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ABSTRACT 

Luke Edgar Roode: Sub-tumor distribution of PRINT nanoparticles and its application for nucleic acid 
delivery 

(Under the direction Ian Davis and Joseph DeSimone) 
 

 Nanoparticle accumulation is typically measured at the organ level. However, much basic in vitro 

and in vivo research points to differences in nanoparticle internalization and interaction among cell types. 

This is a particularly significant point when considering solid tumor drug delivery with nanoparticles where 

there is a significant interplay between the pathophysiology and physical forces present within the tumor, 

the nanoparticle itself, and the milieu of cell types present.  

 Unlike other nanoparticle fabrication systems, PRINT affords the exquisite ability to control size 

and shape of a given nanoparticle. Particles fabricated with this method are highly uniform, allowing for 

easy control and dissection of the interplay between nanoparticle properties and resulting effects. 

 Herein we describe an approach to examining the distribution of particles within the tumor. This 

approach accounts for 98.6% of all live cells that were dissociated from the tumor. Analysis of the particle 

association of the sub-populations present reveals that the nanoparticle dose administered shows dose-

independent cancer cell association at high doses using 80x320nm PRINT hydrogel nanoparticles. 

Moreover, this maximal association seen with this approach is roughly 7%. Notably, other immune cells 

like macrophages and neutrophils show significant association with particles. Quantification of the mean 

fluorescence intensity of particle-positive cells reveals that macrophages associate with significantly more 

particles per cell than any other cell type, perhaps suggesting that macrophages may be a significant 

target of nanoparticles within the tumor. Overall, however, the data shows that cancer cells are still the 

main cell type of accumulation due to the fact that in this model, macrophages make up roughly 1% of the 

tumor.  

 In vivo imaging using two photon microscopy supports the flow cytometry data, with host cells 

showing the brightest fluorescence and Td Tomato-expressing cells showing low-level fluorescence. 
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Normal mouse dermis shows little diffusion of particles outside the normal vasculature suggesting that the 

vasculature surrounding the tumor is uniquely permeable to nanoparticles like as in the EPR effect. 

Other nanoparticle factors like size and route of administration were similarly examined. Smaller 

nanoparticle size seemed to play a significant role in increasing cancer cell association as well as 

increasing the accumulation of particles to cancer cells. When administering particles intratumorally, 

cancer cell association was increased along with significant increases in the mean fluorescence intensity.  

 Combined, these results suggest a need for analysis of particle distribution and association at the 

cellular level. 

  



v 

 

 
To the veterans of the armed services of the United States of America, past, present, and future, for 

allowing me the freedom and security to pursue my scientific pursuits 

  



vi 

 

 
ACKNOWLEDGEMENTS 

 I would like to acknowledge some of the people that have helped make this possible.  Firstly, to 

Dr. Jim Bear for being an advocate of just doing good science and allowing me to use his animal model.  

To Dr. Keefe Chan, Ms. Tao Bo, Dr. Stephen Jones, and Ms. Hailey Brighton for helping me with 

constructs, procedures, cells, reagents, injections, and their friendship, without which I would not be in a 

position to conduct my research.  The UNC animal studies core, especially Charlene Santos and Mark 

Ross, without which tail vein injections would not be done and quick access to animals would not be 

possible.  I would be remiss not to thank Dr. Greg Robbins for his instruction on the LSRII and his early 

flow cytometry teaching.  The UNC flow cytometry core also deserves my thanks for ensuring good 

operation of the cytometers.  

 I would also like to thank my advisors for their support, especially Ian for being the first to agree to 

take me as a student; quite a leap of faith on his part.  And I want to thank Dr. Rudy Juliano for being 

supportive in my transition to work for these advisors. 

 The great many colleagues: Ms. Cathy Fromen, Dr. Kevin Chu, Mr. Marc Kai, Dr. Jillian Perry, 

Ms. Tammy Shen, Ms. Ashley Johnson, Mr. Kevin Reuter, Ms. Sarah Mueller, Ms. Katie Moga, Ms. 

Aminah Wali, Mr. Andy McFadden, Dr. Jeremy Simon, Mr. Nick Gomez, Ms. Catherine Fahey, Ms. 

Mariesa Slaughter, Mr. Austin Hepperla, I thank you for making coming to lab each day not so terrible and 

sometimes fun.  

 To my friends: Mr. Trent Waugh, Dr. Neal Rasmussen, and soon-to-be Dr. Kayla Jean Knilans, 

without you to offer your emotional and psychological support (i.e. listening to me bitch and complain), I 

may have never made it through my darkest periods. Especially Kayla to whom my enduring friendship is 

forever guaranteed.  



vii 

 

 I also do not want to forget to thank my wife’s friends: Jess, Andrew, and Eliana Capretto, Hillary 

Kosnac and Bret Silvis, for making me happy by making my wife happy at the sound of their voice or a 

few keystrokes. Hopefully the gang will have lots of fun in Pittsburgh, PA, in the years to come. 

 Lastly, I want to thank my family.  Specifically, my brother Matt and sister-in-law Molly for their 

understanding and quiet support.  And my in-laws, Rick & Sue Culver for accepting me into their family 

with open arms.  I need to thank my parents, though they know not what I do and could not begin to help 

me, they did what they could and would do anything they could. Not least, I want to thank my 4-legged 

children, Maxine & Gilligan, for their unconditional love and acceptance, even though they piss me off 

sometimes. Eternally, I want to thank my wife; I could not have ultimately done it with your smile, support, 

encouragement, stern discipline, and love. You and our future are all my reasons… 

  



viii 

 

 
PREFACE  

 I want to implore the readers of this dissertation that only by examining problems with 

complimentary techniques and with an open mind can one fully comprehend the complex interactions 

between nanomaterials and biological systems. The more clearly understood those aspects are, the 

closer the field becomes to unleashing the power of nanomedicine and avoiding clinical failure. 
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CHAPTER I: INTRODUCTION TO NUCLEIC ACID DRUG DELIVERY AND FLOW CYTOMETRY 

 

1.1 Nucleic acids in and gene therapy 

 1.11 Nucleic acids 

 Cells are a complex mixture of macromolecules and chemicals that must all work in synchronous 

harmony to allow for the cell to survive and thrive. This is not done in isolation, but as part of a 

surrounding environment. Mammalian cells must be capable of creating new copies of themselves during 

mitosis, as well as adapting to external stimuli from this environment. Therefore, an instruction set must 

be contained within the cell’s nucleus to provide the means and guidelines to do so. Nucleic acids are the 

chemical building blocks for the cell’s instruction set. This instruction set is made of 5 types of nucleic 

acids: adenosine, cytosine, guanine, thymine, and uracil, which form a polymeric chain of nucleotides 

linked by phosphodiester bonds. Two forms of nucleic acids exist: DNA and RNA, with the difference 

being that a polynucleotide structure of DNA does not contain uracil, while RNA does not contain thymine. 

DNA is conventionally double-stranded in nature and with the discovery of the structure of DNA in 1953 

by Watson and Crick[1], it was determined to form an alpha helix. This allows adenosine-thymine, or in 

the case of RNA adenosine-uracil, and cytosine-guanine base pairing between the strands due to 

hydrogen bonding between the pairs. DNA plays a critical role in mammalian cells by acting as an 

information storage unit due to its superior stability as compared to RNA. Due to the instability of RNA, 

the cell has evolved to use it as a single-stranded messenger. The “Central Dogma” asserts that DNA is 

transcribed into RNA. This ssRNA then moves from the nucleus of the cell into the cytoplasm. It is here 

where the cell’s ribosomes read or translate every 3 bases, termed a codon, and uses tRNAs to connect 

each amino acid together to form polypeptides, proteins, and other biofunctional molecules. These 

biofunctional molecules perform specific roles as receptors to sense the external environment, signaling 

proteins to transmit those sensations, and enzymes to convert chemicals to one form to another.  
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 1.12 RNAi 

  Discovered in 1998 and being deemed Nobel prize worthy in 2006[2], RNAi is thought to be a 

holdover from early in evolution as a response to foreign nucleic acid entry into mammalian cells. Where 

DNA and RNA work to express genes and create macromolecules, it was found that dsRNA could prompt 

the opposite response by decreasing the expression level of a gene. This was demonstrated to be a 

sequence-specific mechanism, with the specificity coming from nucleotides 3-17 of the 5’ to 3’ guide 

strand. It is suggested that even one nucleotide difference may abolish siRNA activity, though specific 

design parameters are not well understood[3]. The dsRNA is clipped by Dicer into 22nt strands with a 2nt 

overhang at each 3’ end.  This guide strand is unwound from its complementary strand and loaded into 

the RISC complex. Ago2 then cleaves the passenger RNA strand, leaving only the guide strand, and by 

that action activates the RISC complex. This loaded guide strand in an activated RISC complex then finds 

a complimentary mRNA strand to base pair with, which is then cleaved by the RISC complex resulting in 

a decrease in mRNA levels and consequently, protein levels. The RNAi phenomenon works not only for 

foreign RNA, but also is used endogenously by the cell as a way to regulate translation of proteins via 

mRNA levels. When DNA is being transcribed in the nucleus, hairpins in the RNA sequence can be 

formed by shRNAs or miRNAs and recognized by Dicer or Drosha and processed like an siRNA, resulting 

in cleavage of the target mRNA[4,5].  

 An alternative to RNAi gene knockdown is a similar phenomenon seen with antisense 

oligonucleotides, first described in 1977[6]. Typically, this is ssRNA or ssDNA and is of a complimentary 

sequence to the target sequence. Upon reaching the cytoplasm, Watson-Crick base-pairing allows for 

binding between the antisense oligo and the target mRNA. Then, the mRNA is either cleaved by RNAse 

H or the oligo acts as a steric blocker and prevents translation of the mRNA[7-9].  

 1.13 Nucleic Acid therapies 

  With the ability to increase or decrease the levels of genes seemingly by just adding different 

types of nucleic acids to cells, nucleic acids have the promise of solving many of man’s heretofore 

difficult-to-treat diseases. The simplest of these would be the monogenic diseases, where one gene or 

one certain factor is missing. Replacement or inhibition of a single gene or factor corrects the defect and 

cures the disease. Well-characterized examples of this are hemophilia, muscular dystrophy, cystic fibrosis 
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and alpha-1-antitrypsin[10,11]. In each of these diseases a single gene: factor VIII, IX, or XI, dystrophin, 

CFTR, or alpha-1-antitrypsin respectively, are mutated so as to be non-functional.  Clinical trials using 

various nucleic acid delivery approaches have been described in the literature. On the other hand, 

polygenic diseases such as cancer, type I diabetes, multiple sclerosis, asthma, celiac disease, and heart 

disease, are not the result of a single causative agent. Rather, these are a composite of the influence of 

genetics and environment (diet, exposure, etc.) and as such are more difficult to precisely target. 

Nevertheless, much research has been done on these diseases using nucleic acids. 

 1.14 Barriers to nucleic acid therapy in vivo 

 However, some basic biology and properties of nucleic acids limit their application in non-culture 

systems (i.e. animals). Firstly, nucleic acids are by their nature very hydrophilic polymers. They contain a 

sugar residue along with hydrogen-bonding groups and ionizable anionic phosphate groups connecting 

each nucleoside to one another. This makes nucleic acids unable to penetrate the lipid bilayer found on 

mammalian cells. In vitro this can be overcome by complexation with cationic polymers or lipids to form 

poly or lipoplexes, however these complexes are not stable when diluted upon administration. Many 

additional barriers exist for nucleic acid delivery in vivo. Upon systemic administration, nucleic acids 

encounter significant amounts of nucleases in the bloodstream. Thus, the pharmacokinetic half-life of 

injected nucleic acids is extremely short at less than 17 minutes[12]. Since this is an enzymatic 

degradation reaction, chemical modification of the nucleic acid, particularly siRNA, can be taken to inhibit 

the degradation. These include 2’-O-methyl or 2’-fluoro modifications of the sugar base or replacement of 

the phosphodiester with phosphothioate linkers. Phosphorodiamidate, LNA, or UNA modifications can 

also be used to enhance the stability of nucleic acids[13,14].  Beyond the plasma stability issue, the next 

barrier encountered is the endothelial cell lining of blood vessels. Nucleic acids must either transverse 

these cells or pass between them through the tight junctions linking them together. Due to the hydrophilic 

nature of the nucleic acids mentioned previously, transcellular pathways are inefficient and thus the 

nucleic acids must pass paracellularly. Once to the cells of interest, once again the cell membrane 

presents a challenge by not allowing passive diffusion of the nucleic acid. Assuming our nucleic acid is 

fortunate enough to be internalized by the cell by an endocytotic mechanism, the endosome itself now 

presents a challenge. Endosomes are slowly acidified by a proton ATPase going from a pH of 7.4 to 6-
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6.5, and with further acidification to a pH of 4.5-5. At this later stage the vesicle is referred to as a 

lysosome and the low pH environment there destroys most biological components due to the high acid 

content. Therefore, to avoid acidic destruction of our nucleic acid, it must escape the endosome. There 

are a variety of means to achieve endosomal escape, however, alone our nucleic acid does not have the 

means to do so. Once free, the nucleic acid can either be active in the cytosol as in the case of siRNA or 

mRNA or encounter the additional hurdle of nuclear trafficking and import as in the case of DNA. It should 

also be noted that nucleic acids have the ability to stimulate the immune system via activation of TLR 

receptors[15]. This fact can be somewhat controlled by the sequence of the siRNA, but can be of benefit 

or a hindrance depending on the downstream application. Hence, protection and delivery of nucleic acids 

is the key challenge in translating success in culture systems to animal systems.  

 1.15 Viral vectors for gene therapy 

 One way of addressing the delivery challenges is to package nucleic acids into viruses. Viruses 

have evolved to solve many of the delivery challenges presented above. Viruses are a kind of self-

assembled biological nanoparticle, with sizes ranging from 20nm to a few hundred nm[16-18]. Depending 

on the type, viruses protect the nucleic acid cargo with either a protein capsid and/or a lipid bilayer known 

as an envelope. Viruses have evolved to transcytose the endothelial cell lining, reaching cells. Once 

there, there are usually multiple receptors and co-receptors that bind to a given virus, allowing for efficient 

internalization of the virus into the cell. In the endosome, viruses have evolved elegant escape 

mechanisms, ranging from lipases to conformational switches of the capsid proteins to expose cationic 

charges. Whatever the mechanism, efficient endosomal escape of the virus allows for either depositing its 

nucleic acid cargo in the cytoplasm or trafficking to the nucleus. However, three main drawbacks to viral 

vectors exist. First, viral vectors always require nucleic acids trafficking to the nucleus resulting in slower 

kinetics of gene expression or knockdown. Second, viruses are not well suited to mass production. Being 

a biological entity, this requires humans to manipulate cells into creating, assembling, and packaging the 

virus. While these requirements are not insurmountable, culturing cells and purifying the virus from them 

can be very time consuming and labor-intensive processes not amenable to high throughput scale-up. 

