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ABSTRACT 

WEI ZHAO: Molecular Characterization and Clinical Implementation of Breast Cancer Genomics 

using Massive Parallel Sequencing and Microarray 

(Under the direction of Charles M. Perou) 

 

Genomic studies have revealed the heterogeneity of breast cancer and identified “intrinsic 

molecular subtypes” with significant difference in incidence, survival and therapeutic response.  

Investigation of their clinical implications is critical for personalized therapeutics and drug 

development. The characteristics of cancer genomics require special considerations in the application 

of laboratory and computational approaches. Therefore, my research explored the use of two 

technologies, Genetically Engineered Mouse Model (GEMM) and RNA-sequencing (RNA-seq), to 

facilitate the translation of cancer biology into clinical knowledge.  

One powerful GEMM, the p53-null transplant model, was identified as a heterogeneous 

model that gave rise to multiple subtypes, including Basal-like, Luminal and Claudin-low. Molecular 

characterization identified genetic signatures of GEMM and its human counterpart and distinct 

genomic DNA copy number changes associated with each subtype. The analysis on the Claudin-low 

p53-null tumors showed that they have high expression of epithelial-to-mesenchymal transition genes 

and are enriched for tumor initiating cells, therefore revealing the stem-cell characteristics of 

Claudin-low. 

The utility of GEMM also involves preclinical drug efficacy testing. We evaluated the 

efficacy of four chemotherapeutic and/or targeted anti-cancer drugs using three well-established 

mouse models that recapitulate three human subtypes: Basal-like, Luminal B and Claudin-low. 

Additionally, we identified two gene signatures that predicted pathological complete response to 
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neoadjuvant anthracycline/taxane therapy in humans. The predictive significance was further 

validated in two large, independent cohorts of human patients, suggesting the possibility of deriving 

new biomarkers for humans from analysis of GEMM genomic data. 

  Another resource of cancer genomics is the formalin-fixed paraffin-embedded (FFPE) 

samples. Though RNA-seq has been adopted by many studies, the mRNA enrichment protocol 

(mRNA-Seq) to remove rRNA restricted its utility in FFPE. We examined two rRNA depletion 

protocols on paired fresh-frozen (FF) and FFPE samples, and compared them with mRNA-seq and 

DNA microarray. We demonstrated that Ribo-Zero-Seq provides equivalent rRNA removal 

efficiency and coverage uniformity. Both protocols have consistent transcript quantification using FF 

and FFPE, suggesting that RNA-seq can be performed on FFPE. 

My work uses multiple genomic data types to identify murine models and to develop new 

protocols for the development and evaluation of new biomarkers for human breast cancer patients.   
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CHAPTER I 

INTRODUCTION 

 

Breast cancer is the most common cancer in women in the United States. In 2013, NCI SEER 

Program reported that the estimation of new cases of breast cancer was 232,340, which represented 

14.1% of all new cancer cases in women in the U.S. The lifetime risk of developing breast cancer is 

approximately 12.3% in women [1]. On the other hand, breast cancer mortality has been remarkably 

declining in the last 20 years as a result of the application of improved screening and improved 

adjuvant systemic therapy, the latter of which was in part fueled by the development of genomic 

profiling technology. 

Breast cancer is a heterogeneous disease with respect to the incidence, histology, baseline 

prognosis and response to treatment. A small set of biomarkers have been used for many years in 

clinical practice and provide substantial prognostic and predictive information. Estrogen receptor 

(ER) status is associated with good prognosis [2] and is predictive of response to endocrine therapy 

(both for tamoxifen and aromatase inhibitors). Human epidermal growth factor receptor 2 (HER2) 

overexpression and/or amplification predicts a benefit for trastuzumab, a monoclonal antibody 

against HER2 [3].  Ki67 is a proliferation marker and has various applications as a biomarker. 

Baseline Ki67 is associated with poor outcomes and predicts to good response to chemotherapy [4]. 

Changes of Ki67 measurement in neoadjuvant setting predicts benefit from endocrine treatment [5, 

6]. However, much variation has been observed within the subpopulations defined by classical 

clinical-pathological markers. For instance, a subgroup of HER2-positive tumor that also expresses 

p95HER2, a cytoplasmic amino terminally truncated receptor that has kinase activity, has a worse  
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response to trastuzumab but is sensitive to the HER2 tyrosine kinase inhibitor lapatinib [7]. Likewise, 

while breast tumors expressing high levels of ER are typically responsive to endocrine therapy [8], 

around 40% ER+ patients fail to respond to tamoxifen or a prolonged treatment leads to drug 

resistance [9].  

 

Molecular Intrinsic Subtypes 

Over the past decade, genomic studies have revealed the heterogeneity of breast cancer. 

Global gene expression-based analysis has identified four molecular intrinsic subtypes of breast 

cancer, Luminal A, Luminal B, HER2-enriched, Basal-like and a subgroup of normal-like tumors. 

Each subtype is characterized by the expression of a set of gene signatures (Figure 1.1). More 

recently, large-scale genomic research primarily by massive parallel sequencing on several platforms 

have further demonstrated the complexity of the intrinsic subtypes and highlighted the valuable 

insight provided by genomic data into personalized treatment. The genomic features of the intrinsic 

subtypes will be described further below and were a major emphasis of my thesis. 

Luminal subtypes. The majority of ER+ and/or PR+ tumors are of the Luminal subtypes. 

RNA expression profiling revealed that the Luminal tumors have high expression of GATA3, Cyclin 

D1 as well as Keratin 8 and 18 (Figure 1.1) [10, 11]. In addition, at least two subtypes, Luminal A 

and Luminal B, have been identified within this subpopulation. Luminal A is the most common 

breast cancer subtype and represents 30-40% of breast cancers [12, 13]. Compared with Luminal B, 

Luminal A tumors are characterized by low expression of HER2 cluster and proliferation markers 

such as Ki67, and are typically associated with a better prognosis, although the risk of late mortality 

after 10 years persists [14]. 

Recent studies have shown that a diverse spectrum of copy number aberration (CNA) is 

observed in Luminal A subtype, potentially indicating the presence of additional substructure within 

this subtype [15]. Four major CNA patterns have been identified; these subgroups are characterized 
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by (a) chromosome 1q gain and 16q loss, (b) a quiet copy number spectrum, (c) chromosome 8p gain 

and 8q loss and (d) high level of genomic instability (CNH pattern). Intriguingly, the CNH pattern is 

associated with over-expression of regulators of mitosis and Aurora kinase pathway components, 

which have previously been identified as gene markers of proliferation [16] and have been  found to 

be associated with 5q loss in Basal-like subtype [17].  The CNA patterns are also correlated with 

distinct mutation profiles and carry clinical implications with the CNH Luminal A patients having a 

worse outcome. 

The mutation profile of Luminal A is markedly diverse and with many recurrent genes.  

Luminal A has the highest number of frequently mutated genes despite a low mutation rate per tumor 

[18]. Among them, PIK3CA is the most common significantly mutated gene, which has drawn much 

attention as a therapeutic target because these mutations are gain-of-function. Other mutations in 

PI3K pathway has also been observed at a lower frequency including PTEN inactivating, and AKT1 

activating mutations. MAP3K1 is the most common mutated tumor suppressor in Luminal A. Several 

studies have confirmed that inactivation of MAP3K1 and MAP2K4 are mutually exclusive, 

suggesting the reduced p38-JNK stress kinase pathway in this subtype [18, 19]. 

Basal-like. The Basal-like subtype is notable for low expression of hormone receptors and 

HER2, high expression of proliferative genes (e.g. Ki67), and high expression of a set of genes called 

the Basal gene cluster including basal epithelial cytokeratin (CK) such as CK5, 6 and 17, epidermal 

growth factor receptor (EGFR), αB-crystallin, P-cadherin, and c-Kit (Figure 1.1) [10, 11, 20]. 

Massive parallel sequencing studies have shown that Basal-like tumors may arise from “Luminal 

Progenitor Cells”, and are more similar to other high-grade epithelial tumors such as squamous 

carcinoma of lung, head and neck,  serous ovarian carcinoma and serous endometrial cancers than 

they are to ER+/luminal breast cancers [21]. 

Basal-like tumors account for 10-25% of all breast tumors, and represent 50-75% of the 

triple-negative cancers [22]. This subtype is generally associated with high histologic and nuclear 
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grade, high proliferation indices and poor prognosis[23]. Basal-like tumors are also mostly 

aneuploidy and show high level of genomic instability. Comparison of this subtype and ovarian 

tumors have revealed some common features in the DNA copy number landscape, including gains of 

1q, 3q, 8q and 12p, loss of 4q, 5q, and 8p, and focal amplification of MYC [18].  

The majority of Basal-like tumors have TP53 somatic mutations (>80%), which is similar to 

HER2-enriched subtype (72%), and mostly are nonsense or frame shift. In marked contrast, the TP53 

mutations occur in Luminal subtypes at a much lower frequency. In addition to TP53, the loss of 

function of RB1, another tumor suppressor, is also common in the Basal-like subtype. Activation of 

PI(3)K  pathway has also been identified in Basal-like tumors; however, in contrast with Luminal 

subtypes, the PIK3CA mutation occurs at a much lower frequency (9%), while alternative aberrations 

were identified including  loss of INPP4B and/or PTEN and/or amplification of PIK3CA [17–19, 24, 

25]. BRCA1 pathway is also associated with Basal-like in a more complex fashion. The BRCA1 

mutation carriers if and when they develop breast cancer, the majority is Basal-like (~80%).  And 

similar to Basal-like, BRCA1-related cancer shows high level of genomic instability [26] and early 

relapse [27]. However, most Basal-like are sporadic and with the intact BRCA1 gene and protein. 

Nevertheless, some studies suggested that the BRCA1 pathway is dysfunctional in at least a subset of 

sporadic Basal-like tumors [23]. The Cancer Genome Atlas (TCGA) data suggested ~20% of Basal-

like tumors have germline and/or somatic BRCA1 or BRCA2 variants. 

HER2-enriched subtype. The HER2-enriched subtype is characterized by DNA 

amplification of HER2 and over expression of HER2 protein and a subset of genes located in the 

same region of chromosome 17 [10]. These tumors share a few common features with Basal-like 

such as the low expression of ER and hormone receptor-related gene cluster.  Notably, ~60% of 

clinically HER2+ tumors fall into this subtype and not all tumors within this subtype are clinically 

HER2+ or HER2-amplified [22]. Non-HER2-enriched but clinical HER2+ tumors tend to be ER+, 

have high expression of Luminal cluster and are predominantly of the Luminal A subtype [18, 28, 
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29]. Population-based study revealed that HER2-enriched subtype constitutes 5-10% of all breast 

cancers and accounts for 7.8% Triple-negative subpopulation [30].  

In the TCGA study, HER2-enriched is mostly aneuploidy and shows high genome instability. 

The frequent somatic mutation alterations in this subtype include TP53 mutation (75%) and PIK3CA 

(39%). Other mutations occur at a much lower rate.  Gene expression and reverse-phase protein array 

(RPPA) data both confirmed that clinical HER2+/HER2-enriched subgroup is associated with high 

expression and high level of phosphorylation of EGFR, which provides another therapeutic target for 

this typically aggressive tumor subtype. 

 

Genetically Engineered Mouse Model (GEMM) in cancer study 

Efforts of genomic, epigenomic, transcriptomic and proteomic studies have led to remarkable 

advances in our knowledge of cancer biology in the past decade. In recognition of diverse genetic 

aberrations in human tumors, nearly 1,000 small molecules drug inhibitors are being tested and under 

development for cancer treatments [31]. However, about 95% of anti-cancer compounds that enter 

preclinical testing fail to gain FDA approval [29]. The high attrition rate of anti-cancer compound 

candidates clearly reveals the significant challenges in drug development, and suggests the need for 

improved pre-clinical testing.  

The high investment in clinical trials has further suggested for a better way of compound 

screening in the early stage of drug development.  In addition, a more optimized efficacy testing must 

account for the heterogeneity of breast cancer. Indeed, many of these compounds might only be very 

effective in subpopulations that express specific biological targets or harbor genetic alterations in 

specific pathways. However, molecular marker-based clinical trials in which sensitive patient 

subpopulations are identified early during the trial are expensive and take longer time to recruit 

patients.  A few large clinical trials used unselected patient populations, which is not effective in 

terms of evaluating the efficacy of the drug on the responsive patient subset. 
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Murine models, as the most experimentally tractable mammalian system, have contributed 

significantly to the basic scientific discoveries in cancer biology. Using transgenic and knockout 

technologies, numerous genetically engineered mouse models (GEMMs) have been generated. Early 

GEMMs are conventional models that are driven by overexpression of oncogenes or carry germline 

mutations in tumor suppressor genes [28]. With the development of spatiotemporally controlled 

induction of mutations (i.e. those controlled by inducible expression of Cre recombinase), conditional 

models are used to possible better mimic sporadic cancers [30, 32]. 

Although GEMMs have been designed to emulate genetic lesions found in human tumors, it 

is not always clear to what extent the mouse models faithfully recapitulates features of human 

subtypes because of the different physiology across species. Therefore, many efforts have been made 

to identify the conserved features shared by human cancer and mouse models using genomic 

profiling on large datasets [33, 34]. It has been shown that although no single mouse models 

embraced all the expression features of specific human subtypes, for each human subtype, multiple 

GEMMs expressed a few shared signatures. This basic biological understanding would be especially 

valuable for preclinical testing, as it suggested the choice of mouse models that are most consistent 

with a subpopulation of patients in terms of the targeted pathways.  

Interestingly, similar to human patients, while some mouse models have homogeneous gene 

expression patterns, others show ‘semi-homogeneous’ or even heterogeneous patterns, which 

suggested the existence of  a higher level of genetic diversity. Indeed, the discovery of the 

heterogeneity in both human and mouse highlights the importance of selecting the appropriate 

GEMM to model specific human subgroups, and to use multiple GEMMs to provide a 

comprehensive portrait of human diversity. 

On the other hand, despite of the progress in our knowledge of the genetic characteristics of 

GEMMs in the context of cross-species comparison, their use in preclinical assessment of drug 

development is still underappreciated. Most studies examined a small number of candidate 
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compounds in a small cohort of GEMMs [35]. The low-throughput approach has been successfully 

applied to validate drug targets, especially their role in tumor maintenance. For example, GEMM 

experiments demonstrated that the inhibition of tumor growth induced by Farnysl-transferase 

Inhibitor (FTI) is not solely mediated by K-Ras [36].  But this approach is flawed in that it only 

recapitulates a handful of features shared by human tumors and the selected GEMM, rather than 

providing a comprehensive evaluation. As consequence, the capability to predict response is 

attenuated by the cross-species complexity, and the limited number of GEMMs used. 

More recently, the efforts were extended to medium-throughput testing using larger numbers 

of mice [37]. These ‘co-clinical’ trial studies are a promising approach to inform the clinical trials in 

several aspects. Firstly, the results from in vivo models may directly predict the response of cognate 

human subpopulation to the therapeutics. Secondly, as an experimentally tractable system, the 

underlying biological basis or clinical hypothesis could be investigated. Lastly, biological signatures 

identified from mice could be applied to guide the design of clinical trials, either to identify patients 

that most likely to benefit from the therapy, or to predict to response in early trial. Noteworthy, 

identification and validation of signatures have only been made possible with the use of large GEMM 

cohorts and the availability of the large data sets of human clinical trials, and the power of this 

application still remains largely untapped; my work has directly addressed this issue. 

 

Massive Parallel Sequencing (MPS) in cancer study 

Another technology revolution that had profound impact on cancer genomics is the advance 

of massive parallel sequencing (MPS), also known as deep sequencing. Today, rapid, accurate and 

relatively affordable genome sequencing has become feasible. The diverse application of MPS has 

contributed remarkably to the cancer biology studies, and provided opportunity for improvement in 

diagnosis, prognosis and treatment. Cancer genomes, however, have a few distinct characteristics 

that affect the cancer genome-sequencing study design. To reveal the underlying mechanism of 
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cancer biology, a generally accepted method is to identify somatic mutations by comparing the 

matched normal samples and the tumor counterpart. For solid tumors, the matched normal samples 

are frequently peripheral blood samples [18, 38, 39], and in some studies surgical margins and 

proximal lymph nodes [40, 41]. However, cancer samples are distinct in their quality, quantity and 

tumor cell purity, all of which pose biological and technical challenges. 

Firstly, a large number of cancer samples are archived formalin-fixed and paraffin-embedded 

(FFPE). The nucleic acid extracted from FFPE blocks are likely to have low nucleic acid quality due 

to the cross-linkage caused by fixation process and partial degradation [42]. Overcoming this 

challenge is especially critical for RNA-Sequencing (RNA-Seq), in which the standard protocol 

requires intact RNA to deplete the highly abundant ribosomal RNA (rRNA). Besides, the necrosis 

and apoptosis of cancer cells also contribute to the lower quality [43]. 

Secondly, for safety consideration, the biopsy size from patients with disseminated disease is 

typically small in size. Consequently, the nucleic acid from tumors is of limited quantity. Though it is 

possible to perform whole-genome amplification prior to sequencing, this procedure might produce 

artifacts [44]. Hence, cancer genome sequencing requires decreasing the minimum input of nucleic 

acid. 

Lastly, the purity of the cancer specimens can be low for two main reasons, which include 

normal tissue contamination and intra-tumoral heterogeneity. Indeed, matched normal samples 

potentially also contain a mixture of malignant and non-malignant genomes, as residual disease could 

exist in surrounding tissues. A few MPS-based genomic studies have demonstrated that intra-tumoral 

heterogeneity is a common feature of multiple tumor types [18, 45–47]. Of note, characterization of 

the clonality provides the potential mechanism by which tumors acquire drug resistance to targeted 

therapy. For instance, the emergence of KRAS mutated subclones conveys resistance to anti-EGFR 

treatment in colorectal cancer [48]. On the other hand, it highlights the requirements that 
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experimental and computational methods for cancer genome sequencing should account for this 

heterogeneous nature of tumor samples. 

The MPS-based cancer genomic studies vary by the input materials (DNA, RNA, chromatin) 

and the targeted regions (whole genome, exome, transcriptome, or targeted genes). MPS of the 

transcriptome, also known as RNA-Sequencing (RNA-Seq), has been proved to be a powerful 

approach for studies of a variety of goals. RNA-Seq provides an efficient way for the identification 

of novel transcripts [49], alternative splicing [49, 50], and gene fusion events [49–52]. Given proper 

matched normal samples, it has also been applied, alone or in combination with whole-genome 

sequencing or exome sequencing, to detect somatic mutations [52]. 

Another major goal of RNA-Seq studies is to characterize the overall gene expression profile 

of a tumor or normal. Compared to array-based technology, RNA-Seq demonstrated its superiority in 

accuracy and comprehensiveness for several reasons. First, RNA-Seq provides a near digital measure 

of gene expression levels, which enables the comparison across genes, samples, experiments and 

platforms. While using array-based strategies, considerable difference were observed in terms of the 

hybridization properties of probes [52].  In addition, array-based technologies are limited in its 

dynamic range due to the background hybridization level [53] and saturation of signals. While RNA-

Seq is superior in detecting transcripts with low expression level, accordingly identifies differentially 

expressed genes in higher sensitivity. More importantly, RNA-Seq is not limited to detection of 

known genes. With the significant improvement in cost and efficiency, RNA-Seq is becoming the 

predominant tools for transcriptome measurement.  

Of note, despite of all the favorable properties, there exist several types of bias or limitations 

unique to RNA-Seq. For instance, to allow for cost-efficient detection of genes/mRNAs, highly 

abundant rRNA must be removed from total RNA before sequencing. The standard rRNA removal 

strategy relies on enrichment of poly(A) RNAs. This procedure requires intact RNAs and restricts the 

detection of non-poly(A) RNA species. Moreover, it is not applicable for samples with small input 
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quantity or archived as FFPE. In addition, the selection based on 3’-end of each transcript introduces 

3’ bias and causes inaccurate quantification in partially degraded samples. 

Other challenges arise from computational analysis. Mapping reads to transcripts with 

complicated splicing patterns, large introns, low complexity, or to homologous genes could cause 

ambiguity. Hence, mapping algorithms should account for these scenarios. Likewise, the uniformity 

of sequence coverage across transcripts could vary by protocol [54, 55], which affects the sensitivity 

and accuracy of quantification. Therefore, a careful normalization procedure is required to minimize 

the bias introduced by uneven coverage. Also, as RNA-Seq-based studies span a wide range of 

interests, it is critical to determine the sequencing depth needed for each specific purpose. Studies 

whose goal is to comprehensively catalogue transcripts or to investigate transcripts of low abundance 

would require more sequencing depth. Nevertheless, with the advent of new experimental protocols, 

this standard has not always been available. Developments in experimental and computational 

techniques contributes to leverage the importance of RNA-Seq. Studies that evaluate the features of 

these new techniques and determine their suitability for distinct research interests would guide study 

design and facilitate the application of RNA-Seq in cancer genomic research, and it is for these 

reasons that my thesis has focused much attention on improvements in RNA-Seq methods. 

 

Research introduction 

In order to span these many key topics discussed above, my thesis work has also covered a 

broad range of topics spanning computational analyses of whole transcriptome data to the validation 

of mouse models of breast cancer. The studies in Chapter 2 and 3 identify and detail the 

heterogeneity of several mouse models with respect to gene expression, DNA copy number and 

clinical response, and eventually utilize these models to increase our knowledge of human tumors 

and to facilitate drug development. In particular in Chapter 2, the characterization of fifty p53 null 

transplant mouse tumors revealed that this model gives rise to multiple molecular subtypes, including 
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Basal-like, Luminal and Claudin-low. These subtypes also show distinct DNA copy number changes, 

some of which recapitulate their human counterpart subtype. Analysis of this heterogeneous murine 

tumor model provided insights into the stem-cell characteristics of a rare human subtype, Claudin-

low. In Chapter 3, we extended our efforts to utilizing GEMMs to examine the efficacy of 

chemotherapeutics or targeted anti-cancer drugs. In particular, the response of C3(1)-T-antigen 

model to the treatment using carboplatin/paclitaxel(CT) is reminiscent of the bi-phasic response 

pattern observed in human Basal-like tumors. Therefore, gene expression signatures that predict the 

response to cytotoxic chemotherapeutics were derived from analysis of mouse genomic data and 

validated in human neoadjuvant data sets.  

In Chapter 4, the focus turns to exploration of using RNA-seq to extract meaningful 

information from clinical materials archived as FFPE. Two protocols for performing RNA-Seq using 

FFPE were extensively tested and compared with the results of RNA-Seq from fresh-frozen tumors 

and DNA-microarray. The features of each protocol were evaluated by objective statistical analysis, 

and these results should impact experimental design and cost. Through all of this work we have now 

set the stage for an improved means of pre-clinical drug testing using animal models, and laid the 

foundation for how to translate these data from mice into humans using the materials that are 

common to human clinical studies. 
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Figure 1.1 Hierarchical clustering of human breast tumors. 
A combined dataset of 337 samples collected from UNC-Chapel Hill and 295 samples from the 
NKI was clustered using an intrinsic gene list comprised of 1800 genes published in four previ-
ous studies [56]. Clustering identified the five intrinsic subtypes of Luminal A, Luminal B, 
Normal-like, Basal-like and HER2-enriched. Gene clusteres with high expression levels associ-
ated each subtype are labeled on the right.
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 CHAPTER II 

COMPARATIVE ONCOGENOMICS IDENTIFIES BREAST TUMORS ENRICHED IN 

FUNCTIONAL TUMOR INITIATING CELLS1 

 

The claudin-low subtype is a recently identified rare molecular subtype of human breast 

cancer that expresses low levels of tight and adherens junction genes and shows high expression of 

epithelial-to-mesenchymal transition (EMT) genes. These tumors are enriched in gene expression 

signatures derived from human tumor-initiating cells (TIC) and human mammary stem cells. 

Through cross-species analysis, we discovered mouse mammary tumors that have similar gene 

expression characteristics as human claudin-low tumors and were also enriched for the human TIC 

signature. Such claudin-low tumors were similarly rare, but came from a number of distinct mouse 

models, including the p53 null transplant mouse model. Here we present a molecular characterization 

of fifty p53 null mammary tumors compared with other mouse models and human breast tumor 

subtypes.  

Similar to human tumors, the murine p53null tumors fell into multiple molecular subtypes 

including two basal-like, a luminal, a claudin- low, and a subtype unique to this model. The claudin-

low tumors also showed high gene expression of EMT inducers, low expression of the miR-200 

family, and low to absent expression of both claudin 3 and E-cadherin. These murine subtypes also 

contained distinct genomic DNA copy number changes, some of which are similarly altered in their 

cognate human subtype counterpart. Finally, limiting dilution transplantation revealed that p53 null  

                                                           
1
 Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D, Knezevic J, Greene SB, Darr D, Troester 

MA, Hilsenbeck SG, Medina D, Perou CM, Rosen JM: Comparative oncogenomics identifies breast tumors 

enriched in functional tumor-initiating cells. Proc Natl Acad Sci 2012, 109(8):2778–2783. 
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claudin-low tumors are highly enriched for TICs as compared to the more common adenocarcinomas 

arising in the same model, thus providing a novel preclinical mouse model to investigate the 

therapeutic response of TICs. 
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INTRODUCTION 

Breast cancer is the second leading cause of cancer-related deaths among women in the 

United States [1]. The large compendium of underlying genetic alterations and the resulting 

histological and molecular subtypes illustrate the heterogeneous nature of this disease. Both this 

inter-tumor heterogeneity and the cellular heterogeneity found within a breast tumor (intra-tumor 

heterogeneity) are major obstacles towards effective treatments. One common feature of breast 

cancers (and most cancers) is the loss of the tumor suppressor p53 function. p53 has been shown to be 

mutated in ~40% of breast cancers, associated with poor clinical outcomes, and a higher frequency of 

mutations occurs in more aggressive molecular subtypes including the basal-like subtype of human 

breast cancers [2]. 

Mice homozygous for p53 loss have been shown to develop lymphomas and sarcomas with a 

short latency [3, 4]. When crossed into the BALB/c background mammary tumors were observed in 

p53+/- mice [5]. To circumvent the appearance of other tumor types that occurred with short latency, 

the model was further modified [6]; namely, 6-wk-old p53-/- glands were removed and transplanted 

into 3-wk-old wild-type BALB/c recipients. These mice develop mammary tumors stochastically 

with an average latency of about 12 months. Interestingly, the p53 null epithelium initially forms 

normal ductal growths, which exhibit few genetic changes compared with wild-type outgrowths [7]. 

Unlike many transgenic mouse models, the p53 null tumor model exhibits histological heterogeneity 

reminiscent of human breast cancers, including a subset of the tumors expressing the estrogen 

receptor (ER). In addition anti-estrogens are able to significantly delay tumor formation in this model 

[8]. Lastly, these p53-deficient tumors exhibit genetic instability and/or aneuploidy, which likely play 

a critical role in progression [6]. 

Using gene expression profiling for classification, we show that like human tumors, p53 null 

mouse mammary tumors fall into multiple molecular groups including basal-like, luminal, and 

claudin-low subtypes. The claudin-low tumors contain a majority of spindle-shaped cells, a histology 
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originally described for carcinosarcomas, which are now called EMT tumors [9]. Like their human 

counterparts, the p53 null claudin-low tumors exhibit high expression of EMT inducers and a core 

EMT signature [10]. Unlike many other mouse tumor models, p53 null tumors show extensive 

genomic instability. Accordingly, we determined that these different p53-deficient murine subtypes 

contain distinct genomic DNA copy number changes, as assessed by array comparative genomic 

hybridization (aCGH). We also show by limiting dilution transplantation, that p53 null claudin-low 

tumors have a marked enrichment of functional tumor-initiating cells (TICs). These data show the 

utility of this heterogeneous tumor model and provide for the first time functional data further 

demonstrating the stem-cell characteristics of the claudin-low subtype. 

 

MATERIALS AND METHODS 

Mice. All animal protocols were reviewed and approved by the Animal Protocol Review 

Committee at Baylor College of Medicine and University of North Carolina, Chapel Hill. 

Preparation of single mammary tumor cells. Tumors were processed and digested into 

single cells as previously described [11].  The cells were resuspended in HBSS (Invitrogen) 

containing 2% FBS and 10 mM Hepes buffer (Invitrogen) before labeling with antibodies. 

Flow cytometry. Cells were labeled with antibodies (Dataset S5) at a concentration of 10 × 

106 cells/mL under optimized conditions and were subjected to FACS analysis and sorting on an 

ARIA II sorter (BD Biosciences). Data analysis was performed using FlowJo (v9.1).  

Transplantation. Clearance of MECs and transplantation procedures were performed as 

previously described [12]. Following FACS, the designated number of cells were washed once with 

PBS and transplanted into the cleared fat pads of 21-day-old female BALB/c mice (Harlan). 

Immunostaining. Paraffin-embedded sections (5 μm thick) were processed using standard 

immunostaining methods. Briefly, slides were deparaffinized and hydrated through a series of 

xylenes and graded ethanol steps. Heat-mediated epitope retrieval was performed in boiling citrate 
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buffer (pH 6.0) for 15 min, then samples cooled to room temperature for 30 min. Secondary 

antibodies for immunofluorescence were conjugated with Alexa Fluor 488 or -594 fluorophores 

(1:200; Molecular Probes, Invitrogen). Immunofluorescent samples were mounted with VectaShield 

Hardset with DAPI mounting media (Vector Laboratories). 

Real-Time PCR. Total RNA was prepared from tumors using the miRNeasy Kit (Qiagen). 

cDNA was synthesized from 10 ng of total RNA using the TaqMan MiRNA Reverse Transcription 

Kit with miRNA-specific RT primers (Applied Biosystems). miRNA levels were then measured 

using the miRNA-specific TaqMan probe provided in the MicroRNA Assays and the TaqMan Gene 

Expression Maser Mix (Applied Biosystems). miRNA levels were normalized to snoRNA55 and U6 

(Applied Biosystems). Student’s t test was used to compare claudin-low vs. the rest. 

Microarray analysis. Total RNA was collected from 45 murine tumors and purified using 

the Qiagen RNeasy Mini Kit according to the manufacturer’s protocol using ~25 mg tissue. RNA 

integrity was assessed using the RNA 6000 Nano LabChip kit followed by analysis using a 

Bioanalyzer (Agilent). Two ug of total RNA was reverse transcribed, amplified and labeled with Cy5 

using a Low RNA Input Amplification kit (Agilent). The common reference RNA sample for these 

experiments was as previously described [13]. The reference RNA was reverse transcribed, amplified, 

and labeled with Cy3. The amplified sample and reference were co- hybridized overnight to Agilent 

Mouse Oligo 4x44K Microarrays. They were then washed and scanned on an Agilent scanner 

(G2505B), and uploaded into the database where a Lowess normalization is automatically performed. 

The genes for all analyses were filtered by requiring the Lowess normalized intensity values in both 

channels to be >10. The log2 ratio of Cy5/Cy3 was then reported for each gene. In the final dataset, 

only genes that reported values in 70% or more of the samples were included. 

Microarray platform correction. Previously published data on 22K arrays can be found 

under accession no. GSE3165 in the Gene Expression Omnibus database. Platform correction (i.e., 
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44K vs. 22K arrays) was performed by making a systematic, gene-by-gene correction based on 

similar samples across platforms. For both 22K and 44K arrays, six to eight tumors from MMTV-

Neu and C3(1)-Tag and two pairs of BALB/c p53+/− were assayed on each platform, and for each 

gene on each platform a median expression ratio was determined. The assumption is then made that 

the median expression ratio on each platform should be the same, so then an adjustment factor is 

determined for each gene using these similar tumor samples across platforms. Next, all samples on 

the 44K platform were adjusted using this factor. The complete data set contains the previous 122 

arrays, the new 45 p53 null samples/arrays, and two p53+/−, six MMTV-Neu, and eight C3(1)-Tag 

44K arrays used for adjustment. Hierarchical clustering was then performed using the mouse 866 

intrinsic gene list [14], which shows 669 genes in common across these two platforms. The genes 

were median centered and then hierarchical clustered using Centroid linkage with gene and array 

“correlation centered” using Cluster v3 [15], and cluster viewing and display was performed using 

JavaTreeview v1.0.8 [16]. SigClust was then performed as described by Liu et al. [17], to identify the 

significant clusters/groups of samples. 

Gene expression signatures. A number of different signatures, and many individual genes, 

were also tested for associations with the five p53 null tumor subtypes. For these analyses, the 

signatures/modules used were taken from the set of 298 signatures/modules described previously by 

Fan et al. [18], which contains ~100 previously published signatures and ~200 signatures coming 

from newly performed unsupervised analyses. Using just the subset of tumors/arrays specific for 

each of the five p53 null SigClust-defined groups (34 arrays total), ANOVA were performed in R 

and the data displayed using a box-and-whisker diagram, with the statistical test asking whether a 

given gene (or signature) shows average class expression differences, when considering all classes 

simultaneously. 

