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Abstract

Background: Pathway-targeted or low-density arrays are used more and more frequently in biomedical research,
particularly those arrays that are based on quantitative real-time PCR. Typical QPCR arrays contain 96-1024 primer pairs
or probes, and they bring with it the promise of being able to reliably measure differences in target levels without the
need to establish absolute standard curves for each and every target. To achieve reliable quantification all primer pairs
or array probes must perform with the same efficiency.

Results : Our results indicate that QPCR primer-pairs differ significantly both in reliability and efficiency. They can only
be used in an array format if the raw data (so called CT values for real-time QPCR) are transformed to take these
differences into account. We developed a novel method to obtain efficiency-adjusted CT values. We introduce
transformed confidence intervals as a novel measure to identify unreliable primers. We introduce a robust clustering
algorithm to combine efficiencies of groups of probes, and our results indicate that using n < 10 cluster-based mean
efficiencies is comparable to using individually determined efficiency adjustments for each primer pair (N = 96-1024).

Conclusions : Careful estimation of primer efficiency is necessary to avoid significant measurement inaccuracies.
Transformed confidence intervals are a novel method to assess and interprete the reliability of an efficiency estimate in
a high throughput format. Efficiency clustering as developed here serves as a compromise between the imprecision in

determined efficiencies.

assuming uniform efficiency, and the computational complexity and danger of over-fitting when using individually

Background

Array and microarray based methods are the mainstay of
molecular biology. Recently, lower-density or targeted
arrays have been introduced. These comprise on the
order of 10-1000 targets and represent an intermediate
between 1 target assays, e.g. the viral load assay for HIV,
and genomewide microarrays, comprising 10,000 -
1,000,000 targets, e.g. Affymetrix™ arrays. Analytically
they can be treated as either a collection of individual
assays or as microarrays.

We are interested in discovering novel statistical
approaches to the analysis of these intermediate density
arrays. On the one hand high density microarray-based
analysis methods do not capture all the information that
is available. This results in lower than possible linear
range and lower discriminating power. On the other
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hand, applying analysis methods developed for a single
assay to arrays is overly complex and likely to introduce
inacurracies due to overfitting problems.

Practically lower density arrays are based on real-time
quantitative polymerase chain reaction (QPCR). Real-
time QPCR measures the amount of product at each
cycle of the reaction either by binding of a uorescent,
double strand-specific dye (SYBR™ green) or by hybrid-
ization to a third sequence-specific, dual-labeled uoro-
genic oligonucleotide probe (molecular Beacon,
TagMan™ ). These have been used very successfully to
profile messenger RNAs and microRNA [1-5]. Other
assay formats use capture oligonucleotides or other
means (e.g. Nanostring™ or Luminex™).

The simplest way to compare relative expression ratios

is the so-called 22¢" method, which assumes (i) uniform
and (ii) perfect efficiency: the amount of product doubles
exactly after each PCR cycle for each primer in the array.
However, most QPCR reactions do not attain optimal

© 2010 Lock et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons At-

() BioMed Central tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20646303

Lock et al. BMC Bioinformatics 2010, 11:386
http://www.biomedcentral.com/1471-2105/11/386

efficiency [6,7]. Even small deviations from an assumed
efficiency level can lead to multiple-fold inaccuracies in
expression measurements [8]. Therefore, differing effi-
ciencies among primer-pairs, as well as the reliability of
the efficiency estimates must be considered.

The most accurate and also most complex method is to
calculate individual primer pair efficiencies or to use an
absolute standard curve. This method does not assume
uniform efficiency among different primer pairs and it
does not assume perfect efficiency. The well known REST
method [9] is an example of this strategy. However, this
approach becomes impractical and extremely costly to
use even for low density arrays.

More important, using individually adjusted efficien-
cies brings about the problem of overfitting and it
requires that the individual efficiencies were determined
with equal confidence. For instance, a 96 primer targeted
QPCR array, would require the computation of 962 indi-
vidual efficiency ratios. These need to be tracked
throughout the analysis process and each ratio is associ-
ated with its own error, which also needs to be propa-
gated throughout the analysis process.

