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ABSTRACT 

Sarah Nicole Mueller: POLYMERIC PRINT HYDROGEL NANOPARTICLES AS A DELIVERY 

PLATFORM FOR SUBUNIT VACCINE ANTIGENS AND ADJUVANTS 

(Under the direction of Joseph M. DeSimone) 

 

Vaccines consisting of purified soluble antigens rather than killed or attenuated whole 

pathogens have shown great promise in increasing vaccine safety. However, these subunit 

vaccines (proteins, DNA, polysaccharides, lipids) are susceptible to degradation and are usually 

less immunogenic than whole pathogen vaccines. Subunit vaccines have shown increased 

efficacy when delivered in particulate form compared to soluble form. Previous research, 

however, has been limited by particle fabrication methods that are often incapable of yielding 

homogeneous particles and are incompatible with industrial scale-up. The use of Particle 

Replication in Non-wetting Templates (PRINT
®

) technology avoids these issues, allowing for 

precise control over particle size, shape, composition, and surface characteristics. In addition, 

PRINT is a highly scalable, GMP compliant process. Herein, PRINT is employed to fabricate 

polymeric hydrogel nanoparticles for the delivery of novel pro-adjuvants and protein antigens in 

vitro and in vivo. The model protein antigen, ovalbumin (OVA), was directly conjugated to the 

surface of nanoparticles through a poly(ethylene glycol) (PEG) linker. Surface presentation of 

OVA led to antigen processing and presentation by antigen presenting cells and elicited robust 

immune responses. The linker chemistries utilized for this model antigen are applicable to a 

range of clinically relevant vaccine antigens, with studies toward a dengue virus vaccine and an 

influenza vaccine in preliminary phases. Resiquimod, a toll-like receptor 7/8 agonist and vaccine 

adjuvant, was used to synthesize a polymerizable, acid-labile pro-adjuvant. The pro-adjuvant 



 iv 

loaded nanoparticles were capable of steadily releasing the original, active adjuvant when 

exposed to endosomal pH (pH 5), while protecting the adjuvant from premature release at 

physiological pH (pH 7.4). This allowed for intracellular delivery of resiquimod and limited 

systemic exposure. Therefore, PRINT nanoparticles can be formulated into potent particulate 

vaccines for controlled and efficiently co-delivery of adjuvants and antigens. Overall, these 

efforts may lead to new and efficacious vaccines to a wide variety of infectious diseases. 
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CHAPTER 1 VACCINATION AND THE PROMISE OF PARTICLE MEDIATED IMMUNITY 

1.1 Modern Vaccination Strategies and Subunit Vaccines 

Vaccination has revolutionized preventative medicine, providing the opportunity to avert 

deadly diseases rather than scrambling to treat them once they have infected a patient or 

community. The tremendous success of vaccination, however, has humble origins. Although a 

process known as variolation was practiced as least as early as the eleventh century in China and 

India,
1
 true vaccination was not developed until Edward Jenner’s work in the late 1790s.

2
 Jenner 

discovered that inoculating a person with material from the cowpox infection of a milk maid 

would result in immunity against smallpox. Advances on this initial discovery paved the way for 

further development of the vaccine, eventually leading to the total eradication of smallpox in 

1980.
2
  

Since the time of Jenner, vaccines have been developed against nearly thirty different 

diseases.
3
 Most vaccines fall into one of two categories of whole-pathogen vaccines: inactivated 

or live attenuated. Live attenuated vaccines are synthesized by growing a virus in cell culture or 

another host organism (eggs are widely used) and passaging it through multiple generations until 

the virus has adapted to growing in non-human cells. The attenuated virus is rendered less 

capable of infecting humans, but is still able to replicate, though to a much lesser extent.
1
 

Because they are still able to replicate in the body, attenuated vaccines are very immunogenic, 

often providing protection after a single dose.
4
 Attenuated vaccines, however, are often 
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contraindicated for immunocompromised patients because they carry the risk for the attenuated 

pathogen to revert back to its original, infectious form.
5,6

  

Inactivated virus vaccines are fabricated by taking a virus and totally inactivating it by 

exposure to heat, ultra-violet radiation, or chemicals such as formaldehyde. The killed virus is 

unable to replicate in vivo but still contains the virus capsid structure, which is recognized by 

immune cells.
1
 Inactivated vaccines are non-replicating, thereby avoiding the risk of infection, 

but are also less immunogenic, requiring regular booster doses.
4
 They are, however, safer for 

dosing in immunocompromised patients.  

The next generation of vaccines is based on dosing pathogen subunits rather than whole 

pathogens. The subunits used represent the antigenic portions of the pathogen – surface proteins, 

DNA, polysaccharides, lipids – recognized by the immune system, instructing it to mount an 

immune response. Subunits can be either purified from the whole pathogen or synthesized in a 

lab. Purified subunits rely on growing large amounts of the pathogen, as with whole pathogen 

vaccines, leading to a reliance on the supply chain of cell or animal culture as well as being 

limited by the time it takes to grow the pathogen. They are potentially safer than whole pathogen 

vaccines, as the majority of the pathogen has been discarded. On the other hand, synthetic 

subunits can be made relatively quickly and easily without having contact with infectious 

material. Synthetic subunits can be expressed in high quantities in cell culture or fabricated de 

novo by different instruments.  

As vaccines becomes less and less similar to the original pathogen, their immunogenicity 

wanes. When dosed alone, soluble subunits are not well recognized by the immune system and 
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are quickly cleared and degraded by the body. Different formulation and delivery techniques are 

being investigated to boost the immunogenicity of protein subunits as will be discussed below. 

1.2 Activating Toll-Like Receptors as Vaccine Adjuvants 

In order to improve the immunogenicity of vaccines, whole pathogens and antigen 

subunits are often formulated with one or more adjuvant. The purpose of an adjuvant is to 

modulate the response against a vaccine antigen while reducing the amount of antigen required 

in induce immunity.
7
 The most widely used category of adjuvants is aluminum salts – (Al(OH)3), 

aluminum phosphate (AlPO4) or alum (AlK(SO4)2·12H2O).
8,9

 Aluminum salts, generally referred 

to as Alum, have been in use in vaccines since the 1920s. The mechanism of action for Alum is 

not well known, but studies have shown that adsorption of antigens to Alum helps to create a 

depot effect at the site of vaccine administration, allowing for prolonged release of antigen.
10

 

Additionally, Alum may facilitate the production of other pro-inflammatory signals, leading to 

immune cell recruitment and enhanced uptake and presentation of antigen.
10

 

Current adjuvant development strategies have focused on the rational design of molecules 

to mimic biologically conserved pathogen associated molecular patterns (PAMPs). PAMPs are 

molecular “danger signals” that are common to viruses and bacteria but are not found in higher 

organisms, indicating to the immune system that they belong to a non-self invader. PAMPs are 

recognized by a broad class of immune cell receptors called pattern recognition receptors (PRRs), 

trans-membrane proteins found on the cell surface, in endosomal compartments, and in the 

cytosol. PRRs are further broken down into toll-like receptors (TLRs), C-type lectin receptors 

(CLRs), nod-like receptors (NLRs), and Rig-1-like receptors (RLRs) depending on the type of 

pattern they recognize and the structure of the receptor. While all of these may be viable targets 

for vaccine adjuvant development, the scope of this work will focus on TLRs. 
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There are ten TLRs that have been identified in humans and thirteen in mice, each 

recognizing a different PAMP.
11

 Table 1.1 outlines some of the TLRs that have been studied for 

vaccine applications, the PAMP recognized, and the adjuvant(s) used as ligands for those TLRs. 

When incorporating TLR ligands into vaccine formulations, these molecules activate the immune 

system by mimicking the danger signals presented by pathogens, augmenting the immune 

response against weakly immunogenic antigens. This strategy has been used in only a few 

vaccines available in the USA: human papillomavirus vaccine (Cervarix
®
, GlaxoSmithKline) 

and hepatitis B virus vaccine (Fendrix
®
, GlaxoSmithKline), which include a combined adjuvant, 

AS04, made up of MPLA (monophosphoryl lipid A) and Alum.
12

 Many other TLR adjuvants and 

adjuvant systems have been examined at various stages of pre-clinical and clinical trials.
7,13,14

 

Wide spread adoption of these vaccine adjuvants has been delayed due to the potential side 

effects and toxicity associated with systemic exposure to these potent compounds.
15–18

 

Formulating adjuvants into particulate delivery vehicles, thereby directing uptake and release 

towards immune cells, may mitigate the effects of systemic exposure to both adjuvants and the 

pro-inflammatory cytokines they elicit from immune cells.
13 
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Table 1.1 Toll-Like Receptors and their mode of action
13,19,20

 

Toll-Like Receptor PAMP recognized Adjuvant/Ligand 

TLR1/TLR2 
Gram-positive and gram-negative bacteria components: 

di- and triacetylated lipoproteins, peptidoglycans, 

lipopolysaccharides 

PAM3CAG 

TLR2/TLR6 

FSL-1 (synthetic 

diacetylated lipoprotein) 

TLR3 Viral double stranded RNA, tRNA, siRNA Poly (I:C) 

TLR4 

Structural component of gram-negative bacteria: 

lipopolysaccharides 

LPS, MPLA 

TLR5 Gram-positive and gram-negative bacterial flagellum Flagellin 

TLR7 

Single stranded RNA, Imidazoquinolines,  

guanosine analogs 

R848, imiquimod, 

loxoribine, 3M-019, 3M-052 

TLR8 Single stranded RNA, Imidazoquinolines R848 

TLR9 Bacterial DNA CpG ODN 

 

1.3 Current Strategies for Particle-Based Delivery Vehicles for Subunit Vaccines 

As detailed above, dosing soluble protein antigens and adjuvants both present challenges. 

By allowing these pathogen subunits to distribute throughout the body, as opposed to targeting 

them to the immune system, the bioavailability for uptake by immune cells declines and potential 

for off-target inflammatory effects grows. In order to formulate these subunits in a manner 

resembling their natural presentation by pathogens, thereby facilitating a more robust immune 

response, many groups have investigated various particle formulation strategies. Some of the 
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major categories of vaccine delivery vehicles include virus-like particles (VLPs), lipid-based 

particles, and polymer-based particles.
13,14,21

 

Virus-like particles (VLPs) closely resemble natural pathogens. VLPs are self-assembled 

nanoparticles made up of the capsid proteins of non-pathogenic viruses or assemblies of the 

antigenic protein itself.
22–24

 The HPV vaccines Cervarix and Gardasil
®
 (Merck) are based on 

proteins from several strains of HPV that self-assemble into VLPs.
25

 Relatively few antigenic 

proteins self-assemble into VLPs, so non-immunogenic VLPs can be used to deliver vaccine 

subunits carried in their interior or displayed on their surface.
26

 This second category of VLPs is 

more widely applicable, but carries the potential for “viral interference” where patients develop 

antibodies against the vaccine vector rather than or in addition to the target antigen.
27

 

 Lipid-based particles include liposomes, immunostimulating complexes (ISCOMs), and 

interbilayer-crosslinked multilamellar vesicles (ICMVs). These particle types are made up of 

lipid bilayers, which provide the opportunity to trap hydrophilic cargo in the particle core or 

between the layers of the particle and incorporate hydrophobic cargo within the lipid bilayers. 

ISCOMs are cage-like particles that spontaneously form when cholesterol, phospholipids, and 

the saponin adjuvant Quil A are combined in the correct ratio and act as antigen carriers as well 

as adjuvants.
14,24

 ICMVs have the additional benefit of having crosslinks between lipid bilayers, 

increasing the long term stability of the particles.
28

 These versatile lipid-based particles have 

been used to deliver multiple different antigens for diseases ranging from influenza to malaria to 

cancer.
13,29

 

 There is a wide variety of polymers that have been studied for use as vaccine delivery 

vehicles. Broadly, polymeric particles for vaccine delivery have been made from biopolymers 
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(e.g. chitosan, heparin), biodegradable polymers (e.g. poly(lactic-co-glycolic acid), poly(ε-

caprolactone)), and non-degradable, biocompatible polymers (e.g. poly(ethylene glycol)), 

poly(methyl methacrylate)).
21,30,31

 Each category of polymers has different properties that can be 

exploited depending on the needs of a delivery system. For example, hydrophobic polymers like 

PLGA (poly(lactic-co-glycolic acid)) can be used to efficiently encapsulate hydrophobic antigens 

and adjuvants while hydrophilic polymers like PEG (poly(ethylene glycol) can be used to 

encapsulate hydrophilic vaccine components. Additionally, polymeric systems can be modified 

with various functional handles for post-fabrication chemistries. Biopolymers and biodegradable 

polymers can be degraded by changes in pH, reducing environments found within the endosome 

and cytosol, or enzymes in the body; non-degradable particles are often cleared more slowly by 

the liver or kidneys.  

Several major techniques are used for fabricating polymeric nano- and microparticles. 

One of the most utilized techniques is emulsion polymerization.
14,21,32–35

 Emulsion 

polymerization uses hydrophobic monomers and polymerizes them within amphipathic 

surfactant micelles.
34,36

 Hydrophobic cargos can be physically entrapped or covalently 

conjugated into the polymer core while the corona of surfactant molecules provide additional 

stability. Hydrophilic antigens and adjuvants may also be conjugated to the surface of the 

particles via the hydrophilic portions of the surfactant molecules.
34

 Other particle fabrication 

techniques include precipitation,
37

 electrospray,
38

 and dendrimer formation.
39

 Unique among the 

available particle fabrication technologies, PRINT – Particle Replication in Non-wetting 

Templates – allows for fabrication of nano- and microparticles with discrete size, shape, 

composition, and surface properties.
40,41
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1.4 Fabrication of Nanoparticles via PRINT Technology –  

       Controlling Size, Shape, Composition, and Surface Properties 

PRINT (Particle Replication in Non-wetting Templates) is a unique particle molding 

technique combining lithographic methods from the semiconductor industry with the non-

wetting properties of fluorinated polymers. Previous research on nano- and microparticle 

delivery vehicles for vaccine applications has been limited by particle fabrication methods that 

are often incapable of yielding homogeneous particles and are incompatible with industrial scale-

up. The use of PRINT technology avoids these issues, allowing for precise control over particle 

size, shape, composition, and surface characteristics. 
41

 In addition, PRINT is a highly scalable, 

GMP compliant process.  

PRINT was first developed in the DeSimone Group in the mid-2000s and has led to the 

subsequent formation of Liquidia Technologies, a start-up company focused on commercializing 

PRINT technology. As pictured below in Figure 1.1, fabrication of particles via PRINT begins 

with a silicon wafer patterned with the feature size and shape of interest using traditional 

photolithography techniques. Low-surface energy perfluoropolyether (PFPE) is then applied to 

the silicon master template and chemically cross-linked to create a flexible elastomeric film with 

nano- or micron-sized cavities, known as a PRINT mold. The low surface energy of the PFPE 

allows for it to wet the entire surface of the mater template, resulting in faithful reproduction of 

the features. Additionally, the chemical resistance of PFPE prevents deformation of the PRINT 

mold when exposed to the organic solutions used in making monomer and polymer films, aiding 

in the fidelity of the produced particles to the original master template.
42

 The PRINT mold is 

then filled using a thin film of the monomer or polymer solution of the desired composition for 

the final particles. The versatility of PRINT technology allows for particles to be fabricated from 

essentially any material that can be made into a film, including PEG based hydrogels, PLGA and 
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other FDA approved materials, proteins, and chemotherapeutics.
40,41,43–45

 Capillary action is 

harnessed to fill nano-sized cavities while mechanical force aids in filling larger features. The 

non-wetting nature of PFPE prevents excess monomer or polymer from creating an 

interconnecting flash layer or scum layer, resulting in individual particles. When using a 

monomer solution, the monomer filled mold is photocured by brief irradiation by ultra-violet 

light, resulting in cross-linked particles. Particles can be removed from the PRINT mold by 

mating the filled mold with a sacrificial harvesting layer made of water soluble polymer capable 

of forming hydrogen bonds with the newly fabricated PRINT particles. Common harvesting 

layers are composed of poly(vinyl alcohol) (PVOH) and Plasdone
™

. Running the mold and 

harvesting layer through a heated laminator allows for the transfer of particles to the harvesting 

layer, leaving an array of particles on the sacrificial harvesting layer and an empty mold. The 

harvesting layer is then dissolved away using water or another appropriate solvent, yielding a 

dispersion of nearly monodisperse particles. 
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Figure 1.1 Particle Replication in Non-wetting Templates. A silicon wafer (gray) is patterned with nano- or micron-

sized features through photolithography methods. PFPE (green) is dispersed across the silicon wafer and chemically 

cross-linked, yielding an elastomeric PRINT mold. A monomer or polymer thin film (red) is spread across a sheet of 

poly(ethylene terephthalate) (PET) and mated to the PRINT mold. Upon passing the mold and film through a 

laminator nip, the mold is filled with the particle material of choice. The filled mold is cured if necessary before 

being mated to a sacrificial harvesting layer (yellow) and passed again through a heated laminator. The mold is then 

removed from the harvesting sheet, revealing an array of individual particles. The sacrificial harvesting layer is then 

dissolved in a bead of water, revealing a nearly monodisperse solution of PRINT particles.  

