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ABSTRACT 

Gretchen M. Sprow: Ethanol-Induced Locomotor Sensitization:  NPY Signaling and Histone 

Acetylation in the Nucleus Accumbens and Striatum of DBA/2J Mice 

(Under the direction of Dr. Todd E. Thiele) 

 

Recent evidence indicates that neuropeptide Y (NPY) signaling modulates ethanol-

induced locomotor sensitization. Additionally, a growing body of literature suggests that 

epigenetic mechanisms, including histone acetylation, may play important roles in drug 

addiction. In the present study, we used immunohistochemical techniques to investigate the 

expression of both NPY and the acetylation of histones H3 and H4 in the nucleus accumbens 

and striatum following the induction of locomotor sensitization. Mice sensitized to the 

locomotor stimulant effects of ethanol displayed increases in NPY in the dorsolateral 

striatum and increases in acetylated H3 in the nucleus accumbens shell.  Interestingly, mice 

that received an acute injection of ethanol displayed decreases in NPY specific to the core of 

the nucleus accumbens. Finally, peripheral administration of Tricostatin A, a histone 

deacetylase inhibitor, augmented the acquisition, but not the expression, of locomotor 

sensitization.  The present observations indicate involvement of NPY and histone acetylation 

in ethanol-induced locomotor sensitization. 
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CHAPTER 1 

INTRODUCTION   

Behavioral sensitization has long been investigated as an important mechanism that 

may explain the transition to drug dependence (Robinson and Berridge 1993; Robinson and 

Berridge 2000; Robinson and Berridge 2001). Indeed, repeated drug exposure is thought to 

usurp natural reward circuitry within the mesolimbic dopaminergic pathway, leading to a 

hypersensitized state (Pierce and Kalivas 1997; White and Kalivas 1998; Robinson and 

Berridge 2003). Defined by the progressive augmentation of locomotor responses to a given 

dose of ethanol following repeated administration, ethanol-induced locomotor sensitization 

has been observed in both rodent and human populations (Newlin and Thomson 1991; 

Lessov and Phillips 1998). In the current experiments, we have attempted to clarify pieces of 

the mechanism underlying this striking phenomenon.  

Neuropeptide Y (NPY) is a 36-amino acid neuromodulator prevalent throughout 

numerous brain structures, including regions of the mesolimbic dopaminergic pathway (Gray 

and Morley 1986; Dumont, Martel et al. 1992). NPY has been implicated in a number of 

neurobiological responses to ethanol, including consumption, sedation, and self-

administration (Thiele, Marsh et al. 1998; Thiele, Sparta et al. 2003; Thorsell, O'Dell et al. 

2003). Levels of NPY are differentially influenced by acute and chronic ethanol exposure, as 

well as ethanol withdrawal (Kinoshita, Jessop et al. 2000; Roy and Pandey 2002; Thorsell, 

Slawecki et al. 2005). Additionally, data from our laboratory has suggested a link between 

central NPY signaling and ethanol-induced locomotor sensitization, as not only do NPY 
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knockout mice show reduced ethanol-induced behavioral sensitization relative to wild-type 

littermates, but blunted endogenous NPY signaling selectively in the nucleus accumbens core 

attenuates the expression of locomotor sensitization (Hayes, Fee et al. in press).  Further, 

RIIβ-/- mice, previously shown to exhibit increased sensitivity to ethanol-induced locomotor 

activity and behavioral sensitization, exhibit sub-region-specific increases in NPY 

immunoreactivity (IR) in the nucleus accumbens and striatum (Fee, Knapp et al. 2006; 

Hayes, Fee et al. in press). As NPY is prevalent in many brain regions implicated in drug- 

and ethanol-induced locomotor sensitization, and has known involvement in a great number 

of neurobiological responses to ethanol, the role of NPY in ethanol-induced locomotor 

sensitization was further characterized in the present investigation.  

Drug abuse research has traditionally focused on the role of genetics in drug and 

alcohol addiction. Recent work, however, has shifted to investigating epigenetic mechanisms 

that may underlie the development and maintenance of this devastating disorder (Renthal and 

Nestler 2008; Wong, Mill et al. 2010).  Such mechanisms induce changes in phenotype 

and/or gene expression through remodeling of chromatin structure via DNA methylation or 

post-translational histone modifications, including acetylation and phosphorylation. While 

methylation is typically associated with a decrease in gene expression, increased acetylation 

of core histones H3 and H4, in particular, has been shown to induce a looser chromatin 

structure, leading to an increase in gene expression; deacetylation of these histones leads to a 

more compact structure, thereby decreasing gene expression (Eberharter and Becker 2002).  

Drugs of abuse, including cocaine, amphetamine, and ethanol, have been shown to 

dynamically regulate histone modification in animals (Kumar, Choi et al. 2005; Renthal and 

Nestler 2008; Sanchis-Segura, Lopez-Atalaya et al. 2009). D2-like receptor antagonists 
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induce phosphoacetylation of histone H3 in striatal chromatin (Li, Guo et al. 2004) and 

repeated administration of ethanol during adolescence leads to changes in the acetylation of 

histones H3 and H4 in several regions, including the nucleus accumbens and striatum 

(Pascual, Boix et al. 2009).  Further evidence suggests an epigenetic association between 

paternal ethanol exposure and decreased fetal weight in Sprague-Dawley rats (Dawn, Fadi et 

al. 2002). Elevated DNA methylation has also been found in human alcoholic patients, and 

class I alcohol dehydrogenase genes have been shown to be differentially regulated by both 

DNA methylation and histone deacetylation (Luke, Hui-Ju et al. 2006). Withdrawal from 

chronic ethanol has also been shown to increase histone deacetylase (HDAC) activity: these 

changes were correlated with both increased levels of anxiety-like behavior and reduced 

NPY expression in specific amygdaloid regions (Pandey, Ugale et al. 2008). Indeed, data 

from that study suggests a relationship between histone acetylation and NPY expression, as 

peripheral administration of Trichostatin A, an HDAC inhibitor (HDACi), not only increased 

the amount of H3 and H4 acetylation seen in ethanol withdrawn rats following chronic 

ethanol exposure, but also rescued withdrawal-induced deficits in NPY mRNA and protein 

expression (Pandey, Ugale et al. 2008).  Given these data, it is possible that histone 

acetylation may play a role in other neurobiological responses to ethanol mediated by NPY. 