Third and most importantly, naturally present immunity to the viruses and/or the ability to elicit high 

inflammatory responses and immune cell activation after administration requires that careful monitoring 
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be performed for signs of toxicity after administration of viral vectors[19]. These drawbacks 

notwithstanding, viral vectors have entered phase I and phase II trials for both therapeutic and vaccine 

applications[20,21]. These trials demonstrate that viral vectors can be tolerated, however, as these 

reports note, significant immune response to the virus is observed[22].  

 1.16 Non-viral methods for gene therapy  

 Non-viral delivery systems possess the advantages of low immunogenicity, low cost and exquisite 

control over the composition. These come in a variety of forms and materials. These forms can be a 

mode of administration like the gene gun or hydrodynamic delivery or a physical carrier/protective coating 

such as inorganic metals, lipoplexes, polyplexes, cell penetrating peptides, or polymeric nanoparticles.  

 Hydrodynamic delivery of nucleic acids is a non-viral concept first reported in 1999[23]. This 

concept involves injecting a large volume of fluid in a short time span. This sudden rise in blood fluid 

volume in a sense stretches the endothelial cell barrier, creating large fenestrations. This allows naked 

nucleic acids or carriers in this solution to circumvent the blood and endothelial barriers. When 

systemically performed, most nucleic acid concentrates in the hepatocytes of the liver. However, this 

method is optimal at 1mL of solution per gram of animal weight; an easy enough volume to work with in a 

mouse, but not practical for a human. This is especially true since it has many dangerous side effects like 

high blood pressure, low heart rate, and possibly death. One could possibly use this technique in isolated 

limbs. The gene gun is another form of physical delivery that has been used successfully for plasmid DNA 

vaccine applications. The gene gun was originally shown to work by coating metallic particles with 

plasmid DNA and then propelling them into an object, specifically the skin of an animal. The large force 

from the shot helps the metal-DNA particles penetrate the outer layers of skin to reach the dermis. 

Electroporation is another physical method of gene delivery that uses a voltage potential to force the lipid 

molecules in the cell membrane to shift position slightly, creating nm-sized pores for large 

macromolecules like nucleic acids to enter the cell. However, this can lead to a large amount of cell death 

and damage. Ultrasound and applied magnetic fields represent gentler methods to generate reversible 

pores in cell membranes for gene delivery[24].  

 Beyond specific methods, nucleic acid carriers come in a few different forms defined by the 

mechanism by which they interact with the nucleic acid. Due to the many negative charges present on the 
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phosphodiester backbone of nucleic acids, complexes with cationic molecules are easily formed. This 

kind of complex based on electrostatic interactions is termed a polyplex or lipoplex, depending on 

whether the nucleic acid binding partner is a polymer or a lipid. The N:P ratio, that is the molar amount of 

cationic nitrogen groups to phosphate groups present on the nucleic acid, helps determine how tightly the 

poly/lipoplex binds the nucleic acid. Common lipids for this include DOTAP, PEI, and DOPC. The cationic 

nature of the lipids is both a blessing and curse. A blessing in the sense that this allows for tight binding of 

the lipid to the nucleic acid, affording protection and perhaps some compaction of the nucleic acid. A 

curse in the sense that enhanced binding to the nucleic acid also hinders release of the nucleic acid, 

resulting in a lack of available nucleic acid to elicit an effect. Moreover, the cationic groups can interact 

with the cell membrane, causing toxicity. PEI is notable for its toxicity, whereas DOTAP and DOPC are 

much less toxic[25-30]. Common polymers for the formation of polyplexes include chitosan[31], 

cyclodextrins[32,33], or dendrimers[34,35]. Chitosan and cyclodextrin are naturally-occurring 

polysaccharides that are cationic, whereas a dendrimer is a highly branched, symmetrical, synthetic 

polymer. These polymers are all show relatively low toxicity, however they are variable in their ability to 

create a successful delivery vehicle. Chitosan has been shown to have poor endosomal escape of the 

nucleic acid, but a cyclodextrin-based polyplex haven been advanced to clinical trials where it showed the 

first RNAi effects from systemic administration in humans[36]. An alternative to polymers and lipids are 

cell penetrating peptides. These are typically 10-30 amino acids in length with a stretch of cationic amino 

acids like lysine and arginine. The first reported discovery was the HIV-1 TAT peptide that demonstrated 

cell penetration and activation of the HIV-1 promoter. CPPs can either be attached to a nucleic acid 

chemically or form a complex directly. Both chemical attachment and electrostatic complexation have 

been shown to be effective in cell culture systems[37-42]. In addition to electrostatic interactions, various 

polymers have been used to entrap siRNA within them. For example, PLGA can effectively entrap siRNA 

and be used for successful pre-clinical gene therapy[43-46]. Inorganic elements can also be used to 

directly conjugate nucleic acids to a delivery vehicle. Collodial gold has been used by Mirkin and other to 

demonstrate successful nucleic acid delivery[47]. Other heavy-metal elements such as those contained in 

quantum dots have demonstrated successful delivery in culture systems although concerns remain about 

their toxicity, similar to the literature surrounding of carbon nanotubes. LCP particles use calcium to form 
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complexes with nucleic acids, which can then be coated with lipids. This recent development in particle 

composition has shown promising pre-clinical results for the delivery of nucleic acids[48,49]. In whatever 

form nucleic acids are interacting with a material, these mixtures generally form what is known as 

nanoparticles.  

1.2 Nanoparticles 

 1.21 Basic information and fabrication methods 

 Nanoparticles can range in size from 1-10,000nm, with at least one dimension <100nm. This puts 

these objects in a size range similar to bacteria and viruses. These particles are invisible to the naked 

eye, but can be viewed with the aid of light or electron microscopes. Nanoparticle carriers can be made 

by various methods, but generally fall into two categories of fabrication: bottom-up and top-down. Bottom-

up approaches for nanoparticle fabrication typically rely on emulsions or inverse microemulsions to direct 

self-assembly of spherical particles, requiring energy to create particles in the 10-100nm range[50]. 

These types of approaches can be used with many different materials, but also produce significant 

variation in particle size. In contrast, top-down fabrication approaches use patterns and templates to 

confer the advantage of uniform size[51]. These fabrication techniques rely on photolithography or imprint 

lithography, common techniques in the microelectronics industry. Photolithography involves using lasers 

to etch a design or cavity into a given surface. The drawback to photolithography is that fabrication of 

nano-scale templates requires shorter and shorter wavelengths of light (e.g. 157nm F2 lasers) and thus 

become technically complex and expensive to operate at small particle dimensions. On the other hand, 

imprint lithography uses a mold containing cavities and a curable liquid to create objects on small size 

ranges. This approach should be more cost-effective as compared to photolithography, however, the 

small features created by this process are generally interconnected by “scum” layers. In the 

microelectronics industry, these scum layers would be dissolved with harsh chemicals or processes. 

Sensitive biological samples, however, would not survive such harsh treatment therefore making this 

approach impractical for creating nanoparticle carriers for biological cargo. 

 1.22 Particle Replication in Non-wetting Templates (PRINT) 

 PRINT is a nanofabrication technique similar to imprint lithography, using a patterned mold and 

curable liquids[52]. However, it has a decided advantage against other forms of imprint lithography. In the 
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PRINT process, the mold is made of PFPE. Due to the high fluorine content, these molds have roughly 

half as much surface energy as other common materials molds are made of such as PDMS (12 dynes 

cm-1 vs 20 dynes cm-1)[53].  Due to this property, this makes molds made of PFPE non-wetting and non-

swelling. This means that the curable materials will not stick to the non-cavity portions of the mold, 

thereby avoiding the “scum” problem inherent to conventional imprint lithography. The cavities can be 

filled through capillary action or melt filling, depending on the material used for fabricating the particles. 

Once filled, the mold can be laminated to a sacrificial harvesting layer. The harvesting layer is then 

dissolved, leaving free particles in solution. This approach allows for monodisperse nanoparticles, made 

in a scalable fashion, giving PRINT a decisive advantage over other forms of nanoparticle manufacture. 

Moreover, this process is amenable to sensitive biological cargoes such as protein and nucleic 

acids[52,54].  

 1.23 PRINT systems for siRNA delivery 

 The first reported use of nucleic acids in PRINT was using siRNA duplexes and the material 

PLGA[55]. PLGA is a co-polymer composed of lactide and glycolide. Both lactide and glycolide are 

considered GRAS by the FDA due to their use as excipients in numerous pharmaceutical products and 

the fact that they are components of the TCA cycle and would thus be broken down naturally by the body. 

The FDA accepted nature of a degradable particle is attractive when designing a particle delivery system 

for future translational use. When using a luciferase-expressing HeLa cell line, it was found that cationic 

lipid-coated 80x320nm PLGA particles had comparable IC50 knockdown values as lipofectamine, with 

minimal toxicity of the particles seen. Moreover, the loading of the particles was influenced by the 

molecular weight and lactide: glycolide ratio of the PLGA, with shorter, higher lactide-containing PLGA 

resulting in higher loading of siRNA.  

 A separate particle matrix was also tested for its ability to carry siRNA. This matrix was a 

hydrogel particle composed of hydroxy-PEG acrylate, PEG diacrylate to crosslink the acrylate monomers, 

and amino-ethylmethacrylate to provide a functional handle for amine surface chemistry. The acrylate 

groups are then photopolymerized to create a covalently crosslinked particle. Due to the covalent bonds 

present these particles show very slow degradation. This resistance to degradation gives the advantage 

of preventing premature release of the siRNA. At first, siRNA was simply complexed to the 200x200nm 



9 

 

particles via electrostatic interactions. However, in salt solutions and other biological fluids, significant 

siRNA release was observed. This release problem led to the creation of a conjugated siRNA approach 

where siRNA was conjugated to an acrylate group through a disulfide bond[56]. The thinking here was 

that the disulfide bond would be stable in biological fluids until entering the endosome. Upon entry into the 

endosome, the reducing environment in the endosome would cause release of the siRNA. Good in vitro 

knockdown in luciferase-expressing HeLa cells was observed with a maximum EC50 of 15.1nM. However, 

these particles were fabricated with 50wt% of AEM and showed significant toxicity. The amount of AEM 

contained in these particles could be reduced to 30wt% AEM without loss of knockdown efficiency. Lower 

amounts of AEM could be used, such as 20wt%, but the EC50 increased to 69.4nM. 

 In vivo results have not been published to date for either the PLGA or Hydrogel matrix, but are an 

area of active investigation.  

1.3 Nanomedicine in oncology 

 1.31 The EPR effect and circulation time 

Nanoparticle applications in oncology typically focus on systemic injection of particles for the treatment of 

solid tumors. The prevailing wisdom is that once tumors reach a critical size, the blood vessels originally 

supplying the tumor can no longer support all the cells present. Once some of the cells start to die, 

angiogenic factors such as VEGF are secreted[57]. This stimulates the formation of new blood vessels. 

However, proper blood vessel formation requires the correct balance of growth factors. Due to the 

imbalance of factors, the newly forming blood vessels seem to have large fenestrations present[58,59]. 

The size of these fenestrations is dependent upon the tumor type, location, and microenvironment, 

estimated to be between 200-2000nm[60,61]. And while there is residual lymphatic draining and a little 

neolymphangiogenesis, it is thought that the bulk of the tumor has an overall lack of lymphatic 

drainage[62]. This creates a situation where macromolecular species such as proteins, antibodies, and 

nanoparticles penetrate the endothelial barrier through the fenestrations, but are then trapped there by a 

lack of convective forces to carry it back to the bloodstream. This effect is dependent upon the size of the 

macromolecule as objects 4-5nm in hydrodynamic radius can diffuse easily back to circulation[63]. Thus, 

an object between 5nm and the size of the endothelial fenestrations can be effectively trapped between 

blood vessels and cancer cells. This so-called EPR effect, discovered by Matsumura & Maeda in the 
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1986, is the main justification for the application of nanomedicines for cancer drug delivery[64]. In their 

experiments, 51Cr was used to radiolabel 6 different proteins ranging in molecular weight from 12,000-

150,000. Due to the radiolabeling, the authors were able to track the blood pharmacokinetics and tissue 

accumulation of the proteins over time in outbred ddY mice bearing sarcoma 180 tumors on their backs. 

Albumin and IgG had very long half-lives of about 35 hours and also had the greatest amount of 

accumulation in tumors at around 7.5% of the injected dose. From the other proteins injected, a rough 

correlation between circulation time and accumulation was found. Hence, the EPR effect postulates that 

the longer a macromolecule can circulate, the greater accumulation within a tumor it will have. This 

reasoning has led to a focus on two things: increasing the circulation time of particles following systemic 

administration and thusly increasing the accumulation of nanoparticles in tumors.  

 It should be noted that while the EPR effect has seemingly been demonstrated in animal models, 

there is inconclusive evidence that the EPR effect exists in humans. During the evaluation of liposomal 

doxorubicin (Doxil), doxorubicin concentrations were measured in tumor biopsies directly or the tumors 

were imaged using radionuclide labeled liposomes. The general results were that in 3-7 days a 4-16-fold 

higher concentrations of doxorubicin or particle were seen in the tumor as compared to the blood[65,66]. 

This was postulated as evidence of the EPR effect, however, the half-life of doxorubicin and doxil are 

strikingly different at 10.5 vs 45.9 hours. This confounds the experiment and results in an unclear 

conclusion. Review of the available literature suggests that only sarcomas show a tumor: surrounding 

tissue/blood signal greater than 1, indicating preferential accumulation. Brain metastases, bone 

metastases, glioblastomas, breast, lung, and ovarian cancers show a ratio less than 1[65-70]. However, 

these are quantitated by a mixture of methodologies, all of them less optimal than the approaches that 

have been performed in pre-clinical studies (i.e. organ harvest and direct quantitation). There is also a 

lack of efficacy data to evaluate the relationship between accumulation and efficacy. Moreover, the 

majority of current clinical data is with liposomes, specifically Doxil. It is therefore unknown what effects 

particle properties like size, shape, or drug release kinetics may have on accumulation or therapeutic 

effect. It must also be noted that patients able to be enrolled in phase I clinical oncology studies are most 

likely refractory to standard of care therapy, usually various chemotherapies. These patients may 

represent a sub-set of difficult to treat patients or the environment of the tumor may have changed 
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substantially following treatment. It is therefore difficult to determine whether the animal models are of 

predictive value except by efficacious outcome and there is seemingly little predictive value of the clinical 

utility and outcome in humans when using the typical xenograft mouse model[71-73].  

 Circulation time of nanoparticles was thought to be a function of non-specific protein adsorption 

on the surface of the particle, leading to internalization by resident macrophages in the liver and spleen. 

