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Abstract

We use a sample of option prices, and the method of Bakshi, Kapadia and Madan (2003), to estimate

the ex ante higher moments of the underlying individual securities’ risk-neutral returns distribu-

tion. We find that individual securities’ volatility, skewness and kurtosis are strongly related to

subsequent returns. Specifically, we find a negative relation between volatility and returns in the

cross-section. We also find a significant relation between skewness and returns, with more nega-

tively (positively) skewed returns associated with subsequent higher (lower) returns, while kurtosis

is positively related to subsequent returns. To analyze the extent to which these returns relations

represent compensation for risk, we use data on index options and the underlying index to estimate

the stochastic discount factor over the 1996-2005 sample period, and allow the stochastic discount

factor to include higher moments. We find evidence that, even after controlling for differences in

co-moments, individual securities’ skewness matters. However, when we combine information in

the risk-neutral distribution and the stochastic discount factor to estimate the implied physical dis-

tribution of industry returns, we find little evidence that the distribution of technology stocks was

positively skewed during the bubble period–in fact, these stocks have the lowest skew, and the high-

est estimated Sharpe ratio, of all stocks in our sample.
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1 Introduction

What role do higher moments play in investors’ decisions about the choice of portfolios and the

pricing of assets? Arditti (1967) shows that investors with decreasing risk aversion will dis-

play preference for greater skewness in asset payoffs, and Rubinstein (1973) and Kraus and

Litzenberger (1976, 1983) formalize this preference in the context of a pricing model. More re-

cently, Harvey and Siddique (2000) document empirical evidence supporting the role of skew-

ness risk in explaining cross-sectional differences in returns, and Dittmar (2000) shows that

skewness (and kurtosis) appear to play a significant role in pricing.

The common theme in these papers is that investors discount aggregate skewness. That

is, investors are willing to pay more for a security with greater co-skew with some stochastic

discount factor. A more recent literature has suggested that total rather than co-skewness

plays a role in informing portfolio decisions and asset prices. Barberis and Huang (2007) sug-

gest that, under cumulative prospect theory, agents will display a preference for stocks with

more skewed returns. As a result, an asset with high total skewness will appear overpriced

relative to a model with standard expected utility. Similar results are obtained with a differ-

ent preference structure in Brunnermeier, Gollier, and Parker (2007). The models in these

papers are consistent with the evidence in Mitton and Vorkink (2007) that suggests that in-

dividual investors with undiversified portfolios hold assets and portfolios that exhibit greater

idiosyncratic skewness.

In this paper we examine the effect of total skewness on the pricing of equity securities.

An important feature of the approach taken in our paper is that we focus on the ex ante distri-

bution of returns by using information contained in option prices. Under the assumption of a

no-arbitrage link between options and underlying markets, we retrieve risk-neutral measures

of distributional moments following the procedure in Bakhsi, Kapadia, and Madan (2001). We

suggest a number of advantages to this approach, compared to alternatives that measure dis-

tributional moments from the time series of underlying market asset returns. First, as noted

by Bates (1991), Rubinstein (1985, 1994), and Jackwerth and Rubinstein (1996), option prices

efficiently capture a market-based estimate of investors’ beliefs. Second, the use of option

prices eliminates the need for a long time series to reliably estimate higher moments of the

distribution. This consideration is of particular importance in gauging beliefs about relatively

new firms (i.e. Internet companies), or during periods in which beliefs may change relatively

quickly. Third, options provide an ex ante measure of beliefs; they do not give us, as Battalio

and Schultz (2006) note, the “unfair advantage of hindsight.” As Jackwerth and Rubinstein

(1996) state, “not only can the nonparametric method reflect the possibly complex logic used

by market participants to consider the significance of extreme events, but it also implicitly
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brings a much larger set of information . . . to bear on the formulation of probability distribu-

tions.”

We first examine whether dispersion in skewness generates differences in expected re-

turns across assets. We find that, indeed, assets with high ex ante skewness earn lower aver-

age returns than assets with low ex ante skewness. We then investigate the primary source

of tension in the two streams of research discussed above; is the importance of skewness in

pricing due to co-movement with some aggregate stochastic discount factor, or is is residual

idiosyncratic skewness that matters in determining prices? We exploit no-arbitrage condi-

tions in the options and cash markets to find evidence suggestive of a residual idiosyncratic

skewness risk premium after accounting for systematic skewness. Finally, we ask whether

differences in views of ex ante skewness can help explain why certain types of stocks, partic-

ularly tech stocks, had such high valuations in the late 1990s and early 2000s. We find that

skewness had little to do with these valuations; rather, investors appear to have viewed these

assets as good ex ante Sharpe ratio bets.

Two other recent papers also investigate measures of skewness and their relation to stock

prices. Xing, Zhang, and Zhao (2007) find that portfolios sorted on differences in the slope of

the volatility smirk generate differences in average returns. Since the slope of the smirk has

been related to the probability of negative jumps in price levels, as suggested in Bates (1991)

and Pan (2002), one may infer that the slope of the smirk is related to negative skewness.

There are several differences between our paper and theirs. First, our measure of skewness

includes information about both left-skewed and right-skewed behavior, since it uses infor-

mation in both out-of-the-money puts and calls. Second, the focus in our paper differs: we are

interested not only in the information that the risk-neutral skew may have for future stock

returns, but also in the implications for the pricing of systematic and idiosyncratic risk.

A second study, Boyer, Mitton, and Vorkink (2008), examines the role of a measure of

idiosyncratic skewness in explaining differences in returns across securities. The authors use

a long-horizon cross-sectional model of forecasting the skew in individual security returns,

and find a negative relation between idiosyncratic skewness and returns, as suggested by

the theories discussed above. They also show that idiosyncratic skewness can help explain

the role of idiosyncratic variance in generating cross-sectional dispersion in returns. Their

measure of skewness is substantially different from ours, involving the use of a fairly long

time-series (60 months) of ex post data; in addition, they do not explore the difference between

systematic and idiosyncratic skewness.

The remainder of the paper is organized as follows. In section 2, we detail the method

we employ for recovering measures of volatility, skewness, and kurtosis, following Bakshi,
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Kapadia, and Madan (2003). In Section 3, we discuss the data used in our analysis and

present results of empirical tests performed on portfolios formed on the basis of the volatility,

skewness, and kurtosis measures. In Section 4, we use data on the market portfolio, and

its options, to estimate a stochastic discount factor which includes the information in higher

moments, and use this stochastic discount factor to risk-adjust the raw returns related to

higher moments. In Section 5, we discuss the estimation of implied physical distributions

for individual securities, and present these estimates for industry portfolios. We conclude in

Section 6.

2 Risk-Neutral Moments and Asset Prices

Throughout our discussion, we are assuming that securities are priced to eliminate risk-free

arbitrage opportunities. As discussed in Harrison and Kreps (1979), the lack of arbitrage op-

portunities in the market implies the existence of a probability measure that prices payoffs by

discounting at the risk free rate. Formally, this risk-neutral probability measure, Q, satisfies

Pt = e−rτEQ
t [Pt (1 + Rt+τ )] . (1)

where Pt represents the asset’s price, r is the risk free rate, τ is the holding period, and Rt+τ

represents the return on the asset. Equivalently, a stochastic discount factor, Mt+τ , exists

that discounts payoffs to current prices under the physical probability measure, P .

As noted in the introduction, there is a large body of theory and evidence that suggests

that moments (variance, skewness, and kurtosis) of the physical distribution are important

in determining investors’ portfolio choice and the pricing of assets. Equation (1) similarly

suggests that moments of the risk-neutral distribution will affect investors’ pricing of assets.

We recover the risk-neutral moments above using the prices of options. Recovering risk-

neutral distributions from option prices has a long history in the literature (see Figlewski (2007)

for a review). One of the advantages of this approach is that it recovers moments from asset

prices, rather than realized returns. Thus, the estimates are representative of the ex ante mo-

ments relevant for asset pricing, allaying the criticism leveled in Battalio and Schulz (2006) of

the “unfair advantage of hindsight.” Our specific approach follows Bakshi and Madan (2000)

and Bakshi, Kapadia, and Madan (2003).
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2.1 Computing Risk Neutral Moments

Bakshi and Madan (2000) show that any payoff to a security can be constructed and priced

using a set of option prices with different strike prices on that security. Bakshi, Kapadia,

and Madan (2003) demonstrate how to express the risk-neutral density moments in terms of

quadratic, cubic, and quartic payoffs. In particular, Bakshi, Kapadia, and Madan (2003) show

that one can express the τ -maturity price of a security that pays the quadratic, cubic, and

quartic return on the base security as

V (t, τ) =

∫ ∞

S(t)

2(1 − ln(K/S(t)))

K2
C(t, τ ;K)dK (2)

+

∫ S(t)

0

2(1 + ln(K/S(t)))

K2
P (t, τ ;K)dK

W (t, τ) =

∫ ∞

S(t)

6ln(K/S(t)) − 3(ln(K/S(t)))2)

K2
C(t, τ ;K)dK (3)

+

∫ S(t)

0

6ln(K/S(t)) + 3(ln(K/S(t)))2

K2
P (t, τ ;K)dK

X(t, τ) =

∫ ∞

S(t)

12(ln(K/S(t)))2 − 4(ln(K/S(t)))3)

K2
C(t, τ ;K)dK (4)

+

∫ S(t)

0

12(ln(K/S(t)))2 + 4(ln(K/S(t)))3

K2
P (t, τ ;K)dK

where V (t, τ), W (t, τ), and X(t, τ) are the quadratic, cubic, and quartic contracts, respectively,

and C(t, τ ;K) and P (t, τ ;K) are the prices of European calls and puts written on the under-

lying stock with strike price K and expiration τ periods from time t. As equations (2), (3) and

(4) show, the procedure involves using a weighted sum of (out-of-the-money) options across

varying strike prices to construct the prices of payoffs related to the second, third and fourth

moments of returns.

