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ABSTRACT 
 

Danielle Slomberg: Role of Nanomaterial Physicochemical Properties on Fate and 
Toxicity in Bacteria and Plants  

(Under the direction of Mark H. Schoenfisch) 
 

Nanomaterials, defined as having at least one dimension <100 nm, are ubiquitous 

in nature. However, engineered nanomaterials have gained increasing attention for use in 

drug-delivery applications and consumer goods. Examination of nanomaterial toxicity, 

both beneficial (e.g., drug delivery to bacterial pathogens) and detrimental (e.g., death of 

terrestrial plants), thus warranted. Herein, I present the evaluation of nitric oxide-

releasing nanomaterial toxicity to bacteria and silica particle toxicity to plants as a 

function of nanomaterial physicochemical properties. 

Nanomaterial toxicity toward planktonic (i.e., free-floating) Pseudomonas 

aeruginosa and Staphylococcus aureus bacteria was evaluated as a function of scaffold 

size, shape, and exterior functionality using nitric oxide-releasing (NO) silica particles, 

dendrimers, and chitosan oligosaccharides. Improved bactericidal efficacy was observed 

for silica particles with decreased size and increased aspect ratio due to improved 

particle–cell interactions. Likewise, better nanomaterial–bacteria association and biocidal 

action was noted for more hydrophobic NO-releasing dendrimers and chitosan 

oligosaccharides. Planktonic bacterial killing was not dependent on chitosan molecular 
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weight due to rapid association between the cationic scaffolds and negatively-charged 

bacterial cell membranes. 

Given the importance of nanomaterial physicochemical properties in planktonic 

bacterial killing, the NO-releasing scaffolds were also evaluated against clinically-

relevant bacterial biofilms. Similar to planktonic studies, smaller particle sizes proved 

more efficient in delivering NO throughout the biofilm. Particles with rod-like shape also 

eradicated biofilms more effectively. The role of NO-releasing dendrimer and chitosan 

oligosaccharide hydrophobicity was prominent in scaffold diffusion through the biofilm 

and subsequent NO delivery, with scaffolds modified with hydrophobic functionalities 

generally exhibiting better bacterial association. Lastly, biofilm eradication was more 

effective for NO-releasing dendrimers exhibiting sustained NO-release compared to 

delivery of NO via an initial burst. 

Phytotoxicity and uptake of silica nanoparticles was evaluated for the plant 

Arabidopsis thaliana as a function of particle size, surface composition, and shape (i.e., 

spherical versus rod-like particles). Overall, the silica nanoparticles examined were found 

to be relatively non-toxic to A. thaliana plants when pH effects were mitigated. Size-

dependent uptake of the silica particles was observed, with smaller particles 

concentrating more heavily in the roots, rosette, and stem; however no shape-dependent 

uptake was noted at the low exposure concentration examined.  
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CHAPTER 1: RECENT ADVANCES IN EVALUATION OF NANOMATERIAL 
TOXICITY TOWARD BACTERIA AND PLANTS 

 In 1959, physicist and Nobel laureate, Richard Feynman, challenged the scientific 

community  to  think  small,  noting  that  “[a]toms on a small scale behave like nothing on a 

large scale.”1 Feynman also suggested that “[the]   problems of chemistry and biology 

[could] be greatly helped”  if  the ability “to do things on an atomic level, [was] ultimately 

developed.” Inspired by these challenges, the field of nanotechnology has rapidly 

developed as researchers work to create materials with new molecular organization, 

properties, and functions relative to the bulk material.2 However, evaluation of the 

toxicity of these engineered nanomaterials toward biological systems has only begun in 

recent years. In this introductory chapter, nanomaterial toxicity, both beneficial (e.g., 

drug delivery to bacterial pathogens) and detrimental (e.g., death of terrestrial plants), 

will be discussed as a function of the  material’s  physicochemical properties. 

1.1 Overview of nanomaterial toxicity 

1.1.1 Engineered nanomaterials 

Since the advent of nanotechnology, a wide variety of nanomaterials have been 

developed for a range of applications including drug delivery, biotechnology, water 

decontamination, and communication technologies.3, 4 These engineered nanomaterials 

(ENMs) have at least one dimension between 1 and 100 nm.5 Nanomaterials synthesized 
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for distinct applications include metal (e.g., Fe and Ag) and metal oxide nanoparticles 

(e.g., TiO2 and SiO2), dendrimers, carbon nanotubes, and quantum dots among others.6 

As the quantities and types of ENMs increase and consumers begin to use nanomaterial-

containing products with greater frequency, the need for an improved understanding of 

nanomaterial physicochemical behavior and prevention of unintended biological and 

environmental consequences will also rise.7 Humans and a myriad of other organisms 

will be exposed to ENMs through intended (e.g., common therapeutic use) or incidental 

routes (e.g., release into atmosphere, rivers, soil, etc). Thus, proactive measures are 

necessary to fully evaluate both the beneficial and detrimental implications associated 

with ENMs. 

 The behavior of ENMs, and ultimately their toxicity, is influenced by several 

physicochemical properties, such as increased surface area to volume ratio,8 size, shape, 

exterior functionality,9 and drug-release kinetics.10 Each of these characteristics is 

significant in dictating how a nanomaterial will interact with cells and the surrounding 

environment. Generally, nanomaterials exhibit increased reactivity and toxicity compared 

to their bulk counterparts.8 Midander et al. reported increased DNA damage in human 

lung cells exposed to nano-copper compared to micron-sized copper particles.11 

However, in some cases there is no difference in toxicity between nanomaterials and bulk 

formulations. Heinlaan et al. noted no significant differences in ecotoxicity to select 

bacteria and crustaceans exposed to ZnO, TiO2, and CuO nanoparticles and their bulk 

oxides.12 Likewise, nanoparticulate and bulk ZnO exhibited comparable toxicity to the 

freshwater microalga, Pseudokirchneriella subcapitata, with the toxicity attributed to 
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dissolved Zn and not nanoparticle effects.13 Evaluation of nanomaterial toxicity relative 

to the corresponding bulk material on a case by case basis is thus warranted. 

1.1.2 Nanomaterial-cell interactions 

Nanomaterial-cell interactions will greatly depend on nanomaterial size, shape, 

surface characteristics, and drug-release properties (if any). Generally, improved 

penetration of cell membranes is observed for smaller nanoparticles. Association of 

nanomaterials with the cell membrane may also be governed by nanomaterial shape. 

Nanomaterial surface charge is important in that the cell membrane is negatively-charged 

and will associate more readily with positively-charged materials. In addition, more 

hydrophobic ENMs are better able to penetrate the lipophilic membrane. 

 After association with the cell, nanomaterials can cause DNA damage, degrade 

the membrane, or interrupt key processes for cellular function. The mechanism of action 

varies with nanomaterial composition, size, and shape. For example, Yang et al. studied 

the cytotoxicity, oxidative stress, and genotoxicity as a function of ENM composition 

(i.e., carbon nanotubes and silica and ZnO nanoparticles), size, and shape.14 Particle 

composition played the primary role in cytotoxicity, and genotoxicity was significantly 

influenced by ENM shape. However, no significant toxicity was attributed to size. The 

effects of nanomaterial physicochemical properties on their interactions with cells is 

clear, thus researchers are currently focused on further developing methodology to 

understand and evaluate these interactions and any resulting toxicity.   

1.1.3 Evaluation of nanomaterial toxicity 
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 Given the importance of assessing ENM parameters in toxicity, a variety of in 

vitro and in vivo assays are currently used for screening risk. In vitro systems are ideal in 

that they are cost effective and generate rapid, reproducible results.15 Common methods 

for screening new ENMs include the LDH (cell membrane integrity) and MTT assays 

(mitochondrial function), as well as assays for measuring cell-generated reactive oxygen 

species and immunochemistry markers (apoptosis and necrosis).15, 16 Due to the variety of 

physiological environments and applications in which ENMs may be encountered, these 

in vitro assays are tested against numerous cell types including phagocytic, neural, 

hepatic, epithelial, endothelial, and red blood cells.16 Despite the toxicity data generated 

with in vitro tests, determinations of safety need to be made based on the final fate of 

ENMs in biological systems.15 Thus, tests to evaluate ENM absorption, distribution, 

transformation, and excretion in vivo are ultimately warranted. Researchers are now 

focused on a predictive toxicological approach in which high-throughput screening is 

used in vitro and in vivo to determine ENM structure-activity relationships and hazard 

risk.17-19  

Understanding the nano-bio interface is crucial to elucidating potential ENM 

toxicity in environmental applications as well.20 The transformation and fate of ENMs 

and the potential for biomagnification and biodistribution within a multitude of 

ecosystems necessitate evaluation as risk of exposure is likely to increase.7 Whether 

viewed as beneficial or detrimental, nanomaterial toxicity is likely to play an ever 

increasing role in our daily lives.21 
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1.2 Nanomaterial toxicity toward bacteria 

1.2.1 Bacteria in clinical settings 

 Although bacteria are ubiquitous in aquatic and soil-based ecosystems, their 

prevalence in clinical settings has become particularly problematic, with hospital-

acquired infections being the fourth-leading cause of death in the United States.22, 23 Open 

wounds24, 25 and implanted medical devices such as prosthetic heart valves,23 orthopedic 

implants, and catheters are frequent sites of microbial infection despite aseptic procedures 

and instrument sterilization.23, 26, 27 With  >99% of all bacteria existing in a biofilm state, 

these infections are increasingly difficult to treat.28 Bacterial biofilms have shown 

decreased susceptibility to antibacterials compared to their planktonic (i.e., free-floating) 

counterparts.28-31 Consequently, infected medical implants often necessitate device 

removal,32 and hospital-acquired infections can result in sepsis,33 and even death. Current 

research is focused on developing nanomaterial-based drugs to address these problems. 

Furthermore, understanding the clinical significance of nanomaterial toxicity to bacteria 

will aid in the design of future antibacterial and anti-biofilm agents.   

 Bacterial biofilm formation occurs in several sequential phases as shown in 

Figure 1.1.34 Prior to bacterial adhesion, organic and inorganic nutrients first adsorb to 

the surface. When bacteria come into contact with this conditioned surface, they  
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Irreversible 
Attachment

Reversible 
Attachment Maturation I Maturation II Dispersal

Figure 1.1 Stages  of  bacterial  adhesion  to  a  substrate  and  subsequent  biofilm  formation. 
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reversibly attach via gravitational, electrostatic, and van der Waals forces. Short range 

(i.e., hydrogen boding, dipole-dipole, ionic, and hydrophobic) interactions also influence 

the degree of bacterial adhesion. After a few hours, the bacteria begin to secrete 

extracellular polymeric substances (EPS) and form cell-to-cell bridges, thus irreversibly 

attaching to the surface.35, 36 Maturation of the biofilm continues as bacterial cells grow, 

divide, and form microcolonies (clusters of bacteria).37 The biofilm formation process 

continues over hours to days depending on several abiotic (e.g., nutrient conditions and 

pH) and biotic (e.g., quorum-sensing) factors. Following maturation, detachment of 

biofilm bacteria from microcolonies may occur via regulated dispersal mechanisms to 

release planktonic cells that can further colonize surfaces.34, 38 

Given the frequency and complexity of bacterial surface colonization, and the rate 

at which bacterial biofilms are increasingly difficult to treat, research into antibacterial 

resistance mechanisms has continued to garner attention. The traditional antibacterial 

resistance mechanisms attributed to planktonic bacteria include efflux pumps, modifying 

enzymes, and target mutations, but these mechanisms do not always explain the 

resistance of biofilm-embedded bacteria.39 Genetic mutation of the biofilm bacteria is not 

likely the main cause of resistance since biofilm cells will once again exhibit 

susceptibility to antibacterial agents upon dispersal.40, 41 Three proposed mechanisms for 

the increased resistance of biofilms are slow antibacterial penetration beyond surface 

layers of the biofilm, differentiation of cells into a resistant phenotype, and reduced 

antibacterial action in altered microenvironments (e.g., regions of nutrient depletion).39 
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As a result, complete eradication of biofilms using common antibacterials has been met 

with increasing difficulty and is often not feasible. 

1.2.2 Current bacteria eradication strategies 

Ideally, hospital-acquired infections would be controlled by eliminating initial 

bacteria attachment to a surface and thus preventing biofilm formation by adherent 

cells.34 However, superhydrophobic,42 heparin-coated,43 and antibacterial-doped 

substrates44, 45 have met varied success in eliminating bacterial adhesion and reducing 

clinical infection. These strategies are also often not amenable to implanted sensor 

applications, which can hinder their utility. As such, additional bacteria eradication 

strategies have been implemented for cases in which surface colonization cannot be 

prevented. Bacterial biofilm formation has been minimized through interference of iron 

metabolism,46, 47 enhancement of macrophage phagocytosis of the bacteria,48 or 

disruption of quorum-signaling.23, 34 Another biofilm control strategy has focused on 

targeting the EPS layer. Hatch and Schiller observed enhanced diffusion of the 

antibiotics, gentamicin and tobramycin, after the enzyme, alginate lyase, degraded the 

EPS layer of P. aeruginosa biofilms.49 Lastly, several researchers are working toward the 

development of new antibacterial agents, that will be effective against current and 

emerging multi-drug resistant bacteria strains.50-53 Successful new antibacterial agents 

will need to not only prevent initial adhesion or eradicate established biofilms, but must 

do so without fostering resistance or harming healthy host cells.  

1.2.3 Nitric oxide as an antibacterial agent 
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 Nitric oxide (NO) is an endogenously-produced, diatomic free radical that 

participates in several concentration-dependent processes within the body.54-56 At low 

concentrations (~pM–nM), NO mediates vasodilation, angiogenesis, and 

neurotransmission.57-59 However, at higher concentrations (~µM), NO can serve as a 

potent antibacterial agent, inducing oxidative and nitrosative stresses that damage the 

bacteria membrane.60-62 In the presence of bacterial pathogens, macrophages utilize 

inducible nitric oxide synthase (iNOS) to generate NO. Once formed, NO can react with 

oxygen or other reactive oxygen intermediates (e.g., superoxide) to yield antibacterial 

byproducts (e.g., peroxynitrite, nitrogen dioxide, and dinitrogen trioxide).60 These 

reactive species can then induce oxidative stress, resulting in lipid peroxidation, tyrosine 

nitrosation, and oxidative DNA cleavage. Concurrently, thiol nitrosation, deamination of 

cellular proteins, and nitrosamine formation occur via nitrosative stress. Through 

disruption of bacterial components and disabling of crucial cell functions, NO and its 

reactive byproducts have proven effective as antibacterial agents against both Gram-

positive and Gram-negative species.63, 64 Additionally, NO is a known anti-biofilm agent, 

capable of eradicating a variety of microbial strains including P. aeruginosa, E. coli, S. 

aureus, S. epidermidis, and C. albicans.62 The utility of NO as an antibacterial and anti-

biofilm agent is demonstrated by its broad-spectrum and multi-mechanistic killing, 

thereby reducing the chance for bacteria resistance to treatment.   

 Although NO exerts the desired toxicity against both planktonic and biofilm-

based bacteria, candidate therapeutics must also exhibit limited toxicity toward healthy 

mammalian cells. Nitric oxide toxicity to mammalian cells is mitigated by a series of 
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antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase.65 

Superoxide dismutase converts superoxide formed from the reaction of NO and oxygen 

into hydrogen peroxide. Catalase and peroxidase then convert the produced hydrogen 

peroxide into water. Using these enzymatic pathways, mammalian cells are able to turn 

superoxide and hydrogen peroxide into water, thus reducing NO-induced toxicity. Of 

note, some bacterial cells (e.g., S. aureus) produce lower levels of antioxidant enzymes 

and can adapt to oxidative stress via NO-mediated cytoprotection; however, bacteria are 

generally unable to mitigate the toxic effects of NO and its reactive byproducts as readily 

as mammalian cells.66  

In addition to NO produced endogenously by immune cells, exogenous gaseous 

NO has proven effective in eradicating bacterial infections.67 However, control over the 

dose and location of delivery is challenging due to the highly reactive nature of gaseous 

NO. While administration of gaseous NO is appropriate for topical and pulmonary 

treatments, the use of NO in other clinical applications necessitates greater control of 

dosage and delivery.68 As such, compounds (NO donors) that store NO and release it 

upon an appropriate trigger (e.g., pH change, light, heat) have been developed.56  

1.2.4 Nitric oxide donors 

 Several types of NO donors have been synthesized to store and controllably 

release NO, with major donor classes including metal-NO complexes, nitrosamines, 

nitrosothiols, and diazeniumdiolates. N-diazeniumdiolates, specifically, have found 

widespread use in biomedical applications due to their stability, ability to release NO 
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under physiological conditions, and varied NO-release kinetics.69 The N-

diazeniumdiolate moieties are formed on amine sites of the donor compound upon 

reaction with high pressures (~10 atm) of gaseous NO in the presence of a strong base 

(Figure 1.2 A).70 In the more generally accepted mechanism, the amine reacts with an NO 

dimer (N2O2) to form the N-diazeniumdiolate. Release of NO then occurs via proton-

intitiated decomposition, in which the N-diazeniumdiolate decomposes under aqueous 

conditions to yield 2 moles of NO and the parent secondary amine (Figure 1.2 B). 

Overall, the N-diazeniumdiolate functionality is stable in the absence of a proton source 

and at low temperature, making it an appropriate NO donor for a variety of clinically-

relevant applications. 

N-diazeniumdiolate NO donors have been formed on small molecules such as 

proline (PROLI/NO) and diethylenetriamine (DETA/NO) for treatment of cardiovascular 

disease and respiratory distress.55, 71 However, low molecular weight (LMW) donors 

diffuse rapidly, exhibit short circulation times, and often necessitate higher doses of NO 

to elicit an effect.56 Side effects including hypotension, headaches, and possible tolerance 

have been noted during clinical use.72 Given these shortcomings, macromolecular 

scaffolds can instead be utilized to obtain controlled and localized NO delivery, facilitate 

targeting, and decrease potential for tolerance.56, 61 

Relative to LMW donors, macromolecular NO-releasing scaffolds have numerous 

advantages including increased NO payload, targeted and localized delivery, and tunable 

NO-release kinetics.73 With many clinical applications utilizing the benefits of NO, 
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A

B

Figure 1.2 N-diazeniumdiolate  (A)  formation  and  (B)  proton-initiated  decomposition. 
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control over the concentration, location, timing, and duration of NO release can decrease 

the potential for tolerance and unwanted toxic side effects. As such, several types of NO-

releasing protein, organic, inorganic, and hybrid polymer macromolecular scaffolds have 

been designed.73 An ideal NO-releasing macromolecular scaffold would be 

functionalized with multiple NO donors and/or targeting ligands to achieve localized 

release with the desired payload while controlling toxicity. The NO-releasing 

macromolecular scaffolds presented in this work include silica nanoparticles, dendrimers, 

and chitosan oligosaccharides. These NO-release vehicles allow for the tuning of size, 

shape, hydrophobicity, and NO-release kinetics to evaluate the effects of nanomaterial 

physicochemical properties on bactericidal efficacy to planktonic bacteria and biofilms. 

Silica nanoparticles are appealing drug delivery scaffolds in that they are 

chemically stabile, allow for covalent modification, and generally exhibit low 

cytotoxicity.74 Additionally, their size and shape can be tuned to improve nanoparticle–

cell interactions. Silica particles are commonly synthesized via sol-gel chemistry, where 

silane precursors undergo hydrolysis and condensation under basic conditions to form a 

solid silica network.75 Briefly, the sol-gel process begins when a silane precursor is 

hydrolyzed upon attack by a hydroxide ion (Figure 1.3 A). A second hydrolyzed silane 

can then condense with the first to form a siloxane bond (Figure 1.3 B). As hydrolysis 

and condensation continue, a solid silica network forms. Reaction conditions can be 

tailored to control silica particle formation and growth. Specifically, the  Stӧber  method  

offers  a  facile  approach  for  synthesizing  silica  particles  in  a  “one-pot”  reaction.   
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A

B

Figure 1.3 Representative   formation   of   silica   particles   via   (A)   hydrolysis   and   (B)  
condensation  under  basic  conditions. 
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Silica  particles  can  be  synthesized  via  the  Stӧber  method   through the hydrolysis 

and condensation of a tetraalkoxysilane in a solution of water, an alcohol solvent (e.g., 

ethanol), and a base catalyst.76 Monodispersity of the synthesized particles is dependent 

on the rates of nucleation and growth during the reaction. Conditions favoring 

simultaneous formation of particle nuclei, with similar subsequent growth result in 

particles with narrow distributions in size. Silica   particles   synthesized   via   the   Stӧber  

method  are  generally  ≥100  nm  as   the  conditions   favor  particle  growth  over  nucleation.  

Alternatively, silica particles with sizes on the low end of the nanoparticle regime (i.e., 

<100 nm) can be synthesized by a reverse microemulsion approach in which particles are 

confined to micelles of a pre-determined size as they form.77 Tuning of particle size is 

critical in biomedical applications since effective drug delivery is generally inversely 

proportional to particle size.  

 Particle size can be tuned by varying the concentration of water or ammonia, the 

chain length of the alcohol solvent, and the reaction temperature.76, 78 Increasing water 

concentration (>9 M) of the reaction promotes hydrolysis, and thus reduces particle size, 

while decreasing the water concentration favors nuclei aggregation and growth of the 

silica particles. Ammonia also influences size and morphology, with larger, non-spherical 

particles observed at low concentrations due to instability of the suspended particles. 

During particle formation, the size is also dictated by the choice of solvent. Long-chain 

(i.e., larger molecular weight) water-miscible alcohol solvents slow hydrolysis and result 

in increased particle size. Similarly, decreasing the reaction temperature hinders 

hydrolysis and increases particle size. 
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In addition to size, the aspect ratio of silica particles can be altered to evaluate 

drug delivery efficiency and nanoparticle–cell interactions as a function of shape. Rod-

like particles of various compositions (e.g., poly(ethylene glycol), silica, and 

poly(lactide-co-glycotide)) have demonstrated increased mammalian cell internalization 

and circulation time compared to spherical particles, thus improving their capacity for 

drug delivery.79-83 Silica nanorods of varied aspect ratio (i.e., 1–8) have been synthesized 

via a surfactant-templated synthesis, where the nanorods are grown along micelles. 

Control over the shape and geometry of the micelle ultimately impacts the final shape of 

the silica nanorod. Particle aspect ratio has been tuned by altering the type of surfactant, 

reaction temperature, ammonia concentration, or solution volume. Despite previous 

studies on mammalian cell interactions and uptake, there is a lack of understanding on 

how nanoparticle shape influences bactericidal efficacy against planktonic and biofilm-

based bacteria. 

Loading of NO onto the aforementioned silica particles and nanorods via N-

diazeniumdiolation necessitates modification of the scaffold with a secondary amine. 

Secondary amine-modified silica particles can either be achieved via co-condensation of 

an aminosilane and a   “backbone” silane (e.g., tetraalkoxysilane) or via surface-grafting 

onto an already formed silica scaffold. These NO-releasing hybrid silica particles are 

capable of storing large payloads of NO, with tunable NO-release to maximize 

bactericidal efficacy.61, 84, 85 
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To fully explore the effects of NO-releasing nanomaterial characteristics on 

toxicity toward bacteria, dendrimers have been evaluated as a second type of delivery 

scaffold. Dendrimers are highly-branched, nano-scale macromolecules.86 Bonds emanate 

from a central core at the interior of the dendrimer, forming a hyper-branched, 

multivalent structure. A wide range of dendritic scaffolds have been used in drug 

delivery,87 gene transfection,88, 89 tissue engineering,90 and even antibacterial applications. 

For example, quaternary ammonium-modified dendrimers have demonstrated efficacy in 

bacterial killing, but their inherent positive charge resulted in significant toxicity to 

mammalian cells.91 Masking this charge with poly(ethylene glycol) (PEG) helped 

mitigate the cytotoxicity while still providing potent antibacterial efficacy. 

Poly(amidoamine) (PAMAM) dendrimers and partially PEG-modified dendrimers were 

also proven effective against planktonic bacteria, with complete eradication of P. 

aeruginosa and S. aureus at µg/mL concentrations.92  

The multi-valency and amine-loading capabilities of dendrimers make them great 

candidates for coupling with NO release to further improve biocidal action. Taite et al. 

synthesized NO-releasing PEG-lysine dendrimers for cell proliferation applications, but 

low NO storage and lack of control over release kinetics make them non-ideal as 

antibacterial agents.93 Instead, the Schoenfisch lab has designed NO-releasing 

poly(propylene imine) (PPI) and PAMAM dendrimers that can store and deliver 

increased NO payloads (~2–5.6 µmol/mg).94-96 The reaction of secondary amine sites on 

the PAMAM dendrimers with high pressures of NO to form N-diazeniumdiolates is 

detailed in Figure 1.4. 
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Figure 1.4 Formation  of  secondary  amine  sites  on  dendrimers  via  Michael  addition  or  
ring-opening  reaction  and  subsequent  N-diazeniumdiolation. 
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In drug delivery applications, important dendrimer parameters to evaluate are size 

(i.e., generation), surface functionalization, and cytotoxicity. Unlike silica particles that 

range from ~10–1000 nm, dendrimers can be reproducibly synthesized with sizes <10 

nm. Of note, as dendrimer generation is increased, the number of surface groups at the 

exterior also increases, likely enhancing biocidal action. The type of functional group 

bound to the dendrimer scaffold has also been shown to influence NO-release properties. 

For example, NO-releasing PAMAM dendrimers functionalized with varied carbon chain 

lengths (i.e., C1–C7) exhibited half-lives of 2.5–86 min, with the longer chain resulting in 

extended NO release.94 

Silica particles and dendrimers are both effective NO delivery vehicles, allowing 

for tailored NO-release through varied size, exterior functionality, and kinetics. However, 

after the NO release has expired, select applications may necessitate degradation of the 

scaffold. Biodegradable scaffolds are best suited for pulmonary,97 oral, and parenteral 

drug delivery,98 as well as tissue engineering.99 The natural biopolymer, chitosan, has 

already shown promise in these applications due to its biocompatibility and 

biodegradability. Chitosan also exhibits antimicrobial properties toward bacteria, fungi, 

and viruses.100 Furthermore, as shown in Figure 1.5, the high secondary amine content of 

the chitosan backbone lends itself to N-diazeniumdiolate modification and subsequent 

NO release, thus increasing potential for antibacterial action. In previous reports, low N-

diazeniumdiolate conversion and NO storage (~0.2 µmol/mg) were observed for chitosan 

polysaccharides (~60–220 kD), likely due to their insolubility in the necessary basic 

conditions. Chitosan oligosaccharides (<20 kD), however, are soluble in basic conditions 
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and thus offer a better approach for designing NO-releasing scaffolds with improved 

conversion efficiency and total storage. 

Similar to NO-releasing silica and dendrimer scaffolds, the physicochemical 

properties (e.g., molecular weight and exterior functionality) of chitosan oligosaccharides 

can be tailored to influence NO-release kinetics and bactericidal action. The molecular 

weight (MW) of chitosan oligosaccharides can be controlled through the oxidative 

degradation of chitosan using hydrogen peroxide. Hydrogen peroxide concentration, 

(0.5–3.5%), reaction temperature (≥80  °C), and reaction time (~2.5–12 h) have all been 

shown to influence the degree of chitosan degradation and the resulting chitosan 

oligosaccharide MW.101 Additionally, a variety of functional groups can be introduced to 

the chitosan oligosaccharides via covalent modification. For example, secondary amine 

functionality can be imparted to the chitosan oligosaccharides via a cationic ring opening 

reaction with 2-methyl aziridine (MAz), after which PEG modification can be achieved 

via the Michael addition. 

1.2.5 Tuning properties of nitric oxide-releasing nanomaterials  

 The physicochemical properties of NO-releasing scaffolds are critical in 

improving NO delivery efficiency and bactericidal action while minimizing cytotoxicity 

to healthy host cells. Nanomaterial size, shape, exterior functionality, and NO-release 

kinetics are all important parameters to consider in evaluating nanomaterial–bacteria 

interactions. Particles of small size exhibit increased surface area to volume ratios 

compared to their larger counterparts. Thus, smaller NO-releasing particles have a greater  
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Figure 1.5 Formation   of   secondary   amine-modified   chitosan   oligosaccharides   and  
subsequent  N-diazeniumdiolation. 
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number of their N-diazeniumdiolates at the particle surface, likely promoting faster NO 

release and bacterial killing. Smaller nanoparticles are also likely to exhibit improved 

bactericidal efficacy due to more rapid diffusion to the bacterial cell surface. Particles 

with high aspect ratios (i.e., rod-like) may also enhance the efficiency of NO delivery 

given the potential for an increased surface area of interaction between the nanoparticle 

and bacterial membrane. Increased bactericidal efficacy of nanomaterials with more 

hydrophobic character will likely be observed due to improved association with the lipid-

containing bacterial membrane; however, cytotoxicity may present a challenge. Lastly, 

evaluating scaffold NO-release kinetics will be crucial to understanding the desired 

release profile (i.e., short burst of NO versus low sustained levels) for eradication of 

planktonic bacteria versus biofilms. 

1.3 Nanomaterial toxicity toward plants 

1.3.1 Phytotoxicity and uptake of nanomaterials 

 Although just recently gaining attention in biomedical and commercial 

applications,  nanomaterials  have  been  a  part  of   the  environment  for  most  of   the  Earth’s  

history.102, 103 Natural nanoparticles have been found in areas as diverse as volcanic dust 

and 10,000 year old glacial ice cores.102 These naturally occurring nanoparticles have 

shown toxicity to some life forms, raising concerns that engineered nanoparticles will 

exhibit similar toxicity. Engineered nanoparticles (ENPs) incorporated into consumer 

goods are now making their way into atmospheric, aquatic, and terrestrial environments 

due to incidental and direct release/disposal (Figure 1.6).104-106 However, while natural  
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Figure 1.6 Transformation   and   key   processes   of   engineered   nanoparticles   in   soil  
(modified  from  Klaine  et  al).10 
 

ENPs

Pa
rt

ic
le

  M
ig

ra
tio

n

Direct Particle Uptake

Microbial Toxicity

Invertebrate Accumulation
and Toxicity

Plant Bioaccumulation

So
rp

tio
n 

an
d 

Ag
gr

eg
at

io
n

Dissolved Pool



24 

nanoparticles tend to be transient in the environment, disappearing by either dissolution 

or aggregation, some ENPs have been shown to persist due to stabilization by surfactants 

or organic matter. A better understanding of particle fate, behavior, and potential toxicity 

in the environment is thus warranted. As such, researchers are evaluating ENP mobility, 

fate, and bioavailability in the environment as a function of size, shape, and surface 

charge.10, 102 Prior studies have assessed the toxicity of ENPs toward mammalian cells, 

bacteria, aquatic invertebrates, and other terrestrial organisms. However, plant toxicity 

(i.e., phytotoxicity) and potential uptake due to nanoparticle exposure have received less 

attention to date, especially with regard to ENP physicochemical properties.107, 108 Of 

note, ENP–plant interactions may not always result in toxicity, as some nanoparticles 

(e.g., mesoporous silica) have been used for target-specific delivery of proteins, 

nucleotides, or other chemicals for plant biotechnology applications.109  

Previous work with plants has evaluated the toxicity of silica (SiO2), zinc oxide 

(ZnO), nickel hydroxide (Ni(OH)2), copper (Cu), cerium oxide (CeO2), titanium dioxide 

(TiO2), iron oxide  (Fe3O4), gold (Au), silver (Ag), and iron (Fe) nanoparticles, as well as 

CdSe/ZnS quantum dots and carbon nanotubes to Arabidopsis thaliana,105, 110 rye 

grass,111, 112  mesquite,113 and select edible plant species including wheat and mung 

bean,106 alfalfa, tomato, corn, and cucumber.114, 115 Although current research has made 

some progress in determining the effects of nanomaterials on terrestrial plants, systematic 

studies are still lacking in the literature.  

