeetfand the probability of
missingness. Specifically, more observations (resulting frore repeated measures or
from a smaller proportion of missing data) were expectéactease the accuracy and
precision of LCM-based trajectory estimates in the preseimaamdom coefficient
dependence missingness. Further, the nature of the pafttarssingness was expected
to affect factor score determinacy; controlling for the propo of missing data and the
magnitude of the association between the random coeffamehthe probability of
missingness, erratically spaced missingness was expediedatated to higher factor
score determinacy (and therefore more accuracy @wispn) than monotonic

missingness (i.e., dropout).
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Figures 8 and 9 show RB, SB, and RMSE values, régpbg for the random

slope mean (Figure 8) and variance (Figure 9) by peofenissingness (left) and nature
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Figure 8. Raw bias (top), standardized bias (middle), and RMSE (ndtd LCM-
implied fixed effect estimates for the slope by percent o$imimess (30% or 60%; left)
and nature of missingness (erratic (E) or dropout (D)f)rigid by number of
observation occasions (5, 10, or 20). A horizontal egie line is drawn at SB = -40 to
indicate the cutoff for “acceptable” bias.
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Variance Component Bias by Percent Missing Variance Component Bias by Nature of Missingnes
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Figure9. Raw bias (top), standardized bias (middle), and RMSE (pdtd LCM-
implied variance component estimates for the slope by pevtemssingness (30% or
60%; left) and nature of missingness (erratic (E) or drofi) right) and by number of
observation occasions (5, 10, or 20). A horizontal egie line is drawn at SB =-40 to
indicate the cutoff for “acceptable” bias.
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of missingness (i.e., erratic missingness or dropout; righiitional on the number of
observation occasions (each c&ll).

Effect of Number of Observation Occasioriswas hypothesized that more observation

occasions would lead to less biased and more efficientnptea estimates due to
increased factor determinacy. The top panel of FigurRB3 §uggest a mild effect of the
number of observation occasions on fixed effect biasdre¥pected direction, and the
same is true for the variance shown in Figure 9. Thesehppears to be reversed for the
SB, but this is an artifact due to the decrease in standard ezsulting from more
observations. The RMSE, shown in the bottom row of bitres, concurs with the
hypothesis that having more repeated measures leads t@racise estimates of growth

(with respect to both mean change and population variatiomerthe mean).

Effect of Percent of Missingnes# was hypothesized that growth factors would
be better determined with more observed information, amlttiat parameters related to
growth would be more biased and less efficient as tteeptage of missingness
increased, even controlling for severity of the missingmeschanism. However, the
left-hand panels of Figures 8 and 9 suggest that thamedabstantial effect of the
percent of missing data on parameter bias or RMSE. Igimdsuggests that the random
subtraction of missing data should not lead to increased pteahias, although the
deletion of additional datshould lead to less efficient parameter estimates. An
inspection of the empirical standard deviations of the LCBktastimates, shown in

Table 7, suggests that the effect of proportion of missitegataefficiency depends on

18 Because the random coefficient dependent mechanism was solely dependent upon the random slope,
emphasis is placed on recovery of the fixed effect estimate of the rate change over time, and on the
recovery of the variance of the random slope. These were the parameters that were affected in Study 1.
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observation length and on the nature of missingness. rifadically missing data, a
higher proportion of missing data is linked to larger empirizaidard deviations (and
standard error estimate) only when five repeated mesaateeresent. For dropout,
more missing data is linked tower empirical standard deviations when five repeated
measures are present. There is no effect of propationssing data as the number of
repeated measures increases.

Table 7 also shows that the efficiency of variance corapbestimates is
dramatically improved as the observation length increases, diftect estimates are
more robust to study length.

Table 7. Comparison of Empirical Sandard Deviations for LCM-Based Sope Estimates

30% Missing 60% Missing

Dropout Erratic Dropout Erratic
Five Observations
Fixed Slope 57 48 54 .65
Slope Variance 3.60 3.59 3.44 4.37
Ten Observations
Fixed Slope .36 .25 27 .28
Slope Variance .94 .78 .69 .85
Twenty Observations
Fixed Slope .23 21 24 21
Slope Variance .57 .57 .55 .50

Nature of Missingnesslt was expected that the LCM would have more trouble

accommodating missingness due to dropout than erratic misssgithis hypothesis
was supported for both the fixed effect estimate and fovdhiance component, except
for the cells with a high proportion of missing data and fegeated measures. In this
case, dropout produces estimates that are about equaéiyl ias that have smaller

standard errors.
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Although results are largely consistent with the hypothesedegy trends in
bias as a function of growth factor determinacy, the feféect estimates generated by
the LCM are severely biased under the MNAR mechanismsegin this study,
regardless of study condition. These results suggdst thaot safe to assume that a
MNAR process can be ignored, even when study condiim$avorable for increasing
growth factor score determinacy.

Both the fixed effect (Figure 8) and variance compoestiinates (Figure 9) are
always downwardly biased (in the sense that growth trajestareeestimated to be
decreasing more steeply than they actually are). Thd Bffect estimates are
downwardly biased because higher levels of the randque skere related to an
increased probability of missingness. Variance compomeatdownwardly biased
because the removal of observations leads to less obsemation in the population.

Another general point to observe in Figures 8 and 9 igrérads in RB and SB
are not always aligned. The SB of the point estimatesiedsby the standard error of
the estimates; thus, it is not necessarily meaningful to cor§iiaeeross estimates
derived from conditions with different lengths of observatidhis is because SB will be
larger as the number of observation occasions increases, siapdyse standard errors
decrease as the number of observations increase. sWhgraring results across
observation lengths, it may be more appropriate to confitfarend RMSE.

Results for Hypothesis 2: SPMM Should Perform Wor se when Fewer Classes are
Supported

Tables 8 — 10 show rates of convergence to a pegbation and case removal

due to low class probability estimates, §j or due to being a visual outlier for conditions
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with five, 10, and 20 observation occasions, respectivEfyese tables also include
information about AIC- and BIC-based model selection. difficult to clearly express
results of a study with 12 separate conditions. In an ptteymmaximize lucidity, results
are discussed in the following order: first, effects of oketern length will be discussed.
Next, effects of nature of missingness will be discussedittonal on occasion length.
Finally, effects of proportion of missing data will be discdssenditional on occasion
length.

It was expected that more classes would be supported assbrration length
increased. This hypothesis was met in the sense thanieeof classes that could be
estimated was limited for the five repeated measure conditi@nghe other hand, the
sameaverage number of classes were selected by the AIC and Bl@a@ill observation
length conditions.

It was also expected that more classes would be suppodezktracted with an
erratic missing data mechanism than with monotone dropous. hypothesis was
supported in the same sense that the hypothesis aboutdtteoétihe observation length
was supported; more classes converged to proper, eds@olutions with erratic
missingness than with dropout, but only slightly more ckass®e chosen by the
information criteria when the missing data mechanism wascerfBhere was an
interaction between the number of observation occasionthamgture of missingness
with respect to class extraction. Regardless of whetherifsgngness mechanism was
dropout or erratic, it was difficult for a SPMM to suppodmthan two or three classes

when only five repeated measures were present. Asuthber of repeated measures
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increased, more classes were supported with erratic mssisigout the SPMM still has

difficult extracting many classes with dropout.
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Table 8. Rates of Convergence to a Proper Solution, Solution Deletion, and AIC and BIC Modd Selection with 5 Observations

Monotone Dropout

Erratic Missingness

Classes Converged [ ow 7, Outlier Remain AIC BIC Converged Low 7, Outlier Remain AIC BIC
30% Missing

1 408 NA 0 408 2 2 433 NA 0 433 11 12

2 407 0 0 407 38 38 412 0 0 412 23 23
3 404 15 20 369 367 367 383 1 0 383 283 303
4 387 384 0 3 2 2 278 42 8 228 143 122
60% Missing

1 416 NA 1 415 24 25 416 NA 2 414 24 25

2 383 0 1 381 13 15 382 0 1 381 13 15
3 370 0 1 369 248 254 370 0 1 369 248 254
4 351 17 1 322 185 176 351 17 13 321 185 176

Table 9. Rates of Convergenceto a Proper Solution, Solution Deletion, and AlC and BIC Model Selection with 10 Observations

Monotone Dropout

Erratic Missingness

Classes Converged [ ow ., Outlier Remain AIC BIC Converged Low 7, Outlier Remain AIC BIC
30% Missing

1 500 NA 0 500 0 0 500 NA 0 500 0 0

2 500 0 1 499 78 79 500 0 0 500 3 3

3 499 17 4 468 356 356 498 1 2 495 142 153
4 496 402 3 91 42 41 485 10 6 469 317 309
5 487 432 2 53 24 24 428 318 2 108 38 35
60% Missing

1 500 NA 0 500 0 0 500 NA 0 500 0 0

2 500 0 0 500 125 143 500 0 0 500 11 11
3 500 63 2 435 299 281 487 0 1 486 42 161
4 462 344 20 98 37 37 476 13 10 453 396 313
5 473 427 2 44 39 39 427 254 0 173 51 15
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Table 10. Rates of Convergence to a Proper Solution, Solution Deletion, and AlC and BIC Model Selection with 20 Observations

Monotone Dropout

Erratic Missingness

Classes Converged | ow 7, Outlier Remain AIC BIC Converged Low 7, Outlier Remain AIC BIC
30% Missing

1 500 NA 0 500 0 0 500 NA 0 500 0 0

2 500 0 1 499 13 13 500 0 0 500 0 0

3 500 8 5 487 384 389 500 0 1 499 31 31
4 488 360 0 128 59 61 498 10 5 483 203 205
5 499 428 0 71 44 37 500 200 3 297 266 264
60% Missing

1 500 NA 0 500 0 0 500 NA 1 499 0 0

2 500 0 0 500 11 11 500 0 1 499 5 5

3 500 7 6 487 372 378 500 4 1 495 106 107
4 485 346 1 138 70 70 493 72 13 408 195 198
5 500 433 0 67 47 41 500 185 2 313 194 190




Finally, it was expected that more classes would be suppeite 30% missing
data than with 60% missing data. While the same averagleemwhclasses were
extracted across these conditiomsre classes are supported with 60% missingness in
the five repeated measure conditions (particularly whepoditovas present). This trend
is not as apparent when ten or twenty repeated measerebserved. This is an
unexpected finding, and might possibly be explained if @dagsction in the 60%
dropout condition with five repeated measures purely iisflegel differences in the
intercept, rather than differences in the random slbpe.

