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ABSTRACT 

CHANGFU XIAO: Dose-finding Designs for Phase II Clinical Trials (Under the direction of 
Anastasia Ivanova) 

 
 

Most existing dose-finding designs have been proposed for Phase I oncology trials 

where the main outcome is toxicity, and dose escalation is guided by ethical considerations. 

Most of these designs have been developed assuming that dose-response curve is strictly 

increasing and the outcome is binary. The main outcome in Phase II non-oncology trials is 

efficacy, which is often continuous. A bivariate outcome combining efficacy and safety is 

also constantly considered in Phase II non-oncology trials. The goal of this work is to 

investigate the suitability of Phase I oncology designs for Phase II non-oncology trials and to 

develop dose-finding designs that better address the needs of Phase II non-oncology trials. 

Specifically, the first paper investigates which of the several known dose-finding methods is 

most suitable when dose response curve plateaus. Some of the designs tend to spread the 

allocation among the doses on the plateau, others, like the continual reassessment method 

and the t-statistic design, concentrate allocation at one of the doses with the t-statistic design 

selecting the lowest dose on the plateau more frequently. The second paper examines the 

optimal allocation for estimating the minimum effective and peak doses in a dose-ranging 

trial when the set of dose level is fixed and isotonic regression is used as a method of 

estimation. We propose fully sequential strategy for subject assignment.  The proposed 

strategy includes adaptive randomization procedure to balance the allocation to placebo
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and active doses. We also consider estimation in presence of covariates, where randomization 

procedure also balances the allocation with respect to a set of known covariates. Simulations

show that the new adaptive strategy is superior to equal allocation.  The third paper 

investigates a Bayesian adaptive two-stage design to efficiently estimate the minimum 

effective dose or the maximum dose in a dose-finding trial where some monotonicity 

assumptions regarding dose-response relationship can be made. The new design allocates 

subjects in stage 2 according to the posterior distribution of the location of the target dose. 

Simulations show that the proposed two-stage design is superior to equal allocation and to 

two-stage strategy where only one dose is left in stage 2.
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CHAPTER 1 INTRODUCTION: ADAPTIVE DESIGN 

 In recent years, the cost of drug development has increased dramatically and the 

concerns for patient safety have also been escalating. Pharmaceutical companies and clinical 

researchers are facing greater pressure to reexamine traditional clinical trial techniques and 

improve the efficiency and safety of the clinical trial process. Adaptive design has emerged 

as one way to address those challenges. As the name suggests, it refers to “a study that 

includes a prospectively planned opportunity for modification of one or more specified 

aspects of the study design and hypotheses based on analysis of data (usually interim data) 

from subjects in the study” (United States Food and Drug Administration, 2010). Adaptive 

design methods may provide the same information with more efficiency and improved 

understanding of the treatment effect as compared to non-adaptive studies. The use of 

adaptive design methods in clinical trials has received significant attention from clinical 

scientists, biostatisticians, pharmaceutical companies, and regulatory agencies. For instance, 

in 2006, the Food and Drug Administration (FDA) (2006) released a Critical Path 

Opportunities List that calls for advancing innovative trial designs, especially for the use of 

prior experience or accumulated information in trial design. In 2010, the FDA released the 

draft guidance on Adaptive Design Clinical Trials for Drugs and Biologics identifying Phase 

I and Phase II studies as the most promising applications of adaptive designs.  

Commonly considered adaptive design methods in clinical trials include, but are not 

limited to: adaptive dose-finding designs, adaptive randomization, response-adaptive designs, 
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adaptive seamless phase II/III trial designs, group sequential designs, and designs allowing 

sample size re-estimation. In this proposal, we will concentrate on adaptive designs for Phase 

II clinical trials.  

Most of the existing dose-finding designs have been proposed for Phase I oncology 

trials where the main outcome is toxicity, and dose escalation is guided by ethical 

considerations. These designs are fully sequential, experimentation starts at the lowest dose 

and dose is gradually escalated. Most of these designs have been developed under the 

assumption that dose-response curve is strictly increasing and outcome is binary. The main 

outcome in Phase II non-oncology trials is efficacy, which is often continuous, or bivariate 

outcome, efficacy and safety, is often considered. Dose-response curve is assumed non-

decreasing, as opposed to strictly increasing curve in Phase I trials, and there is no ethical 

constrain to start at the lowest dose. Some of the designs originally proposed for oncology 

trials have been used in Phase II non-oncology trials (e.g., Hall et al., 2005) without paying 

attention to the limitations described above. Only a small number of dose-finding designs 

have been proposed specifically for Phase II non-oncology trials (Berry et al., 2001; Ivanova 

et al., 2008; Ivanova et al., 2009; Dragalin and Fedorov, 2006; Miller et al., 2007). 