However, recent work by Jones, et. al. used intravital microscopy to examine the circulation time of 

various PRINT Hydrogel particles[74]. In the course of this work, it was discovered that monocytes and 

neutrophils in the bloodstream are primarily responsible for circulating particle clearance. Moreover, the 

background strain of mice used also significantly influenced the resulting circulation time of the particles. 

It was found that more Th1-prone strains such as C57BL/6 and B10D2 had longer particle circulation time 

as compared to more Th2-prone strains such as BALB/c and DBA2. This was hypothesized to be due to 

differences in macrophage polarization, with Th1 biased towards M1 macropahges and Th2 biased 

towards M2 macropahges. M1 macrophages are thought to be more inflammatory and active in the 

destruction of pathogens, whereas M2 macrophages are thought to be more anti-inflammatory[75]. 

Paradoxically, M2 macrophages are also thought to have greater rates of endocytosis due to enhanced 

expression of scavenger and lectin receptors[76]. Previous work had implicated various receptors such as 

the scavenger receptor, Fc receptors, and complement, based on in vitro studies using cultured cell 

lines[77-79].   

 Particle internalization by cells of the MPS system can be discouraged by having the surface of 

the particle be hydrophyllic. This is most commonly accomplished by making “stealth” particles by the 

attachment of a PEG polymer on the surface of the particle (PEGylation). Quantification of the amount of 

PEGylation on particles needed to significantly extend circulation time has been shown to be 0.1 

PEG/nm2[80]. This quantification ensures that Rf/D > 1, where Rf is the Flory radius, and D is the distance 

between the PEG polymers attached at the particle surface. The Flory radius is calculated as Rf = 3/5*αn 

where α is the length of the monomer unit in angstroms (equal to 3.5 Å for PEG) and n is the number of 

repeat units of the monomer (equal to 50 for PEG of 2k MW). When Rf/D >1 it is thought that PEG is in a 

“brush” confirmation where each polymer chain is extended from the surface of the nanoparticle. This 

provides the benefit of inhibiting MPS cell internalization, thereby extending circulation time[81]. Maximal 
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benefits of a reduction in MPS cell internalization and extension of circulation time is seen at Rf/D >2, a 

state termed a “dense brush” of PEGylation[82]. When Rf/D <1, PEG is thought to adopt a “mushroom” 

conformation where the PEG is not extended, but collapsed to the surface of the particle. When this 

occurs, no benefit in preventing MPS internalization and circulation time extension time is seen[81]. A 

recent study by Yang et. al. demonstrated with in vitro assays for MPS cell uptake and circulation time 

screening by intravital microscopy that polystyrene particles required an Rf/D >2.8, or 1 PEG/nm2, to show 

any reduction in cell internalization and extension of circulation time[83]. Whether this discrepancy in the 

requirement for PEG density can be attributed to the particle size, particle matrix, or attachment 

chemistries is unclear.  

 1.32 The biodistribution of nanoparticles  

Upon systemic injection of nanoparticles, there are four possible routes for elimination. The first is 

filtration by the kidneys. This only applies for nanoparticles <20nm in size and does not seem to be 

affected by the type of material the particle is made of[84,85]. The second route of elimination is filtration 

by the lungs. Converse to the kidneys, the lungs will only entrap larger, micron-sized particles as the 

small blood vessels used to collect oxygen from the air are not large enough to allow free flow of larger 

particles. Unlike the kidney, aggregation of particles here leads directly to catastrophic event: 

asphyxiation of an animal. Thus, aggregation of particles and high accumulation in lung is a serious issue. 

The bloodstream represents a third possible route of elimination. Nanoparticle internalization by 

monocytes, neutrophils, dendritic cells, and other leukocytes present within the blood stream[74,86-88] 

represents a major factor in circulation time of the particles. Other cells present in the bloodstream, such 

as red blood cells and platelets may also play a role in interacting with the particles, but only serve as 

effectors to cause toxicity or uptake by the previously mentioned cell types. The fourth possible route of 

elimination is by resident phagocytic cells present within tissue. In practice, this refers to the specialized 

macrophage cells present in the liver, the Kupffer cells, and the high concentration of B cells present 

within the spleen[89,90].  

 Generally, the major organs of particle accumulation are the spleen and liver, usually with 20-

40% of the injected dose present in each organ[91-93]. This is thought to be due to particle internalization 

by the Kupffer cells of the liver and a combined cell/mechanical clearance by the spleen. This balance 
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somewhat shifts to favor splenic accumulation, depending on the circulation time of the particle with 

longer-circulating particles showing greater spleen accumulation[94]. All other organs generally contain 

only a small fraction (<5%) of the injected dose. Tumor accumulation of particles has ranged from 1-15%, 

depending on the particle size, material, deformability, stability, surface charge, degree of PEGylation, 

dose administered, and the animal model used.  

 1.33 Methods for measuring accumulation of particles in organs  

 Methods for calculating the percent injected dose can vary in the details, but fall into 3 main 

detection methods: radionuclides, metals & inductively coupled plasma mass spectrometry, and 

fluorescence. This is compounded by one of two main data collection methods: either whole body 

imaging or by individual organ collection.  

 Radionuclides come in a large variety of properties. The half-life of the radioactivity may be short 

like the 2 hours of 18F or longer such as 13 hours using 64Cu, 2.8 days using 111In, or 4.2 days like 124I. 

Some are best used for PET imaging such as 18F and 64Cu, whereas others offer economical benefits for 

the budget-conscious researcher like 111In.Various forms of radioactivity exist like alpha, beta, and 

gamma emissions and the specific radioactive particle measured is specific to the decay of each 

radionuclide. In any case, the main benefit of using of radionuclides is the extremely sensitive detection 

and quantitation limits possible when using radioactivity[95,96]. However, the obvious limitation of 

radionuclides is the extreme caution and hazard when using a silent killer such as radioactivity.  

 Inductively coupled plasma mass spectrometry creates droplets of a liquid solution and 

introduces it to argon plasma, heating with a plasma torch. By mixing the plasma with liquid droplets, this 

creates a gas that is consequently ionized. These ions can then be focused and analyzed on a mass 

spectrometer. In this way, elemental analysis on a sample can be performed. By using a standard curve it 

is possible to quantitate the actual amount present in a given sample. With a sensitivity in parts per trillion 

and a working range of 9 orders of magnitude, this technique can be easily and highly quantitative[97]. It 

is also much safer than using radionuclides. However, unlike radionuclides, it is only highly quantitative 

when using something with low background in biological samples such as rare metals. Often, this 

technique is used to quantitate the amount of Cu, Fe, Pt, or other rare metals[98]. Applying this technique 

in the context of nanoparticle distribution usually requires that the particle be loaded with a specific metal 
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or created entirely out of it[99]. Moreover, this is only useful in the context of harvesting individual organs 

and cannot be used for imaging.  

 Fluoresence on the other hand is a safe method that allows for detection of nanoparticles either 

with whole-animal imaging or individual organs. This comes from a chemical, a “fluorochrome”, that 

absorbs a particular wavelength or range of wavelengths of light. This wavelength excites an electron 

found in that fluorochrome to a higher energy state. Once the electron falls back to its ground state, the 

energy given off is in the form of photons. Depending on how large of a difference there is between the 

excited and ground state, this will determine the energy and thus, the wavelength of the photons given 

off. Fluorochromes exist across the entire UV, visible and near-IR electromagnetic spectrum. Near-IR 

dyes are exquisitely useful for whole-animal imaging because of the natural autofluorescence of biological 

tissue in the green and yellow/orange spectrums of visible light. This occurs because of various flavin and 

porphyrin chemicals found within the cells. In addition, elastin, collagen, and lipofuscin also add to 

autofluorescence found in tissues[100,101]. Each tissue will have its own particular amount of 

autofluorescence due to the slight variances in the amount of autofluorescent chemicals and proteins 

present[102]. This method is sensitive, though not nearly as sensitive as radionuclides or ICP-MS. 

However, this method is also amenable to sectioning and visualization of the tissue itself to examine 

microscopic architecture[103,104], giving it an advantage over the other two main forms of detection. 

1.4 Flow cytometry 

 Flow cytometry is essentially a way of analyzing a sample at the level of an individual cell. It 

requires the blending of fluidics, light/optics, photodetectors and filters, and computers to correlate and 

process the light-based signals into visually pleasing formats. In essence, single cells flow past a light 

source such as a laser, the cells are thus stimulated to scatter and emit light (fluorescence) which is 

captured by photodetectors/multipliers at various wavelengths determined by the optical filters. The 

beauty of this is that each cell may have a specific fluorescence pattern. With computers it is possible to 

record and organize each individual cell’s fluorescent pattern, allowing for complex analyses of cells to 

take place using fluorescent marking methods such as fluorescently-conjugated antibodies.  

 It is acknowledged that the first prototype was described in 1934 by Andrew Moldavan[105]. More 

or less, it was a microscope with a capillary tube across the light source such that cells were illuminated 
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as they passed through the light source. A photodector attached to where the eye piece of a microscope 

would normally be then captured the light. Some follow up work by Coulter, Kamentsky and Melamed, 

and others[106-109], provided a basis for which the modern cytometer design was implemented from the 

work of Fulwyler, Dittrich and Göhde, Van Dilla, and Herzenberg[110-112].  

 Due to the requirement for single cell suspensions, at first only blood cells were analyzed with this 

technique as there was no need for manipulation of the cells[113]. This has expanded from blood to 

tissue with the aid of enzymes and physical methods to dissociate the cells from the interconnected, 

complex mixture of cells that make up tissue, and other types of cells such as bacteria[114], sperm[115], 

and plankton[116]. In a sense, anything can be run on a flow cytometer so long as it meets the basic 

technical requirements that it can be run in a narrow stream of fluid and is between 1-30µm in size. 

However, those boundaries are being pushed as cytometers have been demonstrated to be capable of 

analyzing latex beads[117], cell nuclei[118], chromosomes[119], DNA fragments[120], viruses[121], and 

micron-sized nanoparticles[122]. These can be scanned at a rapid rate by the cytometer, approaching 

100-5,000 events per second. The limiting factor in analysis speed is ensuring that single cells are flowed 

past the light source. This is accomplished by either confining cells to a narrow, optically clear chamber or 

through the beam of a nozzle with a small hole. Due to the confined nature of this passage it is critical 

that large aggregates or chunks not be present in solution. Many a cytometer and experiment have been 

broken by something as simple as a clogged cytometer. Also, to prevent once individual cells from 

clogging, cytometers have evolved to injecting the cell suspension into the center of wide, quickly flowing 

stream (the sheath fluid). In a sense, hydrodynamic properties ensure this design creates the laminar flow 

seen by blood vessels where most objects are confined to the middle of the stream (hydrodynamic 

focusing). Due to these same hydrodynamic properties, the flow rate will directly impact how wide a 

stream the cells are confined to.  

 Cells naturally both scatter and emit light. In modern cytometers, lasers are used to stimulate 

cells due to the narrow, intense beams of light that lasers emit. Currently, these lasers are usually gas 

lasers such as argon ion, helium-neon, krypton ion or solid-state lasers such as a diode. Each laser has a 

specific wavelength of light that is emitted by the laser. This allows for specific stimulation of various 

chemicals or residues of certain proteins known as fluorochromes. Ideally a fluorochrome is only 
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stimulated at maximum intensity at precisely one wavelength. In reality, a fluorochrome is stimulated at 

different intensities over a range of wavelengths. This stimulation is represented by electrons from a 

molecule excited to a higher orbital. When the electrons fall back to a ground state, longer wavelength 

light is emitted. (e.g. stimulation with 488nm light may allow for emission of >500nm light) Similar to 

absorption, emission also occurs at different intensities over a range of wavelengths. 

 In modern cytometers, cells are passed through a 488nm laser and 488nm light is scattered in 

both a “forward” and “side” direction. “Forward” meaning along the path of the laser and “side” meaning 

orthogonal to the laser (along the path the cell is traveling). Collection of the “forward scatter” (FSC) light 

is colloquially taken as a reference to the volume or size of a cell passing through. In reality, it is a little 

more complex as it is a measure of the 3-dimensional angles at which light has been refracted by an 

object. Objects (cells) with a larger cross sectional area will give larger FSC values. However, a similarly 

large object with a refractory index similar to the medium the objects are in (e.g. dead cells) will give a 

seemingly smaller FSC. “Side scatter” (SSC) light will be refracted by irregularities or texture on the 

surface or in the cytoplasm of the cell, colloquially referred to as cell “granularity”. In this way, cell types 

and live/dead status can be differentiated with these measurements. For example, granulocytes with 

irregular nuclei will have higher SSC than lymphocytes and their spherical nuclei. The velocity of the cells 

through a cytometer can approach 5-50 m/s, meaning that cells will only spend roughly 0.2-4 µs in the 

laser beam. Since fluorochromes absorb and emit light on the nanoseconds time scale, basic division 

suggests that absorb and emit 100-1000 times while in the laser.   

 Fluorochromes, as discussed previously, require specific excitation laser and emit as specific 

wavelengths. Cells have natural fluorescence, termed “autofluorescence”. This can come from pyridine or 

flavin-type molecules present in mammalian cells or chlorophyll present in plant cells. Moreover, this can 

be worsened with the use of various cell fixatives such a formaldehyde, which crosslink proteins through 

amine groups particularly lysine residues. Beyond autofluorescence, most applications of cytometry seek 

to quantify or detect various markers, usually proteins. These markers can be on the surface or 

intracellular. Typically, an antibody, either directly conjugated to a fluorophore or not, is added to the cell 

suspension and incubated for some time, usually 30-60 minutes on ice. After that time, the cells are 

washed and if a directly conjugated antibody is not used, a secondary antibody that is directly conjugated 
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is used to detect the first antibody. For intracellular antigens, gentle detergents such as saponin are used 

to allow for antibody penetration into the cell without destroying the membrane.  

 However the fluorochromes are detected on or in a cell, the emission of these fluorochromes are 

detected in a similar manner as the SSC. While passing through a given laser, orthogonal emission of 

fluorochromes, like the scatter from SSC, are directed towards various dichroic mirrors. These mirrors 

reflect a given range of wavelengths of light and let all others pass through them. In this manner, a series 

of dichroic mirrors can serve to partition the emitted light. From there, filters specifically aligned with the 

light coming from the dichroic mirrors narrow the specific wavelengths of light further. After this process, 

the filtered light is detected by photomultiplier tubes (PMT). This example system contains only 1 laser, 

but more than 1 laser is ideal due to the plethora of fluorochromes that are available today and the 

various excitation wavelengths needed. For multiple lasers, the cells will pass by each laser individually, 

with the time between each laser on the µs time scale.  