Study 2 hypotheses are related to SPMM performance eiautmber of classes
supported by the data. Thus, results are primarily agalgy class rather than by AIC-
or BIC- implied solutions (as in Study 1). For the sakpawéllelism, Figures 18nd 11
show parameter bias (RB and SB) and RMSE for thel fskepe (Figure 10) and slope
variance (Figure 11), when the AIC is used for classnemation on a replication-by-
replication basis.

There is a clear trend for fixed effect estimates to be eifficéent as the number
of repeated measures increase; however, SB appeess as the number of repeated
measures increase. RB, the more reliable metric in #eeafalifferent observation
lengths, does not show this trend. There is no clear inethe effect of observation
length on RB for fixed effect estimates, but variance corapbestimates appear highly
biased when only five repeated measures are presgatedtingly, variance component

bias is in the upward direction with five repeated measuiesreas variance

Y For the 60% dropout condition with five observation occasions, it is expected that only 2 repeated
measures are observed for the average individual. The random slope contributes to none of the
explained variance in the first observation, and only a small amount to the second observation. This
hypothesis was explored with individual replications and support was found for this explanation.
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components are always downwardly biased when LCM iseabin the presence of
random coefficient dependent missingness.

Similar to the LCM, nature of missingness had a larger infleen SPMM-based
parameter estimates than the proportion of missingnessdrdpeut mechanism results
in more biased and less efficient fixed parameter estimatesrehd grows larger as the
number of observation occasions increases. Interestihgl reverse trend is apparent
for the variance component estimates. This finding wareantere detailed analysis of
the by-class solutions.

Figures 12-17 show average parameter estimates withbanomarking 1
empirical SD across the reps that were analyzed for ted filope (Figures 12, 14, and
16) and slope variance estimates (Figures 13, 15, gntyliiumber of classes. The
average number of classes selected by the BIC is maiiked blue triangle for each cell
in the figures, and the average number of classes selpcthd AIC is marked with a
red square. Figures 12 and 13 correspond to conditibhgive repeated measures,
Figures 14 and 15 correspond to conditions with ten rephea@@sures, and Figures 16
and 17 corresponds to conditions with twenty repeated me=asDropout conditions are
shown on the top row and erratic conditions are showhebottom row. Conditions
with 30% missingness are shown on the left and conditions6@#hmissingness are
shown on the right. Standard error bias in the fixed skoppresented in Table 11 as
the ratio of the average standard error estimate to thevedsstandard deviation of fixed

slope estimates.
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Fixed Slope Bias by Percent Missing Fixed Slope Bias by Nature of Missingness
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Figure 10. Raw bias (top), standardized bias (middle), and RMSE (indptbd SPMM-
implied fixed effect estimates for the slope by percent osimimess (30% or 60%; left)
and nature of missingness (erratic (E) or dropout (D)f)rigid by number of
observation occasions (5, 10, or 20). A horizontakegiee line is drawn at SB = -40 to
indicate the cutoff for “acceptable” bias.
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Variance Component Bias by Percent Missing Variance Component Bias by Nature of Missingness
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Figure11. Raw bias (top), standardized bias (middle), and RMSE (indptbd SPMM-
implied variance component estimates for the slope by peotenissingness (30% or
60%; left) and nature of missingness (erratic (E) or drbfi) right) and by number of
observation occasions (5, 10, or 20). A horizontal esies line is drawn at SB = -40 to
indicate the cutoff for “acceptable” bias.
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Figures 12 and 13 suggest that, practically speakingtanlglasses are
supported when five repeated measures are preseintijaaty when a dropout
mechanism is operating). Although the AIC and BIC sugiigéag a larger number of
classes, a reasonable data analyst would probably oaselo interpret a SPMM with
several classes that result in very wide standard error éssimnafavor of a solution with
fewer classes and smaller standard error estimates, pahjiouten the fixed effects are
stable across solutions. Tablegrbvides corroborating evidence that it is not
appropriate to extract more than two classes when onlydpeated measures are
present, particularly when the missingness mechanism istorendropout. In the
dropout conditions, standard error estimates were overagstinfjover and above the
already large empirical standard deviations shown in thesfytf Given that the
MNAR mechanism imposed in Study 2 was quite severe, tkeg# imply that it may be
practical for a data analyst with a small observation lengtilymnly on two latent
classes when conducting a sensitivity analysis for LCMteButhe presence of
potentially non-randomly missing data.

The second piece of information to glean from Figureari®13 is that fixed
effect estimates tend to approach the true parameter eadegther quickly) as the
number of classes increase, but variance component estithatere initially
downwardly biased quickly pass through the true paramatee and become upwardly
biased in an unbounded fashion. This explains results yispia Figure 11; AIC
consistently selects too many latent classes, and theeB€tstoo many latent classes

when 60% of the data are missing due to dropout.

'8 Stable individual differences may not be distinguishable from time-specific noise in these conditions,
resulting in upwardly biased standard error estimates.
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Table 11 Ratio of Average Estimated Standard Errorsto Empirical Sandard Deviation
for SPMM Fixed Sope Estimates by Sudy 2 Condition and Number of Classes

One Two Three Four Five
5 Observations
30% Dropout .96 1.01 7.31 NA NA
60% Dropout 1.00 .96 8.43 NA NA
30% Erratic .96 .98 1.00 1.08 NA
60% Erratic .94 1.03 .96 .94 NA
10 Observations
30% Dropout .97 .93 .96 1.20 1.34
60% Dropout .96 .98 .86 161 .87
30% Erratic 1.00 1.00 1.00 .93 97
60% Erratic 1.00 1.00 .97 .97 1.00
20 Observations
30% Dropout 1.04 1.07 1.04 .99 .94
60% Dropout .96 1.00 .96 .95 1.08
30% Erratic 1.00 .90 .90 .86 .78
60% Erratic 1.00 .90 .86 .86 .86

Note. Five class SPMMs were not estimated for the conditions withrfigasurement
occasions. Sampling distributions for point and standaod estimates were too non-
normal to extract meaningful ratio estimates for the folssc8PMMs with dropout / five
observation occasion conditions
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Figure 12. SPMM-implied fixed effect estimates for the slope by studyddmn (5
repeated measures only). Conditions are: 30% dropquiefiy; 60% dropout (top
right); 30% erratic missingness (bottom left); 60% erratic missisgbottom right).
Horizontal reference line is drawn at the true paraméigor bars show1 empirical
SD.
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Figure 13. SPMM-implied variance estimates for the slope by study dondib
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Figure 16. SPMM-implied fixed effect estimates for the slope by studyddeon (20
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Moving to Figures 14 and 15 (10 observation occasidns)immediately
apparent that variability of parameter estimates is substangdiligced as five additional
observation occasions are added. It is also apparentRNa¥YIperformance is much
worse when dropout is present in that the parameter estiamatbghly variable across
repititions. As was the case with five repeated measiuxesd, éffects approach the true
parameter values as two or three classes are estimateatibnte component estimates
surpass the true values and increase without bound. Uinéikere repeated measures
conditions, standard error estimates were relatively unbiagieden repeated measures
(see Table 11); however, standard error estimates wane siased in the dropout
conditions than in the erratic missing data conditions, particudartite number of
classes extracted increased. The proportion of missindnddittittle influence on fixed
effect parameter estimates, but the SPMM had trouble renguarbiased variance
component estimates with a high proportion of missing datés tilend was particularly
apparent for the erratic missing data condition.

Finally, moving to Figures 16 and 17 (20 observatiorasicns), it becomes
apparent that observation length indeed has a strong eff&®MM performance.
Specifically, more repeated measures are linked to mashvégiable parameter
estimates. Further, in line with the general finding that fixéetef tend to be more
robust than variance components with respect to parametserg under the SPMM, it
takes fewer repeated measures for the SPMM to obtainfy@adeffects estimates than
it takes for the SPMM to obtain good variance component gstima

When 20 observation occasions are collected, fixedtefftitnates are quite

precise regardless of the nature or proportion of missasgescept that more classes are
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required to obtain acceptable fixed effect parameter estimwais missingness is due to
dropout. Variance component estimates are downwardlgdiaken there is a high
proportion of missing data, particularly with an erratic migs@s$ mechanism.