Array Comparative Genomic Hybridization. Genomic DNA was collected from 44 p53 

null tumors and purified using the Qiagen DNeasy Blood and Tissue Kit. DNA was labeled 
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according to the direct incorporation method, hybridized to Agilent 244k CGH arrays (G4415A), and 

scanned. As a control, DNA from FVB mice was collected and labeled as Cy3, and BALB/c p53 null 

tumors were labeled with Cy5, thus providing a ratio of Cy3/Cy5 for all 244,000 features. All of the 

aCGH probes were filtered for>10 normalized intensity in control channel. The log2 ratios of 

Cy5/Cy3 were reported. Probes that have missing values in greater than 30% of samples, probes 

mapped to ChrN_random or chromosome Y, as well as the unmapped probes, were excluded. Arrays 

that have missing values in greater than 60% of probes were excluded. Missing values were k-NN 

imputed within chromosome. The final dataset contained 231,894 probes. Chromosomal physical 

positions of probes were annotated in mouse genome (National Center for Biotechnology 

Information Build 36).  

All primary microarray data and aCGH data is available from the UNC Microarray Database 

(UMD) https://genome.unc.edu/, and at the Gene Expression Omnibus (GEO) 

http://www.ncbi.nlm.nih.gov/geo/  under the series GSE27101. 

Identification of subtype-specific DNA Copy Number Alterations. Copy number 

aberration events associated with each subtype (one subtype vs. the rest of the p53 null samples) 

were identified using 34 arrays representing the five subtypes only. Two levels of this analysis 

occurred next. First, at the genome level, SWITCHdna [19] was used to identify significantly altered 

regions/segments and to determine the frequency of each copy number event (by segment) within 

each subtype, which was then visualized in the copy number landscape plots. Briefly, the 

SWITCHdna method first identifies the transition point in chromosome/probe copy number 

assessments by calculating the F statistics recursively, then tests the significance of segments 

according to the segment’s average intensity and segment size. With the default setting of 

SWITCHdna, 15,469 segments were defined in the 34 array comparative genomic hybridization 

http://www.ncbi.nlm.nih.gov/geo/
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slides. The copy number of each segment was calculated by taking the average value of probes in this 

region. 

To analyze a specific small region, we performed a one subtype vs. the rest Student t test in a 

segment-by-segment manner. Mouse segments were rearranged in the order of human chromosome 

positions by chained alignments of human genome (National Center for Biotechnology Information 

Build 36) against mouse (University of California, Santa Cruz Genome Browser; 

http://genome.ucsc.edu)  [20]. Last, we note that the control DNA was FVB, whereas all tumor 

samples were BALB/c, therefore, regions of 100% gain or 100% loss could be attributed to strain-

specific germline copy number differences, and caution is needed in interpreting these data; however, 

the strain differences will not affect any of the subtype-specific analyses. 

Statistical analysis of limiting dilution transplantation. Limiting dilution transplantation 

data were analyzed using a binomial generalized linear model with a complementary log–log link [21, 

22](7, 8). After determining that assumptions of the Single Hit Poisson Model were not met [22], we 

used the more general model, fitting parameters for slope, intercept, and interaction. After verifying 

lack of significant interaction between dose and cell line, we tested for the main effect of cell line. 

Results were summarized as the “fold change in dose” (FCD) required for equal take rates. The FCD 

95% confidence interval was computed from the covariance matrix of the model parameters using 

the delta method (p43 in [23]) and back-transformation by exponentiating. 

 

RESULTS 

p53 null tumors show variable histology 

Previously, we hypothesized that the heterogeneity observed in human breast cancer might 

arise not only due to activation of different oncogenes or loss of specific tumor suppressor genes, but 

might also be dependent upon the cell of origin in which these genetic changes occur [24]. Initially 

http://genome.ucsc.edu/
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transplanted p53 null mammary epithelial cells gave rise to phenotypically normal ductal outgrowths, 

which then stochastically developed mammary tumors. We, therefore, hypothesized that the deletion 

of this single tumor suppressor gene might give rise to a spectrum of heterogeneous tumors, 

depending upon the cell of origin in which additional stochastic changes occurred. To test this 

hypothesis, we collected 44 p53 null tumors that arose in wild-type BALB/c mice after 

transplantation of p53 null BALB/c mammary tissue into the cleared fat pads of 3-wk-old mice in 

addition to 6 tumors arising spontaneously in p53 null glands (without prior transplantation) [6]. Like 

some other genetically engineered mouse (GEM) mammary tumor models, the p53 null model gave 

rise to tumors with a diversity of histological phenotypes(Figure 2.1, Table 2.1) [9, 11]. 

Approximately 10% of the tumors contained a majority of spindle-shaped cells, a histology originally 

described for carcinosarcomas, now called EMT tumors [9]. 

 

p53 null tumors cluster into distinct tumor subtypes  

In a previous study, we profiled 13 distinct mouse models including the p53 null model [25]. 

However, with only five p53 null tumor samples, we were not able to appreciate the full spectrum of 

molecular heterogeneity represented in this mouse model. Now, with a total of 50 tumors from the 

p53 null model, we see that these tumors cluster into five distinct tumor subtypes when performing 

hierarchical clustering analysis using our previously defined mouse intrinsic gene list [25] (Figure 

2.2); furthermore, we used SigClust [17] to assess the significance of this clustering and objectively 

determined that the p53 null model did populate multiple statistically significant groups/subtypes, as 

follows. 

Basal-like: Two groups of basal-like mouse mammary tumors were observed (Figure 2.2); in 

part, we define these groups as basal-like according to their high expression of known basal markers 

including keratin 5 (K5), ID4, and TRIM29 (Figure 2.2d), and selective high expression of the human 

basal-like tumor expression cluster (Figure 2.3). Basal 1 tumors (5/50, 10%) clustered along with a 
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group of other mouse basal-like tumors including, BRCA1-deficient and MMTV-Wnt1 tumors. This 

group contained 4/6 spontaneous p53 null tumors. Basal 2 tumors, (8/50, 16%) clustered next to the 

Basal1 tumors, but showed a higher expression of the murine luminal cluster than did Basal 1 (Figure 

2.2c). Basal 1 p53 null tumors showed an increased proliferation signature separating them from 

Basal 2 and the other p53 null subtypes (Figure 2.2g, Figure 2.3), and they also showed high p16 

expression, which is a hallmark of impaired RB1 function [14]. Basal tumors (8/9) tested stained 

positively for K5 as expected (Figure 2.4 and Table 2.1); however, paradoxically, 5/8 tested stained 

positively for the estrogen receptor (ER) of which 4/5 were of the Basal 2 subtype. 

Luminal: 8/50 (16%) of the p53 null tumors clustered close together and with the mouse 

luminal models MMTV-Neu and MMTV-PyMT. As we have seen for other luminal models, these 

tumors express luminal specific genes like XBP1, but are missing ER and estrogen responsive genes; 

accordingly, only 1/8 of the luminal tumors stained positively for ER. Interestingly, like human 

luminal tumors, p53 null luminal tumors showed lower levels of p18INK4C, and p18 null mice develop 

predominantly luminal-type mammary tumors [26]. 

Claudin-low: 5/50 (10%) of the p53 null tumors showed the murine claudin-low expression 

phenotype (Figure 2.2f) and significantly clustered with the previously defined murine claudin-low 

tumors. These tumors had an EMT tumor histology (Figure 2.1) and showed expression of the human 

claudin-low signature (Figure 2.3). In agreement with the gene expression data and 

immunohistochemistry on human samples [27], we observed low to absent to absent expression of 

CLDN3 and CDH1 by immunofluorescent (IF) staining (Figure 2.4). Like human claudin-low tumors, 

these tumors highly express markers of EMT [27] and the previously determined EMT core signature 

(Figure 2.5a) [10]. All p53 null tumors tested stained positively for the luminal marker, keratin 8 

(K8), including the claudin-low tumors (thus suggesting an epithelial origin), however they often 

exhibited comparatively less staining (Figure 2.4). 
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P53 null subtype: an additional 13/50 (26%) of p53 null tumors clustered into a unique group 

made up exclusively of tumors from this BALB/c p53 null model. Tumors of this subtype appear to 

not show high expression of any of the other tumor subtype defining clusters. Lastly, 11/50 p53 null 

tumors clustered separately from these 5 groups and without a consistent group signature. Thus, at 

least 5 expression subtypes/phenotypes can be found from this single murine model, three of which 

mimic previously known human tumor subtypes (luminal, basal- like, and claudin-low). 

 

miRNAs 

Because expression of a number of specific miRNAs has been associated previously with an 

EMT transition [28, 29], we took a candidate approach to identify miRNAs that were differentially 

expressed between p53 null claudin-low tumors and the other subtypes. First we evaluated the miR-

200 family of miRNAs and miR-205; which are miRNAs that have been implicated in EMT and TICs 

[28, 30]. While a number of targets for these miRNAs have now been identified, important targets 

with respect to EMT are ZEB1 and ZEB2. ZEB1 and ZEB2 are expressed at high levels in claudin-

low tumors (mouse and human), and as expected, these miRNAs were present at very low levels 

relative to the other p53 null tumors (Figure 2.5b). Another cluster of miRNAs expressed at lower 

levels in both cancer and normal mammary stem cells contains miRNAs 182, 96, and 183 [30]. 

Likewise, this cluster of miRNAs was expressed at low levels in murine p53 null claudin-low tumors. 

Additionally, miR-203, another stem-ness-inhibiting miRNA regulated by Zeb1 [31], was also 

expressed at low levels in claudin-low tumors. Marked decreases, however, were not seen for all 

miRNAs tested (e.g. miR-21). 

It has been shown that human breast tumor subtype correlates with miRNA profiles [32, 33]. 

We re-analyzed the Blenkiron et al. dataset [32] to determine which tumors contained the claudin-low 

gene expression pattern using the Prat claudin-low predictor [27]. Using a supervised analysis, 17 

miRNAs were identified that were significantly differentially expressed between claudin-low tumors 
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versus the other breast cancers (Table 2.2). This included 7 of the miRNAs that we had observed 

including; miR-200a, 200b, 200c, 149, 182, 183, and 203. These results indicate that in addition to 

mRNA gene expression changes, mouse and human claudin-low tumors share common miRNA 

expression patterns. 

p53 null tumor subtypes display distinct copy number alterations 

Presumably stochastic genetic alterations selected during neoplastic progression collaborate 

with the loss of p53. It is also likely that different genetic events can cause tumors to show a given 

phenotype, or only sensitize one particular cell type to malignant transformation; thus specific copy 

number and/or mutations may be highly enriched within a specific tumor subtype, as shown for 

human breast tumors [34]. In order to investigate this on the genomic level, we performed aCGH 

on 44 p53 null tumors using Agilent 244,000 feature DNA microarrays to determine whether there 

were subtype specific Copy Number Alterations (CNAs) (Figure 2.6). In comparison with many 

mouse models [35, 36] the p53 null mammary tumors contained a fair amount of genomic instability. 

Interestingly, all five tumor subtypes contain distinct CNAs (data not shown). In the p53 null 

basal-like tumors (both Basal1 and Basal2 considered together), there was loss of the distal half of 

chromosome 8, including INPP4B, which has now been shown to be selectively lost in human 

basal-like/triple-negative tumors (4q31.22-q35.2(12)) [37, 38]. p53 null luminal tumors showed 

loss of chromosome 4 and gain of chromosome 7. The p53 null unique subtype showed very few 

subtype specific events, however, when converted to human genomic coordinates, these events 

identify amplification of human chromosome 17q12-q21.2(2), which is a common amplicon that is 

distal to the HER2 amplicon. Interestingly, one of these murine tumors (2304L) that clusters in the 

p53 null unique subtype, but which is not contained within the SigClust defined group (Figure 2.2b), 

showed high Her2 mRNA and protein expression, and was amplified for Her2 on mouse 

chromosome 11 (Figure 2.7); thus the p53 null model is even able to generate HER2-amplified 

tumors, albeit at a low frequency. 
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The copy number landscape of human claudin-low tumors is not known, but the p53 null 

claudin-low tumors showed numerous subtype-enriched CNAs. These changes included the near-

complete loss of mouse chromosome 1, and frequent but smaller losses on 7, 12, and 14. There were 

also specific gains on 3, 8, and 13. Many of these map to common regions of copy number changes 

in human breast cancer; however, additional studies will be required to define the driving 

mutations/changes present in each region. Nonetheless, these claudin-low subtype- specific copy 

number changes do suggest the possible existence of driver mutations/changes. 

The work of Bergamaschi et al. [34] identified numerous CNA associated with some of the 

intrinsic subtypes. We, therefore, converted our mouse CNA into human equivalent chromosome 

locations and determined that a number of significantly altered regions were in common between p53 

null mouse tumors and human breast tumors (Table 2.3). Of note were the loss of two regions that 

occurred in both mouse and human basal-like tumors, human 4q31.22-q35.2(12) that contains 

INPP4B, and human 14q22.1-q23.1(4); the somatic loss of these two regions across species suggests 

that each contains a tumor suppressor(s) gene, and that the loss of these genes may sensitize cells to 

become the basal-like subtype, similar to germline inactivation of BRCA1 [39]. 

 

p53 null claudin-low tumors are enriched for tumor-initiating cells 

Similar to their utility in the isolation of mouse mammary stem cells [40], CD29 and CD24 

have been employed as markers that enrich for TICs in the p53 null tumor model, with the 

CD29+/CD24+ fraction showing the TIC capabilities [11]. Furthermore, an EMT program has been 

shown to correlate with stem-like properties, and the loss of miR-200 expression as well as a 

“claudin-low” signature has been suggested to characterize both normal and cancer stem cells [30]. 

By FACS analysis, in the p53 null claudin-low tumors tested, the percentage of double positive cells 

was 70-85% as compared a maximum of 14% in the other p53 null tumors analyzed(Figure 2.8b,c). 



 

32 

 

Interestingly, some luminal tumors exhibit very low levels of double-positive cells. This was 

suggestive, therefore, that there might be a high percentage of TICs in the claudin-low tumors. 

To test this hypothesis, two different claudin-low p53 null tumors were FACS sorted for all 

four possible populations using CD29 and CD24, and limiting dilution transplantation was performed 

(Tables 2.4 and 2.5). The tumor initiating frequency was similar between the CD29+/CD24+ and 

CD29+/CD24- fractions, and these two populations were highly enriched for TICs as compared to the 

other two fractions. In addition, by transplanting FACS-sorted lineage-negative cells in limiting 

dilution, we determined that the tumor repopulating ability of these claudin-low phenotype tumors 

was >38 times greater than that of two other p53 null adenocarcinomas (T1 and T7) performed using 

the same methods(Figure 2.8d) [41]. Thus, these data indicate that an expanded population of TICs 

exists within these murine claudin-low tumors. 

 

DISCUSSION 

GEMM have provided a rich resource for the study of different cancers; however, many 

individual models show significant molecular and histological heterogeneity [25]. This heterogeneity 

complicates studies as multiple disease types may actually be present within a given model. One way 

to address this heterogeneity is to genomically characterize each tumor, then group tumors together 

according to important features and, most importantly, perform functional studies.  The p53 null 

mammary transplant model is one such heterogeneous model, and we have taken advantage of this 

feature and identified transplantable lines that represent at least three human breast tumor subtypes. 

In addition, since all these tumors develop subsequent to the same initial loss of p53, the question is 

whether this heterogeneity is due to different collaborating oncogenes/tumor suppressors and/or 

different cells of origins. The cell type of origin in cancer is a highly debated topic (reviewed recently 

in [42]). Although specific genetic lesions clearly play a major role in determining the tumor 

phenotype, growing evidence indicates that cancers of different subtypes within an organ system may 
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also reflect distinct cells of origin. However, it is not apparent whether a given oncogenic lesion 

actually dictates the cell of origin or, conversely, whether the cell of origin determines which 

oncogenic lesions can occur. Both of these possibilities most likely exist. There is evidence that 

tumors generated using the same oncogene targeted to different cell lineages can be phenotypically 

distinct [43]. Recent studies have shown that BRCA1 mutant and basal-like human tumors are 

enriched in gene expression profiles and surface markers of luminal progenitors [44]. Similarly, 

inactivation of BRCA1 (and p53) in the luminal or basal cell population of the mouse mammary 

gland showed that only the luminal cells gave rise to tumors histologically resembling those of 

BRCA1 mutation carriers [45]. These results, however, fall short of actually proving that these tumor 

types originated in these cell types. Mouse models, like the heterogeneous one presented here, can 

provide an invaluable tool with which to decipher the cell of origin when genetics is combined with 

precise lineage tracing. At present, we cannot definitively answer the cell of origin question without 

performing lineage tracing experiments, as done recently using mouse models of intestinal cancer [46]. 

However, our experiments do provide several important insights: First, tumors of the basal-like, 

luminal, and claudin-low phenotypes clearly arise, although at different frequencies and with a 

predilection for basal-like; in particular, the Basal 1 group appears to most faithfully recapitulate 

human basal-like tumors in that it shows high expression of basal gene expression features, of the 

proliferation signature, and of p16 (a hallmark of RB1 loss), all of which are features of human basal-

like tumors [14]. Second, the luminal tumors that do arise are largely ER-negative (as are the vast 

majority of murine tumors from other GEMMs) and thus fundamentally more similar to a luminal B 

than the ER+ luminal A human subtype. 

Interestingly, claudin-low p53 null tumors were also seen, although at the lowest frequency 

(5 total). As was shown for human claudin-low tumors and cell lines, these murine tumors lack tight 

junction proteins including claudin 3and E-cadherin, and show expression features of mesenchymal 

cells, normal mammary stem cells, and TIC. In addition to previously defined subtypes, we also 
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identified a new phenotype unique to this model, and noted that nearly 20% of the tumors were 

scattered throughout the cluster, indicating even greater heterogeneity within this model. For 

example, tumor 2304L showed clear amplification and high expression of HER2, thus even 

somatically HER2 amplified tumors occur within this model. 

The presence of specific copy number alterations in different subtypes of tumors arising in 

the p53 null model suggests that different gains and losses are important for tumor progression 

subsequent to p53 loss, and these are possibly occurring within different cell types. In the p53 null 

basal-like tumors, there was specific loss of the distal half of chromosome 8, which is in conserved 

synteny with human chromosome 4. Recently, loss of this region has been seen specifically with 

human basal-like/triple-negative breast cancers, and it is thought that the target of this loss is 

INPP4B. This gene is selectively low in human and murine basal-like tumors, thus suggesting that 

this approach of finding common regions of loss/gains across species can identify putative important 

tumor and/or subtype causative events. Interestingly, p53 null luminal tumors showed loss of 

chromosome 4.  Chromosome 4 deletions and loss of heterozygosity have been reported in other 

luminal mouse models, including MMTV-Neu, MMTV-Myc, and MMTV-Ras [36, 47–49]. 

Presumably there exist multiple luminal-specific tumor suppressor genes on chromosome 4. 

Although other subtypes showed gain of chromosome 1, p53 null claudin-low tumors showed large 

regions of loss on chromosome 1, which again hints at their uniqueness. 

Several lines of evidence have suggested that claudin-low tumors are enriched in functional 

TICs, predominantly coming from expression analyses (Figure 2.5a, Figure 2.3). However, due to 

their rarity and limitations in procurement of primary human claudin-low tumors, this hypothesis has 

not been tested functionally using human clinical samples. We have, however, herein identified a 

counterpart of human claudin-low tumors in the mouse. Accordingly, we have taken advantage of 

this mouse model to test by limiting dilution, the gold standard functional stem cell assay, whether 

these tumors are enriched in TICs compared with other tumors arising in the same model. With the 
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p53 null model we also have the advantage of being able to transplant these tumors into syngeneic 

mice with an appropriate microenvironment complete with normal immune function. We showed 

that the claudin-low murine tumors were significantly more enriched for surface markers of TICs as 

well as functional TICs as compared to other p53 null tumors. Recent studies have shown that 

minority subsets of tumors from MMTV-Myc and MMTV-MET tumors cluster with our claudin-

low mouse tumors [50, 51]. It has not been determined if they too are enriched in functional TICs. 

However the MMTV-Myc EMT- like/claudin-low tumors were reported to show an increase in 

metastasis. 

The murine claudin-low tumors show large percentages of CD29+/CD24+ cells, MaSC-like 

mRNA and miRNA expression profiles, and expression of other markers of MaSCs  (e.g. high s-SHIP 

expression [52]). Therefore it is conceivable that these tumors might have arisen from the MaSC 

population. Alternatively, they may have resulted from dedifferentiation of a progenitor or even a 

more differentiated cell. Lineage tracing experiments will be required to definitively resolve this 

issue. 

To effectively target cancer stem cells or TICs, one pressing need is a genetically defined and 

renewable preclinical model to identify and test new stem cell targeted therapies. To address this 

need, we now have identified a mouse model that develops claudin-low tumors, in which the bulk of 

the tumors cells appear to be TICs. This is an example of a spontaneously occurring breast tumor 

with a high proportion of TICs. Thus, we now have appropriate and validated models for the 

investigation of important signaling pathways and therapeutics. Due to their transplantability into 

syngeneic hosts, this panel of tumors provides a valuable resource for preclinical testing of novel 

therapeutics. These tumors should serve as excellent models for both the general study of breast 

cancer stem cells and preclinical models for testing stem cell targeted agents enabling translation into 

the clinic. Finally, the finding that claudin-low tumors have an enrichment of functional TICs 

challenges the popular paradigm that TICs always need be a rare subpopulation [53]. 
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TABLES 

Table 2.1  Summary of p53 null tumor samples. 

Tumor Model Pathology Latency Molecular 

Subtype 

Keratin 5 Keratin 8 Keratin 14 Vimentin 

2331L transplant IDC - low grade (apocrine) 23 wk   positive positive positive positive 

2151R transplant mesenchymal 32 wk CLOW negative low positive negative positive 

2151L transplant IDC low grade 32 wk TP53 negative positive <10% 

positive 

negative 

2412R transplant IDC low grade 23 wk Basal 2 positive positive positive stroma 

2153L transplant IDC low grade 37 wk Basal 2 positive positive positive positive 

2224L transplant IDC low grade 35 wk Basal 2 positive positive positive stroma 

2243L transplant IDC low grade 37 wk luminal negative positive rare stroma 

2247R transplant mesenchymal 37 wk CLOW negative positive negative positive 

2336R transplant IDC low grade 30 wk Basal 2 negative positive negative stroma 

2245R transplant IDC low grade 34 wk   negative positive positive   

2153R transplant IDC low grade 40 wk TP53 negative positive negative positive 

2304L transplant IDC low grade 38 wk   negative positive negative positive 

2225L transplant IBC (myoepi) 38 wk Basal 1 positive positive positive stroma 

2333R transplant IDC 32 wk TP53 negative positive positive stroma 

2250L transplant IDC low grade (apocrine) 41 wk luminal negative positive negative stroma 

2208L transplant IDC 43 wk luminal positive positive   stroma 

2225R transplant IDC low grade 44 wk TP53 negative positive negative stroma 

T11 

(753R) 

transplant mesenchymal 25 wk CLOW negative low positive negative positive 

2228R transplant IDC low grade 48 wk   negative <1% positive     

2249L transplant IBC - myoepi + 46 wk Basal 2 positive positive     

2356R transplant IDC high grade (very undiff.) 41 wk Basal 2 positive positive     

2374R transplant IBC - EMT? 38 wk TP53 positive positive     

2374L transplant EMT 39 wk TP53 negative positive     

2397L transplant IDC low grade 35 wk TP53 negative positive     

2211R transplant IDC high grade (undiff.) 47 wk luminal positive positive     

2211L transplant IDC high grade 47 wk luminal negative positive     

2209R transplant IDC high grade 48 wk   negative positive     

2530R transplant IDC high grade 32 wk Basal 2 positive positive     

2349R transplant IDC high grade 47 wk luminal negative positive     

2349L transplant IDC high grade 47 wk luminal positive positive     

2350R transplant IDC high grade 47 wk luminal positive positive     

2154L transplant IDC high grade 50 wk   positive positive     

2210L transplant IDC high grade 52 wk TP53 positive positive     

2377R transplant IDC high grade 45 wk TP53 negative positive     

2396R transplant IDC high grade 47 wk Basal 2 positive positive     

2376R transplant IDC high grade 48 wk NOT 
ARRAYED 

positive positive     

2393R transplant IDC high grade 52 wk   positive positive     

T1 transplant IDC 40 wks   positive positive positive   

T2 transplant IDC 46 wks   positive positive positive   

T7 transplant ? N/A TP53 negative positive positive   

1634R transplant IDC high grade 50 wk           

2657R transplant mesenchymal 51 wk CLOW         

3939R transplant N/A 45 wk TP53         

3941R transplant IDC low grade 48 wk TP53         

4304R transplant N/A 66 wk TP53         

4706L transplant IDC high grade 59 wk CLOW         

4100R transplant IDC 41 wk Basal 1         

4127R transplant IDC 44 wk Basal 1         

4702L transplant N/A 56 wk Basal 1         

4729L transplant IDC high grade 47 wk Basal 1         

2297R transplant IDC low grade 27 wk           
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Table 2.1  Summary of p53 null tumor samples. (Continued) 

Tumor SMA ERα E-cadherin K19 claudin 3 HER2 Keratin 6 

2331L very positive negative positive negative positive     

2151R positive negative low positive negative negative 

low (not 

membrane) negative 

2151L positive <1% negative positive negative positive low   

2412R positive positive positive positive positive negative positive 

2153L positive     negative       

2224L positive negative positive negative       

2243L stroma negative positive negative   negative   

2247R positive positive only in epithelial  low positive   negative negative negative 

2336R positive positive positive         

2245R   positive (heterogeneous) positive       negative 

2153R positive <1% positive positive         

2304L stroma negative positive     positive negative? 

2225L positive negative positive     negative negative 

2333R stroma negative positive         

2250L stroma negative positive         

2208L stroma negative positive     negative   

2225R stroma negative positive         

T11 (753R) positive negative low positive negative negative/low low negative 

2228R   negative positive         

2249L   positive positive         

2356R   positive ~10% positive         

2374R   negative positive         

2374L   negative low         

2397L   negative positive ?         

2211R   negative positive         

2211L   positive positive         

2209R   negative positive         

2530R   negative positive         

2349R   negative positive         

2349L   negative positive         

2350R   negative positive         

2154L   negative positive         

2210L   negative negative         

2377R   negative negative         

2396R   positive positive         

2376R   positive negative         

2393R   positive positive         

T1   negative            

T2   positive           

T7   negative           

1634R               

2657R               

3939R               

3941R               

4304R               

4706L               

4100R               

4127R               

4702L               

4729L               

2297R               
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Table 2.2  miRNAs differentially expressed in human claudin-low tumors 

miRNA ID FC FC (log2) Direction Score Numerator Denominator q-value(%) 

hsa-miR-31 1.860 0.895 up in claudin -2.548 -0.895 0.351 0.000 

hsa-miR-221 1.732 0.792 up in claudin -2.398 -0.792 0.330 0.000 

hsa-miR-382 1.662 0.733 up in claudin -2.419 -0.733 0.303 0.000 

hsa-miR-146b 1.499 0.584 up in claudin -1.891 -0.584 0.309 5.109 

hsa-miR-224 0.721 -0.473 down in claudin 1.670 0.473 0.283 4.208 

hsa-miR-200a 0.718 -0.478 down in claudin 1.509 0.478 0.317 4.208 

hsa-let-7f 0.706 -0.503 down in claudin 1.708 0.503 0.295 4.208 

hsa-miR-30d 0.697 -0.521 down in claudin 1.861 0.521 0.280 0.000 

hsa-miR-149 0.680 -0.557 down in claudin 1.544 0.557 0.361 4.208 

hsa-miR-203 0.677 -0.563 down in claudin 1.702 0.563 0.331 4.208 

hsa-miR-183 0.649 -0.623 down in claudin 1.882 0.623 0.331 0.000 

hsa-miR-30a-5p 0.638 -0.648 down in claudin 1.989 0.648 0.326 0.000 

hsa-miR-200c 0.628 -0.670 down in claudin 2.584 0.670 0.259 0.000 

hsa-miR-182 0.615 -0.700 down in claudin 2.265 0.700 0.309 0.000 

hsa-miR-200b 0.606 -0.724 down in claudin 3.055 0.724 0.237 0.000 

hsa-miR-187 0.587 -0.768 down in claudin 1.498 0.768 0.513 4.208 

hsa-miR-375 0.482 -1.051 down in claudin 2.269 1.051 0.463 0.000 
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Table 2.3  Comparison with Bergamaschi et al. [90] 

 

LumA LumB ERBB2 Basal 

1p34.1-p34.2(2) 

 

  

  1q12-q23.3(8)   

  

  

1q25.2   

  

  

1q31.1   

  

  

1q31.3   

  

  

1q32.1   

  

  

1q41   

  

  

3p11.2 

 

  

 

  

3q12.1-q12.3(3) 

 

  

 

  

3q21.1 

   

  

4p15.2-p15.32(3) 

   

  

4q31.22-q35.2(12) 

   

∆ 

5q11.1-q11.2(2) 

   

  

5q12.1 

   

  

5q12.3-q14.2(6) 

   

  

5q15 

   

  

5q21.1 

   

  

5q21.3 

   

  

5q22.1-q31.3(9) 

   

  

6p12.1-p25.3(18) 

   

  

6q22.33 

 

  

 

  

7p22.1-p22.2(2) 

 

  

  7q21.12 

   

  

7q22.1 

   

  

7q32.2-q34(4) 

   

  

7q36.1-q36.3(3) 

   

  

8q11.21 

 

  

  8q11.23 

 

  

  8q12.1-q24.3(24) 

 

  

  9q34.13 

 

  

  10p12.33-p15.3(6) 

   

  

11p11.2 

   

  

12p12.3 

   

  

12q22 

   

  

14q22.1-q23.1(4) 

   

∆ 

15q22.2 

   

  

16p12.1-p12.2(2)   

   16p13.2-p13.3(2)   

   17q12-q21.2(2) 

  

∆ 

 17q25.2-q25.3(2) 

   

  

19q13.32-q13.33(2) 

 

  

  20p12.2 

 

  

  20q13.13-q13.33(5) 

 

  

  21q22.12-q22.3(4) 

   

  

16p12.1-p12.2(2) 
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Table 2.4  Limiting dilution transplantation of adenocarcinomas (T1 and T7) 

Cells injected 5000 1500 1000 100 50 25 10 

Lin
-
CD29

H
CD24

H
  4/4 2/2 12/12 12/12 4/12 3/12 

Lin
-
CD29

H
CD24

L
  2/4 4/6 4/12 2/12 0/8 0/6 

Lin
-
CD29

L
CD24

H
 4/5 2/8 2/7 0/8 0/6 0/2 0/6 

Lin
-
CD29

L
CD24

L
 2/6 2/8 0/7 0/8 0/6 0/2 0/6 

Lin
-
 2/3 6/10 4/9 2/12 1/10 0/4  

Data from Zhang et al. [97] 

 

Table 2.5  Limiting dilution transplantation of claudin-low tumors (T11 and 2247R) 

Cells injected 500 250 100 50 10 

Lin
-
CD29

H
CD24

H
 2/2 2/2 5/6 5/6 3/6 

Lin
-
CD29

H
CD24

L
 1/2 2/2 5/6 5/6 3/4 

Lin
-
CD29

L
CD24

H
 2/2 2/4 0/4 2/6 0/2 

Lin
-
CD29

L
CD24

L
 0/2 3/4 2/4 2/6 0/2 

Lin
-
 2/2 1/2 8/8 5/8 2/12 
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FIGURES 

a) b) c)

L3512L1512 2224L

d)

2243L 2331L 2412R

h)

2151R

2247R

g)e) f)

Figure 2.1  Morphological features of p53 null mammary tumors. p53 null tumors display variable 
histological features, including spindloid tumors (b and e).
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Figure 2.2  Intrinsic gene set clustering analysis of 50 p53 null tumors and 117 samples from 13 
GEMM previously published in Herschkowitz et al. 2007. (a) Overview of the complete cluster 
diagram. (b) Experimental sample associated dendrogram. Boxes indicate the p53 null tumor 
subtypes based on SigClust analysis. (c) Luminal epithelial gene expression pattern that is highly 
expressed in luminal p53 null tumors, MMTV-Neu, and MMTV-PyMT tumors (d). Basal epithelial 
gene expression pattern including Keratin 5 and ID4, which are highly expressed in basal-like p53 
null tumors (e) mesenchymal genes including snail homolog 1. (f) Genes expressed at low levels in 
claudin-low tumors including CLDN3, CLDN7, and ELF5. G) Proliferation signature genes, and H) 
Individual genes discussed within the text.