 Practically speaking, a massless, chargeless photon of light strikes the photomultiplier tube. The 

photoelectric effect is then harnessed so that the photon creates a current by transferring its energy to the 

electrons in the PMT. The electrons move to a cathode thereby creating a current. This current is then 

converted into a voltage. This voltage can be amplified either linearly or logarithmically. Other 

conversions may be done to these values (e.g. compensation). This signal is then converted into a digital 

signal and reported on 1,024 channel (10-bit) scale. Signals are typically “binned” to fit into one of the 

channels. Logarithmic amplification can thus detect a larger range of fluorescent signal as the log 

amplified voltage is binned onto the 10-bit scale, allowing for greater discrimination between relative 

fluorescent intensities. Newer flow cytometers automatically convert the voltage into a digital signal and 

then amplify and process the signal. The immediate digitization of the voltage values increases the speed 

of the signal processing and removes the need for logarithmic amplification, avoiding the non-linearity of 

logarithmic amplification.  

 The signal detected from an individual cell will have a beginning (as it first passes into the laser) 

and an end (as it finishes passing through the laser), and an intensity over time. This can be integrated 

into a simple area measurement or simplified as a “height” (the highest amount of intensity recorded). 
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Some cytometers also have the ability to record the signal detected 10 million times a second, with those 

readings averaged to give the area or “height” measurements. 

 The signal detected from a cell will also vary with the abundance of fluorochrome there. The 

abundance of fluorochrome present, aka the fluorescence intensity or “brightness” will be a function of 

both the amount of thing being detected and the inherent “brightness” of the fluorochrome, as in the 

inherent intensity of light emitted from a fluorochrome. Some antigens are more highly expressed than 

others (e.g. CD45 vs. CD31 on leukocytes), which can vary for a given cell type, and certain 

fluorochromes are very bright (e.g. Phycoerytherin and Allophycocanin) and some are very dim (e.g. 

Pacific Blue).  

 These factors don’t play much of a role when analyzing single color fluorescence by flow 

cytometry. However, when multiple colors are used, this may become an important issue. This is because 

of two things: 1) In a sense, photomultipliers are “dumb” in that it detects whatever photons come near it. 

If you’re using more than one fluorochrome (fluorochrome A and B), 2) reality dictates that fluorochromes 

emit across a range of wavelengths as discussed previously. This wouldn’t be a problem except that if a 

cytometer has the appropriate filters linked to PMTs the emission from both fluorochrome A and B will be 

detected by the same PMT. This means that fluorescence will be detected and unable to be attributed to 

an individual color. Not to fear, math to the rescue! One can “compensate” for this by measuring the 

emission from each fluorochrome individually and detecting the ratio of the detected light in that PMT 

attributable to each color. Then the fluorochrome emission that is undesirably detected by a given PMT 

can be “subtracted” to give a truer level of the fluorescence emission. This is obviously more 

mathematically complex than conceptually described herein, involving linear algebra and other higher 

mathematical operations, but is essentially what the software on the computer is doing “behind the 

curtain” without the user being obvious to its doings. The drawback to using this mathematical 

normalization is that usually “spreading” is observed for cells that are compensated and have significant 

spillover/interaction from the fluorochrome[123,124]. Fluorescence measurements and detection on 

cytometers generally have a probabilistic nature to them. Due to this, the observed spillover will also have 

a stochastic nature to it. In a sense, some cells will show spillover and some won’t. Hence, when the 

mathematical “subtraction” is applied, the ones without spillover look negative, making the population as a 
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whole seem to be more variable than it really is. This is referred to as “spreading”. The best course of 

action is to use combinations of fluorophores that do not have “spillover” and other compensation issues. 

In certain cases this is unavoidable, but best practice dictates that this be minimized. 

 Most modern flow cytometry data can be easily manipulated with software used to perform all 

calculations. This allows for visual display of the data and quantification of the relative fluorescence. Data 

can be represented as single fluorescence histograms or fluorescence vs fluorescence plots for more in-

depth analysis.  

 Another feature of flow cytometry software is the “gating” that can be done with the software. This 

is a term used for selecting a group of cells and sub-analyzing only that population (e.g. fluorescence of 

other colors, FSC, SSC, etc.). Gating can be a useful tool for cleanly analyzing sub-populations of cells 

present in a mixture of cell types (e.g. different cell types within a tumor).  

 Flow cytometry is a powerful technique to analyze single cells. With any technique there are 

benefits and drawbacks. Correct application of flow cytometry can assist in analyzing therapeutics at a 

molecular level in complex cell mixtures (i.e. in vivo).  

1.5 Two photon microscopy 

 In fluorescence microscopy, one photon of light is absorbed by a fluorophore causing excitation of 

the electrons. This excited state is unstable, lasting only 10-8-10-9 seconds, and when the electrons return 

to their natural lower energy state, one photon of lower energy (longer wavelength) fluorescence is 

emitted[125]. Thus, fluorescence has traditionally been a linear process as if the power of excitation 

increases equally so does the emission.  

 In two photon microscopy, a non-linear absorption occurs whereby two photons of light are 

absorbed in a similar time frame (less than 10-18 seconds) to generate a fluorescent photon[125]. These 

photons are of roughly half the energy needed for traditional fluorescence excitation, however, due to 

quantum mechanics, the actual excitation wavelengths/spectra will vary slightly from this theoretical 

value. The emitting photons, however, behave as expected and show an emission spectra exactly as if 

excited by linear microscopy.  

 In her 1931 doctoral dissertation, Maria Göppert-Mayer predicted the possibility of two-photon 

absorption[126]. However, the simultaneous absorption of two low energy photons is a rare event, 
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requiring a high flux of photons of 1020-1030 photons/(cm2s ). This presented a technical challenge as 

most available arc lamps and other light sources were not able to generate the high flux required without 

simultaneously destroying the sample. It was not until the development of the subpicosecond (10-12s) 

pulse mode-locked laser and its demonstration of practical applicability in 1990[127]. This laser is able to 

generate ultrashort femtosecond (10-15s) pulses every nanosecond. Thus, a low average power can be 

used as the laser is not active 10,000 times more than it is active. In essence, the laser allows photons to 

be compressed in small units of time. A high numerical aperture allows for compression of the laser pulse 

into a small space, thus a coupling of the mode-locked laser and the appropriate aperture generates an 

extremely high photon flux in a small area, drastically increasing the probability of a two-photon excitation 

event.  

 The probability of an excitation event is related to the square of the instantaneous laser intensity 

(Probability α Intensity2). Due to this relationship, two photon excitation decreases dramatically away from 

the focal point. Thus, there is a lack of fluorescent photon emission that is out-of-focus, making two 

photon microscopy an inherently confocal-type of system not requiring a pinhole to filter out extraneous 

fluorescence as in linear confocal fluorescent microscopy. The pinhole needed in linear confocal 

microscopy also filters out a percentage of in-focus fluorescent photons. The deeper into a specimen 

imaging takes place, a greater percentage of photons filtered out would be in-focus fluorescent photons, 

creating an imaging depth limit to conventional linear microscopy of about 100µm. Thus, two photon 

microscopy has a superior imaging depth as compared to linear confocal microscopy ranging up to 1mm 

in ideal conditions, but roughly 6-fold better in most practical circumstances[128]. This is also aided by the 

fact that in biological samples, the longer wavelengths used by two photon imaging are less absorbed 

and affected by scattering as compared to conventional confocal microscopy. 

 From a theoretical perspective, the spatial resolution of two photon microscopy should be roughly 

half that as compared to linear confocal microscopy. Practically speaking, the only way to increase 

resolution can only be increased by increasing signal, requiring that linear confocal systems increase the 

pinhole size, resulting in more out-of-focus detection and thereby lowering resolution. Thus, in a practical 

setting the special resolution of two photon microscopy is nearly identical to linear confocal 

microscopy[125].  
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 One secondary benefit to two photon imaging is the second harmonic generation that occurs. 

This phenomenon is different than true two photon absorption as it is based on scattering rather than 

absorption of photons. When scattered, the photons combine to form photons roughly twice the energy of 

the incident photons. Generation of secondary harmonics requires that molecules lack inversion 

symmetry and are spatially ordered. Biologically, ordered structures like collagen fibers or microtubules 

create this phenomenon[129]. Thus, two photon imaging can incidentally also image collagen fibers while 

simultaneously causing fluorescence emission of a desired fluorophore.  

 Two photon microscopy has two main drawbacks at this time:  cost and accelerated 

photobleaching. Photobleaching in confocal microscopy has a somewhat linear relationship with the 

excitation power.  In two photon microscopy, photobleaching is accelerated as more photobleaching 

pathways are activated in addition to the observed higher order photobleaching. Though this only occurs 

in the focal plane, thinner samples (<10µm) are more prone to this issue[130,131]. 

 In sum, the use and application of two photon microscopy is gaining in widespread use. It has 

great potential and capabilities for in vivo imaging. The depth, resolution, inherent confocal nature, and 

automatic imaging of extracellular structures makes two photon microscopy extremely useful for 

understanding in vivo biology. 
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CHAPTER II: IN VITRO ANALYSIS OF PRINT NANOPARTICLE FACTORS INFLUENCING CELL 

ASSOCIATION WITH EWING SARCOMA SPHEROIDS REVEALS A CHARGE AND DOSE 
DEPENDENCY 

 

2.1 Overview 

 The signature of Ewing Sarcoma is the fusion protein EWS-FLI1. It has been shown that siRNA 

mediated knockdown can cause beneficial therapeutic effects in cell culture systems. However, delivery 

of siRNA in vivo presents unique challenges, requiring the use of a carrier. PRINT fabricated 

nanoparticles were examined for their suitability as an siRNA carrier in vitro. A spheroid culture model 

was used to mimic the 3-dimensional environment of a tumor. It was found that particle charge played a 

key role in determining the magnitude of cell association with particles, as determined by flow cytometry. 

Moreover, association was observed to plateau at higher doses of particles. However, confocal imaging 

suggests that the particles experience limited penetration into the spheroid. This implies that there may 

be a limit on particle association with cancer cells in vivo. 

 

2.2 Introduction 

 Ewing Sarcoma is characterized as a small round blue cell tumor, predominantly found in the 

axial skeleton regions. This cancer is identified by a signature genetic translocation resulting in a fusion 

protein between EWS and an ETS family protein[1-3]. Roughly 85% of all cases specifically contain an 

EWS-FLI-1 fusion, with the N-terminus of EWS and the C-terminal half of FLI-1. EWS is thought to be a 

protein involved in RNA processing, though it’s specific function is not well understood. FLI-1 is known to 

be a transcription factor, with an ETS domain in its C-terminus binding to the GGAA consensus 

sequence. Due to the presence of the ETS DNA binding domain in the fusion protein, the function of 

EWS-FLI is thought to be as a master regulator required for oncogenic transformation of the cells.  

 In a sense, Ewing Sarcoma is addicted to the EWS-FLI oncogene. Targeting this protein by 

siRNA-mediated knockdown results in growth inhibition of ewing sarcoma cell lines[4-9]. Based on this 
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result, EWS-FLI presents a very specific target with which to selectively inhibit ewing sarcoma cell growth 

as the translocation would only be found in the cancer cells.  Other groups have tried using various types 

of nanoparticles to deliver siRNA against EWS-FLI[10-15]. These have shown effectiveness at knocking 

down EWS-FLI in culture and some success at slowing or delaying tumor growth in vivo.  

 PRINT particles have the ability to carry an siRNA cargo. This can be done using a PLGA-based 

matrix coated or fabricated with cationic lipids such as DOTA or DOTAP[16]. Without these cationic lipids 

it is difficult to prevent the siRNA from leeching out of the particle. Alternatively, PEG hydrogel particles 

can be fabricated to carry siRNA cargoes[17]. The siRNA can be carried by the particle either by 

electrostatic interactions or by direct conjugation. Electrostatic binding is not suitable for in vivo conditions 

as physiologic salt conditions interfere with the electrostatic interaction and cause release of the siRNA. 

Direct conjugation is accomplished by attaching a sulfydryl group to the siRNA and creating a disulfide 

bonded siRNA covalently attached to the particle. This allows for release of the siRNA in the reducing 

conditions of the endosome, helping prevent premature release. Due to the presence of a plausible 

delivery system, it was decided to pursue PRINT siRNA delivery for Ewing Sarcoma. In vitro testing was 

undertaken to ascertain the optimal characteristics for PRINT particle delivery to Ewing Sarcoma cells. 

For these in vitro tests, a 3D culture system was used for evaluation. Essentially, a ball of cells was 

created to simulate the 3D nature of a tumor in vivo, termed a spheroid. This is in contrast to the 

conventional 2D culture system where cells are seeded on a flat surface. Spheroid models contain similar 

nutrient gradients found in tissue and have been shown to be more predictive of in vivo success than 

standard cultures[18-21]. In the experiments below, in vitro spheroid culture systems were used to probe 

for the optimal PRINT particle characteristics needed for successful siRNA delivery to Ewing Sarcoma 

cells.  

 

2.3 Experimental Methods 

2.3.1 Materials 

 Poly(ethylene glycol) diacrylate (MW 700) (PEG700DA), 2-aminoethyl methacrylate hydrochloride 

(AEM), diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide (TPO), and sucrose were purchased from 

Sigma-Aldrich. Thermo Scientific Dylight 488 maleimide, dimethylformamide (DMF), triethylamie (TEA), 
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pyridine, borate buffer (pH 8.6), acetic anhydride, and methanol were obtained from Fisher Scientific. 

Conventional filters (2 μm) were purchased from Agilent and polyvinyl alcohol (MW 2000) (PVOH) was 

purchased from Acros Organics. PRINT molds (80 nm x 80 nm x 320 nm) were obtained from Liquidia 

Technologies. Tetraethylene glycolmonoacrylate (HP4A) was synthesized in-house as previously 

described[22]. Methoxy-PEG(5k)-succinimidyl carboxy methyl ester (mPEG5k-SCM) was purchased from 

Creative PEGWorks. Typsin, DPBS, and cell culture media were purchased from Gibco. Fetal bovine 

serum was purchased from Cellgro. 

 

2.3.2 PRINT Nanoparticle Fabrication 

 The PRINT particle fabrication technique has been described previously in detail[23,24]. The 

preparticle solution was prepared by dissolving 3.5 wt% of the various reactive monomers in methanol. 