Standard error estimates are slightly downwardly biasethé erratic
missingness conditions, particularly as more classes tareagd. It is interesting that
standard errors are more biased in the erratic conditionsrthiae dropout conditions as
the observation length increases; dropout does not appeaptoblematic for the
SPMM when a large number of repeated measures aenpre
Summary and Discussion of Study 2

Although it was not an explicit hypothesis of Study 2, it wadititly assumed
that the SPMM would outperform the LCM under all data conditibat were assessed.
This was assumed because the SPMM was better at regpineeith effect parameter
estimates (both in terms of bias and efficiency) in Studddwever, it was not
necessarily expected that the SPMM would recover thange component of the
random slope well based on results from Study 1. Figdipedvides a direct comparison
of the (raw) bias and RMSE of LCM- and SPMM-implied fix@dpe (at the minimum
BIC because this was determined to be the superior informaiterion for most data
conditions) estimates by observation length and nature oifngiess’, demonstrating
that the SPMM does indeed provide much less biased fikect parameter estimates
than the LCM across the range of study conditions tests d@y StuFurther, Figure 18
shows that the SPMM is only more efficient than the LCM enrertovery of fixed effect

estimates when the missing data are erratically missinghen wiany repeated measures

9 Figures 18 and 19 collapse over the proportion of missing data since this manipulation had little
influence on parameter estimates.
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are present and missingness is due to monotone drojpoeather words, the SPMM may
be more accurate than the LCM in the recovery of fixtstes on average, but SPMM-
implied results are too variable to be of much use wherodtap present and when there
are not many repeated measures.

Figure 19, which shows a comparison of LCM- and SRMidlied variance
components, tells a different story. LCM-based varianogpoment estimates are less
biased and less variable than SPMM estimates. On thehathe, results presented in
these figures are based on results obtained using thioBtlass enumeration. Results
presented in Study 2 suggest that the BIC (and the @&i&€#stimate the number of
classes necessary to achieve approximate conditional irdEpmnbetween the missing
data and the repeated measures; this over-extractionrltas snsequences for
inducing excessive variability in parameter estimates anddarcing positive bias in
variance component estimafés.

Study 2 presented compelling evidence to suggest that @ad BIC are not
optimal criteria for enumerating classes in an SPMM contesttfofmance of these
indices depends on the number of repeated measurestrea sample such that too
many classes are selected when the number of repeatdsdne®is small and too few
classes are selected when the number of repeated ew@slarge. The equations for
calculating AIC and BIC (shown in Equation (2.8)) do nqilieitly account for the
number of level 1 units. The BIC penalizes for sampleatitevel 2; in this case,

however, it appears that a large level 1 sample size sheuleviiarded’ (rather than

20f parameter bias and efficiency are used as optimal criteria, then study results suggest that it may be
pragmatic to utilize fixed effect estimates from the SPMM and variance component estimates from the
LCM. However, this practice is not justifiable from an analytical standpoint. Future research should
evaluate the theoretical rationale and the consequences of such an approach.
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penalized). Other fit indices exist for comparing solutiors. (éhe Lo-Mendell-Rubin
likelihood ratio test, Lo, Mendell, & Rubin, 2001, the consistel@t,ABozdogan, 1987,

the skewness and kurtosis tests; Muatl2003; sample size adjusted BIC; Sclove, 1987);
however, it is doubtful whether any of these fit indices wagdn improvement over

the AIC and BIC because level 1 sample size is not explaoihgidered by any of these

criteria.

Fixed Effect Bias: Dropout Fixed Effect Bias: Erratic
N N =
5 Occassions
1 10 Occassions

= 20 Occasions =
(%] (%]
o oo
[aa] [aa]
z © | | | | | | z ° =] | ezl
& ezl Wz o

- rli —

o o

LCM SPMM LCM SPMM LCM  SPMM LCM SPMM LCM SPMM LCM  SPMM
Fixed Effect RMSE: Dropout Fixed Effect RMSE: Erratic

wn wn

T N

o o

& T N

n n
w - 7] w - 7
[0} 2]
s s
x o | xr <

— —

v v

[=} [=}

o o | L 0

o o

LCM SPMM LCM SPMM LCM  SPMM LCM SPMM LCM SPMM LCM  SPMM
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Variance Component Bias: Dropout Variance Component Bias: Erratic
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Figure 19. Comparison of bias (top) and variability (bottom) in LCM- &RMM-
implied variance components, by nature of missingnessdiapout (left) or erratic
(right) and observation length. A dotted line is draw toasgnt +10% raw bias.

Lin et al. (2004) presented a method for assessing tithtiomal independence
assumption in a latent mixture model that has good potentiatéoas an alternative
method for class enumeration in the SPMM context. Lin alidagues suggested
generatingV {M = 1,....m}sets of randomly generated multinomial vectors atdig
latent class membership, whereK is fixed, based on individuals’ posterior

probabilities of class membership (which are automaticaleigged when the EM

algorithm is used to estimate the model). Whdata sets with ne® indicators are then
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stacked to form a single data set, assigning a weighibfaléach case. Each individual
in the original sample then hisimputed copies of an ‘observed’ class membership
variable. If the conditional independence assumption istheetnissing data
indicator(s),R, should be uncorrelated with the repeated measyresnditional on
imputed class membership, This can be evaluated by estimating a growth mode] (e.g
an LCM) withD as an observed predictor of the growth factor megssnilar to a
multiple groups model). The missing data indicatdR(&ye also included as predictors
of growth, but their estimated effect should be zero if conditiomdependence exists.
This approach has the benefit of being directly reletatite goal of class enumeration
in SPMM; however, its performance has not been evaluatbdsimulation

methodology. Since Study 2 showed that more classeeegssaryo achieve adequate
bias reduction as the number of observations increasediimdjchat conditional
independence is achieved more quickly with fewer repeatssures), it is likely that

Lin et al.’s approach would work well when used in conjiamcwith traditional

measures like the BIC.

Results from Study 2 suggest that LCM and SPMM perfoca@nhighly
dependent upon data conditions, even when the missingndataanism is RC-MNAR-
M with severity held constant. LCM is never protected ftbmnegative effects of non-
randomly missing data, but data conditions leading to lesstiyfaator determinacy
(i.e., dropout as opposed to erratic missingness analarammber of observation
occasions) make parameter estimates even less trustwbtiigrtunately, these are the
same conditions that are troublesome for the SPMM. I dfthese results, it is

necessary to outline some practical guidelines for longitudisahrehers who suspect
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that their missing data might be missing due to a randomicieetfdependent
mechanism.

The first piece of advice is to maximize growth factor aeieacy. This means
establishing reliable measures, collecting as many repeegasures as possible, and
trying to collect information from individuals throughout the raid the study (i.e.,
avoid monotone dropout, for instance by investing ressurclocating persons who
might otherwise be lost to follow up). Particularly when fevegreated measures are
planned, it is important to avoid having individuals who drojpadier the first few
occasiong! A researcher with limited resources to spend on data tioHenight
consider a planned missingness approach; Study 2 resmltsdlthat estimates do not
suffer when random missingness is added, particulargndom missingness enables
less non-random missingness to be present.

Once data have been collected, if random coefficiergragmt missingness is
suspected, it is always a good idea to conduct a sensitiatyseof LCM results using
a SPMM. If fixed effects are similar, then LCM results pr@bably trustworthy unless
OD-MNAR is a possibility. If fixed effects differ, and ifore than five repeated
measures were collected or if only five repeated meaamegsresent but missing data
are erratically spaced, then SPMM-implied fixed effect esémare probably more
trustworthy than LCM estimates. If fixed effects differ dudpout is present with few

repeated measures, then it may be wise to conduct fgghesitivity analyses using other

2 Although dropout did not plague parameter estimates as much when more observations were collected
in the simulation study, researchers should be careful about extrapolating beyond the range of the
available data during ‘real’ data analysis when the functional form cannot be assumed to remain constant
for an indefinite period of time.
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methods for handling non-randomly missing data (e.glitivaal PMMs or traditional
shared parameter models with a variety of parametric g imposed).

Fixed effects are more robust to the number of classescted in SPMMs than
variance components. That is, fixed effects estimateseaeragly unbiased if two or
more classes are extracted in a SPMM (although more glasseecommended if many
repeated measures are observed). Particularly if em&gingness is present, or if there
are many repeated measures, variability of the fixedtefestimates is not too large. On
the other hand, variance components are highly sensitthe taumber of classes that are
extracted in an SPMM. If variance components are ofasteit may be wise to rely on
as few classes as possible, even fewer than are sedjfpgsthe information criteria.

The finding that the AIC, and particularly the BIC, tendereextract classes in
the sense that they sacrifice efficiency far too much,nmescases, was surprising. It
was expected that the AIC would be the preferred metricléss enumeration because
of its tendency to extract more classes than the BIC. thstean the BIC was
sometimes too lenient in class extraction. Perhaps this findinigvee different if a
larger sample size were asses$¢d B00 is rather small, particularly when 30% - 60%
of observations are missing), or if the number of obsensper person were considered
by the information criteria. In practice, it may be difficdt & researcher to determine
whether fixed effect parameters that change as the nwhblesses increase are
changing because additional latent classes are reducingytaasdunting for the
missing data process, or if they are changing becdwidional variability that is
being introduced by extra model parameters. This probiagnbe aggravated with a

growth model that is more complicated than the model tested Beresearcher in this
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situation should monitor standard error estimates across SstUitlons; if a solution
with fewer classes has much smaller standard errors thaloteon with more classes,
results from Study 2 suggest that the model with fewer clasagde a better choice.