For vaccine applications, PRINT allows for imitation of natural pathogens in particle size, 

shape, and surface display of vaccine subunits. Previous work has shown that PLGA-based 

PRINT particles can be used to effectively adsorb influenza antigen, leading to an increased 

immune response compared to dosing the trivalent inactivated virus vaccine.
46

 Investigation into 

this promising strategy is ongoing; however, changing the particle matrix from PLGA to a PEG 

based hydrogel system presents new opportunities for vaccine subunit delivery. The functional 

diversity of monomers that can be incorporated into the hydrogel particles affords the 

opportunity to conjugate vaccine subunit cargos throughout the particle matrix as well as 

conjugate cargos to the surface of the particles. The inert hydrogel matrix results in particles that 

are non-immunogenic, averting an immune response against the delivery vehicle.
47

 Beyond 
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mirroring pathogen presentation of antigens and adjuvants, PRINT provides an opportunity to 

explore the relationship between particle size, shape, and surface characteristics, antigen and 

adjuvant trafficking and presentation, and the subsequent immune response. How these 

characteristics work together to stimulate the immune system, toward the goal of formulating 

safer, more effective subunit vaccines, will be explored in this work. 
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CHAPTER 2 MANIPULATING PHYSICOCHEMICAL PROPERTIES OF POLYMERIC HYDROGEL 

PARTICLES TO ENHANCE LYMPHATIC TRAFFICKING AND IMMUNOGENICITY OF A MODEL 

SUBUNIT VACCINE 

2.1 Introduction 

Draining lymph nodes (LNs) are the primary site of action for initiating adaptive 

immunity, where cells that initiate adaptive immune responses (T and B cells) meet antigen or 

antigen-loaded antigen presenting cells (dendritic cells, macrophages).
1,2

 To activate B cells and 

generate a robust humoral response, two signals are required: direct crosslinking of B cell 

receptors by antigens, and co-stimulatory signals from CD4
+
 T cells (e.g. cytokines and 

CD40/CD40L binding).
3,4

 Antigen presenting cells, especially dendritic cells (DCs) are critical in 

priming T cells to provide helper signals to B cells.
4–9

 Because of the myriad activities of the 

immune system that take place in the lymph nodes, recent literature has focused on delivering 

vaccines directly to the draining LNs.
4,6,7,9,10

 By targeting the draining LNs vaccine uptake by 

antigen presenting cells (APCs), APC maturation, and cross presentation to T and B cells may all 

occur in close proximity, thus increasing the potency of the resulting response.  

Utilizing purified and synthetic pathogen subunits (peptides, polysaccharides, lipids, 

DNA, etc.) for vaccination has become an increasingly attractive option due to significantly 

improved safety profiles compared to whole pathogen-based vaccines. However, limited clinical 

success of subunit vaccines has been achieved, e.g. HPV vaccines (Gardasil
®
 from Merck and 

Co., Cervarix
®
 from GlaxoSmithKline) and seasonal influenza vaccines (Fluvirin

®
 from 

Novartis). Purified antigens are usually poor immunogens. Soluble pathogen subunits are not 
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efficiently captured by immune cells, are susceptible to non-specific degradation and metabolism 

in vivo and are subject to rapid clearance.
10–13

 Particle mediated delivery has shown great 

potential for subunit vaccine development and has gained increasing attention.
6,10–12,14–23

 Size, 

shape, and surface properties of particle vectors can be manipulated to target key APCs and 

promote cell uptake of antigens via phagocytosis, or facilitate self-drainage and direct delivery of 

vaccine to lymph node-resident immune cells.
10–13,24

 Surface display of antigens on particle 

carriers may allow multivalent interaction with B cells that mimics presentation by natural 

pathogens, enabling more efficient cross-linking of cognate B cell receptors, thereby increasing 

potency of these agents
10,17,25

 and achieving dose sparing effects.
14,25

  

Many parameters of particulate vaccine carriers (charge, size, and surface properties) 

may all contribute to the quality of the resulting immune response. Previous work on lymphatic 

trafficking of nanoparticles (NPs) has focused on delivery of cancer therapeutics or diagnostic 

molecules to aid in LN imaging;
21,26–31

 only recently have the effects of lymphatic trafficking on 

the efficacy of novel, particulate vaccines been examined.
16,19,20,23,32,33

 Cationic NPs have been 

found to have higher uptake in vitro and facilitate a more favorable endosomal pH environment, 

mitigating premature degradation of acid-sensitive antigens.
34

 Conversely, in vivo results favor 

anionic NPs for higher rates of NP trafficking and subsequent uptake by APCs. This critical 

difference between in vitro and in vivo results may be due to the composition of the extracellular 

matrix (ECM) in the interstitial space of the lymphatic system: collagen fibers and highly anionic 

glycosaminoglycans.
35

 The high density of negative charge may lead to aggregation of cationic 

NPs at the injection site while the electrostatic repulsion allows anionic NPs to move through the 

interstitial fluid.
36

 This has been observed in various NP systems such as liposomes,
37

 

dendrimers,
29

 star polymers,
30

 and PLGA based NPs.
28
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Size plays perhaps the largest role in the trafficking of NPs from the site of injection 

through the lymphatic system. Lymphatic trafficking of many sizes and compositions of 

spherical NPs have been examined including PLGA NPs (size 50 – 200 nm),
38

 liposomes (single 

and multi-lamellar),
37

 dendrimers (size 5 – 15 nm),
29

 star polymers (size 10 – 25 nm),
30

 

polystyrene beads (size 20 – 2000 nm),
19

 and other polymeric NPs (size 25 – 3700 nm)
32,39

 (all 

sizes reported as diameter). The ideal NP size to harness interstitial flow and passively target the 

LNs appears to be between 20 nm, under which NPs are likely to enter directly into systemic 

circulation,
29,38

 and 100 nm, above which size NPs become stuck at the site of injection and rely 

on cell-mediated trafficking to the LNs.
10

 Within this size range, the optimal NP size appears to 

be widely system dependent.
19,21,36,39

  

PEGylation (surface conjugation or coating with chains of poly(ethylene glycol)) is 

commonly used to conjugate various cargos to nanoparticles, polymers, and biologics. For the 

purpose of developing a vaccine carrier, the level of PEGylation used to attach the vaccine cargo 

to the nanoparticle carrier should take in to consideration the effects PEG length and PEGylation 

density may have on lymphatic drainage and uptake by immune cells. PEGylation has been 

studied extensively in the search for long-circulating NPs, capable of avoiding detection and 

clearance by the mononuclear phagocyte system (MPS). Studies have found that while a dense 

layer of long PEG chains is necessary to maximize circulation time, the desired effects of low 

protein binding and decreased phagocytic uptake are seen at even low PEG densities and chain 

lengths.
40,41

 PEGylation has also been studied for applications in mucosal penetration for 

intranasal delivery of therapeutics:
42

 PEG coating is believed to interact with the mucus layer in 

a way that prevents NP aggregation, facilitating NP transport. This finding may be applied to the 

gel-like environment of the ECM, increasing NP drainage from the site of injection.
22

 Previous 



 18 

findings agree that PEGylation increases lymphatic drainage from the injection site throughout 

various densities and molecular weights of PEG,
20–23,27,31,33,43

 but findings are conflicting 

regarding how this affects uptake of PEGylated NPs in the LNs. A study with 300 nm liposomes 

indicated that PEGylation can not only increase drainage and uptake, but facilitate deeper NP 

penetration into all regions of the LNs.
20

 Others have found that PEGylation actually decreases 

retention of NPs in the LNs and uptake by APCs.
21,33

 Further examination of the effects of 

PEGylation on vaccine delivery would be greatly beneficial in the design of future vaccine 

delivery vehicles. 

In addition to PEGylation, other surface characteristics can have dramatic effects on how 

the body interacts with NP vaccine carriers. The complement system is the body’s first line of 

defense against invading pathogens, linking innate and adaptive immunity and playing an 

important role in peripheral lymph nodes to enhance B and T cell responses.
52

 Hubbell and co-

workers reported that nanoparticles can be engineered to activate the complement system and 

improve immune responses to vaccines.
53,54

 By utilizing a hydroxyl-terminated monomer versus 

a methoxy-terminated monomer as the primary component of NPs, particles can be designed to 

activate the complement system and facilitate a stronger immune response against antigen. 

Herein we present a versatile vaccine delivery platform based on hydrogel particles made 

of hydroxy-poly(ethylene glycol) (PEG) via PRINT technology (Particle Replication in Non-

Wetting Templates),
44–46

 a unique mold-based particle fabrication process. The highly tunable 

nature of PRINT allows for a great degree of control over NP size, aspect ratio, charge, and 

surface functionality, facilitating a systematic study of these effects on NP trafficking through 

the lymphatic system and the subsequent immune response. We have demonstrated that this 
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vaccine carrier has the capacity to deliver subunit vaccine components to the draining LNs in a 

sustained manner and elicit robust antigen-specific humoral immune response. 

2.2 Results and Discussion 

Nanoparticle delivery of protein subunit vaccines to the lymph nodes allows antigens to 

interact directly with the immune system. Additionally, surface display of protein antigens 

similar to antigen presentation by natural pathogens may boost therapeutic efficacy of these 

subunits to the levels associated with whole pathogen vaccines without the related safety 

concerns.
4,8,47

 This study aimed to evaluate PRINT nanoparticles of various size, aspect ratio, 

and surface characteristics for their ability to traffic through the lymphatic system and explore 

their use for antigen delivery in vaccine applications. 

2.2.1 Lymphatic Trafficking of Bare Particles 

A delivery vector that traffics quickly and efficiently to the draining lymph nodes would 

be beneficial for delivering antigens and/or adjuvants to B cells and other antigen presenting 

cells (APCs) resident in the lymph nodes. A panel of rod/cylindrical PRINT NPs of different size, 

aspect ratio, and surface charge (Table 2.1) were injected subcutaneously in mice and screened 

for their ability to drain to the popliteal lymph nodes (PLNs). Rod shaped NPs may have added 

benefits over traditional spherical NPs in terms of cellular uptake as well as an increased surface 

area for cargo loading.
45

 An 80×180 nm rod has over 3 times the volume of a spherical NP with 

the same diameter and 2.75 times the surface area. Consistent with literature, we found that sub-

100 nm diameter,
16,19,36,48–50

 anionic
28–30,37,50

 NPs were able to traffic quickly to the PLN, with an 

increase in NP concentration over 48 hours (Figure 2.1). In contrast, all other NPs, regardless of 

size and charge, generally remained at the site of injection with less than 0.2% of the injected 

dose trafficking to the PLN. Histology analysis of the resected PLNs revealed that large amounts 
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of anionic 80×180 nm NPs populated the B cell-follicular area, which may provide opportunity 

for antigen presentation to B cells and development of a humoral immune response (Figure 2.2). 

Larger and cationic NPs showed little accumulation in the LNs.  

Table 2.1 Characterization of bare NPs 

Mold Dimensions Size (d.nm) PDI Zeta Potential (mV) 

80×180 nm (-) 200.8 ± 11.6 0.025  -24.6 ± 0.3 

80×320 nm (-) 254.7 ± 6.8 0.061 -31.9 ± 0.2 

80×2000 nm (-) 595.7 ± 2.6 0.133 -28.7 ± 0.5 

200×200 nm (-) 251.2 ± 2.1 0.128 -29.8 ± 0.3 

1x1 µm (-) 1292 ± 189 - -30.0 ± 0.8 

80×180 nm (+) 183.8 ± 2.4 0.126 42.0 ± 1.5 

80×320 nm (+) 229.0 ± 2.9 0.045 44.4 ± 0.3 

80×2000 nm (+) 370.2 ± 27.7 0.069 32.6 ± 1.4 

200×200 nm (+) 256.2 ± 21.8 0.104 43.1 ± 1.8 

1x1 µm (+) 2581 ± 6.6 - 22.0 ± 0.7 
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Figure 2.1 Lymphatic drainage and cell uptake of bare hydrogel particles. Mice were injected with 50 μg NPs in 

hind footpads. Draining PLNs were resected at indicated time points and examined for particle fluorescence by IVIS 

imaging. Error bars stand for SEM, N ≥ 4. **, p < 0.01 by one-way ANOVA compared to all other groups at 48 

hours time point.  

 

Figure 2.2 Localization of NPs in the PLNs was confirmed by confocal microscopy at 48 hours (80×180 nm NPs) or 

72 hours (80×2000 nm and 1×1 μm NPs) post subcutaneous injections of different size and charge NPs. Blue: nuclei 

(DAPI); red: B cell (B220
+
); green: particles. 

Flow cytometry was performed to determine which cell populations within the PLNs took 

up NPs. For all examined APC types (dendritic cells (DCs), macrophages, B cells, and 

plasmacytoid DCs) the anionic 80×180 nm NPs showed the highest uptake, i.e. percent of each 
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cell population that took up NPs (Figure 2.3). For all NP types, anionic NPs were present in a 

higher percentage of cells than their cationic counterpart. Similar to total lymphatic drainage, 

size dependence was observed with 80×180s being most efficiently internalized by all cell types 

examined. Strikingly, although less than 2% of total injected 80×180 nm NPs trafficked to the 

PLNs at 48 hours, an average of 20% of DCs in the LNs took up anionic 80×180 NPs, 

confirming that particle of this size, charge, and aspect ratio is able to target DCs.  

Anionic 80×180 nm NPs, the best self-draining particle type, was chosen for further 

vaccine delivery studies. 
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Figure 2.3 Flow cytometry of cells from lymph nodes resected 48 hours after injection. Data shown as NP
 
positive 

cells/total cell population×100 to demonstrate percent of each cell type that had taken up NPs. A) Dendritic cells, 

DC11c
+
, B) macrophages, F4/80

+
, C) B cells, B220

+
, D) plasmacytoid DCs, PDCA-1

+
B220

+
. *, p < 0.05; **, p < 

0.01; ***, p < 0.001; ****, p < 0.0001 by unpaired t test. N ≥ 3. 

2.2.2 Conjugation of Model Antigen and Surface Characteristics 

Surface display of antigens greatly increases the chances of direct antigen presentation to 

B cells, facilitating a more robust antibody response. To test immunogenicity of antigen 

delivered by the hydrogel NP carrier, a model protein antigen ovalbumin (OVA) was covalently 

conjugated to the surface of 80×180 nm NPs through various chemistries including poly(ethylene 



 24 

glycol) (PEG)-based linkers, a common bioconjugation technique used to control the distance 

between ligands and NPs. PEGylation is frequently used to increase circulation half-life of small 

molecule drugs, biologics, and nanoparticles by decreasing the binding of serum proteins and 

opsonins, thus decreasing recognition by the mononuclear phagocyte system (MPS).
51

 For 

vaccine carriers, PEGylation may enhance drainage of NPs from the site of injection to the 

lymph nodes by blocking interactions with the extracellular matrix (ECM); however, a high level 

PEGylation, especially with high molecular weight PEG, could be undesirable as it may prevent 

NP uptake by phagocytic APCs.
6
 In order to examine the effect of PEG linker length on 

lymphatic drainage and cell uptake, OVA was conjugated to the surface of NPs via large, 

medium or small linkers: 5000 Da molecular weight PEG (PEG(5k)), 500 Da molecular weight 

PEG (PEG(500)), or a direct amide bond from protein to NP (PEG(0)) respectively. After 

conjugation of antigen, all NPs remained very well dispersed with polydispersity index (PDI) 

below 0.15 (Table 2.2). Forty-eight hours post-injection, significantly more PEG(500)OVA NPs 

reached PLNs as compared to the PEG(5k)OVA and PEG(0)OVA NPs (Figure 2.4). Surface 

modification with the long PEG(5k) linker was apparently not favorable for lymphatic drainage. 

Further comparison with bare NPs and no-OVA PEG(500) NPs indicated that the increase in 

trafficking for the PEG(500)OVA NPs came from the synergy between PEG(500) and OVA, 

rather than either component alone. PEGylation with a dense layer of short PEG(500) may 

stabilize the NPs under physiological conditions and decrease interactions with the ECM, while 

longer PEG(5k) may have a greater chance of becoming entangled with the biopolymers in the 

ECM.
6,35

 Additionally, compared to 80×180 nm PEG(500)OVA NPs, the 1 μm PEG(500)OVA 

NPs showed poor lymphatic trafficking on par with the bare 1 µm NPs (Figure 2.1); conjugation 

with PEG linker and OVA did not improve the drainage of 1 μm NPs. These results demonstrate 
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that the size of particles is an essential determinant for lymphatic drainage patterns of particle 

vectors, which can be further modulated by different lengths of PEG linkers. 

Table 2.2 Characterization of OVA-conjugated NPs 

Particle Type Size (d.nm) PDI Zeta Potential (mV) 

OVA Loading 

(µg/mg NP) 

80×180 nm bare 200.8 ± 11.6 0.025 -24.6 ± 0.3 – 

80×180 nm 

PEG(0)OVA 

246.8 ± 1.2 0.139 -33.6 ± 1.2 30-100 

80×180 nm 

PEG(500)OVA 

192.0 ± 2.1 0.044 -39.3 ± 1.6 30 – 90 

80×180 nm 

PEG(5k)OVA 

191.3 ± 0.6 0.076 -27.5 ± 0.3 10 – 100 

1×1 μm 

PEG(500)OVA 

1459 ± 189.4 – -7.0 ± 0.5 10 – 100 

1×1 μm 

PEG(5k)OVA 

1238 ± 23.4 – -9.6 ± 0.4 10 – 100 
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Figure 2.4 Total drainage OVA-loaded hydrogel of NPs in lymph nodes. 50 μg fluorescently labeled 80×180 nm 

hydrogels were subcutaneously injected into footpads of balb/c mice, and draining popliteal LNs were collected at 

48 h, and imaged with IVIS Lumina. *, p < 0.05; ***, p < 0.001 by one-way ANOVA. N = 8-14. 

The best draining particles, 80×180 nm PEG(500)OVA NPs, also showed rapid 

trafficking and were present in the PLN in as short as five minutes after injection, with the 

concentration of NPs in the PLN continuously increasing over forty-eight hours (Figure 2.5). At 

forty-eight hours, NP trafficking reached 10 % of total injected dose, 5× higher than bare anionic 

80×180 nm NPs (2 %, Figure 2.1). 
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Figure 2.5 80×180 nm PEG(500)OVA NPs drained rapidly to the lymph nodes accumulated over 48 h. 50 μg 

fluorescently labeled 80×180 nm hydrogels were subcutaneously injected into footpads of balb/c mice. Draining 

popliteal LNs were collected at the indicated time points and imaged with IVIS Lumina. Error bars stand for SEM. 

N = 4-8. 

