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ABSTRACT

Rebecca Lynn Rodd: Attenuation Tomography of Sierra Negra Volcano
(Under the direction of Jonathan M. Lees)

The first fine-scale image of the shallow magma system beneath Sierra Negra is de-

termined using attenuation tomographic methods. The t∗ spectral decay method for

P-wave phases was used to highlight regions of high Q−1p which suggest the presence of

magma melt. High Q−1p anomalies, ranging from 0.005− 0.04, are concentrated beneath

the caldera from 0.5− 10.5 km depths. The high attenuation is interpreted as a zone of

magma accumulation. Modeling of caldera deformation indicates a magma sill or flat-

topped diapir at 2.1 km depth of unknown thickness. The attenuation model supports

the diapir model.
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CHAPTER 1.

Introduction

Sierra Negra is one of the most active volcanoes in the Galápagos Archipelago. Erup-

tions occur approximately every 15 years, but seismicity is a continuous feature during

eruptive and non-eruptive periods. Local seismicity at Sierra Negra was recorded during

two time periods, from 1999-2003 and 2009-2011. These data sets have been used to

produce abundant geophysical studies on the Galápagos that have furthered our under-

standing of the subsurface structure beneath the islands and the formation and growth

of hot-spot volcanism.

Geodetic modeling of deformation indicates a shallow magma reservoir that controls

the deformation, faulting, and eruptive behavior of Sierra Negra. The scales of previous

studies are too large to image such a feature. The target of this project is to image

the subsurface beneath Sierra Negra using attenuation tomography to determine the

geometry and thermal properties of the shallow magmatic system.

The following topics will be covered:

• Chapter 2: Brief review of geology and geophysics of Galápagos and Sierra Negra

Volcano

• Chapter 3: Review of seismic attenuation and methodologies for measuring atten-

uation

• Chapter 4: Imaging the attenuation structure beneath Sierra Negra

1



CHAPTER 2.

Geologic Background

2.1 Galápagos Archipelago

The Galápagos Archipelago is a hotspot volcanic system consisting of 15 islands

constructed on a large submarine platform. It is located on the Nazca ridge approximately

1000 km west of Ecuador and 200 km south of the Galápagos Spreading Center (GSC)

(Figure 2.1). The Nazca ridge is migrating eastward perpendicular to the GSC spreading

motion (Figure 2.2). Geochemical and geophysical evidence indicate that the archipelago

has interacted with the GSC in the recent past.

2.1.1 Mantle Plume

The temporal and spatial correlation with eastward migration (i.e. younger in the

west), He3/He4 isotopic signatures, and low-seismic velocity zone penetrating into the

upper mantle [Villagomez et al., 2007] suggest a mantle-plume beneath the archipelago.

Hotspot-ridge interaction models predict that the plume deflects in the direction of plate

motion and that transportation of plume material occurs near the base of the thermal

lithosphere. Surface-wave tomography results reveal the plume, centered at 91◦ W, de-

flecting towards the GSC at depths > 100 km, almost perpendicular to plate motion

(Figure 2.3). As a result, the plume axis is further northwest than predicted for viscous

coupling between plate motion and plume [Villagomez et al., 2007, 2014]. Villagomez

et al. [2014] attributes these observation to lack of viscous coupling between plume and

plate motion.

Geochemical observations of the GSC indicate strong plume signatures, even greater

than that of the archipelago. It is hypothesized that transport of plume material towards
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the GSC occurs in the deeper asthenosphere resulting in the plume geochemical signature

at 91◦ W on the GSC.

2.1.2 Lithosphere

The base of the lithosphere beneath the Galápagos is defined as the bottom of the

high-velocity lid from surface-wave tomography [Villagomez et al., 2007] and the top of

the melt-column depth from geochemical modeling. Tomography results indicate variable

lithosphere thickness, thicker (∼ 70 km) in the west proximal to the plume axis (southwest

of Fernandina Island and northwest of Isabella Island) and thinner (∼ 40 km) in the east

and north [Villagomez et al., 2007]. Estimates from geochemical modeling corroborate

these estimates [Villagomez et al., 2007] with ∼ 60 and ∼ 45 km thickness in the west and

east, respectively, and local lateral fluctuations up to 15 km [Gibson and Geist , 2010].

Although conductive cooling can explain an increase in thickness moving away from

the GSC (i.e. older lithosphere is thicker), the thickness is greater than expected for

a thermally-defined lithosphere. A dehydrated and iron depleted lithosphere with melt

injection could explain the thicker lithosphere and slow seismic velocities [Villagomez

et al., 2007; Gibson and Geist , 2010; Rychert et al., 2014]. Abrupt migration of the GSC

southward could account for the heterogeneities in lithospheric thickness in the east, age

discontinuities, and plume isotopic signatures of the GSC [Gibson and Geist , 2010].

Large gradients in lithospheric thickness may produce the observed compositional

diversity of the Galápagos volcanoes. In the west, where lithosphere is thick but laterally

homogeneous, volcanic deposits tend to be compositionally uniform with incompatible-

trace element and depleted low-K tholeiitic basalts. In the east, where lithosphere is thin

and laterally heterogeneous, volcanoes are compositionally diverse, ranging from depleted

(MORB-like) to enriched [Gibson and Geist , 2010].
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2.1.3 Mohorovicic Discontinuity

The depth of the Moho beneath the Galápagos Archipelago is still debated. Receiver

function results identify a high-velocity increase at 11 ± 7 km depth [Rychert et al.,

2014]. However, body-wave tomography did not image an impedance boundary at this

depth [Tepp et al., 2014]. Another velocity increase was imaged at 37 km depth [Rychert

et al., 2014] consistent with surface wave tomography results [Villagomez et al., 2007,

2014]. The current model suggests multiple impedance boundaries that are attributed

to overplating and underplating of magmatic material on and/or beneath the pre-plume

crust.

2.2 Sierra Negra

Sierra Negra is one of the most voluminous and active volcanoes in Galápagos Archipelago.

It has a shallow, elliptical caldera (7 x 10 km) and sinuous ridge formed from near-vertical

normal faults that run roughly parallel to the eastern and southern caldera [Reynolds

et al., 1995]. The shallow caldera and ridge feature are unique to Sierra Negra. On

average, eruptions occur every 15 years and produce 1 · 106m3

yr
deposits [Reynolds et al.,

1995].

Observations and modeling from geodetic studies indicate the caldera floor has been

actively deforming since at least 1992. The deformation is characterized by radial doming

with occasional asymmetry due to faulting along the southern sinuous ridge. During 1997-

1998, asymmetric deformation led to 1.5 ± 0.2 m displacement (Figure 2.4). Modeling

suggests that episodic intrusions from a deep source pressurizes a flat-topped magma sill

or diapir at 2.1 km depth, causing domed inflation, trapdoor faulting, and often magma

extrusion [Amelung et al., 2000; Jonsson et al., 2005; Yun et al., 2006; Chadwick et al.,

2006; Geist et al., 2008]. The geometry of the top of the diapir is the same as the sill.

Results indicate that the lower extent of the reservoir does not control deformation. As

a result, the dimension and geometry of the reservoir are unknown. Understanding the

geometry of this reservoir would shed light on potential eruptive volumes and locations
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of surface rupture.

During the most recent 2005 eruption, deflation occurred due to the extrusion of

150 ·106 m3 volume of magma from the shallow reservoir followed by re inflation after the

eruption [Geist et al., 2008]. Ongoing inflation in conjunction with high caldera seismicity,

including evidence of magma intrusion south of the caldera recorded as recently as 2011

[Tepp et al., 2014], indicate that the shallow magma reservoir and deeper source is a

persistent feature.