It is interesting to consider what results might have lookedflédéof the
missing data mechanism that were considered in Study laerassessed in Study 2.
In all likelihood, results would have been quite similar acrossahge of mechanisms.
This is because the issue of growth factor determinacyriswbat orthogonal to the
conditions studied in Study 1. Specifically, growth factetedminacy should help the
LCM generate better parameter estimates regardless ofgbimgndata mechanism and

the SPMM should always perform better with more information.
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Chapter 4
STUDY 3: A CASE STUDY OF SPMM:
INFERRING CHANGE OVER TIME IN A SAMPLE OF
PSYCHOTHERAPY PATIENTS

Chapters 2 and 3 considered the performance of thBSKith artificial data. In
this chapter, the SPMM is applied to a real-data exampleot® sbw the model might
be usefully applied in practice.

Data from this chapter are the same as those useddwiBat al. (2009), who
analyzed data from a longitudinal study of psychotherajpyrtrent in a naturalistic
setting. In the Baldwin et al. manuscript, the authors critigfuedbng-standing tradition
of dose-effect models of change in psychotherapy, a&hwaduich aggregates across
individuals (assuming no individual differences in rates ohgkato test the incremental
value added of additional psychotherapy sessions. Bahkivdrcolleagues were
concerned that the dose-effect models assume that respdheeapy is equal across
individuals, regardless of their dose. Instead, the authought that individuals who
receive a small dose of therapy might experience the tafjest per dose, and
individuals receiving a large dose of therapy might receieesthallest effect per dose.
By including a covariate quantifying the total number of sessittended by each
participant in the growth model, and by allowing that term teract with an individual's

rate of change, Baldwin et al. found support for thepdtigesis. Ultimately, Baldwin



and his colleagues concluded that it is not appropriate toliskta fixed standard of
treatment for individuals, given individual differences in dd$eeeresponse.

It is possible to view Baldwin et al.’s (2009) problenoas of potentially
random coefficient dependent missing data. If one wisheésate inferences about
average individual trajectories and about variability in individugéttoriesduring
psychotherapy treatment, which was the purpose of Baldveilh®analysis, then data
are ‘missing’ from patients after they leave psychotheragatrivent, and the data may be
missing due to a non-random, random coefficient depemdechanism. Viewed in this
context, it becomes apparent that Baldwin et al.’s approaiciclofling number of
sessions attended as a measured indicator of ‘missingheg#) to a traditional pattern
mixture modeling approach to handling missing data. Thisoapprwas criticized by
Demirtas and Schafer (2003) because the explicit inclusian ofdicator of missingness
limits growth model generalizability. In other words, validityirdferences regarding
individual- and population-level growth in Baldwin et al.’s miadeconditional on the
number of sessions attended in the precise way that tiadles were entered into the
model (i.e., as a main effect and as an interaction with(time@sured in session units).
Including number of sessions attended as a fixed covafigi®wth implies
homogeneity of growth trajectories for all individuals witeaded the same number of
sessions, and it implies heterogeneity of growth for individaishding a different
number of sessions (Hogan & Laird, 1997).

The SPMM might be a good alternative strategy for anagyBeiddwin et al.’s
(2009) psychotherapy data while enablinguheonditional interpretation of growth

coefficients in the population (i.e., marginal over individu#iedences in total number

93



of sessions attended). This is beneficial for two reasbinst, the explicit model
specified by Baldwin and colleagues may be incorrect; thegbtrine a nonlinear main
effect of total sessions attended, for instance. Seconandares useful to have a model
predicting change over time that does not require a morviedge of total sessions
attended by a patient. Consider a scenario in which a patieonsulting with a
therapist to determine whether he or she might be a goddlesa for receiving
psychotherapy treatment, and the patient enquires aboutlhoklythey can expect to
experience clinically significant improvement. Under thedittonal model, the therapist
would not be able to answer the question easily. Und&RiM, the therapist would
be able to tell the patient an average rate of change ovegitrerethe prospective
patient’s initial level of psychological symptoms and other (olad®@e) background
factors. Further, the therapist could give an estimate @vttiage variability in rates of
change over timé&?®

This chapter walks through a data analytic strategy top#lychotherapy data that
were previously analyzed by Baldwin et al. (2009). Rataytic decision points are
informed by results from Chapters 2 and 3. The go#ilisfchapter was to conduct a
sensitivity analyses about the inferences drawn regatidingxpected shape of change in
psychological symptoms over the course of psychothegsqolyabout the population

variation around the average trajectories.

2 The same information is available from an LCM, but LCM-based inferences would only be accurate if
there were no individual differences in dose-effect response, which Baldwin et al. (2009) deemed to be
false.

2 Alternatively, a survival model might be used to predict time to dropout. Lin et al. (2004) presented a
joint model for growth over time and survival time; however, this can be viewed as a type of selection
model that requires an explicit specification of the dropout mechanism. Future research should assess Lin
et al.’s model under misspecification using a simulation design.
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The first step in the data analytic plan was to follow adstethprocedure for
analyzing change over time by analyzing the psychotletata using a LCM. Then a
SPMM was considered for the same data to evaluate thitiggnof LCM results to a
suspected random coefficient dependent missingness neohaResults from Chapter
2 suggest that the SPMM will be useful for identifying andesztiimg for nonignorable
missingness resulting from a RC-MNAR mechanism, su¢heasne suspected here.
Chapter 2 suggests that fixed effect estimates should beaguiteate under the SPMM,
but that variance component estimates are likely to be biaseuine degree, particularly
if multiple nonignorable mechanisms are acting simultanedasly, if both very fast and
very slow recovery are related to dropout from ther&py)CM-based estimates of the
slope mean and variance component are expected todeel Ibtathe extent that random
slope dependent missingness is present. Chapter 3 regigessthat the monotone
nature of dropout in the psychotherapy data may lead &ssixe variability in
parameter estimates, particularly the variance componeotsever, the average
individual in the sample has six or seven observed repesadures, indicating that at
least the fixed effect estimates should be trustworthy undesRMM.

Methods
Participants and Procedure

Participants were drawn from an archival dataset oaffyeoutcomes that is
maintained by a large university counseling center. Participatitss study were
completing their first round of individual psychotherapy, nieguthat the longest

interval between therapy sessions had not exceeded 9(Pdeignts who attended at

** patients who attended fewer than three sessions were not included in the sample, a decision which
likely removed the majority of study participants who would not benefit from therapy.
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least three, but no more than 27 sessions were includied gample (most clients
attended fewer than 27 sessions and those attending angessions did not provide
enough information to calculate growth trajectorféspatients discontinued therapy at
their (and their therapists’) discretion. Only data fromfitis¢ 14 sessions are analyzed
because the majority of patients had dropped out of thénaflyis point.

Of the 4,676 patients analyzed in the sample, the avieaggh in treatment was
6.46 sessions (SD = 4.15). The majority of patientsafustment disorders (37.96%),
mood disorders (24.59%), or anxiety disorders (12.18¥t patients were single
(65.06%), White (89.07%), and female (62.32%). Ageged from 17-60, with a mean
age of 22.28 (SD = 3.70). There were 204 therapmsasitig the sample of patients, but
many patients were seen by multiple therapists over the colutrgatment.
Psychotherapy Outcome Measure

The Outcome Questionnaire-45 (0Q-45), a 45-item setfrtegoim score measure
of overall psychological functioning (Lambert, Morton, Hdtfieet al., 2004), was used
to assess patients’ symptom trajectories over time. The neeassesses three domains:
subjective discomfort (e.g., “I feel blue”), inter-persoreétionships (e.g., “I feel
lonely”), and social role performance (e.g., “| have noany disagreements at
work/school”). Possible scores range from 0O (high funatig) to 180 (low functioning),
and they ranged from 0 to 166 in this sample. The O@agDheen shown to have high
internal consistency, test-retest reliability, and concurrentitya(i@inell, Mallinckrodt,
Hill, & Lambert, 2001; Lambert et al., 2004; Baldwin et al., 2Q0Participants

completed the OQ-45 at initial intake and prior to each theregsian.

> Excluding patients who only attended one or two sessions may limit generalizability of the study results.
Early drop-outs may differ from people who remain in therapy for more than two sessions.
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Data Analysis Plan

Baldwin et al. (2009) estimated a cubic growth model bedigseate of growth
was not linear (i.e., the rate of improvement slows over)tffhén this analysis, a variety
of unconditional growth models were assessed using dhhelore settling on a log-
linear model for time. The following LCM was estimated as@ond step in the

modeling process:
0Q45, =7, +n,; *In(Session) + &,

Noi = Qo+ Aoy * ANX_ DX + Ao, Mood_ Dx + 4 o5 Other_ Dx
+1,,* NotSngle + A4,.* Minority, + 1,5 Age + 4,5 Male +¢ (4.2)

ny = oy + A, Anx_ Dx + 4., Mood_ Dx + 4, Other_ Dx
+4,,* NotSngle + 4,.* Minority, + 4,,* Age +4,;* Male + ¢

with the following random effect distributions:

e v

& ~N (0102 )

(4.2)

In this analysis and in Balwin et al.’s (2009) lgs&, time was measured in
session units rather than in chronological timesstn attendance was not evenly spaced
across individuals, but the sample was restriaeddividuals who did not allow a long
lapse of time (90 days or more) in between psydrathy sessions. Sessions were the

preferred unit of time for this analysis becausgas the most relevant to the substantive

%® This is a well-established trend in literature evaluating response to psychotherapy treatment.
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guestion of interest: what is the typical rateasponse to the receipt of psychotherapy,
and how much individual variation exists in respotstherapy?