1.3.2 Nanomaterial physicochemical properties in phytotoxicity 
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 Some researchers have started to evaluate phytotoxicity as a function of 

nanomaterial physicochemical properties such as size, shape, and surface charge. 

Nanoparticle size has been the most readily examined parameter, with increased 

phytotoxicity generally observed in correlation with decreased particle size. Lee et al. 

noted that ZnO nanoparticles (~44 nm) were more toxic to Arabidopsis thaliana than 

micron-sized counterparts.105 Similarly, smaller (~3.5 nm) Au NPs were more toxic to 

tobacco plants and exhibited greater uptake compared to larger (~18 nm) particles.116 

After 7 d exposure to silver NPs (20 and 100 nm), size-dependent NP toxicity was 

observed in L. minor.117 However, no significant difference in toxicity was noted between 

the 20 and 100 nm particles after a 14 d exposure. 

 The importance of nanoparticle shape and surface charge in phytotoxicity have 

also been noted, but studies systematically investigating these parameters are not 

currently available.118 Phytotoxicity observed in cabbage, tomato, red spinach, and lettuce 

seedlings exposed to graphene sheets was attributed to the nanomaterial morphology and 

aggregation.119 The graphene sheet form of the carbon-based nanomaterial exhibited 

similar growth inhibition to carbon nanotubes, demonstrating the role of nanomaterial 

shape on phytotoxicity. Aluminum nanoparticle surface charge has been shown to vary 

with environmental conditions (e.g., pH).120 Neutral species resulted in NP flocculation 

while negatively-charged species remained stable in solution. Despite evaluations of 

stability and transport in aqueous media, aluminum species of distinct surface charge 

have not yet been investigated for phytotoxic effects.120  
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1.3.3 Silica nanoparticle phytotoxicity 

 Silica nanoparticles (SiNPs) have received special interest in toxicology studies 

due to their prominence in cosmetic and biomedical applications.121-123 In one study, 12.5 

and 27.0 nm SiNPs (20.0 and 28.8 mg L-1, respectively) were shown to reduce growth of 

green alga by 20% after 72 h.124 Phytotoxicity assays with Cucurbita pepo (zucchini), 

however, showed no significant difference in germination percent, root elongation, or 

biomass after exposure to 1000 mg L-1 bulk silicon powder and SiNPs (< 100 nm) for 5–

14 d.125 Lee and coworkers found that 42.8 nm SiNPs promoted Arabidopsis thaliana 

root elongation at a low concentration (400 mg L-1), but resulted in toxicity at higher 

concentrations (≥   2000  mg   L-1).105 While prior work on the phytotoxicity of SiNPs to 

higher plants has established a strong foundation, lack of toxicity examination as a 

function of increased SiNP size range (i.e., < 42.8 nm and > 100 nm), shape (i.e., rod-like 

versus spherical), duration of exposure, and surface composition necessitated further 

investigation. Additionally, visualization of SiNPs in the plant cells and determination of 

uptake location (i.e., roots, rosette, and stem) had not been previously observed. 

1.4 Summary of dissertation research 

 The goal of my dissertation research was to evaluate how nanomaterial physical 

and chemical properties influence toxicity toward biological systems such as bacteria and 

plants. The specific aims of my research were to: 
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1. determine the bactericidal efficacy of NO-releasing silica, dendrimer, and chitosan      

scaffolds against planktonic and biofilm bacteria as a function of size, shape, and surface 

exterior functionality; 

2. evaluate the mechanisms of antibacterial activity for these scaffolds using confocal 

microscopy; and, 

3. determine the phytotoxicity and uptake of silica nanoparticles for Arabidopsis thaliana 

as a function of the physical properties of this scaffold. 

In this introductory chapter, the potential of NO-releasing silica, dendrimer, and 

chitosan scaffolds are justified for antibacterial applications. The physicochemical 

properties of these NO-release vehicles are critical for tuning the influence of 

nanomaterial–cell interactions and drug (i.e., NO) delivery efficiency. Likewise, these 

properties prove important in dictating nanoparticle toxicity to plants. In order to develop 

safe nanomaterials with minimal risk, we must examine how they act in the body and on 

the environment. In Chapter 2, planktonic bacterial killing with NO using three distinct 

sizes and shapes of silica nanoparticles, dendrimers with varied exterior functionalities, 

and chitosans of different molecular weights and hydrophobicities is described. 

Subsequent studies in Chapter 3 utilize these NO-releasing scaffolds to evaluate the 

eradication of more clinically-relevant bacterial biofilms as a function of nanomaterial 

size, shape, exterior functionality, and molecular weight. In Chapter 4, NO-releasing 

dendrimers with identical NO storage but varied NO-release kinetics are used to evaluate 

the desired NO-release profiles for killing of planktonic and biofilm bacteria. The 
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importance of size and shape on silica nanoparticle phytotoxicity to Arabidopsis thaliana 

is described in Chapter 5. Finally, Chapter 6 provides an overall summary of my 

dissertation work and details possible future directions in evaluating nanomaterial 

physicochemical properties and their relation to potential toxicity.   
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CHAPTER 2: ROLE OF NITRIC OXIDE-RELEASING SCAFFOLD 
PROPERTIES ON ANTIBACTERIAL EFFICACY AGAINST PLANKTONIC 

BACTERIA 

2.1 Introduction 

The prevalence of bacteria in clinical settings has become particularly 

problematic, with hospital-acquired infections being the fourth-leading cause of death in 

the United States.1, 2 Open wounds3, 4 and implanted medical devices such as prosthetic 

heart valves,2 orthopedic implants, and catheters are frequent sites of microbial infection 

despite aseptic procedures and instrument sterilization.2, 5, 6 While several antibacterial 

agents have proven effective against planktonic (i.e., free-floating) bacteria,4, 7 there is 

concern of the bacteria developing resistance to the treatment over time.8-10 Indeed, 

antibacterial resistance mechanisms including efflux pumps, modifying enzymes, and 

target mutations have been attributed to planktonic bacteria.11 Clinically-relevant 

infections including those associated with medical implants, non-healing wounds, 

diabetic mellitus, and cystic fibrosis are often the result of bacterial biofilms, which are 

generally more resistant than their planktonic counterparts.12-14 Since >99% of bacteria 

exist in the biofilm state, researchers are ultimately aiming to develop potent anti-biofilm 

agents.15 However, prior to treating biofilms, a proposed antibacterial agent must prove 

effective at eradicating planktonic bacteria, without fostering resistance. Thus, 
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understanding the clinical significance of nanomaterial toxicity to planktonic bacteria will 

aid in the design of future antibacterial and anti-biofilm agents.   

Nitric oxide (NO) is an endogenously-produced, diatomic free radical that serves 

various roles in the body.16-18 Specifically, at higher concentrations (µM), NO can serve 

as a potent antibacterial agent, inducing oxidative and nitrosative stresses that can 

damage the bacteria membrane of both Gram-positive and Gram-negative species.19-23  

The broad-spectrum and multi-mechanistic killing of nitric oxide further demonstrate its 

potential as an antibacterial agent, with a reduced chance for bacterial resistance to 

treatment. Due to the reactive nature of gaseous NO, several N-diazeniumdiolate-

modified scaffolds (e.g., silica particles,20 dendrimers,24 and chitosans25) have been 

designed to store and controllably release NO. Selective tuning of the physicochemical 

properties (e.g., size, shape, and exterior functionality) of NO-releasing scaffolds to 

enhance killing of planktonic bacteria is a necessary first step in realizing a successful 

therapeutic. Herein, the evaluation of the bactericidal efficacy of several NO-releasing 

nanomaterials (i.e., silica particles, dendrimers, and chitosan oligosaccharides) to 

planktonic Pseudomonas aeruginosa and Staphylococcus aureus is reported as a function 

of nanomaterial size, shape, exterior functionality, and molecular weight. 

2.1.1 Nitric oxide-releasing silica particles 

 Silica nanoparticles are attractive antibacterial scaffolds due to the capability for 

functionalization and their generally low toxicity to healthy host cells.26 N-

diazeniumdiolate-modified silica nanoparticles (~100 nm) have thus been developed to 
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deliver large NO payloads and kill planktonic bacteria.20 However, these scaffolds could 

be further tuned to enhance efficacy, as particle size and shape have previously been 

shown to influence bacterial killing. Morones et al. observed improved killing of E. coli 

for small silver particles (1–10 nm).27 Size-dependent bacterial killing was also examined 

by Nair et al., with the smaller particles exhibiting greater biocidal action.28 Additionally, 

Pal et al. studied the role of silver nanoparticle shape (i.e., nanoplates, spherical, or rod-

shaped) in the eradication of E. coli.29 Given the observed effects of nanomaterial size 

and shape in bacterial eradication, the role of NO-releasing silica nanoparticle size (i.e., 

50, 100, 200 nm) and shape (i.e., aspect ratio 1, 4, and 8) on the killing of planktonic 

Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus was 

investigated.  

2.1.2 Nitric oxide-releasing dendrimers 

In addition to exploring the effects of silica nanoparticle physicochemical 

properties on bactericidal efficacy, dendrimers have been evaluated as an NO-releasing 

scaffold. Dendrimers are highly-branched, nano-scale macromolecules with bonds 

emanating from a central core at the interior of the dendrimer.30 Dendritic scaffolds have 

been used in drug delivery,31 gene transfection,32, 33 tissue engineering,34 and even 

antibacterial applications. For example, Chen et al. demonstrated the efficacy of 

quaternary ammonium-modified dendrimers in bacterial killing, but the inherent positive 

charge of the dendrimers resulted in significant toxicity to mammalian cells.35 

Cytotoxicity was subsequently reduced by masking the charge with poly(ethylene glycol) 
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(PEG). Poly(amidoamine) (PAMAM) dendrimers and partially PEG-modified 

dendrimers have also proven effective against planktonic bacteria, with complete 

eradication of P. aeruginosa and S. aureus at µg/mL concentrations.36  

Due to the inherent biocidal action of dendrimers, NO-release has been coupled to 

these scaffolds to further enhanace their efficacy. For example, NO-releasing 

poly(propylene imine) (PPI) and PAMAM dendrimers that can store and deliver 

increased NO payloads (~2–5.6 µmol/mg) have been reported.24, 37, 38 In drug delivery 

applications, important dendrimer parameters to evaluate are size (i.e., generation), 

surface functionalization, and cytotoxicity. Dendrimers can be reproducibly synthesized 

with sizes <10 nm, likely improving their bactericidal activity compared to silica particles 

(~100 nm) that have been previously evaluated.20 The exterior functionality of the 

dendrimers may also prove important in both bacterial killing and cytotoxicity. As such, 

NO-releasing PPI dendrimers were evaluated against planktonic P. aeruginosa and S. 

aureus as a function of dendrimer size (i.e., generation 2 or 5) and exterior modification 

(i.e., propylene oxide, styrene oxide, or poly(ethylene glycol)). 

2.1.3 Nitric oxide-releasing chitosan oligosaccharides 

Although silica particles and dendrimers enable tuning of NO-release through 

varied size, shape, and exterior functionality, pulmonary,39 oral, and parenteral drug 

delivery,40 as well as tissue engineering41 applications necessitate biodegradable 

scaffolds. The natural biopolymer, chitosan, has already shown promise in these 

applications due to its biocompatibility and biodegradability. Chitosan also exhibits 
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antimicrobial properties toward bacteria, fungi, and viruses.42 Furthermore, the high 

secondary amine content of the chitosan backbone lends itself to N-diazeniumdiolate 

modification and subsequent NO release, thus increasing potential for antibacterial 

action. Chitosan oligosaccharides (<20 kD) are soluble in the basic conditions necessary 

for N-diazeniumdiolation and thus offer a promising approach for designing 

biodegradable NO-releasing therapeutics. 

Similar to NO-releasing silica and dendrimer scaffolds, the physicochemical 

properties (e.g., molecular weight and exterior functionality) of chitosan oligosaccharides 

can be tailored to influence NO-release kinetics and bactericidal action. The molecular 

weight (MW) of chitosan oligosaccharides can be controlled through the oxidative 

degradation of chitosan using hydrogen peroxide.43 Additionally, a variety of functional 

groups (e.g., secondary amines and PEG) can be introduced to the chitosan 

oligosaccharides via covalent modification. Herein, the bactericidal efficacy of NO-

releasing chitosan oligosaccharides was evaluated against planktonic P. aeruginosa as a 

function of molecular weight (i.e., 2.5k, 5k, and 10k) and exterior hydrophobicity. 

2.2 Materials and Methods 

Note: Silica particle, dendrimer, and chitosan synthesis, characterization, and 

evaluation of cytotoxicity were supported by other members of the Schoenfisch lab 

Tetraethylorthosilicate (TEOS), N-(6-aminohexyl)aminopropyltrimethoxysilane 

(AHAP), and N-(2-aminoethyl)-3-amino-isobutyl-dimethyl-methoxysilane (AEAI) were 

purchased from Gelest (Morrisville, PA). Triton X-100, 1-hexanol, heptane, pentane, 
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N,N-dimethylformamide (DMF), methanol, cetyltrimethylammonium bromide (CTAB), 

was obtained from Acros Organics (Geel, Belgium). Ethanol (EtOH), butanol, 1-

propanol, and ammonium hydroxide (28 wt%) were purchased from Fisher Scientific 

(Fair Lawn, NJ). Sodium methoxide (5.4 M in methanol), sulfanilamide, N-1-

napthylethylenediamine dihydrochloride, rhodamine B isothiocyanate  (RITC), 

propidium iodide (PI), fetal bovine serum (FBS), Dulbecco's Modified Eagle's Medium 

(DMEM), phenazine methosulfate (PMS), 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS), trypsin, 

phosphate buffered saline (PBS) used for cell culture, and Pen Strep solution (10,000 

u/mL penicillin, 10,000 µg/mL streptomycin), propylene oxide (PO), styrene oxide (SO), 

medium molecular weight chitosan, 2-methyl aziridine (MAz), and poly(ethylene glycol) 

methyl ether acrylate (average Mn = 480) (PEG) were purchased from the Sigma Aldrich 

Corp. (St. Louis, MO). Tryptic soy broth (TSB) and tryptic soy agar (TSA) were obtained 

from Becton, Dickinson, and Company (Franklin Lakes, NJ). Pseudomonas aeruginosa 

(ATCC #19143) and Staphylococcus aureus (ATCC# 29231) were obtained from the 

American Type Culture Collection (Manassas, VA). L929 mouse fibroblasts (ATCC 

#CCL-1) were purchased from the University of North Carolina Tissue Culture Facility 

(Chapel Hill, NC). Spectra/Por Float-A-Lyzers for dialysis of the dendrimers were 

purchased from Spectrum Laboratories, Inc. (Rancho Dominguez, CA). 4,5-

Diaminofluorescein diacetate (DAF-2 DA) was purchased from Calbiochem (San Diego, 

CA). Glass bottom microscopy dishes were received from MatTek Corporation (Ashland, 

MA). Nitric oxide (NO) was purchased from Praxair (Bethlehem, PA). Argon (Ar) gas 
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was obtained from Airgas National Welders (Raleigh, NC). A Millipore Milli-Q UV 

Gradient A10 System (Bedford, MA) was used to purify distilled water to a final 

resistivity  of  18.2  MΩ·cm  and  a  total  organic  content  of  ≤6  parts  per  billion  (ppb).  Other  

solvents and chemicals were analytical-reagent grade and used as received. Nuclear 

magnetic resonance (NMR) spectra were recorded on a 400 MHz Bruker instrument. 

Elemental (carbon, hydrogen, nitrogen or CHN) analysis was performed using a 

PerkinElmer Elemental Analyzer Series 2400 instrument (Waltham, MA). 

2.2.1 Synthesis of nitric oxide-releasing silica particles 

To evaluate the effects of nanoparticle size on bactericidal efficacy, secondary 

amine-functionalized silica nanoparticles of select sizes (i.e., 50, 100, and 200 nm) were 

synthesized using a reverse-microemulsion technique.44 Size was controlled by varying 

the type (i.e., pentane or heptane) and volume of the organic solvent used in the reverse 

microemulsion. Seed particles (TEOS) were formed in the reverse micelles and AHAP 

was subsequently added to impart secondary amine functionality. The three particle sizes 

(i.e., 50, 100, and 200 nm) were then functionalized with N-diazeniumdiolates by 

suspending the particles in a 1:9 (v/v) mixture of DMF and methanol (5 mg/mL) and 

adding sodium methoxide (5.4 M in MeOH). Vials of the suspensions were then placed in 

a Parr hydrogenation vessel and stirred. Residual oxygen in the suspensions was removed 

by purging the vessel with argon (Ar) three times quickly, followed by three longer (10 

min) Ar purges. The vessel was then pressurized to 10 atm with purified gaseous NO. 

The hydrogenation vessel was maintained at 10 atm throughout a 3 d period after which 
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the Ar purging procedure was repeated to remove unreacted NO prior to removal of the 

vials from the vessel. The N-diazeniumdiolated particles were recollected by 

centrifugation (3645 g for 5 min, 25 °C), washed three times with EtOH, dried under 

vacuum, and stored at -20 °C until use.  

Silica particles of three distinct aspect ratios (AR1, AR4, and AR8) were 

synthesized via a surfactant-templated approach as previously described by varying 

reaction temperature and ammonia concentration.45 Elevated temperature (30 vs. 20 °C) 

was used to increase the aspect ratio of the particles (AR8), while a greater ammonia 

concentration (1.0 vs. 0.5 M) allowed for the synthesis of a more spherical particle 

(AR1). Of note, cetyltrimethylammonium bromide (CTAB) removal was confirmed via 

CHN analysis prior to surface grafting. Monoalkoxysilane, N-(2-aminoethyl)-3-amino-

isobutyl-dimethyl-methoxysilane (AEAI) was then surface grafted onto the particle/rods 

to impart secondary amine functionality for N-diazeniumdiolation as described below. N-

diazeniumdiolate-functionalized AR1, AR4, and AR8 silica particles were prepared by 

suspending the AEAI-functionalized particles (15 mg) in a 9:1 (v/v) solution of DMF and 

MeOH, and adding 50 µL sodium methoxide (5.4 M in MeOH). Vials of the suspensions 

were placed in the Parr hydrogenation vessel, purged with Ar, exposed to NO, and the 

resulting particles were recollected and stored following the same protocol.  

2.2.2 Synthesis of nitric oxide-releasing PPI dendrimers 

Secondary amine-functionalized PPI dendrimers (G2 and G5) of varied exterior 

functionality were synthesized as described previously.46 Briefly, 100 mg primary amine-
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functionalized G2-PPI dendrimer 7 (G2-PPI-NH2) was dissolved in methanol (2 mL). A 

total of 1 molar equivalent of PO, SO, or PEG was then added to the G2-PPI-NH2 

solution (methanol) with constant stirring at room temperature for 4 d to yield the 

secondary amine-functionalized G2-PPI conjugates (i.e., G2-PPI-PO 1, G2-PPI-PEG 3, 

G2-PPI-SO 5). Likewise, secondary amine-functionalized G5-PPI conjugates (i.e., G5- 

PPI-PO 2, G5-PPI-PEG 4, G5-PPI-SO 6) were formed via the reactions of G5-

PPI-NH2 8 with PO, PEG, and SO, respectively. Dendrimers 1−6 were dissolved in 

water, dialyzed against water, and subsequently lyophilized. N-diazeniumdiolate-

functionalized PPI dendrimers 1a−6a were prepared by adding 5.4 M sodium methoxide 

solution in MeOH (1 equivalent with respect to the molar amount of primary amine 

functionalities in PPI-NH2 used to synthesize dendrimers 1−6) to a vial containing 

dendrimers 1−6 in methanol (2 mL). Vials of the dendrimer solutions were then placed in 

the Parr hydrogenation vessel, purged with Ar, exposed to NO, and stored following the 

aforementioned protocol.  

2.2.3 Synthesis of nitric oxide-releasing chitosan oligosaccharides 

Chitosan oligosaccharides of varied molecular weights were prepared by 

oxidative degradation using hydrogen peroxide. Medium molecular weight chitosan (2.5 

g) was suspended in a hydrogen peroxide solution (15 or 30 wt%) under stirring for 1 h at 

65–85 oC. After removal of undissolved chitosan via filtration, the chitosan 

oligosaccharides were precipitated with acetone, collected by centrifugation, washed 

twice with ethanol, and dried under vacuum.  
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The chitosan oligosaccharides were then grafted with 2-methyl aziridine (MAz) 

based on a previously reported procedure.47 Briefly, a mixture of concentrated HCl (11 

µL), water (100 µL) and MAz with a 1:1 (Chitosan 1) or 2:1 (Chitosan 2) molar ratio to 

primary amines on the chitosan oligosaccharides was added dropwise to a solution of 

chitosan oligosaccharides (100 mg) in deionized water (5 mL). The resulting solution was 

stirred at room temperature for 5 d, and then 75 oC for 24 h. The MAz-grafted chitosan 

oligosaccharides were then purified by dialysis and collected by lyophilization. The 

chitosan oligosaccharides were further functionalized with PEG by adding poly(ethylene 

glycol) methyl ether acrylate (Chitosan 3) to tune hydrophobicity. The resulting PEG-

functionalized chitosan oligosaccharides were purified by dialysis and collected by 

lyophilization. The chitosan oligosaccharides were characterized by nuclear magnetic 

resonance (NMR) spectroscopy (data not shown). 

N-diazeniumdiolation of the secondary amine-functionalized chitosan 

oligosaccharides (Chitosan 1, Chitosan 2, and Chitosan 3) was achieved by adding the 

chitosan and 5.4 M sodium methoxide (75 µL) to a water/methanol mixture (2 mL). The 

suspensions were then placed in a Parr hydrogenation vessel, purged with Ar, exposed to 

NO, and stored following the aforementioned protocol.   

2.2.4 Fluorescently-labeled scaffolds 

  Fluorescently-labeled silica nanoparticles,44 dendrimers,46 and chitosan 

oligosaccharides48 were achieved via covalent modification with rhodamine B 

isothiocyanate (RITC) based on a previously published procedures. The silica particles 
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(50 mg) were suspended in EtOH (100 mL) with RITC (5 mg) and stirred in the dark for 

48 h. Following fluorescent modification, the particles were collected and washed 

copiously with EtOH using the collection/centrifugation protocol described above. After 

a clear supernatant was achieved, the particles were dried under vacuum, N-

diazeniumdiolated, and stored until use. Fluorescently-labeled dendrimers were prepared 

by dissolving G2-PPI-NH2 7(100 mg) and RITC (7.5 mg) in methanol (2 mL). The 

solution was stirred for 24 h, dialyzed, and lyophilized to yield RITC-labeled dendrimers 

that were then modified with PO (1 equivalent) and further reacted with NO. To obtain 

fluorescently-labeled chitosan, chitosan oligosaccharides (50 mg) were dissolved in water 

(2 mL) at pH 9.0 and RITC was added to the solution in a 1:100 molar ratio to the 

primary amine of the chitosan oligosaccharides prior to the grafting of 2-methyl aziridine. 

The solution was then stirred at room temperature for 3 d, dialyzed, lyophilized, and 

further reacted with NO to achieve fluorescently-labeled NO-releasing chitosan 

oligosaccharides.  

2.2.5 Scaffold characterization and nitric oxide release  

Size and shape (i.e., aspect ratio) of the silica particles were determined using 

transmission electron microscopy (TEM) and scanning electron microscopy (SEM). 

Transmission electron micrographs of the 50, 100, and 200 nm silica particles were 

obtained on a JEOL 100 CX II transmission electron microscope (Tokyo, Japan). 

Scanning electron micrographs of the AR1, AR4, and AR8 silica particles were recorded 

using a Hitachi S-4700 scanning electron microscope (Tokyo, Japan). Real-time NO-

release from the silica particles, dendrimers, and chitosan oligosaccharides was measured 
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using a Sievers 280i Chemiluminesence Nitric Oxide Analyzer (NOA; Boulder, CO). The 

NO-releasing silica particles (1 mg), dendrimers (1 mg), or chitosan oligosaccharides 

(aliquot in water/methanol mixture) were added to a sample vessel containing 30 mL 

deoxygenated PBS (pH 7.4, 37 °C). Liberated NO was carried from the sample vessel to 

the NOA at a flow rate of 70 mL/min. To match the collection rate of the NOA (200 

mL/min), additional nitrogen flow was supplied to the sample vessel. Nitric oxide-release 

measurements were terminated when the levels fell below 10 ppb NO/mg scaffold. The 

real-time NO-release data was used to determine the total NO-release duration and half-

life (t1/2). Total NO storage (t[NO]) was also characterized using the Griess assay.49, 50 

2.2.6 Planktonic bactericidal assays 

 Pseudomonas aeruginosa and Staphylococcus aureus bacterial cultures were 

grown from frozen stock (-80 °C) in TSB overnight at 37 °C. An aliquot of the 

suspension (0.5 mL) was added to fresh TSB (50 mL) and incubated at 37 °C until the 

bacteria reached mid-exponential phase (~1 × 108 colony forming units (cfu)/mL) as 

determined by the optical density at 600 nm (OD600). The relationship between the 

concentration of the bacteria in suspension and the OD600 was calibrated for each strain 

using an Eppendorf BioPhotometer Plus Spectrophotometer (Hamburg, Germany); the 

colony forming units were enumerated from culture dilutions grown on TSA plates. The 

bacterial suspension was then centrifuged (3645 g for 10 min, 25 °C), resuspended in 

PBS, and diluted to ~1 × 106 cfu/mL in PBS. 
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The minimum bactericidal concentration (MBC) of the NO-releasing 50, 100, and 

200 nm silica particles for planktonic P. aeruginosa was defined as the concentration that 

resulted in a 3-log reduction in viability versus untreated cells after 2 or 24 h. The MBC 

of the NO-releasing AR1, AR4, and AR8 silica particles and dendrimers for planktonic P. 

aeruginosa and S. aureus was defined as the concentration that resulted in a 3-log 

reduction in viability versus untreated cells after 4 and 2 h, respectively. The MBC of the 

NO-releasing chitosan oligosaccharides for planktonic P. aeruginosa was defined as the 

concentration that resulted in a 3-log reduction in viability versus untreated cells after 4 

h. The bacterial suspensions (106 cfu/mL) were incubated with the NO-releasing 

scaffolds over a range of concentrations for the duration noted. After exposure, the 

samples were nanomaterial–bacteria suspensions were diluted and plated on TSA, with 

counting of resulting colonies to determine viability. 

2.2.7 Confocal microscopy  

To observe association of the silica particles with the bacteria, P. aeruginosa (106 

cfu/mL) was first incubated in a glass bottom confocal dish and allowed to adhere for 45 

min at 37 °C. The slide was rinsed with fresh PBS to remove loosely or unadhered 

bacteria. A suspension of the RITC-modified silica nanoparticles  (500  μL  of  10  μg/mL in 

PBS) was then added to the bacteria on the glass slide. To observe association of NO-

releasing particles with bacteria over time, fluorescence images were taken immediately 

following the addition of the 50 nm particles at 20 s intervals for 40min. To compare the 

influence of particle size on the extent of particle–bacteria association, fluorescence 
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images were obtained of bacteria treated with the 50, 100, and 200 nanoparticles (10 

µg/mL) for 10 min. After the 10 min incubation period, the suspension was removed, and 

the bacteria were copiously washed with fresh PBS to remove unassociated particles. 

Fresh PBS was then added, and the bacteria were imaged. 

 Intracellular NO levels and subsequent cell death were evaluated for the AR1 and 

AR8 NO-releasing silica particles using confocal microscopy. Bacteria ( P. aeruginosa 

and S. aureus ) were cultured in TSB to a concentration of 1 × 108 CFU/mL, collected via 

centrifugation (3645 g for 10 min), resuspended in sterile PBS, and adjusted to 1 × 106 

CFU/mL   in  PBS   supplemented  with   10  μ  M DAF-2 DA and  30  μ  M  PI.  The   bacteria  

solution (2.5 mL) was incubated in a glass bottom confocal dish for 45 min at 37 ° C. 

Suspensions (1.5 mL) of AR1 or AR8 NO-releasing silica particles (44  μ  g/mL) in PBS 

(supplemented with   10   μ   M   DAF-2   DA   and   30   μ   M PI) were added to the bacteria 

solution (1.5 mL) in the glass confocal dish. Images were collected every 5 min to 

observe intracellular NO concentrations and cell death.  

Similarly, intracellular NO, cell death, and scaffold-bacteria association were 

observed for the NO-releasing PPI dendrimers. P. aeruginosa was cultured in TSB to a 

concentration of 1 × 108 CFU/mL, collected via centrifugation (3645 × g for 10 min), 

resuspended in sterile PBS, and adjusted to 1 × 106 CFU/mL in PBS supplemented with 

10  μM  DAF-2  DA  and  30  μM  PI.  Aliquots  of  the  bacteria solution were incubated in a 

glass bottom confocal dish for 45 min at 37 °C. Suspensions (1.5 mL) of G2 (17.4 

μg/mL)  or  G5  (20.0  μg/mL) PPI-SO NO-releasing dendrimers (5a and 6a) or 50 nm NO-

releasing AHAP3/TEOS nanoparticles44 (44.0  μg/mL) in PBS supplemented with 10 μM  
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DAF-2   DA   and   30   μM   PI   were   added   to   the   bacteria   solution   (1.5 mL) in the glass 

confocal dish. Images were collected every 2 min to observe intracellular NO 

concentrations and bacteria cell death temporally. For association experiments, S. aureus 

was cultured in TSB to a concentration of 1 × 108 CFU/mL, collected via centrifugation 

(3645 × g for 10 min), resuspended in sterile PBS, and adjusted to 1 × 106 CFU/mL. 

Aliquots of the bacteria solution were incubated in a glass bottom confocal dish for 45 

min at 37 °C. Solutions of RITC-labeled   control   (400   μg/mL) or NO-releasing (400 

μg/mL) G2-PPI-PO dendrimers in PBS (1.5 mL) were added to the bacteria solution (1.5 

mL) in the glass confocal dish to achieve a final concentration   of   200   μg/mL. Images 

were collected every 2 min to monitor association of the dendrimers with S. aureus 

temporally. 