Further evidence suggests that chromatin remodeling plays a key role in behavioral 

sensitization. Co-treatment with a D1/D5 agonist and the nonspecific HDACi sodium 

butyrate (NaBut) synergistically increased cocaine-induced locomotor sensitization 

(Schroeder, Penta et al. 2008). Additionally, acute cocaine is associated with acetylation of 

H4, while chronic cocaine is associated with changes in H3 acetylation associated with 

specific gene promoters in the striatum (Kumar, Choi et al. 2005).  A dose of NaBut with no 
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intrinsic locomotor effects also nearly doubled the locomotor stimulant response to cocaine. 

Finally, a separate study confirmed that NaBut enhances cocaine-induced locomotor 

sensitization, and that a similar enhancement of activity is seen with morphine- and ethanol-

induced locomotor sensitization. (Sanchis-Segura, Lopez-Atalaya et al. 2009).  

Chromatin remodeling is affected by many drugs of abuse, including ethanol. 

Additionally, manipulation of histone acetylation using a potent HDACi has been shown to 

not only alter the expression of NPY, a neuropeptide implicated in ethanol-induced 

locomotor sensitization, but also to influence NPY-mediated behaviors following withdrawal 

from ethanol exposure.  The goal of the present experiments was two-fold. The first 

experiment sought to examine expression patterns of both NPY protein and core histones H3 

and H4 in key brain regions previously associated with drug-induced locomotor sensitization.  

Here, we found treatment-specific and region-specific alterations in both NPY and H3 

immunoreactivity. The second and third experiments were designed to further investigate the 

role of histone acetylation in the expression and acquisition of ethanol-induced locomotor 

sensitization. Given the region-specific increase in histone acetylation following ethanol-

induced behavioral sensitization in Experiment 1, we expected hyperacetylation to augment 

the expression and/or acquisition of sensitization; interestingly, treatment with the HDACi 

augmented the acquisition, but did not affect the expression, of ethanol-induced locomotor 

sensitization. Taken together, these results provide further evidence for the role of both NPY 

and chromatin remodeling through histone acetylation in ethanol-induced locomotor 

sensitization.



CHAPTER 2 

METHODS 

Animals 

Male DBA/2J mice (see below for animal numbers) were 6-8 weeks of age and 

weighed approximately 22g at the beginning of the experiment. Mice were individually 

housed in polypropylene cages with corncob bedding and allowed to habituate to the 

environment for one week prior to study initiation. While in the home cage, animals had ad 

libitum access to food and water. The colony room was maintained at approximately 22° 

Celsius with a 12h:12h light:dark cycle. All procedures and protocols used in the present 

studies were in accordance with the National Institute of Heath guidelines and were approved 

by the University of North Carolina Institutional Animal Care and Use Committee.  

Drugs 

Ethanol solutions for injections (1.5, 2.0, 2.5 g/kg, i.p.) were prepared using 0.9% 

saline and 95% (Experiment 3) or 100% (Experiment 1 and 2) Ethyl Alcohol. Equivolume 

saline injections were used as an ethanol control in all experiments. Trichostatin A (TSA; 

1.0, 2.0, 4.0 mg/kg, i.p.; Sigma Aldrich, St. Louis, MO) was dissolved in dimethyl sulfoxide 

(DMSO) and diluted (1:5) with phosphate buffered saline (PBS; pH 7.4). For TSA studies, 

DMSO diluted with PBS (1:5) was used as the vehicle control.  

Ethanol-Induced Locomotor Sensitization 

A sensitization protocol based on a previously described protocol was used for all 

experiments (Fee, Knapp et al. 2006; Fee, Sparta et al. 2007). Mice were tested during the
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light phase of the light:dark cycle. Animals were transported to the testing room and 

habituated in their home cages for at least 30 minutes prior to testing. Fans in the testing 

room provided white noise. Mice were removed from their home cages, given an 

intraperitoneal (i.p) injection of ethanol or equivolume saline (see Tables 1A-1C for injection 

schedules) and immediately placed into the center of an open field (Harvard Apparatus, Inc., 

Holliston, MA). This apparatus, measuring 40.64cm by 40.64cm x 30.48cm and made of 

clear Plexiglas, recorded locomotor activity via photo beam breaks. Corncob bedding, the 

same used in home cages, was placed into the locomotor chamber to both aid in cleaning and 

prevent the buildup of odor; chambers were cleaned between each subject. Locomotor 

activity was recorded for 20 min sessions and broken down into five minute sections. To 

briefly summarize the injection schedule, on days 1-3, mice received an i.p. injection of 

saline and were placed into the open field to habituate them to both the injection procedure 

and the open field apparatus. On day 4 (“Initial Test”), mice received an i.p. injection of 

either ethanol or equivolume saline to serve as a measure of baseline locomotor behavior and 

a reference point for the development of sensitization. Animals then received homecage (HC) 

injections of saline or ethanol for either 7 or 10 consecutive days. On these days, mice were 

not removed from the animal colony: following injections, mice were returned to the HC and 

left undisturbed for 24hr. Mice were again brought to the locomotor testing room (“Final 

Test”) for a final locomotor assessment following either an injection of ethanol or saline, in a 

procedure exactly like that of the Initial Test. Following the final test session, mice were 

returned to the HC until perfusion and brain collection.  
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Perfusions, Brain Preparation, and Immunohistochemistry (IHC) 

