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Abstract

Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent 

as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by 

choroidal neovascularization (CNV). We report that the eosinophil/mast cell chemokine receptor 

CCR3 is specifically expressed in CNV endothelial cells in humans with AMD, and that, despite 

the expression of its ligands eotaxin-1, -2, and -3, neither eosinophils nor mast cells are present in 

human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced 

CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell 

proliferation, and was uncoupled from inflammation as it occurred in mice lacking eosinophils or 

mast cells and was independent of macrophage and neutrophil recruitment. CCR3 blockade was 

more effective at reducing CNV than vascular endothelial growth factor-A (VEGF-A) 

neutralization, which is currently in clinical use, and, unlike VEGF-A blockade, not toxic to the 

mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV 

invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting 

might reduce vision loss due to AMD through early detection and therapeutic angioinhibition.

AMD affects 30-50 million people globally, with approximately 90% of severe vision loss 

attributed to CNV1. The worldwide prevalence of CNV is expected to double in the next 

decade due to population aging. Targeting the pro-angiogenic cytokine vascular endothelial 

growth factor (VEGF)-A has been validated in patients with CNV2-4. However, substantial 

improvement of vision occurs only in one-third of patients treated with VEGF-A 

antagonists, and one-sixth of treated patients still progress to legal blindness. Moreover, 

safety concerns with continual blockade of VEGF-A, which is constitutively expressed in 

the normal adult human retina5, are emerging6,7. Thus, treatment strategies based on more 

specific targeting of CNV are desirable. However, no molecular marker specific for human 

CNV has yet been reported.

CCR3 expression restricted to CNV in human eyes

In our studies examining the role of chemokines in angiogenesis, we discovered that CCR3 

(also known as CD193), a chemokine receptor best known for its role in promoting 

eosinophil and mast cell trafficking8, was expressed in human choroidal endothelial cells 

(CECs) only in the context of CNV due to AMD and not in other non-proliferating or 

proliferating choroidal vasculature (Fig. 1). Immunolocalization studies showed that CCR3 

was expressed in CECs of all examined specimens of surgically excised CNV tissue from 

patients with AMD (18/18) who had received no prior treatment for AMD (Fig. 1a, b; 

Supplementary Fig. S1). In contrast, CCR3 was not expressed in CECs in the choroid of any 

patients with early (atrophic) AMD (0/10) or in age-matched patients without AMD (0/10) 

(Fig. 1c, d). CCR3 also was not immunolocalized in surgically excised tissue from patients 

with epiretinal fibrotic membranes (0/6) or in CECs in patients with choroidal melanoma 

(0/8) (Fig. 1e, f). Collectively these data point to a highly specific pattern of expression of 

CCR3 (P = 7×10−14, exact contingency table test) in CECs in neovascular AMD. In 

addition, we identified the expression of the CCR3 ligands eotaxin-1 (CCL11), -2 (CCL24), 

and -3 (CCL26) in all examined specimens of surgically excised CNV tissue from patients 

with AMD who had received no prior treatment for AMD (Fig. 1g-j), suggesting that the 
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eotaxin-CCR3 axis could play a role in this disease state. Interestingly, despite the 

abundance of eotaxins, eosinophils and mast cells were not identified in human CNV 

(Supplementary Fig. S2), consistent with earlier findings9.

CCR3 stimulation promotes CEC migration and proliferation

The best elucidated pathological functions of CCR3 to date have been its role in allergic 

diseases such as asthma10-14 and eosinophilic esophagitis15. There is a single report of its 

direct role in angiogenesis16. Although eosinophils and mast cells have been reported to be 

involved in angiogenesis17,18, such actions are considered minor or isolated. Therefore, we 

studied the effects of CCR3 modulation on angiogenesis in vitro and in vivo. Neutralizing 

anti-CCR3 antibodies inhibited the tube formation of primary human CECs cultured in 