Prior to examining association of the chitosan oligosaccharides with the bacteria, 

P. aeruginosa was cultured in TSB to a concentration of ~1 × 108 CFU/mL, collected via 

centrifugation (3645  g for 10 min), resuspended in sterile PBS, and adjusted to ~1 × 106 

CFU/mL. Aliquots of the bacteria solution were incubated in a glass bottom confocal dish 

for 1.5 h at 37 °C. Solutions of RITC-labeled NO-releasing chitosan oligosaccharides in 

PBS (1.5 mL) were added to the bacteria solution (1.5 mL) in the glass confocal dish to 

achieve   a   final   concentration   of   150   μg/mL.   Images   were   collected   every   2   min   to  

characterize the association, if any, of the chitosan oligosaccharides with P. aeruginosa 

temporally.  

A Zeiss 510 Meta inverted laser scanning confocal microscope (Carl Zeiss, 

Thornwood, NY) with a 488 nm Ar excitation laser (2.0% intensity) and a BP 505–530 
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nm filter was used to obtain DAF-2 (green) fluorescence images. A 543 nm HeNe 

excitation laser (25.3% intensity) with a BP 560–615 nm filter was used to obtain PI and 

RITC (red) fluorescence images. The images were collected using a Zeiss C-apochromat 

lens (20 or 40x, 1.2 numerical aperture).  

2.2.8 In vitro cytotoxicity  

L929 mouse fibroblasts were cultured in DMEM supplemented with 10% (v/v) 

FBS and 1 wt% Pen Strep solution, and incubated in 5% (v/v) CO2 under humidified 

conditions at 37 oC. After reaching 80% confluency, the cells were trypsinized, seeded 

onto tissue culture-treated polystyrene 96-well plates at a density of 3 × 104 cells/mL and 

incubated at 37 oC for 48 h. The supernatant was then aspirated prior to adding fresh 

DMEM  (200  μL)  with  control  (i.e.,  non-NO-releasing) or NO-releasing scaffolds to each 

well. After incubation at 37 oC for 24 h, the supernatant was aspirated and the cells rinsed 

3x with PBS. A mixture  of  DMEM/MTS/PMS  (105/20/1,  v/v/v)  (120  μL)  was  then  added  

to each well. The absorbance of the resulting colored solution after 1.5 h incubation at 37 

oC was quantified at 490 nm using a Thermo Scientific Multiskan EX plate reader 

(Thermo Fisher Scientific, Inc., Waltham, MA). The mixture of DMEM/MTS/PMS and 

untreated cells were used as the blank and control, respectively. Cell viability was 

calculated by taking the ratio of the absorbance of treated to untreated cells after 

subtracting the absorbance of the blank from each.  

2.3 Results and Discussion 

2.3.1 Nitric oxide-releasing silica particles 
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 Three distinct silica particle sizes (56 ± 7, 93 ± 14, and 199 ± 27 nm for the 50, 

100, and 200 nm particles, respectively) were synthesized via reverse microemulsion for 

evaluation of P. aeruginosa eradication as a function of particle size.44 Following N-

diazeniumdiolation, the NO-releasing particles were characterized for NO storage and 

release at 2 and 24 h to mimic bactericidal assays. At 2 h, the total NO storage was 

similar for the three sizes of particles (0.47 ± 0.02, 0.38 ± 0.01, and 0.42 ± 0.01 µmol/mg 

for the NO-releasing 50, 100, and 200 nm particles, respectively). Likewise, the total NO 

released within the 24 h bactericidal assay was similar for all three systems (1.49 ± 0.29, 

1.26 ± 0.17, and 1.01 ±0.08 µmol/mg , for the NO-releasing 50, 100, and 200 nm 

particles, respectively), confirming their utility for evaluation of efficacy as a function of 

size. 

 The role of nanoparticle shape (i.e., aspect ratio) on antibacterial activity was 

evaluated using silica particles of three varied aspect ratios (i.e., 1, 4, and 8), but identical 

particle volume. Nitric oxide released over the 4 h planktonic killing assay was 0.63 ± 

0.07, 0.59 ± 0.07, and 0.64 ± 0.09 µmol/mg for the AR1, AR4, and AR8 particles, 

respectively. Given their identical NO storage, the NO-releasing AR1, AR4, and AR8 

particles allowed for examination of the influence of nanoparticle shape on bactericidal 

efficacy against both P. aeruginosa and S. aureus. 

2.3.1.1 Bactericidal efficacy against planktonic bacteria as a function of size and shape 

 As expected, the smaller NO-releasing 50 nm particles exhibited the greatest 

biocidal action against P. aeruginosa. For the 2 h MBC assay, the 50, 100, and 200 nm 
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particles had MBC values of 0.8, 1.5, and 1.5 mg/mL, respectively. However, the 

increased treatment time of 24 h reduced the necessary dose further, resulting in 24 h 

MBC values of 0.2, 0.2, and 0.4 mg/mL for the 50, 100, and 200 nm particles, 

respectively. Of note, no reduction in P. aeruginosa viability was observed for control 

(i.e., non-NO-releasing) particles at the MBC concentrations. 

 Assays for evaluating the influence of particle shape on bacterial killing were 

conducted over 4 h. Increased antibacterial activity was observed for the NO-releasing 

AR8 particles over the AR4 and AR1 particles for both P. aeruginosa and S. aureus. The 

MBC values for the NO-releasing AR8, AR4, and AR1 particles against P. aeruginosa 

were 150, 250, and 500 µg/mL, respectively. However, increased NO doses were 

necessary for killing of S. aureus, with MBCs of 300, 1000, and 2000 µg/mL for the 

AR8, AR4, and AR1 particles, respectively. No reduction in viability of P. aeruginosa or 

S. aureus was noted when exposed to control scaffolds at the maximum MBC 

concentration of the NO-releasing particles.  

2.3.1.2 Confocal microscopy 

 The bactericidal assays confirmed the enhanced efficacy of the smaller NO-

releasing 50 nm particles over the 100 and 200 nm particles. However, it was unclear 

how nanoparticle–bacteria interactions played a role in the NO-induced bacterial killing. 

Thus, confocal microscopy was used to evaluate association between the P. aeruginosa 

cells and the 50, 100, and 200 nm silica particles. The RITC-labeled 50, 100, and 200 nm 

particles (10 µg/mL) were incubated with P. aeruginosa cells for 10 min, and after 
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washing, increased nanoparticle–bacteria association was observed for the 50 nm 

particles as expected (Figure 2.1). Although interactions between the 100 and 200 nm 

particles and the bacteria were visible, the degree of association was significantly less as 

particle size was increased. Particle–bacteria association was further examined by 

incubating P. aeruginosa cells with RITC-modified 50 nm particles and imaging the cells 

every 20 s over 40 min (Figure 2.2). This time-based experiment revealed that the 50 nm 

particles associate rapidly (~2 min post-addition) with the P. aeruginosa cells, even at 

low concentrations (10 µg/mL). Given the improved association of the 50 nm particles 

with the P. aeruginosa cells, it is likely that they exhibited more efficient NO delivery, 

and thus better antibacterial activity.  

 Confocal microscopy was also utilized to evaluate intracellular NO levels in P. 

aeruginosa and S. aureus cells exposed to NO-releasing AR1 and AR8 particles. Since S. 

aureus required greater NO doses for eradication, it was hypothesized that the improved 

killing of P. aeruginosa may result from more efficient NO delivery. The bacteria were 

exposed to NO-releasing AR1 or AR8 particles (22 µg/mL) and intracellular NO 

concentrations were subsequently monitored with the DAF-2 (green) fluorescent probe. 

As shown in Figure 2.3, P. aeruginosa cells exhibited increased DAF-2 fluorescence 

upon exposure to the higher aspect ratio (i.e., AR8) particles, thus confirming the 

increased efficiency in NO delivery for the rod-like particles. Of note, minimal DAF-2 

fluorescence was observed in S. aureus cells exposed to the same NO-releasing particle 
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Figure  2.1  Confocal  microscopy  images  of  RITC-modified  (A)  50,  (B)  100,  and  (C)  200  
nm  silica  nanoparticle  (10  µg/mL)  association  with  planktonic  P.  aeruginosa  after  10  min  
incubation.  Scale  bar  is  5  µm. 
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Figure   2.2   Confocal   images   of   50   nm   RITC-modified   NO-releasing   silica   particle  
association   with   planktonic   P.   aeruginosa.   Images   were   acquired   (A)   0   (addition   of  
particles),  (B)  2.4,  (C),  6.4,  (D)  19.5,  and  (E)  39  min  after  addition  of  nanoparticles  at  10  
µg/mL.  Scale  bar  is  10  µm. 
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Figure  2.3  Intracellular  DAF-2  fluorescence  from  P.  aeruginosa  bacterial  cells  incubated  
with  22  µg/mL  AR1(Bright   field   (A),  120  min  (B),  125  min  (C))  and  AR8(Bright   field  
(D),   95  min   (E),   100  min   (F))   and   from   S.   aureus   bacterial   cells   incubated  with  AR1  
(Bright  field  (G),  135  min  (H),  155  min  (I))  AR8  (Bright  field  (J),  100  min  (K),  130  min  
(L)).  Intensity  of  DAF-2    (green)  fluorescence  indicates  intracellular  NO  levels. 
 



63 

concentration (22 µg/mL). This corroborates the higher MBC values for S. aureus 

compared to P. aeruginosa. The greater bactericidal NO doses necessary to kill S. aureus 

vs. P. aeruginosa are attributed to several possible factors including differential thickness 

of the peptidoglycan layer in the cell membrane,51 varied production of antioxidant 

enzymes (e.g., superoxide dismutase) to mitigate the effects of NO,52 and S. aureus’  use  

of NO as a cytoprotection agent.53  

2.3.1.3 In vitro cytotoxicity 

 To ensure the therapeutic utility of the silica scaffolds, the 50, 100, and 200 nm 

particles as well as the AR1, AR4, and AR8 particles were tested for in vitro cytotoxicity 

against L929 mouse fibroblasts. The fibroblasts were selected as a model host cell due to 

their ubiquitous presence in connective tissue.54 Cytotoxicity of the control and NO-

releasing 50, 100, and 200 nm silica particles was evaluated at 2 and 24 h to mimic 

bacteria assays. All three particles sizes were non-toxic to mammalian cells at the highest 

concentrations necessary for planktonic killing of P. aeruginosa (i.e., 1.6 and 0.4 mg/mL 

for the 2 and 24 h exposures, respectively). Likewise, the control and NO-releasing AR1, 

AR4, and AR8 particles were non-toxic at MBCs for P. aeruginosa eradication. 

However, some reduction in fibroblast was noted for particle concentrations necessary to 

kill S. aureus.  

2.3.1.4 Conclusions 

 Both NO-releasing nanoparticle size and shape played a role in bactericidal 

efficacy against Gram-negative P. aeruginosa and Gram-positive S. aureus. As expected, 
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particles with decreased size and increased aspect ratio exhibited greater biocidal action. 

Bacterial killing was shown to improve with longer treatment times (i.e., 2 vs 24 h) and 

thus future work should evaluate assay duration to achieve the lowest therapeutic dose. 

Additionally, the NO-releasing 50, 100, and 200 nm and AR1, AR4, and AR8 silica 

scaffolds were effective against bacteria with minimal cytotoxicity and should be 

investigated as anti-biofilm agents. 

2.3.2 Nitric oxide-releasing dendrimers 

 Nitric oxide-releasing dendrimers were synthesized with varied size (i.e., G2 and 

G5) and exterior functionalities (i.e., PO, SO, and PEG) (Figure 2.4).46 Total nitric oxide 

release from the scaffolds ranged from 0.65 to 2.61 µmol/mg over the 2 h planktonic 

killing assays. In addition to varied hydrophobicity and total NO storage, the PO, SO, and 

PEG scaffolds had a range of NO-release kinetics, with t1/2 ranging from 0.67 to 1.70 h. 

The varied NO-release characteristics of the NO-releasing PPI dendrimers allowed from 

evaluation of bactericidal efficacy against planktonic P. aeruginosa and S. aureus as a 

function of size (i.e., G2 versus G5) and exterior modification.  

2.3.2.1 Bactericidal efficacy against planktonic bacteria as a function of exterior 
functionality 

 Details on the planktonic MBCs for the control (i.e., non-NO-releasing) and NO-

releasing PPI dendrimers has been reported by Sun et al.46 In general, the SO-modified 

dendrimers exhibited greater antibacterial activity to both P. aeruginosa and S. aureus 

due to the improved association with the cell membrane. Likewise, the hydrophilic PEG-

modified dendrimers were less effective. For example, ~600x the bactericidal NO dose 
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(1254 versus 2 µmol NO/L) was required for P. aeruginosa eradication for the G2-PEG-

NO dendrimers compared to the G2-SO-NO dendrimers. Size effects were also noted, 

with greater biocidal action for the larger dendrimers (i.e., G5-SO-NO versus G2-SO-

NO). 

2.3.2.2 Confocal microscopy 

 Confocal microscopy was used to determine if larger size dendrimers exhibited 

improved bacterial killing due to more localized NO delivery to the cell. As shown in 

Figure 2.5, larger intracellular NO concentrations (DAF-2 fluorescence) were observed 

for P. aeruginosa cells exposed to G5-SO-NO dendrimers compared to G2-SO-NO, thus 

confirming improved NO delivery efficiency for the larger dendrimer. Additionally, 

dendrimer–bacteria interactions were evaluated for S. aureus to explain the improved 

killing of the control G2-PO dendrimers compared to the NO-releasing G2-PO 

dendrimers (MBC of 484.0 versus 967.9 µg/mL). S. aureus cells were exposed to the 

RITC-modified dendrimers and imaged over time to evaluate association (Figure 2.6). 

Indeed, the control G2-PO dendrimers exhibited more rapid association with S. aureus 

cells compared to their NO-releasing counterparts, likely due to more favorable 

electrostratic interactions with the negatively-charged cell membrane (zeta potentials 

were +7.1 ± 0.6 and -14.0 ± 5.4 mV for the control and NO-releasing G2-PO dendrimers, 

respectively. 

2.3.2.3 In vitro cytotoxicity 
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Figure  2.4  Confocal  microscopy  images  of  P.  aeruginosa  cells  exposed  to  the  same  NO  
dosage   (10  μmol/L)  via   incubation  with  NO-releasing  G2-   and  G5-PPI-SO  (8.7  and  10  
μg/mL,   respectively)   and   50   nm  AHAP3/TEOS  nanoparticles   (22   μg/mL).   Intracellular  
NO   is   indicated   by   the   appearance   of   DAF-2   green   fluorescence,   while   PI   red  
fluorescence   indicates  compromised  membranes  (cell  death).   Images  were  acquired  (A)  
30,  (B)  46,  (C)  60,  (D)  64,  (E)  86,  and  (F)  94  min  after  dendrimer/nanoparticle  addition. 
 



67 

  

Figure  2.5  Confocal  microscopy  images  of  RITC-modified control  and  NO-releasing  G2  
PPI-PO  dendrimer   (400  μg/mL) association  with  S.  aureus  cells.   Images  were  acquired  
(A)  4,  (B)  12,  (C)  18,  (D)  30,  and  (E)  45  min  following  dendrimer  addition. 
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 In vitro cytotoxicity to L929 mouse fibroblasts was evaluated for the control and 

NO-releasing PPI dendrimers to determine their potential for therapeutic use. Although 

many of the PPI dendrimer scaffolds exhibited potent antibacterial activity against both 

P. aeruginosa and S. aureus, significant reductions in fibroblast viability (>80%) were 

observed for many control and NO-releasing scaffolds at the corresponding MBC. 

2.3.2.4 Conclusions 

 The planktonic killing of P. aeruginosa and S. aureus was dependent on both NO-

releasing PPI dendrimer size and hydrophobicity. Larger, hydrophobic dendrimers (i.e., 

G5-SO-NO) were most effective. Despite the low scaffold does necessary for bacterial 

eradication, these scaffolds were significantly toxic to healthy host cells, thus limiting 

their widespread utility. Further tailoring of the exterior modification or use of a less 

toxic dendritic scaffold (e.g., poly(amidoamine)) is thus warranted to maintain biocidal 

action while reducing unwanted cytotoxic effects. 

2.3.3 Nitric oxide-releasing chitosan oligosaccharides 

 Nitric oxide-releasing chitosan oligosaccharides with varied exterior functionality 

and molecular weight were synthesized (Figure 2.7). The chitosan oligosaccharides were 

modified with different ratios of 2-methyl aziridine to tune the exterior functionality 

(Chitosan 1 and 2). Chitosan 2 was further modified with PEG (Chitosan 3) to evaluate a 

wider range of functionalities. Additionally, three different molecular weights of 

Chitosan 2 (2.5k, 5k, and 10k)were synthesized to study the influence of molecular 

weight on chitosan antibacterial activity. 
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Chitosan 1 x=1
Chitosan 2 x=2

Chitosan 1/NO x=1
Chitosan 2/NO x=2

Chitosan 3 x=2 Chitosan 3/NO x=2

Figure   2.6   Synthesis   of   secondary   amine-   and   N-diazeniumdiolate-functionalized  
chitosan  oligosaccharide  derivatives.  A)  Chitosan  1  and  Chitosan  2)   and  subsequent  N-
diazeniumdiolate   formation   of   the   resulting   materials   (Chitosan   1/NO   and   Chitosan  
2/NO);;   B)   Modification   of   secondary   amine-functionalized   chitosan   oligosaccharides  
with  PEG  (Chitosan  3  and  Chitosan  3/NO). 
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2.3.3.1 Bactericidal efficacy against planktonic bacteria as a function of exterior 
functionality and molecular weight 

 The NO-releasing chitosan oligosaccharides (Chitosan 1–3) were evaluated for 

planktonic killing against P. aeruginosa. Minimum bactericidal concetrations for the NO-

releasing Chitosan 2-2.5k, Chitosan 2-5k, and Chitosan2-10k were 0.12, 0.12, and 0.12, 

µmol NO/mL respectively. Thus chitosan molecular weight did not significantly impact 

P. aeruginosa killing. Exterior functionality did influence antibacterial activity, with 

MBCs of 0.32, 0.10, and 0.45 for Chitosan 1/NO, Chitosan 2/NO, and Chitosan 3/NO, 

respectively. Based on previous work published with dendrimers,46 it was expected that 

the PEG-modified chitosan would be the least biocidal, likely due to decreased 

interaction with the bacteria membrane. 

2.3.3.2 Confocal microscopy 

 Confocal microscopy was used to evaluate the association of both Chitosan 2/NO 

and Chitosan 3/NO with P. aeruginosa to gain insight into the mechanism by which the 

PEG-modified chitosan exhibited reduced bactericidal efficacy (Figure 2.8). Planktonic 

P. aeruginosa cells were incubated with either RITC-labeled Chitosan 2/NO or Chitosan 

3/NO (150 µg/mL) and imaged over time. Significant red fluorescence was noted for the 

cells exposed to Chitosan 2/NO within ~24 min. However, even at 82 min, minimal red 

fluorescence was observed in cells exposed to Chitosan 3/NO, likely due to less 

association between the neutral PEG functionality and the bacterial membrane. 

2.3.3.3 In vitro cytotoxicity 
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Figure   2.7  Confocal  microscopy   images   of  RITC-modified  Chitosan   2/NO-5k;;   (A)   24  
min,  (B)  28  min,  (C)  42  min  and  Chitosan  3/NO-5k;;  (D)  82  min,  (E)  86  min,  (F)  110  min,  
(H)   120  min   association  with  P.   aeruginosa   cells   (150   μg/  mL).  Overlay   images   of  P.  
aeruginosa   cells   incubated   with   (G)   Chitosan   2/NO-5k   at   44   min   and      (H)   Chitosan  
3/NO-5k  at  120  min.   
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Control and NO-releasing chitosan oligosaccharides were evaluated for their 

influence on L929 mouse fibroblast viability. As expected for the natural biopolymer, the 

chitosan oligosaccharides were not toxic at concentrations necessary for planktonic 

killing of P. aeruginosa. Fibroblast proliferation was observed for the NO-releasing 

chitosans in some cases,55 which may further the potential for use of these scaffolds as 

anti-biofilm agents. 

2.3.3.4 Conclusions 

 The evaluation of NO-releasing chitosan oligosaccharides in the killing of 

planktonic P.aeruginosa showed the importance of exterior functionality. Molecular 

weight of the chitosan oligosaccharides was not observed to influence planktonic bacteria 

killing. However, it is likely that some molecular-weight dependent effects would be 

noted for these scaffolds against bacterial biofilms. 
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CHAPTER 3: ROLE OF NITRIC OXIDE-RELEASING SCAFFOLD 
PROPERTIES ON ANTIBACTERIAL EFFICACY AGAINST BIOFILM-BASED 

BACTERIA 

3.1 Introduction 

The prevalence of bacteria in clinical settings continues to pose a great challenge 

in treating and eradicating nosocomial (hospital-acquired) infections, with an estimated 

1.7 million infections resulting in ~99,000 deaths in the United States alone each year.1, 2 

Most infections are the result of biofilm-based bacteria that irreversibly adhere to a 

surface and secrete an exopolysaccharide (EPS) matrix.3 Bacteria utilize the EPS matrix 

to retain nutrients and impede the diffusion of antibacterial agents.2, 4 Antibiotic-

inactivating enzymes, anoxic regions, and the differentiation of cell subpopulations into a 

more resistant, dormant metabolic state4 are also employed by the biofilm bacteria to 

further prevent eradication. As a result, biofilm-based bacteria exhibit increased 

resistance to treatment and are less susceptible to antibacterial agents compared to 

planktonic suspensions.2, 5-7 In turn, complete eradication of bacterial biofilms is complex 

and often not feasible.1, 8, 9  

Ideally, implant-associated infections would be controlled by eliminating initial 

bacteria attachment to a surface and thus preventing biofilm formation of adherent cells.3 

However, superhydrophobic,10 heparin-coated,11 and antibacterial-doped substrates12, 13 

have not proven effective clinically in reducing infection rates.3 Researchers have thus 
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turned to more aggressive strategies involving the active release of antibacterial agents.14 

Nitric oxide (NO), a diatomic free radical, serves a number of roles in the body, including 

the immune response to pathogens, with antibacterial properties via oxidative and 

nitrosative stresses when sustained at mid-pM or higher concentrations.15-17 The effects of 

NO release on bacterial biofilms are generally concentration dependent, with biofilm 

dispersal occurring at low NO concentrations (~nM) and killing of the embedded bacteria 

at higher concentrations (~µM).18-20 Barraud et al. reported NO-mediated dispersal of 

Pseudomonas aeruginosa biofilms with exposure to 25–500 nM sodium nitroprusside, 

after which the bacteria were more susceptible to antibacterials (i.e., tobramycin, 

hydrogen peroxide, and sodium dodecyl sulfate).18 At greater NO-release levels (total 

release ~10 µmol NO) using an enzymatic gaseous NO-releasing dressing, Sulemankhil 

et al. reported the eradication of Acinetobacter baumannii, methicillin-resistant 

Staphylococcus aureus, and Pseudomonas aeruginosa biofilms (6 h exposure).19   

Due to enhanced delivery of NO compared to small molecule NO donors, our lab 

and others have focused on the synthesis of macromolecular NO donors including silica, 

metallic nanoparticles, and dendrimers.21 For example, N-diazeniumdiolate-modified 

silica nanoparticles were developed to deliver large NO payloads and kill planktonic 

bacteria.21, 22 Using such scaffolds, Hetrick et al. reported the bacterial killing property of 

N-diazeniumdiolate-modified silica nanoparticles (~100 nm) against Pseudomonas 

aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis,  and 

Candida albicans biofilms.20 Nitric oxide released from the particles (~61 µmol/mL) 

eradicated >99% of the biofilm-embedded bacteria. Selective tuning of the 
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physicochemical properties of NO-releasing scaffolds to enhance killing of bacterial 

biofilms has not been investigated, although initial work with planktonic bacteria 

indicates that scaffold size,23 shape,24 and exterior functionality25 are important. 

3.1.1 Nitric oxide-releasing silica particles 

 As discussed in Chapter 2, silica nanoparticle size and shape proved influential in 

planktonic bacterial killing. Carpenter et al. reported improved killing of Pseudomonas 

aeruginosa with smaller (50 nm) silica particles.23 Lu et al. observed improved biocidal 

efficacy for rod-like particles vs. silica spheres.24 Herein, the role of NO-releasing silica 

nanoparticle size (i.e., 14, 50, 150 nm) and shape (i.e., aspect ratio 1, 4, and 8) on the 

eradication of established Gram-negative Pseudomonas aeruginosa and Gram-positive 

Staphylococcus aureus biofilms was investigated. Such studies are important since >99% 

of all bacteria exist in a biofilm state and such communities are increasingly difficult to 

treat.2 

 3.1.2 Nitric oxide-releasing dendrimers 

Nitric oxide-releasing dendrimers have also demonstrated biocidal action against 

planktonic bacteria as a function of physicochemical properties. Sun et al. reported the 

efficacy of NO-releasing PPI dendrimers against both P. aeruginosa and S. aureus as a 

function of size (i.e., generation) and exterior functionality.25 Enhanced bacterial killing 

was observed for the higher generation (i.e., G5), hydrophobic SO-modified dendrimers, 

however, the control PPI dendrimers were also toxic to mammalian cells (i.e., >80% 

viability reduction) at bactericidal concentrations. As such, NO-releasing amphiphilic 



81 

PAMAM dendrimers with varied exterior hydrophobicity were evaluated for maximum 

bactericidal efficacy against P.aeruginosa biofilms and minimal toxicity to healthy host 

cells.  

3.1.3 Nitric oxide-releasing chitosan oligosaccharides 

Similar to NO-releasing silica and dendrimer scaffolds, the exterior functionality 

of NO-releasing chitosan oligosaccharides (as detailed in Chapter 2) played a role in 

planktonic bacterial killing. However, significant differences in efficacy against P. 

aeruginosa were not observed for chitosan oligosaccharides of varied molecular weight 

(i.e., 2.5k, 5k, and 10k). Both NO-releasing and control chitosan scaffolds were non-toxic 

to L929 mouse fibroblasts at concentrations necessary to eradicate planktonic bacteria, 

thus necessitating their evaluation against more clinically-relevant bacterial biofilms.   

3.2 Materials and Methods 

Note: Silica nanorod, dendrimer, and chitosan synthesis, characterization, and 

evaluation of cytotoxicity were supported by other members of the Schoenfisch lab 

Tetraethylorthosilicate (TEOS), N-(6-aminohexyl)aminopropyltrimethoxysilane 

(AHAP), and N-(2-aminoethyl)-3-amino-isobutyl-dimethyl-methoxysilane (AEAI) were 

purchased from Gelest (Morrisville, PA). Cetyltrimethylammonium bromide (CTAB), 

propylene oxide (PO), and 1,2-epoxy-9-decene (ED) were obtained from Acros Organics 

(Geel, Belgium). Ethanol (EtOH), ammonium hydroxide (28 wt%), Tris base, and Tris 

hydrochloride were purchased from Fisher Scientific (Fair Lawn, NJ). Organosilicasol 
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MT-ST silica particles (14 nm) in methanol were obtained from Nissan Chemical 

Corporation (Houston, TX). Tetramethylorthosilicate (TMOS), sodium methoxide (5.4 M 

in methanol), sulfanilamide, N-1-napthylethylenediamine dihydrochloride, rhodamine B 

isothiocyanate  (RITC), propidium iodide (PI), fetal bovine serum (FBS), Dulbecco's 

Modified Eagle's Medium (DMEM), phenazine methosulfate (PMS), 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

inner salt (MTS), trypsin, phosphate buffered saline (PBS) used for cell culture, and Pen 

Strep solution (10,000 u/mL penicillin, 10,000 µg/mL streptomycin), medium molecular 

weight chitosan, 2-methyl aziridine (MAz), and poly(ethylene glycol) methyl ether 

acrylate (average Mn = 480) (PEG) were purchased from the Sigma Aldrich Corp. (St. 

Louis, MO). Tryptic soy broth (TSB) and tryptic soy agar (TSA) were obtained from 

Becton, Dickinson, and Company (Franklin Lakes, NJ). Pseudomonas aeruginosa 

(ATCC #19143) and Staphylococcus aureus (ATCC# 29231) were obtained from the 

American Type Culture Collection (Manassas, VA). The Centers for Disease Control and 

Prevention (CDC) bioreactor was purchased from BioSurface Technologies Corporation 

(Bozeman, Montana). Medical grade silicone rubber (1.45 mm thick) was purchased from 

McMaster Carr (Atlanta, GA) and doubled in thickness using Superflex Clear RTV 

silicone adhesive sealant (Loctite, Westlake, OH) to fabricate coupons to fit the CDC 

reactor (thickness ~4 mm and diameter ~12.7 mm). L929 mouse fibroblasts (ATCC 

#CCL-1) were purchased from the University of North Carolina Tissue Culture Facility 

(Chapel Hill, NC). Spectra/Por Float-A-Lyzers for dialysis of the dendrimers were 

purchased from Spectrum Laboratories, Inc. (Rancho Dominguez, CA). Syto 9 green 
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fluorescent nucleic acid stain was purchased from Life Technologies (Grand Island, 

NY).4,5-Diaminofluorescein diacetate (DAF-2 DA) was purchased from Calbiochem 

(San Diego, CA). Glass bottom microscopy dishes were received from MatTek 

Corporation (Ashland, MA). Nitric oxide (NO) was purchased from Praxair (Bethlehem, 

PA). Argon (Ar) gas was obtained from Airgas National Welders (Raleigh, NC). A 

Millipore Milli-Q UV Gradient A10 System (Bedford, MA) was used to purify distilled 

water   to   a   final   resistivity   of   18.2  MΩ·cm   and   a   total   organic   content   of   ≤6   parts   per  

billion (ppb). Other solvents and chemicals were analytical-reagent grade and used as 

received. Nuclear magnetic resonance (NMR) spectra were recorded on a 400 MHz 

Bruker instrument. Elemental (carbon, hydrogen, nitrogen or CHN) analysis was 

performed using a PerkinElmer Elemental Analyzer Series 2400 instrument (Waltham, 

MA). 