Using the prices of these contracts, standard moment definitions suggest that the risk-
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neutral moments can be calculated as

σQ(t, τ) =
√

erτV (t, τ) − µ(t, τ)2 (5)

γQ(t, τ) =
erτW (t, τ) − 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ) − µ(t, τ)2]3/2
(6)

κQ(t, τ) =
erτX(t, τ) − 4µ(t, τ)W (t, τ) + 6erτµ(t, τ)2V (t, τ) − µ(t, τ)4

[erτV (t, τ) − µ(t, τ)2]2
(7)

where

µ(t, τ) = erτ
− 1 − erτV (t, τ)/2 − erτW (t, τ)/6 − erτX(t, τ)/24 (8)

and r represents the risk-free rate. We follow Dennis and Mayhew (2002), and use a trape-

zoidal approximation to estimate the integrals in expressions (2)-(4) above using discrete

data.1

2.2 Data

Our data on option prices are from Optionmetrics (provided through Wharton Research Data

Services) . We begin with daily option price data for all out-of-the-money calls and puts for

all stocks from 1996-2005.2 Closing prices are constructed as midpoint averages of the closing

bid and ask prices.

Some researchers have argued that option prices and equity prices diverged during our

sample period. For example, Ofek and Richardson (2003) propose that the Internet bubble

is related to the ‘limits to arbitrage’ argument of Shleifer and Vishny (1997). This argument

requires that investors could not, or did not, use the options market to profit from mis-pricing

in the underlying market, and, in fact, Ofek and Richardson (2003) also provide empirical

evidence that option prices diverged from the (presumably misvalued) prices of the underly-

ing equity during this period. However, Battalio and Schultz (2006) use a different dataset of

option prices than Ofek and Richardson (2003), and conclude that shorting synthetically us-

ing the options market was relatively easy and cheap, and that short-sale restrictions are not

the cause of persistently high Internet stock prices. A corollary to their results is that option

prices and the prices of underlying stocks did not diverge during the ‘bubble’ period and they

1We are grateful to Patrick Dennis for providing us with his code to perform the estimation.
2We do not adjust for early exercise premia in our option prices. As Bakshi,Kapadia and Madan (2003) note,

the magnitude of such premia in OTM calls and puts is very small, and the implicit weight that options receive
in the estimation declines as they get closer to at-the-money. In their empirical work, BKM show that, for their
sample of OTM options, the implied volatilities from the Black-Scholes model and a model of American option
pricing have negligible differences.
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argue that Ofek and Richardson’s results may be a consequence of misleading or stale option

prices in their data set. Note that if option and equity prices do not contain similar informa-

tion, then our tests should be biased against finding a systematic relation between estimates

of higher moments obtained from option prices and subsequent returns in the underlying mar-

ket.3 However, motivated by the Battalio and Schultz results, we employ a number of filters

to try to ensure that our results are not driven by stale or misleading prices. We eliminate

option prices below 50 cents, as well as options with less than one week to maturity. At the

outset, we require that an option has a minimum of ten days of quotes during any month; in

later robustness checks, we impose additional constraints on the liquidity in the option. We

also eliminate days in which closing quotes on put-call pairs violate no-arbitrage restrictions.

In estimating equations (5) - (7), we use equal numbers of out-of-the-money (OTM) calls

and puts for each stock for each day. Thus, if there are n OTM puts with closing prices

available on day t we require n OTM call prices. If there are N > n OTM call prices available

on day t, we use the n OTM calls which have the most similar distance from stock to strike as

the OTM puts for which we have data. We require a minimum n of 2; we perform robustness

checks on our results when this minimum data constraint is increased.4 The resulting set of

data consists of 3,722,700 daily observations across firms and maturities over the 1996-2005

sample period.

In Table 1, we present descriptive statistics for the sample estimates of volatility, skewness

and kurtosis. We report medians, 5th and 95th percentiles across time and securities for each

year during the sample period. There are clear patterns in the time series of these moments

through the sample period, as well as evidence of interactions between them. Volatility peaks

in 2000, during the height of the bubble period, then declines through 2005. The median risk-

neutral skewness is negative, indicating that the distribution is left-skewed; the median value

stays relatively flat through 2000 after which it declines sharply, while the median kurtosis

estimate increases during that same period, more than doubling from 2000 through 2005.

3Robert Battalio graciously provided us with the OPRA data used in their analysis; unfortunately, these data,
provided by a single dealer, do not have a sufficient cross-section of data across calls and puts to allow us to
estimate the moments of the risk-neutral density function in which we are interested.

4Dennis and Mayhew (2006) examine and estimate the magnitude of the bias induced in Bakshi-Kapadia-
Madan estimates of skewness which is due to discreteness in strike prices. For $ 5 ($2.50) differences in strike
prices, they estimate the bias in skewness is approximately -0.07 (-0.05). Since most stocks have the same dif-
ferences across strike prices, however, the relative bias should be approximately the same across securities, and
should not affect either the ranking of securities into portfolios based on skewness, or the nature of the cross-
sectional relation between skewness and returns which we examine.
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3 Risk-Neutral Moments and the Cross-Section of Returns

In this section, we examine whether portfolios formed on the basis of risk-neutral moments

are associated with cross-sectional dispersion in subsequent returns. Data on stock returns

are obtained from the Center for Research in Security Prices (again provided through Whar-

ton Research Data Services). The basis for our analysis is the intersection of the the options

data discussed above and monthly data on all individual securities with common shares out-

standing.

3.1 Raw and Characteristic-Adjusted Returns

We begin by selecting daily observations of prices of out-of-the-money calls and puts on in-

dividual securities, which have maturities closest to 1 month, 3 months, 6 months and 12

months, and group these options into separate maturity bins. In each maturity bin, we esti-

mate the moments of the risk-neutral density function for each individual security on a daily

basis. Following Bakshi, Kapadia and Madan (2003), we average the daily estimates for each

stock over time (in our case, the calendar quarter.) For each maturity bin, we further sort

options into tercile portfolios based on the moment estimates (volatility, skewness or kurto-

sis); the ‘extreme’ portfolios contain 30% of the sample, while portfolio 2 contains 40% of the

sample. We re-form portfolios each month, holding moment ranks constant over the calendar

quarter. In each quarter, we also remove firms that are in the top 1% of the cross-sectional

distribution of volatility, skewness or kurtosis to mitigate the effect of outliers.

In Table 2, we report results for portfolios sorted on the basis of estimated volatility (Panel

A), estimated skewness (Panel B) and estimated kurtosis (Panel C). Specifically, we report

the average of the subsequent raw returns of the equally-weighted moment-ranked portfolios

over the next month in the first column of data. In the next column, we report the average

characteristic-adjusted return over that same month. To calculate the characteristic-adjusted

return, we perform a calculation similar to that in Daniel et al.(̃1997). For each individual

firm, we assess to which of the 25 Fama-French size- and book-to-market ranked portfolios the

security belongs. We subtract the return of that Fama-French portfolio from the individual

security return and then average the resulting excess or characteristic-adjusted ‘abnormal’

return across firms in the moment-ranked portfolio. In the next three columns, we report

the average risk-neutral volatility, skewness and kurtosis estimates for each of the ranked

portfolios. Finally, we report average betas, average (log) market value and average book-to-

market equity ratios of the securities in the portfolio.

Summary statistics in Panel A of Table 2 suggest a strong negative relation between
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volatility and subsequent raw returns; for example, in the shortest maturity options (maturity

bin 1), the returns differential between high volatility (Portfolio 3) and low volatility (Portfo-

lio 1) securities is -32 basis points per month; longer maturities have differentials between 50

and 56 basis points per month. The columns of data which report the average characteristics

of securities in the portfolio show sharp differences in beta, size and book-to-market equity

ratios across these volatility-ranked portfolios. Low (high) volatility portfolios tend to contain

low (high) beta firms and larger (smaller) firms, while differences in book-to-market equity

ratios across portfolios are relatively small and differ across maturity bins. We adjust for

these differences in size and book-to-market equity ratio in the characteristic-adjusted return

column. After adjusting for the differences in size and book-to-market observed across the

volatility portfolios, the return differentials are somewhat attenuated in all four maturities.

However, although the differential is reduced, it remains significant, with lowest volatility

portfolios earning between 10 and 23 basis points per month more than the highest volatility

portfolios in all four maturity bins.

Panel A also indicates that there is a weak negative relation between volatility and skew-

ness; in all maturity bins, skewness has a tendency to decline as volatility increases, although

the effect is not monotonic. The relation between volatility and kurtosis in Panel A is much

stronger: as average volatility increases in the portfolio, kurtosis declines in all four maturity

bins. Thus, the relation between volatility and returns may be confounded by the effect, if

any, of other moments on returns; we examine this possibility in later sections of the paper.

Finally, the average number of securities in each portfolio indicates that the portfolios should

be relatively well-diversified. The top and bottom tercile portfolios average 273 firms, whereas

the middle tercile portfolio averages 365 firms. Combined with the fact that we are sampling

securities which have publicly traded options, this breadth should reduce the effect of outlier

firms on our results.

Panel B of Table 2 sorts securities into portfolios on the basis of estimated skewness. In-

terestingly, we see significant differences in returns across skewness-ranked portfolios. The

raw returns differential is negative for all four maturities, at 26, 43, 47 and 44 basis points

per month, respectively. That is, on average, in each maturity bin the securities with lower

skewness earn higher returns in the next month, while securities with less negative, or pos-

itive, skewness earn lower returns. The differentials in raw returns are of the same order of

magnitude or larger than that observed in the volatility-ranked portfolios in Panel A. Com-

pared to the volatility-ranked portfolios, the skewness-ranked portfolios show relatively little

difference in their average market capitalization and betas, although differences in book-to-

market equity ratios remain. When we adjust for the size- and book-to-market characteristics

of securities, the characteristic-adjusted returns are reduced only slightly, and average 28, 43,
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39 and 40 basis points per month, respectively, across the maturity bins.5

In addition to the differences in returns, the table indicates that there is a negative rela-

tion between skewness and both volatility and kurtosis. That is, both volatility and kurtosis

decline as we move across skewness-ranked portfolios. As in Panel A, interactions between

other moments and returns could be masking or exacerbating the relation between skewness

and returns. Consequently, in later tests, we control for the relation of other higher moments

to returns in estimating their effect.

Finally, Panel C of Table 2 reports the results when securities are sorted on the basis of

estimated kurtosis. Generally, we see a positive relation between kurtosis and subsequent

raw returns; the return differential is economically significant, at 12, 31, 35 and 37 basis

points per month across the four maturities. As with the other moment-ranked portfolios, the

effect is reduced after adjusting for book-to-market and market capitalization differences, but

the differences are very slight and the effect remains highly significant, at 14, 30, 35 and 36

basis points per month across maturity bins. We also observe patterns in the other estimated

moments, with both volatility and skewness decreasing as kurtosis increases. Again, this

emphasizes the need to control for the relation of all higher moments to returns.