In order to efficiently elicit an immune response, an effective NP delivery vector should 

ideally be able to ensure the antigen arrives at the site of action without being degraded or 

released prematurely. To compare the drainage of NP bound OVA to that of free OVA, we 

tagged the NPs and OVA with two different fluorophores. Free OVA (red) drained rapidly and 

was observed in the PLN two hours after injection, but was no longer detectable at twenty-four 

hours (Figure 2.6). This is consistent with literature indicating that soluble proteins are subject to 

quick lymphatic clearance.
13

 For 80×180 nm PEG(500)OVA NPs, particles and OVA (shown in 

yellow as overlapping of green NPs and red OVA) also drained quickly, as seen previously with 

the trafficking experiments, and were co-localized in the subcapsular regions of the PLN two 

hours after injection. NP-OVA (yellow) stayed in the PLN much longer than soluble OVA (red) 

and was still observed at 48 hours after injection (Figure 2.6), although the quantity of NP-OVA 
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(yellow) versus NPs alone (green) decreased over time, presumably due to OVA cleavage and 

degradation by proteases. More importantly, cleaved OVA (red) selectively accumulated in the B 

cell follicles and the presence of OVA in this region persisted for up to 15 days. A similar 

phenomenon was also observed for 80×180 nm PEG(0)OVA (Figure 2.6). This observation 

indicates that in general 80×180 nm hydrogel NPs are able to efficiently deliver antigen to the 

LNs and support sustained presentation of antigen to B cells. The longer residence time of NP-

conjugated OVA in the PLN may help increase the interaction between antigen and B cells and 

LN-resident APCs compared to free OVA, resulting in an enhanced antibody response.  

 

Figure 2.6 Persistent delivery of antigen to B cells in soluble form or by hydrogel NPs. Blue, B220 (B cells); green, 

NPs; red, OVA-AF555. Scale bar: 200 µm. 
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In addition to the delivery of antigens to B cells and crosslinking of cognate B cell 

receptors, eliciting a potent humoral response and B cell memory also requires help from CD4
+
 T 

cells,
24

 therefore good vaccine carriers need to be able to deliver antigens to APCs and prime T 

cells efficiently. Analysis of draining LNs by flow cytometry showed that 48 hours post 

subcutaneous dosing, 80×180 nm hydrogels with OVA linked through all three linker lengths 

reached 10-20% of the DCs, and 10-35% of the macrophages in the PLNs while 1 μm 

PEG(500)OVA NPs were found in less than 2% of DCs or macrophages (Figure 2.7), indicating 

that the 80×180 nm NPs may efficiently deliver antigens to key APCs. Although the total 

drainage to LNs of these three NPs with various linker lengths (Figure 2.4) did not directly 

correlate with the uptake of NPs by cells in the PLNs, both results suggest that a long PEG linker 

is less favorable for antigen delivery to immune cells. The co-localization of the 80×180 nm 

PEG(500)OVA NPs with DCs was also observed by confocal microscopy analysis of sectioned 

draining LNs (Figure 2.8), indicating that these NPs are able to access all regions of the PLNs 

where B cell and T cell activation can occur, facilitating activation of both humoral and cellular 

immune responses. 
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Figure 2.7 80×180 nm NPs are efficiently taken up by key antigen presenting cells (DCs and macrophages) in LNs 

48 h post subcutaneous injection, as analyzed by flow cytometry. *, p < 0.05; **, p < 0.01; ***, p < 0.001; , p < 

0.001 compared to all other groups, analyzed by unpaired t-test. N ≥ 4. 

 

Figure 2.8 Uptake of 80×180 nm PEG(500)OVA particles by dendritic cells were confirmed by confocal 

microscopy at indicated time points post subcutaneous injections of particles. Blue: B cell (B220
+
); green: dendritic 

cells (CD11c
+
); red: particles. 

The complement system acts not only as the first line of defense for the body, but also 

links innate and adaptive immunity and plays an important role in peripheral lymph nodes to 

enhance B and T cell responses.
52

 The complement system is activated by three different 
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pathways: classical, lectin, and alternative; however, all three pathways share a common step – 

activating the central component C3. Hubbell and co-workers reported that nanoparticles can be 

engineered to activate the complement system and improve immune responses to vaccines.
53,54

 

Here we show that PRINT hydrogel NPs activate the complement system, as indicated by 

increase in the conversion of C3 to C3a (Figure 2.9a). Both bare and OVA-conjugated NPs 

promoted the conversion of C3 to C3a, suggesting that activation may result from the NP 

composition rather than post-fabrication modifications to the NPs. However, surface 

modification with long chain PEG may reduce the capacity of the NPs to activate the 

complement system, possibly due to a higher degree of shielding of the NP surface groups that 

would otherwise interact with components in the complement system. Furthermore, EDTA 

(ethylenediaminetetraacetic acid) but not EGTA (ethylene glycol tetraacetic acid) blocked the 

conversion of C3 to C3a (Figure 2.9b), indicative of complement activation via the alternative 

pathway rather than the classical pathway. These results demonstrate that in addition to the 

efficient LN targeted delivery of antigen, PRINT hydrogel NP vaccine vectors may potentially 

improve immune responses by activating the complement system.  
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Figure 2.9 Hydrogel NPs activate complement system. Serum from C57BL/6 mice was incubated with a) 0.5 mg/ml 

NPs and b) 1.2 mg/ml NPs for 50 min at 37ºC. Conversion from C3 to C3a was assayed by ELISA. The data 

represent one of two similar individual experiments; bars are average of two replicate wells in each experiment. 

Lymph nodes are home to a large population of DCs, especially CD8α
+
 DCs which have 

been shown to be the most efficient DCs in antigen cross-presentation.
6,9,55

 In addition, there are 

other major DC subsets including migratory Langerhans cells and dermal DCs, normally resident 

in distal areas of the body, as well as LN resident double negative DCs as defined by surface 

markers CD8 and DEC205
22

 (Figure 2.10a). Subsequent analysis of draining LNs showed that 

initially 80×180 nm PEG(500)OVA NPs distributed in all four different subsets of DCs 

somewhat evenly with an increase in the percentage of LN resident CD8α
+ 

DCs over a 30-minute 

period (Figure 2.10b). This suggests self-draining NPs may be efficiently taken up by LN 

resident CD8α
+
 DCs and dermal DCs, which are specialized in antigen cross-presentation.

56
 At 

27 hours after injection, the percentage of NP
+
 LN resident DCs decreased and the percentage of 
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NP
+
 migratory dermal DCs increased, likely due to continuous uptake of NPs by dermal DCs at 

the injection site followed by cell mediated transport to PLNs. This is further verified by the 

presence of NPs in the PLNs at as early as 5 minutes post injections (Figure 2.5): cell-mediated 

delivery of NPs has been shown to occur over several hours to days.
3,49

 These results 

demonstrate that the 80×180 nm hydrogel NPs can be taken up by various DC subsets, with a 

high percentage of CD8α
+
 DCs and dermal DCs internalizing NPs, potentially preparing them 

for T cell priming.  
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Figure 2.10 A) Analysis of LN DC subsets by flow cytometry. Single cell suspension of LNs was stained with anti-

mouse CD11c, CD8α and DEC205. Cells gated on CD11c
+
 were shown. The CD11c

+
 DC populations are defined 

as: CD8α
+
 DC (CD11c

+
CD8α

+
), DN DC (CD11c

+
DEC205

-
CD8α

-
), Langerhans cell (CD11c

+
DC205

hi
CD8α

-
), and 

dermal DC (CD11c
+
DEC205

int
CD8α

-
). B) Uptake of NPs by various DC subsets in draining LNs, with an increase 

in the percentage of migratory DCs over time. 50 μg fluorescently labeled 80×180 nm hydrogels were 

subcutaneously injected into footpads of C57BL/6 mice. Draining popliteal LNs were collected at the indicated time 

points analyzed via flow cytometry. 

  

B 

A 
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2.2.3 Influence of Particle Drainage on Immune Response 

The increased lymphatic drainage and the ability to access to key APCs present an 

opportunity for the 80×180 nm PEG(500)OVA particles to enhance immunogenicity of subunit 

vaccines.  

To further explore the T cell priming ability of the 80×180 nm PEG(500)OVA NPs, an in 

vivo T cell proliferation assay was performed using CD4
+
 OT-II cells that recognize OVA-

derived epitope OVA323-339. As displayed in Figure 2.11, immunizations with 80×180 nm 

PEG(500)OVA NPs loaded with just 1 µg of OVA effectively stimulated the proliferation of 

CFSE (carboxyfluorescein diacrylate succinimidyl ester)-labeled CD4
+
 OT-II T cells, causing a 

dilution of the fluorescent dye, while no proliferation was seen in mice that were untreated or 

dosed with 1 µg soluble OVA. Together with the flow cytometry data (Figure 1.7. and 1.10b), 

we can deduce that the 80×180 nm PEG(500)OVA NPs are effectively taken up by APCs where 

they can deliver antigen cargo and activate helper T cells. 
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Figure 2.11 In vivo CD4
+
 OT-II T cell proliferation. Hydrogel-mediated delivery of antigen is more efficient in 

stimulating CD4
+
 T Cell proliferation than soluble antigen. N = 3-4. 

To test immunogenicity of antigen delivered by this NP vector, mice were vaccinated 

against OVA delivered either in soluble form or conjugated to NPs as described previously. The 

display of antigen on the NP surface may increase the chance of direct present of antigen to B 

cells, although this strategy may be less protective to the antigen than encapsulation techniques. 

The immune response to free versus particulate OVA was evaluated following a prime-boost 

regimen. Seven days after the boost dose, mice immunized with 80×180 nm PEG(500)OVA NPs 

showed a tenfold increase in OVA-specific IgG production compared to free OVA and free OVA 

+ bare NPs (p < 0.05, Figure 2.12a), whereas the NPs that were co-injected with free OVA did 

not augment the immune response. This data suggests that covalent conjugation to the NP vector 

Untreated 

Soluble OVA 

80x180 PEG(500)OVA 
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is necessary for enhanced immunity. NP-OVA was compared to free OVA plus the adjuvant 

alum, the standard of care for adjuvanted vaccines.
57

 Free OVA + alum elicited higher antibody 

titers than NP-OVA; however, NP-OVA + alum gave a significant increase in antibody response 

compared to free OVA + alum (Figure 2.12b), indicating this NP-based vector for antigen 

delivery may be able to further improve the antibody response against protein antigen in 

adjuvanted vaccines. Previous work has shown that the PRINT hydrogel NPs induce no 

inflammatory response on their own;
58

 therefore the major advantage of the NP vector most 

likely comes from its efficient delivery of antigen to immune system rather than direct 

immunomodulating ability. 

 

Figure 2.12 Hydrogel vaccine elicits higher antibody titers than soluble antigen with or without Alum adjuvant. 

Mice were immunized on day 0 and again on day 21 with 5 μg OVA, soluble or conjugated to PRINT hydrogel NPs. 

OVA-specific IgG in plasma were examined by ELISA. *, p < 0.05; **, p < 0.01 by unpaired t-test. Error bars stand 

for SEM. N = 5. 

To examine the correlation between trafficking and immune response, we investigated 

anti-OVA antibody production after OVA delivery via 80×180 nm NPs with various PEG linker 

lengths as well as the 1 μm NPs. Interestingly, despite the influence PEG linker length had on 
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NP trafficking (Figure 2.4), PEG linker length appeared to have no statistical effect on antigen-

specific IgG production (Figure 2.13a). All linker lengths showed a tenfold increase in OVA-

specific IgG production compared to free OVA, but the IgG levels were equivalent among the 

NP groups. However, the size of the NPs used to deliver OVA appeared to have a more dramatic 

effect on the total IgG. The antibody response against the 80×180 nm PEG(500)OVA NPs was 

over 1000 times higher than the response to the 1 μm PEG(500)OVA NPs (p < 0.05, Figure 

2.13b). Remarkably, IgG response to 1 μm PEG(500)OVA NPs was even lower than soluble 

OVA, strongly suggesting that drainage of vaccine carrier and antigen interaction with LN-

resident B cells are crucial to eliciting a humoral response. It is likely that there is a threshold 

amount of antigen needed in the lymph nodes for initiating a humoral immune response. This 

level may be sufficiently reached by the 80×180 nm NPs, including the relatively low self-

draining 80×180 nm PEG(5k)OVA NPs, while the 1 μm NPs do not appear to deliver enough 

antigen to the LNs to do so. 
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Figure 2.13 Size rather than PEG linker length dramatically influences IgG response. A, Length of PEG linker for 

OVA conjugation does not affect IgG response. b, Large 1 µm NPs elicit lower IgG production than soluble 

administration or smaller 80×180 nm NPs. Mice were immunized as in Figure 2.12 and plasma IgG was evaluated 

by ELISA. *, p < 0.05 by unpaired t-test. Data represent two or three individual experiments of N = 4. Error bars 

stand for SEM. 

2.3 Conclusions 

In conclusion, we have designed and optimized a versatile vaccine delivery platform 

based on PRINT NPs. We demonstrate that the size, aspect ratio, charge, and surface 

characteristics of NPs are all important in improving the lymphatic trafficking of NPs and their 

subsequent uptake by key APCs. Anionic sub-100 nm hydrogel NPs loaded with a model antigen 

showed high levels of self-drainage and were able to efficiently deliver antigen to B cells and 

major APCs, inducing antigen-specific humoral and cellular responses superior to free antigen 

alone. The simplicity of the chemistries used in antigen conjugation confers versatility to this 

delivery platform, allowing for potential application to many infectious diseases. Increasing the 
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efficacy of subunit vaccines through a particulate delivery platform is of great interest and may 

lead to a wide variety of safe and effective vaccines based on dosing pathogen subunits. 

2.4 Materials and Methods 

2.4.1 Materials 

 Alexa Fluor 488 maleimide was purchased from Invivogen, Inc. Maleimide-PEG(5k)-

NHS and NHS-PEG(260)-OH were purchased from Creative PEGworks, Inc. Cell surface stains, 

antibodies, and ELISA reagents were purchased from eBioscience, Inc. TissueTek
®
 OTC media, 

DyLight 680 maleimide, maleimide-PEG(500)-NHS, BCA assay, s-NHS (N-

hydroxysulfosuccinimide), EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide 

hydrochloride), and general solvents were purchased from Thermo Fisher Scientific, Inc. 

Tetraethylene glycol monoacrylate (HP(250)A) was synthesized in-house. All other chemicals 

and reagents were obtained from Sigma Aldrich, Inc. unless otherwise noted.  

Cure-site monomer (CSM) solution was prepared by weighing out solid and liquid 

monomers into a conical tube and dissolving them in dry methanol to a final total of 2.5 

weight % solids. The composition of solids was (weight %): hydroxy tetraethylene glycol 

acrylate (HP(250)A) (67-79), methoxy polyethylene glycol dimethacrylate, MW = 750 Da (10), 

2-aminoethyl methacrylate HCl (AEM) (0-20), 2,4,6 trimethylbenzoyl diphenylphosphine oxide 

(TPO) (1), Alexa Fluor 488 maleimide or DyLight 680 maleimide (0-2) (Table 2.3). When 

utilizing fluorescent dyes, the dye took the place of 2% of the HP(250)A. A custom-built double-

nip laminator was used for preparing hydrogel particles. Harvesting layers were synthesized in-

house from poly(vinyl alcohol), MW = 2000 Da. PRINT molds were supplied by Liquidia 

Technologies.  

Table 2.3 Composition of hydrogel particles 
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Monomer 

Cationic 

Weight % 

Anionic 

Weight % 

2-aminoethyl methacrylate HCl (AEM) 10-20 0 

PEG(700) diacrylate (PEGDA) 10-20 10-20 

Hydroxy PEG(250) acrylate (HP(250)A) 67 77-87 

2,4,6 trimethylbenzoyl diphenylphosphine oxide (TPO) 1 1 

*DyLight 680 or AlexaFluor 488 2 2 

Total 100 100 

 

2.4.2 Animals 

Female Balb/c, C57BL/6, and OT-II mice were purchased from Jackson Laboratory and 

used at age 6-12 weeks. All experiments involving mice were carried out in accordance with an 

animal use protocol approved by the University of North Carolina Animal Care and Use 

Committee. 

2.4.3 Fabrication of Hydrogel NPs via the PRINT Process 

 The fabrication of nano- and micron-sized NPs was achieved by mold-based PRINT 

particle fabrication technology using a composition shown in Table 2.3.
40,45,46

 Briefly, cure-site 

monomer (CSM) solutions were prepared at 2.5 weight % solids in dry methanol. The film-split 

technique for preparing NPs was performed as described in the following: using a #5 Mayer rod, 

350 µL of CSM solution was cast on a sheet of corona treated poly(ethylene terephthalate) (PET), 

followed by brief evaporation of solvent with a heat gun to yield a transparent film (delivery 
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sheet). Patterned Fluorocur PRINT molds (Liquidia Technologies) were laminated against the 

delivery sheet with moderate pressure (40 psi) and delaminated at the same pressure. The filled 

mold was laminated against corona-treated PET and subsequently cured in a custom built UV-

LED chamber (Phoseon, λmax = 395 nm) for 3.5 minutes. After photocuring, the mold was 

removed to reveal an array of NPs on PET. NPs were mechanically harvested off the PET with 

water (1 mL/40 in
2
). NPs were washed via centrifugation (15-30 min, 14,000 RPM, 4 °C), 

removal of supernatant, and resuspension in fresh solvent. NP yield was determined by 

thermogravimetric analysis (Q5000IR, TA Instruments). To conjugate OVA, NPs were first 

PEGylated by reacting 1 mg NPs with 1.6 µmol of maleimide-PEG(5k)-NHS or maleimide-

PEG(500)-NHS using triethylamine (100 µL) in DMF at a final concentration of 1 mg NPs in 1.4 

mL.
40

 Reaction was run at room temperature overnight with shaking at 1400 RPM. NPs were 

then washed with fresh DMF. Residual amine groups on the surface of NPs were quenched with 

13.5 μmol of NHS-PEG(260)-OH (Creative PEGworks) following the same PEGylation 

procedure above, or with 150 μmol of succinic anhydride, reacted in the presence of 186 μmol 

pyridine for 30 minutes with agitation at 1400 RPM. NPs were then washed into water. OVA 

was conjugated to the free maleimide groups by reacting NPs and OVA in a 1:1 weight ratio at a 

NP concentration of 4 mg/mL in Borate buffer pH 9.5 with 0.1 weight % PVOH, MW 2 kDa, 

overnight at room temperature with shaking at 1400 RPM. NPs were washed with buffer to 

remove unbound protein and washed with water to remove residual salt. For PEG(0) NPs, OVA 

was conjugated to the NP surface by first reacting the free amines on the NPs with succinic 

anhydride as used in quenching above, followed by reaction with OVA, EDC (1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide) and sulfo-NHS according to protocol by Thermo Scientific. 



 43 

NPs were washed with buffer to remove unbound protein and washed with water to remove 

residual salt. 