Matrigel in vitro (Fig. 2a). In an experimental model of CNV induced by laser injury in 

wild-type mice19-24, neutralizing anti-CCR3 antibodies reduced the fraction of CECs in 

vivo that was in the proliferative state of the cell cycle (Fig. 2b). Consistent with this finding, 

each of the three eotaxins stimulated human CEC proliferation (Fig. 2c). Cytoskeletal 

rearrangement through polymerization of monomeric actin to microfilamentous F-actin, 

which is essential for eosinophil chemotaxis induced by the eotaxins, is also critical in 

angiogenic migration of endothelial cells. Stimulation of human CECs with any of the three 

eotaxins induced a rapid polymerization of actin molecules (Fig. 2d, e). All three eotaxins 

also activated Rac-1 (Supplementary Fig. S3), a small GTPase that is critical in regulating 

endothelial cell spreading and migration, and promoted human CEC migration in a dose-

dependent fashion (Fig. 2f). Collectively these data demonstrate that CCR3 activation can 

promote multiple steps of angiogenesis. The expression of CCR3 on CECs in vivo is 

confined to CNV tissues; however, in vitro, human CECs responded to CCR3 ligands. This 

might be due to the presence of several CNV-promoting growth factors in the culture 

medium.

CCR3 receptor or ligand antagonism inhibits CNV

We studied the in vivo effects of CCR3 targeting in a mouse model of CNV induced by laser 

injury22 that is the most widely utilized animal model of this disease. A single intraocular 

administration of either CCR3 neutralizing antibodies or a small molecule CCR3 receptor 

antagonist ((S)-Methyl-2-naphthoylamino-3-(4-nitrophenyl)propionate) both suppressed 

laser injury-induced CNV in wild-type mice in a dose-dependent fashion (Fig. 3a-c). CNV 

was also diminished in Ccr3−/− mice25 compared to wild-type mice (Fig. 3d). The 

specificity of pharmacological CCR3 blockade was confirmed by demonstrating that CNV 

was not reduced in Ccr3−/− mice by CCR3 neutralizing antibodies or CCR3 receptor 

antagonist (116±7% and 109±16% of control, respectively; n = 5; P > 0.1). CCL-11 and 

CCL-24, the principal mouse ligands for CCR3, were markedly increased soon after laser 

injury and immunolocalized to the retinal pigmented epithelium (RPE), which is adjacent to 

CECs (Fig. 3e, f). Also, human RPE cells synthesized all three eotaxins (Supplementary Fig. 

S4), implicating these cells, which are abundantly interspersed in CNV9, as a source of 

CCR3 ligands in CNV. Genetic ablation of either Ccl11 (ref. 26) or Ccl24 (ref. 12) reduced 

CNV, while the neovascular response in Ccl11−/− × Ccl24−/− mice12 was suppressed to a 

greater extent than in either of the “single knockout” mice, suggesting cooperation between 
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these two ligands in this system (Fig. 3g). A single intraocular administration of neutralizing 

antibodies against CCL-11 or CCL-24 also suppressed CNV in wild-type mice (Fig. 3h, i), 

validating these CCR3 ligands as anti-angiogenic targets. Together, these data demonstrate 

that CCR3 activation is essential for in vivo angiogenesis in the most widely used preclinical 

model of neovascular AMD.

CCR3-driven angiogenesis uncoupled from inflammation

We sought to determine whether CCR3 targeting reduced CNV solely via anti-angiogenic 

mechanisms or whether anti-inflammatory mechanisms also were involved. Neither 

eosinophils nor mast cells (defined as CCR3hiCD3−CD117intCD49d+ and 

CCR3intCD3−CD117hiCD49d+ cells, respectively) were recruited to the choroid following 

laser injury, as monitored by flow cytometry (Supplementary Fig. S5). Furthermore, the 

CNV response in eosinophil-deficient Δdbl GATA mice11 and mast cell-deficient KitW-v/

KitW-v mice27 was not different from that in wild-type mice (Fig. 3j). In addition, 

intraocular administration of neutralizing anti-CCR3 antibodies reduced CNV in Δdbl 

GATA or KitW-v/KitW-v mice to the same extent as in wild-type mice. Thus, although 

eosinophils and mast cells have been reported to be capable of driving angiogenesis in other 

systems17,18, both cell types are dispensable in the development of experimental CNV. 