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
2
8
R

 F
V

B
/N

 M
M

T
V

 W
n

t1
 C

A
0
2
 5

7
0
A

 C
5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

9
6
b

 B
6
D

2
F

1
 W

a
p

 T
1
2
1
 6

4
4
 

 B
6
D

2
F

1
 W

a
p

 T
1
2
1
 6

4
3
 

 B
6
D

2
F

1
 W

a
p

 T
1
2
1
 1

5
0
 

 F
V

B
/N

 W
a
p

 M
y
c
 C

A
0
2
 5

6
9
A

 
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
5
 8

6
9
A

 F
V

B
/N

 W
a
p

 M
y
c
 C

A
0
2
 5

4
5
A

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

6
7
C

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
5
 8

6
7
A

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

4
9
A

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

7
9
C

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

4
8
A

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

7
9
F

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

4
0
A

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

4
4
A

 
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
4
9
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
5
0
L

  
 

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
5
0
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
4
3
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
4
9
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
11

R
  

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
11

L
  

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
0
8
L

  
 F

V
B

/N
 M

M
T

V
 P

y
M

T
 4

3
0
  

 F
V

B
/N

 M
M

T
V

 P
y
M

T
 ’
9
1
#
2
 

 F
V

B
/N

 M
M

T
V

 P
y
M

T
 ’
8
9
  

 F
V

B
/N

 M
M

T
V

 P
y
M

T
 ’
9
1
.3

  
 F

V
B

/N
 M

M
T

V
 P

y
M

T
 ’
3
1
  

 F
V

B
/N

 M
M

T
V

 P
y
M

T
 5

7
5
  

 F
V

B
/N

 M
M

T
V

 N
e
u

 6
9
3
3
1
  

 F
V

B
/N

 M
M

T
V

 N
e
u

 1
1
6
9
1
6
 

 F
V

B
/N

 M
M

T
V

 N
e
u

 1
1
6
9
1
3
 

 F
V

B
/N

 M
M

T
V

 N
e
u

 C
A

0
1
 4

1
6
C

 
 F

V
B

/N
 M

M
T

V
 N

e
u

 C
A

0
1
 4

3
2
A

  
 F

V
B

/N
 M

M
T

V
 N

e
u

 7
-6

-9
9
  

 F
V

B
/N

 M
M

T
V

 N
e
u

 C
A

0
5
 8

7
5
A

  
 F

V
B

/N
 M

M
T

V
 N

e
u

 C
A

0
5
 8

6
1
A

  
 F

V
B

/N
 M

M
T

V
 N

e
u

 C
A

0
1
 4

1
6
A

  
 F

V
B

/N
 M

M
T

V
 N

e
u

 8
-2

-9
9
  

 F
V

B
/N

 M
M

T
V

 N
e
u

 1
1
0
2
7
7
 

 F
V

B
/N

 M
M

T
V

 N
e
u

 1
1
7
3
9
1
 

 F
V

B
/N

 M
M

T
V

 N
e
u

 1
1
6
9
2
2

 F
V

B
/N

 M
M

T
V

 N
e
u

 1
1
0
2
8
8

 F
V

B
/N

 M
M

T
V

 N
e
u

 C
A

0
1
 4

3
1
A

  
 F

V
B

/N
 W

a
p

 I
n

t3
 C

A
0
2
 5

6
6
A

  
 F

V
B

/N
 W

a
p

 I
n

t3
 C

A
0
1
 4

3
4
B

 
 F

V
B

/N
 W

a
p

 I
n

t3
 C

A
0
1
 4

3
4
A

  
 F

V
B

/N
 W

a
p

 I
n

t3
 C

A
0
2
 4

3
7
A

  
 F

V
B

/N
 W

a
p

 I
n

t3
 C

A
0
1
 4

2
6
A

 
 F

V
B

/N
 W

a
p

 I
n

t3
 C

A
0
1
 4

3
3
A

 R
e
p

  
 F

V
B

/N
 W

a
p

 I
n

t3
 C

A
0
1
 4

3
3
A

 R
e
p

 
 F

V
B

/N
 W

a
p

 I
n

t3
 C

A
0
1
 4

3
3
A

  
 F

V
B

/N
 C

3
(1

) 
T
a
g

  
1
2
0
5
5
5
  

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
11

6
4
1
0
B

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
11

7
5
1
7
 

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
11

7
3
3
8
.1

 
 F

V
B

/N
 C

3
(1

) 
T
a
g

  
2
A

 6
3
2
 

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
1
A

 6
1
4

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
8
6
  

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
5
A

 6
4
5

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
7
6
  

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
8
4
  

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
11

6
4
0
9
C

 
 F

V
B

/N
 C

3
(1

) 
T
a
g

  
7
4
  

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
7
2
  

 F
V

B
/N

 C
3
(1

) 
T
a
g

 .
1
2
1
4
1
5
  

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
1
2
0
1
5
7
 

 C
5
7
B

L
6
 W

a
p

 T
a
g

 2
1
3
A

  
 C

5
7
B

L
6
 W

a
p

 T
a
g

 6
J
 2

2
6
A

  
 C

5
7
B

L
6
 W

a
p

 T
a
g

 6
J
 2

2
6
B

  
 C

5
7
B

L
6
 W

a
p

 T
a
g

 2
2
4
A

  
 C

5
7
B

L
6
 W

a
p

 T
a
g

 2
1
5
A

  
 B

6
D

2
F

1
 W

a
p

 T
1
2
1
 p

5
3
h

e
t 

5
8
1
  

 F
V

B
/N

 W
a
p

 M
y
c
 C

A
0
2
 5

4
0
B

 s
p

in
d

lo
id

 R
e
p

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

4
0
B

 s
p

in
d

lo
id

  
 F

V
B

/N
 W

a
p

 M
y
c
 C

A
0
2
 5

5
0
A

 s
p

in
d

lo
id

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
4
5
R

 
 B

A
L

B
c
 p

5
3
h

e
t 

IR
 A

5
8
2
4
 7

 
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 3

9
4
1
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 3

9
3
9
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 4

3
0
4
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
7
4
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
2
5
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
7
4
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
1
0
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

1
5
1
L

 R
e
p

 
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

1
5
1
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

1
5
3
R

 
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
9
7
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
7
7
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
3
3
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 T

7
 

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
3
1
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
0
9
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
0
4
L

  
 B

A
L

B
c
 N

O
R

M
A

L
 1

0
0
9
9
2
  

 B
A

L
B

c
 N

O
R

M
A

L
 1

0
0
9
8
9
  

 F
V

B
/N

 N
O

R
M

A
L

 C
A

0
4
 6

7
9
A

 
 B

A
L

B
c
 N

O
R

M
A

L
 1

0
0
9
9
0
  

 B
A

L
B

c
 N

O
R

M
A

L
 1

0
0
9
9
3
  

 B
A

L
B

c
 N

O
R

M
A

L
 1

0
0
9
9
1
  

 F
V

B
/N

 N
O

R
M

A
L

 C
A

0
4
 6

7
8
A

 
 F

V
B

/N
 N

O
R

M
A

L
 C

A
0
4
 6

7
7
A

 
 F

V
B

/N
 N

O
R

M
A

L
 C

A
0
2
 4

8
9
A

 
 F

V
B

/N
 N

O
R

M
A

L
 C

A
0
2
 4

5
0
A

 
 F

V
B

/N
 M

M
T

V
 N

e
u

 4
0
4
  

 B
A

L
B

c
 p

5
3
h

e
t 

IR
 C

1
3
0
1
 4

  
 F

V
B

/N
 D

M
B

A
 1

2
 S

p
in

d
le

  
 F

V
B

/N
 D

M
B

A
 1

3
 S

p
in

d
le

  
 F

V
B

/N
 D

M
B

A
 1

1
 S

p
in

d
le

  
 C

5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

1
0
8
b

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

6
5
7
R

  
 C

5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

8
8
a
2
  

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
4
7
R

 
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 T

11
-7

5
3
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

1
5
1
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 s

p
o

n
ta

n
e
o

u
s
 4

7
0
6
L

  
 B

6
D

2
F

1
 W

a
p

 T
1
2
1
 5

8
0
  

 F
V

B
/N

 C
3
(1

) 
T
a
g

  
1
2
3
0
4
9
 

 C
5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

8
8
c
1
  

 F
V

B
/N

 D
M

B
A

 6
 S

q
u

a
  

 F
V

B
/N

 D
M

B
A

 8
 S

q
u

a
  

 F
V

B
/N

 D
M

B
A

 5
 S

q
u

a
  

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
9
3
R

  
 C

5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

1
2
9
  

 B
A

L
B

c
 p

5
3
h

e
t 

IR
 A

1
4
4
6
 

 C
5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

11
3
a
  

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 1

6
3
4
R

  
 B

A
L

B
c
 p

5
3
h

e
t 

IR
 A

2
9
8
9
 7

  
 B

A
L

B
c
 p

5
3
h

e
t 

IR
 A

2
9
8
9
.7

 R
e
p

 
 C

5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

1
0
6
c
1
  

 B
A

L
B

c
 B

R
C

A
1
h

e
t 

p
5
3
h

e
t 

IR
 B

9
9
6
5
 1

  
 F

V
B

/N
 D

M
B

A
 4

 A
d

e
n

o
  

 F
V

B
/N

 D
M

B
A

 3
 A

d
e
n

o
 R

e
p

  
 B

A
L

B
c
 p

5
3
n

u
ll
 s

p
o

n
ta

n
e
o

u
s
 2

2
9
7
R

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
3
 6

3
4
A

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
2
 4

9
3
A

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
2
 4

8
6
A

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
2
 4

7
8
A

  
 F

V
B

/N
 D

M
B

A
 9

 S
q

u
a
 R

e
p

  
 F

V
B

/N
 D

M
B

A
 9

 S
q

u
a
  

 F
V

B
/N

 M
M

T
V

 W
n

t1
 C

A
0
3
 5

8
7
A

  
 B

A
L

B
c
 p

5
3
n

u
ll
 s

p
o

n
ta

n
e
o

u
s
 4

7
2
9
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 s

p
o

n
ta

n
e
o

u
s
 4

1
0
0
R

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
2
 5

7
0
B

  
 F

V
B

/N
 D

M
B

A
 1

 A
d

e
n

o
 R

e
p

  
 B

A
L

B
c
 p

5
3
h

e
t 

IR
 1

0
9
1
5
 7

  
 B

A
L

B
c
 p

5
3
n

u
ll
 s

p
o

n
ta

n
e
o

u
s
 4

7
0
2
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 s

p
o

n
ta

n
e
o

u
s
 4

1
2
7
R

  
 B

A
L

B
c
 p

5
3
h

e
t 

IR
 C

1
3
0
1
 1

  
 C

5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

1
4
5
a
2
  

 C
5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

1
0
0
a
  

 B
A

L
B

c
 B

R
C

A
1
h

e
t 

p
5
3
h

e
t 

IR
 C

0
9
1
7
 4

  
 B

A
L

B
c
 B

R
C

A
1
h

e
t 

p
5
3
h

e
t 

IR
 B

11
2
9
 4

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
2
 4

6
7
A

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
4
 6

8
3
A

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
4
 6

7
6
A

  
 B

A
L

B
c
 B

R
C

A
1
h

e
t 

p
5
3
h

e
t 

IR
 C

0
9
1
2
 1

2
  

 B
A

L
B

c
 B

R
C

A
1
h

e
t 

p
5
3
h

e
t 

IR
 C

0
3
7
9
 5

  
 B

A
L

B
c
 B

R
C

A
1
h

e
t 

p
5
3
h

e
t 

IR
 B

9
9
6
4
 6

  
 B

A
L

B
c
 p

5
3
h

e
t 

IR
 C

0
3
2
3
 4

  
 B

A
L

B
c
 p

5
3
h

e
t 

IR
 C

0
3
2
3
.4

 R
e
p

 
 B

A
L

B
c
 B

R
C

A
1
h

e
t 

p
5
3
h

e
t 

IR
 C

0
9
1
2
 1

3
  

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
2
5
L

 
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
2
5
L

 R
e
p

 B
A

L
B

c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 T

1
-3

5
5
.3

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

5
3
0
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
5
6
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
3
6
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
4
9
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

4
1
2
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

1
5
3
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

2
2
4
L

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

3
9
6
R

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 T

2
-3

3
6
  

 C
5
7
B

L
6
 M

M
T

V
 C

re
 B

R
C

A
1
C

o
C

o
 p

5
3
h

e
t 

1
7
2
d

  
 B

A
L

B
c
 p

5
3
n

u
ll
 T

R
A

N
S

P
L

A
N

T
 2

1
5
4
L

  
 B

A
L

B
c
 W

a
p

 T
1
2
1
 5

5
6
  

 B
A

L
B

c
 W

a
p

 T
1
2
1
 5

5
5
  

 F
V

B
/N

 D
M

B
A

 2
 A

d
e
n

o
  

 F
V

B
/N

 W
a
p

 I
n

t3
 C

A
0
2
 5

7
5
A

  
 F

V
B

/N
 M

M
T

V
 W

n
t1

 C
A

0
2
 5

0
6
A

  
 F

V
B

/N
 M

M
T

V
 P

y
M

T
 ‘
9
1
  

Luminal p53 null Claudin-low Basal 1 Basal 2

 Id4 
 Trim29 
 Krt5 
 Bmp7 
 Jag2 
 Irx4
 Snai2 
 Fst
 Sobp
 Tgfb1i1
  Col4a2
  

 Tim2
 Smagp 
 Echdc3 
 Folr1 
 Aldoc
 Trf
 Srebf1
 Rhpn2 

 Lgmn 
 Snai1 
 Snx24 
 Elf5 
 Bnipl 
 Prss8 
 Marveld3 
 Bspry 
 Grhl2
 Esrp2
 Cldn7 
 Grb7 
 Cldn3 
 Sox10

 Ccnd2 

a) b)

c)

d)

e)

f)

 Chek1
 Cdk1
 Cenpp 
 Mad2l1
 Kif18a 
 Timeless
 Cdt1 
 Pole 
 Mcm7 
 Mcm2 
 Cenpf 
 Ccnb1 
 Birc5
 Rfc4

g)

h)

 p16
 p18
 Her2
 Grb7
 Cdh1
 Vim
 Snai1 

 Zeb1
 Zeb2
 Twist1 
 Inpp4b

  Snai2



 

43 
 

 

  
TICs down (Creighton et al.)TICs up (Creighton et al.)

INPP5D (s-SHIP)

D
iff

er
en

tia
tio

n 
S

co
re

m
R

N
A 

E
xp

re
ss

io
n

M
ed

ia
n 

E
xp

re
ss

io
n

M
ed

ia
n 

E
xp

re
ss

io
n

CLDN3 CLDN7

K5

ID4

K8

B4PPNI1PBX K18

CDKN2C

CLDN4

CDKN2A

Claudin-low cell lines down (Prat et al.)

Human claudin-low signature down

Human Basal-like ClusterClaudin-low cell lines up (Prat et al.)

Human claudin-low signature up

Proliferation cluster

M
ed

ia
n 

E
xp

re
ss

io
n

M
ed

ia
n 

E
xp

re
ss

io
n

M
ed

ia
n 

E
xp

re
ss

io
n

M
ed

ia
n 

E
xp

re
ss

io
n

M
ed

ia
n 

E
xp

re
ss

io
n

M
ed

ia
n 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

Figure 2.3  ANOVA of gene signatures and individual genes across five subtypes of p53 null
tumors.
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Keratin 82412R2247R Keratin 82249L Keratin 5
Keratin 8 2151R Keratin 8
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a. b. c. d. e.

f.

Figure 2.4  Immunofluorescent staining. p53 null basal tumors often show staining for both 
keratin 5 (K5) and keratin 8 (K8) (a and b). p53 null claudin-low tumors stain for K8 (c), some 
with less intensity (d). Some tumors are estrogen receptor positive (e). Claudin-low tumors show 
little staining for CLDN3 and CDH1 (f)



 

45 
 

Core EMT signature up (Taube et al.) Core EMT signature down (Taube et al.) CDH1

SNAI2SNAI1

ZEB1

TWIST1

VIM

ZEB2

M
ed

ia
n 

E
xp

re
ss

io
n

a)

M
ed

ia
n 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

m
R

N
A 

E
xp

re
ss

io
n

b)

 2
15

1R
 

 T
11

 (7
53

R
)

 2
24

7R
 

 2
15

1L
 

 2
41

2R
 

 2
33

1L
 

 T
1 

 T
7 

 2
25

0L
 

 2
24

3L
 

 miR-21 
 miR-155 
 miR-10b 
 miR-375 
 miR-203 
 miR-96 
 miR-182 
 miR-205 
 miR-183 
 miR-141 
 miR-200c 
 miR-200b 
 miR-429 
 miR-200a 

}Claudin-low

 >3

 2 

 1 

 0 

 -1

 -2 

 <-3 

Figure 2.5  p53 null claudin-low tumors have features of EMT. These tumors express (a) core 
EMT signature, (b) EMT markers, and showed marked downregulation of miRNAs involved in 
negative regulation of stemness and EMT. Three technical replicates were averaged for each. 200a 
(P<0.0001), 200b (P=0.0002), 200c (P<0.0001), 141 (P=0.0005), 429 (P<0.0001), 205 (P=0.004), 
182 (P=0.004), 96 (P=0.005), 183 (P<0.0001), 203 (P=0.04).
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Figure 2.6  Tumor genomic DNA copy number landscape plots for mouse p53 null tumor classes. 
The top shows the overall pattern for all 34 tumors considered together, and then below are the 
landscape plots for each of the 5 expression defined subtypes. Gray shading indicate the overall 
frequency of aberrations seen in that subtype, and the black shading indicate the group specific 
CNA (p-value threshold 0.05).



 

47 
 

2304L

MMTV-Neu tumor

ERBB2 a) b)

Figure 2.7  p53 null tumor 2304L has (a) overexpression and (b) amplification of HER2/ERBB2.
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Figure 2.8  p53 null claudin-low tumors express markers of stem cells and are enriched for tumor 
initiating ability. a) Claudin-low tumors top have high percentages of double positive 
(CD29+/CD24+) cells compared to other p53 null tumors. b) Limiting dilution transplantation of 
claudin-low versus adenocarcinoma cells. Sample sizes are implied by the sizes of the circles 
(area is proportional to sample size).
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CHAPTER III 

PREDICTING DRUG RESPONSIVENESS IN HUMAN CANCERS USING GENETICALLY 

ENGINEERED MICE2 

 

Purpose: To use genetically engineered mouse models (GEMMs) and orthotopic syngeneic 

murine transplants (OSTs) to develop gene-expression based predictors of response to anti-cancer 

drugs in human tumors. These mouse models offer advantages including precise genetics and an 

intact microenvironment/immune system.  

Experimental Design: We examined the efficacy of four chemotherapeutic or targeted anti-

cancer drugs, alone and in combination, using mouse models representing three distinct breast cancer 

subtypes: Basal-like (C3(1)-T-antigen GEMM), Luminal B (MMTV-Neu GEMM), and Claudin-low 

(T11/TP53-/- OST).  We expression-profiled tumors to develop signatures that corresponded to 

treatment and response, then tested their predictive potential using human patient data. 

Results: Although a single agent exhibited exceptional efficacy (i.e. lapatinib in the Neu-

driven model), generally single-agent activity was modest, while some combination therapies were 

more active and life-prolonging. Through analysis of RNA expression in this large set of 

chemotherapy-treated murine tumors, we identified a pair of gene expression signatures that 

predicted pathological complete response to neoadjuvant anthracycline/taxane therapy in human 

patients with breast cancer.  

                                                           
2
 Usary J, Zhao W, Darr D, Roberts PJ, Liu M, Balletta L, Karginova O, Jordan J, Combest A, Bridges A, Prat A, 

Cheang MCU, Herschkowitz JI, Rosen JM, Zamboni W, Sharpless NE, Perou CM: Predicting drug 

responsiveness in human cancers using genetically engineered mice. Clin Cancer Res 2013, 19:4889–99. 
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Conclusions: These results show that murine-derived gene signatures can predict response 

even after accounting for common clinical variables and other predictive genomic signatures, 

suggesting that mice can be used to identify new biomarkers for human cancer patients. 
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INTRODUCTION 

Gene expression profiling has identified five molecular subtypes of breast cancer (Luminal A, 

Luminal B, Basal-like, HER2-Enriched, Claudin-low) and a normal-like group, which show 

significant differences in epidemiologic associations and clinical features including survival [1–3]. 

Mounting evidence suggests that these subtypes vary in their responsiveness to chemotherapeutics [2, 

4–6] and to biologically targeted agents [7–9]. Methods for selecting the optimal chemotherapeutic 

agent for each breast tumor subtype have yet to be determined.  Instead, chemotherapy choices for 

breast cancer patients have been mainly empiric and based upon large clinical trials using unselected 

patient populations, and population-based benefits. The Basal-like subtype of breast tumor, of which 

the majority are also “triple-negative” breast cancers, is particularly challenging due to its lack of 

validated biological targets (i.e. ER-, PR- and HER2 normal) [10, 11].  Other breast cancer subtypes 

with poor prognosis also exist including the Luminal B subtype [2, 5] and the recently discovered 

Claudin-low subtype, which exhibits high numbers of tumor initiating cells [12]. 

Genetically Engineered Mouse Models (GEMMs) have proven valuable for validating the 

causal role of oncogenes and tumor suppressor genes in cancer [13], but their use in efficacy testing 

is less mature, with most studies being low-throughput efforts examining model-specific compounds 

in small numbers of tumor-bearing mice (<50) [14].  Recently, academic and industry researchers 

have begun simultaneous efficacy testing at medium throughput, employing larger numbers of 

compounds (5-50) in larger numbers of GEMMs (100-1000) [15, 16].  In particular, these efforts 

have attempted to mirror and inform ongoing human clinical trials, by testing novel therapeutics in 

faithful murine models as “co-clinical trials” [17].  While this approach has been promising, we 

believe an additional untapped power of medium-throughput GEMM testing is the ability to use 

murine models to identify biomarkers of response for human cancer patients.    

Previously, we performed RNA expression profiling of  13 distinct GEMMs of breast cancer 

[12, 18] and compared these signatures to human expression subtypes using an across-species 
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expression analysis.  These analyses identified murine models that faithfully represent multiple 

human breast tumor subtypes including Basal-like tumors (C3(1)-T-antigen) [19] and Luminal B 

tumors (MMTV-Neu) [20].  No single Claudin-low GEMM was identified, but an orthotopic, 

transplantable syngeneic tumor from a BALB/c TP53-/- mouse was found to exhibit a stable Claudin-

low expression phenotype [12].  In this work, we used these credentialed murine tumor models and 

determined their sensitivities to a variety of chemotherapeutic and biologically targeted agents in 

routine clinical use.  This analysis identified a heterogeneity of responses to certain cytotoxics in the 

Basal-like model.  We exploited this existence of sensitive and resistant tumors from GEMMs to 

develop genomic signatures of chemotherapy response, which we tested in a large, clinically 

annotated human cohort of breast cancer patients.  

 

METHODS  

Genetically Engineered Mouse Models. All work was done under protocols approved by 

the UNC Institutional Animal Care and Use Committee (IACUC). GEMMs of strain FVB/n carrying 

a transgene for Tg(MMTVneu)202Mul/J (MMTV-Neu) [20] and C3(1)SV40 T-antigen (C3(1)-T-

antigen or C3-TAg) [21] were bred in-house and observed until the onset of a mammary tumor ~0.5 

cm in any dimension. Tumors derived from BALB/c TP53-/- orthotropic mammary gland transplant 

line (T11) were passaged in BALB/c wild-type mice by subcutaneous injection of one half million 

cells resuspended in matrigel into the flank as previously described [22]. Mice were randomized into 

treatment groups and monitored with tumor growth measurements. Tumor volumes were measured 

by caliper in two dimensions and/or by ultrasound (Vevo 770 ultrasound imaging system 

(Visualsonics Inc.)). Chemotherapy was started at time zero and repeated weekly for a total of three 

injections over a twenty-one day period. The mice were further assessed for long-term survival as 

follows: if after a one week break from treatment a tumor increased in volume more than 1mm in any 

dimension, then an additional three cycles of therapy were initiated. This continued until either the 
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mouse developed a tumor burden sufficient to warrant euthanasia (2 cm in any dimension or 3 

tumors present) or until weight loss totaling 20% of the initial starting body mass was observed or 

because of any other severe health problems. Orally administered biological inhibitors were given 

continuously with no dose interruption.  In the case of a chemotherapeutic plus an oral inhibitor, the 

chemotherapy agent was dosed once weekly for 21 days and stopped until  progression, while the 

small molecule inhibitors were dosed continuously. 

Compounds.  Compounds were obtained from commercial sources: Carboplatin (Hospira, 

Inc), cyclophosphamide (Hospira, Inc), doxorubicin (Bedford Laboratories), paclitaxel (Ivax 

Pharmaceuticals, Inc), erlotinib (Genentech, Inc) and lapatinib (GlaxoSmithKline). Oral biological 

inhibitors (erlotinib and lapatinib) were milled into chow by Research Diets, Inc. while carboplatin 

and paclitaxel were delivered via intraperitoneal injection.  

Treatments.  The drug-specific approach to determine schedule and dose is described in 

Table 3.1.  A minimum tumor volume of ~0.5cm in size was required for randomization into a 

treatment group (including a control group). Combination treatments were given at the same doses as 

the individual treatments. Chemotherapy was started at time zero and repeated weekly for over a 14-

day (T11/TP53-/-) or 21-day (C3(1)-T-antigen and MMTV-Neu) period.  

Pharmacokinetic (PK) Studies. PK studies were performed after administration of 

paclitaxel (Figure 3.1), erlotinib, and lapatinib (data not shown). For paclitaxel, seventeen transgenic 

FVB/n mice bearing the MMTV-Neu transgene were administered a single intraperitoneal dose of 

paclitaxel at 10 mg/kg. Plasma and tumor samples (3 mice used at each time point; 2 mice used for 

the 48 hour time point) were collected at 0.083, 1, 4, 8, 24, and 48 hours after administration and 

flash frozen in liquid nitrogen. The samples were analyzed via liquid chromatography/tandem mass 

spectrometry (LC-MS/MS) as described previously [23]. The concentration versus time profiles of 

paclitaxel in plasma and tumor are presented in Figure 3.1. The mean ± SD of paclitaxel Cmax  and 

AUC0-∞ in plasma following IP administration were 2.1 µg/mL ± 1.5 and 6.3 µg/mL•h respectively.  
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The mean ± SD of paclitaxel Cmax and AUC0-∞ in tumor following IP administration were 3.7 µg/g ± 

2.1 and 42.4 µg/g•h respectively.  

Response Criteria. Tumor volume was calculated from two-dimensional measurements as 

(Volume = [(width)2 x length]/2).  The percent change in volume at 21 days was used to quantify 

response, except in the case of the T11/TP53-/- model where its faster growth rate required a 14-day 

treatment response assessment.  Twenty-one day response was chosen as our primary response 

endpoint based on the fact that most of the untreated animals do not survive much longer than 21 

days when starting with a tumor of >0.5 cm.  Survival was measured from the first day of drug 

treatment.  

Microarray Analysis. DNA microarray analyses of murine tumors was performed as 

described in Herschkowitz et al. [12]. We used using Agilent 4x44,000 feature mouse DNA 

microarrays and a common reference strategy. For hierarchical clustering analyses, the genes/rows 

were median centered and clustering of arrays was performed using Cluster v3.0 [24] with 

correlation centered genes and arrays, and centroid-linkage. Array cluster viewing and display was 

performed using JavaTreeview v1.1.4 [25].   

 Statistical Analyses 

(A) Identification of significant differential genes in response to treatments. We 

performed two unpaired two-class SAM [26] analyses to identify genes that showed differential 

expressions as following: (i) between carboplatin/paclitaxel treated C3(1)-T-antigen tumors that 

responded versus those that did not and (ii) between carboplatin/paclitaxel treated C3(1)-T-antigen 

tumors versus those untreated. The primary SAM analysis to identify tumor response related genes 

included three responding tumors (shrinkage >20%) versus nine non-responding tumors 

(growth >20%).  The secondary SAM analysis to identify treatment up-regulated or down-regulated 

genes included seven untreated tumors versus the twelve treated tumors.  Two gene lists were 

obtained with a FDR of 1%: 348 genes (428 probes) showing significantly high expression in the 
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untreated samples (called UNTREATED) and 61 genes (74 probes) showing significantly high 

expression in the samples from responders (called RESP-HIGH); the identified genes are listed in 

Appendix 1. Using the Mouse Genome Database [27], these lists were converted to orthologous 

human genes. In order to refine the list of these candidate genes relevant to human tumors, a 

hierarchical clustering analysis of these orthologous human gene lists was performed using the 337 

tumor samples from Prat et al. [1]. From these clusters, we chose a dendrogram node based on the 

criteria that it would include the largest number of highly expressed genes and have a node 

correlation of >0.4. Figure 3.2b illustrates the gene set called UNTREATED-HUM that includes 30 

unique genes. Figure 3.2d illustrates the gene set called RESP-HUM that includes 12 unique genes. 

In the UNC337 human tumors sets, these two gene lists showed “homogeneous” expression 

patterns, and thus we decided that taking the mean of the genes within each list/dendrogram node 

was the most appropriate method to assign the signature score for each tumor sample. In brief, an 

UNTREATED-HUM score was assigned to each test sample by taking the mean of the 26 genes in 

the list. A RESP-HUM score was assigned to each test sample by taking the mean of the 12 genes in 

the list. Since we also aimed to compare the performance of these two signatures as well as including 

published genomic signatures, we standardized the signature scores with a standard deviation 

equivalent to 1 to bring all the signature scores to the same scale. We applied this same methodology 

to two independent data sets of neoadjuvant human tumors described below.  

(B) Association of the identified signatures with tumor response for neoadjuvant 

anthracycline/taxane containing chemotherapy regimens. The performance of UNTREATED-

HUM and RESP-HUM signatures to predict pathological complete response (pCR) was first tested 

on 462 patients with HER2 normal tumors in MDACC data set (Hatzis et al. [28], GEO # GSE25066) 

and validated on 81 patients with HER2 normal tumors in JSE data set (Miyake et al. [29] GEO # 

GSE32646). Patients on both data sets were treated with  neoadjuvant anthracycline-taxane 

containing regimens. Univariable logistic regression analysis was used to assess the odds ratio and 
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significance of the two signatures to predict pCR. Multivariable logistic regression analysis was used 

to determine the adjusted odds ratio and significance taking into account for the standard clinical 

variables measured at baseline and other published genomic signatures as appropriate.  The area 

under the curve (AUC) value was calculated from the Receiver Operating Characteristics analysis of 

the univariable and multivariable logistic model respectively. The published genomic signatures 

included the PAM50 intrinsic subtypes [2], Claudin-low predictor[1],  and 11-gene proliferation 

signature [9]; we also included signatures developed by Hatzis and colleagues (including Hatzis 

Sensitivity to endocrine therapy (SET) index, Hatzis signature chemo sensitive RCB-I predict, and 

Hatzis signature chemo resistance (RCB-III predict)) that were available for the data set [28]. Finally, 

survival outcome data after neoadjuvant treatment was available for the Hatzis et al. data set and 

Kaplan Meier analysis and log-rank test were used to determine the differential survival estimates of 

the two signatures to distant relapse free survival. 

  

RESULTS 

Sensitivity of GEMMs to chemotherapeutic agents 

Our ultimate goal was to use GEMMs to develop predictors of therapeutic response for 

humans. Details of the work flow are outlined in the study design Figure 3.3. As a first step, we 

tested three different mammary cancer GEMMs with multiple therapeutics to find a GEMM, and a 

drug regimen, which gave a range of responses; from this GEMM, we then profiled sensitive and 

resistant tumors in order to identify a signature associated with response. We first therefore, 

determined the sensitivity of three distinct GEMMs/OSTs models of human breast cancer subtypes 

versus two cytotoxic chemotherapeutics and two small molecule kinase inhibitors. The models used 

were C3(1)-T-antigen, MMTV-Neu, and T11/TP53-/-, with these models chosen based on their 

similarity in gene expression to Basal-like, Luminal B and Claudin-low human tumor subtypes 

respectively [12, 18].  Tumor volume changes at 21 days (or 14 days in the T11/TP53-/- model), and 
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long-term survival were the primary endpoints. Response at 21 days (or 14 days for T11/TP53-/-) was 

measured for 304 treated and control mice (150 C3(1)-T-antigen, 97 MMTV-Neu, 57 T11/TP53-/-) 

with the percent volume change of each model’s non-treated controls (i.e. growth rate) shown in 

Figure 3.4 (bottom rows). Although there was overlap in the average growth rates of tumors from 

each GEMM, the untreated T11/TP53-/- tumors grew significantly faster than their MMTV-Neu 

counterparts (p<0.01, Student’s t-test), with the C3(1)-T-antigen model exhibiting an intermediate 

growth rate (Figure 3.4).  

With the growth kinetics of these models established, we next tested two chemotherapeutics 

that are widely used to treat many solid epithelial human cancers, namely paclitaxel and carboplatin.  

Although the standard of care for most breast cancer patients is doxorubicin/cyclophosphamide with 

or without a taxane (i.e. AC-T) [30], platinum agents (carboplatin/cisplatin) are also gaining in use 

[31], and thus are relevant to breast cancers, especially triple-negative breast cancers (TNBC).  As a 

single agent, carboplatin elicited a modest but significant responses in all three models, while 

paclitaxel alone elicited no response; however, systemic and tumor drug delivery was confirmed for 

paclitaxel (Figure 3.1).  