The methods presented here use the serial dilution
method [10] to obtain initial primer pair efficiencies. We
expand on this method, introducing transformed normal-
ity-based confidence intervals as a novel tool to interpret
the reliability of an efficiency estimate. We propose a rule
to identify unreliable primers, as well as a robust algo-
rithm to cluster primers with similar efficiencies. Finally,
we show how differences in efficiency can be applied for
more accurate comparisons of relative gene expression.

Methods

Experimental Methods

The primer arrays and experimental methods were previ-
ously described [11,12]. Primers were from commercial
sources (MWG Inc.) and resuspended at 100 pmol per
microliter in 0.1x Tris-EDTA ph 8.0. The QPCR reaction
contained 2.5 microliter of primer mix at a starting con-
centration of 300 nM combined with 7.5 microliter SYBR
Green 2x PCR mix (Applied Biosystems, Inc.) and 5
microliter target DNA. It was subjected to real-time
QPCR on an Opticon2 cycler (MJR Inc.) using standard
cycling conditions [13]. This particular QPCR array was
directed against every open reading frame of human her-
pesvirus 8. This particular virus is made of linear double-
stranded DNA. Thus we were able to use the same puri-
fied viral DNA as a common target for all primers.

Quantitative Analysis

The R programming environment for statistical comput-
ing and graphics [14] was used for all computation and
statistical analysis. Stand-alone R functions were devel-
oped to automate the analysis for a given serial dilution
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table. Functions were created to provide individual effi-
ciency estimates with confidence, identify and remove
unreliable primers, cluster amplification efficiencies, and
adjust Cyvalues in a table based on user-defined efficien-
cies. All functions were included in the R script Primer
Efficiency Analysis (Additional file 1 - PEA.r); a reference
manual is available with setup instructions, detailed func-
tion descriptions and illustrative examples (Additional
file 2 - PEA User's Guide).

Results and Discussion
Estimating Efficiency with Confidence
We developed a novel algorithm for the adjustment of
primer and probe efficiencies, specifically as it relates to
low density real-time QPCR arrays. This approach is
demonstrated using a dataset of 96 primers at four dilu-
tion levels. Figure 1 outlines the algorithm.

The number of cycles required to reach a certain level
of product (C;) is measured for 96 primers, each with ini-

tial dilution levels 1, 0.1, 0.01, and 0.001. C; values above

Identifying Unreliable Primers

INPUT

Serial dilution curves for 96 primers

REMOVE

> 50% missing values
J

CALCULATE

Regression slope and p-value (p)

REMOVE

p > 0.05 (insignificant slope)

CALCULATE

Efficiency value (E) and transformed 95% confidence interval (Cl)

REMOVE

1.5 1QR Rule for Cl length

OUTPUT

Set of reliable primers (with efficiency estimates and confidence
intervals)

Figure 1 Flow chart for estimating efficiency with confidence and
identifying unreliable primers.
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40 indicate undetectable product and are considered to
be missing values (NA) for subsequent calculations. If the
dilution curve for a primer contains 2 or more missing
values (50% of total), statistical analysis for a linear fit is
impossible and the primer is removed from the analysis.
Of the 96 original primers in our dataset, 3 were removed
due to missing values.

Amplification efficiency (E) estimates for each primer-
pair are calculated using their serial dilution curve. Theo-
retically, one expects a linear relationship between C;and
the logarithm of the initial dilution level. Therefore, we fit
a standard linear model of the form

Cr = Po + Pillog,(dilution)] (1)

for each primer, on the four levels of dilution. We use a
base-2 logarithm (log,) rather than the common log;,
[15], as the former has the nice interpretation that a unit
slope (B, = -1) corresponds to perfect efficiency (E = 2).
Figure 2 shows the fitted linear model for a single primer-
pair.

Before continuing, we remove those primers for which
a linear fit is not statistically significant, based on the t-

statistic for the estimated slope coefficient B\l . If the cor-
responding p-value is above 0.05, the primer is consid-
ered unreliable and removed from further analysis. Using
the t-statistic rather then the regression coefficient R2 ini-

primer orf2-137F

36

34

Cr

26

\ \ \ \ \ \
-10 -8 -6 -4 -2 0

logo(dilution)

Figure 2 Shown is an example of the experimental data that
serve as input for further calculation. The logarithm (/og,) of the ini-
tial concentration is shown on the horizontal axis and the C;values on
the vertical axis. C;values are measured at initial dilution levels 1, 0.1,
0.01 and 0.001 and exhibit a strong linear trend.
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tially serves the following purpose. The t-statistic
accounts for the number of dilution steps, whereas a
threshhold based on the coefficient of determination R?
does not (R%2 = 1 for 2 data points and likely decreases
with the addition of more measurements). More dilution
steps generally result in more accurate efficiency esti-
mates. In our dataset, 8 primers were removed due to an
insignificant linear slope.