Although neutrophil and macrophage infiltration are crucial for the development of 

experimental CNV23,28, CCR3 receptor targeting did not affect recruitment of either 

inflammatory cell type (defined as Gr-1+F4/80− and F4/80+CD11c− cells, respectively) 

(Supplementary Fig. S5). Therefore, the angioinhibitory effect of CCR3 blockade in this 

model is a direct anti-vascular effect and does not appear to involve modulation of cellular 

inflammation. The mechanisms underlying the paucity of eosinophils and mast cells in CNV 

remain to be defined. One potential explanation could be the expression of CXCL9, which 

blocks eotaxin-induced CCR3-mediated eosinophil recruitment29,30, in CNV 

(Supplementary Fig. S6). Other mechanisms influencing adhesion or mobilization of these 

leukocytes also might be operative.

CNV bioimaging by CCR3 targeting

Because invasion of the retina by CNV results in morphological and functional disruption of 

the retina, early detection of CNV is desirable; indeed, detection of CNV before retinal 

invasion would be ideal. CNV that has breached the retina can be detected by fluorescein 

angiography. However, this diagnostic modality cannot detect CNV before it has invaded 

the retina, i.e., when it is still limited to the choroid. Yet postmortem histopathological 

studies have shown that substantial numbers of patients in whom fluorescein angiography 

does not reveal the presence of CNV nevertheless have CNV that has not yet invaded the 

retina31. Therefore, we explored whether CCR3-targeted bioimaging using anti-CCR3 Fab 

antibody fragments (Supplementary Fig. S7) conjugated to quantum dots (QDot-CCR3 Fab) 

could detect CNV before it became clinically evident.

We previously described the spontaneous development of CNV in senescent mice deficient 

in monocyte chemoattractant protein-1 (MCP-1/CCL-2) or its CCR2 receptor32. Similar 

pathology occurs at a younger age in Ccl2−/− × Ccr2−/− mice (unpublished data). These mice 
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also undergo outer retinal degeneration rapidly (Supplementary Fig. S8). We tested whether 

fundus angiography following intravenous injection of QDot-CCR3 Fab could detect 

subretinal CNV in these mice. QDot-CCR3 Fab angiography demonstrated hyperfluorescent 

signals in regions of the fundus of these mice that were silent on fluorescein angiography 

(Fig. 4a,b). The specificity of CCR3 targeting was confirmed by the absence of 

hyperfluorescent signals in Ccl2−/− × Ccr2−/− mice injected with QDot-isotype Fab and in 

wild-type mice injected with QDot-CCR3 Fab (Fig. 4b; Supplementary Fig. S9). 

Histological examination of these areas revealed proliferating (Ki67+) CCR3+ blood vessels 

in the choroid that had not yet invaded the retina, along with accumulation of QDot-CCR3 

Fab in these vessels (Fig. 4c-e). These data provide proof of principle that CCR3-targeted 

bioimaging can detect subclinical CNV before it disrupts the retina and causes vision loss.

CCR3 targeting superior to VEGF-A targeting

In comparing CCR3 targeting to VEGF-A targeting, the most effective approved treatment 

for human CNV, we found that CCR3 neutralizing antibodies were more effective than 