Travel-time tomography identified a patchwork of high- and low- Vp anomalies beneath

Southern Isabela Island (Figure 2.5) . These results were best reconstructed by a 15 km

diameter low Vp region with superimposed volumetrically smaller, lower Vp anomalies.

This body is interpreted as a 15 km wide zone of magma accumulation beneath the

caldera from 5.5 − 15 km depth. The Vp model could not resolve features above 3 km

depth, such as the proposed shallow reservoir [Tepp et al., 2014].
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Figure 2.1: Reference map of Galápagos Islands relative to South America. Image is
from Yun et al. [2006].
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Figure 2.2: Map of Galápagos Islands with Galápagos Spreading Center (GSC) delineated
north of the archipelago. Arrows indicate the direction of plate motion. Image is from
Geist et al. [2006].
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Figure 2.3: Results of tomographic inversion for S-wave velocity structure derived from
teleseism events. Color scale denotes the percent deviation from the starting model. (a-
c) Map-view of horizontal section at (a) 40 km (b) 80 km and (c) 200 km depth. (d)
East-west cross-section at 0◦45′ S. (e) North-south cross-section at 91◦ W. Dashed lines
in (a-c) indicate locations of cross sections (d-e). Image and caption are from Villagomez
et al. [2014].

8



Figure 2.4: Radar interferograms of Sierra Negra volcano showing uplift during three time
periods (a) 1992-1997 (5.3 years, descending orbit) (b) 1997-1998 (1.1 years, descending
orbit) (c) 1998-1999 (0.5 years, ascending orbit). Each color cycles represents 5 cm LOS
displacement. The deformation pattern during the first and third time period is similar,
but is markedly different during the intervening period. In (b) the interferometric phase
is continuous across the the pre-existing fault in the southern part of the caldera, the
location of the proposed trapdoor faulting. This image and caption are from Amelung
et al. [2000].
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Figure 2.5: P-wave velocity model of the Sierra Negra region of Isabela Island in the
Galápagos at depths with the best resolution. Color scale shows the percent variation of
Vp with respect to Table 4.2 at each respective depth. Contour lines are in steps of 2%.
The thick black line outlines southern Isabela Island and the caldera of Sierra Negra.
Crosses indicate coarse grid points. Image and caption are from Tepp et al. [2014].
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CHAPTER 3.

Seismic Attenuation

Seismic attenuation is the reduction of amplitude of a propagating seismic wave. Am-

plitude reduction can occur due to redistribution or loss of energy. Geometrical spreading

and scattering lead to redistribution of energy. In these processes, the integrated energy

of the total wave field remains constant. Geometrical spreading is the exponential de-

cay of amplitude with radius, r. Scattering attenuation is energy partitioning caused by

seismic waves propagating through heterogeneous medium.

Anelastic or intrinsic attenuation is the loss of energy of a seismic wave due to internal

friction. There are several physical mechanisms that have been proposed to explain intrin-

sic attenuation including grain or crack boundary sliding and fluid-filled cracks. Frictional

sliding along grains and/or cracks predicts that attenuation is frequency-independent

across the seismic frequency band [Walsh, 1966; Sato and Fehler , 2009]. Experimental

studies on fluid-filled cracks and pores effect on attenuation have varying results [Sato

and Fehler , 2009]. It is clear that fluid-motion within pores is one the primary causes

of absorption [Eberhart-Phillips et al., 2005; Winkler and Murphy , 1995]. However, ab-

sorption will vary by pressure, temperature, fluid content, grain-size, fracture-size, etc.

[Kampfmann and Berckhemer , 1985; Jackson, 1993; Jackson et al., 2004; Faul and Jack-

son, 2005; Jackson and Faul , 2010]. Characterizing the effects of these rock properties

on attenuation is an ongoing problem in experimental rock physics.

Attenuation is described by the inverse of the quality factor, Q, which is the fractional

energy loss per cycle. Total attenuation can be described as a summation of scattering

and intrinsic attenuation, Q−1 = Q−1s + Q−1i . Laboratory experiments suggest that

contributions of each are roughly equal [Eberhart-Phillips et al., 2005]. However, previous
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volcano attenuation studies show that scattering dominates at frequencies greater than

10 Hz [Del Pezzo et al., 2006; De Siena et al., 2009].

Using Q, the amplitude of a seismic wave is given by,

A(x) = A0e
−ωx
2cQ (3.1)

where x is the distance traveled, c is the seismic velocity, and ω is the frequency. To

simplify this equation, the attenuation operator, t∗, is often used instead of Q, where t∗

is related to Q by,

t∗ =

∫
raypath

dt

Q(r)
(3.2)

Given Equation 3.2, Equation 3.1 is updated to

A(x) = A0e
−ωt∗

2 (3.3)

This equation implies that higher frequencies are more attenuated. This is true for

scattering and intrinsic attenuation [Sato and Fehler , 2009]. When a pulse travels through

an attenuating body, it will gradually lose the higher frequencies. Therefore, higher

frequencies in the amplitude spectrum will be reduced. If we assume the phase spectrum

is unchanged, then t∗ will be a symmetric pulse for a δ-function source [Shearer , 2009].

However, the front edge of the pulse will arrive before the theoretical arrival time [Shearer ,

2009; Aki and Richards , 2002]. As a result of this complication, existence of attenuation

requires that velocity be frequency-dependent even if Q is frequency-independent [Liu

et al., 1976; Aki and Richards , 2002].

Q is often approximated as being constant over a given frequency band, usually

estimated between 0.001−0.1 Hz. This assumption fails at low and and high frequencies.

These end-member values depend on the model or scale of observation. For an absorption

band model, the upper frequency fall off is between 0.5-2 Hz [Warren and Shearer , 2000].
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Mineral physics experiments suggest that Q is related to frequency by Q−1 ∼ ωγ

where γ ≈ −0.2 to −0.3 [Berckhemer et al., 1982; Jackson et al., 2002]. Attenuation

tomography studies have conflicting results on the frequency-dependency of Q. Bellis

and Holtzman [2014] suggests the frequency-dependency of Q could affect measurements

of Q−1. This problem should be considered when approaching attenuation tomography

studies.

3.1 Measuring Attenuation

There are several methods for measuring attenuation for tomography studies. The

following methods will be discussed briefly:

1. t∗ Spectral Decay

2. Coda-Normalization

3. Coda Lapse-Time

4. Coda Wave Envelope

This is not an exhaustive list of attenuation tomographic methods.

3.1.1 t∗ Spectral Decay

t∗ spectral decay is the most common method for measuring total Q−1. As described

above, when a seismic wave travels through an attenuating region, high-frequencies are

lost. The amplitude spectra contains this high-frequency fall-off and is used to determine

t∗. The spectrum also contains high-frequency fall-off of the source and this must be

considered in spectral modeling. Another concern with this method is when medium

heterogeneity is too high, coherent direct-wave information is disrupted and t∗ atten-

uation calculations are largely affected [De Siena et al., 2013]. Further details on this

method are provided in Chapter 4.

13



3.1.2 Coda-Normalization

Coda-normalization (CN) method is used to determine average Q−1 using direct and

coda energies [Aki , 1980; Yoshimoto et al., 1993; Del Pezzo et al., 2006; De Siena et al.,

2009, 2014a]. Path attenuation is calculated by measuring the direct phase-arrival energy

and the coda energy for a given lapse time, tc. When energy is converted to amplitude,

the following relationship is obtained [Aki , 1980; Del Pezzo et al., 2006],

ln(
Asij(f)

Acij(f, tc)
) · rij = K(f, tc)− πfr

∫
rij

dl

v(l)Q(l)
(3.4)

where Asij and Acij(f, tc) are the spectral amplitudes of the S and coda waves, re-

spectively, K(f, tc) is constant dependent on the average medium properties, v(l) is the

velocity along the ray path, and rij is the ray length. This method assumes homogeneity

of the scattering regime at a given frequency and lapse time. De Siena et al. [2014a]

has developed a MatLAB program of a multi-resolution CN method for application to

high-scatter regimes, such as volcanic settings.