 Perfusion and immunohistochemistry procedures were based on those routinely used 

in our laboratory (Hayes, Knapp et al. 2005; Navarro, Cubero et al. 2008; Cubero, Navarro et 

al. 2010). After completion of each experiment, mice were injected with a cocktail of 

ketamine (117 mg/kg) and xylazine (7.92 mg/kg) and transcardially perfused with 0.1 mM 

PBS followed by 4% paraformaldehyde in phosphate buffer. Brains were collected and post-

fixed in paraformaldehyde for 48 hours at 4°C. At this point they were transferred to either 

PBS, for immediate processing, or to a cryopreserve solution for long-term storage. Brains 

were cut using a vibratome into 40μm slices and stored in either PBS or cryopreserve until 

ready for IHC processing. Sections were transferred back into PBS 24 hours before each IHC 

assay and allowed to sit at room temperature. Sections were then transferred to PBS for 24 h 

before processing with NPY, acetylated H3 (lys9), or acetylated H4 (lys8) antibodies. After 

rinsing in fresh PBS 5 times (10 minutes each), tissue sections were blocked in 10% goat 

serum and 0.1% triton-X-100 in PBS for 1 hour. Sections were then transferred to fresh PBS 

containing primary antibody and agitated for 72 hours at 5°C.  NPY expression was detected 

using primary rabbit anti-NPY (Peninsula Laboratories, LLC, San Carlos, CA; 1:1000).  

Acetylated H3 (acH3) expression was detected using primary rabbit anti-acH3 (Millipore, 

Temecula, CA; 1:5000). Acetylated H4 (acH4) expression was detected using primary rabbit 

anti-H4 antibody (Millipore, Temecula, CA; 1:1:000). As a control to determine if staining 

required the presence of the primary and secondary antibodies, some sections were run 

through the assay without either the primary antibody or the secondary antibody. In each 

assay described below, tissue processed without either the primary or the secondary antibody 

failed to show staining that was evident in tissue processed with the correct antibodies. After 
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the 72 hour incubation, tissue sections were rinsed 3 times and then processed with 

Vectastain Elite kits (Vector Laboratories, Burlingame, CA) as per the manufacturer‟s 

instructions for standard ABC/HRP/diaminobenzidine-based immunohistochemistry. The 

staining was visualized by reacting the sections with a 3,3′-diamino-benzidine 

tetrahydrochloride (DAB; Polysciences, Inc., Warrington, PA) reaction solution containing 

0.05% DAB, 0.005% cobalt chloride, 0.007% nickel ammonium sulfate, and 0.006% 

hydrogen peroxide. All sections were mounted on glass slides, air-dried, and cover slipped 

for viewing. Digital images of NPY immunoreactivity (NPY-IR), acH3 immunoreactivity 

(acH3-IR), and acH4 immunoreactivity (acH4-IR) were obtained on a Nikon E400 

microscope equipped with a Nikon Digital Sight DS-U1 digital camera run with Nikon-

provided software.  Densitometric procedures were used to assess levels of IR in 

predetermined brain regions of interest.  Flat-field corrected digital pictures (8-bit grayscale) 

were taken using the Digital Sight DS-U1 camera. The density of staining was analyzed 

using Image J software (Image J, National Institute of Health, Bethesda, MD) by calculating 

the percent of the total area examined that showed staining relative to a subthreshold 

background.  The size of the areas that were analyzed was the same between animals and 

groups. The subthreshold level for the images was set in such a way that any area without an 

experimenter-defined level of staining was given a value of zero. Anatomically matched 

pictures of the left and right sides of the brain were used to produce an average density for 

each brain region from each slice. In all cases, quantification of immunoreactivity data was 

conducted by an experimenter blind to group identity.  For analysis, great care was taken to 

match sections through the same region of brain and at the same level using anatomic 

landmarks with the aid of a mouse stereotaxic atlas (Franklin 1997).  
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Experiment 1: Analysis of NPY-IR, acH3-IR, and acH4-IR Following Ethanol-Induced 

Locomotor Sensitization 

This experiment was designed to examine the presence of acetylated histones H3 

(acH3) and H4 (acH4) and NPY in key brain regions following acquisition of ethanol-

induced locomotor sensitization. Male DBA/2J mice (n=40) underwent three days of 

habituation to the injection procedure and the open field. Mice were divided into three 

groups, counterbalanced for locomotor activity following the initial test day injection of 

saline or 1.5 g/kg EtOH.  Saline (SAL) control animals received saline injections for the 

remainder of the experiment. Non-sensitized (NS) animals received saline for each of 10 HC 

injections, and 1.5 g/kg EtOH on the first and final test days. Thus these animals received a 

total of two ethanol injections, separated by 10 days, over the course of the experiment. 

Sensitized (SEN) mice received injections of 2.5 g/kg EtOH for each of the 10 HC injections, 

and 1.5 g/kg EtOH on the first and final test days (see Table 1A). These animals received a 

total of 12 ethanol injections over the course of the experiment.  Sensitization was assessed 

as the change in locomotor activity on the Final Test relative to the Initial Test. Forty-eight or 

96 hours after the final locomotor assessment, mice were sacrificed and brains collected for 

IHC analysis as outlined above. As no significant differences in IR were evident between 

these time points, all presented IHC data has been collapsed.  

Experiment 2:  Effect of TSA on the Expression of Ethanol-Induced Locomotor 

Sensitization 

This experiment was designed to examine the effect of TSA, a potent HDAC 

inhibitor, on the expression of ethanol-induced locomotor sensitization. Male DBA/2J (n=40) 

mice underwent three days of habituation to the injection procedure and the open field. Mice 
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were divided into four groups, counterbalanced for locomotor activity during the initial test 

day injection of 2.0 g/kg EtOH. All animals received 2.5 g/kg EtOH for all 10 HC injections. 

Two hours before the final test day injection of 2.0 g/kg EtOH, animals received an injection 

of vehicle or 1.0, 2.0, or 4.0 mg/kg TSA (see Table 1B). The dose and timing of TSA 

administration in the present studies were based on previous work showing success in 

manipulating brain histone acetylation (Korzus, Rosenfeld et al. 2004; Pandey, Ugale et al. 