3.2.1 Synthesis of nitric oxide-releasing silica particles  

Three silica nanoparticle systems (i.e., 14, 50, and 150 nm) were utilized to 

evaluate anti-biofilm efficacy over a range of sizes. Secondary amine-functionalized 14 

nm silica particles were prepared via surface grafting according to a modified previously 

reported procedure.26 Briefly, 600 µL of 14 nm Organosilicasol MT-ST particles in 

methanol (225 mg/mL) and 1 mL N-(6-aminohexyl)aminopropyltrimethoxysilane 

(AHAP) were added to a stirred solution of EtOH (100 mL) and allowed to react 

overnight (~18 h) with heating (48 °C). The particles were collected by adding water to 

the solution in a 2:1 ratio (v/v) and centrifugation (4696 g for 15 min, 4 °C). Following 
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collection, the particles were resuspended in EtOH via sonication and collected again by 

centrifugation. This washing procedure was performed twice. The particles were then 

dried under vacuum. The 50 nm silica particles were synthesized by adding TEOS (2.28 

mL) to a stirred solution of EtOH (110 mL), ammonium hydroxide (4.05 mL), and water 

(1.74 mL). After 5 h, the 50 nm silica particles were surface-grafted with AHAP by 

adding an aliquot of the silane (5.02 mL) to the reaction flask and allowing the reaction to 

proceed overnight (~18 h). The particles were then collected by adding hexane to the 

solution in a 2:1 ratio (v/v) and centrifugation (4696 g for 15 min, 4 °C). Following 

collection, the 50 nm particles were resuspended in EtOH via sonication and collected 

again by centrifugation. This washing procedure was carried out twice. The particles 

were then dried under vacuum. Secondary amine-functionalized 150 nm silica particles 

were synthesized by adding TMOS (0.71 mL) and AHAP (1.17 mL) to a stirred solution 

of EtOH (59.16 mL), ammonium hydroxide (9.8 mL), and water (27.84 mL). After 2 h, 

the 150 nm particles were collected via centrifugation (4696 g for 15 min, 4 °C), washed 

with EtOH, and dried according to the aforementioned procedure.  

Silica particles of three distinct aspect ratios (AR1, AR4, and AR8) were 

synthesized via a surfactant-templated approach as previously described by varying 

reaction temperature and ammonia concentration.24 Elevated temperature (30 vs. 20 °C) 

was used to increase the aspect ratio of the particles (AR8), while a greater ammonia 

concentration (1.0 vs. 0.5 M) allowed for the synthesis of a more spherical particle 

(AR1). Of note, cetyltrimethylammonium bromide (CTAB) removal was confirmed via 

CHN analysis prior to surface grafting. Monoalkoxysilane, N-(2-aminoethyl)-3-amino-
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isobutyl-dimethyl-methoxysilane (AEAI) was then surface grafted onto the particle/rods 

to impart secondary amine functionality for N-diazeniumdiolation as described below. 

The 14, 50, and 150 nm silica particles were functionalized with N-

diazeniumdiolate NO donors by suspending the particles (20 mg) in a 9:1 (v/v) solution 

of N,N-dimethylformamide (DMF) and methanol (MeOH) and adding 37, 25, and 50 µL 

of 5.4 M sodium methoxide in MeOH for the 14, 50, and 150 nm particles, respectively. 

Vials of the solution suspensions were then placed in a Parr hydrogenation vessel and 

stirred. Residual oxygen in the suspensions was removed by purging the vessel with 

argon (Ar) three times quickly, followed by three longer (10 min) Ar purges. The vessel 

was then pressurized to 10 atm with purified gaseous NO. The hydrogenation vessel was 

maintained at 10 atm throughout a 3 d period after which the Ar purging procedure was 

repeated to remove unreacted NO prior to removal of the vials from the vessel. The N-

diazeniumdiolated particles were recollected by centrifugation (4696 g for 15 min, 25 

°C), washed three times with EtOH, dried under vacuum, and stored at -20 °C until use. 

Similarly, N-diazeniumdiolate-functionalized AR1, AR4, and AR8 silica particles were 

prepared by suspending the AEAI-functionalized particles (15 mg) in a 9:1 (v/v) solution 

of DMF and MeOH, and adding 50 µL sodium methoxide (5.4 M in MeOH). Vials of the 

suspensions were placed in the Parr hydrogenation vessel, purged with Ar, exposed to 

NO, and the resulting particles were recollected and stored following the same protocol.  

3.2.2 Synthesis of nitric-oxide releasing amphiphilic dendrimers 
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Secondary amine-functionalized PAMAM dendrimers (generation 1 or G1 and 

generation 3 or G3) were synthesized as described previously.27 Briefly, primary amine-

functionalized G1-PAMAM dendrimer (100 mg) was dissolved in methanol (2 mL). One 

molar equivalent of PO, ED, or a mixture of PO and ED relative to the primary amines 

was subsequently added to the G1-PAMAM-NH2 solution under constant stirring at room 

temperature for 4 d to yield secondary amine-functionalized G1-PAMAM conjugates. 

Secondary amine-functionalized G3-PAMAM conjugates were synthesized in a similar 

manner. The resulting G1- and G3-secondary amine-functionalized dendrimers were 

characterized by nuclear magnetic resonance (NMR) spectroscopy (data not shown). 

The PAMAM dendrimers were subsequently N-diazeiumdiolated by adding one 

equivalent of sodium methoxide (5.4 M in methanol) (with respect to the molar amount 

of primary amine functionality in PAMAM-NH2 used to synthesize dendrimers) to a vial 

containing dendrimers (100 mg) in methanol (1 mL). The glass vials were then inserted 

in a Parr hydrogenation vessel and exposed to gaseous NO following the aforementioned 

procedure for N-diazeniumdiolation of silica particles. 

3.2.3 Synthesis of nitric oxide-releasing chitosan oligosaccharides 

 Chitosan oligosaccharides of varied molecular weights were prepared by 

oxidative degradation using hydrogen peroxide. Medium molecular weight chitosan (2.5 

g) was suspended in a hydrogen peroxide solution (15 or 30 wt%) under stirring for 1 h at 

65–85 oC. After removal of undissolved chitosan via filtration, the chitosan 
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oligosaccharides were precipitated with acetone, collected by centrifugation, washed 

twice with ethanol, and dried under vacuum.  

The chitosan oligosaccharides were then grafted with 2-methyl aziridine (MAz) 

based on a previously reported procedure.28 Briefly, a mixture of concentrated HCl (11 

µL), water (100 µL) and MAz with a 1:1 (Chitosan 1) or 2:1 (Chitosan 2) molar ratio to 

primary amines on the chitosan oligosaccharides was added dropwise to a solution of 

chitosan oligosaccharides (100 mg) in deionized water (5 mL). The resulting solution was 

stirred at room temperature for 5 d, and then 75 oC for 24 h. The MAz-grafted chitosan 

oligosaccharides were then purified by dialysis and collected by lyophilization. The 

chitosan oligosaccharides were further functionalized with PEG by adding poly(ethylene 

glycol) methyl ether acrylate (Chitosan 3) to tune hydrophobicity. The resulting PEG-

functionalized chitosan oligosaccharides were purified by dialysis and collected by 

lyophilization. The chitosan oligosaccharides were characterized by nuclear magnetic 

resonance (NMR) spectroscopy (data not shown). 

N-diazeniumdiolation of the secondary amine-functionalized chitosan 

oligosaccharides (Chitosan 1, Chitosan 2, and Chitosan 3) was achieved by adding the 

chitosan and 5.4 M sodium methoxide (75 µL) to a water/methanol mixture (2 mL). The 

suspension was added to vials in a Parr hydrogenation vessel and exposed to gaseous NO 

as previously discussed. 

3.2.4 Fluorescently-labeled scaffolds 
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  Fluorescently-labeled silica nanoparticles,23 dendrimers,25 and chitosan 

oligosaccharides29 were achieved via covalent modification with rhodamine B 

isothiocyanate (RITC) based on a previously published procedures. The 14, 50, or 150 

nm silica particles (50 mg) were suspended in EtOH (100 mL) with RITC (5 mg) and 

stirred in the dark for 48 h. Following fluorescent modification, the particles were 

collected and washed copiously with EtOH using the collection/centrifugation protocol 

described above. After a clear supernatant was achieved, the particles were dried under 

vacuum and stored until use. Fluorescently-labeled dendrimers were prepared by 

dissolving G1 or G3-PAMAM-NH2 (100 mg) and RITC (3 mg) in methanol (2 mL). The 

solution was stirred for 3 d, dialyzed, and lyophilized to yield RITC-labeled dendrimers 

that were then modified with PO or ED alone, or a PO/ED mixture, and further reacted 

with NO. Chitosan oligosaccharides (50 mg) were dissolved in water (2 mL) at pH 9.0 

and RITC was added to the solution in a 1:100 molar ratio to the primary amine of the 

chitosan oligosaccharides prior to the grafting of 2-methyl aziridine. The solution was 

then stirred at room temperature for 3 d, dialyzed, and lyophilized to collect the RITC-

labeled chitosan oligosaccharides.  

3.2.5 Scaffold characterization and nitric oxide release  

Size and shape (i.e., aspect ratio) of the silica particles were determined using 

transmission electron microscopy (TEM) and scanning electron microscopy (SEM). 

Transmission electron micrographs of the 14, 50, and 150 nm silica particles were 

obtained on a JEOL 100 CX II transmission electron microscope (Tokyo, Japan). 
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Scanning electron micrographs of the AR1, AR4, and AR8 silica particles were recorded 

using a Hitachi S-4700 scanning electron microscope (Tokyo, Japan). Real-time NO-

release from the silica particles, dendrimers, and chitosan oligosaccharides was measured 

using a Sievers 280i Chemiluminesence Nitric Oxide Analyzer (NOA; Boulder, CO). The 

NO-releasing silica particles (1 mg), dendrimers (1 mg), or chitosan oligosaccharides 

(aliquot in water/methanol mixture) were added to a sample vessel containing 30 mL 

deoxygenated PBS (pH 7.4, 37 °C). Liberated NO was carried from the sample vessel to 

the NOA at a flow rate of 70 mL/min. To match the collection rate of the NOA (200 

mL/min), additional nitrogen flow was supplied to the sample vessel. Nitric oxide-release 

measurements were terminated when the levels fell below 10 ppb NO/mg scaffold. The 

real-time NO-release data was used to determine the total NO-release duration and half-

life (t1/2). Total NO storage (t[NO]) was also characterized using the Griess assay.30, 31 

3.2.6 Planktonic bactericidal assays 

 Pseudomonas aeruginosa and Staphylococcus aureus bacterial cultures were 

grown from frozen stock (-80 °C) in TSB overnight at 37 °C. An aliquot of the 

suspension (0.5 mL) was added to fresh TSB (50 mL) and incubated at 37 °C until the 

bacteria reached mid-exponential phase (~1 × 108 colony forming units (cfu)/mL) as 

determined by the optical density at 600 nm (OD600). The relationship between the 

concentration of the bacteria in suspension and the OD600 was calibrated for each strain 

using an Eppendorf BioPhotometer Plus Spectrophotometer (Hamburg, Germany); the 

colony forming units were enumerated from culture dilutions grown on TSA plates. The 
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bacterial suspension was then centrifuged (3645 g for 10 min, 25 °C), resuspended in 

PBS, and diluted to ~1 × 106 cfu/mL in PBS (dendrimer and chitosan oligosaccharide 

exposures) or PBS supplemented with 1% (w/w) glucose, 0.5% (v/v) TSB, and 100 mM 

Tris (silica nanoparticle exposures) for planktonic bactericidal assays. 

The minimum bactericidal concentration (MBC) of the NO-releasing silica 

particles for planktonic P. aeruginosa and S. aureus was defined as the concentration that 

resulted in a 3-log reduction in viability versus untreated cells after 24 h. The MBC of the 

NO-releasing dendrimers and chitosan oligosaccharides for planktonic P. aeruginosa was 

defined as the concentration that resulted in a 3-log reduction in viability versus untreated 

cells after 4 h. The bacterial suspensions (106 cfu/mL) were incubated with the NO-

releasing scaffolds over a range of particle concentrations for the duration noted. After 

exposure, the samples were nanomaterial–bacteria suspensions were diluted and plated 

on TSA, with counting of resulting colonies to determine viability. 

3.2.7 Bacterial biofilm assays  

A CDC bioreactor was used to grow P. aeruginosa and S. aureus biofilms over 48 

h.32 Growth conditions (e.g., nutrient concentrations, additives, flow rate) were optimized 

for both the P. aeruginosa and S. aureus biofilms. Briefly, medical grade silicone rubber 

substrates were mounted in the coupon holders within the CDC reactor. After 

autoclaving, the reactor effluent line was clamped and 500 mL sterile 1% (w/v) TSB (P. 

aeruginosa growth) or 10% (w/v) TSB and 0.1% (w/v) glucose (S. aureus growth) was 

added aseptically. Similar to planktonic experiments, P. aeruginosa and S. aureus 
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bacterial cultures were grown from frozen stock (-80 °C) overnight in TSB at 37 °C, 

reinoculated, and grown to mid-exponential phase. The reactor was then inoculated with 

an aliquot (1 mL) of the resulting 1 × 108 cfu/mL bacterial suspension (final 

concentration ~2 × 105 cfu/mL). The completed assembly was incubated at 37 °C for 24 h 

with stirring (150 rpm). Following   this   “batch   phase”   growth,   the   effluent   line   was  

opened and the reactor media was refreshed continuously with 0.33% (v/v) TSB at 6 

mL/min (P. aeruginosa growth) or 1% (v/v) TSB at 2.7 mL/min (S. aureus growth) for 

another 24 h to complete growth of the biofilms.  

The MBCs for biofilm eradication were determined as the concentrations of NO-

releasing silica particles, dendrimers, or chitosan oligosaccharides that resulted in 

bacterial viability below the limit of detection for the plate counting method (2.5 x 103 

cfu/mL).23 Each scaffold was tested in triplicate over an optimized concentration range. 

For determination of NO-releasing silica nanoparticle anti-biofilm efficacy, P. 

aeruginosa and S. aureus biofilms grown on silicone rubber substrates were exposed to 

several particle concentrations in 3 mL PBS supplemented with 1% (w/w) glucose, 0.5% 

(v/v) TSB, and 100 mM Tris at 37 °C with slight agitation for 24 h. Nitric oxide-releasing 

dendrimer and chitosan oligosaccharide anti-biofilm assays were conducted by exposing 

P. aeruginosa biofilms to several scaffold concentrations in PBS (static conditions) at 37 

°C with slight agitation for 24 h. After 24 h of incubation, the samples were sonicated 

and vortexed to disrupt the biofilm. Aliquots of the cell/nanoparticle suspensions were 

diluted in PBS, plated on TSA, and incubated at 37 °C overnight. Bacterial viability was 

then determined by counting the observed colonies.  
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3.2.8 Confocal microscopy  

P. aeruginosa biofilms were grown on glass substrates (Biosurface Technologies) 

and subsequently exposed to NO-releasing silica nanoparticles or dendrimers to evaluate 

intracellular NO levels and cell death. P. aeruginosa biofilms were incubated with NO-

releasing silica nanoparticles (1 mg/mL) in PBS supplemented with DAF-2 DA (10 µM) 

and PI (30 µM) for 15–60 min or RITC-labeled 14 or 150 nm control (i.e., non-NO-

releasing) silica nanoparticles (0.1 mg/mL) in PBS supplemented with Syto 9 (10 µM) 

for 30 min. Similarly, the efficiency of NO delivery was also evaluated as a function of 

dendrimer composition by incubating P. aeruginosa biofilms with NO-releasing 

dendrimers (20 µg/mL) in PBS supplemented with 10 μM  DAF-2  DA  and  30  μM  PI  for  

60 min. For examination of dendrimer diffusion within the biofilm, P. aeruginosa 

biofilms were incubated with RITC-labeled NO-releasing dendrimers (50 µg/mL) for 60 

min and stained with Syto 9 (10 µM) before imaging Likewise, RITC-labeled chitosan 

oligosaccharides (0.15 mg/mL in PBS) were incubated with P. aeruginosa biofilms for 

150 min. Before imaging, the substrates were dipped in PBS to remove excess dye and 

loosely adhered cells. A Zeiss 510 Meta inverted laser scanning confocal microscope 

(Carl Zeiss, Thornwood, NY) with a 488 nm Ar excitation laser (2.0% intensity) and a 

BP 505–530 nm filter was used to obtain DAF-2 and Syto 9 (green) fluorescence images. 

A 543 nm HeNe excitation laser (25.3% intensity) with a BP 560–615 nm filter was used 

to obtain PI and RITC (red) fluorescence images. The images were collected using a 

Zeiss C-apochromat lens (20x, 1.2 numerical aperture).  



93 

3.2.9 In vitro cytotoxicity  

L929 mouse fibroblasts were cultured in DMEM supplemented with 10% (v/v) 

FBS and 1 wt% Pen Strep solution, and incubated in 5% (v/v) CO2 under humidified 

conditions at 37 oC. After reaching 80% confluency, the cells were trypsinized, seeded 

onto tissue culture-treated polystyrene 96-well plates at a density of 3 × 104 cells/mL and 

incubated at 37 oC for 48 h. The supernatant was then aspirated prior to adding fresh 

DMEM (200  μL) with control (i.e., non-NO-releasing) or NO-releasing nanoparticles to 

each well. After incubation at 37 oC for 24 h, the supernatant was aspirated and the cells 

rinsed 3x with PBS. A mixture of DMEM/MTS/PMS (105/20/1, v/v/v) (120   μL) was 

then added to each well. The absorbance of the resulting colored solution after 1.5 h 

incubation at 37 oC was quantified at 490 nm using a Thermo Scientific Multiskan EX 

plate reader (Thermo Fisher Scientific, Inc., Waltham, MA). The mixture of 

DMEM/MTS/PMS and untreated cells were used as the blank and control, respectively. 

Cell viability was calculated by taking the ratio of the absorbance of treated to untreated 

cells after subtracting the absorbance of the blank from each.  

3.3 Results and Discussion 

3.3.1 Nitric oxide-releasing silica particles 

Although several studies have evaluated the effects of metal and metal oxide 

nanoparticle physicochemical properties on planktonic bacteria killing, 23, 24, 33-35 most 

bacteria exist in a biofilm state where the secreted EPS matrix impedes antibacterial 

agent diffusion and prevents eradication. In turn, the results of such studies must be 
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considered carefully, particularly with respect to antibacterial efficacy. The potential to 

realize an effective bacterial biofilm killing scaffold using NO-releasing silica 

nanoparticles warrants a detailed study of particle size and shape on bacterial biofilm 

eradication.  

Since smaller (<200 nm) NO-releasing silica nanoparticles were previously 

reported to be more bactericidal than larger scaffolds,23 experiments using particles 

spanning 14–150 nm were initiated to enable a thorough evaluation of anti-biofilm 

efficacy as a function of particle size.36, 37 The sizes of the as obtained/prepared particles 

measured by electron microscopy are provided in Table 3.1. Nitric oxide release was 

achieved by modifying the particles with N-(6-aminohexyl)aminopropyltrimethoxysilane 

(AHAP), and reacting the amines with NO. As expected based on the amount of sodium 

methoxide used in the N-diazeniumdiolation process, the three particle systems exhibited 

similar NO-release kinetics with total NO-release durations of ~5–6 h.  

To study the role of nanoparticle shape on NO-mediated bactericidal action, silica 

particles of varied aspect ratio (AR1, AR4, and AR8) were synthesized via a surfactant-

templating method in which aspect ratio (1.1 ± 0.2, 4.3 ± 0.5, and 8.2 ± 0.6 for the AR1, 

AR4, and AR8 particles, respectively) was controlled by tuning temperature and 

ammonia concentration.24 Similar to the spherical particles, the rod-like scaffolds were 

surface modified with N-(2-aminoethyl)-3-amino-isobutyl-dimethyl-methoxysilane 

(AEAI), and reacted with NO to obtain NO-releasing AR1, AR4, and AR8 silica 

particles. To ensure any differences in bactericidal action were the result of shape (i.e., 
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aspect ratio) alone, the overall particle volume (~0.02 µm3) and total NO release (~0.7 

µmol/mg) were tuned to be identical for each particle system (Table 3.2).24 

  

Scaffold Size 
(nm)

Total NO release
(µmol/mg)

14 nm 14.8 ± 2 0.24 ± 0.01

50 nm 56.1 ± 5 0.26 ± 0.02

150 nm 139.9 ± 13 0.25 ± 0.03

Table  3.1  Particle  size  as  determined  by  transmission  electron  microscopy  (TEM)  and  
total  micromoles  NO  released  per  mg  of  particle  as  measured  by  the  Griess  assay.  Size  
measurements  are  n≥20  and  total  NO  release  is  n≥3  syntheses.   
 



96 

  

Scaffold Aspect
Ratio

Length (nm) Width (nm) Total NO release
(µmol/mg)

AR1 1.1 ± 0.2 312 ± 26 285 ± 31 0.66 ± 0.14

AR4 4.3 ± 0.5 736 ± 49 170 ± 42 0.65  ± 0.04

AR8 8.2 ± 0.6 1115 ± 62 137 ± 45 0.68 ± 0.14

Table   3.2   Size   and   aspect   ratio   of   silica   nanorods   as   determined   by   scanning   electron  
microscopy  (SEM)  and  total  micromoles  NO  released  per  mg  of  particle  as  measured  by  the  
Griess  assay.  Size  measurements  are  n≥50  and  total  NO  release  is  n≥3  syntheses.   
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The three rod-like NO-releasing silica particles (i.e., AR1, AR4, and AR8) exhibited 

similar NO-release kinetics with NO-release half-lives of ~0.7 h. 

3.3.1.1 Bactericidal efficacy against planktonic bacteria as a function of size and shape 

Prior to evaluating the biofilm eradication ability of NO-releasing silica particles 

as a function of size, the bactericidal activity of 14, 50, and 150 nm NO-releasing silica 

was evaluated against planktonic P. aeruginosa and S. aureus suspensions. Minimum 

bactericidal concentration (MBC) assays were carried out over a 24 h period in bacteria 

solutions containing nutrients (i.e., PBS supplemented with 1% (w/w) glucose, 0.5% 

(v/v) TSB, and 100 mM Tris) to ensure survival of the bacteria and mimic conditions for 

the anti-biofilm assays. As expected, the smaller 14 and 50 nm particles were more 

effective against planktonic P. aeruginosa compared to the 150 nm silica particles 

(MBC24h of 0.5 mg/mL for the 14 and 50 nm versus 1 mg/mL for 150 nm) (Table 3.3). 

Likewise, the 14 nm particles were more effective against planktonic S. aureus compared 

to the larger particles, with an MBC24h of 2 versus 4 mg/mL for the 50 and 150 nm 

particles. As discussed in Chapter 2, the greater bactericidal NO doses necessary to kill S. 

aureus vs. P. aeruginosa (0.48–1.0 vs. 0.12–0.25 µmol NO/mL) are attributed to several 

factors including differential thickness of the peptidoglycan layer in the cell membrane,38 

varied production of antioxidant enzymes (e.g., superoxide dismutase) to mitigate the 

effects of NO,39 and S. aureus’  use  of  NO  as  a  cytoprotection  agent.40 

The planktonic bactericidal efficacy of the NO-releasing nanorods was evaluated 

similarly against P. aeruginosa and S. aureus suspensions. As reported previously in a 4 
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h assay,24 the higher aspect ratio AR8 particles were more effective at killing P. 

aeruginosa after 24 h than the AR4 and AR1 scaffolds (MBC24h values of 0.125, 0.250, 

  

P. aeruginosa S. aureus

Scaffold MBC24h
(mg/mL)

Bactericidal NO 
Dose

(µmol/mL)

MBC24h
(mg/mL)

Bactericidal NO
Dose

(µmol/mL)

Planktonica Biofilmb Planktonic Biofilm Planktonica Biofilmb Planktonic Biofilm

14 nm 0.5 6 0.12 ± 5.0 x 10-3 1.44 ± 0.06 2 10 0.48 ± 2.0 x 10-2 2.40 ± 0.10

50 nm 0.5 6 0.13 ± 1.0 x 10-2 1.56 ± 0.12 4 12 1.0 ± 8.0 x 10-2 3.12 ± 0.24

150 nm 1 10 0.25 ± 3.0 x 10-2 2.50 ± 0.30 4 14 1.0 ± 1.2 x 10-2 3.50 ± 0.42

bMBC: Minimum Bactericidal Concentration resulting in bacterial viability below the limit of detection for the plating method (2.5 x 103 cfu/mL).
aMBC: Minimum Bactericidal Concentration resulting in 3-log reduction in bacterial viability.

Table  3.3  Determination  of  planktonic  and  biofilm  MBCs
  
and  bactericidal  NO  doses  for  

NO-releasing   14,   50,   and   150   nm   silica   particles   against  P.   aeruginosa      and  S.   aureus  
biofilms. 
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P. aeruginosa S. aureus

Scaffold MBC24h
(mg/mL)

Bactericidal NO 
Dose

(µmol/mL)

MBC24h
(mg/mL)

Bactericidal NO
Dose

(µmol/mL)

Planktonica Biofilmb Planktonic Biofilm Planktonica Biofilmb Planktonic Biofilm

AR1 0.250 8 0.17 ± 3.2 x 10-2 5.28 ± 1.12 0.500 12 0.33 ± 7.0 x 10-2 7.92 ± 1.68

AR4 0.250 1 0.16 ± 1.0 x 10-2 0.65 ± 4.0 x 10-2 0.500 4 0.33 ± 2.0 x 10-2 2.60 ± 0.16

AR8 0.125 1 0.09 ± 1.8 x 10-2 0.68 ± 0.14 0.125 4 0.09 ± 1.8 x 10-2 2.72 ± 0.56

bMBC: Minimum Bactericidal Concentration resulting in bacterial viability below the limit of detection for the plating method (2.5 x 103 cfu/mL).
aMBC: Minimum Bactericidal Concentration resulting in 3-log reduction in bacterial viability.

Table   3.4   Determination   of   planktonic   and   biofilm  MBCs
  
and   bactericidal   NO   doses   for   NO-

releasing  AR1,  AR4,  and  AR8  silica  particles  against  P.  aeruginosa    and  S.  aureus  biofilms. 
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 and 0.250 mg/mL for the AR8, AR4, and AR1 particles, respectively) (Table 3.4).24 An 

identical trend in bactericidal action was noted against planktonic S. aureus with an 

MBC24h of 0.125 versus 0.500 mg/mL for the AR4 and AR1 particles. Slightly greater 

NO doses (0.09–0.33 µmol NO/mL) were also required for S. aureus killing compared to 

those for Gram-negative P. aeruginosa (0.09–0.17 µmol NO/mL). 

3.3.1.2 Biofilm killing assays as a function of size and shape  

The anti-biofilm efficacy of the particles/rods was evaluated next to assess their 

utility in eradicating bacteria under more clinically relevant conditions. P. aeruginosa (~3 

x 108 cfu per substrate) and S. aureus (~3 x 107 cfu per substrate) biofilms were exposed 

to NO-releasing 14, 50, and 150 nm silica particles for 24 h in PBS supplemented with 

1% (w/w) glucose, 0.5% (v/v) TSB, and 100 mM Tris buffer. Based on the size-

dependent efficacy against planktonic bacteria, we hypothesized that the smaller NO-

releasing particles would show enhanced biofilm killing compared to the larger particles.  

As shown in Table 3.3, the NO-releasing 14 and 50 nm particles proved more effective 

than the 150 nm particles, with concentrations as low as 6 mg/mL killing P. aeruginosa 

biofilms compared to 10 mg/mL for the 150 nm particles. As in the planktonic assays, the 

Gram-positive S. aureus biofilms required a greater NO dose for eradication compared to 

the Gram-negative P. aeruginosa biofilms, with MBC24h values of 10, 12, and 14 mg/mL 

for the 14, 50, and 150 nm particles, respectively. Overall, the smaller (i.e., 14 nm) silica 

particles were characterized by more effective killing of both P. aeruginosa and S. aureus 

biofilms compared to the 50 and 150 nm particles. The biofilm bactericidal NO doses 
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were ~10–12x those required for planktonic killing of P. aeruginosa, but only ~3–5x the 

NO levels required for planktonic killing of S. aureus. The increased NO dose necessary 

for P. aeruginosa biofilm eradication compared to S. aureus may arise from general 

differences  in  biofilm  formation,  cell  density,  and  the  biofilm’s  propensity  to  disperse.18, 

41, 42 Control (i.e., non-NO-releasing) 14, 50, and 150 nm particles did not significantly 

reduce P. aeruginosa biofilm viability (<1 log killing at their respective MBC 

concentrations). Control 50 and 150 nm particles slightly reduced S. aureus biofilm 

viability at their respective MBCs (~1.5 log), while the 14 nm control particles did not 

affect S. aureus cells (<1 log killing) at 10 mg/mL.  

Determination of the role of nanoparticle shape on P. aeruginosa and S. aureus 

biofilm killing showed a dependence on aspect ratio similar to that observed in 

planktonic studies. We hypothesized that higher particle aspect ratios (i.e., AR4 and 

AR8) would improve NO delivery to bacteria within the biofilm based on the planktonic 

assays.  As shown in Table 3.4, the 24 h MBCs for the NO-releasing AR8 and AR4 rod-

like particles were 1 and 4 mg/mL for P. aeruginosa and S. aureus biofilms, respectively. 

The more spherical, NO-releasing AR1 particles were significantly less effective, with 

biofilm MBCs of 8 and 12 mg/mL for P. aeruginosa and S. aureus. The biofilm 

bactericidal NO doses were ~4–31x those required for planktonic killing of P. aeruginosa 

and ~8–30x the NO levels required for planktonic killing of S. aureus. As mentioned 

above, these differences may arise from a variety of biological factors.18, 41, 42 Control 

AR1, AR4, and AR8 particles at their respective biofilm MBCs resulted in negligible 

reduction in P. aeruginosa biofilm viability (<1 log killing). However, the control 



102 

scaffolds resulted in a greater reduction in S. aureus biofilm viability at their respective 

biofilm MBCs (~2.5, 2, and 1.5 log killing for the AR1, AR4, and AR8 particles, 

respectively) due to the increased scaffold concentration required for eradication. Of 

note, the MBC values for the NO-releasing 14, 50, and 150 nm silica particles and the 

AR1, AR4, and AR8 nanorods must be evaluated independently due to differences in NO 

loading   capacity   between   the   particles   synthesized   via   the   Stӧber  method   (14,   50,   150  

nm) and surfactant-templated approach (AR1, AR4, AR8).23  

3.3.1.3 Confocal microscopy  

To determine whether the enhanced anti-biofilm efficacy observed for smaller 

particles (i.e., 14 and 50 nm) and higher aspect ratio nanorods (i.e., AR4 and AR8) was 

due to improved NO delivery, confocal microscopy was used to visualize intracellular 

NO concentrations and subsequent cell death. Intracellular NO levels were monitored by 

using 4,5-diaminofluorescein diacetate (DAF-2 DA), a membrane permeable dye that 

enters the cell and is then hydrolyzed to an impermeable form, DAF-2, via intracellular 

esterases.22 Once in the cell, DAF-2 will react with NO to form a green fluorescent 

derivative, triazolofluorescein, resulting in fluorescence that scales with NO 

concentration. Cell death was visualized using propidium iodide (PI), a dye that only 

permeates cells with compromised membranes; red fluorescence is produced upon 

binding with nucleic acids (i.e., DNA and RNA).43 The build-up of intracellular NO has 

previously been shown to precede PI signal at sub-MBC particle exposures.22, 44 

Intracellular NO levels and cell death were visualized for P. aeruginosa biofilms exposed 

to NO-releasing 14, 50, or 150 nm particles (1 mg/mL in a solution of PBS supplemented 
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30 min 60 min

DAF-2 PIDAF-2 PI
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B

C

35 µm 28 µm

Figure   3.1   Fluorescent   images   of   P.   aeruginosa   biofilm   exposed   to   the   same   particle  
concentration  (1  mg/mL)  and  NO  dosage  (~250  µmol/L)  of  NO-releasing  (A)  14,  (B)  50,  or  (C)  
150  nm  particles  for  30  or  60  min.  DAF-2  green  fluorescence  indicates  increased  intracellular  NO  
and  PI  red  fluorescence  indicates  compromised  cell  membranes  (i.e.,  cell  death). 
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with DAF-2 DA and PI) for 30 or 60 min. Of  note,  intracellular  NO  levels,  cell  death,  and  

particle   diffusion   were   not   evaluated   for   S.   aureus   biofilms   as   killing   trends   were  

identical  to  P.  aeruginosa.  As shown in Figure 3.1, the DAF-2 (green) signal was greatest 

for the 14 nm scaffold after incubation with the NO-releasing particles. Such efficient 

delivery of NO also lead to more rapid cell death for the smallest silica particle NO-

release vehicle.   Greater   intracellular   NO   (i.e.,   green   fluorescence)   was   ultimately  

observed  within  the  P.  aeruginosa  biofilm  after  60  min  when  using  150  nm  NO-releasing  

particles,  despite  no  visible  cell  death  (red  fluorescence).  Conversely,  the  14  and  50  nm  

NO-releasing   particles   effectively   dispersed   the   P.   aeruginosa   biofilm   at   60   min,18  

resulting  in  decreased  DAF-2  and  PI  fluorescence  from  the  few  biofilm  cells  remaining  

on  the  substrate  (Figure  3.1). 