3.1.3 Lapse-Time

A major problem with spectral decay method is the convolution of source and at-

tenuation in the amplitude spectra. Coda wave envelopes are independent of source

location and orientation at certain epicentral distances and can provide a simple and

useful method to measure attenuation [Aki and Chouet , 1975]. In a single scattering

model, the coda decay is modeled as,

E(tc, f) = S(f)t−2c e
−2πft
Qc

(3.5)

where E is the power spectrum, S(f) is a frequency-dependent source or site term,

tc is the lapse time, and f is the frequency. In a single-scatter model, Qc depends

on scattering and absorption [Shapiro et al., 2000]. More recently, generation of coda
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waves in a multiple-scattering regime was confirmed. This implies at long lapse time,

coda waves follow a diffusive regime [Shapiro et al., 2000]. Calvet and Margerin [2013]

suggests that given a certain lapse time and window length, Q−1i can be approximated

from Q−1c . Therefore, this method offers a way to quantify the contribution of absorption

to the total attenuation.

3.1.4 Coda Wave Envelope

Coda waves are interpreted as the arrival of scattered waves due to heterogeneities

between source and receiver [Aki , 1969]. Therefore, variation in the coda power envelope

can be used to estimate spatial variation in scattering [Nishigami , 1991]. The coda

energy density , E(x, t) for a receiver at position x and lapse time t can be modeled by

assuming single isotropic scattering in a medium filled by Nscat number of randomly

and uniformly distributed scatters at position, z [Tramelli et al., 2006].

Eu(x, t) =
Wg0

V0(4π)2
e−2πftQ

−1
C ×

Nscat∑
i=1

δ(t− ra(zi) + rb(zi)

V0
)

1

r2a(zi)r
2
b (zi)

(3.6)

where g0 is the scattering coefficient, ra is the source-to-scatter distance, rb is the

scatter-to-receiver distance, δ is the Dirac delta function, W is the total energy at the

source, f is the frequency, and Q−1C is the total inverse Q-coda. When distribution of

scatterers is hetergeneous, g0 is dependent on z. Equation 3.6 is modified to,

Enu(x, t) =
Wg0

V0(4π)2
e−2πftQ

−1
C x

Nscat∑
i=1

δ(t− ra(zi) + rb(zi)

V0
)

αi
r2a(zi)r

2
b (zi)

(3.7)

where g0αi = g(zi).

For small distances from the earthquake hypocenter, Equation 3.7 is approximated

as,

Eu(t) '
Wg0
t2

e−2πftQ
−1
C (3.8)
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Using this approximation, estimates of g0 and Q−1C can be determined. αi can be

calculated by solving the linear system:

εnu(xm)jk
εu(xm)jk

=

∑Nscat
i=1 (αi/r

2
amk(zi)r

2
bmk(zi))∑Nscat

i=1 (1/r2amk(zi)r
2
bmk(zi))

(3.9)

where εnu(xm)jk and εu(xm)jk are the integrated energy density from Equations 3.6

and 3.7, respectively. The scattering coefficient, g(zi), is solved by multiplying g0 and

αi. Refer to Nishigami [1991] and Tramelli et al. [2006] for complete discussion of this

method.

3.2 Volcano Attenuation Studies

Attenuation is an important tool for studying volcanic systems. Although veloc-

ity studies are more common and better understood, attenuation is more sensitive to

rock properties, in particular temperature gradients and fluid permeation. The methods

described above and others have been used to image the attenuation structure of vol-

canoes. Modeling is often difficult due to data noise and high scatter, particularly in

volcanic cones where signal coherence is quickly lost over a short time period. It is best

to model attenuation using multiple methods to qualify the accuracy of the result. t∗

spectral decay and coda-normalization methods both determine total Q−1. Therefore,

results should be similar across the methods. Furthermore, lapse time and coda envelope

methods could be used to quantify the contribution of scattering and absorption to the

total attenuation. Multiple-method studies can distinguish differences in the causes of

high attenuation signal (i.e. scattering heterogeneities vs. fluid-filled pores). Multiple-

method volcanic studies have successfully imaged zones of magma accumulation, fluid

permeation, and magma ascent [Del Pezzo et al., 2006; De Siena et al., 2009, 2010, 2014b;

Ohlendorf et al., 2014].
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CHAPTER 4.

Attenuation Tomography of Sierra Negra

4.1 Introduction

In this study, attenuation tomography was used to create the first fine-scale seismic

image of the shallow magma reservoir beneath Sierra Negra. Although geodetic studies

indicated the presence of a shallow magma reservoir at 2.1 km [Amelung et al., 2000;

Jonsson et al., 2005; Yun et al., 2006; Chadwick et al., 2006; Geist et al., 2008], this

structure was not imaged seismically prior to this study.

Seismic attenuation is strongly dependent on temperature and fluid content [Kampf-

mann and Berckhemer , 1985; Jackson, 1993] and is particularly useful in studying vol-

canic media where high attenuation is interpreted as magma accumulation [Lees , 2007].

The spectral decay method is used following a similar approach as Lees and Lindley

[1994] to image the attenuation structure beneath Sierra Negra. Despite difficulties in

modeling and high scatter, this method has successfully imaged attenuation structures

in various volcanic media (e.g. hotspot, composite volcano) [De Siena et al., 2009, 2010;

Koulakov et al., 2014; Ohlendorf et al., 2014; Lin et al., 2015]. We interpret our Q−1p

model in context of current Vp [Tepp et al., 2014], initial group velocity, Ug, derived from

ambient noise tomography [Seats et al., in prep, 2016], and geodetic models.

4.2 Data

We analyzed data from the SIGNET seismic array deployed on Isabela Island from

July 2009 to June 2011 in collaboration between Instituto Geofisico Nacional Escuela

Politecnica, University of Rochester, University of Miami, University of Idaho, and the

Charles Darwin Foundation. Figure 4.1 shows the 15 temporary broadband stations.

During service runs in 2010, stations GS08, GS14, and GS16 settings and/or locations
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were changed and were renamed to GS8A, GS18, and GS17 to reflect these changes.

Sampling frequency was 40 Hz and 50 Hz for Guralp 3T and Nanometrics Trillium 120P

sensors, respectively. Refer to Table 4.1 for further station and equipment detail.

P- and S- wave phase arrivals and error bars were manually picked using the RCran

package, RSEIS [Lees , 2015a]. Earthquakes were located with Rquake package [Lees ,

2015b] using the P- and S- wave arrivals and the 1D velocity model from Tepp et al.

