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ABSTRACT 

Tejash Vijay Patel: Process Design for Scalable Recombinant Adeno-Associated Virus 
(Under the direction of Xiao Xiao) 

 
The versatility of recombinant adeno-associated viruses has garnered significant attention 

from investors, pharmaceutical companies, and regulatory agencies as more therapies using this 

vector are finding success in preclinical and late-stage clinical trials, even some reaching the 

market approval stage in the US. A number of vector production methods have been developed 

to generate the necessary clinical grade vectors that have high potency, and have high-titers to 

reduce general manufacturing and therapeutic costs. However, each of these production 

methods inherently have their own drawbacks, whether it is the concomitantly produced helper 

vectors used to make the AAV or the quality of the AAV itself. We previously developed a 

HEK293-cell based producer cell line method for high titer and high potency rAAV vectors. 

However, this method requires significant time-intensive generation of novel producer cell lines 

for every rAAV vector of interest and furthermore the E1-, E3-deleted adenovirus is only 

occupied at the E1-region, leaving the space available in the E3-region unused. In this body of 

work, we discuss a novel adenovirus construct that utilizes a packaging cell line to generate a 

high titer and high quality rAAV, and attempts to remove the accompanying adenovirus in the 

final product batch. The improvements made in this system are: 1) the development of a one-

step cloning of a rAAV vector cassette into the E1-region of the adenovirus, 2) use of an 

efficiently generated packaging cell line to universally package the rAAV vector provided in trans 

by the adenovirus, 3) high vector yields on different rAAV inverted terminal repeat designs 
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provided by the adenovirus, and 4) high quality, low. empty-particle containing rAAV product. 

We attempt to remove contaminating entities in the rAAV production method, using a selective 

precipitating agent called domiphen bromide. Although this detergent is efficient in removing 

contaminating materials such as DNA and adenovirus, there are major difficulties to reduce 

interactions with certain serotypes of AAV. Therefore, an alternative method for removing 

adenovirus is necessary, possibly by high hydrostatic pressure or nanofilters. The simple 

adenovirus construct coupled with the packaging cell line can be a pivotal method for large scale 

AAV vector production. 
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PREFACE 

Around the year 2006 or 2007, I was asked by my parents and counselors the common 

question of “What do you want to be when you grow up?”. I had grown an affinity toward math

 and sciences and excelled in these subjects, and growing up about 30 minutes away from the 

motor vehicle hub of Detroit and Dearborn, Michigan, I had a feeling I would be an engineer. I 

just didn’t know if I was cut out for the heavy-physics of mechanical engineering. And even 

though I was good at patterns, I didn’t think I was that good at computers to become a 

programmer. While this was internal struggle was going on, by serendipity, I was watching a 

NOVA scienceNOW special on PBS and it was talking about RNA interference, this 

revolutionary molecule that led scientists to shut off specific genes and provide potential 

treatments for a wide range of diseases. And immediately I was hooked, asking myself “What 

degree would get me to a place in my life where I can make more of that drug to help more 

people?”

I obtained my chemical engineering degree from the University of Michigan in 2011, 

with hopes I could use the degree to get me into a position of scaling up pharmaceuticals. At the 

time I was in the program, it felt the degree was more tailored towards oil, food, and polymers 

rather than pharmaceuticals and biotechnologies. Even in the research I performed in some of 

the labs in the Department of Biomedical Engineering, I would find myself asking the graduate 

student I worked with “How far away is this to translatable applications?” It was a very 

theoretical project with inevitable real-world applications, but the inevitability was too far for 

me. I obtained an internship at Cayman Chemical the summer before I graduated and some of 
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the PhD’s in the company noticed my meticulous work ethic and suggested that I pursue a PhD. 

I told them my goals of designing scalable methods of a therapeutic, and they had recommended 

I pursue a higher degree to achieve those goals and look at degrees in biomedical engineering, 

chemical engineering, or pharmaceutical sciences.  

In 2012, when UNC flew me in for an interview at the Division of Molecular 

Pharmaceutics (now DPMP), I remember explaining my Nova scienceNOW story to Dr. Xiao at 

the time he interviewed me, and how I wanted to pursue scaling of therapeutics as a career 

choice. We talked for an engaging 60-minutes, 30 minutes longer than my allocated interview 

time with Dr. Xiao, and thereby completely missing my following interview with Dr. Mumper. 

In those 60-minutes, Dr. Xiao and I were discussing scalability of therapeutics, especially in his 

field, including a tour of his lab where we spent several minutes at the bioreactors and 

ultracentrifuges. After receiving an acceptance letter from the school, I had already been 

convinced on which lab I wanted to work for and I worked as hard as I could to have a good 

foundation for the work I would be doing in Dr. Xiao’s lab. 

At the time the Nova scienceNOW special, my acceptance into UNC and Dr. Xiao’s lab, 

and the rough idea of my thesis work was very exciting and inspiring. But one other factor 

played a major role into why I am pursuing this career path with gusto: meeting someone with a 

rare genetic disorder and the implications it had on himself and his family members. It was at a 

wedding I attended in California in 2014, where I met someone who had what I guessed to be 

some slowly progressing muscular dystrophy, perhaps Becker’s. In the few days I interacted with 

this person and his family I learned the impact of the disease: the quality of life for the individual 

with the disease and his caregivers, his elderly parents. The extended family, after learning of my 

research, requested of me to look for gene therapies or clinical trials for his form of dystrophy 

and if their family member could seek treatment. I felt helpless since I barely knew the type of 
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dystrophy he had, feeling all the more powerless by telling them that I knew of nothing to help 

cure or improve this individual, especially since the ClinicalTrials.gov showed nothing related to 

gene therapy treatments for his dystrophy. They had disclosed to me his symptoms were fatal 

and he had less than a decade to live.  

I came back from that wedding and understood the humanity behind these therapeutics, 

and it gave me more reason to pursue this career. I felt very proud that my advisor, Dr. Xiao, 

has spent majority of his career studying and treating muscular dystrophies. Coming back from 

that experience also connected me to the greater picture Dr. Xiao discussed with me early in my 

dissertation work: how can we translate treatments for major dystrophies to clinical settings 

more efficiently? Or in other words, like what I have always wanted to do, how can we make 

more of that drug to help more people?  
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CHAPTER 1: INTRODUCTION 

1.1 An Interest to Genetic Transfer Therapeutics 

From the understanding of inheritance and nucleic acid structure occurring between late 

19th and mid-20th century, to the sequencing of the 3 billion base pairs in the human genome in 

the late 20th century, we have seen the progress of genetics research influence a variety of fields, 

especially the medical and biotechnology fields. Nucleic acid research and delivery of nucleic 

acid has molded modern medicine into a captivating science where therapies are created to 

improve the quality of life for individuals whose lives have been compromised by their genetic 

disorder. The introduction of transduction of genetic material and use of viral mediated gene 

transfer in the 1950s and 1960s and initial discoveries of monogenic diseases during the latter 

half of the 20th century was just enough motivation for a few scientists, such as Dr. William 

French Anderson, to postulate how to deliver and correct genetic diseases using delivery 

vehicles, or also known as vectors, to dependably transport the nucleic acid cargo in humans, 

calling this new form of medicine gene therapy1. The first landmark trial of gene therapy in two 

human patients, Ashanthi DeSilva (age 4 years old) and Cynthia Cutshall (age 9 years old), 

occurred between September 1990 and January 19912,3. The result of this trial showed 

researchers and clinicians the safety and efficiency of the gene transfer, albeit not to the most 

optimal therapeutic levels desired for longer term correction. The brevity at which this trial came 

to fruition and its resulting therapeutic effect put the spotlight on human gene transfer as many 

high-impact journals and press began reporting statements such as, “Once considered a fantasy 

that would not become reality for generations, human gene transfer moved from feasibility and 
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safety studies in animals to clinical applications more rapidly than expected by even its most 

ardent supporters” by Ron Crystal in Science4.  The breakthrough may have led to an 

unsubstantiated assurance to the use of similarly engineered vectors, other engineered vectors 

from different virus families, and conducting clinical trials without the full understanding and 

adjustment to the patient’s medical history especially with those taking medications like 

immunosuppressants. These oversights led to the significant setbacks and tragic deaths of 

individuals, most notably: a 1999 SCID-X1 trial using an ex vivo infection of engineered 

retroviruses; the death of Jolee Mohr in 2007 from a growth of a fungal infection uncontained 

due to her immunosuppressants that eventually poked a hole in her gut intestine during her gene 

therapy clinical trial; and Jesse Gelsinger in 1999 from a gene therapy clinical trial at the 

University of Pennsylvania in Philadelphia due to a high administered dose of adenovirus to 

deliver the therapeutic gene for his partial deficiency of ornithine transcarbamylase, that resulted 

in his immune system to react immediately and Jesse dying several days later due to multiorgan 

failure5-7. These deaths, especially Gelsinger’s in 1999, left a black mark on gene therapy to 

investors that lasted nearly a decade. For researchers in the field, the deaths were wake up calls 

to the practice of gene transfer experiments, leading to better targeting vectors, more careful 

selection of patients and better understanding their medical history, and more calculated designs 

of the genetic material to be transferred. However, this cannot explain the unquestionable 

resurgence in the last decade with more investments made to gene transfer therapeutics by major 

corporations like Amgen with Kite Pharma, Pfizer with Spark Therapeutics, Glaxo Smith Kline 

with TIGET/San Raffaele, and Celgene with Juno Therapeutics8,9. The spotlight to gene 

therapies can be attributed to the success stories in the field, namely Corey Haas (AAV2 for 

Leber Congenital Amaurosis Type 2, received in 2008), as well as successes in other therapies 

such as adrenoleukodystrophy and severe immune deficiencies, and now with more pre-clinical 
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work showing therapeutic efficacy to previously untreatable diseases, mostly coming from 

academic investigators9,10. This history of gene transfer experiments and therapies and an 

educated projection at the future of the field has been brilliantly captured by Dr. Ricki Lewis’ 

book, written in 2012, “The Forever Fix: Gene Therapy and The Boy Saved It” and is highly 

recommended for understanding the field, the humanity of the patients involved, and the history 

of these therapies11.  

Although the success stories have certainly built the foundation of evidence for the field, 

the progression of gene therapy are attributed to many scientific contributions that have 

occurred, not only from the improvements to safety and efficacy of the vector delivering the 

nucleic acid, but also from the design of the therapeutic nucleic acid for the disease of interest. 

The design of the therapeutic nucleic acid came from a better understanding of the defective 

genetic information. Significantly contributing to the understanding of the genetic defects in 

diseased genomes was the Human Genome Project, initiated in 1990 and completed on April 

14th, 2003. The results of the project provided and continues to provide researchers with insight 

in health and pathology of human disease that would advance modern medicine, biotechnology, 

and new methods for treating previously untreatable diseases. Although the analysis and 

understanding of the 3.2 billion nucleotide base genome is certainly in its initial stages – 

especially with epigenetics complicating expression and study of genetic regions - previous 

discoveries of disease genes of the genome and those nearly 1,800 disease genes found in the 

Project has inspired scientists to generate therapies for these genetic disorders12. Such pursuits 

are investigating how to correct – i.e. repair, replace, or delete - the defective gene/genes or 

impart a new function – i.e. regulatory or additive - to the cell that can induce an assumed 

therapeutic function for known poly- or monogenic diseases at the molecular level using 

recombinant nucleic acids. According to analysis of current gene therapy clinical trials performed 
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by Edelstein et. al., almost 80% of the gene therapy clinical trials address cancer, infectious 

diseases, and cardiovascular diseases because of its prevalence, impact to society, and potentially 

fatal outcomes13.  The remainder of the diseases that use gene therapy are not as prevalent, but 

still have significant impact to individuals who suffer those diseases. A very small subset of gene 

therapy clinical trials is for the testing of the delivery vector or as a gene locator. The summary 

of Edelstein data is summarized in Figure 1. 

 

Figure 1: Indications Addressed by Gene Therapy Clinical Trials. Data from The Journal of Gene Medicine. 

While the intrigue and rationale of gene therapy are quite apparent, the therapeutic is 

faced with two major questions: how to dependably deliver the therapeutic gene and how well 

does the therapeutic gene function in the targeted region?  The latter of these two questions is a 

disease specific assessment that necessitates the knowledge of the mechanism for the natural and 

defective genetic information as well as proper design of the therapeutic gene for adequate 

function. The former question is a more global question, independent of the disease mechanism, 

and is rather focused on how to directly deliver an appropriate amount of the genetic material to 

the desired cell with limited or without off-target delivery. The vehicle of choice for the delivery 
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needs to be able to stably hold the genetic material during its transport to the cell of interest, 

endocytose into the cell, deliver the genetic material into the cytoplasm or in nucleus, and have 

the cell express the gene contained in the vector. These vehicles can be subdivided into viral 

vectors and non-viral vectors. Viruses are natural vectors that have evolved many thousands of 

years to evade the host response and deliver their encapsulated nucleic acid to a variety of cells. 

Certain viruses can be modified to minimize the likelihood of toxicity and harbor tissue specific 

epitopes that have been developed to deliver specifically to a target cell. Alternatively, non-viral 

vectors are vectors designed for delivery of nucleic acid without encapsulating the nucleic acid in 

a viral protein, be it through synthetic particles that encapsulate the nucleic acid or plasmid 

DNA that is injected directly in vivo. To date, the most effective delivery vehicle has been vectors 

derived from viruses. Among the design concerns for any vectors used for delivery are limiting 

off-target effects, limiting interactions with the host immune system, the mechanism of cellular 

uptake and trafficking of the vector, regulation of delivered gene (hereafter called transgene) 

expression, and modification of the vector genome to prevent insertional mutagenesis14. 

From the start of the data collection in 2004, Edelstein et. al. has tabulated which vectors 

have been used in gene therapy clinical trials15. As depicted in Figure 2, they have presented the 

list of vectors used as of April 2017 (Figure 2A) and compiling data from their 2007 update, a 

new representation of the Edelstein data shows the percentage change of use of vectors in the 

past decade (Figure 2B)13,16. This figure illustrates the trend of the field on the vector of choice 

for therapy of genetic disorders. It is apparent that the field is favoring the use of viral vectors (n 

= 1,548) over non-viral counterparts (n = 547), but the percentage change of unique vectors 

used shows the greatest increase in the use of adeno-associated virus (AAV) in the past decade at 

+289%, with more than 180 clinical trials being performed worldwide with this vector.   
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Figure 2: Summary of Journal of Gene Medicine Data. A) Compiled data as of April 2017 of vectors used in 

gene therapy clinical trials worldwide.  B) Percentage change of the use of a specific vector in the past decade. 

Adeno-associated virus, shown in light blue, has shown the greatest increase in use at 289%. 
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1.2 Adeno-Associated Virus: An Understanding to its Popularity 

First discovered as an associated virus during preparations of the much larger adenovirus 

in 1965, and later introduced as a gene delivery vector in the 1980s, adeno-associated virus, or 

AAV, has now become a very useful tool for research labs for in vitro and in vivo studies17. 

Belonging to the family of viruses known as parvovirus, AAVs are small 20-25 nm in diameter, 

non-enveloped, and icosahedral viruses that can hold about 4.8 kilobases of single-stranded 

DNA. Mechanistically, the virus is replication-defective and requires helper virus functions for 

productive replication, which will be discussed further in later sections. Despite its small carrying 

capacity, there is a clear interest in using this vector for genetic transfer and so far, the interest 

has garnered evidence to the vectors utility in delivering its envisioned need: a safe and effective 

tool for genetic transfer for a multitude of diseases.  

Unlike other parvoviruses, AAV is naturally non-pathogenic, and has never been 

identified as a causative agent to human disease18,19.  Although it does not directly cause 

disease, much like other gene therapy vectors namely adenovirus or lentivirus, there has been 

concern about indirect methods for rAAV to cause disease. As appealing as the ‘replication 

defective’ tag has been to AAV, wild-type AAV (wtAAV) is known to preferentially integrate its 

genome into a specific locus of human chromosome 19 (chr.19q13.3q-ter). This integration is a 

natural evolution of the virus: to ensure persistence in its primate host, especially since its usual 

episomal DNA cargo can be diluted out of the system among mitotically active cells20. Logically, 

this has raised concerns for the use of a recombinant AAV (rAAV) virus for long-term genetic 

therapy because aberrant integrations of genetic material may lead to more health concerns (e.g. 

cancers).  Recombinant forms of AAV, as discussed in more detail in a later section, are stripped 

of replication components necessary for the virus to replicate its own genome. These same 

replication proteins, particularly Rep68 and Rep78, were discovered by multiple researchers to be 
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present in cells for integration into the Chr19 region because of a strong Rep:DNA-binding 

domain that specifically binds the Rep binding sites (RBS) and displays nuclease activity. This 

RBS consists of two or more 5’-GCTC-3’ repeats and are found at the viral origin of replication, 

in several promoters, and at the AAVS1 integration site21,22. Although, there are possibilities of 

aberrant integrations to occur in rAAV, this possibility is inefficient and is usually not targeted to 

Chr1923.  According to a study performed by researchers at the Stanford University School of 

Medicine, it has been reported that the frequency of rAAV2 integration events at common 

integration sites – which was defined as cancer-related genes located by high-throughput, 

retrovirus-based insertional mutagenesis screens of oncogenesis in mice - was found to be 

statistically similar to random integration into the tested murine genome. However, these 

researchers have made conclusions that although insertional mutagenesis has been believed to be 

negligible due to low integration frequency in vivo and no direct evidence of tumorigenesis in a 

number of preclinical studies, “perhaps this is true in most gene therapy settings that target post 

mitotic quiescent tissues […] it may become an issue of concern when rAAV2 vectors target 

proliferating cells such as hematopoietic cells or tissues undergoing regeneration, such as chronic 

liver inflammation” and integration studies not be limited to only rAAV2 vectors24.  

Although the researchers of this Stanford study provide some evidence for safety of the 

gene transfer vector being used, the rarity and inefficiency of integration in the host genome by 

rAAV will likely not perturb the use of the vector in clinical studies and various disease models. 

In theory, with the sudden interest in using CRISPR/Cas9 technology for gene editing of cells in 

vivo, and with the versatility of rAAV to infect specific cells or tissues, the concern of 

tumorigenesis occurring in proliferating cells would instead be with higher occurrence from off-

target double-strand breaks in gene editing techniques using rAAV as the gene transfer vehicle 
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rather than from the innate property, albeit extremely low probability, of integration of the 

rAAV vector genome25. 

One aspect of the field that has garnered great attention recently has been designing a 

vector that can avoid host immunological reaction and specific targeting of the vector to the 

desired tissue or cell type.  Although no disease is associated with AAV, the vector is composed 

of biomolecules, i.e. proteins and nucleic acids, that can trigger components of the immune 

system to develop an immune response to serotypes. The search for a capsid that can generally 

avoid an immune response, is complicated further because most humans have been exposed to a 

variety of AAV serotypes and have a pre-existing adaptive response. The development of 

antibodies can result from natural exposure of AAV serotypes, as shown in the second column 

of Table 1 which shows the seroprevalence of IgG antibodies produced in serum collected from 

a population in the Ile de France community in France. This production of antibodies can then 

result in neutralizing factors that can inhibit vector transduction and therefore have a dramatic 

effect on AAV clinical efficacy of the rAAV being used, as described in the third column of 

Table 1. This can certainly be a major shift in momentum of a therapeutic from its preclinical 

findings to its journey to post-market approval. As shown in Table 1, based on this 2010 study, 

rAAVs using serotypes 5, 8, and 9 may have an advantage for gene therapy in humans since the 

anti-AAV IgG produced for serotypes 5, 8, and 9 are 40%, 38% and 47%, respectively, and the 

neutralizing antibodies are 3.2%, 19%, and 33.5%, respectively.  

If the human body is as responsive as it is with natural exposure to AAV serotypes 

unbeknownst to us, for individuals purposefully receiving the therapeutic of a certain serotype 

vector, their subsequent introduction of the vector, if applicable to the disease being treated, 

needs to be of a capsid that does not have preexisting antibodies in the patient. These particular 

conditions for the therapeutic design entails an investigation to new serotype designs. Generally, 
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the goal is a one-time administration of the therapeutic and the genetic material is stably inserted 

into the target cell nucleus. However, for those disease models that involve frequently dividing 

cells, the genetic material delivered by the rAAV would be diluted from the cells of interest. The 

challenge for an adequate therapeutic effect in the diseased individual would require multiple 

doses of the rAAV therapeutic, likely from rAAV vectors with similar specificity to the target 

tissue and cell, but do not respond similarly from the patient’s immune system. This would mean 

a novel rAAV capsid design able to directly deliver the therapy and avoid the immune system.  

 



 
 

 

 

 

 

Table 1: Analysis of AAV Serotypes: Immune response, receptors, and tropisms 

 

  

AAV Serotype
Seroprevalence of total IgG 

Antibodies (Relative to Number of 
Serum Samples Tested)

Seropositive for Neutralizing Factors 
(Relative to Number of Serum 

Samples Tested) 
Receptors Co-Receptors Known Tropism, Via in vivo  Transduction References

1 67% (n=210) 50.5% (n=152) N-linked α-2,3 sialic acid None Reported
Brain, Muscle, Kidney, Heart, Retina, Liver, 

Pancreas, Cochlear Inner Ear, Hematopoietic 
Stem Cells

26-39

2 72% (n=202) 59% (n=89) Heparin sulfate proteoglycan
α5β1-integrin, hFGFR1, 
αVβ5-integrin, hHGFP, 

LamR

Brain, Glioma Cells, Kidney, Photoreceptor 
Cells, Retina, Solid Tumors/Melanoma, 

Cochlear Inner Ear
31,33,35,40-48

3 Not Analyzed Not Analyzed Heparin sulfate proteoglycan hFGFR, hHGFR, LamR
Some Retina and Some Solid 

Tumor/Melanoma 31,43,49-51

4 Not Analyzed Not Analyzed O-linked α-2,3 sialic acid Unknown Retina and some Brain 31,47,52

5 40% (n=101) 3.2% (n=49) N-linked α-2,3 sialic acid PDGFR
Brain, Retina, Photoreceptors, Lung, Liver, 

Kidney, Some Muscle 31,35 42,53-59

6 46% (n=91) 37% (n=56) N-linked α-2,6 sialic acid EGFR Muscle, Lung, Dendritic Cells, Heart 31,37,57,60-66
7 Not Analyzed Not Analyzed Unknown Unknown Muscle, Liver, Glioblastoma, Brain 31,67,68

8 38% (n=45) 19% (n=50) Unknown LamR Liver, Muscle, Heart, Pancreas, Glioblastoma 31,40,67-75

9 47% (n=134) 33.5% (n=62) Galactose LamR Heart, Lung, Liver, Muscle 40,69,76-80

Compilation of Analyses on Human Immunity to Capsid, Receptors for Entry, and Known Tropisms Via in vivo  Transduction 

11 
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For increased specificity, there are a few choices researchers can make: (1) locally 

introduce the vector rather than systemic distribution, 2) manipulate the capsid to more 

specifically target desired tissue or cell, or (3) alternatively use a tissue-specific promoter such 

that the transgene only expresses when it is present in the target tissue or cell. If the area of 

interest is difficult to administer to, then systemic distribution and tissue-specific promoter 

strategies are necessary. However, the turnaround time for finding novel capsid designs to the 

application in clinical work is very lengthy, and so far, many of the clinical trials being performed 

are more likely to use natural serotypes or rationally designed hybrids of natural serotypes.  This 

will soon change, and in fact a few of the industry sponsored clinical trials for rAAV candidates 

for various disease models compiled in Table 2 show novel proprietary capsids used to transport 

gene therapies. These proprietary designs are most likely based on natural serotype receptor 

interactions or natural in vivo transduction, compiled in Table 1, or can be rationally designed to 

incorporate high-affinity ligands into the AAV capsid to redirect or restrict viral tropism. Other 

capsids that are less likely to be currently present in industry sponsored clinical trials are capsids 

generated using direct evolution. Various novel serotypes can be generated using a variety of 

techniques: error-prone PCR to introduce random point mutations into the Cap open reading 

frame, chimeric capsids using in vivo recombination or DNA shuffling, random peptide 

insertions, or randomization of surface loops. Although the ease at which capsid manipulation 

can happen, the resulting novel vectors may be incapable of packaging, not be significantly 

different to the predecessor, or the vector transduction efficiency does not translate well from 

murine models to human subjects. All told, the tunability of the capsid with the ease found in 

rAAV is rare among other viral vectors used for gene therapy, making this viral vector a first-

round pick amongst other vectors to consider in the design of a gene transfer vehicle. 



 
 

Table 2: List of Industry Sponsored rAAV Clinical Trials in progress or recently in progress. 

 

Industry Sponsor Candidate Name
AAV 

Serotype 
Used

Current Status 
(US)

Molecular Target Major indication NCT Number Reference

Amsterdam Molecular 
Therapeutics, now UniQure AMT-011 1

Phase 2|Phase 
3 Human LPL (S447X)

Familial Lipoprotein Lipase 
Deficiency NCT00891306 79

AGTC-402 2 Phase 1|Phase 
2

CNGA3 Achromatopsia NCT02935517 80

rAAV2tYF-CB-hRS1 2 Phase 1|Phase 
2

Retinoschisin X-linked Retinoschisis NCT02416622 81

rAAV2tYF-PR1.7-hCNGB3 2 Phase 1|Phase 
2

CNGB3 Achromatopsia NCT02599922 82

rAAV1-CB-hAAT 1 Phase 2 Alpha-1 Antitrypsin Alpha-1 Antitrypsin Deficiency NCT01054339 83

rAAV2-CB-hRPE65 2 Phase 1|Phase 
2

Human RPE65 Leber Congenital Amaurosis 
Type 2

NCT00749957 84

Arthrogen|Centre for Human 
Drug Research (CHDR) AAV5.NF-kB.IFN-β) 5 Phase 1 hIFN-β Rheumatoid Arthritis NCT02727764 85,86

AT342 8 Phase 1|Phase 
2

UGT1A1 Crigler-Najjar Syndrome NCT03223194 87

AT132 8 Phase 1|Phase 
2

hMTM1 X-Linked Myotubular Myopathy NCT03199469 88

AveXis, Inc. AVXS-101 9 Phase 3 SMN Spinal Muscular Atrophy 1 NCT03306277 89

Baxalta, now part of Shire AskBio009 8 Phase 1|Phase 
2

Human Factor IX Hemophilia B NCT01687608 90

Celladon Corporation AAV1/SERCA2a 1 Phase 2 SERCA2a Heart Failure NCT01643330 91

CERE-120 (AAV2-Neurturin) 2 Phase 2 Neurturin Idiopathic Parkinson's Disease NCT00400634 92

CERE-110 2 Phase 1 Beta-Nerve Growth 
Factor

Alzheimer's Disease NCT00087789 93,94

Digna Biotech S.L.|UniQure 
N.V.

rAAV2/5-PBGD 2/5 Phase 1 Porphobilinogen 
Deaminase

Acute Intermittent Porphyria NCT02082860 95

AAVrh10FIX rh10 Phase 1|Phase 
2

Human Factor IX Hemophilia B NCT02618915 96

scAAV8OTC 8 Phase 1|Phase 
2

Human Ornithine 
Transcarbamylase

Ornithine Transcarbamylase 
(OTC) Deficiency

NCT02991144 97

Genethon AAV1-gamma-sarcoglycan 1 Phase 1 Gamma Sarcoglycan Limb Girdle Muscular 
Dystrophy Type 2C

NCT01344798 98

GS030-DP AAV2.7m8 Phase 1|Phase 
2

ChrimsonR-
tdTomato

Non-syndromic Retinitis 
Pigmentosa

NCT03326336 99

GS010 2 Phase 3 ND4 Leber Hereditary Optic 
Neuropathy

NCT02652767 100

AAV2-sFLT01 2 Phase 1 Flt1 Receptor (anti-
VEGF)

Neovascular Age-Related 
Macular Degeneration

NCT01024998 101

AAV-hAADC-2 2 Phase 1
Human Aromatic L-

Amino Acid 
Decarboxylase

Parkinson's Disease NCT00229736 102

Applied Genetic 
Technologies Corp

Audentes Therapeutics

Dimension Therapeutics

GenSight Biologics

Genzyme, a Sanofi 
Company|Sanofi

Ceregene now part of 
Sangamo Therapeutics
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Industry Sponsor Candidate Name
AAV 

Serotype 
Used

Current Status 
(US)

Molecular Target Major indication NCT Number Reference

Horama S.A. AAV2/5-hPDE6B 2/5
Phase 1|Phase 

2 HORA-PDE6B Retinitis Pigmentosa NCT03328130 103

Lysogene SAF-301 10 Phase 1|Phase 
2

Human SGSH and 
SUMF1

Sanfilippo Type A Syndrome NCT02053064 104

AAV RPE65 2/5 Phase 1|Phase 
2

Human RPE65 Inherited Retinal Dystrophy 
Due to RPE65 Mutations

NCT02781480 105

AAV2/8-hCARp.hCNGB3 2/8 Phase 1|Phase 
2

CNGB3 Achromatopsia NCT03001310 106

AAV2hAQP1 2 Phase 1|Phase 
2

Human Aquaporin-1 Irradiation Induced Parotid 
Salivary Hypofunction

NCT02446249 107

AAV2/5-hRKp.RPGR 2/5 Phase 1|Phase 
2

Retinitis Pigmentosa 
GTPase Regulator

X-Linked Retinitis Pigmentosa NCT03252847 108

Neurologix, Inc. AAV-GAD 2 Phase 1 Glutamic Acid 
Decarboxylase

Parkinson's Disease NCT00195143 109,110

NightstaRx Limited AAV-RPGR 8 Phase 1|Phase 
2

Retinitis Pigmentosa 
GTPase Regulator

X-Linked Retinitis Pigmentosa NCT03116113 111,112

Regenxbio Inc. RGX-314 8 Phase 1 Anti-VEGF
Neovascular Age-related 

Macular Degeneration|Wet Age-
related Macular Degeneration

NCT03066258 113

SB-FIX 2/6 Phase 1 Human Factor IX Hemophilia B NCT02695160 114
SB-318 2/6 Phase 1 IDUA Mucopolysaccharidosis I NCT02702115 115
SB-913 2/6 Phase 1 IDS Mucopolysaccharidosis II NCT03041324 116

SB-525 2/6 Phase 1|Phase 
2

Human Factor VIII Hemophilia A NCT03061201 117

SPK-8011 AAV-
Spark200

Phase 1|Phase 
2

Human Factor VIII Hemophilia A NCT03003533 118

AAV2-hRPE65v2 2 Phase 3 Human RPE65

Inherited Retinal Dystrophy 
Due to RPE65 

Mutations|Leber Congenital 
Amaurosis

NCT00999609 119

AAV2-hCHM 2
Phase 1|Phase 

2 Choroideremia Gene
Choroideremia|CHM 
(Choroideremia) Gene 

Mutations
NCT02341807 120

AAV8-hFIX19 8 Phase 1 Human Factor IX Hemophilia B NCT01620801 121

Spark Therapeutics|Pfizer SPK-9001 AAV-
Spark100

Phase 1|Phase 
2

Human Factor IX Hemophilia B NCT02484092 122

Tacere Therapeutics, Inc. TT-034 8 Phase 1|Phase 
2

Anti-Hepatitis C 
Virus

Chronic Hepatitis C Infection NCT01899092 123

Targeted Genetics 
Corporation

tgAAC94 2 Phase 1|Phase 
2

TNFR-IgG1-Fc
Arthritis, Rheumatoid|Arthritis, 

Psoriatic|Ankylosing 
Spondylitis

NCT00126724 124

AAV5-hFIX 5 Phase 1|Phase 
2

Human Factor IX Hemophilia B NCT02396342 125

rAAV2/5-hNAGLU 2/5
Phase 1|Phase 

2

Human Alpha-N-
acetylglucosaminidase 

cDNA
Sanfilippo Type B Syndrome NCT03300453 126

Voyager Therapeutics VY-AADC01 2 Phase 1 hAADC
Idiopathic Parkinson's 
Disease|Parkinson's 

Disease|Basal Ganglia Disease
NCT03065192 127

MeiraGTx UK II Ltd

Sangamo Therapeutics

Spark Therapeutics

UniQure Biopharma 
B.V.|Chiesi Farmaceutici 

S.p.A.

Selected examples of interventional clinical candidates using rAAV, sponsored by industry, Part 2 of 2

13 



15 
 

For those in the field of developing a gene therapeutic for a disease model, the tunability 

of the viral capsid to more specifically target the therapeutic, the low-risk for onset of vector 

causing diseases, and the replication defective properties of the biologic are what make rAAV a 

popular vector to use, despite the small carrying capacity of genetic material (4.8 kb of total 

single-stranded DNA, ~4.4 kb excluding necessary viral components). Arguably, what is 

probably the most desirable aspect of this avenue of therapy, for researchers and more so the 

individuals afflicted by the genetic disorder, is the capability of long-term persistence, which has 

been exploited for gene transfer in a variety of applications, especially for slow proliferating cells. 

While adenovirus- and retrovirus-based vectors are known for their stable gene transfer and 

high-level expression, and hence explaining their abundant use in gene therapy clinical trials, 

both vectors come with considerable safety concerns, which center around the inflammatory 

potential of adenoviral vectors and the possibility of unwanted chromosomal integration of 

retroviral vectors. Current efforts are being made to reduce the immunogenicity of adenoviral 

vectors through deletion of viral early genes, whereas retroviruses are being reengineered to self-

inactivate and prevent potential for integration, called SIN retroviral vectors; however, testing of 

these modifications has been limited to local and ex vivo applications 130,131. The properties for 

the natural biology of rAAV in conjunction with the achievements in genetic engineering can 

attest to rAAV being the method of choice for in vivo gene transfer. 
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1.3 Involvement of Biopharma: Reason to Invest in Curative Therapy  

For a therapy that is geared towards treating diseases that is colloquially termed ‘Orphan 

Diseases’, it logically should not gain the attention of profit-oriented big pharmaceutical 

companies to invest in a single-dose curative medicine and altruistically help cure diseases that 

affect a very small population of the world. In 1983, Congress passed the Orphan Drug Act to 

deal with the unique commercial and regulatory challenges by ‘orphan’ diseases that afflict fewer 

than 200,000 Americans132. For industrial superpowers, such as Pfizer, Sanofi, Bristol-Myers 

Squibb, this Act was incentive enough to invest in a therapeutic that will be required by only a 

small number of patients. However, big pharmaceutical companies are usually not forefronts of 

the clinical studies for novel gene therapies. Smaller institutes, like hospitals or academic 

laboratories, would use their preclinical work for their novel therapeutic as evidence to drive 

their therapeutic into clinical trials. If these smaller groups can capture the attention of big 

pharmaceutical companies, the big companies are more inclined to back smaller companies or 

buy out the start-ups and continue the clinical trial work. This is because these start-up 

companies not only benefit from government support and general money-saving techniques that 

caught the attention of larger pharmaceutical companies, but they can also act like scapegoats to 

take the brunt of the impact for the heightened possibility of failure in early-to-middle stage 

clinical trials due to a small cohort of this already small population being tested for safety, short-

term efficacy, and long-term efficacy. On the other hand, with more success they gain from 

clinical trials, the more support they would receive from government and venture capitalists. For 

an example of ebb and flow of these start-ups, and also a marque example of a catastrophic 

failure that can occur for a biologic in clinical trials, we can look at the publicized clinical trial 

called Mydicar developed by Celladon. Mydicar was designed to work via infusion of the gene 

for the SERCA2a enzyme, that is deficient in heart failure, into coronary arteries and restoring 
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enzyme production in cardiac cells and improving heart contractions. In 2012, Celladon had 

obtained substantial interest from investors to advance development of the drug. When the 

therapeutic failed to meet primary and secondary endpoints in Phase IIb, Celladon had to 

suspend all research tied to Mydicar. Even though Celladon had other gene therapy programs 

and other investigational product candidates to advertise to shareholders, the failure of its lead 

product consequently led to Celladon stocks to plummet133,134. The heart failure therapy failed 

to show statistically significant reduction in hospitalizations, improvement in cardiovascular 

survival rates, and all-told unable to free patients from the need for ventricular-assist devices and 

heart transplants134. The shell of a company was bought out by Eiger BioPharmaceuticals with 

hopes to reenter Wall Street with a handful of rare disease treatments135. The pursuit of finding 

the so called ‘niche busting’ drug as termed by a 2010 Nature Medicine News snippet, has led to 

big pharmaceutical companies creating their own rare disease research units and we are seeing 

more financial backing or direct buying of Biotech companies such as Pfizer/Spark, Bristol-

Myers Squibb/UniQure and Sanofi/Genzyme136. Not only are these larger companies investing 

into smaller companies, especially with preclinical successes of rAAV therapies capturing their 

attention, many venture capitalists are seeing the investments of these larger companies and are 

also trying to profit themselves8,137. 

All the while small molecule generic medicines are siphoning profits away from these big 

pharmaceutical companies, and the evermore difficult discovery of new blockbuster drugs 

becoming more expensive for pharmaceutical companies to invest in, the ‘orphan’ drug sector is 

relatively untapped. Perhaps the goal of the big pharmaceutical company in investing in ‘orphan’ 

drugs is to reap the benefits of the tax credits on clinical trial expenses, grant funding from 

FDA, and the seven-year period of market exclusivity for their prized rare disease therapy. 
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Perhaps also, due to the small cohort size in clinical trials, the evidence for effectiveness of 

‘orphan’ drugs are lower in quality than required in regular drugs and more side effects are 

tolerated meaning the approval process is quicker compared to small-molecule medications138. 

Even still, because of the rarity of the disease and the exclusivity of their therapeutic, the 

companies can drive up prices to help recover costs and profit in this small market since their 

expenditures on the journey to approval are usually not subjected to price ceilings or maximum 

budgets. The price tag associated with the drug can be unrelated to the effectiveness or 

prevalence, questioning their cost-effectiveness.  

As merciless as it is to charge individuals with a poor quality of life exuberant prices for a 

life-altering therapeutic, the more than 6,000 classified ‘orphan’ diseases that affect as many as 25 

million Americans according to the National Institutes of Health (NIH) are finally receiving the 

attention to find a curative therapy139. Whether or not patients and their families would invest 

in the expensive medication is at the discretion and situation of the individuals in need of the 

therapy. Nevertheless, the field is constantly restructuring: from the regulatory aspect of the 

therapeutics on rare diseases which would require approval from a smaller population for safety 

and efficacy, to the pricing cost of the therapeutic from the pharmaceutical companies to break 

even from manufacturing and regulatory costs and consider a curative single-dose pricing 

model9,140-142.  To reduce as much cost for the development of the Cell and Gene Therapy 

(CGT) therapeutic, big pharma has developed strategies that one Forbes writer describes as an 

“outside-in” approach: have the clinical translation work be performed outside the company, 

usually by academic investigators at top tier medical centers. Only after the academics deliver 

important data would major biotech and venture capital funding provide financial backing to 

these findings to launch small biotech startups based on their developing therapeutic and enter 

early phase clinical trials. This Forbes description of the reduction of cost for the pharmaceutical 
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companies goes into a discussion of third-party vector production facilities to catalyze academic 

research as well as natural evolution of technologies such as gene editing, basic science research 

behind the vectors used, and also improvements in administration of the therapeutic9. But as 

described in the next section, these cost reduction strategies are clearly not enough to reduce the 

seven-figure price tag. So, the question remains: why is the price so high? There are other factors 

at play for overall cost of the product - regulatory, facilities, quality control, research and 

development, employee, and manufacturing – all of which are being restructured especially with 

the nascence and constant developments of rAAV therapies in the current market. 

There are only two rAAV therapies that have been approved (or soon-to-be approved) 

in the US or in the European Union: Glybera™ (alipogene tiparvovec, UniQure, AAV1 

containing an intact copy of lipoprotein lipase, afflicted population estimates for lipoprotein 

lipase deficiency in the general population: 1 in 250,000) and Luxturna™ (voretigene 

neparvovec, Spark Therapeutics, AAV2 containing human RPE65 cDNA for inherited retinal 

diseases, afflicted population estimates for inherited retinal dystrophy in US and Europe: 3,500). 

The pricing of these rAAV therapy is amongst the highest, if not the highest reported for any 

approved therapeutic in US or the European Union: Glybera™ at $1 million and Luxturna™ 

estimated at about $1 million143. The exorbitant price of $1 million is difficult to justify, but if 

the manufacturing process behind making the rAAV is elucidated, coupled with the fact of a 

small market, a majority of the price tag can make sense. The analysis of the price can start with 

the therapeutic that was approved by the European Medicines Agency for treatment of 

lipoprotein lipase deficiency (LPLD) in 2012, Glybera™ (alipogene tiparvovec)144.  Since its 

approval, its publicity from the “first gene therapy” in the western world quickly soured to “the 

most expensive drug in history” at an unprecedented $1 million price tag and eventually this 

drug became a bust. It did ignite the explosion of investment and excitement around treatments 
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to correct genetic defects, but unfortunately the therapeutic Glybera™ has been used just once. 

Performed in Berlin, the 43-year-old approximately 60-kg female patient received 40 injections, 

of 1.5 x 1012 genome containing particles per injection, to the muscles to help the patient 

process fats, with the therapeutic showing clinical efficacy to the patient and allowing her to live 

a better quality of life. The rarity of the disease, in addition to the price tag, and concerns about 

the effectivity of the therapeutic all play a variable in the success equation of this therapy. 

UniQure, who is the company to back the journey of this therapeutic, were trailblazers in the 

European Union, and the information they presented was too advanced for the regulatory 

agency involved to approve Glybera™. From the small cohort study, the data presented sub-par 

results in the patients receiving the therapy. After pushing several times to approve the drug, the 

drug was approved in 2012, UniQure decided to go public on Nasdaq, and they vouched to 

commercialize Glybera™ in the US. Instead, the FDA required more stringent and expensive 

clinical trials that dissuaded UniQure from pursuing the US commercialization goal145. 

Furthermore, several patients in Europe wanted to seek treatment with Glybera™ but could not 

afford the drug and hardly any insurance companies would front the cost of this gene therapy. 

