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Abstract 

 

Verne Tsang 

The Epigenetic Effects of Prenatal Folate Supplementation in Male CD1 Mouse Fetuses 

Exposed in utero to Arsenic 

(Under the direction of Miroslav Styblo and Zuzana Drobna) 

 

 

Inorganic arsenic (iAs) is a common drinking water contaminant and transplacental 

carcinogen in mice, and possibly in humans. Recent animal studies suggest the mechanism of iAs 

carcinogenesis may include competition for S-adenosylmethionine required for both iAs and fetal 

DNA methylation, causing aberrant gene expression and cancer in adulthood. We exposed mouse 

dams to 0 or 85ppm iAs in drinking-water while feeding them a diet containing either 2.2 or 11mg/kg 

of folate. At gestational day (GD) 18, we examined DNA methylation patterns in fetal livers using 

CpG-island microarrays. Our results show that compared to folate supplementation alone, combined 

exposure to iAs and folate dramatically increased the number of CpG islands with altered methylation 

patterns. The most affected genes were associated with the cancer, neurological development, and cell 

signaling networks. This data raises concern about the efficiency and potential risks associated with 

folate supplementation in human populations chronically exposed to iAs.  
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Chapter I – Arsenic Metabolism and its Epigenetic Effects 

 

Introduction 

 Inorganic arsenic (iAs) is a common drinking water contaminant and potent carcinogen (NRC 

1999, IARC 2004). As such, iAs contamination poses a significant global health problem, particularly 

in developing countries. In Bangladesh, about half of the ten million tube wells installed during the 

last 30 years deliver water above the World Health Organization (WHO) recommended limit of 0.01 

micrograms of iAs per liter of water (μg/L), or 10 parts per billion (ppb) (WHO 2004, Jakariya 2005). 

Even in developed countries like the United States, iAs is delivered via drinking water at levels higher 

than the WHO limits; data gathered by the United States Geological Survey estimates that over 7.5% 

of all public water supply systems exceed the target concentration of 10 ppb (Focazio 2000), the 

maximum contamination level also established by the United States Environmental Protection 

Agency (US EPA 2006).  

 Prolonged iAs exposure results in the complex disease arsenicosis; advanced stages are 

associated with cancers of the skin, lungs, liver, urinary bladder, prostate, and kidney (IARC 2004). 

An estimated 700,000 people are afflicted with arsenicosis in South and East Asian nations (The 

World Bank, 2005). 21 million people in Bangladesh are exposed to arsenic concentrations at or 

above 50 ppb; that figure would double if the WHO standard of 10 ppb were adopted (Smith 2000). 

The contamination of groundwater by iAs in Bangladesh is considered to be the largest poisoning of a 

population in human history (Smith 2000), where an estimated 6,500 people will die from iAs-related 

cancers every year, and 2.5 million people will develop some form of arsenicosis over the next fifty 

(Maddison 2004). Even in the United States, the WHO and EPA limits of 10ppb arsenic in water is 

difficult to achieve, particularly in western states like Utah (Focazio 2000, Steinmaus 2005).  
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iAs affects DNA methylation, an epigenetic change that can lead to cancer 

 Especially in the pre- and post-natal environments, exposure to various chemicals capable of 

modifying DNA methylation can adversely affect the adult phenotype (Baccarelli 2009). The 

mechanism(s) by which exposure to iAs causes cancer are unclear, though a growing body of 

evidence suggests that its carcinogenicity can be attributed, in part, to an epigenetic mode of action. 

Arsenic has been observed to induce changes in DNA methylation. For example, iAs exposure in 

HaCaT cells is associated with genome-wide hypomethylation, presumably due to down-regulation of 

DNA methyltransferases (DNMTs) (Reichard and Puga 2007). Similarly, in mouse models, sodium 

arsenite in drinking water increased genome-wide hypomethylation, and gene-specific 

hypomethylation of Ha-ras, an oncogene (Okoji 2002). 

DNA methylation is an epigenetic process that involves the enzymatic addition by DNA 

methyltransferases of methyl groups to the 5-position carbon in the pyrimidine ring of cytosine in 

cytosine-guanine (CpG) dinucleotides located along the genome. Methylation of clusters of CpG 

dinucleotides (known as CpG islands) located in the promoter region of genes reduces access of 

transcription factors to the promoter, preventing transcription of downstream genes. By affecting gene 

transcription and subsequently inducing differential gene expression, cells of different tissues with 

identical genetic material can use DNA methylation to create varying phenotypes without altering the 

underlying DNA sequence. Proper DNA methylation is essential for tissue differentiation during 

critical growth periods like embryogenesis.  

Improper gene expression resulting from aberrant DNA methylation during these critical 

periods is implicated in a variety of diseases, most notably cancer. For example, global genomic 

hypomethylation is exhibited in many human cancers, including prostate tumors, leukemia, liver 

carcinomas, and cervical cancer (Bedford 1987, Erlich 2002). On the other hand, hypermethylation 

has also been linked to a variety of cancers. Increased CpG island methylation causes inactivation of 

the tumor suppressor p16; subsequent loss of transcription is associated with lung cancer, gliomas, 

and oropharyngeal squamous cell carcinomas, and is characteristic of many cancer cell lines (Herman 
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1995). Methylation of the von Hippel-Lindau gene, a tumor suppressor, is associated with 

transcriptional inactivation and development of clear-cell renal carcinomas (Herman 1994). Exposure 

to chemicals that inhibit DNA methylation like 5-azacytidine, 5-azadeoxycytidine and adenosine 

dialdehyde has been shown to potentiate carcinogenesis in the rat liver (Rao 1989).   

Arsenic has been shown to cause changes in DNA methylation, disrupting transcriptional 

activity and downstream gene expression (Reichard 2007, Okoji 2002, Liu 2006, Xie 2007, Chanda 

2006). DNA extracted from blood samples of Bengali people exposed to arsenic in drinking water 

showed significant promoter-region hypermethylation of the tumor suppressors p53 and p16 in a 

dose-dependent manner (Chanda 2006). A number of studies have demonstrated that prenatal 

exposure of mice to iAs is associated with development of hepatic, adrenal, pulmonary and urogenital 

cancers in adult offspring. In utero iAs exposure is further associated with activation of oncogenes 

such as Ha-ras, C-myc and Cyclin-d1, resulting in hepatocarcinogenesis in male fetuses (Okoji 2002, 

Liu 2006, Davis 2004, Waalkes 2003). These and other literature has provided evidence for a 

potential mechanism by which iAs induces cancer. 

SAM, SAH, and one-carbon metabolism 

 Accurate maintenance of DNA methylation requires several factors working in concert, 

including DNMT activity, methyl group availability, DNA integrity, and cell proliferation (Laird and 

Jaenisch 1996). DNMTs use the universal methyl donor S-adenosylmethionine (SAM) for enzymatic 

methylation reactions (Zeisel 2009, Chiang 1996). SAM is synthesized by the methionine 

adenosyltransferase (MAT) enzyme family from methyl groups derived from methionine (Chiang 

1996). Nearly half the methionine from the diet is converted to SAM in the liver (Lu 2008).  

 As SAM is consumed for transmethylation reactions, S-adenosylhomocysteine (SAH), an 

inhibitor of MAT and DNMT enzymes, is produced (Duerre 1981, Cox 1977). SAH elimination is 

accomplished via hydrolysis to adenosine and homocysteine (Hcy) by adenosylhomocysteinase 

(Ahcy). Hcy can then be methylated to re-form methionine by methionine synthase, which derives 

methyl groups from folate, or betaine Hcy methyltransferase (Bhmt), which uses methyl groups 
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donated by betaine, a metabolite of choline (Zeisel 2009, Chiang 1996, Lu 2008). These two 

enzymes, along with the substrates and nutrients choline and folate, play an integral role in the 

maintenance of SAM levels in the liver (folate contributions, Figure 1). Therefore, dietary availability 

of choline and folate can directly affect DNA methylation patterns of the genome and subsequently, 

the epigenetic profile of an organism.  

 

 

 

 

Dietary influences on DNA methylation 

 Inadequate intake of methyl group donors like choline and folate can alter epigenetic 

processes involving DNA methylation. For example, differences in folate status in humans were 

shown to correlate with genomic DNA methylation and inversely with plasma homocysteine levels 

(Friso 2002). C57BL/J6 mice fed folate-deficient diets exhibited reduced levels of SAM in the flat 

small intestine, resulting in significant DNA hypomethylation (Sibani 2002). Of groups of Fischer 

344 rats fed either supplemented or deficient choline diets, those given deficient diets demonstrated 

DNA hypomethylation in hepatocytes (Locker 1986). Oppositely, choline-supplemented diets given 

to Sprague Dawley rats on gestational days 11 to 17 altered gene expression in mammary tumors in 

FIGURE 1. A schematic outlining the role of dietary folate in the folate cycle with some of the enzymes 

(embedded in ovals) responsible for one-carbon metabolism regulation. (THF, tetrahydrofolate; 5-MTHF, 5-

methyl-tetrahydrofolate; MS, methionine synthase; Met, methionine; MAT, methionine adenosyltransferase; 

DNMT, DNA methyltransferase; AHCY, adenosylhomocysteinase; CBS, Cystathionine-β-synthase) 
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offspring and resulted in their prolonged survival (Kovacheva 2009). Taken together, these studies 

demonstrate that DNA methylation is affected by the availability of methyl groups derived from the 

diet, and can influence a variety of clinical outcomes.  

Arsenic methyltransferase requires SAM to methylate iAs 

 Inorganic arsenic and its trivalent methylated metabolites are potent inhibitors of enzymes as 

well as modulators of key signal transductions pathways in mammalian cells including the NF-κB, 

MAPK and apoptotic pathways (Hu 2002, Kumagai 2007, Zhong 2010).  For this reason, excretion of 

iAs is vital. iAs is metabolized to mono-, di-, and tri-methylated arsenicals (MAs, DMAs, and TMAs, 

respectively) in the trivalent and pentavalent (i.e., MAs
III

 and MAs
V
) oxidation states (Figure 2). 

Methylation is carried out by arsenic (+3 oxidation state) methyltransferase (AS3MT), and requires 

SAM as the methyl group donor (Thomas 2007). Inhibition of AS3MT activity results in the 

accumulation of iAs in tissues (Marafante 1985, Vahter 1987). Chronic low-dose exposure to arsenic 

has been shown to reduce cellular SAM concentration in human keratinocytes (Reichard 2007). 

Reduced intake of choline, folate or methionine results in impaired iAs methylation as suggested by 

decreased urinary excretion of DMAs in rabbits (Vahter 1987); in hamsters, decreased urinary 

excretion of methylated arsenic metabolites was associated with increased organ toxicity (Hirata 

1990). Alternatively, dietary supplementation with folate has been shown to increase the proportion 

of DMAs excreted in urine of human subjects, suggesting that more iAs is being methylated and 

detoxified more efficiently (Gamble 2007). 