[2014] shown in Table 4.2 and Figure 4.2. Figure 4.3 shows the 309 (large circles) of

the 1727 recorded events that were used in the final inversion. Poorly located events

and events located outside the 30 x 30 km grid (black dashed line in Figure 4.3) were

excluded. Initially, a larger grid similar to Tepp et al. [2014] was used. This resulted in

clustering bias, smearing, and poor resolution beneath the caldera at shallow depths.
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Table 4.1: SIGNET array station information

Station Dates Active Latitude Longitude Instrument Hz)
GS01 2009/07/23-2011/06/13 -0.646600 -90.877700 CMG3T 50
GS02 2009/07/23-2011/06/14 -0.743400 -90.799700 CMG3T 50
GS03 2009/07/23-2011/01/15 -1.031200 -91.223000 CMG3T 50
GS04 2009/07/25-2010/06/21 -0.645800 -91.093000 CMG3T 50
GS05 2009/07/25-2011/06/15 -0.722400 -91.338100 CMG3T 50
GS06 2009/07/26-2011/06/15 -0.680400 -91.203900 CMG3T 50
GS07 2009/07/26-2011/06/16 -0.787700 -91.424700 CMG3T 50
GS08 2009/07/27-2010/06/21 -0.979200 -91.446800 Tril Comp 50
GS8A 2010/06/21-2011/06/17 -0.979200 -91.446800 Tril Comp 50
GS09 2009/07/24-2011/06/12 -0.782900 -91.110300 CMG3T 50
GS10 2009/07/23-2011/06/13 -0.837100 -91.091500 CMG3T 50
GS11 2009/07/26-2011/06/14 -0.947400 -90.974400 CMG3T 50
GS12 2009/07/26-2011/06/15 -0.859800 -91.019200 CMG3T 50
GS13 2009/07/23-2011/06/12 -0.777800 -91.092100 CMG3T 50
GS14 2009/07/29-2010/06/21 -0.808300 -90.970300 Tril120PA 40
GS15 2009/07/30-2011/06/19 -0.809500 -91.127300 Tril120PA 40
GS16 2009/07/31-2010/06/21 -0.842000 -91.184300 Tril120PA 40
GS17 2010/11/04-2011/06/15 -0.841100 -91.169600 Tril120PA 40
GS18 2010/11/07-2011/06/15 -0.809000 -90.971200 Tril120PA 40
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Figure 4.1: Map of southern Isabela Island and Sierra Negra Volcano (white-dashed
ellipse) with SIGNET array stations shown in light-gray triangles.

Layer Depth Vp (km/s)) Vs (km/s)
1 0 4.290 2.480
2 0.5 4.370 2.528
3 3 5.240 3.025
4 5.5 6.083 3.515
5 8 6.470 3.740
6 10.5 6.700 3.865
7 13.0 6.89 3.978

Table 4.2: 1-D velocity model used for earthquake location and background model for
body-wave tomography.
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Figure 4.2: 1-D velocity model used for initial earthquake locations and background
model for body-wave tomography by Tepp et al. [2014].
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4.3 Methodology

4.3.1 Spectral Decay Method

The 3-D attenuation subsurface structure was determined using the spectral decay

method in which t∗, the attenuation operator, was estimated for each ray path by model-

ing the amplitude spectrum of earthquake ground displacement. The observed spectrum,

Aij, of event i at station j is modeled as [Scherbaum, 1990]

Aij(f) = Si(f) · Ij(f) ·Rj(f) ·Bij(f) (4.1)

where f is the frequency, S(f) is the far-field source spectrum, I(f) is the instrument

response, R(f) is the site response, and B(f) is the absorption spectrum.

S(f) is modeled as

S(f) =
Ω0(

1 +
(
f
fc

)nγ)1/n (4.2)

where fc is the source corner frequency, Ω0 is the low-frequency plateau amplitude,

and γ is the fall-off of the displacement specra above fc.

The absorption along the ray path is described by

B(f) = e−πf
1−αt∗0 (4.3)

where t∗0 is the attenuation parameter and α is the frequency dependence of attenua-

tion.

Instrument response was removed prior to computing the amplitude displacement

spectra. Thus I(f) is not included in the spectral inversion. Unusual variation observed

in spectra for a single station and/or nearby stations would suggest a local site response.

Often this variation is observed as a bump in the amplitude spectra [Bennington et al.,

2008]. This behavior was not observed in the data and near-surface geology is not ex-

22



pected to vary significantly by station. Therefore, R(f) are not included in the spectral

inversion.

Substituting Equations 4.2 and 4.3 into Equation 4.1 produces,

A(f) =
Ω0e

−πft∗(
1 +

(
f
fc

)nγ)1/n (4.4)

t∗ = t∗0f
−α (4.5)

When n = 1, the model is equivalent to the f 2 Brune source model [Brune, 1970].

This model is assumed for several earthquake source studies [e.g Randall , 1973] and

spectral decay attenuation tomography [e.g. Scherbaum, 1990; Rietbrock , 2001; Eberhart-

Phillips and Chadwick , 2002]. We assumed a modification of the f 2 model with n = 2

[Boatwright , 1978; Abercrombie, 1995; Lindley and Archuleta, 1992; Lees and Lindley ,

1994] which produces a sharper corner and better fit to the spectra.

4.3.2 Computation of Amplitude Spectra

The amplitude spectra were calculated for all P-wave arrivals using the multi-taper

method of the fast Fourier transform (FFT) [Lees and Park , 1995]. The resolution of the

spectra is dependent on the sampling frequency and time window selection. Seismograms

with P-S time differences less than the selected time window were excluded. The data

set is dominated by shallow caldera events leading to small P-S times. Given the small

P-S times, a sampling rate of 40− 50 Hz is less than ideal for FFT.

Amplitude spectra were computed several times for 1, 2, 3, and 4 s time windows

to determine the best trade-off between spectral resolution and usable data. Increasing

the time window increased mean residual RMS (Figure 4.4). This was expected since

improved resolution allows for greater variability in the amplitude spectra. Figure 4.5

displays the variation in mean t∗ for several stations at varying time windows. There is
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no significant variation in t∗ suggesting that the window lengths resolve the same model.

The amplitude spectra were visually inspected as confirmation. Therefore, a 1 s time-

window was used to optimize the number of t∗ values. A noise spectrum was calculated

from a 1 s time window selected prior to the arrival. In order to ensure quality t∗ values,

only spectra with SNR > 2.5 across a continuous frequency band from 2 to 15 Hz were

allowed.

4.3.3 Spectral Modeling

The amplitude source spectra were modeled using Equation 4.4. It is not possible

to obtain a unique best fit solution with the five free parameters: γ, α, t∗, fc, and Ω0.

Therefore, γ and α were fixed, while initially fc, t
∗, and Ω0 were allowed to vary. γ is set to

a sequence of values between 0 and 3 with α = 0 for determine the optimum γ. Figure 4.6

corroborates previous findings that γ = 2 provides the best fit results [Boatwright , 1978;

Scherbaum, 1990; Lindley and Archuleta, 1992; Lees and Lindley , 1994; Abercrombie,

1995; Rietbrock , 2001; Eberhart-Phillips and Chadwick , 2002].

Although laboratory studies determined that seismic attenuation is a frequency-

dependent process which could affect t∗ results [Bellis and Holtzman, 2014], tomogra-

phy studies have conflicting results for α. Previous studies suggested that −1 < α < 0

(0 < α < 1 if using Q = Q0 ·fα [Lindley and Archuleta, 1992]) provides the best fit to the

amplitude spectra [Hough et al., 1999; Lindley and Archuleta, 1992; Sarker and Abers ,

1998]. Other studies found that frequency-independent Q (α = 0) produces the best fit

or an equivalent fit to frequency-dependent Q, in which case frequency-independent Q is

assumed for model simplicity [Scherbaum, 1990; Lees and Lindley , 1994; Rietbrock , 2001;

De Lorenzo et al., 2010]. Due to these varying results, spectral modeling was repeated

several times with α set to fixed values between −1 and 1. Figure 4.7 shows the residual

RMS of modeling for various α. Although attenuation results were similar for all α,

resolution and recovery varied significantly due to discrepencies in the amount of usable
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t∗ values. The mean residual RMS is minimized and number of usable t∗ is maximized

when α = −0.2. Therefore, α = −0.2 was used for the final inversion.

The Levenberg-Marquardt method was used to model the spectrum. Initially, t∗,

fc, and Ω0 were allowed to vary freely, with the exception that extremely low and high

outliers of fc were not allowed. Figure 4.8 displays box plots of the t∗ and fc by station

and colored by mean residual RMS of the initial model. Stations are ordered by distance

from the caldera. t∗ range from near 0 to 0.08. Stations further from the caldera have

higher median t∗ than nearby stations. Given a caldera event, stations further from the

caldera record information that traveled further which should result in greater t∗ (i.e.

more attenuated). Furthermore, stations near the caldera have high t∗ as well, which

could suggest high attenuation in this region. For complex and hetergeneous regions

such as a volcano, t∗ distribution is likely complex.