Next we tested the commonly used chemotherapy doublet of carboplatin/paclitaxel (CT).  A 

varied response profile was seen for the CT combination where the combination demonstrated no 

activity in the T11/TP53-/- model, and only modest activity in the MMTV-Neu model.  Importantly, in 

the C3(1)-T-antigen model, a clear bimodal response was observed to the CT combination: ~2/3 of 

the tumors showed little response and ~1/3 showed near complete regression (Figure 3.4a).  This 

finding is in accord with the observation that human Basal-like tumors exhibit a ~30-40% complete 

pathological response rate (pCR) to taxane containing neoadjuvant regimens, while the other 60-70% 

show residual disease and a worse overall survival [1, 5, 10]. 
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Sensitivity to targeted agents 

Two classes of biologically targeted agents are used in patients with breast cancer: agents 

blocking estrogen and progesterone receptor (ER/PR) signaling (e.g. tamoxifen or aromatase 

inhibitors) and drugs targeting HER2 (e.g. trastuzumab and lapatinib). Given that none of our 

GEMMs were ER+ or PR+ [12], we chose to focus on the HER2/EGFR family of kinases by using 

the small molecule inhibitor lapatinib (which targets HER2/ERBB2 primarily [27]), and the EGFR 

inhibitor erlotinib [32]. In the MMTV-Neu model, erlotinib and lapatinib were both highly effective, 

with lapatinib causing near 100% regression in all MMTV-Neu tumors. Conversely, neither erlotinib 

nor lapatinib were effective at reducing the growth rate of the T11/TP53-/- tumors. Lapatinib was 

similarly ineffective in the C3(1)-T-antigen tumors, but as was the case for the CT doublet, erlotinib 

showed potent activity in a subset (~40%) of treated mice.  These data show that HER2/EGFR 

inhibitors exhibit potent activity in the Neu/ERBB2/HER2-driven model as expected, and provide 

further evidence for at least two subtypes of C3(1)-T-antigen tumors with regard to therapeutic 

sensitivity.    

We also assessed the effects of anti-cancer therapies on the overall survival of tumor-bearing 

mice. Baseline survival for the MMTV-Neu (29 days) and C3(1)-T-antigen models (33 days) was 

similar in the absence of therapy, while the T11/TP53-/- animals showed significantly shorter median 

survival (15 days) (Figure 3.5).  In the MMTV-Neu model, single-agent lapatinib (and to some extent 

erlotinib) greatly extended lifespan from a median of 29 days to 154 days (Figure 3.5b). Conversely, 

no single or combination regimen was able to extend survival in the C3(1)-T-antigen or T11/TP53-/- 

models.  

 

Development of murine chemotherapy response signatures 

A heterogeneous response to CT was seen in the C3(1)-T-antigen tumors that ranged from 

progressive disease to complete response (Figure 3.4a).  We sought to explore these findings and 
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develop a genomic predictor of this response using this GEMM by performing RNA expression 

profiling of treated vs. untreated tumors. For these experiments, we treated C3(1)-T-antigen tumors 

with carboplatin/paclitaxel for two or three cycles and measured response (n=12), and then harvested 

the tumor for molecular analysis.  In addition, an independent set of seven untreated tumors was used 

as the non-treated controls (Table 3.2). 

Significance Analysis of Microarray (SAM) [26] was used to derive two sets of differentially 

expressed genes by (A) comparing those mice that responded to treatment (n=3) versus those that did 

not (n=9), and by (B) comparing the untreated (n=7) versus treated tumors (n=12) (Table 3.2 and 

Appendix 1).  When testing untreated versus treated tumors at a FDR of 1%, this analysis identified 

428 probes corresponding to 348 mouse genes that were more highly expressed in untreated tumors 

(called UNTREATED gene list, Appendix 1a); a Gene Ontology analysis of the UNTREATED list 

identified multiple significant terms including  “cellular macromolecule metabolic process”, “nucleic 

acid metabolic process”, “regulation of macromolecule biosynthetic process”, “chromosome 

organization”, “DNA metabolic process” and “cell cycle’.  We applied a modules/signatures analysis 

to the untreated versus treated tumors where we examined if 302 previously defined expression 

signatures [33] varied with treatment (Appendix 2). This modules/signatures analysis showed that 

multiple signatures of fibroblasts/extracellular matrix, and signatures of the Claudin-low phenotype 

[1, 18] were more highly expressed after treatment, with this last result recapitulating findings 

observed in post-chemotherapy treated human tumors [34]. Multiple signatures decreased after 

treatment including one of proliferation and one of HER1-RAS-pathway activation. These data show 

that CT treatment induced expression of genes associated with Claudin-low/mesenchymal phenotype, 

and reduced cellular proliferation. 

When the cohort of treated tumors was subdivided into responders versus non-responders at a 

FDR of 1%, a list of 74 differentially expressed probes corresponding to 61 mouse genes was 

obtained (Appendix 1b). These genes were more highly expressed in the mice that responded to 
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treatment and the list was named RESP-HIGH.  A gene ontology analysis of the RESP-HIGH list 

revealed the presence of no significant GO terms after Bonferroni or Benjamini corrections. We also 

applied the 302 signatures analysis above on the responder versus non-responder sample set, and 

only  a small number of proliferation signatures were more highly expressed in non-responders. 

 

Human testing of the murine chemotherapy response signatures 

Next, the murine 348 gene UNTREATED and 74 gene RESP-HIGH lists were converted into 

human lists using gene orthology, and both lists were then further refined using hierarchical cluster 

analyses of 337 human breast tumors from Prat et al. [1] (Figure 3.2). This mouse-to-human filtering 

was necessary because a homogenous gene list from a cell line, or murine experiment, when applied 

to human primary tumors, will typically fragment into multiple signatures/modules when using in 

vivo human data [35].  We observed this type of gene list heterogeneity here, and thus, from these 

cluster analyses we chose a single dendrogram node that contained the highest homogenously 

expressed gene set observed within this human primary tumor data set, and for each gene list 

separately. This gave a set of 30 genes from the UNTREATED list that we call UNTREATED-HUM, 

and 12 genes from the RESP-HIGH list that we call RESP-HUM (Figure 3.2b and d); it should be 

noted that we did not test all possible dendrogram nodes, but instead limited our analyses to a single 

node from each cluster analysis. These two refined gene lists were also analyzed for GO terms with 

the UNTREATED-HUM list enriched for the terms ‘cell cycle’, ‘M phase’, ‘nuclear division’ and 

‘mitosis’, and we also noted that 12/30 entries were ATP-binding proteins. The RESP-HIGH was not 

enriched for any GO term. 

We next tested both humanized gene lists for their ability to predict distant relapse-free 

survival (DRFS), and most importantly, pathological complete response (pCR) using a completely 

independent set of human breast cancer patients treated with neoadjuvant chemotherapy. For both 

clinical endpoints, we used the Hatzis et al. data set (See Figure 3.3), which is a combined data set of 
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patients who were treated with a taxane and anthracycline-containing neoadjuvant chemotherapy 

regimen [28].  We first stratified patients into low-medium-high (tertiles) groups based upon their 

rank-ordered mean expression values for the RESP-HUM and UNTREATED-HUM signature and 

then tested these stratifications for their ability to predict DRFS. These analyses showed that the 

RESP-HUM (p < 0.001) and UNTREATED-HUM (p = 0.003) signatures were able to predict DRFS, 

as was pCR vs. not, intrinsic subtype, and an 11-gene proliferation signature (Figure 3.6). In 

multivariable analyses, however, neither of these murine signatures added prognostic information 

beyond that conveyed by the PAM50 11-gene proliferation signature [9] (data not shown). 

We then tested the humanized gene lists for their ability to predict pathological complete 

response (pCR), which is the most relevant endpoint for these chemotherapy response-based 

signatures. Within this patient set, 462 patients had pathological response data; 91 patients achieved a 

pCR and 371 did not (20% overall pCR rate). The pCR rates varied according to intrinsic subtype as 

follows:  Basal-like (n=129, 40% pCR), Claudin-low (n=70, 23% pCR), HER2-Enriched (n=27, 19% 

pCR), Luminal A (n=140, 3% pCR), Luminal B (n=68, 16% pCR), and Normal-like (n=28 total, 14% 

pCR).  To determine the possible significance of our two response signatures on this test set of 

human patients, the mean expression values for each gene list was calculated and the distribution of 

values between pCR patients versus not pCR patients determined.  As shown in Table 3.3, when all 

473 patients were considered, the UNTREATED-HUM signature was significantly correlated with 

pCR (p<0.001) and the RESP-HUM signature was trending toward significance (p=0.051). As we 

further stratified patients into the five, and even six intrinsic subtypes the UNTREATED-HUM 

signature continued to maintain significance. Interestingly, the RESP-HUM signature predicted pCR 

more strongly in the Normal-like and Claudin-low subtypes while the UNTREATED-HUM signature 

better tracked response within the Basal-like subtype (Table 3.3). Lastly, the triple-negative breast 

cancer distinction is a highly clinically relevant group because these patients are not candidates for 
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the current targeted therapies in the breast clinic [10, 11]; within this group, the UNTREATED-HUM 

signature was also a significant predictor (p=0.003).  

To more rigorously test the predictive significance of these new expression signatures, 

multivariable analysis using logistic regression was performed that included the common clinical 

variables, the intrinsic subtypes, the RESP-HUM and UNTREATED-HUM signatures, and three 

predictive genomic signatures identified by Haztis et al. (Table 3.4).  For these analyses, we used the 

subset of patients that had pCR/response data, survival data, and who were treated with an 

anthracycline and taxane chemotherapy regimen (n=441). As shown in Table 3.4, multiple 

biomarkers were predictive in univariate analyses, but only the UNTREATED-HUM, Basal-like, 

Normal-like, and one of the Haztis et al. chemotherapy predictor signatures (i.e. RCB-III/resistance) 

were found significant in both the univariate and multivariate tests.  To further assess the strength of 

the predictive powers of these genomic signatures, each was used to calculate an Area Under the 

Curve (AUC) for pCR, both alone (univariate AUC) and in the multivariate model (Table 3.4). The 

UNTREAT-HUM signature provided a good univariate AUC, and the multivariate model provided 

improvement with a high AUC (0.879).  When the three Hatzis et al. signatures were removed from 

the multivariate analysis, most of the variables that were significant in the initial MVA remained 

significant, and the overall model continued to show a high AUC (0.82) (data not shown). Lastly, an 

additional test data set of anthracycline and taxane treated human patients was tested, which 

represents 81 patients treated neoadjuvantly from Japan [29]; similar predictive results were seen for 

the UNTREAT-HUM signature, which was again a significant predictor in both the univariate and 

multivariate analyses (Table 3.5). These data show that the UNTREATED-HUM signature (and 

possibly the RESP-HUM) provided predictive information for pCR beyond 1) the commonly used 

clinical variables, 2)  breast cancer subtype, and 3) other genomic signatures derived from one of the 

data sets tested here.  
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DISCUSSION 

As new agents for breast cancers are developed, validated preclinical models for assessing 

these agents’ activity alone and in combination with approved therapies are needed. In this study, we 

chose genomically credentialed GEMM representatives for three human breast tumor subtypes 

(Basal-like, Luminal B and Claudin-low) as our preclinical models. While using single 

representatives of different tumor subtypes does not allow for the identification of subtype-specific 

effects, we believe this approach does make future predictions of therapeutic efficacy more robust by 

including results from a biologically diverse group of tumor-bearing individuals. 

For therapeutic efficacy, each GEMM was treated with identical regimens and for most drugs, 

variable responses were seen. Our findings show that the MMTV-Neu tumors were the most 

responsive in general, with multiple agents being able to achieve complete tumor regression, 

especially the HER2 targeted agent lapatinib. Next in sensitivities was the Basal-like C3(1)-T-antigen 

model, which was generally more resistant than the MMTV-Neu model, but in some cases complete 

responses were documented (CT and carboplatin/erlotinib); interestingly, a heterogeneity of 

responses was common in this GEMM (Figure 3.4a), suggesting that two or more sub-classes of 

tumors may be present. Importantly, a similar heterogeneous response pattern is seen within human 

Basal-like patients when treated with comparable agents where many patients achieve a pCR and 

have good overall survival, but the majority show residual disease and worse outcomes (Figure 3.6c 

and see [5, 36]). Lastly, the Claudin-low T11/TP53-/- model was the most resistant with only small 

responses seen in this model. 

We ultimately chose to focus our analysis on expression-signatures associated with 

chemotherapy treatment of one of our GEMMs and response for two main reasons.  First, we 

reasoned transcripts highly expressed in sensitive murine tumors (i.e. the RESP-HIGH list) might 

also be highly expressed in sensitive human tumors; although this list was predictive in human 

tumors, it was not obvious from gene ontology analysis what molecular characteristics drive this 
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biology, and this list was not significant when accounting for other variables (MVA p-value = 0.058).  

Second, in a tumor treated in vivo, we reasoned chemotherapy might deplete the most sensitive cells 

and their characteristic transcripts. Therefore, the collection of transcripts that were highly expressed 

in untreated cells and depleted with treatment (i.e. the UNTREATED list) similarly seemed rational 

for testing in humans.  Specifically, an analysis showed the 26-gene UNTREAT-HUM signature 

(Figure 3.6) was a significant predictor of response and may also provide mechanistic insight. This 

26-gene list suggests that the cells actually undergoing DNA synthesis and mitosis (i.e. in S/G2/M-

phase) are more sensitive to cytotoxic agents than cells in other parts of the cell cycle (G0 or G1), 

which is a concept dating back to the 1960’s (reviewed in [37]). It is important to note that this list 

added independent information above and beyond strict assessments of proliferation (e.g. an 11-gene 

proliferation signature that contains Ki-67), suggesting this list may better capture specific features of 

the cell cycle (e.g. length of time spent in S/G2/M) associated with sensitivity to 

carboplatin/paclitaxel. The UNTREAT-HUM list is in fact a biologically rich list that contains at 

least two different sets of genes/proteins that physically form a multi-protein complex, namely SMC2 

and SMC4, and MCM4 and MCM6. In addition, this list has two different E2F family members 

(E2F3 and E2F8), for which a poor prognostic signature has already been linked to E2F3 [38]. These 

data also suggest that no single gene/protein is likely to be a robust biomarker of chemosensitivity 

because a multitude of genes, each involved in different aspects of the cell cycle, were collectively 

identified as being predictive of response. These new expression signatures were derived from 

murine models that, despite their specific chemoresponses not being a mirror of their human 

counterparts (i.e. paclitaxel), added a significant predictive component to the multivariate model that 

at least equaled the ability of those tested signatures that were derived directly from this human 

tumor data set.  

In terms of human biomarker advances, we made progress using the C3(1)-Tag GEMM. As 

shown in Tables 3.3 and 3.4, the UNTREATED-HUM signature was predictive of response to a 
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multi-agent neoadjuvant chemotherapy regimen, not only across all HER2-normal human breast 

cancer patients but also within the clinically relevant triple-negative subset, as well as the more 

biologically relevant Basal-like subset. Interestingly, this UNTREATED-HUM signature was also 

able to predict pCR even when accounting for intrinsic subtype, the common clinical variables, and 

two other genomic signatures specifically designed to predict neoadjuvant response (Table 3.4).  

Although the murine treatment and human treatment involved the use of different chemotherapeutics, 

both species studies used paclitaxel and at least one DNA damaging agent (carboplatin in mice and 

doxorubicin/epirubicin in humans). Overall, a multivariate model that contained the UNTREAT-

HUM, the intrinsic subtypes, and the common clinical variables showed an AUC of 0.82, which may 

be sufficiently predictive to be of value for routine clinical use. 

We were surprised to find that the results from mice treated with single agent paclitaxel did 

not mimic the effectiveness of this drug in human breast cancer patients.  Delivery of higher 

therapeutic doses of paclitaxel to the mice (i.e. doses closer to those received by human patients) may 

have proven more efficacious; however, our chosen formulation of paclitaxel contained chremaphor 

and ethanol in amounts that precluded higher dosing.  Another caveat to our studies is that these two 

GEMM-derived signatures were both predictive and prognostic; however, it must be noted that it is 

often difficult, if not impossible, to disentangle these two features. For example, both ER and HER2 

in breast cancer are prognostic (they predict outcomes in the absence of therapy) and they are 

predictive (ER predicts hormone therapy benefit and HER2 predicts trastuzumab benefit) and thus, 

our new signatures are showing dual properties similar to those seen for the existing breast cancer 

biomarkers. Much additional validation work is needed before these two murine-derived signatures 

could be used to guide patient treatment. However, this study has laid the groundwork of a general 

strategy for evaluating new drugs, combinations, and schedules using GEMMs and has shown it is 

possible to use mice as a tool to identify a biomarker that may be of predictive value for human 

cancer patients. 
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TABLES 

Table 3.1 Summary of drugs used in this study, their doses, and utilized schedules of administration. 

Chemica

l Agent 

Activity Dose 

(mpk) 

Route Schedule Notes 

Carboplati

n 

DNA cross 

links 

50 Parenteral weekly Carboplatin was dosed in a range from 50-75 mpk as a 

single agent.  A dose of 50mpk was determined to illicit a 

tumor response and was tolerable for overall survival. 

Erlotinib EGFR/HER1 

inhibitor 

25 PO continuous 

in food 

Doses were based upon literature review. 

Lapatinib HER2/ERBB

2 inhibitor 

220 PO continuous 

in food 

Drug was first dosed on the targeted model MMTV-Neu 

at 75 mpk PO in food.  Stable disease was reached in 21 

days but no toxicity was noted.  The dose was escalated 

systematically to 220 mpk.  This dose caused tumor 

complete regression in the MMTV-Neu model within 14 

days and was tolerated well with mild toxicity only 

showing in some animals after 120 days of continuous 

treatment.  Plasma was drawn to confirm drug presence. 

Paclitaxel stabilizes 

microtubules 

10 Parenteral weekly Drug was dosed by tail IV at 10 and 20 mpk and IP at 10 

mpk.  IV 20 mpk caused moderate skin lesions on the tail 

around 28 days.  IV and IP 10 mpk were well tolerated 

and no tumor response differences between IV and IP 

were noted.  The IP route was pursued for all subsequent 

studies due to the significantly greater ease of repeated 

administration. 

Abbreviations: mpk, mg per kilogram; PO, by mouth; IV, intravenous; IP, Intraperitoneal 
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Table 3.2  List of mouse C3(1)-T-antigen gene expression microarrays used to derive the murine 

gene lists. 

Treatment Experiment name SlideName GEO ID 

Non-treated FVB_C3(1)-Tag_116409C_untreated Agilent-251486822731-2 GSM929889 

Non-treated FVB_C3(1)-Tag_116410B_untreated Agilent-251486822731-1 GSM929888 

Non-treated FVB_C3(1)-Tag_117338-1_untreated Agilent-251486822730-4 GSM929887 

Non-treated FVB_C3(1)-Tag_117517_untreated Agilent-148681502-1 GSM929880 

CT Treated 

FVB_C3(1)-Tag_118657_three-week-

treatment_Non-responder Agilent-251486822800-2 GSM929890 

Non-treated FVB_C3(1)-Tag_120157_untreated Agilent-148681503-3 GSM929881 

CT Treated 

FVB_C3(1)-Tag_120865_two-week-

treatment_Non-responder Agilent-251486822800-4 GSM929891 

CT Treated 

FVB_C3(1)-Tag_121491-three-week-

treatment_Non-responder Agilent-148682256-4 GSM929882 

CT Treated 

FVB_C3(1)-Tag_123051-three-week-

treatment_Non-responder Agilent-148682257-1 GSM929883 

CT Treated 

FVB_C3(1)-Tag_123240-two-week-

treatment_Non-responder Agilent-148682257-4 GSM929884 

CT Treated 

FVB_C3(1)-Tag_125653a_two-week-

treatment_Non-responder Agilent-1486822814-2 GSM929885 

CT Treated 

FVB_C3(1)-Tag_125905_two-week-

treatment_Non-responder Agilent-1486822814-3 GSM929886 

Non-treated FVB_C3(1)-Tag-120555_untreated 

Mouse 4X44K-251486820747-

120555 GSM929879 

Non-treated FVB_C3(1)-Tag-121415_untreated 

Mouse 4X44K-251486819757-

121415 GSM929873 

CT Treated 

FVB_C3(1)-Tag-121450T2-three-week-

treatment_Non-responder 

Mouse 4X44K-251486819760-

121450-T2 GSM929878 

CT Treated 

FVB_C3(1)-Tag-122387_two week-

treatment_Responder 

Mouse 4X44K-251486819758-

122387 GSM929874 

CT Treated 

FVB_C3(1)-Tag-122738-three week-

treatment_Responder 

Mouse 4X44K-251486819750-

122738 GSM929875 

CT Treated 

FVB_C3(1)-Tag-124051T1-three-week-

treatment_Non-responder 

Mouse 4X44K-251486819750-

124051-T1 GSM929876 

CT Treated 

FVB_C3(1)-Tag-124051T2-three-week-

treatment_Responder 

Mouse 4X44K-251486819751-

124051-T2 GSM929877 
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Table 3.3  Pathological Complete Response (pCR) rates across different patient subsets for the 

RESP-HUM and UNTREATED-HUM signatures.  

  

  

RESP-HUM UNTREATED-HUM 

  pCR 
Risidual 

disease 
P-value AUC Odds ratio P-value AUC Odds ratio 

All patients 91(19.7%) 371(80.3%) 0.051 0.586 0.788 (0.61-0.99) <0.001 0.752 2.72 (2.08-3.63) 

  
        

ER-negative only 62(33.3%) 124(66.7%) 0.821 
  

<0.001 0.683 2.09 (1.44-3.11) 

ER positive only 29(10.5%) 246(89.5%) 0.405 

  

<0.001 0.747 2.64 (1.67-4.31) 

  
        

PAM50 (5 intrinsic subtypes) 

Basal-like 62(35.8%) 111(64.2%) 0.707 
  

0.001 0.649 2.05 (1.33-3.24) 

HER2-enriched 5(17.9%) 23(82.1%) 0.43 
  

0.076 
  

Luminal A 4(2.8%) 141(97.2%) 0.208 
  

0.172 
  

Luminal B 12(16.7%) 60(83.3%) 0.638 
  

0.079 
  

Normal-like 8(18.2%) 36(81.8%) 0.009 0.837 4.47 (1.69-16.9) 0.274 
  

  
        

PAM50 + Claudin-low (6 intrinsic subtypes) 

Basal-like 51(39.5%) 78(60.5%) 0.356 
  

0.001 0.68 2.33 (1.44-3.93) 

Claudin-low 16(22.9%) 54(77.1%) 0.054 0.660 1.55 (1-2.47) 0.474 
  

HER2-enriched 5(18.5%) 22(81.5%) 0.426 
  

0.086 
  

Luminal A 4(2.9%) 136(97.1%) 0.223 
  

0.169 
  

Luminal B 11(16.2%) 57(83.8%) 0.976 
  

0.272 
  

Normal-like 4(14.3%) 24(85.7%) 0.052 
  

0.137 
  

  
        

Triple-Negative 

only 
56(33.5%) 111(66.5%) 0.651 

  

0.003 0.651 1.8 (1.24-2.68) 

NOTE: The P-value and Area-Under-the-Curve (AUC) columns indicate whether the RESP-HUM or 

UNTREATED-HUM signature (as a continuous variable from low to high expression) was associated with response 

(italics) within that patient set/subset. 
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Table 3.4   Univariate and Multivariate Analysis for pCR using clinical and genomic features 

including the RESP-HUM and UNTREATED-HUM signatures on the Hatzis et al. data set.  

  
Univariate Multivariate 

 
No. of pts* p-value odds ratio AUC p-value odds ratio AUC 

UNTREATED-HUM 441 <0.001 2.57 (1.96-3.45) 0.740 0.013 2.3 (1.21-4.52) 0.879 

RESP-HUM 441 0.073 0.796 (0.618-1.02) 0.583 0.058 1.45 (0.99-2.15)  

PAM50 proliferation 441 <0.001 2.57 (1.9-3.56) 0.730 0.917 0.96 (0.443-2.11)  

ER        

Negative 175(40%) 
 

1 0.562 
 

1  

Positive 266(60%) <0.001 0.234 (0.139-0.385)  0.992 0.99 (0.391-2.52)  

PR        

Negative 227(51%) 
 

1 0.467 
  

 

Positive 214(49%) <0.001 0.30 (0.176-0.51)  0.683 0.83 (0.363-1.97)  

Clinical T Stage        

1 27(6%) 
 

1 0.571 
 

1  

2 226(51%) 0.364 0.652 (0.269-1.75)  0.902 0.92 (0.261-3.39)  

3 126(29%) 0.746 0.854 (0.34-2.36)  0.844 0.87 (0.236-3.38)  

4 62(14%) 0.054 0.306 (0.0885-1.02)  0.195 0.35 (0.071-1.69)  

Clinical Grade        

1 28(6%) 
 

1 0.481 
 

1  

2 170(39%) 0.498 2.05 (0.38-38.1)  0.967 1.05 (0.13-23.7)  

3 243(55%) 0.019 11.1 (2.3-201)  0.574 2.02 (0.235-46.6)  

PAM50        

LumA 141(32%) 
 

1 0.633 
 

1  

Basal 167(38%) <0.001 18.2 (7.21-61.5)  0.026 5.76 (1.3-29.4)  

Her2 24(5%) 0.010 6.85 (1.51-31.1)  0.161 3.55 (0.59-21.7)  

LumB 67(15%) 0.003 6.01 (1.92-22.6)  0.400 1.92 (0.438-9.49)  

Normal 42(10%) 0.001 8.06 (2.39-31.7)  0.002 10 (2.34-47.6)  

Hatzis signature SET index 

1 386(88%)  1 0.136  1  

2 36(8%) 0.091 0.353 (0.0835-1.02)  0.729 1.34 (0.223-6.49)  

3 19(4%) 0.302 0.457 (0.0715-1.64)  0.953 0.94 (0.105-6.17)  

Hatzis signature chemo sensitive (RCB-I predict) 

1 296(67%)  1 0.553  1  

2 145(33%) <0.001 2.97 (1.82-4.84)  0.127 1.76 (0.855-3.67)  

Hatzis signature chemo resistance (RCB-III predict or 3 year survival) 

1 197(45%)  1 0.603  1  

2  244(55%) <0.001 0.089 (0.0449-0.166)  <0.001 0.129 (0.0565-0.277)  

NOTE: Univariate  and Multivariate analyses were performed using all Hatzis et al. patients who received 

anthracycline and taxane chemotherapy only, and who had overall survival data (n=441). 

* The number of patients with clinical ER status, PR status, T stage, grade and pCR status available. 
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Table 3.5  Univariate and Multivariate Analysis for pCR using clinical and genomic features 

including the UNTREATED-HUM and RESP-HUM signatures on the Miyake et al. data set.  

  
Univariate Multivariate 

 
No. of pts* p-value odds ratio AUC p-value odds ratio AUC 

UNTREATED-HUM 81 0.019 2.38 (1.22-5.3) 0.712 0.038 45 (2.11-3290) 0.900 

RESP-HUM 81 0.395 0.778 (0.424-1.37) 0.593 0.351 1.98 (0.488-9.23)  

PAM50 proliferation 81 0.097 1.95 (0.971-4.73) 0.672 0.152 0.109 (0.00383-1.92)  

ER        

Negative 26(32%) 
 

1 0.631 
 

1  

Positive 55(68%) 0.003 0.16 (0.044-0.518)  0.037 0.001 (7.29e-07-0.22)  

PR        

Negative 43(53%) 
 

1 0.446 
  

 

Positive 38(47%) 0.091 0.34 (0.0877-1.11)  0.227 5.94 (0.408-188)  

Clinical T Stage        

1+2 66(81%) 
  

0.205 
 

1  

3+4 15(19%) 0.218 0.265 (0.014-1.5)  0.100 0.0668 (0.00126-1.02)  

Clinical Grade        

1 13(16%) 
 

1 0.624 
 

1  

2 54(67%) 0.818 0.819 (0.168-6)  0.790 0.722 (0.0688-10.5)  

3 14(17%) 0.131 4.12 (0.729-33.6)  0.303 6.41 (0.231-335)  

Clinical Nodal Status        

Negative 23(28%)  1 0.322  1  

Positive 58(72%) 0.068 7 (1.28-131)  0.055 13.4 (1.4-399)  

PAM50        

LumA 25(31%) 
 

1 0.713 
 

1  

Basal 15(19%) 0.057 5.75 (1.05-45.2)  0.118 0.00262 (3.92e-07-1.4)  

Her2 9(11%) 0.026 9.2 (1.41-81.8)  0.160 0.0135 (1.12e-05-2.08)  

LumB 19(23%) 0.428 2.16 (0.322-17.8)  0.880 1.26 (0.0627-29.5)  

Normal 13(16%) 0.973 0.958 (0.042-11)  0.102 0.00494 (3.86e-06-1.08)  

NOTE: Univariate  and Multivariate analyses were performed using the clinically HER2 negative subset of patients 

sets taken from Miyake et al. 2012. 

* The number of patients with clinical ER status, PR status, T stage, grade, nodal status and pCR status available. 
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Figure 3.1  Pharmacokinetic evaluation of paclitaxel delivery. Paclitaxel drug concentrations were 
measured by mass spectroscopy and samplings of MMTV-Neu tumors and plasma. The results 
show significant systemic delivery of this drug when administered using intraperitoneal injections, 
both in the tumor and in the plasma.
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Figure 3.2  Hierarchical clustering analysis of the untreated and responding murine chemotherapy 
signature using 337 human breast tumors.  (a) The 348 genes highly expressed in untreated 
C3(1)-T-antigen tumors versus carboplatin/paclitaxel treated tumors was used to cluster the human 
breast tumor data set from Prat et al. 2010.  (b) The highlighted dendrogram node identifies the 30 
genes that were selected for additional analyses, for which 26 orthologs were found in the other 
human data sets (missing genes are identified by underlining) and used to evaluate correlations 
with pathological complete response. (c) The 74 genes highly expressed in those C3(1)-T-antigen 
tumors that responded to carboplatin/paclitaxel treatment versus those tumors that did not respond 
was used to cluster the human breast tumor data set from Prat et al. 2010.  (d) The highlighted 
dendrogram node identifies the 12 genes that were selected for additional analyses and were used 
to evaluate correlations with pathological complete response on other data sets.
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(a)  Genomic profiling of mouse mammary tumors

A total of 304 treated and control mice
                150 C3(1)-T-antigen
                97 MMTV-Neu
                57 T11/TP53-/-

Measurement of drug sensitivities to single agents and doublets. 
Chemotherapy: carboplatin and paclitaxel Targeted agents: lapatinib and erlotinib 

               

Further refinement of genomic signatures using 
human primary tumor data (n=337), yielding final: 

(1) RESP-HUM 
(2) UNTREATED-HUM 

   

(b) Determination of the predictive value on independent human tumor test data sets

(1) Hatzis et al., GSE 25066 
Affy U133A

(2) Miyake et al., GSE 32646 
Affy U133 2.0

N = 462  with pCR data
N = 441  with complete clinical
and pCR data
Treatment: AC/T or FEC/T

N = 81  with complete clinical
 and pCR data

Treatment: T -> FEC

We determined the predictive values of the  RESP-HUM and UNTRETED-HUM gene signatures for pathological 
complete response using two independent patient cohorts  with HER2 normal status and tumor size ≥ 2cm that
were treated with neoadjuvant anthracycline/taxane containing chemotherapy.

Development of murine chemotherapy (carboplatin/paclitaxel) response signatures: 
responder (n = 3) vs. non-responder (n = 9) and untreated (n = 7) vs. treated (n = 12)

Figure 3.3  Study design overview. (a) Drug treatment and genomic profiling of mouse mammary 
tumors for the development of chemotherapy response signatures. (b) Testing of genomic signa-
tures on two human tumor neoadjuvant treatment data test data sets.
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(a) C3(1)-T-antigen (b) MMTV-Neu (c) T11-TP53-/-

Carboplatin (17)

Carboplatin/
Erlotinib (14)

Carboplatin/
Paclitaxel (42)

Erlotinib (38)

Lapatinib (7)

Paclitaxel (11)

No Treatment (21)

% Volume Change
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Paclitaxel (11)

No Treatment (34)
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Carboplatin (8)

Carboplatin/
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Paclitaxel (6)

Erlotinib (7)
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No Treatment (16)
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% Volume Change % Volume Change
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Figure 3.4  Short-term treatment responses for three mouse models of mammary cancer. Box and 
whisker plots are shown as measures of tumor responsiveness. In each case, 2-3 cycles of therapy 
was administered for all chemotherapeutics (1 dose/week), while in the case of erlotinib and 
lapatinib, the drug was continuously administered via the chow. Tumor size was measured at 
baseline and at weekly intervals thereafter. The change in tumor volume over a 21-day treatment 
period is plotted for (a) C3(1)-T-antigen model, (b) MMTV-Neu model, and (c) T11/TP53-/- 
model; note that the T11/TP53-/- model is based upon a 14-day treatment period due to its faster 
growth rate. Drugs that elicited a statistically significant response as assessed by a t-test when 
compared versus its matched untreated controls are identified by being underlined. The number of 
animals in each treatment group is indicated in parentheses.
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(a) C3(1)-T-antigen

(b) MMTV-Neu (c) T11/TP53-/-

Figure 3.5  Long term survival results for three mouse models of mammary cancer. Kaplan-Meier 
analyses for overall survival of tumor bearing mice was performed. A) C3(1)-T-antigen, B) 
MMTV-Neu, and C) T11/TP53-/- results for chemotherapeutic treatments, targeted agents,  and 
combinations. A log-rank test was performed to determine significance of all treatment groups 
and is shown.
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Figure 3.6  Kaplan-Meier analyses for the prediction of Distant Relapse Free Survival. Using 
the Hatzis et al. data set, Kaplan-Meier plots were performed for A) pCR vs. residual disease 
(RD), B) the five PAM50-defined intrinsic subtypes, C) pCR vs. RD within just Basal-like 
subtype patients, D) high versus low expression of the RESP-HUM 12-gene signature, E) high 
versus low expression of the UNTREATED-HUM 26-gene signature, and F) high versus low 
expression of an 11-gene proliferation signature taken from Nielsen et al. 2010.
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CHAPTER IV 

COMPARISON OF RNA-SEQ BY POLY(A) CAPTURE, RIBOSOMAL RNA DEPLETION, AND 

DNA MICROARRAY FOR EXPRESSION PROFILING3 

 

Background: RNA sequencing (RNA-Seq) is often used for transcriptome profiling as well as 

the identification of novel transcripts and alternative splicing events. Typically, RNA-Seq libraries 

are prepared from total RNA using poly(A) enrichment of the mRNA (mRNA-Seq) to remove 

ribosomal RNA (rRNA), however, this method fails to capture non-poly(A) transcripts or partially 

degraded mRNAs. Hence, a mRNA-Seq protocol will not be compatible for use with RNAs coming 

from Formalin-Fixed and Paraffin-Embedded (FFPE) samples. 