2008). Sensitization was assessed as in Experiment 1.  

Experiment 3: Effect of TSA on the Acquisition of Ethanol-Induced Locomotor 

Sensitization 

This experiment was designed to examine the effect of TSA on the acquisition of 

ethanol-induced locomotor sensitization. Male DBA/2J mice (n=70) underwent three days of 

habituation to the injection procedure and the open field. Mice were divided into seven 

groups based on locomotor activity following an initial test day injection of either 2.0 g/kg 

EtOH or saline. Saline-treated control mice were pretreated with either vehicle (VEH+SAL) 

or TSA (TSA+SAL) two hours before each HC injection of saline. Non-sensitized mice were 

pretreated with either vehicle (VEH+NS) or TSA (TSA+NS) two hours before each HC 

injection of saline. Sensitized mice were pretreated with either vehicle (VEH+SEN) or TSA 

(TSA+SEN) two hours before each HC injection of ethanol. A non-injected group of mice 

was also included to control for the potential effects of stress due to repeated injections: 

locomotor activity of mice in the non-injected group was assessed on all habituation and test 

days, and all non-injected mice were weighed and handled at the same time as their injected 

counterparts on HC injection days. 
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For this experiment, mice received seven HC injections of saline or 2.5 g/kg EtOH. 

Sensitization was assessed as in Experiment 1 following a final test day injection of either 

saline or 2.0 g/kg EtOH. See Table 1C for schedule of injections. Importantly, neither vehicle 

nor TSA was injected preceding the final locomotor assessment: thus any increases in 

locomotor activity on the final test day should be due to changes resulting from the 

acquisition of sensitization. 

Data Analysis 

  One-way analyses of variance (ANOVAs) were used to analyze immunoreactivity in 

Experiment 1 and group differences in locomotor activity on the final test day in Experiment 

3; specific differences between groups were assessed using LSD post-hoc tests. Repeated 

measures ANOVAs with post-hoc tests were used to analyze group differences in locomotor 

sensitization in all experiments. Significance was accepted at p<0.05 (two-tailed).



CHAPTER 3 

RESULTS 

Experiment 1:  

Locomotor activity from the first five minutes of the Initial and Final test sessions 

from Experiment 1 are presented in Figure 1. There were no differences in activity between 

the initial and final test sessions in either the saline-treated (SAL) or the non-sensitized (NS) 

mice, indicating these animals did not develop ethanol-induced locomotor sensitization. 

Repeated measure ANOVA revealed a significant group x day interaction [F(2,36)=7.028, 

p=0.003].  Post hoc tests showed that locomotor activity was significantly increased in the 

sensitized (SEN) mice on the final locomotor assessment compared to the initial locomotor 

assessment, indicating that the mice developed ethanol-induced locomotor sensitization. Both 

NS and SEN mice also showed significantly more locomotor behavior on the initial test day 

relative to the SAL mice, indicative of the stimulant-like properties of the low-dose of 

ethanol [F(2,37)=4.24, p=0.02]. As these behavioral data show the SEN mice achieved 

adequate ethanol-induced locomotor sensitization, immunohistochemical analyses were 

performed to examine differences in acH3-IR, acH4-IR, and NPY-IR between SAL, NS, and 

SEN mice. 

acH3 Immunoreactivity  

 Representative photomicrographs and quantification of acH3 immunoreactivity 

(acH3-IR) in the nucleus accumbens are shown in Figure 2. As seen in Figure 2D, acH3 IR in 

the nucleus accumbens shell differed by group [F(2,33)=3.309, p=0.049]. Post-hoc analysis
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 revealed that the SEN mice displayed significantly greater acH3 IR in the nucleus 

accumbens shell relative to both SAL and NS mice. No group differences were seen in the 

nucleus accumbens core [F(2,33)=0.669, p=0.519; Figure 2C].  Additionally, there were no 

group differences in acH3-IR in the dorsolateral striatum (DLS) [F(2,35)=2.235, p=0.122], 

the dorsomedial striatum (DMS) [F(2,35)=1.369, p=0.268], the ventrolateral striatum (VMS) 

[F(2,35)=1.263, p=0.295], or the ventromedial striatum (VMS) [F(2,35)=1.486, p=0.240] 

(Figure 2E, 2F).  

acH4 Immunoreactivity 

 Quantification of acH4-IR in the nucleus accumbens and striatum is shown in Figure 

3. There were no group differences in the nucleus accumbens core [F(2,34)=0.034, p=0.967] 

or shell [F(2,34)=0.016, p=0.984]. Similarly, no group differences were seen in the DLS 

[F(3,37)=1.097, p=0.345], DMS [F(2,35)=1.729, p=0.192], VLS [F(2,35)=0.511, p=0.604] or 

VMS [F(2,35)=0.727, p=0.491]. 

NPY Immunoreactivity 

 Representative photomicrographs and quantification of NPY-IR in the nucleus 

accumbens and striatum are shown in Figure 4.  As shown in Figure 4C, NS mice showed 

reduced NPY-IR in the core of the accumbens relative to both SAL and SEN mice 

[F(2,31)=6.087, p=0.006]. NPY-IR in the shell of the accumbens showed a non-significant 

trend in a similar direction, with post-hoc tests revealing that NS mice showed significantly 

reduced NPY-IR relative to SEN mice [F(2,32)=2.991, p=0.064; Figure 4D]. Interestingly, 

NPY-IR in the striatum showed a different expression pattern. As shown in Figure 4E, NPY-

IR in the DLS differed by group [F(2,33)=3.531, p=0.041]. Post-hoc analysis revealed the 

SEN mice showed significantly elevated NPY-IR relative to NS, but not to SAL mice. There 
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were no group differences in NPY-IR expression in the DMS [F(2,33)=0.135, p=0.874], VLS 

[F(2,33)=0.040, p=0.960] and VMS [F(2,33)=0.477, p=0.625] (Figure 4E, 4F).  