Initial modeling results in large fluctuations (2−15 Hz) in fc (Figure 4.8b). Assuming

similar source mechanisms, fc should be more constrained than indicated by initial mod-

eling. Figure 4.10 depicts the seismograms, spectra, and unconstrained modeling results

for the same event recorded at stations GS12, GS13, and GS14. fc varies by station in

the initial model, despite being a source parameter. This variability is likely due to a

trade-off between t∗ and fc which occurs when the two parameters are unconstrained

[Lees and Lindley , 1994].

Therefore, a second inversion was done, where fc was constrained to the mean fc for

all ray paths of an event. The mean fc was iteratively solved by limiting fc to within the

mean ± one standard deviation of the previous fc until convergence to a single solution.

A summary of the steps used to solve the constrained t∗ results is listed below.

1. Determine initial Ω0, fc, and t∗ by fitting two lines to spectra

2. Use the µ ± σ of the initial fc as bounds for search region for fc

3. Recalculate µ and σ for new fc
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4. Repeat steps 2 and 3 until fc converges to a single solution for all ray paths for the

event

5. Complete for all events

Figure 4.9 displays box plots of the t∗ and fc for the final constrained model. Con-

strained t∗ values are similar to the initial t∗ values. Variation in fc is significantly

reduced, but the mean residual RMS increased. Figure 4.11 depicts the seismograms,

spectra, and constrained modeling results for the same event and stations as shown in

Figure 4.11. When fc is allowed to vary freely, the model can better fit the data, but

variation in fc is physically infeasible (i.e. fc differs by ray path from a single source).

When fc is constrained, there is less freedom in modeling, but the results are physically

reasonable. The residual RMS histogram for the constrained model is shown in Figure

4.12. The mean residual RMS for all stations is low. A total of 2336 constrained t∗ values

were obtained. Only 930 of these t∗ values correspond to ray paths within the selected

grid region with a SNR > 2.5 and were used to determine Q−1p .
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Figure 4.3: Map of southern Isabela Island and Sierra Negra caldera (white-dashed el-
lipse) with SIGNET array stations shown in light-gray triangles. The black, dashed
rectangle outlines the grid boundary and the region in which earthquakes and stations
were limited. Earthquakes included in the inversion are shown as large circles colored
by depth. Excluded earthquakes are shown as small black circles. Stations GS12, GS13,
and GS14 are labeled and correspond to the seismograms and spectra shown in Figures
4.10 and 4.11. The other stations located within the grid boundaries are used in the
inversion, but are not labeled.
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Figure 4.4: Spectral modeling mean residual RMS for various stations as a function of
FFT window length.
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Figure 4.5: Spectral modeling mean t∗ for various stations as a function of FFT window
length.
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Figure 4.6: Residual root mean squared (RMS) from spectral modeling for various γ. The
residual norm is minimized when γ = 2. This is consistent with previous attenuation
tomography studies.
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Figure 4.7: Residual root mean squared values from spectral modeling for various α.
Although the sum of the residuals is minimized for α = −0.3, the mean of the residuals
is minimized and number of t∗ are maximized when α = −0.2. Therefore, α = −0.2 was
used for the final modeling.
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Figure 4.8: Box plot of (a) t∗ (b) fc distribution from unconstrained spectral modeling
colored by mean residual RMS.

32



●

●

●

● ●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

0
0.

02
0.

04
0.

06
0.

08

P
−

w
av

e 
t*

 (
s)

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●●●●

●

G
S

15

G
S

09

G
S

10

G
S

13

G
S

17

G
S

16

G
S

12

G
S

06

G
S

18

G
S

14

G
S

04

G
S

11

G
S

05

G
S

03

G
S

07

G
S

02

G
S

08

G
S

8A

2
4

6
8

10
12

P
−

w
av

e 
C

or
ne

r 
F

re
qu

en
cy

 (
H

z)

0.085 0.1 0.125 0.15 0.165

Mean Residual RMS

Figure 4.9: Box plot of (a) t∗ (b) fc distribution from constrained spectral modeling
colored by mean residual RMS.
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Figure 4.10: Examples of P-wave seismograms and spectra of the same earthquake
recorded at stations GS13, GS12, and GS14. The dashed lines on the seismograms
indicate the selection window for the computation of the fast Fourier transform. P-wave
spectra, unconstrained spectral fits, and noise spectra are shown by solid, dashed, and
dotted lines respectively. t∗, fc, and residual RMS are shown in the bottom right corner
of the spectra plot.
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Figure 4.11: Examples of P-wave seismograms and spectra of the same earthquake
recorded at stations GS13, GS12, and GS14. The dashed lines on the seismograms
indicate the selection window for the computation of the fast Fourier transform. P-wave
spectra, constrained spectral fits, and noise spectra are shown by solid, dashed, and dot-
ted lines respectively. t∗, fc, and residual RMS are shown in the bottom right corner of
the spectra plot.
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Figure 4.12: Residual root mean squared (RMS) of constrained spectral modeling results
by station.
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4.3.4 Q−1p Inversion

The attenuation, Q−1, can be determined from t∗ using

t∗ =

∫
raypath

1

Q(x, y, z)
· 1

v(x, y, z)
· dr(x, y, z) (4.6)

where v(x, y, z) is the 3-D velocity model derived from P-wave body-wave tomography

[Tepp et al., 2014]. Equation 4.6 was used to obtain a Q−1p model. The line integral was

discretized into 0.5 x 0.5 km blocks at depths of 0, 0.5, 3, 5.5, 8, 10.5, and 13 km, where

the attenuation is assumed constant in each block. When discretized, the line integral

can be represented by the general inverse problem,

Ax = b (4.7)

where

A =



l11·s1 l12·s2 l13·s3 . . . l1n·sn

l21·s1 l22·s2 l23·s3 . . . l2n·sn
...

...
...

. . .
...

ld1·s1 ld2·s2 ld3·s3 . . . ldn·sn


b =



∆t∗1

∆t∗2

∆t∗3
...

∆t∗d


(4.8)

The design matrix, A, is the raypath intersection with the model multiplied by the

slowness where lij is the length of ray path i in block j and sj is the slowness in block j. b

is equal to the difference between the predicted t∗ and the observed t∗. The background

attenuation model (see below for discussion) was multiplied by A to obtain the predicted

t∗. x is the Q−1p perturbations from the background model.

A 2D Laplacian regularization multiplied by a damping parameter was applied to

minimize curvature between nearby blocks and overcome noise levels. Several damping

parameters were tested to find the minimization of the residual norm and model length.
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Ray paths were weighted by SNR and t∗ residual RMS. t∗ were averaged for rays that

follow the same path so that clusters of earthquakes did not bias the inversion result.

Including regularization and weighting, Equation 4.7 becomes

W A

λΘ

x =

W b

0

 (4.9)

where λ is the damping parameter, Θ is the regularization matrix, and W is the

weighting matrix. LSQR was used to solve this inversion problem to obtain the Q−1p

perturbations [Paige and Saunders , 1982]. Negative Q−1p values were not allowed since

negative attenuation is physically unrealistic. This a priori constraint was included in

the iteration algorithm in LSQR (see Herman [1980]).

The following parameters needed to be determined before selecting the final model:

condition limit, iteration limit, background model, and damping parameter.

Condition Limit

The condition number is the ratio of the largest and smallest eigenvalues of a matrix.