Results: To address the desire to perform RNA-Seq on FFPE materials, we evaluated two 

different library preparation protocols that could be compatible for use with small RNA fragments. 

We obtained paired fresh-frozen (FF) and FFPE RNAs from multiple tumors and subjected these to 

different gene expression profiling methods. We tested 11 human breast tumor samples using: (a) FF 

RNAs by microarray, mRNA-Seq, Ribo-Zero-Seq and DSN-Seq (Duplex-Specific Nuclease) and (b) 

FFPE RNAs by Ribo-Zero-Seq and DSN-Seq. We also performed these different RNA-Seq protocols 

using 10 TCGA tumors as a validation set. 

The data from paired RNA samples showed high concordance in transcript quantification 

across all protocols and between FF and FFPE RNAs. In both FF and FFPE, Ribo-Zero-Seq removed 

rRNA with comparable efficiency as mRNA-Seq, and it provided an equivalent or less biased 

coverage on gene 3’ ends.  Compared to mRNA-Seq where 69% of bases were mapped to the  

                                                           
3
 Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM: Comparison of RNA-Seq by poly (A) capture, 

ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics 2014, 15:419. 



 

88 

 

transcriptome, DSN-Seq and Ribo-Zero-Seq contained significantly fewer reads mapping to the 

transcriptome (20-30%); in these RNA-Seq protocols, many if not most reads mapped to intronic 

regions. Approximately 14 million reads in mRNA-Seq and 45-65 million reads in Ribo-Zero-Seq or 

DSN-Seq were required to achieve the same gene detection levels as a standard Agilent DNA 

microarray.  

Conclusions: Our results demonstrate that compared to mRNA-Seq and microarrays, Ribo-

Zero-Seq provides equivalent rRNA removal efficiency, coverage uniformity, genome-based mapped 

reads, and consistently high quality quantification of transcripts. Moreover, Ribo-Zero-Seq and DSN-

Seq have consistent transcript quantification using FFPE RNAs, suggesting that RNA-Seq can be 

used with FFPE-derived RNAs for gene expression profiling. 
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INTRODUCTION 

The development of massively parallel sequencing for use in gene expression profiling is 

known as RNA-sequencing (RNA-Seq). RNA-Seq has had an enormous impact on gene expression 

studies. Compared to hybridization-based technologies like DNA microarrays, it provides consistent 

quantification and manifests its superiority in terms of the dynamic range, sampling depth, and has 

independence from pre-existing sequence information[1, 2].  RNA-Seq can be used for traditional 

transcriptome profiling[3, 4] , identification of novel transcripts[5], identification of expressed 

SNPs[6, 7], alternative splicing, and for the detection of gene fusion events[8–11]. 

To allow for mRNA/gene detection, highly abundant ribosomal RNAs (rRNAs) must be 

removed from total RNA before sequencing. One standard solution is to enrich for the 

polyadenylated (poly(A)) RNA transcripts (so called mRNA-Seq) with oligo (dT) primers, similar to 

how DNA microarrays are primed; however, this method eliminates all non-poly(A) RNAs in 

addition to rRNAs. Recent studies suggested that certain non-polyA RNAs, either non-coding or 

protein coding, are functionally important[12–15]. Moreover, mRNA-Seq poorly captures partially 

degraded mRNAs, hence it is not an optimal method to use when the starting materials are from 

Formalin-Fixed and Paraffin-Embedded (FFPE) samples, because the RNAs from FFPE are 

degraded to a small average size[16]. To overcome these challenges, several rRNA depletion 

protocols have been developed. The Ribo-Zero method removes rRNA through hybridization capture 

of rRNA followed by binding to magnetic beads for subtraction. Another method involves Duplex-

Specific Nuclease (DSN) degradation by the C0t-kinetics-based normalization method to deplete 

abundant sequences that reanneal quickly, such as those derived from the highly abundant rRNAs 

and tRNAs[17].  In this study, we examined rRNA-depleted libraries from total RNA of fresh-frozen 

(FF) and FFPE samples sequenced by mRNA-Seq, Ribo-Zero-Seq and DSN-Seq and compared these 

results across methods and with conventional DNA microarrays. 
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METHODS 

RNA samples. We constructed RNA-Seq libraries using eleven UNC breast tumor samples 

using different sample preparation protocols including: (a) FF RNA samples by mRNA-Seq, Ribo-

Zero-Seq and DSN-Seq and (b) FFPE samples by Ribo-Zero-Seq and DSN-Seq (Figure 4.1b).  One 

of the FF-DSN samples, 3 of the FFPE-Ribo-Zero samples, and 7 of the FFPE-DSN samples failed 

sequencing QC (i.e. too few reads) and were not included in the study. To augment the UNC sample 

set, we also tested an additional sample set of FF and FFPE samples collected as part of the TCGA 

project, where total RNA of ten tumors, including 6 breast tumors and 4 prostate tumors, were 

prepared in three ways: (a) FF samples with mRNA-Seq, (b) FFPE with Ribo-Zero-Seq and 8 

technical replicates, and (c) FFPE with DSN-Seq. In addition, we prepared FF samples for 6 of the 

10 TCGA tumors with Ribo-Zero-Seq protocol (Figure 4.1b).  All library construction and 

sequencing were performed at UNC for both the UNC and TCGA samples. For fresh-frozen tissues, 

we isolated total RNA with Qiagen RNeasy mini kit. For FFPE samples, total RNA was isolated 

using Roche High Pure RNA paraffin kit, Cat# 03270289001. The extent of RNA degradation was 

assessed using a BioAnalyzer (Agilent).  

Library construction and sequencing. mRNA-Seq library: Illumina TruSeq RNA Sample 

Prep Kit (Cat# RS-122-2001) was used with 1ug of total RNA for the construction of libraries 

according to the manufacturer’s protocol. Ribo-Zero library: rRNA was removed from FF or FFPE 

total RNA using Epicentre's Ribo-Zero rRNA Removal kit (Cat# RZH11042). For FF samples, 30-

100ng Ribo-Zero RNA was used for the construction of the library using the Illumina TruSeq RNA 

Sample Prep Kit and followed the manufacturer’s instruction, except for omitting the purification 

step before fragmentation. For FFPE samples, 30-100ng Ribo-Zero RNA was then incubated with 

Random Primers (Invitrogen, Cat# 48190011) at 650C for 5 minutes then Illumina TruSeq™ RNA 

Sample Prep Kit was used to construct the library according to the manufacturer’s protocol from the 

step of First Strand cDNA Synthesis. DSN library: Illumina TruSeq RNA Sample Prep Kit was used 
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with 100ng of total RNA for the construction of libraries following the manufacturer’s protocol, 

except for omitting the purification of mRNA step in FF samples, and the purification and 

fragmentation step in FFPE samples.  The total RNA libraries went through DSN treatment and PCR 

enrichment according to Illumina DSN Normalization Sample Preparation Guide 

(http://supportres.illumina.com/documents/myillumina/7836bd3e-3358-4834-b2f7-

80f80acb4e3f/dsn_normalization_sampleprep_application_note_15014673_c.pdf).  Sequencing: All 

cDNA libraries were sequenced using an Illumina HiSeq2000, producing 48x7x48 bp paired-end 

reads with multiplexing. 

Read processing and alignment. All samples were processed and filtered as described in 

The Cancer Genome Atlas[18].  Bases and QC assessment of sequencing were generated by 

CASAVA 1.8. QC-passed reads were aligned to the NCBI build 37 (hg19) human reference genome 

using MapSplice v12_07 [9]. The alignment profile was determined by Picard Tools v1.64 

(http://picard.sourceforge.net/).The aligned reads were sorted and indexed using SAMtools, and then 

translated to transcriptome coordinates and filtered for indels, large inserts, and zero mapping quality 

using UBU v1.0 (https://github.com/mozack/ubu). For the reference transcriptome, UCSC hg19 

GAF2.1 for KnownGenes[19] was used, with genes located on non-standard chromosomes removed. 

The abundance of transcripts was then estimated using an Expectation-Maximization algorithm 

implemented in the software package RSEM[20] v1.1.13.  Estimated counts were transformed by 

upper quartile normalization prior to comparison of expression across protocols. 

Identification of RNA-Seq library complexity and random sampling. The RNA-Seq data 

was filtered by requiring the gross RSEM count to be >3 for each gene. For each protocol, the 

detected gene sets were defined as genes that were reported in >70% tumor lanes and with 3 or more 

reads. To determine the amount of input reads needed for sufficient transcriptome coverage, a 

simulation test was performed on the UNC data. A series of fixed number of reads were randomly 

https://outlook.unc.edu/owa/redir.aspx?C=gSdP4aCSxE290_EpMoj8q9lCfxyj3tAIGTllnbGLlfr-H2BxpEdOZYePwsPNsOriIZInV5W0Dc0.&URL=https%3a%2f%2fgithub.com%2fmozack%2fubu
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selected from each protocol in a drawing without replacement method. For all the resampling levels, 

the simulated data followed the same alignment and filtering pipeline as described above. Gene sets 

detected were then identified for all the various levels. 

 Gene expression comparison methods 

For all the FF tumors and the Common Reference Sample, Agilent 244,000 feature whole 

genome microarrays were hybridized with tumor RNAs (Cy5)  and a human common reference (Cy3) 

and lowess normalized as described in Herschkowitz et al.[21]. In the RNA-Seq data, the detected 

gene sets were identified as above (i.e. 3 or more reads in >70% of samples).  The log2 ratio of RNA-

Seq tumor samples to RNA-Seq human Common Reference Sample (which was the same RNA used 

for the 2-color microarrays) was determined. Pearson correlation was determined and a Student’s t-

test was applied to evaluate the difference of RNA-Seq protocols in their consistency to microarray. 

The RNA-Seq gene quantification data was next filtered by gene counts as above. The log2 

transformed abundance of tumor samples was reported and was used to derive the correlation 

between RNA-Seq protocol pairs. Using R package MethComp, Deming regression was applied to 

compare the sensitivity in detecting differentially expressed genes. An unpaired two-class SAM 

analysis was used to identify genes that have differential expression level in a) mRNA-Seq versus 

Ribo-Zero-Seq, and b) Ribo-Zero-Seq versus DSN-Seq.  

Gene expression quantification by microarray and RNA-Seq for all samples new to this 

manuscript can be found in GEO database under accession GSE51783. Aligned BAM files are 

available at dbGaP under the series ID of phs000676.v1.p1. TCGA sample RNA-Seq data is 

available at cgHub (BAM files, https://cghub.ucsc.edu/) and DCC (expression level data, 

https://tcga-data.nci.nih.gov/tcga/). 

 

 

https://tcga-data.nci.nih.gov/tcga/
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RESULTS 

To rigorously evaluate the feasibility of reproducible gene expression profiling using RNA 

from clinically relevant FFPE materials, we collected FFPE and fresh-frozen (FF) tumor RNAs for 

matched sets of tumors from two different sources (UNC and TCGA).  Most tumors were subjected 

to gene expression profiling using six different methods that included: 1) Agilent DNA microarrays 

using FF RNA, 2) mRNA-Seq using FF RNA, 3) Ribo-Zero-Seq using FF RNA, 4) DSN-Seq using 

FF RNA, 5) Ribo-Zero-Seq using FFPE RNA, and 6) DSN-Seq using FFPE RNA; see Figure 4.1 for 

a comparison of each RNA-Seq protocol and the number of samples tested for each protocol. 

Analytical comparisons were focused on several features including rRNA depletion efficiency, 

genome alignment profile, transcriptome coverage, transcript quantification accuracy and 

reproducibility, gene expression patterns and differential gene expression, as well as coverage of 

annotated genes at different sequencing depths. 

rRNA depletion efficiency 

The efficiency of rRNA removal is a key factor to maximize reads mapping to transcripts, 

because if left alone, rRNAs make up >80-90% of the total RNA of an un-enriched sample[22]. Due 

the nature of rRNA sequences, many rRNA short reads will produce poor alignments; hence, the 

estimation of absolute abundance of rRNA based on whole genome alignment tends to underestimate 

rRNA amounts. Thus we evaluated the relative level of rRNA components across protocols by 

comparing the levels to those observed in mRNA-Seq. Ribo-Zero-Seq reduced rRNA levels to a 

similar order of magnitude as mRNA-Seq in both FF and FFPE RNA, while the rRNA fraction in 

DSN-Seq libraries were significantly higher (p<0.001) and with greater variation, particularly within 

the FFPE samples (Table 4.1). Consistent with the analysis of the UNC dataset, Ribo-Zero-Seq 

provided the same rRNA removal efficiency as mRNA-Seq in the TCGA samples; the level of rRNA 

reduction observed here for the Ribo-Zero-Seq protocol was similar to that reported by the company 

that makes the Ribo-Zero kit (data not shown).  
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Genome alignment profile  

The precision of RNA-Seq gene quantification is directly dependent on the number of reads  

that are mapped to transcripts, thus we first assessed the fraction of reads aligning to the reference 

human genome UCSC hg19 (Table 4.1). In FF samples, mRNA-Seq and Ribo-Zero-Seq provided 

comparable percentage of nucleotide bases mapping to the genome (94.0%, 93.8%), while DSN-Seq 

aligned a smaller number (85.5%). In FFPE samples, Ribo-Zero-Seq and DSN-Seq both had good 

performance in alignment on average (81.5% in Ribo-Zero-Seq-FFPE, 93.5% in DSN-Seq-FFPE); 

TCGA samples had a similar result for both FF and FFPE (Table 4.1). Compared to FF, the FFPE 

samples tended to exhibit a greater variation in the % aligned, most likely related to more variable 

quality of FFPE RNAs.  

 

Transcriptome coverage  

The coverage of the transcriptome directly affects the accuracy of transcript abundance 

estimation and the sensitivity of transcript detection, which are two critical features of all gene 

expression studies. Therefore, we evaluated two features of the transcriptome coverage: (a) relative 

coverage of exons, introns, and intergenic regions, and (b) uniformity of transcript coverage. 

(a) Relative coverage of exons, introns, and intergenic regions.  In FF samples, bases 

mapping to transcripts (i.e. coding and UTR regions) constituted 62.3% total bases in mRNA-Seq, 

while a marked reduction was observed in the two rRNA-depletion protocols (31.5% in Ribo-Zero-

Seq and 22.7% in DSN-Seq, Figure 4.2a). Conversely, bases mapping to intronic and intergenic 

regions increased from 31.6% in mRNA-Seq to 62.5% in DSN-Seq and Ribo-Zero-Seq. In FFPE 

samples, DSN-Seq and Ribo-Zero-Seq provided similar coverage profiles, where ~20% of bases 

were mapped to transcriptome and >60% to intronic or intergenic regions. These results were 

concordant with that observed in the TCGA sample set (Figure 4.2b). 
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We further investigated the coverage across individual genes (Figure 4.3a, GATA3 as an 

example). In mRNA-Seq, most reads mapped almost exclusively to exons, and the coverage of 

intronic regions was low and comparable to the intergenic background. In contrast, in Ribo-Zero-Seq 

and DSN-Seq there was a more continuous coverage of both exons and introns, although the 

coverage of intergenic regions was more similar to what was seen with mRNA-Seq. This unique 

profile suggests that the rRNA depletion protocol may capture pre-mRNAs in addition to mature 

mRNAs. To test this hypothesis, we examined the pile-up profile of a few individual genes and 

identified reads that spanned exon-intron boundaries in the Ribo-Zero-Seq and DSN-Seq protocols 

(Figure 4.3b, see red arrows for spanning reads). 

(b) Uniformity of transcript coverage. We next determined the evenness of transcript 

coverage by comparing the median coefficient of variation (CV) for the read coverage of the 1000 

most highly expressed transcripts (Table 4.1). In FF libraries, mRNA-Seq and Ribo-Zero-Seq had 

significantly lower CV than DSN-Seq (mRNA-Seq: p<0.001, Ribo-Zero-Seq: p=0.002), indicating a 

more uniform coverage across the full length of transcripts. In the FFPE libraries, there was an 

increase in CV in both protocols.  Ribo-Zero-Seq-FFPE had slightly higher variation than the result 

reported in Adiconis et al.[23], while DSN-Seq-FFPE had the highest CV among all protocols. 

Another measure of transcript coverage is the variation at 5’ and 3’ ends. We evaluated the 

ratio of coverage at the 5’ end relative to the 3’ end for the 1000 most highly expressed transcripts 

(Table 4.1).  Previous studies have shown that the poly(A)-capture strategy shows substantially more 

reads from the 3’ ends of transcripts.  Our analysis revealed that on FF, Ribo-Zero-Seq provided less 

biased 5’-to-3’ coverage ratio than mRNA-Seq (p<0.001), while DSN-Seq made no significant 

improvement. In FFPE samples, both protocols performed similar as mRNA-Seq with respect to 5’-

to-3’ bias.  
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Transcript quantification and reproducibility 

RNA-Seq poly(A) enrichment strategies yield an accurate and reproducible measurement of 

transcript abundance with a wide dynamic range[1, 4, 24, 25]. Given the advantages of profiling 

multiple types of RNA species (i.e. mRNAs, lincRNAs, snoRNAs, etc.), it is critical to evaluate the 

performance of mRNA quantification in total RNA-Seq protocols.  To determine the possible 

concordance of RNA-Seq with data generated by older genomic profiling platforms, we compared 

the gene expression levels of RNA-Seq data with that of Agilent DNA microarray data that were 

assayed using the same RNAs. With specific and standard gene filtering criteria[26], we detected 

16,975 expressed Entrez genes by custom Agilent 244,000 feature microarrays, with 15,206 genes 

detected by both microarray and RNA-Seq across our paired samples. In FF samples, gene 

abundance measurements by all protocols of RNA-Seq were highly correlated with the microarray 

data (Pearson>0.8, Table 4.1).  In FFPE samples, RNA-Seq measurements were  lower but also 

significantly correlated with FF microarray (Pearson ~0.7, Table 4.1), which is at a level similar to 

that observed when comparing concordance between Agilent and Affymetrix microarrays[27]. 

We next examined the correlation of transcript abundance across the different RNA-Seq 

protocols. There was greater concordance and fewer outliers than when compared to the microarray 

data (Figure 4.4a and b). Among FF tissues, the correlation was >0.9 for all pair-wise, sample-

matched comparisons. DSN-Seq and Ribo-Zero-Seq on FFPE were less correlated with FF mRNA-

Seq (>0.8), but still higher than the correlation observed with microarrays. The two rRNA depletion 

protocols were the most highly correlated in both FF and FFPE samples (Pearson correlation 0.961 in 

FF and 0.934 in FFPE).  The correlation plots for an individual sample (breast tumor 020678B) are 

shown in Figure 4.4c.  

Additional quality assessments were made on the TCGA dataset, to account for the fact that a 

much smaller set of reads were mapped to transcriptome in RNA depletion protocols. We generated 

eight technical replicates with the Ribo-Zero-Seq-FFPE protocol to balance the total number of 
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transcriptome reads for the comparison with FF mRNA-Seq. The assessment of technical 

reproducibility suggested that these FFPE replicates were indistinguishable (Pearson =0.991).  The 

correlation between Ribo-Zero-Seq on FF and FFPE as well as between Ribo-Zero-Seq-FFPE 

replicate pairs has also been confirmed in Norton et al.[28]. 

Lastly, we applied Deming regression to estimate a statistically unbiased slope to determine 

the relative sensitivity of protocol pairs (Figure 4.4d). A slope of 1 indicates the equivalent sensitivity 

of the two libraries, whereas a smaller value is indicative of a higher sensitivity of the first protocol 

in the pair. mRNA-Seq exhibited its superiority over all the other protocols in terms of sensitivity, 

with a slope less than 1 in all the pair-wise comparison. In addition, DSN-Seq and Ribo-Zero-Seq 

both have higher sensitivity in FF samples than in FFPE.  

 

Gene expression patterns and differential gene expression 

Hierarchical clustering analysis provides a global examination whether biologically relevant 

expression signatures are consistently measured by distinct protocols. In this example, we tested 

whether the same sample assayed by different protocols “paired” or “partnered” together; if so, then 

this is a very high level of assay validation as not only are the overall subtype expression profiles 

maintained, but also the profiles that are unique to that sample are maintained. We performed 

hierarchical clustering analysis of the RNA-Seq data using a previously published ‘intrinsic gene 

list’[29] (Figure 4.5) and a set of 904 human breast tumor samples that consists of the 88 UNC and 

TCGA samples described here and 725 additional breast tumors and 91 normal breast tissues with 

mRNA-Seq from TCGA. 41/44 samples of the UNC tumor dataset were tightly co-clustered with 

their partner sample originating from the same tumor, and these clustered with other TCGA tumors 

based upon each tumor’s subtype profile. The 3/44 non-clustered samples were all prepared by Ribo-

Zero-Seq on FFPE samples and their partner DSN-Seq samples on FFPE were not available. In the 

TCGA dataset, 40/44 samples were tightly co-clustered with their partners (i.e. libraries constructed 
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from the same tumor using a different sequencing protocol); the four samples that were not clustered 

were on a separate branch, but were moderately correlated with their partner samples 

(correlation>0.6).  

As another test of data quality, we determined the differentially expressed gene set in FF 

mRNA-Seq vs. Ribo-Zero-Seq and FF Ribo-Zero-Seq vs. DSN-Seq using Significance Analysis of 

Microarray (SAM). We identified 410 genes with a FDR of 0 that were differentially expressed 

between mRNA-Seq and Ribo-Zero-Seq (Appendicies 3a and b); this list was enriched with 

snoRNAs and histone RNAs that were more highly expressed in the Ribo-Zero-Seq samples. Many 

of these RNAs do not possess poly(A) tails, and therefore, are not targeted by poly(A) selection in 

mRNA-Seq.  Conversely, 104 genes at a FDR of 0 were identified to be differentially expressed 

between Ribo-Zero-Seq and DSN-Seq libraries (Appendices 3c and d); among these, 38 genes were 

lowly quantified by DSN-Seq and most of these genes were snoRNAs and histone RNAs, which tend 

to exist at high abundance in total RNAs. Since DSN-Seq removes the most highly abundant 

components via CoT kinetics, these RNAs may also be subject to depletion in the DSN protocol 

relative to the Ribo-Zero, which uses beads to capture only the rRNAs.  

 

Coverage of annotated genes at different sequencing depths 

Compared to hybridization-based methods, the cost per sample by RNA-Seq is still higher. 

The utilization of multiplexing techniques provides a strategy to further lower the costs. However, 

too much multiplexing will inhibit the ability to detect lowly expressed genes; therefore, we   sought 

to determine the minimal number of reads required to provide the same transcriptome coverage as 

provided by an Agilent DNA microarray. The ENCODE Consortium guidelines and other studies 

have provided insights into the sufficient RNA-Seq coverage and depth for studies of various design 

goals[30], but these efforts were primarily focused on experiments with FF samples prepared by 
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poly(A)-enrichment protocols. Here we extended the investigation to rRNA depletion approaches 

and FFPE samples.  

We applied a simulation-based method on the pooled data of each protocol.  The UCSC 

known gene reference database (GAF 2.1) includes 20,531 (non-ribosomal) genes. To reduce the 

noise, we only counted genes as present if there were 3 or greater read counts. Using the average 

number of genes detected on our Agilent microarrays as the baseline (n=16,975), 13.5 million reads 

from FF mRNA-Seq libraries would allow detection of the same number of genes (Figure 4.6), which 

is consistent with previous studies[30].  In the DSN-Seq and Ribo-Zero-Seq FF libraries, and Ribo-

Zero-Seq-FFPE libraries, 35-65M reads were required to provide the same transcriptome coverage. 

Only the DSN-Seq-FFPE library required a much larger number of input reads (90M). 

 

DISCUSSION 

The growing popularity of RNA-Seq makes it one of the more desired methods to explore the 

transcriptome. Preparing RNA-Seq libraries with poly(A) enrichment provides an accurate method to 

characterize mRNAs, which is functionally equivalent to what DNA microarrays have been 

accomplishing for more than a decade. However, certain biologically relevant RNA species that do 

not possess poly(A) tails are largely undetected using a poly(A) selection protocol. In addition, FFPE 

samples, such as those collected as part of standard medical practice, also require library preparation 

methods that do not rely on the intact poly(A) structure due to the highly degraded nature of the 

FFPE RNA. In this study, we demonstrate that a Ribo-Zero-Seq protocol using either fresh-frozen 

(FF) or FFPE samples eliminates rRNA with good efficiency. In evaluation of a possible coverage 

bias, 5’-to- 3’ bias was reduced in FF Ribo-Zero-Seq libraries as it does not rely on poly(A) selection 

step.  

One major distinction across these various protocols is the coverage of the transcriptome. To 

more directly investigate the relationship between sequencing depth and transcriptome coverage, we 
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performed a simulation approach where mRNA-Seq was the most cost effective strategy to equal a 

microarray in terms of total genes detected with a minimum of ~13.5 million reads needed. For the 

same transcriptome coverage, the reads required for Ribo-Zero-Seq in FF and FFPE and DSN-Seq in 

FF were 35-65M reads. However, rRNA depletion protocols also appear to measure immature 

transcripts (pre-mRNAs) and therefore provide more information on splicing patterns and possible 

splice junctions. Thus to achieve the same level of exonic reads as FF mRNA-Seq, one needs to 

sequence 2-4 times the number of reads in rRNA-depletion on FFPE RNA libraries. 

Despite fewer of the total reads mapping to exonic regions and a greater number of 

transcripts being detected, we did not observe a marked decrease in the correlation between 

microarray and RNA-Seq in rRNA-depleted libraries, where RNA-zero-Seq and DSN-Seq were 

found to be highly consistent in gene quantification. Our evaluation of the quantitative consistency of 

RNA-Seq on FFPE with microarray may be limited in two aspects: (a) the quality of a few UNC 

FFPE samples was less satisfactory, and (b) not all the tumors have RNA-Seq data on matched FFPE 

samples that passed our quality control available for this analysis.  Yet we still observed very good 

correlations with microarray data for those samples with complete FFPE data, which gave correlation 

values nearly identical to those seen when comparing an Agilent microarray versus an Affymetrix 

microarray[27]. 

Given the consistent quantification, mRNA-Seq and rRNA depletion protocols exhibited 

their merits in different aspects. In the set of genes detected by all the protocols, mRNA-Seq 

provided the highest sensitivity in detecting differentially expressed genes, which was likely due to 

the greater fraction of reads mapping to the transcriptome. On the other hand, Ribo-Zero-Seq 

detected about 550 more annotated genes than mRNA-Seq (data not shown). With a much greater set 

of reads mapping to the intergenic and intronic regions in rRNA depletion protocols, the number of 

additional transcripts detected with the new protocols may be expected to be greater than our 
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conservative estimation here. As shown in another recent studies[30], we also expect more novel 

transcripts to be identified from the rRNA depletion methods.   

The very good quantification performance of the protocols on FFPE samples is of significant 

impact for researchers with clinical samples. Our results demonstrate that Ribo-Zero-Seq had high 

technical reproducibility on FFPE RNAs and high concordance with FF RNAs. Though the 

quantification of FFPE was less correlated to FF mRNA-Seq, the two rRNA depletion methods 

provided highly consistent gene profiles on FFPE.  Thus, it is the quality of FFPE RNA samples, 

rather than the robustness of method, that likely contributes more to the variation of performance 

with respect to gene quantification. The hierarchical clustering analysis also validated that the 

biologically-based intrinsic gene profiles were present and highly correlated between FF and FFPE. 

Hence, we suggest that it is possible to apply the rRNA depletion protocols to FFPE samples and 

achieve quantitative accuracies comparable with standard genome profiling techniques that use FF 

tissues and RNAs.  

 

CONCLUSIONS 

In this study, we demonstrated that compared to mRNA-Seq, Ribo-Zero-Seq provides 

equivalent rRNA removal efficiency, coverage uniformity, genome-based mapped reads, and reduces 

5’- to- 3’ bias. In addition, both Ribo-Zero-Seq and DSN-Seq provide highly consistent 

quantification of transcripts when compared to microarrays or mRNA-Seq, and substantially more 

information on non-poly(A) RNA. Moreover, the two rRNA depletion methods have consistent 

transcript quantification using FFPE RNAs and show high reproducibility.  
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TABLES 

Table 4.1  Analysis of performance for multiple RNA-Seq methods. 

Five different analyses were performed in order to assess the capabilities of the different RNA-seq 

protocols. These included: 1) % rRNA relative to mRNA-Seq; 2) % Aligned bases; 3) Median CV 

coverage;  4) Median 5’ to 3’ bias; 5) The Pearson correlation coefficient between the RNA-Seq 

libraries methods and the same samples assayed by DNA microarray in UNC dataset.   

 mRNA-Seq RiboZero-Seq DSN-Seq RiboZero-FFPE DSN-FFPE 

UNC dataset 

Sample size 11 11 10 8 4 

% rRNA relative to 

mRNA-seq 

1 

(1-1) 

5.04 

(1.42-8.66) 

116 

(78.9-154) 

7.14 

(3.48-10.8) 

585 

(-347-1,517) 

% Aligned bases 
94 

(91.5-96.5) 

93.8 

(92-95.5) 

85.5 

(82.6-88.4) 

81.5 

(71-92) 

93.5 

(92.2-94.8) 

Median CV coverage 
0.533 

(0.506-0.56) 

0.525 

(0.505-0.545) 

0.56 

(0.549-0.57) 

0.744 

(0.713-0.775) 

0.929 

(0.814-1.04) 

Median 5’ to 3’ bias 
0.27 

(0.189-0.35) 

0.64 

(0.493-0.788) 

0.209 

(0.143-0.275) 

0.356 

(0.285-0.427) 

0.242 

(0.0329-0.451) 

Pearson correlation to 

microarray 

0.851 

(0.825-0.878) 

0.832 

(0.809-0.854) 

0.855 

(0.84-0.871) 

0.636 

(0.601-0.671) 

0.7 

(0.628-0.771) 

TCGA dataset 

Sample size 10 6 NA 18 10 

% rRNA relative to 

mRNA-seq 

1 

(1-1) 

11.2 

(1.51-20.9) 
NA 

0.935 

(0.631-1.24) 

41.7 

(22.1-61.3) 

% Aligned bases 
96.4 

(95.4-97.5) 

95.0 

(93.9-96.2) 
NA 

93.4 

(91.6-95.2) 

93.2 

(90.7-95.8) 

Median CV coverage 
0.534 

(0.517-0.551) 

0.478 

(0.458-0.499) 
NA 

0.83 

(0.791-0.869) 

0.953 

(0.896-1.01) 

Median 5’ to 3’ bias 
0.309 

(0.244-0.374) 

0.46 

(0.37-0.551) 
NA 

0.417 

(0.253-0.581) 

0.157 

(0.0856-0.229) 
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FIGURES 

mRNA-Seq

Purified Total RNA

Poly-A Selection

RNA Fragmentation*

cDNA Synthesis

Adapter Ligation & PCR

Ribo-Zero-Seq

Purified Total RNA

RNA extraction:
Hybridization/bead capture 

RNA Fragmentation*

cDNA Synthesis

Adapter Ligation & PCR

DSN-Seq

Purified Total RNA

RNA Fragmentation*

cDNA Synthesis

Adapter Ligation & PCR

DSN Normalization

* RNA Fragmentation only applies to fresh-frozen samples.

(a)  

(b)

Sample 
source Tissue type mRNA-Seq Ribo-Zero-Seq DSN-Seq Agilent DNA 

microarray 

UNC 
Fresh-frozen 11 11 10 11 

FFPE   8 4   

TCGA 
Fresh-frozen 10 6 0   

FFPE   10 + 8 replicates 10   

 

Figure 4.1  Schematic overview of the rRNA removal protocols and list of samples tested.  (A) 
mRNA-Seq, Ribo-Zero-Seq and DSN-Seq library preparation protocols are shown, with the key 
steps to remove the rRNA from the library show in italics. The full protocol was applied to the 
fresh-frozen (FF) samples, and a similar alternative protocol was applied to FFPE samples 
(omitting steps marked as *).  (B) The list of samples tested by each RNA-Seq library protocol 
and their source.