Standard normality-based methods are then used to
construct a confidence interval for the slope parameter
B;. For each primer a 95% confidence interval for the

slope, (Biwers Bupper)> is given by
B1 £ t(0.025n-2) * SE(B1), (2)

where B\l is the estimated slope, t(¢ys,,., is the 2.5%
quantile of Student's t-distribution with # - 2 degrees of

freedom, and SE(B\1 ) is the standard error of[i\l . This

analysis used 3 or 4 dilution levels for each primer (n = 3
or 4), so we use a t-distribution with 1 or 2 degrees of
freedom.

The estimated slope of the log-transformed regression

model ([/3\1) is used to estimate the amplification effi-
ciency (E) of each primer through the transformation

1 (3)
E=2 P1.

As this transformation is strictly increasing for f5; < 0,
confidence intervals for §; are easily extended to confi-
dence intervals for E. Under the condition 8, < 0, a

95% confidence interval for E is given by (Ej,,eE per)
where
: (4)
- 4
Epper =2 Blower
and
1
) (5)
Eyppor =2 ﬁupper.

Only keeping those primers with a negative and signifi-
cant slope ensures that the condition 8., < 0 is satisfied.

Identifying Unreliable Primers
Bartlett's test of heteroscadasticity (unequal variability
within groups), applied to the residuals of each linear
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model fit by (1), is highly significant (p < 0.0001). This
indicates that certain aberrations in efficiency estimation
may be due to inherent primer reliability issues, rather
than standard experimental and residual error. Purging
those primers with missing values and an insignificant
slope can be considered a first step to identify primer-
pairs yielding unreliable data, but further analysis is war-
ranted. Here we introduce transformed confidence inter-
vals as a novel measure of primer reliability

The length of the transformed confidence interval E,,

per = Eiower 18 used to quantify the precision of the esti-

mated amplification efficiency E. To identify those
primers with unreliable data, we first calculate the inter-
quartile range (IQR) of the transformed CI lengths as the
difference betweeen the 75th and 25th percentiles (quan-
tiles). Any primer with a transformed CI length higher
than 1.5 x IQR above the 75th percentile is identified as
unreliable. Such a procedure (the "1.5 x IQR" rule) is
commonly used to identify outliers. In our dataset, 7
primers are identified using this procedure.

Figure 3 shows the estimated amplification efficiency E,
transformed CI length, and R? value of the original linear
model for each primer. The coefficient of determination
R? measures the strength of a linear fit, and can be inter-
preted as the percentage of variation in the response (Cy)
that is explained by log,(Dilution). Primers identified as
outliers by the 1.5 x IQR rule for transformed CI length
are colored red. After removing outliers based on CI
length, the remaining primers all show strong linearity
with R? values greater than 0.98 and correlation coeffi-
cients greater than 0.99.

Most of those primers identified for large transformed
CI's tend to have lower R2?values, whereas there is no cor-
relation with primer pair efficiency. Hence, a low effi-
ciency primer pair may indeed be very reliable and an
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Figure 3 In panel (a) length of the transformed confidence inter-
vals are shown on the vertical and primer efficiency on the hori-
zontal axis. In panel (b) the squared regression coefficient is shown on
the vertical and primer efficiency on the horizontal axis. Transformed Cl
outliers are colored red in both panels. Outliers not shown are primers
73-5'UTR, orf24-306F and orf35-200F, with transformed Cl lengths 6.95,
58.0 and 4.93 x 103, respectively.
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apparently good efficiency primer may be the result of a
bad fit. This demonstrates that considering a measure of
variation for each efficiency estimate adds value over
prior methods that consider efficiency as the sole crite-
rion for primer performance.