 
FIGURE 2. A schematic modeling the alternating enzymatic methylation of trivalent inorganic arsenic by 

arsenic (+3 oxidation state) methyltransferase (AS3MT) with the reduction of pentavalent arsenicals to their 

respective trivalent species. Arsenite (iAs
III

) is methylated to form pentavalent monomethyl-arsenic (MAs
V
), 

and reduced to trivalent MAs (MAs
III

). MAs
III  

is methylated to DMAs
V 

and reduced to DMAs
III

. Finally, in 

some species, DMAs
III

 is methylated to pentavalent trimethylated-arsenic (TMAs
V
) and reduced to TMAs

III
. 
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iAs Exposure alters the global DNA methylation profiles in animal models 

 Until recently, no appropriate animal models were available to help elucidate the mechanism 

of arsenic-induced carcinogenesis. Humans appear to be much more sensitive to arsenic toxicity than 

other mammals (Vahter 2000). Furthermore, primates like marmosets and chimpanzees do not appear 

to methylate arsenic (Vahter 1985). This variability in toxicity and methylation capacity of iAs 

reduces the translational significance of animal studies.  However, gestation has been identified as a 

period of high sensitivity to chemical carcinogenesis in rodents; evidence suggests that the same 

applies for humans (Waalkes 2004b, Anderson 2000). Studies have demonstrated that arsenic is able 

to cross the placenta and enter the fetus during gestation in mice (Chattopadhyay 2002, Devesa 2006) 

and in humans (Concha 1998). 

 Recent work by Dr. Waalkes and colleagues (NCI/NIEHS) with pregnant female C3H and 

CD1 mice exposed to iAs in drinking water (42.5 or 85 parts per million, ppm) from gestational days 

8 through 18 demonstrated a dose-dependent occurrence of hepatic and adrenal cancers in adult male 

offspring; in adult female offspring, pulmonary and urogenital cancers were identified (Waalkes 

2006). Tissues affected by transplacental carcinogenesis in this mouse model were analogous to those 

affected in human arsenic carcinogenesis (Waalkes 2004b), thus providing a viable mouse model for 

human arsenic carcinogenesis. It should be noted that although concentrations of iAs given to 

pregnant mice were much higher than what is considered typical for human exposure, mice 

metabolize iAs more efficiently, and are less susceptible to iAs-induced cancers than are humans 

(Basu 2001). 

 Epigenetic changes have been implicated in the genesis of arsenic-related cancers. 

Hypomethylation of the promoter regions of estrogen receptor-α (Er-α) and cyclin D1 (Ccnd1) due to 

in utero arsenic exposure are responsible for increased expression of both genes leading to an aberrant 

estrogen signaling and cyclin D1 expression, with subsequent development of hepatocellular 

carcinomas (Waalkes 2004a, Deane 2001). As a cell cycle regulator, cyclin D1 is a known hepatic 

oncogene (Deane 2001). Elevated levels of both cyclin D1 and ER-α transcripts were found in liver 
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samples from adult men with a history of arsenicosis (Waalkes 2004a), further solidifying the 

relevance of the transplacental mouse model in studying human iAs exposure.  

Impact of iAs metabolism on DNA methylation  

Thus far, the mechanism by which arsenic modifies DNA methylation in the mouse 

transplacental carcinogenesis model has not yet been characterized. The hypothesis proposed over a 

decade ago (Goering 1999) describes two potential mechanisms diagrammed in Figure 3. First, 

methylation catalyzed by AS3MT competes with DNMTs for SAM and second, iAs and/or its 

metabolites modify the expression or activity of DNMTs and other one-carbon metabolism genes. 

These mechanisms can result in hypomethylation (by limiting SAM availability for DNA 

methylation) or hypermethylation (by causing a compensatory increase in SAM synthesis or in 

DNMT expression); both scenarios are known to cause cancer (Erlich 2002). It is also possible that 

the mechanisms work in tandem, resulting in a mosaic of hyper- and hypomethylated genes or 

clusters of CpG islands in a tissue and gene specific manner consistent with published data. 

The efficacy of either mechanism is at least somewhat dependent on the availability of SAM 

and the efficiency of its synthesis. Abundant SAM availability (e.g., through supplementation with 

choline or folate) could limit the deficiency of SAM arising from competition for methyl groups 

between DNMT and AS3MT. The efficiency of iAs methylation would increase, limiting the    

accumulation of iAs and its metabolites in tissues as well as subsequent effects of these arsenicals on 

DNMT expression or activity. Conversely, SAM deficiency (e.g., due to dietary deficiencies of 

choline or folate) could exacerbate the competition for methyl groups and impair the conversion of 

iAs to DMAs, allowing iAs and its metabolites to accumulate in tissues. In either case, the availability 

of SAM precursors folate, choline, and methionine should modify the effects of iAs exposure on 

DNA methylation and alter carcinogenesis associated with iAs exposure. 
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FIGURE 3. Two potential mechanisms underlying the effects of iAs exposure on DNA methylation. (I) 

Competition between AS3MT and DNMT for SAM and (II) modulation of DNMT expression and/or activity 

by iAs or its metabolites retained in tissues. The left panels demonstrate the role of dietary folate and choline in 

modifying both these mechanisms. (Hcy, homocysteine; Met, methionine; THF, tetrahydrofolate; B12, Vitamin 

B12; C, cytosine; G, guanine; T, thymidine; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine.) 

 

Summary 

 We adopted the transplacental carcinogenesis CD1 mouse model as described by Michael 

Waalkes’ research group at NIEHS to test our hypothesis that folate supplementation would mitigate 

changes in one-carbon metabolism, DNA methylation, and gene expression in fetal  livers following 

in utero iAs exposure. We hypothesized that the provision of extra methyl groups could reduce SAH 

and concomitantly increase SAM availability to support an increased methylation burden imposed by 

iAs exposure, or by preventing arsenic modulation of enzymes involved in one-carbon metabolism 

and transmethylation reactions. In the mouse model, liver cancer was observed to be a sexually 

dimorphic disease, occurring in male offspring exposed in utero to iAs (Waalkes 2004a, Nohara 

2010). For this reason, the bulk of analyses in our study were conducted in the livers of male fetuses.  

 Briefly, we exposed timed-pregnant dams to 0 or 85ppm arsenic from gestational day (GD) 8 

to 18, and to 2.2 or 11 mg of folic acid per kg of diet from GD 5 to 18 (Figure 4). We collected tissues 

from dams and fetuses at GD18 for analyses to identify biomarkers, hepatic DNA methylation and 
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gene expression profiles, and biological pathways significantly affected by these treatments, paying 

special attention to cancer-related pathways.  

The goals of our study were to examine (1) whether there was an effect of arsenic on fetal 

development, iAs metabolism, DNA methylation, the one-carbon metabolism pathway and imprinted 

genes; (2) whether any of the observed effects were mitigated by dietary folate supplementation; and 

(3) whether collective methylation changes implicate potential biological pathways to explain the 

previously described endpoint of liver cancer in male fetuses due to in utero arsenic exposure. 

 

 

FIGURE 4. Schematic of treatment timeline. On GD1, dams were given 0 ppm iAs in drinking water and 

2.2mg/kg folic acid (FA). On GD5, half the dams were given a diet of 11mg/kg FA, and on GD8, the two diet 

groups were each split into two smaller groups, one given 85 ppm iAs in drinking water, and the other was kept 

on 0 ppm iAs. Tissues were collected from the four groups at GD18. 
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Results 

iAs consumption and folate supplementation modulate maternal and fetal health 

 From GD 5 to 18, timed-pregnant CD1 mice were fed purified diets containing either 2.2 

(control, or CT) or 11.0 mg/kg (folate supplemented, or FS) folate. Dams drank either 0 or 85ppm iAs 

in deionized (DI) water from GD 8 to 18. Analyses of DNA methylation and gene expression were 

conducted on the GD 18 fetal tissues, primarily the liver. Our 2 (Diet: CT vs. FS) by 2 (Exposure: 

water vs. iAs) experimental design yielded the following four groups: CT, CT/iAs, FS and FS/iAs. 

Relative gene expression levels in fetal (GD18) liver for each treatment group were subjected to 

separate Diet (control vs. folate) x Exposure (water vs. iAs) between-subjects ANOVAs for each gene 

of interest (for more detail, see Statistical Analyses in the Methods section). 

Prior to assessing the effects of iAs exposure and folate supplementation on mouse fetuses on 

a molecular level, we needed to determine the effect of treatment on maternal consumption behavior. 

When controlling for number of fetuses, neither Diet nor Exposure altered food consumption by dams 

(ps = n.s.; Figure 5A). Two-way ANOVA revealed a significant effect of Exposure for maternal water 

consumption, F(1, 34) = 23.10, p < 0.001, but no effect of Diet or Diet x Exposure interaction. 

Notably, water consumption was significantly lower by almost 3 grams of water per day in dams on 

iAs-water compared to their diet matched DI-water groups (ps < 0.05; Figure 5B). For maternal 

plasma folate levels, there was a significant effect of Diet, F(1, 34) = 175.83, p < 0.001, but no effect 

of Exposure or Diet x Exposure interaction. We observed an increase in plasma folate of 

approximately five-times in groups supplemented with folate compared to control diet, (ps < 0.05), 

(Figure 5C). Weights of fetuses at GD18 were approximately 10% lower in CT/iAs treatment group 

compared to CT, and almost 25% less comparing the FS with FS/iAs group (ps < 0.05; Figure 5D).  
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FIGURE 5. Preliminary results of animal monitoring including food consumption (A) and water intake (B), 

both expressed as average intake in grams per day per fetus, as well as average fetal weight (C) as measured on 

gestational day 18 and folate concentration in maternal blood (D). * Denotes significantly different at P<0.05; 

**, main effect of Exposure, P<0.05; and #, main effect of Diet, P<0.05, revealed by two-way ANOVA 

(exposure x diet). Error bars represent ±SEM. 

 

Exposure to iAs significantly increased both SAM, F(1, 34) = 8.61, p < 0.01, and SAH, F(1, 

34) = 9.73, p < 0.01, levels in livers of fetuses (Figure 6A and 6B). There was also an effect of Diet 

for SAM levels, F(1, 34) = 7.61, p = 0.01; folate supplemented fetuses had higher levels of SAM in 

the liver than those on the control diet (Figure 6A). Although levels of both SAM and SAH are higher 

in livers of fetuses on iAs, more important is the SAM/SAH ratio, which serves as an index of the 

transmethylation potential (Williams 2007). To that end, there was a strong trend for an effect of 

Exposure for SAM/SAH ratios, F(1, 34) = 3.52, p < 0.07, in the liver where SAM/SAH ratios 
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appeared lower in both groups consuming iAs (Figure 6C). Planned comparisons revealed that 

compared to CT fetuses, FS/iAs animals had lower SAM/SAH ratios approaching significance (p < 

0.06; Figure 6C), suggesting poorer transmethylation potential in FS/iAs fetuses compared to CT.  

 

          

 

FIGURE 6. Concentration of the universal methyl donor SAM (A) and product of transmethylation reactions 

SAH (B), as measured in nmol/g of fetal liver tissue by HPLC. An index of transmethylation potential as 

measured by the SAM/SAH ratio (C). **, Main effect of Exposure, P<0.05; and #, main effect of Diet, P<0.05, 

revealed by a two-way ANOVA (exposure x diet). Error bars represent ±SEM. 
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 Analyses of arsenic metabolites in the liver of dams and fetuses confirmed transport of iAs 

and its metabolites across the placenta, though levels in fetuses were lower than that of dams (Figure 

7). Exposure significantly increased levels of iAs, F(1,30) = 17.36, P<0.001; MAs, F(1,31) = 140.62, 

P<0.001 and DMAs, F(1,29) = 75.36 P<0.001 in dams (Figure 7B, D and F). Interestingly, a Diet x 

Exposure effect was noted in dams indicating a significant decrease in iAs comparing CT/iAs to 

FS/iAs, F(1,3) = 32.89, P<0.001. In fetuses, iAs-exposure did not affect iAs, but did significantly 

increase MAs, F(1,30) = 52.75, P<0.001 and DMAs, F(1,31) = 318.25, P<0.001 in the liver (Figures 

7A,C and E). Planned comparisons noted a small, but significant increase in MAs and DMAs 

comparing FS and CT fetuses (Figure 7C and E).  