When the small eigenvalue approaches 0, the condition number grows rapidly and the

system becomes ill-conditioned. This is common in seismic tomography inversions. LSQR

regulates the condition number through the parameter CONLIM. In an ill-conditioned

system, the perturbation values may converge to a solution, but can grow rapidly without

a stopping parameter. Thus, limiting the condition number and/or number of iterations

is important for determining the optimum solution. Figure 4.13 shows that residual

reduction occurs when CONLIM ≥ 106. Previous studies suggest an ideal CONLIM

value of 1
10
√
REPLR

for ill-conditioned systems. REPLR is the precision of the machine

floating point arithmetic. In this case, the ideal CONLIM is 6.71 · 106 which was used in

the final inversion.
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Iteration Limit

ITNLIM is an input parameter that limits the iteration number. LSQR will continue

to iterate until a different stopping parameter if not given an iteration limit. Several

inversions with varying iteration limits were tested. Figure 4.14 shows the iteration limit

versus residual norm of each inversion. Residuals are reduced by iteration 100. Figure

4.15 shows the residual reduction and model length trade-off for the various iteration

limits. ITNLIM equal to 50 optimizes residual norm and model length. However, we

selected ITNLIM equal to 100 in order to obtain the smallest significant residual reduction

while also limiting the model length.

Background Model

Tomography results are often dependent on the background model. In body-wave

tomography, variations in 1D model can result in varying anomaly patterns and absolute

velocities. Tepp et al. [2014] found that the 1-D model presented in Figure 4.2 was

optimal. In some cases, 1-D velocity models are derived from geophysical surveys (i.e.

refraction, gravity). A 1-D attenuation model beneath Sierra Negra does not exist.

Therefore, we searched for an optimal 1-D background model by running a series of single

iteration inversion with varying Qp background (Figure 4.16). Qp = 150 minimized the

model residuals.

A single iteration with background Qp = 150 was run and the mean Qp for each layer

was determined. The mean Qp of each layer was used as the new background model for

that layer in the following iteration. This process is repeated until the mean layer Qp

does not change significantly. This process produced mean Qp similar to Qp = 150 for

all layers. Therefore, a homogeneous background attenuation of Qp = 150 was used in

the final inversion.
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Damping Parameter

Several inversions for a sequence of damping parameters were determined using the

condition limit, iteration limit, and background model described above. The trade-off

between model length and residual norm was used to determine the optimal damping

parameter. Figure 4.17 shows the L-curve for the various inversions. The models did not

vary significantly for λ ranging from 0.1−5. In this range, λ = 0.75 optimized the model

length and residual norm. Therefore, it was used in the final inversion.
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Figure 4.13: Residual norm of inversions as a function of condition limit.
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Figure 4.14: Residual norm of inversions with varying iteration limits. Residuals are
reduced after 200 iterations.
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4.4 Synthetic Resolution Testing

Before interpretting a tomography model, resolution must be considered. The reso-

lution is limited by the frequency of the seismic signals and ray coverage [Lees , 2007].

When ray coverage is homogeneous and dense, resolution is good. Two methods were

used to estimate the model resolution: spike and checkerboard tests.

4.4.1 Spike Test

For the spike test, a Q−1p = 0.03 perturbation is added to a single block in a ho-

mogeneous near-zero background attenuation. Synthetic t∗ were computed through the

perturbed model and inverted to recover the perturbed spike. When resolution is per-

fect, the recovered spike will be the same as the input spike. As resolution decreases the

information will be smeared into surrounding blocks.

Spike tests were calculated and used to estimate resolution at various key points in the

model (Table 4.3; points in Figure 4.23b). Figure 4.18 shows one spike test result. The

left panel displays the recovered spike in 2-D. The resolution in the X- and Y- directions

was determined by measuring the number of blocks away frin tge block with the spike

that are perturbed multipled by 0.5 km. The right panel displays the same result in

3-D, where the Z-axis and color correspond to the recovered Q−1p . The spike is narrow

indicating that resolution is good in this block. Results indicate that resolution is best

within the caldera, particularly at shallower depths. Resolution outside the caldera varies

widely from 1− 7 km. Recovery of spikes is poor, never exceeding 10% (Table 4.3).

4.4.2 Checkerboard Tests

Several checkerboard patterns with varying dimensions of high and low perturbations

were created. Synthetic t∗ were computed through the perturbed models and inverted to

reover the Q−1p checkerboard model (Figures 4.19−4.21). A second set of checkerboard

tests were run with random noise added to the synthetic data prior to the inversion
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(Figure 4.22). Addition of noise does not significantly affect the recovered checkerboard

pattern, but recovery of the perturbed magnitudes is reduced at deeper depths.

Fine-scale (3 km) (Figure 4.19) and large-scale (6 km) (Figure 4.20) structures are

resolveable beneath and east of caldera from 0.5− 8 km depths. Resolution and recovery

decrease at depths > 8 km. Despite poor resolution and significant smearing, high and

low attenuation is observable down to 13 km depth. Depths > 13 km are not resolveable

and are not included in the results.
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Figure 4.18: Spike test recovery results of point 1 in layer 2 (0.5 − 3 km) shown in (a)
2D X-Y plot and (b) 3D plot with Z-axis corresponding to recovered Q−1p

Table 4.3: Resolution and recovery from point-spread functions for key points shown and
labeled in Figure 4.23

Depth Label X (km) Y (km) X-Res (km) Y-Res (km)
0.5-3 1 12.3 19.1 2 2
0.5-3 2 13.9 21.6 1.5 2
0.5-3 3 17.8 21.6 7 6
0.5-3 4 17.7 16.4 3.5 3.5
0.5-3 5 11.6 16.0 3.5 6
3-5.5 1 12.7 25.0 6.5 8
3-5.5 2 11.0 20.0 4 4.5
3-5.5 3 10.1 16.2 4.5 7
3-5.5 4 16.6 15.9 9 6
3-5.5 5 21.0 15.6 4.5 7
3-5.5 6 24.6 19.1 16 3
3-5.5 7 19.2 20.4 6 5.5
5.5-8 1 12.6 19.3 2.5 2.5
5.5-8 2 12.3 22.7 3 3.5
5.5-8 3 16.5 19.9 3.5 3
5.5-8 4 20.5 11.6 4.5 5.5
8-10.5 1 16.4 20.2 6.5 4
8-10.5 2 20.2 11.8 4 5.5
8-10.5 3 11.9 12.1 6 5.5
8-10.5 4 11.3 17.3 7 8
10.5-13 1 14.9 14.2 6.5 6
10.5-13 2 16.5 4.7 5.5 8

45



5
10

20
15

25

Y
 d

is
ta

nc
e 

(k
m

)

Input Z   0.5 km Z   3 km

5
10

20
15

25

Y
 d

is
ta

nc
e 

(k
m

)

Z   5.5 km

5 10 20

X distance (km)
15 25

Z   8 km

5 10 20

X distance (km)
15 25

Z   10.5 km

5 10 20

X distance (km)
15 25

0 1 2 3 4 5

Q−1x10−2

Figure 4.19: The input panel shows 3 x 3 km checkerboard perturbations with input of
0.05, 0.001, and 0.0067 for high, low, and background Q−1p respectively. The checkers
alternate for each layer. Odd layers are the same as shown in the Input panel. Even
layers, checkers alternate (i.e. black becomes white and vice versa). Synthetic t∗ were
calculated through the perturbed model. Inversion results are presented in the depth
panels. Z corresponds to the depth for each panel. Caldera is shown by dashed ellipse.