2.4.4 Nanoparticle Characterization 

Scanning electron microscopy (SEM) enabled imaging of hydrogel NPs that were 

dispersed on a silicon wafer and coated with approximately 1.5 nm of Au/Pd (Hitachi S-4700, 

FEI Helios Nanolab 600). ζ-potential measurements were conducted on ~20 µg/mL NP 

dispersions in water using a Zetasizer Nano ZS Particle Analyzer (Malvern Instruments Inc.). 

Particle concentrations were determined via thermogravimetric analysis (Q5000IR, TA 

Instruments). OVA conjugation was measured using a standard BCA Assay. 

2.4.5 Lymphatic Drainage Studies 

Mice were dosed with 50 µg of NPs in 20 µL of 9.25 weight % sucrose subcutaneously in 

the rear right footpad. To monitor OVA drainage, 5 µg OVA labeled with AlexaFluor 555 

(Sigma), soluble or conjugated to NPs, was injected into the footpad. Mice were sacrificed at the 

indicated time points and draining popliteal LNs (PLNs) from both the dosed and contralateral 

control sides were resected. Resected PLNs were imaged for total fluorescence and/or 

homogenized into a single cell suspension for analysis of NP distribution in various cell types by 

flow cytometry. Additional dosed PLNs were frozen at -80 °C in OCT medium for histological 

analysis. 

2.4.6 Ex Vivo Imaging 

Imaging of resected LNs was done using an IVIS-Lumina II (PerkinElmer, Inc. 

Hopkinton, MA) with analysis done on Living Image
®
 software, version 3.2 (PerkinElmer, Inc. 

Hopkinton, MA). For optimal performance of the DyLight 680 dye, excitation and emission 

filters were set to 675 nm and 720 nm, respectively. 
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2.4.7 Flow Cytometry 

Draining LNs were resected at indicated time points post subcutaneous injections of 50 

µg DyLight 680-labeled NPs. Single cell suspensions of LNs were made physically with frosted 

slides. Cells were stained with CD11c-eFluor450, F4/80-FITC, B220-PE, PDCA-PerCP-

eFluor710 (eBioscience). Cells were then examined with Cyan ADP (Dako) and analyzed with 

Summit software. For DC subset analysis, LN cells were stained with CD11c-eFluor450, CD8α-

FITC and DEC205-PE (eBioscience). 

2.4.8 In Vivo CD4
+
 T Cell Proliferation  

CD4
+
 T cells recognizing OVA323-339 were isolated from spleens of OT-II transgenic 

mice with a kit (Miltenyi Biotech). The purified T cells were labeled with 4 µM CFSE 

fluorescent dye for 10 min at 37 ºC, and 10 million cells were adoptively transferred into each 

C57BL/6 mouse intravenously. The next day, mice were subcutaneously immunized with 1 µg 

OVA, soluble or NP-loaded. Spleens were harvested four days later and single cell suspensions 

were stained with CD4-PE-Cy7 and Vα2-eFluor450 (eBioscience). Cells were then examined 

with Cyan ADP (Dako) and analyzed with Summit software. 

2.4.9 Complement Activation  

A C3a sandwich ELISA was performed to measure complement activation in mouse 

serum following incubation with NPs. EIA plates (Corning 9018) were coated with an anti-

mouse C3a monoclonal antibody (BD Biosciences, clone I87-1162) diluted 1:250 in coating 

buffer (eBioscience) overnight at 4 °C. Mouse serum was incubated 1:1 with either PBS or NPs 

at 37 ºC for 50 min. Serial dilutions of purified mouse C3a protein (BD Biosciences) were 

included in each ELISA plate to establish a standard curve. Serum samples were added to wells 

in duplicate (50 µL total volume) and incubated for 3 hours. Anti-C3a-biotinylated detection 
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antibody (BD Biosciences, clone I87-419) was used at a 1:500 dilution in 1× assay diluent, and 

incubated for 40 min. Streptavidin-HRP (BD) was diluted 1:250 in 1× assay diluent for 30 min. 

1× TMB substrate solution (eBioscience) was added to develop color. The reaction was stopped 

with 0.2 N H2SO4, and absorbance was read at 450 nm with a reference wavelength of 570 nm 

on a SpectraMax (Molecular Devices) plate reader. 

2.4.10 Confocal Microscopy  

Resected draining LNs were frozen in OCT medium without fixation. 10 μm sections 

were made with Leica cryostat, fixed with ice cold acetone, and stained with purified anti-mouse 

B220 (eBioscience) coupled with Goat anti-rat IgG-Alexa Fluor 488 or –Alexa Fluor 647 

(Invitrogen), anti-mouse B220-biotin (eBioscience) coupled with Streptavidin-Alexa Fluor 555 

(Invitrogen), or anti-mouse CD11c-biotin (eBioscience) coupled with Streptavidin-Alexa Fluor 

633 (Invitrogen). Sections were examined with Zeiss 710 confocal microscope.  

2.4.11 Immunizations and Antibody ELISA  

C57BL/6 mice, 6-8 weeks old, were immunized with soluble OVA or NP-conjugated 

OVA at 5 μg per mouse, subcutaneously in the flank. Mice were primed on day zero and boosted 

on day 21. Plasma samples were collected by bleeding mice submandibularly on day 21 and day 

28 post-prime and OVA-specific antibody production was examined by ELISA. Briefly, EIA 

plates (Corning) were coated with 10 µg/ml OVA in ELISA coating buffer (eBioscience) at 4 °C 

overnight. The wells were washed and blocked with 200 µL per well of 3% BSA in PBST (PBS 

with 0.05% Tween 20) for 2 hours. Plasma samples were diluted in blocking buffer and 

incubated for 2 hours. The wells were washed extensively with PBST and anti-OVA IgG were 

detected using HRP conjugated goat anti-mouse IgG (Invitrogen) and was visualized by adding 

100 µL of TMB (eBioscience) to each well. The reaction was stopped after 11 min with 50 µL 
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0.2 M H2SO4. Optical densities (OD) were read at 450 nm and 570 nm. The antibody titer was 

determined as the highest dilutions with OD(450 nm – 570 nm) > 0.1.  
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CHAPTER 3 A PRO-ADJUVANT APPROACH TO ACHIEVE CONTROLLED DELIVERY OF VACCINE 

COMPONENTS VIA PRINT NANOPARTICLES 

3.1 Introduction 

Since the advent of vaccination in the late 1700s, the primary component of most vaccines 

has been either an attenuated or killed whole pathogen. As our understanding of immunity has 

matured, however, research has shifted toward subunit vaccines that utilize purified or synthetic 

immunogenic portions of pathogens (proteins, peptides, polysaccharides, and/or DNA). This 

vaccination strategy increases the safety of vaccines, especially for immunocompromised 

individuals.
1,2

 Conversely, ridding pathogens of the molecular machinery they use to infect the 

host organism usually decreases the body’s recognition of the pathogen, resulting in a far less 

potent immune response than would be seen with a whole pathogen vaccine.
3
 As a response to 

this decrease in immunogenicity, one or more defined immunostimulatory molecules are often 

combined with subunit antigens as adjuvants to augment the immune response. Among these 

immunostimulators, many are agonists for toll-like receptors (TLRs), intra- and extracellular 

receptors that are able to recognize specific structural motifs that are present in a wide variety of 

pathogens, also known as pattern recognition receptors (PRRs).
3
 Both TLRs and PRRs are highly 

conserved among organisms and the pathogens that infect them, respectively.
4
 

 Resiquimod (also known as R848) is a synthetic imidazoquinoline-type molecule that is 

currently being studied in human clinical trials as a therapeutic treatment for diseases like 

hepatitis C virus, Leishmaniasis, HIV, and Kaposi’s sarcoma.
5,6

 R848 activates both TLR 7 and 8 

in humans and non-human primates, and TLR 7 in mice. Activation of TLR 7/8 prompts 
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dendritic cells (DCs) to migrate to the draining lymph nodes and produce pro-inflammatory 

cytokines
7–9

 while also promoting B cell secretion of antibodies and other pro-inflammatory 

cytokines.
6,10

 R848 has been found to be approximately 100 times more potent at activating the 

immune system when compared to imiquimod, an FDA approved imidazoquinoline and TLR 7 

agonist currently used in the clinic.
11–14

 Due to this dramatic increase in immune system 

activation, R848 has the potential for dose sparing effects and more efficient dosing.  

R848 has been studied for the treatment of various skin diseases, including skin cancers 

and genital herpes, but dosing has been restricted to topical application due to side effects caused 

by systemic cytokine exposure
15–17

 and its short half-life in vivo.
18

 Additionally, topical cream 

dosing is typically up to 1000 times higher than subcutaneous injection dosing levels. 

R848 has been examined in pre-clinical work as a vaccine adjuvant.
18

 A wide variety of 

studies in mice, rats, guinea pigs, and monkeys have shown the ability of R848 to activate 

antigen presenting cells (APCs) and to induce an adaptive immune response.
19

 Unlike the related 

imidazoquinoline-type molecule imiquimod, which is also used as an immunomodulator, R848 is 

water-soluble and has substantial oral bioavailability.
6
 This, however, also allows R848 to drain 

quickly through the lymphatics from subcutaneous or intramuscular injections into the 

circulatory system, leading to systemic exposure. Conjugating R848 to NPs may not only limit 

systemic exposure, but also increase bioavailability in lymphoid tissues and cells. Current 

techniques being studied to encapsulate R848 and decrease systemic exposure include various 

nanoparticle formulations via electrospray or emulsion techniques.
20–23

 Particles formed by 

electrospray or emulsion are often non-uniform, have variable encapsulation efficiency, and are 

prone to burst release of their cargo.
21,22

 Burst release in particular makes these strategies 
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ineffective in controlling systemic exposure and production of inflammatory cytokines, 

decreasing the benefits gained by encapsulating R848.  

Several studies have also investigated modified imidazoquinoline type molecules. When 

modifying these TLR ligands, it is critical to maintain the original activity of the compound. 

Irreversible modifications have been shown to reduce adjuvanticity and/or remove activity for 

activation altogether.
24,25

 Reversible modification has been performed via covalent conjugation 

to a biodegradable polymer, PLGA, for use in synthetic vaccine particles (SVPs), fabricated 

through emulsion techniques.
23

 Due to the biodegradable nature of PLGA, R848 can be cleaved 

over time from the PLGA backbone, maintaining the activity of R848 upon release. 

The R848 encapsulation strategy presented here utilizes a pro-drug approach by 

modifying R848 in a way that allows for the molecule to revert to its original form in vivo. R848 

is reversibly linked to a polymerizable acrylate group through acid labile bis-silyl ether bonds 

(Scheme 1). This strategy has been previously used to fabricate acid labile cross-linkers and 

chemotherapeutic pro-drugs with reproducible, tunable release profiles.
26,27

 In this work, the 

adjuvant R848 was modified into a pro-adjuvant and used in the fabrication of PRINT 

nanoparticles (Particle Replication in Non-Wetting Templates). These NPs were then examined 

for their ability to release active R848 under physiologically relevant pH conditions, for 

cytotoxicity and TLR 7/8 activation in vitro, and finally for their utility in vivo as vaccine 

adjuvants. Here we show that R848-NPs are an effective adjuvant with higher, sustained 

antibody response and lower systemic cytokine induction than free R848. R848-NP also 

exhibited potential for dose sparing effects in regard to both adjuvant and antigen levels. This 

pro-adjuvant approach harnesses the potency of R848 as a vaccine adjuvant while making it safer 

and more effective for clinical applications. 
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3.2 Results and Discussion 

The molecular adjuvant resiquimod, also known as R848, has proven to be extremely 

potent in activating TLR 7/8 to the point that side effects from systemic exposure have 

outweighed potential benefits in clinical trials (clinicaltrials.gov). Here, we formulate R848 into 

an acid-labile ProR848 form, which can be covalently incorporated into PRINT nanoparticles 

(NPs). NP formulation can control how R848 interacts with the body, restricting release to the 

acidic environment of the endosome and limiting systemic exposure. We can in this way increase 

the potency of R848 as a vaccine adjuvant, boosting the immune response to subunit antigens 

while reducing the dose and limiting systemic side effects. 

3.2.1 Synthesis and Characterization of R848 Pro-Adjuvant Monomer 

 Two derivatives of the ProR848 monomer were synthesized: dimethyl and diethyl bis-

silyl ether acrylate R848, Me2ProR848 and Et2ProR848, respectively (Scheme 3.1). Structures 

were confirmed by 
1
H NMR, 

13
C NMR, and LTQFT high-resolution mass spectrometry 

(Appendix Figure A.1 – A.6). Due to the larger alkyl groups on the bridging silicon atom, 

Et2ProR848 was expected to have greater steric hindrance of the silyl ether bonds, slowing 

hydrolysis and resulting in a slower release of R848 from Et2ProR848-NPs compared to 

Me2ProR848-NPs. Differential degradation profiles allows for the release profile of the adjuvant 

to be tuned to the unique needs of each application and different particle characteristics (size, 

shape, composition). Larger or smaller alkyl groups may be employed to modify the release 

profile, as necessary.
26,27
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Scheme 3.1 Synthesis of R2ProR848. R groups represent two methyl or two ethyl groups, but could be substituted 

for various alkyl groups. 

 

3.2.2 Release of R848 from R848-NPs 

Me2ProR848 and Et2ProR848 were loaded into 80×320 nm PRINT NPs during the 

particle fabrication process by adding the ProR848 monomer to the cure-site monomer (CSM) 

solution at 10 weight % of the total solids (Table 3.1). ProR848-NPs remained well dispersed 

compared to blank NPs of similar composition (Table 3.2). 
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Table 3.1 Composition of Pro-Adjuvant NPs and Blank NPs 

 

Table 3.2 Characterization of ProAdjuvant NPs 

Cargo Size (d.nm) PDI Zeta Potential (mV) 

Pro-R848 (+) 294.5 ± 7.1 0.014 +30.0 

Pro-R848 (-) 291.7 ± 8.7 0.021 -16.4 

PEG(500)OVA 245.7 ± 6.8 0.061 -31.9 

 

A release profile of R848 from R848-NPs was established at physiologically relevant 

conditions - 37°C (normal body temperature) at pH 5 (endosomal pH) or pH 7.4 (physiological 

Monomer 

ProR848 NPs 

Weight % 

Blank NPs 

Weight % 

2-aminoethyl methacrylate HCl (AEM) 40 40 

Methoxy PEG5k acrylate 20 20 

PEG1k dimethacrylate 29 29 

2,4,6 trimethylbenzoyl diphenylphosphine oxide (TPO) 1 1 

Dimethyl or diethyl bis-silyl ether acrylate R848 

(Me2 or Et2ProR848) 

10 0 

Hydroxyethyl acrylate (HEA) 0 10 

Total 100 100 
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pH). R848 was found to be released from both Me2- and Et2ProR848-NPs through a 2-step 

degradation mechanism (Scheme 3.2): the silyl ether bridge degraded first between the silane and 

the NP, releasing Me2- or Et2silanol-R848, and second between the newly formed silanol and 

R848, releasing the free R848. This was confirmed via LC-MS (Appendix Figure A.6). At pH 5, 

the Me2silanol-R848 was quickly released from the NPs, but converted steadily to free R848 

over time. Within 11 hours, all of the cargo was released from the NPs, but the conversion of 

Me2silanol-R848 to R848 increased steadily over 3 days (Figure 3.1a). After 7 days at pH 7.4, 

approximately 75% of the total cargo had been released (Figure 3.1b). The release of R848 at pH 

5 was found to be almost 3 times faster than at pH 7.4 (Figure 3.2). The half-life of R848-NPs at 

pH 5 was found to be approximately 20 hours while the half-life at pH 7 was 55 hours, both 

calculated based on a one-phase exponential decay fit (Table 3.3). Et2ProR848-NPs showed a 

much slower release profile compared to the dimethyl counterpart. At pH 5, only 10% of the 

loaded R848 was released after seven days (Figure 3.3).  

Scheme 3.2 Two-step degradation mechanism of R848 from Me2ProR848-NPs 
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Figure 3.1 Release profile for R848 from Me2ProR848-NPs at varying pH. A) At pH 5, NPs quickly release 

Me2silanol-R848 which converts to free R848 steadily over time. B) At pH 7.4, Me2silanol is slowly released and 

converts steadily to free R848 over time. Me2ProR848-NP degradation plateaus at approximately 75% release. NPs 

were incubated in indicated buffer at a concentration of 1 mg/mL at 37 °C with agitation at 1400 RPM for seven 

days. Aliquots were taken from the NP solutions at the indicated time points. NPs were spun down and supernatant 

was tested by HPLC for R848 content. Values are reported as (amount released at given time point) ÷ (total amount 

released) × 100. 
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Figure 3.2 Release of R848 from Me2ProR848-NPs at pH 5 vs. pH 7.4. R848 is released from NPs three times faster 

at pH 5 compared to pH 7.4. The half-life of Me2ProR848-NPs at pH 5 is approximately 20 hours while at pH 7.4, 

half-life is 55 hours, both determined by fitting to a one phase decay, R
2
 > 0.999. 

Table 3.3 Half-life of Me2ProR848-NPs in situ 

pH 5 7.4 

t
1/2

 (hours) 19.85
α

 54.79
α

 

Relative rate 1 2.76 

α

Data fit to one phase decay, R
2

>0.999 
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Figure 3.3 Release profile for R848 from Me2- and Et2ProR848-NPs at pH 5. R848 is fully released from 

Me2ProR848 NPs over seven days at pH 5 while less than 20 % of R848 is released from the Et2ProR848-NP 

formulation. The increased stability of Et2ProR848-NP is due to the larger ethyl side groups on the bridging silicon 

atom. 

3.2.3 In Vitro Analysis of R848  

In vitro studies were performed to determine the activity of the Me2- and Et2ProR848-

NPs compared to free, unmodified R848. Murine macrophage RawBlue reporter cells were 

dosed with R848, Me2- and Et2ProR848-NPs of various concentrations for 24 h at 37 °C.  