VEGF-A neutralizing antibodies (68±3% vs. 57±4%) at inhibiting laser-induced CNV in 

mice (Supplementary Fig. S10). In the laser injury model, CCR3 neutralization did not 

change VEGF-A levels in the RPE/choroid and VEGF-A blockade did not change CCR3 

expression on CECs (Supplementary Fig. S11): these two pathways appear to be not directly 

coupled. Repeated intravitreous administration of anti-VEGF-A antibodies resulted in 

anatomic and functional damage to the retina in wild-type mice (Supplementary Fig. S12), 

consistent with earlier reports that anti-VEGF-A therapy induces dysfunction in and damage 

to the inner and outer murine retina6,7. These effects were modest at a dose of anti-VEGF-A 

antibodies that suppressed mouse CNV but more pronounced at a higher dose that is 

comparable to the dose used in humans. It should be noted that anti-VEGF-A 

pharmacotherapy has not been associated with an increased risk of profound retinal damage 

in humans33, but subtle abnormalities have been observed34,35 and some adverse effects 

might be misattributed to disease progression. In contrast to VEGF-A blockade, neither 

CCR3 Ab nor CCR3 receptor antagonist induced retinal toxicity in wild-type mice as 

confirmed by fundus imaging and electrophysiological function (Supplementary Fig. S12). 

Vegfa deletion is embryonically lethal36,37 and conditional ablation of Vegfa in the RPE 

induces profound retinal degeneration and visual dysfunction38. In contrast, the Ccr3−/− 

mouse retina was normal in appearance and electrophysiological function (Supplementary 

Fig. S13).

Discussion

Our findings suggest that CCR3 targeting may be a safe and viable strategy for early 

detection (using biocompatible quantum dots or other bioimaging fluorochromes such as 

near infrared dyes) and treatment of CNV (by receptor or ligand targeting) that might be 

superior to current standard of care. CCR3 bioimaging is likely to be most useful in 

individuals with RPE pigmentary disturbances and multiple subretinal lipoproteinaceous 

deposits known as drusen or fellow eye involvement with clinically evident CNV, as they 

are known to be at high risk for developing CNV39,40. Similar techniques might be useful 
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in non-invasively bioimaging other metabolic or molecular markers to provide information 

about disease pathogenesis or activity.

Several strategies have yielded molecular markers that are preferentially expressed on 

proliferating endothelial cells such as those in tumour vasculature41,42; however, CCR3 has 

not been identified in any of these reports. Therefore, our studies identify CCR3 as a novel 

marker of pathological angiogenesis and as a functional target in neovascular AMD. These 

findings also should prompt a search for genetic polymorphisms in the eotaxin-CCR3 axis in 

patients with AMD, and investigations of CCR3 function in other models of angiogenesis. 

Also, it is tempting to speculate that targeting CCR3 might provide dual benefits in asthma, 

which involves varying degrees of eosinophilic inflammation as well as angiogenic airway 

remodelling43.

Methods Summary

Mouse model of CNV

Laser photocoagulation (OcuLight GL, Iridex Corporation) was performed on mouse eyes to 

induce CNV, and CNV volumes were measured 7 days after injury by scanning laser 

confocal microscope (TCS SP, Leica) as previously described22.

Drug injections

Rat IgG2a neutralizing antibody against mouse CCR3 (R&D Systems), control rat IgG2a 

(Serotec), goat neutralizing antibody against mouse CCL11 (R&D Systems), goat 

neutralizing antibody against mouse CCL24 (R&D Systems), control goat IgG (Jackson 

Immunoresearch), or (S)-Methyl-2-naphthoylamino-3-(4-nitrophenyl)propionate 

(SB328437; Calbiochem) dissolved in DMSO were injected into the vitreous humor using a 

33-gauge double-calibre needle (Ito Corporation) once, immediately after laser injury as 

previously described22.

CCR3 bioimaging

F(ab) fragments were created from monoclonal IgG2a antibody raised against the 

extracellular domain of murine CCR3 (R&D Systems) and an isotype rat IgG2a (R&D 

Systems) using a commercially available papain-based kit (Pierce). Recovered fragments 

were conjugated with quantum dots (Invitrogen, QDot-800) and resuspended in sterile PBS. 