Intracellular   NO   levels   and   cell   death   were   also   measured   for   P.   aeruginosa  

biofilms  exposed  to  NO-releasing  particles  of  varied  aspect  ratio  (AR1–AR8).  Based  on  

confocal   experiments   with   planktonic   bacterial   suspensions,24   we   hypothesized   that  

increased  DAF-2   and   PI   fluorescence  would   also   be   observed   for   biofilms   exposed   to  

higher   aspect   ratio   scaffolds   due   to   improved   efficiency   of   NO   delivery.  As   shown   in  

Figure  3.2,  significant  DAF-2  and  PI  fluorescence  were  observed  throughout  the  entire  P.  

aeruginosa  biofilm  after  exposure  to  NO-releasing  AR4  or  AR8  particles  at  1  mg/mL  for  

15  min.  Although  intracellular  NO  and  cell  death  were  detected  for  the  biofilm  exposed  

to   the  NO-releasing  AR1   particles   (1  mg/mL),   the   fluorescence  was   localized   to   small  

regions  of  the  biofilm  (Figure  3.2).  Furthermore,  bacteria  killing  was  not  observed  until  

60  min.  Conversely,  the  visibility  of  the  DAF-2  and  PI  fluorescence  decreased  for  the 
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Figure   3.2   Fluorescent   images   of  P.   aeruginosa   biofilm   exposed   to   the   same   particle  
concentration  (1  mg/mL)  and  NO  dosage  (~700  µmol/L)  of  NO-releasing  (A)  AR1,  (B)  
AR4,   or   (C)   AR8   particles   for   15   or   60   min.   DAF-2   green   fluorescence   indicates  
increased   intracellular   NO   and   PI   red   fluorescence   indicates   compromised   cell  
membranes  (i.e.,  cell  death).   
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NO-releasing   AR4   and   AR8   nanorods   at   the   60   min   timepoint   due   to   effective   P.  

aeruginosa  biofilm  dispersal.18   

The   role   of   particle   diffusion   into   the   biofilm  on  bacteria   killing  was   evaluated  

next   to   understand   if   the   vehicle   or   just  NO   penetrated   the   biofilms. To carry out this 

study, the biofilm was stained with a membrane-permeable dye, Syto 9, to enable 

visualization of the biofilm bacteria.45 P. aeruginosa biofilms were incubated with RITC-

labeled  14  and  150  nm  control  particles   (0.1  mg/mL)   for  30  min,  and   then   rinsed  with  

PBS   to   determine   whether   the   particles   could   penetrate   and   diffuse   into   the   biofilm.  

Although  particle  diffusion  into  the  P.  aeruginosa  biofilm  was  observed  for  both  the  14  

and  150  nm  RITC-labeled  particles,  more  significant  RITC  (red)  fluorescence  was  noted  

for  the  14  nm  particles,  indicating  faster  diffusion  for  the  smaller  vs.  larger  particles  at  30  

min   (Figure  3.3).  Comparison  of   the  biofilm   regions   stained  with  Syto  9   to   those  with  

RITC  fluorescence  also  confirmed  that  the  150  nm  particles  did  not  adequately  penetrate  

the  P.  aeruginosa  biofilm.  Of  note,  the  rod-like  particles  were  too  large  (e.g.,  AR1  ~300  

nm)46   to   readily   diffuse   into   the   biofilm,   and   thus   particle–biofilm   associations   for   the  

nanorods  were  not  visualized.   

3.3.1.4 In vitro cytotoxicity  

The utility of NO-release scaffolds for eradicating biofilms will be governed by 

both their ability to kill bacteria and not impact healthy host cells or tissue. To assess 

cytotoxicity, we exposed L929 mouse fibroblasts to NO-releasing and control silica 

particles. L929 mouse fibroblasts were selected as a model host cell due to their 

ubiquitous presence in connective tissue.47 Normalized cell viability was determined after 
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RITC Syto 9

28 µm

Figure  3.3  Fluorescent  images  of  RITC-modified  (A)  14  and  (B)  150  nm  control  particle  (0.1  
mg/mL)   diffusion   in   P.   aeruginosa   biofilm   30   min   after   particle   addition.   Green   Syto   9  
fluorescence   shows   biofilm   cells.   Increased  RITC   red   fluorescence   indicates  more   efficient  
particle  diffusion  within  biofilm. 
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a 24 h exposure using the MBCs for P. aeruginosa and S. aureus biofilm eradication. As 

shown in Figure 3.4, the NO-releasing 50 nm, AR4, and AR8 particles were non-toxic to 

the L929 fibroblasts at the MBCs necessary to eradicate P. aeruginosa biofilms, with 

~30, 22, and 15% reduction in fibroblast viability, respectively. Likewise, control 50 nm, 

AR4, and AR8 particles did not greatly impact the L929 cells at these concentrations. The 

cytotoxicity of both control and NO-releasing scaffolds was significantly greater for all 

other particle systems (e.g., 14  and  150  nm  and  AR1  particles)  at  the  concentrations  (≥6  

mg/mL) necessary to kill P. aeruginosa biofilms. Similarly, Hetrick et al. reported 

significantly reduced fibroblast viability for both control and NO-releasing silica particles 

at 8 mg/mL (50 and 70% reductions, respectively).20 At concentrations necessary to 

eradicate S. aureus biofilms, all particle systems proved cytotoxic (36–71% viability 

reduction). Overall, the NO-releasing particles decreased fibroblast viability to a greater 

extent than control systems at the MBCs for S. aureus killing, which might be expected 

given the increased concentration of both scaffold and NO required to eradicate S. aureus 

biofilms. Despite the greater scaffold concentration required to eradicate S. aureus 

biofilms, the fibroblast viabilities for control particles at MBCs for P. aeruginosa and S. 

aureus were identical, indicating that the greater NO-release levels play a significant role 

in the observed toxicity.  

3.3.1.5 Conclusions 

 Despite the moderate cytotoxicity observed for the NO-releasing silica scaffolds 

at concentrations necessary for biofilm eradication, this work successfully demonstrates 

the benefits of NO as an anti-biofilm agent. Both particle size and shape clearly play 
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Figure  3.4  Cytotoxicity  of  NO-releasing  (white)  and  control  (gray)  silica  particles  against  
L929   mouse   fibroblasts   at   MBC   concentrations   required   for   biofilm   killing   listed   in  
Tables  3  and  4;;  (A)  P.  aeruginosa  and  (B)  S.  aureus. 
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important roles in biofilm eradication, with smaller sizes and higher aspect ratios being 

most effective.  The use of NO can effectively eradicate P. aeruginosa and S. aureus 

biofilms at concentrations only 3–31x those required for planktonic killing with minimal 

concern about antibacterial resistance.48 In contrast, other anti-biofilm agents (e.g., 

antibiotics) exhibit significantly decreased efficacy toward biofilm bacteria and often 

promote resistance upon repeated exposure.2 Future work should focus on reducing the 

toxicity of the NO-release scaffolds to healthy cells and tissue. Additionally, the 

combination of NO with other antibacterial agents (e.g., antibiotics, silver) should be 

explored, as biofilm dispersal by low, non-toxic levels of NO is likely to make the action 

of current antibiotics more effective.  

3.3.2 Nitric oxide-releasing amphiphilic dendrimers 

The bactericidal efficacy of NO-releasing dendrimers as a function of exterior 

functionality has previously been demonstrated.49 Functionalization with hydrophobic 

groups (e.g., SO) at the dendrimer exterior improved bactericidal efficacy, but also 

resulted in significant toxicity towards mammalian cells (~80% reduction in viability) 

even at low concentrations (< 50 µg/mL). Thus, NO-releasing amphiphilic dendrimers 

with tunable exterior hydrophobicity were synthesized to evaluate the impact of 

dendrimer structure on both bactericidal action and cytotoxicity.  

In addition to PO and ED-modified dendrimers, the feed molar ratio of PO and 

ED was tuned to yield PO/ED ratios of 7:3 (i.e., G1-PE 73, G3-PE 73), 5:5 (i.e., G1-PE 

55), and 3:7 (i.e., G1-PE 37) to study the effects of relative hydrophobicity on biofilm 
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eradication and cytotoxicity. As noted in Chapter 2, dendrimer size (i.e., dendrimer 

generation) plays a significant role in antibacterial activity, with higher generation (e.g., 

G5 versus G2) NO-releasing dendrimers being more effective due to the greater 

concentration of N-diazeniumdiolates at the dendrimer surface.49 Thus, two sizes of 

amphiphilic dendrimers (i.e., G1 and G3) were utilized to understand the influence of 

dendrimer size on the eradication of P. aeruginosa biofilms. Of note, the dendrimers 

exhibited similar NO storage (~1 µmol/mg) and NO-release kinetics (i.e., half -life ~1 h) 

regardless of modification. Prior to evaluating the NO-releasing amphiphilic dendrimers 

against bacterial biofilms, the dendrimers were first tested against planktonic bacteria to 

confirm efficacy.  

3.3.2.1 Bactericidal efficacy against planktonic bacteria as a function of exterior 
functionality 

Planktonic P. aeruginosa was exposed to control and NO-releasing dendrimers 

over 4 h (static conditions) to evaluate the effects of the varied hydrophobicity (i.e., 

PO/ED ratio) on bacterial killing. Amphiphilic control dendrimers functionalized with 

ED alone or a PO/ED mixture (e.g., G1-ED, G1-PE 37, G1-PE 55, G1-PE 73) exhibited 

enhanced biocidal activity against planktonic P. aeruginosa compared to the more 

hydrophilic PO-modified dendrimers (Table 3.5).  

3.3.2.2 Biofilm killing assays as a function of function of exterior functionality 
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Dendrimer
Bactericidal NO Doses

(nmol/mL)
G1-ED 3.55 
G1-PE 37 3.72
G1-PE 55 7.70 
G1-PE 73 17.6 
G1-PO 182 
G3-PE 73 13.4 

Table  3.5.  Bactericidal  doses  (3-log  reduction  in  bacterial  viability)  for  NO-releasing  
dendrimers    against  planktonic  Gram-negative  P.  aeruginosa  after  4  h  exposure. 
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While planktonic killing assays are important in evaluating potential antibacterial 

agents, most medically-relevant infections arise from biofilm-based bacteria.50 Thus, P. 

aeruginosa biofilms were exposed to a range of NO-releasing dendrimer concentrations 

(10–800 µg/mL) for 24 h. Similar to the planktonic P. aeruginosa bactericidal assays, the 

amphiphilic control dendrimers (G1-PE 73, G1-PE 55, G1-PE 37, and G1-ED) proved 

more effective in eradicating the biofilm compared to the hydrophilic dendrimer (G1-

PO). The MBCs for the NO-releasing dendrimers were 800, 80, 20, 10, and 15 µg/mL for 

the G1-PO-NO, G1-PE 73-NO, G1-PE 55-NO, G1-PE 37-NO, and G1-ED-NO 

dendrimers, respectively. Of the dendrimers evaluated, G1-PE 37-NO exhibited the 

greatest anti-biofilm efficacy (i.e., lowest MBC). To determine if the enhanced G1-PE-

37-NO antibacterial activity was due to more thorough diffusion within the biofilm, the 

association of G1-PE 73-NO, G1-PE 37-NO, and G1-ED-NO dendrimers and P. 

aeruginosa biofilms was characterized using confocal microscopy. As shown in Figure 

3.5, a greater number of bacteria in the biofilms exhibited red fluorescence upon 

incubation with RITC-labeled G1-PE 37-NO compared to the biofilm incubated with G1-

PE 73-NO. Hydrophobic dendrimers generally exhibit improved bacteria association due 

to favorable electrostatic effects. However, the more hydrophobic G1-ED-NO dendrimer 

was not as effective in associating with the bacterial biofilm, likely due to less efficient 

penetration through the EPS.51  

 The G1-PE 37-NO dendrimer proved to be the most effective in eradicating the 

P. aeruginosa biofilm due to its improved association with bacterial cells and diffusion 

within the biofilm. Of note, dendrimer size did not appear to significantly impact 
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C D

Figure   3.5  Confocal  microscopy   images   of  P.   aeruginosa   biofilms   incubated  with   (A)  
G1-PE-37-NO,  (B)  G1-ED-NO,  (C)  G1-PE  73-NO,  and  (D)  G3-PE  73-NO  RITC-labeled  
dendrimers   for   1   h   (50   µg/mL).   Increased   red   fluorescence   indicates   more   efficient  
dendrimer–bacteria  association  and  improved  diffusion.  Scale  bar  is  300  µm. 
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 bacterial association with the P. aeruginosa biofilm. Although G3-PE 73-NO exhibited 

similar association with the biofilm compared to G1-PE 73-NO, greater intracellular NO 

levels (DAF-2 fluorescence) were observed for biofilms incubated with the larger G3 

dendrimers, indicating enhanced NO delivery efficiency (Figure 3.6). The increased 

concentration of N-diazeniumdiolates at the G3 dendrimer surface may facilitate more 

localized NO delivery, thus improving bactericidal efficacy even if the dendrimer–

bacteria association is similar to the smaller G1 systems.  

3.3.2.3 In vitro cytotoxicity 

Both control and NO-releasing dendrimers were evaluated for cytotoxicity toward 

L929 mouse fibroblasts at concentrations necessary for P. aeruginosa biofilm 

eradication. As expected, the more hydrophobic dendrimers (e.g., G1-ED-NO and G1-PE 

37-NO) exhibited greater cytotoxicity (i.e., ~70% cell viability reduction) after 24 h. 

Dendrimers with intermediate ratios of PO/ED (e.g., G1-PE 55-NO and G1-PE 73-NO) 

were non-cytotoxic at the biofilm MBCs, supporting their potential future therapeutic use 

compared to other scaffolds. 

3.3.2.4 Conclusions  

The bactericidal efficacy of NO-releasing amphiphilic dendrimers was 

demonstrated to be a function of dendrimer exterior functionality (i.e., hydrophobicity) 

and dendrimer size (i.e., generation). The dendrimer hydrophobicity significantly 

influenced association and diffusion within the biofilm, as well as the efficiency of 

intracellular NO delivery. Dendrimers modified with approximately equal ratios of the 



116 

  

A B

Figure   3.6      Confocal   microscopy   images   of   intracellular   DAF-2   fluorescence   in   P.  
aeruginosa  biofilms  incubated  with  (A)  G1-  and  (B)  G3-PE  73-NO  for  1  h  (20  µg/mL)  
Green  DAF-2   fluorescence   indicates      increased   intracellular  NO   levels.  Scale  bar   is  50  
µm.   
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hydrophilic PO and hydrophobic ED groups were found to successfully eradicate the P. 

aeruginosa biofilms at concentrations that were also non-toxic to healthy host cells. 

3.3.3 Nitric oxide-releasing chitosan oligosaccharides 

Chitosan has been widely used in antibacterial and wound healing applications 

due to its non-toxic, biodegradable scaffold.52-55 In Chapter 2, the synthesis of NO-

releasing chitosan oligosaccharides for use as antibacterial agents was presented. The 

Chitosan 1/NO, Chitosan 2/NO, and Chitosan 3/NO scaffolds were evaluated for any 

molecular weight and exterior functionality dependence on killing of P. aeruginosa 

biofilms in addition to the previous results obtained for planktonic cells. 

3.3.3.1 Bactericidal efficacy against planktonic bacteria as a function of exterior 
functionality and molecular weight 

As discussed in Chapter 2, planktonic P. aeruginosa cells were exposed to a range 

of concentrations of NO-releasing chitosan oligosaccharides (e.g., Chitosan 1/NO -5k, 

Chitosan 2/NO-5k, Chitosan 3/NO -5k) to evaluate their ability to kill bacteria. The 

neutral PEG-modified chitosans were less effective in killing due to poor association with 

the bacteria. Molecular weight did not play a role in the bactericidal efficacy of Chitosan 

2-2.5k, 5k, or 10k, however it was hypothesized that a greater dependence may be 

observed against biofilms. 

3.3.3.2 Biofilm killing assays as a function of nitric oxide-releasing chitosan exterior 
functionality and molecular weight 

Pseudomonas aeruginosa biofilms were exposed to a range of concentrations of 

NO-releasing chitosan oligosaccharides (0.2–1.3 mg/mL) for 24 h. After 24 h, the 
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biofilms were disrupted and cell/chitosan suspensions were diluted and plated to 

determine bacterial viability.56565656 The biofilm MBC (5-log reduction) was 400, 700, 

and 1000 µg/mL for Chitosan 2/NO-5k, Chitosan 1/NO-5k, and Chitosan 3/NO-5k, 

respectively. Chitosan 2/NO-5k exhibited the greatest anti-biofilm efficacy, attributed to 

its increased NO storage and rapid association with the negatively-charged bacteria 

(Chapter 2, Figure 2.8). Chitosan 1/NO-5k and Chitosan 3/NO-5k stored similar amounts 

of NO (~0.3 µmol/mg); however, less Chitosan 1/NO-5k was necessary (700 µg/mL) to 

completely eradicate the biofilm compared to Chitosan 3/NO-5k (1000 µg/mL). Reduced 

efficacy of Chitosan 3/NO-5k was likely due to less association between the neutral PEG 

chains and the bacterial membrane. To confirm this hypothesis, the association of RITC-

Chitosan 2/NO-5k and RITC-Chitosan 3/NO-5k with the P. aeruginosa biofilm was 

evaluated using confocal microscopy. As shown in Figure 3.8, biofilms incubated with 

RITC-Chitosan 2/NO-5k exhibited more intense red fluorescence compared to RITC-

Chitosan 3/NO-5k, thus confirming the lessened association of the chitosan modified 

with the neutral PEG chain.  

Although chitosan molecular weight did not play a significant role in planktonic 

killing of P. aeruginosa, reduced bactericidal efficacy was observed for Chitosan 2/NO-

10k compared to Chitosan 2/NO-2.5k (600 µg/mL vs. 400 µg/mL for Chitosan 2/NO-10k 

and Chitosan 2/NO-2.5k, respectively) against biofilms. The exopolysaccharide (EPS) 

matrix of the bacterial biofilm likely slows the diffusion of the Chitosan 2/NO-10k into 
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Figure   3.7   Confocal   fluorescence   images   of   RITC-labeled   chitosan   oligosaccharide  
association  with  P.  aeruginosa  biofilms:  A)  Chitosan  2/NO-5k,  B)  Chitosan  3/NO-5k,  C)  
Chitosan  2-10k)  and  images  of  Syto  9  labeled  biofilms  incubated  with  D)  Chitosan  2/NO-
5k,   E)  Chitosan   3/NO-5k   and   F)  Chitosan   2/NO-10k.   Scale   bar   is   40   µm.  The   Syto   9  
(green)   fluorescence   shows   biofilm   cells.   Increased   RITC   (red)   fluorescence   indicates  
more  efficient  chitosan  diffusion  within  the  biofilm.   
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the biofilm, thus reducing antibacterial activity. Previous studies have observed less 

efficient EPS penetration of high-molecular weight dextran compared to the low-

molecular weight polymer.57 This hypothesis was further confirmed with confocal 

microscopy by comparing chitosan–bacteria association as a function of molecular 

weight. Indeed, when P. aeruginosa biofilms were exposed to both RITC-Chitosan 

2/NO-2.5k and RITC-Chitosan 2/NO-10k, increased red fluorescence and diffusion 

within the biofilm was observed for the lower molecular weight scaffold (Figure 3.8). 

3.3.3.3 In vitro cytotoxicity  

Control and NO-releasing chitosan oligosaccharides were evaluated for 

cytotoxicity using L929 mouse fibroblasts and found to be non-toxic, even at the MBCs 

necessary for biofilm eradication. Similar to cytotoxicity results evaluated at the 

planktonic MBC concentrations, fibroblast proliferation was observed for some NO-

releasing chitosans.58 The potent antibacterial activity and minimal toxicity of the NO-

releasing chitosan oligosaccharides warrants further examination into their use as 

antibacterial therapeutics.  

3.3.3.4 Conclusions 

The NO-releasing chitosan oligosaccharides presented herein allowed for 

diffusion into P. aeruginosa biofilms and association with bacteria cells, resulting in 

complete biofilm eradication at concentrations eliciting no significant toxicity against 

healthy host cells. This study demonstrated the great potential of NO-releasing chitosan 

oligosaccharides as future therapeutics. 
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CHAPTER 4: ROLE OF DENDRIMER NITRIC OXIDE-RELEASE KINETICS 
IN ERADICATION OF PLANKTONIC BACTERIA AND BIOFILMS 

4.1 Introduction 

The ubiquitous presence of bacteria in clinical settings has necessitated the 

development of antibacterial agents to combat infections associated with open wounds 

and implanted medical devices,1-3 as well as infections resulting from persistent 

conditions such as diabetes mellitus4 and cystic fibrosis.1, 5-7 Although many antibacterial 

agents have proven effective against planktonic (i.e., free-floating) bacteria, medically-

relevant infections generally arise from the formation of complex bacterial biofilm 

communities.6 Several factors contribute to the observed antibacterial resistance of 

biofilms compared to planktonic suspensions, including slow antibacterial penetration 

through the layers of self-secreted extracellular polymeric substances (EPS), 

differentiation of biofilm cells into a resistant phenotype, and reduced antibacterial action 

in altered microenvironments (e.g., regions of nutrient depletion).7-12 Strategies for 

preventing bacterial biofilm formation and eradicating established biofilms while 

minimizing the development of resistance are thus warranted. 

 While antibiotics (e.g., vancomycin and ciprofloxacin),13 antimicrobial 

peptides,14 silver ions,15, 16 and dendrimers17 have proven effective against biofilms, 

recent research has focused on the importance of tailoring antibacterial 
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pharmacodynamics for maximum eradication and prevention of bacteria re-growth.18-23 

As such, several labs have evaluated bacterial biofilm formation and eradication as a 

function of antibacterial-release kinetics.23-28 For example, Cheow et al. studied the 

influence of levofloxacin-release rate from nanoparticles against E. coli biofilms.19 The 

antibiotic-release profile was deemed to be equally as important as total dosage in biofilm 

eradication, suggesting that a biphasic release profile is optimal for maximum killing and 

prevention of biofilm re-growth while minimizing the potential for antibiotic tolerance. 

Similarly, antimicrobial peptide (i.e., ponericin G1) release from polyelectrolyte 

multilayer films with both burst- and linear-release profiles was investigated against S. 

aureus biofilms.27 Biphasic release was again preferential where a large initial bolus 

rapidly eradicated cells, and subsequent smaller doses eliminated any residual bacteria. 

Despite the demonstrated killing potential of these antibacterials, continued concerns 

over resistance preclude their long-term therapeutic utility.29 Bacteria have developed 

resistance to antibiotics and antimicrobial peptides through a myriad of mutations29 and 

modification of cell surface charge.30, 31 Therefore, even if antibacterial 

pharmacodynamics can be controlled, complete eradication of planktonic bacteria and 

biofilms is complex and new antibacterials that do not foster resistance are urgently 

needed.1, 32, 33  

Nitric oxide (NO), an endogenously-produced radical, is a broad-spectrum 

antibacterial generated by the immune system to exert bacterial membrane damage 

through both oxidative and nitrosative stresses.34-36 Bacterial resistance to NO is unlikely 

given its dual-mechanistic action and small structure. Privett et al. observed no increase 
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in resistance to exogenous NO treatment for S. aureus, methicillin-resistant S. aureus, S. 

epidermidis, E. coli, or P. aeruginosa cells after exposure to sub-inhibitory 

concentrations through 20 d.37 As noted in Chapter 3, the effects of NO release on 

bacterial biofilms are concentration dependent, with low NO concentrations (~nM) 

resulting in biofilm dispersal and higher concentrations (~µM) killing the embedded 

bacteria.38-40 Due to the reactive nature of NO, macromolecular NO donors including 

silica, metallic nanoparticles, and dendrimers have been designed to enhance localized 

delivery to the site of infection.41 For example, N-diazeniumdiolate-modified silica 

nanoparticles and dendrimers that store large NO payloads have demonstrated efficacy 

against both planktonic bacteria and biofilms.40, 42, 43 Selective tuning of NO-release 

kinetics for bacterial eradication has not yet been investigated, although initial work 

indicates the importance of NO-release profiles in bactericidal efficacy.40 Hetrick et al. 

observed increased efficacy of NO-releasing N-methylaminopropyltrimethoxysilane 

(MAP3) silica particles (~6 min half-life) against P. aeruginosa biofilms compared to N-

(6-aminohexyl)aminopropyltrimethoxysilane (AHAP3) particles (~18 min half-life). The 

increased anti-biofilm efficacy for the more rapid NO-releasing MAP3 particles may 

suggest that large initial bursts of NO are preferred; however, the MAP3 and AHAP3 

systems exhibited varied total NO storage (~7.6 and 3.8 µmol/mg, respectively), and thus 

bacterial killing as a function of NO-release kinetics cannot be directly determined using 

these systems. 

Ideal systems for determining the effects of NO-release kinetics on bactericidal 

efficacy would exhibit a range of half-lives while maintaining similar total NO storage. 
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As such, four NO-releasing poly(amidoamine) (PAMAM) dendrimer scaffolds with 

varied half-lives (~0.9–3.5 h) and similar 24 h NO storage (~1.8 µmol/mg) were utilized 

to evaluate the role of NO-release kinetics on bacterial killing. The goal was to evaluate 

the optimal NO-release profile (i.e., burst or sustained release) for eradication of 

planktonic and biofilm-based Gram-negative Pseudomonas aeruginosa and Gram-

positive Staphylococcus aureus bacteria.  

4.2 Materials and Methods 

Note: Dendrimer synthesis, characterization, and cytotoxicity evaluation were 

supported by other members of the Schoenfisch lab 

Sodium methoxide (5.4 M in methanol), rhodamine B isothiocyanate  (RITC), 

propidium iodide (PI), fetal bovine serum (FBS), Dulbecco's Modified Eagle's Medium 

(DMEM), phenazine methosulfate (PMS), 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS), trypsin, 

phosphate buffered saline (PBS) used for cell culture, and Pen Strep solution (10,000 

u/mL penicillin, 10,000 µg/mL streptomycin) were purchased from the Sigma Aldrich 

Corp. (St. Louis, MO). Propylene oxide (PO) and acrylonitrile (ACN) were obtained 

from Acros Organics (Geel, Belgium). Spectra/Por Float-A-Lyzers for dialysis of the 

dendrimers were purchased from Spectrum Laboratories, Inc. (Rancho Dominguez, CA). 

Tryptic soy broth (TSB) and tryptic soy agar (TSA) were obtained from Becton, 

Dickinson, and Company (Franklin Lakes, NJ). Pseudomonas aeruginosa (ATCC 

#19143) and Staphylococcus aureus (ATCC# 29231) were obtained from the American 



131 

Type Culture Collection (Manassas, VA). The Centers for Disease Control and 

Prevention (CDC) bioreactor was purchased from BioSurface Technologies Corporation 

(Bozeman, Montana). Medical grade silicone rubber (1.45 mm thick) was purchased from 

McMaster-Carr (Atlanta, GA) and doubled in thickness using Superflex Clear RTV 

silicone adhesive sealant (Loctite, Westlake, OH) to fabricate coupons to fit the CDC 

reactor (thickness ~4 mm and diameter ~12.7 mm). L929 mouse fibroblasts (ATCC 

#CCL-1) were purchased from the University of North Carolina Tissue Culture Facility 

(Chapel Hill, NC). Syto 9 green fluorescent nucleic acid stain was purchased from Life 

Technologies (Grand Island, NY). 4,5-Diaminofluorescein diacetate (DAF-2 DA) was 

purchased from Calbiochem (San Diego, CA). Nitric oxide (NO) was purchased from 

Praxair (Bethlehem, PA). Argon (Ar) gas was obtained from Airgas National Welders 

(Raleigh, NC). A Millipore Milli-Q UV Gradient A10 System (Bedford, MA) was used 

to purify distilled water to a final resistivity of 18.2 MΩ·cm  and  a  total  organic  content  of  

≤6   parts   per   billion   (ppb). Other solvents and chemicals were analytical-reagent grade 

and used as received. 

4.2.1 Synthesis of secondary amine-functionalized PAMAM dendrimers  

Secondary amine-functionalized PAMAM dendrimers (generation 3 or G3) were 

synthesized as described previously.44 Briefly, primary amine-functionalized G3-

PAMAM dendrimers (100 mg) were dissolved in methanol (1 mL). One molar equivalent 

of PO, ACN, or a mixture of PO and ACN relative to the primary amines was then added 

to the G3-PAMAM-NH2 solution under constant stirring at room temperature for 3 d to 
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yield the secondary amine-functionalized G3-PAMAM conjugates. Solvent and 

unreacted PO or ACN were removed under reduced pressure. The resulting secondary 

amine-functionalized dendrimers were characterized by nuclear magnetic resonance 

(NMR) spectroscopy in deuterated methanol (data not shown). 

4.2.2 N-diazeniumdiolation of secondary-amine functionalized PAMAM dendrimers  

N-diazeniumdiolate-functionalized PAMAM dendrimers were synthesized by 

adding one equivalent of 5.4 M sodium methoxide solution in methanol (with respect to 

the molar amount of primary amine functionality in PAMAM-NH2 used to synthesize 

dendrimers) to a vial containing dendrimers (100 mg) in methanol (1 mL). The glass vials 

were then inserted into a stainless steel reactor, and the headspace of the reactor was 

subsequently flushed with Ar three times followed by three longer purges with Ar (3 x 10 

min) to remove oxygen from the stirred solution. The reactor was filled with purified 

gaseous NO to 10 atm for 3 d. Unreacted NO was then removed using the same Ar 

flushing procedure described above prior to removing the vials from the vessel. The 

resulting N-diazeniumdiolate-modified PAMAM dendrimers were stored at -20 °C until 

use. 