Me2ProR848-NPs were found to be equally or slightly more efficient than free R848 at activating 

the TLR7 pathway in vitro while Et2ProR848-NPs were less active by an order of magnitude 

(Figure 3.4a). These results indicate that Et2ProR848-NPs do not release free R848 quickly 

enough to activate TLR7. While it is beneficial for the ProR848 to have long-term stability in 

vivo at pH 7.4, quick release of R848 upon endocytosis may be required in order to activate 

TLR7. After considering the in situ and in vitro results for Me2- and Et2ProR848-NPs, it was 

determined that the Me2ProR848-NP formulation (hereafter “R848-NPs”) was the more 

promising candidate moving forward.  
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Figure 3.4 Activity of Me2- and Et2ProR848 NPs compared to free R848 on RawBlue macrophage cells. A) 

Me2R848-NPs (+) elicit the production of alkaline phosphatase at lower concentrations than Et2R848-NPs (+), 

indicating higher activation of TLR7. B) Cationic Me2R848-NPs stimulate the production of alkaline phosphatase at 

lower doses than anionic Me2R848-NPs, indicating the cationic NPs are more activating than the anionic 

counterpart. ProR848-NPs and soluble R848 were dosed on cells for 24 hours. After incubation, 50 μL medium was 

taken out from each well and added to 150 μL Quanti-Blue agent and incubated at 37 °C for 30 min to detect release 

of alkaline phosphatase as a measure for TLR 7 activation. Absorption was read at 650 nm. EC50 values were 

calculated using a non-linear fit of the agonist dose response (Table 3.4). Figures are representative of three or more 

different experiments. 

Soluble Me2ProR848, and cationic and anionic R848-NPs were further compared for 

their activation of TLR pathway on RawBlue reporter cells (Figure 3.4b). Me2ProR848 and 

cationic R848-NPs showed similar activity to free R848 as determined by EC50 values (Table 

3.4). Anionic R848-NPs showed lower activity than the other formulations with an EC50 value 

approximately three times higher than soluble R848; however this may be due to the differential 

uptake of cationic versus anionic NPs in vitro.
28

 Further experiments were done to determine the 

activity of the R848-silanol degradation intermediate compared to the free R848. Supernatants 
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from the degradation of cationic R848-NPs at pH 5 containing a known ratio of R848 to R848-

silanol were dosed in vitro. Activation of RawBlue cells was determined at R848:silanol-R848 

ratios of 1:4, 1:2, and 3:1 (Figure 3.5a). R848:silanol-R848 mixtures all showed similar cell 

activation to soluble R848 indicating that the silanol-R848 is still able to activate TLR 7. The 

above ProR848 formulations were dosed on both RawBlue cells and bone marrow derived DCs 

(BMDCs) to test for cytotoxicity. As shown in Figure 3.5 and Figure 3.6, there was no associated 

toxicity at any dosage of R848:silanol-R848, free R848, anionic or cationic Me2ProR848-NPs, or 

the blank vehicle control. This result suggests that any activity seen through the reporter cell line 

or in subsequent experiments is due to the activity of R848 and not the NP vehicle. 

Table 3.4 Half maximal effective concentration (EC50) for R848 and ProR848 formulations 

Formulation EC50 

Free R848 4.6 ng/mL 

Me2ProR848 6.75 ng/mL ± 2.33 

R848-NPs (+) 6.8 ng/mL ± 4.2 

R848-NPs (-) 39.8 ng/mL ± 4.6 
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Figure 3.5 Activation of RawBlue cells after dosing of R848 and silanol-R848 together. R848:silanol-R848 mixture 

was collected from degradation of cationic R848-NPs at 12, 48, and 72 hours of incubation at pH 5. Cells were 

dosed with an equal amounts of total R848, shown as different R848:silanol-R848 ratios. R848:silanol-R848 

mixture appeared to have negligible effect on cell activation compared to soluble R848 (A) and limited toxicity (B). 
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Figure 3.6 Cytotoxicity of Me2Pro-R848 particles and monomer. R848 formulations were dosed on bone marrow 

derived DCs. Limited toxicity was observed for all formulations compared to an undosed control. 

3.2.4 R848-NPs as a Vaccine Adjuvant In Vivo 

Traditionally, R848 is able to boost antibody production with a skew towards a Th1 type 

response; however, the low molecular weight of R848 allows it to enter the blood stream and 

distribute throughout the body rather than going only to immune cells. This may lead to systemic 

inflammation, indicated by presence of TNF-α, IL-12, and other inflammatory cytokines. 

Systemic cytokine exposure is associated with the flu-like side effects seen after soluble 

administration of R848.
25

 To determine if dosing R848 in particulate form would protect mice 

from systemic cytokine exposure, serum cytokine levels were tested after administration of 

soluble R848, cationic R848-NPs or anionic R848-NPs (Figure 3.7). Free R848 produced 

significant levels of both TNF-α and IL-12p40 in the blood at doses as low as 5ug R848/mouse. 

Anionic R848-NPs showed a modest reduction of TNF-α but not IL-12p40 production compared 

to soluble R848. Cationic R848-NPs significantly reduced both TNF-α and IL-12p40 production 

at doses lower than 8 μg R848/mouse, indicating a therapeutically relevant window in which to 

dose R848 while reducing systemic cytokine exposure.  
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Figure 3.7 Serum cytokine profiles for soluble and particulate R848. Soluble R848 showed high levels of both TNF-

α and IL12 with doses as low as 5 and 1 μg R848 respectively. Cationic R848-NPs showed no TNF-α production for 

doses lower than 8 μg R848. IL12 production after R848-NP dosage was significantly lower than soluble dosage as 

well. . N ≥ 4. *, p < 0.05; **, p < 0.01; ***, p < 0.001 by unpaired t-test. 

Based on the more favorable cytokine profile and in vitro activation of the cationic R848-

NPs, only cationic R848-NPs were examined in the next stage of study.  

It has been previously established that R848 can act as a vaccine adjuvant by increasing 

antibody production, especially IgG2a type antibodies.
29,30

 Mice were dosed with R848-NPs or 

soluble R848 plus the model antigen ovalbumin (OVA) in order to determine how R848-NPs 

affect antibody production. OVA was dosed in either soluble form or conjugated to 80×320 nm 

PRINT NPs (OVA-NP). Anti-OVA IgG and IgG2a were tested one week after a boost dose. 

R848-NP + OVA-NP produced significantly higher antibody titers when compared all other 

formulations (p < 0.05, Figure 3.8), indicating that R848-NPs are not only as effective as a 

vaccine adjuvant as soluble R848, but are able to boost antibody production while also limiting 

systemic exposure.  
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Figure 3.8 R848-NPs significantly improve production of OVA-specific antibodies compared to soluble 

administration. Mice were dosed subcutaneously with 10 μg OVA, soluble or NP, along with 5 μg R848, soluble or 

NP. After a prime-boost regimen, sera were collected and tested by ELISA for OVA-specific total IgG and subtype 

IgG2a. R848-NPs significantly improved antibody production as well as IgG2a production compared to soluble and 

unadjuvanted formulations. N ≥ 4. *, p < 0.05; **, p < 0.01; ***, p < 0.001 by unpaired t-test. 

The high potency of R848 in comparison to other imidazoquinoline-type molecules and 

the potential increase in bioavailability from NP formulation provide an opportunity for R848 to 

have dose sparing effects in the amount of adjuvant and/or antigen needed to elicit a robust 

immune response. With the amount of antigen (OVA-NPs) held constant, the dose of R848 or 

R848-NPs was varied from 1 to 20 μg per mouse. When only 1 μg of R848-NPs were dosed, the 

antibody production was significantly higher than the highest dose of soluble R848 (Figure 3.9). 

At a 1 μg dose of R848 or R848-NPs, the antigen dose was lowered from 10 μg to 1 μg per 

mouse. Similar to the results seen when reducing the adjuvant dose, the lowest dose antigen with 

R848-NPs was higher than the higher dose of antigen with soluble R848 (Figure 3.10). These 

results suggest that by incorporating R848 into PRINT NPs, the potency of the adjuvant is 

increased, most likely due to a higher and longer lasting availability of R848 in local tissue 

and/or in the draining lymph nodes.  
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Figure 3.9 R848-NP formulation shows dose sparing effects for adjuvant dosage compared to soluble 

administration. Mice were dosed subcutaneously with the indicated dose of soluble or particulate R848 along with 

10 μg soluble or particulate OVA. Sera were collected at day 28 after a prime-boost regimen and analyzed by 

ELISA for total IgG. N ≥ 4. *, p < 0.05; **, p < 0.01; ***, p < 0.001 by unpaired t-test. 

 

Figure 3.10 R848-NP formulation shows dose-sparing effects in antigen dosing compared to soluble R848 

administration. Mice were dosed subcutaneously with the indicated dose of particulate OVA along with 1 μg soluble 

or particulate R848. Sera were collected at day 28 after a prime-boost regimen and analyzed by ELISA for total IgG. 

N ≥ 4. *, p < 0.05; **, p < 0.01; ***, p < 0.001 by unpaired t-test. 
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In addition to producing high levels of antigen-specific antibodies, an effective vaccine 

should elicit long lasting antibodies that remain for several months to several years. Mice that 

were immunized with the same prime-boost regimen above had blood drawn at regular 

increments to test for the persistence of OVA-specific antibodies. Mice dosed with R848-NP 

showed sustained high levels of IgG out to at least 120 days (Figure 3.11). This indicates that 

R848-NP formulation produce higher antibody levels than soluble administration and that the 

antibody response is robust enough to persist in the blood for an extended period of time.  

 

Figure 3.11 R848-NP dosage shows OVA-specific antibodies persisting in the blood out to at least 120 days. Mice 

were dosed subcutaneously with 10 μg OVA-NP along with 1 μg R848, soluble or NP. After a prime-boost regimen, 

blood was collected and serum was tested by ELISA for OVA-specific total IgG. R848-NPs significantly improved 

antibody production. Antibodies elicited by both formulations persisted out to at least 120 days after the first 

vaccination. The R848-NPs formulation showed a higher antibody response at all measured time points. Arrows 

represent immunizations at day 0 and day 21. N ≥ 4. 

FDA approval of R848 has stalled due to the high potency of this small molecule 

adjuvant producing unwanted side effects. By employing a pro-adjuvant strategy, we are able to 

covalently conjugate R848 into PRINT NPs with a controllable and reproducible release profile. 

Effective control of release of R848 at physiological pH limits systemic inflammation to a lower 



 69 

dose window. By utilizing an acid-labile silyl ether linker to conjugate R848 to a polymerizable 

acrylate group, we are able to tune the release of R848 at endosomal pH, resulting in robust 

adjuvanticity without systemic exposure. Additionally, loading of R848 in particles greatly 

increase the adjuvanticity of R848 and lowers doses of both antigen and adjuvant that are 

necessary to achieve a robust antibody response. The antibodies produced were sustained in the 

blood for at least several months after only a prime and boost dose. These factors may be of 

critical importance for new vaccine technology, especially in times of epidemic diseases and in 

reducing costs for third world applications.  

3.3 Conclusions 

The potency of R848 in comparison to other imidazoquinoline molecules presents an 

interesting opportunity for vaccine applications. Utilizing R848 as a vaccine adjuvant can greatly 

increase the immune response produced, but may also result in more severe side effects often 

attributed to the inflammatory cytokine storm produced when the body is exposed to R848 and 

other potent immunostimulatory molecules.
23,31

 By conjugating R848 to PRINT nanoparticles 

through an acid-labile bond, we delivered R848 specifically to the endosomal compartment of 

antigen presenting cells, where TLR7/8 are found, with limited release at normal physiological 

pH. This resulted in reduced systemic exposure to R848 as indicated by low levels of serum 

cytokine production. In addition to decreasing systemic exposure, NP encapsulation also led to 

an increase in antigen-specific antibody production compared to soluble R848, likely because 

more of the R848 was available to the APCs of the lymph nodes rather than distributing 

throughout the body. Dose sparing effects were seen with both antigen and adjuvant dosing 

levels when dosed in particulate form compared to soluble form as well. Together, these data 

suggest that R848-NP formulation is a good candidate for a vaccine adjuvant, addressing the 
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concerns that have caused R848 to remain in the clinical testing stages rather than reaching FDA 

approval for normal use.  

3.4 Materials and Methods 

3.4.1 Materials 

Resiquimod was purchased from Chemdea (Ridgewood, NJ). PRINT molds were 

supplied by Liquidia Technologies. All other chemicals and reagents were obtained from Sigma 

Aldrich, Inc., Fisher Scientific, Inc., Creative PEGworks, Inc., or eBioscience, Inc., unless 

otherwise noted.  

3.4.2 Animals 

Female C57BL/6 mice were purchased from Jackson Laboratory and used at age 6-12 

weeks. All experiments involving the mice were carried out in accordance with an animal use 

protocol approved by the University of North Carolina Animal Care and Use Committee. 

3.4.3 Synthesis of Pro-Adjuvant 

R848 was modified into a pro-adjuvant by adding a polymerizable acrylate group to 

R848 through an acid-labile bis-silyl ether bond. 0.75 mmol R848, 6 mmol imidazole, and 1 

mmol 4-dimethylaminopyridine were added to a flame dried scintillation vial with magnetic stir 

bar under an argon atmosphere and dissolved in 10 mL dry dimethylformamide (DMF). After 

stirring for 10 minutes until all reagents dissolved, 2 mmol of dimethyldichlorosilane was added 

drop-wise and allowed to react at room temperature for one hour. 2 mmol dry 2-hydroxyethyl 

acrylate (HEA) was added drop-wise and reaction was allowed to proceed for another hour. The 

product was extracted into ethyl acetate and dried by rotary evaporation. The product was 

purified by column chromatography with an eluent of 94% dichloromethane, 6% methanol. The 
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residual solvent was removed by rotary evaporation to yield a clear yellow oil with a yield above 

80%. Structure was confirmed by 
1
H-NMR, 

13
C-NMR, and HRMS (Appendix Figures A.1-A.6).  

3.4.4 Characterization of ProR848 

Reverse phase high performance liquid chromatography (HPLC) was run on an Agilent 

1200 series HPLC system using an Agilent C18 column. Due to solubility restrictions of R848, all 

samples were suspended in an aqueous solution (water, buffer) with 25% DMF. The mobile 

phase consisted of mixtures of H2O with 0.1% trifluoroacetic acid (TFA) (solvent A) and 

acetonitrile with 0.1% TFA (solvent B). The elution protocol for R848 consisted of a gradient 

starting at 100:0 (A to B) and finishing at 0:100 (A to B) over 15 minutes followed by a hold at 

the final concentration for 5 minutes. The product was eluted at a flow rate of 1 mL/min and 

monitored at a wavelength of 260 nm.  

Samples were prepared for NMR (nuclear magnetic resonance) by dissolving a small 

amount of the compound in CD2Cl2 or CD3OD (deuterated methanol). NMR measurements were 

performed using a Bruker AVANCE III spectrometer at room temperature. 
1
H NMR 

measurements were collected at 600 MHz and 
13

C NMR measurements were collected at 150 

MHz.  

High resolution mass spectrometry (HRMS) was performed on a Thermo LTqFT (linear 

ion trap, Fourier transform mass spectrometry) with 7.0 Tesla magnet or a TriVersa Nanomate
©

 

ESI Micromass Quattro II Triple Quadrupole Mass Spectrometer. Solutions were dissolved to < 

0.5 mg/mL in methanol before direct injection into the instrument. HRMS (m/z) calculated for 

Me2ProR848, [M]
+
 = 487.2299; found [M]

+
 m/z = 487.2347. HRMS (m/z) calculated for 

Et2ProR848, [M]
+
 = 515.2612; found [M]

+
 m/z = 515.26.  
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LC-MS (liquid chromatograph mass spectrometry) was performed on an Agilent 1200 

Series LC-MS using a 2.7μM HALO C18 column in positive ion mode with electrospray 

ionization. LC-MS data were analyzed using Agilent ChemStation software. Samples were 

prepared by degrading R848-NPs in low pH buffer at 1mg/mL and collecting the supernatant for 

analysis. Separations were performed in a mobile phase of 0 to 20% B over 25 minutes where A 

= 95:5 water:acetonitrile 0.2% formic acid and B = 0:100 water:acetonitrile with 0.2% formic 

acid. The compounds were eluted at a flow rate of 0.3 mL/min and monitored at a wavelength of 

260 nm. 

3.4.5 Fabrication of Hydrogel NPs via the PRINT Process 

The fabrication of nano-sized particles was achieved by mold-based PRINT particle 

fabrication technology using the compositions shown in Table 3.1.
28,32

 For pro-adjuvant loaded 

NPs, cure-site monomer (CSM) solutions were prepared at 3 weight % solids in dry DMF. The 

film-split technique for preparing NPs was performed as described in the following: using a #3 

Mayer rod, 150 µL of CSM solution was cast on a sheet of corona treated poly(ethylene 

terephthalate) (PET), followed by brief evaporation of solvent with a heat gun to yield a 

transparent film (delivery sheet). Patterned Fluorocur PRINT molds (Liquidia Technologies) 

were laminated against the delivery sheet with moderate pressure (40 psi) and delaminated at the 

same pressure. The filled mold cured in a UV chamber (λmax = 395 nm) for 3.5 minutes under a 

nitrogen atmosphere. After photocuring, the mold was laminated onto a sacrificial harvesting 

layer of 2 kDa poly(vinyl alcohol) (PVOH) at 80 psi, 150 °C. NPs were harvested with 2mL 

sterile filtered pH 7.4 buffer (Fisher Sci.) per 0.5 foot × 5 foot section NPs were washed via 

centrifugation (15 min, 14k RPM, 4 °C), removal of supernatant, and resuspension in fresh 

solvent. NP yield was determined by thermogravimetric analysis (Q5000IR, TA Instruments). 
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Blank NPs for post-fabrication antigen loading were fabricated by a roll-to-roll process based on 

the above fabrication method using the composition in Table 2.3, as previously described.
33

 

3.4.6 Characterization of R848-NPs  

Scanning electron microscopy (SEM) enabled imaging of hydrogel NPs that were 

dispersed on a silicon wafer and coated with approximately 1.5 nm of Au/Pd (Hitachi S-4700, 

FEI Helios Nanolab 600). ζ-potential measurements were conducted on ~20 µg/mL NP 

dispersions in water using a Zetasizer Nano ZS Particle Analyzer (Malvern Instruments Inc.). 

Antigen conjugation was measured using a standard BCA Assay (Fisher).  