Ccl2−/− × Ccr2−/− mice were administered 100 μg of tagged CCR3 F(ab) or isotype F(ab) 

via tail vein injection after acquiring baseline fluorescent imaging using a Topcon retinal 

camera (TRC-50IX). Serial images were then acquired at 1, 4, and 12 h after which eyes 

were harvested and frozen in OCT for immunofluorescent analyses. Retinal images were 

analyzed (ImageNet, Topcon) by comparison to baseline and fluorescein angiographic data. 

Hyperfluorescent areas were then cropped, equally thresholded, and pseudocoloured 

(Photoshop CS3, Adobe). Sections from QDot-conjugated CCR3 or rat IgG2a isotype F(ab) 

injected animals were fixed in 4% paraformaldehyde and blocked with 5% normal donkey 

serum/5% goat serum in PBS, stained with rat anti-mouse CD31 (BD Biosciences) and 

either rabbit anti-mouse CCR3 (Santa Cruz) or rabbit anti-Ki67 (Abcam) followed by 
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appropriate fluorescent secondary antibodies (Alexa Fluor 488/594, Invitrogen), and 

evaluated by confocal laser scanning microscopy (Leica SP-5).

Methods

Human tissue

Choroidal neovascularization (CNV) tissue was excised from patients with age-related 

macular degeneration (AMD) who had no prior treatment for CNV. Retinal fibrosis tissue 

was excised from patients with a diagnosis of epiretinal membrane formation. Donor eyes 

from patients with atrophic AMD without CNV and patients without AMD were obtained 

from eye banks. Eyes with choroidal melanoma were obtained by surgical enucleation. The 

study followed the guidelines of the Declaration of Helsinki. Institutional review boards 

granted approval for allocation and histological analysis of specimens.

Animals

All animal experiments were in accordance with the guidelines of the University of 

Kentucky IACUC and the Association for Research in Vision and Ophthalmology. 

C57BL/6J and KitW-v/KitW-v mice were purchased from The Jackson Laboratory. Ccr3−/−, 

Ccl11−/−, Ccl24−/−, Ccl11−/− × Ccl24−/−, and Δdbl GATA mice have been previously 

described11,12,25,26. Ccl2−/− × Ccr2−/− mice were generated by interbreeding “single 

knockout” mice described previously32.

Drug injections

Rat IgG2a neutralizing antibody against mouse CCR3 (R&D Systems), control rat IgG2a 

(Serotec), goat neutralizing antibody against mouse CCL11 (1 μg; R&D Systems), goat 

neutralizing antibody against mouse CCL24 (5 μg; R&D Systems), control goat IgG 

(Jackson Immunoresearch), or (S)-Methyl-2-naphthoylamino-3-(4-nitrophenyl)propionate 

(SB328437; Calbiochem) dissolved in DMSO were injected into the vitreous humor of mice 

using a 33-gauge double-calibre needle (Ito Corporation) once, immediately after laser 

injury as previously described22.

Flow cytometry

Rat antibody against mouse CCR3 (1:250; Santa Cruz) coupled with PE-donkey antibody 

against rat IgG (1:250; Jackson Immunoresearch) or AlexaFluor647-conjugated rat antibody 

against mouse CCR3 (10 μg/ml; BD Biosciences) were used to quantify cell surface receptor 

expression on choroidal endothelial cells, defined by CD31+ VEGFR-2+ expression, gated 

by FITC-conjugated rat antibody against mouse CD31 (20 μg/ml; BD Biosciences) and PE-

conjugated rat antibody against mouse VEGFR-2 (20 μg/ml; BD Biosciences). 

Macrophages, neutrophils, eosinophils and mast cells were defined as F4/80+CD11c−, 

Gr-1+F4/80−, CCR3hiCD3−CD117intCD49d+ and CCR3intCD3− CD117hiCD49d+ cells, 

respectively. DNA content for cell cycle was analyzed after incubation with propidium 

iodide (0.05 mg/ml; Molecular Probes) containing 0.1% Triton X-100 and RNase A (0.1 

mg/ml; Roche). Samples were analyzed on a LSRII (Becton Dickinson).
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Immunolabeling

Immunofluorescent staining was performed with antibodies against human CCR3 (rat 

monoclonal, R&D Systems) or human CD31 (mouse monoclonal, Dako) and identified with 

Alexa 488 (Molecular Probes) or Cy3 secondary antibodies (Jackson ImmunoResearch). 