4.2.3 NO-release measurements 

Real-time NO-release from the dendrimers was measured using a Sievers 280i 

Chemiluminesence Nitric Oxide Analyzer (NOA; Boulder, CO). The NO-releasing 

dendrimers (1 mg) were added to a sample vessel containing 30 mL deoxygenated PBS 

(pH 7.4, 37 °C). Liberated NO was carried from the sample vessel to the NOA at a flow 



133 

rate of 70 mL/min. Additional nitrogen flow was supplied to the sample vessel to match 

the collection rate of the NOA (200 mL/min). Nitric oxide-release measurements were 

terminated when the levels fell below 10 ppb NO/mg dendrimer. The real-time NO-

release measurements were used to determine the total NO-release duration (t[NO]), total 

NO-release after 24 h (t[NO]24h, maximum NO flux ([NO]max), and half-life (t1/2).  

4.2.4 Planktonic bactericidal assays 

Pseudomonas aeruginosa and Staphylococcus aureus bacterial cultures were 

grown from frozen stock (-80 °C) in TSB overnight at 37 °C. An aliquot of the 

suspension (0.5 mL) was added to fresh TSB (50 mL) and incubated at 37 °C until the 

bacteria reached mid-exponential phase (~1 × 108 colony forming units (cfu)/mL) as 

determined by the optical density at 600 nm (OD600). The relationship between the 

concentration of the bacteria in suspension and the OD600 was calibrated for each strain 

using an Eppendorf BioPhotometer Plus Spectrophotometer (Hamburg, Germany). 

Colony forming units were enumerated from culture dilutions grown on TSA plates. The 

bacterial suspension was then centrifuged (3645 g for 10 min, 25 °C), resuspended in 

PBS, and diluted to ~1 × 106 cfu/mL in PBS supplemented with 1% (w/w) glucose and 

0.5% (v/v) TSB for planktonic bactericidal assays. 

The minimum bactericidal concentration (MBC) of the NO-releasing PAMAM 

dendrimers for planktonic P. aeruginosa and S. aureus was defined as the concentration 

that resulted in a 3-log reduction in viability versus untreated cells after 24 h. The 

bacterial suspensions (106 cfu/mL) were incubated with the NO-releasing dendrimers for 
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24 h over a range of dendrimer concentrations that were tested in triplicate. After 

exposure, the samples were diluted, plated on TSA, with counting of resulting colonies to 

determine viability. 

4.2.5 Biofilm bacterial assays 

A CDC bioreactor was used to grow P. aeruginosa and S. aureus biofilms over 48 

h. Growth conditions (e.g., nutrient concentrations, additives, flow rate) were optimized 

for both the P. aeruginosa and S. aureus biofilms. Briefly, medical grade silicone rubber 

substrates were mounted in the coupon holders within the CDC reactor. After 

autoclaving, the reactor effluent line was clamped and 500 mL sterile 1% (w/v) TSB (P. 

aeruginosa growth) or 10% (w/v) TSB and 0.1% (w/v) glucose (S. aureus growth) was 

added aseptically. Similar to planktonic experiments, P. aeruginosa and S. aureus 

bacterial cultures were grown from frozen stock (-80 °C) overnight in TSB at 37 °C, 

reinoculated, and grown to mid-exponential phase. The reactor was then inoculated with 

an aliquot (1 mL) of the resulting 1 × 108 cfu/mL bacterial suspension (final 

concentration ~2 × 105 cfu/mL). The completed assembly was incubated at 37 °C for 24 h 

with   stirring   (150   rpm).   Following   this   “batch   phase”   growth,   the   effluent   line   was  

opened and the reactor media was refreshed continuously with 0.33% (v/v) TSB at 6 

mL/min (P. aeruginosa growth) or 1% (v/v) TSB at 2.7 mL/min (S. aureus growth) for 

another 24 h to complete growth of the biofilms.  

The MBC for biofilm eradication was determined as the concentration of NO-

releasing PAMAM dendrimers that resulted in bacterial viability below the limit of 
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detection for the plate counting method (2.5 x 103 cfu/mL).45 Each strain of bacteria was 

tested in triplicate over an optimized concentration range. P. aeruginosa and S. aureus 

biofilms grown on silicone rubber substrates were exposed to different concentrations of 

NO-releasing dendrimers in 3 mL PBS supplemented with 1% (w/w) glucose and 0.5% 

(v/v) TSB at 37 °C with slight agitation for 24 h. After 24 h of incubation, the samples 

were sonicated and vortexed to disrupt the biofilm. Aliquots of the cell/nanoparticle 

suspensions were diluted in PBS, plated on TSA, and incubated at 37 °C overnight. 

Bacterial viability was then determined by counting the observed colonies.  

4.2.6 Confocal microscopy 

Fluorescently-labeled control (i.e., non-NO-releasing) PAMAM dendrimers were 

prepared following a previously reported procedure.43 Briefly, G3-PAMAM-NH2 (100 

mg) and rhodamine B isothiocyanate (RITC) (3 mg) were dissolved in methanol (2 mL). 

The solution was stirred for 3 d in the dark and the resulting product solution was 

dialyzed against 0.1 M NaCl (2 L) for 24 h, and ultrapure Milli-Q water for 3 d (3 × 2 L). 

Subsequent lyophilization yielded RITC-labeled G3-PAMAM-NH2. The fluorescently-

labeled G3-PAMAM-NH2 dendrimers were then modified with one molar equivalent of 

PO, ACN, or a PO/ACN mixture to yield the RITC-labeled secondary-amine-

functionalized dendrimers for dendrimer–bacteria association studies.  

P. aeruginosa biofilms were grown on glass substrates (Biosurface Technologies) 

and subsequently exposed to NO-releasing dendrimers (200 µg/mL) in PBS 

supplemented with DAF-2 DA (10 µM) and PI (30 µM) for 1 and 4 h or RITC-labeled 
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control dendrimers (200 µg/mL) in PBS for 1 h followed by staining with PBS 

supplemented with Syto 9 (10 µM) for 20 min. Before imaging, the substrates were 

dipped in PBS to remove excess dye and loosely adhered cells. A Zeiss 510 Meta 

inverted laser scanning confocal microscope (Carl Zeiss, Thornwood, NY) with a 488 nm 

Ar excitation laser (2.0% intensity) and a BP 505–530 nm filter was used to obtain DAF-

2 and Syto 9 (green) fluorescence images. A 543 nm HeNe excitation laser (25.3% 

intensity) with a BP 560–615 nm filter was used to obtain PI and RITC (red) fluorescence 

images. The images were collected using a Zeiss C-apochromat lens (10x, 1.2 numerical 

aperture).  

4.2.7 In vitro cytotoxicity 

L929 mouse fibroblasts were cultured in DMEM supplemented with 10% (v/v) 

FBS and 1 wt% Pen Strep solution, and incubated in 5% (v/v) CO2 under humidified 

conditions at 37 oC. After reaching 80% confluency, the cells were trypsinized, seeded 

onto tissue culture-treated polystyrene 96-well plates at a density of 3 × 104 cells/mL and 

further incubated at 37 oC for 48 h. The supernatant was subsequently aspirated prior to 

adding fresh DMEM (200   μL) with control (i.e., non-NO-releasing) or NO-releasing 

dendrimers to each well. After incubation at 37 oC for 24 h, the supernatant was aspirated 

and the cells rinsed 3x with PBS. A mixture of DMEM/MTS/PMS (105/20/1, v/v/v) (120 

μL) was then added to each well. The absorbance of the resulting colored solution after 

1.5 h incubation at 37 oC was quantified at 490 nm using a Thermo Scientific Multiskan 

EX plate reader (Thermo Fisher Scientific, Inc., Waltham, MA). The mixture of 
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DMEM/MTS/PMS and untreated cells were used as the blank and control, respectively. 

Cell viability was calculated by taking the ratio of the absorbance of treated to untreated 

cells after subtracting the absorbance of the blank from each.  

4.3 Results and Discussion 

Although many reports on the bactericidal action of NO have appeared in the 

literature,42, 46 the effects of NO-release kinetics on planktonic bacteria and biofilm 

eradication, and how these release profiles impact healthy cells have not yet been 

investigated. Thus, the goal of this study was to evaluate NO-induced killing of 

planktonic and biofilm-based P. aeruginosa and S. aureus bacteria as a function of NO-

release kinetics (i.e., burst versus sustained release). Poly(amidoamine) dendrimers were 

functionalized with PO, ACN, or a PO/ACN mixture (i.e., 1:1 or 1:7 PO/ACN) to vary 

the maximum NO flux and half-life while maintaining the same total NO storage over 24 

h. As shown in Table 4.1, the dendrimers exhibited a range of NO-release kinetics with 

half –lives ranging from 0.9 to 3.5 h. Importantly, the four scaffolds had similar total NO 

storage over 24 h (1.89 ± 0.11, 1.70 ± 0.16, 1.56 ± 0.08, and 1.89 ± 0.10 µmol/mg for the 

PO, 1:1, 1:7, and ACN NO-releasing dendrimers, respectively). The PO-modified 

dendrimer exhibited an initial burst of NO release ([NO]max = 6500 ± 675 ppb/mg), while 

a lower maximum flux and more sustained release was observed for the ACN-modified 

dendrimer (NO]max = 3815 ± 875 ppb/mg). Hydrophobic ACN functional groups likely 

slow the proton-initiated N-diazeniumdiolate decomposition compared to hydrophilic PO 

functional groups, thus delaying NO release. As expected, the NO-release profiles for the 
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1:1 and 1:7 PO/ACN-modified dendrimers exhibited a combination of the PO and ACN 

release profiles ([NO]max = 5150 ± 890 and 4800 ± 1065 ppb/mg, respectively). 

Table  4.1  Nitric  oxide  release  properties  of  N-diazeniumdiolate-modified  PAMAM  
dendrimers  as  measured  by  NOA.  All  values  are  n≥3  measurements.   

  

Dendrimer Feed Ratio
t[NO] 

(µmol/mg)

t[NO]24h

(µmol/mg)

[NO]max

(ppb/mg)
t1/2 (h)

PO ̶ 1.89 ± 0.11 1.89 ± 0.11 6500 ± 675 0.9 ± 0.3

PO/ACN 1:1 70:30 1.90 ± 0.20 1.70 ± 0.16 5150 ± 890 1.8 ± 0.4

PO/ACN 1:7 30:70 1.75 ± 0.12 1.56 ± 0.08 4800 ± 1065 2.4 ± 0.3

ACN ̶ 2.06 ± 0.19 1.89 ± 0.10 3815 ± 875 3.5 ± 0.4
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4.3.1 Bactericidal efficacy against planktonic bacteria 

Prior to evaluating the effects of NO-release kinetics on clinically-relevant 

bacterial biofilms, we sought to determine any relation between NO-release profile and 

eradication of planktonic bacteria. Indeed, the bactericidal efficacy of the NO-releasing 

dendrimers against P. aeruginosa was dependent on the NO-release kinetics, with the 

PO-modified dendrimers proving the most effective (MBC24h = 0.05 mg/mL), followed 

by the 1:1 PO/ACN, 1:7 PO/ACN, and ACN-modified dendrimers with 24 h MBCs of 

0.10, 0.20, and 0.20 mg/mL, respectively (Table 4.2). The killing of planktonic S. aureus 

followed a similar trend (MBC values of 0.20, 0.60, 0.60, and 0.60 mg/mL for the PO, 

1:1 PO/ACN, 1:7 PO/ACN, and ACN-modified dendrimers, respectively), although 

increased doses of NO (~3–4x) were required to exhibit 3-log viability reductions. The 

increased NO dose required for Gram-positive S. aureus killing compared to Gram-

negative P. aeruginosa has been observed previously.43, 47 Such disparity is likely the 

result of multiple factors including differential peptidoglycan thicknesses,48 varied 

production of antioxidant enzymes (e.g., superoxide dismutase) to mitigate the effects of 

NO,49 and S. aureus’  use of NO as a cytoprotection agent.50  

The NO-release profiles of the dendrimer scaffolds influenced planktonic 

bacterial killing, with the PO-modified dendrimer (i.e., burst release) being the most 

effective (~0.09 µmol NO/mL) and the ACN-modified dendrimer (i.e., lower, sustained 

release) being the least effective (~0.38 µmol NO/mL). The large initial burst of NO from 

the PO-modified dendrimers is sufficient to quickly kill the planktonic bacteria, releasing 
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P. aeruginosa S. aureus

Dendrimer
Planktonic

MBC24h
(mg/mL)a

Biofilm
MBC24h

(mg/mL)b

Planktonic
NO 

Dose
(µmol/mL)

Biofilm
NO 

Dose
(µmol/mL)

Planktonic
MBC24h

(mg/mL)a

Biofilm
MBC24h

(mg/mL)b

Planktonic
NO
Dose

(µmol/mL)

Biofilm
NO

Dose
(µmol/mL)

PO 0.05 5.0 0.09 ± 0.01 9.45 ± 0.55 0.2 5.0 0.38 ± 0.02 9.45 ± 0.55

PO/ACN 1:1 0.10 3.0 0.17 ± 0.02 5.10 ± 0.50 0.6 3.0 1.02 ± 0.10 5.10 ± 0.50

PO/ACN 1:7 0.20 3.0 0.31 ± 0.02 4.68 ± 0.24 0.6 3.0 0.94 ± 0.05 4.68 ± 0.24

ACN 0.20 1.0 0.38 ± 0.02 1.89 ± 0.19 0.6 3.0 0.94 ± 0.06 5.67 ± 0.57

bMBC: Minimum Bactericidal Concentration resulting in bacterial viability below the limit of detection for the plating method (2.5 x 103 cfu/mL).
aMBC: Minimum Bactericidal Concentration resulting in 3-log reduction in bacterial viability.

Table  4.2  Determination  of  planktonic  and  biofilm  MBCs
  
and  bactericidal  NO  doses  for  

NO-releasing  PAMAM  dendrimers  against  P.  aeruginosa    and  S.  aureus  bacteria. 
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~0.95 µmol NO/mg in the first hour of exposure. In contrast, the ACN-modified 

dendrimers released a more sustained level of NO that would not reach ~0.95 µmol 

NO/mg until 4 h after exposure. The levels of NO generated from the ACN-modified 

dendrimers are likely insufficient for complete killing of the metabolically active 

planktonic cells. As such, more NO (~4x) is required for the same 3-log reduction in 

viability.51 Of note, the control dendrimers were not toxic at planktonic P. aeruginosa 

MBCs, but were significantly toxic (~3-log reduction in bacterial viability) at MBCs for 

the eradication of planktonic S. aureus, likely due to the increased amount of scaffold.  

4.3.2 Bactericidal efficacy against biofilm bacteria 

In addition to exhibiting bactericidal action against planktonic bacteria, the NO-

releasing PAMAM dendrimers also proved effective against P. aeruginosa and S. aureus 

biofilms. Interestingly, the NO-releasing dendrimer MBCs for eradication of the biofilms 

followed the opposite trend of that observed for planktonic cells, with the ACN-modified 

dendrimer exhibiting the greatest efficacy (Table 4.2). The MBC for the NO-releasing 

ACN-modified dendrimers against P. aeruginosa biofilms was 1.0 mg/mL (~1.89 µmol 

NO/mL), compared to MBCs of 3.0, 3.0, and 5.0 mg/mL for the 1:7 PO/ACN, 1:1 

PO/ACN, and PO-modified dendrimers, respectively. S. aureus biofilms exhibited similar 

susceptibility to the NO-releasing dendrimers with MBCs of 3.0, 3.0, 3.0 and 5.0 mg/mL 

for the ACN, 1:7 PO/ACN, 1:1 PO/ACN, and PO-modified dendrimers, respectively. 

Unlike planktonic assays, the concentrations of NO-releasing dendrimers needed to 

eradicate S. aureus biofilms compared to P. aeruginosa biofilms were not significantly 
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different. Dendrimers are effective at penetrating biofilms.52, 53 At high concentrations ( 

≥3.0  mg/mL), dendrimer diffusion and subsequent NO-delivery may be so similar that 

other factors such as varying levels of antioxidant enzymes and NO cytoprotection 

mechanisms play a lesser role. 

To further confirm that the observed biofilm eradication was a function of NO-

release kinetics and not simply increased control scaffold concentration, biofilm viability 

was evaluated for the control ACN, 1:7 PO/ACN, 1:1 PO/ACN, and PO-modified 

dendrimers at the highest MBC concentration (5.0 mg/mL) for both P. aeruginosa and S. 

aureus (Figure 4.3). Similar killing (~1–2 logs for controls versus 4–5 logs for NO-

releasing) of the biofilm bacteria was observed for the four control dendrimer scaffolds, 

confirming that biofilm eradication was a function of NO-release kinetics and not the 

control scaffold. 

In comparing the eradication of planktonic bacteria to biofilms, the biofilms 

required ~5–100x more NO and exhibited increased susceptibility to lower, sustained NO 

levels over burst-release profiles. The initial NO burst from the PO dendrimers likely 

resulted in residual bacteria remaining embedded within the biofilm. However, the more 

sustained NO release from the ACN-modified dendrimers may have continued to exert 

both oxidative and nitrosative stresses against the bacteria throughout the duration of the 

assay, thus requiring less NO for complete eradication (~1.89–5.67 versus 9.45 µmol 

NO/mL for NO-releasing ACN- and PO-modified dendrimers, respectively). 
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Figure  4.1  Determination  of  bacterial  viability
  
for    (A)  P.  aeruginosa    and  (B)  S.  aureus  

biofilms  exposed  to  control  (i.e.,  non-NO-releasing)  PAMAM  dendrimers  at  5.0  mg/mL.  
Viability  is  similar  for  the  four  control  scaffolds  at  the  highest  MBC.   
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4.3.3 Confocal microscopy 

 Confocal microscopy was utilized to further support the results of the bactericidal 

assays. The eradication of both P. aeruginosa and S. aureus biofilms was most effective 

using scaffolds with sustained NO-release profiles. To confirm that the observed 

differences in scaffold efficacy were due to NO release and not scaffold penetration 

within the biofilm, we monitored the diffusion of RITC-labeled ACN, 1:7 PO/ACN, 1:1 

PO/ACN, and PO-modified dendrimers within the P. aeruginosa biofilm. Microscopy 

studies were not conducted with S. aureus biofilms since the observed trends in killing 

were similar to P. aeruginosa. For evaluation of dendrimer diffusion, P. aeruginosa 

biofilms were incubated with the control RITC-labeled dendrimers (200 µg/mL) for 1 h. 

The biofilm cells were then stained with green nucleic acid stain (Syto 9). As shown in 

Figure 4.4, the P. aeruginosa biofilms exposed to control ACN, 1:7 PO/ACN, 1:1 

PO/ACN, or PO-modified dendrimers exhibited similar red RITC fluorescence, 

indicating similar scaffold diffusion through the biofilm independent of the ACN or PO 

surface functionality. The improved anti-biofilm efficacy of the NO-releasing ACN 

dendrimers compared to the PO dendrimers may thus be attributed to NO-release kinetics 

and not differences in dendrimer association and diffusion through the biofilm. 

 Intracellular NO concentrations and bacterial killing in P. aeruginosa biofilms 

were also visualized with confocal microscopy. Based on results from the biofilm 

eradication assays, we hypothesized that greater intracellular NO concentrations (green 
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Figure  4.2   Fluorescent   images  of  RITC-modified   (A)  PO,   (B)  1:1,   (C)  1:7,   and   (D)  ACN  
control   PAMAM   dendrimers   (200   µg/mL)   diffusion   in   P.   aeruginosa   biofilm   1   h   after  
dendrimer   addition.   Green   Syto   9   fluorescence   shows   biofilm   cells.   Similar   RITC   red  
fluorescence  indicates  similar  association  and  diffusion  within  biofilm  for  each  scaffold. 
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 DAF fluorescence) would likely be observed for the NO-releasing PO-modified 

dendrimers, but that the biofilms exposed to NO-releasing ACN-modified dendrimers 

would exhibit enhanced bacterial cell death (red PI fluorescence) after prolonged 

exposure. P. aeruginosa biofilms were exposed to the NO-releasing PO, 1:1, 1:7, and 

ACN dendrimers (200 µg/mL) for periods of 1 and 4 h. Exposure times of 1 and 4 h were 

selected to evaluate intracellular NO concentrations and bacterial cell death at the t1/2 for 

the PO and ACN systems, respectively. As expected, the biofilms exposed to the NO-

releasing PO dendrimers exhibited increased green intracellular NO and red PI 

fluorescence at 1 h (Figure 4.5). At this time no DAF or PI fluorescence was readily 

visible within the biofilms exposed to the NO-releasing 1:1 PO/ACN, 1:7 PO/ACN, or 

ACN-modified dendrimers since the NO-release levels were likely low and the 

fluorescence concomitantly below the limit of detection. After 4 h, red PI fluorescence 

was observed for bifiolms exposed to the NO-releasing 1:1, 1:7, and ACN-modified 

dendrimers in addition to the PO-modified scaffolds. However, significant DAF 

fluorescence was not observed for the 1:1 PO/ACN, 1:7 PO/ACN, or ACN-modified 

dendrimers, suggesting that NO-release amount remained below the limit of detection or 

that the DAF dye diffused into solution upon destruction of the bacterial cell membrane. 

Overall, the visualization of PI fluorescence over time confirmed that the NO-releasing 

ACN dendrimers exerted similar, if not better killing of P. aeruginosa biofilms at 

prolonged exposure (i.e., 4 h), even though the NO-releasing PO dendrimers disrupted 

some of the bacterial cell membranes within 1 h. 
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Figure  4.3.  Fluorescent  images  of  P.  aeruginosa  biofilm  exposed  to  the  same  dendrimer  
concentration   (200   µg/mL)   of   NO-releasing   (A)   PO,   (B)   1:1,   (C)   1:7,   or   (D)   ACN  
dendrimers  for  1  or  4  h.  DAF-2  green  fluorescence  indicates  increased  intracellular  NO  
and  PI  red  fluorescence  indicates  compromised  cell  membranes  (i.e.,  cell  death). 
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4.3.4 Cytotoxicity of PAMAM dendrimers at therapeutic concentrations 

 Given the bactericidal efficacy of the NO-releasing PAMAM dendrimers 

presented herein, the PO, 1:1 PO/ACN, 1:7 PO/ACN, and ACN-modified scaffolds were 

evaluated against healthy host cells to further determine potential therapeutic utility. 

L929 mouse fibroblasts, which are ubiquitous in connective tissue,54 were incubated with 

both control and NO-releasing dendrimers for 24 h at their respective planktonic and 

biofilm MBCs. Fibroblasts exposed to the dendrimers at planktonic MBCs (0.05–0.6 

mg/mL) exhibited no reduction in cell viability for either the control or NO-releasing 

systems (Figure 4.6). Significant viability reductions (~55–84%) were observed for 

fibroblasts exposed to NO-releasing dendrimers at biofilm MBCs (1.0–5.0 mg/mL) even 

though the controls remained relatively non-toxic (~1–18% viability reduction) (Figure 

4.7).  

The aforementioned cytotoxicity studies demonstrate the utility of NO-releasing 

PO, 1:1PO/ACN, 1:7 PO/ACN, and ACN PAMAM dendrimers as antibacterial agents 

against planktonic bacteria, due to their potent biodical action and minimal effects toward 

healthy host cells. However, >99% of bacteria exist in a biofilm state and the cytotoxicity 

of potential therapeutics must be evaluated with these conditions in mind.55 The control 

PAMAM dendrimers were not significantly cytotoxic to L929 fibroblasts regardless of 

the concentration tested (0.05–5.0 mg/mL). In contrast, larger NO concentrations (≥5.67  

µmol NO/mL) resulted in elevated cytotoxicity (Figure 4.7 A and B). Of note, NO-

releasing ACN-PAMAM dendrimers exhibited only ~3% reduction in cell viability 
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Figure   4.4   Cytotoxicity   of   NO-releasing   (white)   and   control   (gray)   PAMAM   dendrimers  
against  L929  mouse  fibroblasts  at  MBC  concentrations  required  for  killing  of  planktonic  (A)  
P.  aeruginosa  and  (B)  S.  aureus  as  listed  in  Table  4.2. 
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Figure   4.5   Cytotoxicity   of   NO-releasing   (white)   and   control   (gray)   PAMAM   dendrimers  
against  L929  mouse  fibroblasts  at  MBC  concentrations  required  for  (A)  P.  aeruginosa  and  (B)  
S.  aureus    biofilm  killing  as  listed  in  Table  4.2. 
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 at the MBC (1.0 mg/mL or ~1.89 µmol NO/mL) for P. aeruginosa biofilm eradication, 

making them a desirable therapeutic for anti-biofilm applications. 

4.3.5 Cytotoxicity of PAMAM dendrimers as a function of NO-release kinetics 

In addition to evaluating cytotoxicity at the dendrimer MBC concentrations, we 

sought to determine if NO-induced cytotoxicity was a function of NO-release kinetics.  

L929 mouse fibroblasts were incubated with varying concentrations (i.e., 0.2, 1.0, 3.0, 

and 5.0 mg/mL) of control and NO-releasing PO, 1:1 PO/ACN, 1:7 PO/ACN, and ACN-

PAMAM dendrimers for 24 h. As shown in Figure 4.8B, the four control PAMAM 

dendrimers were minimally toxic over the entire concentration range tested (0.2–5.0 

mg/mL). In contrast, the effects of NO on L929 cell viability proved to be concentration 

dependent (Figure 4.8A). Low levels of NO (≤1.89 µmol NO/mL) actually promoted 

fibroblast proliferation,56 while larger doses (≥5.67  µmol NO/mL) resulted in significant 

reductions in viability. Determination of fibroblast cytotoxicity as a function of NO-

release kinetics was not definitive for the systems and concentrations tested. At low 

concentrations of NO-releasing dendrimers (≤1.0   mg/mL), little dependence on NO-

release kinetics was noted as the cell viabilities for the fibroblasts exposed to NO-

releasing PO and ACN dendrimers proved similar. At 5.0 mg/mL, the burst-release 

profile of the NO-releasing PO dendrimers resulted in a greater reduction in cell viability 

(~84% reduction) compared to the lower but sustained NO release from the ACN 

dendrimers (~51% reduction). At larger NO concentrations, it is likely that the 

antioxidant enzymes (e.g., superoxide dismutase) employed by mammalian cells are  
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Figure  4.6  Cytotoxicity  of      (A)  NO-releasing  and  (B)  control  PAMAM  dendrimers  against  
L929  mouse   fibroblasts   at   concentrations  of  0.2   (dashed),   1.0   (light   gray),  3.0   (dark  gray),  
and  5.0  (white)  mg/mL. 
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unable to adequately mitigate the effects of NO. Thus, scaffolds delivering large bursts of 

NO exhibit slightly greater cytotoxicity compared to sustained release systems. 

4.4 Conclusions 

The importance of NO-release kinetics in the eradication of planktonic and 

biofilm-based P. aeruginosa and S. aureus bacteria was demonstrated using NO-releasing 

PAMAM dendrimers functionalized with PO, ACN, or both PO/ACN. Although Hetrick 

et al. noted improved biofilm eradication for the NO-releasing MAP3 silica particles with 

faster release (i.e., lower t1/2) compared to the slower-releasing AHAP3 particles, the total 

NO storage between the two scaffolds was so varied (~7.6 versus 3.8 µmol/mg, 

respectively) that killing differences could not be due to NO-release kinetics alone.40 

While our results indicate that slower, sustained NO-release profiles are preferred for 

biofilm eradication, increasing total NO storage (>1.89 µmol/mg) may improve the 

efficacy of faster-releasing dendrimer scaffolds since fewer residual bacteria would likely 

remain after delivery of the intial NO burst. However, an increased NO storage may also 

influence cytotoxicity to healthy host cells. Previous literature has observed that scaffolds 

delivering sustained levels of an antibacterial over time were ultimately more effective 

against biofilms, with biphasic release profiles being the most ideal,19, 27 although these 

systems may result in increased antibiotic resistance over time.29 The slower NO-

releasing ACN-PAMAM dendrimers presented here show therapeutic potential due to 

their ability to effectively eradicate P. aeruginosa biofilms at concentrations with 

minimal cytotoxicity. Eradication of S. aureus biofilms could be improved by further 
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tuning of both the NO-release profile and total NO storage, and perhaps even co-

administering NO-releasing PO- and ACN- modified dendrimers.  
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CHAPTER 5: SIZE- AND SHAPE-DEPENDENT SILICA NANOPARTICLE 
PHYTOTOXICITY AND UPTAKE IN ARABIDOPSIS THALIANA 

5.1 Introduction 

The evolution of nanotechnology is proceeding rapidly as researchers work to 

engineer nanomaterials with unique molecular organization, properties, and functions 

relative to bulk materials.1 Indeed, engineered nanoparticles (ENPs) have already proven 

to be useful for drug delivery and environmental remediation.2, 3 Engineered 

nanoparticles incorporated into consumer goods are now making their way into 

atmospheric, aquatic, and terrestrial environments due to incidental and direct 

release/disposal.2, 4, 5 A better understanding of particle fate, behavior, and potential 

toxicity in these environments is thus warranted.  

Studies have assessed the toxicity of ENPs toward mammalian cells, bacteria, 

aquatic invertebrates, and other terrestrial organisms. To date, plant toxicity due to 

nanoparticle exposure has received less attention.6, 7 Prior work with plants has evaluated 

the toxicity of silica (SiO2), zinc oxide (ZnO), nickel hydroxide (Ni(OH)2), copper (Cu), 

cerium oxide (CeO2), titanium dioxide (TiO2), iron oxide  (Fe3O4), gold (Au), silver (Ag), 

iron (Fe), and CdSe/ZnS quantum dot nanoparticles to Arabidopsis thaliana,4, 8 rye 

grass,9, 10  mesquite,11 and select edible plant species including wheat and mung bean,5 

alfalfa, tomato, corn, and cucumber.12, 13  
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Silica nanoparticles (SiNPs) have received special interest due to their 

prominence in cosmetic and biomedical applications.14-16 In one study, the toxicity of 

12.5 and 27.0 nm SiNPs (20.0 and 28.8 mg L-1, respectively) to green alga was shown to 

reduce growth by 20% after 72 h.17 Silica particles (10–20 nm) were also shown to 

exhibit toxicity to Scenedesmus obliquus (green algae) after 72 and 96 h, as evidenced by 

a 20% reduction in growth (388.1 and 216.5 mg L-1, respectively) and decreased 

chlorophyll content.18 In contrast, phytotoxicity assays with Cucurbita pepo (zucchini) 

showed no significant difference in germination percent, root elongation, or biomass after 

exposure to 1000 mg L-1 bulk silicon powder and SiNPs (< 100 nm) for 5–14 d.19 Lee et 

al. found that 42.8 nm SiNPs promoted Arabidopsis thaliana root elongation at a low 

concentration (400 mg L-1),  but  resulted  in  toxicity  at  higher  concentrations  (≥  2000  mg  

L-1).4 Likewise, an increase in shoot/root ratio has been reported in Lactuca sativa 

(lettuce) plants after 15 d exposure to 0.066% (w/w) SiNPs (~100 nm).20 Nair and 

coworkers examined the use of SiNPs (~25 nm) labeled with fluorescein isothiocyanate 

(FITC) as potential biolabels in plants.21 They confirmed uptake of the SiNPs into rice 

seedlings and determined that the particles had no effect on germination up to 50 mg L-1. 