 

104 
 

Unaligned Intergenic Intronic Coding+UTR

0.0

0.2

0.4

0.6

0.8

1.0

62.3%

13.8%

17.8%

6.02%

(59.4%−65.3%)

(12.6%−15.1%)

(15.5%−20.1%)

(3.51%−8.53%)

31.5%

27.4%

34.9%

6.22%

(28.4%−34.5%)

(22.5%−32.2%)

(31.5%−38.4%)

(4.48%−7.96%)

22.7%

35.3%

27.5%

14.5%

(18%−27.4%)

(33.4%−37.2%)

(25.2%−29.7%)

(11.6%−17.4%)

17.6%

43.8%

20.1%

18.5%
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Figure 4.2  Genome alignment profile. The percentage of nucleotide bases mapping to three differ-
ent regions of the genome: exonic/protein coding and UTR (green), intronic (yellow), intergenic 
(red), and the percentage of unmapped bases (purple). The data is shown separately for the UNC (a) 
and TCGA (b) datasets.
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Figure 4.3  Visual display of reads aligning to GATA3. (A) Read pile-up plots of GATA3 in Sample 
020578B showing data for five different RNA-Seq libraries. (B) Close-up of the read mapping 
identifying reads that span exon-intron boundaries, which identify unspliced mRNA species.
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Figure 4.4  Comparison of gene quantification concordance across RNA-Seq library protocols.  Pearson correlation 
coefficients of RNA-Seq libraries pairs in (A) UNC and (B) TCGA dataset. (C) Scatter plots of libraries of each 
pair of protocols for breast tumor sample 020578B. (D) Deming regression slope for pairs of RNA-Seq libraries in 
UNC dataset. A slope of 1 indicates the equivalent sensitivity of the two libraries, whereas a smaller value is 
indicative of a higher sensitivity of the first term/method in the pair. 
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Figure 4.5  Intrinsic gene set clustering analysis. Hierarchical cluster using a breast cancer intrin-
sic gene set (~2000 genes) and 88 breast tumor samples prepared using the multiple protocols, 
with an additional 816 samples from the TCGA Breast Cancer Project (725 tumors and 91 normal 
tissues). The rows above the heat map identify the 88 samples from this study, their RNA-Seq 
protocol type, and the red arrows show the location of the few mismatched samples
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Figure 4.6  Determination of the number of reads needed for each RNA-Seq protocol to equal 
DNA microarray. The number of detected genes at different levels of sequencing depth is 
displayed relative to the number of genes detected via DNA microarray (dashed horizontal line).
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CHAPTER V 

CONCLUSION 

 

Studies in the past few decades have shown that cancer is a heterogeneous disease, with 

genetic diversity within and between tumors. This diversity highlights the necessity of tumor 

classification, using genomic and/or genetic biomarkers, which may ultimately lead to more 

personalized therapies. Advances in laboratory and computational techniques laid the foundation for 

comprehensive identification and measurement of various types of genetic aberrations and evaluation 

of their clinical significance.  These techniques include the development of sophisticated model 

systems (i.e. Genetically Engineered Mouse Models/GEMM) and accurate and efficient high-

throughput technologies (i.e. Massively Parallel Sequencing/MPS). My research focused on 

exploring the possibility of using mouse models and advanced RNA-Seq protocols to facilitate the 

translation of biological findings in models systems into clinically meaningful knowledge for human 

patients.   

Our studies on the GEMM p53 null transplant model in Chapter 2 showed an example that 

multiple disease types could present within a single murine model. Unsupervised clustering analysis 

of gene expression data revealed that these p53 null tumors fell into five groups, including two Basal-

like, one Luminal, one Claudin-low and one subpopulation unique to this model, with each group 

recapitulates genetic signatures of their human cognate subtypes. Hence it provided a novel 

preclinical resource for investigating the human Claudin-low subtype, which was recently identified 

and only consists of 5-10% human breast tumors. Similar to human Claudin-low patients, p53 null 

Claudin-low tumors lack tight junction proteins, show high expression of EMT genes and features of  
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normal mammary stem cells, and are enriched in TIC. Again, as expanded evidence demonstrated 

that this model recapitulates Claudin-low tumors faithfully, it could serve as an in vivo system to 

reveal the features of this subtype using various experimental approaches, which was previously 

restricted by the rarity and limitations in procurement of human Claudin-low tumors. For example, 

through the use of the murine Claudin-low tumors we were able to show a high Tumor Initiating Cell 

frequency in these tumors, and we were able to show enrichment for multiple stem cell associated 

features in both human and murine Claudin-low tumors 

Interestingly, each p53 null tumor subgroup also displays distinct copy number alteration 

(CNA) landscape. By cross-species comparison, a few events are in common between human and 

mice. Some of these shared CNA regions contain cancer genes, such as INPP4B that is lost in both 

human and p53 null mouse basal-like tumors, while the driver genes in other subtypes are not as 

clear. Noteworthy, the copy number landscape of Claudin-low subtype has yet to be identified. As 

the results suggested that the p53 null Claudin-low mouse tumors showed a fair amount of genomic 

instability, it might provide some insights into putative subtype-specific CNA events, and even driver 

genes in tumor initiation and progression in Claudin-low patients. The appealing feature of high 

enrichment of TIC in this mouse model offers an opportunity to investigate important signaling 

pathways within the context of a model with a demonstrated enrichment of potential cancer stem 

cells. In addition, their transplantability into syngenic hosts allows for preclinical testing of novel 

therapeutics that target stem cells. 

Another example of using GEMMs as a preclinical testing model was shown in Chapter 3. 

In this study, we extensively examined the efficacy of a set of chemotherapeutics using large cohorts 

of three genomically matched murine mammary tumor models. These genomically well-defined 

models represent three human breast tumor subtypes: Basal-like, Luminal B and Claudin-low, and 

were treated with identical regimens of commonly used chemotherapeutics taken from the human 

breast cancer clinic. With the exception of lapatinib in the MMTV-Neu model, single-agent regimens 
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rarely elicited a strong response in all GEMMs. On the contrary, some combination regimens showed 

more potent effects. Intriguingly, in the Basal-like C3(1)-T-antigen model, heterogeneous responses 

to several therapeutics were observed. Of note, the same pattern has also been observed in human 

Basal-like patients that were treated with comparable agents, which suggested the existence of 

genetically distinct subgroups within this subtype[1, 2].  

Therefore, we chose to focus on the expression patterns associated with Basal-like C3(1)-T-

antigen mice treated with the chemotherapy doublet of carboplatin/paclitaxel (CT). About 2/3 of the 

tumors showed little response, while the remaining 1/3 showed a near complete regression.  Two 

murine signatures were derived from the sets of differentially expressed genes obtained when 

comparing these tumor populations. The signatures were significantly associated with pCR and are 

predictive to pCR in two large, independent cohorts of human patients that were treated with similar 

chemotherapeutics (i.e. anthracycline/taxane). Importantly, even in multivariate analysis with a set of 

commonly used clinical and biological markers, these signatures were still significant predictors. 

Specifically, the UNTREATED-HUM signature was also predictive in clinically relevant triple-

negative patients, which is of practical value because this subpopulation of patients are not 

candidates for the current targeted therapies [2]. Furthermore, gene ontology analysis revealed that 

the UNTREATED-HUM signature was enriched with genes involved in M phase, mitosis, and the 

cell cycle. This might provide some mechanistic insights in that cells undergoing DNA-synthesis and 

mitosis are more sensitive to cytotoxic agents. In sum, the efforts of testing therapeutics in faithful 

mouse models has laid the groundwork for expanded drug efficacy testing. The murine-derived 

biomarkers, though, might need further validation, but could potentially inform clinical practice of 

personalized medication. 

On the other hand, the strategy by which researchers extract information of human genomics 

has been revolutionized by the development of RNA-Seq technology. Due to the many special 

characteristics of cancer studies, special considerations are needed in the application of RNA-Seq. In 
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particular, tumor samples with low quantity and/or quality, as well as the large reservoir of FFPE 

tissues pose great challenges for the study design, as there is no clear standard for the choice of 

laboratory methods and optimized parameters. Our study in Chapter 4 aims to address this need by 

evaluating two rRNA depletion protocols on paired Fresh Frozen (FF) and FFPE samples, and 

extensively comparing them with other transcript profiling techniques. 

The initial evaluation of sequencing library quality demonstrated that the rRNA removal 

efficiency is equivalently high in Ribo-Zero-Seq and DSN-Seq in both FF and FFPE, as compared to 

the standard mRNA-Seq protocol. Especially, the Ribo-Zero-Seq has comparable or even better 

performance in two other types of biases: uniformity of transcript coverage and 5’-to-3’ bias. This 

feature was critical to derive information, particularly non-biased transcript abundance, from heavily 

fragmented FFPE materials, so that researchers could appreciate the untapped potential of FFPE 

archives that could be used in cancer transcriptome studies. 

As expected, the relative coverage across genes exhibited remarkable distinct patterns in 

Ribo-Zero-Seq and DSN-Seq. Bases mapping to exons constitute only 20-30% total bases in both FF 

and FFPE, as compared to 60-70% in mRNA-Seq libraries of FF samples. Screening of individual 

genes identified reads that spanned exon-intron boundaries, providing direct evidence that unspliced 

pre-mRNAs are captured by these FFPE and whole transcriptome protocols. As this feature could 

affect experimental design, mostly influencing the number of read needed for complete coverage, we 

performed an objective analysis to determine the number of reads required by each protocol in FF 

and FFPE to match the performance of a DNA-microarray. The analysis indicated that approximately 

14 million reads in mRNA-Seq and 45-65 million reads in Ribo-Zero-Seq or DSN-Seq are required 

for the same level of gene detection. This result, though might need adjustment based on the 

experimental setting, but should contribute to optimize study design and balance the cost versus 

detection sensitivity.  
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Another important feature of RNA-Seq technology is its accuracy and reproducibility to 

quantify transcript abundance. Our data showed that Ribo-Zero-Seq provide highly reproducible 

quantification even in FFPE samples. All RNA-Seq protocol pairs are highly consistent, with the two 

rRNA depletion protocols being most highly correlated in FF and FFPE. In addition, all the RNA-

Seq data from FF libraries are highly correlated with DNA microarray, and results from FFPE were 

moderately correlated, but more than acceptable using current standards of concordance (i.e. a 

pearson correlation >0.7). As DNA microarray is considered as the old school gold standard method, 

and many previous studies were performed on the platform of microarray, these findings set the 

ground work for data integration and comparison across platforms. The analysis collectively 

suggested that using these new techniques, particularly Ribo-Zero-Seq, it is able to perform accurate, 

reproducible and comprehensive transcript profiling using FFPE-derived RNAs.  

In closing, my dissertation work has demonstrated the potential clinical utility of two distinct 

experimental approaches, namely the use of GEMM for biomarker discovery and rRNA depletion 

methods of RNA-Seq, and then also takes these two a coordinated step farther thus showing how a 

mouse signature could be turned into a practically delivered human biomarker. With the expanding 

reservoir of GEMM available, their utility is not limited to basic biological discovery. As the 

restrictions involved human tumor samples are not applicable to GEMM, the advantages of mouse 

models in identifying drug target, testing drug efficacy or developing new biomarkers deserve more 

appreciation. The development of laboratory and computational techniques of RNA-Seq offers an 

unprecedented opportunity for cancer genomic studies with a wide range of interests. The possibility 

of performing RNA-Seq from FFPE samples is promising for retrospective studies and prospective 

clinical trials. On the other hand, understanding the impact of technical variations and choosing the 

optimal techniques and parameters for specific aims would be a new challenge for the cancer 

genomic studies today.   
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APPENDIX 1 

Gene List from SAM study 

(a) UNTREATED list of 428 perturbed clones (348 mouse genes) from the untreated versus not 

SAM analysis. FDR = 1% 

 

Probe Name Gene ID 

Score 

(d) 

Nume

rator 

Denom

inator 

Fold 

Change 

1 AGI_MM_OLIGO_A_51_P408410 cathepsin A 4.004 0.897 0.224 1.833 

2 AGI_MM_OLIGO_A_52_P253317 RIKEN cDNA 4930481A15 gene 3.950 1.603 0.406 3.077 

3 AGI_MM_OLIGO_A_52_P217492 RIKEN cDNA 5031425E22 gene 3.875 1.018 0.263 2.015 

4 AGI_MM_OLIGO_A_52_P346706 
aldo-keto reductase family 1, member B3 (aldose 
reductase) 3.807 1.242 0.326 2.339 

5 AGI_MM_OLIGO_A_51_P328613 Fc receptor, IgG, low affinity III 3.715 1.030 0.277 2.028 

6 AGI_MM_OLIGO_A_52_P676510 T-cell specific GTPase 1 3.634 1.400 0.385 2.664 

7 AGI_MM_OLIGO_A_51_P481494 roundabout homolog 3 (Drosophila) 3.564 1.282 0.360 2.540 

8 AGI_MM_OLIGO_A_52_P653054 NA 3.550 1.017 0.286 1.958 

9 AGI_MM_OLIGO_A_51_P164203 non-metastatic cells 4, protein expressed in 3.522 1.114 0.316 2.115 

10 AGI_MM_OLIGO_A_52_P67088 non-metastatic cells 4, protein expressed in 3.503 0.959 0.274 1.961 

11 AGI_MM_OLIGO_A_51_P184928 interferon induced transmembrane protein 7 3.503 0.943 0.269 1.878 

12 AGI_MM_OLIGO_A_52_P582059 lysozyme 1 3.451 1.408 0.408 2.625 

13 AGI_MM_OLIGO_A_51_P144438 zinc finger, NFX1-type containing 1 3.418 0.840 0.246 1.807 

14 AGI_MM_OLIGO_A_52_P313856 
solute carrier family 25 (mitochondrial carrier, 
phosphate carrier), member 26 3.399 0.752 0.221 1.687 

15 AGI_MM_OLIGO_A_52_P464315 cathepsin A 3.376 0.858 0.254 1.762 

16 AGI_MM_OLIGO_A_51_P301117 predicted gene 7582 3.371 1.294 0.384 2.396 

17 AGI_MM_OLIGO_A_52_P627816 transglutaminase 1, K polypeptide 3.345 1.082 0.323 2.124 

18 AGI_MM_OLIGO_A_51_P131358 selectin, platelet (p-selectin) ligand 3.319 1.068 0.322 2.155 

19 AGI_MM_OLIGO_A_51_P255016 nuclear antigen Sp100 3.262 1.002 0.307 1.957 

20 AGI_MM_OLIGO_A_51_P408471 

CDP-diacylglycerol--inositol 3-

phosphatidyltransferase (phosphatidylinositol 
synthase) 3.251 0.890 0.274 1.831 

21 AGI_MM_OLIGO_A_51_P241457 

leukocyte immunoglobulin-like receptor, 

subfamily B, member 4 3.238 1.037 0.320 2.074 

22 AGI_MM_OLIGO_A_51_P197528 lymphocyte antigen 6 complex, locus C2 3.231 1.351 0.418 2.307 

23 AGI_MM_OLIGO_A_51_P384629 cathepsin D 3.212 1.044 0.325 2.126 

24 AGI_MM_OLIGO_A_51_P423578 schlafen 2 3.190 1.127 0.353 2.255 

25 AGI_MM_OLIGO_A_51_P452227 poly (ADP-ribose) polymerase family, member 11 3.184 1.071 0.336 2.179 

26 AGI_MM_OLIGO_A_52_P367791 

methylthioribose-1-phosphate isomerase homolog 

(S. cerevisiae) 3.178 0.782 0.246 1.719 

27 AGI_MM_OLIGO_A_51_P206518 N-acetylglucosamine kinase 3.170 0.799 0.252 1.748 

28 AGI_MM_OLIGO_A_51_P405476 

Fc receptor, IgE, high affinity I, gamma 

polypeptide 3.149 0.980 0.311 2.029 

29 AGI_MM_OLIGO_A_51_P165342 annexin A2 3.137 1.057 0.337 2.004 

30 AGI_MM_OLIGO_A_51_P463562 guanylate binding protein 4 3.136 1.236 0.394 2.360 

31 AGI_MM_OLIGO_A_51_P386382 shisa homolog 5 (Xenopus laevis) 3.108 0.806 0.259 1.699 

32 AGI_MM_OLIGO_A_52_P150565 ubiquitin specific peptidase 39 3.105 0.664 0.214 1.588 
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33 AGI_MM_OLIGO_A_51_P183746 paired related homeobox 2 3.104 1.336 0.430 2.612 

34 AGI_MM_OLIGO_A_51_P502132 matrix metallopeptidase 23 3.100 1.047 0.338 2.094 

35 AGI_MM_OLIGO_A_51_P131800 cytochrome b-245, alpha polypeptide 3.094 0.915 0.296 1.869 

36 AGI_MM_OLIGO_A_51_P303160 arginase, liver 3.085 1.492 0.484 2.727 

37 AGI_MM_OLIGO_A_51_P354354 galactose-3-O-sulfotransferase 1 3.085 1.195 0.387 2.145 

38 AGI_MM_OLIGO_A_51_P413866 complement factor B 3.075 0.910 0.296 1.884 

39 AGI_MM_OLIGO_A_51_P493543 ferritin light chain 2 3.074 1.044 0.340 2.022 

40 AGI_MM_OLIGO_A_52_P210164 RIKEN cDNA 4930471M23 gene 3.071 0.773 0.252 1.729 

41 AGI_MM_OLIGO_A_51_P259726 differentially expressed in FDCP 8 3.060 0.805 0.263 1.765 

42 AGI_MM_OLIGO_A_51_P321794 6-phosphogluconolactonase 3.057 0.788 0.258 1.704 

43 AGI_MM_OLIGO_A_51_P179504 angiogenin, ribonuclease A family, member 6 3.056 0.962 0.315 1.970 

44 AGI_MM_OLIGO_A_51_P169281 transmembrane protein 132A 3.050 0.836 0.274 1.774 

45 AGI_MM_OLIGO_A_51_P321886 

CKLF-like MARVEL transmembrane domain 

containing 3 3.041 0.966 0.318 1.989 

46 AGI_MM_OLIGO_A_51_P474078 selenoprotein W, muscle 1 3.040 0.773 0.254 1.715 

47 AGI_MM_OLIGO_A_52_P10041 

aldo-keto reductase family 1, member B3 (aldose 

reductase) 3.035 1.076 0.355 2.107 

48 AGI_MM_OLIGO_A_52_P185485 actin related protein 2/3 complex, subunit 4 3.031 0.824 0.272 1.759 

49 AGI_MM_OLIGO_A_52_P463518 CD200 receptor 1 3.018 1.249 0.414 2.406 

50 AGI_MM_OLIGO_A_51_P146149 napsin A aspartic peptidase 3.017 0.805 0.267 1.727 

51 AGI_MM_OLIGO_A_51_P238734 

major facilitator superfamily domain containing 

11 3.008 0.765 0.254 1.661 

52 AGI_MM_OLIGO_A_52_P607128 macrophage scavenger receptor 1 3.001 0.981 0.327 2.016 

53 AGI_MM_OLIGO_A_52_P325477 tripartite motif-containing 16 2.995 0.985 0.329 1.870 

54 AGI_MM_OLIGO_A_52_P179640 fucosidase, alpha-L- 1, tissue 2.992 0.809 0.270 1.729 

55 AGI_MM_OLIGO_A_52_P523330 transmembrane protein 147 2.990 0.551 0.184 1.468 

56 AGI_MM_OLIGO_A_51_P189208 RIKEN cDNA 4933417G07 gene 2.986 0.710 0.238 1.631 

57 AGI_MM_OLIGO_A_52_P338180 

translocase of inner mitochondrial membrane 13 

homolog (yeast) 2.978 0.786 0.264 1.685 

58 AGI_MM_OLIGO_A_51_P452876 adenylate kinase 1 2.977 1.067 0.359 2.093 

59 AGI_MM_OLIGO_A_52_P35960 cathepsin D 2.975 0.891 0.300 1.884 

60 AGI_MM_OLIGO_A_51_P338397 

potassium channel tetramerisation domain 

containing 10 2.967 0.871 0.293 1.765 

61 AGI_MM_OLIGO_A_51_P399106 RIKEN cDNA 9030617O03 gene 2.955 0.851 0.288 1.838 

62 AGI_MM_OLIGO_A_52_P582394 mitochondrial ribosomal protein S11 2.953 0.685 0.232 1.597 

63 AGI_MM_OLIGO_A_51_P237383 ribonuclease, RNase A family 4 2.942 1.007 0.342 1.999 

64 AGI_MM_OLIGO_A_51_P327904 Yip1 domain family, member 1 2.941 0.752 0.256 1.651 

65 AGI_MM_OLIGO_A_51_P117618 ethylmalonic encephalopathy 1 2.939 0.598 0.203 1.519 

66 AGI_MM_OLIGO_A_51_P321150 lysozyme 2 2.936 0.891 0.303 1.815 

67 AGI_MM_OLIGO_A_52_P262511 ribonuclease, RNase A family 4 2.932 0.989 0.337 2.008 

68 AGI_MM_OLIGO_A_52_P62085 cathepsin Z 2.924 0.842 0.288 1.760 

69 AGI_MM_OLIGO_A_52_P112110 transmembrane protein 82 2.910 0.854 0.294 1.838 

70 AGI_MM_OLIGO_A_51_P460954 chemokine (C-C motif) ligand 6 2.908 1.085 0.373 2.041 

71 AGI_MM_OLIGO_A_51_P169693 bone marrow stromal cell antigen 2 2.905 1.150 0.396 2.131 
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72 AGI_MM_OLIGO_A_52_P422338 phosphatidylserine decarboxylase 2.904 0.766 0.264 1.675 

73 AGI_MM_OLIGO_A_52_P474242 histocompatibility 2, K1, K region 2.889 0.982 0.340 1.984 

74 AGI_MM_OLIGO_A_52_P136264 
phosphatidylinositol glycan anchor biosynthesis, 
class S 2.879 0.748 0.260 1.628 

75 AGI_MM_OLIGO_A_51_P165882 

solute carrier family 22 (organic cation 

transporter), member 18 2.859 0.827 0.289 1.719 

76 AGI_MM_OLIGO_A_51_P251325 
translocase of inner mitochondrial membrane 13 
homolog (yeast) 2.848 0.757 0.266 1.648 

77 AGI_MM_OLIGO_A_51_P337412 

epidermal growth factor-containing fibulin-like 

extracellular matrix protein 1 2.846 1.255 0.441 2.100 

78 AGI_MM_OLIGO_A_51_P467889 N-acetyltransferase 9 (GCN5-related, putative) 2.842 0.714 0.251 1.643 

79 AGI_MM_OLIGO_A_51_P314285 transmembrane protein 86A 2.842 0.831 0.292 1.798 

80 AGI_MM_OLIGO_A_51_P150653 protein tyrosine phosphatase, receptor type, V 2.834 1.465 0.517 3.403 

81 AGI_MM_OLIGO_A_51_P263471 C-type lectin domain family 4, member n 2.824 0.962 0.341 2.025 

82 AGI_MM_OLIGO_A_51_P371051 GLI pathogenesis-related 1 (glioma) 2.824 1.004 0.356 2.088 

83 AGI_MM_OLIGO_A_51_P208240 
tumor necrosis factor (ligand) superfamily, 
member 14 2.823 0.879 0.311 1.886 

84 AGI_MM_OLIGO_A_52_P465647 ubiquitin-conjugating enzyme E2D 2 2.823 0.666 0.236 1.589 

85 AGI_MM_OLIGO_A_51_P310780 paired immunoglobin-like type 2 receptor alpha 2.813 1.030 0.366 2.056 

86 AGI_MM_OLIGO_A_52_P657317 transmembrane protein 160 2.804 0.997 0.356 1.977 

87 AGI_MM_OLIGO_A_52_P113190 myosin IF 2.799 0.796 0.285 1.773 

88 AGI_MM_OLIGO_A_51_P181312 dicarbonyl L-xylulose reductase 2.799 0.819 0.293 1.800 

89 AGI_MM_OLIGO_A_51_P408363 complement factor properdin 2.796 0.901 0.322 1.920 

90 AGI_MM_OLIGO_A_52_P638457 RIKEN cDNA A430084P05 gene 2.793 1.371 0.491 2.970 

91 AGI_MM_OLIGO_A_51_P347961 Niemann Pick type C2 2.786 0.897 0.322 1.756 

92 AGI_MM_OLIGO_A_51_P359891 sialic acid binding Ig-like lectin 1, sialoadhesin 2.784 1.246 0.448 2.573 

93 AGI_MM_OLIGO_A_52_P408757 Fc receptor, IgG, low affinity III 2.783 0.825 0.296 1.753 

94 AGI_MM_OLIGO_A_51_P120239 polymerase I and transcript release factor 2.782 0.797 0.287 1.734 

95 AGI_MM_OLIGO_A_52_P131466 RAS-related C3 botulinum substrate 2 2.781 0.756 0.272 1.713 

96 AGI_MM_OLIGO_A_52_P1022311 NA 2.774 0.817 0.295 1.758 

97 AGI_MM_OLIGO_A_51_P333349 transmembrane protein 120A 2.774 0.737 0.266 1.672 

98 AGI_MM_OLIGO_A_52_P501733 ferritin light chain 1 2.768 0.924 0.334 1.888 

99 AGI_MM_OLIGO_A_52_P48155 eukaryotic translation initiation factor 5A 2.758 0.832 0.302 1.817 

100 AGI_MM_OLIGO_A_51_P337918 aldehyde dehydrogenase 4 family, member A1 2.758 0.837 0.304 1.811 

101 AGI_MM_OLIGO_A_52_P197722 

3-hydroxymethyl-3-methylglutaryl-Coenzyme A 

lyase-like 1 2.757 1.064 0.386 2.027 

102 AGI_MM_OLIGO_A_51_P213706 stromal cell derived factor 4 2.756 0.707 0.256 1.583 

103 AGI_MM_OLIGO_A_51_P295389 chondroitin polymerizing factor 2 2.755 0.972 0.353 1.915 

104 AGI_MM_OLIGO_A_51_P212754 transforming growth factor, beta induced 2.748 1.246 0.453 2.372 

105 AGI_MM_OLIGO_A_51_P212419 leucine rich repeat containing 41 2.740 0.713 0.260 1.623 

106 AGI_MM_OLIGO_A_52_P555235 regulator of G-protein signaling 19 2.737 0.846 0.309 1.783 

107 AGI_MM_OLIGO_A_52_P164017 secretory carrier membrane protein 4 2.734 0.628 0.230 1.545 

108 AGI_MM_OLIGO_A_52_P684378 glutathione peroxidase 1 2.733 0.600 0.220 1.504 

109 AGI_MM_OLIGO_A_51_P241715  RIKEN cDNA 4930579C12 gene 2.730 1.382 0.506 2.618 
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110 AGI_MM_OLIGO_A_51_P391754 sterol O-acyltransferase 1 2.728 0.884 0.324 1.837 

111 AGI_MM_OLIGO_A_51_P101146 
serine (or cysteine) peptidase inhibitor, clade B, 
member 2 2.726 1.424 0.522 3.223 

112 AGI_MM_OLIGO_A_52_P670026 

radical S-adenosyl methionine domain containing 

2 2.715 0.908 0.335 1.824 

113 AGI_MM_OLIGO_A_51_P153053 sphingomyelin phosphodiesterase, acid-like 3A 2.713 0.974 0.359 1.986 

114 AGI_MM_OLIGO_A_51_P485312 chemokine (C-C motif) ligand 5 2.712 0.780 0.288 1.683 

115 AGI_MM_OLIGO_A_51_P144143 NA 2.710 0.802 0.296 1.750 

116 AGI_MM_OLIGO_A_51_P181451 

complement component 1, q subcomponent, alpha 

polypeptide 2.708 0.899 0.332 1.810 

117 AGI_MM_OLIGO_A_52_P429749 transmembrane protein 115 2.707 0.653 0.241 1.563 

118 AGI_MM_OLIGO_A_51_P432641 chemokine (C-X-C motif) ligand 10 2.703 1.139 0.421 2.068 

119 AGI_MM_OLIGO_A_52_P51429 DENN/MADD domain containing 1C 2.703 0.792 0.293 1.763 

120 AGI_MM_OLIGO_A_52_P57013 nucleoredoxin 2.700 1.019 0.377 2.072 

121 AGI_MM_OLIGO_A_51_P495730 RIKEN cDNA 1700049L16 gene 2.698 0.963 0.357 1.869 

122 AGI_MM_OLIGO_A_52_P356562 NA 2.698 0.668 0.247 1.596 

123 AGI_MM_OLIGO_A_52_P481957 gremlin 1 2.691 1.148 0.427 2.423 

124 AGI_MM_OLIGO_A_51_P138895 coiled-coil domain containing 102A 2.691 0.647 0.240 1.562 

125 AGI_MM_OLIGO_A_51_P484329 T-cell receptor alpha chain 2.689 1.247 0.464 2.569 

126 AGI_MM_OLIGO_A_52_P29879 differentially expressed in FDCP 8 2.683 0.748 0.279 1.645 

127 AGI_MM_OLIGO_A_51_P232355 

protease (prosome, macropain) 26S subunit, 

ATPase 5 2.682 0.829 0.309 1.780 

128 AGI_MM_OLIGO_A_52_P110812 gamma-glutamyl carboxylase 2.676 0.637 0.238 1.562 

129 AGI_MM_OLIGO_A_52_P223618 reticulocalbin 3, EF-hand calcium binding domain 2.675 0.878 0.328 1.883 

130 AGI_MM_OLIGO_A_51_P511315 

proline-serine-threonine phosphatase-interacting 

protein 1 2.674 0.878 0.328 1.858 

131 AGI_MM_OLIGO_A_51_P205943 huntingtin 2.673 0.717 0.268 1.640 

132 AGI_MM_OLIGO_A_52_P511269 malectin 2.672 0.875 0.327 1.814 

133 AGI_MM_OLIGO_A_51_P211491 glucuronidase, beta 2.669 0.823 0.308 1.774 

134 AGI_MM_OLIGO_A_51_P306047 SEC13 homolog (S. cerevisiae) 2.669 0.737 0.276 1.653 

135 AGI_MM_OLIGO_A_52_P241732 peroxisomal biogenesis factor 16 2.657 0.616 0.232 1.536 

136 AGI_MM_OLIGO_A_52_P409760 islet cell autoantigen 1 2.656 0.904 0.340 1.708 

137 AGI_MM_OLIGO_A_51_P359636 
lectin, galactoside-binding, soluble, 3 binding 
protein 2.655 0.890 0.335 1.781 

138 AGI_MM_OLIGO_A_51_P297679 hematopoietic cell specific Lyn substrate 1 2.655 0.927 0.349 1.983 

139 AGI_MM_OLIGO_A_51_P183685 RAB34, member of RAS oncogene family 2.655 0.813 0.306 1.732 

140 AGI_MM_OLIGO_A_52_P393755 LIM motif-containing protein kinase 2 2.653 0.730 0.275 1.677 

141 AGI_MM_OLIGO_A_52_P162298 YdjC homolog (bacterial) 2.652 0.584 0.220 1.498 

142 AGI_MM_OLIGO_A_52_P479001 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 2.649 1.022 0.386 2.111 

143 AGI_MM_OLIGO_A_51_P414412 TRAF type zinc finger domain containing 1 2.648 0.762 0.288 1.681 

144 AGI_MM_OLIGO_A_51_P154780 vav 1 oncogene 2.647 0.840 0.317 1.827 

145 AGI_MM_OLIGO_A_52_P428354 histocompatibility 2, Q region locus 10 2.646 0.883 0.334 1.857 

146 AGI_MM_OLIGO_A_51_P159042 NA 2.645 0.990 0.374 2.147 

147 AGI_MM_OLIGO_A_51_P276235 patatin-like phospholipase domain containing 7 2.643 0.664 0.251 1.609 
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148 AGI_MM_OLIGO_A_51_P327825 peptidylprolyl isomerase B 2.640 0.642 0.243 1.558 