Immunoreactivity Summary 

Immunoreactivity results are summarized in Table 2A and Table 2B. Briefly, mice 

that showed ethanol-induced locomotor sensitization showed an increase in acH3-IR specific 

to the nucleus accumbens shell and an increase in NPY-IR specific to the dorsolateral 

striatum.  Additionally, non-sensitized animals given an acute injection of ethanol showed a 

decrease in NPY-IR in the nucleus accumbens core relative to both saline-treated and 

ethanol-sensitized mice. A trend in this direction was also seen in non-sensitized mice in the 

shell of the nucleus accumbens. No changes were seen in acH4-IR in any of the regions 

examined. These data indicate a potential role of histone acetylation and/or NPY in ethanol-

induced locomotor sensitization.     

Experiment 2: 

The goal of Experiment 2 was to examine the effect of peripheral administration of 

TSA on the expression of ethanol-induced locomotor sensitization. For this experiment, all 

mice were sensitized to a low dose of ethanol and treated with either vehicle or one of three 

doses of TSA two hours prior to the final locomotor assessment.  Locomotor data from this 

experiment is shown in Figure 5. No group differences in locomotor activity were detected 

on either the initial test day [F(3,29)=0.182, p=0.907] or the final test day [F(3,29)=1.818, 

p=0.166]. All groups of mice showed robust ethanol-induced locomotor sensitization: that is, 

all groups of mice showed significantly augmented locomotor activity on the final test day as 

compared to the initial test day. However, repeated measure ANOVA revealed no group x 

treatment interaction, indicating that the HDACi did not affect the degree of locomotor 
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sensitization [F(3,29)=1.496, p=0.237].  These results suggest that peripheral administration 

of an HDACi does not affect the expression of ethanol-induced locomotor sensitization, as all 

groups achieved similar degrees of locomotor sensitization. 

Experiment 3: 

As Experiment 2 showed that administration of TSA had no effect on the expression 

of ethanol-induced locomotor sensitization, the goal of Experiment 3 was to examine the 

effect of peripheral administration of TSA on the acquisition of ethanol-induced locomotor 

sensitization.  For this experiment, mice received an injection of either vehicle or 2.0 mg/kg 

TSA two hours before each of seven consecutive daily HC injections of ethanol or 

equivolume saline. Locomotor data from this experiment is shown in Figure 6.  Only mice 

that received repeated HC injections of 2.5 g/kg ethanol showed ethanol-induced locomotor 

sensitization, evidenced by augmented locomotor activity on the final test day relative to the 

initial test day. Repeated measures ANOVA revealed a group x test day interaction 

[F(6,58)=9.614, p=0.000]. Additionally, one-way ANOVA of final test day locomotor 

activity revealed significant group differences in locomotor activity [F(6,58)=14.090, 

p=0.000]. Post-hoc analysis revealed that both VEH-SEN and TSA-SEN mice showed 

significantly greater locomotor activity relative to all other groups. Importantly, LSD post-

hoc analysis also indicated that VEH-SEN and TSA-SEN showed significantly different 

locomotor activity. That is, mice pretreated with TSA on each day of HC ethanol injections 

showed significantly greater locomotor activity on the final test day, when TSA was not on 

board, relative to mice pretreated with saline on each day of HC ethanol injections. 

Importantly, daily pretreatment with TSA affected neither general locomotor activity nor the 

locomotor stimulant response to an acute injection of low-dose ethanol, as measured in the 
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NS mice. Taken together, these data suggest that peripheral administration of TSA, 

administered prior to HC ethanol injections during the induction of locomotor sensitization, 

is sufficient to augment ethanol-induced locomotor sensitization when TSA is not on board. 



CHAPTER 4 

DISCUSSION 

The goal of the present experiments was to examine NPY, acH3, and acH4 

immunoreactivity and their involvement in ethanol-induced locomotor sensitization. First, 

NPY-IR, acH3-IR, and acH4-IR were assessed following the induction of sensitization. 

Immunohistochemical analysis revealed region-specific upregulation of striatal NPY-IR 

(Figure 4C) and accumbal acH3-IR (Figure 2C) in animals showing robust sensitization to 

the locomotor stimulant effects of ethanol. No changes were seen in acH4-IR in either region 

(Figure 3). Interestingly, mice that received an acute injection of ethanol showed a decrease 

in NPY-IR in the nucleus accumbens core (Figure 4E); a trend in the same direction was seen 

in the nucleus accumbens shell (Figure 4F). 

Our findings confirm the inability of low-dose repeated ethanol to induce detectable 

changes in the expression of acetylated H3 within the striatum (Sanchis-Segura, Lopez-

Atalaya et al. 2009). We extended our analysis to the nucleus accumbens, a well-studied 

reward center with likely involvement in psychomotor sensitization (Pierce and Kalivas 

1997; Robinson and Berridge 2000; Abrahao, Quadros et al. 2011). Despite no detected 

change in acetylated H3 or H4 in the nucleus accumbens core, an increase in acetylated H3 

was detected in the nucleus accumbens shell, a region known to receive dopaminergic input 

from the ventral tegmental area (Robbins and Everitt 1996; Ikemoto 2007).  Indeed, recent 

evidence has also demonstrated that the rats demonstrating amphetamine-induced locomotor 

sensitization show an increase in dopamine neuron firing specifically in dopamine neurons
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 innervating the medial shell, but not the core, of the nucleus accumbens (Ikemoto 2007; 

Lodge and Grace 2011). Thus these data provide further evidence for the involvement of the 

nucleus accumbens shell in drug-induced locomotor sensitization. Additionally, as changes in 

H3 acetylation were detected in the shell of the accumbens, it is unlikely that the lack of 

changes detected in either the striatum or the nucleus accumbens core were due to the 

immunohistochemical technique utilized in the present experiment. However, the possibility 

remains that the technique was not a sensitive enough measure to detect smaller changes in 

acetylated histone expression in these regions, due to high baseline levels of histone 

acetylation in saline-treated control animals. 