After about 5 years since approval, UniQure announced in April 2017 that it will not renew the 

drug’s marketing authorization in Europe stating “The drug’s usage has been extremely limited 

and we do not envision patient demand increasing materially in the years ahead.”146 The price 

tag can be partially justified by the cost it took to get the drug to the European Medical Agency 

and through clinical trials, which some reports have said it totaled about $100 million. In their $1 

million charge, executives were possibly attempting to profit and recover expenditures lost in the 

following cost variables: regulatory costs, an attempt at single-dose pricing, the manufacturing of 

the rAAV, the small market, and cost of keeping the drug in the market. As economists, industry 
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executives, and regulatory agencies work on ways to improve incentives and pricing schemes, 

researchers can focus on reducing costs from the manufacturing process perspective.  

Likely an unfortunate byproduct to the substantial increase in price for these approved 

rAAV-based therapies is the bottleneck that arises to supply sufficient rAAV vectors to be used 

in further clinical studies and market settings, especially for systemic diseases that require a large 

supply of virus per dose. For rAAV therapeutics that are well into Phase II and Phase III clinical 

studies, a serious holdup that faces their approval is the paucity of large scale manufacturing 

methods in accordance with current Good Manufacturing Practices (cGMP) that can produce 

sufficient high-quality and high-potency rAAV to meet the demand of these trials and beyond. 

Consequently, a “domino-effect” ensues that interferes with making rAAV the marque 

therapeutic of that genetic disorder. Due to insufficient production capacity from current 

methods, the middle- to late-stage clinical trials are subjected to limited number and duration of 

trials since these trials require multiple human subjects and high amounts of high-quality and 

high-potency rAAV. This can make further development of a rAAV therapeutic difficult because 

the investment for the drug to be approved may severely outweigh the gains in market, as seen 

with Glybera™ in the European market.  This hesitation to supply resources from investors or 

otherwise, coupled with the current tedious and lengthy production process of rAAV, will 

without a doubt cause rAAV medication to continue to be very expensive.  Therefore, 

therapeutics needing larger clinical studies to receive approval by regulatory agencies more 

importantly depends upon improvements to production methods to propel them to these 

clinical studies and beyond.  

The methods used to produce Glybera™ and Luxturna™ are not an uncommon 

approach in rAAV manufacturing, the recombinant baculovirus-rAAV system and HEK293 

transfection methods, respectively147-149. However, the methods used in each therapeutic has 
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its own drawbacks and advantages, especially if these methods were to be used for more 

systemic disorders, such as Duchenne’s Muscular Dystrophy. Triple plasmid transfection is the 

most common method for production of rAAV in laboratory and early Phase I clinical trials.  

However, as rAAV demand increases, this method becomes laborious, costly, and time-

consuming. Alternatively, viruses can be used to carry the AAV genes, thus reducing the number 

of vectors used to enter a single cell. This method involves infecting a cell line harboring all 

AAV components, called producer cell line, or a cell line harboring only AAV Rep/Cap genes 

with the rAAV vector provided by the virus, called packaging cell line. Additionally, suspension 

cell cultures are preferred over adherent cultures to avoid batch to batch cell confluency 

inconsistencies, avoid resource consuming equipment such as custom-made roller bottle 

incubators, and approach commercial scalability via bioreactors holding 1,000 L or more150. The 

six studied methods for large-scale production of rAAV are triple plasmid transfection, dual 

recombinant Herpes Simplex Virus Type 1 (rHSV) infection, recombinant baculovirus-rAAV 

hybrid infection (OneBac), recombinant vaccinia virus and adenovirus-rAAV hybrid infection, 

wild-type adenovirus and adenovirus-rAAV hybrid infection, and single recombinant adenovirus 

infection (summarized in Table 3). The following sections will first describe the necessary 

background information of rAAV viral replication biology, segueing into established large-scale 

production methods that are developed given the rAAV biology, their improvements to meet 

FDA and International Conference on Harmonisation (ICH) guidelines or Code of Federal 

Regulations, and scalable separation techniques for contaminants from the final rAAV product.  

 



 
 

 

Table 3: rAAV Vector Manufacturing Methods and Yields. 

rAAV Vector Yields from Large-Scale Manufacturing Method 

Vector used Number 
of Vectors Method Cell Line Cell Type 

Vector 
Genome 
(vg/cell) 

References 

Polyethyleneimine (PEI)  3 Transfection HEK293SF Suspension 2 x 105 151 

Vaccinia Virus and Recombinant 
Adenovirus 2-3 Infection HeLa (S3) or 

HEK293 Suspension 3x103-4x104 152 

Recombinant Herpes Simplex Virus 
Type 1 2 Infection Baby Hamster 

Kidney (BHK) Suspension 1 x 105 153 

Recombinant and Wild-type 
Adenovirus 2 Infection HeLa (B50) Suspension 2.2 x 104 154 

Recombinant Baculovirus 1 Infection Spodoptera frugiperda 
(Sf9) Suspension 5 x 105 155 

Recombinant Adenovirus 1 Infection HEK293 Adherent 1.3 x 105 156 
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1.4 AAV Biology: How the Virus Gets Made 

To understand the bottleneck in manufacturing methods, we must first understand the 

wtAAV biology. The wild-type AAV genome undertakes a T-shaped double hairpin structure 

and consists of two open reading frames (ORFs). These ORFs are flanked by two palindromic 

inverted terminal repeats (ITRs) that are 145 bases in length, of which the distal 125 bases form 

the palindrome and is capable of folding into the characteristic T-shaped hairpin shape19. These 

ITRs serve as important sites for initiating DNA replication, packaging into the capsid and 

integration into the host genome. The left ORF contains the Rep gene and encodes for four 

nonstructural proteins required for AAV DNA replication and transactivation of AAV 

transcription157. The p5 promoter directs the expression of a single transcript encoding the 

larger Rep 78 and Rep 68 proteins, which have similar functions. Rep78/68 are required for 

nearly every step of the AAV life cycle. Rep78/68 homodimers autoregulate the AAV gene 

expression by binding to the double-stranded stem region of the ITRs. These homodimers 

create nicks at the terminal resolution site (trs) to form a linear structure that permits replication 

of the AAV genome19,158. Rep78/68, along with the ITRs, are also necessary for AAV DNA 

integration into the host AAVS1 locus, as briefly described earlier in Section 1.2159. The p19 

promoter drives the expression of a second transcript that contains sequences for the smaller 

Rep52 and Rep 40 proteins. Rep52/40 possess helicase functions for full-length genome 

packaging into the preformed capsid160. An illustration of the replication and packaging 

pathway is described in Figure 3 and Figure 4, depending on the ITR design used for the rAAV 

(described later). 

 The right ORF contains the Cap gene, which codes for the three structural proteins of 

the viral capsid. These capsid proteins, VP1, VP2 and VP3, are derived from a single transcript 
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initiated at the p40 promoter. A total of 60 copies of VP1, VP2 and VP3 are present in a 1:1:10 

ratio, respectively, and combine to form an ordered icosahedral structure, at about 20-25 nm in 

diameter72. X-ray crystallography and pseudo-typing studies have elucidated the organization 

and interaction between these subunits that influence receptor binding, cell entry and endosomal 

escape72,161,162. Different serotypes of AAV are defined by their distinct receptor binding, 

tissue tropism and antigenicity, as described earlier in Section 1.2 and in Table 1. For example, 

the AAV2 and AAV3 serotypes recognize heparin sulfate on the cell surface, while AAV1, 

AAV4 and AAV5 bind sialic acid. While naturally occurring, serotypes have at least 45% 

homology in their capsid structure, residues within the hypervariable region of the VP3 protein 

confer unique surface topologies163-165. Assembly of the AAV occurs in two distinct steps: 

VP1, VP2, and VP3 are synthesized and assembled into an empty virion in the nucleus. 

Secondly, in a rate-limiting step, single-stranded AAV DNA is inserted into the pre-formed 

capsids. 

The temporal expression of AAV ORFs is orchestrated by Rep proteins as well as helper 

virus products 166. Adenovirus (Ad) clearly has the best-studied relationship with AAV, 

although herpesvirus, human papilloma virus (HPV) and vaccinia virus can also provide helper 

or sub helper functions167. Essential Ad genes that aid in AAV replication include E1A, E1B, 

E2A, E4 and VA RNA. E1A is required for transcription of Ad early genes and initiates Rep and 

Cap expression through binding of the AAV p5 promoter. The E1A proteins activates the other 

early genes of adenovirus and induce the cell to enter S phase to create an environment optimal 

for virus replication. E1B and E4 help to promote AAV replication and second strand synthesis. 

These two proteins also function as a ubiquitin ligase to degrade certain targets that limit rAAV 

transduction. E2A is a single-strand DNA binding protein used in AAV replication and generally 

helps with replication processing. VA RNA influence viral mRNA stability and translation, 
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particularly for the Cap gene 168. Altogether, Rep and helper virus functions are critical for 

different stages of the AAV life cycle and promoting productive AAV infection. The helper 

functions for HSV and vaccinia virus will be discussed further in Section 1.5.3 and Section 1.5.4, 

respectively. 

The current model for productive AAV replication can be divided into three steps: (1) 

single-strand genome of AAV being extended into a double-strand template for transcription of 

the Rep gene, (2) the Rep genes are then transcribed, and (3) extensive DNA replication occurs. 

The ITRs that flank the AAV genome serve as the viral origin of replication and signals for 

packaging into the final vector. The self-annealing property of the ITR is instrumental to AAV 

DNA replication. The result of the self-complimentary sequence lends the secondary structure 

and a base-paired 3’ hydroxyl group for unidirectional DNA synthesis that is mediated by the 

host replication machinery under adenovirus helper replication. In herpes virus helper 

replication, the cellular replication machinery is replaced with those provided from the herpes 

virus, discussed further in Section 1.5.3. When the AAV template has been copied, terminal 

resolution occurs to replicate the ITR that had initially primed the replication process. To 

replicate this region, Rep proteins specifically bind to the RBS motif to perform certain actions: 

(1) render the terminal resolution site (trs) single-stranded using its innate helicase activity to 

then (2) recreate a 3’ hydroxyl end by exacting a site- and strand-specific nick at the trs, allowing 

the ITRs to be replicated by the cellular replication machinery.  The ITR renatures, into a 

terminal hairpin putting the 3’ hydroxyl group in position for single-strand displacement 

synthesis (otherwise known as 2nd strand synthesis) and elongate the AAV genome into a 

double-stranded full length AAV genome (duplex monomer) and a single-stranded full-length 

AAV product that may serve as a template for further replication. The double stranded 

replication product would be cleaved by AAV Rep proteins at the junction ITR to yield 
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monomers that are then packaged into an AAV particle as single-stranded DNA19,169-171. 

Modifications were made in a 2003 Gene Therapy paper by Xiao Xiao’s group where the single-

stranded AAV ITR design was truncated by deleting the D-sequence (the packaging signal) with 

the adjacent trs on one ITR, choosing the left ITR in their study. This would result in the dimers 

failing to be resolved in monomers via Rep/trs nicking and the dimer still being packaged 

because of the remaining intact wtAAV ITR on the right side that still had the intact packaging 

signal. Because of the resulting generated dimer, the total size of the AAV vector must be 

truncated to less than 2.5 kb so that the dimer molecule does not exceed the viral packaging limit 

of 5 kb. Their method showed that the deletion of D-sequence on one ITR did not affect the 

efficiency of viral replication and packaging, nor did it effect production of the virus in larger 

scales172.  The theorized description of the single-stranded replication model and double-

stranded replication model are provided in Figure 3 and Figure 4, respectively. Other 

modifications were made using the properties of AAV ITRs and replication to meet a need for 

faster expression of the transgene or for delivering >5 kb transgenes. For faster expression, 

efforts have been made much like Xiao’s group, to generate self-complementary AAV products 

to limit the lag-time in second-strand synthesis, which is a rate-limiting step for transduction 

since converting single-stranded DNA to double-stranded DNA is a necessary step before the 

gene is expressed173,174. For expanding size of cargo from ~4.4 kb to about ~8 kb, researchers 

are using two vectors to “expand” AAV packaging capacity, which involves two designed rAAV 

to infect one cell and using different strength enhancers, recombination, or splicing techniques 

to reconnect a transgene split into the two AAV vectors175. 
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Figure 3: AAV Replication Schematic for Single-Stranded DNA Design, wtAAV ITR genome. (1) In a 

concerted effort, the Rep proteins (78, 68, 52, and 40) assist in the replication of the genomic DNA. Briefly, the 

ITR provides a primer within its secondary structure to initiate the DNA replication using host cell replication 

(or helper virus) machinery. The template is copied, as well as the distal 5’ ITR. Next, the 3’ ITR that initiated 

the replication is replicated by a precise nicking at the terminal resolution site. The result after replication is a 

renatured ITR from both sites of the AAV genome that are then cleaved into monomers via Rep/trs nicking. (2) 

All the while that the replication process is occurring, the generation of preformed capsids is promoted by p40, and 

an assembly of 60 total copies VP1, VP2, and VP3 arranged in a 1:1:10 ratio. (3) The resulting monomers 

are guided to the preformed capsids with the assistance of the Rep52/40 proteins. (4) The final rAAV product 

is generated, which includes a mixture of full, genome-containing particles and empty-particles. (Image adapted 

from Chandler et. al176) 
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Figure 4: AAV replication Schematic for Double-Stranded DNA Design, Truncated ITR Genome. (1) 

Again, like the single-strand DNA design, in a concerted effort, the Rep proteins (78, 68, 52, and 40) assist in 

the replication of the genomic DNA. The DNA to be replicated is nearly half the size of the single-strand DNA 

design because this self-complementary viral genome was designed by truncating an ITR by removing the trs and 

D-sequence. The deletion of trs results in the lack of Rep/trs nicking of the dimers, and therefore the genome 

remains in the dimer form. (2) All the while that the replication process is occurring, the generation of preformed 

capsids is promoted by p40, and an assembly of 60 total copies VP1, VP2, and VP3 arranged in a 1:1:10 

ratio. (3) The resulting dimer, that contains a still intact D-sequence, the packaging signal, on the distal 

wtAAV ITR are guided to the preformed capsids with the assistance of the Rep52/40 proteins. (4) The final 

rAAV product is generated, which includes a mixture of full, genome-containing particles and empty-particles and 

a genome of nearly half the size of the natural single-stranded DNA AAV. (Image adapted from Chandler et. 

al176) 
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In the absence of helper virus, AAV assumes a latent state of infection and viral 

transcripts are virtually undetectable. Latency establishment and maintenance are mediated by 

the interaction of Rep proteins and the host YY1 protein with the AAV genome. Without helper 

virus, all four Rep proteins can act as transcriptional repressors from the p5 and p19 

promoters177. The complex coordination of these opposing roles of Rep is dependent on the 

availability of helper virus and influences the infection state (latent or active) of AAV178.  

The first AAV vectors used to transduce mammalian cells were created over 30 years ago 

through seminal work from the laboratories of Carter and Muzycszka179,180. Since then, many 

groups have exploited the vectors’ seemingly infinite possibilities for biological study and 

therapeutic use, spurring what has been termed a “vector revolution”181. Recombinant AAVs, 

like their natural counterparts, are replication-defective and non-pathogenic, and the genome 

assumes an episomal conformation after infection, which can persist for years182. The success 

of rAAVs has benefitted from major achievements in genetic engineering (novel expression 

cassette and capsid design), production, the understanding of AAV biology and discovery of 

new serotypes. While years of work have contributed to the field as it stands today, the design of 

AAV vectors remains rather simple. Essentially, the wild-type Rep and Cap genes (~4.4 kb) are 

replaced by a gene of interest. Traditional small-scale production of rAAVs requires three vital 

components, consisting of (1) an AAV vector construct (containing the transgene of interest and 

the AAV ITRs), (2) a packaging construct (Rep and Cap genes) and (3) helper virus functions 

(Ad E1A, E1B, E2, E4, VA RNA). These components are transiently transfected into 

E1A/E1B-containing HEK293 cells to mimic the productive wtAAV infection/replication and 

thereby creating high-titer stocks of infectious rAAVs. Resultant viral stocks are completely free 

of wild-type AAV virus, DNA, and contaminating helper virus. Large-scale production methods 

based on these essential process parameters will be described later in Section 1.5. The following 
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sections will explain the importance and possible design variations of each aspect of traditional 

rAAV production. 

1.4.1 Recombinant Vector Design: AAV Expression Cassette (pAAV) 

The basic AAV vector plasmid (pAAV) consists of a promoter, desired transgene, and a 

polyadenylation (PolyA) element. This sequence is flanked on either side by the AAV ITRs, 

which are the only viral sequences needed for proper orientation and packaging into the capsid. 

Any gene < 5 kb can be cloned into this expression cassette, and there have been countless 

variations on this template. Although 80% of all cDNAs range from 3 to 6 kb in length, 

numerous groups have utilized innovative strategies to overcome the packaging limitation for 

larger therapeutic genes, such as dystrophin and CFTR. These approaches include mini-

expression cassettes, trans-splicing or homologous recombination 183-188.  

The exogenous cytomegalovirus (CMV) and hybrid CMV/chicken β-actin (CBA) 

promoters are commonly employed to provide robust, constitutive gene expression. However, 

these promoters can be susceptible to silencing over time 189. Tissue-specific promoters, 

enhancer elements and hybrid promoters are utilized to customize transgene expression and 

provide an added level regulatory control 162. For example, the neuron-specific platelet-derived 

growth factor-β (PDGF-β) promoter displayed higher transduction levels compared to 

exogenous promoters in the rat brain 190. Similarly, increased muscle-specific expression has 

been attained with a muscle creatine kinase (MCK) promoter and α-myosin heavy chain 

enhancer 191.  

The possibility of regulating host genes via AAV-mediated delivery of non-coding 

elements has also been explored. AAV expression cassettes containing sequences for short 

hairpin RNAs (shRNAs) and microRNAs (~21 to 25 bps in length) utilize host RNA 

interference (RNAi) mechanisms. AAV-encoded precursors are processed into mature single 
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stranded molecules, which are subsequently incorporated into the RISC complex to silence 

target mRNAs 162. This strategy has been utilized to treat animal models of spinal cerebellar 

ataxia, Huntington’s disease and ALS 192-194. Although this strategy may be more amenable to 

vector capacity constraints, a balance between potency and toxicity must be achieved due to 

possible oversaturation of the cellular pathways 195. Dose optimization and the use microRNAs 

over shRNAs appear to reduce the likelihood of toxicity 196,197.  

1.4.2 Recombinant Vector Design: Packaging Construct (AAV Rep and Cap)  

The AAV Rep and Cap genes are supplied by a packaging plasmid to enable replication 

of vector construct DNA and provide the necessary building blocks for the viral capsid. As 

mentioned briefly before in a previous section, careful coordination of the Rep gene is required 

to induce an active AAV infection and is thus of equal importance for optimal recombinant 

vector production. Significant work by Li et. al. revealed that unregulated Rep expression, 

particularly of Rep78/68, can greatly reduce rAAV yields by decreasing rAAV DNA replication 

and Cap gene expression198. In addition, Rep78 has a demonstrated cytostatic effect on host 

cells, inducing S phase arrest 199,200. To solve this problem, Li and colleagues introduced an 

inefficient translation initiation codon (ACG) at the p5 promoter to attenuate Rep 78/68 

expression, which resulted in higher titers of rAAV198. Commonly, the AAV2 Rep coding 

sequence is used for generation of most rAAV vectors, but other Rep sequences from other 

serotypes are being investigated to use.  

In addition to regulatory elements contained within the vector construct, the choice of 

capsid provides yet another opportunity to customize transgene expression. To date, twelve 

naturally-occurring AAV serotypes, AAV1 through AAV12, have been isolated and over 100 

variants have been identified164. Different serotypes display unique tissue tropism and 
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distribution, which has piqued the interest of those in the gene therapy field201. While AAV2 is 

the most commonly used serotype, alternative serotypes have been successful in preclinical 

studies to treat diseases such as alpha-1 antitrypsin deficiency, muscular dystrophy and heart 

disease, encouraging translation into clinical studies, some of which are shown in Table 2202-205.  

Moreover, the possibility of preventing off-target effects and increasing the genetic 

payload has fueled study into two lines of vector engineering to fit clinical applications. Rational 

design involves alterations to the capsid through addition of chemical moieties or site-directed 

mutagenesis. In doing so, antibody neutralization of rAAVs and cytotoxic T-lymphocyte 

detection of transduced cells within the host can potentially be avoided, increasing therapeutic 

efficacy, as described in detail in Section 1.2206,207. For example, Li et. al. demonstrated that a 

single amino acid modification of the AAV2 VP1 subunit increased muscle transduction and 

changed the neutralizing antibody (Nab) profile, which may prove useful for repeated 

administration208. In directed evolution, diverse capsid libraries are created through alteration of 

wild-type Cap genes. These chimeric and mosaic capsids are exposed to selective pressures, such 

as tissue transport barriers and neutralizing antibodies. Common techniques are error-prone 

PCR, DNA shuffling and degenerate oligonucleotide insertion (for reviews, see References 207 

and 209). Vectors created with these methods also exhibit unique transduction capabilities and 

immune responses. 

1.4.3 Recombinant Vector Design: Helper Virus Construct  

Helper virus products are usually provided in trans through an adenovirus-based 

construct encoding genes essential for inducing rAAV replication. Other helper viruses have 

been explored; however, their exact functions in rAAV production are not well-characterized. 

For adenovirus, the known helper functions are the E1, E2a, and E4 genes and VA RNA. 

Previously, rAAVs were generated in cells infected with wild-type adenovirus. While critical Ad 
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helper functions were presented, this approach posed issues with safety and purification due to 

contaminating adenovirus that are replication competent, and ultimately affected the clinical 

quality of AAV vectors. Xiao and colleagues first described a completely virus-free technique of 

rAAV production, which increased titers over 40-fold compared to conventional methods at the 

time 168. They constructed a plasmid containing a mini-Ad genome with the E2, E4 and VA 

RNA regions. The vector plasmid, packaging plasmid and mini Ad plasmid were transfected into 

HEK293 cells stably expressing Ad E1A and E1B, bringing about the traditional triple 

transfection method used in many laboratories today. 

  



35 
 

1.5 Manufacturing a Clinical-Grade rAAV 

After extensive preclinical study and improvements upon the AAV vector, we have 

reached a crossroads between our basic understanding of rAAVs and success in clinical trials. 

AAV vectors are powerful tools for gene replacement and have been utilized in a multitude of 

clinical indications, such as retinal, neurological, muscle and metabolic disease, cancer and 

hemophilia. However, current large-scale production and purification limitations pose a 

considerable obstacle for obtaining the necessary amount of virus for many systemic diseases 

that require a considerable amount of therapeutic dose or for later phases in clinical trials, 

especially for those requiring a larger quantity of high-quality rAAV.  As mentioned earlier, there 

are six large scale production methods currently being investigated for use in the clinical setting, 

as described in Table 3 and each method design depicted in Figure 5. Unfortunately, most of 

these novel production methods generate a mixed population of product virus particles and 

contaminating helper virus or virus-based expression systems per batch of rAAV product. These 

contaminating entities can affect the safety, potency, and purity of the final rAAV product and 

are to be subjected to further purification. According to 21 CFR 610.13, of the Electronic Code 

of Federal Regulations General Biological Products Standards: “Products shall be free of 

extraneous material except that which is unavoidable in the manufacturing process described in 

the approved biologics license application.”210 One concern is of replication competent AAV 

(rcAAV) that occurs via rare Rep protein mediated or nonhomologous recombination events 

between the rAAV vector DNA and the Rep/Cap DNA in the nucleus. This is shared by most 

methods since these methods utilize vectors that deliver Rep/Cap and vector genes to the 

nucleus directly. Another concern is some methods can generate ineffective product, such as 

empty and/or non-infectious rAAV that can induce a capsid-specific T-cell response211.  

Therefore, post-production purification methods are critical for the final product to be a highly-
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infective, therapy carrying, safe-to-administer product. The FDA Cellular & Gene Therapy 

Guidance document on Chemistry, Manufacturing, and Control (CMC) offers guidelines for 

human gene therapy investigational new drugs that should be adopted by all production 

methods212. This information is summarized in Table 4. If viruses are used in the production 

system, with or without a therapeutic gene, a Master Viral Bank (MVB) and Working Viral Bank 

(WVB) should be created and characterized213. Furthermore, when a cell line is to be used over 

many manufacturing cycles, two banks of cells should be established: A Master Cell Bank (MCB) 

created from a single clone and characterized and extensively tested for contaminants such as 

bacteria, fungi, and mycoplasmas; and the Working Cell Bank (WCB), where cells are expanded 

from the MCB to use for the manufacturing process and is tested for cell viability213. According 

to the FDA, the more information that is provided to them will allow for a more thorough 

assessment of the identity, quality, purity, and potency of the product. The information they 

have detailed in regard to the manufacturing process are detailed descriptions of where and how 

the gene therapy is manufactured, by including all the components and materials used during the 

manufacturing of the gene therapy product (e.g. vector, cells, cell bank, reagents, excipients), as 

well as the procedures (e.g. purification, preparation of cell banks, vector derivation)212. If FDA 

guidelines are held to consistently yield clinical-grade vectors, the approval process for a rAAV 

based therapy can be accelerated and find its way to sooner treat afflicted patients nationally. 
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Table 4: Recommendations Offered by FDA Guidance for Industry 

Nonbinding Recommendations for Product Manufacturing: Material Information to 
be Submitted by Sponsors 

Materials 
Used in 

Production 
Method 

Information to be 
Provided Details 

Vector 

Construct Gene map (with relevant restriction sites), gene insert, 
regulatory elements, selection markers 

Sequence 

Fully sequenced if <40 kb, including for those used in 
MVB and MCB 

Summary of sequence: analysis of gene insert, flanking 
regions, any regions of vector that are modified 

Cell Bank 
System 

Master Cell Bank 
(MCB) and Working 

Cell Bank (WCB) 

History, source, derivation, characterization, frequency 
at which testing is performed, processes critical to 

product safety (microbiologic characteristic, presence 
of pathogens, culture conditions use, method of 

introduction of vector, analysis and selection of cell 
clone, cryopreservation, and genetic and phenotypic 

stability) 

Viral Bank 
System 

Master Viral Bank 
(MVB) and Working 
Viral Bank (WVB) 

History, derivation, culture conditions used during 
tissue culture scale up, processes critical to product 

safety (microbiologic characteristic, presence of 
pathogens) tests to identify presence of replication 
competent virus, identity testing to establish the 
presence of gene therapy vector and therapeutic 

transgene, and cryopreservation 

Reagents 

Concentration of 
Reagent Concentration reported by sponsor or supplier 

Vendor/Supplier Manufacturer or supplier of reagent used in method 

Source Whether the reagent is derived from human, porcine, 
or bovine (e.g. albumin, sera) 

Reagent Quality Quality assurance of reagent (e.g. percentage purity, 
sterility, etc.) 

Certificates of 
Analysis (COA) or 

Cross-reference 
letters 

If using research grade, and not FDA-approved or 
cleared, reagent then it is recommended to provide 

information regarding source, safety, and performance 
of reaction 



 
 

 

Figure 5: Large-Scale Manufacturing Methods for rAAV Production. This figure shows the most popular large-scale manufacturing methods used for rAAV 

production, including a visual display of the number of vectors, the cell type, the vector designs, the integrated designs, and the major contaminants of each system. 
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1.5.1 Triple Plasmid Transfection in HEK293 Cells 

Plasmid DNA can be coprecipitated with calcium phosphate and is a well-established 

and simple method to achieve exogenous DNA transfer and expression in mammalian cells 214. 

As discussed in earlier sections, the vector, packaging, and mini Ad plasmids can be co-

transfected using calcium phosphate into adherent E1A/E1B containing HEK293 cells to 

generate rAAV. Although avoiding helper virus, production on a per cell basis is inefficient since 

three unique plasmids must hit a single cell. In order to achieve reliably high productivity, 

particular attention to serum conditions, cell confluency, and time of harvests post transfection 

must be controlled 168. If followed correctly, this method can reliably yield rAAV upwards of 

1x105 vg/cell and is the method of choice for production in preclinical studies and early-phase 

clinical studies. With its success in creating adequate viral vectors in laboratory scales, there have 

been numerous attempts to scale this method. However, this is very difficult and laborious to do 

for adherent HEK293 cultures and there are only a few technologies that can scale adherent 

cultures to about 3 L, with roller bottles or Nunc cell factories 215,216.   

According to some estimates, for typical GMP manufacturing efforts, more than one 

hundred CellSTACKs can yield about 1x1015 of clinical rAAV product. If the therapeutic effect 

requires 1x1011 to 2x1012 vector genomes per kilogram of the patient, the 1x1015 vector 

genome product would yield enough for up to 100 100-kg patients. If the virus generated is low 

potency, say about 10-fold less than vectors used in the previous example, the total product 

generated could treat as little as 5 100-kg patients217. These CellSTACKs, sold by Corning Life 

Sciences, are 636 cm2 growth area and are available in a variety of stacking configuration used 

for adherent cell culture218. The team responsible for a rAAV clinical trial in Hemophilia B used 

432 10-stack CellSTACKs, equating to 2.7x106 cm2 of surface area for the adherent cultures of 
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HEK293 with an overall yield of about 2x1015 vector genomes. The group used calcium 

phosphate-mediated transfection and adherent HEK293 cells211. To equate this quantity of 

virus necessary for a patient, if a typical rAAV lab generates 1x1013 total vector genomes for 

their small-animal studies, it would require 20 to 40 15-cm culture plates (surface area: 177 cm2). 

If the same plate system was used for generation of rAAV for the Hemophilia B clinical trial, a 

total of 15,550 15-cm plates would be necessary. With regards to both the rAAV product quality 

- in terms of infectivity and full to empty particles - and the overall yield – in terms of vector 

genome copy numbers – there are several factors that are difficult to control from system-to-

system (plates vs. CellSTACKs vs. roller bottles) or person-to-person. Such things are: batch-to-

batch inconsistencies in transfection efficiencies, batch-to-batch inconsistencies in cell-density at 

time of infection, space requirements, and man-power. An estimated manufacturing cost is 

provided in Table 5. It should be noted that this estimation only includes cost using the 

materials necessary to produce the virus in a triple plasmid calcium phosphate transfection, and 

not materials nor resources to purify the product to clinical grade. The assumptions made in this 

analysis revolve around making about 2x1015 vectors for every batch no matter the clinical 

indication. With this in mind, the analysis was done to illustrate the cost of systemic diseases, 

especially at the scale of vector being produced and not necessarily to show cost for a localized 

disease because the amount of vector assumed to produce per batch is in great excess to what is 

actually required for a locally occurring indication. 

 



 

Table 5: Estimated Manufacturing Cost Per Batch Using Triple Plasmid Transfection Adherent Cultures 

  

 

Duchenne's 
Muscular Dystrophy

Hemophilia B Parkinson's
Leber's 

congenital 
amaurosis

Average Dose Per Patient (vg) 1x1015 5.65x1013 6.46x1011 5.82x1010

Patients in US Market 16,000 4,000 1,000,000 3,500

Culture Surface Method

Surface Area per CellSTACK (cm 2 ) 636
Number Used 432

Cost Per CellStack $151.53
Total Cost of CellSTACKs $654,610

Total Cost $5,891,487
Surface Area per Roller Bottle (cm 2 ) 1700

Number Used 1620
Cost Per Roller Bottle $16.10

Total Cost of Roller Bottles $26,082
Total Cost $231,822

Surface Area per 15-cm Plate (cm 2 ) 156.4
Number Used 17572

Cost Per 15-cm Plate $3.56
Total Cost of 15-cm Plates $62,641

Total Cost $563,766

Traditional 15-cm Culture Plates $4,510,127,923 $63,705,557 $182,096,415 $57,420

Roller Bottle $1,854,576,000 $26,195,886 $74,878,506 $23,611

Method Parameters (Total Cost of Production Using Manufacturing Method for All Estimated 
Patients of Disease Indication) 

Corning CellSTACKs $47,131,891,200 $665,737,963 $1,902,950,107 $600,048

(5) Method parameter references: 211, 218, 225, 226

Estimated Disease 
Parameters

Gene Therapy Clinical Indication

Triple Plasmid Transfection Method Used for Manufacturing rAAV Production Cost for 2x1015 vg per Batch per Clinical Indication 

Consumables $74,520.00

(2) Each production method yields 2.00x1015 vg rAAV (ref: 211) from 
a surface area of 2,750,000 cm2

(3) Population estimates from references: 147,220-223

(4) Vector estimates from references: 224

Assumptions Popular Diseases Investigated in Gene Therapy Clinical Trials 
(1) Estimated Employee Cost Based on Roller Bottle Method (ref: 
219):
Salaries $84,240.00
Overhead $46,980.00
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The traditional method of transfection in adherent HEK293 cultures is the basis of 

Spark Therapeutics’ Luxturna™ (voretigene neparvovec) gene therapy product, mentioned 

earlier. From their briefing document with the FDA on October 12th, 2017, Spark disclosed a 

manufacturing flow chart to the FDA Advisory Committee in hopes to obtain a 

recommendation for approval. Figure 6 shows a snapshot of the document, showing the typical 

process flow of manufacturing processes. It should be noted the various steps required to make 

a final FDA grade product, starting with culturing of the cells, the physical generation of rAAV 

with transfection methods described in this section and shown in Figure 5, collection of all cell 

products including the media in which the cells were cultured in, a crude lysis of the collected 

material, a concentration step to reduce the overall volume of product being worked on, another 

lysis step to break any remaining debris that can damage the chromatography technique, 

chromatography to concentrate and collect the sample, CsCl gradient centrifugation to remove 

empty particle contaminants from the desired full particle rAAV, and finally exchanging of 

buffers to remove the CsCl from the gradient step147. The purification methods will be 

discussed in Section 1.6, but it should be noted that this industrial scale is to generate product 

for the eye, therefore requiring much less viral product than compared to more systemic diseases 

like Duchenne’s Muscular Dystrophy or Hemophilia. If this production method were to be used, 

it would certainly drive up the price of the therapeutic for systemic diseases. BioMarin 

Pharmaceutical, who is developing their own rAAV therapeutic for Hemophilia A, is aware of 

this concern and are relying on the baculovirus technique to scale up their product after 

approval. Amit Nathwani, the investigator who led the University College London team to 

develop the treatment, posed a concern shared by all researchers behind systemic therapies such 

as BioMarin Pharmaceutical’s product: “Will they be able to manufacture enough to support the 

world’s hemophilia A market?”227   
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Figure 6: Process Flow Diagram of Gene Therapy Product, Luxturna™, for FDA Approval 
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Recently, a current Good Manufacturing Practice (cGMP) approved serum-free 

suspension HEK293 cell line has been developed for rAAV production by triple plasmid 

transfection using polyethyleneimine (PEI, 25-kDa), a cost-effective cationic polymer DNA 

transfection agent that can effectively deliver genes both in vivo and in vitro 151,228. Figure 5A 

shows the diagram of the system, which is like tradition methods of triple plasmid transfection, 

only with PEI used instead of calcium phosphate (CaPO4). In the context of the production 

process, PEI transfection methods are also useful because it is well-tolerated by HEK293 cells, 

does not require a media change after transfection that are required for calcium phosphate 

transfection, and is inexpensive to commercially available lipid transfection reagents like 

Lipofectamine™ ($330 for 1L of 25-kDa PEI vs $4,835 for 15 mL of Lipofectamine™ 2000) 

229,230. This scalable method can generate rAAV much like its adherent cell culture predecessor 

without the use of sera, antibiotics, or medium exchange post-transfection. However, the 

optimal density for transfection is low and selection of a cell that shows high transfection 

capability and high rAAV vector production per cell production efficiency can be challenging 

231. Consequently, batch-to-batch inconsistencies in transfection efficiencies and viral titers can 

occur. This is of concern regarding FDA guidelines, since Master Cell Banks (MCBs) and 

Working Cell Banks (WCBs) should be adequately established as a safe, pure, and stable cell line 

212. Furthermore, the implementation of purification is critical in PEI systems, since PEI itself is 

nonbiodegradable and can be moderately cytotoxic.  In 2016, work by Grieger et. al. has led to a 

qualified clinical master cell bank derived from a clone selected for high transfection efficiency 

and rAAV production. They’ve improved on the previous system by exploring other 

preparations of PEI, namely a PEI preparation called PEI Max that contains more than 11% 

additional free nitrogen and was able to increase transfection efficiency. Their system involves a 

simplistic method to generate clinical rAAV vectors, covering all facets of the production 
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process including cell culture, transfection methodology, and purification strategies232. 

Furthermore, the recently innovated, low-cost, scaled production of plasmid preparations has 

made this system even more advantageous. According to Genetic Engineering & Biotechnology 

News, Nature Technology’s HyperGro™ is an inducible fed-batch fermentation process that 

can enable high yield production of optimized plasmids and even certain unstable or toxic 

vectors233.  One disadvantage to other systems is the need to generate two- to three-unique 

high-grade plasmids for transfection. Despite these pitfalls, this method is comparable to other 

methods in a small-scale bioreactor and has all prerequisites to enable rapid and scalable rAAV 

production for large-scale manufacturing campaigns217,228. Advantages to this system is there is 

no need to generate and characterize several cell clones for Master and Working Cell Banks, and 

there is no use of viruses, so there is no need to document viral banks (Master Viral Bank and 

Working Viral Banks). Unfortunately, there remains the issue exactly found in traditional 

transfection methods: a single cell must be hit by three unique, GMP grade DNA plasmids for 

rAAV production, affecting the per-cell efficiency and overall material cost.  

1.5.2 Recombinant Baculovirus-rAAV into Insect Packaging Cells 

The baculovirus/insect cell-based technology is a popular avenue for rAAV vector 

production, and has been rooted into the manufacturing process for the rAAV companies 

UniQure and BioMarin Pharmaceutical Inc. for their rAAV products148,227. The OneBac 

system, the latest update in the technology, is attractive to generate large-scale rAAV due to its 

easy implementation, scalability (up to 200 L in recent reports), suspension and serum-free 

media cultures, growth at 27°C, and its current use in protein manufacturing 234,235. At a low 

multiplicity of infection (MOI), a single baculovirus, derived from the Autographa californica 

nuclear polyhedrosis virus (AcmNPV), containing the rAAV vector is infected into a stable 

transcriptionally silent inducible Rep/Cap packaging Spodoptera frugiperda (Sf9) cell line. A variety 
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of these cell lines with serotypes AAV1 through AAV12 Cap genes have been made. The Sf9 

packaging cell lines are genetically stable and lead to undiminished rAAV yield, albeit 

questionable quality 236.  The baculovirus itself, a rod-shaped 260 nm length by 20 nm diameter 

134 kb virion, has significantly less safety concerns than other viral vector counterparts. If there 

were baculovirus contaminants in the end-product, the virus does not replicate inside the 

transduced cells, nor integrate its DNA into host chromosome. Humans do not possess pre-

existing antibody and T-cells against baculovirus, and the virus is nonpathogenic to humans. In 

fact, the baculovirus can be readily constructed and propagated to high titers in biosafety level 1 

facilities237,238. However, in compliance with industry guidance documents – specifically the 

viral safety evaluation of biotechnology products derived from cell lines of human or animal 

origin (ICH Q5A) – the process for purification of a biological pharmaceutical can remove any 

non-product virus, to avoid the potential pathogenicity or immunogenicity of the non-product 

virus. Removal of these viral contaminants are performed by “viral clearance” or “viral removal” 

process steps usually by chromatography or virus filtration. Viral inactivation can be done to 

decrease potential pathogenic effects caused by non-product viruses, but these usually require 

extreme treatments – e.g. pH, temperature - or chemical conditions – e.g. detergents, 

solvents239. For the case of baculovirus, removal of the contaminating rBac-rAAV is a challenge 

that faces companies like UniQure or BioMarin Pharmaceutical who use this scalability 

technique as their platform. In fact, UniQure filed for a patent on such a technology to comply 

with the European Medical Agency (EMA), and meet the needs for industrial setting. Their 

technology attempts to clarify the product via the physical shape of baculovirus, rod-shaped, and 

the rAAV, essentially spherical. Their invention uses two steps, the first is a pre-purification step 

by the following, individually, or in combination: density gradient separation, prefiltration, 

chromatography. Next, a virus filter/ultrafilter would be used to only allow virions of an 
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essentially spherical shape to pass in a pre-designed filter with a nominal pore size of 35 nm, 

such as the Asahi-Kasai Planova 35N membrane, or molecular weight cut-off of 10,000-100,000.  

Despite the efforts to reduce overall baculovirus quantities in the final preparation, these 

separation and filtration techniques does not guarantee complete removal of the baculovirus and 

thus leaves the possibility of its existence in the final product. The invention indicates that a 

removal of 5.5-10 orders of magnitude is preferred with their technique, to which they can 

detect using an infection assay. In their patent, they indicate a reduction of at least 6 orders of 

magnitude240.   

Expression of the Rep gene must be silent because of the cytotoxic property of Rep78. 

It is strictly controlled by the Bac-derived polyhedron promoter polh and the cis-acting enhancer 

element hr2-0.9 placed upstream. The Cap genes were separated, and expression was also strictly 

controlled by this same device 236,241. Figure 5E shows the vector design and the integrated 

design. polh expression is only induced upon baculovirus infection by the immediate-early gene-

mediated transactivation of the hr2-0.9 enhancer. An AAV Rep-binding element (RBE) was 

inserted adjacent to the hr2-0.9 enhancer because it led to enhanced viral protein expression. 

This is due to a feed-forward loop that is initiated when Rep78 is expressed that up-regulates the 

integrated Rep (Rep78 and Rep52) and Cap (VP1, VP2, and VP3) genes by interaction with 

RBE, and therefore leading to larger titers compared to the previous three- to four-baculovirus 

infection system. Since the Rep52 sequence is in the Rep78 gene, its expression remains under 

control of p19, and enhanced by RBE. This allows production of both Rep78 and Rep52 from a 

common open reading frame (ORF) only after activation of polh from the hr2-0.9 enhancer. 

There was little to no expression of Rep68/Rep40 through western blot likely from Sf9 cells 

having poor splicing recognition of mammalian signals in the AAV Rep gene 235,242. Cap 

proteins VP1, VP2, and VP3 are normally synthesized from two differently spliced mRNA in 
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wild-type AAV. These splicing signals were eliminated by expressing all three VP polypeptides 

from a single transcript and in the correct ratio by mutating the start codon for VP1 from ATG 

to ACG, and incorporating downstream start codons ACG for VP2 and ATG for VP3 235,236.  