The results in Table 2, Panels A-C, suggest that, on average, higher moments in the distri-

bution of securities’ payoffs are related to subsequent returns. Consistent with the evidence in

Ang, Hodrick, Xing and Zhang (2006a), we see that securities with higher volatility have lower

subsequent returns. We also find that securities with higher skewness have lower subsequent

returns, while higher kurtosis is related to higher subsequent returns. As a robustness check,

in the next section we use a factor-adjustment method which controls for other characteristics

of the firms.

3.2 Factor-Adjusted Returns

In Table 2 above, we adjust for the differences in characteristics across portfolios, following

Daniel et al. (1997), by subtracting the return of the specific Fama-French portfolio to which

an individual firm is assigned. However, Fama and French (1993) interpret the relation be-

tween characteristics and returns as evidence of risk factors. Consequently, we also adjust for

differences in characteristics across our moment-sorted portfolios by estimating a time series

regression of the ‘factor-mimicking’ portfolio returns on the three factors proposed in Fama

5In a different application, Xing, Zhang and Zhao (2007) find a positive relation between a skewness metric
taken from option prices and the next month’s returns. Their measure of skewness is the absolute value of the
difference in implied volatilities in out-of-the-money call option contracts, where the strike price is constrained to
be within the range of 0.8S to S, and preferably in the range of 0.95S to S. Thus, their skewness measure is related
to the slope of the volatility smile over a smaller range of strike prices.
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and French (1993). The dependent variable in these regressions is the monthly return from

portfolios re-formed each month (as in Table 2), where the portfolios consist of a long position

in the portfolio of securities with the highest estimated moments, and a short position in the

portfolio of securities with the lowest estimated moments. The three factors used as inde-

pendent variables in the regressions are the return on the value-weighted market portfolio in

excess of the risk-free rate (rMRP,t), the return on a portfolio of small capitalization stocks in

excess of the return on a portfolio of large capitalization stocks (rSMB,t), and and the return

on a portfolio of firms with high book-to-market equity in excess of the return on a portfolio of

firms with low book-to-market equity (rHML,t). As in Table 2, firms are grouped by maturity

and sorted into portfolios on the basis of estimated moments (volatility, skewness and kurto-

sis). We report intercepts, slope coefficients for the three factors, and adjusted R-squareds.

Standard errors for the coefficients are presented in parentheses, and are adjusted for serial

correlation and heteroskedasticity using the Newey and West (1987) procedure.

Panels A-D of Table 3 present results for options closest to one, three, six, and twelve

months to maturity, respectively. The first row of each panel contains the results for the

long-short portfolio constructed from volatility-sorted portfolios. Consistent with the results

in Panel A of Table 2 for characteristic-adjusted returns, we observe negative alphas in our

“high-low” portfolio in all four maturity bins. The absolute magnitude of the alphas declines

from 57 to 41 basis points per month across maturity bins, with t-statistics of -1.77, -1.65,

-1.54 and -1.16, respectively. These results are consistent with those of Ang, Hodrick, Xing

and Zhang (2006), who show that firms with high idiosyncratic volatility relative to the Fama-

French model earn “abysmally low” returns.

The patterns in the intercepts for skewness-sorted portfolios (row 2 of Panels A-D of Table

3) are also consistent with that observed in Panel B of Table 2. Alphas are negative in all

four maturities, significant at the 10% level for the one month maturity and at the 5% level

or better in the other three maturities. The alphas remain roughly constant in magnitude

as we move from short-maturity options to long-maturity options, at 58, 67, 64 and 62 basis

points per month, respectively. The negative alphas still suggest a ‘low skewness’ premium;

that is, securities with more negative skewness earn, on average, higher returns in the sub-

sequent months, while securities with less negative, or positive skewness, earn lower returns

in subsequent months.

The evidence that skewness in individual securities is negatively related to subsequent re-

turns is consistent with the models of Barberis and Huang (2004), and Brunnermeier, Gollier

and Parker (2005). In their papers, they note that investors who prefer positively skewed dis-

tributions may hold concentrated positions in (positively skewed) securities–that is, investors

may trade off skewness against diversification, since adding securities to a portfolio will in-
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crease diversification, but at the cost of reducing skewness. The preference for skewness will

increase the demand for, and consequently the price of, securities with higher skewness and

consequently reduce their expected returns. This evidence is also consistent with the em-

pirical results in Boyer, Mitton and Vorkink (2008), who generate a cross-sectional model of

expected skewness for individual securities and find that portfolios sorted on expected skew

generate a return differential of approximately 67 basis points per month.

In the third rows of Panels A-D of Table 3, we report the results for kurtosis-sorted port-

folios. Consistent with the results in Table 2, we see positive intercepts in portfolios that are

long kurtosis. Alphas are positive and both economically and statistically significant, at 55,

62, 56 and 62 basis points per month, respectively, across the four maturities. Similar to the

characteristic-adjusted returns in Table 3, there is no discernible trend in them across matu-

rity bins. The magnitude of the alphas with respect to kurtosis is comparable to that observed

in the skewness and volatility sorted portfolios.

There is one other noteworthy feature of Table 3. The explanatory power of the Fama-

French three factors is, on average, lower for the kurtosis-sorted High-Low portfolios, and

much lower for the skewness-sorted portfolios, than the volatility-sorted portfolios. Some

of this difference is likely due to the fact that, as Table 2 shows, skewness and kurtosis-

sorted portfolios exhibit much lower differences in size and beta than do the volatility-sorted

portfolios. However, it is also possible that there are features of the returns on moment-sorted

portfolios that are not captured well by the usual firm characteristics.

3.3 Additional robustness checks

We perform several additional robustness checks on our results to examine the possibility that

return differentials are driven by liquidity issues, either in the underlying equity returns or by

stale or illiquid option prices. To examine the latter possibility, we add an additional filter to

our sample, and eliminate the observation if there is no trading in any of the out-of-the-money

options on a particular day. These results are presented in Appendix Table A1. The principal

impact of this restriction is to substantially reduce our sample. As discussed above, on average

there are 911 firms per month in our original sample (273/365/273 by tercile). Imposing the

trading restriction reduces the average number of firms to 307. However, as shown in the

table, with the exception of short-maturity kurtosis-sorted portfolios, the magnitude of return

differentials across portfolios remains stable, or actually increases. Thus, we continue to

find that returns are negatively related to volatility and skewness, and positively related to
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kurtosis.6

Second, we add the liquidity factor of Pastor and Stambaugh (2003) to our time series

regression and re-estimate the factor-adjusted returns. These results are presented in Ap-

pendix Table A2. The basic results change very little. The intercepts retain negative signs

for volatility and skewness and positive signs for kurtosis across all three maturity bins. Sta-

tistical significance declines slightly; the alpha for the volatility portfolio loses its statistical

significance for all maturities, as does the alpha for the skewness portfolio only in the short-

est maturity options. However, the overall conclusions are similar: high volatility and high

skewness stocks earn negative excess returns, and high kurtosis stocks earn positive excess

returns.

Overall, both the characteristic-adjusted returns in Table 2 and the regression results

in Table 3 provide evidence that higher moments in the returns distribution are associated

with differences in subsequent returns, and that not all of the return differential observed

can be explained by differences in the size, book-to-market, beta or liquidity differentials of

the moment-sorted portfolios. That is, on average, we see some relation between the higher

moments of risk-neutral returns distributions of individual securities and subsequent returns

on these stocks in the underlying market. In the next section, we allow the risk adjustment

for subsequent returns to incorporate higher co-moments as well.

4 Higher Moment Premia, Systematic, and Idiosyncratic Risk

In the previous section, we document a negative premium for ex ante volatility and skewness

in stock returns, and a positive premium for kurtosis. As discussed in the introduction, an

open question is whether these premia are related to systematic or idiosyncratic risk. In this

section, we address that question. Specifically, we ask whether observed premia are related

to measures of ex ante co-moment risk, ex ante idiosyncratic risk, or both.

Conceptually, we consider idiosyncratic risk as that portion of a security’s return that is

orthogonal to the stochastic discount factor, M(s, t, t + τ). That is, a security’s payoff can be

decomposed into two components:

Ri,t+1 = Rs
i,t+1 + ei,t+1

EP
t [Ri,t+1Mt+1] = EP

t

[

Rs
i,t+1Mt+1

]

= 1

6For brevity, we report only the average and characteristic-adjusted average returns to these portfolios. The
remaining characteristics exhibit similar patterns to those depicted in Table 2. These results are available from
the authors upon request.
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where Rs is the systematic component of gross returns and ei,t+1 is the idiosyncratic com-

ponent. In order to test for the presence of systematic risk, we consider the Euler equation

specification

EP
t [Ri,t+1Mt+1] − 1 = ui,t+1 (9)

and test the restriction that

E [ui,t+1] = α = 0 (10)

As discussed in Chen and Knez (1996), this α is analogous to Jensen’s α.

Depending on one’s null, the Euler equation restriction may be viewed as a test of the

presence of idiosyncratic components of returns that generate mean returns or a test of model

specification. In order to take the former view, one must assume that the stochastic discount

factor, Mt+1 is the correct stochastic discount factor for pricing the assets under consideration.

As made clear in Hansen and Jagannathan (1991) and Hansen and Jagannathan (1997), in

an incomplete market, the presence of multiple admissible stochastic discount factors makes

this claim difficult to verify.

Nonetheless, we proceed by estimating a stochastic discount factor that is implied by a

measure of the market portfolio. Coskewness and cokurtosis of returns with the market

portfolio have been investigated in Harvey and Siddique (2000) and Dittmar (2002), and the

authors find that these measures improve upon pricing of assets relative to the Fama and

French (1993) three factors. Moreover, the notion of residual skewness and kurtosis rests on

the idea of measurement relative to some diversified portfolio, presumably the tangency port-

folio of aggregate wealth. While pricing models that are alternative to an extended CAPM

as investigated in Harvey and Siddique and Dittmar implicitly propose such a portfolio, we

do not have options traded on these portfolios, rendering retrieval of risk-neutral probability

measures difficult. However, given the presence of index options, we have a measure of this

portfolio in the context of a nonlinear CAPM. Thus, we proceed by using a market implied

stochastic discount factor, with the caveat that our tests in this section may represent a test

of model specification rather than a test of the presence of idiosyncratic skewness and kurtosis

premia.