Immunohistochemical staining with the primary antibodies specific for human eotaxins-1, 2 

and 3 (mouse monoclonal, R&D Systems) was performed using horseradish peroxidase. 

Laser injured mouse eye sections were stained with antibodies against mouse CCL11 or 

CCL24 (both R&D Systems) along with antibody against mouse CD31 (BD Biosciences) 

and visualized with FITC or Cy3 secondary antibodies. Images were obtained using Leica 

SP5 or Zeiss Axio Observer Z1 microscopes.

Tube formation assay

96-well plates were coated with Growth Factor Reduced Matrigel (BD Biosciences) mixed 

with rat neutralizing antibody against human CCR3 (20 μg/ml, R&D Systems) or control rat 

IgG2a (Invitrogen) and allowed to solidify in the incubator at 37 °C for 45 min. Human 

choroidal endothelial cells (CECs)44-47 were plated on top of the Matrigel at 2.25 × 

104/cm2 in EBM-2 basal media (Cambrex) containing 1% FBS with CCR3 antibody or rat 

IgG2a at the above concentrations and allowed to grow overnight. Tube formation was 

analyzed by counting the number of cell junctions per mm2.

Proliferation assay

Human CECs were synchronized for cell cycle state by first cultivating them in EGM2-MV 

media (Lonza) supplemented with 10% FBS (Gibco) to achieve complete confluence and 

then by overnight serum starvation in MCDB131 media (Gibco) with 0.1% FBS. They were 

passaged to 96-well plates at a density of 5,000 cells per well, followed by stimulation for 

24 h with eotaxin-1, 2 or 3 (10 ng, 100 ng and 2 μg per ml, respectively; Peprotech) in 

MCDB131 media with 0.1% FBS. After 24 h, cell viability was measured with BrdU ELISA 

(Chemicon) according to manufacturer's instructions.

F-actin Polymerization Assay

Human CECs were seeded in black-walled 96-well plates and grown to 70-80% confluence 

in fully supplemented EGM-2MV. Cultures were serum starved overnight in basal media 

and then stimulated with recombinant human eotaxin-1 (10 ng/ml), eotaxin-2 (100 ng/ml), 

eotaxin-3 (2 μg/ml) (Peprotech), or vehicle control (PBS). At 0, 10, 30, 60, or 120 sec time-

points, cells were fixed in 3.7% paraformaldehyde for 10 min, washed, permeabilized in 

PBS with 0.1% Triton-X, and then stained with rhodamine labelled Phalloidin (1:200, 

Invitrogen) per manufacturer's recommendations. Plates were analyzed on a fluorescent 

plate reader (Synergy 4, Biotek) followed by fluorescent microscopy (Nikon E800).

Migration Assay

Eotaxins-1, -2, -3 were reconstituted in 0.1% bovine serum albumin (BSA) and then mixed 

with Matrigel diluted 1:1 with serum free endothelial basal media (EBM-2; Lanza). 500 μl 

of EBM-2 was added to each well of a 24-well plate followed by a 6.5 mm diameter 

Transwell insert (8 μm pores; Corning). Human CECs in EBM-2 were prestained with 
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Vybrant DiO (Invitrogen) for 30 min at 37 °C and seeded into the inserts at 50,000 cells per 

200 μl of serum free EBM-2 media. The plates were allowed to incubate for 16 h at 37 °C, 

5% CO2. The migrated cells were imaged with an Olympus CK40 microscope and Olympus 

DP71 camera.