Attention was made for VP1 - critical for AAV particle infectivity – which notoriously shows 

lower levels in baculovirus-rAAV production systems and correlates to an increase in non-

infectious rAAV product 236. 

Although currently used for commercial protein manufacturing and by UniQure and 

BioMarin Pharmaceutical, the use of this method for clinical-grade rAAV production is 

questionable. First, the infectivity/transduction efficiency of resulting OneBac made rAAV is 

not comparable to mammalian made counterparts, despite advances in VP1:VP2: VP3 

expression levels, especially for serotypes AAV3, AAV5, AAV8 and AAV9235. This can again be 

attributed to the issues with VP1 expression from an inefficient VPs expression design in the 

capsid transcript217. Second, the ineffective splicing signals in Sf9 cells are crippling to the final 

product which would contain a noticeable amount of contaminating empty AAV particles. The 

over expression of capsid proteins or inefficient AAV genome packaging is another problem 

with this system, also leading to a large amount of contaminating empty rAAV particles. This 

can be from the noticeable loss of Rep68 (associated with replication of the AAV transgene) and 

Rep40 (associated with efficient packaging), despite efforts of Rep78 and Rep52 to substitute 

their loss243. Third, the possibility of different posttranslational modifications of the rAAV 

capsid made in insect cells, as compared to mammalian cell counterparts, can impact the final 

product18,231,243-245. Indeed, we can assume these attributes are culminating to the product 

that BioMarin Pharmaceutical has generated for its FVIII rAAV, where they require an 

astounding 6x1013 vg/kg per patient for their Hemophilia A (recall that triple plasmid 
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transfection methods required 2x1011 vg/kg albeit for their Hemophilia B indication)246. 

Finally, no matter if OneBac is used or the alternative three-baculovirus system is used as the 

method for rAAV production, there remains the biggest drawback: instability of AAV cassette in 

baculoviruses during the expansion phase, with notable loss in ITR-transgene cassette containing 

baculovirus over five consecutive passages247. These drawbacks related to the molecular/cellular 

biological learning curve over the past decade has certainly made this technology limited in use 

in the clinical setting. 

1.5.3 Recombinant Herpes Simplex Viruses Infection in Suspension BHK Cells 

Recombinant herpes simplex virus type 1 (rHSV) has become another popular method 

of rAAV production in clinical trials 248. The rHSV virus down-regulates cellular functions to 

force AAV to use the HSV replication complex to propagate instead of the cellular machinery 

alone169. 50% of the HSV genome encodes for nonessential gene products and can be deleted 

and replaced with large foreign DNA sequences without jeopardizing viral amplification169,249.  

It was initially proposed that the replication proteins of HSV provided the helper functions of 

rAAV. These were the helicase/primase complex UL5, UL8, and UL52 and the DNA binding 

protein ICP8 encoded by the UL29 gene. However, as more is elucidated about HSV, other 

proteins can enhance helper functions in combination with the replication proteins. ICP0 

transactivator activates Rep gene expression, ICP4 and ICP22 enhances AAV replication in the 

presence of six HSV replication genes, and the polymerase UL30 and co-factor UL42 can 

contribute to efficient AAV replication169,250. 

The most-advanced version of rHSV infection systems are based on infection of two 

rHSVs into baby hamster kidney (BHK) suspension-adapted cells, HeLa cells, or HEK293 

adherent cells 169,249. These two vectors contain all cis- and trans- acting elements necessary for 
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rAAV production and include helper functions naturally found in HSV, but uses the d27.1 

variant of HSV that lacks ICP27 expression: one HSV vector containing rAAV Rep/Cap genes, 

the other HSV vector harboring the rAAV transgene with its respective rAAV inverted terminal 

repeats (ITRs), and helper functions supporting replication of the rAAV genome including 

activation of Rep gene expression. The rHSV has stability to carry Rep expression without 

severely impacting replication of rHSV stocks especially during rHSV serial expansion in 

V27 cells, the cells responsible for replication of rHSV 153,231. The V27 cells, also known as 

Vero cells, are used to propagate rHSV because these cells are stably transformed with the 

UL54, specifically containing ICP27, the gene deleted in the rHSV vector responsible for 

replication of HSV217,251. The scalable version requires lower MOI of rHSV, all the while can 

be used in higher cell densities during scale up of BHK cells, decreased time of harvest, a high 

yield (reports of 2x104 to 1x105 vg/cell which is greater than transfection methods of 

approximately 1x104 vg/cell), scalable to 100 L bioreactors, and can accommodate multiple 

AAV capsid serotypes without loss of infectivity215,217,231,235,252,253.  The resulting rAAV 

product has increased potency, as seen by vector genome unit over infectious units and 

increased cell transduction expression, and overall reduction in empty capsids.  

Several issues are associated with the rHSV technology. First, the rHSV vectors have a 

large genome size (152 kb) and thus difficult to fully characterize, a particular concern in FDA 

guidelines212. This is much like the baculovirus system, where a significant amount of time and 

effort is needed to characterize rAAV generation at all scales. It is also unknown if HSV DNA is 

packaged into AAV or if there is generation of replication competent AAV (rcAAV). Next, 

rHSVs have potential to be pathogenic and/or immunogenic. Efforts have been made for 

replication defective rHSVs, for instance by using the d27.1 variant, but generating a high-titer 

infectious stock of these rHSV variants is difficult and the overall yield is greatly diminished. 
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Nevertheless, the assurance that the rAAV product is free of adventitious agents, in this case the 

rHSV, is critical to meet the 21 CFR 610.13 requirement for purity, quoted earlier. To the 

concern of FDA, HSV has tropism to the central nervous system and has a potential for latency 

and reactivation254. Methods to do this are suggested by certain FDA guidance documents, and 

these tests involve in vitro cell culture tests in various cell cultures, like Human Diploid cell lines 

or Monkey Kidney Cell Lines to test for human viruses, and could also include transmission 

electron microscopy, PCR, or other specific in vitro tests255. Removal of these viruses could be 

from chromatography, or using nanofilters since rHSV are 120-200 nm in size, about 6 to 8 

times bigger than rAAV. Third, rHSV particles can be easily inactivated to production and 

processing conditions due to capsid fragility of the enveloped virus231. This is a significant 

challenge when establishing a FDA standard Master Viral Bank (MVB) and Working Viral Bank 

(WVB) for both rHSVs used243.  For a Master Viral Banks, the seed vector should be tested for 

genetic integrity and stability, bioactivity of the vector should be determined, or expression of 

the gene to be assessed by the sponsor. Finally, the requirement of two viruses to infect a single 

cell is a drawback to this technology on a per-cell basis.  

1.5.4 Recombinant Vaccinia Viruses and Adenovirus-rAAV Infection into HeLa Cells 

The newest development of rAAV production uses vaccinia virus (VV) to carry helper 

DNA of AAV into the cytoplasm, and not the nucleus of the host cell, in hopes to eliminate any 

concerns of replication competent AAV (rcAAV). Vaccinia virus is a member of the poxvirus 

family, has dimensions of 360 × 270 × 250 nm, undergoes its entire life cycle in the cytoplasm 

of the host cell, and is most commonly known for its use in eradicating smallpox256,257. With 

the knowledge of VV using solely the cytoplasm for its viral life cycle, Moore et. al. and Dong et. 

al. developed a novel approach utilizing two recombinant VVs for rAAV production in HeLa 

cells, but not limited to this cell line. In one recombinant VV are the Rep78 gene and both VP2 
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and VP3 genes expressed from a single promoter, the vaccinia p7.5 promoter. In the other 

recombinant VV are the Rep52 and VP1 genes, also driven by the p7.5 promoter. It is possible 

to accommodate all genes into one VV, since VV can tolerate >20-25 kb inserts into its final 200 

kb genome.  These Rep and Cap DNA are transcribed and translated in the cytoplasm and the 

resulting proteins are migrated into the nucleus where it mediates rAAV replication and 

packaging. The rAAV vector DNA can be incorporated into the host chromosome or delivered 

to the nucleus by an adenovirus harboring the AAV vector, overall resulting in a high yielding 

rAAV preparation, devoid of rcAAV.  Furthermore, the contaminating VVs can be eliminated 

by simple 0.22 µm filtration since the VVs diameter is approximately 0.4 µm 152. Furthermore, if 

VVs are present still after filtration, the density of the VV is 1.24-1.27 g/cm3, which is 

significantly lighter than AAV (1.41 g/cm3). This means that in a gradient centrifugation for 

polishing steps of rAAV purification, VV can be removed without major qualms. After removal 

of the VV contaminant, the remainder of the process can follow typical purification methods to 

obtain the clinical-grade vector product152. 

Reports have stated that vaccinia virus can provide helper functions to rAAV, but it 

should really be categorized as a sub-helper. Vaccinia fails to produce rAAV and activate AAV 

promoters, but it could initiate replication and packaging when AAV promoter activation is not 

necessary. This is because of the p7.5 vaccinia promoter that drives expression of Rep78 and 

Rep 52 in the cytoplasm and translates in the nucleus. The DNA that is delivered via VV will not 

have an opportunity to recombine with the rAAV vector to generate rcAAV. Estimates have 

suggested that 1x1016 rAAV vectors can be made from just 100 L of suspension HeLa cells, but 

this technique remains in a proof-of-concept stage and these estimates have not been verified.  

Since this is relatively new, there remain some concerns to this method. First, the 

removal of Rep68 and Rep40 may provide issues in contaminating empty AAV particles, like in 
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OneBac discussed earlier. Removal of Rep68 and Rep40 appears to be a common strategy for 

systems that require a more stable recombinant delivery vector of the Rep genes, however it is 

unclear if this would explicitly affect the rAAV quality and the potency of the eventual clinical 

grade product. Second, this method requires at the minimum two different vectors for adequate 

rAAV production, reducing per cell production efficiency. The vectors in this system are the 

optional helper adenovirus-rAAV hybrid and the mandatory two VVs containing rAAV Rep78, 

Rep52, and Cap genes. Adenovirus can be avoided by alternatively having an integrated cell line 

with the rAAV vector gene integrated into the cell and subsequent infection with the two VVs. 

In larger scales, removal of the VVs is simple, but the removal of contaminating adenovirus is 

far more challenging. In this situation, manufacturers would more likely integrate the rAAV into 

the genome of the cell, rather than use recombinant adenovirus to deliver this vector into the 

nucleus of the cell. Third, the use of vaccinia virus may pose some safety concerns for 

development of this manufacturing process, and not necessarily for the final rAAV product 

since removal of VV is relatively simple. Although this virus is of the MVA strain, which is an 

attenuated strain of wtVV unable to replicate and form infectious virus in mammalian cells, 

contamination of stocks of avirulent viruses with replication-competent poxvirus is of moderate 

concern and proper measures should be enforced to reduce possibility of accidental 

infections167. According to FDA guidelines this poxvirus, albeit replication-deficient, may have 

the: “(1) ability to infect and replicate in many types of human tissues and cells, (2) potential for 

toxicity in immune-compromised populations such as cancer patients, and (3) renal/cardiac 

concerns.”254  Safety measures that should be followed include Biosafety Level 1 (BSL-1) for 

attenuated strains (or BSL-2 if virulent strains), use of a biosafety cabinet, and proper personal 

protective equipment (including lab coat, gloves, and eye protection)258.   Finally, the large VV 

genome size (~200 kb) would follow similar issues as rHSV technology, and may be of concern 
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in FDA guidelines, especially for developing a MVB and WVB. All told, this method provides a 

unique alternative to generate a scalable, cost-effective method relative to triple plasmid 

transfection. Further investigation is necessary to verify that the rAAV product is of clinical-

grade quality.  

1.5.5 Wild-Type and Recombinant Adenovirus Infection into HeLa Producer Cells 

First used as a vector to assist in rAAV production in 1995, adenovirus continues to be 

of interest for large scale production of rAAV. Adenovirus (~30-40 kb, ~70-90 nm diameter) 

promotes AAV replication directly by trans-activators that stimulate AAV Rep gene expression, 

and indirectly by driving the cell cycle to enter S phase, which provides AAV with active cellular 

replication machinery. Furthermore, adenovirus can be used at a low MOI, is suitable for 

suspension culture, it can be produced in animal-free conditions, easy to produce at high yield, 

well-established purification process in small-scale settings using ultracentrifugation, the capsid is 

stable (unlike rHSV or baculovirus), the size is much smaller than rHSV and baculovirus, the 

genome is stable, has fully characterized helper functions, there is no or little rcAAV generated, 

and adenovirus DNA is not packaged into AAV243.  

Rep/Cap and rAAV vector genes were stably integrated into HeLa cells, generating a 

producer cell line. A high titer of rAAV was achieved from these rAAV producer cells following 

an infection of wild-type adenovirus or an E1-intact adenovirus to activate the p5, p19, and p40 

transcription units of Rep/Cap gene 259. Further improvements were made by replacing the E1 

region of an adenovirus with the rAAV vector and infecting both this recombinant adenovirus 

vector with the wild-type adenovirus into the stable Rep/Cap HeLa packaging cell line, also 

generating a high yield of rAAV 154,260. HeLa-based cell lines can be adapted for suspension 

culture and grown in serum free media. Since the HeLa cells do not harbor E1 genes, the p5 and 

p19 promoters were not able to be activated and potentiate cytostatic or cytotoxic effects of 
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Rep78 to the cell, and thus HeLa cells are a prime cell line to generate a stable packaging or 

producer cell line261. According to recent estimates, this method can supply highly pure vector 

in the order of 1x1016 DNase resistant particles for clinical trials at a volume of 250 L. 

Furthermore, this report projected no impediments to scale up to commercial manufacturing in 

2000 L bioreactors 262. 

However, the contamination of wild-type adenovirus in the final vector preparations is 

highly undesirable for vector safety 263,264. According to the FDA, adenovirus has the potential 

for a significant immune response and inflammatory response to the vector and possible adverse 

effects from any contaminating replication-competent adenovirus, such as wild-type 

adenovirus254. The FDA guidance document recommends an appropriate maximum level of 

replication competent adenovirus would be <1 in 3x1010 viral particles, with an adenoviral 

particle to infectious unit ratio (vg:IU) of ≤30:1212. At a large scale this can be a problem, since 

there may be difficulty in removing contaminating adenovirus from vector preparations while 

keeping the high yields of rAAV. The methods to remove the contaminating adenovirus would 

be done using density gradient centrifugation (adenovirus density 1.35 g/cm3 and AAV density 

1.41 g/cm3), but this is only economically feasible on small volumes, not industrial scaled 

volumes and the minor difference in densities would mean a narrow proximity to one another in 

the density gradient. Heating a mixed population of adenovirus and rAAV to 56 °C – 65 °C (e.g. 

a 30-60-minute incubation of the rAAV vector preparations to inactivate adenovirus effectively) 

can lead to more selective inactivation of the helper virus without effecting the rAAV infectivity. 

However, the denatured helper virus proteins from the adenoviral capsid would still be present 

in the product and upon use the gene therapy would evoke a cellular immune response in the 

patient265,266. Removal of the helper virus can be performed using ion exchange and affinity 
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chromatography, or using a filter membrane with a pore size of 35-50 nm, since AAV is 20-25 

nm in diameter and adenovirus is 65-90 nm267,268. Another safety concern regarding the use of 

HeLa cell cultures is the presence of human papilloma sequences, the HPV 18 sequence 243,244. 

Finally, much like the rHSV system, the system is also inefficient regarding number of viruses to 

infect a single cell.  

1.5.6 Recombinant Adenovirus Infection into HEK293 Producer Cell Line 

The existence of the adenovirus 5 E1 region integrated into the HEK293 genome has 

made generation of a stable Rep/Cap packaging and rAAV producer cell line difficult due to the 

E1 activation of the Rep gene, that leads to generation of cytostatic or cytotoxic properties from 

Rep78261,264. In the Xiao lab, they have established an innovative inducible Rep expression 

using a dual splice or intron splice switch. Briefly, the Rep/Cap gene had been inactivated by an 

intron insert in between the Rep gene. Between the intron signals is an insert of a LoxP cassette 

containing PolyA termination signals to inactivate splicing of the intron. A rAAV vector was 

included downstream of this switch design, carrying the rAAV transgene flanked by the 

appropriate ITRs, and together this plasmid was integrated into the HEK293 cell genome, 

resulting in a producer cell line.  An infection of an E1-, E3-deleted adenovirus harboring a Cre 

recombinase gene in the E1 region (hereafter, Ad-Cre (E1)) into this cell line results in a Cre-

LoxP site-specific recombination with the LoxP sites, and removal of the PolyA termination 

signals. After mRNA splicing to remove the inserted intron, the Rep/Cap genes are restored to 

its normal function. 156,269. E1A/E1B of the HEK293 cell activates the expression of Rep, Rep 

and Cap proteins together identify the ITRs, package the vector into the capsid, and the resulting 

rAAV can be collected and purified at a high titer and high potency 261. This method has an 

improved safety profile by removing the need of a wild-type adenovirus because of the E1 genes 



57 

present in HEK293. Recombinant adenoviruses are used often in clinical trials, but in this 

method, removal of the adenovirus is necessary for increased safety in the final rAAV product.  

This approach follows similar issues to those in the previous adenovirus technique as 

well as innate issues found in the system developed by Qiao et. al. and Yuan et. al. First, it 

requires a time-consuming selection and characterization process to identify the best cell clone, a 

critical process for MCBs and WCBs. Furthermore, for every novel rAAV product to be 

generated, a unique HEK293 producer cell line has to be generated. Second, currently this 

method uses adherent HEK293 cells that rely on sera for cell growth, and therefore only scalable 

to about 3 L, e.g. roller bottles or Nunc cell factories, and has not yet been optimized for serum-

free, suspension HEK293 cultures. There should not be any major complications to transition 

from adherent to suspension cultures, as evident by work in the suspension transfection 

methods, but this has not been performed for these particular cell lines. Next, the recombinant 

adenovirus is harvested alongside the resulting rAAV. Although it is an E1-deleted adenovirus, a 

widely used type of vector in gene therapy for humans, the virus can recombine with the E1 

region integrated in HEK293 cells and become replication-competent270. If it is not adequately 

removed the recombinant adenovirus can cause induction of innate immune responses 

characteristic of the adenovirus capsid interaction with cells 265,266. 
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1.6 rAAV Large Scale Purification Methods 

 During harvest in smaller scale productions, the cells are collected separately from the 1-

3L of media which is also collected since rAAV is released from cells into media 271,272. The 

cells are lysed by freeze-thaw or sonication releasing rAAV in or attached to the cells into the 

viral resuspension buffer and the rAAV in media are concentrated and collected. Both 

preparations are combined and subjected to two to three ultracentrifugation spins. The first 

ultracentrifugation spin removes most of the contaminating materials via density differences 273. 

The second or third spins are specifically required to purify and concentrate full transgene 

containing rAAV from the empty rAAV, by density differences in empty (~1.32 g/cm3) and full 

rAAV (~1.40 g/cm3), regardless of serotypes 211.   

As the volumes of collected post-harvest material increases, using ultracentrifugation for 

all purification steps would be resource intensive and time-consuming.  Therefore, several 

upstream purification processes must be used ending with a polishing step or ultracentrifugation. 

Many academic and industrial researchers are investigating purification strategies to streamline 

purification, especially when certain manufacturing methods approach industrial scales232,274. 

The use of the nanofilter is a promising developing technology for purifying mixed populations 

of larger non-product viruses and the desired product virus. However, the material must be pre-

filtered with a larger pore-sized filter (e.g. 0.1 µm) before it encounters the nanofiltration system 

such that of all other contaminating entities are removed, elsewise the nanofilter will be 

obstructed by insoluble cell constituents or other non-product entities, and thus reducing yield 

of desired rAAV product. Given the advancements of chromatography for purification of a 

variety of AAV serotypes that are being used by companies like Pfizer, chromatography may be 

the most effective way of purifying a variety of AAV serotypes. Companies like Pfizer are using 

an affinity ligand made from a proprietary camelid-derived single-domain antibody fragment for 
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AAV affinity purification. Sold as a commercially available resin, called POROS CaptureSelect 

AAVX resin, the CaptureSelect ligand is a 13-kDa fragment that comprises the three 

complementary determining regions that form the antigen-binding domain. The resin is able to 

be used for large-scale downstream purification for a broad range adeno-associated virus used 

for gene therapy applications. Reports from retailers of this resin have said this resin features 

one-step AAV purification from crude material, high specificity, and can handle high flow rates. 

However, if the solution is clarified of other crude lysate materials, the resulting viral products 

can be sent through this high-precision affinity chromatography to more precisely purify AAVs 

of serotypes AAV1 through AAV8, AAVrh10, and other serotypes without interference 

occurring from materials in the crude lysate. The following sections will discuss upstream steps 

to remove crude materials after harvesting from earlier production and it will end with a brief 

overview on efforts to remove empty vectors, in more realistic industrial systems. 

1.6.1 Removal of Cellular, Nucleic Acid, and Viral Contaminants 

After the cell fraction and media fraction have been collected, the rAAV in the media is 

concentrated. One choice method is tangential flow filtration (TFF), a method that can quickly 

reduce solution volume at least 50-fold by operating at pressures of 10-12 psi to remove salt, 

water, and small molecular weight protein at a desired molecular weight cutoff (usually 100 kDa) 

without significant loss of vectors 275.  The membrane used in the process is easily scaled up 

and handled for cGMP manufacturing. Furthermore, TFF is a desirable tool if the media is to be 

exchanged for an appropriate buffer used in the following chromatography steps. Removal of 

contaminating virus is a challenging avenue of research and several inventions have been made 

to remove these contaminating entities using size exclusion filters, as briefly described earlier for 

VV, baculovirus, and adenovirus152,240,268. It may be possible to use these filters for rHSV as 

well since this virus is larger than rAAV. 
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  Recovery of the rAAV from the cell lysate fraction and the media fraction is difficult to 

do in one purification step and is usually divided in two column chromatography steps. The first 

column is used to capture rAAV from other contaminating materials. As with any 

chromatography, the appropriate binding resin, binding buffer and elution buffer is essential so 

the rAAV product is not lost or damaged while it passes in the column. The options of 

chromatography used in the first steps are: ion-exchange chromatography (IEX) or affinity 

chromatography (AC). In IEX, it is further divided into anion exchange chromatography (AEX) 

and cation exchange chromatography (CEX). Compared with most contaminating impurities, 

rAAV contains multiple sites to bind to anion exchangers, making AEX the more commonly 

used chromatography for rAAV purification. In AEX, transgene containing AAV vector is 

predominantly negatively charged when the pH is above the isoelectric point (pI). In the case of 

purifying empty particles, the electronegativity of the empty particle is weaker than the packaged 

rAAV and the empty vector will be eluted first followed by the packaged vector. With IEX, the 

purity of rAAV can reach up to 98% or more, the purification can be handled by automated 

equipment, resins can be regenerated, rAAV interaction with resins is gentle to rAAV, and scale 

is readily adjustable according to quantity.  However, some resins are difficult to optimize for 

certain serotypes, the resins have a finite lifespan, and resins can be contaminated with organic 

materials if poorly handled. Nevertheless, AEX is being used in industry, and POROS HQ is a 

common industrial resin used for AEX with a variety of rAAV serotypes 211,276,277. 

The common forms of AC are associated with capsid interaction with antibodies, native 

proteins, or with inorganic salt. Use of antibodies, called immunoaffinity chromatography, is not 

necessarily economical, but it can recognize several serotypes of rAAV making this type of 

chromatography very useful for a system that generates different serotypes of rAAV. For 

instance, the use of the native protein heparin, in heparin affinity chromatography, is usually 
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reserved for rAAV2 in large scale. Use of inorganic salts in chromatography, called apatite 

chromatography, uses affinity of the rAAV vector surface protein and the rAAV genome to 

capture rAAV of various serotypes, sometimes with assistance of PEG 278. It is the choice 

method to separate rAAV and adenovirus, using a common industrial AC resin called ceramic 

hydroxyapatite (CHT) 277. 

1.6.2 Removal of Empty Vectors 

Most contaminants are removed after the first chromatography step. The second 

chromatography step is to get a purer rAAV, vector containing, product. This is done primarily 

with either IEX or using size exclusion chromatography (SEC). Size exclusion chromatography, 

known as gel-filtration chromatography, is a method to separate large biomolecules, such as 

helper viruses or any contaminating cellular material, by their size or weight in solution. It is 

considered a low-resolution chromatography and a 10% difference in molecular mass is enough 

for good separation 279. SEC would not be able to remove empty particles since the size and 

shape of full and empty particles are identical. In this case, IEX would be used with either CEX 

or AEX to remove empty particles. However, in some cases, there are lower resolution signals 

between full and empty particles, making removal difficult. Although achieving a low 

contaminant product can be done with several runs, with every purification step that is 

undertaken, there will be an accumulation of product loss. It is because of this the purification 

ends with a final purification step, called the polishing step, wherein any other remaining 

contaminants and empty vectors are removed from the preparation. The polishing step usually 

ends in the use of ultracentrifugation to concentrate the eluted pure final product from previous 

steps and effectively separate it away from the contaminating materials and contaminating empty 

vectors. Ultracentrifugation may be necessary since it effectively separates empty virions better 

than current separation techniques, without as much risk of accumulated product loss.  
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1.7 Hypothesis and Specific Aims 

The purpose of this study is to design a scalable process for production of high-titer 

clinical-grade recombinant adeno-associated virus (rAAV) with an adenovirus (Ad)-rAAV hybrid 

infected into a packaging cell line. To comply with the increased demand of rAAV, a robust, 

reproducible, and scalable production system that can also be adjustable for a variety of rAAV 

serotypes is necessary. Unfortunately, current methods of scalable production fail to do so either 

from uneconomical equipment/procedures, safety concerns of production vectors to assist in 

rAAV production, genetic instability of production vector, and/or decreased potency of rAAV.    

Previously, a rAAV producer cell line was generated by our lab using human embryonic 

kidney 293 (HEK293) cells to increase titer of rAAV and avoid use of wild-type Ad/helper Ad 

since HEK293 cells contain integrated copies of the adenovirus E1A and E1B genes. We 

introduced and integrated an inducible AAV replication (Rep) gene, capsid (Cap) gene, and a 

rAAV vector into the HEK293 genome. Using an intron splice switching method previously 

developed in our lab, the Rep function is restored and activated by the HEK293 E1A/E1B 

genes leading to the production of rAAV that can be collected and purified at a high titer and 

high potency. However, this approach has multiple issues: (1) the Ad harboring the Cre gene in 

the E1 region is also deleted in an unused E3 region; (2) using the previous method requires 

generation of a new producer cell line for each novel rAAV vector desired to be made into the 

final viral form; (3) identifying HEK293 cell clones with stably integrated inducible Rep, Cap, 

and rAAV vector is a time-intensive process, and generally yield few ideal candidates with 

enough copy numbers of the integrated plasmid due to random integration of the plasmid in the 

genome; and (4) the Ad-Cre has potential to recombine with HEK293 E1A/E1B during 

infection to become replication-competent, and can only be removed in an unscalable 

ultracentrifugation or partially inactivated due to its thermal instability.  



63 

To circumvent these issues, three major adjustments will be proposed. First, the 

technology will be converted to a rAAV packaging cell line, since both regions of the E1-, E3- 

deleted Ad will be replaced with the rAAV vector and Cre-recombinase gene, respectively 

(hereafter described as Ad-Cre(E3)-rAAV(E1)). Second, site-specific nucleases that can 

introduce a double strand break (DSB) in specific areas of the cellular genome can allow for an 

efficient and precise stable cell line generation. CRISPR/Cas9, a recently developed site-specific 

nuclease, will be used due to its facile implementation and design to introduce a DSB at the 

AAVS1 integration site on Chromosome 19 (chr.19q13.3q-ter). Potentially, integration of the 

packaging plasmid DNA at a greater reproducibility and efficiency in the HEK293 cells will 

occur, and therefore characterization of cell lines can be streamlined. Third, a 2013 Merck patent 

has shown that adenovirus can be precipitated using a selective precipitating agent (SPA), 

domiphen bromide, along with cellular DNA, even at high cell densities. With these ideas in 

mind, we are positioned to test our general hypothesis: Ad-Cre(E3)-rAAV(E1) can produce high 

potent and high titer rAAV in an inducible packaging cell line and the resulting rAAV vector 

preparation can be purified from contaminating cellular DNA and adenovirus by precipitation 

using domiphen bromide. The hypothesized process is depicted in Figure 7, which primarily 

focuses on upstream production methods and briefly delves into upstream crude lysate 

clarification. The realm of this dissertation will not focus on downstream purification processes.



 

 

 

Figure 7: Hypothesized upstream process design for large scale rAAV using Ad-Cre(E3)-rAAV(E1) in universal packaging cell line. First the novel adenovirus 

construct is infected into a suspension inducible packaging cell line, then the cells and media are harvested. Next, the cells are disintegrated, releasing viral products 

and contaminants into a crude lysate. This crude lysate is initially clarified by the selective precipitating agent, hypothetically yielding a clarified rAAV product that 

is sent to downstream purification schemes   
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Aim 1. Generation and Characterization of Ad-Cre (E3)-rAAV (E1) 

The unused E3 region of the E1-, E3- deleted adenovirus can be used to insert the Cre 

recombinase gene, and the E1-region for insertion of the rAAV vector with flanking inverted 

terminal repeats (ITRs). This would still be a single helper recombinant adenovirus infection, but 

instead of repeatedly performing cell line generation for every novel rAAV vector intended for a 

viral product, like in the producer cell line method developed in our lab, an easier universal 

inducible packaging cell line can be developed for a particular AAV serotype or capsid variants 

with the rAAV vector provided in trans by the adenovirus. Also provided in trans is the Cre 

recombinase gene, but instead of being placed at the E1 region, this Cre is placed in the 

unnecessary to in vitro use E3 region of the adenovirus. The method of placing the Cre gene is 

done by standard molecular cloning, since the Cre is unchanged between each Ad construct 

hypothesized in this aim. However, the method to place the vector is too cumbersome to 

perform using restriction enzyme digests and the recombination steps of the AdEasy method for 

each rAAV vector intended to be placed in the E1 region of the adenovirus. Our reconstruction 

of the Ad to place the rAAV vector specifically to the E1 region is intended to simplify the 

incorporation of the rAAV vector in E1 of Ad. We made this simpler by incorporating a 

Gateway Recombination cassette into the E1 region of the adenovirus to specifically recombine 

any new rAAV vector into the E1 region of the adenovirus and avoid the more time-consuming 

methods for adenovirus design. Hypothesis: Using Gateway recombination to place an rAAV 

vector into the E1 region and Cre recombinase into the E3 region, resulting in Ad-Cre(E3)-

rAAV(E1), can produce high potent, high quality, and high titer rAAV, both single- and double-

stranded ITRs of a variety of transgenes, when infected into a universal rAAV packaging 

HEK293 cell line. 
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Aim 2. CRISPR/Cas9 Modification to HEK293 Cell 

Our previous methods involved the random integration of a linearized inducible 

packaging plasmid in the HEK293 genome, which caused a particularly time-consuming 

characterization process. This integration rate was rather low because the integration was 

dependent on the available randomly formed double-strand breaks in the genome.  We will 

utilize the state of the art CRISPR/Cas9 genome (the clustered, regularly interspaced, short 

palindromic repeat (CRISPR)-associated protein 9 nuclease (Cas9)) editing technology to create 

an inducible Rep/Cap packaging cell line via targeted integration, hypothetically resulting in a 

cell line with sufficient copy numbers of Rep/Cap to generate rAAV product in tandem with 

Aim 1. Recently, this emergent commercially available technology is able to efficiently create 

site-specific double strand breaks and has been gaining popularity for its ease-of-use and 

adaptability. In this aim, we ask a simple question: can we utilize this powerful technology to 

create a superior AAV packaging cell line with better performance to our previous method in 

concert with findings from Aim 1? We intend to target the AAVS1 site on chromosome 19 

(chr.19q13.3q-ter) because AAV has a natural affinity to this region and wild type forms of AAV 

can integrate site-specifically into this area during its latent infection. Here we hypothesize that if 

we target the inducible AAV packaging plasmid into the AAVS1 site of HEK293 cells, the yield 

of AAV using the methods in Aim 1 will be increased when compared to cell lines generated 

from no assistance of the targeted integration. 
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Aim 3. Purification of Vector Preparation  

Adenovirus removal from our preparations is a difficult challenge. With the prospects of 

the aforementioned technology entering industrial scale, the design for the removal of the 

adenovirus from the rAAV product is paramount. We will make use of information from a 2013 

Merck patent that has shown adenovirus precipitation using a selective precipitating agent (SPA), 

domiphen bromide, along with cellular DNA, even at high cell densities. We have replicated the 

data presented by Merck and extended concentration range of domiphen bromide to show that 

as concentration increases, both adenovirus and DNA are able to precipitate out of solution 

with about 99% clarity. However, we were interested to see if this detergent can be selective 

enough to disregard rAAV, allowing us to remove majority of the adenoviral contaminants and 

have rAAV remain in solution for downstream purification methods. Hypothesis: The addition 

of the selective precipitating agent, domiphen bromide, will allow for contaminating adenovirus 

to be cleared from rAAV vector preparations without the need for heat inactivation or 

chromatography and remove host cellular nucleic acid contamination without need for nucleases 

like Benzonase. 
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CHAPTER 2: A NOVEL CONSTRUCTION OF RECOMBINANT ADENOVIRUS 

HARBORING ADENO-ASSOCIATED VIRUS VECTOR FOR USE IN UNIVERSAL 

PACKAGING CELL LINE IN SCALABLE VECTOR PRODUCTION 

2.1 Overview 

The versatility of recombinant adeno-associated viruses has garnered significant attention

 from investors, pharmaceutical companies, and regulatory agencies as more therapies using this 

vector are finding success in preclinical and late-stage clinical trials, even some reaching the 

market approval stage in the US. A number of vector production methods have been developed 

to generate the necessary clinical grade vectors that have high potency, and have high-titers to 

reduce general manufacturing and therapeutic costs. However, each of these production 

methods inherently have their own drawbacks. We previously developed a HEK293-cell based 

producer cell line method for high titer and high potency rAAV vectors. However, this method 

requires significant time-intensive generation of novel producer cell lines for every rAAV vector 

of interest and furthermore the E1-, E3-deleted adenovirus is only occupied at the E1-region, 

leaving the space available in the E3-region unused. Here, we discuss a novel adenovirus 

construct that utilizes a packaging cell line to generate a high titer and high quality rAAV. The 

improvements made in this system are: 1) the development of a one-step cloning of a rAAV 

vector cassette into the E1-region of the adenovirus using precision site-specific recombination, 

2) use of a high Rep/Cap copy number packaging cell line to universally package the rAAV 

vector provided in trans by the adenovirus, 3) high vector yields on different rAAV inverted 

terminal repeat designs harbored stably in the adenovirus, and 4) high quality, low empty-particle 
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containing rAAV product. The vector yields were consistent between the two adenovirus 

constructs, with about 1 to 2x1012 vector genome particles per 20 15-cm plates. Furthermore, 

these two adenovirus constructs yielded high infectivity product. In conclusion, the simple and 

versatile adenovirus construct coupled with the packaging cell line can be useful for large scale 

AAV vector production as the vector finds its way to late stage clinical trials and market 

approval.  
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2.2 Introduction 

Recombinant adeno-associated virus (rAAV) vectors are a powerful tool for research 

labs for in vitro and in vivo studies. The popularity of this viral vector is escalating, evident in the 

increase of use in gene therapy clinical trials in the last decade and lately gaining 

acknowledgement as a potential vector for use in gene editing in vivo1-3. The success of 

preclinical and subsequent early-stage clinical trials is now beginning to crescendo, reaching 

Phase III trials and some rAAV therapeutics are recommended for or have been given approval 

at US or European markets. The rAAV therapeutics that have been or will soon be approved are 

Glybera™ (alipogene tiparvovec, UniQure, AAV1 containing an intact copy of lipoprotein 

lipase) and Luxturna™ (voretigene neparvovec, Spark Therapeutics, AAV2 containing human 

RPE65 cDNA for inherited retinal diseases), respectively. Glybera™ has been pulled off the 

market because it has received 1 patient during its 5-year span of market approval, at a cost of $1 

million per dose. Luxturna™ is slated to be priced at $1 million per dose, making critics of the 

therapeutic question where is the cost-sink is occurring and whether this therapeutic can be 

reduced in price. Arguably, one major cost-sink is the scalable production method to supply the 

necessary dose per patient. At the scale and method of production for Luxturna™, the 

manufacturing output is relatively small given the localized region of vector delivery, thereby 

requiring less resource-intensive equipment, labor, and space. However, as the diseases broaden 

from localized to systemic diseases, (e.g. muscular dystrophies) the manufacturing output will 

have to be amplified by 2-3 orders of magnitude, making an overwhelming demand that requires 

more robust scalable production methods. 

For rAAV vector production, four popular strategies differing in process design are 

being used. The most widely used method, including the disclosed manufacturing method for 

Spark Therapeutics’ Luxturna™ product, is based on the helper-virus-free transient transfection 
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method of all cis and trans components (vector plasmid, packaging plasmid, and helper genes 

isolated from adenovirus) into the host cell HEK293. While this method is simple in vector 

plasmid construction, generating high-titer rAAV, and free of any non-product helper or 

subhelper viruses (e.g. recombinant herpes simplex virus (rHSV), adenovirus, or vaccinia virus 

(VV)), this method is simply too resource-intensive for scalability, especially for higher demand 

clinical trials. A second popular strategy is the rHSV-based AAV production system, using rHSV 

vectors to bring rAAV vector and AAV replication (Rep) and capsid (Cap) genes into the fast-

growing Baby Hamster Kidney (BHK) cells.  The third popular strategy is an adapted 

baculovirus system requiring a single baculovirus vector to deliver the rAAV vector cassette into 

a stable transcriptionally silent inducible Rep/Cap packaging insect cell line.  For both of these 

systems, it is inconvenient to prepare large quantities of helper and vector viruses and maintain 

their purity and stability. The fourth system is based on the AAV producer cell lines derived 

from HeLa or stably integrated AAV Rep/Cap genes in a HeLa cell line, called the A549 cell 

line. The rAAV vector cassette was either stably integrated in the host genome or introduced by 

a recombinant adenovirus that contained the cassette. Although this HeLa cell line method is 

easy to scale up and produces relatively high titers of AAV vector comparable to transient 

transfection method, these cell lines required wild-type adenovirus as the helper. Contamination 

of wild-type adenovirus in the final vector preparations is an undesirable by-product. 

 To eliminate transient transfection step and avoid use of wild-type helper adenovirus, we 

established rAAV producer cell lines using HEK293 cells as the parental cell line. Integrated 

with the early genes E1A and E1B from the adenovirus based on work by Frank Graham in the 

1970s, the HEK293 cells were further adjusted by Qiao et. al. to include a well-designed 

inducible AAV Rep and Cap genes giving the ability to use an E1A/E1B-defective adenovirus 

for helper functions. The safety profile of the E1-deleted adenovirus is better than wild-type 
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adenovirus and has been widely used as a gene therapy vector in human clinical trials. However, 

the existence of the adenovirus type 5 E1 region integrated into the HEK293 genome has made 

generation of a stable packaging and producer cell line difficult due to the E1 activation of p5 

and p19 promoters located in the Rep gene, that leads to generation of AAV replication proteins 

(Rep78, Rep52, Rep68, and Rep40) that are cytostatic or cytotoxic if constantly expressed 4,5. 

Tightly regulating the p19 promoter is difficult because of its location within the coding region 

of Rep78 and Rep68. In our lab, we established an innovative inducible Rep expression, called 

the dual splicing switch. Briefly, an intron - containing two LoxP sites that flank a drug-resistant 

gene and three polyadenylation elements - was inserted into the Rep gene-coding region 

disrupting all Rep transcripts.  The Rep gene was restored to its original expression by providing 

an E1- and E3- deleted adenovirus containing the Cre-recombinase gene in the E1 region, called 

Ad-Cre(E1). Here, both DNA splicing by Cre-LoxP and RNA splicing to remove the intron, 

and hence the nomenclature of dual splicing, reconstitute and reactivate Rep gene expression on 

the AAV packaging or producer cell line5. With the Rep gene spliced together to its wild-type 

form, the E1A/E1B of the HEK293 cell activates the expression of Rep. The Rep and Cap 

proteins together identify the ITRs, package the transgene into a viral vector, and then can be 

collected and purified at a high titer and high potency.  This method was able to package the 5-

kb single-stranded rAAV DNA and can also package the 2.5 kb double-stranded rAAV DNA – 

1.2 kb accounting for a common promoter sequence – which is shown to accelerate the 

transgene expression despite the decrease in the genome size6. Further work using this inducible 

system led to a rAAV producer HEK293 cell line that could increase titer of rAAV and continue 

to avoid use of wild-type adenovirus. In this work, the rAAV transgene flanked by the ITRs was 

placed downstream to the inducible Rep/Cap gene using the Gateway system, and this plasmid 
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construct was linearized and integrated randomly into the HEK293 genome7,8. The dual splicing 

switch is illustrated in Figure 8.  

 

Figure 8: Dual splice switch depiction. The termination cassette Int-3A-Hyg (or Puro) was inserted into the 

shared Rep coding sequence downstream of promoter p19 to block Rep gene transcriptions. A Cre recombinase is 

provided in trans by an adenovirus infection. The enzyme recognizes the two LoxP sites and splices out the 

inserted DNA fragment that contains the PolyA sequences between the LoxP sites. The removal of the PolyA 

sequences allows transcription to proceed and full-length mRNA to be generated. After RNA splicing, the 

inserted intron is precisely removed from the full-length mRNA, and the coding sequence is restored. 
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However, this approach has two significant issues. Firstly, the adenovirus harboring the 

Cre recombinase gene in the E1 region is also deleted in an unused E3 region. This region is 

large enough to accommodate the Cre recombinase gene and the larger E1 region can be used to 

hold another component, such as the rAAV vector. Secondly, it requires a time-consuming 

selection and characterization process of each HEK293 cell clone to confirm stable expression 

of the introduced plasmid, albeit shorter than the previous method established by Qiao et. al. in 

our lab in 20025. This issue is complicated further because for every rAAV vector of interest, a 

novel cell line of sufficient quantity of integrated plasmid has to be generated, thereby restricting 

that cell line for generation of the particular rAAV vector. The second issue will be addressed in 

further detail in Chapter 3, but the results from Chapter 3 will be used to test the hypothesis in 

the current chapter. A third issue that arises from the development of an E1 containing gene in 

adenovirus is the need to recombine linearized pShuttle with the pAd-Easy vector in BJ5183 

bacteria for every gene of interest to be placed in E1. This complicates the design of every rAAV 

vector intended to be in the E1 region because specific restrictions need to be identified to insert 

the rAAV vector without effecting the adenovirus shuttle plasmid or the overall adenovirus 

plasmid.  