The reactive monomers included: a crosslinker made of an oligomeric PEG with a nominal molar mass of 

700 g/mol terminally functionalized on both end groups with an acryloxy functionality (PEG700DA); a 4 

repeat PEG chain containing a hydroxyl and an acrylate functional group (HP4A); an amine containing 

monomer (AEM) which served to provide the amine functionality used to conjugate PEG onto the surface 

of the PRINT particles; and in some cases a polymerizable fluorescent tag. In all cases a photoinitiator, 

TPO, was also added. The pre-particle solution was comprised of 68 wt% HP4A, 20 wt% AEM, 10 wt% 

PEG700DA, 1 wt% TPO and 1 wt% Dylight 488 maleimide or Dylight 650 maleimide. Using a # 3 Mayer 

rod (R.D. Specialties), a thin film of the pre-particles solution was drawn onto a roll of freshly corona 

treated PET, using a custom-made roll-to-roll lab line (Liquidia Technologies) running at 12 ft/min. The 

solvent was evaporated from this delivery sheet by exposing the film to a hot air dam derived from heat 

guns. The delivery sheet was laminated (80 PSI, 12 ft/min) to the patterned side of the mold, followed by 

delamination at the nip. Particles were cured by passing the filled mold through a UV-LED (Phoseon, 395 

nm, 3 SCFM N2, 12 ft/min). A PVOH harvesting sheet was hot laminated to the filled mold (140°C, 80 

PSI, 12 ft/min). Upon cooling to room temperature, particles were removed from the mold by splitting the 

PVOH harvesting sheet from the mold. 

 Particles were then harvested by dissolving the PVOH in a bead of water (1 mL of water per 3 ft 

of harvesting sheet). The particle suspension was passed through a 2µm filter (Agilent) to remove any 
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large particulates. To remove the excess PVOH, particles were centrifuged (Eppendorf Centrifuge 5417R) 

at ca. 21,000 g for 15 min, the supernatant was removed and the particles were re-suspended in sterile 

water. This purification process was repeated 4 times. 

 

2.3.3 Nanoparticle Characterization 

 Stock particle concentrations were determined by thermogravimetric analysis (TGA) using a TA 

Instruments Q5000 TGA. TGA analysis was conducted by pipetting 20µL of the stock nanoparticle 

solution into a tared aluminum sample pan. Samples suspended in water were heated at 30 °C/min to 

130 °C, followed by a 10 minute isotherm at 130°C. Samples suspended in DMF were heated at 30 

°C/min to 170 °C, followed by a 10 minute isotherm at 170 °C. All samples were then cooled at 30 °C/min 

to 30 °C, followed by a 2 minute isotherm at 30 °C. TGA was also performed on a 20µL aliquot of 

supernatant from a centrifuged sample of the stock nanoparticle solution to account for the mass of any 

stabilizer remaining in each sample. The concentration of stabilizer was subtracted from the concentration 

of stock particle solution to determine the actual particle concentration. Particles were visualized by 

scanning electron microscopy (SEM) using a Hitachi S-4700 SEM. Prior to imaging, SEM samples were 

coated with 1.5 nm of gold-palladium alloy using a Cressington 108 auto sputter coater. Particle size 

and zeta potential were measured by dynamic light scattering (DLS) on a Zetasizer Nano ZS (Malvern 

Instruments, Ltd.). 

 

2.3.4 PEGylation and Acetylation 

 After purification, the particles were reconstituted in DMF following the centrifugation 

technique outlined above and the concentration of particles in DMF was determined by TGA. The 

particles fabricated contain free primary amine groups which were used as functional handles to react 

with mPEG5k-SCM. The particles (1 mg NPs in 1 mL DMF) were reacted with TEA (100 µl) for 10 min at 

room temperature on a shaker plate (Eppendorf, 1400 rpm). The mPEG5k-SCM was dissolved in 

DMF(48mg/mL) and added to the reaction mixture (14 mg per mg NPs). The reaction mixture was shaken 

overnight and then quenched with borate buffer (100 μL). The nanoparticle solution was then washed 3 

times with DMF via centrifugation. Following PEGylation, particles were acetylated with acetic anhydride 
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to quench any unreacted amines and to yield a negative zeta potential. For acetylation, nanoparticles (1 

mg NP in 1 mL DMF) were reacted with an excess (10µl) of pyridine and acetic anhydride (7µl). The 

reaction was carried out in a sonicator bath (Branson Ultrasonic Cleaner 1.4 A, 160 W) for 15 min, after 

which a second addition of acetic anhydride (7µl) was added and the suspension was sonicated for 

another 15 min. Following acetylation, the particles were washed by centrifugation one time in DMF, 

followed by a borate buffer wash to neutralize any acetic acid side product, and then 3 washes with sterile 

water. Post-acetylation, particles were analyzed by TGA, DLS and SEM and stored at 4°C. 

 

2.3.5 Cells, cell culture, and particle dosing 

 Cells were cultured in cell specific medium for each Ewing Sarcoma cell line. Each media mixture 

included 1% Penicillin/Streptomycin (Gibco). EWS502 and EWS894 cells required 15% FBS (Gemini Bio-

products) in RPMI 1640 media (Gibco). A673 and MHH cells required 10% FBS in RPMI 1640. SKN-MC 

cells required Dulbecco’s minimum essential medium (Gibco) with 10% FBS, 1mM L-Glutamine (Gibco), 

and 1x Non-essential amino acids (Gibco). RD-ES cells use RPMI 1640 with 10% FBS and L-Glutamine 

and SK-ES were cultured with McCoy’s 5A (Gibco) with 15% FBS L-Glutamine. Hanging droplet 

spheroids were generated by trypsinization of the cells and resuspension to 20x105 cells/mL or a 

concentration such that twenty microliters would give a pre-determined amount of cells. Twenty 

microliters of the cell suspension was pippetted into a Nunc 60-well minitray (Thermofisher scientific cat# 

12-565-155). The minitray was inverted and placed in a 150mm dish containing three 35mm dishes filled 

with water (without lid) to provide local humidity and prevent evaporation of the liquid in the minitray. Cells 

were incubated at 37°C and 5% CO2 for 4-6 days to allow spheroid formation. Following spheroid 

formation, a maximum of 1-2ul of particles in water or water only was pipetted into each well used for 

experimentation. At least 10 wells per sample with 3 samples per group were used to quantify 

association. 

  

2.3.6 Flow cytometry of spheroids 

 Individual spheroids comprising one sample were collected into a single eppendorf tube and 

centrifuged. Spheroids were washed with PBS and then exposed to 100ul of 0.25% Trypsin (Gibco) at 
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room temperature for 3-5 minutes. FACS buffer (PBS with 2% FBS) was then added. The samples were 

analyzed with the Beckman-Coulter (Dako) Cyan ADP using the 488nm laser and the FITC emission filter 

(530/40). After forward and side scatter gating, particle association was determined by comparison of 

particle-dosed samples to the water only (0µg/mL) samples.  

 

2.3.7 Imaging of spheroid growth 

 Spheroids were imaged in the minitray under brightfield with a Zeiss Axiovert 200, a 10x 

objective, and camera. Images were taken of multiple spheroids 4 days after plating, with representative 

images shown here.  

 

2.3.8 Confocal imaging 

 After incubation with particles, multiple spheroids were fixed in 4% paraformaldehyde and 

contained on a slide. A triangluar chamber was constructed on a glass slide using broken coverslips and 

sealed with nail polish. The fixed spheroids were washed with 1xPBS and put in the chamber in solution. 

Excess solution was then carefully pipetted away and the chamber covered with a coverslip and sealed 

with nail polish. Spheroids were easily visible under the brightfield of a microscope and imaged. Images 

were obtained using an Olympus microscope. Both the 633 and 488nm lasers were used for excitation 

and emission was captured with an Alexa 647 and GFP filter, respectively. 

 

2.4 Results 

2.4.1 PRINT fabrication of Hydrogels 

 Nanoparticles were fabricated using the Particle Replication in Non-Wetting Templates (PRINT) 

technique.[1–3]. This method generates nanoparticles of highly consistent and precise size, shape, and 

composition. PRINT hydrogel nanoparticles composed of a covalently cross-linked hydrogel matrix. 

These were modified with various surface charges: either cationic, anionic, or PEGylated anionic. These 

particles were characterized by DLS and SEM and demonstrated a range of positive and negative zeta 

potentials and narrow size distributions (Figure 2.1). 
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2.4.2 Spheroid formation of Ewing Sarcoma cell lines 

 To explore the in vitro influence of particle characteristics on nanoparticle association, we wanted 

to use a spheroid cell culture model to represent the three dimensional nature of a tumor. It was unknown 

whether the Ewing Sarcoma cell lines available to me would form spheroids. The first experiment was to 

determine which cell lines would form a spheroid and what cell density was needed. The EWS502, 

EWS894, SK-N-MC, SK-ES, MHH, and RD-ES cell lines were tested at 500, 1000, and 2000 cells per 

well. The cells were incubated for 4 days and spheroid formation assessed. Images were obtained of the 

cultures and they definitively show that all Ewing Sarcoma cell lines tested formed spheroids (Figure 2.2). 

 

2.4.3 Effect of particle charge and dose 

 The next set of experiments examined the effects of particle charge and dose on the association 

of particles with cells using this spheroid model. This experiment examined the association of different 

surface charges of 80 x 80 x 320 nm hydrogel particles. A striking difference in association was observed 

for the differently charged particles (Figure 2.3). As a function of dose, association was dose-dependent 

until a plateau was reached. However, the dose at which the particles reached the plateau was strikingly 

different between differently charged particles. Cationic particles showed 70% association at 7.5µg/mL, 

whereas anionic particles show 70% association only at 30µg/mL. PEGylated anionic particles showed 

the least association as the maximum association of 40% was reached at 60µg/mL. These trends and 

relative amount of association was similar between two separate cell lines, EWS502 and A673. 

 

2.4.4 Confocal imaging of spheroid association 

 Spheroids were incubated with hydrogel nanoparticles and confocal imaging was performed to 

ascertain whether the particles were penetrating the spheroid. Images were taken of a Z-stack through 

the spheroid and collected into a montage. The spheroids expressed GFP, with the nanoparticle being 

fluorescently labeled with Dylight 650. From the images it is clear that the particles show minimal 

penetration to the middle of the spheroid (Figure 2.4).  
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2.5 Discussion 

 Spheroid formation is a suggestive measure of the ability of cells to form cancers in vivo due to 

the anchorage-independent growth it requires. However, this is not a property found in all cancer cell 

lines[25,26]. It is therefore surprising that all Ewing Sarcoma cell lines studied readily formed multicellular 

tumor spheroids. 

 It is well known that cationic particles efficiently associate with cells in vitro[27-32]. That PRINT 

particle charge dominates the resulting association or that cationic particles perform best is not surprising. 

However, the lack of penetrance of the spheroid is an intriguing observation. These data would suggest 

that in vivo the limiting factor for delivery of particles would be penetrating the tumor. This hypothesis has 

been investigated previously[33-35] and it does seem to play a role in particle diffusion into the tumor, 

however these studies tend to be more qualitative and image-based. Therefore, quantification of the 

fraction of cells receiving particles seem to lacking and could be an important piece of supporting data. 

Moreover, these studies focus on cancer cells. Tumors are a complex mixture of cell types[36-38]  and 

further examination of particle distribution on a cellular level may be informative, especially in vivo.  

 

2.6 Conclusions 

 In a spheroid culture system, modeling the 3-dimensional nature of solid tumors, particle 

association was shown to be dependent upon the surface charge. Association was also shown to plateau 

at a level depending on the surface charge. Confocal imaging suggests that the particles fail to penetrate 

the entirety of the spheroid, which is the most likely explanation for the association plateau. 

 

 

  Cationic  Acetylated  PEGylated  

Z-average  260.3  207.7  235.0  

PDI  0.107  0.045  0.104  

Zeta potential  15.9±6.49  -25.3±10.8 -16.4±7.29 
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Figure 2.1 SEM and DLS characterization of 80x320nm Hydrogel nanoparticles 

SEM image of Dylight 650 particles with DLS data in table at right. 
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Figure 2.2 Demonstration of spheroid formation ability of Ewing Sarcoma cells 

Various Ewing Sarcoma cell lines were counted, trypsinized and plated to form spheroids. Four days post 

plating the cells were imaged for spheroid formation. Each sample was created in duplicate with a 

representative image shown here.  
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Figure 2.3 Association of 80x320nm Hydrogel particles by dose, charge, and cell line in spheroids 

Various Ewing Sarcoma spheroids were incubated for 4 hours with 80x320nm Hydrogel PRINT particles 

of different surface charges. Flow cytometry was used to determine the percentage of cells associating 

with particles. Multiple spheroids (N=10) for each sample were used, with multiple samples (N=3) at each 

dose for each type of particle. The 0µg/mL dose was used to set a gate to determine the particle-positive 

cells. All error shown is ± SD (N=3 samples). 
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Figure 2.4 Confocal imaging of Ewing Sarcoma spheroids 

Confocal images of a spheroid dosed with fluorescently labeled hydrogel nanoparticles. The images are a 

Z-stack of a representative spheroid. 
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CHAPTER III: ANALYSIS OF PRINT NANOPARTICLE DISTRIBUTION WITHIN TUMORS         

REVEALS A CELL TYPE, SIZE, AND ROUTE OF ADMINISTRATION DEPEDENCY 
 

3.1 Overview 

 Delivery of impermeable cargo for cancer therapy will most likely require cell type specific 

delivery. Thus, we determined the intratumoral fate PRINT nanoparticles by multi-color flow cytometry 

and quantified the overall accumulation of particles to the organ by radiolabeling. Despite dose-

dependent accumulation of particles within the organ, particle association with cells became dose-

independent at high doses. At the cellular level, cancer cells had a small fraction of particle-positive cells 

whereas macrophages showed the greatest amount of association both by population and per cell. 

However, the majority of the particles associating with cells were associating with cancer cells due to their 

relative abundance in the tumor. Reducing particle size or administering particles intratumorally increased 

cancer cell association and decreased macrophage association. This study demonstrates the importance 

of cell-lineage specific analysis of nanoparticle fate in vivo. 

3.2 Introduction 

 The importance of the Enhanced Permeation and Retention effect for nanocarrier-mediated drug 

delivery in oncology has resulted in a focus on the accumulation of particles in whole tumors.[1] 

Nanoparticle targeting to solid tumors is typically quantified by one of a variety of whole organ methods 

that determine the fraction of the injected dose of the carrier or cargo that accumulates in an organ or 

tumor.[2–13] However, tumors are composed of numerous cell types in addition to cancer cells, including 

fibroblasts, endothelial cells, macrophages and neutrophils.[14–17] Whole organ approaches are unable 

to discriminate between accumulation in these cell types or in the extracellular space. For cargo with an 

intracellular mechanism of action, such as nucleic acids and proteins, the delivery to specific cell types is 

crucial to characterizing nanoparticle efficacy and optimizing targeting.  
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 Methods for the identification of intratumoral distribution include microscopy or flow cytometry. 