149 AGI_MM_OLIGO_A_51_P178063 RAS p21 protein activator 3 2.635 0.940 0.357 1.943 

150 AGI_MM_OLIGO_A_51_P371942 procollagen C-endopeptidase enhancer protein 2.634 1.038 0.394 1.978 

151 AGI_MM_OLIGO_A_51_P500550 major facilitator superfamily domain containing 1 2.633 1.073 0.408 2.029 

152 AGI_MM_OLIGO_A_52_P537566 centromere protein T 2.629 0.529 0.201 1.448 

153 AGI_MM_OLIGO_A_51_P377833 

CKLF-like MARVEL transmembrane domain 

containing 7 2.629 0.687 0.261 1.630 

154 AGI_MM_OLIGO_A_51_P119544 aspartylglucosaminidase 2.628 0.789 0.300 1.694 

155 AGI_MM_OLIGO_A_52_P52618 

colony stimulating factor 2 receptor, beta, low-

affinity (granulocyte-macrophage) 2.627 0.841 0.320 1.799 

156 AGI_MM_OLIGO_A_52_P231714 cAMP responsive element binding protein 3 2.627 0.703 0.268 1.593 

157 AGI_MM_OLIGO_A_51_P506045 plasma glutamate carboxypeptidase 2.626 0.990 0.377 1.990 

158 AGI_MM_OLIGO_A_52_P367792 
methylthioribose-1-phosphate isomerase homolog 
(S. cerevisiae) 2.624 0.560 0.214 1.481 

159 AGI_MM_OLIGO_A_51_P481930 cadherin 15 2.623 1.000 0.381 2.104 

160 AGI_MM_OLIGO_A_51_P311785 mannosidase 2, alpha B2 2.621 0.831 0.317 1.820 

161 AGI_MM_OLIGO_A_51_P515883 placenta-specific 8 2.620 1.189 0.454 2.398 

162 AGI_MM_OLIGO_A_51_P341736 matrix metallopeptidase 2 2.620 1.260 0.481 2.492 

163 AGI_MM_OLIGO_A_51_P151628 lactamase, beta 2.616 0.989 0.378 2.195 

164 AGI_MM_OLIGO_A_52_P583973 

low density lipoprotein receptor-related protein 

associated protein 1 2.614 0.800 0.306 1.691 

165 AGI_MM_OLIGO_A_51_P148314 family with sequence similarity 117, member A 2.612 0.802 0.307 1.679 

166 AGI_MM_OLIGO_A_51_P507787 
secretion regulating guanine nucleotide exchange 
factor 2.608 0.802 0.307 1.708 

167 AGI_MM_OLIGO_A_52_P400436 sphingosine kinase 1 2.605 0.838 0.322 1.775 

168 AGI_MM_OLIGO_A_52_P96151 WD repeat domain containing 82 2.601 0.689 0.265 1.640 

169 AGI_MM_OLIGO_A_51_P133381 
dysbindin (dystrobrevin binding protein 1) domain 
containing 2 2.600 0.550 0.211 1.454 

170 AGI_MM_OLIGO_A_51_P498267  ankyrin repeat domain 29 2.598 1.023 0.394 1.983 

171 AGI_MM_OLIGO_A_51_P442097 solute carrier family 41, member 3 2.596 0.896 0.345 1.892 

172 AGI_MM_OLIGO_A_51_P235835 NA 2.595 0.786 0.303 1.676 

173 AGI_MM_OLIGO_A_51_P370825 coiled-coil domain containing 124 2.593 0.583 0.225 1.497 

174 AGI_MM_OLIGO_A_51_P156857 RIKEN cDNA 2010002N04 gene 2.592 1.058 0.408 2.076 

175 AGI_MM_OLIGO_A_52_P354844 ectodysplasin A2 receptor 2.591 1.130 0.436 2.232 

176 AGI_MM_OLIGO_A_52_P516091 phospholipase A2, group XV 2.591 0.807 0.312 1.776 

177 AGI_MM_OLIGO_A_51_P368571 

D-tyrosyl-tRNA deacylase 1 homolog (S. 

cerevisiae) 2.586 0.697 0.270 1.631 

178 AGI_MM_OLIGO_A_51_P130101 Fc receptor, IgG, low affinity IIb 2.579 0.806 0.312 1.771 

179 AGI_MM_OLIGO_A_52_P128095 adaptor-related protein complex 2, sigma 1 subunit 2.578 0.621 0.241 1.513 

180 AGI_MM_OLIGO_A_52_P490910 fibronectin type III domain containing 4 2.572 0.910 0.354 1.833 

181 AGI_MM_OLIGO_A_52_P600318 secretory carrier membrane protein 2 2.570 0.675 0.263 1.569 

182 AGI_MM_OLIGO_A_52_P582374 epithelial stromal interaction 1 (breast) 2.569 1.195 0.465 2.500 

183 AGI_MM_OLIGO_A_51_P112223 glutathione S-transferase, alpha 4 2.565 0.914 0.356 1.924 

184 AGI_MM_OLIGO_A_52_P604629 cysteine-serine-rich nuclear protein 1 2.563 0.694 0.271 1.606 

185 AGI_MM_OLIGO_A_52_P613953 RIKEN cDNA 0610037L13 gene 2.561 0.554 0.216 1.472 
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186 AGI_MM_OLIGO_A_51_P517843 GLI pathogenesis-related 2 2.561 1.010 0.394 2.057 

187 AGI_MM_OLIGO_A_51_P291460 predicted gene 6498 2.560 0.686 0.268 1.586 

188 AGI_MM_OLIGO_A_52_P62037 annexin A2 2.553 0.756 0.296 1.600 

189 AGI_MM_OLIGO_A_51_P256202 cathepsin Z 2.553 0.726 0.284 1.616 

190 AGI_MM_OLIGO_A_52_P196077 transcription factor 25 (basic helix-loop-helix) 2.551 0.573 0.225 1.484 

191 AGI_MM_OLIGO_A_51_P162671 folate receptor 2 (fetal) 2.548 1.003 0.394 2.062 

192 AGI_MM_OLIGO_A_52_P357133 selenoprotein M 2.546 1.015 0.399 2.107 

193 AGI_MM_OLIGO_A_51_P517138 mitochondrial ribosomal protein L2 2.546 0.652 0.256 1.536 

194 AGI_MM_OLIGO_A_51_P172231 gasdermin D 2.542 0.755 0.297 1.709 

195 AGI_MM_OLIGO_A_52_P127069 serum/glucocorticoid regulated kinase 3 2.539 0.782 0.308 1.716 

196 AGI_MM_OLIGO_A_51_P103586 RIKEN cDNA A730054J21 gene 2.537 1.023 0.403 2.055 

197 AGI_MM_OLIGO_A_51_P254541 BCL2-associated X protein 2.536 0.725 0.286 1.670 

198 AGI_MM_OLIGO_A_51_P155073 

nudix (nucleoside diphosphate linked moiety X)-

type motif 14 2.534 0.582 0.230 1.485 

199 AGI_MM_OLIGO_A_51_P307644 general transcription factor III A 2.532 0.614 0.243 1.515 

200 AGI_MM_OLIGO_A_51_P400166 three prime repair exonuclease 1 2.530 0.695 0.275 1.576 

201 AGI_MM_OLIGO_A_52_P108845 CAP-GLY domain containing linker protein 3 2.530 0.840 0.332 1.791 

202 AGI_MM_OLIGO_A_51_P328300 protein disulfide isomerase associated 4 2.529 0.764 0.302 1.678 

203 AGI_MM_OLIGO_A_52_P560728 serine hydrolase-like 2.528 0.607 0.240 1.501 

204 AGI_MM_OLIGO_A_51_P231820 RIKEN cDNA C130026I21 gene 2.528 1.246 0.493 2.750 

205 AGI_MM_OLIGO_A_51_P347713 

TAF10 RNA polymerase II, TATA box binding 

protein (TBP)-associated factor 2.520 0.639 0.253 1.580 

206 AGI_MM_OLIGO_A_51_P402378 ADP-ribosylation factor-like 4D 2.520 0.804 0.319 1.827 

207 AGI_MM_OLIGO_A_51_P149699 leprecan-like 2 2.518 0.948 0.377 1.921 

208 AGI_MM_OLIGO_A_51_P265495 lymphocyte antigen 6 complex, locus A 2.517 1.077 0.428 1.883 

209 AGI_MM_OLIGO_A_51_P237752 polymerase I and transcript release factor 2.513 0.908 0.361 1.854 

210 AGI_MM_OLIGO_A_51_P134972 Sh3kbp1 binding protein 1 2.512 0.600 0.239 1.513 

211 AGI_MM_OLIGO_A_52_P350519 histocompatibility 2, blastocyst 2.504 1.036 0.414 1.870 

212 AGI_MM_OLIGO_A_51_P400366 Rhesus blood group-associated B glycoprotein 2.502 0.944 0.377 1.884 

213 AGI_MM_OLIGO_A_51_P146168 collagen, type XII, alpha 1 2.497 1.199 0.480 2.481 

214 AGI_MM_OLIGO_A_51_P268831 
solute carrier family 2 (facilitated glucose 
transporter), member 6 2.494 0.975 0.391 1.969 

215 AGI_MM_OLIGO_A_51_P146560 mesothelin 2.493 1.658 0.665 2.598 

216 AGI_MM_OLIGO_A_51_P255699 matrix metallopeptidase 3 2.493 1.471 0.590 2.708 

217 AGI_MM_OLIGO_A_52_P661982 obscurin-like 1 2.491 0.748 0.300 1.641 

218 AGI_MM_OLIGO_A_51_P380178 inhibitor of DNA binding 3 2.490 1.052 0.422 2.012 

219 AGI_MM_OLIGO_A_51_P236829 zinc finger, SWIM-type containing 7 2.490 0.620 0.249 1.559 

220 AGI_MM_OLIGO_A_51_P282667 hexosaminidase A 2.483 0.865 0.348 1.803 

221 AGI_MM_OLIGO_A_51_P160567 endothelial differentiation-related factor 1 2.477 0.520 0.210 1.431 

222 AGI_MM_OLIGO_A_51_P241861 

T-cell, immune regulator 1, ATPase, H+ 

transporting, lysosomal V0 protein A3 2.477 0.731 0.295 1.653 

223 AGI_MM_OLIGO_A_51_P377452 neutrophil cytosolic factor 4 2.476 0.802 0.324 1.772 

224 AGI_MM_OLIGO_A_52_P550491 tubulin, gamma complex associated protein 4 2.469 0.648 0.262 1.565 
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225 AGI_MM_OLIGO_A_51_P446510 epithelial membrane protein 3 2.466 0.811 0.329 1.640 

226 AGI_MM_OLIGO_A_51_P433824 triosephosphate isomerase 1 2.466 0.713 0.289 1.617 

227 AGI_MM_OLIGO_A_51_P373226 ADP-ribosylation factor-like 2 2.466 0.614 0.249 1.527 

228 AGI_MM_OLIGO_A_51_P465281 lectin, galactose binding, soluble 1 2.464 0.868 0.352 1.785 

229 AGI_MM_OLIGO_A_51_P139108 carboxypeptidase X 1 (M14 family) 2.463 1.494 0.607 3.189 

230 AGI_MM_OLIGO_A_51_P416419 calreticulin 2.460 0.743 0.302 1.682 

231 AGI_MM_OLIGO_A_51_P359570 

interferon-induced protein with tetratricopeptide 

repeats 3 2.455 0.645 0.263 1.538 

232 AGI_MM_OLIGO_A_51_P438165 Rho GTPase activating protein 22 2.452 0.967 0.394 1.910 

233 AGI_MM_OLIGO_A_52_P679273 RIKEN cDNA 2310001H17 gene 2.448 0.849 0.347 1.825 

234 AGI_MM_OLIGO_A_51_P261517 TYRO protein tyrosine kinase binding protein 2.446 0.855 0.350 1.896 

235 AGI_MM_OLIGO_A_51_P408346 interferon activated gene 204 2.445 0.989 0.404 1.858 

236 AGI_MM_OLIGO_A_52_P548121 tubulin tyrosine ligase-like 1 2.445 0.939 0.384 2.012 

237 AGI_MM_OLIGO_A_52_P533825 
translocase of outer mitochondrial membrane 6 
homolog (yeast) 2.443 0.705 0.288 1.609 

238 AGI_MM_OLIGO_A_51_P118300 synuclein, gamma 2.442 1.210 0.495 2.058 

239 AGI_MM_OLIGO_A_52_P230938 lymphocyte antigen 6 complex, locus C1 2.441 0.937 0.384 1.871 

240 AGI_MM_OLIGO_A_52_P231079 synaptosomal-associated protein, 47 2.441 0.601 0.246 1.494 

241 AGI_MM_OLIGO_A_52_P3029 
1-acylglycerol-3-phosphate O-acyltransferase 4 
(lysophosphatidic acid acyltransferase, delta) 2.440 0.920 0.377 1.892 

242 AGI_MM_OLIGO_A_51_P433450 keratin 17 2.436 0.758 0.311 1.624 

243 AGI_MM_OLIGO_A_51_P448664 thromboxane A synthase 1, platelet 2.436 0.805 0.330 1.795 

244 AGI_MM_OLIGO_A_51_P398683 reticulocalbin 3, EF-hand calcium binding domain 2.432 1.027 0.422 2.158 

245 AGI_MM_OLIGO_A_51_P405397 extracellular matrix protein 1 2.431 1.063 0.437 1.979 

246 AGI_MM_OLIGO_A_51_P454943 G protein-coupled receptor 19 2.430 0.860 0.354 1.778 

247 AGI_MM_OLIGO_A_51_P319917 a disintegrin and metallopeptidase domain 8 2.427 1.001 0.412 2.035 

248 AGI_MM_OLIGO_A_51_P454002 RIKEN cDNA 2310035K24 gene 2.423 0.564 0.233 1.484 

249 AGI_MM_OLIGO_A_51_P184484 matrix metallopeptidase 13 2.421 1.564 0.646 4.127 

250 AGI_MM_OLIGO_A_51_P344399 Rab interacting lysosomal protein-like 2 2.420 0.569 0.235 1.466 

251 AGI_MM_OLIGO_A_51_P381060 paired immunoglobin-like type 2 receptor beta 1 2.419 0.679 0.281 1.582 

252 AGI_MM_OLIGO_A_52_P422557 zinc finger protein 362 2.417 0.776 0.321 1.622 

253 AGI_MM_OLIGO_A_52_P612803 cyclin G1 2.417 0.915 0.379 1.921 

254 AGI_MM_OLIGO_A_52_P521054 

serine (or cysteine) peptidase inhibitor, clade B, 

member 8 2.416 0.968 0.401 1.887 

255 AGI_MM_OLIGO_A_52_P676403 chemokine (C-X-C motif) ligand 11 2.416 1.292 0.535 2.320 

256 AGI_MM_OLIGO_A_52_P654130 ornithine decarboxylase antizyme 2, pseudogene 2.415 0.781 0.323 1.678 

257 AGI_MM_OLIGO_A_52_P215539 RIKEN cDNA C030006K11 gene 2.413 0.657 0.272 1.571 

258 AGI_MM_OLIGO_A_51_P502152 

solute carrier family 19 (sodium/hydrogen 

exchanger), member 1 2.412 0.620 0.257 1.544 

259 AGI_MM_OLIGO_A_52_P304128 matrix metallopeptidase 14 (membrane-inserted) 2.410 0.729 0.302 1.601 

260 AGI_MM_OLIGO_A_52_P641013 ankyrin repeat domain 29 2.410 0.893 0.371 1.870 

261 AGI_MM_OLIGO_A_52_P650279 Sec61 alpha 1 subunit (S. cerevisiae) 2.410 0.631 0.262 1.535 

262 AGI_MM_OLIGO_A_52_P86965 expressed sequence AI607873 2.409 0.997 0.414 1.792 

263 AGI_MM_OLIGO_A_52_P44949 tropomyosin 1, alpha 2.408 0.812 0.337 1.708 
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264 AGI_MM_OLIGO_A_51_P314153 nuclear receptor 2C2-associated protein 2.407 0.597 0.248 1.525 

265 AGI_MM_OLIGO_A_51_P165870 nucleoredoxin 2.405 0.668 0.278 1.603 

266 AGI_MM_OLIGO_A_52_P264368 RIKEN cDNA 2410001C21 gene 2.405 0.589 0.245 1.482 

267 AGI_MM_OLIGO_A_51_P289223 LIM motif-containing protein kinase 2 2.401 0.763 0.318 1.739 

268 AGI_MM_OLIGO_A_51_P509573 chemokine (C-C motif) ligand 4 2.400 1.260 0.525 2.193 

269 AGI_MM_OLIGO_A_51_P175681 predicted gene 8995 2.398 1.135 0.473 2.314 

270 AGI_MM_OLIGO_A_52_P569067 mevalonate kinase 2.398 0.711 0.296 1.604 

271 AGI_MM_OLIGO_A_52_P451775 OTU domain, ubiquitin aldehyde binding 2 2.396 0.712 0.297 1.657 

272 AGI_MM_OLIGO_A_51_P100327 
transporter 1, ATP-binding cassette, sub-family B 
(MDR/TAP) 2.395 0.864 0.361 1.826 

273 AGI_MM_OLIGO_A_51_P449325 histocompatibility 2, O region alpha locus 2.395 1.000 0.418 2.051 

274 AGI_MM_OLIGO_A_51_P439092 ribosomal protein SA 2.395 0.778 0.325 1.763 

275 AGI_MM_OLIGO_A_51_P444669 transmembrane protein 106A 2.394 0.734 0.307 1.704 

276 AGI_MM_OLIGO_A_51_P502203 
ArfGAP with SH3 domain, ankyrin repeat and PH 
domain 3 2.392 0.671 0.281 1.567 

277 AGI_MM_OLIGO_A_51_P108757 fucosidase, alpha-L- 1, tissue 2.389 0.640 0.268 1.521 

278 AGI_MM_OLIGO_A_52_P84447 DDRGK domain containing 1 2.388 0.534 0.224 1.428 

279 AGI_MM_OLIGO_A_51_P381506 family with sequence similarity 176, member B 2.387 0.667 0.279 1.550 

280 AGI_MM_OLIGO_A_51_P326854 ubiquitin-conjugating enzyme E2C binding protein 2.387 0.603 0.253 1.516 

281 AGI_MM_OLIGO_A_52_P545613 Fc receptor, IgG, low affinity IIb 2.385 0.777 0.326 1.693 

282 AGI_MM_OLIGO_A_52_P321733 macrophage migration inhibitory factor 2.385 0.626 0.262 1.516 

283 AGI_MM_OLIGO_A_51_P121891 RAS-related C3 botulinum substrate 2 2.385 0.828 0.347 1.876 

284 AGI_MM_OLIGO_A_52_P196732 

NIMA (never in mitosis gene a)-related expressed 

kinase 6 2.383 0.664 0.279 1.602 

285 AGI_MM_OLIGO_A_52_P463936 ISG15 ubiquitin-like modifier 2.383 0.697 0.292 1.583 

286 AGI_MM_OLIGO_A_51_P149714 

membrane-spanning 4-domains, subfamily A, 

member 6D 2.381 0.876 0.368 1.952 

287 AGI_MM_OLIGO_A_51_P174005 zinc finger, C3HC type 1 2.378 0.486 0.204 1.403 

288 AGI_MM_OLIGO_A_52_P438957 ribosome binding protein 1 2.378 0.606 0.255 1.502 

289 AGI_MM_OLIGO_A_51_P120093 sorting nexin 10 2.375 0.849 0.357 1.792 

290 AGI_MM_OLIGO_A_51_P351860 

complement component 1, q subcomponent, beta 

polypeptide 2.375 0.723 0.304 1.661 

291 AGI_MM_OLIGO_A_51_P327261 TNFAIP3 interacting protein 1 2.372 0.631 0.266 1.519 

292 AGI_MM_OLIGO_A_51_P449777 
prostate transmembrane protein, androgen induced 
1 2.372 0.750 0.316 1.579 

293 AGI_MM_OLIGO_A_52_P111715 

UDP-N-acetyl-alpha-D-galactosamine:polypeptide 

N-acetylgalactosaminyltransferase 6 2.372 0.975 0.411 1.859 

294 AGI_MM_OLIGO_A_51_P158161 
MRT4, mRNA turnover 4, homolog (S. 
cerevisiae) 2.371 0.507 0.214 1.423 

295 AGI_MM_OLIGO_A_51_P185660 chemokine (C-C motif) ligand 9 2.368 1.068 0.451 1.997 

296 AGI_MM_OLIGO_A_52_P261846 collagen, type XVIII, alpha 1 2.368 0.912 0.385 1.791 

297 AGI_MM_OLIGO_A_52_P326548 formin homology 2 domain containing 3 2.366 0.805 0.340 1.803 

298 AGI_MM_OLIGO_A_51_P395164 peroxisomal biogenesis factor 16 2.365 0.536 0.226 1.451 

299 AGI_MM_OLIGO_A_51_P496569 slit homolog 2 (Drosophila) 2.365 1.165 0.493 2.561 

300 AGI_MM_OLIGO_A_52_P639522 

serine (or cysteine) peptidase inhibitor, clade B, 

member 2 2.363 1.358 0.574 3.055 
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301 AGI_MM_OLIGO_A_51_P327295 

aldo-keto reductase family 1, member A4 

(aldehyde reductase) 2.363 0.655 0.277 1.532 

302 AGI_MM_OLIGO_A_51_P405478 

Fc receptor, IgE, high affinity I, gamma 

polypeptide 2.363 0.710 0.301 1.679 

303 AGI_MM_OLIGO_A_51_P175454 calcium and integrin binding 1 (calmyrin) 2.362 0.522 0.221 1.432 

304 AGI_MM_OLIGO_A_51_P307964 keratin 13 2.362 0.840 0.356 1.800 

305 AGI_MM_OLIGO_A_51_P286946 
phospholysine phosphohistidine inorganic 
pyrophosphate phosphatase 2.361 0.790 0.334 1.723 

306 AGI_MM_OLIGO_A_52_P157408 ornithine decarboxylase antizyme 2, pseudogene 2.360 0.735 0.311 1.638 

307 AGI_MM_OLIGO_A_51_P419935 adaptor-related protein complex 2, sigma 1 subunit 2.359 0.608 0.258 1.499 

308 AGI_MM_OLIGO_A_51_P453715 family with sequence similarity 54, member B 2.358 0.611 0.259 1.528 

309 AGI_MM_OLIGO_A_52_P585104 FK506 binding protein 4 2.355 0.723 0.307 1.693 

310 AGI_MM_OLIGO_A_52_P507802 lysophosphatidic acid receptor 1 2.351 0.830 0.353 1.798 

311 AGI_MM_OLIGO_A_52_P683580 TBC1 domain family, member 9 2.350 0.658 0.280 1.587 

312 AGI_MM_OLIGO_A_51_P449048 

CNDP dipeptidase 2 (metallopeptidase M20 

family) 2.349 0.632 0.269 1.575 

313 AGI_MM_OLIGO_A_51_P336161 mannosidase 2, alpha B1 2.347 0.661 0.282 1.580 

314 AGI_MM_OLIGO_A_52_P416879 

branched chain ketoacid dehydrogenase E1, beta 

polypeptide 2.346 0.618 0.264 1.505 

315 AGI_MM_OLIGO_A_52_P811150  Cdk5 and Abl enzyme substrate 1 2.341 0.734 0.313 1.615 

316 AGI_MM_OLIGO_A_51_P358152 selenoprotein N, 1 2.341 0.657 0.281 1.570 

317 AGI_MM_OLIGO_A_52_P660945 cathepsin F 2.340 0.681 0.291 1.637 

318 AGI_MM_OLIGO_A_51_P429366 hairy and enhancer of split 6 (Drosophila) 2.337 0.657 0.281 1.562 

319 AGI_MM_OLIGO_A_51_P235687 arachidonate 5-lipoxygenase activating protein 2.336 0.797 0.341 1.755 

320 AGI_MM_OLIGO_A_51_P237754 histocompatibility 2, T region locus 23 2.335 0.779 0.333 1.595 

321 AGI_MM_OLIGO_A_51_P154417 fibulin 1 2.334 1.250 0.536 2.609 

322 AGI_MM_OLIGO_A_52_P515094 transmembrane protein 176A 2.333 0.698 0.299 1.584 

323 AGI_MM_OLIGO_A_51_P320593 differentially expressed in FDCP 6 2.333 0.868 0.372 1.875 

324 AGI_MM_OLIGO_A_51_P509746 porcupine homolog (Drosophila) 2.332 0.985 0.422 1.974 

325 AGI_MM_OLIGO_A_51_P411389 RIKEN cDNA 5730437N04 gene 2.329 0.666 0.286 1.518 

326 AGI_MM_OLIGO_A_52_P405177 C1q and tumor necrosis factor related protein 6 2.329 0.932 0.400 1.960 

327 AGI_MM_OLIGO_A_52_P162775 spastic paraplegia 7 homolog (human) 2.329 0.519 0.223 1.429 

328 AGI_MM_OLIGO_A_52_P383653 copine VIII 2.328 1.064 0.457 1.838 

329 AGI_MM_OLIGO_A_52_P558368 zinc finger, DHHC domain containing 1 2.328 0.968 0.416 2.099 

330 AGI_MM_OLIGO_A_52_P337357 2-5 oligoadenylate synthetase 1A 2.328 0.606 0.260 1.506 

331 AGI_MM_OLIGO_A_52_P91658 RIKEN cDNA A930001C03 gene 2.328 0.908 0.390 2.042 

332 AGI_MM_OLIGO_A_52_P117966 family with sequence similarity 173, member B 2.328 0.444 0.191 1.364 

333 AGI_MM_OLIGO_A_52_P431483 IKAROS family zinc finger 2 2.327 0.695 0.299 1.678 

334 AGI_MM_OLIGO_A_51_P302458 phospholipid scramblase 3 2.323 0.586 0.252 1.490 

335 AGI_MM_OLIGO_A_51_P461578 ferredoxin reductase 2.321 0.568 0.245 1.465 

336 AGI_MM_OLIGO_A_51_P175580 

transformation related protein 53 inducible nuclear 

protein 1 2.321 0.773 0.333 1.770 

337 AGI_MM_OLIGO_A_51_P350817 calponin 1 2.318 1.167 0.503 2.513 

338 AGI_MM_OLIGO_A_51_P246924 
tubulin polymerization-promoting protein family 
member 3 2.317 0.894 0.386 1.812 



 

127 

 

 

Probe Name Gene ID 

Score 

(d) 

Nume

rator 

Denom

inator 

Fold 

Change 

339 AGI_MM_OLIGO_A_51_P332136 zinc finger, matrin type 5 2.313 0.543 0.235 1.450 

340 AGI_MM_OLIGO_A_51_P400752 histocompatibility 2, Q region locus 5 2.311 0.754 0.326 1.597 

341 AGI_MM_OLIGO_A_51_P284486 glutathione S-transferase, mu 2 2.308 1.082 0.469 2.381 

342 AGI_MM_OLIGO_A_51_P173678 

solute carrier family 10 (sodium/bile acid 

cotransporter family), member 6 2.308 0.671 0.291 1.607 

343 AGI_MM_OLIGO_A_51_P506417 keratin 14 2.307 0.791 0.343 1.620 

344 AGI_MM_OLIGO_A_51_P419147 leupaxin 2.305 0.617 0.268 1.556 

345 AGI_MM_OLIGO_A_51_P169495 Moloney leukemia virus 10 2.303 0.516 0.224 1.439 

346 AGI_MM_OLIGO_A_51_P126275 keratin 6B 2.302 0.953 0.414 2.087 

347 AGI_MM_OLIGO_A_52_P582112 host cell factor C1 regulator 1 (XPO1-dependent) 2.302 0.598 0.260 1.472 

348 AGI_MM_OLIGO_A_52_P487615 family with sequence similarity 105, member A 2.300 0.714 0.310 1.675 

349 AGI_MM_OLIGO_A_51_P376347 heme binding protein 1 2.300 0.646 0.281 1.568 

350 AGI_MM_OLIGO_A_52_P244723 tubulin folding cofactor E-like 2.300 0.762 0.331 1.601 

351 AGI_MM_OLIGO_A_52_P148514 heparanase 2.300 0.930 0.404 2.050 

352 AGI_MM_OLIGO_A_52_P592101 

DNA segment, Chr 6, Wayne State University 

116, expressed 2.300 0.543 0.236 1.449 

353 AGI_MM_OLIGO_A_52_P132612  predicted gene, EG433923 2.299 0.900 0.391 1.814 

354 AGI_MM_OLIGO_A_52_P28651 poliovirus receptor-related 1 2.298 0.638 0.277 1.560 

355 AGI_MM_OLIGO_A_51_P407832 NA 2.297 1.034 0.450 1.892 

356 AGI_MM_OLIGO_A_51_P505538 hemochromatosis 2.296 0.713 0.310 1.613 

357 AGI_MM_OLIGO_A_51_P274259 adenylate kinase 5 2.296 0.755 0.329 1.713 

358 AGI_MM_OLIGO_A_52_P5891 family with sequence similarity 101, member B 2.295 0.775 0.338 1.666 

359 AGI_MM_OLIGO_A_52_P323111 LAG1 homolog, ceramide synthase 6 2.295 0.754 0.329 1.736 

360 AGI_MM_OLIGO_A_52_P612518 solute carrier family 44, member 2 2.292 0.600 0.262 1.492 

361 AGI_MM_OLIGO_A_51_P273170 
nucleolar protein 3 (apoptosis repressor with 
CARD domain) 2.292 0.859 0.375 1.945 

362 AGI_MM_OLIGO_A_51_P495492 syntaxin 4A (placental) 2.288 0.643 0.281 1.525 

363 AGI_MM_OLIGO_A_51_P329928 

pleckstrin homology-like domain, family A, 

member 3 2.288 0.740 0.323 1.735 

364 AGI_MM_OLIGO_A_51_P512085 collectin sub-family member 12 2.288 0.995 0.435 2.066 

365 AGI_MM_OLIGO_A_52_P570717 histocompatibility 2, class II antigen A, beta 1 2.288 1.025 0.448 1.862 

366 AGI_MM_OLIGO_A_52_P1076740 NA 2.287 0.748 0.327 1.758 

367 AGI_MM_OLIGO_A_51_P484869 guanidinoacetate methyltransferase 2.286 0.498 0.218 1.406 

368 AGI_MM_OLIGO_A_51_P211436 G protein-coupled receptor 83 2.285 0.920 0.403 1.785 

369 AGI_MM_OLIGO_A_52_P2659 NA 2.284 0.805 0.352 1.754 

370 AGI_MM_OLIGO_A_51_P171382 CD163 molecule-like 1 2.283 0.902 0.395 1.807 

371 AGI_MM_OLIGO_A_51_P244492 neuroblastoma, suppression of tumorigenicity 1 2.282 1.044 0.457 2.108 

372 AGI_MM_OLIGO_A_51_P300277 coronin, actin binding protein 1A 2.282 0.775 0.340 1.723 

373 AGI_MM_OLIGO_A_51_P376238 

serine (or cysteine) peptidase inhibitor, clade G, 

member 1 2.282 0.954 0.418 1.861 

374 AGI_MM_OLIGO_A_52_P5454 CD248 antigen, endosialin 2.280 0.888 0.389 1.941 

375 AGI_MM_OLIGO_A_51_P242201 N-acylethanolamine acid amidase 2.280 0.641 0.281 1.544 

376 AGI_MM_OLIGO_A_51_P437426 leucine rich repeat containing 33 2.280 0.809 0.355 1.785 
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377 AGI_MM_OLIGO_A_51_P375267 drebrin-like 2.277 0.509 0.223 1.401 

378 AGI_MM_OLIGO_A_51_P165182 
basic leucine zipper transcription factor, ATF-like 
2 2.276 0.849 0.373 1.823 

379 AGI_MM_OLIGO_A_52_P83479 interferon activated gene 204 2.275 0.864 0.380 1.739 

380 AGI_MM_OLIGO_A_52_P76196 NA 2.273 0.546 0.240 1.461 

381 AGI_MM_OLIGO_A_51_P466490 armadillo repeat containing 5 2.273 0.585 0.257 1.483 

382 AGI_MM_OLIGO_A_52_P371237 neuropilin 1 2.272 0.658 0.290 1.548 

383 AGI_MM_OLIGO_A_51_P456870 forkhead box J1 2.271 1.152 0.507 2.093 

384 AGI_MM_OLIGO_A_51_P160544 

epidermal growth factor-containing fibulin-like 

extracellular matrix protein 2 2.270 0.719 0.317 1.680 

385 AGI_MM_OLIGO_A_52_P50496 histocompatibility 2, K1, K region 2.270 0.651 0.287 1.528 

386 AGI_MM_OLIGO_A_51_P496562 slit homolog 2 (Drosophila) 2.269 0.965 0.425 2.114 

387 AGI_MM_OLIGO_A_51_P146753 
colony stimulating factor 2 receptor, beta 2, low-
affinity (granulocyte-macrophage) 2.267 0.693 0.306 1.632 

388 AGI_MM_OLIGO_A_52_P296632 NA 2.266 0.631 0.278 1.561 

389 AGI_MM_OLIGO_A_51_P369550 CD84 antigen 2.266 0.803 0.355 1.683 

390 AGI_MM_OLIGO_A_52_P446363 mesoderm development candidate 2 2.265 0.989 0.437 2.158 

391 AGI_MM_OLIGO_A_51_P433733 nucleobindin 1 2.264 0.600 0.265 1.519 

392 AGI_MM_OLIGO_A_52_P21595 RAB38, member of RAS oncogene family 2.264 0.856 0.378 1.793 

393 AGI_MM_OLIGO_A_51_P246653 C-type lectin domain family 7, member a 2.263 1.027 0.454 2.137 

394 AGI_MM_OLIGO_A_51_P105068 LY6/PLAUR domain containing 6B 2.263 1.070 0.473 1.937 

395 AGI_MM_OLIGO_A_51_P441426 platelet factor 4 2.262 1.076 0.476 2.314 

396 AGI_MM_OLIGO_A_51_P154222 lysyl-tRNA synthetase 2.261 0.571 0.253 1.497 

397 AGI_MM_OLIGO_A_52_P466993 
ADP-ribosylation factor GTPase activating protein 
2 2.261 0.554 0.245 1.447 

398 AGI_MM_OLIGO_A_51_P417612 histocompatibility 2, D region locus 4 2.261 0.640 0.283 1.536 

399 AGI_MM_OLIGO_A_51_P338443 angiopoietin-like 4 2.260 0.981 0.434 1.913 

400 AGI_MM_OLIGO_A_51_P331831 hydrogen voltage-gated channel 1 2.260 0.813 0.360 1.806 

401 AGI_MM_OLIGO_A_51_P188271 CD248 antigen, endosialin 2.259 1.042 0.461 2.170 

402 AGI_MM_OLIGO_A_51_P436928 ribosomal protein S9 2.258 0.613 0.271 1.546 

403 AGI_MM_OLIGO_A_52_P131548 ajuba 2.256 0.745 0.330 1.716 

404 AGI_MM_OLIGO_A_52_P262914 zinc finger protein 593 2.255 0.610 0.271 1.508 

405 AGI_MM_OLIGO_A_51_P295037 

 proteasome (prosome, macropain) subunit, beta 

type 5 2.255 0.576 0.255 1.458 

406 AGI_MM_OLIGO_A_51_P345366 

proteasome (prosome, macropain) subunit, beta 

type 8 (large multifunctional peptidase 7) 2.255 0.684 0.303 1.578 

407 AGI_MM_OLIGO_A_51_P124748 transforming growth factor, beta 3 2.253 0.604 0.268 1.541 

408 AGI_MM_OLIGO_A_51_P295237 low density lipoprotein receptor-related protein 11 2.252 0.787 0.350 1.711 

409 AGI_MM_OLIGO_A_52_P195839 cathepsin C 2.252 0.742 0.330 1.676 

410 AGI_MM_OLIGO_A_51_P278519 quiescin Q6 sulfhydryl oxidase 1 2.252 0.703 0.312 1.638 

411 AGI_MM_OLIGO_A_51_P483311 MPV17 mitochondrial membrane protein-like 2 2.252 0.552 0.245 1.476 

412 AGI_MM_OLIGO_A_51_P484111 matrilin 2 2.250 0.895 0.398 1.921 

413 AGI_MM_OLIGO_A_51_P120738 purinergic receptor P2Y, G-protein coupled, 14 2.249 0.745 0.331 1.627 

414 AGI_MM_OLIGO_A_52_P436238 ornithine decarboxylase, structural 1 2.248 0.763 0.339 1.751 
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415 AGI_MM_OLIGO_A_51_P431649 ATPase type 13A1 2.247 0.498 0.222 1.413 