Anxiety disorder, mood disorder, and other diagsosere included as predictors
of the random intercept and of the random slopth Veidjustment disorder” as the
reference group. A relationship status of “martied‘cohabitating,” identification as an
ethnic minority, participant age (grand mean cesttgrand being male were included as
time invariant covariates of growth as well, withgde people, Whites, and females as
referents. These predictors were all includedatdi®in et al.’s (2009) analyses.

The next step of the analyses involved fittingaes of SPMMs to the data,
increasing the number of latent classes as negesshrs involved fitting one- through

three-class SPMMs to the data. A decision to atigfing classes was made after small
class proportions appeared in the four class moget .05), and because aggregate

parameter estimates did not change substantialyoas classes were added. A single
summary indicator was used to indicate the ‘dropoctasion-- the log of the total
number of sessions attended. Total number of@essittended ranged from 3 — 27 for
the sample and was heavily skewed right. Log nurobsessions was distributed with
Mean = 2.05, Median = 2.08, SD = .60, Skew = .0, ldurtosis = -.74.

Mplus version 6 was used to estimate the modetsftzee Model Constraints
command was used to calculate the population-agardgrcept, slope, and variance
component parameter estimates so that standarms &roolld be output by the program.
Delta method standard error estimates were obtdieeduse bootstrapped standard

errors are not yet available for this type of madeéViplus software. Results from

98



Chapter 3 suggest that standard error estimatesdshe trustworthy, particularly if a

conservative approach is taken to class enumeration

RESULTS

LCM Results
The LCM fit relatively well (y*(197)= 2029.558p < .0C CFI=.941; TLI =

.943; RMSEA = .045). Parameter estimates are pregén Table 12.

Table 12.LCM-Implied Parameter Estimates

Estimate SE
Fixed Effects
Intercept 67.83*** (.63)
Slope -6.78*** (.35)
Intercept Regression Parameters
Anxiety 6.97*** (1.02)
Mood 17.85*** (.80)
Other 1.29 (.80)
Male -3.95**  (.66)
Not Single -2.94*** (,66)
Minority 4.45** (1.00)
Age A2 (.09)
Sope Regression Parameters
Anxiety -.54 (.56)
Mood -3.35%  (.44)
Other .69 (.44)
Male .59 (.36)
Not Single -1.29*** (.36)
Minority -1.09* (.55)
Age A1* (.05)
Variance Components
Intercept Variance 376.69*** (9.29)
Slope Variance 73.37*** (2.73)
Covariance -45.26*** (3.84)
Residual Variance 102.80***(1.03)

Note. * p <.05; *** p<.001

Results from the LCM analysis indicate that psyopizcal symptoms decrease

steadily throughout the 14 sessions that were aed|ybut that the rate of change
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declines as sessions increase. The LCM-impligddt@ries for single, White females
(the majority of the sample), of average age, aitkiety disorders, mood disorders,
adjustment disorders, and all other disordersliustrated in Figure 20.

Further, results suggest that the average parenting therapy with an anxiety
disorder is more severe than a patient entering anitadjustment disorder, and a patient
entering therapy with a mood disorder is dramdgaabre severe, initially, than a
patient presenting with an adjustment disorder.a@rage, males, Whites, and people
who are married or cohabiting begin therapy wiislsevere psychological symptoms
than women, ethnic minorities, or single people.

People with adjustment disorders, anxiety, or otligorders (except for mood)
improve at about the same rate on average. Pedagplenood disorders tend to improve
more quickly than the other groups. People wharaagied or cohabitating and ethnic
minorities tend to improve more quickly with theyapan people who are single or

White.
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Figure 20. LCM-Implied Average Trajectories for Psychologi&imptoms for White,
Single, Female Psychotherapy Patients

The LCM results suggest that there is substamigiVidual heterogeneity around
baseline psychological functioning, even after aotimg for the observed individual
differences in diagnosis and demographic charatitesi There is also substantial
heterogeneity with respect to rate of change awes,tand individuals who enter
psychotherapy with more severe psychological symptare likely to improve more
quickly than people who enter therapy with lesesegymptoms. There is also a
substantial amount of unexplained, time-specifsidal variance.

Sengitivity Analysis with SPMM

To the extent that individuals who improved mougckly over time (after
accounting for observed covariates, including dusig) age, gender, ethnicity,
relationship status, and baseline OQ-45 scores) also the patients who left therapy
early (as suggested by Baldwin et al., 2009, whiewlee first to analyze this
psychotherapy data), results from the LCM will badcurate. Based on results from
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Information Criterion

Chapters 2 and 3 of this manuscript, it is expethatithe fixed slope estimate generated
by the LCM is biased to some degree, as well asstimated variance of the slope and
covariance between the intercept and slope.

As shown in Figure 21, AIC and BIC continuedrtgprove as more
classes were added, as often happens with largeesanHowever, results from Study 2
suggest that the AIC and BIC may sometimes ovenasti the number of classes
necessary to approximate the missingness mechariarther, results suggested that it
may be more problematic to utilize too many claskan too few in terms of RMSE /
efficiency loss. Finally, it is clear from Tabl8 that parameter estimates are remarkably
similar for the two- and three- class solutions eéxpected, inference regarding predictor
effects is not changed across models, even whepamuah with LCM-based inference.

This concurs with findings from Study 1.

243,000
AlC
=== BIC
242,000
241,000
240,000 . . . o .

Figure 21. AIC and BIC values as a function of lienber of latent classes. This plot
suggests dramatic improvement in fit when movimgrfra one- to two-class solution, and
slight improvement in fit when moving from a twa-three-class solution.
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Because the population average intercept terminsmelatively constant across
models while the average slope changes, theseég@salconsistent with a mild random
slope-dependent MNAR process. For comparison, thineugh three-class SPMM-

implied trajectories for single, White females géeage age are compared in Figure 22.

103



Table 13. One- through Three-Class SPMM-Implied Psychotherapy Trajectory Estimates

1 ClassSPMM 2 Class SPMM 3 ClassSPMM

Estimate SE Estimate SE Estimate SE
Fixed Effects
Intercept 67.83*** .63 68.12%** .63 68.16%** .63
Slope -6.78*** .35 -7.24%** .35 -7.34%** .35
Intercept Regression Parameters
Anxiety 6.97*** 1.04 6.93*** 1.04 6.93*** 1.04
Mood 17.85*** .78 17.73%** .78 17.68*** .78
Other 1.29 .81 1.21 .81 1.22 .81
Male -3.95%** .66 -3.92%** .66 -3.90*** .66
Not -2.94%** .66 -2.89%** .66 -2.87*** .66
Single
Minority 4.45%** 1.05 4 .52%** 1.05 4 52%** 1.05
Age A2 .09 A2 .09 A1 .09
Jope Regression Parameters
Anxiety -54 .57 -.60 57 -.62 .57
Mood -3.35%** 45 -3.44%** 45 -3.50*** 45
Other .69 42 .59 42 .62 42
Male .59 .35 .59 .35 B1*r* .36
Not -1.29%** .36 -1.23%** .36 -1.19%** .36
Single
Minority -1.09 .57 -1.03 57 -1.05 .56
Age A1* .04 A1 .05 A1* .05
Log Number of Sessions Regression Parameters
Anxiety .08** .03 .06** .02 .06** .02
Mood 09*** .02 .06*** .02 .04** .01
Other .06** .02 .04* .02 .04** .02
Male -.04* .02 -.03* .01 -.03* .01
Not -.03* .02 -.02 .01 -.01 .01
Single
Minority -.06* .03 -.04 .02 -.04* .02
Age -.01* .00 .00 .00 .00 .00
Variance Components
Intercept 376.68*** 9.01 377.24%x* 9.01 377.76*** 9.04
Slope 73.36*** 3.15 72.35%** 3.09 71.87%** 3.22
Cov -45.25%** 3.95 -45.45%** 3.92 -45.34%** 3.92
Residual 102.81*** 2.14 102.89*** 2.14 102.89*** 2.14
Class Proportions and Average Number of Sessionsby Class

Ty #Sessiorfs 7Ty #Sessiorfs 7Ty #Sessiorfs

Class 1 1.00 5.42 .30 10.50 31 7.35
Class 2 - - .70 412 .56 3.69
Class 3 - - - - A3 14.17
Model Fit
AlC 242,302.08 241,444.47 241,128.46
BIC 242,489.14 241,657.33 241,367.12

Note. * p<.05; * p<.01; **p<.001.

®Intercept # of sessions is the within-class average for sindlige\f¢males with adjustment

disorders who are of average age.
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Figure22. A Comparison of SPMM- implied trajectories for faliagnoses by number
of classes. Adjustment disorder (top left); mo@brdter (top right); anxiety (bottom
left); other (bottom right).

In this analysis, the choice between two and thlags SPMMs is not important
because SPMM-implied trajectory estimates are natimalifferent from one another; the
average slope become very slightly steeper as olasses are added. Furthermore, the
variance component estimates remain relativelyiestatm two to three classes. The
main difference is between the LCM-implied trajegt(or the one class SPMM) and
both of the SPMM-implied trajectories with morenhane class. However, even this

difference is substantively very small; effect sifameasured as the standardized
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difference between the two class SPMM-impligdat timet and the LCM- impliedy,

at timet) are reported in Table 14 for the four diagnostitegories.