4.1 Estimating an implied stochastic discount factor

We begin by extracting an estimate of a stochastic discount factor from a benchmark market

portfolio, the S&P 500 Index. If we assume that the market portfolio and its options are

priced correctly, then the relation between the risk-neutral and physical density functions for
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the market for each state, s, can be expressed as:

M(s, t, t + τ) ∗ P (s, t, t + τ) = e−r(t,t+τ)Q(s, t, t + τ) (11)

where M(s, t, t + τ) is the stochastic discount factor from time t to t + τ , P (s) is the physical

density function for the market portfolio over the same period, and Q(s) is the ex ante risk-

neutral density function for the market portfolio implied by the options market. Thus, given

estimates of the densities P and Q, we can construct a market stochastic discount factor.

To calculate an estimate of M(s), we first compute the first four moments of the market’s

risk-neutral and physical density. The risk-neutral moments are calculated using the same

method as individual securities, using S&P 500 index option prices in place of individual

security option prices. That is, we first calculate equations (5) - (7) for OTM S&P 500 index

options, using options closest to τ = 1 month, 3 months, 6 months, and 12 months to maturity.

Physical moments are calculated by using historical data to generate sample analogues of

the physical variance (V ARP ), skewness (SKEWP ), and kurtosis (KURTP ) of the underlying

market return distribution. A number of issues arise in using historical sample data to mea-

sure conditional moments. First, Foster and Nelson (1996) address the question of optimal

sample estimators for time-varying volatility, and suggest that reasonable estimates can, un-

der most circumstances, be obtained with a calendar year of past daily returns data. There

is less guidance on the appropriate window to use in calculating conditional higher moments,

as much of the literature on sample moment estimators has focused on volatility. In their

empirical work, Bakshi, Kapadia and Madan (2003) also note that skew and kurtosis may

be underestimated using short windows. We therefore use a four-year period to estimate our

moments, consistent with the length of historical returns data used in Jackwerth (2000) and

Brown and Jackwerth (2001).

A second issue that arises is whether the sample moments can be viewed as conditional.

In our application, we opt to use a four-year sample to estimate the conditional moments as

of 1/31/96, and hold this physical distribution constant over our analysis period. We do so to

provide a conservative view of the degree of time variation in conditional moments. In Section

5.1, we examine the sensitivity of our analysis to these assumptions. Specifically, we allow the

moments to roll through time, so that in each period, we recalculate the physical moments,

and thus the physical distribution. Additionally, we consider a parametric assumption for the

moments, allowing them to follow an autoregressive process. We discuss these results further

in Section 5.1, but note here that the qualitative implications of our analysis are unchanged.

Finally, estimation of the physical distribution requires a specification of the conditional

mean of the S&P 500 return. Jackwerth (2000) suggests adding the historical risk premium
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of 8% to the risk-free rate observed at time t. In our analysis, we follow his suggestion and

use the annualized yield on a 90-day Treasury bill, obtained from the Federal Reserve H.15

report, as our measure of the risk free rate. We experiment with alternative values of the risk

premium and obtain similar results.

Once moments for both the risk-neutral and physical distribution are generated, the sec-

ond step of the procedure involves estimating the density functions of both distributions using

the method described in Eriksson, Forsberg and Ghysels (2004). This procedure uses the Nor-

mal Inverse Gaussian (NIG) family to estimate an unknown distribution of random variables.

As they note, the appeal of the NIG family of distributions is that they can be completely

characterized by the first four moments. As a consequence, given the first four moments, one

can “fill in the blanks” to obtain the entire distribution and, as they show, the method is par-

ticularly well-suited when the distribution exhibits skewness and fat tails, as it does in the

returns distributions which we examine in this application. Having the market risk-neutral

and physical distributions approximated with an NIG distribution, we use two methods to

estimate the stochastic discount factor.

In the first method, we simply use equation (11) to solve for M(s) as the discounted ratio

of the risk-neutral probability density function to the physical density function over a range

of implied relative wealth (return) levels. We call the resulting stochastic discount factor M∗.

In the second method, we begin with M∗ and employ an additional step. We parameterize

the stochastic discount factor from the first step by projecting it onto a polynomial in relative

wealth levels. By controlling the form of the polynomial, we can force the stochastic discount

factor to include (or exclude) sequential higher moments, allowing us to examine their incre-

mental effect on the calculation of risk-adjusted returns. For example, the stochastic discount

factor MV AR includes only linear returns, while MSKEW includes linear and squared terms

(similar to that used in Harvey and Siddique (2000)) and MKURT includes linear, squared and

cubic terms (as in Dittmar (2002)). These stochastic discount factors more clearly indicate the

role that co-moments with the aggregate market play in determining pricing.

Using each of the four stochastic discount factors, we calculate alphas following Chen and

Knez (1996), who characterize pricing errors as:

α̂ =
1

T

T
∑

t=1

M̂(t, t + τ)r(t, t + τ). (12)

The variable r(t, t+τ) represents overlapping τ -period returns on the (zero-cost) High-Low, or

factor mimicking portfolios, for volatility, skewness, and kurtosis. As noted in Chen and Knez,

under the null of zero pricing errors, α = 0. As a consequence, we perform univariate tests for
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the null hypothesis using Newey-West (1987) standard errors. While the NIG class is versatile

(e.g., as Eriksson, Forsberg and Ghysels (2004) note, its domain is much wider than Gram-

Charlier or Edgeworth expansions), there are some restrictions on its use. In particular, the

parameters of the NIG approximation may become imaginary and so the distribution cannot

be computed. This constraint does not arise in the case of 3- and 12-month to maturity options,

and arises in only one month for the 6-month maturity options. However, this condition

is frequently violated in the case of 1-month to maturity options. As a result, we compute

stochastic discount factors using only 3-, 6-, and 12-month maturity options.

Our data cover the period June, 1996 through December, 2005; consequently, we have 115

monthly observations for the three-month stochastic discount factor, 112 observations for the

6-month stochastic discount factor and 106 observations for the 12-month stochastic discount

factor. The number of Newey-West lags used to compute standard errors reflects the number

of overlapping months in each sample; for example, 12 lags are used in computing standard

errors for the 12-month stochastic discount factor.

4.2 Comparing stochastic discount factors

The time series average of the four stochastic discount factors which we estimate are pre-

sented, over the range of possible market returns and the entire sample period, in Figure 1.

For brevity, we focus on options closest to twelve months to maturity; results are qualitatively

similar for 3- and 6-month maturities. In Part A of Figure 1, we present the four pricing ker-

nels over the full support; in Part B, we present the three polynomial approximations MV AR,

MSKEW and MKURT over a partial support to better illustrate the differences over this range.

The linear stochastic discount factor MV AR is downward sloping throughout its range, as

is MSKEW . The cubic stochastic discount factor, MKURT , declines through most of its sup-

port, deviating only at extremely high and low values for the return on the market portfolio.

These results are generally consistent with the behavior of investors who have declining rel-

ative risk-aversion. In contrast, note that the non-parametric stochastic discount factor M∗

presented in the top graph has a segment in the mid-range of the graph which is increasing.

Although an upward sloping segment of the stochastic discount factor implied from option

prices is consistent with the evidence in Jackwerth (2000) and Brown and Jackwerth (2001),

it is, as these papers point out, a puzzle–it suggests that the representative investor may be

risk-seeking over the upward sloping range. Brown and Jackwerth (2001) examine several

possibilities for this behavior. Although we do not focus specifically on this puzzle in the cur-

rent paper, it is worth noting that we obtain a similar result despite the fact that our sample

period does not overlap with the sample used in the Brown and Jackwerth (2001) paper, and
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the estimation methods used to estimate both the risk-neutral distribution and physical dis-

tribution are different. In addition, we observe the upward sloping segment over all three

maturities (3-, 6- and 12-month maturity options) we examine. Thus, the empirical evidence

suggests that the observation of an upward sloped segment in the non-parametric stochastic

discount factor implied by option prices is robust to both sample and method. Moreover, the

range over which Brown and Jackwerth (2001) observe their upward-sloping segment of the

stochastic discount factor, at approximately 0.97 to 1.03, is associated with an upward-sloped

segment in our estimation as well. 7

Although the behavior of the polynomial approximations of M exhibit clear differences

from the non-parametric discount factor M∗, the ’fit’ of the polynomial approximations is

reasonable; the average R2’s of MV AR, MSKEW and MKURT are 5.5%, 13.2% and 16.3%,

respectively. In the next section, we examine the implications of the estimated empirical

stochastic discount factors for investors’ expectations of the payoffs to individual securities,

and consequently to the moment-sorted portfolios in Table 2.

4.3 Risk-adjusted returns

In Table 4, we report estimates of alphas calculated from each of the stochastic discount fac-

tors estimated above using options closest to 3, 6, and 12 months to maturity.8 The alphas are

calculated for each of the Hi-Lo moment-sorted portfolios (volatility, skewness and kurtosis)

using equation (12). The results suggest that idiosyncratic skewness is important, even after

allowing for the effects of higher moments on the stochastic discount factor. Specifically, the

alphas for the skewness sorted portfolios have p-values of approximately 12% for 3-month

options, and at the 5% level or better for 6- and 12-month options. The alphas related to

skewness are economically significant as well, ranging from 54 to 64 basis points per month.

In contrast, the alphas related to volatility are not statistically significant in any maturity

bin, for any specification of the stochastic discount factor. The alphas for the kurtosis-sorted

portfolio are marginally significant in the shortest maturity bin, but are not significant in the

samples of either 6- and 12-month options. As with volatility, these results are not sensitive to

the stochastic discount factor used to calculate alphas. Thus, although we observed some dif-

ferences in the previous section between the stochastic discount factors M∗, MV AR, MSKEW

and MKURT , the inferences on residual returns are unaffected by this choice.

7Golubev et al. (2008) report a similar pattern of the pricing kernel using German DAX index data, and propose
a statistical test for monotonicity. Using their test they find statistically significant against monotonicity; hence,
their results also provide support for the presence of upward sloping segments.

8In the case of 6-month options, the NIG approximation assumptions were violated in only one month. This
month is excluded from the calculations.
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The residual importance of idiosyncratic skewness is consistent with models, such as Bar-

beris and Huang (2004), and Brunnermeier, Gollier and Parker (2007), which suggest that

investors have a preference for skewness in individual securities above and beyond their con-

tribution to the co-skewness of the portfolio. It is also consistent with the empirical evidence

in Mitton and Vorkink (2007), who find a relation between the skewness in individual securi-

ties in individuals’ brokerage accounts and subsequent returns.