It has already been reported that the E3 region is not vital for adenovirus. The function 

of the E3 region is to subvert the host immune response and allow persistence of infected cells, 

which is only vital for in vivo applications of this virus9. Therefore, its deletion is not important 

for this in vitro method and together with an E1-deletion, the adenovirus can offer a total of 8 kb 

of transgene capacity10.  Furthermore, since there are a multitude of rAAV vectors in mind, the 

need to quickly insert the rAAV vector into the E1 region of this novel adenovirus is necessary. 

Therefore, we have developed an adenovirus that takes advantage of the unused E3 region of 

the E1-, E3- deleted adenovirus to insert the Cre recombinase gene, and the E1-region for 
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insertion of the Gateway destination cassette that can allow for efficient, reproducible rAAV 

vector insertion by Gateway specific recombination into the E1 region. This would still be a 

single virus infection, but instead of integrating a large plasmid for every rAAV gene of interest, 

like in the producer cell line method developed in our lab, an easier universal inducible 

packaging cell line can be developed for a particular AAV serotype or capsid variants. The 

inducible system is activated with the Cre recombinase gene provided in trans by an adenovirus 

that also holds the rAAV vector. This prompts the following general hypothesis for this aim: 

Ad-Cre(E3)-rAAV(E1) can produce high potent, high quality, and high titer rAAV, both single- 

and double-stranded of a variety of transgenes, when infected into a universal rAAV packaging 

HEK293 cell line. 
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2.3 Material and Methods  

Plasmid Construction for Adenoviral Vectors Using Molecular Cloning and Gateway System 

To redesign the E1-, E3- deleted adenovirus to contain a Cre-recombinase gene in the 

E3 and the rAAV transgene in the E1, the large adenovirus plasmid has to either be subdivided 

in a separate plasmid to not affect other regions of the adenovirus plasmid or a very unique 

restriction site must be utilized during the molecular cloning, especially when considering the 

AdEasy system in this aim.  We used pAd-Easy-1, an E1 and E3 deleted first generation 

adenovirus plasmid, to first clone the Cre gene into the E3 region. Several unique plasmids had 

to be generated to accomplish this task. First, a PacI/SpeI was inserted into pBSKS by PCR to 

form pBSKS-PacI-SpeI. This was digested at these two sites to allow for ligation of the E3 

region of the pAd-Easy-1 plasmid removed also using PacI/SpeI, hereby the ligated product is 

called pBSKS-Ad-E3.  Next, a BamHI site was introduced into E3 region 5’ to a PolyA signal 

present in the E3, resulting in pBSKS-Ad-E3-BamHI. In parallel to this cloning work, a CMV-

Cre-sPa was prepared by cloning the Cre gene between a CMV promoter and a SV40 PolyA 

signal (sPa), using a cloned 5’-SalI-Cre-XhoI-3’ and ligating it into pAAV-CMV-sPa at the XhoI 

site (XhoI and SalI have compatible cohesive ends). Here, the entire CMV-Cre-sPa cassette, 

which was temporarily cloned into pAAV-CMV-Cre-sPa, was digested out using BglII digestion. 

This cassette was then ligated into the BamHI site of pBSKS-Ad-E3-BamHI, since BglII and 

BamHI have compatible cohesive ends.  Finally, the fragment containing the CMV-Cre-sPa gene 

in the E3 region is cleaved using PacI and SpeI again and ligated into the original pAd-Easy-1 

vector, hereby known as pAd-Easy-1-Cre(E3).  Functionality was verified using a co-transfection 

with LacZ-2LoxP-in in HEK293 cells, as shown in the results section. The LacZ-2LoxP-in is an 

inducible LacZ reporter gene that is silenced with the LoxP intron cassette found in our 

inducible Rep/Cap dual splice switch system. As a control, a Cre carried by an AAV plasmid was 
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co-transfected with the inducible LacZ cassette. As a negative control, the inducible LacZ 

cassette was transfected to show that LacZ expression is controlled by the inserted intron. 

The AdEasy system was developed as a simple and efficient method for generation of 

recombinant adenoviruses11,12. The recombination step, in particular, allows for performance in 

E. coli rather than in mammalian cells and takes advantage of the highly efficient homologous 

recombination that occurs in bacteria. The system can be divided into three steps. 1) Subcloning 

the genes of interest into the shuttle vector containing two “arms” of viral sequence for 

homologous recombination with the adenoviral backbone vectors. 2) Generate a recombinant 

adenoviral plasmid between the PmeI linearized shuttle vector and the supercoiled backbone 

vector in specific bacterial cells called, BJ5183 cells using kanamycin selection. 3) Generate a 

recombinant adenovirus by transfecting the recombinant adenoviral DNA into HEK293 cells. 

For the first step, we decided to insert the Gateway destination cassette into the E1 region to 

reduce time to produce novel adenoviruses. Our goal was to use the pAd-Cre-E3-DEST 

product generated from the recombination system in AdEasy, and deliver the AAV vector using 

the Gateway entry vector methods. However, with fears of the attR1 and attR2 recombining out 

from the BJ5183 recombination step, we decided to introduce a unique restriction site not found 

anywhere else on the original pAd-Easy-Cre-E3 plasmid. Unfortunately, no such single cut 

enzyme existed in the E1 that did not cut anywhere else in the adenovirus plasmid, and therefore 

we needed to insert a unique restriction site by PCR. To design the shuttle vector that carries the 

restriction site into the E1 region of the adenovirus, we used similar PCR techniques to 

introduce the restriction site SwaI in the multiple cloning site of the pShuttle vector. The 

pShuttle-SwaI vector was linearized using PmeI and was transformed with supercoiled pAd-

Easy-Cre-E3 into BJ5183 cells. The SwaI in the E1 region is now part of the pAd, hereby pAd-

Cre-E3-SwaI-E1. The Gateway destination vector was cloned out of pSPG8-DEST, a 
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destination vector that was used by Yuan in his 2011 producer cell line system8. The cloned area, 

which includes all components of the Gateway destination cassette – attR1, CmR gene, ccdB 

gene, attR2 – was cloned with SwaI sites flanking the ends of the cassette. Next the pAd-Cre-

E3-SwaI-E1 was digested with SwaI and the destination cassette – 5’ SwaI-attR1-CmR-ccdB-

attR2-SwaI 3’ – was ligated specifically into the E1 region, resulting in the pAd-Cre(E3)-ccdB 

vector.  

With the Gateway destination vector stably located in the E1 region of the adenoviral 

plasmid, we can now use Gateway recombination to incorporate the rAAV transgene in the E1 

region by the Gateway entry cassette. Gateway technology was used to introduce two adenovirus 

constructs: (1) a rAAV with the transgene CMV-EGFP flanked by double-stranded ITRs, and 

(2) a rAAV with the transgene CMV-LacZ-nLs flanked by sub201 ITRs. The entry vector 

contains the AAV transgene flanked by the attL1 and attL2. Using an LR clonase reaction in the 

Gateway system, a system that uses lambda recombination to facilitate recombination of an attL 

substrate with an attR substrate, the entry vector containing the AAV transgene recombines into 

the E1 region of pAd-Cre(E3)-ccdB, yielding a pAd-Cre(E3)-rAAV(E1) plasmid7. Two designs 

were made using this method: pAd-CMV-Cre (E3)-AAV-ds-GFP(E1) and pAd-CMV-Cre(E3)-

AAV2.1-CMV-LacZ-nLs(E1). A figure showing the differences in the method is displayed on 

Figure 9. Although it appears to be more complex in Figure 9B, the outcome is easier to 

perform than it is for those described in Figure 9A. 
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Figure 9: Use of Gateway technology for adenovirus construct. A) Traditional methods to generate Ad-

rAAV(E1) using AdEasy protocol. B) Novel method to generate Ad-rAAV(E1) by reducing overall steps of 

novel rAAV vector harboring adenoviruses by inserting Gateway destination cassette into a unique sequence of 

the E1 region, introduced into the adenovirus plasmid by a modified pShuttle vector in the AdEasy system. 

Figure adapted from He et al. (1998). See methods for details. 
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Cells and Viruses 

This plasmid, now with the necessary insert, follows the latter portions of the AdEasy 

method which are a PacI digestion to linearize the plasmid before transfecting the plasmid into 

HEK293 cells11. The recombinant adenoviruses begin to form plaques after about 14 days, 

depending on the transfection efficiency (i.e. plaques can form as early as 10 days). The plaques 

are collected by scarping, centrifuged, and resuspended in PBS. The collected cells undergo three 

cycles of freeze and thaw and vortex, being mindful of avoiding warming virus supernatants 

longer than necessary. The cellular debris is spun out of solution and the remaining lysate is used 

to infect HEK293 cells for expansion. It may take two to four rounds of amplification to arrive 

at a large-scale preparation of high titer adenoviruses. The number of amplification rounds is 

dependent on the initial titers of the primary transfection lysates. When scaled to 20 15-cm 

plates, we purified and concentrated adenovirus in CsCl density gradients11. The viruses, Ad-

Cre(E3)-AAV-ds-CMV-GFP(E1) and Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1), were stored in 

an equal volume of adenovirus storage buffer (Storage Buffer (2x): 10 mM Tris Cl, pH 8.0, 100 

mM NaCl, 0.1% bovine serum albumin (BSA), 50% (v/v) glycerol, filtered to sterilize).  

We used two cell lines developed by Qiao et. al. in 2002 called XX2-GFP-145, an AAV2-

GFP producer cell line, and XX2-in-19-sub, an AAV2 parental packaging cell line5. These were 

used primarily to assist in initial characterization studies of the Ad-Cre(E3)-rAAV(E1) virus, 

particularly for Ad-Cre(E3) and the Ad-Cre(E3)-AAV-ds-GFP(E1) constructs.  We also use cell 

lines developed in Chapter 3 for a more robust study of the Ad constructs, particular of the Ad-

Cre(E3)-AAV2.1-CMV-LacZ-nLs construct. These cell lines are XX2-in-Puro-AAVS1 Clone 

152.69, and XX2-in-Puro-AAVS1 Clone 152.74. XX2-in-Puro-AAVS1 Clone 152.74 was used to 

provide MOI characteristics for Ad-Cre-(E3)-AAV2.1-CMV-LacZ-nLs(E1). At the time of 

performing MOI studies for Ad-Cre(E3)-AAV-ds-GFP(E1), we used XX2-GFP-145, despite the 
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generation of two undifferentiable vectors: AAV-ds-GFP and AAV-ss-GFP. When the cell lines 

XX2-in-Puro-AAVS1 and XX2-in-Puro were generated, supply of the Ad-Cre(E3)-AAV-ds-

GFP(E1) and timing of experiments was only sufficient for large scale studies and Rep gene 

amplification. Therefore, the MOI was determined from results obtained from characterizations 

in XX2-GFP-145. Ad-Cre(E3) and Ad-Cre(E1) are used to provide controls for the function of 

the Cre gene in our new Ad constructs. The other virus used in this aim is the negative control 

virus Ad-GFP. 

Infection assays are used to assess production capabilities of AAV-GFP and AAV-LacZ 

in small scale. Products that contain both AAV and adenovirus are subjected to 56 °C for 60 

minutes to inactivate the adenovirus so that expression is coming from AAV and not influenced 

by adenovirus. AAV-LacZ expression was evaluated using X-gal staining. If AAV expression 

were to be accelerated in HEK-293 cells, 4 µM of Hoechst 33342 (ThermoFisher, H3570) dye 

was used with expression occurring 48 hours post infection. 

All other cell culture chemicals or buffers used to perform the tasks in this aim, such as 

transfection agents, CsCl for gradient, trypsin, or media, are used commonly in the lab.  

Plasmid Equimolar Rescue and Viral Rescue Experiment Designs 

During characterization, we use a variety of plasmids to see if the rAAV vector is able to 

be rescued in plasmid and in viral form. First, to test if the rAAV vector is able to rescue in the 

plasmid form, especially for the pAd-Cre(E3)-rAAV(E1) constructs we supplied 1x107 HEK293 

cells an equimolar quantity of rAAV production components via calcium phosphate 

transfection. In this experiment, 4 unique sets of experiments were performed: 0.6 pmoles of 

pAd-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) + 0.8 pmoles of pXX2, 0.6 pmoles of pAAV2.1-

CMV-LacZ-nLs(E1) + 0.8 pmoles of pXX2 + 0.6 pmoles of pHelper, 0.6 pmoles of pAd-

Cre(E3)-AAV-ds-GFP(E1) + 0.8 pmoles of pXX2, and finally 0.6 pmoles of pEMBL-AAV-ds-
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GFP(E1) + 0.8 pmoles of pXX2 + 0.6 pmoles of pHelper. The cells were harvested 72 hours 

post transfection, subjected to sonication to break apart the cells, spun down to remove cellular 

debris, and then an aliquot of the samples was clarified using methods to limit interference in 

qPCR quantification. These methods include an initial DNase reaction to remove preexisting 

DNA, followed by addition of EDTA to disrupt DNase activity, followed by Proteinase K to 

break apart the viral particles, and ending with a Phenol/chloroform extraction for cleaning of 

the crude lysate. The remaining DNA after phenol/chloroform extraction was precipitated using 

standard ethanol precipitation. For the quantification of the viral particles, we used CMV 

promoter FAM probes and primers for real-time quantitative assay (ABI PRISM 7700 Sequence 

Detector, Applied Biosystems). The qPCR materials are: CMV Probe 5’-FAM-

TCAATGGGTGGAGTATTTA-3’, CMV Forward: 5’-

GTATGTTCCCATAGTAACGCCAATAG-3’, and CMV Reverse: 5’-

GGCGTACTTGGCATATGATACACT-3’. 

The second set of experiments we were interested in the viral rescue of the rAAV, 

especially for the Ad-Cre(E3)-AAV(E1) constructs. Since we do not have an adequate packaging 

cell line (see Chapter 3), with the only functional cell line also harboring its own rAAV vector, 

generating a mixed population of resulting vector, we had to find a new strategy to validate the 

rAAV rescue in the viral form. We used a variety of plasmids including Rep/Cap genes such as 

pXXHH67.2m which contains replication gene from AAV2 and the capsid of our unique capsid 

design HH67-double mutant, as well as a Rep/Cap gene where the Rep is disrupted by an intron 

and can be restored with Cre-LoxP recombination. We also used a plasmid to showcase the 

mixed population phenomena we observed in our producer cell line. This plasmid was 

pSPHH67.2m-AAV-ds-GFP, which is the disrupted Rep with an AAV-ds-GFP vector located 

downstream to the Rep/Cap. Finally, to validate the system we used in Chapter 3, we performed 
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viral rescue using pXX2-SseI-2LoxP-Puro to generate AAV2-CMV-LacZ-nLs from our Ad-

Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) virus. 

Histochemical Staining of Monolayer Tissue Culture Cells for LacZ Activity (X-gal Staining) 

For cells that express the LacZ cassette, we used X-gal staining. Cultured cells were 

rinsed with 1x Phosphate Buffered Saline (PBS, pH 7.3) and then fixed for >5 min at 4 °C in 2% 

formaldehyde and 0.2% glutaraldehyde, mixed in PBS. The cells were then overlaid with a 

histochemical reaction mixture containing 1 mg/mL 4-Cl-5-Br-3-indolyl-β-galactosidase (X-gal), 

5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, and 2 mM MgCl2. The X-gal was 

dissolved in dimethoxysulfoxide (DMSO) at 40 mg/mL, and then diluted into the reaction 

mixture. Incubation was for 8-14 hours at 37 °C.13 Cells were then counted for LacZ 

expression, i.e. blue cells were counted. 

Infectious Titer Calculation 

HEK293 cells were used for infectious titer assays. For LacZ expression, cells were 

quantified for infectious titer, by counting number of blue cells in the microscope or camera 

field under bright-field microscopy. For GFP, cells were quantified by counting number of green 

cells in the microscope or camera field under fluorescent microscope (excitation of GFP is 488 

nm and emission is 509 nm). The yield of infectious particles was presented as infectious unit. 

The units of infectious units (IU) were either IU/mL or IU/10-cm plate. IU/10-cm plate was 

calculated by extrapolating from the surface area of the microscope field to the surface area of 

the well being used to for the infection assay. IU/mL was calculated by dividing the extrapolated 

well infectious unit by the total volume infected into the well. Larger scaled products were 

typically presented in IU/mL, whereas smaller scale characterization studies were presented in 

IU/10-cm plate. Both measurements were consistently used to compare infectivity at a specific 

scale between various production methods. 
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AAV Vector Production and Purification 

 For the production of AAV2, three systems were used: Ad-Cre(E1) infection into XX2-

GFP-145 producer cell lines, Ad-Cre(E3)-rAAV(E1) into XX2-in-Puro-AAVS1 cell lines, and 

triple plasmid calcium phosphate transfection (pXX2, pAAV2.1-CMV-LacZ-nLs or pEMBL-

AAV-CMV-ds-GFP, pHelper). These were performed on 20 15-cm plates.  

Briefly, the HEK293 cells or cell lines were propagated in Dulbecco’s modified Eagle’s 

medium (DMEM) in 15 cm plates supplemented with 10% fetal bovine serum (FBS) at 37°C 

with the appropriate drug selection, if applicable: puromycin (1 µg/mL) for cell lines with the 

puromycin resistant gene and hygromycin (100 µg/mL) for XX2-GFP-145 that has a 

hygromycin resistant gene. For triple plasmid transfection, cells were transfected at 80-90% 

confluency. Each plate was transfected with 16.7 μg vector plasmid, 16.7 μg adenovirus helper 

plasmid, and 16.7 μg AAV2 packaging plasmid dissolved in 40 mL of 0.25M CaCl2. For every 2 

mL of dissolved DNA in 0.25M CaCl2, 2 mL of 2x HEPES-buffered saline (HBS buffer: 50 mM 

HEPES, 280 mM NaCl and 1.5 mM Na2HPO4; pH 7.1). Eight to twelve hours later, the 

medium was replaced with fresh DMEM supplemented with 2% FBS. Cells were harvested at 72 

hours post transfection, and media was also collected for AAV purification. Infected cells were 

harvested at 48 hours post infection after achieving cytopathic effect (CPE).  

Cells were resuspended in suspension buffer I (50mM HEPES, 150 mM NaCl, 50 mM 

NaH2PO4, 2 mM MgCl2, 2.5 mM KCl, pH 8.0) and sonicated. The cell lysate was treated with 

DNase (100 units/ml) and RNase A (4 units/ml) and incubated at 37°C for 1 hour. Debris was 

removed by centrifugation at 2,500 rpm at 4°C for 15 minutes. For preparations using 

adenovirus, a heat inactivation of 56 °C was performed for both the collected media and the cell 

lysate before moving onto the next steps. 
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PEG-8000 and NaCl solutions were added to the clarified lysate, to a final concentration 

of 8% PEG-8000 and 0.5 M NaCl, and incubated at 4°C overnight. For the culture medium, 

powdered forms of PEG-8000 and NaCl were added to also reach 8% PEG-8000 and 0.5 M 

NaCl and incubated at 4°C overnight. The cell lysate and medium were centrifuged at 2,500 rpm 

for 30 minutes and the resulting pellets from both cell lysate and medium were combined and 

thoroughly resuspended in about 20 mL of resuspension buffer #2 (50 mM HEPES, 150 mM 

NaCl, 1% Sarkosyl, 20 mM EDTA, pH 8.0). The solution was place in an ultracentrifuge at 

31,000 rpm for 16 hours in a CsCl density gradient. The AAV band was collected and subjected 

to a second round of CsCl density gradient ultracentrifugation at 38,000 rpm for 48 hours. The 

AAV band was collected in drop-wise fractions and stored at -80°C. Vector titers were 

determined by the DNA dot-blot method. 

AAV titer was quantified by dot blot hybridization. Five microliters of AAV stock was 

added to 200 μL DMEM and treated with 50 μg/ml DNase I at 37°C for 1 hour to degrade 

unencapsidated DNA. Then, 200 μL proteinase K buffer (20 mM Tris Cl pH 8.0, 20 mM EDTA 

pH 8.0, 1% SDS) was added to inhibit DNase activity, followed by addition of 40 µg of 

proteinase K, and the sample was incubated at 55°C for 1 hour to degrade the capsid. The 

vector DNA was precipitated using ethanol precipitation with addition of glycogen (40 μg) to 

visually observe the pelleted DNA. The resultant pellet was resuspended in alkaline buffer (0.4 

M NaOH and 10 mM EDTA pH 8.0) and bound to a hybridization transfer membrane 

(PerkinElmer). A standard of the original vector plasmid was applied to the same membrane. A 

biotin-labeled probe against CMV, LacZ, or GFP was hybridized to the membrane at 55°C 

overnight. Bound probe was detected using the North2South Chemiluminescent Nucleic Acid 

Hybridization and Detection Kit (Pierce). AAV titers were in the range of 1011 to 1013 vector 

genomes (vg)/ml. 
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Heparin Sulfate Column Chromatography 

 Buffers used in chromatography: Buffer A: 50 mM NaH2PO4, 2 mM MgCl2, 2.5 mM 

KCl. pH 7.5-7.6, 0.22 µm filtered; Buffer B: 1x Buffer A, 1 M NaCl, 25 mM HEPES. pH 7.4, 

0.22 µm filtered; Virus Resuspension Buffer: 1 x Buffer A; 50 mM HEPES; 150 mM NaCl. pH 

8.0, 0.22 µm filtered 

AAV serotype 2 was generated using two unique methods at a scale of 20 15-cm plates 

each: triple plasmid transfection (pXX2, pAAV2.1-CMV-LacZ-nLs, pHelper) and adenovirus in 

packaging cell line (Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) infected at approximately 10 MOI 

into XX2-in-Puro-AAVS1 Clone 152.69 and Clone 152.74). Triple plasmid transfected cells were 

harvested 72 hours post transfection, whereas packaging cell line methods were harvested when 

cytopathic effect (CPE) showed at 48 hours post infection. Cells were spun and media was 

aspirated. 30 mL of virus resuspension buffer was used to resuspend the collected cells, cells 

were subjected to three cycles of freeze-thaw. DNase was added to a final concentration of 50 

U/mL and digested for 1 hour at 37 °C. Sarkosyl was added to a final concentration of 1% and 

this was mixed for 30 minutes at room temperature. Next, the colysate was clarified in two spins. 

The first spin the lysate was centrifuged at 8,000 rpm for 10 minutes at 16 °C to remove debris. 

The supernatant was collected from this first spin. The remaining debris from the first spin was 

resuspended with about 10 mL of virus resuspension buffer and was centrifuged according to 

the first spin, and again the supernatant was collected. The clarified lysates were filtered through 

a 0.8 µm filter. 

The column was 1 mL HiTrap® Heparin High Performance (obtained from Sigma-

Aldrich: GE Healthcare, 17-0406-01). Due to the materials and equipment at hand, the columns 

were operated by hand. Concentrations of wash and elution buffers were rationalized according 

to past experience with gradient-driven heparin sulfate chromatography and based on salt 
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content of the buffer used during these steps. The column was pretreated according to the 

following steps to remove stored 20% ethanol: wash with 10 volumes (i.e. 10 mL) of water 

followed by 10 volumes of 1x Buffer A. The viruses were loaded onto the column. Next, 5 

volumes of 15% Buffer B were used to rinse the loaded viruses from other contaminating 

materials. The viruses were eluted in 5 volumes of 60% Buffer B. The viruses that still remain on 

the column were then fully eluted from the column using 5 volumes of 100% Buffer B. All 

eluants after the virus was loaded were collected to measure vector titers.  

The columns were cleaned with 1x Buffer A, water, 70% ethanol, and were stored in 

20% ethanol for reuse. 

Negative Staining for Transmission Electron Microscopy 

 The Microscopy Services Laboratory (MSL) in the Department of Pathology & 

Laboratory Medicine at UNC-Chapel Hill was used to perform negative staining and 

transmission electron microscopy. Carbon-coated formvar grids (01754-F Formvar/Carbon 400 

mesh, Copper) were glow discharged using Pelco easi-Glow unit to render the surface 

hydrophilic. The viruses adsorbed onto the grid and subsequently stained using the “Grid-on-

Stain or ‘Float’ Method). Briefly, 25 µL of sample was placed onto a hydrophobic surface and 

the grid was placed film-side down onto the surface of the droplet for approximately 5 minutes 

to allow for viral adsorption onto the grid. Next, the grid was quickly transferred to two 

subsequent droplets of filtered deionized water to remove salts/fixative before staining and the 

grid was then placed film-side down onto a drop of 2% uranyl acetate in water (pH 4.5, 1-gram 

uranyl acetate dissolved in 50 mL deionized water for 20-30 minutes, spun for 10-15 minutes to 

remove debris that may interfere with microscopy) for one minute. Excess stain was wicked off 

by touch the edge of the grid to filter paper and the grid was then air dried. Grids were then 
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loaded onto a JEOL JEM 1230 Transmission Electron Microscope and images were taken 

between 100,000X and 150,000X. Data was analyzed for images in 100,000X or 120,000X.  

 Exclusion criteria and observational criteria to measure full and empty rAAV particles as 

a result of the 2% uranyl acetate stain are given in detail in Appendix A. Furthermore, all TEM 

images taken for each production method have been included in Appendix A for further analysis 

of the reader.  
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2.4 Results 

Functionality of the Cre-recombinase gene was tested using a LacZ assay, where 

activation of LacZ gene is controlled by the dual-splicing switch. Cre recombinase provided in 

trans by an adenovirus infection would recognize the two LoxP sites and splice out the inserted 

DNA fragment that contains the PolyA sequences between the LoxP sites. The removal of 

PolyA sequences then allows transcription to proceed and full-length mRNA is generated. After 

RNA splicing, the inserted intron is precisely removed from the full-length mRNA, and the 

coding sequence is restored. This phenomenon is shown brilliantly for the Cre in the E3 region 

of the adenovirus in the plasmid form, as shown in Figure 10A. Here as a positive control, an 

AAV construct harboring a Cre recombinase gene was transfected into the HEK293 cells with 

the plasmid carrying the LacZ interrupted by the dual splice switch. As a negative control, no 

Cre recombinase was provided into the cells. The blue cells that appear in the third panel of 

Figure 10A are leaky expressing LacZ proteins that can arise because the expression of the LacZ 

gene cannot be fully turned off by the inserted intron. 

 Although functionality can be great in plasmid form, it may not translate well in the viral 

form. Therefore, we applied the latter half of the AdEasy protocol and generated Ad-Cre(E3) in 

the viral form. We used this virus to test side-by-side to the previously used adenovirus, Ad-

Cre(E1) in Qiao’s 2002 paper where she and her colleagues made the XX2-GFP-145 producer 

cell line. We infected the virus at approximately 5 multiplicity of infection per cell (MOI/cell) 

into the XX2-GFP-145 cell line and waited for cytopathic effect (CPE) to occur at about 48 

hours post infection. The resulting colysate was heat treated to inactivate infectivity of lingering 

adenovirus, and confirmation of adenovirus inactivation was done with parallel negative controls 

of Ad-CMV-mVenus that showed no expression of mVenus after the heat treatment (data not 

shown). The now heat treated colysate was infected into HEK293 where green fluorescent cells 
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were counted to measure infectious titer resulting from these two viruses. The result of this 

infection assay is shown in Figure 10B. Whether the Cre recombinase gene is in the Cre(E3) or 

Cre(E1) region of the adenovirus makes no significant difference (p-value>0.95 by t-test).  

 

Figure 10: Cre(E3) function in plasmid and viral form. A) Plasmid forms of Cre in the E3 region of an 

AdEasy plasmid were transfected to observe the ability to recognize LoxP sites in a LacZ cassette whose gene 

expression has been controlled by the dual splice switch. B) Viral forms of Cre in the E3 and Cre in the E1 

region of the adenovirus were infected into the XX2-GFP-145 producer cell line and resulting GFP expression 

was quantified. 
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 After creating the adenoviral vector harboring the rAAV vector in the E1 region, via 

Gateway recombination as described in the methods section, characterization of the adenovirus 

construct was to be performed to observe if the rAAV is recognized by Rep/Cap proteins, and 

if this system can generate high titers of rAAV in an adequate packaging cell line. First, we 

needed to identify the appropriate multiplicity of infection per cell in a packaging cell line. At the 

time of generation of Ad-Cre(E3)-AAV-ds-GFP(E1), we did not have a sufficient packaging cell 

line to use and therefore relied on XX2-GFP-145 to generate data for the MOI/cell that would 

give the best yield AAV-GFP. Furthermore, when the packaging cell line was developed, the 

supply of Ad-Cre(E3)-AAV-ds-GFP(E1) had diminished substantially and a decision was made 

to use the supply and the time for more important large-scale experiments instead of replicating 

MOI/cell assays. In Figure 11A, we see the results of the MOI experiment and from this data 

we started using an MOI/cell of 5. At the time of generation of Ad-Cre(E3)-AAV2.1-CMV-

LacZ-nLs(E1), we had generated a sufficient packaging cell line (details described in more detail 

in Chapter 3), and used the cell line XX2-in-Puro-AAVS1 Clone 152.74 to decide the optimal 

MOI/cell to use. In Figure 11B, Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) showed an increase 

in infectious titers as MOI/cell increased. However, to not expend all supply of the Ad-Cre(E3)-

AAV2.1-CMV-LacZ-nLs(E1) virus in stock, we chose to use an MOI of 10 for all experiments.  
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Figure 11: Determining optimal multiplicity of infection per cell for each Ad construct. A) This is the test of Ad-

Cre(E3)-AAV-ds-GFP in XX2-GFP-145, since there was no available packaging cell lines at the time of this 

assay. B) MOI/cell assay for Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) in XX2-in-Puro-AAVS1 

Clone 152.74. 
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To further characterize our virus, we needed to know whether or not the rAAV vector, 

more specifically the inverted terminal repeats (ITRs), was being recognized by the restored Rep 

and Cap proteins for adequate rAAV replication and encapsidation. To address this inquiry, we 

had to use another experimental design because of the lack of an adequate packaging cell line at 

the time this experiment was performed. The method that was divided into two sets of 

experiments: analysis of rAAV rescue from the plasmid adenoviral construct and analysis of the 

rAAV rescue from the adenovirus.  

An equimolar quantity of necessary rAAV components in DNA plasmid form was 

transfected into HEK293 cells, with the controls of triple plasmid transfection generating the 

same rAAV vector found in the adenovirus designs. The purpose of this experiment was to 

provide the cells an equal amount of rAAV components and observe if titers were lower than 

triple plasmid transfection controls. If the titers were lower than the controls, this suggests there 

is an inherent issue with rAAV in the adenovirus plasmid. The results of this experiment have 

been placed on Figure 12A. Although the titer from qPCR for adenoviral constructs are higher 

than the triple plasmid control, this does not mean production titers of the novel adenovirus 

system supersedes the traditional transfection methods. Instead, this is more likely a property of 

transfection efficiency per cell between the double plasmid transfection for the adenoviral sets 

and the triple plasmid transfection sets. Nonetheless, the results of the experiment suggest that 

in the plasmid construct of pAd-Cre(E3)-rAAV(E1), the ITRs of the rAAV are being sufficiently 

recognized, processed by Rep/Cap, and is able to package into the final rAAV virus. 

After production of the Ad-Cre(E3)-rAAV(E1), we needed to test if the vector was 

unperturbed during the production of the adenovirus and still maintains the function found in 

the plasmid analysis. Figures 12B and Figure 13 show these in various arrangements based on 

available plasmids we had at cell culture grade. First, in Figure 12B we observed the titers after 
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cells were infected with the Ad-Cre(E3)-AAV2.1-CMV-LacZ(E1) with the remaining rAAV 

component to generate the AAV2-CMV-LacZ product. The control used was triple plasmid 

control. The pXX2-SseI-2LoxP-Puro plasmid that is used in this experiment is the controlled 

Rep gene by the dual splicing switch and also provides AAV2 capsid. This is the pre-cell line 

method to see if Cre is able to function to remove the LoxP sites and initiate the dual splice 

switch system. As controls, we provided undisrupted AAV2 Rep/Cap which would identify the 

AAV-CMV-LacZ in the adenovirus and package into AAV2 capsid particles. As can be shown 

in 12B, triple plasmid transfection still functioned far greater than the virus system, but still this 

does not give a picture of the full capabilities of the adenovirus construct. This experiment also 

shows that the Cre-recombinase and ITR recognition of the rAAV are functional in the 

adenovirus.  
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Figure 12: Rescue ability of rAAV vector in plasmid and viral forms. A) Use of equimolar rAAV components 

supplied to HEK293 for ability to recognize and package rAAV vector in various constructs of adenovirus, with 

triple plasmid transfection as control. B) Viral function of both Cre recombinase on Rep controlled plasmid, 

pXX2-SseI-2LoxP-Puro and rescue of rAAV vector to generate AAV2-CMV-LacZ-nLs product. 
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Figures 13 shows the ability to rescue the rAAV vector in both the Ad-Cre(E3)-AAV2.1-

CMV-LacZ-nLs(E1), used earlier in Figure 12, and Ad-Cre(E3)-AAV-ds-GFP(E1). In 13A, we 

observe the AAV-ds-GFP production from Ad-Cre(E3)-AAV-ds-GFP when using 

pSPGHH67.2m, a packaging plasmid with the Rep controlled dual splicing switch produces the 

HH67.2m serotype AAV. We see that the ability to rescue is comparable to triple plasmid 

transfection method. In another set of experiments, we used Ad-Cre(E3)-AAV2.1-CMV-LacZ-

nLs(E1) transfected with the Rep dual splice switch that also includes the rAAV vector AAV-ds-

GFP. As a control to this, we used Ad-Cre(E3) and this same Rep controlled producer plasmid. 

Of course, the two products that should arise from the Ad-Cre(E3)-AAV2.1-CMV-LacZ-

nLs(E1) with the transfected Rep controlled producer plasmid are AAVHH67.2m-CMV-LacZ-

nLs(E1) and AAVHH67.2m-ds-GFP. Interestingly, if we compare the titers in Figure 13A and 

Figure 13B for the products as a result of this virus with the producer plasmid, there is more 

AAV-ds-GFP compared to AAV-CMV-LacZ-nLs. This is possibly because of the copy numbers 

of the AAV-ds-GFP vector provided by the producer plasmid are significantly higher than the 

copy numbers of the AAV-CMV-LacZ-nLs vector provided by the adenovirus. Furthermore, 

after Rep splicing of the ITRs from the rAAV vector, it is possible that the adenovirus that has 

been spliced can no longer replicate, thereby perturbing the influx of supply of the vector AAV-

CMV-LacZ-nLs. In Figure 13B, we compared the delayed Rep response from the Rep 

controlled dual splice switch to Rep that is not delayed in expression upon transfection. These 

results show that the delayed response of Rep increases infectious titers to nearly comparable 

levels of triple plasmid transfection controls. This data fits with early rAAV production research 

performed by Juan Li, et. al. in 199714. Using their work as an explanation for the observations 

seen in Figure 13B, the overexpression of Rep in pXXHH67.2m is leading to substantially lower 

rAAV yields in the presence of adenovirus, possibly because this overexpression is also reducing 
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DNA replication and inhibiting capsid gene expression. The lower levels of Rep proteins 

occurring in the delayed Rep gene expression could support normal DNA replication and 

enhance Cap gene expression, and therefore increasing the yield significantly. By the time the 

Rep gene expression increases, cells would have already had an optimal frame of time for rAAV 

capsid production and generation of vectors, and at this stage the cells infected with the 

adenovirus would already undergo the cytopathic effect, CPE, thereby terminating cell viability. 

The balance between the right amount of Rep before the cells start to enter CPE is a necessary 

investigation for ideal rAAV vector production.  
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Figure 13: Rescue ability of virus using intron disrupted Rep/Cap. A) Infectious assay of AAV-ds-GFP using 

Rep disrupted HH67.2m packaging plasmid, with controls of Ad-Cre(E3) in Rep disrupted HH67.2m 

AAV-ds-GFP and triple plasmid transfection for AAV-ds-GFP. B) Infectious assay of AAV-CMV-LacZ-

nLs using Rep disrupted HH67.2m packaging plasmid, with controls of undisrupted HH67.2m packaging 

plasmid and triple plasmid transfect for AAV-CMV-LacZ-nLs.  
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The outcome of a competitive production of rAAV vector was an interesting 

observation that was seen in Figure 13. However, we wanted to characterize the adenovirus 

construct in a more realistic situation before an actual packaging cell line was generated and 

attempted to do so using an established producer cell line, XX2-GFP-145. The purpose of this 

experiment was to see if an already integrated form of Rep/Cap can recognize and package 

adenoviral provided rAAV. Figure 14 shows these results. As a control Ad-Cre(E3) and Ad-

Cre(E1) were used, to generate AAV2-ss-GFP exclusively. The competitive production of rAAV 

resulted in a nearly 50-50 distribution of AAV-CMV-LacZ-nLs and AAV-ss-GFP from the Ad-

Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) infection into the XX2-GFP-145 cell line. All together 

these characterization studies have shown that the rAAV vector in the adenovirus is 

recognizable and able to generate a rAAV product. However, the full potential of the adenoviral 

vector could not be verified due to the lack of a packaging cell line prior to the work done in 

Aim 3. The use of a producer cell line for generation of a rAAV would have been unacceptable 

for determining the fullest potential of the viral vector because of the competitive production 

between the AAV vector within the producer cell line and the AAV vector within the 

adenovirus. 

It was only after the methods discussed in Chapter 3, that we could have observed the 

fullest potential of the adenovirus construct. We have generated packaging cell lines called XX2-

in-Puro-AAVS1 Clone 152.69 and XX2-in-Puro-AAVS1 Clone 152.74 that contain a high copy 

number of inducible Rep/Cap integrated into the genome of the HEK293 cell. Both of these 

cell lines are subclones of the XX2-in-Puro-AAVS1 Clone 152 cell line generated from 

integration of the pXX2-SseI-in-2LoxP-Puro integrated with intended site-specificity for the 

AAVS1 integration site using AAVS1 guided CRISPR/Cas9 genome editing. As a control, we 

infected these adenovirus constructs in cell lines that were generated using previous methods, i.e. 
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in HEK293 that had randomly integrated the packaging plasmid. The best of these type of cell 

lines was XX2-in-Puro Clone 253. As another control for the AAV-GFP products generated 

from the Ad-Cre(E3)-AAV-ds-GFP(E1) construct, we infected Ad-Cre(E1) in XX2-GFP-145 to 

compare yields of an AAV-GFP from the new strategy with the strategy developed by Qiao et. 

al. in 2002. After scaling these cell lines to 20 15-cm plates (equivalent cell number of about 600 

million cells), we infected with the adenovirus constructs and compared them to triple plasmid 

transfection controls. The results for AAV2-CMV-GFP production from various methods is 

presented in Table 6 and the results for AAV2-CMV-LacZ-nLs production from various 

methods is presented in Table 7. 

 

Figure 14: Function of Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) in XX2-GFP-145 Producer Cell Line 



 

 

 

 

 

Table 6: Yield of AAV2-CMV-GFP from Various Production Methods 

Introduced Vector Cell Line Clone Serotype rAAV Vector 
Produced 

Purified 
vector 

(vg/mL) from 
20x15-cm 

plates 

Infectious 
Unit Titer 
(IU/mL) 

DNA 
Containing 
Particles to 
Infectious 

Units Ratio 
Ad-Cre(E3)-AAV-ds-

GFP(E1) 
XX2-in-Puro-

AAVS1 152.69 AAV2 AAV-CMV-ds-GFP 1.89E+12 1.54E+09 1.23E+03 

Ad-Cre(E3)-AAV-ds-
GFP(E1) 

XX2-in-Puro-
AAVS1 152.74 AAV2 AAV-CMV-ds-GFP 1.75E+12 1.35E+09 1.29E+03 

Ad-Cre(E3)-AAV-ds-
GFP(E1) XX2-in-Puro 253 AAV2 AAV-CMV-ds-GFP 1.54E+11 8.26E+07 1.87E+03 

Ad-Cre-(E1) XX2-GFP 145 AAV2 AAV-CMV-ss-GFP 8.20E+11 4.36E+08 1.88E+03 
Triple Plasmid 

Transfection (control) HEK293 N/A AAV2 AAV-CMV-ds-GFP 3.71E+12 3.83E+09 9.70E+02 
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Table 7: Yield of AAV2-CMV-LacZ-nLs from Various Production Methods 

 

 

Introduced Vector Cell Line Clone Serotype rAAV Vector Produced

Purified 
vector 

(vg/mL) 
from 

20x15-cm 
plates

Infectious 
Unit Titer 
(IU/mL)

DNA 
Containing 
Particles to 
Infectious 

Units 
Ratio

Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) XX2-in-Puro-AAVS1 152.69 AAV2 AAV-CMV-LacZ-nLs 1.33E+12 4.46E+08 2.99E+03
Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) XX2-in-Puro-AAVS1 152.74 AAV2 AAV-CMV-LacZ-nLs 1.87E+12 4.24E+08 4.42E+03
Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) XX2-in-Puro 253 AAV2 AAV-CMV-LacZ-nLs 2.80E+11 1.34E+08 2.09E+03

Triple Plasmid Transfection (control) HEK293 N/A AAV2 AAV-CMV-LacZ-nLs 2.78E+12 7.59E+08 3.66E+03
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The product from the larger scale can give us a multitude of information. First, as seen 

in vector genome values obtained from DNA dot blot methods, we see that the packaging cell 

lines developed in Chapter 3 can provide sufficient Rep/Cap copy numbers to generate a high 

quantity of virus when infected with the novel adenovirus construct. In the GFP products, the 

Ad-Cre(E3)-AAV-ds-GFP(E1) into the XX2-in-Puro-AAVS1 packaging cell line produced 

1.8x1012 vg/mL, whereas the previous method of Ad-Cre(E1) into the AAV-CMV-ss-GFP 

producer cell line XX2-GFP-145 produced nearly half, at 8.2x1011 vg/mL. Triple plasmid 

transfection, producing AAV-CMV-ds-GFP, yielded 3.7x1012 vg/mL, about twice the yield of 

our new method. Next, if we infect the product into HEK293 cells to measure the infectious 

titer, we can then formulate whether or not this product is infectious. The infectious titers for 

Ad-Cre(E3)-AAV-ds-GFP(E1) in XX2-in-Puro-AAVS1 was 1.5x109 IU/mL, 8.3x107 IU/mL 

for the same adenovirus construct in XX2-in-Puro, 4.4x108 IU/mL for Ad-Cre(E1) into XX2-

GFP-145 producer cell line, and 3.83x109 IU/mL for triple plasmid transfection product. We 

can take this information and generate a ratio of the vector genomes determined from dot blot 

over the infectious titer from the infection assay, to give a sense of the quality of virus that is 

produced. Basically, the smaller the ratio, the higher quality the vector is, or in other words how 

many vector genomes are required to produce one infectious unit. The conclusion from these 

ratios is that the AAV2-ds-GFP product formed from the Ad-Cre(E3)-AAV-ds-GFP(E1) into 

XX2-in-Puro-AAVS1 packaging cell line are highly infectious. 