Table 14. Sandardized Difference between LCM- and SPMM-Implied OQ-45 Scores by
Time and Diagnostic Category

Session Adjustment Mood Anxiety Other
1 .01 .01 .01 .01
2 .00 -.01 -.01 -.01
3 -.01 -.02 -.01 -.02
4 -.01 -.03 -.02 -.02
5 -.02 -.04 -.02 -.03
6 -.02 -.04 -.03 -.03
7 -.02 -.04 -.03 -.03
8 -.03 -.05 -.03 -.04
9 -.03 -.05 -.03 -.04
10 -.03 -.05 -.03 -.04
11 -.03 -.05 -.04 -.04
12 -.03 -.05 -.04 -.04
13 -.03 -.05 -.04 -.04
14 -.03 -.05 -.04 -.04

Discussion of Study 3

A comparison of LCM- (or one- class SPMM-) impli&f-45 scores with two-
or three-class SPMM- implied OQ-45 scores (eittsengiFigure 22 or Table 14)
provides evidence for the robustness of the LCMIte$o the random slope dependent
missingness that is believed to be present insgehwmtherapy data. In other words, after
controlling for the data that are observed, th&ltesd dependence between dropout
occasion and rate of improvement over time is glight. Indeed, if one were to use the
specified cut-off for a clinical diagnosis using@t®Q-45 (a score of 63; Lambert et al.,
2004), there would be virtually no difference i #xpected length of treatment,

regardless of whether one used LCM-based or SPMdéebenodel results.
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The purpose of Baldwin et al.’s (2009) manusonps to emphasize that
individual differences in rates of change renderage trajectories less meaningful for
calculating psychotherapy pay-offs for individualdsing a traditional pattern mixture
modeling approach, the authors showed that comdittivajectories of psychological
functioning appear dramatically different from aa®ther (after accounting for the
number of sessions attended; see Figure 23, bottGhaks-specific trajectory estimates
are shown for the three-class SPMM that was estunatthis manuscript on the top
panel in Figure 23. The class-specific estimatesvsa similar pattern to Baldwin et al.’s
conditional trajectories. That is, psychologicajectories depend on the number of
sessions attended, suggesting the presence oéeesandom coefficient dependent

mechanism that, in actuality, is quite weak.

Demirtas and Schafer (2003) addressed this ighiggrating that the mere visual
appearance of random coefficient dependent misssgdoes not necessarily imply that
it exists, saying: “Relationships betweRifthe missing data patterns] and pre-drop-out
responses cannot disprove the hypothesis of igilityalwvhich states that there is no
residual relationship betwe&hand thepost-drop-out responses given the pre-drop-out
values” (italics in original). They go on to sdkvaluating the significance d® -terms
does not test the null hypothesis of ignorabiliyt the null hypothesis that drop-out is
merely covariate-dependent” (pp. 2557). In otherds, it is not enough to show that
individual differences in growth are associatechwdtopout occasion because this
association may be explained by observed covarfatekis case, the association
between number of sessions attended and improvempsychological distress over

time was mostly explained by clinical diagnosis atifter demographic variables, and by
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baseline OQ-45 measures). The analysis presentbd present chapter shows tledier
controlling for baseline measured variables, irdlial mean trajectory estimates are
largely unbiased when a traditional LCM is used.c@urse, this does not detract from
Baldwin et al.’s (2009) ultimate conclusion, whighas that individual differences in rates
of improvement over time render average improvemaes less relevant. On the other
hand, a service provider has no choice but tohseformation available to them before
the initiation of therapy to estimate how long &éigra might expect to remain in therapy,

or what symptom improvement might look like.

Limitations. Ideally, the sensitivity analysis conducted iis thapter would lead
to the conclusion that patients who leave theraplyez in the study are similar enough to
the patients who stay for more sessions, conditimmaheir age, gender, ethnicity,
diagnosis, marital status, baseline psychologioattioning, and all previously observed
repeated measures, that time of dropout is nataliy significantly related to future
growth. That is, it would be nice to be confidanthe conclusion that the LCM-implied
trajectories can validly predict individuals’ exped trajectories in psychotherapy, were
they to remain in the study for fourteen sessicegardless of their background
characteristics. In this study, this seems likalad conclusion. For sake of argument,
however, it is important to consider other possédplanations that could have lead us to

observe minor differences between the LCM- impaad SPMM-implied trajectories.
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Figure 23. Model-Implied Psychotherapy Trajectories, Condiiloon Number of
Sessions Attended: A Comparison of the SPMM-Apdnaging Class-Specific
Estimates (Top) and Baldwin et al.’s (2009) Tramhal Pattern Mixture Approach
(Bottom)’

% Baldwin et al.’s (2009) original analysis used a cubic growth function. The data have been re-analyzed
using a log linear growth function in order to match the SPMM results.
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Chapter 2 showed that there are three situatimtddad to similar fixed effect
estimates. The first is an MAR process, the sec®@adRC-MNAR-NM process whereby
there is selection occurring from both sides ofrdredom effect distribution, and the
third is a OD-MNAR process. Bias in variance comgat estimates is also expected to
be similar across all of these conditions. In ptherds, there is no empirical way to test
whether dropout in the psychotherapy study is apprately conditionally random,
whether it is due to a time-specific, outcome-dejaen process (e.g., a breakthrough in
therapy), or whether people who leave early aragadue to two opposite, but non-
random processes (e.g., quick improvers drop alit aad people for whom
psychotherapy is ineffective also drop out earlypfortunately, all of these mechanisms
are logically plausible, with the possible exceptod OD-MNAR. It is also plausible
that a mixture of all of these processes is opegati

If it can be assumed that a single therapy seskies not provide a breakthrough
that ‘cures’ patients of their psychological diagiso regardless of prior psychological
functioning scores (i.e., if the dropout processasOD-MNAR), then the simulation
results suggest that it is safe to rely on thedfigect estimates that were obtained in the
LCM and SPMM. Reliance on variance component eg#isis more uncertain, but
Chapter 2 suggests that it is safe to say thatahance component estimates represent a
lower bound of the true population variability. u€rvariance components will be larger
than the estimates presented here to the extdrthdra are non-random forces operating
on both sides of the random slope distribution.

Conclusion A primary purpose of Study 3 was to assessdasilbility of

implementing the SPMM with real-world data. Implemation was virtually seamless;
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the models were easily estimable using user-frieadftware, and conclusions of the
sensitivity analysis were fairly robust to the nuenbf classes that were extracted. Thus,
it appears that SPMM has the potential to be aulisadl for applied longitudinal
researchers who are concerned about the presermedoim coefficient-dependent
missingness influencing their results.

As illustrated in this chapter, the SPMM shouldused as a tool for the careful
and thoughtful checking of the sensitivity of tri@mhal growth model results to violations
of the MAR assumption. As with all statistical lmahe SPMM should not be employed
mechanically, without regard to the theoreticallgysible mechanisms underlying the

missing data.
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CHAPTER 5
CONCLUSION

A variety of techniques for handling non-randomrissing data have been
presented in the past quarter century (includingpndevelopments by Heckman, 1976;
Wu & Carroll, 1986; Little, 1993; Diggle & Kenward994; Roy, 2003; Lin et al., 2004,
and summaries by Little, 2009, Enders, 2011, anthdfuet al., 2011). Yet, it seems
that these techniques are employed only by thosed&kielop the methods and a handful
of other applied methodologists in the social soésn(e.g., Morgan-Lopez & Fals-
Stewart, 2007). Enders (2011) suggested thatoneigptake of non-ignorable missing
data modeling in the social sciences has beenrirdpa to the lack of availability of
user-friendly software programs to implement theselels. Mutkn et al. (2011)
demonstrated how to implement a variety of missiata models that can be estimated in
Mplus software. This demonstration appears irfitsevolumePsychological Methods
for 2011, which contains a series of articles drgattention to the problem of non-
randomly missing data in psychological researchusT it appears that new-found
attention to non-randomly missing data reflectsdineent zeitgeist of psychological
research.

There may be a second reason for the reluctantieequart of applied researchers
to implement models for handling non-randomly nmgsilata: skepticism about the

validity of results obtained by these models. &wgust as there have been numerous



papers promoting methodological developments fadhiag missing data (particularly in
the biostatistics literature), several papers hlmreted out shortcomings of these models
(e.g., Winship & Mare, 1992; Kenward, 1998; Densré&aSchafer, 2003; Molenberghs,
Beunckens, & Sotto, 2008), and for good reasorerd'is no question that every model
for handling non-randomly missing data relies oteatable assumptions.

The SPMM, in particular, makes the following asgtions: 1) that OD-MNAR is
not present, 2) that the missing data indicatazsadequate to summarize the information
necessary to account for nonignorability of thesimg data process, 3) that conditional
independence exists between the missing data todicand the repeated measures
(conditional on the latent classes), and 4) thistmbeaningful to aggregate across
missingness patterns to make inferences for théengapulation.