Confocal microscopy has been used to determine particle internalization in vivo by analyzing multiple 

sections of an organ.[18] However, meaningful quantification can be challenging. Flow cytometry permits 

concurrent cellular identification and nanoparticle quantification. Previous studies that have used flow 

cytometry to examine nanoparticle targeting to organs have not addressed the effects of particle 

characteristics (composition, shape, etc.) or dose on the accumulation in specific cells and do not 

correlate their findings with the whole organ.[19–21] Studies of nanoparticle targeting in tumors have 

focused exclusively on individual cell populations and, similarly to  organ-based studies, have not 

explored the effects of particle properties or dose.[14,22–25] Studies that take into account nanocarrier 

properties together with intra-organ or intra-tumor distribution will best inform nanoparticle optimization.  

 One advantage of using the PRINT fabrication method is that the particles are of monodisperse 

size. Using this top-down fabrication strategy using a mold confers the advantage of reproducible 

production of these monodisperse particles. If the particles had a large variation in size (i.e. PDI)  it is 

entirely possible that the size of the particle may cause preferential association with one cell population 

over another, confounding the results. This makes our results easier to interpret and analyze for the 

influence of particle characteristics on association with cells. PRINT also affords homogeneity in the 

composition of the particles and flexibility of choice in the desired nanoparticle material, bestowing a 

unique advantage among the other nanoparticle fabrication strategies. 

 Using a fluorescent mouse melanoma model and highly consistent PRINT nanoparticles, we 

found that a low fraction of cancer cells associate with particles. Moreover, on a per cell basis, 

macrophages associate with a greater amount of particles per cell. We also observe that particle size 

plays a significant role by increasing association with cancer cells.  

 

3.3 Experimental Methods 

3.3.1 Materials 

 Poly(ethylene glycol) diacrylate (Mw 700) (PEG700DA), 2-aminoethyl methacrylate hydrochloride 

(AEM), diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide (TPO), and sucrose were purchased from 

Sigma-Aldrich. Thermo Scientific Dylight 488 maleimide, dimethylformamide (DMF), triethylamie (TEA), 
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pyridine, borate buffer (pH 8.6), acetic anhydride, and methanol were obtained from Fisher Scientific. 

Conventional filters (2 μm) were purchased from Agilent and polyvinyl alcohol (Mw 2000) (PVOH) was 

purchased from Acros Organics. PRINT molds (80 nm x 80 nm x 320 nm) were obtained from Liquidia 

Technologies. Tetraethylene glycolmonoacrylate (HP4A) was synthesized in-house as previously 

described[26]. Methoxy-PEG(5k)-succinimidyl carboxy methyl ester (mPEG5k-SCM) was purchased from 

Creative PEGWorks. Typsin, DPBS, and cell culture media were purchased from Gibco. Fetal bovine 

serum was purchased from Cellgro. 

 

3.3.2 PRINT Nanoparticle Fabrication 

 The PRINT particle fabrication technique has been described previously in detail[27,28]. The 

preparticle solution was prepared by dissolving 3.5 wt% of the various reactive monomers in methanol. 

The reactive monomers included: an oligomeric PEG with a nominal molar mass of 700 g/mol terminally 

functionalized on both end groups with an acryloxy functionality (PEG700DA); a 4 repeat PEG chain with 

a hydroxyl and acrylate functionalities (HP4A); an amine containing monomer (AEM) which served to 

provide the amine functionality used to conjugate PEG onto the surface of the PRINT particles; and in 

some cases a polymerizable fluorescent tag. In all cases a photoinitiator, TPO, was also added. The pre-

particle solution was comprised of 67.75 wt% HP4A, 20 wt% AEM, 10 wt% PEG700DA, 1 wt% TPO and 

1.25 wt% Dylight 488 maleimide. Using a # 3 Mayer rod (R.D. Specialties), a thin film of the pre-particles 

solution was drawn onto a roll of freshly corona treated PET, using a custom-made roll-to-roll lab line 

(Liquidia Technologies) running at 12 ft/min. The solvent was evaporated from this delivery sheet by 

exposing the film to a hot air dam derived from heat guns. The delivery sheet was laminated (80 PSI, 12 

ft/min) to the patterned side of the mold, followed by delamination at the nip. Particles were cured by 

passing the filled mold through a UV-LED (Phoseon, 395 nm, 3 SCFM N2, 12 ft/min). A PVOH harvesting 

sheet was hot laminated to the filled mold (140°C, 80 PSI, 12 ft/min). Upon cooling to room temperature, 

particles were removed from the mold by splitting the PVOH harvesting sheet from the mold. 

Particles were then harvested by dissolving the PVOH in a bead of water (1 mL of water per 3 ft of 

harvesting sheet). The particle suspension was passed through a 2µm filter (Agilent) to remove any large 

particulates. To remove the excess PVOH, particles were centrifuged (Eppendorf Centrifuge 5417R) at 
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ca. 21,000 g for 15 min, the supernatant was removed and the particles were re-suspended in sterile 

water. This purification process was repeated 4 times. 

 

3.3.3 Nanoparticle Characterization 

 Stock particle concentrations were determined by thermogravimetric analysis (TGA) using a TA 

Instruments Q5000 TGA. TGA analysis was conducted by pipetting 20µL of the stock nanoparticle 

solution into a tared aluminum sample pan. Samples suspended in water were heated at 30 °C/min to 

130 °C, followed by a 10 minute isotherm at 130°C. Samples suspended in DMF were heated at 30 

°C/min to 170 °C, followed by a 10 minute isotherm at 170 °C. All samples were then cooled at 30 °C/min 

to 30 °C, followed by a 2 minute isotherm at 30 °C. TGA was also performed on a 20µL aliquot of 

supernatant from a centrifuged sample of the stock nanoparticle solution to account for the mass of any 

stabilizer remaining in each sample. The concentration of stabilizer was subtracted from the concentration 

of stock particle solution to determine the actual particle concentration. Particles were visualized by 

scanning electron microscopy (SEM) using a Hitachi S-4700 SEM. Prior to imaging, SEM samples were 

coated with 1.5 nm of gold-palladium alloy using a Cressington 108 auto sputter coater. Particle size 

and zeta potential were measured by dynamic light scattering (DLS) on a Zetasizer Nano ZS (Malvern 

Instruments, Ltd.). 

 

3.3.4 PEGylation and Acetylation for in vitro and in vivo studies 

 After purification, the particles were reconstituted in DMF following the centrifugation 

technique outlined above and the concentration of particles in DMF was determined by TGA. The 

particles fabricated contain free primary amine groups which were used as functional handles to react 

with mPEG5k-SCM. The particles (1 mg NPs in 1 mL DMF) were reacted with TEA (100 µl) for 10 min at 

room temperature on a shaker plate (Eppendorf, 1400 rpm). The mPEG5k-SCM was dissolved in 

DMF(48mg/mL) and added to the reaction mixture (14 mg per mg NPs). The reaction mixture was shaken 

overnight and then quenched with borate buffer (100 μL). The nanoparticle solution was then washed 3 

times with DMF via centrifugation. Following PEGylation, particles were acetylated with acetic anhydride 

to quench any unreacted amines and to yield a negative zeta potential. For acetylation, nanoparticles (1 
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mg NP in 1 mL DMF) were reacted with an excess (10µl) of pyridine and acetic anhydride (7µl). The 

reaction was carried out in a sonicator bath (Branson Ultrasonic Cleaner 1.4 A, 160 W) for 15 min, after 

which a second addition of acetic anhydride (7µl) was added and the suspension was sonicated for 

another 15 min. Following acetylation, the particles were washed by centrifugation one time in DMF, 

followed by a borate buffer wash to neutralize any acetic acid side product, and then 3 washes with sterile 

water. Post-acetylation, particles were analyzed by TGA, DLS and SEM and stored at 4°C. 

 

3.3.5 Cells, cell culture, and spheroid injections 

 LKB498 cells were cultured are previously described[29] in high glucose DMEM (Gibco) with 10% 

FBS (Gemini Bio-products) and 1% Penicillin/Streptomycin (Gibco). Hanging droplet spheroids were 

generated by trypsinization of the cells and resuspension to 20x105 cells/mL. Twenty microliters of the cell 

suspension was pippetted into a Nunc 60-well minitray (Thermofisher scientific). The minitray was 

inverted and placed in a 150mm dish containing three 35mm dishes filled with water(without lid) to provide 

local humidity and prevent evaporation of the liquid in the minitray. Cells were incubated at 37°C and 5% 

CO2 for 4-6 days to allow spheroid formation. Individual spheroids were harvested and placed into 80 μL 

media in a 0.5 mL microcentrifuge tube. Single spheroids in the tube were verified visually under a 

brightfield microscope and were placed on ice until time of injection. Athymic nude mice were 

anesthetized by inhalation with 2% isoflurane. A 14-mL conical tube was taped onto a heating pad next to 

the isoflurane nose cone under an Olympus MVX10 Macroview macroscope. The MVX10 is equipped 

with a MVPLAPO 1x objective, total mag 6.3–63x, NA 0.25, W.D. 65 mm. The mouse ear was affixed 

onto the conical tube with double-sided tape. The tumor spheroid, which was visible to the unaided eye in 

the tube, was drawn into a 10-μL glass syringe (Hamilton) with a custom 1-inch 27G needle in a total 

volume of 2–3 μL media. The glass syringe was held vertically for 1 min to allow the tumor spheroid to 

settle into the needle. While observing the ear through the macroscope, the needle (bevel facing up) was 

pierced into the dermis of the mouse ear and the spheroid in media was injected, which resulted in a 

transient visible bump under the surface of the skin. Successful spheroid injection was verified 

immediately by epifluorescence imaging with the MVX10 Texas Red filter. 
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3.3.6 Mice and Particle Injections 

 All animals were handled according to the NIH Guide for the Care and Use of Laboratory 

Animals. All procedures were approved by the University of North Carolina-Chapel Hill Institutional Animal 

Care and Use Committee (IACUC), protocol #11-154.0. All tumor spheroid injections were performed 

under inhalable isofluorane anesthesia and all efforts made to minimize animal discomfort as described 

previously[29]. All intravenous injections were done in concert with the UNC Animal Services Core. 

Suspensions of nanoparticles were made in isotonic 9.25% Sucrose and a maximum of 300µl per animal 

was injected via the tail vein for systemic administration. All animals herein are 4-8 week old, male 

Foxn1nu (athymic; C57BL/6J background) nude mice purchased from the UNC Animal Services Core. 

Tumors were of equal volumes between groups and ranged from 100-300mm3, as determined using 

caliper measurements and the equation V = (L/2)x(W/2)x(H/2)x(4/3xπ). For the dose experiment, particles 

were resuspended at different concentrations (1.45, 4.65, 14.65mg/mL) to give similar injection volumes 

around 300µl. 

 

3.3.7 Tumor Dissociation and Flow Cytometry 

 Tumors were harvested following animal sacrifice and placed in a 15mL conical tube containing a 

solution of 4.5mL DMEM with 10% FBS on ice.  The conical tube was placed in a sterile tissue culture 

hood where 0.5 mL of a 3000U/mL Collagenase, 1000U/mL Hyaluronidase, 1000mg/L D-Glucose DMEM 

solution (“10x Collagenase/Hyaluronidase”, StemCell Technologies, cat#07912) was added, with the 

conical tube then being placed in a 37°C incubator.  Every 30 minutes for 1.5 hours the tubes were 

inverted to mix the solutions. After 1.5 hours, a plastic pipette was used to gently break up clumps of 

tissue.  The conical tube was then placed back in the incubator for 1.5 hours, with inversion mixing every 

30 minutes.  Samples were then centrifuged at 600g for 5 minutes. Supernatant was discarded and 

samples were resuspended with a 1:4 mixture of HBSS+2%FBS (HF):0.8% NH4Cl and 0.1mM EDTA in 

water (“RBC lysis buffer”, Stem Cell Technology, cat#07850). Samples were centrifuged at 450g for 5 

minutes and resuspended in RBC lysis buffer. After a 5 minute centrifugation at 450g, samples were 

resuspended in 5mL of 0.05% Trypsin 0.53mM EDTA solution (Gibco) and incubated for 5 minutes at 

37°C.  The Trypsinization was stopped with 10mL of HF.  Following centrifugation at 600g for 5 minutes, 
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samples were resuspended in 4.5 mL of 1U/mL Dispase in DMEF-12 (Stem Cell Technologies, 

cat#07923) and 0.5mL of a 1mg/mL Bovine Pancreas DNAse I-PBS solution (Stem Cell Technologies, 

cat#07900).  This mixture was incubated for 30 minutes at 37°C when 10 mL of HF was added to the 

sample.  The sample was then filtered using a 40µm cell strainer (Fisher scientific, cat#22-363-547) and 

centrifuged at 450g for 5 minutes.  Cells were resuspended in HF, placed on ice, and counted with a 

hemocytometer.  Cells were then washed with PBS and resuspended to a concentration of 2x106 cells/mL 

in PBS, with 1mL of cells being transferred to a 1.5mL eppendorf tube.  Live-Dead Fixable Blue 

(Invitrogen, cat#L-23105) was then added at a concentration of 1ul/4x106 cells in 1mL PBS and incubated 

on ice for 15 minutes, protected from light. Cells were washed with PBS and resuspended in 100µl PBS. 

Fc Block (BD Biosciences cat#553142) was incubated at a concentration of 2ul/106 cells  for 5 minutes on 

ice, protected from light. PE-Cy7 CD31 (Clone 390, cat#102418), APC F4/80 (Clone BM8, cat#123116), 

Alexa 700 Ly6G (Clone 1A8, cat#127622), and Pacific Blue CD45 (Clone 30-F11, cat#103126) antibodies 

(Biolegend) were added to the cells and incubated for 1 hour on ice. Cells were then washed with PBS 

and resuspended in 500µl of 4% paraformaldehyde. After a 15 minute incubation at room temperature, 

cells were washed twice with FACS buffer (2%FBS in PBS), then resuspended in a final volume of 500µl 

of FACS Buffer and stored at 4°C until data acquisition on the BD LSRII using FACSDiva. Data analysis 

of FCS3 files was performed using FlowJo version 10.6. All surface markers were compared to their 

fluorescence minus one (FMO) controls to set appropriate gates. Particle association was determined by 

comparison to sucrose injected animals to determine appropriate gating.  

3.3.8 Calculating the relative intratumoral distribution of particles by fluorescence 

 The percentage of particle-positive cells was multiplied by their relative proportion in the sample. 