The importance of nanoparticle shape and surface charge in phytotoxicity have also been 

noted, but studies systematically investigating these parameters are not currently 

available.22 While work thus far on the phytotoxicity of SiNPs to higher plants has 

established a strong foundation, we sought to examine toxicity over an increased SiNP 

size range (i.e., < 42.8 nm and > 100 nm) and growth duration (i.e., 6 weeks), with 

evaluation of particle surface charge and shape. In addition, the literature currently lacks 
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visualization of SiNPs in A. thaliana cells and information about where SiNPs are 

uptaken (i.e., roots, rosette, and stem).  

Herein, the phytotoxicity of 14, 50, and 200 nm SiNPs at concentrations of 250 

and 1000 mg L-1 (ppm) to Arabidopsis thaliana over 3 and 6 weeks in a hydroponic 

growth medium was evaluated. Additionally, SiNPs of various shape (i.e., aspect ratios 1 

and 3) were examined for phytotoxic effects and uptake. The objective was to determine 

how size, surface charge, composition, and shape play a role in SiNP phytotoxicity while 

assessing particle uptake in the roots, rosette, and stems. A. thaliana is a universal model 

plant due primarily to its rapid life-cycle and relevance for toxicity implications on edible 

food crops.4, 13 Multiple plant growth parameters were evaluated including rosette 

diameter, biomass, and length of the main stem. Transmission electron microscopy 

(TEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were 

used to visualize SiNP localization and quantify uptake. 

5.2 Materials and Methods 

Note: Silica particle synthesis and characterization (AR1 and AR3) were 

supported by other members of the Schoenfisch lab 

Tetraethylorthosilicate (TEOS) was purchased from Gelest (Morrisville, PA). 

Ethanol (EtOH), ammonium hydroxide (28 wt%), and a silicon reference standard 

solution (1000 ppm) were purchased from Fisher Scientific (Fair Lawn, NJ). 

Cetyltrimethylammonium bromide (CTAB) was obtained from Acros Organics (Geel, 

Belgium). Organosilicasol MT-ST silica particles (14 nm) in methanol were obtained 
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from Nissan Chemical Corp. (Houston, TX). Wild-type Arabidopsis thaliana (Col-0) 

seeds were purchased from Carolina Biological Supply Company (Burlington, NC).  

Triton X-100,   agar,   Hoagland’s   No.   2   Basal   Salt   Mixture, triethanolamine, and 

glutaraldehyde (50% v/v in water) were purchased from Sigma-Aldrich (St. Louis, MO). 

A hydroponic plant growth system was acquired from Araponics (Liège, Belgium). 

Hydrofluoric acid (48–51 wt%) and osmium tetroxide (2.5 wt% in t-butanol) were 

purchased from Acros Organics (Morris Plains, NJ). Cacodylate buffer was purchased 

from Electron Microscopy Sciences (Hatfield, PA). LR White Resin was purchased from 

Polysciences, Inc. (Warrington, PA). Argon (Ar) gas was obtained from Airgas National 

Welders (Raleigh, NC). Other solvents and chemicals were analytical-reagent grade and 

used as received. A Millipore Milli-Q UV Gradient A10 System (Bedford, MA) was used 

to  purify  distilled  water  to  a  final  resistivity  of  18.2  MΩ·cm  and  a  total organic content of 

≤6  parts  per  billion  (ppb).   

5.2.1 Silica nanoparticle synthesis and characterization  

Organosilicasol MT-ST particles (14 nm) were dried under vacuum before use. 

Tetraethylorthosilicate SiNPs (50 and 200 nm) were synthesized by the Stöber method 

following conditions reported by Bogush et al.23 Briefly, 50 nm SiNPs were made by 

adding TEOS (3.792 mL) to a stirred solution of EtOH (91.378 mL),ammonium 

hydroxide (3.378 mL), and water (1.452 mL). After 5 h, the particles were collected by 

adding hexane to the solution in a 2:1 ratio (v/v) and centrifugation (3645g for 5 min). 

The particles were resuspended in EtOH via sonication and collected again by 
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centrifugation (3645g for 5 min). This washing procedure was repeated and the particles 

were then dried under vacuum. The 200 nm SiNPs were made by adding TEOS (3.792 

mL) to a stirred solution of EtOH (88.351 mL), ammonium hydroxide (6.757 mL), and 

water (1.101 mL). These particles were collected, washed, and dried after 2 h using the 

aforementioned procedure. For select studies, the silica particles were calcined at 1000 °C 

for 24 h in a muffle furnace. 

Silica particles of two distinct aspect ratios (AR1 and AR3) were synthesized via 

a surfactant-templated approach as previously described by varying reaction temperature 

and ammonia concentration.24  Elevated temperature (50 vs. 20 °C) was used to increase 

the aspect ratio of the particles (AR3), while a greater ammonia concentration (1.0 vs. 0.5 

M) allowed for the synthesis of a more spherical particle (AR1). Tuning these reaction 

parameters, silica particles with aspect ratios of 1 (62 ± 8 nm) and 3 (241 ± 32 nm length 

and 78 ± 6 nm width), but similar particle volume (~106 nm3) were achieved. Of note, 

cetyltrimethylammonium bromide (CTAB) removal was confirmed via CHN analysis 

prior to surface grafting.  

 Particle size, shape, and morphology were characterized with a JEOL 100 CX II 

transmission electron microscope (TEM) at 80 kV or Hitachi S-4700 scanning electron 

microscope (Tokyo, Japan).  Hydrodynamic diameters and zeta potentials were 

determined by dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS 

(Worcestershire, UK). Measurements were performed in solutions of the plant growth 

medium at pH 5.8. To assess the relative amount of silanols and/or unreacted silane on 

the particle surface, CHN elemental analysis was performed using a 2400 Series II 
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CHNS/O analyzer from Perkin Elmer to determine both wt% H and C for each particle 

size. 

5.2.2. Plant growth  

A. thaliana seeds were sterilized prior to use with a solution of 95% (v/v) EtOH 

(73.7 mL), water (26 mL), and Triton X-100   (50  μL)   for  10  min,  and  rinsed  with  95%  

(v/v) EtOH twice. Seeds were pretreated via dispersal on filter paper moistened with 

water,   then   “incubating”   at   4   °C   for   6   d   in   the   dark   to   simulate  winter   and   encourage  

germination.25 The hydroponic system, including seed holders, was sterilized with a 10% 

(v/v) sodium hypochlorite solution and rinsed copiously with water. The seed holders 

were filled with 0.65 wt% agar support, and seeds sown by dropping one seed (in a 

suspension of 0.2 wt% agar) into each holder.25 The SiNPs 14, 50, and 200 nm SiNPs 

were dispersed in the hydroponic troughs at concentrations of 250 or 1000 ppm with 

Hoagland’s  No.   2  Basal   Salt  Mixture   (400  mg   L-1), while the AR1 and AR3 particles 

were dispersed at 250 ppm.  Control  plants  were  grown  in  blank  solutions  of  Hoagland’s  

No. 2 Basal Salt Mixture (400 mg L-1). Studies were carried out by either allowing the pH 

of the hydroponic solution to fluctuate naturally or maintaining the pH at pH 5.8 via 

addition of dilute hydrochloric acid or sodium hydroxide. Seeds were grown at room 

temperature under fluorescent light (GE Pro-Line Watt-Miser F40T12) with a 12 h 

photoperiod and 78–91 µmolm-2s-1 photosynthetically active radiation for 3 or 6 weeks. 

During the first two weeks of germination and growth, transparent lids were used to 

increase the relative humidity (~50–60%) surrounding the seedlings and establish 



167 

plantlets.26 For each experiment, at least 6 separate plants were harvested and examined. 

Significant   differences   in   growth  were   determined   based   on   the   Student’s   t-test at the 

95% confidence level. 

5.2.3 Transmission electron microscopy  

Plant samples were fixed with 4% (v/v) glutaraldehyde in 0.1 M cacodylate buffer 

for 3 h at room temperature.9 Specimens were then rinsed with 0.1 M cacodylate buffer 

for 10 min and post-fixed with 1% (v/v) osmium tetroxide in 0.1 M cacodylate buffer for 

2 h. After two additional 10 min rinses in 0.1 M cacodylate buffer, samples were 

dehydrated in a series of graded ethanol solutions (30, 50, 70, 95, and 100% v/v), with 10 

min incubation per solution. LR White Resin was used to infiltrate the plant tissue with a 

series of resin solutions (25, 50, 75, 100, and 100% v/v in EtOH), with 1 h incubation per 

solution. Plant samples were then embedded in 100% LR White Resin in gelatin capsules 

at 60 °C for 40 h. An ultramicrotome was used to cut thin sections (~100 nm) that were 

post-stained with 2% (v/v) uranyl acetate and 0.5–1% (v/v) lead citrate. Samples were 

then characterized using a JEOL 100 CX II TEM at 80 kV.  

5.2.4 Silicon elemental analysis  

Several plant samples from the same exposure group (6 weeks) were 

homogenized by grinding with a mortar and pestle, digested with acid, and analyzed via 

ICP-OES to determine Si content. Briefly, plant samples were digested with 10% (v/v) 

HNO3 (10 mL) in a microwave accelerated reaction system (CEM Corporation; 

Matthews, NC) for 15 min at 200 °C. Following digestion, samples were prepared further 
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for Si elemental analysis by adding aqua regia (2.5 mL) and hydrofluoric acid (1 mL) to 

dissolve any remaining material. Triethanolamine (3.575 mL of 40% v/v) was used to 

neutralize this solution. The solution was then diluted to 50 mL with water. CAUTION: 

hydrofluoric acid is extremely corrosive and requires special handling. Silicon elemental 

analysis was carried out in triplicate using a Prodigy ICP-OES (Teledyne Leeman Labs; 

Hudson, NH). The instrument was calibrated from 0.1–10 ppm in the axial configuration 

at 251.611 nm using a silicon reference standard solution. 

5.3 Results and Discussion 

5.3.1 Size-dependent phytotoxicity and uptake 

5.3.1.1 Synthesis and characterization of silica nanoparticles with varied size 

The physicochemistry of nanoparticles in the environment is influenced by their 

shape, size, surface area, degree of aggregation, adsorption, and local pH and ionic 

strength.7 To enable the study of particle phytotoxicity over a range of sizes spanning ~2 

orders of magnitude and compare results to previous work, we purchased 14 nm SiNPs 

and synthesized both 50 and 200 nm SiNPs via the Stöber process.4, 17, 19, 20 Particle size 

of the SiNPs (50 and 200 nm) is easily tuned in the Stöber process by varying water and 

ammonia concentrations and/or overall reaction time.23 

Prior to studying phytotoxicity, we sought to understand the shape and 

morphology of the native SiNPs. As expected, the silica particles were spherical and 

monodisperse upon TEM analysis (14.8 ± 2.4, 51.4 ± 5.3, and 211.5 ± 24.3 nm for the 14, 

50, and 200 nm SiNPs, respectively) while the hydrodynamic diameters of the particles in 
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the hydroponic growth medium were larger due to solvation (Figure 5.1 and Table 5.1).27 

Of note, the particles remained monodisperse in the growth medium, indicating their 

suitability for evaluating size-dependent phytotoxicity.  

Surface charge, a parameter that influences particle stability, was evaluated by 

measuring the zeta potential in the plant growth medium at pH 5.8. Interestingly, the zeta 

potentials for the 50 and 200 nm SiNPs synthesized in-house with the Stöber method 

were highly negative in magnitude at -20.3 ± 0.4 and -31.9 ± 0.9 mV, respectively, while 

the zeta potential for the 14 nm MT-ST SiNPs was less negative (Table 5.1). The 

difference in measured surface charge is attributed to the synthesis and drying conditions 

employed during particle preparation (e.g., in-house vs. commercial). Elemental analysis 

(CHN) was performed to elucidate any relationship between zeta potential variation and 

surface composition of the particles. The 14 nm particles were characterized with a lower 

wt% H and C than the 50 and 200 nm SiNPs (Table 5.2). Unreacted but stable silane and 

silanol groups on the particle surfaces are suspected contributors to the highly negative 

zeta potential of the 50 and 200 nm SiNPs. 
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Figure  5.1  TEM  of  SiNPs  with  sizes  of  14.8  ±  2  nm  (A),  51.4  ±  5  nm  (B),  and  211.5 

  ±  24  nm  (C).  Scale  bar  is  100  nm  (A)  or  200  nm  (B  and  C). 
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Table   5.1   Size   and   charge   characterization   of   SiNPs   via   TEM,   DLS,   and   zeta   potential.  
Measurements   were   made   in   Hoagland’s   #2   nutrient   solution   (400   mg   L

-1
)   with   SiNP  

concentration  of  250  ppm  unless  noted.  Measurement  of  14  nm  SiNPs  made  in  ethanol.a 

TEM Size
(nm)

DLS Size
(nm)

Zeta Potential
(mV)

14 nm 14.8 ± 2 139.4 ± 9.6
12.4 ± 0.1a

-15.3 ± 1.1

50 nm 51.4 ± 5 135.2 ± 1.1 -20.3 ± 0.4

200 nm 211.5 ± 24 291.6  ± 2.3 -31.9 ± 0.9
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14 nm 50 nm 200 nm

Unmodified Calcined Unmodified Calcined Unmodified Calcined

% C 1.18 -0.03 3.46 -0.03 3.08 -0.05

% H 0.40 -0.05 1.28 -0.05 1.45 -0.06

Table  5.2  Carbon  and  hydrogen  weight  percents   for  unmodified  and  calcined  SiNPs  as  
determined  by  CHN  analysis. 
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5.3.1.2 Plant growth  

In initial experiments, A. thaliana seeds were grown in solutions of 250 and 1000 

ppm SiNPs (i.e., 14, 50, and 200 nm) without adjusting the pH of the growth medium. 

These experiments were intended to mimic an environment where the pH is not 

maintained at a given level. Of note, terrestrial environments often do contain buffers that 

influence pH of the bulk soil and root-mediated pH changes in the rhizosphere.28, 29 In our 

studies, 50 and 200 nm SiNPs at 250 and 1000 ppm over 3 weeks (Figure 5.2) and 6 

weeks (Figure 5.3) resulted in reduced plant development with respect to rosette 

diameter, biomass, and stem length. Plants exposed to 50 and 200 nm SiNPs were also 

chlorotic, exhibiting a yellowish color due to insufficient production of chlorophyll 

(Figure 5.4).30 Compared to the larger particles, no chlorosis or reduction in growth was 

observed for the 14 nm SiNPs at 3 or 6 weeks for the concentrations studied. The lack of 

phytotoxicity for the 14 nm SiNPs may be attributed to the particles not significantly 

altering the pH of the growth medium, whereas the 50 and 200 nm SiNPs raised the pH 

over 3 units (e.g., pH 5.24, 5.98, 8.31, and 8.59 for the blank, 14, 50, and 200 nm SiNP 

solutions at 1000 ppm, respectively). The variation in pH over the 6 weeks for these 

exposure groups is provided in Supporting Information (Table 5.3). The wt% H values 

for the 14, 50, and 200 nm SiNPs were 0.4, 1.28, and 1.45%, respectively, corresponding 

to fewer silanols on the particle surface for the 14 nm SiNPs and thus a lessened capacity 

to alter solution pH (Table 5.2). As has been reported previously, a more basic  
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Figure  5.2  Growth  data  for  plants  harvested  at  3  weeks  with  (A,  C)  pH  5.8  and  (B,  D)  pH  
unadjusted  after  exposure  to  250  ppm  (white),  1000  ppm  (light  gray),  or  calcined  (dark  gray)  
SiNPs.  Values  are  normalized  to  plants  grown  in  blank  solution.  *Significant  difference  at  
95%  relative  to  blank.  Of  note,  stems  were  not  developed  by  3  week  harvest  for  
measurement. 
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Figure  5.3  Growth  data  for  plants  harvested  at  6  weeks  with  (A,  C,  E)  pH  5.8  and  (B,  D,  F)  
pH  unadjusted  after  exposure  to  250  ppm  (white),  1000  ppm  (light  gray),  or  calcined  (dark  
gray)  SiNPs.  Values  are  normalized  to  plants  grown  in  blank  solution.  *Significant  
difference  at  95%  relative  to  blank. 
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A B

Figure  5.4  Growth  after  6  weeks  in  (A)  blank  nutrient  solution  with  no  pH  adjustment  and  
(B)   after   exposure   to   250   ppm   of   200   nm   SiNPs   with   no   pH   adjustment.   Seed   holder  
diameter  is  2  cm. 
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 Initial 1 Week 3 Weeks 6 Weeks

250 ppm

Blank 5.24 5.27 5.38 7.11

14 nm 5.67 5.51 5.26 7.4

50 nm 6.99 6.76 6.70 5.64

200 nm 7.26 7.12 6.98 6.6

1000 ppm

Blank 5.24 4.88 5.34 6.49

14 nm 5.98 4.91 5.40 7.05

50 nm 8.31 7.30 7.48 7.27

200 nm 8.59 7.89 7.75 7.25

Calcined

Blank 5.39 5.68 5.52 6.81

14 nm 6.78 6.91 6.98 7.15

50 nm 4.69 4.72 6.23 7.03

200 nm 5.19 4.41 5.32 6.38

Table5.3 Variation in pH for exposure groups where pH was not adjusted over 6 weeks. 
Blank  exposure  groups  were  grown  in  a  solution  of  Hoagland’s  #2  Basal  Salt  Mixture  
(400 mg L-1). 
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pH may limit the availability of nutrients and result in growth deficiencies.31 Indeed, A. 

thaliana plants grow optimally at pH 5.8 where the necessary nutrients are more 

biologically available for uptake.4 To understand the role of pH on nanoparticle 

phytotoxicity, plants were grown at pH 8 in absence of the SiNPs. A. thaliana plant 

growth (i.e., rosette number, biomass, and length of main stem) was reduced by the more 

basic medium relative to the control (pH 5.8) at 3 or 6 weeks (Figure 5.5), but not to the 

same degree as with 50 and 200 nm SiNPs and concomitant greater pH medium.  Indeed, 

previous  reports  have  noted  that  alkaline  stress  (pH  ≥  8.0)  in  Arabidopsis can reduce root 

growth and begin de-polymerization of microfilaments.30 Thus, the question was raised 

as to whether the observed reduction in growth for the highly negative 50 and 200 nm 

SiNPs could be reversed if their surface charge was mitigated by maintaining the growth 

medium at pH 5.8. 

  Arabidopsis seeds were then exposed to the same concentrations of SiNPs while 

maintaining the solution pH at 5.8 and we hypothesized that by holding the growth 

medium pH constant, plant development would be less affected due to protonation of the 

silanol groups on the SiNP surface. As expected, phytotoxic effects at 3 (Figure 5.2) or 6 

(Figure 5.3) weeks were not observed relative to plants grown in the blank solution 

regardless of particle size. Furthermore, neither the rosette diameter, biomass, nor length 

of the main stem was reduced compared to blanks. In fact, plants showed similar 

flowering behavior upon maturation relative to the blanks. In some cases, the presence of 

the SiNPs even aided growth. At 6 weeks at pH 5.8, several of the 14, 50, and 200 nm 

SiNP exposure groups exhibited increased development relative to the blank.  
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A B

Figure 5.5 Plants grown for 6 weeks in (A) pH 5.8 nutrient solution and (B) nutrient 
solution adjusted to pH 8. Scale bar is 15 cm. 
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For example, the normalized biomass of 50 nm SiNPs at 250 ppm was 168.8 ± 59.7%. 

The role of silicon in plant nutrition and alleviating stress has been argued as essential, 

increasing the plausibility that exposure to the SiNPs strengthens plant structure.31, 32 In 

total, the data suggest that allowing the pH to naturally fluctuate leads to nanoparticle 

phytotoxicity at 250 ppm over 3 weeks for the 50 and 200 nm SiNPs. Conversely, no 

toxicity is noted for even the 1000 ppm exposure groups regardless of size when pH is 

maintained at 5.8. 

 The particles were also calcined to validate that the surface charge of the 50 and 

200 nm particles, rather than the SiNP scaffold itself, resulted in the observed 

phytotoxicity. In this method, the silica surface was dehydrated by prolonged heating at 

1000 °C resulting in the removal of unreacted alkoxy silane groups and silanols while 

maintaining particle composition, size, and morphology.33 To confirm that calcining the 

particles resulted in surface modification, the pH of each particle solution (calcined and 

unmodified) was measured in the growth medium at a concentration of 1000 ppm SiNPs. 

The pH of the calcined 14, 50, and 200 nm SiNPs was 5.74, 5.40, and 5.35, respectively, 

versus 5.98, 8.31, and 8.59 for the unmodified particles. As expected, calcining the SiNPs 

reduced pH values to within 0.2 pH units of the blank for 50 and 200 nm SiNP solutions. 

Removal of unreacted silane and silanol groups from the calcined SiNPs was confirmed 

with CHN where the wt% H and C values decreased for the calcined particles (Table 

5.2). 

  Arabidopsis seeds were exposed to the resulting calcined SiNPs at 1000 ppm with 

the assumption that if no phytotoxicity were observed at the higher concentration of 1000 
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ppm, growth reductions would not be observed at 250 ppm.  In this case, the pH of the 

growth medium was not adjusted to allow for comparison to the phytotoxicity of the 

unmodified SiNPs (50 and 200 nm) without pH adjustment. At both 3 and 6 weeks, no 

reduction in plant development was observed for the any of the calcined SiNP exposure 

groups, supporting our hypothesis that the SiNPs alone are not phytotoxic at 

concentrations up to 1000 ppm. Maintaining the growth medium pH at 5.8 or removing 

the surface charge of the SiNPs thus eliminated the SiNP toxicity (Figure 5.6). 

 To further confirm that the 14, 50, and 200 nm silica scaffolds themselves are not 

phytotoxic even in cases where high pH growth medium resulted, Arabidopsis plants 

were grown in the presence of the calcined SiNPs at 1000 ppm with the growth medium 

maintained at pH 8. As noted above, some reduced development for plants grown in the 

blank pH 8 medium was noted at 3 and 6 weeks, but the plants exposed to 1000 ppm 

calcined 14, 50, and 200 nm SiNPs were not significantly different from these blanks 

(Figure 5.7). The presence of the calcined SiNPs in the higher pH medium did not further 

reduce plant growth and development, validating that the SiNP scaffold is not toxic up to 

1000 ppm.  

We hypothesize that the observed phytotoxicity arises from a combination of the 

high pH of the growth medium and the ability of the negative SiNPs (i.e., 50 and 200 nm) 

to adsorb nutrients, making them unavailable for plant uptake.34 Plant development 

problems (e.g., reduced growth and chlorosis) resulting from deficiencies of macro- (e.g., 

nitrogen, phosphorus, and potassium) and micro-nutrients (e.g., iron, zinc, and 

manganese) are well-known.31 Silica particles with a greater number of silanols on the  
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Blank 14 nm 50 nm 200 nm

A

Blank 14 nm 50 nm 200 nm

B

Blank 14 nm 50 nm 200 nm

C

Figure 5.6 Growth of plants exposed to 1000 ppm SiNPs after 6 weeks showing 
development with (A) no pH adjustment; (B) pH 5.8; and (C) pH unadjusted with calcined 
SiNPs. Scale bar is 15 cm. 
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Blank

pH 8
14 nm

Calcined

pH 8
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Calcined

pH 8
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Calcined

Figure 5.7 Growth of plants after 6 week exposure to 1000 ppm calcined 
SiNPs with growth medium maintained at pH 8. Scale bar is 15 cm. 
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particle surface adsorb these nutrients and restrict plant uptake, thus resulting in reduced 

plant growth and chlorosis.29, 34-36 Upon adjusting the pH of the growth medium to 5.8, 

the nutrients adsorbed to silanols on the 50 and 200 nm particles are likely displaced by 

H+ ions, making them available for uptake.36 Likewise, the SiNPs no longer adsorb 

nutrients and the toxicity is eliminated when the surface charge is removed through 

calcination. 

The results presented herein build upon prior work evaluating SiNP phytotoxicity. 

Characterization of the SiNP surface charge proved important since phytotoxicity, likely 

due to nutrient adsorption, was observed for the highly negative 50 and 200 nm SiNPs. 

When the silanols on the SiNPs are capable of altering the growth medium pH and/or 

nutrient availability, phytotoxicity may be observed at concentrations even as low as 250 

ppm, a marked difference from previous work showing no reduction in A. thaliana 

growth at SiNP concentrations below 400 ppm.4 Modifying the charge of the 50 and 200 

nm SiNPs or adjusting the pH of the medium to that for favorable growth conditions 

resulted in no phytotoxic effects, even at exposure concentrations of 1000 ppm. Similar 

to   Lee   and   Shah’s   report,4, 20 we also noted cases of increased plant growth and 

development after exposure to 14, 50, and 200 nm SiNPs when pH effects were not a 

factor. 

5.3.1.3 Transmission electron microscopy  

Transmission electron microscopy was used to determine SiNP localization 

within the plant cells. Samples were exposed to the SiNPs at 1000 ppm with the growth 

medium maintained at pH 5.8 for a period of 6 weeks to simulate high exposure levels 



185 

and assess particle uptake for experiments that did not result in phytotoxicity. The 

resulting TEM images revealed that the 14, 50, and 200 nm SiNPs each were taken up 

into the roots of A. thaliana (Figures 5.8 and 5.9). Within the root cells, the SiNPs were 

localized in the cytoplasm of the cell surrounding organelles. Fewer particles were 

observed with increasing particle size as a result of fewer particles and/or the inability of 

the larger particles to enter the cells as readily. Of note, the TEM sizes of the particles in 

the roots (11.7 ± 1.4, 52.9 ± 15.7, and 162.9 ± 19.0 nm for the 14, 50, and 200 nm SiNPs, 

respectively) differed slightly from sizes observed in TEM micrographs taken before the 

exposure experiments (14.8 ± 2.4, 51.4 ± 5.3, and 211.5 ± 24.3 nm for the 14, 50, and 

200 nm SiNPs, respectively; Figure 5.1). We attribute this disparity to degradation of the 

particles in solution (or plant) over the 6-week period. Indeed, particle sizes determined 

by DLS were reduced by 46.2, 23.6, and 22.3% for the 14, 50, and 200 nm SiNPs, 

respectively, after 6 weeks immersion in the plant nutrient solution (pH 5.8), likely 

indicating some SiNP dissolution. This corroborates previous results by Zhang et al. in 

which small NPs were found to dissolve more readily than their larger counterparts.37 

Although dissolution has been shown to increase with pH,38 we do not believe Si 

dissolution to be the cause of observed phytotoxicity with the highly negative 50 and 200 

nm SiNPs because the toxicity was mitigated by adjusting the pH to 5.8 or calcination. If 

the toxicity resulted from dissolved silicon species, a significant reduction in 

development would have been noted in the treatment of the Arabidopsis plants at pH 8 

with the caclined SiNPs.  In addition, Stampoulis and coworkers previously reported that 

bulk Si powder (1000 ppm) was non-toxic to Cucurbita pepo (zucchini).19  
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Figure   5.8   Transmission   electron  microscopy   images   of   roots   from   (A)   blank   solution  
and   from   1000   ppm   exposure   after   6   weeks   with   SiNP   sizes   of   (B)   14   nm;;   14   kx  
magnification;;  (C)  50  nm;;  29  kx;;  and  (D)  200  nm;;  14  kx.  Arrows  point  to  SiNPs  in  each  
image. 
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Figure  5.9  Transmission  electron  microscopy  image  of  roots  from  1000  ppm  exposure  to  
14  nm  SiNPs  after  6  weeks.  Magnification  is  72  kx  and  scale  bar  is  0.2  µm. 
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  Lastly, sections of the leaves and stems exposed to SiNPs during plant growth 

were examined with TEM to ascertain particle localization. No nanoparticles were visible 

in the leaves and stems examined, a potentially anticipated result since the leaves and 

stems do not come into direct contact with the nanoparticle solution and should therefore 

have a lower distribution of the SiNPs than the roots.  

5.3.1.4 Silicon elemental analysis  

Silicon (Si) elemental analysis was carried out to provide a more quantitative 

understanding of particle uptake and interaction with A. thaliana. Silicon content was 

expected to be greatest in the roots since they were directly exposed to the SiNP solution. 

If possible, the SiNPs would then translocate to the leaves of the rosette and finally into 

the stem. 

 Prior to analysis, the optimal conditions for complete digestion of the plants and 

SiNPs were determined. Plant tissue was first digested with 10% (v/v) HNO3 in a 

microwave accelerated reaction system.39 Initial ICP-OES experiments showed that 

concentrated HNO3 alone did not completely dissolve the SiNPs and as a result, we 

explored other digestion protocols. The combination of aqua regia and hydrofluoric acid 

(HF) has been used previously to dissolve coal fly ash, a material with high silica 

content.40 However, we observed surprisingly large Si readings for our blank calibration 

sample (a solution of HNO3, aqua regia, and HF in water) under these acidic conditions, 

which we could only attribute to the hydrofluoric acid. The large Si readings from the 

calibration blank result from HF reaction with the quartz ICP torch, necessitating a 

neutralization step to remove excess HF.41 Triethanolamine, an organic base, was used to 
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neutralize the HF instead of boric acid to avoid etching of the ICP torch. Digestion of the 

SiNPs in solution was concluded complete when recovered Si levels (via ICP-OES) 

approached the theoretical Si content based on SiNP mass analyzed (Equation 5.1). 

Silicon in the plants was then quantified by ICP-OES. As expected, plants 

exposed to SiNPs exhibited increased Si levels relative to plants grown in blank 

hydroponic solutions (Tables 5.4 and 5.5). The Si concentrations observed in the roots 

and rosettes were greater than in the stems, likely due to the minimal translocation of the 

SiNPs into the stem. This observation corroborates the lack of particles found in the 

stems via TEM. Due to limited sample mass and nontrivial solution preparation, the 

silicon elemental analysis data was determined using a single SiNP exposure treatment, 

with 3 replicate analyses from the ICP-OES.  

The data was subsequently normalized to depict SiNP uptake per unit of 

nanoparticle volume and determine the extent of particle uptake as a function of SiNP 

size (Tables 5.6 and 5.7). Using the particle sizes from TEM data (Table 5.1), the 

nanoparticle volumes were determined to be 1.70 x 103, 7.11 x 104, and 4.95 x 106 nm3 

for the 14, 50, and 200 nm SiNPs, respectively. As expected, increased uptake of the 

smaller, 14 nm particles was observed upon normalizing the data relative to the 50 and 

200 nm particles for all exposure conditions. Overall, these results indicate that the 14, 

50, and 200 nm SiNPs are in fact taken up through the root system of A. thaliana, 

followed by translocation into the rosette and stem in a size-dependent manner. 