If we look at the capability of the Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) construct in 

a XX2-in-Puro-AAVS1 packaging cell line, with the XX2-in-Puro packaging cell line and triple 

plasmid transfection as controls, we can see that the resulting AAV2-CMV-LacZ-nLs product 

follows similar trends to the AAV2-ds-GFP product discussed previously: highly infectious, high 
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yielding product. Here, we were able to generate 1.8x1012 vg/mL vectors in the packaging cell 

line system compared to the 2.8x1012 vg/mL vectors in triple plasmid transfection. The DNA 

containing vectors to infectious ratios suggest that the products generated from the packaging 

cell line system are high quality. 

The quality of the vectors can also be evidenced by the percentage of empty particles 

versus full particles present in a preparation. One of the major issues in vector production is the 

presence of empty particles in the final preparation that can induce a capsid specific T-cell 

response15. Ultracentrifugation can be a sufficient method to remove empty particles from 

preparations, but a good indicator of an efficient production system is the percentage of empty 

particles in a production batch. For this, we produced three batches of AAV virus purified 

through heparin sulfate columns. Two of these batches are Ad-Cre(E3)-AAV2.1-CMV-LacZ-

nLs(E1) into XX2-in-Puro-AAVS1 packaging cell lines and the third batch was from triple 

plasmid transfection. The yield of the vector preparations through the heparin sulfate column 

are indicated in Figure 15.  

The heparin sulfate chromatography method is used because of the affinity of AAV2 

capsid to heparin sulfate. In theory, both empty and full particles would have affinity towards 

the heparin sulfate in these columns and both would be eluted out in moderate salt 

concentrations in the chromatography process. This is supported in Figure 15, where most of 

the viral particles were eluted at 60% Buffer B, which was 600 mM of NaCl. 
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Figure 15: Vector quantification by infection assay of AAV2-CMV-LacZ-nLs in heparin sulfate 

chromatography eluants for three batches: A) from Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) infection into 

XX2-in-Puro-AAVS1 Clone 152.69, B) from Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) infection into 

XX2-in-Puro-AAVS1 Clone 152.74, and C) from triple plasmid transfection to generate AAV2-CMV-

LacZ-nLs. 
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 Taking aliquots of a few eluants obtained from Step 8 of the column chromatography 

process, we then adsorbed the viruses onto copper grids and the viruses were stained with 2% 

uranyl acetate, a negative staining solution. These copper grids, with viruses from a particular 

batch adsorbed onto it, were then taken to a transmission electron microscopy (TEM), where 

electron images of the viruses are generated. These images can be qualitatively used to analyze all 

particles in a copper grid, specifically quantifying full and empty particles from these batches to 

qualitatively analyze empty particle content. 

It should be noted that a high quantity of virus or viral particles in the aliquot would 

mean more viral capsids that are adsorbed onto the copper grids. However, this does not mean 

that the electron images should be used to determine titer, since adsorption on the copper grid is 

dependent on a number of variables: the wettability of the copper grid, time of adsorption, 

quality of wash steps, salt concentration of initial aliquot, quality of the negative staining 

solution, and scanning under the transmission electron microscope for the ideal image frame in 

the copper mesh that contains an adequate gradient of particles. More often than intended, even 

a high-titer virus preparation can mean more than a single unique grid preparation to find a 

mesh in the copper grid with sufficient viral particles for imaging, especially since these images 

are taken from 100,000X or 125,000X magnification levels. 

Here is a brief description on why this technique is used to analyze empty particles in 

AAV preparations. A water-soluble heavy metal-containing negative staining salt is used to 

surround and permeate within any aqueous compartment of a biological particle. After air-

drying, a thin amorphous film of stain supports and embeds the biological material, all the while 

generating differential electron scattering between the relatively electron-transparent biological 

material and the electron-opaque negative stain16. In the case of AAV, if stain is able to enter 

the AAV capsid, that particular AAV particle has to be considered an empty particle. This is 
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displayed on an electron image as a dark grey to black colored dot (see Appendix B for exclusion 

criteria). In our datasets, we consistently identified viral particles with prominent dark gray or 

black dots as empty particles to reduce as much selection bias as possible. There is no automatic 

method available for quantifying, and therefore this a manual visual inspection of staining that is 

highly subjective and therefore varied between individuals. The criteria for exclusion was defined 

by knowledgeable staff members of the TEM facility and were consistently implemented during 

the analysis of these images. If the reader finds the exclusion criteria to be too strict or finds the 

data presented to be inconsistent with current literature, all high resolution TEM images for each 

batch have been provided in Appendix B for further investigation. A few examples of the TEM 

images that were taken are shown on Figure 16. 

Analysis of the empty and full particle content, including total particles counted per 

batch is provided in Table 8.  
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Figure 16: Sample transmission electron microscopy images from AAV2-CMV-LacZ-nLs preparations 

purified in heparin sulfate columns. A) from Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) infection into 

XX2-in-Puro-AAVS1 Clone 152.69, B) from Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) infection into 

XX2-in-Puro-AAVS1 Clone 152.74, and C) from triple plasmid transfection to generate AAV2-CMV-

LacZ-nLs. 



 

 

 

 

 

 

Table 8: Analysis of Full and Empty Particles from AAV2-CMV-LacZ-nLs Preparations 

 

 

Empty Full Total Empty Full
Triple Plasmid Transfection (Control) HEK293 N/A AAV2 AAV-CMV-LacZ-nLs 2244 12800 15044 14.92% 85.08% 5.7:1

Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs (E1) XX2-in-Puro-AAVS1 152.69 AAV2 AAV-CMV-LacZ-nLs 814 4624 5438 14.97% 85.03% 5.7:1
Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs (E1) XX2-in-Puro-AAVS1 152.74 AAV2 AAV-CMV-LacZ-nLs 600 3246 3846 15.60% 84.40% 5.4:1

Percentages Full:Empty 
RatioIntroduced Vector Cell Line Clone Serotype Vector Produced

Counted Particles
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 As can be seen in Table 8, there does not seem to be a distinct difference between empty 

particle content in the TEM electron images analyzed. We luckily were able to find a high 

concentration of virus on a particular mesh of the copper grid, leading to the astounding 

15,000+ total particle count for triple plasmid transfection preparations. Although this may not 

fit current understanding of empty particle generation from current production methods, our 

exclusion criteria were extremely consistent. The rigidity at which we performed these exclusions 

gave us less selection bias, and all particles that were analyzed as empty contained distinct dark-

grey or black dots in the center of the viral capsid. 

 This analysis of empty particles shows that the product generated from these batches are 

high quality, where only 15% of the total particles analyzed are considered empty. With all 

characterization studies of the Ad-Cre(E3)-rAAV(E1) infected into a sufficient packaging cell 

line XX2-in-Puro-AAVS1, we show that the products that are generated are of a high-titer, high-

quality, and highly infectious product.  
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2.5 Discussion 

AAV vectors have been gaining a significant amount of popularity in gene therapy 

studies in the past decade for a variety of genetic diseases, and soon the gene editing revolution 

will find its need to deliver in vivo, with AAV vectors being the frontrunner as the vector of 

choice. Due to the high demand currently for AAV vectors in basic science and clinical 

applications, continued efforts are being made to improve the vector production method.  

A depiction of the two systems, the previous system generated by our lab in 2011 and 

the updated system discussed in this chapter, is shown in Figure 17. We have previously made 

strides in developing a HEK293 producer cell line for high yielding AAV products, that avoids 

the use of triple plasmid transfection and also avoids use of wild-type adenovirus as a helper. 

However, a significant drawback to our previous methods is the need to create a novel HEK293 

producer cell line for every rAAV vector of interest, as seen in Figure 17A. We also postulated a 

pitfall that occurs when generating the adenovirus. Our previous system used an engineered 

adenovirus that had potential for an additional 4-5 kb of any insertion. This extra space was 

enough to fit an rAAV vector. Therefore, we transitioned the Cre-recombinase to an alternate 

unused area, the E3 region, and placed a Gateway destination cassette in the E1 region. The Cre 

function was not lost when transitioning the Cre recombinase from the E1 region to the E3 

region, and the titers of the adenovirus when scaling from plasmid form to the final viral form 

were not different to adenoviruses constructed only on the E1 region.  

With the Cre unchanged between adenoviral constructs, the ability to change the E1 

region in an efficient manner was necessary. Our novel design can create new adenoviral vectors 

with a rapid site-specific recombination of the transgene of interest without the need for 

endonuclease and ligase to insert the gene into the complex adenovirus shuttle plasmid or final 

adenovirus plasmid. We have created a method to swap for different rAAV vector cassette as 
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evidenced by the different ITR designs placed into the adenovirus. In this new design we can 

avoid the need for bacteria to do the recombination of AAV into the E1 region of Ad, and 

instead use a recombination reaction occurring on the bench. The reduction of time during 

generation of the adenoviral plasmid using the Gateway recombination into E1 can in turn save 

several days for a single construct. When compared to the previous method of generating a 

novel AAV producer cell line, the time and effort saved in shifting the rAAV from the producer 

cell line to the adenovirus construction is immensely reduced, and our use of an on-the-bench 

recombination can reproducibly create novel adenovirus products, further streamlining our 

generation of a novel adenovirus. 

With the adenovirus now harboring the rAAV vector in the E1 region, through Gateway 

technology, we needed to make a packaging cell line that was sufficient to recognize the rAAV in 

the adenovirus and package rAAV product to a high quantity and quality, as shown in Figure 

17B. This will be discussed further in Chapter 3. Our data before the generation of the 

packaging cell line shows that the rAAV vector is being recognized and packaged by Rep/Cap 

proteins of various serotypes of AAV. Our data also shows that if the Rep is interrupted with 

the inducible intron construction, this Rep can be restored with our adenovirus and the restored 

Rep and Cap can identify the rAAV vector and create a rAAV product. However, our designed 

systems at the time of characterization, namely the producer cell line XX2-GFP-145 and the 

packaging cell line XX2-in-19-sub, were unsatisfactory for the purposes of our adenovirus 

construct, either from a competitive production of the adenoviral rAAV with the already 

integrated rAAV in the XX2-GFP-145 producer cell line, or insufficient integrated copy 

numbers of inducible Rep/Cap in XX2-in-19-sub. We have shown in this method that we have 

the capability of producing a variety of rAAV vectors at high quality and quantity when infected 

into a predesigned packaging cell line capable of packaging into an AAV serotype of choice. We 
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show that with a cell line with sufficient inducible Rep/Cap copy numbers stably integrated into 

the HEK293 genome, we can yield higher quantities of the rAAV product when compared to a 

cell line that contains a smaller copy number of integrated inducible Rep/Cap. This indicates 

that the copy number of Rep/Cap integrated into the cell line is critical for a packaging cell line 

system described here. According to results described in greater detail in Chapter 3, the possible 

reason for this in our design is due to the reduction in adenovirus titers when Rep/Cap are 

activated and nick the AAV vector from the adenovirus, thereby disrupting the ability of 

adenovirus to replicate further in the HEK293 cell. It is possible that more MOI/cell of 

adenovirus is to be provided in a packaging cell line that contains less inducible Rep/Cap copy 

numbers per cell. However, the excessive adenovirus would sicken the cells at an accelerated rate 

and the time to produce rAAV vector would be stunted due to adenovirus-mediated apoptosis 

occurring earlier than the adenovirus-mediated S phase cell cycle transitions for rAAV to be 

replicated using functional cellular replication machinery. Therefore, an interesting exploration 

can be performed to supply the cells with sufficient, possibly excessive, copy numbers of the 

inducible packaging plasmid such that a high yielding product can be generated with less 

MOI/cell of the adenovirus. 

According to the studies performed in this Chapter, there does not appear to be a 

difference in quality of vector generated from the packaging cell line and triple plasmid 

transfection control. Both systems generate a vector that is infectious and show relatively low 

amounts of empty particles. Of course, the analysis of the empty particles was subject to a 

manual counting of the electron images obtained in TEM, and are highly subjective. Our 

exclusion criteria were strictly followed, and although the values obtained were not necessarily 

those that are generally reported anecdotally or in literature, the results that we presented had 

little selection bias and had exact exclusion parameters. All told, the full potential of the novel 
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adenoviral construct was shown in our best packaging cell line generated in Chapter 3, and the 

quality we desired was met in our system.  

A chief advantage of the HEK293-based AAV packaging cell line over other cell line is 

the use of replication defective adenovirus rather than the wild-type adenovirus. As mentioned 

in earlier chapters, this system also has the advantage of producing highly infectious product 

using a single vector entering a cell and not two to three vectors like those found in transfection 

or certain helper/subhelper production methods. When compared to baculovirus system, our 

system has no issue with recognizing splicing signals nor does it truncate the Rep or Cap genes 

in the dual splice switch, and generates all Rep and Cap proteins that would give more assurance 

to a better rAAV vector in a molecular scale. However, these replication deficient adenoviruses 

should be thoroughly inactivated and eliminated from the rAAV preparations in view of safety 

and immunity. Thermally inactivating the adenovirus is a common method used to inactivate the 

adenovirus. However, this does not completely inactivate the adenovirus. As discussed in 

Chapter 4, there are numerous methods that try to address this problem. In Chapter 4, we 

discuss a method using a selective precipitating agent to remove the adenovirus, but other 

systems are available to remove the virus such as nanofilters, high hydrostatic pressures, or 

scalable chromatography17-19. The combination of the Gateway-mediated generation of the 

adenovirus, the packaging cell line, and downstream purification systems to remove 

contaminating adenovirus should facilitate vector production for preclinical and clinical 

applications.  
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Figure 17: Depiction of the previous Ad-Cre/dual intron splice switch system (in A) compared to the new Ad-

Cre(E3)-rAAV(E1)/dual intron splice switch system (in B). 
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2.6 Conclusions 

With the close of this project came a technology that can help address the pressing 

concern of efficient manufacturing methods. The novel adenovirus design can allow for a variety 

of E1 deleted recombinant adenoviruses to be generated, using a very simple recombination 

technique. The packaging cell lines generated for the purposes of this chapter will be discussed 

further in the next chapter. They have played an instrumental role in the characterization of the 

adenovirus design presented in this chapter, but it is unique in its own right by using more 

frequent double-strand breaks, even with site-specificity to introduce the packaging plasmid. 

Hand-in-hand these two systems can generate the highly desirable clinical grade product that is 

necessary for rAAV gene therapy clinical trials. 
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CHAPTER 3: GENERATION OF AN AAV UNIVERSAL PACKAGING CELL LINE 

WITH SITE-SPECIFIC INTEGRATION USING CRISPR/CAS9 AT THE AAVS1 

INTEGRATION SITE 

3.1  Overview 

 Recombinant adeno-associated virus (rAAV) producer or packaging cell lines using 

adenovirus(es) are created by linearized plasmids transfected into a particular cell line, such as 

HEK293 or HeLa cells. For production systems created previously by our group, we use a single 

recombinant adenovirus infected into a producer cell line for generation of high-yielding rAAV 

product. Although the adenovirus system has been modified, the generation of the cell line has 

not changed much, relying on the inherently low-frequency and in turn low efficiency random 

integration of the linearized plasmid into the host cell genome. Here, we present work that has 

been done to increase the frequency and efficiency integration of a linearized packaging plasmid 

using a site-specific endonuclease, CRISPR/Cas9, designed to target the AAVS1 locus, a natural 

integration locus for wild type AAV. The integration frequency of the CRISPR/Cas9 is apparent 

by the increased number in single cell colonies formed compared to randomly integrated

 methods, but is more pronounced when comparing the average infectious unit yields at a small 

scale, as evident by comparing Rep/Cap copy numbers of the best yielding packaging cell lines 

for both cell line generation methods. The resulting packaging cell lines using the AAVS1 guide 

RNA (gRNA), are capable of stably harboring the inducible designed dual-splicing switch, grow 

at the same viability and rate as parental HEK293 cells, and show greater than 9 times more 

integrated Rep/Cap copy numbers per cell than a randomly integrated control.
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3.2  Introduction 

Targeted gene disruption techniques have advanced of late, particularly with homing 

meganucleases, zinc finger nucleases (ZFNs), transcription activator like effector nucleases 

(TALENs), and most recently the clustered regularly interspaced short palindromic repeat 

(CRISPR)/CRISPR-associated gene 9 (Cas9) systems1. ZFNs, TALENs, and meganucleases can 

be designed to cleave genomes at specific locations1-3. Unfortunately, these technologies remain 

difficult and time-consuming to design, develop, and empirically test in a cellular context due to 

engineering DNA binding domains for each target gene, and the fusion of a Fok1 restriction 

endonuclease to DNA binding motifs for ZFNs and TALENs2. Recent advancements in 

CRISPR/Cas9 technology have accelerated introduction of double strand breaks (DSBs) into 

the cellular genome, followed by insertion of genes of interest. 

CRISPR/CRISPR-associated (Cas) nuclease system is a RNA-guided endonuclease 

system identified in bacteria and archaea as part of an adaptive immune system4. It employs 

CRISPR RNAs (called crRNAs or guide RNA, gRNA, or single guide RNA, sgRNA) and Cas 

nucleases to induce double strand breaks (DSBs) to complimentary sequences of exogenous viral 

and plasmid DNA in accordance with Watson-Crick complementary rules, briefly illustrated in 

Figure 18. Modifications of the Streptococcus pyogenes (S. pyogenes) Type II CRISPR/Cas9 

system were made to allow genome-editing in mammalian cells. Among them, crRNAs were 

fused to a normally trans-encoded tracrRNA (called a chimeric guide RNA or gRNA, expressed 

by a U6 promoter) to direct a human codon-optimized Cas9 (hSpCas9) nuclease to cleave target 

DNA sequences matching the crRNA3. Plasmid constructs are now available to make the 

molecular cloning of this CRISPR/hSpCas9 simplified with only the need of ligating the gRNA 

into a guide sequence insertion site. Additionally, inclusion of another gRNA sequence in the 

arrayed spacer architecture of CRISPR loci, imitating the multiplex nature of bacteria and 
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archaea CRISPR loci, can allow simultaneous editing of several sites within the mammalian 

genome, including the human genome, with efficient cleavage 5. The only prerequisite for the 

target DNA to be a CRISPR target site is a 3’ NGG sequence (protospacer adjacent motif, 

PAM). A single mismatch within 13-14 bp of the 3’-terminal gRNA sequences (5’ to PAM site) 

has the ability to abolish the nuclease activity, but reports have been made that even three to five 

base pair mismatches in the PAM-distal part of the gRNA, suggesting a high degree of specificity 

yet the ability to make off-target nuclease activity 6-8. 

The gene sequence for the human genome is readily available and the particular target 

can be screened to identify for the required 3’ NGG protospacer adjacent motif (PAM) used by 

hSpCas9 for target sequence recognition. To assist in this endeavor, several software and tools 

are available for design of the gRNA. The Zinc Finger Consortium ZiFiT Targeter software, for 

instance can be used to design the gRNA with the U6 promoter included in the design for quick 

insertion into a hSpCas9 plasmid donated by the Zhang lab9,10.  

Our previous methods for generation of an rAAV packaging cell line involved random 

integration of the linearized plasmid in the HEK293 genome, resulting in a particularly time-

consuming process especially if the linearized plasmid is large (>10kb) like those used in the 

rAAV producer cell line by Yuan et. al.11. This system can take up to 4 months to develop a 

suitable cell line, and even then, the Rep/Cap copy numbers may not be adequate for use for the 

methods indicated in Chapter 2. There are several ideas that can improve on this low integration 

rate: increase the frequency of double strand breaks and target an area that AAV has a natural 

affinity towards. If this can become a reproducible site-specific region of integration of the 

packaging plasmid, then the generation of an adequate packaging cell line can be accelerated and 

better characterized, transitioned to suspension cultures used for scalable reactors, and be used 

in large-scale production process designs of rAAV. Engineered nucleases allow random or 
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designed genomic modification at precise loci through cellular double strand break (DSB) repair, 

by either homologous recombination (HR) or non-homologous end-joining (NHEJ). However, 

insertion of an exogenous linearized plasmid can be streamlined using host cellular repair 

machinery to ligate the linear plasmid into the newly formed DSB. Therefore, our approach is to 

utilize the natural NHEJ DSB repair to integrate our linearized plasmid at more frequently 

occurring DSBs courtesy of the engineered nuclease CRISPR/Cas9. 

The RNA-guided endonuclease system, CRISPR/Cas9, will be used to induce a site-

specific double strand break (DSB) in the HEK293 genome to insert the packaging plasmid. 

This technology is easy-to-use and can generate DSBs with great precision, and more frequency 

especially when considering any off-target effects that may arise using the guide RNA of choice. 

The decision as to where to generate the DSB was not a critical factor in the purpose of this 

adjustment because our main objectives were the reproducibility of plasmid insertion and an 

increased number of integrated packaging plasmid within the HEK293 genome. However, for 

an optimal location of an insertion we looked at the AAVS1 integration site, with a guide RNA 

designed by Mali et.al. who have donated their construct to Addgene and have shown in their 

previous work that this guide RNA design is able to create distinct double strand breaks at the 

AAVS1 locus3. AAVS1 is considered a safe locus to integrate transgenes because previous 

attempts at integration in this region show cell function or viability to be uncompromised.  

Furthermore, AAV has a natural tendency towards AAVS1, since the AAV Rep proteins target 

AAVS1 due to specific binding of the Rep binding sequence (RBS) present within AAVS1. Luo 

et. al. has identified yields of rAAV producer cell lines and have noticed that many of their 

medium and high yielding producer cell lines have integrated plasmid at the AAVS1 locus12.  

We hypothesize that if the inducible AAV packaging plasmid is integrated into the 

AAVS1 site of the HEK293, more Rep/Cap copy numbers can be integrated and that would 
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increase the yield of rAAV using an Ad-Cre(E3)-rAAV(E1) construct. We have shown these 

results in Chapter 2. This chapter is focused on why the yield of rAAV is increased in the novel 

adenovirus construct infected into the packaging cell line that is made using assisted double 

strand break creation versus randomly generated double strand breaks. To address these focus 

points, we will show the methods of producing the packaging cell line, reasoning behind using 

AAV2 serotype instead of more clinically relevant serotypes, measuring the Rep gene 

amplification over time, measuring the Rep gene amplification with different adenovirus 

constructs, and mention the growth characteristics of the cell line.  

 
Figure 18: Depiction of two cell line production systems. A) This panel shows the randomly integrated packaging 

plasmid that has been used in previous methods of cell line development. B) This panel shows the hypothesized 

application of CRISPR/Cas9 at a specific site to introduce the linearized packaging plasmid. 
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3.3 Material and Methods 

Program Design For gRNA/Integrated Plasmid Interaction 

 A concern that arose during analysis of appropriate CRISPR guide RNAs to use in this 

aim was the potential for an interaction to occur between Cas9 and the integrated plasmid. The 

species of Cas9 used in this aim was Streptococcus pyogenes (S. pyogenes), and specifically the 

Type II CRISPR/Cas9 that must recognize a 3’ NGG protospacer adjacent motif, PAM, for the 

target DNA to be cleaved by Cas9. However, Cas9 can still be activated in the following 

scenarios, albeit at lower frequency or lower efficiency: a 3’ NAG PAM (one-fifth of the binding 

efficiency compared to NGG) and three to five base pair mismatches in the PAM-distal part of 

the guide RNA sequence. If the mismatches are more frequent closer to the PAM sequence, 

Cas9 will likely not cause a double strand break7,8. To search through all plasmid of interest with 

these conditions (e.g. NGG, NAG, up to 5 mismatches, location of the mismatches, direct 

strand, reverse complementary strand) took far too much time, especially considering the 

number of integrated plasmids we were interested in using to generate cell lines (e.g. pXX2-SseI-

2LoxP-in-Puro, pSPG9-AAV-ds-GFP, pSPGHH67.2m-AAV-ds-GFP, etc.).  

 With the knowledge in the field in mind for SpCas9, a Visual Basic (VBA) script was 

written in a program titled “FindcrRNAinIntroducedPlasmid,” modified nine times to its latest 

version “FindcrRNAinIntroducedPlasmid_ver1.9.” After inputting the guide RNA intended for 

use for genome editing using SpCas9, and entering the sequence desired to be integrated, the 

program is ready to analyze both the direct strand, the reverse complementary strand, for 3’ 

NGG PAM, and for 3’ NAG PAM, and output the location, sequence, number of mismatches, 

and location of mismatches of the guide RNA on the integrated sequence onto the Excel 

spreadsheet. The output can be used for sequences as big as the size limit of an Excel cell, 32767 

characters and the guide RNA can be placed for any length of gRNA, though this gRNA 
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sequence is usually about 20-22 bp. Typically our constructs range from 10-14kb, and therefore 

there are no character size restrictions foreseen in our designs when using this program. Only A, 

T, C, G characters can be inputted into the cell and those that do not fit these inputs will be 

ignored in the analysis.  

The program will prompt the following error messages: “Enter crRNA and Sequence of 

Interest in Cell B1 and Cell B2, respectively” when no inputs have been placed; “Enter Sequence 

of Interest in Cell B2” when no intended integrated plasmid sequence has been placed; and  

“Enter crRNA sequence in Cell B1” when no intended crRNA (i.e. guide RNA or gRNA) 

sequence has been placed. After inputs have been placed, the user would click on the “Find for 

Direct Sequence” to analyze in the direct strand or the “Find for Reverse Comp Sequence” to 

analyze in the reverse complementary strand. The following are prompts if no errors have been 

reported, and no matches have occurred: “No Exact or Partial Matches in the Direct Strand 

Were Found” and “No Exact or Partial Matches in the Reverse Complementary Strand Were 

Found.” If a match were to occur, the program would jump to the section of the strand being 

analyzed (under “DIRECT STRAND RESULTS” or “REVERSE COMPLEMENTARY 

STRAND RESULTS”) and then go to the closest 3’ NRG the match occurred on underneath 

the subsection indicating whether the match occurred in an exact match or partial match. The 

program will then print all matches that have occurred for that gRNA and sequence of interest. 

The user can return to the top of the spreadsheet by clicking on “Return to Top.”  The user is 

also given instructions to help decipher the program output if the printed materials are unclear. 

After completion, the user can clear contents and continue to search for partial or exact matches 

in other sequence of interest for a particular gRNA. 

The entirety of the code for this VBA script can be found in Appendix B. 
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Plasmid Construction For CRISPR/Cas9 System 

There are currently three unique plasmids that are necessary in this Aim, two of which 

are for the CRISPR/Cas9 system and the other plasmid is an AAV2 packaging plasmid we 

would like to integrate into the genome. The CRISPR/Cas9 genes are called gRNA-AAVS1-T2 

(Addgene plasmid # 41818) which is an AAVS1 guide sequence from Mali et al (2013) and 

pX330-CBh-hSpCas9 (Addgene plasmid # 42230), which is the human codon optimized S. 

pyogenes Cas9 modified to remove its guide sequence. The removal of the guide sequence 

found in the original pX330-U6-Chimeric_BB-CBh-hSpCas9 was done by AflIII/XbaI digestion 

and blunt end ligation, creating the pXX30-CBh-hSpCas9 used in the aim. The AAV packaging 

plasmid is pXX2-SseI-in-2LoxP-Puro, where it contains an AAV2 capsid gene and AAV2 Rep 

that is disrupted by an intron placed specifically to turn off the cytostatic and cytotoxic function 

of the Rep gene. 

Initial attempts at the CRISPR/Cas9 system were made by generating a novel guide 

RNA sequence using the ZiFiT consortium gRNA design tool. It was initially postulated to 

target for a cell cycle inhibitor: p16 exon 2. Whether or not this guide RNA was functional was 

not investigated further due to the progressively lowering titers of the generated producer cell 

line, called ZY9-AAV-ds-GFP Clone 1.24. This was more pronounced in cell lines generated 

from co-transfection of AseI linearized pSPGHH67.2m-DEST using the AAVS1 guide 

sequence from Mali et. al. and modified pX330-CBh-hSpCas9 plasmids mentioned above. In the 

ZYHH67.2m-DEST cell lines, the cells would either grow for a short amount of time, or not at 

all, suggesting some leaky expression of the Rep gene. It was puzzling to us at the time why this 

was occurring, but we later sequenced the intron region of the plasmid using the following 

primers to elucidate the problem: 5' Rep 5’-GGGATTACCTCGGAGAAGCAGTGG-3’, HCG 

New 5’-GTAAGAAGATCGAGGTC-3’, 3' Rep 5’-ACCAGATCACCATCTTGTCG-3’, 3' 
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LoxP 5’-TCTTCCTAGTGGATCTGCGAC-3’, and SV40Promoter 5’-

CCATAGTCCCGCCCCTAACTCC-3’. 

Selection of Cell Colonies and Viruses Used During Characterization 

pXX2-SseI-2LoxP-in-Puro was digested using AseI. This plasmid was cleaned using 

ethanol precipitation. Two sets of cell lines were generated using the linearized pXX2-SseI-

2LoxP-in-Puro: the AAVS1 CRISPR/Cas9 cell lines, labeled as XX2-in-Puro-AAVS1, or the 

randomly integrated cell lines, labeled as XX2-in-Puro. Briefly, the methods to generate the 

former cell lines, XX2-in-Puro-AAVS1, is half of the total mass of transfected plasmid to be the 

linearized pXX2-SseI-2LoxP-in-Puro, a quarter of the total mass to be the gRNA-AAVS1-T2, 

and the last quarter to be the pXX30-CBh-hSpCas9. The latter cell line, XX2-in-Puro, is the 

equivalent of the total mass of plasmid used for XX2-in-Puro-AAVS1 cell lines, but solely using 

linearized pXX2-SseI-2LoxP-in-Puro. 

After these plasmids were cleaned and resuspended in about 20 µL of TE (pH 7.0) they 

were transfected into 3 6-wells (approx. 750,000 to 1,000,000 cells per well) using calcium 

phosphate methods. Media was changed 6-12 hours after transfection. Cells were scaled about 

48 hours post transfection to up to 20 15-cm plates to thoroughly dilute the cells per plate. After 

about four days, the media in the plates were changed from DMEM, 10% FBS, to DMEM, 10% 

FBS, 2 µg/mL puromycin to leave only cells that can resist the puromycin drug. Media was 

changed every four days. Between days 12 and 16, when colonies were about 1-3 mm in size, 

single clone colonies were counted to tabulate total single clone colonies generated. A small 

subset of these colonies was selected according to the following protocol: 0.5 cm x 0.5 cm 

Whatman filter papers were cut and autoclaved along with tweezers. TrypLE Select (Gibco, 

12563011) or TrypLE Express (Gibco, 12605010) was used to evenly dissociate cells without 

damaging the integrity of the cells. This recombinant form of trypsin was critical for proper 
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healthy growing of cells from single clone colonies captured by the Whatman filter paper to 

scaled cell lines used for characterization studies. Porcine trypsin was previously used in early 

trials of cell line generation, but the cells would clump and result in very poor growth 

characteristics that was difficult to troubleshoot. The Whatman filter papers were soaked in this 

TrypLE recombinant trypsin, and the soaked paper was placed on top of the cell colony for 

approximately 5 minutes before removing the paper and shaking the cells off into a 24 well plate 

prefilled with media not containing the puromycin drug. From there, cells were allowed to grow 

for 2-3 days, and the media was changed to puromycin containing media at the selection 

concentration of 2 µg/mL.  

Cells were scaled from a 24 well plate, eventually to a 6 well size. When cells were scaled, 

passage entries were noted to determine if titer of rAAV reduces with increasing passages. At the 

6-well scale, cells were tested for rAAV production capabilities using the novel adenovirus 

design in Chapter 2, Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1). They were infected at 

approximately 10 MOI to generate cytopathic effect within 48 hours. The cells were then 

harvested, subjected to three freeze/thaw cycles, spun to collect crude lysate, heat inactivated at 

56 °C for 1 hour, and infected into HEK293 cells with the addition of 4 µM of Hoechst 33342 

dye to accelerate AAV expression. Once a novel cell line was chosen, it was repeated several 

times at various passages to see if titers decreased. The cell colonies narrowed in choices from 

the hundreds selected, to a few dozen prominent candidates, to a single candidate. 

Subcloning of the best candidate was an inevitable scenario because selection methods of 

the single clone colony often, but not always, resulted in two or more single cells growing very 

close to each other during colony growth that the Whatman filter paper caught these 

populations to some degree. The population selected had to be assumed to have a mixed 

population and the cells were seeded at a very dilute concentration of 0.5 cells/mL in a 96 well 
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plate. These subclones were documented and subjected to the same characterization assay and 

the best candidate(s) was selected from these subcloned colonies. 

Cells and Viruses Used in Characterization 

We used two cell lines developed by Qiao et. al. in 2002 called XX2-GFP-145, an AAV2-

GFP producer cell line, and XX2-in-19-sub, an AAV2 parental packaging cell line. These were 

used primarily to assist in initial characterization studies of the Ad-Cre(E3)-rAAV(E1) virus, 

particularly for Ad-Cre(E3) and the Ad-Cre(E3)-AAV-ds-GFP(E1) constructs, that justified the 

need to generate a packaging cell line in this aim. XX2-GFP-145, in particular, was used to see 

the differences in yield at larger production scales from our previous producer cell line method 

to this modified cell line method. As mentioned before Ad-Cre(E3)-AAV2.1-CMV-LacZ-

nLs(E1) was used extensively in this aim. Other viruses that were used were: Ad-Cre(E3)-AAV-

ds-GFP(E1), Ad-GFP, wtAd, Ad-Cre(E3), and Ad-Cre(E1). 

Infectious Titer Calculation 

HEK293 cells were used for infectious titer assays. For LacZ expression, cells were 

quantified for infectious titer, by counting number of blue cells in the microscope or camera 

field under bright-field microscopy. For GFP, cells were quantified by counting number of green 

cells in the microscope or camera field under fluorescent microscope (excitation of GFP is 488 

nm and emission is 509 nm). The yield of infectious particles was presented as infectious unit. 

The units of infectious units (IU) were either IU/mL or IU/10-cm plate. IU/10-cm plate was 

calculated by extrapolating from the surface area of the microscope field to the surface area of 

the well being used to for the infection assay. IU/mL was calculated by dividing the extrapolated 

well infectious unit by the total volume infected into the well. Larger scaled products were 

typically presented in IU/mL, whereas smaller scale characterization studies were presented in 
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IU/10-cm plate. Both measurements were consistently used to compare infectivity at a specific 

scale between various production methods.  

AAV Vector Production and Large-Scale Purification 

For the production of AAV2, three systems were used: Ad-Cre(E1) infection into XX2-

GFP-145 producer cell lines, Ad-Cre(E3)-rAAV(E1) into XX2-in-Puro-AAVS1 cell lines, and 

triple plasmid calcium phosphate transfection (pXX2, pAAV2.1-CMV-LacZ-nLs or pEMBL-

AAV-CMV-ds-GFP, pHelper). For large scale, these were performed on 20 15-cm plates, and 

on 6-well plates for smaller scale. The viruses, Ad-Cre(E3)-AAV-ds-CMV-GFP(E1) and Ad-

Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1), were used for titers in both scales of packaging cell lines. 

Briefly, the HEK293 cells or cell lines were propagated in Dulbecco’s modified Eagle’s 

medium (DMEM) in 15 cm plates supplemented with 10% fetal bovine serum (FBS) at 37°C 

with the appropriate drug selection, if applicable: puromycin (1 µg/mL) for cell lines with the 

puromycin resistant gene and hygromycin (100 µg/mL) for XX2-GFP-145 that has a 

hygromycin resistant gene. For triple plasmid transfection, cells were transfected at 80-90% 

confluency. Each plate was transfected with 16.7 μg vector plasmid, 16.7 μg adenovirus helper 

plasmid, and 16.7 μg AAV2 packaging plasmid dissolved in 40 mL of 0.25M CaCl2. For every 2 

mL of dissolved DNA in 0.25M CaCl2, 2 mL of 2x HEPES-buffered saline (HBS buffer: 50 

mM HEPES, 280 mM NaCl and 1.5 mM Na2HPO4; pH 7.1). In a smaller scale (i.e. 6-well), 0.67 

µg of each plasmid was dissolved in 125 µL if CaCl2 and quickly mixed with 125 µL of 2x HBS. 

Eight to twelve hours later, the medium was replaced with fresh DMEM supplemented with 2% 

FBS. Cells were harvested at 72 hours post transfection, and media was also collected. Infected 

cells were harvested at 48 hours post infection after achieving cytopathic effect (CPE).  
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In purification of large scale rAAV, cells were resuspended in suspension buffer I 

(50mM HEPES, 150 mM NaCl, 50 mM NaH2PO4, 2 mM MgCl2, 2.5 mM KCl, pH 8.0) and 

sonicated. The cell lysate was treated with DNase (100 units/ml) and RNase A (4 units/ml) and 

incubated at 37°C for 1 hour. Debris was removed by centrifugation at 2,500 rpm at 4°C for 15 

minutes. For preparations using adenovirus, a heat inactivation of 56 °C was performed for both 

the collected media and the cell lysate before moving onto the next steps. 

PEG-8000 and NaCl solutions were added to the clarified lysate, to a final concentration 

of 8% PEG-8000 and 0.5 M NaCl, and incubated at 4°C overnight. For the culture medium, 

powdered forms of PEG-8000 and NaCl were added to also reach 8% PEG-8000 and 0.5 M 

NaCl and incubated at 4°C overnight. The cell lysate and medium were centrifuged at 2,500 rpm 

for 30 minutes and the resulting pellets from both cell lysate and medium were combined and 

thoroughly resuspended in about 20 mL of resuspension buffer #2 (50 mM HEPES, 150 mM 

NaCl, 1% Sarkosyl, 20 mM EDTA, pH 8.0). The solution was placed in an ultracentrifuge at 

31,000 rpm for 16 hours in a CsCl density gradient. The AAV band was collected and subjected 

to a second round of CsCl density gradient ultracentrifugation at 38,000 rpm for 48 hours. The 

AAV band was collected in drop-wise fractions and stored at -80°C. Vector titers were 

determined by the DNA dot-blot method. 

AAV titer was quantified by dot blot hybridization. Five microliters of AAV stock was 

added to 200 μL DMEM and treated with 50 μg/ml DNase I at 37°C for 1 hour to degrade 

unencapsidated DNA. Then, 200 μL proteinase K buffer (20 mM Tris Cl pH 8.0, 20 mM EDTA 

pH 8.0, 1% SDS) was added to inhibit DNase activity, followed by addition of 40 µg of 

proteinase K, and the sample was incubated at 55 °C for 1 hour to degrade the capsid. The 

vector DNA was precipitated using ethanol precipitation with addition of glycogen (40 μg) to 

visually observe the pelleted DNA. The resultant pellet was resuspended in alkaline buffer (0.4 
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M NaOH and 10 mM EDTA pH 8.0) and bound to a hybridization transfer membrane 

(PerkinElmer). A standard of the original vector plasmid was applied to the same membrane. A 

biotin-labeled probe against CMV, LacZ, or GFP was hybridized to the membrane at 55°C 

overnight. Bound probe was detected using the North2South Chemiluminescent Nucleic Acid 

Hybridization and Detection Kit (Pierce). AAV titers were in the range of 1011 to 1013 vector 

genomes (vg)/ml. 

Histochemical Staining of Monolayer Tissue Culture Cells for LacZ Activity (X-gal Staining) 

Cultured cells were rinsed with 1x Phosphate Buffered Saline (PBS, pH 7.3) and then 

fixed for >5 min at 4 °C in 2% formaldehyde and 0.2% glutaraldehyde, mixed in PBS. The cells 

were then overlaid with a histochemical reaction mixture containing 1 mg/mL 4-Cl-5-Br-3-

indolyl-β-galactosidase (X-gal), 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, and 

2 mM MgCl2. The X-gal was dissolved in dimethoxysulfoxide (DMSO) at 40 mg/mL, and then 

diluted into the reaction mixture. Incubation was for 8-14 hours at 37 °C13. Cells were then 

counted for LacZ expression, i.e. blue cells were counted. 

Growth Rate of Cell Lines Using CellTiter-Glo® 

 The CellTiter-Glo® 2.0 Luminescent Cell Viability Assay (Promega, Catalog Number: 

G924114) was used to determine the growth rate of the packaging cell lines that were developed 

in this aim. This assay provides a homogeneous method to determine the number of viable cells 

in culture based on quantitation of ATP present, which indicates the presence of metabolically 

active cells. This assay results in cell lysis and generation of a luminescent signal proportional to 

the amount of ATP present. The amount of ATP is directly proportional to the number of cells 

present in culture.  

 Cells were seeded into CELLSTAR® 96-well white plates (Supplier Catalog Number 

675083). To generate the standard curve, the following cell counts were placed into the 96-well 
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plate, with the final volume reaching 100 µL: 0 cells (only media), 50, 100, 200, 400, 1000, 2500, 

5000, 7500, 12500, 25000, and 50000 cells in triplicates. An ATP standard, just as a control for 

function of CellTiter-Glo® luminescence, was provided with each plate that was tested using 

CellTiter-Glo® for concentrations of ATP ranging from 1x10-12 moles to 1x10-10 moles. Once 

this plate was seeded, luminescence versus cell count can be measured and a standard curve 

could be generated for later luminescent recordings. The standard curve was tolerable for the 

purposes of this growth experiment (R2=0.989).  In addition to this standard plate, 5 plates were 

used to measure cell growth: Plate 1 for Day 0 (0 hr.), Plate 2 for Day 1 (24 hr.), Plate 3 for Day 

2 (48 hr.), Plate 4 for Day 3 (72 hr.), and Plate 5 for Day 4 (96 hr.). For each cell line, 2500 cells 

were plated in triplicate and ATP standards were performed on the same day as luminescence 

measurements.  