What is less obvious, perhaps, is that the LCMI @milar commonly
implemented techniques for longitudinal data ang)yaso relies on an untestable
assumption that missing data are MAR. In manyiegpbns, this assumption may be
less tenable than those underlying SPMM or othetetsofor MNAR data. The LCM is
therefore not a justifiable modeling choice when MRmissingness is possibly present.
The problem with non-randomly missing data liegsrown nature, and not in the
models used to handle it. As a number of methajst® have pointed out, the healthiest
way to handle missing data is through sensitivitglgses with full awareness of the
assumptions and limitations inherent in various et®de.g., Little, 1994; Verbeke,
Molenberghs, Thijs, Lesaffre, & Kenward, 2001; Ersd@011).

Beyond knowing the theoretical limitations of MNARbdels, it is important to

understand the practical limitations of the modelder real-world data conditions. This
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is one of the main contributions of the presentusanpt. Chapter 2 expanded Morgan-
Lopez and Fals-Stewart’s (2008) finding that lat@ntture models work well with latent
class dependent missingness to show that SPMMsvaldowell with a random
coefficient dependent missingness that dependatentlcontinua, not just on latent
classes. That is, this is the first research cotedlithat shows that the SPMM can
ameliorate bias due to an MNAR process where theehqarovides an approximation
(rather than literal embodiment) of this proce&s.expected, the approximation is best
with random coefficient dependence missingnessishasufficient with OD-MNAR.
Additionally, the model has some difficulty recowgy variance components when non-
random selection operates on both ends of the maraffect distribution. Encouragingly,
the first study showed that there is no substadtainside to estimating a SPMM even if
data are randomly missing. Finally, Chapter 2 skwbthat it is possible, and even
desirable, to implement a more computationallyitdasrersion of the SPMM by using a
single summary indicator to represent the missatg,dather than usirtdinary missing
data indicators.

Chapter 3 showed that the SPMM works better vatigér longitudinal studies
(i.e., studies that collect more repeated meadtoasparticipants), and the model works
much better with erratically missing data than wita dropout mechanism that was
tested, although this effect declines substantagdlpbservation length increases.
Generalizing from Chapter 3, it is prudent to cadel that the SPMM will perform better
when repeated measures exhibit strong communatity the growth factors than when
the observed indicators have low reliability. Cteay3 showed that the SPMM is

relatively robust to the proportion of missing datantrolling for MNAR severity. Thus,
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Chapter 3 lays out some clear guidelines for rebeas considering whether the SPMM
is an appropriate choice for handling suspectedaancoefficient dependent
missingness in their data. Researchers with paatl designs, and particularly those
whose patrticipants drop out of the study complefedther than returning to the study
erratically) might consider another choice (emdlitional pattern mixture models),
whereas researchers with longer follow-ups, pdertuthose in which participants
provide information throughout much of the spathef study (e.g., an experience
sampling design), will probably obtain quite acdanasults if they rely on the SPMM to
handle missing data.

One shortcoming of simulation studies is that thesess model performance with
data that are generated using relatively simpleaiso@nd with a population model that
is already known prior to data analysis. Chaptéerhonstrated the implementation of a
sensitivity analysis of LCM results with a SPMMarpsychotherapy dataset in which
random slope dependent missingness was suspédtecanalysis suggested that the
guidelines based on simulation results from Chafend 3 are generally easy to
follow, and that the model is straightforward tgolement with real data. Further,
Chapter 4 highlighted the point that random cosadfitdependent missingness is not
detectable by visual inspection, so sensitivitylyses (specifically with a model like the
SPMM) are necessary for evaluating whether randogfficient dependent missingness
IS present.

Limitations and Future Directions
As a matter of practicality, simulation studies atways limited in scope. The

most pressing factors to consider were varied iapBdrs 2 and 3, while other factors
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were held constant or limited in complexity. Theshobvious limitation of the
simulation studies presented here is that the gangrgrowth model was linear in form.
It is possible, and even likely, that the SPMM wperience more difficulty efficiently
accounting for random coefficient dependent migsasg when the number of growth
factors increases. For a related model, the sanainpetric growth model (SPGM, Nagin,
1999), Sterba, Baldasaro, and Bauer (2010) fouaickiie approximation of variance
components declines as the number of latent camntimereases. Unlike the SPMM, the
SPGM does not allow within-class variability. Tatmre, the SPMM might be more
robust to the addition of growth factors than tiRGM.

A second limitation of the simulation studies er@ed here is that, although
factor score determinacy was considered as a fdbwrelative contribution of residual
variance to the repeated measures was fairly [blne residual variances used in the
simulations were based on the real data analyz€thapter 4, however, Chapter 4
utilized repeated measures that were scale scasesllon 45 items, and so they were
probably more reliable than most measures usedyichplogy. Increased residual
variation in the repeated measures would probadbtyehse the approximating power of
the SPMM, impeding its ability to quickly approashbiased parameter estimates.

The sample size used in Chapters 2 and 3 waseanihll side, and it did not
align with the large sample size in Chapter 4.sThisalignment was brought to bear
when the AIC and BIC continued decreasing in magiaitin Chapter 4, beyond the point
when aggregate parameter estimates had stoppedintahis phenomenon was not
observed in Chapters 2 and 3 because the AIC atddBid to prefer fewer classes when

sample sizes are smaller. In practice, this issoélittle importance because, as Chapter
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3 showed, the AIC and BIC often overestimate thalmer of classes that should be used,
even with a small level 2 sample size. A morefchstrategy is advised; one that
involves looking at standard errors and paramdtange in addition to information
criteria across SPMM solutions with different numsbef classes. In part, a small level 2
sample size was used in Chapters 2 and 3 in avgeovide a more stringent test of the
SPMM. The model should only perform better witla@er sample size.

Future research on SPMM performance should emgdhasore complex models,
both with respect to models of growth and with eggfgo missing data mechanisms. In
addition, future work should compare performanc&BMM with other types of models
for random coefficient dependent missingness. ilksiance, it would be valuable to
compare performance of the SPMM with traditionalN\@8Avhen a small number of
repeated measures are present, and to compar ke &ith a parametric selection /
shared parameter model in the presence of drogbwill also be important to consider
potential difficulties that may arise when categakidata are present.

The most interesting future directions will invelthoughtful, real-world
applications of SPMM across a range of contextgpéaflully, the increasing awareness of
MNAR and its implications will cause researcherstmp ignoring non-ignorable missing
data and to make use of the many MNAR modeling@gres that now exist. The
practice of regularly conducting sensitivity anayg$or missing data assumptions should
be encouraged by those who engage in manuscripiveand it should be enforced by

journal editors.
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Appendix: Raw, Relative, and Standardized Bias logl& in Study 1

In the tables below, three measures of bias amtexh The formula for Standardized Bias is shawaquation 2.9. Raw

Bias is measured as follows:

0,

J

M=z

Raw Bias=- -0.

>|L

Relative Bias scales the Raw Bias by the magnitddiee parameter:

Relative Bias= M.

Biasin LCM-Generated Parameter Estimates by Missingness Mechanism

Generating Mechanism/ Parameter Raw Bias Relative Bias (%) Standardized Bias (%)

MAR

Conditional Interceptd, ) .09 1.30 4.89

Conditional Slope ¢, ) 0.00 0.00 0.00
-1.02 -10.30

Residual Intercept Variance/{,) -3.84
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Generating Mechanism/ Parameter Raw Bias Relative Bias (%) Standardized Bias (%)
Residual Slope Variancgy,,) -11 -1.43 -9.82
Covariance ¥,) 11 -1.06 2.28
Intercept Regressiory() -.05 -.50 -1.89
Slope Regressiorny) .01 -.89 2.22
SPM M -Consistent
Conditional Interceptd, ) 1.46 2.12 76.84
Conditional Slope ¢, ) -.45 18.00 -128.57
Residual Intercept Variancey,) -1.25 -.33 -2.87
Residual Slope Variancgy,,) -.90 -6.61 -60.81
Covariance ¥ ,) 1.72 -16.57 27.79
Intercept Regressioryy) -.05 -.50 -1.85
Slope Regressiory) .03 -2.66 -1.85
RC-MNAR-M
Conditional Interceptd, ) 3.1 4.49 1.63
Conditional Slope ¢, ) -1.01 40.40 -404.00
Residual Intercept Variancey,) -8.78 -2.34 -21.22
Residual Slope Variancgy,,) -2.72 -37.88 -335.80
Covariance ¥ ,) 5.48 -52.79 129.86
Intercept Regressioryy) 18 1.80 6.92
-.01 89 -2.70

Slope Regressiorny)
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Generating Mechanism/ Parameter Raw Bias Relative Bias (%) Standardized Bias (%)
RC-MNAR-NM
Conditional Interceptd, ) .58 22.60
Conditional Slope ¢, ) 3.60 -37.50
Residual Intercept Varianceyy,) -10.89 -2.90 -29.54
Residual Slope Variancgy,,) -2.11 -29.39 -270.51
Covariance ¥ ,) 5.18 -49.90 130.15
Intercept Regressioryy) .08 .80 3.28
Slope Regressiorny) .03 2.65 -8.82
OD-MNAR
Conditional Interceptd, ) -.04 -3.99 -152.78
Conditional Slope ¢, ) .02 -2.80 28.00
Residual Intercept Varianceyy,) -33.90 -9.04 -85.80
Residual Slope Variancgy,,) -48 -6.67 -55.17
Covariance ¥ ,) .69 -6.65 14.87
Intercept Regressioryy) -39 -3.90 -15.66
.03 -2.66 8.33

Slope Regressiorny)