416 AGI_MM_OLIGO_A_51_P404077 frizzled homolog 2 (Drosophila) 2.246 0.583 0.260 1.470 

417 AGI_MM_OLIGO_A_51_P101474 transferrin receptor 2 2.245 0.817 0.364 1.734 

418 AGI_MM_OLIGO_A_51_P150480 RIKEN cDNA 2900073G15 gene 2.244 0.490 0.218 1.402 

419 AGI_MM_OLIGO_A_52_P30632 RIKEN cDNA 1700007K13 gene 2.243 1.423 0.634 4.308 

420 AGI_MM_OLIGO_A_52_P451073 

tumor necrosis factor receptor superfamily, 

member 21 2.242 0.656 0.293 1.539 

421 AGI_MM_OLIGO_A_52_P470316 lysosomal-associated protein transmembrane 4B 2.241 0.698 0.311 1.542 

422 AGI_MM_OLIGO_A_51_P432544 histocompatibility 2, T region locus 22 2.240 0.759 0.339 1.767 

423 AGI_MM_OLIGO_A_51_P465292 histamine N-methyltransferase 2.240 0.858 0.383 1.789 

424 AGI_MM_OLIGO_A_51_P300281 coronin, actin binding protein 1A 2.240 0.646 0.288 1.558 

425 AGI_MM_OLIGO_A_51_P207031 neutrophil cytosolic factor 1 2.239 0.842 0.376 1.900 

426 AGI_MM_OLIGO_A_51_P153765 carbonic anhydrase 13 2.238 0.730 0.326 1.576 

427 AGI_MM_OLIGO_A_51_P408343 interferon activated gene 204 2.238 0.813 0.363 1.634 

428 AGI_MM_OLIGO_A_51_P238523 shisa homolog 4 (Xenopus laevis) 2.237 0.505 0.226 1.429 

 

(b) RESP-HIGH list of 74 perturbed probes (61 mouse genes) from the responding versus not SAM 

analysis. FDR = 1% 

 

Probe Name Gene ID 

Score 

(d) 

Nume

rator 

Denom

inator 

Fold 

Change 

1 AGI_MM_OLIGO_A_51_P500156 parvalbumin -5.628 -3.216 0.571 0.116 

2 AGI_MM_OLIGO_A_51_P220262 ring finger protein 165 -5.327 -1.707 0.321 0.309 

3 AGI_MM_OLIGO_A_51_P222467 

ATP-binding cassette, sub-family G (WHITE), 

member 1 -5.286 -1.327 0.251 0.396 

4 AGI_MM_OLIGO_A_52_P670612 Meis homeobox 1 -5.254 -4.002 0.762 0.053 

5 AGI_MM_OLIGO_A_52_P676518 NA -4.849 -1.403 0.289 0.383 

6 AGI_MM_OLIGO_A_51_P338072 myosin, heavy polypeptide 4, skeletal muscle -4.583 -4.952 1.080 0.058 

7 AGI_MM_OLIGO_A_52_P367294 

fibronectin type III and SPRY domain containing 

1-like -4.398 -1.282 0.291 0.405 

8 AGI_MM_OLIGO_A_52_P677036 RIKEN cDNA D430007A19 gene -4.318 -1.157 0.268 0.454 

9 AGI_MM_OLIGO_A_52_P843919 NA -4.304 -1.850 0.430 0.273 

10 AGI_MM_OLIGO_A_51_P217498 

solute carrier family 2 (facilitated glucose 

transporter), member 4 -4.216 -1.375 0.326 0.390 

11 AGI_MM_OLIGO_A_51_P172155 histidine ammonia lyase -4.177 -1.421 0.340 0.375 

12 AGI_MM_OLIGO_A_52_P484519 septin 11 -4.169 -1.498 0.359 0.348 

13 AGI_MM_OLIGO_A_51_P479311 glutathione S-transferase, mu 1 -4.150 -1.330 0.320 0.391 

14 AGI_MM_OLIGO_A_51_P353946 interleukin 11 receptor, alpha chain 1 -4.143 -1.262 0.305 0.423 

15 AGI_MM_OLIGO_A_51_P496245 homeobox C6 -4.142 -1.688 0.408 0.311 

16 AGI_MM_OLIGO_A_51_P279841 B-cell linker -4.064 -1.241 0.305 0.423 

17 AGI_MM_OLIGO_A_51_P305019 RIKEN cDNA 9530049O05 gene -4.056 -1.732 0.427 0.289 

18 AGI_MM_OLIGO_A_52_P602147 myosin, heavy polypeptide 4, skeletal muscle -4.015 -3.253 0.810 0.072 

19 AGI_MM_OLIGO_A_51_P112932 ectonucleoside triphosphate diphosphohydrolase 2 -4.014 -1.443 0.359 0.380 
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20 AGI_MM_OLIGO_A_51_P486239 C-type lectin domain family 3, member b -4.006 -1.691 0.422 0.321 

21 AGI_MM_OLIGO_A_52_P1187697 NA -4.004 -1.219 0.305 0.418 

22 AGI_MM_OLIGO_A_52_P27576 syntaxin binding protein 3A -3.952 -1.316 0.333 0.384 

23 AGI_MM_OLIGO_A_52_P381311 amyloid beta (A4) precursor protein -3.933 -1.482 0.377 0.372 

24 AGI_MM_OLIGO_A_51_P438967 glycoprotein (transmembrane) nmb -3.911 -1.938 0.495 0.266 

25 AGI_MM_OLIGO_A_51_P380750 

core-binding factor, runt domain, alpha subunit 2, 

translocated to, 3 (human) -3.900 -1.622 0.416 0.325 

26 AGI_MM_OLIGO_A_51_P384901 myostatin -3.837 -1.687 0.440 0.324 

27 AGI_MM_OLIGO_A_51_P141413 C-type lectin domain family 10, member A -3.750 -1.969 0.525 0.257 

28 AGI_MM_OLIGO_A_52_P254817 resistin like alpha -3.724 -1.725 0.463 0.300 

29 AGI_MM_OLIGO_A_52_P411315 NA -3.717 -1.417 0.381 0.381 

30 AGI_MM_OLIGO_A_51_P366811 apolipoprotein D -3.712 -1.462 0.394 0.370 

31 AGI_MM_OLIGO_A_52_P1064707 NA -3.710 -1.804 0.486 0.241 

32 AGI_MM_OLIGO_A_51_P234113 
nucleotide-binding oligomerization domain 
containing 1 -3.682 -1.184 0.322 0.442 

33 AGI_MM_OLIGO_A_52_P87843 aldehyde dehydrogenase family 1, subfamily A3 -3.675 -1.282 0.349 0.415 

34 AGI_MM_OLIGO_A_51_P306229 importin 7 -3.666 -0.999 0.273 0.491 

35 AGI_MM_OLIGO_A_52_P467096 golgi autoantigen, golgin subfamily a, 4 -3.664 -0.811 0.221 0.573 

36 AGI_MM_OLIGO_A_52_P592909 diacylglycerol O-acyltransferase 2 -3.663 -1.415 0.386 0.378 

37 AGI_MM_OLIGO_A_51_P454949 glutathione S-transferase, mu 3 -3.661 -1.064 0.291 0.472 

38 AGI_MM_OLIGO_A_51_P428708 complement component 4B (Childo blood group) -3.658 -1.334 0.365 0.406 

39 AGI_MM_OLIGO_A_51_P210310 NA -3.653 -1.354 0.371 0.403 

40 AGI_MM_OLIGO_A_51_P204350 keratin 33A -3.648 -1.826 0.500 0.298 

41 AGI_MM_OLIGO_A_52_P18775 cytochrome b5 reductase-like -3.645 -0.914 0.251 0.523 

42 AGI_MM_OLIGO_A_52_P416123 
metastasis associated lung adenocarcinoma 
transcript 1 (non-coding RNA) -3.611 -1.027 0.284 0.487 

43 AGI_MM_OLIGO_A_52_P142496 

 hect (homologous to the E6-AP (UBE3A) 

carboxyl terminus) domain and RCC1 (CHC1)-

like domain (RLD) 1 -3.611 -1.164 0.322 0.442 

44 AGI_MM_OLIGO_A_52_P779578 NA -3.601 -1.160 0.322 0.458 

45 AGI_MM_OLIGO_A_52_P534250 
 RNA binding motif, single stranded interacting 
protein -3.586 -1.307 0.365 0.407 

46 AGI_MM_OLIGO_A_51_P401792 titin -3.568 -1.312 0.368 0.401 

47 AGI_MM_OLIGO_A_51_P226453 acyl-CoA thioesterase 11 -3.559 -0.912 0.256 0.528 

48 AGI_MM_OLIGO_A_51_P497451 

RNA binding motif, single stranded interacting 

protein -3.557 -1.332 0.374 0.403 

49 AGI_MM_OLIGO_A_51_P154417 fibulin 1 -3.555 -1.685 0.474 0.321 

50 AGI_MM_OLIGO_A_52_P348709 cellular repressor of E1A-stimulated genes 1 -3.532 -1.437 0.407 0.343 

51 AGI_MM_OLIGO_A_52_P381665 AF4/FMR2 family, member 1 -3.525 -0.772 0.219 0.587 

52 AGI_MM_OLIGO_A_51_P257951 resistin like alpha -3.512 -1.736 0.494 0.299 

53 AGI_MM_OLIGO_A_52_P475033 ubiquitin specific peptidase 15 -3.506 -1.264 0.361 0.398 

54 AGI_MM_OLIGO_A_51_P316523 interferon regulatory factor 2 -3.502 -1.033 0.295 0.490 

55 AGI_MM_OLIGO_A_52_P588483 fibulin 1 -3.497 -1.769 0.506 0.303 

56 AGI_MM_OLIGO_A_51_P160439 beta-gamma crystallin domain containing 3 -3.497 -1.406 0.402 0.369 

57 AGI_MM_OLIGO_A_51_P111762 cellular repressor of E1A-stimulated genes 1 -3.496 -1.425 0.408 0.346 
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58 AGI_MM_OLIGO_A_51_P513311 retinoid X receptor gamma -3.487 -0.879 0.252 0.542 

59 AGI_MM_OLIGO_A_51_P239236 acetyl-Coenzyme A carboxylase beta -3.467 -1.127 0.325 0.444 

60 AGI_MM_OLIGO_A_52_P102846  similar to T-cell receptor beta-2 chain C region -3.460 -1.656 0.479 0.342 

61 AGI_MM_OLIGO_A_52_P153939 NA -3.455 -0.888 0.257 0.543 

62 AGI_MM_OLIGO_A_52_P338816 zinc finger with UFM1-specific peptidase domain -3.443 -1.205 0.350 0.431 

63 AGI_MM_OLIGO_A_51_P194099 

thyroid hormone responsive SPOT14 homolog 

(Rattus) -3.430 -1.213 0.354 0.415 

64 AGI_MM_OLIGO_A_52_P566867 B-cell leukemia/lymphoma 10 -3.428 -1.075 0.314 0.462 

65 AGI_MM_OLIGO_A_52_P358360 immunoglobulin heavy constant mu -3.419 -0.987 0.289 0.505 

66 AGI_MM_OLIGO_A_51_P516012 neurotrophic tyrosine kinase, receptor, type 2 -3.415 -1.358 0.398 0.397 

67 AGI_MM_OLIGO_A_51_P370600 Friend leukemia integration 1 -3.378 -1.258 0.372 0.423 

68 AGI_MM_OLIGO_A_52_P49136 signal-induced proliferation-associated 1 like 1 -3.360 -0.927 0.276 0.516 

69 AGI_MM_OLIGO_A_52_P251672 RIKEN cDNA 6430548M08 gene -3.353 -1.069 0.319 0.479 

70 AGI_MM_OLIGO_A_51_P447976 family with sequence similarity 46, member C -3.351 -1.443 0.431 0.380 

71 AGI_MM_OLIGO_A_52_P922893 RIKEN cDNA 9530013L04 gene -3.350 -1.419 0.424 0.356 

72 AGI_MM_OLIGO_A_51_P196844 oxysterol binding protein-like 3 -3.349 -1.117 0.334 0.461 

73 AGI_MM_OLIGO_A_52_P177661 CWF19-like 2, cell cycle control (S. pombe) -3.339 -0.851 0.255 0.551 

74 AGI_MM_OLIGO_A_52_P312084 zinc finger protein 266 -3.338 -0.805 0.241 0.572 
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APPENDIX 2 

Modules/expression signatures analysis of carboplatin/paclitaxel treated C3(1)-T-antigen mouse 

tumors. 

Module/Signature 

Name 

mentioned  

in text Anova 

Anova 

adjusted Reference 

mouseCT_untreated_high   0.000 0.000 this paper 

mouseCT_treated_high   0.000 0.000 this paper 

19p13_Amplicon   0.000 0.000 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

ESC_CORE   0.000 0.000 Cell Stem Cell. 2008 Apr 10;2(4):333-44 

ESC_MOUSE   0.000 0.000 Cell Stem Cell. 2008 Apr 10;2(4):333-44 

Myc_targets1   0.000 0.000 Nature Genetics 2008 May;40(5):499-507 

Myc_targets2   0.000 0.000 Nature Genetics 2008 May;40(5):499-507 

Unknown_4   0.000 0.000 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

Unknown_6   0.000 0.001 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

ESC_HUMAN   0.000 0.001 Cell Stem Cell. 2008 Apr 10;2(4):333-44 

Interferon_Response   0.000 0.001 Genome Biology 2007, 8:R191doi:10.1186/gb-2007-8-9-r191 

ES_exp1   0.000 0.001 Nature Genetics 2008 May;40(5):499-507 

HS_Green16   0.000 0.001 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

HS_Red11   0.000 0.001 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

BRCA1   0.000 0.001 Nature 2002;415:530-6. 

Caldas_immune   0.000 0.001 Genome Biology 2007, 8:R157 (doi:10.1186/gb-2007-8-8-r157) 

IGF   0.000 0.001 J Clin Oncol. 2008 Sep 1;26(25):4078-85.  

MM_Red8   0.000 0.001 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

Nanog_targets   0.000 0.001 Nature Genetics 2008 May;40(5):499-507 

Sox2_targets   0.000 0.001 Nature Genetics 2008 May;40(5):499-507 

MM_p53null   0.000 0.001 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

Estrogen_Reg   0.000 0.001 J Clin Oncol. 2006 Apr 10;24(11):1656-64. Epub 2006 Feb 27.  

Oncogenic_SRC   0.000 0.001 Nature 2006;439:353-7. 

GRANS   0.000 0.001 BMC Genomics 2006, 7:115 doi:10.1186/1471-2164-7-115 

MCF7_Baylor_2   0.000 0.001 Cancer Res. 2008 Sep 15;68(18):7493-501.  

Oncogenic_E2F3   0.000 0.001 Nature 2006;439:353-7. 

Polyak_A   0.000 0.001 Cancer Cell. 2007 Mar;11(3):259-73. 

Sotiriou_PNAS_485_Su

rvival   0.000 0.001 Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8. Epub 2003 Aug 13. 

MCF7_Baylor_1   0.000 0.001 Cancer Res. 2008 Sep 15;68(18):7493-501.  

MM_NeuPyMT   0.000 0.001 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

SMC_Serum_Response   0.000 0.001 PLoS Genet. 2007 Sep;3(9):1770-84. 

VEGF_Hypoxia   0.000 0.001 

Cancer Research 67, 3441-3449, April 1, 2007. doi: 10.1158/0008-5472.CAN-

06-3322 

Oncogenic_BCAT   0.000 0.001 Nature 2006;439:353-7. 

HER2_Immune   0.000 0.001 
Cancer Research 67, 10669-10676, November 15, 2007. doi: 10.1158/0008-
5472.CAN-07-0539 
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Module/Signature 

Name 

mentioned  

in text Anova 

Anova 

adjusted Reference 

MM_BRCAwnt   0.000 0.001 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

MM_C3Tag   0.000 0.002 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

HER1_Cluster1 yes 0.000 0.002 BMC Genomics. 2007 Jul 31;8:258. 

Oct4_targets   0.000 0.002 Nature Genetics 2008 May;40(5):499-507 

KRAS2   0.000 0.002 Nat Genet. 2005 Jan;37(1):7-8. 

MCF7_Baylor_5   0.000 0.002 Cancer Res. 2008 Sep 15;68(18):7493-501.  

MM_WapINT3   0.000 0.002 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

MCF7_Baylor_3   0.000 0.003 Cancer Res. 2008 Sep 15;68(18):7493-501.  

Genomic_Grade   0.000 0.003 
JNCI Journal of the National Cancer Institute 2006 98(4):262-272; 
doi:10.1093/jnci/djj052 

MM_Green19   0.000 0.003 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

B_Cell   0.000 0.003 BMC Genomics 2006, 7:115 doi:10.1186/1471-2164-7-115 

RDAM   0.000 0.003 Journal of Clinical Oncology, Vol 23, No 4 (February 1), 2005: pp. 732-740 

Sotiriou_PNAS_706   0.000 0.003 Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8. Epub 2003 Aug 13. 

MM_Myc   0.000 0.003 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

Oncogenic_RAS   0.001 0.003 Nature 2006;439:353-7. 

Stromal_NatMed   0.001 0.003 Nat Med. 2008 May;14(5):518-27. Epub 2008 Apr 27. 

MM_WAPTag   0.001 0.003 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

MCF7_Baylor_4   0.001 0.003 Cancer Res. 2008 Sep 15;68(18):7493-501.  

CD8   0.001 0.003 BMC Genomics 2006, 7:115 doi:10.1186/1471-2164-7-115 

HS_Red4   0.001 0.004 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

HS_Green20   0.001 0.004 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

MM_Potluck   0.001 0.004 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

NOS_targets   0.001 0.004 Nature Genetics 2008 May;40(5):499-507 

MUnknown_33   0.001 0.004 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MM_Red16   0.001 0.004 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MInterferon_Cluster   0.001 0.004 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

3p21Amplicon   0.001 0.004 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HS_Green6   0.001 0.004 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

LYMPHS   0.001 0.005 BMC Genomics 2006, 7:115 doi:10.1186/1471-2164-7-115 

ESC_MOUSE_Adult   0.001 0.005 Cell Stem Cell. 2008 Apr 10;2(4):333-44 

HS_Red16   0.001 0.005 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Green25   0.001 0.005 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MM_Red25   0.001 0.005 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MM_Green17   0.001 0.006 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

CLEVERS_TCF   0.002 0.007 Gastroenterology. 2007 Feb;132(2):628-32. Epub 2006 Aug 18. 

MM_Green12   0.002 0.007 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 
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Module/Signature 

Name 

mentioned  

in text Anova 

Anova 

adjusted Reference 

MM_Green24   0.002 0.007 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

MUnknown_8   0.002 0.007 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MM_Normal   0.002 0.007 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

MM_Red22   0.002 0.008 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

MUnknown_7   0.002 0.008 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

HS_Green22   0.002 0.009 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

MM_Green11   0.002 0.009 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MProliferation yes 0.002 0.009 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MUnknown_23   0.002 0.009 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

Immune_cell_Cluster   0.002 0.009 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

MM_Green20   0.002 0.009 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MM_Green21   0.002 0.009 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

NKI_TAM   0.002 0.009 Cancer Res. 2005 May 15;65(10):4059-66. 

WNT_Fibroblast_Brown   0.002 0.009 PLoS ONE. 2007 Sep 26;2(9):e945. 

HS_Green12   0.003 0.009 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Red9   0.003 0.009 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

Bone_Metastasis_Down   0.003 0.010 Cancer Cell. 2003 Jun;3(6):537-49. 

MM_DMBAwnt   0.003 0.010 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

WNT   0.003 0.010 BMC Developmental Biology 2002, 2:8doi:10.1186/1471-213X-2-8 

Interferon_Cluster   0.003 0.010 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

ECM   0.003 0.010 J Pathol. 2007 Nov 29; : 18044827  

MM_Red6   0.003 0.010 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

HS_Green7   0.003 0.010 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Red10   0.003 0.010 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MM_Red17   0.003 0.010 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

Eed_targets   0.003 0.010 Nature Genetics 2008 May;40(5):499-507 

SDDP   0.003 0.011 Nat Med. 2008 May;14(5):518-27. Epub 2008 Apr 27. 

MM_Green8   0.004 0.011 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

Unknown_1   0.004 0.011 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

Claudin_High yes 0.004 0.011 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

Stromal_PLOS   0.004 0.011 PLoS Biol. 2005 Jun;3(6):e187. Epub 2005 May 10. 

Suz12_targets   0.004 0.012 Nature Genetics 2008 May;40(5):499-507 

Unknown_10   0.004 0.012 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

H3K27_bound   0.004 0.012 Nature Genetics 2008 May;40(5):499-507 
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Anova 

adjusted Reference 

RB_LOH yes 0.004 0.012 Breast Cancer Res. 2008 Sep 9;10(5):R75 

E2F1_Repressed_by_Se
rum   0.004 0.012 Cancer Cell 13, 11–22, January 2008 

HS_Red20   0.004 0.012 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MBASAL   0.004 0.012 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MUnknown_10   0.004 0.012 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MM_Green1   0.005 0.013 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

MM_Red1   0.005 0.013 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

T_Cell   0.005 0.013 BMC Genomics 2006, 7:115 doi:10.1186/1471-2164-7-115 

Unknown_11   0.005 0.013 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

HS_Green9   0.005 0.015 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MUnknown_27   0.006 0.015 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MITO2   0.006 0.016 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

PRC2_targets   0.007 0.017 Nature Genetics 2008 May;40(5):499-507 

HS_Green5   0.007 0.017 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MUnknown_4   0.007 0.017 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MCD3_CD8   0.007 0.018 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

Ramaswamy   0.007 0.018 Nat Genet. 2003 Jan;33(1):49-54. Epub 2002 Dec 9. 

Unknown_16   0.008 0.020 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MECM yes 0.008 0.020 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MM_Green10   0.008 0.020 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MUnknown_15   0.009 0.021 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

HS_Red7   0.010 0.023 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

Bone_Metastasis_Up   0.010 0.024 Cancer Cell. 2003 Jun;3(6):537-49. 

NOS_TFs   0.011 0.025 Nature Genetics 2008 May;40(5):499-507 

LUMINAL_Cluster   0.011 0.025 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MUnknown_26   0.011 0.026 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MDACC   0.012 0.028 J Clin Oncol. 2006 Sep 10;24(26):4236-44. Epub 2006 Aug 8. 

MM_Green22   0.013 0.029 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

HS_Green4   0.014 0.031 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

RB_LOSS yes 0.016 0.036 J Clin Invest. 2007 Jan;117(1):218-28. Epub 2006 Dec 7. 

15q25_Amplicon   0.016 0.036 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

Fibromatosis yes 0.016 0.036 Lab Invest. 2008 Jun;88(6):591-601. Epub 2008 Apr 14. 

Sample_Handling   0.016 0.036 Journal of Clinical Oncology, Vol 24, No 23 (August 10), 2006: pp. 3763-3770 

HS_Red21   0.017 0.037 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 
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HS_Red23   0.018 0.040 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

MUnknown_19   0.019 0.040 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

Polyak_TGFB   0.020 0.042 Cancer Cell. 2007 Mar;11(3):259-73. 

Unknown_5   0.020 0.042 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

Fibroblast_Cluster yes 0.022 0.046 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HS_Green13   0.022 0.047 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

Autopsy_AJPath   0.025 0.052 American Journal of Pathology, Vol. 161, No. 5, November 2002 

MUnknown_35   0.025 0.052 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MUnknown_34   0.026 0.054 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

HS_Green24   0.027 0.054 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

HS_Red3   0.028 0.056 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

StemCell_11genes   0.028 0.056 J Clin Invest. 2005 Jun;115(6):1503-21. 

GATA3   0.028 0.057 J Clin Oncol. 2006 Apr 10;24(11):1656-64. Epub 2006 Feb 27.  

HS_Green15   0.030 0.060 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

MUnknown_3   0.033 0.064 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

PAM50_proliferation yes 0.033 0.064 Journal of Clinical Oncology, 10.1200/JCO.2008.18.1370  

Unknown_8   0.033 0.064 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

MUnknown_24   0.034 0.065 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

Unknown_14   0.034 0.065 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

MProtocadherin   0.036 0.068 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

HS_Red9   0.037 0.071 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

ES_exp2   0.038 0.071 Nature Genetics 2008 May;40(5):499-507 

Proliferation_Cluster yes 0.038 0.071 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HS_Red24   0.040 0.075 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

MUnknown_2   0.041 0.076 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

LKB1   0.044 0.081 Nature. 2007 Aug 16;448(7155):807-10. Epub 2007 Aug 5.  

Unknown_7   0.044 0.081 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MM_Green4   0.045 0.081 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

HS_Green17   0.047 0.085 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

Claudin_9CELL_LINE yes 0.048 0.086 Breast Cancer Res. 2010 Sep 2;12(5):R68 

MUnknown_31   0.048 0.086 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

11q13_Amplicon   0.052 0.092 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MUnknown_30   0.052 0.092 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MUnknown_5   0.053 0.094 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 
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MM_Green9   0.057 0.099 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

MUnknown_1   0.065 0.113 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

CIN70   0.068 0.118 Nat Genet. 2006 Sep;38(9):1043-8. Epub 2006 Aug 20. 

HS_Green14   0.069 0.119 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

HS_Red15   0.070 0.119 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Red23   0.069 0.119 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

8p22_Amplicon   0.071 0.120 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HS_Red22   0.072 0.122 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

MM_Green15   0.073 0.122 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MM_Red20   0.074 0.124 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

MM_Green6   0.083 0.138 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

HS_Red19   0.085 0.141 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

MM_Green3   0.092 0.151 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MM_Green14   0.093 0.151 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

MM_Green5   0.093 0.151 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MClaudin_Cluster   0.100 0.161 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MM_Red21   0.112 0.180 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

17PP13_Amplicon   0.114 0.182 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MITO1   0.119 0.189 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

16q23_Amplicon   0.122 0.193 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

4p16_Amplicon   0.124 0.195 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

Unknown_13   0.133 0.207 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HS_Red2   0.136 0.211 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

IGG_Cluster   0.140 0.217 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MK14_K17   0.152 0.233 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

16.13_Amplicon   0.154 0.235 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HER1_Cluster2   0.155 0.236 BMC Genomics. 2007 Jul 31;8:258. 

MM_Red12   0.156 0.236 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

HS_Green10   0.162 0.245 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Green2   0.169 0.254 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MNOtch4   0.173 0.259 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

E2F1_NOT_Repressed_

by_Serum   0.175 0.260 Cancer Cell 13, 11–22, January 2008 

CD34_CD36_Cluster   0.176 0.260 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 
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MM_Green18   0.178 0.262 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

MUnknown_16   0.183 0.268 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MM_Red7   0.194 0.282 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MUnknown_22   0.194 0.282 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

HS_Red10   0.198 0.286 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

ADM_S100A10_A110N

DGR1_Cluster   0.201 0.288 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MNADH_CYTochrome   0.203 0.290 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

Claudin_Low   0.205 0.291 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

MM_Red2   0.214 0.304 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MVEGFC   0.216 0.304 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

HS_Green3   0.218 0.306 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

Young_13genes   0.219 0.306 BMC Medicine 2009, 7:9 doi:10.1186/1741-7015-7-9 

HS_Green8   0.222 0.308 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

HER2_Amplicon   0.224 0.310 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

Ribosomal_Cluster   0.226 0.312 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

Polyak_B   0.230 0.315 Cancer Cell. 2007 Mar;11(3):259-73. 

1p36_Amplicon   0.236 0.322 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MKRAS_amplicon   0.237 0.322 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MM_Red3   0.244 0.329 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

16q24x   0.250 0.336 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

MM_Red13   0.265 0.355 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MM_Green7   0.277 0.370 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

HER1_Cluster3   0.283 0.375 BMC Genomics. 2007 Jul 31;8:258. 

MUnknown_14   0.284 0.375 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

HS_Red6   0.288 0.379 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

HS_Red25   0.290 0.380 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

HS_Red1   0.302 0.394 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Green23   0.314 0.408 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MUnknown_17   0.328 0.425 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

Oncogenic_MYC   0.335 0.432 Nature 2006;439:353-7. 

MUnknown_32   0.340 0.436 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

HS_Red8   0.348 0.443 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MUnknown_28   0.348 0.443 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 
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MPYMT_NEU_Cluster   0.352 0.446 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MSquamous   0.366 0.462 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

17q25x   0.372 0.467 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

Claudin29   0.376 0.469 Genome Biology 2007, 8:R76 doi:10.1186/gb-2007-8-5-r76 

MM_Green16   0.377 0.469 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MM_Red19   0.377 0.469 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

BASAL_Cluster   0.380 0.470 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HS_Red14   0.384 0.471 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

MNB1   0.384 0.471 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

HS_Green21   0.398 0.486 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

Unknown_15   0.400 0.487 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MUnknown_18   0.403 0.489 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

Glycolysis_Signature   0.408 0.491 BMC Medicine 2009, 7:9 doi:10.1186/1741-7015-7-9 

MM_Red5   0.408 0.491 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MUnknown_6   0.411 0.493 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

8p_Amplicon   0.415 0.495 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HS_Green1   0.421 0.497 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

HS_Green11   0.420 0.497 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

Unknown_3   0.422 0.497 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

MNB3   0.430 0.503 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MRibosomal   0.429 0.503 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MM_Red18   0.474 0.552 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

KRAS_amplicon   0.482 0.560 Genome Biology 2007, 8:R76 (doi:10.1186/gb-2007-8-5-r76) 

12qMDM4   0.500 0.577 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

MUnknown_20   0.499 0.577 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

HISTONE   0.508 0.583 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

Fibrinogen_Cluster   0.523 0.596 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

HS_Red13   0.522 0.596 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Human 

HS_Red12   0.543 0.616 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

Secretoglobin   0.549 0.620 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

HS_Red18   0.553 0.623 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

Mmyosin   0.556 0.624 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

mouseCT_resp_high   0.572 0.639 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 
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MUnknown_21   0.579 0.645 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

13q14_Amplicon   0.581 0.645 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MM_Green13   0.589 0.652 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

HS_Green18   0.592 0.653 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

AMPH_EPIREGULIN_

Cluster   0.611 0.671 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

FOS_JUN_Cluster   0.618 0.676 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

DiffScore   0.625 0.679 Breast Cancer Res. 2010 Sep 2;12(5):R68 

MUnknown_25   0.625 0.679 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

MUnknown_11   0.653 0.707 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

Chromogramin   0.669 0.722 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

HS_Green25   0.679 0.730 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Red15   0.704 0.754 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

HS_Green2   0.724 0.772 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Red14   0.736 0.783 
Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 
Mouse 

HS_Green19   0.791 0.835 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MUnknown_9   0.788 0.835 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MUnknown_29   0.794 0.835 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MM_Red11   0.803 0.842 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

HS_Red17   0.817 0.854 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MHistone   0.820 0.854 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

HS_Green23   0.823 0.854 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 

MM_Red24   0.835 0.860 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

S100A9_A8   0.834 0.860 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MM_Red4   0.916 0.939 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Mouse 

MUnknown_13   0.917 0.939 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MUnknown_12   0.924 0.943 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

MFGFR2   0.942 0.958 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Mouse 

Unknown_12   0.956 0.969 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

MNB2   0.963 0.970 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Mouse 

Unknown_2   0.964 0.970 

Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 

Human 

Unknown_9   0.974 0.978 
Fan et al. BMC Medical Genomics 2011, 4:3, Unsupervised Cluster from 
Human 

HS_Red5   0.986 0.986 

Fan et al. BMC Medical Genomics 2011, 4:3, Bi-Cluster identified from 

Human 
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