Total adjuvant loading in R848-NPs was determined by degrading a sample of R848-NPs 

at a concentration of 1 mg/mL in a buffer solution, pH 3, at 37 °C with agitation at 1400 RPM 

for 48 hours. The supernatant was tested by HPLC for R848 content. For each batch of R848-

NPs, this method was used to determine the total loading and release percentage for release 

profiles. To establish a release profile of the R848 from R848-NPs, samples of R848-NPs were 

suspended at 1mg/mL in buffer solutions at pH 5 or pH 7.4. 100 μL samples were taken at 

indicated time points and the supernatant was isolated and tested for R848 content by HPLC. The 

concentration at the indicated time point was divided by the total adjuvant loading to determine 

the percent of R848 released at each time point. All samples were run in triplicate.  

3.4.7 In Vitro Studies. 

RawBlue macrophage cells (Invivogen) were maintained in DMEM high glucose 

supplemented with 10% FBS, 2 mM L-glutamine, 100 units/mL penicillin and 100 µg/mL 

streptomycin, 1 mM sodium pyruvate, non-essential amino acids, 100 µg/mL Normocin, and 200 

µg/mL Zeocin. RawBlue cells were plated in 96-well plates at 100,000/well and incubated 

overnight at 37 °C. Cells were then dosed with samples in complete medium without 
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Normocin/Zeocin at 37 °C for 24 h. After incubation, 50 μL medium was taken out from each 

well and added to 150 μL Quanti-Blue™ agent (Invivogen) and incubated at 37 °C for 30 min. 

Absorption at 650 nm was read by a SpectraMax M5 plate reader (Molecular Devices).  

Bone marrow derived DCs (BMDCs) were harvested from the bone marrow of C57BL/6 

mice. Briefly, femur and tibia were collected and bone marrow cells were flushed out with RPMI 

1640 medium supplemented with 10% FBS, 2 mM L-glutamine, 100 units/mL penicillin and 100 

µg/mL streptomycin, 50 µM β-mecaptoethanol, 10 ng/mL GM-CSF and 10 ng/mLIL-4. Cells 

were cultured at 37 °C and fed once on day three. Loosely adherent and non-adherent cells were 

harvested on day 6 and suspended in Hanks buffered salt solution (GIBCO). A 2.3 mL Opti-

Prepconcentrate (Sigma) was added to 9.7 mL Hanks buffer with 1 mM EDTA, 0.5% (wt./vol.) 

bovine serum albumin, 10 mM HEPES, pH 7.4. The cell suspension was gently layered on the 

top of 6 mL of the Opti-Prep mixture and centrifuged at 600×g for 5 min. The cells at the 

interface were collected, washed and used for experiments. For cytotoxicity assay, 100,000 per 

well BMDCs were treated with samples at indicated doses for 24 h at 37 °C. Cell viability was 

evaluated with Promega CellTiter 96® AQueous One Solution Cell Proliferation Assay 

following manufacturer’s instruction. Absorption at 490 nm was measured by a SpectraMax M5 

plate reader (Molecular Devices). 

3.4.8 Serum Cytokine Study 

C57BL/6 mice, 6-8 weeks old, were immunized with soluble or R848-NP subcutaneously 

in the flank with the indicated doses. Blood was drawn at 1, 6, or 24 hours after dosing. Serum 

cytokine levels were assayed via ELISA (BD Biosciences). IL12p40 was tested at six and 

twenty-four hour and TNF-α was tested at one hour post immunizations. Sera from 6 h were 

tested for IL6 as well.  
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3.4.9 Immunizations and Antibody ELISA. 

C57BL/6 mice, 6-8 weeks old, were immunized with soluble or R848-NP and soluble or 

OVA-NP subcutaneously in the flank with the indicated doses. Mice were primed on day zero 

and boosted on day 21. Plasma samples were collected by bleeding mice submandibularly on day 

28 and OVA-specific antibody production was examined by ELISA. Briefly, EIA plates 

(Corning) were coated with 10 µg/mL OVA in ELISA coating buffer (eBioscience) at 4 °C 

overnight. The wells were washed and blocked with 200 µL per well of 3% BSA in PBST (PBS 

with 0.05% Tween 20) for 2 hours. Plasma samples were diluted in blocking buffer and 

incubated for 2 hours. The wells were washed extensively with PBST and anti-OVA IgG was 

detected using HRP conjugated goat anti-mouse IgG (Invitrogen) and was visualized by adding 

100 µL of TMB (eBioscience) to each well. The reaction was stopped after 11 min with 50 µL 

0.2 M H2SO4. Optical densities (OD) were read at 450 nm and 570 nm. The antibody titer was 

determined as the highest dilutions with OD 450-570 nm > 0.1.  
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CHAPTER 4 PRINT BASED VACCINES FOR CLINICALLY RELEVANT DISEASE MODELS 

4.1 Introduction 

Infectious diseases are the second largest cause of death worldwide, responsible for 

nearly nine million deaths each year.
1
 Of these deaths, over three million can be attributed to 

vaccine preventable diseases such as rotavirus, pneumonia, and influenza.
2
 In addition to the 

almost thirty vaccines currently available in the USA, research is underway to develop vaccines 

against a host of other diseases such as Staphylococcal disease,
3
 Alzheimer’s disease,

4
 and HIV

5
 

(human immunodeficiency virus). Increasing attention has been paid to subunit-based vaccines 

in the development of new vaccines and improving on those already available. Nanoparticle 

delivery of pathogen subunits may further address some of the pitfalls of traditional whole-

pathogen vaccines while boosting the immunogenicity of subunits alone. Nanoparticles have the 

potential to mimic the natural multivalent presentation of antigen and adjuvant to immune cells 

that is not likely to occur when these subunits are dosed in soluble form.
6–9

 Additionally, for 

diseases that present with several distinct strains, nanoparticles may be able to concurrently 

deliver antigens for multiple strains to the same immune cell, enhancing the immune response.  

4.1.1 Dengue Virus as a Global Threat and Current Vaccine Strategies 

Dengue virus is a mosquito borne virus that affects up to 50 million people each year.
10

 

While dengue infection is uncommon in the United States, over 40% of the world lives in at-risk 

areas where Aedes aegypti, the disease carrying mosquitos, reside. Dengue virus is unique in that 

the virus has four distinct serotypes and protection against one serotype does not provide cross-
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protection against the other serotypes.
11

 In fact, infection by one serotype of dengue virus often 

results in a more severe response to dengue virus if infected by a second serotype, thought to be 

caused by antibody-dependent enhancement (ADE). ADE results when antibodies against a 

single serotype are weakly or non-neutralizing against other serotypes of a virus but are still 

cross-reactive, essentially protecting the virus from being recognized by neutralizing antibodies 

and allowing it to continue to replicate and infect the immune cells attempting to clear the 

virus.
10,12

 There is no approved treatment or vaccine against dengue virus and the best method of 

prevention is to avoid mosquito bites via DEET (diethyltoluamide) treated mosquito nets and 

personal use of 20-30% DEET bug spray, both of which may be challenging to access reliably in 

developing countries.
13

  

Current efforts toward a vaccine against dengue virus have investigated live-attenuated 

(LA) dengue viruses, recombinant proteins, viral vectors, and DNA-based vaccines.
10,11

 In a 

phase III clinical trial, one LA dengue vaccine utilizing an inactivated yellow fever 17D virus 

(CYD) as a vector produced key antigenic proteins for each of the four dengue serotypes, 

eliciting neutralizing antibodies to all four serotypes in more than 60% of patients; however, the 

dosing schedule was spread over a period of 12 months before attaining this high level of 

immunity.
13

 DNA vaccines, recombinant virus vaccines, and subunit protein vaccines are 

currently being explored in the preclinical stages and early stage clinical trials. These non-

replicating vaccine strategies have the benefit over a dengue-based LA vaccine in that they may 

be dosed to immunocompromised patients without risk of infection. DNA vaccines are often 

inexpensive, stable over a wide temperature range, and may be dosed on a condensed 

immunization schedule, although they are often less immunogenic than LA vaccines
11,14–26

. Self-

assembling adenovirus and alphavirus replicon vaccines are able to increase uptake into cells due 
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to their particulate nature compared to soluble DNA, thereby increasing their potency.
11,27–32

 This 

strategy, however, caries the risk of “viral interference” where patients develop antibodies 

against the vaccine vector rather than or in addition to the target antigen, decreasing the efficacy 

of subsequent doses.
29

 Neutralizing antibodies in DENV infected patients recognize the serotype 

specific envelope protein (E protein), which has become the primary target for subunit protein 

vaccines, along with structural proteins, like the premembrane protein (prM).
33

 Preserving the 

quaternary structure of E is critical to eliciting neutralizing antibodies against DENV, as the 

neutralizing human monoclonal antibodies that have been isolated appear to recognize the 

quaternary structure of two or more E proteins interacting rather than the sequence alone.
34,35

 

The prM protein may assist E in this assembly, which presents a challenge for recombinant E 

protein (recE) vaccines in maintaining its native structure. Synthesis of an abbreviated recE 

formulated with the adjuvant alum has shown promise in presenting a “native-like” structure and 

research projects in this area were recently transferred from Hawaii Biotech, Inc. to the vaccine 

manufacturer Merck & Co. for clinical evaluation.
36

 RecE and specific domains of recE present 

an opportunity for protection on a shortened dosing schedule, however, similar to DNA vaccines, 

these recombinant proteins face the challenge of efficient cell uptake and initiating a balanced 

immune response against all four serotypes of dengue virus.
11,37–42

  

Combining a recE protein-based subunit vaccine with PRINT nanoparticles, we may be 

able to overcome the challenges faced thus far by DENV subunit vaccines. Native DENV is a 

roughly spherical particle, 40–50 nm in diameter with prM and E proteins decorating the surface 

of the virus.
10

 By conjugating recE to nanoparticles of similar size and shape to native DENV, 

we may be able to induce stronger interaction with and uptake by immune cells than soluble E 

alone. Additionally, by either combining all four recE serotypes onto a single nanoparticle or 
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mixing nanoparticles with individual serotype recE, we can explore the relationship between 

antigen presentation to the immune system and the development of a balanced immune response. 

PRINT nanoparticles are biocompatible, non-immunogenic,
43

 and have not shown any risk to 

date of eliciting viral interference type of effects against the particle matrix. Unlike other 

nanoparticle platforms, the unique tunability of PRINT offers the opportunity to explore the size, 

shape, composition, and surface charge of the particle vector, as well as the linker length 

between the particle and the protein, the density of the protein on the particle surface, and the 

ratios among different serotypes in a single formulation. 

4.1.2 Influenza Virus: Overcoming Barriers Towards Total Immunization 

Seasonal influenza (flu) affects between 5-10% of the adult population each year, 

resulting in up to 5 million severe cases of the flu and up to 500,000 deaths annually.
44

 While 

current vaccine strategies are typically 60%-85% effective in healthy patients at preventing the 

flu, there are considerable drawbacks to current formulations, especially for 

immunocompromised patients. In healthy patients, both inactivated and live attenuated (LA) 

vaccine types may be utilized, though these may both be less effective in the elderly. LA 

vaccines are contraindicated for immunocompromised patients and inactivated vaccine 

formulations have shown to be less effective in these populations as well.
45,46

 

Immunocompromised patients, patients with HIV, those who have received organ or stem cell 

transplants, and those who take biologic agents (e.g. TNF-α blockers like adalimumab and 

infliximab for rheumatoid arthritis, Crohn’s disease, and other inflammatory diseases), are at 

higher risk of developing severe complications from the flu, including pneumonia, other 

respiratory infections, hospitalization, and death, and therefore represent a group which could 

reap the greatest benefit from safe and effective vaccines against the flu. Unfortunately, the 



 83 

immunosuppressed state of these individuals often results in a lower antibody response after 

vaccination, leading to inadequate protection against flu infection. For transplant patients 

especially and others taking immunosuppressive drugs, the flu vaccine may be ineffective up to 

six months after transplant and for heart and/or lung transplant patients, certain adjuvanted 

vaccines have been implicated in increased risk of transplant rejection.
47

 For these patients, it is 

especially important to develop safer and more effective vaccines against influenza by utilizing 

an efficient delivery system to restrict exposure to strong immunostimulating molecules to local 

tissues and lymphoid organs.  

Additional areas where current vaccination strategies are lacking include the time to 

manufacture, the reliance on a steady supply of eggs as a precursor of vaccines, lack of cross 

protection against changes in the antigen signature of the flu virus, and the short lifetime of the 

immune response.
48,49

 Several novel strategies are currently being explored to address these 

concerns. One interesting strategy being studied by several groups is the development of a 

universal vaccine against the flu.
50–52

 This approach targets antigens with highly conserved 

epitopes rather than the HA and NA proteins, which are prone to antigenic drift year to year. 

Universal vaccines based on influenza matrix proteins (M1, M2) and nucleoproteins (NP) have 

been investigated in several clinical trials, but these conserved epitopes often require adjuvants 

or other “helper” sequences in order to elicit a robust immune response.
50

 DNA vaccines have 

been investigated as well, in which the HA gene is inserted into a DNA plasmid which is then 

dosed to the patient. These vaccines induce host cells to express the HA antigen, allowing the 

hosts immune cells to interact with HA antigens that were produced internally rather than 

coming from the virus. As mentioned above, DNA vaccines have good stability and the potential 

for rapid production, however, they have shown limited immunogenicity in humans.
53

 In 2013, a 
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recombinant HA influenza vaccine, FluBlok® (Protein Sciences, Meriden, CT), was approved in 

the USA for patients age 18-49.
54

 Recombinant vaccines are made in the lab without reliance on 

eggs and do not come in contact with the native pathogen. While this strategy shows promise as 

well, FluBlok was shown to be only 44.6% effective in healthy adults, leaving much to be 

desired.
55

 

Recombinant protein antigen technology has spurred exploration of nanoparticle 

strategies for development of novel flu vaccines. Delivering protein subunits via nanoparticles 

offers advantages over soluble delivery such as protecting the antigen from premature 

degradation, delivery to professional antigen presenting cells (APCs), and co-delivery with other 

vaccine components like immunostimulatory molecules to the same APC.
56

 Virus-like particles 

have been utilized to deliver both recombinant HA and NA proteins in vivo.
57,58

 Virus-like 

particles utilize structural proteins from inert viruses with the genetic material removed and 

replaced with a protein of interest; in this case, HA and/or NA proteins
58

 or peptides.
57

 This 

strategy has shown promising results and has led to several clinical trials, but utilizing foreign 

proteins to build the VLP structure has the potential to cause an anti-vector immune response, 

similar to viral interference, in addition to the desired immune response.
29,59

 Biodegradable, 

inorganic calcium phosphate core-shell particles have been investigated as vaccine delivery 

vehicles.
56

 Recombinant HA and an immunomodifer, CpG, were encapsulated in the layers of 

calcium phosphate during particle fabrication, leading to particles that could steadily release their 

cargo as the particles degraded in vivo. The degradation products are found naturally in the body 

so present no opportunity for anti-vector immune responses. Organic nanoparticle systems have 

also been explored for development of new HA vaccines. In one study, liposomes were formed 

with dioleoylphosphatidylcholine (PC) with recombinant HA encapsulated within the 
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liposome.
60

 Other studies have investigated the biodegradable/biocompatible polymer PLGA 

(poly(lactic-co-glycolic acid)) as the basis for fabricating nanoparticles for the delivery of 

recombinant HA.
61,62

 

Previous work by Liquidia Technologies (Research Triangle Park, NC) investigated the 

applications of PRINT technology for the development of a flu vaccine using HA.
61

 In this study, 

PRINT was used to fabricate cationic PLGA NPs, which could adsorb HA proteins from the 

commercial flu vaccine Fluvirin® (a purified subunit vaccine). NPs were mixed with varying 

amounts of Fluvirin to achieve protein adsorption. It was found that mice dosed with 20 μg NPs 

+ 0.025 μg of Fluvirin elicited a higher immune response than 1 μg of Fluvirin alone, 

representing a forty times decrease in the amount of antigen dosed. This result demonstrates the 

potential in formulating an influenza vaccine using PRINT particles. 

In this work, HA was covalently linked to the surface of 80×320 nm PRINT hydrogel 

nanoparticles (NPs) to formulate flu vaccines. This covalent linkage allows for a greater amount 

of HA to be delivered with a smaller amount of NPs when compared to adsorption strategies. 

Covalent conjugation also allows for a greater degree of stability to assure particle-mediated 

delivery of HA to APCs: when proteins are electrostatically adsorbed to NPs, a strong electrolyte 

solution may be able to disrupt the adsorption, resulting in premature release of cargo. With 

covalent conjugation, only chemical means, e.g. protease degradation of the peptide epitopes 

from the protein, will be able to remove HA from the NP surface. Additionally, covalent linkage 

allows for more precise investigation into the role of linker length and surface density of antigen 

in eliciting an immune response. Herein I describe the initial steps in developing a PRINT 

hydrogel-based vaccine for influenza. 
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4.2 Results and Discussion 

4.2.1 Conjugation of Dengue Virus Envelope Protein to PRINT NPs 

The dengue virus envelope protein (E) has been established as a major target of 

neutralizing antibodies against dengue virus
33,34,63

 and has been studied in previous work for the 

development of a vaccine against dengue virus.
11,37–42

 A recombinant form of this protein (recE) 

was expressed by host cells in vitro for use in the development of a PRINT NP-based dengue 

vaccine. 

The E protein of dengue virus, serotype 2 (DV2) shares some chemical similarities to the 

model protein antigen ovalbumin (OVA). The two antigens are both 40-50 kDa in weight with 

many lysine (free amine functional group) and aspartic acid and glutamic acid (free carboxylic 

acid functional groups) residues exposed on the surface of the protein (DV2 E protein, Protein 

Data Bank ID: 1OAN). One important difference, however, is the isoelectric point (pI) of the two 

proteins. OVA has a pI of ~4.5, indicating that at neutral pH, the protein will have a net negative 

charge. RecE has a pI of 7, indicating that it will have a net neutral charge at neutral pH. This 

difference in pI may have a dramatic effect on the reactivity of the proteins under various 

reaction conditions. 