Rac-1 activation

Human CECs were cultured in EGM-2 MV containing 5% FBS. Prior to starting the assay, 

cells were serum starved with basal medium (MCDB131) supplemented with 1% FBS 

overnight. Cells were stimulated for designated times with Eotaxin-1, 2 and 3 (10 ng/ml, 100 

ng/ml and 2 μg/ml respectively). Equal amounts of lysates (500 μg) were incubated with 

GST-Pak1-PBD agarose beads (Upstate) to pull-down active GTP-bound Rac-1 at 4 °C for 1 

h with rotation. The samples were subsequently analyzed for bound Rac-1 by western blot 

analysis using an anti-Rac-1 antibody (Upstate).

Electroretinography

Mice were dark adapted overnight and then anesthetized. Both eyes were positioned within a 

ColorBurst Ganzfeld stimulator (Diagnosys). Espion software (Diagnosys) was used to 

program a fully automated flash intensity series from which retinal responses were recorded.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
CCR3 and eotaxins are expressed in choroidal neovascularization. a,b, Immunofluorescence 

shows that CCR3 (green) receptor expression colocalizes with CD31+ (red) expressing 

blood vessels in surgically excised human age-related macular degeneration (AMD) 

choroidal neovascular (CNV) tissue. Nuclei stained blue by DAPI. b, Specificity of CCR3 

staining is confirmed by absence of staining with isotype control IgG (a). Individual red and 

green fluorescence channels are shown in Supplementary Fig. S1. c,d, CCR3 is not 

immunolocalized in CD31+ (red) blood vessels (white arrowheads) in the choroid of patients 

with atrophic AMD who do not have CNV (c) or in aged patients without AMD (d). 

Autofluorescence of retinal pigmented epithelium (white arrow) and Bruch's membrane 

(asterisks) overlying choroid is seen (c,d). e,f, CCR3 is not expressed in surgically excised 

avascular retinal fibrosis tissue (e) or in blood vessel of choroidal melanoma (f). g-j, 
Immunohistochemistry (golden brown reaction product) shows expression of CCL11 (g), 

CCL24 (h), and CCL26 (i) in surgically excised AMD CNV tissue, primarily in the stroma 

(red arrowheads) but also in the blood vessels (yellow arrows). Specificity of staining is 

confirmed by absence of staining with isotype control IgG (j). Scale bars, 10 μm.
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Fig. 2. 
CCR3 activation promotes angiogenesis. a, Tube formation of primary human choroidal 

endothelial cells (CECs) in Matrigel in vitro was reduced by neutralizing anti-human CCR3 

antibodies (Ab) compared to isotype IgG. n = 6, * P < 0.05 compared to isotype IgG. b, 
Fraction of CD31+VEGFR2+ gated mouse CECs in vivo in proliferative state (S phase) was 

increased 5 days after laser injury in wild-type mouse eyes compared to control (uninjured 

eyes), and was reduced by intraocular administration of neutralizing anti-mouse CCR3 Ab 

compared to isotype IgG. n = 6–10, * P < 0.05 compared to IgG treatment. c, Stimulation 

with eotaxins for 24 h induced human CEC proliferation. n = 4, * P < 0.05 compared to 

bovine serum albumin (BSA) treatment. d,e, Stimulation with eotaxins, but not PBS, 

induced actin polymerization in human CECs. Relative F-actin content is expressed as the 

ratio of the mean channel fluorescence between eotaxin- and media alone-stimulated cells 

(d). Rhodamine-phalloidin staining (red) shows F-actin fibre formation in eotaxin-

stimulated cells (e). Nuclei stained blue by DAPI. Data representative of 3–4 independent 

experiments are shown. c,e, CCL11 (10 ng/ml), CCL24 (100 ng/ml), CCL26 (2 μg/ml). f, 
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Stimulation with eotaxins for 16 hours induces dose-dependent migration of human CECs 

across 8 μm pore size Transwells. n = 5–10, * P < 0.05 compared to BSA treatment. (a–c, f) 
Significance by Mann-Whitney U test. Error bars depict s.e.m.
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Fig. 3. 
CNV reduced by CCR3 or eotaxin ablation or blockade independent of leukocyte 

modulation. a,b, Laser-induced CNV in wild-type mice was reduced by neutralizing anti-

mouse CCR3 Ab compared to isotype IgG (a) and by the CCR3 receptor antagonist (RA) 