The extent of SiNP uptake was also analyzed as a function of SiNP charge and 

exposure concentration. Although the charges of the 50 and 200 nm SiNPs were 
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Theoretical Si Content = Original SiNP
Concentration

× 0.467a % SiO2
b×

a Mass % Si in SiO2
b Obtained by subtracting organic content determined with CHN

Equation 5.1 Equation for determining theoretical Si content from known SiNP 
concentration. 
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 Blank 14 nm 50 nm 200 nm

Sample pH 5.8 pH  
unadjusted

pH 5.8 pH 
unadjusted

pH 5.8 pH 
unadjusted

pH 5.8 pH 
unadjusted

Roots (mg Si/ kg tissue) 378 ± 14 1045 ± 8 43, 992 ± 939 47,575 ± 291 70,442 ± 176 26,384 ± 49 60,217 ± 482 71,186 ± 671

Rosette (mg Si/ kg tissue) 168 ± 9 112±13 890 ± 10 412 ± 5 737 ± 9 1,087 ± 15 1,242 ± 3 3,143 ± 34

Stem (mg Si/ kg tissue) 84 ± 2 58 ± 3 123 ± 3 119 ± 2 300 ± 2 342 ± 6 94 ± 2 1,759 ± 53

Table 5.4 Silicon determination in roots, rosette, and stems for 250 ppm exposure group 
after 6 weeks using ICP-OES. Results are reported in mg Si per kg plant tissue. Error 
represents variation between three instrument integrations.  
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 Blank 14 nm 50 nm 200 nm

Sample pH 5.8 pH 
unadjusted

pH 5.8 pH  
unadjusted

pH 5.8 pH  
unadjusted

pH 5.8 pH 
unadjusted

Roots (mg Si/ kg tissue) 483 ± 3 418 ± 26 54,281 ± 424 32,297 ± 139 131,515 ± 815 115,528 ± 209 37,267 ± 232 68,000 ± 396

Rosette (mg Si/ kg tissue) 72 ± 3 138 ± 5 707 ± 11 1,316 ± 17 1,084 ± 35 1,746 ± 7 2,244 ± 22 3,564 ± 81

Stem (mg Si/ kg tissue) 66 ± 3 92 ± 2 280 ± 7 200 ± 1 344 ± 1 2,538 ± 5 394 ± 3 3,109 ± 59

Table 5.5 Silicon determination in roots, rosette, and stems for 1000 ppm exposure group after 
6 weeks using ICP-OES. Results are reported in mg Si per kg plant tissue. Error represents 
variation between three instrument integrations. 
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14 nm 50 nm 200 nm

Sample pH 5.8 pH  
unadjusted

pH 5.8 pH 
unadjusted

pH 5.8 pH 
unadjusted

Roots (mg Si·kg tissue-1/nm3) 25.9 ± 0.6 28.0 ± 0.2 9.90 x 10-1 ± 0.002 3.70 x 10-2 ± 7.0 x 10-4 1.20 x 10-2 ± 1.0 x 10-4 1.40 x 10-2 ± 1.0 x 10-4

Rosette (mg Si·kg tissue-1/nm3) 5.20 x 10-1 ± 0.01 2.4 x 10-1 ± 0.003 1.00 x 10-2 ± 1.0 x 10-4 2.00 x 10-2 ± 2.0 x 10-4 3.00 x 10-4 ± 6.1 x 10-7 6.00 x 10-4 ± 7.0 x 10-6

Stem (mg Si·kg tissue-1/nm3) 7.00 x 10-2 ± 0.002 0.07 x 10-2 ± 0.001 4.00 x 10-3 ± 3.0 x 10-5 4.00 x 10-3 ± 3.0 x 10-5 2.00 x 10-5 ± 4.0 x 10-7 4.00 x 10-4 ± 1.0 x 10-5

Table 5.6 Si determination in roots, rosette, and stem for 250 ppm exposure group after 6 
weeks using ICP-OES. Results are normalized for the nanoparticle volume. 
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 14 nm 50 nm 200 nm

Sample pH 5.8 pH 
unadjusted

pH 5.8 pH 
unadjusted

pH 5.8 pH 
unadjusted

Roots (mg Si·kg tissue-1/nm3) 32.0 ± 0.3 19.0  ± 0.1 1.85  ± 0.01 1.62  ± 0.003 7.00 x 10-3 ± 5.0 x 10-5 1.40 x 10-2 ± 8.0 x 10-5

Rosette (mg Si·kg tissue-1/nm3) 4.20 x 10-1  ± 0.01 7.80 x 10-1 ± 0.01 2.00 x 10-2 ± 5.0 x 10-4 2.00 x 10-2 ± 1.0 x 10-4 4.00 x 10-4 ± 4.0 x 10-6 7.00 x 10-4 ± 2.0 x 10-5

Stem (mg Si·kg tissue-1/nm3) 1.60 x 10-1 ± 0.004 1.10 x 10-1 ± 5.0 x 10-4 5.00 x 10-3 ± 1.0 x 10-5 4.00 x 10-2 ± 7.0 x 10-5 8.00 x 10-5 ± 6.0 x 10-7 6.00 x 10-4 ±1.0 x 10-5

Table 5.7 Si determination in roots, rosette, and stem for 1000 ppm exposure group after 
6 weeks using ICP-OES. Results are normalized for the nanoparticle volume. 
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significantly negative (Table 5.1) and resulted in phytotoxicity when the pH of the 

medium was not controlled, for the most part SiNP uptake was not significantly different 

in plants where the pH was maintained at pH 5.8 (Tables 5.4 and 5.5). Likewise, charge 

did not readily influence uptake of the 14 nm SiNPs. While an increase in SiNP uptake 

was observed upon increasing exposure concentration from 250 to 1000 ppm, this trend 

was not linear. The non-linear increase suggests that there is an upper limit to the degree 

of SiNP uptake in the Arabidopsis plant.  

Generally, plant biologists believe that cellular uptake of particles less than ~300 

nm involves endocytosis.42 The idea of nanoparticle endocytosis in plant cells was 

originally dismissed because of the high turgor pressure in plant cells combined with the 

presence of the rigid cell wall hindering internalization. Rather, it was believed that 

nanoparticles must passively pass through cell wall pores (<50 nm).43 As such, many 

studies excluded nanomaterials larger than ~20 nm.44 Recent research has shown that 

plant cells are able to endocytose matter from the extracellular environment in a process 

resembling mammalian cell endocytosis.42 Indeed, plant cells can bioaccumulate 

nanomaterials including single-walled carbon nanotubes (length <500 nm),45 magnetite 

NPs (40 nm),46 Cu NPs (50 nm),5 and tannate-coated gold NPs (10–50 nm).47 A. thaliana, 

specifically, has been shown to take up ultrasmall anatase TiO2
48 (<5 nm) and AgNPs49 

(20 and 40 nm). However, other nanomaterials (e.g., CdSe/ZnS quantum dots8) are not 

internalized indicating somewhat selective bioaccumulation. 

Uptake of SiNPs into plants cells has also been previously observed. For example, 

mesoporous silica nanoparticles have been shown to penetrate tobacco mesophyll plant 
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cells and facilitate intracellular delivery of DNA.50 Accumulation of FITC-labeled SiNPs 

in rice seedlings represents a future use for SiNPS in biolabeling of plant cells.21 

Similarly, our work has shown that a range of SiNPs (i.e., 14–200 nm) will accumulate in 

A. thaliana root cells in a size-dependent manner, although translocation to other regions 

of the plant is minimal. Future studies should focus on understanding the endocytic 

pathway for SiNP internalization, identifying possible translocation mechanisms that 

enable movement of the SiNPs to other regions of the plant, and determine whether 

uptake is species dependent.  

5.3.2 Shape-dependent phytotoxicity and uptake 

5.3.2.1 Synthesis and characterization of silica nanoparticles with varied shape 

 Given the size-dependent uptake of silica nanoparticles in A. thaliana, the 

potential for shape-dependent SiNP phytotoxicity and uptake was also evaluated. A 

surface-templated method was utilized to synthesize both spherical (AR1) and rod-like  

(AR3) particles. The AR1 particles exhibited a length and width of ~ 62 ± 8 nm, while 

the AR3 particles exhibited a length of 241± 32 nm and width of 78 ± 6 nm (Figure 5.10). 

Despite the varied aspect ratios of the AR1 and AR3 SiNPs, they were appropriate 

candidates for examining shape-dependent effects since they had similar particle volume 

(~106 nm3) and thus similar interaction volume with the plant cells. 

5.3.2.2 Plant growth 

 Based on the previous studies with SiNPs of varied size (i.e., 14–200 nm), A. 

thaliana plants were grown in the presence of AR1 and AR3 particles at a concentration 

of 250 ppm for 6 weeks. The nutrient solution was maintained at pH 5.8 to mitigate any 
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A B

Figure  5.  10  Scanning  electron  micrographs  of  (A)  AR1  and  (B)  AR3  silica  particles.  
Scale  bar  is  500  nm  (A)  or  2  µm  (B). 
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 potential silanol effects. Plants exposed to the AR1 particles exhibited some reduced 

development, with biomass and rosette diameters of 52 ± 24 and 77 ± 18% relative to 

plants grown in blank nutrient solution, respectively. However, the stem length for plants 

exposed to the AR1 particles was similar to blanks (88 ± 25% normalized to blank). For 

the AR3 particles, neither the biomass, rosette diameter, nor length of the main stem was 

reduced compared to blanks (84 ± 64, 101 ± 40, 77 ± 45% normalized to blank). Plants 

grown in the presence of AR1 and AR3 particles were non-chlorotic and showed similar 

flowering behavior upon maturation. Thus, although the AR1 particles exhibited some 

growth reduction at 250 ppm over the 6 weeks, they were not deemed toxic. Overall, a 

significant dependence of shape on phytotoxicity was not observed. 

5.3.2.3 Transmission electron microscopy 

 Shape-dependent uptake of the AR1 and AR3 particles was subsequently 

examined with TEM. Root samples from plants exposed to the AR1 or AR3 particles 

were prepared according to the aforementioned protocol. As shown in Figure 5.11, the 

AR1 particles were observed in the root cells, while there was no indication for AR3 

particle uptake. The lack of AR3 particle uptake is not surprising given the lower 

exposure concentration, plant cell wall barrier, and the increased length (i.e., 241 ± 32 

nm) of the AR3 particles.32 Of note, some dissolution of the AR1 particles (~35%) was 

observed over the 6 week exposure based on TEM images. 

5.3.2.4 Silicon elemental analysis 

 Silicon elemental analysis of the plant tissue (i.e., roots, rosette, stem) was 

employed to quantitatively determine any uptake of the AR1 and AR3 silica particles. 
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A B

Figure  5.11  Transmission  electron  micrographs  of  root  cells  after  exposure  to  250  ppm 
(A)  AR1  or  (B)  AR3  particles.  Scale  bar  is  0.2  µm.  Arrow  points  to  AR1  particles. 
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 Analysis via ICP-OES confirmed little uptake of these particles into the plant roots, 

rosettes, or stems using the conditions studied (Table 5.8). However, silicon 

measurements for the blanks were also lower than previous experiments with similar 

growth conditions (e.g., 4 ± 3 vs. 378 ± 14 mg Si/kg plant tissue). Future experiments 

should examine increased exposure concentrations for the AR1 and AR3 particles to see 

if uptake is concentration dependent, while also utilizing more biomass for ICP-OES 

analysis. 

5.4 Conclusions 

The results suggest that SiNPs will not exhibit significant phytotoxicity upon 

mitigating any pH effects and/or silanol-nutrient adsorption, although significant uptake 

of smaller SiNPs (e.g., 14 and 50 nm) into the plant is still likely. Any pH-dependent 

phytotoxic effects of the SiNPs are expected to be further reduced in terrestrial 

environments where natural buffers aid in maintaining an ideal pH for plant growth.29 

Although nanoparticle shape has been shown to have significant influence over particle–

cell adhesion strength, internalization rate, and toxicity in mammalian cell drug 

delivery,33 the presence of a cell wall reduces the likelihood of uptake for plants.32 

However, nanoparticles of varied shape can be delivered to plant cells via bombardment 

strategies and continued evaluation of phytotoxicity is thus warranted.34 With respect to 

terrestrial environments, soil provides a large reactive sink for nanoparticles, and thus the 

applied dose employed in our study is greater than doses that may reach soil-based 

organisms.7 Notwithstanding, nanoparticles will undergo dissolution, 

sorption/aggregation, and migration in real environments. For those nanoparticles that 
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Sample Roots 
(mg Si/kg tissue)

Rosette 
(mg Si/kg tissue)

Stem 
(mg Si/kg tissue)

Blank 4.4 ± 3.1 0.2 ± 0.1 0.3 ± 0.1

AR1 4.8 ± 0.2 0.5 ± 0.1 0.0 ± 0.1

AR3 0.6 ± 0.5 1.2 ± 0.1 1.1 ± 0.4

Table  5.8  Silicon  determination   in   roots,   rosette,  and  stems  for  250  ppm  exposure   to  AR1  
and  AR3  particles  after  6  weeks  using  ICP-OES.  Results  are  reported  in  mg  Si  per  kg  plant  
tissue.  Error  represents  variation  between  three  instrument  integrations. 
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remain bioavailable in the soil, future work should focus on entry modes and mechanisms 

into the terrestrial food chain while continuing to evaluate phytotoxicity and potential 

biomagnification. 
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CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS 

6.1 Summary 

 Nanomaterial physicochemical properties (e.g., size, shape, surface 

hydrophobicity, drug-release kinetics) were shown to influence association/fate and 

toxicity in both bacterial pathogens and terrestrial plants. Chapter 1 reviewed the rising 

societal use of nanomaterials and addressed the importance of understanding the impact 

of nanomaterial properties on cellular interaction and toxicity, whether deemed beneficial 

(e.g., bacterial pathogen killing) or detrimental (e.g., plant death). The design of NO-

releasing silica nanoparticles, dendrimers, and chitosan oligosaccharides with controlled 

size, shape, surface hydrophobicity, molecular weight, and NO-release kinetics was 

discussed for the eradication of clinically-relevant planktonic bacteria and biofilms. The 

effects of nanomaterial properties (e.g., composition, size, shape) on phytotoxicity toward 

terrestrial plants were also presented. Overall, the introduction served to address the 

challenges in evaluating engineered nanomaterial toxicity to biological systems. 

 In Chapter 2, nanomaterial (i.e., silica nanoparticle, dendrimer, chitosan) 

properties (e.g., size, shape, exterior functionality, and molecular weight) were found to 

significantly impact planktonic bacterial killing. Nitric oxide-releasing silica 

nanoparticles of three different sizes (i.e., 50, 100, and 200 nm) and similar total NO 

storage were utilized to evaluate biocidal action against P. aeruginosa as a function of 
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nanoparticle size. Particles with decreased size exhibited increased bactericidal efficacy 

due to improved nanoparticle–cell association. The shape (i.e., aspect ratio) of NO-

releasing silica nanoparticles also proved important in the killing of planktonic P. 

aeruginosa and S. aureus. Particles with increased aspect ratio (i.e., 8) had lower MBCs 

than particles with aspect ratios of 1 or 4 due to enhanced NO delivery, likely from 

increased particle surface area in contact with the cell.  

Killing of planktonic P. aeruginosa and S. aureus was also demonstrated for NO-

releasing PPI dendrimers as a function of exterior functionality and size (i.e., generation). 

The higher generation NO-releasing dendrimers (5 versus 2) exhibited increased biocidal 

action due to a greater concentration of N-diazeniumdiolates at the dendrimer surface. 

Additionally, NO-releasing-dendrimers modified with the more hydrophobic SO group 

exhibited lower MBCs than those functionalized with PO or PEG as a result of improved 

electrostatic interactions with the bacterial cell membrane.  

Lastly, the bactericidal efficacy of NO-releasing chitosan oligosaccharides was 

evaluated against P. aeruginosa as a function of molecular weight and exterior 

functionality. Of the three NO-releasing chitosan oligosaccharide molecular weights (i.e., 

2.5k, 5k, and 10k) examined, no significant differences in planktonic killing were 

observed. Rapid association of the positively-charged chitosan with the negatively-

charged bacterial cell membrane likely occurred independent of any potential molecular 

weight-related diffusion limitations. Similar to observations with the NO-releasing PPI 

dendrimers, the more neutral PEG-modified NO-releasing chitosan oligosaccharides 
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exhibited reduced biocidal action. Differences in susceptibility to NO from both silica 

and dendrimer scaffolds were noted between Gram-negative P. aeruginosa and Gram-

positive S. aureus, with S. aureus generally requiring increased NO doses for eradication. 

Furthermore, cytotoxicity against L929 mouse fibroblasts was evaluated for both control 

and NO-releasing scaffolds at their respective MBCs, with many of the scaffolds proving 

non-toxic at the concentrations necessary for killing planktonic bacteria.  

 Chapter 3 built upon the NO-releasing therapeutics utilized in Chapter 2 to 

understand the effects of nanomaterial properties on the eradication of clinically-relevant 

bacterial biofilms. The eradication of P. aeruginosa and S. aureus biofilms was evaluated 

as a function of NO-releasing silica nanoparticle size (i.e., 14, 50, and 150 nm) and shape 

(i.e., aspect ratio 1, 4, and 8). Similar to planktonic studies, NO-releasing silica 

nanoparticles of reduced size or increased aspect ratio were most effective. However, NO 

doses ~3–31x those for planktonic assays were required for biofilm killing, resulting in 

more significant toxicity toward healthy host cells. Despite cytotoxicity concerns for the 

silica scaffolds at the higher biofilm MBCs, the benefits of NO as an anti-biofilm agent, 

as well as the importance of particle size and shape were demonstrated. Differences in 

susceptibility to NO between Gram-negative P. aeruginosa and Gram-positive S. aureus 

biofilms were again observed, with S. aureus biofilms requiring increased NO doses for 

eradication.  

Similarly, NO-releasing amphiphilic PAMAM dendrimers were evaluated as anti-

biofilm agents as a function of size and exterior functionality (i.e., PO/ED ratio). As 
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expected, size-dependent killing of P. aeruginosa biofilms was observed, with improved 

efficacy of the generation 3 dendrimers over generation 1. The role of surface 

hydrophobicity in biofilm eradication was also prominent. Enhanced bactericidal efficacy 

was observed for the hydrophobic ED-modified dendrimers compared to the more 

hydrophilic PO-modified dendrimers. However, the ED-modified dendrimers were 

significantly cytotoxic at MBC concentrations necessary for biofilm killing. Thus, the PO 

to ED ratio was optimized (7:3 and 5:5) to obtain maximum biofilm eradication and 

minimal cytotoxicity.  

In addition to their utility in planktonic studies, NO-releasing chitosan 

oligosaccharides were evaluated for therapeutic potential against P. aeruginosa biofilms. 

Anti-biofilm efficacy of the NO-releasing chitosan oligosaccharides was demonstrated to 

be a function of both molecular weight (2.5k, 5k, and 10k) and exterior functionality. In 

contrast to planktonic studies, an increased MBC for the 10k chitosan oligosaccharide 

was observed and attributed to more restricted diffusion of the scaffold through the 

biofilm. Cationic chitosan oligosaccharides rapidly associated with bacterial cells and 

penetrated the P. aeruginosa biofilms, thus exhibiting improved efficacy compared to the 

neutral PEG-modified scaffolds. Of note, none of the NO-releasing chitosan 

oligosaccharides studied were cytotoxic to L929 mouse fibroblasts at concentrations 

necessary for biofilm eradication.  

 In Chapter 4, the role of NO-release kinetics on biocidal action was investigated 

against both P. aeruginosa and S. aureus planktonic bacteria and biofilms. Dendrimers 
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were synthesized with different ratios of PO and ACN to exhibit varied NO-release 

profiles (i.e., burst versus sustained release) and similar total NO storage (~1.89 µmol 

NO/mg). Planktonic cells exhibited greater susceptibility to NO-releasing PO-modified 

dendrimers (i.e., burst release). However, NO-releasing ACN-modified dendrimers (i.e., 

sustained release) were more effective at biofilm eradication. Control and NO-releasing 

PO, 1:1 PO/ACN, 1:7 PO/ACN, and ACN-modified dendrimers were non-toxic to 

healthy host cells at concentrations required for planktonic bacterial killing. Control 

dendrimers were also non-toxic at concentrations necessary for biofilm eradication, but 

significant reductions in fibroblast viability were observed at these concentrations for the 

NO-releasing dendrimers. Although cytotoxicity did not show a dependence on NO-

release kinetics, a clear association exists between high doses of NO and reduced 

fibroblast viability. 

 Chapter 5 investigated the effects of silica nanoparticle size and shape toward the 

terrestrial plant, Arabidopsis thaliana. Three sizes (i.e., 14, 50, and 200 nm) of silica 

nanoparticles with varied surface charge and composition were evaluated for 

phytotoxicity and plant uptake. Phytotoxic effects (up to 1000 ppm) were mitigated by 

adjusting the pH of the plant-growth nutrient solution or removal of the particle surface 

charge. However, size-dependent uptake of the silica particles was observed, with the 

smaller 14nm particles showing increased uptake in A. thaliana root cells. Silicon 

elemental analysis confirmed particle uptake into the rosettes and stems as well, although 

to a lesser extent. Silica particle phytotoxicity and uptake were also evaluated as a 

function of shape (i.e., aspect ratio 1 and 3). A. thaliana growth was not significantly 
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reduced after exposure to AR1 and AR3 particles at 250 ppm for 6 weeks. While AR1 

particles were observed in the root cells with TEM, silicon elemental analysis of the 

roots, rosette, and stems confirmed little uptake of the AR1 and AR3 particles. The 

minimal uptake observed was likely due to the low exposure concentration. Overall, the 

silica nanoparticles examined were found to be relatively non-toxic to A. thaliana plants.     

6.2 Future Directions 

 The true realization of the potential for engineered nanomaterials is still in its 

infancy. Nanomaterial use continues to increase rapidly, but much remains to learn about 

the behavior of these systems in clinical settings and the environment. Ultimately, a 

predictive approach for determining nanomaterial structure-activity relationships is 

desired for evaluating toxicity risk, whether beneficial or detrimental. The research 

presented in this thesis indicates the importance of nanomaterial physicochemical 

properties (e.g., size, shape, exterior hydrophobicity, drug-release kinetics) in improving 

the antibacterial action of NO-releasing therapeutics (e.g., silica particles, dendrimers, 

chitosan oligosaccharides) while minimizing cytotoxicity. In addition, we have initiated 

work to evaluate the effects of nanomaterial properties on other organisms (i.e., plants) 

and understand their broader environmental impact. Continued examination of the 

nanomaterial-bio interface is warranted for extending the utility of NO-releasing 

therapeutics to additional clinically-relevant infections and for determining the potential 

for nanomaterial toxicity, transformation, and biomagnification within the environment. 

6.2.1 Tuning nanomaterial surface charge and hydrophobicity  
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 With increasing antibiotic resistance, combination antibacterial therapies have 

become increasingly attractive. Ideally, combining two agents that exert biocidal action 

via differing mechanisms would prolong their utility and even result in synergistic 

killing. Long chain cationic quaternary ammoniums compounds have proven effective at 

both preventing bacterial adhesion and killing adhered bacteria.1, 2 The positively-charged 

ammonium group promotes association with the negatively-charged bacterial cell 

membrane, whereby the long alkyl chains are then able to insert into the membrane and 

cause disruption. Carpenter et al. reported on the bactericidal efficacy of quaternary 

ammonium-functionalized silica nanoparticles both with and without NO-release 

capabilities.3 The quaternary ammonium-functionalized silica particles were modified 

with varying chain lengths (i.e., methyl, buytl, octyl, and dodecyl). Scaffolds with longer 

chain lengths (i.e., octyl and dodecyl) exhibited potent antibacterial efficacy both with 

and without NO-release, however many of the scaffolds were cytotoxic to fibroblasts. 

Combining quaternary ammonium-functionalized silica particles with NO-release is thus 

attractive for the dual-mechanistic killing, reduced risk of antibacterial resistance, and 

ability of low levels of NO to help mitigate cytotoxic effects and promote fibroblast 

proliferation.   

Based on the work presented in Chapters 2 and 3, it is hypothesized that 

decreasing the size of the quaternary ammonium/NO-functionalized scaffold (<180 nm) 

would further improve bactericidal efficacy. As such, quaternary ammonium-modified 

dendrimers (~2 nm) both with and without NO-release capabilities should be evaluated 

for bacterial killing. Nitric oxide-releasing dendrimers were previously shown to 
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associate readily with both planktonic bacteria and biofilms,4, 5 thus coupling this scaffold 

with long chain (i.e., octyl and dodecyl), non-depleting quaternary ammoniums may 

further enhance bacterial eradication. Although quaternary ammonium-functionalized 

scaffolds previously demonstrated cytotoxicity to fibroblast cells, improved bacterial 

eradication for quaternary ammonium/NO-modified dendrimers (i.e., reduced material 

doses) would also likely reduce potential cytotoxicity. Thus, further tuning of the scaffold 

charge and hydrophobic chain length should be completed to enhance bacterial 

eradication, while minimizing toxicity to healthy host cells. 

6.2.2 Effects of nitric oxide against additional clinically-relevant bacterial strains  

Clinically-relevant infections are comprised of diverse communities of bacteria, 

and thus differential susceptibility to NO may play a significant role in overall 

bactericidal efficacy.6-8 As detailed in Chapters 2 and 3, planktonic P. aeruginosa and S. 

aureus exhibited differential susceptibility to NO, with S. aureus requiring increased 

doses for eradication. Hetrick et al. previously investigated the anti-biofilm efficacy of 

NO-releasing silica nanoparticles against Gram-negative P. aeruginosa and E. coli, as 

well as Gram-positive S. aureus and S. epidermidis.7 At the same concentration of NO-

releasing particles, a 5-log reduction in viability was observed for the Gram-negative 

bacteria (i.e., P. aeruginosa and E.coli), while only a 2-log reduction in viability was 

noted for the Gram-positive bacteria (i.e., S. aureus and S. epidermidis). Varied bacterial 

membrane structure may be a partial cause for these differences in antibacterial 

susceptibility.9 However, other properties of the bacteria may govern NO susceptibility as 
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well, including antioxidant enzyme levels10 and production of NO for cytoprotection.11 

The potential Gram-class dependence for NO susceptibility should be further evaluated 

as a function of scaffold properties, total NO storage, NO-release kinetics, and nutrient 

conditions for a greater number of bacterial strains (e.g., Gram-negative A. baumannii 

and Gram-positive E. faecalis). 

Furthermore, additional disease-related (e.g., cystic fibrosis) bacterial strains 

should be studied for susceptibility to NO-induced killing.12 Cystic fibrosis (CF) patients 

exhibit chronic lung inflammation with increased mucus in their respiratory system.13 

Normal clearance of bacteria from the CF respiratory system is prevented and bacterial 

biofilms readily form. Specifically, antibiotic-resistant, alginate-producing, mucoid P. 

aeruginosa biofilms are associated with the persistence of CF.14, 15 Inhaled, gaseous NO 

has shown promise in eradicating CF-relevant P. aeruginosa, but continuous exposure to 

the high NO concentrations required (~160–200 ppm) would lead to 

methemoglobinemia.16 As such, NO-releasing macromolecular scaffolds utilizing 

localized NO delivery should be studied for eradication of CF-relevant P. aeruginosa 

strains. Pulmonary delivery necessitates that the scaffold be biodegrable and thus the NO-

releasing chitosan oligosaccharides discussed in Chapters 2 and 3 are promising 

candidates for therapeutic evaluation. 

6.2.3 Effects of nitric oxide against polymicrobial biofilms 

 In considering the effects of NO against clinically-relevant bacteria, future 

research should focus on the NO-induced eradication of polymicrobial biofilms.17 For 
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example, infected burn wounds are often comprised of Pseudomonas and Staphylococcus 

bacterial strains as well as the fungi, Candida and Aspergillus. Hammond et al. 

demonstrated the differential efficacy of common antibiotics toward polymicrobial 

biofilms.18 Both species in the P. aeruginosa and S. aureus polymicrobial biofilms were 

eradicated with gentamycin, however mupirocin readily eradicated only S. aureus and 

triple antibiotic ointment was more effective against P. aeruginosa. Thus, examination of 

NO’s   broad-spectrum antibacterial action against polymicrobial biofilms is warranted. 

Preliminary studies determined the effects of NO-releasing G1 PE 73 dendrimers 

(discussed in Chapter 3) against P. aeruginosa and S. aureus polymicrobial biofilms. As 

shown in Figure 6.1, P. aeruginosa was preferentially eradicated over S. aureus. This 

result is expected given the differential NO susceptibility observed for the individual 

bacterial strains, however future work should focus on varying properties of the NO-

release scaffold and the initial ratio of P. aeruginosa and S. aureus within each biofilm. 

Additionally, eradication should be examined as a function of biofilm age and maturity. 
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Figure 6.1 Bacterial viability of P. aeruginosa (circle, right scale) and S. aureus (square, left 
scale) after 24 h exposure to NO-releasing G1 PE 73 dendrimers (Chapter 3). P. aeruginosa 
was fully eradicated at 300 µg/mL, but ~106 colony forming units of S. aureus remained. 
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6.2.4 Phytotoxicity as a function of plant species and nanomaterial characteristics 

Due to the increased prevalence of new nanomaterials, continued evaluation of 

phytotoxicity as a function of nanomaterial physicochemical properties is critical. 

Screening of additional plant types for phytotoxicity is also warranted since nanomaterial 

uptake and translocation may differ between species and some plants may be more 

susceptible to toxicity than others.19 Hydroponic plant growth is suitable for initial 

toxicity determinations,20 however if substantial toxicity nanomaterial toxicity is noted, 

more relevant soil-based experiments should be conducted. The potential for 

nanomaterial biodistribution and biomagnification should also be examined. For 

example, gold nanoparticles taken up into tobacco plants were passed onto hornworms 

through ingestion.21 A myriad of nanomaterials and plant species exist for phytotoxicity 

testing, and thus researchers should carefully consider nanomaterial exposure routes, 

possible nanomaterial transformations, and the potential end organisms when developing 

their studies.   

6.3 Conclusions 

 The work presented here detailed the importance of nanomaterial 

physicochemical properties in evaluating biological interactions and toxicity. Silica, 

dendrimer, and chitosan oligossacharide NO-releasing scaffolds with varied size, shape, 

and exterior functionality were demonstrated to be effective against common pathogenic 

bacteria. Nitric oxide-releasing nanomaterials with small size, increased aspect ratio, and 

hydrophobic exteriors proved the most toxic to bacteria, albeit cytotoxicity to healthy 
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host cells was also observed in some cases. The determinations made in the preceding 

chapters will aid in designing future NO-releasing scaffolds to exhibit maximum 

bactericidal action, while preventing unwanted cytotoxic effects. Furthermore, the 

evaluation of nanoparticle phytotoxicity in relation to size, surface composition, and 

shape showed that even if plants exhibit significant particle uptake, extensive toxicity 

may not be observed. These studies also emphasized the need to evaluate the potential for 

nanomaterial biodistribution and biomagnification in the environment, especially with 

regard to the food chain.  
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