Due to the high cost and low availability of recombinant E protein (recE), the conjugation 

reactions were first performed with OVA. Previous reactions with OVA used a 1:1 ratio of OVA 

to NPs (Chapter 2) so to better represent the available amount and concentration of recE, 

reactions were carried out either maintaining the NP concentration and attempting to conjugate 

as much of the OVA as possible to the NPs (Reaction 1) or maintaining the 1:1 ratio and overall 

NP and protein concentration (Reaction 2). Both reactions resulted in moderate to high levels of 

OVA conjugation, well above the limit of detection for the BCA assay (Table 4.1). These 
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reactions were carried out with both a short PEG linker (MW = 500) and a direct amide bond 

between the protein and the NP, resulting in similar protein conjugation levels with both linkers. 

Table 4.1 Low OVA:NP ratio reactions 

 Reaction 0 (Chapter 2) Reaction 1 Reaction 2 

NP:OVA ratio 1:1 5:1 1:1 

Reaction volume 1.4 mL 1.4 mL 0.28 mL 

Amount of NPs 1-4 mg 1 mg 0.2 mg 

Amount of OVA 1-4 mg 0.2 mg 0.2 mg 

Average OVA Conjugation 100 μg/mg NP 50 μg/mg NP 250 μg/mg NP 

In an attempt to translate this reaction directly to the DV2 recE, and achieve a modest 

level of DV2 conjugation, NPs were prepared and reacted as per reaction 1 above. The resulting 

NPs had 3.4 μg DV2/mg NP, tenfold lower than the OVA reaction. Extensive exploration of 

reaction conditions, buffer salts, buffer concentrations, and linker lengths was performed 

(Appendix Table A.1). The optimized protocol used the maleimide-PEG(500)-NHS linker with 

the DV2 reacted at pH 9-10 in a sodium borate/potassium borate buffer mixture. The optimized 

reaction conditions yielded approximately 10-15 μg DV2/mg NP, nearly tenfold lower than the 

average for the OVA reaction. The extreme difference in protein conjugation between OVA and 

DV2 may be partially attributed to the difference in pI, but the complex quaternary structure of 

DV2 may also play a role in the accessibility of the amine and carboxylic acid functional handles 

during reaction. 
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4.2.2 Vaccination with Soluble Versus Particulate Dengue Recombinant E Protein Antigen 

80×320 nm PEG(500) DV2 NPs were used in a vaccination study in C57BL/6 mice 

comparing the immune response against soluble DV2 recE to DV2-NPs. Soluble DV2 was dosed 

alone or with an adjuvant (alum, soluble R848, or R848-NPs). DV2-NPs were dosed alone or 

with R848 in soluble or particulate form. After a twenty-eight day prime-boost dosing regimen, 

blood was collected and sera were tested for anti-DV2 antibodies. Disappointingly, soluble DV2 

administration appeared to produce a stronger immune response than DV2-NP administration, 

regardless of adjuvants used (Figure 4.1). The results were interesting in that each soluble DV2 

group had one or two high responding mice as well as several low-responding mice. The DV2-

NP groups were more consistent with essentially no mice showing DV2-specific antibody 

production. Further testing on sera from the mice revealed that even mice that did produce higher 

levels of DV2-specific IgG did not generally produce neutralizing antibodies (Appendix Figure 

A.7).  
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Figure 4.1 DV2-specific IgG antibody response after prime and boost dose. Bl57c/6 mice were injected 

subcutaneously with 1 μg soluble or particulate DV2 with or without adjuvant (3 mg Alum, 5 μg R848, or 5 μg 

R848-NP) on day 0 and again on day 21. After prime dose, several mice showed anti-DV2 antibody production after 

soluble DV2 administration, but essentially no response was seen from DV2-NP groups. One week after boost dose, 

mice receiving soluble DV2 showed higher antibody titers, while only one mouse receiving DV2-NPs showed anti-

DV2 IgG production. The addition of adjuvants appeared to have minimal effect on antibody response to both 

soluble and particulate DV2. N = 5-7 mice per group.  

While these preliminary results do not appear promising for a DV2-NP vaccine, they 

suggest areas for improvement in future studies. For soluble DV2 administration, DV2 alone and 

DV2 + alum showed similar responses, i.e. alum did not augment the immune response as 

expected from this potent adjuvant. This indicates that at the 1 μg dose of DV2 may be too low 

to be effective in the time frame studied. Clements et. al. used prime doses of 25 μg and boost 

doses of 12.5 μg DV2 for unadjuvanted, soluble administration.
38

 At that higher dosing level, 

there were clear differentiations between study groups vaccinated with and without various 

adjuvants. Increasing the dose of DV2 protein to 10-20 μg per mouse may give a better picture as 

to the effects of NP formulation and the presence of different adjuvants. Additionally, other 

mouse models may be more suited for DV2 studies (balb/c
11

, AG129
64

). 
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As a preliminary experiment before comparing higher doses of DV2 versus DV2-NPs, 

higher doses of soluble DV2 were examined in balb/c mice with and without Alum adjuvant to 

determine an appropriate minimum antigen dose. Mice were vaccinated with 10 μg soluble DV2 

or 5 or 10 μg DV2 plus 3 mg Alum (Figure 4.2). When compared to the results in Figure 4.1, 

there is a clear difference between the adjuvanted and unadjuvanted groups. Additionally, all 

mice in a given group showed more consistent responses rather than the grouping of high 

responders and low responders seen previously. Following this result, future studies will attempt 

to elucidate the difference in immune response for soluble DV2 versus DV2-NP at higher dosing 

level and with the balb/c mouse strain. 

 

Figure 4.2 Antibody response to soluble DV2. Balb/c mice were injected subcutaneously with the indicated doses of 

DV2 with or without alum on day 0 and again on day 21. For all groups, mice showed narrower spread of responses 

than the previous study (Figure 4.1). There was a significant difference in the immune response for all study groups 

compared to a vehicle control as well as between an adjuvanted versus unadjuvanted dose of 10 μg DV2. Further 

examination of the relationship between soluble DV2 administration and DV2-NPs will build upon this pilot dosing 

study. N = 3-5. *, p < 0.05 by unpaired t test. 
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4.2.3 PRINT-Based Vaccine Against Hemagglutinin Protein for Influenza Virus 

Influenza hemagglutinin (HA) is an antigenic protein found on the surface of influenza 

viruses (flu). HA has been widely studied as an antigen target for subunit flu vaccines
65

 and is 

utilized in the commercial flu vaccines FluBlok (recombinant) and Fluvirin (purified). It would 

be widely beneficial to have a flu vaccine delivery vehicle in which the protein antigens could be 

easily exchanged for others based on which strains of the flu were circulating in a given year or 

even at different times within the flu season, helping to compensate for antigenic shift and 

antigenic drift.
65

 Due to the “plug and play” nature of PRINT technology and the ease of 

conjugating a variety of proteins to hydrogel NPs, HA was used as a second clinically relevant 

target that could harness the potential advantages of a PRINT NP-based vaccine.  

HA was conjugated to 80×320 nm NPs through EDC chemistry, resulting in a direct 

amide bond between the HA protein and surface carboxylic acid groups on the NPs. The NPs 

were found to have 85 μg HA per milligram of NPs, on par with the conjugation levels seen for 

the model antigen ovalbumin. Future studies will explore the relationship between soluble versus 

particulate delivery of HA and the subsequent immune response as well as delivery of HA with 

various adjuvants 

4.3 Conclusion 

There are many diseases that are potentially preventable through novel vaccination 

strategies, which may also be used to further improve current vaccines in the clinic. PRINT 

nanotechnology has the potential for wide application across different types of vaccines, ranging 

from ground breaking new vaccines against growing disease threats like dengue virus to 

incremental improvements on already existing vaccine technology, as in the case of influenza 

vaccines. The versatility of PRINT and the antigen conjugation strategies presented here have the 
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potential to facilitate a “plug and play” vaccine platform, in which relevant antigen targets could 

easily be transitioned into viable vaccine candidates with a potentially lower barrier to entry for 

subsequent antigen formulations and without the safety concerns associated with whole pathogen 

vaccines and preservation additives 

4.4 Materials and Methods 

4.4.1 Materials 

Dengue E protein was produced at the UNC Protein Expression and Purification core 

facility. Hemagglutinin recombinant influenza A, subtype H1N1 (A/California/04/2009) protein 

was purchased from Life Technologies. Methoxy PEG(5k) acrylate was purchased from Creative 

PEGworks, Inc. Cell surface stains, antibodies, and ELISA reagents were purchased from 

eBioscience, Inc. TissueTek
®
 OTC media, maleimide-PEG(500)-NHS, BCA assay, s-NHS (N-

hydroxysulfosuccinimide), EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide 

hydrochloride), and general solvents were purchased from Thermo Fisher Scientific, Inc. 

Tetraethylene glycol monoacrylate (HP(250)A) was synthesized in-house. All other chemicals 

and reagents were obtained from Sigma Aldrich, Inc. unless otherwise noted. PRINT molds were 

supplied by Liquidia Technologies.  

4.4.2 Dengue E Protein Characterization 

E protein for dengue virus serotype 2 (DV2) were provided by the UNC Protein 

Expression and Purification core facility. Briefly, DV2 was expressed in Sf9 insect cells infected 

with a recombinant baculovirus and purified using a monoclonal antibody column charged with 

dengue specific 4G2 antibodies. Purified protein was eluted from the column using a low pH 

citrate buffer and quickly neutralized by pH 7-8 phosphate buffer with 15% w/v glycerol. Protein 

concentration was estimated by absorbance at 280nm as well as by ELISA and confirmed by gel 
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electrophoresis by comparison against a commercial DV2 standard of known concentration. 

Protein was further concentrated using a 10 kDa cut off Amicon Ultra – 4 regenerated cellulose 

centrifugal filter unit (EMD Millipore). Protein used in experiments had a final concentration 

between 0.1 and 1 mg/mL. 

4.4.3 Animals 

Female balb/c and C57BL/6 mice were purchased from Jackson Laboratory and used at 

age 6-12 weeks. All experiments involving mice were carried out in accordance with an animal 

use protocol approved by the University of North Carolina Animal Care and Use Committee. In 

general, dengue studies were carried out on C57BL/6 mice while hemagglutinin studies were 

carried out on balb/c mice unless otherwise specified.
61

 

4.4.4 Fabrication of Hydrogel NPs via the PRINT Process and Protein Conjugation 

 

PRINT NPs size diameter = 80 nm by length = 320 nm were fabricated as described in 

Chapters 2 and 3
66–68

 using the compositions shown in Table 4.2. 
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Table 4.2 Composition of PRINT NPs 

Monomer Protein Conjugated NPs ProR848 NPs 

Cationic monomer 2-aminoethyl methacrylate; 20% 2-aminoethyl methacrylate; 40% 

Cross-linker PEG(700) diacrylate; 10% PEG(1k) dimethacrylate; 29% 

Monomer Hydroxyl PEG(250) acrylate; 69% Methoxy PEG(5k) acrylate; 20% 

Photo initiator 2,4,6 trimethylbenzoyl diphenylphosphine oxide; 1% 

Cargo n/a ProR848; 10% 

DV2 was conjugated to NPs through a PEG(500) linker. NPs were first PEGylated by 

reacting 1 mg NPs with 1.6 µmol of maleimide-PEG(500)-NHS using triethylamine (100 µL) in 

DMF at a final concentration of 1 mg NPs in 1.4 mL.
68

 Reaction was run at room temperature 

overnight with shaking at 1400 RPM. NPs were then washed with fresh DMF. Residual amine 

groups on the surface of NPs were quenched with 150 μmol of succinic anhydride, reacted in the 

presence of 186 μmol pyridine for 30 minutes with agitation at 1400 RPM. NPs were then 

washed into water. DV2 was conjugated to the free maleimide groups by reacting NPs and DV2 

in a 4:1 weight ratio at a NP concentration of 4 mg/mL in phosphate buffer pH 9.5 with 0.1 

weight % glycerol, overnight at room temperature with shaking at 1400 RPM. NPs were washed 

with buffer to remove unbound protein and washed with water to remove residual salt. Final 

concentration was determined by thermogravimetric analysis (Q5000IR, TA Instruments) and 

protein conjugation was determined by BCA assay. Typical conjugation for DV2 was 10-15 μg 

DV2 per 1 mg NPs, far lower than the conjugation efficiency seen with ovalbumin in Chapter 2. 

Hemagglutinin was conjugated to PRINT NPs via EDC chemistry, described previously 

as PEG(0) in Chapter 2. Each milligram of NPs were first reacted with 150 μmol of succinic 
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anhydride in the presence of 186 μmol pyridine for 30 minutes with agitation at 1400 RPM in 

order to convert free amines on the NP surface into carboxylic acid groups. NPs were then 

reacted with EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) and sulfo-NHS according 

to protocol by Thermo Scientific. Finally, NPs were concentrated to 3 mg/mL and 0.695 mg of 

HA protein were added to activated NPs and allowed to react for two hours. NPs were washed 

with buffer to remove unbound protein and washed with water to remove residual salt. Final 

concentration was determined by thermogravimetric analysis (Q5000IR, TA Instruments) and 

protein conjugation was determined by BCA assay. Preliminary conjugation for HA was ~85 μg 

HA per 1 mg NPs, similar the conjugation efficiency seen with ovalbumin in Chapter 2.  

4.4.5 Nanoparticle Characterization 

NPs were imaged via Scanning electron microscopy (SEM) ζ-potential measurements 

were conducted on ~20 µg/mL NP dispersions in water using a Zetasizer Nano ZS Particle 

Analyzer (Malvern Instruments Inc.). Particle concentrations were determined via 

thermogravimetric analysis (Q5000IR, TA Instruments). Protein conjugation was measured 

using a standard BCA Assay (Fisher Scientific, Inc.). 

4.4.6 Immunization and Antibody ELISA 

Balb/c or C57BL/6 mice, 6-8 weeks old, were immunized with soluble antigen/adjuvant 

or NP-conjugated antigen/adjuvant at the indicated dose, subcutaneously in the flank. Mice were 

primed on day zero and boosted on day 21. Plasma samples were collected by bleeding mice 

submandibularly on day 21 and day 28 post-prime and antigen-specific antibody production was 

examined by ELISA. Briefly, EIA plates (Corning) were coated with 10 µg/ml OVA in ELISA 

coating buffer (eBioscience) at 4 °C overnight. The wells were washed and blocked with 200 µL 

per well of 3% BSA in PBST (PBS with 0.05% Tween 20) for 2 hours. Plasma samples were 
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diluted in blocking buffer and incubated for 2 hours. The wells were washed extensively with 

PBST and anti-antigen IgG were detected using HRP conjugated goat anti-mouse IgG 

(Invitrogen) and was visualized by adding 100 µL of TMB (eBioscience) to each well. The 

reaction was stopped after 11 min with 50 µL 0.2 M H2SO4. Optical densities (OD) were read at 

450 nm and 570 nm. The antibody titer was determined as the highest dilutions with OD (450 nm 

– 570 nm) > 0.1.  
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CHAPTER 5 FUTURE DIRECTIONS AND SUMMARY 

5.1 Future Directions 

5.1.1 Combining Vaccine Antigens and Adjuvants into a Single Particle Formulation  

As demonstrated in this work, nanoparticle delivery of antigens and adjuvants can have a 

dramatic effect on the immune response elicited by these potent compounds. While our focus 

thus far has been on the delivery of each component individually, other works have shown 

synergistic benefits from combining antigens and adjuvants onto the same micro- or nanoparticle. 

This enables both vaccine components to be delivered to the same immune cell, activating toll-

like receptors (TLRs) as well as presenting the immunogenic antigen, thereby more closely 

mimicking how immune cells interact with native pathogens.  

Several different strategies have been employed to combine antigens and adjuvants in the 

same delivery vehicle. CpG is a single stranded oligonucleotide that is known to activate TLR9, 

an intracellular TLR that recognizes unmethylated CpG motifs, commonly found in microbial 

DNA, but not in vertebrate DNA sequences. CpG is able to boost both innate and humoral 

immune responses. CpG has been used as a vaccine adjuvant in several studies looking at the 

immune response when antigen and adjuvant are delivered together in a single particle 

formulation versus when dosed in soluble form. In one study, Hunter et al. encapsulated CpG 

and a group B Streptococcus antigen (GBS) into PLGA microspheres.
1
 The microsphere-

encapsulated formulation outperformed administration of soluble GBS + soluble CpG as well as 

soluble GBS alone.  
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In another study, CpG was covalently modified for incorporation into an acid-labile 

polymer nanoparticle.
2
 When irreversibly modifying immunostimulatory molecules, there is a 

chance of decreasing or eliminating their activity. When CpG was modified at the 5’ end of the 

oligonucleotide, the CpG-NPs elicited lower IL-12 production while modification at the 3’ end 

had no effect on the activity of the CpG-NPs when compared to soluble CpG. NPs loaded with 

OVA and CpG (3’CpG/OVA particles) were compared to OVA particles administered with 

soluble CpG and soluble administration of both OVA and CpG. It was found that the 

3’CpG/OVA particles were able to more effectively enhance the cytotoxic T lymphocyte (CTL) 

response against OVA-expressing cancer cells and increase survival time compared to other 

formulations, demonstrating protective immunity from co-administration of antigen and adjuvant 

in a single particle formulation. 

Flagella, an adjuvant for TLR5, have been incorporated into a recombinant bacteria-

based vaccine against the HIV-1 Gag antigen (Gag).
3
 TLR5 is found on the surface of several 

types of immune cells including macrophages and DCs and specifically detects bacterial flagellin. 

Lactobacillus acidophilus, an inert bacterium found in the gastrointestinal tract of humans and 

animals, was modified to express the Gag protein and/or flagellin from Salmonella enterica 

(FLiC) on the surface of the bacteria. By combining both Gag and FLiC on the same bacteria, 

higher levels of IgA were detected in key mucosal surfaces of the digestive and reproductive 

tracts in mice compared to dosing Gag expressing recombinant lactobacilli alone. 

One of the few FDA approved vaccine adjuvants, monophosphoryl Lipid A (MPLA), 

boosts immunity through TLR4. TLR4 naturally recognizes lipopolysaccharide (LPS), a 

component of the outer membrane of bacteria. MPLA is a truncated, less toxic version of LPS. 