 First, on the day of luminescent testing the plate was equilibrated to room temperature 

for approximately 30 minutes. Next, a volume of CellTiter-Glo® Reagent equal to the volume 

of cell culture medium was added to each well. Contents were mixed at room temperature for 2 

minutes using an orbital shaker to induce cell lysis. The plate was then incubated at room 

temperature for 10 minutes to stabilize luminescent signal and then the luminescence of the 

plate was recorded using a luminometer. Doubling time of the cells were determined using the 

following equation: Doubling Time = ln(2)/[ln(N(t)/N(0))/t], where N(t) is number of cells at time 

t, N(0) is the number of cells at time 0, and time is t in hours.  

Quantification of Rep Gene Copy Number by Using Real-Time Polymerase Chain Reaction 

 For the quantification of Rep gene copy number in stable 293-based cell lines, we used 

SYBR green–based real-time quantitative assay (ABI PRISM 7700 Sequence Detector, Applied 

Biosystems). We designed the primers to amplify a 317-bp fragment of the Rep gene. The 

sequences of the forward and reverse primer are: Rep-5’: 5’-GGG ATT ACC TCG GAG AAG 
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CAG TGG-3’; and Rep-3’: 5’-CTT CCC GGT AGT TGC AGG-3’. We also designed the 

primer to amplify a 300-bp fragment of the human glucagon gene as the internal cell copy 

number control. Sequences of the forward and reverse primers are as follows: human-glucagon-

F: 5’-TGA GAG ACA TGC TGA AGG GAC-3’; human-glucagon-R: 5’-CTT TCA CCA GCC 

AAG CAA TG-3’.  

Total cellular DNA was extracted from cells by using the DNeasy Tissue Kit (Qiagen). 

Copy numbers of the Rep gene detected by real-time polymerase chain reaction (PCR) were 

reported as Rep copies per cell by the following equation: (vector copy numbers/human 

glucagon gene internal control) x 2. 

Two designs were made to determine the Rep gene amplification properties in each cell 

line. One design is to determine the time course of Rep gene amplification depending on two Ad 

constructs, Ad-Cre(E3) (MOI 5) and Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) (MOI 10), 

measured from 0 hrs. post-infection to 96 hrs. post-infection in the cell lines XX2-in-Puro Clone 

253, XX2-in-Puro-AAVS1 Clone 152.69, and XX2-in-Puro-AAVS1 Clone 152.74. This was 

done in the scale of a 6-well plate, where cells were infected at about 80% confluency and these 

conditions were done in triplicates for statistical purposes. The second design is to determine the 

Rep gene amplification depending on a variety of Ad constructs, using the following Ad designs 

infected to achieve CPE at 48 hrs. post infection: Ad-GFP, wild-type Ad (wtAd), Ad-Cre(E3)-

AAV2.1-CMV-LacZ-nLs(E1), Ad-Cre(E3)-AAV-CMV-ds-GFP(E1), Ad-Cre(E3), and Ad-

Cre(E1). The cell lines that were used were HEK293 (negative control), XX2-in-Puro Clone 253, 

XX2-in-Puro-AAVS1 Clone 152.69, and XX2-in-Puro-AAVS1 Clone 152.74. Cells were infected 

at about 80% confluency in a 6-well plate and these conditions were done in triplicates for 

statistical purposes. 
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3.4 Results 

To show the need for a packaging cell line, Figure 19 shows what was available to us 

when we initially generated our adenovirus constructs from Chapter 2. The abysmal yield of 

rAAV vector, especially when considering the yields obtained through normal triple plasmid 

transfection gave us misdirection on the utility of this novel adenovirus design. It was later 

identified through the intense characterization studies in Chapter 2, that indeed the adenovirus 

construct was functional and that our existing packaging cell lines failed to provide enough 

Rep/Cap copy numbers for our application.  

 

Figure 19: The need for a packaging cell line. A) Infection of Ad-Cre(E3)-AAV-ds-GFP(E1) into XX2-in-

19-sub with a control of triple plasmid transfection generating AAV-ds-GFP. B) Infection of Ad-Cre(E3)-

AAV2.1-CMV-LacZ-nLs(E1)  

 According to Qiao’s studies of this cell line in 2002, XX2-in-19-sub has 50 copies of 

Rep/Cap per 15 µg of total cellular DNA that was analyzed. Furthermore, there was hardly an 

increase in Rep/Cap gene amplification after the addition of Ad-Cre, suggesting that the initial 

copy number of the inducible Rep/Cap was low, and minimally increased after the Rep gene was 

restored. In comparison, XX2-GFP-145 had about 75 or so copies of integrated inducible 

Rep/Cap plasmid, but with the addition of Cre to restore the Rep gene, the copy numbers in 
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this cell line reached about 500 copies within the 15-µg used in the experiment. The system 

developed in Qiao’s work in 2002, was improved by Yuan et. al. in 2011. He had shown that the 

Rep/Cap copy numbers were not critical for the producer cell line system. However, in the 

transition of producer cell line to packaging cell line, the Rep/Cap copy number may be of great 

importance, especially when seeing results from Figure 19. 

 

Figure 20: Sequencing of past plasmid 

It was evident there was a need for a packaging cell line from Figure 19, but we wanted 

to use a more clinically or soon to be clinically relevant capsid rather than using AAV2, like in 

Qiao’s earlier cell line designs. A capsid that we were using in our lab is the HH67.2m capsid. 

Placing this capsid according to the methods described in Yuan’s 2011 producer cell line 

method, we created pSPG-HH67.2m, an inducible Rep plasmid that contains the HH67.2m 

capsid sequence. Unfortunately, when we generated a packaging cell line, we saw several things 

that in hindsight indicated something was wrong with the system before it ever entered the cell. 
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These were: 1) low colony numbers, or none at all, 2) yields of resulting rAAV decreased 

substantially over time, 3) growth of the cultures were becoming slower over time, and 3) health 

of the cells were progressively deteriorating. Our troubleshooting events were to first repeat it 

with different researchers performing the transfection and then to try different amounts of 

transfected plasmid. Finally, we realized there may have been an issue with the plasmid itself and 

therefore we set out to investigate the regions of the plasmid that specifically regarding the 

expression of Rep. To do so, we used multiple sequencing plasmids to identify areas between the 

two LoxP sites to see if the intron is still intact, as shown in Figure 20 with the arrows drawn 

below the plasmid that indicate the primers and direction of primers used for sequencing. 

Unfortunately, the intron had somehow lost its PolyA signals, as seen in the results of the 

sequencing displayed as updated maps of the packaging or producer plasmid in Figure 21. 

 

Figure 21: Updated plasmid maps after sequencing of the dual-splice switch 
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 With these results, we had to resort to using the packaging plasmid used in Qiao’s 2002 

AAV2 cell line generation called pXX2-SseI-2LoxP-in-Puro. At the time of this report, we are 

still struggling to make higher plasmid yields of the pSPGHH67.2m, pSPGHH67.2m-ds-GFP, 

and pSPG9-ds-GFP. We hypothesize the reason for this issue is the puromycin resistant gene 

between the two LoxP sites is somehow toxic in bacterial cells, the backbone of the pSPG 

plasmids is not the right backbone to use for adequate plasmid production, or we are using an 

incorrect bacteria strain to generate more plasmid product. Yields of pXX2-SseI-2LoxP-in-Puro 

did not suffer scalability issues during large scale plasmid production, the PolyA signals were still 

present in the intron, and the puromycin resistant gene in this plasmid was not detrimental to 

the plasmid. Since the issues were minimal to generate this plasmid we used it for the remainder 

of the study to generate AAV2 packaging cell lines. In turn, in lieu of the inherent issues of the 

plasmids we initially intended to use that were more clinical relevant to the field, this project has 

become a proof-of-concept study to help converge designs from Aim 1 and Aim 2. 
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Figure 22: Construct of inducible AAV packaging plasmid used in packaging cell lines 

 Table 9 is compiled data of the cell colony generation for cell lines that had linearized 

plasmids randomly integrated and the cell lines generated using the AAVS1 CRISPR/Cas9 

system. As can be seen from this data, there were more total colonies using AAVS1 

CRISPR/Cas9 than for randomly integrated, suggesting that the frequency and integration rate 

of the linearized plasmid is increased. Of the 3,792 colonies that were generated in the AAVS1 

CRISPR/Cas9 set of cell lines, 223 were selected for further characterization. For the 2,969 

colonies generated in the randomly integrated set, 92 were selected for further characterization. 

Of these subset of total colonies, the several hundred candidates were narrowed down, 

eventually leading to a single candidate colony from each generation method. 
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Table 9: Cell Colony Generation Statistics 

 Using AAVS1 
CRISPR/Cas9 

Randomly 
Integrated 

Total Colonies Generated 3792 2969 
Number of Colonies Selected 223 92 

Selected Colonies for Further Characterization 26 (11.7%) 4 (4.3%) 
 

Figure 23 shows the characterization results of the cell lines that were selected from 

these two cell line generation methods. We used the adenovirus construct Ad-Cre(E3)-AAV2.1-

CMV-LacZ-nLs(E1) to measure LacZ infectious titers from the resultant AAV2-CMV-LacZ-

nLs. From the results gathered from this characterization study, there are several observations 

that can be made for both generation systems. First, on average, colonies selected from the 

AAVS1 CRISPR/Cas9 cell line generation systems had about a 2-fold increase in infectious unit 

titers when compared to the average cell colony in the randomly integrated generation system. 

Second, the number of colonies increased, suggesting that there was an increase of double strand 

breaks with effective integration to yield more candidate colonies. Third, the overall number of 

colonies that generated a moderate-to-high infectious titer, determined by candidates producing 

>1.5 x107 IU/10-cm plate at the small scale, was nearly 3-times higher in AAVS1 CRISRP/Cas9 

systems. As can be seen in Figure 23, Clone 152 was the best for AAVS1 CRISPR/Cas9 cell 

lines, and Clone 253 was considered the best overall – i.e. best cell viability, growth, etc. - for 

randomly integrated cell lines. Clone 152 was subcloned to generate a more uniform population, 

since the original population may have had low-yielding contaminating populations that would 

impact overall vector yields. The cell lines to show best yields after subcloning were Clone 

152.69 and Clone 152.74. 
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Figure 23: LacZ infectious units for selection of best packaging cell candidate. A) Cell lines for AAVS1 

CRISPR/Cas9 integration of packaging plasmid. Clone 152 was considered the best yielding cell line. B) Cell 

lines for random integration of packaging plasmid. Clone 253 and 292 were considered the best yielding cell lines. 

C) Subclone of clone 152 to have a purified population of packaging cell line. Subclones 152.69 and 152.74 

were the best. 
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 These three cell lines were used extensively in studies for Chapter 2. We saw earlier the 

yields of the novel adenovirus construct, but the cell line also plays an equal role to a high 

yielding system. Therefore, we analyzed the relationship between cell line productivity with the 

Rep/Cap gene copy numbers integrated in cells. These results are counter to what was reported 

by previous studies by Yuan et. al. in 2011 because the systems used to make rAAV are different. 

In the previous method, the rAAV vector was produced in cis while the adenovirus was only 

used to activate Rep/Cap. This would in turn continually produce Ad, increasing helper 

functions, and generate just enough Rep/Cap for high yielding vector. In our modified system, 

however, we are provided rAAV and the “on-switch” by the same adenovirus vector. Here, the 

Ad can no longer continually replicate as freely since the adenovirus is cleaved when translated 

Rep proteins identify the harbored ITRs in the Ad virus. Therefore, it is critical to have a 

substantial amount of Rep/Cap present and an appropriate amount of Ad present for adequate 

vector production. This method difference is enough to see a relationship between the 

integrated Rep/Cap gene copy number and vector productivity, that was not seen in this 

investigation from our previous studies. It is more pronounced depending on the adenovirus 

construct used to activate the dual-splice switch, discussed below. We found that in our best 

producing cell lines, XX2-in-Puro-AAVS1 Clones 152.69 and 152.74, the Rep/Cap copy 

number was at least 9 times more than XX2-in-Puro Clone 253. XX2-in-Puro-AAVS1 Clone 

152.69 had an average Rep/Cap copy number of 87 copy numbers/cell, 152.74 with 64 copy 

numbers/cell, and XX2-in-Puro Clone 253 had an average of 7 copy numbers/cell. As shown in 

Chapter 2, this difference in Rep/Cap copy number between the AAVS1 CRISPR/Cas9 assisted 

integration and random integration can lead to up to an order of magnitude of titer difference, 

independent of the novel Ad-Cre(E3)-rAAV(E1) construct. By this comparison alone, there is a 
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clear importance of total integrated packaging plasmid present for our packaging cell line and its 

influence on vector yield. 

Figure 24 shows the relationship between adenovirus construct used and Rep/Cap copy 

numbers generated per cell in the cell lines XX2-in-Puro-AAVS1 Clone 152.69, XX2-in-Puro-

AAVS1 Clone 152.74, and XX2-in-Puro Clone 253. Ad-Cre constructs, whether in E3 or E1, 

showed a significant increase (p=0.0001) in copy number for XX2-in-Puro-AAVS1 cell lines, 

going from 60-90 copy numbers/cell to 630-770 copy numbers/cell for Ad-Cre(E3) and 1,000-

1,370 copy numbers/cell in Ad-Cre(E1). The novel Ad-Cre(E3)-AAV(E1) constructs showed 

significant increases in clone 152.69 for both adenovirus constructs (p<0.001), but only Ad-

Cre(E3)-AAV-ds-GFP(E1) showed significant increase in clone 152.74 (p=0.0001). XX2-in-

Puro cell lines showed no statistically significant increases in Rep/Cap gene copy numbers no 

matter which construct was used, but the registered copy numbers went from 7 copy 

numbers/cell to >125 copy number/cell after Ad-Cre infection. It is interesting to see the 

substantial increase in Rep/Cap for Ad-Cre constructs that do not contain an AAV vector. It is 

theorized that the Ad-Cre constructs will continue to amplify, unimpeded by any restored 

Rep/Cap from the dual splice switch. However, the Ad-Cre(E3)-AAV(E1) constructs cannot 

amplify to the same extent as Ad-Cre constructs because the restored Rep gene will identify the 

AAV vector in the adenovirus and remove it from the adenovirus genome, thereby nullifying the 

adenovirus from replicating in the cell line. This is evidenced multiple times in our studies, 

particularly in Chapter 2 (in Figures 12 and 13), and in Figures 25 and 26.  
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Figure 24: Rep gene amplification on different Ad constructs. Negative controls were wtAd and Ad-GFP.  
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Figure 25: Rep gene amplification over time using Ad-Cre(E3) 

To see if when the Rep and Cap genes were amplified in the packaging cell lines after 

adenovirus infection, we analyzed a time course Rep and Cap copy numbers/cell over 96 hours 

after infection of either Ad-Cre(E3) or Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1). For Ad-

Cre(E3) infection, as shown in Figure 25, we see a statistically significant increase in Rep/Cap 

gene copy numbers after 48 hours for the XX2-in-Puro-AAVS1 cell lines, and again we see no 

statistically significant increase in XX2-in-Puro Clone 253. The Rep/Cap gene copy numbers 

increase to greater than 1,500 copy numbers/cell after 96 hours. In this gene amplification study, 

we see similar results to what was shown in Figure 24, where the Ad-Cre constructs are 

amplifying Rep to high copy numbers. This is most likely attributed to the unperturbed 

replication of Ad-Cre in the packaging cell line, and nearly continual production of the Cre 

recombinase protein.  
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Figure 26: Rep gene amplification over time using Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) 

For Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) infection, as shown in Figure 26, we see a 

statistically significant increase in Rep/Cap gene copy numbers after 24 hours for the XX2-in-

Puro-AAVS1 cell lines, and again we see no statistically significant increase in XX2-in-Puro 

Clone 253. Based on Figure 24, we unsurprisingly have the Rep/Cap gene copy numbers 

increase to greater than 300 copy numbers/cell after 72 hours, which is 5 times less than Ad-

Cre(E3) Rep/Cap copy numbers/cell. As described before, this is likely from the adenovirus no 

longer being to replicate as freely as its Ad-Cre counterparts. Here the Rep proteins can identify 

the AAV vector and excise it from the adenovirus, leaving the adenovirus to be replication 

defective. The total Rep copy number for the XX2-in-Puro-AAVS1 cell lines likely comes from 

the total Cre protein that was able to be generated before the adenovirus was disrupted by the 

activated Rep protein. Since several copies of adenovirus containing Cre are presented into a cell 

initially, there are enough Cre proteins to reactivate the Rep integrated into the genome. This is 
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seen in the increase in Rep copy number from 0 to 12 hours. When Rep proteins are generated, 

they would excise the rAAV from the adenovirus, thereby turning off new Cre generation. The 

rate at which new restored Rep copy numbers are present is consequently slowed, leading to Rep 

copy numbers to start to stabilize after about 48 hours. The decrease seen in XX2-in-Puro-

AAVS1 Clone 152.74 at 96 hours can be attributed to adenovirus-induced apoptotic effects on 

the DNA present in the cells. The explanation observed in the control randomly integrated 

XX2-in-Puro Clone 253 is harder to realize in the graphical form since the increase is observed 

as marginal when compared to the XX2-in-Puro-AAVS1 cells. However, this control condition 

follows similar observations to what is seen in the XX2-in-Puro-AAVS1 cells, but do not have 

statistically significant changes. 

For statistical analysis of the statistical significance during the time course or adenovirus 

construct experiments, please refer to Appendix C. 

 

Figure 27: Growth rate characteristics of developed packaging cell lines 

 The AAV packaging cell lines were stable in its titers and had normal growth rates and 

morphology indistinguishable from the parental HEK293 cells, as seen in Figure 27. There was 

no statistical difference in the growth rates (statistics provided in Appendix C). 
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3.5 Discussion 

Our lack of a packaging cell line was a clear bottleneck to our proposed 

adenovirus/packaging cell line method design. With a sufficient packaging cell line, it is possible 

the adenovirus design could become a technology that would be effective in suspension cultures 

to make clinical grade rAAV at larger late-stage clinical scale or during market manufacturing. In 

our initial attempts at generating a packaging cell line, we wanted to use a more clinical relevant 

AAV serotype to package our rAAV vector provided in trans by the adenovirus. However, we 

came across issues to make a more clinically relevant serotype, especially for a serotype for 

systemic muscular diseases. This was because of an either unstable backbone plasmid for our 

packaging construct, a toxicity associated with the puromycin resistant gene, or an incorrect 

bacterium used for large scale plasmid production. While we try to troubleshoot the issue with 

these constructs, we went ahead to use an AAV2 inducible packaging plasmid. Because of the 

use of this less clinically relevant serotype, the generation of an AAV2 inducible packaging cell 

line was a proof-of-concept. 

In this study, we have increased the efficiency of double-strand breaks by using AAVS1 

CRISPR/Cas9. The system provides several advantages. First, the increased efficiency of double 

strand breaks means an increase in Rep/Cap copy number integrations per cell. We can see this 

indirectly with the generation of more colonies when compared to the randomly integrated cell 

line control. We can more definitively when quantifying Rep copy numbers per cell in our best 

generated cell lines XX2-in-Puro-AAVS1 Clones 152.69 and Clone 152.74 when compared to 

the randomly integrated cell line XX2-in-Puro Clone 253. We found that in our best producing 

cell lines, XX2-in-Puro-AAVS1 Clones 152.69 and 152.74, the Rep/Cap copy number was at 

least 9 times more than XX2-in-Puro Clone 253. XX2-in-Puro-AAVS1 Clone 152.69 had an 

average Rep/Cap copy number of 87 copy numbers/cell, 152.74 with 64 copy numbers/cell, 
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and XX2-in-Puro Clone 253 had an average of 7 copy numbers/cell. Second, we see that with 

the increase of colonies generated using CRISPR/Cas9 we can see a direct relationship of 

increased number of characterized colonies showing moderate to high titers compared to the 

randomly integrated cell lines.  About 35% of the colonies characterized from XX2-in-Puro-

AAVS1 generated no noticeable product during the LacZ quantification assay, and 44% showed 

no product for XX2-in-Puro cell colonies. On average, the XX2-in-Puro-AAVS1 cell lines 

produced about 1.35x107 IU/10-cm plate out of the remaining 145 colonies capable of 

generating noticeable AAV2-LacZ product and on average XX2-in-Puro cell lines produced 

about 5.77x106 IU/10-cm plate out of the remaining 53 colonies capable of generating 

noticeable AAV2-LacZ product. Finally, this new cell line generation, in tandem with the 

adenovirus construct described in Aim 1, eliminates the need to create a novel cell line for every 

rAAV vector gene desired to be in a final AAV product. Integration of only the inducible 

packaging plasmid, with the assistance of a double strand break generator in CRISPR/Cas9, can 

create a packaging cell line for any rAAV vector delivered in trans with Cre recombinase and 

thereby lead to a system where the creation of a cell line can be performed once for a specific 

serotype, and the resource intensive process would transition to the much-improved 

construction of the novel adenovirus. Therefore, the upgraded method of introducing several 

double strand breaks, as opposed to randomly formed double strand breaks, can save significant 

time to generate a high copy number of the inducible Rep/Cap gene in the HEK293 cell. 

Ideally, the cell line that is generated in this aim can be transitioned to a suspension 

culture by gradually modifying the media the cells are growing in, much like what was done for 

the suspension cultures used for PEI-mediated triple plasmid transfection16. This would allow 

for the cells to be grown in a larger container, such as a 100L or greater sized bioreactor, and 

with the single vector infection into the cells, the confluency of the cells can be increased 
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without compromising the yield of the product. In this theorized scenario, the demand of rAAV 

vector supply for systemic diseases can be met with less intensive production protocols to 

generate the rAAV product. The packaging cell line reduces upfront labor by removing the need 

to generate a novel cell line for each desirable rAAV vector in need of large scale production. 

Furthermore, this process is expedited by introducing more double strand breaks using 

CRISPR/Cas9 as the generator of multiple double strand breaks, ideally meant for site-

specificity, but prone to off-target effects especially for the Streptococcus pyogenes (S. 

pyogenes) Type II CRISPR/Cas9 system. The downstream generation and infection of the novel 

adenovirus eliminates the necessity for a more difficult recombination of the adenovirus using 

AdEasy methods and also contributes to the design of the cell line by moving the rAAV vector 

onto the adenovirus. 

3.6 Conclusions 

As mentioned in the conclusion of the previous chapter, hand in hand the generation of 

this packaging cell line with the novel design of the adenovirus would give a new methodology 

for rAAV production, requiring an easy-to-construct adenovirus infected into an established 

stable packaging cell line. Increased copy numbers of an inducible Rep/Cap in the HEK293 

genome plays a critical role in this packaging cell line/Ad-Cre(E3)-rAAV(E1) system. With the 

assistance of a double strand break generator, such as the easy-to-use CRISPR/Cas9, the copy 

number of integrated plasmid would increase per cell and give better conditions for rAAV yields 

in this novel production method. The pitfall of this system is the adenovirus contaminant which 

will be discussed further in the next chapter.  
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CHAPTER 4: ATTEMPTS AT REMOVAL OF ADENOVIRUS, DNA, AND CELLULAR 

CONTAMINANTS FROM AAV PREPARATIONS USING THE SELECTIVE 

PRECIPITATING AGENT DOMIPHEN BROMIDE 

4.1  Overview 

 Recombinant adeno-associated viruses have significant therapeutic potential, but current 

production methods are inherently filled with unneeded components to the final rAAV product. 

In particular, for methods requiring the adenovirus as a helper vector for large scale production, 

the rAAV product post-harvest would have contaminating materials concomitantly mixed into 

solution. These adenoviruses must be inactivated and removed from AAV preparations for 

safety. Thermally inactivating these viruses is problematic since it can still lead to immune 

responses if left over virus or viral components are present. Here, we attempt to remove 

contaminating entities in the rAAV production method, using a selective precipitating agent 

called domiphen bromide. Although this detergent is great in removing contaminating materials 

such as DNA and adenovirus, there are major difficulties to make the detergent ignore certain 

serotypes of AAV, particularly AAV8 and AAV9, but is able to leave AAV2 titers unperturbed 

with increasing concentrations of the detergent. In general, for AAV8 and AAV9 the change in 

the surrounding environment of the AAV after the addition of this detergent possibly makes the 

viral particles sticky to one another, other contaminating entities, or the partially formed micelle 

structures of domiphen bromide in solution. From this project, an alternative method for 

removing adenovirus is necessary, possibly by high hydrostatic pressure or by nanofilters. 
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4.2  Introduction 

The current process of rAAV manufacturing using the method involving adenovirus 

infection into an inducible rAAV packaging or producing HEK293 cell line yields concomitantly 

produced adenovirus, albeit E1-, E3- deleted. Fears of using adenovirus in gene therapy 

medications are still present since the 1999 death of Jesse Gelsinger, an 18-year-old ornithine 

transcarbamylase (OTC) deficient patient, who died after a very high dose of an E1-, E4-deleted 

adenovirus vector harboring a functional OTC enzyme. The very high dose (3.8x1013 total 

particles) most likely caused acute liver injury that triggered an adenovirus vector-induced shock, 

due to a cytokine cascade that led to disseminated intravascular coagulation, acute pulmonary 

complications, and multiorgan failure. Since this incident there has been a reevaluation of Ad 

vector dosage, safety and toxicity in clinical trials, and guidelines have been issued for studies to 

be continued1. The method of our rAAV production is to use a recombinant adenovirus to help 

produce rAAV, and since the concomitantly produced adenovirus is no longer of use to the 

remainder of the process or therapy, it should be removed in compliance with. 21 CFR 610.13, 

of the Electronic Code of Federal Regulations General Biological Products Standards, stating 

“Products shall be free of extraneous material except that which is unavoidable in the 

manufacturing process described in the approved biologics license application.”2 

One main safety issue of importance is to remove the replication capabilities of the 

adenovirus since this can assist replication of rAAV generated, a potential issue if replication-

competent adenovirus is present in rAAV vector stock preparations. It is known that the advent 

of E1-deleted adenovirus has provided an important safety feature to adenoviral gene therapy, as 

well as viruses that may use adenovirus during production like our rAAV production method. 

This deleted E1 region renders the recombinant virus replication-defective, and it was predicted 

that this would prevent production of unwanted viral proteins by infected cells and limiting both 
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direct adenovirus toxicity and possible harmful consequences of anti-adenovirus immune 

responses3. However, viral genes are expressed at low levels in cells transduced with E1-deleted 

vectors, causing direct toxicity and immunogenicity of the viral gene products. Fortunately, a 

cytotoxic T lymphocyte (CTL)-mediated immune response often leads to the clearance of 

vector-transduced cells1. This has led to the creation of E1-(+/-E3-), E2/4-deleted 

adenoviruses, and “gutless” adenovirus devoid of all coding viral genes. We have decided to use 

the E1-, E3-deleted adenovirus because it provides sufficient space to insert our genes of 

interest, and deletion of other regions is unnecessary and may affect rAAV production. 

As this technology has potential for industrialization, we must realize the possibility for 

generation of replication competent adenovirus (RCA) by recombination of the E1 region in the 

adenoviral genome with the HEK293 cell line4. Although we can use alternative adenovirus 

constructs, vector production under GMP standards for drug development will likely require use 

of more recent cell lines which have been transformed with well defined, non-overlapping E1 

DNA fragments where homologous recombination is not possible (like in PER.C6 or N52.E6 

cells). Since these two cell lines are relatively expensive, the proof-of-concept of rAAV 

production will remain in HEK293 cultures before investing in more sophisticated cells that are 

more inclined to meet GMP standards. The appearance of RCAs in vector preparations 

involving recombinant adenoviruses is a rare and unpredictable event, and therefore it is difficult 

to control5. In manufacturing GMP, this is a major issue since a largescale batch of the material 

is prepared and a number of reports have already published RCA formation in their large-scale 

vector preparations. If not removed, RCA may replicate in an uncontrolled manner in the 

patient and induce significant pathological side-effects. Although this phenomenon is especially 

frustrating if the E1-deleted adenovirus is meant for use as a gene therapy, our rAAV production 

method uses adenovirus as a helper function and should be removed immediately after 
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generation of the rAAV. Nevertheless, the Food and Drug Administration (FDA) have 

recognized the seriousness of RCA and have required a series of labor-intensive and expensive 

RCA screening tests.  

The separation of adenovirus and rAAV vector preparations is possible with significant 

differences in the estimated densities of hydrated Ad and AAV particles, 1.35 g/cm3 and 1.41 

g/cm3, respectively. Unfortunately, this requires an unscalable ultracentrifugation in a CsCl 

gradient, which may not completely remove all adenovirus or yield strictly rAAV particles (e.g. 

presence of proteins of similar densities). Resistance of AAV to high temperatures can heat 

inactivate the helper adenovirus, although this is only a partial heat inactivation of the entire 

adenovirus present, coupled with the fact that even a minor contamination with heat-inactivated 

adenovirus can result in a local inflammatory response at the virus injection site6,7. Forms of 

chromatography can be used to separate adenovirus and rAAV, like size-exclusion and 

hydrophobic interaction chromatography, but these suffer from loss of product and difficulty to 

separate virus from high molecular weight contaminants. Furthermore, expensive ion-exchange 

chromatography techniques that have high binding capacity and selectivity for adenovirus can be 

used, but can be impacted with contaminating cellular DNA that interferes with the binding of 

adenovirus to the resin.  

Given the advancements of chromatography for purification of a variety of AAV 

serotypes that are being used by companies like Pfizer, chromatography may be the most 

effective way of purifying a variety of AAV serotypes. Companies like Pfizer are using an affinity 

ligand made from a proprietary camelid-derived single-domain antibody fragment for AAV 

affinity purification. Sold as a commercially available resin, called POROS CaptureSelect AAVX 

resin, the CaptureSelect ligand is a 13-kDa fragment that comprises the three complementary 

determining regions that form the antigen-binding domain. The resin is able to be used for large-
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scale downstream purification for a broad range adeno-associated virus used for gene therapy 

applications.  Reports from retailers of this resin have said this resin features one-step AAV 

purification from crude material, high specificity, and can handle high flow rates. However, if the 

solution is clarified of other crude lysate materials, the resulting viral products can be sent 

through this high-precision affinity chromatography to more precisely purify AAVs of serotypes 

AAV1 through AAV8, AAVrh10, and other serotypes without interference occurring from 

materials in the crude lysate.  

Consequently, removal of cellular DNA from the vector preparation is an important 

component to vector purity, especially when considering large scale preparations without the 

capabilities of an ultracentrifuge. After harvesting and collecting virus containing cells, the cells 

must be lysed to release virions within the cell. Cell lysis by either freeze/thaw or sonication 

results in the release of large amounts of host cell DNA and RNA, as well as unencapsulated 

viral DNA. The DNA and RNA must be digested with nuclease in order to remove unwanted 

nucleic acids, reduce the viscosity of the cell lysate, and avoid aggregation complicating further 

purification steps. Benzonase is the most commonly used nuclease because it is available in 

quantities sufficient for commercial virus purification. Unfortunately, removing residual 

Benzonase from cell lysates can be difficult and problematic especially at the scale and pace of 

production needed for industry8. 

Recently, a group of researchers at Merck research laboratories were identifying methods 

to remove cellular DNA from their high-density cell cultures when generating adenovirus vector 

preparations since current methods were too expensive and cumbersome for their production 

scale. They developed a purification process that incorporates selective precipitation of host cell 

DNA, using selective precipitating agents, enabling a reduction in use of costly nucleases and 

chromatographic resins while improving DNA and protein clearance capabilities9.  
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As the name suggests, selective precipitating agents are certain chemicals that can be 

added to the cell lysate preparation, at a certain concentration, to precipitate a high percentage of 

contaminating materials such as nucleic acid molecules, both DNA and RNA, in a selective 

manner from the macromolecule of interest. It is an inexpensive alternative to remove DNA, 

RNA, and even proteins for various applications. Selective nucleic acid precipitating agents 

already exist in PEG, PEI, spermine, spermidine, and inorganic salts. Selective precipitation of 

nucleic acids from adenovirus is a difficult challenge since these two are highly negatively 

charged and relatively hydrophobic. Furthermore, precipitating agents are generally cationic 

detergents that have use in sanitizing agents due to their harsh antimicrobial properties, and have 

potential to inactivate the adenovirus/rAAV particles during exposure. The Merck research 

group has identified a cationic detergent, domiphen bromide, which has superior selectivity for 

host cell DNA and can eliminate the need for nuclease treatment and/or anion exchange 

chromatography immediately after harvesting.  

In their study, the researchers compared cationic detergents that are specifically 

quaternary ammonium compounds. The detergents tested were monoalkyltrimethyl ammonium 

salts (cetyltrimethyl ammonium bromide, CTAB), dialkyldimethyl ammonium salts (domiphen 

bromide, DB), and heteroaromatic ammonium salts (cetylpyridinium chloride, CPC). These 

detergents contain certain properties: CTAB has a quaternary ammonium group separated by 

two carbons from quaternary ammonium and is used in purification of plasmid DNA, CPC has 

a pyridinium group separated by two carbons from quaternary ammonium and is an active 

ingredient in mouthwash, and DB which has a phenyl ether group separated by two carbons 

from quaternary ammonium and is also an active ingredient in mouthwash. Therefore, none of 

them posed a special regulatory concern, if clearance was demonstrated. It is theorized that the 

“addition of SPA following cell lysis results in the positively charged groups (and aromatic rings, 
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if present) on the compounds binding to the negatively charged phosphate groups (and base 

pairs) on the DNA molecules. The hydrophobic tails on the detergents then interact with each 

other resulting in precipitation,” likely due to micellular formation10.  

It was shown, that as concentration of the detergent increased, the DNA in solution 

approaches 0%. However, the adenovirus concentration in solution is dramatically reduced for 

all detergents as the detergent concentration increases, but that DB sustained a large decrease in 

DNA in solution while maintaining adenovirus in high concentrations in solution. Less DB is 

necessary to remove more contaminants and the minimal amount of product, a feature that is 

magnified in high cell density work in the Merck patents. Finally, this group published the effects 

of DB on various adenovirus serotypes, concluding that there is not much serotype preference 

of DB. 

Consequently, in our investigation we will challenge our adenovirus, rAAV, and 

adenovirus-rAAV solutions against increasing concentrations of domiphen bromide to identify if 

domiphen bromide can effectively remove host cell nucleic acids and contaminating adenovirus 

without removing our rAAV. The patents alluded to the use of domiphen bromide for the 

precipitation of cellular DNA and the contaminating helper adenovirus in large scale production 

of AAV10. It is to this reference that inspired our group to investigate further. 

From their preliminary studies, these researchers have identified that domiphen bromide 

– an extensively used active ingredient in oral hygiene products and topical antibiotic creams 

produced at cGMP quality – can form micellular like structures around nucleic acid molecules 

without effecting the adenovirus and its infectivity. This group further stated that nucleic acids 

will have a higher affinity to the DB than adenovirus, only if the nucleic acid concentration is 

higher than the adenovirus, elsewise both can be subjected to precipitation.  To test the limits of 

domiphen bromide, the group set out to test the detergent in high-cell density environments 
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containing adenovirus to simulate their industry production scale. In the high-cell density 

experiments, the domiphen bromide concentrations can extend further to allow for more nucleic 

acids to be precipitated without compromising adenovirus recovery, since the host cell DNA is 

much more abundant than adenovirus11. This leads to the following conclusion of these 

experiments: as the cell density increases, the appropriate domiphen bromide concentration to 

precipitate most host cell DNA without compromising adenovirus recovery increase because of 

the greater DNA than adenovirus content in solution.  The patents suggest that Benzonase or 

any other nuclease is no longer necessary, but can be used for a more robust purification. The 

hypothetical use of this selective precipitating agent is diagramed in Figure 29, where we theorize 

that the additions of the detergent can selectively remove DNA and adenovirus contaminants 

and keep rAAV in solution. 

 This prompts the general hypothesis for this aim: The addition of the selective 

precipitating agent, domiphen bromide, will allow for contaminating adenovirus to be cleared 

from rAAV vector preparations and also clear host cellular nucleic acid contamination without 

need for nucleases like Benzonase. 

 



 

 

 

Figure 28: Use of domiphen bromide to selectively remove adenovirus and DNA contaminants. A) the physical properties of domiphen bromide including the 

structure and critical micelle concentration (CMC). B) Theoretical application of the detergent in rAAV applications. 
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4.3  Material and Methods 

Cell Culture and Virus Propagation 

 We use three unique producer cell lines in this aim that can produce AAV upon Ad-Cre 

infection: AAV8-ds-GFP Clone 23 producing AAV8-ds-GFP, AAV9-ds-GFP Clone 1.24 

producing AAV9-ds-GFP, and XX2-GFP-145 producing AAV2-ss-GFP. The viruses used in 

this aim are Ad-Cre(E1) or Ad-Cre(E3). In an initial analysis, cells were scaled to 7x108 cells and 

infected with Ad-Cre(E1) because these cell lines had the dual splicing switch integrated in its 

genome. The resulting product was resuspended in DMEM only and underwent three freeze-

thaw cycles, spun down at 2500 rpm for 15 minutes, and the supernatant was collected and 

aliquoted.  

 Ad-GFP was infected into HEK293 cells to replicate data from Merck. Cells were scaled 

to about 6x108 total cells and infected at 70-80% confluency, achieving CPE 48 hours post 

infection. The cells were spun and resuspended with DMEM to match the cell-density reported 

in the Merck patents. For instance, if using 20 15-cm plates of HEK-293 cells, there is an 

estimated 8x106 cells per plate and a total of 1.6x108 cells for 20 plates. If the cells were 

centrifuged and resuspended in 8 mL of DMEM, it would result in an equivalent of 2x107 

cells/mL. 

Domiphen Bromide Addition to Samples 

A pre-calculated amount of 60 mM domiphen bromide dissolved in water was added to 

the aliquots, mixed for 5-10 seconds, and spun down for 30 minutes at 4 °C. The resulting 

supernatant of these aliquots were collected and analyzed. Next, domiphen bromide was added 

to these aliquots at various concentrations, ranging from 0 mM to 6 mM. These were then 

mixed, and spun down at 4°C for 30 minutes at 13,500 rpm on a table top microfuge. 180 µL of 

the supernatant was collected to analyze the residual DNA content. The remainder of the 



183 

supernatant was subjected to quantification of residual adenovirus, by infecting HEK293 cells 

with supernatant and counting GFP-positive cells, and also used for qPCR analysis. 

Measurement of Adenovirus and GFP in Preparations 

 qPCR was done to quantify both adenovirus at a conserved sequence in the Ad 

contaminant and GFP for this aim (ABI PRISM 7700 Sequence Detector, Applied Biosystems). 

Alternative methods of quantification were dot blot for GFP in the AAV product and Cre in the 

Ad contaminant. The following primers were used for qPCR. EGFP-F: 

GTCCGCCCTGAGCAAAGA, EGFP-R: TCCAGCAGGACCATGTGATC, EGFP-FAM: 

FAM-CCCAACGAGAAGCG-MGB, Ad-F: CAGCGTAGCCCCGATGTAA, and Ad-R: 

TTTTTGAGCAGCACCTTGCA. 

Determining Total DNA Concentrations 

The procedure of the DNA extraction follows accordingly: Addition of extraction buffer 

(10 mM Tris•Cl pH 8.0, 20 mM EDTA pH 8.0, 0.5% SDS) plus 4-5 µL of RNAseA, incubated 

at 37°C for 1 hr. Then proteinase K was added at a concentration of100 µg/mL, incubated at 

50°C for 3 hrs. Next, the solution underwent a phenol-chloroform extraction, followed by 

ethanol precipitation procedures. The precipitated DNA was diluted with 50 µL of TE pH 8.0 

(or 100 µL depending on if DNA pellet was difficult to dilute with 50 µL). The DNA is 

quantified using OD or Nanodrop readings of the product. 

Measurement of Sample Infectivity by Infectious Titer Assay 

HEK293 cells were used for infectious titer assays. For LacZ expression, cells were 

quantified for infectious titer, by counting number of blue cells in the microscope or camera 

field under bright-field microscopy. For GFP, cells were quantified by counting number of green 

cells in the microscope or camera field under fluorescent microscope (excitation of GFP is 488 

nm and emission is 509 nm). The yield of infectious particles was presented as infectious unit. 
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The units of infectious units (IU) were either IU/mL or IU/10-cm plate. IU/10-cm plate was 

calculated by extrapolating from the surface area of the microscope field to the surface area of 

the well being used to for the infection assay. IU/mL was calculated by dividing the extrapolated 

well infectious unit by the total volume infected into the well. Larger scaled products were 

typically presented in IU/mL, whereas smaller scale characterization studies were presented in 

IU/10-cm plate. Both measurements were consistently used to compare infectivity at a specific 

scale between various production methods.   

Histochemical Staining of Monolayer Tissue Culture Cells for LacZ Activity (X-gal Staining) 

Cultured cells were rinsed with 1x Phosphate Buffered Saline (PBS, pH 7.3) and then 

fixed for >5 min at 4 °C in 2% formaldehyde and 0.2% glutaraldehyde, mixed in PBS. The cells 

were then overlaid with a histochemical reaction mixture containing 1 mg/mL 4-Cl-5-Br-3-

indolyl-β-galactosidase (X-gal), 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, and 

2 mM MgCl2. The X-gal was dissolved in dimethoxysulfoxide (DMSO) at 40 mg/mL, and then 

diluted into the reaction mixture. Incubation was for 8-14 hours at 37 °C. Cells were then 

counted for LacZ expression, i.e. blue cells were counted. 

Buffers, Salts, and Disruptive Agents 

Domiphen Bromide (247480 Sigma Aldrich), a cationic detergent with a CMC of about 

1.2 mM, is used as the selective precipitating agent in this aim. Its stock concentration of 60 mM 

is prepared from powdered form and dissolved in various buffers, depending on the desired pH 

and/or salt concentration. Buffers that are used are: citrate at pH 3-5, MES at pH 6, HEPES at 

pH 7, TrisCl at pH 7.5-8, and water. Desired salt concentrations were met using NaCl and 

MgCl2. In some situations, a buffer of a particular pH and salt concentration were added to the 

cell pellet to assess recovery of final product after addition of domiphen bromide that was 
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dissolved in the same buffer. Guanidine HCl was made at 6M dissolved in water to use as a 

disruptive agent between domiphen bromide and the viral particles. 