 Total arsenic burden (iAs + MAs + DMAs) was higher in dams in the CT/iAs group than the 

FS/iAs group, though this was largely due to the significant decrease in iAs, as opposed to its 

metabolites (Figure 7B). Percent of total arsenic represented by the metabolites MAs and DMAs were 

approximately 65%  in CT/iAs maternal livers, and about 78% in FS/iAs livers. Levels of metabolites 

(MAs + DMAs) in CT/iAs livers versus FS/iAs livers were approximately the same, at 2070 ng As/g 

of liver and 2083 ng As/g of liver, respectively.  
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FIGURE 7. Concentration of iAs and its biological metabolites, monomethyl-arsenic (MAs) and dimethyl-

arsenic (DMAs) in fetal (panels A, C, E) and maternal (panels B, D, F) livers in ng of arsenic per gram of liver. 

* Denotes significantly different (P<0.05); °, significantly different from CT (P<0.05); **, main effect of 

Exposure (P<0.05); #, main effect of Diet (P<0.05) revealed by two-way ANOVA (Exposure x Diet). Error 

bars represent ±SEM. 



15 

 

Folate supplementation with or without iAs treatment affects gene methylation in the fetal 

(GD18) liver 

 The software package Significance Analysis for Microarrays (SAM-software), embedded 

within the Multi-Experiment Viewer of the TM4 Microarray Software Suite (Saeed 2006) was used to 

analyze the DNA methylation microarrays and changes between treatment groups using a two-class 

unpaired response model. The SAM-software plots a visual representation of the distribution of 

differentially methylated probes (Figure 8). Plotted data indicated whether particular probe sequences 

were hyper- or hypomethylated compared to other groups; delta values (d-values) were computed by 

the SAM-software as a measurement of strength between extent of DNA methylation and the log-

ratio of Cy3/Cy5 signal. The d-value cutoff was assigned based on a desired significance with a 

maximum 5% false discovery rate.   

These data show that iAs exposure alone had minimal impact on DNA methylation in the 

fetal liver, whereas folate supplementation resulted in a larger change. The combination treatment of 

iAs and folate supplementation influenced gene methylation patterns to a much greater extent than 

either treatment alone. Specifically, folate supplementation combined with iAs consumption yielded 

the changes in methylation profiles of 5,357 genes, whereas folate supplementation showed changes 

in 253 genes compared to control. iAs consumption alone yielded only 4 differently-methylated genes 

compared to controls (Table 1). 
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A. CT/iAs vs. CT 

C. FS/iAs vs. CT

  A 

B. FS vs. CT 

  A 

FIGURE 8. Visual plots of DNA probes comparing expected (x-axis) to observed (y-axis) methylation 

values. Points lying outside the selected delta-value (dashed lines) set at a false discovery rate (FDR) of 

5% are either significantly hypermethylated (red) or hypomethylated (green) as calculated by 

Significance Analysis of Microarrays (SAM-software) within TIGR Multi-experiment Viewer (TMeV) 

in fetal liver tissue of CT/iAs (A), FS (B), and FS/iAs (C) treated fetuses compared to CT. 



17 

 

TABLE 1. Number of differentially methylated probes comparing across treatments 

 

 

 

 

 

 

 

 

Effect of treatment on one-carbon metabolism 

 To determine whether changes in methylation patterns were the result of iAs or folate 

modulation of the one-carbon metabolism cycle which could subsequently affect the SAM/SAH ratio, 

we examined hepatic mRNA expression of methyltransferases and of genes associated with one-

carbon metabolism. Statistical analyses of qPCR results show that there were no significant 

differences across treatment groups in expression of Dnmt1, methionine adenosyltransferase-2a 

(Mat2a), or 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (Mtrr). However, 

Dnmt3a, Adenosylhomocysteinase (Ahcy), cystathionine β-synthase (Cbs) and arsenic-3-

methyltransferase (As3mt) demonstrated significant changes in mRNA expression.  

 Maternal exposure to iAs led to an overall significant decrease in fetal mRNA expression for 

both Dnmt3a, F(1,19) = 17.09, p = 0.001, and Ahcy, F(1,18) = 4.79, p < 0.05 (Figure 9B and 10A, 

respectively). For Cbs, there was a significant Diet x Exposure interaction, F(1,20) = 5.98, p< 0.05. 

Mean comparisons revealed that folate supplementation significantly increased Cbs mRNA 

expression in fetuses that were not exposed to iAs (p < 0.05), but that this increase was abrogated by 

iAs exposure (Figure 10B). A similar pattern was found for As3mt mRNA expression levels, with a 

significant Diet x Exposure interaction, F(1,20) = 7.03, p < 0.05. Similar to Cbs mRNA, there was a 

strong trend for folate supplementation alone to increase As3mt mRNA expression levels compared to 

 CT CT/iAs FS FS/iAs 

CT  4 

(4) 

253 

(244; 9) 

5357 

(4313; 1044) 

CT/iAs 4 

(4) 

 1 

(1) 

4 

(4) 

FS 253 

(244; 9) 

1 

(1) 

 0 

FS/iAs 5357 

(4313; 1044) 

4 

(4) 

0  

Note: Numbers in parentheses show breakdown by number of probes 

hypermethylated (red) and number hypomethylated (in green). 
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CT (p = 0.06), but this increase was not present in the FS/iAs group (Figure 9C). In fact, compared to 

the FS group, the FS/iAs group had significantly lower As3mt mRNA expression levels (p < 0.001), 

which were similar to that of CT levels, suggesting that iAs exposure completely mitigated the effects 

of folate supplementation on Cbs mRNA. 
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FIGURE 9. Effects of iAs-exposure and/or folate supplementation on hepatic mRNA transcripts of four 

methyltransferases in GD18 fetuses: Dnmt1 (A); Dnmt3a (B); and As3mt (D), as compared to controls. * Denotes 

significantly different at P<0.05; **, main effect of Exposure, P<0.05; and #, main effect of Diet P<0.05, 

revealed by two-way ANOVA (Exposure x Diet). Error bars represent ±SEM. 
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Effect of treatment on imprinted genes  

 Imprinted genes are expressed in a mono-allelic, parent-of-origin manner. They are uniquely 

susceptible to mutations and changes in function because one of the two parental alleles is 

epigenetically silenced. For this reason, changes in promoter region methylation of the remaining 

functional allele alone could cause dysregulation and adverse health effects. In mammals, imprinted 

genes are silenced by a mix of epigenetic modifications, including DNA methylation. We examined 

expression changes of the imprinted genes Dlk1 and Igf2r, identified to be significantly differentially 
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 FIGURE 10. Effects of iAs exposure and/or folate supplementation on hepatic mRNA transcripts of genes 

involved in the one-carbon metabolism pathway of GD18 fetuses; Ahcy (A), Cbs (B), Mat2a (C) and Mtrr (D). 

* Denotes significantly different at P<0.05; **, main effect of Exposure at P<0.05; and #, main effect of Diet at 

P<0.05, revealed by 2-way ANOVA (Exposure x Diet). Error bars represent ±SEM. 
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methylated by the SAM-software filtering of our CpG island microarrays and chosen because their 

dysregulation is associated with tumor progression. Dlk1 and Igf2r are maternally imprinted genes 

(only the paternal allele is expressed).   

Two-way ANOVA for Dlk1 mRNA expression revealed a strong trend for an effect of Diet, 

F(1,19) = 4.15, p = 0.057, which was primarily driven by a 60% increase in mRNA transcripts in the 

FS/iAs group compared to the CT group, (Figure 11A). Thus, exposure to both folate 

supplementation and iAs, but not either one individually, led to a robust increase in Dlk1 mRNA 

expression. The negative d-score from SAM-software analysis (Table 2) indicates that Dlk1 was 

hypomethylated inside the gene. Igf2r was hypermethylated inside based on SAM-software analysis 

in both FS and FS/iAs groups. Methylation changes inside the gene are more complicated than that of 

the promoter region, and correlation to changes in expression are more difficult to establish. CT/iAs 

and FS/iAs showed increased Igf2r mRNA expression compared to their respective CT and FS 

groups, F(1,18) = 5.17, p < 0.05 (Figure 11B). FS showed a small 13% increase in expression over 

CT, though this was not statistically significant.  

 

 

         
 
FIGURE 11. Effects of iAs exposure and/or folate supplementation on hepatic mRNA transcripts of maternally 

imprinted genes of GD18 fetuses; Dlk1 (A) and Igf2r (B). **, Main effect of iAs exposure at P<0.05, revealed 

by 2-way ANOVA (exposure x diet). Error bars represent ±SEM. 
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TABLE 2. Differentially methylated probes of imprinted, cell cycle and cancer-related genes 

Gene D-score (FS) D-score (FS/iAs) Position 

Dlk1 (Paternal) --- -3.770 Inside 

Igf2r (Paternal) 6.474 5.338 Inside 

P21(Cdkn1a) --- 3.379 Inside 

Cdkn1b --- 3.890 Downstream 

Cdkn2a 7.799 8.554 Promoter 

Igf2bp1 7.411 4.607 Promoter 

Daxx 8.835 6.778 Promoter 

 

Effect of treatments on tumor suppressors and apoptotic genes 

 Genes with significant changes in methylation status were analyzed for known interactions in 

Ingenuity Systems Pathway Analysis (IPA) to determine their collective roles in a biological system. 

Network analyses indicated that biological pathways among the most changed as a result of our 

treatments (especially with combined folate supplementation and iAs-exposure) were related to 

cancer, neurological development, and cell signaling (Figure 12). Based on our initial goal to focus on 

arsenic carcinogenicity, we used information from these networks to select genes associated with 

tumorigenic pathways; these included Daxx, Igf2bp1, Cdkn1a, Cdkn1b, and Cdkn2a. 

 Daxx encodes a protein associated with regulation of apoptosis, and was found to be 

hypermethylated in the promoter region of FS and FS/iAs treated mice (Table 2). However these 

differences in methylation did not translate to changes in mRNA expression; changes in expression 

were negligible (Fs < 1; Figure 13). Similarly, d-scores for Igf2bp1, an mRNA binding protein that 

regulates translation of Igf2, indicated that the promoter region was highly methylated in FS and 

FS/iAs groups. Again, differences in expression across treatment groups were not significant (Fs – 

n.s.; Figure 13B). Cdkn2a encodes a protein that induces cell cycle arrest by stabilizing and 
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preventing degradation of p53, and is therefore a tumor suppressor. In FS and FS/iAs groups, Cdkn2a 

was hypermethylated in the promoter region. Analyses of Cdkn2a mRNA expression aligned with 

methylation data, as there was a significant effect of Diet, F(1,17) = 5.22, p < 0.05, where folate 

supplementation caused an overall decrease in mRNA expression (Figure 13E). Interestingly, despite 

increased methylation of its promoter due to folate supplementation, Cdkn2a transcript levels in 

FS/iAs increased nearly 40% from FS (similar to that of CT). The last genes we investigated were 

Cdkn1a and Cdkn1b, cyclin-dependent kinase inhibitors involved in G1 arrest. Inside and 

downstream analysis indicated hypermethylation, with a d-score of 3.379 and 3.89, respectively, in 

the FS/iAs group. However, mRNA levels were not significantly altered by Diet or Exposure (Fs < 1; 

Figure 13C). 

 

 

A 
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FIGURE 12. Ingenuity Pathways Analysis was used to establish biological context of genes identified as 

significantly differentially methylated following statistical filtering with the TM4 microarray software suite. 

Top candidates for further investigation included cancer (A), neurological development (B) and cell signaling 

networks (C). Networks were enriched for hypermethylated genes (in red) and hypomethylated genes (in green). 