The present results differ from recent reports showing simultaneous changes in both 

histones H3 and H4 acetylation in response to acute ethanol exposure (Pandey, Ugale et al. 

2008).  Our results are not surprising, however, in light of drug abuse literature showing 

differential expression patterns of acetylated H3 and H4. For example, rats exposed to 

chronic toluene inhalation showed increased acH3-IR, but no changes in acH4-IR, within the 

accumbens (Sanchez-Serrano, Cruz et al. 2011). Additionally, genes influenced by acute 

cocaine exposure show hyperacetylation at histone H4, while genes influenced by chronic 

exposure show hyperacetylation at histone H3 (Kumar, Choi et al. 2005).  Although 

speculative, perhaps the increases in accumbal H3 reflect the „chronic‟ nature of repeated 

ethanol exposure, and a transient change in H4 in the non-sensitized („acute‟ exposed) mice 

was not captured by our experimental protocol. Future studies will need to examine the 

temporal patterns of hyperacetylation to address this question. 

In light of preliminary evidence from our laboratory showing attenuated ethanol-

induced locomotor sensitization in both mice lacking normal NPY production as well as mice 



19 
 

with blunted endogenous NPY release specifically in the accumbens (Hayes, Fee et al. in 

press), the lack of changes in NPY protein expression in the nucleus accumbens following 

the induction of locomotor sensitization is somewhat surprising. However, differences in 

patterns of NPY-IR may be due to strain differences: while previous studies utilized RIIβ-/- 

mice maintained on a C57BL/6J background, the present study utilized DBA/2J mice. In the 

present study, sensitized mice showed an increase of NPY-IR specific to the dorsolateral 

region of the striatum, but no changes in the nucleus accumbens, relative to non-sensitized 

mice. Interestingly, non-sensitized mice showed decreases in NPY-IR in both sub-regions of 

the nucleus accumbens core, a finding consistent with the attenuated striatal NPY-IR seen in 

RIIβ-/- mice following an acute injection of 2.0 g/kg dose of ethanol (Hayes, Fee et al. in 

press) and with the observation that an acute injection of ethanol in rats can decrease NPY 

mRNA in the arcuate nucleus of the hypothalamus (Kinoshita, Jessop et al. 2000). Thus these 

data support the idea that NPY signaling in the nucleus accumbens may be important in the 

initial acquisition of ethanol-induced locomotor sensitization, but may not play a key role in 

the expression of said sensitization: perhaps lasting changes in striatal NPY (as seen in the 

dorsolateral striatum of sensitized animals in the present work) reflect neuroadaptive changes 

important to the expression of sensitization.  

Recent work from the cocaine literature supports the finding that alterations in NPY 

expression in certain brain regions following drug exposure may be transient:  though an 

upregulation of NPY (and corresponding upregulation of acetylated histone H3 bound to the 

NPY promoter) was found in the medial prefrontal cortex following one day of cocaine 

abstinence, expression of protein and acetylated histones returned to control levels within 10 

days of abstinence (Freeman, Patel et al. 2008).  In the present study, mice were sacrificed 48 
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and 96 hours after the final locomotor test to ensure the animals did not have ethanol on 

board and were not in acute ethanol withdrawal.  As the nucleus accumbens has been 

proposed as a link between the limbic and motor circuits, and changes in accumbal NPY-IR 

expression appear specific to non-sensitized mice (that is, in response to an acute dose of 

ethanol), it is possible that changes in NPY expression in the nucleus accumbens are transient 

and may influence later, lasting changes in the striatum. Future studies are needed to examine 

the mechanisms that may underlie this transition.  

Surprisingly, the present results do not reveal an overlap in the expression patterns of 

acH3-IR and NPY in either of the brain regions examined, despite previous evidence 

showing direct manipulation of amygdalar NPY expression by the HDACi TSA (Pandey, 

Ugale et al. 2008). In that study, ethanol withdrawal-induced deficits in NPY and acetylated 

histone expression in the amygdala were both rescued by peripheral administration of TSA. 

However, a number of differences in the current work may explain the lack of parallel 

findings, including species examined and ethanol regimen. While the previous work 

examined brain chemistry during withdrawal from an acute ethanol exposure in rats, the 

current work examined immunohistochemistry in mice, beyond acute withdrawal, following 

chronic ethanol exposure. Additionally, the effect of histone acetylation may differentially 

affect proteins in different brain regions: while previous work has examined the acH3-NPY 

relationship in response to ethanol in amygdalar regions, the current work focuses on the core 

and shell of the nucleus accumbens and the four quadrants of the striatum. Finally, the 

present investigation did not examine the exact gene location of acetylation, as the 

immunohistochemical approach used measured general levels of H3 and H4 acetylation in 

the regions of interest. Future studies will need to investigate the gene promoter regions 
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affected by ethanol-induced hypreacetylation. It may be that changes in histone acetylation 

seen following locomotor sensitization are either not related, or are indirectly related to the 

changes in NPY signaling implicated in modulating ethanol-induced locomotor sensitization. 

As our laboratory has recently utilized both genetic and site-directed viral vector 

manipulations to examine the role of NPY signaling in modulating ethanol-induced 

locomotor sensitization (Hayes, Fee et al. in press), we focused the remainder of our 

investigation on the role of histone acetylation in this behavioral phenomenon. To this end, 

we peripherally administered a potent, reversible HDAC inhibitor, TSA, during two distinct 

phases of ethanol-induced locomotor sensitization. As inhibition of HDAC activity results in 

increased histone acetylation, Experiments 2 and 3 examined the effect of hypreacetylation 

on both the acquisition and expression of locomotor sensitization. 