(e.g. 6% particle-positive cancer cells x 90% of the sample). This value was then multiplied by the mean 

fluorescence intensity of those particle positive cells to give a relative fluorescence value. Addition of all 

resulting fluorescence values gave a sum of total fluorescence. Dividing the value for each sub-population 

by the total gave a percentage of particles within that cellular compartment. 
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3.3.9 Radiation 

 High specific activity 64Cu (14000±7600 Ci/mmol or 518±28 TBq/mmol) was obtained from the 

Washington University School of Medicine (St. Louis, MO, USA). 64Cu was produced on a CS-15 

biomedical cyclotron by the 64Ni(p,n)64Cu nuclear reaction using previously established methods[30], with 

a half-life of 12.7 hours. Particles were PEGylated as described above. Following PEGylation, particles 

were characterized as described above by TGA and reacted in 0.1 M Na2CO3 buffer (pH 9) with 2-(4-

isothiocyanatobenzyl) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (p-SCN-Bn-DOTA) at 5 

mg/mL (2:1 DOTA:AEM molar ratio). A conversion from positive to negative zeta potential indicated that 

the reaction went to completion. Particles were then incubated with 64CuCl2 for 30 minutes at 65 °C in 0.1 

M ammonium acetate, washed 3 times by centrifugation with deionized water, and resuspended for 

injection in 9.25% sucrose. 

 

3.3.10 Two-photon Microscopy 

 Tumor-bearing animals with tumors between 10-30mm3 were imaged as previously described. 

Animals were anesthetized with isofluorane, and tumors were imaged before and after administration of 

particles. All imaging was performed at 910nm with an Olympus FV1000MPE mounted on an upright BX-

61WI microscope, using a 25x, 1.05 N.A. (2 mm W.D.) water immersion objective to capture images. 

Software and microscope settings were consistent for all acquired images (the laser power was at 14% 

and each channel’s PMT voltage was 580, 635, and 600, respectively). The laser unit is a MaiTai 

DeepSee tunable from 690–1040 nm with a pulse width < 100 fs. There were 3 Channel Non-descan 

Detectors used, Ch1 (420–460 nm) BFP, Ch2 (495–540nm) GFP, Ch3 (575–630 nm) RFP.  

 

3.3.11 Statistics 

 All plotted data, unless otherwise noted, were analyzed using a one-way ANOVA and Tukey’s 

post-hoc analysis. Mean Fluoresence data was analyzed using a two-way ANOVA and Tukey’s post-hoc 

analysis. 
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3.4 Results 

3.4.1 PRINT fabrication 

 To explore the influence of particle characteristics on nanoparticle association, we used an 

established mouse melanoma model in which LKB498 cancer cells stably express the red fluorescent 

protein Td Tomato.[29] Tumor cells were inoculated intradermally and allowed to grow to a size of 

100mm3. Nanoparticles were fabricated using the Particle Replication in Non-Wetting Templates (PRINT) 

technique.[27,28,31]. This method generates nanoparticles of highly consistent and precise size, shape, 

and composition. The PRINT nanoparticles were composed of a covalently cross-linked hydrogel matrix. 

Particles of 80 nm x 80 nm x 320 nm were fabricated and PEGylated as previously described.[27] 

Depending on the assay, fluorescent moieties were incorporated or copper-64 (64Cu) was chelated to the 

particles. Particles were characterized by DLS and SEM and demonstrated a similar negative zeta 

potential and narrow size distribution (Figure 3.1). 

 

3.4.2 Accumulation of particles in whole organ 

 To determine nanoparticle accumulation using a whole-organ based approach, we injected 64Cu 

radiolabeled PRINT nanoparticles at several doses into tumor bearing mice. Eighteen hours following 

particle administration animals were sacrificed, organs were harvested and gamma emission was 

measured. There was a wide distribution in the fractional association across organs ranging from ~45% of 

particles associating with the liver to ~0.2% of particles associating with the heart. These data are 

consistent with other types of nanoparticles. The fraction of the injected dose detected in each organ was 

consistent across the 3 doses (Figure 3.2a) indicating that the relative accumulation is independent of the 

dose administered. The total amount of particles contained within the tumor as well as in each organ 

increases in a dose-dependent manner (Figure 3.2b, c).  

 

3.4.3 Sub-organ Particle Accumulation by Flow Cytometry and the Effect of Dose 

 We then examined the cellular composition of our tumor model. Tumors were enzymatically 

dissociated to create a single cell suspension and analyzed using multi-color flow cytometry (Figure 3.3). 

After gating on live cells, cancer cells (as distinguished from tumor cells which represents the mixture of 
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all cells in the tumor) were identified by Td Tomato fluorescence. The remaining non-cancer cells were 

separated into immune cells by CD45 expression (leukocyte marker). CD45+ cells were further analyzed 

for the expression of F4/80 which marks mouse macrophages or Ly6G which marks neutrophils. 

CD45+F4/80-Ly6G- cells were classified as “other leukocytes” representing a mixture of cells that includes 

natural killer cells, dendritic cells, and B cells. CD31 surface expression in the CD45- cell population 

identified endothelial cells, with the remaining CD45- CD31- classified as fibroblast/other. Surface markers 

were compared to their fluorescence minus one (FMO) controls to ensure appropriate population gating. 

The tumor cell suspension reproducibly contained 89.9% cancer cells, 3.2% neutrophils, 1.1% 

macrophages, 0.64% other leukocytes, 0.49% endothelial cells, and 3.3% fibroblast/other cells (Figure 

3.4). This strategy accounts for virtually every cell (98.6%) present in the tumor. 

 Mice were injected with fluorescent 80 x 80 x 320 nanoparticles at several doses (or with a 

sucrose control) as before. 18 hours after treatment tumors were dissected from mice, dissociated and 

analyzed by flow cytometry as described. Cancer cells demonstrated a dose-dependent association at 

doses between 12.5 to 40 mg/kg yielding 1.5% or 5.2% particle positive cells, respectively (Figure 3.5a). 

At the 125 mg/kg dose level, however, 6.2% association was observed. These data indicate a dose 

dependent increase in fractional association that seems to plateau at higher doses. Non-cancer cell 

populations showed a greater percentage of particle association. Roughly 60-80% of macrophages 

(Figure 3.5b) and 20-60% of neutrophils and other leukocytes (Figure 3.5c,d) were associated with 

PRINT particles. Approximately 15-35% of endothelial cells were positive for particle association (Figure 

3.5e) with fibroblast/other cells having the lowest fractional association of 5-20% (Figure 3.5f). Strikingly, 

whereas macrophages and cells in the other leukocyte class demonstrate a sustained dose-dependent 

increase in nanoparticle association, cancer cells as well as endothelial cells and cells in the 

fibroblast/other class show no increase in fractional association above the 40 mg/kg dose. 

 In contrast to the fractional uptake described above which represents association across the 

population of cells, we also quantified fluorescence for individual cells. Among the cells analyzed, 

macrophages demonstrated the greatest mean fluorescence intensity (MFI) (Figure 3.6). MFI for 

macrophages was approximately 3.5 fold greater than that of the cancer cells, indicating that 

macrophages associate with a greater number of particles per cell. Like fractional association, 
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fluorescence signal per cell increased in a dose-dependent fashion at the low doses for cancer cells as 

well as immune cells. However, signal in cancer cells plateaued despite a three-fold increased dose. 

These data suggest that there is a limited fraction of cells that are able to associate with particles and that 

these cells have a biological limitation on the amount of nanoparticles they are able to take up. Using 

fluorescence, we also sought to quantify how much of the dose of particles were going to each cell type. 

Multiplying the mean fluorescence intensity by the percentage of particle-positive live cells for each cell 

type, we reasoned that this number represented the fraction of particle dose within the tumor associating 

with a given cell type. Adding this number to similar quantifications for other cell types, it was expressed 

as a percentage of particles associating with cells (Figure 3.7). This quantification suggests that particle-

positive cancer cells represent 50% of the dose of particles associating with cells. Particle-positive 

macrophages represent 20-40% of the dose, with neutrophils representing 15-30%. Other leukocytes, 

endothelial cells, and fibroblast/other cells all account for 1-2% each. 

 

3.4.4 Effect of Particle Size on Association 

 We then examined the influence of particle size on intratumoral cellular association. 55 x 70 nm 

particles were fabricated and functionalized as before (Figure 3.8). 55 x 70 nm and 80 x 320 nm particles 

were dosed at 25 mg/kg. Compared with the 80 x 320 nm particles, the 55 x 70 nm particles resulted in 

nearly twice the association with cancer cells (4.5 % vs 2.5%) as well as increased macrophage 

association (65% vs 37%) (Figure 3.9a,b).  In contrast, neutrophils, other leukocytes, endothelial cells, 

and fibroblast/other cells exhibited similar fractional association (Figure 3.9c-f). These data suggest that 

the 55 x 70 nm particles associate with more cancer cells than 80 x 320 nm particles of similar chemical 

composition. The mean fluorescence intensity of the particle-positive cells was roughly similar across 

particle sizes (Figure 3.10) indicating that the cells associate with a similar particle mass. Quantification of 

the percentage of associating particle dose suggests that the dose associating with cancer cells doubles 

when 55 x 70 nm particles are used as compared to 80 x 320 nm particles (Figure 3.11). All other cell 

populations remain relatively constant in the fraction of associating particle dose.  
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3.4.5 Effect of Route of Administration on Association 

 Intravenous administration of particles must overcome several hurdles in order to reach the cells 

of interest. Intratumoral administration therefore may be a useful mode of administration and was 

examined for its performance. Using 80 x 320 nm particles as above, a 25mg/kg dose was administered 

intravenously or intratumorally. The fraction of cancer cells associating with particles increased two-fold 

as compared to intravenous administration (Figure 3.12a). Endothelial cells and fibroblast association 

was unchanged (Figure 3.12b, c). In contrast, neutrophil, macrophage, and other leukocyte cell 

association was slightly decreased (Figure 3.12d, e, f). Mean fluorescence intensity demonstrated a 3-

fold increase in the amount of fluorescence per cancer cell, with most other cell types showing no 

difference (Figure 3.13). The fraction of dose associating with cancer cells more than doubles when 

particles are administered IT (Figure 3.14). Macrophages, neutrophils, and other leukocytes are all 

observed to have less fractional dose associating with those cell types. Endothelial cells and 

fibroblast/other are relatively similar.  

3.4.6 In vivo two photon microscopy 

 Flow cytometry is a powerful tool, but is unable to give a definitive picture of how the particles are 

interacting with the 3-dimensional architecture of the tumor. For that, in vivo two-photon microscopy was 

used to visualize fluorescent particle distribution within LKB498 tumors. To collect baseline information, 

the contralateral ear of a tumor-bearing mouse was used. Using 80 x 320 nm particles as before and a 

40mg/kg dose, particles were injected intravenously. Images were taken of the normal ear both before 

and 18 hours after injection of particles. This data suggests that in normal dermis, particle diffusion is 

quite limited to the area in or immediately around blood vessels (Figure 3.15). Particles can be seen 

contained in veins and aggregating in capillaries. From this baseline information, tumored ears were 

serially imaged following particle injection. Images were collected pre- and post-injection. This data 

reveals that particles are visible within the tumor as early as 10 minutes after injection (Figure 3.16a). 

Particle signal shows weak colocalization with cancer cells and strong colocalization with host cells, 

presumably immune or macrophage cells. (Figure 3.16a, b) Over time, nanoparticle fluorescence fades 

from the cancer cells and seems to stay constant in the host cells. (Figure 3.16a) 
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3.5 Discussion 

 To understand intratumoral distribution of nanoparticles we compared single-cell analysis to 

whole-organ accumulation using highly uniform PRINT nanoparticles. We observed a striking discordance 

between whole-tumor and individual cell analysis. Whole-organ quantification demonstrated dose-

dependent accumulation. In contrast, single-cell based analysis revealed that delivery to cells becomes 

dose-independent at higher doses for cancer cells. Flow cytometry also enabled us to examine individual 

populations of cells within the tumor. We observed that macrophages associate with more particles per 

cell as compared to cancer cells. In vivo imaging reinforces the idea that host immune cells colocalize 

with significant amounts of particles. Moreover, that diffusion of the particles from blood vessels is quite 

pronounced in the tumor as compared to normal dermis. Particle properties also influenced intratumoral 

particle distribution as reduced particle size increased cancer cell association. 

 Single-cell assessment permits lineage-specific quantification of nanoparticle association. 

Biologically active membrane-impermeable cargo requires cell-specific delivery. The discrepancy 

between whole organ and single cell assessment limits the way accumulation experiments can be 

interpreted. A possible reason for this is that at higher doses, particle accumulation is predominantly in 

the extracellular space. A plausible explanation for this is that cells near blood vessels have a limit to their 

capacity to associate with particles. Thus, particles at higher doses continue to be deposited into the 

extracellular space. Secondarily, despite the low abundance of macrophages within the tumor, the 

fraction of dose going to the macrophages may be disproportionate due the high per cell association of 

macrophages. This fact was visually supported by the in vivo two-photon imaging as Td Tomato 

expressing cells had low colocalization of particles, whereas host cells, presumably macrophages had the 

brightest fluorescence. This could be due to macrophages being near the available blood vessels or 

diffusion into the tumor itself. The declining or disappearing of particle signal in the cancer cells could be 

attributable to multiple processes:  particle degradation, cancer cell mitosis, or cancer cell death. The 

particles have covalent carbon-carbon bonds making degradation of the particle a slow process and an 

unlikely culprit. Cancer cell death is also unlikely due to the numerous in vitro studies showing negligible 

cytotoxicity of this particle type across many cancer types. Thus, it is most likely cancer cell mitosis that 

causes a dilution effect of the particle fluorescence.  
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 Use of PRINT nanoparticles allows us to carefully examine the influence of particle properties on 

cell association. One factor we examined was particle size. Reduction in particle size had a seemingly 

specific effect on increasing cancer cell association. Since an equivalent dose (by mass) of a smaller 

particle will yield greater numbers of particles, it is possible that the increased number of particles will 

augment delivery of the particles beyond the capillary bed of the tumor. Smaller sized particles may also 

penetrate the tumor more efficiently, coming in contact with more cancer cells. Nonetheless, this study 

supports our hypothesis that particle-specific features will influence intratumoral distribution and these 

features could be manipulated to target cell populations in tumors and organs. Mean fluorescence 

intensity was similar for both sized particles indicating that a similar mass of particles is contained in each 

cell. For a given mass, there are roughly 9.6 times as many 55 x 70 nm particles as compared to 80 x 320 

nm particles. Hence, for the mean fluorescence data it seems to indicate that each cell contains a similar 

mass of particles, though roughly 9.6 times greater number of 55 x 70 nm particles in each cell than 80 x 

320 nm particles. The role that particle number plays in cell association is unclear from these studies. 

Moreover, the role that particle number plays in efficacious delivery of therapeutics is quite opaque. 

Greater numbers of particles may provide greater diffusive force into the tumor. It is possible that large 

numbers of particles may decrease the clearance of particles from the blood, allowing greater contact 

with cancer cells. Clearly, from the 80 x 320 data there is a limit to the influence that particle number has 

on cell association. What contribution particle number has on increased association in addition to particle 

size is difficult to discern from the experiments here. That the greater number of 55 x 70 nm particles 

present at a given mass is solely responsible for the increase in association seems unlikely, but may play 

a role for the difference in association observed here. 