 

B 

C 
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FIGURE 13. Effects of iAs exposure and/or folate supplementation on hepatic mRNA transcripts of genes 

involved in apoptosis regulation, Daxx (A); Igf2 mRNA translation regulation, Igf2bp1(B); and cell cycle 

regulators Cdkn1a (C), Cdkn1b (D), and Cdkn2a (E). #, Main effect of Diet at P<0.05, revealed by 2-way 

ANOVA (Exposure x Diet). Error bars represent ±SEM. 
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Chapter 2 – Hepatocellular Carcinoma and the Wnt Pathway 

 

Introduction 

Wnt/β-catenin in development and cancer 

 The Wnt signaling pathway is primarily responsible for cell differentiation, migration and 

proliferation during embryogenesis. Wnt proteins are secretory glycoproteins that function as 

extracellular signaling molecules, and are the ligands for the cell surface Frizzled (Fzd) family of 

receptors. The interaction of Wnt ligands with Fzd canonically initiates cellular accumulation and 

translocation of the signal transducer and transcription factor β-catenin into the nucleus, where it 

induces transcription of target genes (Rao 2010). Because of its role in embryonic development and 

capacity to affect cell proliferation, survival and differentiation, the Wnt pathway is typically very 

tightly regulated.  

Over-activation of the Wnt pathway has been linked to a variety of cancers, first elucidated 

by examination of adenomatous polyposis, a type of human colon cancer (Klaus and Birchmeier). It is 

estimated that approximately 65% of hereditary nonpolyposis colorectal cancers can be attributed to 

abnormal activation of β-catenin through gain of function mutation of β-catenin or loss of 

adenomatous polyposis coli (APC), a protein involved in the inhibition of the Wnt pathway (Miyaki 

1999).   

Canonical and non-canonical Wnt signaling 

 There are currently 19 identified members of the Wnt family, and 10 Frizzled receptors (Zeng 

2007).  Interactions between specific Wnts and Fzds have not yet been fully characterized, and the 

specific Wnt pathways that the Fzds activate, whether canonical or noncanonical, have not been 

identified for all Fzds.  
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In the first of two identified non-canonical pathways, Wnt protein binding to Fzd activates 

Dishevelled and results in the activation of protein kinase C via an increase in intracellular Ca2+ 

levels. Of the Wnt and Fzd families, this particular pathway has been associated with WNT5A, 

WNT11, and FZD2. In the second non-canonical pathway, Wnt activation causes Dishevelled to 

regulate the generation of planar cell polarity to control polarized cell movement during gastrulation 

and neurulation. Wnt/polar cell polarity signaling requires WNT11 and possibly WNT7a, and is 

potentially mediated by the FZD7 receptor (Zeng 2007).  

In the canonical pathway, the absence of Wnt signaling leaves β-catenin held in complex with 

the tumor suppressors, APC and Axin. Also residing in the complex are two kinases, cyclin 

dependent kinase inhibitor-1 (CKI) and glycogen synthase kinase 3β (GSK3β), which phosphorylate 

specific serine and threonine residues of β-catenin. The phosphorylation event recruits an E3 

ubiquitin ligase which targets β-catenin for proteasomal degradation. DNA-binding proteins 

TCF/LEF repress target genes by recruitment of co-repressors. On the other hand, when activated, 

Wnt occupation of the Frizzled receptor inhibits kinase activity via activation of an Axin-binding 

protein, Dishevelled, causing β-catenin to accumulate and translocate to the nucleus where it induces 

transcription of genes bound to the DNA-binding proteins TCF/LEF, which are briefly converted to 

transcriptional activators of target genes like Ccnd1 and Cmyc (Reya 2005).  

Altered canonical Wnt signaling in hepatocellular carcinoma (HCC) 

 As the effector of the Wnt signaling pathway, levels of β-catenin in the cell and particularly 

in the nucleus must be tightly regulated. Unlike colorectal cancers associated with APC mutations, 

hepatocellular carcinoma are highly associated with mutations in the Ctnnb1 gene, which codes for β-

catenin (Polakis 1999). The mutated β-catenin protein is often truncated, affecting serine/threonine 

residues in the regulatory sequence required for the targeted degradation of β-catenin. In response to 

this mutation, downstream targets Cmyc and Ccnd1 are upregulated, resulting in HCC.   

 In addition to genetic mutations, activation of the Wnt/β-catenin pathway can be affected by 

epigenetic changes. Currently, little information is available concerning the effect of epigenetic 
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changes on gene expression of the Wnt pathway components like the ligands or receptors; instead, a 

greater focus is placed on proteins that inhibit or activate these Wnt pathway proteins. For example, 

aberrant promoter methylation of canonical Wnt pathway antagonists has been identified in human 

acute lymphoblastic leukemia (ALL) patients (Martin 2008). These include secreted frizzled-related 

proteins (SFRPs), Wnt inhibitory factor -1 (WIF1), Dickkopf-3 (DKK3) and dapper homologue-1 

(HDPR1), which are all Wnt inhibitors. Specifically, ALL patients whose Wnt antagonist genes were 

methylated in the promoter regions had consistently lower rates of disease free survival at multiple 

time points and lower rates of complete remission compared to patients in the non-methylated group. 

Multivariate analysis demonstrated that promoter hypermethylation was an independent predictive 

factor of disease-free survival. Similar epigenetic gene silencing of some of the same Wnt inhibitors 

including SFRPs, HDPR1, WIF1 and DKK3 via promoter hypermethylation has been characterized in 

HCC (Yau 2005, Suzuki 2004, Shih 2006, Yang 2010 and Ding 2009).  

 Notably absent from the discussion of epigenetic influence on the Wnt pathway in HCC and 

other cancers are the influences of DNA methylation on promoter regions of Wnts, Fzds, and Ctnnb1. 

It has been established that Wnt pathway overexpression is often found in cancerous cells. However, 

assigning responsibility to specific WNTs and FZDs has been difficult. Until recently, localization of 

the 19 identified WNTs and 10 FZD receptors, much less their functions and interactions, had been 

unknown (Zeng 2007). Information remains scarce, but some recent evidence suggests that 

interaction between WNT3 and FZD7 proteins leads to activation of the Wnt/β-catenin pathway in 

HCC (Kim 2008). Through a series of knockdown experiments conducted in HCCs, Kim and 

colleagues demonstrated that the over-expression of Fzd7 was an early tumorigenic event, and that 

binding of the concomitantly upregulated ligand Wnt3 activated the canonical Wnt/β-catenin cascade 

in the progression of HCC. Other work confirms the involvement of Fzd7 in HCC (Merle 2004, 

Nambotin 2011). 
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Folate supplementation attenuates Wnt signaling 

 While most epidemiologic studies regarding dietary folate studies are concerned with 

prevention of neural tube defects, a growing body of literature addresses the role of folate in 

carcinogenesis. Specifically, these studies suggest that diminished folate status increases risk of 

colorectal cancer (Giovannucci 2002), though the exact mechanism has not yet been fully 

characterized.  

Some recent evidence indicates that in the context of carcinogenesis, folate status affects 

canonical Wnt signaling in mediating some of the cellular changes associated with carcinogenesis.  

Jaszewski and colleagues demonstrated in human patients with colorectal adenomas that dietary 

supplementation of 5 mg/day folic acid significantly reduced nuclear expression of β-catenin in rectal 

mucosal crypts compared to those given a placebo treatment (Jaszewski 2004). In addition, animal 

studies have supported the epigenetic role of folate as an essential cofactor in enzymatic 

biomethylation in affecting the Wnt pathway. Mild folate depletion alone in rats did not induce 

significant changes in components of the Wnt signaling pathway. Instead, the additive effects of 

reduced intake of B-vitamins associated with 1-carbon metabolism had a substantial impact on Wnt 

signaling and affected expression of downstream gene targets of β-catenin (Liu 2007). In a study of 

LRP6, a co-receptor for canonical Wnt signaling, researchers demonstrated that folate 

supplementation impacted transcriptional activation via the Wnt pathway (Carter 2005).  

Summary 

 Based on results from CpG-island microarrays, we identified the Wnt/β-catenin pathway as a 

potential biological pathway affected by iAs consumption, especially given its role in 

hepatocarcinogenesis as described in the introduction. We examined (1) whether there were any 

treatment differences in methylation of genes related to the Wnt pathway; (2) if any observed 

methylation differences corresponded to changes in mRNA and protein expression; and (3) whether 

downstream transcription targets of the Wnt pathway were up-regulated in the liver as a result.   
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Results 

Effect of treatment on transcription of Wnt pathway components 

 Among the differentially methylated genes identified by the CpG island microarray were 

elements of the Wnt pathway, including Wnt3, Fzd8, and Fzd10 (Table 3). To that end, we noted that 

Fzd8 and Fzd10 were both hypermethylated with a d-score of 5.003 and 3.909, respectively, Wnt3 

was hypomethylated with a d-score of -3.814, and the gene encoding the effector molecule, β-catenin 

(Ctnnb1) was hypermethylated with a d-score of 3.670. 

 We conducted follow-up analyses of gene expression for specific ligands and receptors based 

on probe position and relevance to hepatic carcinogenesis as described in literature. Relative gene 

expression levels in fetal (GD18) liver for each treatment group were subjected to separate Diet 

(control vs. folate) x Exposure (water vs. iAs) between-subjects ANOVAs for each gene of interest. 

Analysis of Fzd8 mRNA expression did not reveal any main effects or Diet x Exposure interaction 

(Fs < 1; Figure 14B). Although there appeared to be a large difference in Fzd10 between control and 

each of the other treatment groups, inter-sample variability was too high to attain statistically 

significant group differences. For the Wnt3 ligand, there was an effect of Exposure, F(1,18) = 5.73, p 

< 0.05), but no effect of Diet or Diet x Exposure interaction. Arsenic treatment led to a significant 

overall increase in Wnt3 transcript levels, regardless of folate status (Figure 14A). CT/iAs fetal livers 

exhibited nearly five-times the mRNA transcript level of CT animals, and FS/iAs fetal livers showed 

transcript levels of Wnt3 about twelve times that of control. Lastly, we examined transcript levels of 

the transcription factor β-catenin due to its importance in the canonical Wnt signaling pathway. The 

ANOVA revealed an effect of Diet, F(1,18) = 7.10, p < 0.05, but no effect of Exposure or Diet x 

Exposure interaction. Folate supplementation elicited an overall decrease in Ctnnb1 mRNA (Figure 

14D). In FS and FS/iAs groups, transcription of Ctnnb1 was reduced approximately by 40% in FS, 

and 20% in FS/iAs (Figure 14D). Importantly, signaling by β-catenin is not regulated at the 

transcriptional level, but by its post-translational phosphorylation status.  
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TABLE 3. Differentially methylated probes of Wnt pathway genes 

Gene D-score (FS) D-score (FS/iAs) Position 

Wnt3 --- -3.814 INSIDE 

Fzd8 --- 5.003 INSIDE/PROMOTER 

Fzd10 --- 3.909 PROMOTER 

Ctnnb1 --- 3.670 PROMOTER 

 

 

                    

               

FIGURE 14. Effects of iAs exposure and/or folate supplementation on hepatic mRNA transcripts of Wnt 

pathway genes, including the ligand Wnt3 (A); Frizzled (Fzd) Receptors Fzd8 (B) and Fzd10 (C); and the 

transcription factor β-catenin (encoded by the gene Ctnnb1) (D). **, Main effect of Exposure at P<0.05; # main 

effect of Diet at P<0.05, revealed by 2-way ANOVA (Exposure x Diet). Error bars represent ±SEM. 
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 We continued our investigation of the Wnt pathway by examining protein expression of the 

various components by western blot. From fetal (GD18) livers of each treatment group, we assayed 

Wnt3, Fzd7, Fzd10, and non-phosphorylated beta-catenin. Protein expression of Fzd7 was considered 

because of its association with HCC (Kim 2008). Similar to RNA expression, relative protein 

expression in GD18 livers for each treatment group was subjected to separate Diet (control vs. folate) 

x Exposure (water vs. iAs) between-subjects ANOVAs for each protein of interest. 