Our results do not necessarily imply that the alpha, or residual return, is an arbitrage

profit. The estimates of the stochastic discount factor used to construct α control only for non-

diversifiable risk (including the risk of higher co-moments) in the context of a well-diversified

portfolio. If investors have a preference for individual securities’ skewness, they may, as in

Brunnermeier et al., hold concentrated portfolios and push up the price of securities which

are perceived to have a higher probability of an extremely good outcome. As a consequence,

the lower subsequent returns of high-skew stocks may represent an equilibrium result.

5 Implied Physical Probability Distributions

To this point, we have focused on the estimation of risk-neutral moments, and the relation of

these moments to returns. However, the models that consider the effects on expected returns

of skewness and fat tails in individual securities’ distributions deal with investors’ estimates

of the physical distribution. Given an estimate of the stochastic discount factor, and risk-

neutral distributions of individual securities, we can construct a market-based estimate of

individual securities’ physical distributions that does not rely on historical data. That is,

we can directly estimate investors’ expectations regarding the returns distributions of un-

derlying equities. To our knowledge, this is the first time that market data have been used

to construct an ex ante estimate of investors’ subjective probability estimates. Since papers

such as Brunnermeier, Gollier and Parker (2007) and Barberis and Huang (2004) are models

in which investors have biased beliefs, we also compare this ex ante estimate of subjective

probabilities to more traditional ex post estimates of distributions constructed from historical

returns.

Specifically, we take the stochastic discount factors M∗, MV AR, MSKEW and MKURT con-

structed from the market portfolio and its options, and, using equation (11), and individual

firm options, reverse engineer an estimate of the underlying security’s physical probability

distribution. That is, for each security, i, we compute

Pi (s, t, t + τ) = e−r(t,t+τ) Qi (s, t, t + τ)

M(s, t, t + τ)
. (13)

18



For every firm i, we compute risk-neutral moments using daily option prices and equations (5)

through (7). For each horizon τ , we use the risk-neutral moments and the NIG approximation

to compute the risk-neutral density Qi; using equation (11) and each of the stochastic discount

factors that we have computed, we calculate implied physical distributions for firm i, for

quarter t and horizon τ . We examine the differences in this measure of investors’ ex ante

distributional beliefs, and implications for moments of returns, across securities and across

time.

In order to consider differences across firms, we aggregate securities into industry portfo-

lios, using the ten industry groupings available on Kenneth French’s website. We assign every

individual security for which we can estimate risk-neutral moments into one of these indus-

try groupings. The Utilities portfolio had very few firms in our sample, and some months

were missing observations; consequently, we eliminate that industry portfolio as well as

“Other,” and report results for eight out of ten of the industry portfolios. As results across

the three polynomial approximations and the NIG approximation to the stochastic discount

factor exhibit little difference, we present results only using the NIG approximation, or M∗.

For brevity, we also report results only for τ equal to 12 months.

For each industry, we present the equal-weighted imputed physical distribution in Figure

2 at intervals in our sample period. That is, at the end of each calendar quarter, we com-

pute the industry physical distribution by averaging over the densities of the firms in the

industry.9 We then average the industry density over the sample depicted in each figure.

The intervals presented are selected to accord roughly with interesting economic events (the

Asian crisis, the ‘bubble’ period, the recession of 2000-2001 and the recovery); although the

intervals we present are chosen with perfect hindsight, recall that the risk-neutral moments

at any time t are ex ante in nature. For comparison, at each interval we present an estimate

of the distribution taken from four years of historical data ending at time t for that industry

portfolio.

The implied physical distributions constructed from options market data, and the esti-

mated pricing kernel, appear much more stable than the distributions estimated from rolling

historical data. For example, using historical data generates negative mean returns for three

out of eight industries (Telecom, Tech, and Durables) in the fourth subperiod (Q103-Q405).

This is clearly an artifact of the inclusion of the market downturn in the historical time series.

In addition, skewness estimates based on historical data are much more variable, and the dis-

tributions tend to be left-skewed; approximately 70% (23/32) of the skewness estimates across

subperiods and industries are negative. Although we do not report Sharpe ratios calculated

9Ideally, we would recover risk neutral moments for each industry using options on the industry indices. Un-
fortunately, since these contracts are not available, we employ averaging as a compromise procedure.
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from historical distributions, they are extremely variable, ranging from -0.36 to 1.32. Over-

all, using historical data to generate estimates of investors’ subjective probabilities generates

distributions which are highly sensitive to prior events, and have very different implications

for investors’ opportunity sets.

In Table 5, we present estimates of the first four moments of the implied physical distri-

bution for each industry for the full period and for the same intervals presented in Figure

2; these estimates are constructed by integrating over market states. We also present esti-

mates of the Sharpe ratio for each industry portfolio. There are several striking results in

Table 5. First, the Sharpe ratios are comparatively stable, ranging from 0.07 to 0.26. We do,

however, observe a sharp increase in the ex ante estimates of the Sharpe ratio through our

sample period. In the last interval (03Q1-05Q4), Sharpe ratios in every industry grouping

are at least double what they are in the earliest interval (96Q2-98Q2). Thus, Sharpe ratios

in the pre-crash period are significantly lower than Sharpe ratios in the recovery. Second, the

skewness calculated from ex ante data is significantly higher than that observed from histor-

ical returns; in fact, it is positive for every industry in every interval, varying from 0.30 to

0.51. This may be evidence of investors’ biased beliefs, such as the optimistic bias that Brun-

nermeier et al. (2007) discuss. In contrast, the differences in historical and implied kurtosis

measures is smaller – although the implied kurtoses tends to be lower across industries than

the historical estimates, the historical estimates are lower in 2 (out of 8) cases, and the mag-

nitudes of the implied and historical kurtoses are quite similar. In fact, the average difference

in the two measures is only 1.05, or approximately 22% of the average implied kurtosis across

industries.

Consistent with our results in Table 2, we observe a strong negative correlation between

skewness and the Sharpe ratio across industries–that is, industries which are perceived as

more likely to have extreme positive outcomes also have lower ex ante Sharpe ratios. This

correlation is very strongly negative throughout all four intervals examined, varying between

-0.75 and -0.91, and averages -0.83 over the entire sample period. This result suggests that

investors are trading off traditional risk-reward ratios for the likelihood of extreme ’good

news’, and is consistent with a preference for idiosyncratic skewness. However, the surprising

result in Table 5 is that firms in the Technology portfolio have the lowest skew (and the highest

Sharpe ratio); this relation also holds throughout the sample period. In contrast, firms in the

Durables portfolio have the highest skew and the lowest Sharpe ratio. And, the difference in

skewness across these portfolios is large–for example, the percentage increase in skewness

from the Tech portfolio to the other industry groupings varies from 15% to 72% across the

subperiods examined.

Thus, we find little evidence in implied physical probability distributions that the high
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prices of technology firms during the Internet bubble period is related to investors’ expecta-

tions that these firms had a relatively high chance of extremely good outcomes. In fact, the

comparatively high ex ante Sharpe ratios of these firms compared to firms in other industries

suggests that investors believed that these firms were good ‘mean variance’ bets.

Two cautions are worth emphasizing. First, it may be that our requirement that firms have

options traded on them prevents us from sampling the youngest, most highly skewed firms,

particularly in those industries whose composition is changing the most rapidly. While the

selection bias associated with option trading, and the use of option data to measure skewness,

does not seem significantly larger than the selection bias associated with data requirements

related to the use of historical returns to measure skewness, it is difficult to assess the extent

of this selection bias for either method. We note simply that while the technology portfolio we

analyze includes many ‘established’ firms such as IBM, Cisco and Microsoft, it also includes

relative newcomers such as Amazon, Iomega, JDS Uniphase, Real Networks, Xilinx, etc.,

whose valuations during the ‘bubble period’ were quite high.

More importantly, the use of options data to infer higher moments limits us not just in

the cross-section, but in the horizon over which we can estimate investors’ expectations. If

investors’ expectations of moments over horizons longer than one year (the longest horizon for

which we have data) are both relevant for prices, and significantly different from the shorter-

horizon moments that we have estimated, then our results may be incomplete and/or our

inferences may be incorrect. For example, if investors believed that technology stocks’ extreme

payoffs would occur over, say, five year intervals, then differences in five-year skewness may

potentially explain high valuations.10 While we cannot rule this out, it is worth pointing out

that the relation between shorter horizon skewness and Sharpe ratios in Table 5 is remarkably

stable across all four intervals we examine. Since these intervals include the ‘pre-bubble’ and

‘post-bubble’ periods, any separate effect of longer horizon skewness would suggest a very

marked term premium in the skew which differs dramatically across these intervals.

5.1 Robustness checks

The implied physical distributions in the previous section are constructed with a combination

of forward-looking data from option prices, and an estimate of the market’s physical distri-

bution estimated from historical market returns data. Since this use of historical market

returns is the only instance where ex post data are used, we explore the sensitivity of our re-

sults to different choices of the historical record to estimate the market’s underlying returns

distribution. First, we maintain the length of the four-year window, but allow the window to

10We are grateful to Paul Pfleiderer for an analysis of a setting in which this situation could arise.
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roll forward with the corresponding risk-neutral distribution obtained from option prices; we

still require that the four-year window end before the risk-neutral moments are calculated,

by ending the window in quarter t-1 relative to the option data used to estimate moments.

Second, to ensure that the window includes relatively rare ‘extreme’ events, we lengthen the

window to 46 years, and use the period from 1950 to 1995 to estimate the market’s physical re-

turns distribution. Third, we use a longer window of data and estimate a time series forecast

of each of the three higher moments (volatility, skewness and kurtosis), using these forecasts

as estimates of investors’ expectations regarding the corresponding physical moments. More

specifically, for each quarter t, we use quarterly data beginning in March 1953 and ending in

quarter t − 1 to estimate a separate AR(1)process for volatility, skewness and kurtosis, where

the (quarterly) realized moments for this estimation are constructed from the previous 250,

500 and 750 days of daily market returns, respectively.