Before purging the data of unreliable primers, the mean
estimated efficiency is 1.94, with standard deviaton 0.180;
afterward the mean efficiency is 1.90 with standard devi-
ation 0.071. This illustrates our contention that calculat-
ing a measure of the efficiency estimate improves overall
performance vis-a-vis strategies that rely on total effi-
ciency alone. For this particular array, the mean efficiency
was lower after purging, but uniformity across all primers
in the array improved resulting in a reduced standard
deviation. Figure 4 shows the relationship between C;
and log dilution level for every primer (4a), and after
removing missing values, insignificant linear slopes and
CI length outliers (4b). The purged data is much
"cleaner”, with non-linear and sporadic relationships
removed. This purged set of primers is appropriate for
use in subsequent, rank-based, clustering and classifica-
tion analyses, whereas the original set would produce
unacceptable results.

Comparing Primer Efficiencies

Even after purging the data of unreliable primers, esti-
mates of primer efficiency vary, from E = 1.7 to £ > 2. It
has been shown that rather than improving accuracy,
individual corrections to efficiency can in fact exaggerate
artificial differences in expression [16]. Therefore, we
consider the hypothesis that there is no underlying differ-
ence in primer efficiencies, and observed differences are
due to residual error.

After removing those primer-pairs with relatively unre-
liable data, Bartlett's test of heteroscadasticity is no lon-
ger significant at the 5% level. This indicates that
differences in primer variability among the purged data
may be negligable. The Shapiro-Wilk normality test fails

Dilution Curves

Cr

0 -8 6 -4 -2 0 40 -8 -6 -4 -2 0
log(Dilution) log(Dilution)

Figure 4 Relationship between C;and log,(dilution) for all 96

primers before (a) and after (b) removing relatively unreliable

primers. Crvalues are shown on the vertical and log, dilution of input

target on the horizontal axis. Note the purged data is much "cleaner”,
with non-linear and sporadic relationships removed.
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to reject the hypothesis that the residuals for each fitted
dilution curve (see Equation 1) come from the same uni-
variate normal distribution (p = 0.3569). Hence the basic
assumptions for an Analysis of Variance (ANOVA) are
satisfied, and we consider the fitted dilution curves as a
single multivariate model, with a different intercept and
slope for each primer:

CT = ﬁO,Primer + ﬁl,Primer * lon(dll) (6)

The F-statistic for the interaction between primer and
log dilution log,(dil) is highly significant (»p = 0.0017).
This indicates that differences among slope coefficients,
hence the resulting efficiency estimates, are not merely
due to residual error.

This significant difference in primer efficiencies shows
that simply using the average efficiency (E = 1.90) among
all primers is inappropriate for comparing expression lev-
els. An alternative approach is to use the individually
determined efficiency value for each primer. Both meth-
ods generate errors on efficiency, which may be propo-
gated through the calculation of expression quantities
[17].

A trade-off exists between the lack of precision in not
recognizing differences in primer efficiency, and the
computational complexity and danger of over-fitting
when using individually determined efficiencies for each
primer. Here we introduce a novel, third alternative,
which finds a useful balance between the two extreme
approaches. We first cluster primer-pairs based on their
estimated efficiency values, then use only a measure of
the average efficiency within each cluster for subsequent
adjustments. Rather than a single efficiency, i.e. no cor-
rection, we use 5-10 different efficiencies, based on clus-
tering to obtain adjusted C;values. Rather than 96-1024
individual, but computational unreliable, efficiencies, we
use 5-10 different cluster-derived efficiencies, knowing
that within each cluster, there exists no significant differ-
ence between individual primer pairs.

We consider a simple efficiency clustering algorithm
based on the fitted ANOVA model (5), yet with only one
slope coefficient for each "group™:

Cr= ﬁO,Primer + ﬁl,Group * log, (dil). (7)

First two groups of primers, corresponding to two dilu-
tion slopes, are selected in a way that maximizes the
power of the model (as measured by R?). If the model
with two groups significantly improves over the model
with a single slope (the p-value of the corresponding F-
statistic is less than 0.05), we divide the two groups into
three optimal groups of primers. If three groups repre-
sents a significant improvement over two, we divide the
primers into four groups, and so on. For this particular
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dataset, we find that the optimal model with eight slope
coefficients does not significantly improve on the model
with seven, hence we identify seven clusters. The primer
clusters and corresponding efficiencies are shown in Fig-
ure 5.