 Analysis of Wnt3 protein levels demonstrated a significant Diet x Treatment interaction 

F(1,12), p < 0.05, but no effects of Diet or Treatment alone. Mean comparisons, however, only 

revealed a trend indicating that folate supplementation increased protein levels of Wnt3 in fetuses not 

exposed to iAs (p = 0.07); this increase was negated by iAs exposure. Similarly, a second trend 

indicated that Wnt3 protein levels were increased in non-folate supplemented animals (p = 0.07) 

when given iAs, but this trend was reversed in the folate-supplemented group (Figure 16A). Both 

Fzd7 and Fzd10 protein showed significant effects of interaction Diet x Exposure, F(1,12) = 12.29, p 

< 0.05 and F(1,12) = 12.26, p < 0.05, respectively. Mean comparisons for Fzd7 showed a significant 

increase in Fzd7 protein levels in the liver of iAs-exposed fetuses when supplemented with folate (p < 

0.05). Additionally, mean comparisons demonstrated that FS fetuses decreased Fzd7 expression when 

given iAs (p < 0.05), but the opposite was true in their CT-diet counterparts (Figure 16B). For Fzd10, 

mean comparisons showed significant increases of expression comparing FS to CT (p < 0.05), as well 

as a significant decrease of expression in FS fetuses (p < 0.05), when exposed to iAs (Figure 16C). 

Lastly, non-phosphorylated β-catenin also had a significant effect of interaction Diet x Exposure, 

F(1,11) = 5.703, p < 0.05. Mean comparisons were not significant, but exhibited strong trends 

indicating that non-phosphorylated β-catenin decreased in FS/iAs in comparison to both CT/iAs and 

FS (Figure 16D). 
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FIGURE 15. Effects of iAs exposure and/or folate supplementation on hepatic mRNA transcripts of genes 

upregulated by activation of the Wnt pathway, mediated by β-catenin translocation to the nucleus, Cyclin-d1 

(A) and C-myc (B) **, Main effect of Exposure at P<0.05, revealed by 2-way ANOVA (Exposure x Diet). 

Error bars represent ±SEM. 
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FIGURE 16. Effects of iAs exposure and/or folate supplementation on hepatic proteins associated with the Wnt 

pathway; Wnt3 (A), Fzd7 (B), Fzd10 (C), and non-phosphorylated β-catenin (D). Proteins derived from the 

cellular extract were normalized to β-actin, and proteins from the nuclear extract were normalized to Lamin-b1 

(E). * Denotes significantly different, P<0.05. Error bars represent ±SEM. 
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Discussion 

 

The absence of faithfully maintained DNA methylation is associated with abnormal gene 

expression and cancer (Baylin 2001). DNA methylation is a dynamic, yet tightly controlled process 

that regulates gene transcription. Aberrant DNA methylation can stem from a multitude of changes, 

but ultimately causes cancer by affecting gene expression. Arsenic is a known carcinogenic agent, 

and its abundance in supplies of drinking water around the world is a significant public health 

concern (IARC 2004). However, the mechanism by which arsenic causes cancer remains unknown, 

though evidence to support the hypothesis for an epigenetic mechanism of iAs carcinogenesis 

continues to mount; it is thought that the consumption of the universal methyl donor SAM used by 

AS3MT for the methylation of iAs in its excretion from the body competes with maintenance of DNA 

methylation by the DNMT family of enzymes and ultimately affects expression of genes important in 

the development of cancer (Dolinoy 2008). 

Based on evidence pointing to the depletion of SAM as the manner in which iAs disrupts 

DNA methylation, we hypothesized that dietary supplementation of the methyl donor folate would 

alleviate the effects of arsenic exposure and reduce the incidence of cancer. Folate provides a methyl 

group to SAH, the product of transmethylation reactions catalyzed by both DNMT and AS3MT 

(Figure 8). With an abundance of SAM following folate supplementation, we predicted that the 

competition between DNA methylation and arsenic biomethylation would be lessened.  

Though the effect of arsenic is well documented in humans, being able to fully understand its 

mechanism of action has been elusive due to the lack of appropriate animal models. Recently, studies 

conducted by Michael Waalkes and his colleagues at NIEHS identified a viable mouse model that 

closely mimicked the effect of iAs exposure to humans as observed in a multitude of epidemiological 

studies (Waalkes 2003, 2007). In their studies, pregnant C3H and CD1 mice were exposed to varying 

amounts of arsenic in drinking water, and characterized the cancers resulting in offspring. To that 

end, our study adapted the putative mechanism and animal model described by Waalkes and others in 
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hopes of alleviating the incidence of arsenic-induced liver cancer among male offspring with 

nutritional supplementation.  

Preliminary Observations  

The addition of 85ppm arsenic to drinking water negatively affected fetal and maternal 

health. Supplementation of folate to the diet did not improve outcomes to in utero arsenic exposure, 

and did not initially appear harmful to dams on deionized water. Based on observations during tissue 

collection and data collected from our experiments on fetal livers, we demonstrate that folate 

supplementation hypothesized to mitigate effects of in utero arsenic exposure was more detrimental 

to fetal health than either folate supplementation or arsenic treatment alone.  

Initial observations over the course of treatment and tissue collection indicated that the dams 

exposed to iAs consumed significantly less water than their respective controls, regardless of folate 

supplementation status (Figure 5B). However, consumption of arsenic still resulted in large 

differences in hepatic levels of arsenic and its methylated metabolites (Figure 7). Furthermore, of the 

dams given iAs and dietary folate supplementation, two miscarried; these observations were noted on 

GD18 prior to euthanasia. Additionally, fetuses from one other dam were excluded from all analyses 

because she was extremely lethargic prior to euthanasia, and the majority of her fetuses were 

considerably underdeveloped and underweight (0.4g or less, data not shown). Fetuses of CT and FS 

dams appeared relatively healthy. In contrast, fetuses from the CT/iAs group weighed significantly 

less than either non-iAs-exposed group, and those supplemented with folate in addition to in utero 

exposure to iAs weighed the least of all groups (Figure 5C). These preliminary findings conflicted 

with previously published results that reported no differences in water consumption when given 

85ppm iAs in drinking water as compared to DI-water controls (Waalkes 2003, Waalkes 2007). These 

prior studies also noted that weight of offspring were not significantly affected, another observation 

that conflicted with our own. However, it should be pointed out that offspring in studies conducted by 

the Waalkes research group were weighed at birth (approximately GD21), whereas our data were 

collected at GD18. It is possible that developmental deficits that we observed were compensated for 
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over the final days prior to birth. Taken together, these initial observations suggest that iAs was 

harmful to overall health of both dams and fetuses; folate supplementation on its own appeared 

innocuous, but resulted in significantly worse outcomes in combination with iAs exposure.  

SAM/SAH Ratio 

 We determined concentrations of SAM and SAH in male fetal livers to assess methyl donor 

status and determine their availability for DNMT and AS3MT. Dietary supplementation of folate, a 

dietary methyl donor important for SAM synthesis, significantly increased levels of hepatic SAM 

above control, as anticipated (Figure 6A). We further expected iAs exposure to cause SAM depletion, 

resulting from AS3MT activity in accordance with previous published studies in HaCaT (Reichard 

2007) and TRL 1215 cells (Zhao 1997). However, we observed the opposite phenomenon; iAs 

exposure increased SAM levels in both diets (Figure 6A). Patterns of SAH levels mirrored that of 

SAM. The most frequently cited measure of transmethylation potential affected by iAs and folate 

status is the SAM/SAH ratio (Williams 2010). Though none of the mean differences were significant, 

iAs negatively impacted the SAM/SAH ratio compared to their respective non-iAs-treated groups. A 

similar trend was observed in other papers, though reduction in SAM/SAH ratios was attributed 

mostly to a reduction in SAM alone and stagnant levels of SAH (Reichard 2007, Zhao 1997). In all, 

our SAM and SAH data suggest that iAs potentially reduces the hepatic transmethylation potential, a 

change that can lessen the liver’s ability to maintain proper DNA methylation.  

Methyltransferases and One Carbon Metabolism  

We examined transcriptional changes of enzymes central to DNA and iAs methylation and 

one-carbon metabolism to investigate the effect of iAs and folate on the expression of genes that are 

key regulators of SAM production and consumption. Previous studies have shown that arsenic can 

inhibit expression and modulate enzyme activity of DNMT1 (Cui 2006, Shi 2004, Zhao 1997), and 

that folate can affect global DNA methylation and enzymes involved in one-carbon metabolism 

(Davis 2003), though some found no differences in Dnmt1 expression (Jensen 2009).   
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Using quantitative real-time RT-PCR, we were able to compare levels of gene-specific 

mRNA transcripts in fetal livers from each treatment group. Transcripts for Dnmt1, the primary 

maintenance methylase, were not significantly different between groups (Figure 9A). However, a 

reduction in Dnmt3a transcripts was noted as a result of iAs-exposure. This was similar to 

observations in HaCaT cells (Reichard 2007). Though a significant decrease in As3mt expression 

(Figure 9C) could provide a potential explanation for the negative effects observed in FS/iAs animals, 

we would have expected iAs to accumulate in the liver; however, the opposite phenomenon was 

observed (Figure 7). We can only speculate that translation of AS3MT mRNA increased to over-

compensate, or enzyme efficiency and activity increased. 

Our treatments also affected genes of the one-carbon metabolism pathway responsible for 

removing SAH and regenerating SAM after transmethylation reactions, amongst other functions. 

Ahcy, responsible for the first step in converting SAH back to SAM, was significantly downregulated 

by iAs, regardless of diet (Figure 10A). Transcripts of CBS, the protein responsible for removing 

Hcy, were significantly increased by folate supplementation, but decreased by combined iAs and 

folate exposure (Figure 10B). In all, these data suggest that the combination of folate supplementation 

and iAs exposure leads to an accumulation of SAH and Hcy, products of transmethylation reactions 

recognized as risk factors for various diseases (Graham 1997, Wald 2002, Seshadri 2002). 

Supplementation of folate causes more SAM to be made, but also makes more available to be 

converted to SAH. This could result in an accumulation of SAH and Hcy as it appears iAs 

downregulates transcription of Ahcy and Cbs. 

DNA Microarrays   

We submitted DNA samples from six fetal livers in each group for microarray analysis to 

explore global methylation changes and examine other genes with significant changes in methylation 

for biological network analysis. To our knowledge, this is the first study to use DNA methylation 

microarrays to study the consequences of arsenical exposure in animal models; a few other studies 
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have examined the effect of arsenic on genome-wide methylation in immortalized human urothelial 

(UROtsa) cells (Jensen 2009) and on a human population with on-going exposure (Smeester 2011).  

 Considering the original hypothesis that arsenic exposure increases hepatic SAM 

consumption, we expected to see decreased availability of SAM for DNA methylation and 

subsequently genome-wide hypomethylation. Thus, we further hypothesized that supplementation of 

folate would result in genome-wide hypermethylation due to the increased availability of methyl 

groups. Unexpectedly, previous studies indicated that aberrantly-methylated regions of gene 

promoters identified in UROtsa cells and in a human population from Mexico chronically exposed to 

arsenic were primarily hypermethylated (Jensen 2009, Smeester 2011). Our microarray experiment 

reflected neither these previous results nor our original hypothesis. Filtering by SAM analysis of our 

microarray data indicated that iAs exposure alone had little effect on changing methylation of CpG 

islands; only 4 genes were considered to be significantly differentially methylated at a d-value of 

1.239 (Table 2).  