 Route of administration also seemed to play a role in the relative association of the various cell 

types. Intratumoral administration was observed to shift particle distribution to cancer cells and away from 

phagocytic cell types like macrophages, neutrophils, and other leukocytes. Most of the animals in the 

intratumoral group were unable to contain the full volume of particles administered. That the data shows a 

significant shift despite this experimental issue is compelling and suggests that the actual benefit may be 

greater than observed here.  
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3.6 Conclusions 

 In conclusion, we have developed an approach to quantify specific nanoparticle uptake across 

the cellular compartments that constitute a tumor. Moreover, we demonstrated that particle characteristics 

can influence the association with these compartments. While flow cytometry is a powerful technique, in 

this application it is unable to discriminate whether the particles are surface bound or internalized in cells. 

The analysis of nanoparticle accumulation on a cellular level using two photon in vivo imaging supports 

the conclusions made by flow cytometry. Importantly, these experiments demonstrate that organ-level 

analysis of accumulation does not completely correlate with particle association with cells. We suspect 

that the difference results from deposition or retention of nanoparticles in the extracellular space. Cellular-

level quantification is particularly relevant when delivering cargo that depends on an intracellular 

mechanism. 
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Figure 3.1 SEM and DLS of 80x320nm Hydrogel particles conjugated with DOTA 

SEM image of 80x320nm particles, with resulting DLS values in the top left corner.  
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Figure 3.2 Accumulation of particles in tumors as measured by 64Cu radioactivity 

A) Calculated percent injected dose for each organ. B) Calculated amount of nanoparticles contained 

within the tumor for each dose administered. C) Calculated amount of nanoparticles contained within all 

organs for each dose administered. All error shown is ± SD (N=4). 
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Figure 3.3 Flow cytometry gating scheme for analysis  

Pictorial representation of flow cytometry gating scheme for cell population identification. Representative 

histograms are shown for helpful reference. In single color histograms, the grey line is the FMO control, 

with the black line representing a sample. 
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Figure 3.4 Resulting proportion of cell populations detected from gating scheme 

After gating, the percentage of each cell population was expressed as percentage of all gated live cells. 

This data represents two experiments, encompassing particle and non-particle dosed animals, with the 

combined data shown here. The error is ±SD (N = 32). 
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Figure 3.5 Particle association as a function of dose 

Particle association for each sub-population was determined across the 4 dose groups and quantified 

using the sucrose administered animals as the particle FMO. Association is expressed as the percentage 

of particle positive cells for each sub-population. A representative histogram is shown to the left of the 

quantitation. Error shown is ±SD (N=4 per dose group). The * symbol represents p<0.05 vs 0mg/kg and # 

represents p<0.05 vs 12.5mg/kg dose. 
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Figure 3.6 Mean fluorescence intensity when different particle doses are administered 

Quantification of the relative fluorescence in each particle-positive population as gated and quantified in 

Figure 3.5. 
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Figure 3.7 Distribution of cell-associated particles as a function of particle dose 

Using the same dataset generated in Figure 3.5, the percentage of total fluorescence in each population 

relative to the whole sample is shown here. This gives a relative measure of the percent of cell-

associated particles contained within each population. The error is ±SD (N = 4 per dose). 
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Figure 3.8 SEM of 55x70nm particles 

SEM images were taken of the 55x70nm particles used in subsequent experiments. 
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Figure 3.9 Quantification of the particle association for differently sized particles 

Animals were administered either 80x320nm or 55x70nm particles. Gating and quantification of 

association was performed as shown in previous figures. Error shown is ±SD (N=6 per group). The * 

symbol represents p<0.05 vs Sucrose and # represents p<0.05 vs 80 x 320 nm particles. 
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Figure 3.10 Mean fluorescence intensity when administering differently sized particles 

Quantification of the mean fluorescence of the particle positive cells as determined in figure 3.9. Error 

shown is ±SD (N=6 per group). 
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Figure 3.11 Distribution of cell-associated particles as a function of particle size 

Using the same dataset generated in Figure 3.9, the percentage of cell-associated particles contained 

within each sub-population, as measured by fluorescence, as a function of particle size. Error shown is 

±SD (N=6). 
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Figure 3.12 Particle association as a function of route of administration 

Intravenous injection (blue bars) and intratumoral injection (red bars) was compared. The percent of 

particle association was calculated as previously stated.  Error shown is ±SD (N=6). The * symbol 

represents p<0.05 vs Sucrose and # represents p<0.05 vs the IV dose. 
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Figure 3.13 Mean fluorescence in each sub-population as a function of route of administration 

The mean fluorescence of the particle-positive population was calculated as described previously. Error 

shown is ±SD (N=6). The # represents p<0.05 vs the IV dose. 
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Figure 3.14 Distribution of cell-associated particles as a function of route of administration 

Using the same dataset generated in 3.12, the percentage of cell-associated particles contained within 

each sub-population, as measured by fluorescence, as a function of route of administration. Error shown 

is ±SD (N=6). 
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Figure 3.15 Two photon imaging of normal mouse dermis 

Tumor-bearing nude mice were injected with 40mg/kg 80 x 320 nm particles. Images were taken before 

and 18 hours post-injection. Secondary harmonics show the collagen fibers with Dylight 488 representing 

the particle fluorescence. Images are from a 25x objective, with a maximum intensity projection image (all 

images in the z-stack are shown as a single 2D image), and scale bars representing 50µm. 
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Figure 3.16 Two photon imaging of tumors 

Secondary harmonics are the collagen fibers, Dylight 488 is particle fluorescence, and tdTomato is 

expressed by the cancer cells. A) Tumors were imaged before, and 10 minutes, 24 hours, and 4 days 

post injection. In B) at 24 hours, 3x zoomed in images of two separate fields of view (top, bottom) show 

particle colocalization with cancer and host cells. Images are collected using a 25x objective. The images 

shown are maximum intensity projection images where all images in a z-stack are shown as a single 2D 
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image, with a 3µm space between each slice. The scale bars represent 50µm. These are representative 

images from a small cohort (N = 2-3) animals using the same laser power and instrument settings 

between animals and time points.  
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CHAPTER IV: CONCLUSIONS AND FUTURE DIRECTIONS 

 

 In the present collection of studies, we sought to elucidate the cellular distribution of 80 x 320 nm 

PRINT hydrogel particles within the tumor itself. These data show that certain cell types such as 

macrophages preferentially associate with more particles than all other cell types and contain the highest 

percentage of particle-positive cells. In contrast, cancer cells represent 90% of all cells within the tumor 

and have a small fraction of cells associating with particles. Though only a small fraction of cancer cells 

are particle-positive cancer cells are the large majority of particle-positive cells. Moreover, dose-

dependent association is seen at lower doses of particles (12.5, 40 mg/kg), but at higher doses 

(125mg/kg) the association shows a dose-independent plateau. Coincidentally, the amount of particles in 

each particle-positive macrophage increases dramatically. This suggests that as the cancer cells become 

saturated in their ability to associate with particles, macrophages increasingly become a sink for particles. 

 Radioactive studies of the whole organ suggest that at these three doses, particle accumulation 

of the tumor stays constant at around 1% of the injected dose. This demonstrates that accumulation in 

the organ is linear. Contrasted with the flow cytometry data, it suggests that the particles are 

accumulating in non-cell compartments such as the extracellular matrix.  

 These data also reveal that smaller particle size enhances the cancer cell association two-fold. 

Whether this is due to the physical ability of the particles to diffuse to other cells or a greater ability of the 

cells to associate with the particles is unclear. Route of administration also seemed to play a significant 

role in particle cell association. Injection of particles intratumorally increased cancer cell association and 

decreased macrophage, neutrophil, and other leukocyte association. Moreover, the cancer cells 

association with particles from the intratumorally injected animals showed a 2-3 fold increase in the mean 

fluorescence intensity, suggesting that the particles per cell was greatly enhanced. This experiment 

suggests that there is some sort of physical barrier such as diffusion between cells or the porosity of the 

blood vessels that is preventing 80 x 320 nm particles from reaching the maximum potential association. 
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 Several questions arise from this research. What percentage of the detected macrophages within 

the tumor are monocytes that have associated with a particle while in blood and come to the tumor to 

differentiate? This is an intriguing question as it may lend credence to the hypothesis that macrophages 

are trafficking particles to the tumor as opposed to particles accumulating there as posited by the EPR 

effect. A similar type of effect has been seen with the blood-brain barrier[1,2]. The addition of multi-color 

flow cytometry to this set of experiments could begin to answer fundamental questions about the 

trafficking of nanoparticles to specific sites, be it brain or tumor. Specifically, by fluorescently labeling the 

macrophages or using GFP-expressing macrophages, and incubating with fluorescently labeled 

nanoparticles (fluorophore A), this would allow for determination of not only whether those nanoparticles 

are being delivered to cells, but also a rough estimation of just how much of the nanoparticles are left in 

the macrophages itself as it would be possible to run a sample of the loaded macrophages when 

analyzing the experimental samples. Moreover, using the labeled/GFP-expressing macrophages would 

also quantify of the fraction of macrophages present in the tissue that are the injected/labeled ones, 

providing information on the effectiveness of your delivery strategy. Additionally, should any ofhter cells in 

the body take up those fluorescently labeled particles, it would suggest that the macrophages are either 

making physical contact or ejecting the nanoparticles from the cell, indicating successful delivery of the 

nanoparticles.  

 Furthermore, if one were to intravenously inject a second, differently fluorescently labeled 

nanoparticle (fluorophore B), one could compare the ratio of the fluorophore A to fluorophore B and 

determine the efficiency of intravenously injected nanoparticles as compared with macrophage-delivered 

particles.  

 Additional questions include what effect does particle number have on cell association? Would 

greater numbers of smaller particles be better for delivery than lesser amounts of larger particles? This is 

a highly difficult question to discern as any changes in particle numbers is confounded by particle size or 

physical amounts. And given downstream applications would be focused on efficacy and treatment, this 

leads to fundamental questions about particle-mediated delivery. Would it be better to deliver more, 

smaller amounts of cargo contained in particles or minimal, large amounts of cargo contained in large 
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particles? These questions directly impact nanoparticle efficacy and pharmacokinetics, which can be 

directly related to nanoparticle drug loading and dosing schedule[3,4]  

 One intriguing question strikes at the heart of flow cytometry assays using nanoparticles: what 

particle fluorescence is needed to discriminate between the cell that is without particles and the cell that 

contains a single particle? i.e. what’s the signal to noise or how many particles does it take to be 

considered particle-positive? Clearly in this data, the particle fluorescence is unable to discriminate to 

such an extent, but would play a large influence in accurate quantitation of the amount of association. 

 Obviously, there is still much work to be done. I have only used one type of enzymatic method in 

order to dissociate my tumors. There are a variety of enzymatic and physical methods with which to 

accomplish the same task. It may be interesting to compare and contrast the resulting cell populations 

and association as a function of the method used.  

 There are many other factors of particles not included in these studies which would be of interest 

and benefit. A basic particle characteristic like shape may reveal interesting observations. Certainly 

Mitragotri and other others have shown shape to impact the clearance and circulation time of particles[5-

12], however, specific and controlled insight into how that may affect delivery and interact with cells is 

less well understood. Other characteristics like charge, composition, or a broader range of sizes may also 

reveal important biological insights, particularly size. In comparing size it is important to note the role that 

the inherent brightness of the particle will play in detection of the particles by fluorescence. It is common 

to dope the particle by wt% and for different sizes, this gives a different physical amount of fluorophore 

per particle. More careful analysis of this parameter may be required to cleanly test nanoparticle 

hypothesis comparing size using fluorescence. Though it would be difficult to control for particle 

brightness, for a given size, determining the dose at which cell association reaches a maximum and 

whether that maximum changes in comparison to other sizes may give particular fundamental biological 

insight into tumor pore size and diffusability of the particles. This kind of sub-organ cellular analysis may 

also help elucidate whether the prevailing hypothesis about targeted particles is correct. The prevailing 

wisdom is that targeted particles only assist in having cells endocytose particles as opposed to 

accumulating within the organ. Flow cytometry would be able to more directly answer this question in 

vivo. In addition, if something fluorescent and detectable by another sensitive method (i.e. quantum dot 
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loaded particles or fluorophore + drug loaded particles) were used, it may be possible to flow sort the 

particle-positive cells from each cell type and then directly quantify the amount of particle per cell using 

the cargo as a surrogate measure. Though it would be nearly impossible to calculate a percent injected 

dose due to not knowing the maximal number of cells in a tumor, this method would allow for a direct 

quantitative comparison of amount of particles per cell. Alternatively, if the particles were large enough, it 

would be possible to simply run a volume of particles directly on the flow cytometry and quantify the 

average fluorescence. In this way, a particle number and average fluorescence could be determined with 

mass being constant. The DeSimone lab has had difficulty analyzing individual 80 x 320 nm particles on a 

flow cytometry(data not shown), but it may be possible for larger particles. The less attractive alternative 

would be flow sort and calculate the amount of particles per cell using a standard curve of particles spiked 

into cells from an uninjected animal. This approach may be labor-intensive, but would be the only way to 

determine how much particles were in contained in each cell for smaller, unloaded particles. 

 It may also be beneficial to extend all this approach to other models, especially to answer more 

fundamental questions about the EPR effect and nanoparticle delivery. One experiment that was 

conducted was to examine what the effect of circulation time on particle association would be. Circulation 

time is presumed to influence the EPR effect and thereby accumulation within tumors. Liposomal 

encapsulated Clodronate (ClodrosomeTM) has been previously found to selectively kill circulating 

macrophages, thereby creating long-circulating nanoparticles[13-16]. For this experiment, Clodronate was 

injected into the peritoneum daily for three days before administering particles. Interestingly, when 

ClodrosomeTM was administered, the percentage of cells associating with particles decreased (data not 

shown). The most likely explanation is that the cancer cells that normally take up particles also took up 

the ClodrosomeTM and subsequently died. Optimization of a dosing protocol may allow this experiment to 

be successful. Alternatively, dosing anti-monocyte antibodies or siRNA targeted natural uptake receptors 

present on their surface, though expensive, may also help answer this question. 

 Cellular level analysis may be beneficial to understanding where and how to best control the 

application of nanomedicine for the treatment of solid tumors. Our data show a distinct profile of the 

distribution of particles within an organ. It is hoped that these data will provide a basic understanding that 

will enhance delivery of therapeutic-loaded particles to obtain a therapeutic effect. Furthermore, this 
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approach can serve as a template for a standard type of analysis performed by other nanomedicine 

scientists. One day, regular clinical use of nanomedicines may be standard practice, but ensuring a solid 

grasp of the fundamentals will be key. 
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