Negative Staining for Transmission Electron Microscopy 

 The Microscopy Services Laboratory (MSL) in the Department of Pathology & 

Laboratory Medicine at UNC-Chapel Hill was used to perform negative staining and 

transmission electron microscopy. Carbon-coated formvar grids (01754-F Formvar/Carbon 400 

mesh, Copper) were glow discharged using Pelco easi-Glow unit to render the surface 

hydrophilic. The viruses adsorbed onto the grid and subsequently stained using the “Grid-on-

Stain or ‘Float’ Method). Briefly, 25 µL of sample was placed onto a hydrophobic surface and 

the grid was placed film-side down onto the surface of the droplet for approximately 5 minutes 

to allow for viral adsorption onto the grid. Next, the grid was quickly transferred to two 

subsequent droplets of filtered deionized water to remove salts/fixative before staining and the 

grid was then placed film-side down onto a drop of 2% uranyl acetate in water (pH 4.5, 1-gram 

uranyl acetate dissolved in 50 mL deionized water for 20-30 minutes, spun for 10-15 minutes to 

remove debris that may interfere with microscopy) for one minute. Excess stain was wicked off 

by touch the edge of the grid to filter paper and the grid was then air dried. Grids were then 

loaded onto a JEOL JEM 1230 Transmission Electron Microscope and images were taken 

between 100,000X and 150,000X. Data was analyzed for images in 100,000X or 120,000X.  

 Exclusion criteria and observational criteria to measure full and empty rAAV particles as 

a result of the 2% uranyl acetate stain are given in detail in Appendix A.  
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4.4 Results 

Firstly, as validation for the work done by the Merck group in their 2013 patent, we 

decided to use an adenovirus with the reporter function GFP for ease of quantification, by 

counting in infectious units and by qPCR methods. We intended to verify whether domiphen 

bromide could clarify the solution of cellular DNA and adenovirus. We imitated cell-density 

conditions, infected Ad-GFP, and harvested the cells after showing signs of the adenovirus 

cytopathic effect and detachment. As seen in Figure 30, nearly 99% reduction in adenovirus and 

DNA is observed, thereby validating the data submitted by Merck in their patent.  

  



187 

 

 

Figure 29: Replication of Merck data for Ad-GFP in HEK293 cells 

 

 

A)

B)
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Figure 30: Domiphen bromide interaction with AAV9 generated from triple plasmid transfection 

 Next, based on the statement in the Merck patent that indicated potential use in AAV 

processes, we were interested if the detergent interacts with AAV in a production scheme. We 

used two serotypes for this study: AAV2 and AAV9. In Figure 31, we see that AAV9 

A)

B)
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precipitates as the detergent concentration increases, losing about 25% of the product, while 

removing most of the DNA contaminants. This suggests that AAV9 has some interaction with 

the detergent. 

 

Figure 31: Domiphen bromide interaction with AAV2 generated from triple plasmid transfection 

A)

B)
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In Figure 32, we see that AAV2 interactions with domiphen bromide are about 50% in 

reduction at the highest concentration of the detergent. However, when DNA concentration 

starts to approach roughly 99% removal, at about 2 mM, the AAV concentration remains about 

the same. This is unlike the results seen in AAV9, where AAV9 precipitated nearly 25% at 2 

mM. This difference between the two serotypes reveals an interaction between domiphen 

bromide and specific serotypes that varies depending on the unique capsid structure of the AAV 

product. However, we next explored if this interaction can be influenced by more contaminating 

entities added to the production scheme. 
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Figure 32: Domiphen bromide interactions with Ad-Cre/AAV2 preparations 

 To add these additional contaminants, we used the AAV producer cell lines that utilize 

Ad-Cre to initiate the dual-splicing switch, as described earlier, to generate the AAV product. 

With these production systems, we would identify if a different profile exists between domiphen 

bromide and AAV when the additional contaminant of adenovirus is added to the crude lysate. 

A)

B)
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The reasoning behind this was if more contaminants were introduced to the system, the more 

the AAV can be disguised and not be brought down by the detergent and instead the detergent 

would have more affinity to the DNA and adenovirus contaminants. We initially tested our 

hypothesis in a moderate cell density of about 8x106 cells/mL XX2-GFP-145 that generates 

AAV2-ss-GFP when infected with Ad-Cre. In Figure 33, we see as detergent concentration 

increases, the adenovirus and DNA concentrations both precipitation out of solution to a final 

reduction of >95%, all the while AAV2 product remains in solution. 

We theorized the use of domiphen bromide in our current purification schemes in 

laboratory-scale production. Unfortunately, when we used domiphen bromide into our current 

system of purification involving PEG precipitation and CsCl gradient purification, we seemed to 

have lost product either through the PEG precipitating step, meaning the detergent interferes 

with the PEG precipitation, or through the gradient itself. The loss in gradient product could be 

attributed to Sarkosyl-domiphen bromide interactions, but this was not studied in the timeframe 

of this aim.  

Our next step was to observe interactions between domiphen bromide and more clinical 

relevant serotypes in our AAV8 and AAV9 producer cell line production methods. Figures 34 

and 35 shows the response of more clinically relevant serotypes in these production methods. In 

Figure 34, we see that we lose a significant amount of AAV8 product as detergent concentration 

increases and it appears to drop earlier than adenovirus, much like the profile of DNA 

precipitation. We attempted to lower the loss of product using a multitude of adjustments that 

could potentially interfere with the interactions between AAV8 capsid and the domiphen 

bromide.  These adjustments were high salt concentrations, acidic pH, temperature of the spin, 

and the zwitterion L-arginine. Yet, all of these resulted in the same trend, where the loss of 

AAV8 occurred at around the CMC of domiphen bromide of 1.2 mM. The only modification 



193 

that seemed to have worked was using a chaotropic agent called guanidine HCl which seemed to 

have brought concentrations of AAV8 back up to original levels after domiphen bromide was 

used, all the while still precipitating the adenovirus. However, removal of guanidine HCl was a 

bottleneck to the progression of this investigation and it was unknown what the infectivity of 

the AAV8 was after addition of guanidine HCl. 
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Figure 33:Domiphen bromide interactions with Ad-Cre/AAV8 preparations 

  

 

 

A)

B)
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Figure 35 shows the profile for AAV9 in panel A and adenovirus in panel B in the 

AAV9/Ad-Cre production system. Here, the adenovirus is lost out of solution around the CMC 

of domiphen bromide, 1.2 mM. The AAV9 product is also lost at around the CMC of 1.2 mM. 

We also performed the same interference techniques used in AAV8/Ad-Cre preparations to 

reduce the net loss in product, and again it appeared that only guanidine HCl led to the best 

results. The data for these adjustments are not shown mostly because we do not know the 

effects of guanidine HCl on the AAV8 or AAV9 viruses, particularly its infectivity. Guanidine 

HCl is a chaotropic agent that is one of the strongest denaturing agents for proteins. It has the 

ability to increase the solubility of hydrophobic proteins, but the proteins have the ability to 

renature upon removal of the guanidine HCl. We did not explore removal of this guanidine HCl 

due to time constraints. This data was furthermore not shown because we are still unsure how to 

implement this detergent to our CsCl gradient applications. The use of Sarkosyl (N-

lauroylsarcosine) in our purification methods is meant for solubilization and separation of 

membrane proteins in case sonication, DNase, or RNase could not remove the nuclear 

membrane of the cells. Furthermore, any cells unable to be lysed by sonication or nucleases 

could be lysed using this detergent.  The investigation on the molecular interactions between 

domiphen bromide and Sarkosyl for the purposes of implementing domiphen bromide to our 

purification methods was outside the intent of this Aim. We intended to understand if domiphen 

bromide can universally precipitate adenoviral and DNA contaminants from crude lysates and 

leave AAV of varying serotypes in solution for downstream purification. Despite our intent, the 

difficulty with two of the more clinically relevant serotypes resulted in adjustments that may 

impede the potency of the AAV product, by rearranging critical proteins on the capsid structure.  

Therefore, if this system were to be used, other adjustments that have not been already explored 
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in this aim are necessary. These subtler adjustments would ideally be serotype independent, yet 

still be able to reliably remove adenovirus and DNA contaminants. 

 

 

Figure 34:Domiphen bromide interactions with Ad-Cre/AAV9 preparations  

A)

B)
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Table 10: Quantification of Purified Viral Particles After Addition of Domiphen Bromide 

Domiphen 
Bromide 

Concentration 
(mM) 

Purified AAV Virus Titer (vg/mL) 

AAV2-CMV-
ds-GFP 

AAV8-CMV-
GFP 

AAV9-CMV-
LacZ-Op 

AAVHH67.2m-
ds-CMV-GFP 

0 6.03E+11 8.16E+10 1.17E+12 2.50E+12 
1 7.43E+11 7.78E+10 1.51E+12 2.63E+12 
2 9.53E+11 1.83E+11 1.33E+12 2.69E+12 
3 1.05E+12 1.66E+11 1.17E+12 1.96E+12 
4 2.03E+12 1.91E+11 1.55E+12 2.33E+12 
5 7.26E+11 1.95E+11 1.47E+12 2.45E+12 

  

 Curious with the outcome of these results, especially for the more difficult to purify 

serotypes in AAV8 and AAV9, we then investigated if the detergent interacts with AAV to any 

extent. This was performed to see if precipitation occurs between the detergent and certain 

serotypes of AAV and if this can be observed from purified stocks. This would allow us to see if 

there is an innate affinity of the domiphen bromide with the specific serotype and can help 

rationalize the phenomena occurring in production schemes with more contaminants present. 

To do this investigation, we purified AAV of various serotypes that had been purified using 

CsCl gradient and dialyzed to remove CsCl from the final AAV preparation. The serotypes that 

were investigated were AAV2, AAV8, AAV9, and AAVHH67.2m. Because the AAV solution is 

placed into a 1x dialysis buffer, we prepared domiphen bromide dissolved in the 1x dialysis 

buffer before adding to these AAV virus preparations. According to Table 10, the vector 

genomes remain relatively stable, particularly for AAV2, AAV9 and AAVHH67.2m. According 

to these dot blot results for these three serotypes, there does not appear to be an interaction 

between the detergent and the AAV capsid. This generally supports data obtained for AAV2 in 

the triple plasmid transfection production scheme, but it does not fully elucidate what is 

occurring for serotype AAV9. In AAV9 production methods, we see the loss of AAV9 product 

when other contaminants are involved whereas no losses are observed in vector genome 
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quantification after domiphen bromide concentrations have increased. It is curious to note that 

AAV8 had a nearly doubled increase in titer, despite the starting aliquots starting at 

approximately the same titer. Hypothetically, what we think could occur from this observation is 

that the AAV8 virus is being aggregated with the help of domiphen bromide, and what was 

aliquoted in our dot blot analysis were aggregates of the AAV8 viruses, rather than a 

homogenous solution whose aliquots would yield results more apparent in other serotypes like 

AAV2 or AAV9 in the dot blot assessment. There is a possibility of vector genome results 

varying depending on the quality of the dot blot assay performed. Because of this unusual result 

that we observed for AAV8, we investigated with an infectious assay to see if the trends seen in 

the dot blot are verifiable. These results are presented in Figures 36 for AAV2 and AAV9 and 

Figure 37 for AAVHH67.2m and AAV8.  
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Figure 35: Infectious titer of from interactions between purified AAV with increasing concentrations of domiphen 

bromide 

A)

B)



200 

 

Figure 36: Infectious titer of from interactions between purified AAV with increasing concentrations of domiphen 

bromide 

According to Figure 36, the infectious titers for both AAV2 and AAV9 remain about the 

same, supporting dot blot results. These affirms that there are no distinct interactions between a 

purified AAV9 or purified AAV2 with the detergent. However, as seen in previous results, when 

A)

B)
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there is a mixture of other contaminants in the preparation of the AAV, there seems to be an 

interaction dependent on the type of contaminant present. For AAV2, domiphen bromide 

interacts with the virus at higher concentrations, but if the additional adenovirus contaminant is 

concomitantly introduced, AAV2 does not interact with domiphen bromide. Alternatively, for 

AAV9, there is a slight interaction between the detergent with the additional DNA contaminant, 

but the interaction is exacerbated when the additional adenovirus is concomitantly present in the 

AAV9 preparation.  Figure 37 shows that HH67.2m titers decrease, which somewhat supports 

dot blot results. It is unclear the exact interactions of HH67.2m and detergent when there is a 

concomitant presence of DNA, since this was not explored in the time of this project using 

triple plasmid transfection production schemes, nor in the presence of adenovirus, since no such 

producer cell line exists. Interestingly, we see that AAV8 shows a similar trend to those that 

appeared in dot blot. We see that there is an increase in AAV8 infectious titers as domiphen 

bromide is increasing in concentrations. Since these were coming from the same source, and no 

helper functions were provided during this purification analysis, we would not have an innate 

increase in vector. Therefore, we suggest that there is some sort of interaction going on with 

domiphen bromide and the virus as detergent increases. One idea is that the surface of the viral 

particle is interacting with a micellular or close to micellular domiphen bromide structure, but 

the virus is not necessarily within the resulting domiphen bromide micelle itself. Multiple viral 

particles can attach to this micelle much like fibers onto Velcro and when the aliquot is taken 

from the preparation of detergent and the virus, a non-homogenous distribution of virus is 

aliquoted, yielding a seemingly higher titer of virus. This would explain the drastic fluctuation in 

titers in both the dot blot assay and also the infection assay.  

 Since the amount of virus to analyze was very limited, we chose AAV8 as the only virus 

to see under transmission electron microscopy to see anything that is occurring to the structure 
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of the virus or if we are seeing removal of empty particles. Since we were limited to one replicate 

the results that appear in this set of images are not meant to be conclusive. These images are 

provided in Figure 38. As the detergent increased from 0 mM to 3 mM to 5 mM, there were 

curious physical features that showed in the images, most notably in 5 mM where these physical 

features are interacting with the viral particles. Without staining for these physical features, it is 

difficult to say what their composition is and what they are, but it is possible they are micellular 

structures that formed from domiphen bromide.  

 

 

 



 

 

 

Figure 37: TEM Images of Various Concentrations of Domiphen Bromide in Purified AAV8 Samples 

 

Table 11: TEM Analysis of AAV8 at Specific Detergent Concentrations 

Domiphen 
Bromide 

Concentration 
(mM) 

Full 
Particle 
Count 

Empty 
Particle 
Count 

Total 
Particles 

Percentage 
of Full 

Particles 

Percentage of 
Empty Particles 

0 185 6 191 96.86% 3.14% 
3 105 26 131 80.15% 19.85% 
5 66 15 81 81.48% 18.52% 
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4.5  Discussion 

 The difficulty in removing contaminating materials is quite evident in the experiences of 

this aim. Heat inactivation can only prevent adequate removal for in vitro experiments, and not 

necessarily useful for larger scale in vivo work. Furthermore, use of an ultracentrifuge to remove 

adenovirus may seem like a safe choice, but even in this scenario adenoviral contaminants can 

sneak into the viral preparations, whether it be a component of the adenovirus, or the entire 

virus itself.  

 Our investigation for a novel method for removal of the contaminating adenovirus 

entities led us to the materials found in the Merck patent where they had spent significant efforts 

to investigate the ideal selective precipitating agent to use for their adenoviral production 

process. There work identified domiphen bromide to be used, and suggested briefly that cationic 

agents be used for selective precipitation of DNA based on charge or hydrophobicity. They 

theorized that “any cationic product (or anion with lower charge density than DNA) should 

remain free in solution when precipitating DNA with cationic detergents or polymers.” The 

patent continued to say “since purification using cation exchange chromatography has been 

demonstrated […] cationic detergents could be used to precipitate both host cell DNA and the 

contaminating helper adenovirus,” with the recommendation of domiphen bromide as the 

selective precipitating agent of choice. The rationalization of domiphen bromide was its 

versatility in removal of “any number of cellular components, especially nucleic acids, from any 

number of different type of biological products” and its “availability as a GMP grade raw 

material and current use in other products intended for human use.”12 The statements pointed 

out by this patent led us to first validate their adenovirus results and use the detergent for our 

production schemes that utilize the adenovirus for production of rAAV. 
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Our findings supported adenovirus and DNA removal, as shown in the Merck patents. 

When this was tested in AAV product generated from triple plasmid transfection, yielding 

mainly DNA contaminants and no adenoviral contaminants, domiphen bromide appeared to 

have some interaction with the AAV leading to a loss of product as domiphen bromide 

concentrations were increased. The loss was more apparent in an AAV9 production scheme, 

whereas the loss was less substantial in the AAV2 production scheme. When we transitioned to 

a production scheme more relevant to the realm of this dissertation work, namely an adenoviral 

product concomitantly generated with the rAAV product, we see more dramatic changes. For 

AAV2/Ad-Cre systems, we see that the AAV2 remains in solution and the adenovirus and DNA 

contaminants are precipitated and removed to up to 99% clarity. Conversely, in AAV9/Ad-Cre 

systems or AAV8/Ad-Cre systems, we unfortunately see the AAV products are lost at around 

the CMC of domiphen bromide of 1.2 mM, which coincides with the loss of DNA 

contaminants and the start of reduction in adenoviral contaminants. Attempts were made to try 

to reduce the extent of loss of these two products, but the only improvement that we 

investigated could in turn effect the potency of the desired viral product. This is because of the 

chaotropic properties of the guanidine hydrochloride that was used to potentially interfere with 

domiphen bromide and the AAV of a particular serotype.  

To address if any natural interactions occurred between this detergent and the AAV, a 

simplified experiment was performed to observe any reduction of titer or infectious unit 

between domiphen bromide and the following AAV serotypes or variants in AAV preparations 

that had minimal contaminants: AAV2, AAV8, AAV9, and AAVHH67.2m. AAV2 and AAV9 

show no decrease in titers, suggesting domiphen bromide does not interact with these viruses in 

the absence of contaminating entities. In the presence of contaminating entities AAV9 seems to 

tag-along with the precipitating materials and lost in solution. This could be due to an affinity of 
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AAV9 with the domiphen bromide-contaminant complex. For AAVHH67.2m, the results from 

a viral genome assessment and an infectious unit assessment were in conclusive. Infectious 

assays are generally more reliable, and in the case of the infectious assay performed in this 

experiment there may be an interaction occurring between the detergent and AAVHH67.2m due 

to the reduced infectious titers as detergent concentration increases. A striking interaction is 

observed in AAV8 serotypes. Here we see that we seemingly increase in titers as detergent 

concentrations increase, despite no helper functions present to initiate replication of the AAV8 

in solution. We hypothesize what is occurring to describe the phenomena reproduced between 

vector genome assessment and infectious assays, is that the AAV8 has an affinity to domiphen 

bromide, but the affinity is not enough to precipitate the material from solution. Instead, we 

think a non-homogenous solution is present, where the AAV8-domiphen bromide complex are 

adhering to others of the same complex resulting in an apparent increased amount of vector in 

the same volume. The results from this interaction study for AAV8 supports results we see in 

the AAV8/Ad-Cre production system, in that with these aggregates that may form between 

AAV8 and domiphen bromide coupled with complexes forming between DNA-domiphen 

bromide and Ad-domiphen bromide, it would likely be more thermodynamically stable to come 

out of solution with other detergent complexes than remain in solution. 

Based on the results obtained from this chapter, the use of domiphen bromide is likely 

restricted to use in AAV2 serotypes that are produced using an adenovirus based production 

system, while selectively purifying more clinically relevant serotypes made from an adenovirus 

based system remains a significant challenge. Therefore, for serotypes that are not AAV2, the 

best currently investigated methods to use for removal of adenovirus are chromatography, 

nanofilters, or high pressure. The use of a selective precipitating agent would be a great avenue 

to explore, but complications of its own removal before entering the final clinical grade product 
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are also of concern. In fact, in some studies of domiphen bromide toxicity in vitro on HEK293 

cells, we found that the concentration of domiphen bromide that was tolerated by the cells was 

about 30 µM before cells started to die. This may be of importance for in vivo use and therefore 

it is important to consider removal of this agent to the final AAV product.  

4.6  Conclusions 

 Although the systems presented in Chapters 2 and 3 are great for large scale production, 

the removal of adenovirus will have to be performed using another system such as nanofilters, 

high pressure environments, or chromatography if the serotype of AAV being generated is not 

AAV2. Given the advancements of chromatography for purification of a variety of AAV 

serotypes that are being used by companies like Pfizer, chromatography may be the most 

effective way of purifying a variety of AAV serotypes. Pfizer is using an affinity ligand made 

from a proprietary camelid-derived single-domain antibody fragment for AAV affinity 

purification and can purify a broad range adeno-associated virus used for gene therapy 

applications. However, if the solution is clarified of other crude lysate materials, the resulting 

viral products can be sent through this high-precision affinity chromatography to more precisely 

purify AAVs. The investigation in this chapter was intended to use the selective precipitating 

agent with hopes it can work on a multitude of serotypes, but seeing the great fluctuation that 

occurred in the 3 of the 4 serotypes tested, it appears this reagent is too troublesome to use in 

our current purification scheme, despite its ability to remove DNA and adenovirus with great 

efficiency in AAV2 producer cell line preparations. The adjusted process flow diagram for the 

thesis aims described in this dissertation are presented in Figure 39. Here, a black box was placed 

over the intended domiphen bromide purification scheme presented in Chapter 1 because the 

domiphen bromide system failed to be universally for all serotypes of AAV.  



 

 

Figure 38: New process flow diagram. The process flow diagram removed the domiphen bromide part of the process since this selective precipitating agent may not be 

an effective tool for high-yielding rAAV processes. 
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CHAPTER 5: FUTURE DIRECTIONS – CELL LINE ADJUSTMENTS FOR INCREASED 
PROLIFERATION 

 As we are investigating new production methods to meet the demand of rAAV necessary 

for clinical trials and market, rAAV products are gaining success with great rapidity. It is 

imperative that our technologies should move towards industrialization, elsewise the cost of the 

therapeutic will continue to rise as the indication veers away from localized administration. In 

this chapter, I will discuss the path our technology should take based on the aims detailed earlier 

to increase vector yields in less time.

One of the major issues in large-scale production in industry is the proliferation rate of 

cells as they grow from small bioreactors to the eventual bioreactors reaching a 10,000 L 

capacity. Modifications to generate a “super cell” to grow as fast as possible without undergoing 

apoptosis are constantly being investigated by modulating cell growth conditions, improving 

cellular metabolism, induction of oncogenes for cell proliferation, induction of anti-apoptotic 

signals, as well as arrest of the cell cycle with intentions to increase cell-specific productivity. 

Unfortunately, outcomes from these strategies have been mixed, with few instances where 

improvements in product yield have been achieved1. Furthermore, cell-proliferation 

enhancement has previously focused on overexpression of exogenously introduced oncogenes, 

transcription enhancers, and cyclin-dependent kinases with success to increase proliferation and 

viable cell densities. For the purposes of large-scale rAAV production using adenovirus infection 

into a packaging HEK-293 cell line, we brainstormed to manipulate the cell cycle such that it is 

additive to the cell cycle deregulation mechanisms of both adenoviral E1A and E1B genes 

already integrated in the HEK-293 genome. The manipulation would involve disruption or 
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knock-out of signaling pathways governing cell proliferation, instead of overexpression of an 

exogenously introduced cell proliferation enhancer. 

The mammalian cell cycle can be divided into five phases: G0-G1-S-G2-M. G0, G1, and 

G2 are considered gap phases: G0 is the resting phase where cells have zero growth but are 

metabolically active, G1 is the first period of growth where cells are stimulated by growth factors 

to enter the cell cycle, and G2 is the second period of growth after the cell has duplicated its 

chromosomes and is prepared to divide into two daughter cells during the period of mitosis. The 

S phase is the DNA synthesis phase where DNA replication occurs and M phase is the mitosis 

phase where the cell segregates its duplicated chromosomes and prepares for cytokinesis which 

is cell division. The G1 phase is where control of cell proliferation generally occurs, since it is 

here that a decision to enter S phase from G1 constitutes a “point of no return,” and the cells 

are committed to complete the cell cycle and divide barring any DNA damage2. This decision 

point, called the restriction point or “R” point, is tightly controlled primarily by the 

retinoblastoma pathway (RB) and its family of retinoblastoma proteins (pRB).  The tumor 

suppressive properties of the pRB family inhibit transcription factors, such as E2F target-genes, 

that activate necessary genes for G1/S transition3. 

To appreciate the role of adenovirus in the cell-cycle, it is important to understand the 

biology of the wild-type adenovirus. Only a portion of the adenovirus genome directly impacts 

cell cycle progression and apoptosis prevention, namely E1A, E1B, and E4.  

The early gene E1A encodes for the E1A proteins that activates the other early genes of 

adenovirus and induce the cell to enter S phase in order to create an environment optimal for 

virus replication. E1A proteins target multiple areas of the cell cycle to allow for G1/S 

transition, including sequestering of RB and the modulation of other pRB family proteins p107 

and p130. E1A can directly bind and inhibit components of the CKI p21, as well as several host 
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factors involved in mediating chromatin structure that is thought to increase the accessibility of 

DNA to the transcriptional machinery4.  

The increased deregulation of the cell cycle by E1A results in the accumulation of the 

tumor suppressor p53, which if activated can result in the cell to undergo apoptosis. In fact, 

under conditions of mitogen deficiency in mouse fibroblasts, E1A can actually promote p53-

mediated apoptosis by stabilizing p53 through the involvement of p19ARF (known as p14ARF 

in humans) which inhibits the activity of a negative regulator of p53 (discussed later)5. The 

presence of adenovirus E1B-55K protein acts to block p53-dependent apoptosis by directly 

binding to p53, by this means inhibiting its ability to induce expression of proapoptotic genes4. 

The E4orf6, from the E4 region of adenovirus, cooperates with E1B-55K to inhibit p53. The 

second product of E1B, E1B-19K protein, blocks downstream mediators of tumor necrosis 

factor α- (TNF-α) and TRAIL (TNF-related apoptosis-inducing ligand)-mediated death receptor 

pathways. This is done by directly binding to the proapoptotic proteins Bak and Bax to prevent 

mitochondria-mediated apoptosis4.  

Adenovirus E4 genes, and its resulting proteins, play an important supporting role to 

E1A and E1B proteins, as well as a p53-independent apoptosis that is speculated to facilitate the 

release of progeny virions during the late stages of infection4. Indeed, when the anti-apoptotic 

gene Bcl2 was overexpressed in HEK-293 cultures, in hopes to increase productivity by 

prolonging cell survival, the titer of a GFP expressing adenovirus decreased. Interestingly, when 

the apoptotic gene for pro-caspase-3 was overexpressed, the cell survival was expectedly 

reduced, but there was an increase in adenoviral titer6. This shows the importance of apoptosis 

to adenovirus production, and justification to avoid apoptotic signaling pathways for disruption 

or knock-out as this could greatly affect adenovirus and adeno-associated virus maturation. 

Furthermore, E4orf6 has been shown to inhibit the binding of p53 to cellular transcription 
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factors, and, together with E1B-55K, can target p53 for degradation by ubiquitin ligases, lending 

insight that apoptosis signaling from E4 genes is most likely not p53-mediated4. Finally, the E4 

product, E4orf6/7 protein, binds directly to the transcription factor E2F and promotes its 

activation of viral and cellular promoters that are utilized in adenoviral gene expression and viral 

assembly4.  

The cell can progress to S phase upon inhibitory phosphorylation of the pRB proteins 

via three principle cyclin-dependent kinases (CDKs): cyclin-D-dependent CDK4 and CDK6 and 

cyclin-E-dependent CDK2. These kinases form complexes with cyclins to promote 

phosphorylation in as many as 16 sites in pRB proteins - CDK4 and CDK6 form complexes 

with cyclin D1, D2, and D3 and CDK2 forms complexes with cyclins E1 and E23,7.  

CDK inhibitors (CKIs) can prevent phosphorylation of the pRB proteins, causing cell 

cycle arrest in G1 phase in response to a variety of stimuli such as DNA damage, senescence, 

and cellular stress3. These CKIs can be divided into two major families: the CIP/KIP and INK4 

families. The CIP/KIP family includes p21 (also known as CDKN1A, CIP1, or WAF1), p27 

(also known as CDKN1B or KIP1), and p57 (also known as CDKN1C or KIP2). These CKIs 

inhibits the activity of multiple cyclin-CDK complexes by contacting both subunits and blocking 

kinase activity and substrate binding. The INK4 family is divided into four CKIs: p16 (also 

known as p16INK4A or INK4A), p15 (also known as p15INK4B or INK4B), p18 (also known 

as p18INK4C), and p19 (also known as p19INK4D, and not to be confused with the rep gene 

p19 promoter). These CKIs specifically bind to the catalytic subunits of two CDKs, CDK4 and 

CDK6, thereby preventing cyclin-CDK complex formation3.  

The protein levels of CDKs remain relatively constant during the cell cycle and 

quiescence, so the induction of cell cycle arrest occurs in regulation of CDK activity by 

controlling abundance of their cyclin partners and also CKIs3. Furthermore, regulation of 
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cyclins and CKIs is mainly through transcriptional regulation and ubiquitin-dependent 

proteolysis, even though they can be also regulated at the level of mRNA, translation, and 

subcellular localization. The reason for this complexity of the pRB pathway is because the cell 

needs to adjust quickly to positive and negative signals before it can commit to replicating an 

exact stable genomic copy of itself in S phase3. Although disruption of these mechanisms is an 

important explanation for the understanding of diseases like cancer, the redundancy of G1 cell 

proliferation control is superfluous for an industrial scale cell culture where large quantities of 

cells and product are needed to meet intense demand. Since the HEK-293 cell is of human 

origin and harbors the E1A/E1B genes of the adenovirus, mammalian cell proliferation 

inhibitors can be disrupted in an additive manner to the E1A/E1B genes. 

With the substantial impact of adenoviral early genes to the cell cycle, only a few CKIs 

remain for disruption in hopes to promote cell proliferation. These are: p16INK4A, p15INK4B, 

p18INK4C, p19INK4D, p27, and p57. It has been reported that there is an intrinsic cooperation 

between INK4 families and CIP/KIP families to inhibit proliferation and induce cellular 

senescence. Such cooperation exists for p16INK4A/p21, p19INK4D/p27, p18INK4C/ p21, 

and also p18INK4C/ p278-10. Individual knock-outs of p16INK4A, p18INK4C, and 

p19INK4D may not result in major proliferation rate changes, at least in murine models, unless 

the CIP/KIP family protein it cooperates with is also simultaneously disrupted or knocked 

out10. Genetic alterations of p18INK4C are rare in human tumors, although gene silencing by 

promoter methylation has been observed in Hodgkin’s lymphoma and medulloblastoma11. 

Therefore, relying on p18INK4C knock-out studies in animal models - particularly murine 

models – data has shown p18INK4C to be a haploinsufficient tumor suppressor, i.e. can induce 

tumor suppression if both alleles are functional and carcinogen-induced tumorigenesis can occur 

if mutated in one or both alleles of the p18INK4C gene12. Furthermore, tumorigenesis can be 
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induced if there was a simultaneous disruption or knock-out of p27 and p18INK4C, suggesting 

the cooperation between the two proteins for tumor suppression9. In murine models, 

p19INK4D do not develop tumors or other types of proliferative disorders11.  

Complete knock-out of the CIP/KIP family may provide mixed results for cell 

proliferation even though these are bona fide inhibitors of cyclin-CDK complexes. p27 is a 

critical component to the cell cycle, especially in G1 phase. p27 knock-out would result in 

potential issues in assembly and nuclear import of D-type cyclin-CDK complexes13. The least 

studied CIP/KIP protein, p57, may not be as critical to matured, fully differentiated cell 

proliferation as its fellow family members, p21 and p27. Although this protein does have 

capabilities to suppress several G1 cyclin-CDK complexes, the importance of the protein lies in 

development of organisms such as the control of organogenesis, embryogenesis, and cell 

differentiation. p57 is also reported to be necessary for endoreduplication as it can suppress 

CDK1 activity, a CDK critical for cytokinesis14. Several reports have stated a paradoxical role of 

p21 and p27 in addition to their role as a CKI, where this family of proteins may even promote 

cell cycle progression by facilitating cyclin-D association to CDK4/6 and also activation of 

cyclin-E-CDK2 complexes15. Furthermore, if p27 or p21 are generally in the cytoplasm of the 

cell, unable to interact with its cyclin-CDK complex targets in the nucleus, it may be an indicator 

of tumor generation16-18. The E1A gene may play a role to inhibit the binding of the other 

CIP/KIP proteins, p27 and p57, to bind to its cyclin-CDK complexes and therefore progress 

into S phase and prevent growth arrest, but this is not fully elucidated in all cell types19.  These 

multifaceted and more importantly, paradoxical roles of the CIP/KIP family of proteins 

dissuaded our use for CRISPR/Cas9 targeting in our initial investigates, especially since the 

purpose of our genome editing was not for mechanistic understanding, but rather for 
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reproducible integration of a packaging genome with secondary ambitions of increased 

proliferation of the HEK-293 cells. However, to meet the need for rAAV supply demands, 

perhaps it is a necessary avenue to investigate since faster growth rates can reduce production 

times and material costs. 

Other avenues that can be done to achieve this fast-growing producer or packaging cell 

line goal is to generate an E1 harboring cell line for a cell line that is known to be fast growing 

and commonly being used in industrial settings for biologics, namely Chinese Hamster Ovary 

(CHO) cells or Baby Hamster Kidney (BHK) cells. Once a cell line stably integrates the E1 gene, 

the methods described in Chapter 3 can be performed to create a fast-growing packaging cell 

line that can use methods described in Chapter 2 to generate a rAAV product in suspension 

culture.  
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APPENDIX A – EXCLUSION CRITERIA AND RAW TRANSMISSION ELECTRON 
IMAGES 

 

  



220 

XX2-in-Puro-AAVS1 Clone 152.69 infected with Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) 
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XX2-in-Puro-AAVS1 Clone 152.74 infected with Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1) 
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Triple plasmid transfection for AAV2-CMV-LacZ-nLs 
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Domiphen bromide 0 mM for AAV8 
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Domiphen bromide 3 mM for AAV8 
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Domiphen bromide 5 mM for AAV8 
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APPENDIX B – PROGRAM OUTPUTS AND SOURCE CODE FOR PROGRAM IN THE 
SECOND AIM  
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'The Exact of Partial Match Function for Direct Strand of DNA sequence 

 

Sub Find() 

  

 Dim str0 As String 

 Dim str1 As String 

 Dim str2 As String 

 Dim a As Integer 

 

 Application.ScreenUpdating = False 

 Application.Calculation = xlCalculationManual 

 Dim s As String 

 For Each c In ActiveSheet.UsedRange 

  s = c.Value 

  If Trim(Application.Clean(s)) <> s Then 

   s = Trim(Application.Clean(s)) 

   c.Value = s 

  End If 

 Next 

 Application.ScreenUpdating = True 

 Application.Calculation = xlCalculationAutomatic 

 

'uppercase function 

 Application.ScreenUpdating = False 

 

 Dim Cell As Range 

 For Each Cell In Range("$B$1:" & _  

 Range("$B$1").SpecialCells(xlLastCell).Address) 

  If Len(Cell) > 0 Then Cell = UCase(Cell) 

 Next Cell 
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 Application.ScreenUpdating = True 

 

'clear contents 

 Sheet1.Range("C10:AZZ25, C27:AZZ42, C44:AZZ59, C61:AZZ76").CLEARCONTENTS 

 str0 = Sheet1.Range("B3").Value 'REV COMP STRAND SEQUENCE 

 str1 = Sheet1.Range("B2").Value 'DIRECT STRAND SEQUENCE 

 str2 = Sheet1.Range("B1").Value 'crRNA SEQUENCE 

 str3 = "AGG" 

 str4 = "CGG"  

 str5 = "GGG" 

 str6 = "TGG" 

 str7 = "AAG" 

 str8 = "CAG" 

 str9 = "GAG" 

 str10 = "TAG" 

 a = Len(str2) 

  

 If Sheet1.Range("D1").Value = 0 Then 

  MsgBox "Enter Number of Off-Target Mismatches to Consider in Cell D1(value _ 

   must be greater than 0. Recommended to enter value at 5)." 

  GoTo 18 

 End If 

18 

 If Sheet1.Range("B1").Value = 0 Then 

  If Sheet1.Range("B2").Value = 0 Then 

   MsgBox "Enter crRNA and Sequence of Interest in Cell B1 and Cell B2, _ 

    respectively." 

   GoTo 17 

  Else 

   MsgBox "Enter crRNA sequence in Cell B1" 
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   GoTo 17 

  End If 

 Else 

  If Sheet1.Range("B2").Value = 0 Then 

   MsgBox "Enter Sequence of Interest in Cell B2" 

   GoTo 17 

  End If 

 End If 

 

If ATCGcheck(str1) = "fail" Then 

 MsgBox "Make sure the sequence entered has only nucleotides A, T, C, and G. _ 

  Be sure to delete any whitespaces (e.g. spaces)." 

 GoTo 17 

End If 

 

If ATCGcheck(str2) = "fail" Then 

 MsgBox "Make sure the sequence entered has only nucleotides A, T, C,and G. _ 

  Be sure to delete any whitespaces (e.g. spaces)." 