Folate supplementation, in contrast, yielded altered methylation of 253 probes compared to 

control, of which 244 were hypermethylated. A study examining the effect of dietary folate 

availability on the human fetal epigenome noted a positive association between methylation of long 

interspersed nuclear element 1 (LINE-1), which covers approximately 17% of the genome, and serum 

folate in cord blood (Fryer 2011). A different study conducted in pregnant Wistar rats, found that 

high-dose (40mg/kg) dietary supplementation of folic acid did not change in hepatic DNA 

methylation, in spite of significantly increased levels of SAM (Achon 2000), while yet another study 

reported that 25 mg/kg of folic acid delivered by oral gavage in mice induced global 

hypomethylation; the investigators hypothesized that this effect resulted from folic acid inhibition of 

glycine hydroxymethyltransferase, reducing production of the 5,10 methyltetrahydrofolate  precursor 

required for SAM production (Finnell 2002).  

These conflicting effects of folate supplementation on DNA methylation are due to a possible 

U-shaped curve of benefits derived from folate consumption. Recent reviews relating folate 
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supplementation to clinical outcomes like neural tube defects and cancer caution the scientific 

community against drawing conclusions about folate based on individual studies, specifically those 

employing high-doses of folate in their experimental design (Kim 2003, Ulrich 2006). This fact is 

especially problematic given that folate supplementation is generally well-tolerated and does not 

cause obvious symptoms of disease. The cited studies suggest that benefits realized from increased 

folate are highly dependent on timing of supplementation and dosage provided.  

Our study design incorporated supplementation of folate at five times the normal amount 

found in rodent diets (11 mg/kg versus 2.2 mg/kg). We did not observe any outward detrimental 

health effects of folate to either dams or fetuses, though results from our SAM analysis indicate that 

folate supplementation alone increased changes in DNA methylation over control. Dose-dependent 

studies of folate supplementation are needed in order to outline a potential U-shaped DNA 

methylation curve; this information could have important implications for our data. 

 A few previous studies have delved into using folate supplementation to ameliorate 

symptoms of arsenic exposure; Mary Gamble and her collaborators used folic acid supplementation in 

a double-blinded, placebo-controlled trial in Bangladesh, a country with notoriously high levels of 

arsenic in drinking water, and reported that their treatments increased proportions of DMAs in urine 

by about 8% and decreased total blood arsenic by approximately 14%, suggesting that increased 

dietary folate improved the ability of individuals to methylate and excrete arsenic. Interestingly, their 

placebo control also significantly decreased arsenic in blood, but by just over 1% (Gamble 2006, 

2007, Heck 2007). Lisa Gefrides and her colleagues administered 25mg/kg folate and folinic acid 

during neurulation to reduce the increased incidence of neural tube defects in heterozygous CXL-

Splotch mice exposed in utero to arsenic, but were unsuccessful; instead, they found injection with 

40mg/kg arsenic and 25mg/kg folate to be maternally lethal (Gefrides 2002).  

Again, to our knowledge, this study appears to be the first to consider gene-specific DNA 

methylation in a combined exposure setting of arsenic and folate. According to our proposed 

mechanism, we expected that at worst, the FS/iAs group would not show any improvement compared 
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to the CT/iAs animals. At best, we hoped for complete reversal of effects brought on by iAs exposure. 

Unfortunately, our findings were comparable to those reported by Gefrides. Contrary to our 

expectations, folate supplementation intended to lessen the changes induced by arsenic exposure 

exacerbated changes by either folate supplementation or arsenic exposure alone. SAM-software 

analysis revealed that in comparison to the CT group, livers of FS/iAs fetuses had over 5300 

significantly changed probes at a d-value of 1.219, of which 4300 were hypermethylated (Table 1).  

Previous findings from our laboratory demonstrated that iAs metabolites formed in the de 

novo methylation/detoxification pathway are more cytotoxic than iAs itself, and are more potent 

inhibitors of enzyme activity (Styblo 2000, Thomas 2001). The profile of iAs and its metabolites 

found in maternal liver at GD18 in our experiment indicate that iAs composed about 35% of total 

arsenic (iAs + MMA + DMAs) in CT/iAs animals, and only about 20% of total arsenic in FS/iAs 

(Figure 7). Metabolite profiles in fetal livers were similar between the two iAs-exposed groups, 

though little is known about the fetal liver’s ability to methylate arsenic at GD18. Our data and other 

research support previous observations that increased levels of folate and SAM preferentially help 

methylate iAs and facilitate arsenic elimination (Gamble 2006, 2007, Heck 2007).  

While total arsenic burden was lowered by folate supplementation, the increased methylation 

of iAs for excretion did not reduce absolute levels of MAs or DMAs in the maternal liver (Figure 7). 

The data suggest maternal livers of the FS/iAs group methylated more iAs for elimination, and thus 

may have been exposed to more of the toxic iAs metabolites MAs and DMAs than dams of the 

CT/iAs group over the 10-day course of iAs-exposure from GD8 to 18. Because we only observed a 

single time point, these conclusions are difficult to verify. To our knowledge, there are no studies that 

correlate effects of higher rates of iAs methylation with health outcomes. However, in this way, it is 

possible that folate supplementation would cause synergistically worse outcomes with iAs instead of 

reversing negative effects by affecting maternal health, and resulting in more significantly altered 

DNA methylation profiles in fetuses (Figure 8). 
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Effect of Treatment on Imprinted Genes 

 Aberrant DNA methylation patterns are often associated with cancer; perhaps the genes 

whose expression is most prone to being affected by these changes are imprinted genes (for a review, 

see Falls 1999). Because of their unique susceptibility to changes in DNA methylation, we searched 

for imprinted genes listed among those considered significantly hyper- or hypomethylated. We 

identified two maternally imprinted genes, Dlk1 and Igf2r. Dlk1 was hypomethylated inside the gene 

in FS/iAs animals versus CT, while Igf2r was hypermethylated, also inside the gene for both FS and 

FS/iAs groups versus CT (Table 2). We used quantitative real-time RT-PCR to compare amounts of 

mRNA transcripts in six fetal livers from each treatment group. Dlk1, or Delta-like 1, is highly 

expressed in mouse embryos and the placenta during development, and it is suggested that 

Dlk1functions as a growth factor responsible for maintaining cell proliferation prior to differentiation 

(Yevtodiyenko 2006). Transcripts of Dlk1 mRNA were unchanged in CT/iAs and FS compared to 

control, but exhibited a near-significant (p=0.07), 50% increase in FS/iAs animals versus CT. This 

result is in line with previous work suggesting that upregulation of Dlk1 due to epigenetic events can 

contribute to human hepatocellular carcinoma (Huang 2007), an outcome of interest because liver 

cancer is one of the endpoints of chronic iAs exposure. A significant main effect of iAs exposure was 

noted to increase Igf2r expression, but this did not agree with methylation data suggesting that the 

gene was hypermethylated. However, this finding suggests that iAs can result in growth factor 

transcription and overexpression, which is associated with various cancers (Furstenberger 2002). 

Effect of Treatment on One Carbon Metabolism and Cell Cycle 

 Other differentially methylated probes not associated with imprinted genes or arsenic and 

folate metabolism were subjected to network analysis to identify biological pathways that exhibited 

significant changes in DNA methylation amongst its member genes using IPA. The most prominent 

networks identified included carcinogenesis, neural tube defects, and cell-cycle regulation (Figure 

12). Because cancer was our primary endpoint of interest, we focused on carcinogenesis and cell-

cycle regulatory networks. We performed additional real-time RT-PCR assays for the apoptosis-
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mediator death-domain associated protein (Daxx), insulin-like growth factor 2 binding protein 1 

(Igf2bp1), and tumor suppressors, cyclin-dependent kinase inhibitors 1a, 1b, and 2a (Cdkn1a, 

Cdkn1b, Cdkn2a).  

We observed no significant differences between groups in Daxx, Igf2bp1, Cdkn1a, and 

Cdkn1b (Figures 13A-D). A significant decrease in expression due to folate supplementation was 

noted for Cdkn2a. Also, a non-significant increase in expression was noted due to iAs-exposure. This 

was consistent with previous data in iAs-exposed tissues analyzed by gene expression microarray 

(Liu 2006). Interestingly, overexpression of Cdkn2a has been associated with late-stage ovarian 

cancer, perhaps an attempt by cells to control proliferation (Dong 1997, Fujita 1997, Niederacher 

1999). In our study, overexpression was possibly due to DNA methyltransferase inhibition by arsenic, 

a theory consistent with previous findings that detail the use of arsenic trioxide to inhibit DNMT 

activity and restore epigenetically-silenced Cdkn2a in human hematologic malignant cells to control 

proliferation (Fu 2010). Folate, on the other hand, suppressed expression of Cdkn2a in both arsenic-

exposed and control groups by increasing methylation at the Cdkn2a promoter. Downregulation of a 

tumor suppressor like Cdkn2a would be promote the proliferation of an existing cancer by preventing 

cell cycle control, and is another argument for why folate supplementation would not be beneficial in 

mitigating the cancers caused by iAs.   

Effect of Treatment on Wnt Pathway 

 We further used Ingenuity Systems Pathways Analysis to cross-reference our list of probes 

differentially methylated with genes associated with liver cancer based on previously published data. 

We noted that methylation for many genes coding for proteins in the Wnt pathway were changed due 

to treatment. The Wnt pathway, as stated in the introduction of Chapter 2, is responsible for cell 

differentiation, migration, and proliferation during embryogenesis. Though normally tightly 

regulated, upregulation of the canonical pathway mediated by β-catenin is associated with a variety of 

cancers, and notably, HCC. Of the 19 Wnt ligands and 10 Fzd receptors that have been identified, we 

noted that a few that were hypomethylated as a result of our treatment (Table 3). With few 
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exceptions, relatively little is known about interactions between specific Wnts and Fzds, as well as the 

different cascades and effects initiated by activation. Briefly, activation of the canonical pathway 

involves one of the Wnt ligand binding to a Fzd receptor located on the cell surface. This activates 

Dishevelled, an inhibitor of a kinase complex that, in the absence of Wnt signaling, phosphorylates 

the transcription factor β-catenin. If phosphorylated, subsequent ubiquitination targets β-catenin for 

proteasomal degradation. However, if left un-phosphorylated, β-catenin translocates to the nucleus 

and stimulates transcription of Tcf/Lef genes, which have been implicated in HCC. Because 

hypomethylation of the Wnt ligand would suggest subsequent increased expression and activation of 

the pathway, we decided to investigate the potential role of the Wnt signaling in our model of iAs-

mediated liver cancer. 

   Few published studies of iAs-induced liver carcinogenesis have considered changes to the 

Wnt pathway as a potential signaling cascade affected by iAs exposure (Liu 2006, Cui 2004). We 

performed real-time RT-PCR assays on Wnt pathway genes selected for previously cited relevance to 

hepatocellular carcinoma (HCC) (Kim 2008) or observed methylation changes in promoter regions. 

C-myc, a downstream effector of canonical Wnt signaling has a central role in iAs-induced cancer; 

Liu 2006 demonstrated cellular beta-catenin levels increased 7-fold in C3H offspring with iAs-

induced HCC compared to those unexposed to arsenic. However, despite these implications, the Wnt 

pathway ligands and receptors were not explored further in these studies as potential upstream targets 

of the C-myc and Ctnnb1 expression.  