5.1.1 Implied Risk Aversion Measures Across Market Estimates

To compare the alternative estimates of the market’s physical distribution, we combine these

different estimates with the options-based estimate of the market’s risk-neutral distribution

to estimate an aggregate risk-aversion measure. In addition to highlighting the differences,

if any, in inferences related to the market’s physical distribution, these estimates of risk-

aversion can serve as a diagnostic on the plausibility of our estimates of both the physical and

risk-neutral distributions.

Following Jackwerth (2000) and Leland (1980), we estimate absolute risk aversion as:

RA = P ′(s)/P (s) − Q′(s)/Q(s) (14)

where P (s) is the investors’ subjective, or physical, distribution and Q(s) is the risk-neutral

distribution for the market; P ′ and Q′ represent first derivatives. As in the previous sections,

we use the Bakshi et al. algorithm, and the NIG approximation, to estimate the risk-neutral

distribution, while we use the four historical market return samples, including the AR(1)

estimation of moments, and the NIG approximation, to estimate the market’s physical distri-

bution. In addition to choosing different historical periods and methods to estimate variance,

skewness and kurtosis, we explore the effect of setting the market risk premium at differ-

ent levels. The results are presented in Table 6 and Figure 3; for brevity, we report levels

of risk-aversion only for an 8% risk premium, and a risk-neutral distribution estimated from

12-month maturity options.

With an 8% risk premium, the estimated level of risk aversion is fairly reasonable, varying
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between 6.3 and 19.9, depending on the interval and the market moments used to generate the

physical distribution. Although the level of the risk-aversion changes somewhat depending

on the historical returns used to estimate moments, and the level of risk premium assumed,

the pattern of the changes in estimated risk aversion through the sample period remains

remarkably constant. Specifically, it declines in the middle of the sample, reaching its lowest

levels in late 2002 and early 2003; subsequently, estimated risk-aversion increases sharply

through the end of the sample period in 2005.

Overall, we find relatively little difference in estimates of aggregate risk-aversion among

the different estimates of the market physical distribution which we use. However, there does

appear to be evidence in the aggregate market that investors’ attitudes towards risk change

sharply, with risk-aversion at relatively low levels at the height of the bubble, and increasing

thereafter. The evidence that market events can change investors’ attitudes towards risk is

consistent with the evidence in Jackwerth (2000) that the market crash of 1987 dramatically

changed estimates of risk-aversion. The evidence that investors’ attitudes toward risk change

over time also increases the advantage of using ex ante, rather than ex post, data to generate

estimates of abnormal returns, as well as moments.

5.1.2 Implied Physical Distributions Across Market Estimates

The evidence above indicates that different estimates of the market’s physical distribution

generate fairly similar levels and patterns in estimates of aggregate risk-aversion. When

we use these alternative estimates of the market’s physical distribution to generate implied

physical distributions across industries, the results, not surprisingly, are also fairly similar.

However, there are some differences worth mentioning. While the longer estimation window

of 1950-1995 generate similar estimates of volatility to those of the original 1992-1996 sample

period, it generates higher estimates of skewness and kurtosis across all industries. The

AR(1)estimation, in contrast, generates lower estimates of skewness and kurtosis.

There is one other interesting feature of the physical distributions imputed when the AR(1)

estimation is employed on moments which is noteworthy. In the second subperiod, which

extends from 9/98 through 3/2000, the implied skewness of all the industries in our sample

increases sharply–in fact, on average, the skewness in each industry increases by a factor of 4

from the prior interval. Thus, there is some evidence in the data that investors perceived the

distribution of payoffs as being relatively right-skewed. However, this increase in skewness is

observed across all industries, and not just in the industries associated with ‘bubble’ pricing.

Overall, however, while the implied physical distributions for industries which we esti-
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mate using these alternate estimates of the physical market distribution change, the cross-

sectional inferences we draw remain the same: technology stocks have lower skewness and

kurtosis than firms in other industries. Thus, while skewness affects prices of securities, we

find no evidence that the prices of technology stocks in particular were higher in our sam-

ple period because of investors’ perception that they were more likely to be associated with

extreme positive payoffs.11

6 Conclusion

We explore the possibility that higher moments of the returns distribution are important in

explaining security returns. Using a sample of option prices from 1996-2005, we estimate the

moments of the risk-neutral density function for individual securities using the methodology

of Bakshi, Kapadia and Madan (2003). We analyze the relation between volatility, skewness

and kurtosis and subsequent returns.

We find a strong relation between these moments and returns. Specifically, we find that

high (low) volatility firms are associated with lower (higher) returns over the next month.

This result is consistent with the results of Ang, Hodrick, Xing and Zhang (2006). We also

find that skewness has a strong negative relation with subsequent returns; firms with lower

negative skewness, or positive skewness, earn lower returns. That is, investors seem to prefer

positive skewness, and the returns differential associated with skewness is both economically

and statistically significant. We also find a positive relation between kurtosis and returns.

These relations are robust to controls for differences in firm characteristics, such as firm size,

book-to-market ratios and betas, as well as liquidity and momentum.

We use index returns and index options to estimate an empirical stochastic discount factor,

as well as polynomial approximations of the stochastic discount factor, to control for differ-

ences in higher co-moments, and their related compensation for risk. We use these stochastic

discount factors to calculate risk-adjusted returns to portfolios sorted on the basis of volatility,

skewness and kurtosis, where the risk-adjustment explicitly takes higher co-moments into

account. After controlling for higher co-moments, we find weak evidence that idiosyncratic

kurtosis matters for short maturities, and strong evidence that idiosyncratic skewness has

significant residual predictive power for subsequent returns across maturities. This suggests

that investors have a preference for skewness in individual securities, which is consistent

with the models of Barberis and Huang (2004) and Brunnermeier, Gollier and Parker (2007).

Finally, we use the estimated stochastic discount factors, and the risk-neutral distribu-

11These results are available on request from the authors.
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tions calculated for individual securities, to estimate implied physical distributions for secu-

rities. We find several interesting results. First, our results suggest that implied physical

distributions are much more stable than those constructed using historical data. Second, in

implied physical distributions, we find evidence of a trade-off between skewness in industry

portfolios and ex ante estimates of the Sharpe ratios for the industry. That is, our results

suggest a trade-off between expected returns and higher moments, with higher (lower) tradi-

tional risk-reward measures associated with lower (higher) skewness. However, we also find

that the portfolio containing technology firms has low ex ante physical skew and kurtosis, and

a high Sharpe ratio. Consequently, while we find both that higher moments matter, and that

investors’ expectations of higher moments change through time, our results do not appear to

be an explanation of bubble pricing in the Internet period.
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Table 1: Descriptive Statistics: Risk Neutral Moments

Entries to the table are the 5th percentile, median, and 95th percentiles of risk neutral volatility, skewness, and
kurtosis across securities by year. We calculate the risk neutral moments following the procedure in Bakshi,
Kapadia, and Madan (2003) using data on out of the money (OTM) puts and calls. We require at least two OTM
puts and two OTM calls to calculate the moments. Further, we restrict attention to options with prices in excess of
$0.50 for which we have at least 10 quotes per month and are not expiring within one week. Finally, we eliminate
any options that violate put-call parity restrictions and lie in the extreme 1% of the distribution of the risk neutral
moments. The sample consists of 3,722,700 option-day combinations over the time period January 1996 through
December 2005.

Volatility Skewness Kurtosis
Year P5 P50 P95 P5 P50 P95 P5 P50 P95

1996 11.404 24.283 42.289 -3.495 -0.449 0.601 1.386 4.713 20.592

1997 11.311 23.591 41.568 -3.834 -0.539 0.624 1.390 4.868 24.632

1998 12.283 24.533 45.381 -3.486 -0.464 0.695 1.444 5.012 22.684

1999 13.543 26.837 51.576 -3.727 -0.601 0.564 1.313 4.940 24.514

2000 16.140 30.942 57.531 -3.083 -0.562 0.511 1.344 4.682 20.318

2001 15.000 30.594 67.485 -2.959 -0.648 0.456 1.549 4.756 18.596

2002 14.119 27.659 67.315 -3.353 -0.742 0.539 1.658 5.515 22.356

2003 12.093 25.549 75.391 -4.315 -1.297 0.309 1.820 6.836 28.889

2004 10.276 24.021 68.945 -4.652 -1.399 0.398 2.040 8.239 34.943

2005 8.710 22.365 53.033 -5.164 -1.609 0.337 2.119 9.584 39.102
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Table 2: Descriptive Statistics

Panels A-C present summary statistics for portfolios sorted on measures of firms’ risk-neutral moments. Firms
are sorted on average risk-neutral volatility, skewness, and kurtosis within each calendar quarter into terciles

based on 30th and 70th percentiles. We then form equally-weighted portfolios of these firms, holding the moment
ranking constant for the subsequent calendar quarter. Risk-neutral moments are calculated using the proce-
dure in Bakshi, Kapadia, and Madan (2003); the options used are those closest to one, three, six, and twelve
months to maturity. The first column of each panel presents mean monthly returns. The second column presents
characteristic-adjusted returns, calculated by determining, for each firm, the Fama-French 5X5 size- and book-
to-market portfolio to which it belongs and subtracting that return. The next three columns present the average
beta, log market value and book-to-market equity ratio of the portfolio, while the next three columns present
the average volatility, skewness and kurtosis of the portfolio. Monthly return data cover the period 4/96 through
12/05, for a total of 117 monthly observations.