 GoTo 17 

End If 

 

 i = 1 

 col = 3 

1 

 'InStr(starting index, sequence, subsequence) --> returns the index where 

 'the subsequence is found in the sequence (returns 0 if none found) 

 

 'AGG EXACT MATCH 

 ind = InStr(i, str1, str3) 

 If ind <> 0 Then 
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  If ind - a < 0 Then 

   Sheet1.Cells(11, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

    If Sheet1.Cells(11, col).Value <> 0 Then 

     If ind - 1 <> 0 Then 

      Sheet1.Cells(10, col).Value = Len(str1) - (a - ind) 

     Else 

      Sheet1.Cells(10, col).Value = Len(str1) - a + 1 

     End If 

     Sheet1.Cells(12, col).Value2 = _ 

      possibleDSB(ind, str1, str2, "number", "exact") 

     Sheet1.Cells(13, col).Value = "N/A Exact Match was Found" 

     col = col + 1 

    End If 

  Else 

   Sheet1.Cells(11, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(11, col).Value <> 0 Then 

     If ind - a = 0 Then 

      Sheet1.Cells(10, col).Value = Len(str1) 

     Else 

      Sheet1.Cells(10, col).Value = ind - a 

     End If 

    Sheet1.Cells(12, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(13, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 
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  GoTo 1 

 End If 

 

 i = 1 

 col = 3 

2 

 'CGG EXACT MATCH 

 ind = InStr(i, str1, str4) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(15, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

    If Sheet1.Cells(15, col).Value <> 0 Then 

     If ind - 1 <> 0 Then 

      Sheet1.Cells(14, col).Value = Len(str1) - (a - ind) 

     Else 

      Sheet1.Cells(14, col).Value = Len(str1) - a + 1 

     End If 

     Sheet1.Cells(16, col).Value2 = _ 

      possibleDSB(ind, str1, str2, "number", "exact") 

     Sheet1.Cells(17, col).Value = "N/A Exact Match was Found" 

     col = col + 1 

    End If 

  Else 

   Sheet1.Cells(15, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(15, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(14, col).Value = Len(str1) 

    Else 
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     Sheet1.Cells(14, col).Value = ind - a 

    End If 

    Sheet1.Cells(16, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(17, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 2 

 End If 

 i = 1 

 col = 3 

3 

 'GGG EXACT MATCH 

 ind = InStr(i, str1, str5) 

  If ind <> 0 Then 

   If ind - a < 0 Then 

    Sheet1.Cells(19, col).Value = _ 

     possibleDSB(ind, str1, str2, "Nothing", "exact") 

    If Sheet1.Cells(19, col).Value <> 0 Then 

     If ind - 1 <> 0 Then 

      Sheet1.Cells(18, col).Value = Len(str1) - (a - ind) 

     Else 

      Sheet1.Cells(18, col).Value = Len(str1) - a + 1 

     End If 

     Sheet1.Cells(20, col).Value2 = _ 

      possibleDSB(ind, str1, str2, "number", "exact") 

     Sheet1.Cells(21, col).Value = "N/A Exact Match was Found" 

     col = col + 1 
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    End If 

   Else 

    Sheet1.Cells(19, col).Value = _ 

     possibleDSB(ind, str1, str2, "Nothing", "exact") 

    If Sheet1.Cells(19, col).Value <> 0 Then 

     If ind - a = 0 Then 

      Sheet1.Cells(18, col).Value = Len(str1) 

     Else 

      Sheet1.Cells(18, col).Value = ind - a 

     End If 

     Sheet1.Cells(20, col).Value2 = _ 

      possibleDSB(ind, str1, str2, "number", "exact") 

     Sheet1.Cells(21, col).Value = "N/A Exact Match was Found" 

     col = col + 1 

    End If 

   End If 

   i = ind + 1 

   GoTo 3 

  End If 

 i = 1 

 col = 3 

4 

 'TGG EXACT MATCH 

 ind = InStr(i, str1, str6) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(23, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(23, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 
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     Sheet1.Cells(22, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(22, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(24, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(25, col).Value = _"N/A Exact Match was Found" 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(23, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(23, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(22, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(22, col).Value = ind - a 

    End If 

    Sheet1.Cells(24, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(25, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 4 

 End If 

  

 i = 1 

 col = 3 
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5 

 'AAG EXACT MATCH 

 ind = InStr(i, str1, str7) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(28, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(28, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(27, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(27, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(29, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(30, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(28, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(28, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(27, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(27, col).Value = ind - a 

    End If 

    Sheet1.Cells(29, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 
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    Sheet1.Cells(30, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 5 

 End If 

 

 i = 1 

 

 col = 3 

 

6 

 'CAG EXACT MATCH 

 ind = InStr(i, str1, str8) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(32, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(32, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(31, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(31, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(33, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(34, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 
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  Else 

   Sheet1.Cells(32, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(32, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(31, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(31, col).Value = ind - a 

    End If 

    Sheet1.Cells(33, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(34, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 6 

 End If 

 

 i = 1 

 col = 3 

 

7 

 'GAG EXACT MATCH 

 ind = InStr(i, str1, str9) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(36, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(36, col).Value <> 0 Then 
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    If ind - 1 <> 0 Then 

     Sheet1.Cells(35, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(35, col).Value = _Len(str1) - a + 1 

    End If 

    Sheet1.Cells(37, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(38, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(36, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(36, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(35, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(35, col).Value = ind - a 

    End If 

    Sheet1.Cells(37, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(38, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 7 

 End If 

 

 i = 1 
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 col = 3 

 

8 

 'TAG EXACT MATCH 

 ind = InStr(i, str1, str10) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(40, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(40, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(39, col).Value = Len(str1) - (a - ind) 

    Else  

     Sheet1.Cells(39, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(41, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(42, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(40, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "exact") 

   If Sheet1.Cells(40, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(39, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(39, col).Value = ind - a 

    End If 

    Sheet1.Cells(41, col).Value2 = _ 
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     possibleDSB(ind, str1, str2, "number", "exact") 

    Sheet1.Cells(42, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 8 

 End If 

 

 i = 1 

 col = 3 

 

9 

 'AGG PARTIAL MATCH 

 ind = InStr(i, str1, str3) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(45, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(45, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(44, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(44, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(46, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(47, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(45, col).Value) 

    col = col + 1 
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   End If 

  Else 

   Sheet1.Cells(45, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(45, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(44, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(44, col).Value = ind - a 

    End If 

    Sheet1.Cells(46, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(47, col).Value = - 

     highlightDifference1(str2, Sheet1.Cells(45,col).Value) 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 9 

 End If 

 

 i = 1 

 col = 3 

 

10 

 'CGG PARTIAL MATCH 

 ind = InStr(i, str1, str4) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(49, col).Value = _ 
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    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(49, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(48, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(48, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(50, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(51, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(49, col).Value) 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(49, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(49, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(48, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(48, col).Value = ind - a 

    End If 

    Sheet1.Cells(50, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(51, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(49, col).Value) 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 
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  GoTo 10 

 End If 

 

 i = 1 

 col = 3 

 

11 

 'GGG PARTIAL MATCH 

 ind = InStr(i, str1, str5) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(53, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(53, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(52, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(52, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(54, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(55, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(53, col).Value) 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(53, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(53, col).Value <> 0 Then 

    If ind - a = 0 Then 
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     Sheet1.Cells(52, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(52, col).Value = ind - a 

    End If 

    Sheet1.Cells(54, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(55, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(53, col).Value) 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 11 

 End If 

 

 i = 1 

 col = 3 

 

12 

 'TGG PARTIAL MATCH 

 ind = InStr(i, str1, str6) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(57, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(57, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(56, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(56, col).Value = Len(str1) - a + 1 
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    End If 

    Sheet1.Cells(58, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(59, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(57, col).Value) 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(57, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(57, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(56, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(56, col).Value = ind - a 

    End If 

    Sheet1.Cells(58, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(59, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(57, col).Value) 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 12 

 End If 

 

 i = 1 

 col = 3 
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13 

 'AAG PARTIAL MATCH 

 ind = InStr(i, str1, str7) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(62, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(62, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(61, col).Value = _Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(61, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(63, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(64, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(62, col).Value) 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(62, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(62, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(61, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(61, col).Value = ind - a 

    End If 

    Sheet1.Cells(63, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 
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    Sheet1.Cells(64, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(62, col).Value) 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 13 

 End If 

  

 i = 1 

 col = 3 

 

14 

 'CAG PARTIAL MATCH 

 ind = InStr(i, str1, str8) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(66, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(66, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(65, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(65, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(67, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(68, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(66, col).Value) 

    col = col + 1 
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   End If 

  Else 

   Sheet1.Cells(66, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(66, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(65, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(65, col).Value = ind - a 

    End If 

    Sheet1.Cells(67, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(68, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(66, col).Value) 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 14 

 End If 

 

 i = 1 

 col = 3 

 

15 

 'GAG PARTIAL MATCH 

 ind = InStr(i, str1, str9) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(70, col).Value = _ 
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    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(70, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(69, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(69, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(71, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(72, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(70, col).Value) 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(70, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(70, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(69, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(69, col).Value = ind - a 

    End If 

    Sheet1.Cells(71, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(72, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(70, col).Value) 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 
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  GoTo 15 

 End If 

 

 i = 1 

 col = 3 

 

16 

 'TAG PARTIAL MATCH 

 ind = InStr(i, str1, str10) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(74, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(74, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(73, col).Value = Len(str1) - (a - ind) 

    Else 

     Sheet1.Cells(73, col).Value = Len(str1) - a + 1 

    End If 

    Sheet1.Cells(75, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(76, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(74, col).Value) 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(74, col).Value = _ 

    possibleDSB(ind, str1, str2, "Nothing", "partial") 

   If Sheet1.Cells(74, col).Value <> 0 Then 

    If ind - a = 0 Then 
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     Sheet1.Cells(73, col).Value = Len(str1) 

    Else 

     Sheet1.Cells(73, col).Value = ind - a 

    End If 

    Sheet1.Cells(75, col).Value2 = _ 

     possibleDSB(ind, str1, str2, "number", "partial") 

    Sheet1.Cells(76, col).Value = _ 

     highlightDifference1(str2, Sheet1.Cells(74, col).Value) 

    col = col + 1 

   End If 

  End If 

  i = ind + 1 

  GoTo 16 

 End If 

 

 Range("B3").Select 

 ActiveCell.FormulaR1C1 = "=revstr(R2C2)" 

 

'SELECT FOR AND MOVE TOWARDS THOSE THAT HAVE RESULTS 

 

If WorksheetFunction.CountA(Sheet1.Range("C10:C25")) = 0 Then 

 If WorksheetFunction.CountA(Sheet1.Range("C27:C42")) = 0 Then 

  If WorksheetFunction.CountA(Sheet1.Range("C44:C59")) = 0 Then 

   If WorksheetFunction.CountA(Sheet1.Range("C61:C76")) = 0 Then 

    ActiveWindow.ScrollRow = 1 

    Sheet1.Range("B1").Select 

    MsgBox "No Exact or Partial Matches in the Direct _ 

    Strand Were Found" 

    GoTo 17 

   Else 
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    ActiveWindow.ScrollRow = 60 

    Sheet1.Range("A60").Select 

    GoTo 17 

   End If 

  Else 

   ActiveWindow.ScrollRow = 43 

   Sheet1.Range("A43").Select 

   GoTo 17 

  End If 

 Else 

  ActiveWindow.ScrollRow = 26 

  Sheet1.Range("A26").Select 

  GoTo 17 

 End If 

Else 

 ActiveWindow.ScrollRow = 9 

 Module1 - 11 

 Sheet1.Range("A9").Select 

 GoTo 17 

End If 

 

17 

 

End Sub 

 

Sub scroll() 

 

ActiveWindow.ScrollRow = 1 

ActiveWindow.ScrollColumn = 1 

Sheet1.Range("B1").Select 
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End Sub 

'The Clear contents button macro 

Sub CLEARCONTENTS() 

 

Range("B1:B2, G1:AZZ6, C10:AZZ25, C27:AZZ42, C44:AZZ59, C61:AZZ76,C80:AZZ95, _ 

C97:AZZ112, C114:AZZ129, C131:AZZ146").Select 

Range("B1").Activate 

Selection.CLEARCONTENTS 

Range("B3").Select 

ActiveCell.FormulaR1C1 = "=revstr(R2C2)" 

Range("B1").Select 

 

End Sub 
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'Converting the direct strand sequence into the reverse complementary sequence 

 

Function revstr(c) 

Dim i As Long 

Dim newstr As String 

 

i = Len(c) 

For i = i To 1 Step -1 

Select Case UCase(mid(c, i, 1)) 

Case "A" 

newstr = newstr & "T" 

Case "C" 

newstr = newstr & "G" 

Case "G" 

newstr = newstr & "C" 

Case "T" 

newstr = newstr & "A" 

End Select 

Next 

 

revstr = newstr 

End Function 
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'The Exact or Partial Match Function for Reverse Complementary Strand of DNA sequence 

 

Sub Find() 

 

Dim str0 As String 

Dim str1 As String 

Dim str2 As String 

Dim a As Integer 

 

Application.ScreenUpdating = False 

Application.Calculation = xlCalculationManual 

Dim s As String 

For Each c In ActiveSheet.UsedRange 

s = c.Value 

If Trim(Application.Clean(s)) <> s Then 

s = Trim(Application.Clean(s)) 

c.Value = s 

End If 

Next 

Application.ScreenUpdating = True 

Application.Calculation = xlCalculationAutomatic 

 

'uppercase function 

Application.ScreenUpdating = False 

Dim Cell As Range 

For Each Cell In Range("$B$1:" & Range("$B$1").SpecialCells(xlLastCell).Address) 

If Len(Cell) > 0 Then Cell = UCase(Cell) 

Next Cell 

 

Application.ScreenUpdating = True 
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'clear contents 

Sheet1.Range("C80:AZZ95, C97:AZZ112, C114:AZZ129, C131:AZZ146").CLEARCONTENTS 

 

str0 = Sheet1.Range("B3").Value 'REV COMP STRAND SEQUENCE 

str1 = Sheet1.Range("B2").Value 'DIRECT STRAND SEQUENCE 

str2 = Sheet1.Range("B1").Value 'crRNA SEQUENCE 

str3 = "AGG" 

str4 = "CGG" 

str5 = "GGG" 

str6 = "TGG" 

str7 = "AAG" 

str8 = "CAG" 

str9 = "GAG" 

str10 = "TAG" 

a = Len(str2) 

 

If Sheet1.Range("D1").Value = 0 Then 

 MsgBox "Enter Number of Off-Target Mismatches to Consider in Cell D1 _ 

  (value must be greater than 0. Recommended to enter value at 5)" 

 GoTo 18 

End If 

 

18 

 

If Sheet1.Range("B1").Value = 0 Then 

 If Sheet1.Range("B2").Value = 0 Then 

  MsgBox "Enter crRNA and Sequence of Interest in Cell B1 and Cell B2, _  

  respectively." 

  GoTo 17 

 Else 
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  MsgBox "Enter crRNA sequence in Cell B1" 

  GoTo 17 

 End If 

Else 

 If Sheet1.Range("B2").Value = 0 Then 

  MsgBox "Enter Sequence of Interest in Cell B2" 

  GoTo 17 

 End If 

End If 

 

If ATCGcheck(str0) = "fail" Then 

 MsgBox "Make sure the sequence entered has only nucleotides A, T, C, and G. Be sure _ 

  to delete any whitespaces (e.g. spaces)" 

 GoTo 17 

End If 

 

If ATCGcheck(str1) = "fail" Then 

 MsgBox "Make sure the sequence entered has only nucleotides A, T, C, and G. Be sure _ 

  to delete any whitespaces (e.g. spaces)" 

 GoTo 17 

End If 

 

i = 1 

col = 3 

 

1 

'InStr(starting index, sequence, subsequence) --> returns the index where 

'the subsequence is found in the sequence (returns 0 if none found) 

 

'AGG EXACT MATCH 
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ind = InStr(i, str0, str3) 

 If ind <> 0 Then 

  If ind - a < 0 Then 

   Sheet1.Cells(81, col).Value = _ 

    possibleDSB(ind, str0, str2, "Nothing", "exact") 

   If Sheet1.Cells(81, col).Value <> 0 Then 

    If ind - 1 <> 0 Then 

     Sheet1.Cells(80, col).Value = Len(str0) - (a - ind) 

    Else 

     Sheet1.Cells(80, col).Value = Len(str0) - a + 1 

    End If 

    Sheet1.Cells(82, col).Value2 = _ 

     possibleDSB(ind, str0, str2, "number", "exact") 

    Sheet1.Cells(83, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 

  Else 

   Sheet1.Cells(81, col).Value = _ 

    possibleDSB(ind, str0, str2, "Nothing", "exact") 

   If Sheet1.Cells(81, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(80, col).Value = Len(str0) 

    Else 

     Sheet1.Cells(80, col).Value = ind - a 

    End If 

    Sheet1.Cells(82, col).Value2 = _ 

     possibleDSB(ind, str0, str2, "number", "exact") 

    Sheet1.Cells(83, col).Value = "N/A Exact Match was Found" 

    col = col + 1 

   End If 
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  End If 

  i = ind + 1 

  GoTo 1 

 End If 

 

i = 1 

col = 3 

 

2 

 

'CGG EXACT MATCH 

ind = InStr(i, str0, str4) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(85, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(85, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(84, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(84, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(86, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(87, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(85, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 
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  If Sheet1.Cells(85, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(84, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(84, col).Value = ind - a 

   End If 

   Sheet1.Cells(86, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(87, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 2 

End If 

 

i = 1 

col = 3 

 

3 

'GGG EXACT MATCH 

ind = InStr(i, str0, str5) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(89, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(89, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(88, col).Value = Len(str0) - (a - ind) 

   Else 
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    Sheet1.Cells(88, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(90, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(91, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(89, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(89, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(88, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(88, col).Value = ind – a 

   End If 

   Sheet1.Cells(90, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(91, col).Value = _ 

    "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 3 

End If 

 

i = 1 

col = 3 
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4 

'TGG EXACT MATCH 

ind = InStr(i, str0, str6) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(93, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(93, col).Value <> 0 Then 

  If ind - 1 <> 0 Then 

   Sheet1.Cells(92, col).Value = Len(str0) - (a - ind) 

  Else 

   Sheet1.Cells(92, col).Value = Len(str0) - a + 1 

  End If 

  Sheet1.Cells(94, col).Value2 = _ 

   possibleDSB(ind, str0, str2, "number", "exact") 

  Sheet1.Cells(95, col).Value = "N/A Exact Match was Found" 

  col = col + 1 

 End If 

Else 

 Sheet1.Cells(93, col).Value = _ 

  possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(93, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(92, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(92, col).Value = ind - a 

   End If 

   Sheet1.Cells(94, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(95, col).Value = "N/A Exact Match was Found" 
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   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 4 

End If 

 

i = 1 

col = 3 

 

5 

'AAG EXACT MATCH 

ind = InStr(i, str0, str7) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(98, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(98, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(97, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(97, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(99, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(100, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(98, col).Value = _ 
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   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(98, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(97, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(97, col).Value = ind - a 

   End If 

   Sheet1.Cells(99, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(100, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 5 

End If 

 

i = 1 

col = 3 

 

6 

'CAG EXACT MATCH 

ind = InStr(i, str0, str8) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(102, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(102, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(101, col).Value = Len(str0) - (a - ind) 
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   Else 

    Sheet1.Cells(101, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(103, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(104, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(102, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(102, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(101, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(101, col).Value = ind - a 

   End If 

   Sheet1.Cells(103, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(104, col).Value = _ 

    "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 6 

End If 

 

i = 1 

col = 3 
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7 

'GAG EXACT MATCH 

ind = InStr(i, str0, str9) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(106, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(106, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(105, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(105, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(107, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(108, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(106, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(106, col).Value <> 0 Then 

  If ind - a = 0 Then 

   Sheet1.Cells(105, col).Value = Len(str0) 

  Else 

   Sheet1.Cells(105, col).Value = ind - a 

  End If 

  Sheet1.Cells(107, col).Value2 = _ 

   possibleDSB(ind, str0, str2, "number", "exact") 
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  Sheet1.Cells(108, col).Value = "N/A Exact Match was Found" 

  col = col + 1 

 End If 

End If 

i = ind + 1 

GoTo 7 

End If 

 

i = 1 

col = 3 

 

8 

'TAG EXACT MATCH 

ind = InStr(i, str0, str10) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(110, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(110, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(109, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(109, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(111, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(112, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 Else 
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  Sheet1.Cells(110, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "exact") 

  If Sheet1.Cells(110, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(109, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(109, col).Value = ind - a 

   End If 

   Sheet1.Cells(111, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "exact") 

   Sheet1.Cells(112, col).Value = "N/A Exact Match was Found" 

   col = col + 1 

  End If 

 End If 

i = ind + 1 

GoTo 8 

End If 

 

i = 1 

col = 3 

 

9 

'AGG PARTIAL MATCH 

ind = InStr(i, str0, str3) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(115, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(115, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 
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    Sheet1.Cells(114, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(114, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(116, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(117, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(115, col).Value) 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(115, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(115, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(114, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(114, col).Value = ind - a 

   End If 

   Sheet1.Cells(116, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(117, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(115, col).Value) 

   col = col + 1 

  End If 

 End If 

i = ind + 1 

GoTo 9 

End If 
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i = 1 

col = 3 

 

10 

'CGG PARTIAL MATCH 

ind = InStr(i, str0, str4) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(119, col).Value = _ 

  possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(119, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(118, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(118, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(120, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(121, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(119, col).Value) 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(119, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(119, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(118, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(118, col).Value = ind - a 
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   End If 

   Sheet1.Cells(120, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(121, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(119, col).Value) 

   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 10 

End If 

 

i = 1 

col = 3 

 

11 

'GGG PARTIAL MATCH 

ind = InStr(i, str0, str5) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(123, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(123, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(122, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(122, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(124, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 
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   Sheet1.Cells(125, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(123, col).Value) 

   col = col + 1 

  End If 

  Else 

   Sheet1.Cells(123, col).Value = _ 

    possibleDSB(ind, str0, str2, "Nothing", "partial") 

   If Sheet1.Cells(123, col).Value <> 0 Then 

    If ind - a = 0 Then 

     Sheet1.Cells(122, col).Value = Len(str0) 

    Else 

     Sheet1.Cells(122, col).Value = ind - a 

    End If 

    Sheet1.Cells(124, col).Value2 = _ 

     possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(125, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(123, col).Value) 

   col = col + 1 

  End If 

 End If 

i = ind + 1 

GoTo 11 

End If 

 

i = 1 

col = 3 

 

12 

'TGG PARTIAL MATCH 

ind = InStr(i, str0, str6) 



283 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(127, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(127, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(126, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(126, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(128, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(129, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(127, col).Value) 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(127, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(127, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(126, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(126, col).Value = ind - a 

   End If 

   Sheet1.Cells(128, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(129, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(127, col).Value) 

   col = col + 1 
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  End If 

End If 

i = ind + 1 

GoTo 12 

End If 

 

i = 1 

col = 3 

 

13 

'AAG PARTIAL MATCH 

ind = InStr(i, str0, str7) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(132, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(132, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(131, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(131, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(133, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(134, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(132, col).Value) 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(132, col).Value = _ 
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   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(132, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(131, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(131, col).Value = ind - a 

   End If 

  Sheet1.Cells(133, col).Value2 = _ 

   possibleDSB(ind, str0, str2, "number", "partial") 

  Sheet1.Cells(134, col).Value = _ 

   highlightDifference1(str2, Sheet1.Cells(132, col).Value) 

  col = col + 1 

  End If 

End If 

i = ind + 1 

GoTo 13 

End If 

 

i = 1 

col = 3 

 

14 

'CAG PARTIAL MATCH 

ind = InStr(i, str0, str8) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(136, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(136, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 
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    Sheet1.Cells(135, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(135, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(137, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(138, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(136, col).Value) 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(136, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(136, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(135, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(135, col).Value = ind - a 

   End If 

   Sheet1.Cells(137, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(138, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(136, col).Value) 

   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 14 

End If 
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i = 1 

col = 3 

 

15 

'GAG PARTIAL MATCH 

ind = InStr(i, str0, str9) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(140, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(140, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(139, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(139, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(141, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(142, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(140, col).Value) 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(140, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(140, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(139, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(139, col).Value = ind - a 
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   End If 

   Sheet1.Cells(141, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(142, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(140, col).Value) 

   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 15 

End If 

 

i = 1 

col = 3 

 

16 

'TAG PARTIAL MATCH 

ind = InStr(i, str0, str10) 

If ind <> 0 Then 

 If ind - a < 0 Then 

  Sheet1.Cells(144, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(144, col).Value <> 0 Then 

   If ind - 1 <> 0 Then 

    Sheet1.Cells(143, col).Value = Len(str0) - (a - ind) 

   Else 

    Sheet1.Cells(143, col).Value = Len(str0) - a + 1 

   End If 

   Sheet1.Cells(145, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 
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   Sheet1.Cells(146, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(144, col).Value) 

   col = col + 1 

  End If 

 Else 

  Sheet1.Cells(144, col).Value = _ 

   possibleDSB(ind, str0, str2, "Nothing", "partial") 

  If Sheet1.Cells(144, col).Value <> 0 Then 

   If ind - a = 0 Then 

    Sheet1.Cells(143, col).Value = Len(str0) 

   Else 

    Sheet1.Cells(143, col).Value = ind - a 

   End If 

   Sheet1.Cells(145, col).Value2 = _ 

    possibleDSB(ind, str0, str2, "number", "partial") 

   Sheet1.Cells(146, col).Value = _ 

    highlightDifference1(str2, Sheet1.Cells(144, col).Value) 

   col = col + 1 

  End If 

 End If 

 i = ind + 1 

 GoTo 16 

End If 

 

Range("B3").Select 

ActiveCell.FormulaR1C1 = "=revstr(R2C2)" 

 

'SELECT FOR AND MOVE TOWARDS THOSE THAT HAVE RESULTS 

If WorksheetFunction.CountA(Sheet1.Range("C80:C95")) = 0 Then 

 If WorksheetFunction.CountA(Sheet1.Range("C97:C112")) = 0 Then 
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  If WorksheetFunction.CountA(Sheet1.Range("C114:C129")) = 0 Then 

   If WorksheetFunction.CountA(Sheet1.Range("C131:C146")) = 0 Then 

    ActiveWindow.ScrollRow = 1 

    Sheet1.Range("B1").Select 

    MsgBox "No Exact or Partial Matches in the Reverse _ 

     Complementary Strand Were Found" 

    GoTo 17 

   Else 

    ActiveWindow.ScrollRow = 130 

    Sheet1.Range("A130").Select 

    GoTo 17 

   End If 

  Else 

   ActiveWindow.ScrollRow = 113 

   Sheet1.Range("A113").Select 

   GoTo 17 

  End If 

 Else 

   ActiveWindow.ScrollRow = 96 

   Sheet1.Range("A96").Select 

   GoTo 17 

 End If 

Else 

 ActiveWindow.ScrollRow = 77 

 Sheet1.Range("A77").Select 

 GoTo 17 

End If 

 

17 
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End Sub 

Function highlightDifference1(refcell As String, testCell As String) 

Dim bolSame As Boolean 

Dim refString As String, testString As String, s As String, strResult As String 

Dim i1 As Long, i2 As Long, i As Long 

 

bolSame = True 

i1 = 1: i2 = 1 

 

For i = 1 To Len(refcell) 

refString = mid(refcell, i1, 1) 

testString = mid(testCell, i2, 1) 

s = testString 

 

If refString = testString Then 

 If bolSame = False Then 

  bolSame = True 

  s = ")" & s 

  ' s = "</strong></font>" & s 

 End If 

 i1 = i1 + 1: i2 = i2 + 1 

Else 

 If bolSame = True Then 

  bolSame = False 

  s = "(" & s 

  ' s = "<font color=red><strong>" & s 

 End If 

 i1 = i1 + 1: i2 = i2 + 1 

End If 

strResult = strResult & s 
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Next 

 

If bolSame = False Then 

 strResult = strResult & ")" 

End If 

 

highlightDifference1 = strResult 

End Function 
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'This locates the position number in the sequence I enter and compares it with crRNA 

'character by character 

Function possibleDSB(ByVal position As Integer, ByVal mysequence As String, _ 

 ByVal crRNA As String, ByVal output As String, ByVal expa As String) 

 

Dim newtempstring As String 

Dim i As Integer 

Dim g As Integer 

Dim b As Integer 

Dim anothernewtempstring As String 

Dim a As Integer 

Dim m As Integer 

 

 

m = Sheet1.Range("D1").Value 

 

If position > Len(mysequence) Then 

 position = position - Len(mysequence) 

End If 

 

a = Len(crRNA) 

i = 0 

g = 0 

b = 0 

Do 

 If position > a Then 

newtempstring = mid(mysequence, position - a, a) 

If mid(newtempstring, 1 + i, 1) = mid(crRNA, 1 + i, 1) Then 

g = g + 1 

GoTo 1 
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  Else: b = b + 1 

GoTo 1 

End If 

 Else 

If position = 0 Then 

anothernewtempstring = "" 

possibleDSB = anothernewtempstring 

GoTo 2 

Else 

 If position < a Then 

  If position - 1 <> 0 Then 

   newtempstring = _ 

    Right(mysequence, Abs(position - a - 1)) _ 

    & Left(mysequence, position) 

  Else 

   newtempstring = Right(mysequence, a) 

  End If 

 

  If mid(newtempstring, 1 + i, 1) = mid(crRNA, 1 + i, 1) Then 

   g = g + 1 

  Else: b = b + 1 

   GoTo 1 

  End If 

 Else 

  If position = a Then 

   newtempstring = _ 

    Right(mysequence, 1) & mid(mysequence, 1, a - 1) 

   If mid(newtempstring, 1 + i, 1) = _ 

   mid(crRNA, 1 + i, 1) Then 

    g = g + 1 
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   Else: b = b + 1 

     GoTo 1 

    End If 

   End If 

  End If 

 End If 

1 

i = i + 1 

End If 

Loop Until i = a 

 

If expa = "partial" Then 

If b > 0 And b <= m Then 

 If output = "number" Then 

  possibleDSB = b & " mismatches found in sequence" 

  GoTo 2 

 Else 

  If output = "Nothing" Then 

   possibleDSB = newtempstring 

   GoTo 2 

  End If 

 End If 

 Else 

  possibleDSB = "" 

 End If 

Else 

If g = a Then 

 If output = "number" Then 

  possibleDSB = "0. Exact Match was Found" 

  GoTo 2 
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 Else 

  If output = "Nothing" Then 

   possibleDSB = newtempstring 

   GoTo 2 

  End If 

 End If 

Else 

 possibleDSB = "" 

End If 

End If 

 

2 

 

End Function 
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Function ATCGcheck(refcell As String) 

Dim lngRow As Long 

Dim response As Integer 

Dim a As Integer 

Dim b As Integer 

Dim c As Integer 

Dim d As Integer 

Dim e As Integer 

Dim f As Integer 

a = 0 

b = 0 

c = 0 

d = 0 

strA = "A" 

strC = "C" 

strG = "G" 

strT = "T" 

lngRow = 1 

 

1 

response = InStr(lngRow, refcell, strA) 

If response <> 0 Then 

a = a + 1 

lngRow = response + 1 

GoTo 1 

End If 

 

lngRow = 1 

 

2 



298 

response = InStr(lngRow, refcell, strC) 

If response <> 0 Then 

b = b + 1 

lngRow = response + 1 

GoTo 2 

End If 

 

lngRow = 1 

 

3 

response = InStr(lngRow, refcell, strG) 

If response <> 0 Then 

c = c + 1 

lngRow = response + 1 

GoTo 3 

End If 

 

lngRow = 1 

 

4 

response = InStr(lngRow, refcell, strT) 

If response <> 0 Then 

d = d + 1 

lngRow = response + 1 

GoTo 4 

End If 

 

e = a + b + c + d 

f = Len(refcell) 
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If e < f Then 

ATCGcheck = "fail" 

GoTo 5 

Else 

ATCGcheck = "success" 

GoTo 5 

End If 

 

5 

 

End Function 
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Sub interpretdirect() 

ActiveWindow.ScrollRow = 7 

ActiveWindow.ScrollColumn = 1 

End Sub 

 

 

Sub interpretrev() 

ActiveWindow.ScrollRow = 77 

ActiveWindow.ScrollColumn = 1 

End Sub 
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APPENDIX C – STATISTICAL DATA FOR THE SECOND AIM 
 

 

Within each column  compare 
rows 

Number of families 4
Number of comparisons per family 6

Alpha 0.05

Dunnett's multiple comparisons test Mean Diff. 95.00% CI of diff. Significant? Summary Adjusted
P Value

    Before infection vs. Ad-GFP -2.55 -135 to 129.9 No ns 0.9999
    Before infection vs. wtAd -6.251 -138.7 to 126.2 No ns 0.9998

    Before infection vs. Ad-Cre-(E3)-AAV2.1-
CMV-LacZ-nLs(E1)

-120.1 -252.6 to 12.36 No ns 0.0891

    Before infection vs. Ad-Cre-(E3)-AAV-ds-
GFP(E1)

-230.3 -362.7 to -97.84 Yes *** 0.0001

    Before infection vs. Ad-Cre-(E3) -568 -700.4 to -435.5 Yes **** 0.0001
    Before infection vs. Ad-Cre-(E1) -950.9 -1083 to -818.4 Yes **** 0.0001

    Before infection vs. Ad-GFP 21.46 -111 to 153.9 No ns 0.9955
    Before infection vs. wtAd 4.329 -128.1 to 136.8 No ns 0.9999

    Before infection vs. Ad-Cre-(E3)-AAV2.1-
CMV-LacZ-nLs(E1)

-236.8 -369.3 to -104.4 Yes **** 0.0001

    Before infection vs. Ad-Cre-(E3)-AAV-ds-
GFP(E1)

-197 -329.4 to -64.5 Yes ** 0.0013

    Before infection vs. Ad-Cre-(E3) -649.7 -782.2 to -517.3 Yes **** 0.0001
    Before infection vs. Ad-Cre-(E1) -1251 -1383 to -1118 Yes **** 0.0001

    Before infection vs. Ad-GFP 2.073 -130.4 to 134.5 No ns 0.9999
    Before infection vs. wtAd 2.622 -129.8 to 135.1 No ns 0.9999

    Before infection vs. Ad-Cre-(E3)-AAV2.1-
CMV-LacZ-nLs(E1)

-6.881 -139.3 to 125.6 No ns 0.9998

    Before infection vs. Ad-Cre-(E3)-AAV-ds-
GFP(E1)

-10.55 -143 to 121.9 No ns 0.9997

    Before infection vs. Ad-Cre-(E3) -119.2 -251.7 to 13.26 No ns 0.0928
    Before infection vs. Ad-Cre-(E1) -130 -262.4 to 2.478 No ns 0.0564

    Before infection vs. Ad-GFP 0.005264 -132.4 to 132.5 No ns 0.9999
    Before infection vs. wtAd 0.002771 -132.5 to 132.5 No ns 0.9999

    Before infection vs. Ad-Cre-(E3)-AAV2.1-
CMV-LacZ-nLs(E1)

0.002417 -132.5 to 132.5 No ns 0.9999

    Before infection vs. Ad-Cre-(E3)-AAV-ds-
GFP(E1)

0.004993 -132.4 to 132.5 No ns 0.9999

    Before infection vs. Ad-Cre-(E3) 0.004674 -132.4 to 132.5 No ns 0.9999
    Before infection vs. Ad-Cre-(E1) 0.004788 -132.4 to 132.5 No ns 0.9999

Test details Mean 1 Mean 2 Mean Diff. SE of diff. N1 N2 q DF

    Before infection vs. Ad-GFP 61.04 63.59 -2.55 50.04 3 3 0.05096 56
    Before infection vs. wtAd 61.04 67.29 -6.251 50.04 3 3 0.1249 56

    Before infection vs. Ad-Cre-(E3)-AAV2.1-
CMV-LacZ-nLs(E1)

61.04 181.1 -120.1 50.04 3 3 2.4 56

    Before infection vs. Ad-Cre-(E3)-AAV-ds-
GFP(E1)

61.04 291.3 -230.3 50.04 3 3 4.603 56

    Before infection vs. Ad-Cre-(E3) 61.04 629 -568 50.04 3 3 11.35 56
    Before infection vs. Ad-Cre-(E1) 61.04 1012 -950.9 50.04 3 3 19 56

    Before infection vs. Ad-GFP 121.3 99.82 21.46 50.04 3 3 0.4289 56
    Before infection vs. wtAd 121.3 117 4.329 50.04 3 3 0.08651 56

    Before infection vs. Ad-Cre-(E3)-AAV2.1-
CMV-LacZ-nLs(E1)

121.3 358.1 -236.8 50.04 3 3 4.734 56

    Before infection vs. Ad-Cre-(E3)-AAV-ds-
GFP(E1)

121.3 318.2 -197 50.04 3 3 3.936 56

    Before infection vs. Ad-Cre-(E3) 121.3 771 -649.7 50.04 3 3 12.99 56
    Before infection vs. Ad-Cre-(E1) 121.3 1372 -1251 50.04 3 3 24.99 56

    Before infection vs. Ad-GFP 6.089 4.016 2.073 50.04 3 3 0.04143 56
    Before infection vs. wtAd 6.089 3.468 2.622 50.04 3 3 0.05239 56

    Before infection vs. Ad-Cre-(E3)-AAV2.1-
CMV-LacZ-nLs(E1)

6.089 12.97 -6.881 50.04 3 3 0.1375 56

    Before infection vs. Ad-Cre-(E3)-AAV-ds-
GFP(E1)

6.089 16.64 -10.55 50.04 3 3 0.2108 56

    Before infection vs. Ad-Cre-(E3) 6.089 125.3 -119.2 50.04 3 3 2.382 56
    Before infection vs. Ad-Cre-(E1) 6.089 136.1 -130 50.04 3 3 2.598 56

    Before infection vs. Ad-GFP 0.006526 0.001262 0.005264 50.04 3 3 0.000105 56
    Before infection vs. wtAd 0.006526 0.003755 0.002771 50.04 3 3 5.54E-05 56

    Before infection vs. Ad-Cre-(E3)-AAV2.1-
CMV-LacZ-nLs(E1)

0.006526 0.004109 0.002417 50.04 3 3 4.83E-05 56

    Before infection vs. Ad-Cre-(E3)-AAV-ds-
GFP(E1)

0.006526 0.001533 0.004993 50.04 3 3 9.98E-05 56

    Before infection vs. Ad-Cre-(E3) 0.006526 0.001852 0.004674 50.04 3 3 9.34E-05 56
    Before infection vs. Ad-Cre-(E1) 0.006526 0.001738 0.004788 50.04 3 3 9.57E-05 56

  XX2-in-Puro-AAVS1 Clone 152.74

  XX2-in-Puro-AAVS1 Clone 152.69

  XX2-in-Puro Clone 253

  HEK293

Two-way ANOVA of Rep Gene Amplification 48 Hours Post Infection of Ad Constructs

  XX2-in-Puro-AAVS1 Clone 152.74

  XX2-in-Puro-AAVS1 Clone 152.69

  XX2-in-Puro Clone 253

  HEK293
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Within each column  compare 
rows 

Number of families 3
Number of comparisons per family 5

Alpha 0.05

Dunnett's multiple comparisons test Mean 95.00% CI of diff. Significant? Summary Adjusted P Value

    0h vs. 12h -86.43 -191.5 to 18.63 No ns 0.1368
    0h vs. 24h -155.3 -260.4 to -50.24 Yes ** 0.0019
    0h vs. 48h -211.2 -316.2 to -106.1 Yes **** 0.0001
    0h vs. 72h -257.9 -362.9 to -152.8 Yes **** 0.0001
    0h vs. 96h -107.3 -212.3 to -2.219 Yes * 0.044

    0h vs. 12h -192.5 -297.6 to -87.46 Yes *** 0.0001
    0h vs. 24h -213.3 -318.3 to -108.2 Yes **** 0.0001
    0h vs. 48h -176.4 -281.4 to -71.33 Yes *** 0.0004
    0h vs. 72h -313 -418.1 to -208 Yes **** 0.0001
    0h vs. 96h -341.8 -446.9 to -236.8 Yes **** 0.0001

    0h vs. 12h -12.55 -117.6 to 92.5 No ns 0.9977
    0h vs. 24h -6.471 -111.5 to 98.59 No ns 0.9997
    0h vs. 48h -15.61 -120.7 to 89.44 No ns 0.9941
    0h vs. 72h -79.62 -184.7 to 25.44 No ns 0.1902
    0h vs. 96h -90.84 -195.9 to 14.22 No ns 0.1091

Test details Mean 1 Mean 2 Mean Diff. SE of diff. N1 N2 q DF

    0h vs. 12h 67.16 153.6 -86.43 39.92 3 3 2.165 36
    0h vs. 24h 67.16 222.5 -155.3 39.92 3 3 3.89 36
    0h vs. 48h 67.16 278.3 -211.2 39.92 3 3 5.29 36
    0h vs. 72h 67.16 325 -257.9 39.92 3 3 6.46 36
    0h vs. 96h 67.16 174.4 -107.3 39.92 3 3 2.687 36

    0h vs. 12h 41.88 234.4 -192.5 39.92 3 3 4.823 36
    0h vs. 24h 41.88 255.1 -213.3 39.92 3 3 5.342 36
    0h vs. 48h 41.88 218.3 -176.4 39.92 3 3 4.419 36
    0h vs. 72h 41.88 354.9 -313 39.92 3 3 7.842 36
    0h vs. 96h 41.88 383.7 -341.8 39.92 3 3 8.563 36

    0h vs. 12h 8.996 21.55 -12.55 39.92 3 3 0.3145 36
    0h vs. 24h 8.996 15.47 -6.471 39.92 3 3 0.1621 36
    0h vs. 48h 8.996 24.61 -15.61 39.92 3 3 0.3911 36
    0h vs. 72h 8.996 88.61 -79.62 39.92 3 3 1.995 36
    0h vs. 96h 8.996 99.84 -90.84 39.92 3 3 2.276 36

  XX2-in-Puro Clone 253

Two-way ANOVA of Rep Gene Amplification Time Course for Ad-Cre(E3)-AAV2.1-CMV-LacZ-nLs(E1)

  XX2-in-Puro-AAVS1 Clone 152.74

  XX2-in-Puro-AAVS1 Clone 152.69

  XX2-in-Puro Clone 253

  XX2-in-Puro-AAVS1 Clone 152.74

  XX2-in-Puro-AAVS1 Clone 152.69
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Within each column  compare 
rows 

Number of families 3
Number of comparisons per family 5

Alpha 0.05

Dunnett's multiple comparisons test Mean 95.00% CI of diff. Significant? Summary Adjusted P Value

    0h vs. 12h -135.4 -428 to 157.2 No ns 0.6246
    0h vs. 24h -385.8 -678.4 to -93.24 Yes ** 0.0061
    0h vs. 48h -837.9 -1131 to -545.3 Yes **** 0.0001
    0h vs. 72h -1530 -1822 to -1237 Yes **** 0.0001
    0h vs. 96h -2669 -2962 to -2376 Yes **** 0.0001

    0h vs. 12h -179.3 -471.9 to 113.3 No ns 0.3665
    0h vs. 24h -203.5 -496.1 to 89.1 No ns 0.2562
    0h vs. 48h -720.8 -1013 to -428.2 Yes **** 0.0001
    0h vs. 72h -877.2 -1170 to -584.6 Yes **** 0.0001
    0h vs. 96h -1447 -1739 to -1154 Yes **** 0.0001

    0h vs. 12h -11.95 -304.6 to 280.6 No ns 0.9999
    0h vs. 24h -24.72 -317.3 to 267.9 No ns 0.9997
    0h vs. 48h -94.43 -387 to 198.2 No ns 0.8636
    0h vs. 72h -236.7 -529.3 to 55.89 No ns 0.1469
    0h vs. 96h -255.2 -547.8 to 37.4 No ns 0.1048

Test details Mean 1 Mean 2 Mean Diff. SE of diff. N1 N2 q DF

    0h vs. 12h 58.35 193.8 -135.4 111.2 3 3 1.218 36
    0h vs. 24h 58.35 444.2 -385.8 111.2 3 3 3.47 36
    0h vs. 48h 58.35 896.3 -837.9 111.2 3 3 7.537 36
    0h vs. 72h 58.35 1588 -1530 111.2 3 3 13.76 36
    0h vs. 96h 58.35 2727 -2669 111.2 3 3 24.01 36

    0h vs. 12h 54.06 233.4 -179.3 111.2 3 3 1.613 36
    0h vs. 24h 54.06 257.6 -203.5 111.2 3 3 1.83 36
    0h vs. 48h 54.06 774.8 -720.8 111.2 3 3 6.483 36
    0h vs. 72h 54.06 931.3 -877.2 111.2 3 3 7.89 36
    0h vs. 96h 54.06 1501 -1447 111.2 3 3 13.01 36

    0h vs. 12h 9.722 21.68 -11.95 111.2 3 3 0.1075 36
    0h vs. 24h 9.722 34.44 -24.72 111.2 3 3 0.2223 36
    0h vs. 48h 9.722 104.2 -94.43 111.2 3 3 0.8494 36
    0h vs. 72h 9.722 246.4 -236.7 111.2 3 3 2.129 36
    0h vs. 96h 9.722 264.9 -255.2 111.2 3 3 2.295 36

  XX2-in-Puro Clone 253

Two-way ANOVA of Rep Gene Amplification Time Course for Ad-Cre(E3)

  XX2-in-Puro-AAVS1 Clone 152.74

  XX2-in-Puro-AAVS1 Clone 152.69

  XX2-in-Puro Clone 253

  XX2-in-Puro-AAVS1 Clone 152.74

  XX2-in-Puro-AAVS1 Clone 152.69
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Number of families 1
Number of comparisons per family 3

Alpha 0.05

Dunnett's multiple comparisons test Mean Diff. 95.00% CI of diff. Significant? Summary Adjusted P 
Value

D-?

  HEK293 vs. XX2-in-Puro-AAVS1 Clone 152.74 -0.766 -10.5 to 8.964 No ns 0.9932 A XX2-in-Puro-AAVS1 Clone 152.74
  HEK293 vs. XX2-in-Puro-AAVS1 Clone 152.69 -0.5034 -10.23 to 9.226 No ns 0.998 B XX2-in-Puro-AAVS1 Clone 152.69

  HEK293 vs. XX2-in-Puro Clone 253 0.4368 -9.293 to 10.17 No ns 0.9986 C XX2-in-Puro Clone 253

Test details Mean 1 Mean 2 Mean Diff. SE of diff. n1 n2 q DF

  HEK293 vs. XX2-in-Puro-AAVS1 Clone 152.74 20.92 21.68 -0.766 3.626 4 4 0.2112 12
  HEK293 vs. XX2-in-Puro-AAVS1 Clone 152.69 20.92 21.42 -0.5034 3.626 4 4 0.1388 12

  HEK293 vs. XX2-in-Puro Clone 253 20.92 20.48 0.4368 3.626 4 4 0.1204 12

Ordinary one-way ANOVA for Doubling Time of Packaging Cell Lines
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