To address these deficiencies in the literature, we followed results from SAM analysis 

indicating that methylation of many Wnt pathway genes were changed, particularly in the FS/iAs 

group. In addition, we examined levels of mRNA transcripts for genes known to be targets of Wnt 

signaling. In all, we considered mRNA levels of Wnt3, Fzd8, Fzd10, Ctnnb1, and downstream 

transcriptional targets C-myc and Cyclin-d1.  

 Overexpression of the Wnt3 ligand and its interaction with the Fzd7 receptor has been 

documented in HCC (Kim 2008). We observed significant increases in expression of Wnt3 as a result 
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of iAs exposure (Figure 14A). At least in the FS/iAs group, this overexpression was compatible with 

SAM analysis, indicating that the gene was hypomethylated. The Fzd receptors did not exhibit 

significant differences between groups (Figures 14B, C), though receptor expression affects pathway 

activation less than increases in ligand overexpression. We noted a significant decrease in β-catenin 

expression resulting from folate supplementation, but transcriptional activation of Wnt pathway 

targets is primarily dependent on non-phosphorylated β-catenin translocation to the nucleus and not 

necessarily transcription of Ctnnb1. 

 In the nuclear extract, β-catenin did not show any significant differences amongst groups, 

though the overall pattern of activation correlated to levels of Wnt3 and Fzd7 protein (Figure 16) that 

were detected in the cytoplasmic extract. However, there were strong trends indicating that FS/iAs 

animals expressed less non-phosphorylated β-catenin in the nuclear extract than controls. In all, our 

Wnt pathway data indicate that folate supplementation and iAs exposure decreases activation of the 

canonical pathway, and would possibly reduce carcinogenesis. However, we were ultimately 

concerned with downstream targets of the Wnt pathway, and taken together, results of Cmyc 

expression indicated that β-catenin may not be responsible for the increase in Cmyc (Figure 15), 

previously noted to be upregulated in HCC (Liu 2006). 

Conclusions and Future Directions 

 In light of the results from our study, we would not suggest that folate supplementation 

should be used as a dietary intervention to mitigate iAs exposure in countries lacking a safe supply of 

drinking water. In fact, based on our findings, I would most likely recommend avoidance of folate 

supplementation far above the recommended intake. Our study noted several different factors that 

warrant caution. First, iAs metabolites were increased in the liver as a result of folate 

supplementation. While it can be argued that this is beneficial for subsequent elimination of iAs from 

the body, constant exposure to higher levels of metabolites due to the increased methylation of iAs 

could be harmful. Secondly, folate supplementation can unfortunately decrease expression of tumor 

suppressors such as Cdkn2a, resulting in an increased risk of tumorigenesis. Furthermore, our study 
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indicates that increased folate intake results in higher SAM levels, but also higher SAH levels. 

Because we noted decreased transcription of Ahcy, this would suggest that SAH levels remained 

higher, perhaps even more so than without folate supplementation.  

Overall, more preliminary studies are required to assess the validity of findings contained 

within this thesis. High variance noted in our results may result from the use of CD1 mice. Our 

decision to use this strain was based on previous studies adopting the transplacental model of iAs 

carcinogenesis as described by Dr. Michael Waalkes and colleagues at the NIEHS. The number of 

animals selected per treatment group was also determined based on these studies. CD1 mice are not 

inbred, and thus possess more genetic diversity than other strains. Additionally, it must be noted that 

in a study examining cancers resulting from iAs exposure, Dr. Waalkes noted that while incidence of 

liver cancer increased in a dose response manner, only 38% of adult male offspring developed 

cancerous tumors (Waalkes 2003). Therefore, in an experiment examining 10 mice per group, we 

would statistically expect only 4 to develop cancer over their lifetime; it is likely that our results were 

diluted by mice that would not develop liver cancer. Furthermore, some of the tools we used to 

examine the effects of treatment, such as the Agilent CpG island microarray, were most likely 

designed around the genome of an inbred mouse strain, like C57BL/6J mice. With an inbred mouse 

strain, it is likely that variance in our experiments would be smaller. However, it should be noted that 

the genetic diversity in CD1 mice provides a more accurate representation of the human population 

due to this diversity. 

 This study raises interesting questions concerning combinations of folate and iAs exposure. 

Our data only report results of a single time point, GD18. Especially with regard to epigenetic 

changes, development is a particularly tumultuous period with significantly different gene expression 

profiles than any other; measuring changes in gene transcription and protein expression at identical 

stages of development is difficult, even with timed-pregnant mice, since so many programming 

changes are made within a fairly small window of time. A preliminary study mapping fetal changes 

during gestation in response to iAs would allow us to choose a better time point to focus for our 
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genetic studies. Little is known about the ability of fetal livers at this age to detoxify iAs. Our iAs-

metabolite results (Figure 5) do not show any differences between groups of fetuses exposed to 

different diets. Whether the fetuses were exposed only to iAs metabolites delivered from their 

mothers is unknown.  

As a result of analyzing tissue from a single time point, we cannot definitively say that 

methyl donor status (the SAM/SAH ratio) was changed by our treatment. In order to do so, a paired 

test is required with samples prior to treatment, to establish a baseline measure of comparison.  

Our treatments were made based on previous recommendations. The amounts of folate and 

arsenic provided for the animals were considered high, though both have been individually reported 

to be well tolerated. While we exposed our animals to 85ppm iAs in water (equivalent to 85 μg/ml), 

the WHO limit for human consumption is currently set at 10ppb. This discrepancy results from the 

superior ability of rodents to methylate and detoxify arsenic without apparent health defect (Vahter 

1999). Though some studies examined varying concentrations of iAs exposure to mice, our particular 

model warrants further investigation and biological relevance of the amount of iAs given. In a similar 

vein, the amount of folate supplemented in the diet was also a very high concentration relative to 

daily human intake. The recommended daily intake for normal adults is 400μg per day, or about 

5.7μg of folic acid per day per kg of body weight, assuming a 70kg person. At 11mg folic acid/kg of 

diet, our mice consumed approximately 44μg of folic acid per day, or about 1100μg of folic acid per 

kg of body weight. Even our control diets, at 2.2 mg/kg of folic acid per kilogram, correspond to 

220μg of folic acid per kg of body weight. Though higher concentrations of folic acid in diet have 

been used without detriment, it is difficult to say what effects this may have had in our combined 

experimental design.  

Another element of concern about our diet was the addition of sulfathiazole, an antibiotic 

intended to eliminate intestinal microflora in dams and prevent endogenous production of folate. By 

doing so, we were able to limit the amount of folate that the mice received to dietary sources. This 

may be of concern since gut bacteria play significant roles in digestion and production of other 
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important nutrients, like vitamin K and others. Though the dams and fetuses from the CT group 

appeared healthy, little is known about the contribution that gut bacteria play in the context of iAs 

exposure and the response they would have to these insults that could potentially mitigate or 

supplement the effects.  An experiment in Wistar rats neutralized gut contents by sterilization and 

reported that arsenic was capable of being metabolized to DMAs by bacteria, though the fate of 

DMAs was not considered (Rowland 1981); implications for our study indicate that the amount of 

iAs given to dams potentially resulted in higher liver concentrations in the absence of gut bacteria and 

thus realized more detrimental effects than were observed in previous transplacental studies. 

 These detractions and need for more preliminary studies notwithstanding, observations 

recorded during sacrifice and CpG island methylation data demonstrate that folate supplementation 

appears to have a negative synergistic effect when combined with iAs. Further studies are warranted 

to elucidate the interaction between folate and arsenic; there are more metabolic scenarios to consider 

other than what our original hypothesis sought to accomplish.   
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Materials and Methods 

 

Animals and Treatment 

 42 timed pregnant CD1 mice (Charles River Laboratory, Raleigh, NC) were housed 

individually in a room with a 12 h light-dark cycle at 20-22°C and 50% relative humidity. From 

gestational day (GD) 5 to 18, the mice were provided ad libitum modified AIN-76A purified rodent 

diets obtain from Dyets (Bethlehem, PA) containing either 2.2 mg/kg folic acid or 11 mg/kg folic acid 

and from GD 8 to 18, either 0 or 85 mg arsenic/L (85 ppm) in the form of sodium arsenite (NaAsO2, 

Sigma) in deionized water (see Figure 4).  

 On GD18, blood from dams was collected by submandibular bleeding, and dams were 

euthanized by cervical dislocation. Fetuses were dissected out of the uterine horn and maternal livers 

were removed and snap-frozen. From each fetus, liver was dissected out and snap-frozen in liquid 

nitrogen and stored in a cell freezer; tails were clipped for sexing. Remaining fetal carcasses were 

snap-frozen in liquid nitrogen and kept at -80°C.  

In all, 10 dams were given 0 ppm arsenic and 2.2 mg/kg folic acid (CT), 11 dams given 85 

ppm arsenic and 2.2 mg/kg folic acid (CT/iAs), 9 dams given 0 ppm arsenic and 11 mg/kg folic acid 

(FS), and 8 dams given 85 ppm arsenic and 11 mg/kg folic acid (FS/iAs). Number of dams per group 

was unequal as not all were pregnant when received from Charles River.  

 Follow-up analyses were conducted only in males due to sex differences in development of 

liver cancer (Waalkes 2003). Tail clippings were digested overnight at 55°C in 2mL lysis buffer 

containing 10µL Proteinase K (100 mg/mL Qiagen). 750µL of the mix was combined with 0.5mL 

phenol:chloroform:isoamylalcohol, centrifuged, and followed by ice-cold ethanol precipitation. 

Pellets were air-dried and resuspended in 50µL TE buffer. Sex determination was performed by 

multiplex polymerase chain reaction (PCR) of gDNA using primers for the genes IL3 and Sry (for a 

detailed protocol, see Lambert , 2000).  Products were electrophoresed and visualized by UV trans-
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illumination on a 1% agarose gel containing ethidium bromide (MP Biomedicals, Solon, OH). One or 

two male fetuses per dam were used for each follow up experiment.  

Folate, SAM and SAH assays 

 Plasma folate levels in dams were determined by microbiological assay using L.casei as 

outlined in Horne and Patterson, 1988, by the UNC-Nutrition and Obesity Research Center (NORC) 

to establish the efficacy of our dietary treatment on dams. Levels of S-adenosylmethionine (SAM) 

and S-adenosylhomocysteine (SAH) were determined by high-performance liquid chromatography 

(HPLC) (She 1994) at UNC-NORC.  

iAs metabolite assay 

 iAs and its various metabolites were profiled by hydride generation-cryotrapping-atomic 

absorption spectrometry (HG-CT-AAS) using an AAnalyst 800 atomic absorption spectrometer 

(Perkin Elmer, Shelton, CT) equipped with a custom-designed multiatomizer, HG, and CT units 

controlled by a Perkin Elmer FIAS-400 flow injection accessory as described elsewhere (Hughes  

2010).  