Panel A: Volatility-Sorted Portfolios

1 Month to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.213 0.268 16.104 -1.363 12.888 0.890 15.703 0.368
2 0.963 0.128 24.994 -0.968 8.842 1.281 14.304 0.393
3 0.893 0.172 44.033 -1.171 6.041 1.772 13.619 0.417

3-1 -0.320 -0.096 27.929 0.192 -6.847 0.883 -2.084 0.049

3 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.237 0.273 17.139 -1.180 10.812 0.837 15.675 0.386
2 1.061 0.190 26.458 -0.934 8.166 1.290 14.299 0.391
3 0.738 0.062 45.890 -1.203 5.993 1.828 13.648 0.402

3-1 -0.499 -0.211 28.751 -0.023 -4.819 0.990 -2.028 0.016

6 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.215 0.227 18.770 -0.713 6.621 0.816 15.617 0.397
2 1.137 0.266 28.656 -0.576 5.480 1.287 14.336 0.393
3 0.659 0.002 47.734 -0.749 4.148 1.861 13.658 0.386

3-1 -0.556 -0.225 28.964 -0.036 -2.473 1.045 -1.959 -0.012

12 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM
1 1.237 0.227 19.353 -0.692 6.416 0.824 15.453 0.402
2 1.060 0.195 29.541 -0.615 5.544 1.291 14.350 0.391
3 0.739 0.098 49.892 -0.826 4.259 1.844 13.807 0.384

3-1 -0.498 -0.129 30.539 -0.134 -2.156 1.020 -1.646 -0.018

Table continued on next page...
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Panel B: Skewness-Sorted Portfolios

1 Month to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.233 0.391 26.626 -2.642 16.231 1.274 15.318 0.343
2 0.886 0.088 30.095 -0.975 6.847 1.365 14.351 0.398
3 0.975 0.110 26.699 0.116 5.365 1.228 13.961 0.436

3-1 -0.257 -0.281 0.074 2.758 -10.866 -0.046 -1.357 0.093

3 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM
1 1.281 0.421 29.444 -2.530 14.303 1.262 15.283 0.354
2 0.944 0.146 31.132 -0.923 6.303 1.366 14.377 0.395
3 0.849 -0.009 27.345 0.131 4.992 1.242 13.961 0.429

3-1 -0.432 -0.430 -2.099 2.661 -9.311 -0.020 -1.322 0.076

6 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM
1 1.341 0.476 32.812 -1.717 8.891 1.260 15.276 0.378
2 0.886 0.042 31.157 -0.527 4.181 1.318 14.444 0.390
3 0.867 0.085 30.353 0.190 3.614 1.311 13.874 0.412

3-1 -0.474 -0.391 -2.459 1.907 -5.277 0.051 -1.402 0.034

12 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.325 0.487 35.105 -1.835 9.206 1.242 15.364 0.374
2 0.888 0.027 32.013 -0.524 4.008 1.326 14.398 0.392
3 0.881 0.090 30.842 0.195 3.522 1.319 13.847 0.413

3-1 -0.444 -0.397 -4.263 2.030 -5.684 0.077 -1.518 0.039

Table continued on next page...
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Panel C: Kurtosis-Sorted Portfolios

1 Month to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.020 0.172 35.337 -0.358 2.864 1.387 13.665 0.461
2 0.925 0.110 27.185 -0.909 6.976 1.293 14.388 0.394
3 1.137 0.309 21.876 -2.254 18.556 1.217 15.556 0.325

3-1 0.117 0.138 -13.461 -1.896 15.691 -0.170 1.891 -0.136

3 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 0.938 0.109 35.972 -0.346 2.775 1.418 13.650 0.452
2 0.901 0.075 28.714 -0.865 6.482 1.310 14.401 0.391
3 1.251 0.410 24.049 -2.129 16.280 1.169 15.550 0.338

3-1 0.313 0.301 -11.923 -1.782 13.505 -0.249 1.899 -0.115

6 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 0.860 0.029 37.226 -0.189 2.155 1.449 13.661 0.427
2 0.987 0.149 30.722 -0.499 4.249 1.324 14.426 0.386
3 1.213 0.383 26.522 -1.375 10.259 1.124 15.507 0.370

3-1 0.353 0.354 -10.704 -1.186 8.104 -0.325 1.847 -0.057

12 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 0.857 0.019 37.729 -0.179 2.097 1.465 13.669 0.424
2 0.980 0.158 32.052 -0.497 4.103 1.330 14.394 0.388
3 1.226 0.383 28.165 -1.496 10.502 1.102 15.542 0.369

3-1 0.369 0.364 -9.564 -1.316 8.404 -0.363 1.873 -0.055
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Table 3: Time Series Regressions

The table presents the results of time series regressions of excess return differentials (Hi-Lo) between portfolios
ranked on risk neutral volatility, skewness, and kurtosis on the three Fama and French (1993) factors MRP (the
return on the value-weighted market portfolio in excess of a one-month T-Bill), SMB (the difference in returns
on a portfolio of small capitalization and large capitalization stocks), and HML (the difference in returns on a
portfolio of high and low book equity to market equity stocks). The moment-sorted portfolios are equally-weighted,
formed on the basis of terciles and re-formed each quarter. The table presents point estimates of the coefficients
and standard errors in parentheses. Data cover the period April 1996 through December 2005 for 117 monthly
observations.

Panel A: 1 Month to Maturity Panel B: 3 Months to Maturity

α βMRP βSMB βHML R2 α βMRP βSMB βHML R2

Vol -0.57 0.51 0.83 -0.55 0.76 Vol -0.56 0.56 0.89 -1.03 0.84
-1.77 5.34 9.23 -5.29 -1.65 5.00 10.21 -8.92

Skew -0.58 0.14 -0.05 0.55 0.27 Skew -0.67 0.19 -0.13 0.37 0.17
-1.71 1.66 -0.37 4.23 -1.99 2.34 -0.83 2.63

Kurt 0.55 -0.20 -0.30 -0.51 0.28 Kurt 0.62 -0.30 -0.23 -0.16 0.21
2.49 -3.49 -3.17 -6.32 2.45 -4.42 -1.97 -1.37

Panel C: 6 Months to Maturity Panel D: 12 Months to Maturity

α βMRP βSMB βHML R2 α βMRP βSMB βHML R2

Vol -0.55 0.59 0.90 -1.22 0.85 Vol -0.41 0.54 0.83 -1.29 0.85
-1.54 5.06 10.37 -9.73 -1.16 4.70 10.20 -10.49

Skew -0.64 0.18 0.00 0.14 0.05 Skew -0.62 0.20 0.06 0.11 0.07
-2.43 2.48 0.00 1.10 -2.42 2.83 0.42 0.88

Kurt 0.56 -0.35 -0.26 0.10 0.44 Kurt 0.62 -0.38 -0.31 0.10 0.50
2.38 -4.25 -2.15 0.95 2.65 -4.65 -2.51 0.96
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Table 4: Stochastic Discount Factor Risk Adjustments

The table presents risk adjustments for the volatility, skewness, and kurtosis factor mimicking portfolios using
stochastic discount factors implied by the S&P 500 risk neutral and physical densities. The table presents returns
in excess of those implied by discounting using the stochastic discount factor, calculated as

α̂ =
1

T

T
∑

t=1

rtmt

where rt is the return on the factor-mimicking portfolio at time t, and mt is the stochastic discount factor. Columns
“Linear,” “Quad,” and “Cubic” represent discount factors obtained by projecting the density-implied discount factor
onto a linear, quadratic, and cubic polynomial, respectively. Panel A presents results using overlapping quarterly
returns and the discount factor implied by 3 month maturity options; Panels B and C present similar results us-
ing 6 month and 12 month horizons. Point estimates are scaled to the monthly frequency. Newey-West standard
errors are presented in parentheses below the point estimates. Data in Panel A extend from June, 1996 through
December, 2005 for 115 monthly observations. Data in Panel B cover the period September, 1996 through Decem-
ber, 2005 for 112 monthly observations. Data in Panel C cover the period March, 1996 through December, 2005
for 106 monthly observations.

Panel A: 3 Months Panel B: 6 Months

NIG Linear Quad Cubic NIG Linear Quad Cubic

Vol -0.405 -0.358 -0.437 -0.192 Vol -0.081 -0.285 -0.089 0.645
SE (0.844) (0.893) (0.895) (0.797) SE (1.180) (1.182) (1.265) (1.205)

Skew -0.594 -0.620 -0.619 -0.597 Skew -0.631 -0.626 -0.636 -0.631
SE (0.381) (0.401) (0.402) (0.377) SE (0.283) (0.281) (0.293) (0.303)

Kurt 0.479 0.456 0.512 0.450 Kurt 0.345 0.403 0.367 0.118
SE (0.254) (0.254) (0.263) (0.265) SE (0.321) (0.327) (0.335) (0.294)

Panel C: 12 Months

NIG Linear Quad Cubic

Vol -0.130 -0.283 -0.228 0.371
SE (0.557) (0.561) (0.570) (0.528)

Skew -0.555 -0.544 -0.543 -0.619
SE (0.278) (0.265) (0.277) (0.321)

Kurt 0.411 0.477 0.473 0.160
SE (0.304) (0.302) (0.315) (0.290)
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Table 5: Imputed Physical Moments

The table presents moments of imputed physical distributions of eight industry portfolios. Distributions are
imputed by letting the physical distribution, fP (x, s, τ ) be related to the risk neutral distribution, fQ(x, s, τ ) by

fP (x, s, τ ) = e−rf τ fQ(x, s, τ )

m(x, s, τ )

where m(x, s, τ ) is the stochastic discount factor implied by the S&P 500 index. The risk neutral distribution is
the equally-weighted risk neutral distribution across firms implied by risk neutral moments retrieved from option
prices and the NIG probability density. We calculate the moments for four subperiods: 1996 Q2 - 1998 Q2, 1998
Q3 - 2000 Q1, 2000 Q2 - 2002 Q4, and 2003 Q1 - 2005 Q4.