Note that the majority of efficiencies, even across clus-
ters, still are between E = 1.8 and E = 2.0. This is expected
since we started with a "good" primerset based on
sequence criteria [11]. Still we are able to subdivide the
"efficiency space” 1.8 to 2.0 into four clusters and thus
improve overall performance. Furthermore, we are able
to use even the relatively divergent primers pairs with E <
1.8 and E > 2 (due to repeats in the target sequence) for
further analysis thus maximizing usability. The clustering
method described is robust in the sense that significant
differences in primer efficiencies should be reflected in
the number of clusters. Both the magnitude of observed
efficiency differences and precision of those efficiency
estimates are accounted for. Arrays where the observed
differences in primer efficiency are not significant are
expected to result in few clusters, whereas if efficiencies
differ greatly and can be measured precisely the method
will tend to identify many clusters.

Comparison of Methods

Does the use of mean cluster efficiencies perform better
than alternative approaches for the comparative analysis
of relative RNA expression levels? To answer this ques-
tion, we proceeded as follows. Define the adjusted fold

Primer Efficiency Clusters

1.7 1.8 1.9 2.0 21

Efficiency

1 Primer ; Average Efficiency: 1.72
7 Primers ; Average Efficiency: 1.81
19 Primers ; Average Efficiency: 1.86
18 Primers ; Average Efficiency: 1.89
26 Primers ; Average Efficiency: 1.94
5 Primers ; Average Efficiency: 2.03
2 Primers ; Average Efficiency: 2.14

ERODECOEDE

Figure 5 Plot of individually determined primer efficiency values.
For the 78 primer pairs considered individual efficiency estimates
range from 1.72 to 2.2, and these primer pairs are grouped into 7 clus-
ters. These clusters are color coded. Shown below is a table of the
numbers of primers in each cluster and the average efficiency. Within-
cluster differences in efficiency are insignificant, and the average effi-
ciency for each cluster is used.
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change (AFC) for a reaction as the estimated fold change
(ECT) divided by the initial dilution:

CT
AFC=-E7 (8)
Dilution

For replications of the same experiment with different
initial dilutions, we expect the AFC to be the same. How-
ever, an inaccurate assumed efficiency E will lead to dif-
ferent AFC values. For each primer, we calculate the
coefficient of variation for the AFC values corresponding
to the four dilution levels. The coefficient of variation
(CoV) is defined as the standard deviation of the four val-
ues, divided by their mean.

Similar AFC values among different dilutions result in a
CoV close to 0; dissimilar values result in a CoV closer to
1. The CoV values for each primer, under different
assumed efficiencies, are shown in Figure 6. Using a sin-
gle universal efficiency E = 2 yields the worst result, i.e.
the largest CoV across all primers (Figure 6, black line).
Using instead the experimentally determined single mean
efficiency (E = 1.90) across the array improves the CoV
significantly (Figure 6, green line). Using the 7 average
efficiencies by cluster lowers the CoV even further overall
(Figure 6, blue line). As expected it improves most dra-
matically the performance of the most divergent primers,

CoV by Primer

]
N
> 9
5 o
38 _
(e2]
s
° H \ \ \ \
0 20 40 60 80
Hm E=2
E E =1.90 (mean efficiency)
B E = mean cluster efficiency
B E =individually determined efficiency

Figure 6 Plot of Coefficient of variation (CoV) of AFC values for
four efficiency estimation methods. For each method, primer CoV
values for each of the 78 primers considered are sorted from largest to
smallest. A precise efficiency estimate results in alower CoV. The curves
for clustered and individually determined efficiencies are overlapping.
This demonstrates that using just a small number of average cluster ef-
ficiencies is comparable to using individual primer efficiencies, i.e. the
differences in efficiency within each cluster are negligible.
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i.e. the tails (primer 1-10 and 70-80). Notably, the curves
for the 7 average efficiencies by cluster and for the indi-
vidually determined efficiencies (Figure 6, red line) are
overlapping. This demonstrates that using just a small
number of average cluster efficiencies is as good as using
individual primer efficiencies, i.e. the differences in effi-
ciency within each cluster are negligible.