Two-color microarray preparation and network analyses 

Six fetuses per group were selected for CpG island microarray analysis. DNA was extracted 

from livers by phenol:chloroform:isopropylalcohol separation as described for sex determination and 

purified on columns according to the QIAmp DNA Mini Kit (Qiagen). DNA concentration was 

determined using a Biospectrophotometer (Eppendorf). 4µg of DNA from each sample was then 

subjected to overnight DNA digestion by MSEI at 37˚C (New England BioLabs, Ipswich, MA), 

purified using QIAquick PCR purification kits (Qiagen) and vacuum-dried. DNA fragments were 

then ligated to H12 and H24 oligonucleotide linkers (H12: 5’- TAATCCTCCCTCGAA-3’, H14: 5’-

AGGCAACTGTGCTATCCGAGGGAT-3’). Equal amounts of both H12 and H24 oligonucleotides 

were added to a tube and annealed by heating to 55˚C and stepping down 5˚C after every 10 minutes 

to 20˚C. Ligation was carried out using the Fast-Link DNA Ligation Kit (Epicentre Biotechnologies) 

at room temperature for 30 minutes; the reaction was stopped at 70˚C for 5 minutes. PCR was carried 
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out under the following conditions, 72˚C for 5 minutes followed by 25 cycles of 97˚C for 1 minute, 

65˚C for 30 seconds, and 72˚C for 3 minutes, followed by 72˚C hold step for 10 minutes. The product 

was electrophoresed through a 1% agarose gel with ethidium bromide. The remainder of the ligated 

DNA was purified through QIAquick columns and dried before methylation sensitive digestion.  

DNA was digested overnight at 60˚C by BstUI, purified on QIAquick columns and dried, re-

dissolved in DNase-free water and subjected to HpaII digestion overnight at 37˚C, which was directly 

used for PCR without further purification. PCR was carried out with DeepVent(exo-) DNA 

polymerase (New England Biolabs) under the same conditions used following ligation. After PCR, 

samples were cleaned through QIAquick columns, DNA concentration was ascertained with the 

Biospectrophotometer. 4µg of each sample was submitted to the University Health Network 

Microarray Center (UHN, Toronto, CN) for microarray analysis (Agilent).  

Microarray methylation data received from UHN was filtered using Significance Analysis of 

Microarrays (see Statistical Analyses), part of the TMEV multiple array software. The list of 

significant differentially methylated genes found following software analysis was imported into 

Ingenuity Pathways Analysis to investigate relevance to various biological networks.  

Messenger RNA Transcript Analysis 

 To determine the effect of methylation changes on gene expression, we extracted RNA from 

6 fetal livers of each treatment group for a total of 24 samples. Each liver was transferred from liquid 

nitrogen and homogenized in 0.5mL TriZol Reagent (Invitrogen). 0.2 mL chloroform was added and 

centrifuged at 12,000rpm for 15 minutes at 4°C. The clear phase was pipetted into a new tube where 

we added 0.5mL isopropanol to precipitate RNA. Samples were allowed to sit at room temperature 

for 15 minutes, and centrifuged again at 12,000 rpm for 15 minutes at 4°C. The pellet was washed 

twice with ice cold 75% ethanol. After the last wash step, each RNA pellet was allowed to dry at 

room temperature and dissolved in 50μL of RNase-free water. Each sample was purified using an 

RNeasy Kit (Qiagen).   
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 Complementary DNA (cDNA) was synthesized by adding 2µg of sample RNA to 2µL of 

random primer at 0.3µg/µL. RNase free water was added to bring the total volume up to 24µL and 

heated to 65˚C for 5 minutes. A mix of 8µL 5X first-strand buffer, 4µL 0.1nmol DTT and 2µL 

dNTPs was added prior to incubation at 42˚C for 2 minutes. 2µL SuperScript Reverse-Transcriptase 

II (Invitrogen) was added and incubated for 25˚C for 10 minutes, 42˚C for 50 minutes, and 70˚C for 

15 minutes. 2µL RNase H was added for 20 minutes at 37˚C to remove remaining RNA. 

 We employed Taqman Gene Expression Assays (Applied Biosystems) to examine changes in 

gene expression for each treatment group relative to control. A list of genes and their context 

sequences can be found in Table 4; primer sequences are not provided. Each PCR reaction contained 

2μL cDNA (equivalent to 100ng total RNA), 6.67µL GeneAssay mix (containing buffers and Taq 

polymerase), 0.67µL primer at 10 ng/μL, and 4.66µL water for a total reaction volume of 14μL. 

Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was carried out under the 

following conditions for all genes on a Roche LightCycler 480 (Roche Diagnostics, Indianapolis, IN): 

Taq polymerase activation for 15 minutes at 95°C, followed by 40 cycles of 2-minute denaturation at 

95°C, 1-minute of primer annealing at 60°C, and 30 seconds of synthesis/extension at 72°C. Samples 

were loaded onto a 96-well plate in duplicate, normalized to the housekeeping gene, glyceraldehyde-

3-phosphate dehydrogenase (Gapdh). Transcripts of methyltransferases Dnmt1, Dnmt3a, and As3mt 

were analyzed by primer compatible with Universal Probe Library (UPL) probes (Roche 

Diagnostics). Primer sequences and probes for these genes are listed in Table 5. 

 Results were analyzed in LightCycler 480 Software (Roche Diagnostics), using Roche’s Cp 

analytical method “Advanced Relative Quantification” similar to the method described elsewhere 

(Pfaffl 2001).   

Protein Analysis 

 Protein analysis was performed by western blot. Four livers per group, siblings of those used 

in gene transcript analysis, were homogenized and split into cellular and nuclear extracts for a total of 

16 samples. Cytoplasmic extract (CE) was obtained by homogenizing tissue on ice in PBS with 1mM 
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DTT, 1mM PMSF, and the protease inhibitors aprotinin, leupeptin and pestatin at 5µg/mL, 2.5µ/mL 

and 2.5µg/mL, respectively. CE buffer, containing 10mM Tris-HCl (pH 7.6), 60mM KCl, 1mM 

EDTA in addition to the protease inhibitors listed for PBS was added at 1mL per 10mg of tissue. 

10µL of 10% NP-40 was added to each tube and vortexed briefly. Tubes were centrifuged for 5 

minutes at 12,000 rpm and 4˚C, supernatant is the CE. Remaining sediment (nuclei) were washed 

with 500µL CE buffer lacking NP-40, spun at 1,500rpm for 5min and 4˚C. 100µL of nuclear extract 

(NE) buffer was added containing inhibitors in PBS as well as 20mM TrisHCl (pH 8.0), 400mM 

NaCl, 1.5 mM MgCl2 and 25% glycerol. The solution was set on ice for 1 hour, with periodic 

vortexing. NE samples were spun at 12,000rpm for 5 minutes at 4˚C to pellet nuclei; the supernatant 

is the nuclear fraction. Both CE and NE were stored at -80˚C.  

Protein concentration was determined by bicinchoninic acid (BCA) assay. With the exception 

of the gel run for β-catenin, 500 ng of cellular extracts were loaded directly onto a 10% acrylamide 

gel and electrophoresed for 25 minutes at 100V and 175 volts for 6 hours. Proteins were transferred 

using a Trans-blot cell (BioRad) overnight at 4°C under 250 milliamps of current onto a PVDF 

membrane. Transfer efficiency was estimated by Ponceau staining. 

 The membrane was blocked with 5% milk in Tris-buffered saline (TBS) for 1 hour prior to 

overnight incubation with primary antibody (for concentrations and predicted size, see table 6). 

Following primary incubation, membranes were washed three times for five minutes with 0.1% 

Tween-TBS (TBS-T) and incubated with their respective secondaries at a 1:2000 concentration for 

two hours. Membranes were then washed three times in TBS-T, incubated in ECL (Thermo 

Scientific) for 5 minutes and exposed to Biofilm (Kodak). Optimal exposure varied according to the 

times indicated in Table 5. Semi-quantitative analysis was carried out using Photoshop 7.0 (Adobe) 

and normalized to β-actin for cellular extracts, or nuclear lamina for the nuclear extract. Following 

each exposure to film, the membrane was re-blocked for an hour with 5% milk in TBS and placed in 

the next primary.  
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 Protein analysis for β-catenin required immunoprecipitation (IP) of the protein from the 

nuclear extract. 500ng of nuclear extract from each sample was added to 1mL RIPA buffer containing 

aprotinin, leupeptin and pepstatin, as well as 1nmol PMSF. Primary antibody to non-phospho-β-

catenin (Santa Cruz Biotechnology) was added and mixed for 1 hour. 20μL of agarose beads were 

added and allowed to mix overnight at 4°C. The agarose beads were pulled down via centrifugation at 

1000xg for 5 minutes and the supernatant was placed into new tubes. Proteins were denatured and 

released from the beads by heating up to 95°C for 5 minutes in a dry bath. Samples were run on a 

10% acrylamide gel and transferred according to conditions as reported for other proteins.   

  The supernatant after IP was retained to run a separate western blot to determine loading 

control for β-catenin, nuclear lamin-b1 (Abcam). 30μg of nuclear extract was electrophoresed similar 

to other proteins.  

Statistical Analyses 

 Microarray data was analyzed with Significance Analysis of Microarrays software (SAM 

software, Tusher 2001) embedded within the TM4 Microarray Software Suite (Saeed 2006), using a 

two-class unpaired response model of log ratios of the Cy3 to Cy5 signal. Number of permutations 

was set to 210 and S0 values were determined using the minimum S value. Delta-values were 

computed by the SAM-software as a measurement of strength between extent of DNA methylation 

and the log-ratio, and selected based on a 5% false-discovery-rate. 

 For gene expression and protein data, values were averaged and checked for conformity by 

Chauvenet’s criterion. For each measure, data were subjected to two-way ANOVA with Diet (CT vs. 

FS) and Exposure (DI-water vs. DI-water + iAs) as between-subjects factors. Significant interactions 

were followed up by post-hoc tests. Planned comparisons were made where appropriate. P-value for α 

was set to 0.05.  
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TABLE 4. List of genes run by Taqman Gene Assay and their context sequences 

Group Gene Name Context Sequence, 5’ → 3’ 

One Carbon and iAs Metabolism 

Ahcy TAGCCTGGACAGTGCTTCTCCCACA 

Mat2a CCTCAGATGGCAGCTTTTAAAAGAT 

Cbs CACACAGTGCTGACCAAATCCCCCA 

Mtrr AATATGGATTATTGGGCTTGGGTGA 

Cell Cycle and Apoptosis 
Cdkn2a CTCAAGCACGCCCAGGGCCCTGGAA 

Cdkn1a GCAGACCAGCCTGACAGATTTCTAT 

Imprinted and Associated Genes 

Dlk1 TCTGCGAAATAGACGTTCGGGCTTG 

Igf2r TGGCTCGTCACTCAGAATCAGAACA 

Igf2bp1 TGCCAGCCAGATGGCTCAGCGGAAG 

Wnt Pathway 

Wnt3 AGTAGTGAGCCAGGGCACTGGGAAG 

Fzd8 CCTGTGGTCGGTGCTCTGCTTCGTC 

Fzd10 CCTTCATCCTGTCCGGCTTTGTGGC 

Ctnnb1 AATGAGACTGCAGATCTTGGACTGG 

Cnnd1 TGTGCCACAGATGTGAAGTTCATTT 

C-myc TTGGAAACCCCGCAGACAGCCACGA 

 

TABLE 5. UPL Primers and Probes 

 
Forward Primer Reverse Primer UPL Probe 

Dnmt1 gagccagcccagagatcc cgtctctgtcctcgggagt #38; ggaagcag 

Dnmt3a acacagggcccgttacttct tcacagtggatgccaaagg #72; gccaggaa 

As3mt tgcagaatgtacacgaagacg cagccgctcaggaacagt #76; tggctgtg 

 

TABLE 6. Antibody concentration and exposure time for western blot 

 

 

 

 

 

 
Primary Concentration Exposure Time Manufacturer Predicted Size 

Wnt3 1:1000 5 minutes Abcam 37 kDa 

Fzd7 1 μg/mL 5 minutes Abcam 63 kDa 

Fzd10 1:2000 10 seconds Abcam 65 kDa 

β-catenin 1:500 10 minutes Cell Signaling 92 kDa 
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