Lipid A, also known as endotoxin, is responsible for the activity of LPS and MPLA. Moon et al. 
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have investigated the incorporation of MPLA into interbilayer-crosslinked multilamellar vesicles 

(ICMVs) when delivering OVA as well as the malaria antigen VMP001.
4
 Combining MPLA into 

the bilayers of ICMVs increased the immune response against OVA, which was especially 

apparent at lower doses of antigen. 

A second FDA approved adjuvant, imiquimod (R837), has been investigated in 

particulate delivery of vaccines. R837 activates TLR7/8 in humans (TLR7 in mice) and is an 

imidazoquinoline-type molecule like resiquimod (R848). These imidazoquinoline molecules 

mimic motifs found in viral single stranded RNA. R837 was investigated in combination with 

MPLA in PLGA nanoparticles.
5
 PLGA particles were fabricated with OVA, MPLA + R837, or 

all three components. When PLGA(OVA/MPLA/R837) particles were compared to 

PLGA(OVA) + PLGA(MPLA/R837) particles, interestingly separating the antigen and adjuvant 

onto different particles greatly increased the antibody response. 

Overall, these works compare antigen and adjuvant combined into a single particle 

formulation to soluble administration, and have shown that co-delivery of antigen and adjuvant 

in the same particle vehicle greatly enhances antigen-specific immune responses. Kasturi et al. 

looks into the potential of utilizing antigen particles + adjuvant particles as an alternative to 

combining both components on a single particle while maintaining particulate dosing for both 

components.
5
 They found that it was preferable to formulate their antigen and adjuvant on 

separate PLGA-based particles, mixed before injection. A study by Kazzaz et al. found different 

results, indicating that the immune response against separate antigen and adjuvant particles was 

comparable to a single antigen + adjuvant particle.
6
 Notably, combining both the antigen and 

adjuvant in particles, whether together or separate, elicited a significantly higher antibody 

response compared to using soluble adjuvant with a particulate antigen. 
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Formulating antigen particles and adjuvant particles separately and co-administering the 

two particle types allows for more flexibility in the ratio of adjuvant and antigen, potentially 

allowing the vaccine to be tuned to the needs of each patient at the time of injection. This may be 

beneficial in personalizing vaccines and decreasing the dosage of adjuvant needed when patients 

are receiving multiple vaccines in a single doctors visit, as is the case with many childhood 

vaccinations. While this presents an interesting opportunity in exploring personalized 

vaccination, there has been limited and conflicting information about the benefits of dosing 

antigens and adjuvants in a single particle formulation versus two separate particle formulations. 

PRINT based vaccines could help fill this knowledge gap by investigating administration 

of antigen and adjuvant on a single particle, on different particles, or in different combinations of 

soluble and particulate dosing. The strategies presented here for fabrication of R848-NPs 

(Chapter 3) could be combined with the post-fabrication antigen conjugation strategies presented 

in Chapter 2 and Chapter 4 to create OVA-R848-NPs. Additional conjugation strategies could be 

explored as well. Thiol functionalized CpG could be utilized to reversibly (disulfide bond) or 

irreversibly (thiol to maleimide reaction) conjugate this adjuvant to NPs through commercially 

available PEG linkers prior to protein conjugation. Further adjuvants could be promising 

candidates for this type of chemistry as well, given they retain their adjuvanticity after chemical 

modification.
2,7

 Combining antigens and adjuvants into a single particle formulation could 

further boost the immunogenicity of subunit vaccines, leading to lower doses, fewer side effects, 

and greater access to important vaccines, especially in developing countries. 

5.1.2 Exploring the Synergy Between Multiple Adjuvants in Augmenting Vaccine Efficacy 

The major cells of the immune system, APCs like dendritic cells, macrophages, and B 

cells, often contain a mix of pattern recognition receptors (PRRs) like TLRs, NOD-like receptors 
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(NLRs), and RIG-1-like receptors (RLRs), each responsible for recognizing different types of 

pathogen associated molecular patterns (PAMPs). Combining different TLR, NLR, and RLR 

agonists with antigens into a single vaccine formulation may stimulate multiple PRRs on a single 

cell, leading to a more authentic immune response compared to dosing antigen alone or single 

adjuvants, especially when the adjuvants act through different mechanisms of activation.
8–10

 

Many combinations of adjuvants have been examined in soluble dosing form, but few have been 

examined in particulate form, which may augment the immune response elicited by these 

compounds. 

An extensive study by Matthews et al. compared combinations agonists for TLRs 1/2, 

TLR3, TLR4, and TLRs 7/8 to determine if dual-TLR activation would enhance immunogenicity 

of adjuvants.
11

 They examined individual TLR activation alone as well as TLR7/8+TLR3, 

TLR7/8+TLR4, TLR1/2+TLR3, and TLR4+TLR3 in combination. They found that stimulation 

of TLR7/8 plus either TLR3 or TLR4 led to higher cytokine production as well as higher levels 

of antibody production compared to single TLR agonist administration or the other combo 

therapies. These combinations also aided in polarizing the immune response toward a Th1 

response, which is particularly important for eliciting cellular immunity. These studies help to 

establish the basic knowledge of effects from combining immune modulators in dispersed in 

solutions. Further knowledge is needed for particle-mediated delivery of multiple immune 

modulating agents, which requires stable association of these molecules to particle vectors. 

The benefits of adsorbing antigens and adjuvants to alum prior to administration, thus 

creating a depot that can trap antigens and adjuvants at the injection site for prolonged release 

rather than allowing them to clear via lymphatic drainage, were further explored by Xiao et al.
14

 

When alum was pre-treated with phosphate buffer, blocking alum from adsorbing other 
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compounds, vaccination with a dual adjuvant vaccine produced a lower antibody response 

against recombinant poxvirus L1 (V1L). While the phosphate treated alum groups still provided 

some protection against a lethal challenge, the groups receiving untreated alum + CpG +L1V 

showed 100% survival after challenge. When the second adjuvant CpG was excluded, the 

immune response against the single adjuvant formulation was lower than that of the phosphate 

treated or untreated dual-adjuvant therapy, indicating a synergy between the alum and CpG in 

building immunity.  

Silica nanoparticles (SiO2) have also been studied for their adjuvant properties.
15,16

 

Similar to alum, SiO2 particles may be able to form a depot at the site of administration, leading 

to prolonged stimulation of the immune system. SiO2 particles were combined with bis-(3’,5’)-

cyclic dimeric guanosine monophosphate (c-di-GMP), a mucosal adjuvant, and recombinant 

hemagglutinin (HA) antigen HAC1 in an attempt to design a better intranasally delivered vaccine 

against influenza. Alum+HAC1 elicited higher sera IgG, but the dual adjuvant SiO2+c-di-

GMP+HAC1 produced higher levels of IgG and IgA in the lung. When HAC1 was dosed with 

SiO2 alone, sera IgG levels were high but lung IgG levels were low. When HAC1 was dosed 

with c-di-GMP alone, the opposite happened and lung IgG levels were high and sera levels were 

low. The synergy between SiO2 and c-di-GMP promoted robust mucosal and systemic 

immunity.
16

  

Co-administration of adjuvants via different nanoparticle formulations has been 

investigated using both PLGA microspheres
17

 as well as nano-emulsions.
18

 Combinations of 

TLR agonists and mucosal adjuvants were examined for synergistic adjuvant effects when 

encapsulated into PLGA microspheres (MS) with bovine serum albumin (BSA) as a model 

antigen. Single and double adjuvant MS were compared to soluble administration of single and 
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double adjuvant combinations. All MS formulations elicited high levels of IgG, indicating a 

strong humoral response, but only the MPLA (TLR4 agonist) + α-galactosylceramide (mucosal 

adjuvant) combination led to the high levels of splenocyte proliferation and IFN-γ secretion after 

stimulation of T cells, demonstrating a strong cellular immune response as well.
17

 

In an effort to create a tuberculosis vaccine, synthetic TLR4 adjuvant Glucopyranosyl 

Lipid Adjuvant (GLA) was combined with TLR9 agonist CpG in a nanoemulsion with 

tuberculosis recombinant fusion protein ID93. Both adjuvants individually increased cytokine 

production in vivo and provided some reduction in viral load in the lung after a challenge study, 

but the combination of the two adjuvants in a single nanoemulsion resulted in cytokine 

production higher than the additive value of the two adjuvants alone as well as a greater 

reduction in viral burden when mice were challenged in as little as four weeks after 

immunization. 

Alum has been used as an adjuvant in clinical vaccines since the mid-1920s,
19

 but 

recently a dual adjuvant system has been introduced in the clinic. Adjuvant System 04 (AS04) is 

a combination adjuvant consisting of MPLA adsorbed onto particulate Alum.
20

 AS04 is a 

component of the human papillomavirus (HPV) vaccine Cervarix (Glaxo Smith Kline) as well as 

the hepatitis B virus vaccine Fendrix (Glaxo Smith Kline). The co-administration of MPLA with 

Alum led to higher innate and adaptive immune responses.
20,21

 

The successes discussed here demonstrate the promise of dual-adjuvant vaccines, but 

further improvements may be made in a more mechanistic approach to studying the impact of 

combining adjuvants. Many of the studies on combined adjuvant vaccines have examined 

soluble adjuvants rather than particulate adjuvants, with high potential for systemic exposure to 
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these molecules. By anchoring these adjuvant molecules to nanoparticles, they can be targeted to 

the lymphatics directly, preventing whole-body distribution, increasing bioavailability to cells of 

interest, and potentially decreasing the dose needed to elicit a robust immune response. 

Using PRINT nanoparticles, single or multiple adjuvants can be targeted to the lymph 

nodes. The ratio of adjuvants can be controlled on a single particle and compared to 

combinations of multiple single-adjuvant particles to determine the benefits of activating 

multiple TLRs in a single cell versus activating multiple cells through different TLRs. While 

activating multiple TLRs in a single cell would more closely resemble natural infection, having 

multiple single-adjuvant particles would offer more freedom in dosing these compounds in a way 

personalized to the patient. The strategy detailed in Chapter 3 for the conjugation of resiquimod 

(R848) could be combined with a post-fabrication approach to conjugate TLR9 agonist CpG to 

the surface of particles reversibly or irreversibly. Previous work has shown the potential for 

synergy between R848 and CpG,
12,13

 and it would be interesting to further investigate this 

adjuvant combination and determine an ideal ratio between the components to maximize 

adjuvanting effects without dosing an excess of these potent and costly molecules.  

5.2 Summary 

5.2.1 Manipulating Physicochemical Properties of Polymeric Hydrogel PRINT Nanoparticles 

to Enhance Lymphatic Trafficking and Immunogenicity of a Model Subunit Vaccine 

As research has shifted from whole pathogen vaccines to the safer subunit vaccines, it has 

become apparent that the immunogenicity of the antigen used is not the only factor in eliciting a 

robust immune response. The way in which the cells of the immune system interact with the 

antigen plays a critical role in the type of response generated. By delivering vaccine antigens via 

PRINT nanoparticles, we can begin to investigate how different characteristics of the vaccine 

delivery system effect the interactions with the immune system and ultimately change the 



 110 

immune response. In this investigation, sub-100 nm anionic hydrogel NPs were found to have 

the highest level of trafficking to the lymph nodes and greatest uptake in key APCs. These NPs 

were subsequently loaded with a model antigen through simple and straightforward conjugation 

strategies that could be applied to a wide variety of other protein and peptide antigens. Antigen 

conjugation to this nanoparticle platform resulted in high levels of NP-antigen self-drainage, 

delivery of antigen to B cells, and robust antigen-specific humoral and cellular responses 

superior to free antigen alone. These findings may find application to a wide variety of infectious 

diseases, increasing the efficacy of subunit-based vaccines. 

5.2.2 A Pro-Adjuvant Approach to Achieve Controlled Delivery of Vaccine Components via 

PRINT Nanoparticles 

Resiquimod (R848) is a potent TLR 7/8 agonist that has been studied as a vaccine adjuvant. 

While system exposure to R848 can have negative side effects, when delivered to antigen 

presenting cells, it is able to greatly increase the immune response against less immunogenic 

subunit antigens. The pro-adjuvant approach allows for R848 to be conjugated into PRINT 

nanoparticles for delivery to APCs, but upon acidification of the endosomal compartment, R848 

is released in its original, unmodified form allowing it to activate TLR 7/8. Formulating R848 

into particulate form mitigated systemic exposure, as indicated by minimal serum cytokine 

production, while boosting antigen-specific antibody production against a model antigen. NP 

formulation also decreased the amount of antigen and adjuvant necessary to elicit a robust 

immune response, which could translate into protective immunity against infectious diseases 

with lower doses of expensive vaccine components.  

5.2.3 PRINT Based Vaccines for Clinically Relevant Disease Models 

The development of a new vaccine delivery vehicle ultimately must be tested using 

clinically relevant antigens to determine its efficacy compared to the current standard of care for 
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a given disease. The simplicity of the conjugation chemistries used in designing a PRINT NP 

based vaccine may allow for wide application to many diseases with a constantly decreasing 

barrier to entry for subsequent diseases. By combining this versatile delivery platform with 

discovery of new target antigens, vaccines may be quickly developed against new strains of 

known diseases as well as orphan diseases with minimal financial incentive for commercial 

research and development. Dengue virus (DENV) has been chosen as a good candidate for 

development of a PRINT based vaccine due to the conformation-specific presentation of the 

antigenic E protein of DENV as well as the need for a balanced response against four distinct 

DENV serotypes. Influenza has also been investigated for development of a PRINT vaccine. The 

ever-changing nature of the influenza virus necessitates quick turn around in development of 

new vaccines and could benefit from the “plug and play” approach presented with PRINT NPs as 

a vaccine delivery platform. Investigations into these clinically relevant diseases are in the 

preliminary stages, but early results show that this technique is very promising in increasing the 

safety and efficacy of vaccines. 
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APPENDIX 

 

 

Figure A.1 MS spectrum of Me2ProR848 dissolved in methanol. High resolution mass spectrometry (HRMS) was 

performed on a Thermo LTqFT (linear ion trap, Fourier transform mass spectrometry) with 7.0 Tesla magnet. 

HRMS (m/z) calculated for Me2ProR848, [M]
+
 = 487.2299; found [M]

+
 m/z = 487.2347.  
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Figure A.2 
1
H NMR Spectrum of Me2ProR848 dissolved in CD2Cl2. NMR measurements were performed using a 

Bruker AVANCE III spectrometer at room temperature. 
1
H NMR measurements were collected at 600 MHz 
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Figure A.3 Two Dimensional NMR of Me2ProR848 dissolved in CD2Cl2. X-axis represents 
1
H NMR spectrum; y-

axis represents 
13

C NMR spectrum. NMR measurements were performed using a Bruker AVANCE III spectrometer 

at room temperature. 
1
H NMR measurements were collected at 600 MHz and 

13
C NMR measurements were 

collected at 150 MHz. 
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Figure A.4 MS spectrum of Et2ProR848 dissolved in methanol. MS was performed on a TriVersa Nanomate
©
 ESI 

Micromass Quattro II Triple Quadrupole Mass Spectrometer. HRMS (m/z) calculated for Et2ProR848, [M]
+
 = 

515.2612; found [M]
+
 m/z = 515.26. 
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Figure A.5 
1
H NMR spectrum of Et2ProR848 dissolved in deuterated methanol. NMR measurements were 

performed using a Bruker AVANCE III spectrometer at room temperature. 
1
H NMR measurements were collected 

at 600 MHz.  
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Figure A.6 LC-MS (liquid chromatograph mass spectrometry) analysis of Me2ProR848-NP degradation products. 

LC-MS was performed on an Agilent 1200 Series LC-MS using a 2.7μM HALO C18 column in positive ion mode 

with electrospray ionization. LC-MS data were analyzed using Agilent ChemStation software. MS (m/z) calculated 

for R848 (Peak 2), [M]
+
 = 315.17; found [M]

+
 m/z = 315.2. MS (m/z) calculated for silanol-R848 (Peak 3), [M]

+
 = 

389.19; found [M]
+
 m/z = 389.2.  
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Table A.1 Dengue conjugation reaction conditions. 

 Reaction 1 Reaction 2 Reaction 3 Reaction 4* 

Date 4/14 4/14 4/15 4/21 

DV2 Prep -1 -1 -1 0 

Linker EDC EDC EDC 
NHS-PEG(500)-

maleimide 

Surface of NP Carboxylic acid Carboxylic acid Carboxylic acid Carboxylic acid 

Amount of NPs 1 mg 1 mg 1 mg 1.5 mg 

Amount of Protein 200 ng Residual from rxn1 200 ng 100 ng 

Final Volume 1 mL 1 mL 1 mL 0.8 mL 

Buffer used Sodium phosphate Sodium phosphate Sodium phosphate Fisher pH 10 

pH ~8 ~8 ~8 9-10 

Reaction 

temperature 
RT RT RT RT 

Reaction time 2 h 2 h 2 h Over night 

Protein 

conjugation 
3.4 μg/mg 7.1 μg/mg 1.1 μg/mg 13 μg/mg 

 

 Reaction 5 Reaction 6* Reaction 7 Reaction 8 

Date 4/24 5/15 5/19 5/19 

DV2 Prep 0 1 1 1 

Linker 
NHS-PEG(500)-

maleimide 

NHS-PEG(500)-

maleimide 

NHS-PEG(5k)-

maleimide 

NHS-PEG(500)-

maleimide 

Surface of NP Carboxylic acid Acetyl group Carboxylic acid Carboxylic acid 

Amount of NPs 3.5 mg 2 mg 1 mg 3 mg 

Amount of Protein 100 ng 100 ng 30 ng 100 ng 

Final Volume 0.7 mL 0.7 mL 0.3 mL 0.5 mL 

Buffer used 
Sodium borate + 

5μL NaOH 
Fisher pH 10 Fisher pH 10 Fisher pH 10 

pH 10-11 9 9 9 

Reaction 

temperature 

37°C for 3 hours, 

then RT 
RT RT RT 

Reaction time 24 hours Over night Over night Over night 

Protein 

conjugation 
3.1 μg/mg 11.4 μg/mg 0.1 μg/mg 2.6 μg/mg 

* Annotates batches that were dosed in vivo 
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Figure A.7 Neutralizing antibody assay of DV2 study. After testing sera from mice for total anti-DV2 IgG, live DV2 

virus was exposed to varying levels of IgG. Titers represent concentration of sera dosed to DV2 virus at percent 

neutralization against infection of wild type cell line.  