Comparing Relative Expressions

The improvements based on mean cluster efficiencies are
easily incorporated into existing analysis workflows, by
computing adjusted C;, which we call C7. These are

defined as follows. The relative expression ratio between
a reaction using primer pair A and a second reaction
using primer pair B is given by

(E4)“TA

, 9
(Ep)¢TB ®)

Ratio =

where E, and Ej are the efficiencies of primer pair A
and B, respectively. If the two primers are assumed to
have the same efficiency E (e.g. they belong to the same
efficiency cluster), the calculation is simplified:

Ratio = E¢Ta=CTs (10)

This insight is captured for group-wise comparison in
the REST [9] software package, which also incorporates
error estimates and tests of significance, while allowing
for manual input of PCR efficiencies.

The alternative proposed here, uses a direct compari-
son of Cvalues after adjusting for amplification effi-

ciency. We propose the following adjustment:
Ch =log,(E)x Cr. (11)

Here, C’ is the estimated number of cycles required
under perfect efficiency, so that the true fold difference is

given by 2°"  For example, if a reaction has perfect effi-
ciency (E = 2) with observed C; = 24, while another has

sub-perfect efficiency (E= 1.8) with observed C; = 28.5,

we calculate CT = 24 for both reactions, indicating no
difference in expression. A practical advantage of using
C’ is that the data format of the original set-up remains

the same. The expression data remain log transformed
and can be used directly in any microarray profiling soft-
ware such as Eisen's original clustering program [18]. Cal-

culating C7 is a preprocessing step that does not change

the runtime or memory requirements of the subsequent
analysis programs.
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Table 1: Adjusted Relative Expression.
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Adjusted Relative Expression

Primer Cluster efficiency (o Adjusted C;: C,T Fold difference: 2C1Cr
orfké 1.72 24.15 18.85 39.28
orf7-1632F 1.81 23.71 20.39 10.00
orf21-1578F 1.86 23.85 21.32 5.78
orf4-1511F 1.89 23.29 21.38 3.75
orf9-708F 1.94 24.24 23.16 2.12
orf2-137F 2.03 26.13 26.76 0.64
tac29-5F 214 25.78 28.34 0.17

Raw and adjusted C;values are shown for seven primer pairs, belonging to different efficiency clusters. Fold difference is calcuated as the
estimated concentration under perfect efficiency, divided by concentration under the adjusted efficiency. The assumption of perfect

efficiency can lead to multiple fold inaccuracies in relative expression.

Table 1 gives raw and adjusted C; values for seven
primer pairs with different efficiencies. Multiple-fold dif-
ferences are observed between estimated expression
under perfect efficiency and expression after correcting
for imperfect efficiency. This suggests that the assump-
tion of perfect efficiency can often lead to multiple fold
inaccuracies in relative expression.

Conclusions

As array-based measurements for DNA, mRNA and
microRNA levels migrate into the mainstay of molecular
biology, failure to carefully consider the efficiency of each
individual reaction or assay can lead to significant mea-
surement inaccuracies. Yet, explicitly calculating and
considering individual assay characteristics is not feasible
even for low-density arrays. This is an important problem
particularly for real-time QPCR based arrays, but it
applies to any type of microarray. QPCR primers differ
significantly both in reliability and amplification effi-
ciency, hence they need to be experimentally validated. (i)
We identified transformed confidence intervals as a use-
ful means to assess and interpret the reliability of an effi-
ciency estimate. Transformed confidence intervals
provide a novel, independent measure in addition to cal-
culation of primer efficacy E, with which to assess
primer/probe quality. (ii) After purging unreliable esti-
mates we propose a robust clustering algorithm to group
efficiencies, reducing computational complexity and
potential over-fitting. Our results suggest that use of a
limited number of clustering-based efficiencies is compa-
rable to use of individually determined efficiencies for
each primer or probe.

Additional material

Additional file 1 PEA.r. An R script to provide individual efficiency esti-
mates with confidence, identify and remove unreliable primers, cluster
amplification efficiencies, and adjust Cyvalues; requires the R programming
environment for statistical computing and graphics [14].

Additional file 2 PEA User's Guid. A reference manual for PEA.r; includes
setup instructions, function descriptions and illustrative examples.
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