In Experiment 2, mice received an intraperitoneal injection of TSA two hours prior to 

the final locomotor assessment. As the neuroadaptations responsible for locomotor 

sensitization likely form during the regimen of repeated homecage injections, the goal of this 

experiment was to measure the role of global histone hyperacetylation on the expression of 

ethanol-induced locomotor sensitization. Locomotor data from this experiment showed no 

effect of the TSA administration on the expression of locomotor sensitization, as none of the 

groups that received pretreatment with TSA on the test day showed a difference in their 

activity level relative to mice pretreated with vehicle (Figure 5).  Importantly, the middle 

dose used in this experiment (2 mg/kg) has been shown sufficient to both affect NPY-

modulated anxiety-like behaviors during ethanol-withdrawal in rats (Pandey, Ugale et al. 

2008) and augment locomotor behavior in mice when administered two hours before 

behavioral assays (Experiment 3). As we included a range of doses from 1.0 mg/kg to 4.0 
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mg/kg, it is unlikely that this lack of effect on the expression of ethanol-induced locomotor 

sensitization is due to an insufficient or inappropriate dose of Trichostatin A. Thus we 

conclude that peripheral administration of TSA is unable to further manipulate 

neuroadaptations involved in ethanol-induced locomotor sensitization after acquisition is 

complete.  

In the final study, mice received peripheral administration of vehicle or TSA before 

each of seven consecutive daily homecage injections of saline or ethanol. The goal of this 

study was to induce global histone hyperacetylation during the induction, or acquisition, of 

ethanol-induced locomotor sensitization, the period of time when neuroadaptations 

underlying the augmented locomotor behavior are thought to form.  Behavioral data from this 

experiment showed not only that all animals that received repeated homecage ethanol 

injections developed robust locomotor sensitization, but also that mice pretreated with TSA 

before each homecage ethanol injection showed greater locomotor activity on the final test 

day relative to mice pretreated with vehicle (Figure 6). Thus we conclude that 

hypreacetylation following peripheral administration of TSA is sufficient to strengthen the 

formation of neuroadaptations that contribute to ethanol-induced locomotor sensitization. 

The present results both confirm and extend previous findings regarding the ability of 

NaBut to enhance ethanol-induced locomotor sensitization (Sanchis-Segura, Lopez-Atalaya 

et al. 2009). Here, we show that not only is pretreatment with a different HDACi, TSA, 

before HC injections of ethanol sufficient to augment the acquisition of ethanol-induced 

locomotor sensitization, but also that administration of TSA prior to the final locomotor 

assessment is insufficient to alter the expression of acquired sensitization.  As sensitization to 

the psychomotor stimulant properties of drugs of abuse is highly persistent, likely reflecting 
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the strength of the underlying neuroadaptations, it may be that hyperacetylation of histones 

on the final locomotor test day is insufficient to further manipulate changes in neuronal 

plasticity (Paulson, Camp et al. 1991; Lessov and Phillips 1998). However, hyperacetylation 

of histones during the acquisition phase of sensitization, during which time neuroadaptations 

are forming and the system is in a more flexible state, may be sufficient to influence and 

potentially strengthen the neuroadaptations, thus increasing sensitization.  

The present results extend current knowledge of the functional implications of histone 

acetylation, as we witnessed the ability of peripheral administration of an HDAC inhibitor to 

influence the acquisition of ethanol-induced locomotor sensitization. Unsurprisingly, changes 

in the expression of both NPY and histone acetylation, as measured with 

immunohistochemistry, appear to be treatment- and region-specific. Together, the current 

data provide evidence for a role of both NPY and histone acetylation in ethanol-induced 

locomotor sensitization and warrant further investigation. Future studies will examine 

potential downstream factors of histone acetylation that may influence ethanol-induced 

locomotor sensitization, including NPY. Additionally, site-directed infusions of TSA, 

specifically into sub-regions of the striatum and nucleus accumbens, will examine the effect 

of targeted histone hyperacetylation on the expression of NPY as well as the acquisition and 

expression of ethanol-induced locomotor sensitization.  Together, these observations may 

lead to new pharmacological targets aimed at treating alcoholism. 
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Table 1A:  Daily dosing schedule for ethanol-induced locomotor activity, Experiment 1. All 

injections given i.p.* 

 Days 1-3 Day 4 Days 5-14 Day 15 

Treatment Habituation: 

LC 

Initial Test: 

LC 

Conditioning: 

HC 

Final Test: 

LC 

Saline control 

(SAL) 

Saline Saline Saline Saline 

 

Non-sensitized 

(NS) 

Saline 1.5 g/kg EtOH Saline 1.5 g/kg EtOH 

 

Sensitized  

(SEN) 

Saline 1.5 g/kg EtOH 2.5 g/kg EtOH 1.5 g/kg EtOH 

 

LC, locomotor chamber; HC, homecage; EtOH, ethanol 

*Saline injections equivolume to EtOH injections 

 

 

 

Table 1B: Daily dosing schedule for the effect of TSA on the expression of ethanol-induced 

locomotor sensitization, Experiment 2. All injections given i.p.* 

 Days 1-3 Day 4 Days 5-14 Day 15 

Treatment Habituation: 

LC 

Initial Test: LC Conditioning: 

HC 

Final Test: LC 

Vehicle control 

(VEH) 

Saline 2.0 g/kg  EtOH 2.5 g/kg EtOH Vehicle +  

2.0g/kg EtOH 

 

1 mg/kg TSA  

(1-TSA) 

Saline 2.0 g/kg  EtOH 2.5 g/kg EtOH 1 mg/kg TSA +  

2.0 g/kg EtOH 

 

2 mg/kg TSA  

(1-TSA) 

Saline 2.0 g/kg  EtOH 2.5 g/kg EtOH 2 mg/kg TSA  +  

2.0 g/kg EtOH 

 

4 mg/kg TSA  

(4-TSA) 

Saline 2.0 g/kg  EtOH 2.5 g/kg EtOH 4 mg/kg TSA + 

 2.0 g/kg EtOH 

 

LC, locomotor chamber; HC, homecage; VEH, vehicle; TSA, Trichostatin A 

*Saline and vehicle injections equivolume to EtOH and TSA injections 
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Table 1C: Daily dosing schedule for the effect of TSA on the acquisition of ethanol-induced 

locomotor sensitization, Experiment 3. All injections given i.p.* 

 Days 1-3 Day 4 Days 5-11 Day 12 

Treatment Habituation: 