46



5
10

20
15

25

Y
 d

is
ta

nc
e 

(k
m

)

Input Z   0.5 km Z   3 km

5
10

20
15

25

Y
 d

is
ta

nc
e 

(k
m

)

Z   5.5 km

5 10 20

X distance (km)
15 25

Z   8 km

5 10 20

X distance (km)
15 25

Z   10.5 km

5 10 20

X distance (km)
15 25

0 1 2 3 4 5 6

Q−1x10−2

Figure 4.20: The input panel shows 6 x 6 km checkerboard perturbations with input of
0.05, 0.001, and 0.0067 for high, low, and background Q−1p respectively. The checkers
alternate for each layer. Odd layers are the same as shown in the Input panel. Even
layers, checkers alternate (i.e. black becomes white and vice versa). Synthetic t∗ were
calculated through the perturbed model. Inversion results are presented in the depth
panels. Z corresponds to the depth for each panel. Caldera is shown by dashed ellipse.
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Figure 4.21: The input panel shows 6 x 6 km checkerboard perturbations with input of
0.05, 0.001, and 0.0067 for high, low, and background Q−1p respectively. The checkers
do not alternate by layer. Synthetic t∗ were calculated through the perturbed model.
Inversion results are presented in the depth panels. Z corresponds to the depth for each
panel. Caldera is shown by dashed ellipse.
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Figure 4.22: The input panel shows 3 x 3 km checkerboard perturbations with input of
0.05, 0.001, and 0.0067 for high, low, and background Q−1p respectively. The checkers
alternate for each layer. Odd layers are the same as shown in the Input panel. Even
layers, checkers alternate (i.e. black becomes white and vice versa). Synthetic t∗ were
calculated through the perturbed model. Random noise is added to the synthetic t∗ and
inverted. Inversion results are presented in the depth panels. Z corresponds to the depth
for each panel. Caldera is shown by dashed ellipse.
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4.5 Results

Results from the final tomographic inversion and the Vp model [Tepp et al., 2014] are

plotted in 5 panels corresponding to different depth layers in Figure 4.23a-b. Anomalies

in areas of poor resolution (outlined by a thin line in Figure 4.23b) are not described.

High and low attenuation are considered Q−1p > 0.01 and Q−1p < 0.005, respectively.

High attenuation is concentrated beneath the caldera from 0− 10.5 km depth. This

zone is partially continuous, although there are significant spatial and magnitude varia-

tions in Q−1p . From 0 − 3 km depth, there is high attenuation ranging from 0.01 − 0.04

directly beneath the caldera (Anomaly A). This correlates with low Vp [Tepp et al., 2014]

and low group velocity [Seats et al., in prep, 2016]. West of the caldera, there is a

small high attenuation (∼ 0.01) circular zone. From 3− 5.5 km depth, high attenuation

(∼ 0.02) is concentrated in the northern caldera (Anomaly B). There is low Vp anomaly

at this depth, but it is further north than Anomaly B. There is a high attenuation linear

anomaly with Q−1p ∼ 0.01 south of the caldera at this depth as well (Anomaly C). It is

evident in cross-section that Anomaly B deepens southward and decreases in attenuation

from 5.5− 10.5 km depth (Figure 4.23c-e).

Low attenuation anomalies (Anomaly D) surround the high attenuation zones. From

3 − 5.5 km depth, Anomaly D is concentrated beneath and east of the caldera. From

5.5 − 8 km depth, Anomaly D is present east, south, and west of the caldera. From

8 − 10.5 km depth, low attenuation is primarily concentrated southeast of the caldera.

There are no significant attenuation anomalies below 10.5 km depth.
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Figure 4.23: Model of (a) Vp derived from body-wave tomography [Tepp et al., 2014] and
(b) Q−1p shown in 5 panels corresponding to varying depth layers. The dashed box in (a)
outlines the grid boundaries of the Q−1p results. Labeled points in (b) correspond to spike
test points in Table S1. Resolveable regions are outlined by black polygons. Solid lines
in Figure (b), panel 5 correspond to the vertical cross-sections shown in (c-e). Contours
correpond to Q−1p equal to 0.005, 0.01, 0.02, and 0.04.
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4.6 Model Uncertainty

4.6.1 Variance of Q−1p

A jackknife statistical test was used to estimate the uncertainty of the Q−1p model

following a similar approach as Lees and Lindley [1994]. Jackknifing is a sub sampling

technique used to determine the influence that observations have on the model. Data

is randomized and separated into 75 non-overlapping sets. Statistical summaries of in-

versions derived for each set of data are used to estimate the variance of the model

parameters. The variance of Q−1p for each block (i.e. grid point) in Figure 4.23 is shown

in Figure 4.24. Variances range from 0−0.008. In blocks with zero coverage, the variance

is zero. Blocks with good coverage have the smallest errors. At depths < 0.5 km, the

largest error is concentrated beneath stations where ray paths converge. Other large er-

rors are concentrated in regions with low coverage and/or near blocks with zero coverage.

The mean variance, excluding blocks with zero coverage, is 0.0005. This is low relative

to the resolved Q−1p model indicating the Q−1p model has small error.

4.6.2 Probability of Randomness

In high-scattering regimes, loss of t∗ signal coherence can occur [De Siena et al., 2010].

Volcanic cones tend to be highly heterogeneous resulting in a high-scattering regime.

Therefore, loss of signal coherence is a concern in the study area. If signal coherence is

lost, t∗ determinations will not be spatially correlated and will appear random. Monte

Carlo simulations were used to calculate the probability that the observed Q−1p model

parameters are a result of random t∗. Synthetic random data sets of length, mean, and

standard deviation equal to the observed t∗ were inverted to produce 10000 synthetic

models. For each block, the number of synthetic Q−1p values that lie between the observed

Q−1p ± variance is divided by the number of simulations to determine the probability of

randomness (Figure 4.25). Blocks with zero coverage have 0% randomness since the

variance is also zero (see previous section). Above 0.5 km, randomness is large especially
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beneath the caldera. Randomness is low at depths > 0.5 km. Therefore, it is unlikely

that Q−1p observations beneath the caldera (> 0.5 km) were produced by random noise.
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black ellipse.
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Table 4.4: Variance and probability of randomness for key points as labeled in Figure
4.23

Depth Label X (km) Y (km) σ2 (Q−1p · 10−4) % Random

0.5-3 1 12.3 19.1 1.4 2.7
0.5-3 2 13.9 21.6 2.0 6.9
0.5-3 3 17.8 21.6 2.4 9.0
0.5-3 4 17.7 16.4 1.4 4.1
0.5-3 5 11.6 16.0 0.5 3.2
3-5.5 1 12.7 25.0 1.9 5.9
3-5.5 2 11.0 20.0 1.5 4.3
3-5.5 3 10.1 16.2 2.5 9.1
3-5.5 4 16.6 15.9 9.2 13.4
3-5.5 5 21.0 15.6 3.3 5.7
3-5.5 6 24.6 19.1 0 0
3-5.5 7 19.2 20.4 15.0 14.7
5.5-8 1 12.6 19.3 7.0 13.8
5.5-8 2 12.3 22.7 14.7 22.4
5.5-8 3 16.5 19.9 8.7 20.2
5.5-8 4 20.5 11.6 11.2 37.1
8-10.5 1 16.4 20.2 3.6 5.3
8-10.5 2 20.2 11.8 1.8 8.5
8-10.5 3 11.9 12.1 0.5 2.4
8-10.5 4 11.3 17.3 0.9 4.3
10.5-13 1 14.9 14.2 3.0 8.5
10.5-13 2 16.5 4.7 0.2 1.9
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4.7 Discussion

High Q−1p is most commonly attributed to magma accumulation, temperature gra-

dients, fluid presence, magma movement, and heterogeneous media in volcanic settings

[Lees , 2007]. Q−1p should be studied in conjunction with Vp, Vs, Q
−1
s , and g, the scat-

tering coefficient, to differentiate the causes of attenuation. Currently, only Vp and Ug

models of Sierra Negra exist [Tepp et al., 2014, ;Seats et al., in prep, 2016;]. Thus, our

interpretation of the attenuation structure and understanding of the magmatic system is

limited.