SB328437 ((S)-Methyl-2-naphthoylamino-3-(4-nitrophenyl)propionate) compared to vehicle 

(PBS/DMSO) (b) in a dose-dependent fashion. n = 8–12, * P < 0.05 compared to no 

antibody or receptor antagonist. c, Representative examples of CNV in drug-treated mice. d, 
Laser-induced CNV was reduced in Ccr3−/− mice compared to wild-type mice. n = 9, * P < 

0.05 compared to wild-type mice. e, Eotaxin-1 (Ccl-11) and eotaxin-2 (Ccl-24) protein 

levels, measured by ELISA, were increased following laser injury in wild-type mice. n = 6, 

* P < 0.05, # P < 0.01 compared to 0 h baseline. f, Ccl-11 and Ccl-24 immunofluorescence 

(green) was localized in the retinal pigmented epithelial cell layer (arrows) adjacent to 

CD31+ (red) choroidal endothelial cells (arrowheads) on day 1 after laser injury in wild-type 

mice. Nuclei stained blue by DAPI. No specific immunofluorescence was detected with 

isotype control IgGs. Images representative of 3 independent experiments are shown. g, 
Laser-induced CNV was reduced in Ccl11−/− and in Ccl24−/− mice compared to wild-type 

mice. n = 8–10, * P < 0.05 compared to wild-type mice. CNV is further reduced in Ccl11−/− 

× Ccl24−/− mice compared to single null mice. # P < 0.05 compared to single null mice. h, 
Laser-induced CNV in wild-type mice was reduced by neutralizing antibodies against mouse 

CCL11 or CCL24 compared to isotype IgG. n = 7–10, * P < 0.05 compared to no injection 

(control) or IgG. i, Representative examples of CNV in eotaxin-neutralized mice. j, 
Neutralizing anti-CCR3 antibodies (Ab) reduced laser-induced CNV in mice deficient in 
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eosinophils (Δdbl GATA) or mast cells (Kitw-v). n = 6–9, * P < 0.05 compared to IgG. Scale 

bars, (c,i), 100 μm; f, 20 μm. Error bars depict s.e.m.
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Fig. 4. 
CCR3-targeting quantum dots detect subretinal choroidal neovascularization (CNV). a, 
Images of the fundus taken after intravenous injection of sodium fluorescein in wild-type 

and Ccl2−/− × Ccr2−/− mice showed normal retinal vascular filling but no areas of 

hyperfluorescence indicative of CNV. b, After intravenous injection of QDot-CCR3 Fab in 

the same Ccl2−/− × Ccr2−/− mouse shown in (a), focal branching choroidal 

hyperfluorescence was visualized (arrow) at 1 h in the same area that was not 

hyperfluorescent during fluorescein angiography (arrowhead in a). The intensity of this 

hyperfluorescence (shown in red pseudocolour in the inset) increased, attaining a peak at 4 

h, and then declined in intensity but still persisted at 12 h. Corresponding images of QDot-

Isotype Fab angiography showed no hyperfluorescence. c–e, The region corresponding to 

the area of hyperfluorescence seen on QDot-CCR3 Fab angiography in (b) contained 

multiple CD31+ blood vessels in the choroid (Ch) that were proliferating (Ki67+; arrows) 
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and had not invaded the retina (Ret). Individual red (CD31+, c), and green (Ki67+, d), and 

merged (e) fluorescence channel images are shown. Arrows point to proliferating 

endothelial cells. Inset shows Ki67+ CD31+ cells in higher magnification. f, QDot-CCR3 

Fab hyperfluorescent areas were localized to areas of subretinal CNV with CCR3+ 

endothelial cells. g, The QDot label was visualized within CD31+ vasculature of subretinal 

CNV lesions. Images representative of 6 independent experiments. Scale bars, (c–e), 10 μm.
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