Note. MAR = Missing at random; OD-MNAR = Missing ndtrandom due to outcome dependent mechanism; RCHANIA=
Monotonic random coefficient dependent mechanis@NRNAR-NM = Nonmonotonic random coefficient depentimechanism
Values that exceed arbitrary thresholds for ‘acaelet levels of bias (Relative Bias > .10 or < -difi Standardized Bias > 40 or <-

.49) are bolded



Tl

Bias in Binary SPMM-Generated Parameter Estimates by Missingness Mechanism

Best AIC Best BIC
Generating Mechanism/ Raw Relative Bias  Standardized Bias Raw Relative Bias  Standardized Bias

Parameter Bias (%) (%) Bias (%) (%)
MAR
Conditional Intercept .01 .01 .55 0.00 0.00 0.00
()
Conditional Slope ‘@l) 0.00 0.00 0.00 .01 -.40 2.86
Residual Intercept -6.15 -1.64 -16.49 -6.01 -1.60 -15.84
Variance (/)
Residual Slope Variance -.19 -2.65 -17.76 -.18 -2.51 -16.67
7D
Covariance ¢,,) .53 -5.11 10.73 45 -4.34 8.98
Intercept Regression 0.00 0.00 0.00 .02 .20 .75
(70)
Slope Regressiorny) .02 -1.77 4.26 .01 -.89 2.13
SPMM Consistent
Conditional Intercept
(a0) 0.03 .04 1.60 .20 29 10.53
Conditional Slope ¢, ) 0.04 -1.60 11.43 -.02 .80 -5.56
Residual Intercept
Variance (/) -2.49 -.66 -5.88 -2.83 -76 -6.68
Residual Slope Variance
ZM) -0.04 -.29 -2.48 -31 -2.28 -19.02
Covariance ¢,) 0.16 -1.54 2.45 71 -6.84 10.99
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Best AIC Best BIC
Generating Mechanism/ Raw Relative Bias  Standardized Bias Raw Relative Bias  Standardized Bias

Parameter Bias (%) (%) Bias (%) (%)
Intercept Regression
(%) -0.03 -30 -1.14 -.04 -.40 -1.50
Slope Regressiory() 0 0.00 0.00 0.00 0.00 0.00
RC-MNAR-M
Conditional Intercept 33 A48 15.57 24 35 10.91
(ay)
Conditional Slope ¢, ) -.14 5.60 -37.84 -.10 4.00 -25.64
Residual Intercept -3.53 -.94 -6.81 13 .03 2.06
Variance
(Y0)
Residual Slope Variance -.75 -10.45 -40.54 -.49 -6.83 18.49
(70)
Covariance ¢,,) 74 -7.13 8.72 -12 1.16 -1.00
Intercept Regression 22 2.20 8.33 .20 2.00 7.49
(70)
Slope Regressiom/ﬁ) -.01 .89 -2.00 0.00 0.00 0.00
RC-MNAR-NM
Conditional Intercept .05 .07 2.76 .05 .07 2.76
(ay)
Conditional Slope ‘@l) -.01 40 -3.57 -.01 40 -3.57
Residual Intercept -9.08 -2.42 -24.22 -9.35 -2.49 -24.96

Variance /)




€T

Best AIC Best BIC -
Generating Mechanism/ Raw Relative Bias  Standardized Bias Raw Relative Bias  Standardized Bias
Parameter Bias (%) (%) Bias (%) (%)
Residual Slope Variance -1.38 -19.22 -118.97 -1.68 -23.40 -166.34
D)
Covariance ¢,,) 3.31 -31.89 71.03 4.00 -38.54 90.70
Intercept Regression 13 1.30 5.20 .10 1.00 4.08
(70)
Slope Regressiorny) -.03 2.65 -9.09 -.03 2.65 -9.09
OD MNAR
Conditional Intercept -2.45 -3.55 -126.29 -2.59 -3.75 -138.50
(ay)
Conditional Slope ‘@l) .06 -2.40 23.08 .08 -3.20 32.00
Residual Intercept -32.69 -8.72 -79.56 -33.19 -8.85 -84.92
Variance (/)
Residual Slope Variance -.46 -6.41 -51.69 -.47 -6.55 -53.41
(70)
Covariance ¢,,) .92 -8.72 19.41 71 -6.84 15.37
Intercept Regression -34 -3.40 -12.41 -.34 -3.40 -12.88
(70)
.07 -6.20 18.42 .04 -3.54 10.81

Slope Regressiory)

Note. MAR = Missing at random; OD-MNAR = Missing ndtrandom due to outcome dependent mechanism; RCRANIA=
Monotonic random coefficient dependent mechanis@NRNAR-NM = Nonmonotonic random coefficient depentimechanism
Values that exceed arbitrary thresholds for ‘acaiglet levels of bias (Relative Bias > .10 or < -afl Standardized Bias > 40 or <-

.49) are bolded



Biasin Summary SPMM-Generated Parameter Estimates by Missingness Mechanism

vel

Best AIC Best BIC
Generating Mechanism/  Raw Relative Bias  Standardized Bias Raw Relative Bias  Standardized Bias
Parameter Bias (%) (%) Bias (%) (%)

MAR
Conditional Intercept

(ay) -0.06 -0.09 3.26 -0.06 -0.04 -1.64
Conditional Slope ¢, ) -0.01 0.40 -2.94 -0.01 0.40 2.94
Residual Intercept
Variance ) -6.93 -1.85 -18.14 -6.93 -1.90 -18.48
Residual Slope Variance

(7] -0.28 3.90 -25.45 -0.28 -3.90 -25.69
Covariance ¥ ,) 0.67 -6.45 13.54 0.67 4.62 9.90
Intercept Regression

(%) 0.26 2.60 9.70 0.26 3.80 14.13
Slope Regressiony) 0 0.00 0.00 0 0.00 0.00
OD-MNAR
Conditional Intercept
(ay) -0.06 3.12 -118.13 -0.06 3.12 -117.49
Conditional Slope ¢, ) -0.01 -2.40 23.08 -0.01 -2.80 26.92
Residual Intercept
Variance (/) 6.93 -6.55 -60.43 6.93 6.61 -61.34
Residual Slope Variance

(v11) -0.28 -6.41 -52.27 -0.28 -6.27 -51.72

Covariance ¥,,) 0.67 -8.57 18.46 0.67 -8.57 18.62




Best AIC Best BIC

Generating Mechanism/  Raw Relative Bias  Standardized Bias Raw Relative Bias  Standardized Bias
Parameter Bias (%) (%) Bias (%) (%)
Intercept Regression
(%) 0.26 -4.00 -15.33 0.26 -4.00 -15.56
Slope Regressiony) 0 -0.88 2.78 0 -1.77 5.56

T4}

SPMM-Consistent
Conditional Intercept

(ay) -0.06 0.23 8.25 -0.06 0.22 7.73
Conditional Slope ¢, ) -0.01 -2.40 17.65 -0.01 -2.40 17.65
Residual Intercept

Variance ) -6.93 -0.51 -4.66 -6.93 -0.44 -3.97
Residual Slope Variance

(v11) -0.28 0.22 1.85 -0.28 0.22 1.85
Covariance ¢, ) 0.67 2.50 -4.07 0.67 2.02 -3.30
Intercept Regression

(%) 0.26 -2.40 -8.89 0.26 -2.40 -8.89
Slope Regressiony) 0 -3.54 9.30 0 -2.65 7.14
RC-MNAR-M

Conditional Intercept

(ay) -0.06 0.07 2.40 -0.06 0.01 0.48
Conditional Slope ¢, ) -0.01 2.40 -18.18 -0.01 2.40 -18.18

Residual Intercept
Variance ) -6.93 2.57 -20.90 -6.93 -2.60 21.16
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Best AIC Best BIC
Generating Mechanism/  Raw Relative Bias  Standardized Bias Raw Relative Bias  Standardized Bias
Parameter Bias (%) (%) Bias (%) (%)

Residual Slope Variance

(7] -0.28 -8.08 -33.53 -0.28 8.22 -34.50
Covariance ¥ ,) 0.67 -10.12 14.73 0.67 -10.12 14.75
Intercept Regression
(%) 0.26 1.50 5.56 0.26 1.30 4.87
Slope Regressiony) 0 1.77 5.26 0 1.77 5.26
RC-MNAR-NM
Conditional Intercept
() -0.06 0.22 8.29 -0.06 0.23 8.84
Conditional Slope ¢, ) -0.01 0.40 -3.57 -0.01 0.80 7.14
Residual Intercept
Variance ) -6.93 -2.60 -26.52 -6.93 -2.60 26.71
Residual Slope Variance

(v11) -0.28 -18.52 -108.13 -0.28 -19.50 -113.82
Covariance ¥ ,) 0.67 -34.01 75.11 0.67 -34.68 76.43
Intercept Regression
(%) 0.26 2.40 9.64 0.26 2.40 9.64
Slope Regressiony) 0 -0.88 3.03 0 -0.88 3.03

Note. MAR = Missing at random; OD-MNAR = Missing ndtrandom due to outcome dependent mechanism; RCRANIA=
Monotonic random coefficient dependent mechanis@NRNAR-NM = Nonmonotonic random coefficient depentimechanism
Values that exceed arbitrary thresholds for ‘acaiglet levels of bias (Relative Bias > .10 or < -&fl Standardized Bias > 40 or <-

.49) are bolded
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