LC 

Initial Test: 

LC 

Conditioning: 

HC 

Final Test: 

LC 

Non-injected  

Control 

NONE NONE NONE NONE 

Vehicle + Saline 

(VEH+SAL) 

Saline Saline Vehicle + Saline Saline 

 

 

TSA + Saline 

(TSA+SAL) 

Saline Saline 2.0 mg/kg TSA + 

Saline 

Saline 

 

 

Vehicle +  

Non-sensitized 

(VEH+NS) 

Saline Saline Vehicle + Saline 2.0 g/kg EtOH 

 

 

 

TSA +  

Non-sensitized 

(TSA-NS) 

Saline Saline 2.0 mg/kg TSA + 

Saline 

2.0 g/kg EtOH 

 

 

 

Vehicle + 

Sensitized 

(VEH+SEN) 

Saline 2.0 g/kg EtOH Vehicle + 

 2.5 g/kg  EtOH 

2.0 g/kg EtOH 

 

 

TSA + Sensitized 

(TSA+SEN) 

Saline 2.0 g/kg EtOH 2.0 mg/kg TSA + 

2.5 g/kg EtOH 

2.0 g/kg EtOH 

 

 

LC, locomotor chamber; HC, homecage; NONE, no injection; VEH, vehicle; TSA, 

Trichostatin A 

*Saline and vehicle injections equivolume EtOH and TSA injections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Table 2A: Summary of IR in ethanol-sensitized mice (Experiment 1) 

 Nucleus Accumbens Striatum 

 Core Shell DL DM VL VM 

NPY-IR --- --- ↑* --- --- --- 

acH3-IR --- ↑ --- --- --- --- 

acH4-IR --- --- --- --- --- --- 

*Relative to NS mice only 

 

 

Table 2B: Summary of IR in ethanol non-sensitized mice (Experiment 1) 

 Nucleus Accumbens Striatum 

 Core Shell DL DM VL VM 

NPY-IR ↓ ↓* --- --- --- --- 

acH3-IR --- --- --- --- --- --- 

acH4-IR --- --- --- --- --- --- 

*Non-significant trend 
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Figure 1: Locomotor behavior over the first five minutes of the Initial and Final locomotor 

assessment sessions for Experiment 1. Mice were split into three groups: saline control 

(SAL), non-sensitized (NS), or sensitized (SEN). SAL and NS mice received 10 HC 

injections of saline, and SEN mice received 10 HC injections of 2.5 g/kg EtOH. SEN mice 

showed significantly augmented locomotor behavior in the first five minutes of the Final Test 

relative to the Initial Test. NS and SEN mice also showed significantly greater locomotor 

behavior relative to SAL mice on the Initial Test day, indicative of the locomotor stimulant 

properties of an acute injection of low-dose ethanol. All values are means + SEM. *p<0.05 

vs. SAL, **p<.0.01 vs. Initial.  
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Figure 2:  acH3 immunoreactivity in the nucleus accumbens and striatum. Representative 

photomicrographs are coronal brain slices taken from SAL (A) and SEN (B) mice. 

Quantification of the nucleus accumbens core (C) and shell (D) and dorsal (E) and ventral (F) 

striatum show region-specific increases in acH3-IR in SEN mice. DL = dorsolateral; 

DM=dorsomedial; VL=ventrolateral; VM=ventromedial. Images were photographed with 

10x objectives and scale bar = 200µm. All values are mean + SEM. *p<0.05 vs. SAL. 
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Figure 3:  acH4 immunoreactivity in the nucleus accumbens core (A) and shell (B) and the 

dorsal (C) and ventral (D) striatum. All values are mean + SEM.  
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Figure 4: NPY immunoreactivity in the nucleus accumbens and striatum. Representative 

photomicrographs of the dorsolateral striatum are coronal brain slices taken from SAL (A) 

and SEN (B) mice. Quantification of the nucleus accumbens core (C) and shell (D) and 

dorsal (E) and ventral (F) striatum show region-specific increases in NPY-IR in SEN mice 

and region-specific decreases in NS mice. DL=dorsolateral; DM=dorsomedial; 

VL=ventrolateral; VM=ventromedial.  Images were photographed with 20x objectives and 

scale bar =100µm. All values are mean + SEM. *p<0.05 vs. SAL, **p<0.05 vs. SAL and 

SEN. 
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Figure 5: Locomotor behavior over the first five minutes of the Initial and Final locomotor 

assessment sessions for Experiment 2. All mice were sensitized using repeated homecage 

injections of 2.5 g/kg EtOH. Mice were split into four groups: vehicle (VEH), 1 mg/kg TSA 

(1-TSA), 2 mg/kg TSA (2-TSA), and 4 mg/kg TSA (4-TSA). Mice received an injection of 

vehicle or TSA two hours prior to the final locomotor assessment. All groups showed 

significant ethanol-induced locomotor sensitization. There were no group differences in 

degree of locomotor sensitization. All values are mean + SEM.  
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Figure 6: Locomotor behavior during 20-minute Initial and Final locomotor assessments for 

Experiment 3. Mice were split into seven groups: non-injected control (Non-injected), saline-

treated mice pretreated with vehicle or TSA (VEH+SAL, TSA+SAL), non-sensitized mice 

pretreated with vehicle or TSA (VEH+NS, TSA+NS), and sensitized mice pretreated with 

vehicle or TSA (VEH+SEN, TSA+SEN). SAL and NS mice received 7 HC injections of 

saline; SAL mice received saline injection on the final test day, and NS mice received an 

injection of 2.0 g/kg EtOH on the final test day. SEN mice received 7 HC injections of 2.5 

g/kg EtOH and an injection of 2.0 g/kg EtOH on the final test day. *p<0.05; **p<0.01 vs. 

initial. 
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