Attenuation is greatest at shallow depths (< 0.5 km) beneath the caldera. Near-

surface attenuation is often attributed to fluid presence and high-scattering regime in

volcanic tomography studies. Several Galápagos volcanoes have known perched aquifer

systems [Violette et al., 2014]. If Sierra Negra has a similar system, this could explain

the high Q−1p signal. The shallow attenuation could also be caused by scattering due to

successive volcanic extrusions. Monte Carlo simulations strongly suggest lack of signal

coherence at depths < 0.5 km which likely resulted from heterogeneity in the shallow

subsurface. When discussing attenuation structures, these depths are not considered.

Attenuation tends to incrementally decrease with depth until 10.5 km. This trend

is expected due to increased confining pressure. Poorer magnitude recovery at depths

> 5.5 km could also produce this trend (Table S1, Figures S2-S5). Anomalies A and B are

the two dominant high attenuation anomalies. Anomaly A is concentrated beneath the

caldera, while Anomaly B is centered in the northern caldera and deepens southward. The

spatial variation suggests these regions could be separate attenuating bodies. However,

the relative uniformity in Q−1p suggests that the rock properties and thermal state of the

system are similar in the regions.
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4.7.1 Temperature Estimates from Q−1p

Laboratory experiments indicate a strong temperature dependence of Q−1. At high

temperatures, Q−1 follows the power law

Q−1 ∼ f−αe
−A′
RT (4.10)

with α = 0.15 − 0.3 and and A′ = 100 − 200 kJ
mol

. The proportion coefficient and

α in Equation 4.10 depend on the rock composition. For example, increasing pyroxene

content increases the absorption [Kampfmann and Berckhemer , 1985]. For a dunite,

Q−1 = 3 · 105f−0.28e
−195
RT , while for a peridotite, Q−1 = 5.3 · 104f−0.28e

−163
RT . More recent

studies characterize the influence of porosity and grain-size on Q−1 and temperature

estimates [Faul and Jackson, 2005; Jackson and Faul , 2010].

Given an average Q−1p of 0.01, the temperature is estimated at 1050−1100 ◦C [Kampf-

mann and Berckhemer , 1985; Faul and Jackson, 2005; Jackson and Faul , 2010]. For

pockets of largest Q−1p (∼ 0.02− 0.03) at 0.5 and 3 km depths, temperature is estimated

at 1150 ◦C. This is consistent with Geist et al. [2008] melt temperature calculation of

1128 ◦C determined by thermobarometry of the 2005 extrusion. Given similar Q−1p and

frequency, grain-size or presence of fluid (see Jackson and Faul [2010]) does not alter the

temperature estimates by > 50 ◦C. Note that the temperature estimates are based on

olivine-rich mafic rock compositions (i.e. mantle rock). Given the ocean-island volcanism

source, magma is expected to less mafic than a mantle source. Thus, temperature esti-

mates may be underestimated. Furthermore, this assumes that the attenuation is only

thermally-induced and this may not be the case. The temperature estimates only provide

a sense of the temperature in the study region. Until crustal and/or volcanic experimental

attenuation studies are done, we can not say with any certainty the temperature.

There is a significant low Ug signature for 2 s and 3 s periods which could translate

to low Vs at shallow depths. It is possible that the the highest Q−1p signatures (0 and
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3 km depth) are due to partial melting or fluid presence, not increased temperatures.

Correlations between Vs and Q−1 in tomography studies suggest Q−1 is also dependent

on melt %, although this is not yet quantified [Hammond and Humphreys , 2000]. Without

a Vs model, we can only speculate that partial melting may contribute to the observed

high attenuation signals.

4.7.2 Magma Accumulation Zones

We interpret the high attenuation anomalies as zones of magma accumulation beneath

the caldera. The top of the magma zone (0.5 − 3 km depth) is consistent with the 2.1

km determination from deformation modeling [Amelung et al., 2000; Geist et al., 2006;

Yun et al., 2006]. The top of this zone extends northeast and southeast of the caldera

rim. Monte Carlo testing indicates the southeastern signal is artificial. The northeastern

region is resolvable and real, but smearing is significant. Accounting for poor resolution

and smearing, the diameter extends 2 km beyond the caldera rim and generally decreases

with depth. Resolution is poor below 10.5 km, but a high Q−1p anomaly is still visible in

checkerboard testing. Given the absence of observed high Q−1p at this depth, we suggest

10.5 km is the greatest extent of shallow magma accumulation. Given a 2.1 km top, the

volume of the magma accumulation zones is ∼ 3·1011 m3. This is likely an overestimation

due to smearing effects.

Low attenuation zones surround Anomaly B and roughly correlate with a high Vp

anomaly from 5.5−10.5 km depth. In volcanic settings, low attenuation and high velocity

are mostly commonly attributed to cooled lava rock with limited fluid presence [Lees ,

2007]. Compositional differences could also produce such a signal. We interpret the low

attenuation as cooled lava rock at the sides and base of the magma accumulation zone.
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4.7.3 Comparison to previous models

Caldera deformation modeling indicates a sill or flat-topped diapir at 2.1 km depth

relative to the caldera floor [Amelung et al., 2000; Geist et al., 2006; Yun et al., 2006]. For

a caldera with a large radius relative to depth, only the geometry of the upper portion

of the chamber controls deformation. Thus, a thin sill or flat-topped diapir explain the

observed deformation equally well [Yun et al., 2006]. However, dike and sill orientations

favor the diapir model [Chadwick and Dieterick , 1995].

If Anomalies A and B are considered two different zones of magma accumulation,

this would suggest at least two stacked reservoirs: one shallow sill between 0.5 − 3 km

depth controlling surface deformation and a deeper magma zone from 3−10.5 km depth.

However, there is not strong evidence to indicate the anomalies are different since they

overlap spatially and have similar Q−1p signatures. Finer vertical grid spacing is required

to confirm a multiple chamber geometry. Thus, we suggest there is continuous magma

accumulation zone with local Q−1p variations beneath Sierra Negra. This interpretation

supports the diapir model.

Our model suggests a much smaller magma region than proposed by Tepp et al. [2014].

Body-wave tomography imaged a large low Vp zone from 5.5− 15 km depth interpreted

as a possible zone of magma accumulation [Tepp et al., 2014]. It is possible that the high

attenuation zone correlates with a volumetrically smaller and lower Vp pocket within the

large low Vp anomaly as described in Tepp et al. [2014]. Differences in methodology and

scale could also account for the discrepancy in size and depth of magma accumulation.

Similar size differences between attenuation and velocity models have been observed in

other volcano tomography studies [e.g. Prudencio et al., 2015].

This study could not resolve a conduit system or deeper magma storage beneath the

diapir. Villagomez et al. [2014] suggests that a low Vs anomaly between the crust and

80 km depth beneath the Galápagos drives volcanism at Sierra Negra, Cerro Azul, and

Fernandina. Further imaging below 15 km depth is necessary to resolve the conduit
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structure between the shallow reservoir beneath Sierra Negra and the larger magma

storage zones.

4.8 Conclusion

Spectral decay method was used to determine the Q−1p structure beneath Sierra Negra.

High attenuation is concentrated beneath the caldera from 0.5 − 10.5 km depth that is

interpreted as a zone of magma accumulation. Further attenuation studies modeling

Q−1s and g could distinguish the sources of high attenuation. Our results favor the diapir

model of caldera deformation with a flat-top at 2.1 km as described in Yun et al. [2006].

The conduit system between the diapir and deeper storage zone is unexplored and should

be a target for future study to gain a fuller understanding of the magma system at Sierra

Negra.
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