Panel A: Mean

Subperiod NonDur Dur Mfg Energy Tech Telecom Wh/Ret Health

I 0.0739 0.0753 0.0786 0.0770 0.0917 0.0859 0.0845 0.0882
II 0.0702 0.0720 0.0792 0.0859 0.0982 0.0940 0.0818 0.0893

III 0.0825 0.0860 0.0882 0.0886 0.1093 0.0947 0.0897 0.0988
IV 0.0834 0.0747 0.0884 0.0918 0.1004 0.0858 0.0863 0.0982

Panel B: Volatility

Subperiod NonDur Dur Mfg Energy Tech Telecom Wh/Ret Health
I 0.2724 0.2787 0.2856 0.2852 0.3422 0.3119 0.3222 0.3348

II 0.2730 0.2742 0.2801 0.2959 0.3294 0.3109 0.3079 0.3221
III 0.2811 0.2925 0.2936 0.2925 0.3625 0.3282 0.3063 0.3345
IV 0.2684 0.2601 0.2799 0.2729 0.3266 0.3019 0.2905 0.3205

Panel C: Skewness

Subperiod NonDur Dur Mfg Energy Tech Telecom Wh/Ret Health
I 0.4785 0.4918 0.4696 0.4861 0.3589 0.4339 0.3871 0.3544

II 0.6171 0.5555 0.4997 0.3823 0.3612 0.3905 0.4705 0.4238
III 0.4007 0.4507 0.4061 0.3690 0.2869 0.4062 0.3901 0.3613
IV 0.4328 0.5507 0.2784 0.2019 0.2135 0.3667 0.2824 0.2511

Panel D: Kurtosis

NonDur Dur Mfg Energy Tech Telecom Wh/Ret Health

I 6.0171 5.6818 5.3311 5.2650 2.9991 4.3173 3.6724 3.1631
II 6.8163 6.3679 6.0763 4.9900 3.6533 4.4124 4.6471 4.0329

III 5.6132 5.3446 5.1082 5.0510 2.5129 3.7166 4.4912 3.4917
IV 6.7235 7.3218 5.1764 5.7343 3.2445 4.7178 4.7419 3.5187

Sharpe Ratio

NonDur Dur Mfg Energy Tech Telecom Wh/Ret Health

I 0.0770 0.0807 0.0899 0.0859 0.1136 0.1065 0.0975 0.1056
II 0.0707 0.0784 0.1008 0.1186 0.1444 0.1400 0.1010 0.1193

III 0.1721 0.1777 0.1850 0.1848 0.2054 0.1830 0.1811 0.1926
IV 0.2353 0.2059 0.2392 0.2605 0.2414 0.2109 0.2227 0.2388
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Table 6: Imputed Risk Aversion

The table presents subperiod estimates of imputed risk aversion. Risk aversion is calculated using estimates of
the physical and risk neutral estimates of the probability density function following Leland (1980) and Jackwerth
(2000):

RA(s) = P ′(s)/P (s) − Q′(s)/Q(s)

where P is the physical probability measure and Q is the risk neutral measure. We choose the state, s to corre-
spond to an 8% market risk premium. Both probability measures are calculated using the NIG approximation in
Eriksson, Forsberg, and Ghysels (2004), which takes as its arguments the mean, variance, skewness, and kurtosis
of the density. Risk neutral moments are retrieved from option prices on the S&P 500 closest to 12 months to
maturity. Physical moments are calculated in one of four ways. “Fixed” indicates that the moments are sample
moments computed over daily returns on the S&P 500 index over the period 1/92 - 12/95. “Roll” indicates that
the moments are computed over a rolling lagged four year sample period. “Roll AR(1)” moments are computed by
estimating an AR(1) on the S&P 500 four year sample moments over the period 1950-1995 and forecasting next
period’s moment on the basis of the current four year sample moment. “Unconditional” uses the unconditional
moments estimated over the 1950-1995 time period. We average moments over four subperiods: I. 1996 Q2 - 1998
Q2, II. 1998 Q3 - 2000 Q1, III. 2000 Q2 - 2002 Q4, and IV. 2003 Q1 - 2005 Q4.

Subperiod Fixed Roll Roll AR(1) Uncond.

I 16.27 15.65 15.42 17.43
II 7.99 6.32 6.55 9.14

III 9.84 6.44 6.91 10.99
IV 18.73 14.91 15.04 19.88
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Figure 1: Stochastic Discount Factors

The plots depict stochastic discount factors formed using risk neutral moments of S&P 500 index options at the
12-month maturity. The plot labeled ‘NIG’ represents stochastic discount factors, m(x, s, tau), formed as

m(x, s, τ ) = e−rf τ fQ (x, s, τ )

fP (x, s, τ )

where f(·) is the NIG probability density function, Q denotes the risk-neutral probability measure, and P denotes
the physical measure. The risk neutral measure is calculated using risk neutral moments retrieved from option
prices and the physical measure using the historical moments of the S&P 500 index from 1992 through 1995.
’Linear,’ ’Quadratic,’ and ’Cubic’ represent linear, quadratic, and cubic polynomial fits to the NIG kernel. Subfigure
A depicts plots of the average stochastic discount factor for all four kernels; Subfigure B depicts the polynomial
kernels over a smaller range.
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Figure 2: Imputed and Historical Probability Densities
The plots depict the probability densities for eight industry portfolios implied by historical and imputed moments.

Historical moments are calculated from equally-weighted daily returns on each industry portfolio over the past

four years, updated quarterly. Imputed moments are obtained by imputing the physical probability density for the

industry portfolio using its risk neutral probability measure and the stochastic discount factor obtained from the

S&P 500 index. Averages of moments over the relevant time periods are then used to calculate the NIG density

function, evaluated at these moments. For each industry, we examine densities over four subperiods: 1996 Q2 -

1998 Q2, 1998 Q3 - 2000 Q1, 2000 Q2 - 2002 Q4, and 2003 Q1 - 2005 Q4.
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Figure 3: Risk Aversion
The plots depict the probability densities for eight industry portfolios implied by historical and imputed moments.

Historical moments are calculated from equally-weighted daily returns on each industry portfolio over the past

four years, updated quarterly. Imputed moments are obtained by imputing the physical probability density for the

industry portfolio using its risk neutral probability measure and the stochastic discount factor obtained from the

S&P 500 index. Averages of moments over the relevant time periods are then used to calculate the NIG density

function, evaluated at these moments. For each industry, we examine densities over four subperiods: 1996 Q2 -

1998 Q2, 1998 Q3 - 2000 Q1, 2000 Q2 - 2002 Q4, and 2003 Q1 - 2005 Q4.
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Appendix

Table A1: Summary Statistics with Volume Screens

Panels A-C present summary statistics for portfolios sorted on measures of firms’ risk-neutral moments. Firms are sorted on average risk-neutral

volatility, skewness, and kurtosis within each calendar quarter into terciles based on 30th and 70th percentiles. We then form equally-weighted
portfolios of these firms, holding the moment ranking constant for the subsequent calendar quarter. Risk-neutral moments are calculated using the
procedure in Bakshi, Kapadia, and Madan (2003); the options used are those closest to one, three, six, and twelve months to maturity. We eliminate
firms that do not have trading volume in at least one OTM put and OTM call in a calendar month. The first column of each panel presents mean
monthly returns. The second column presents characteristic-adjusted returns, calculated by determining, for each firm, the Fama-French 5X5 size-
and book-to-market portfolio to which it belongs and subtracting that return. Monthly return data cover the period 4/96 through 12/05, for a total of
117 monthly observations.

Panel A: Volatility-Ranked Portfolios

1 Month Maturity 3 Month Maturity 6 Month Maturity 12 Month Maturity

Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj
1 1.331 0.395 1 1.289 0.375 1 1.297 0.405 1 1.339 0.432
2 0.861 0.012 2 1.007 0.107 2 1.026 0.134 2 0.995 0.088
3 0.972 0.226 3 0.819 0.101 3 0.782 0.049 3 0.781 0.090

3-1 -0.360 -0.169 3-1 -0.470 -0.274 3-1 -0.515 -0.355 3-1 -0.558 -0.342

Panel B: Skewness-Ranked Portfolios

1 Month Maturity 3 Month Maturity 6 Month Maturity 12 Month Maturity

Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj

1 1.314 0.391 1 1.392 0.494 1 1.393 0.496 1 1.407 0.535
2 0.945 0.138 2 0.958 0.173 2 0.978 0.182 2 1.022 0.200
3 0.877 0.069 3 0.782 -0.099 3 0.751 -0.115 3 0.678 -0.183

3-1 -0.437 -0.322 3-1 -0.611 -0.593 3-1 -0.642 -0.611 3-1 -0.729 -0.718

Panel C: Kurtosis-Ranked Portfolios

1 Month Maturity 3 Month Maturity 6 Month Maturity 12 Month Maturity

Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj

1 1.119 0.329 1 0.944 0.128 1 0.699 -0.159 1 0.691 -0.177
2 0.905 0.103 2 0.994 0.172 2 1.142 0.330 2 1.158 0.353
3 1.124 0.196 3 1.180 0.282 3 1.226 0.345 3 1.212 0.324

3-1 0.005 -0.133 3-1 0.236 0.154 3-1 0.527 0.505 3-1 0.521 0.501
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Table A2: Time Series Regressions

The table presents the results of time series regressions of excess return differentials (Hi-Lo) between portfolios ranked on risk neutral volatility,
skewness, and kurtosis on the three Fama and French (1993) factors MRP (the return on the value-weighted market portfolio in excess of a one-
month T-Bill), SMB (the difference in returns on a portfolio of small capitalization and large capitalization stocks) HML (the difference in returns on
a portfolio of high and low book equity to market equity stocks), and LIQ, the liquidity factor from Pastor and Stambaugh (2001). The moment-sorted
portfolios are equally-weighted, formed on the basis of terciles and re-formed each month. The table presents point estimates of the coefficients and
standard errors in parentheses. Data cover the period January 1996 through December 2004 for 107 monthly observations.

Panel A: 1 Month to Maturity Panel B: 3 Months to Maturity

α βMRP βSMB βHML βLIQ R2 α βMRP βSMB βHML βLIQ R2

Vol -0.57 0.52 1.01 -0.61 -0.26 0.81 Vol -0.63 0.57 1.01 -1.06 -0.16 0.86
-1.61 4.66 10.01 -5.15 -4.35 -1.62 4.46 9.31 -8.18 -2.31

Skew -0.50 0.13 0.16 0.47 -0.35 0.54 Skew -0.61 0.18 0.06 0.29 -0.33 0.42
-1.64 2.01 1.67 4.00 -5.39 -1.89 2.71 0.56 2.21 -4.17

Kurt 0.49 -0.19 -0.45 -0.45 0.23 0.49 Kurt 0.57 -0.29 -0.36 -0.11 0.20 0.33
2.21 -3.78 -6.74 -5.91 6.08 2.04 -4.00 -3.65 -0.96 3.13

Panel C: 6 Months to Maturity Panel D: 12 Months to Maturity

α βMRP βSMB βHML βLIQ R2 α βMRP βSMB βHML βLIQ R2

Vol -0.61 0.60 1.00 -1.26 -0.14 0.87 Vol -0.45 0.55 0.92 -1.32 -0.12 0.86
-1.52 4.55 8.88 -8.96 -1.86 -1.13 4.23 8.55 -9.67 -1.71

Skew -0.64 0.17 0.15 0.07 -0.26 0.27 Skew -0.62 0.19 0.21 0.04 -0.26 0.28
-2.47 2.57 1.57 0.57 -3.72 -2.39 3.00 2.25 0.36 -3.78

Kurt 0.56 -0.33 -0.36 0.17 0.18 0.52 Kurt 0.61 -0.37 -0.42 0.16 0.20 0.58
2.10 -3.61 -3.85 1.64 3.07 2.32 -3.97 -4.64 1.72 3.38
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