The goal of this work is to investigate the suitability of Phase I oncology designs for 

Phase II non-oncology trials (Xiao and Ivanova, 2011a) and to develop dose-finding designs 

that better address the needs of Phase II non-oncology trials (Xiao and Ivanova, 2011b; 

Ivanova, Xiao and Tymofeyev, 2011).   

This dissertation is organized as follows: chapter two provides the literature review; 

chapter three to five presents the three papers; and chapter six provides a summary of the 

entire study, study limitations, and conclusions.  



CHAPTER 2 LITERATURE REVIEW 

 This chapter provides a literature review for the three topics: dose-finding when the 

target dose is on a plateau of a dose-response curve, adaptive isotonic estimation of the 

minimum effective and peak doses, and two-stage designs for phase II dose-finding trials. 

2.1 Dose-finding when the Target Dose is on a Plateau of a Dose-response Curve 

 Estimating the doses of interest with high precision in proof-of-concept studies is 

vital for the future development of the drug. The goal of a proof-of-concept study is usually 

to find the lowest dose with a certain expected target response rate. It is also of interest to 

compare the response or adverse event rates at the target dose to placebo or active control. 

Hall et al. (2005) described a proof-of-concept trial for a treatment of migraine headaches. 

Their study had two goals: first, to find the lowest dose with the response rate of 0.6; second, 

to compare the response rate with placebo at the estimated dose. Two of the seven scenarios 

considered by Hall et al. (2005), (0.3,0.3,0.4,0.5,0.6,0.6,0.6) and (0.3,0.6,0.6,0.6,0.6,0.6,0.6), 

had several doses with the target response rate of 0.6. It is not unlikely in a phase II trial that 

the response rates will plateau around the rate of interest. When there are several doses with 

the mean response equal to the target dose, the investigators are usually interested in finding 

the lowest of these doses. This is because such a dose is likely to have a more favorable 

adverse event profile.  

 The second goal in Hall et al. (2005) study was to compare the response rate at the 

estimated dose with placebo, thus, it is important to maximize the number of subjects at the 
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estimated target dose. An increasing number of adaptive designs developed for Phase I trials 

are used in Phase II to target a certain efficacy quantile. As most dose-finding designs were 

developed and studied for a strictly increasing dose-response curve, it is unknown whether 

these designs will work well under the possibility of a plateau of a dose-response curve with 

rates close to the target rate. The continual reassessment method (CRM) can be a good 

example. The CRM is a dose-finding method proposed by O’Quigley et al. (1990). It has 

been shown to converge to the target dose (O'Quigley and Shen, 1996) if used in continuous 

dose space. If used with discrete doses, given a working model, the CRM converges to the 

target dose or nearby doses with response rates close to the target within the so-called 

indifference interval (Cheung and Chappell, 2000). Extending the argument from Cheung 

and Chappell (2000) for a case when a dose-response curve plateaus, the CRM converges to 

one of the doses on plateau or a dose within indifference interval (Cheung and Chappell, 

2000).  Therefore, the CRM will yield an increased sample size at one of the doses on the 

plateau or a nearby dose with response close to the target, although this dose might not be the 

lowest dose on the plateau. 

 Let D = {d1,..,dK} be the ordered set of doses selected for the study. A subject’s 

response at kd  is a Bernoulli random variable with parameter kp , where 1 ... Kp p  . The 

goal is to find the lowest dose with the response rate . Because we are interested in 

situations where there is a plateau at the target response rate, we will consider scenarios 

where 1 2 ... ...j Kp p p p       .  Note that if the plateau is significantly below or above 

the target, the designs will perform as well as they do for a strictly increasing curve. 

 Consider a group design. Subjects are treated in cohorts of size s starting with the 

lowest dose. Let X(dj)  Bin(s, pj) be the number of subjects with response in the most recent 
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cohort assigned to dose dj. Let cL and cU be two integers such that 0 L Uc c s   . Assume 

that the most recent cohort of subjects was assigned to dose level dj, j = 1, 2… , K. Then 

(1) If X(dj)  cL, the next cohort of s subjects is assigned to dose dj+1; 

(2) If cL < X(dj) < cU, the dose is repeated for the next cohort of s subjects; 

(3) If X(dj)  cU, the next cohort of s subjects is assigned to dose dj-1.  

 Appropriate adjustments are made at the lowest and highest doses. The process is 

continued until N subjects are assigned. This design is denoted as UD(s, cL, cU), where s is 

the cohort size, cL is the lower cut-off and cU is the upper cut-off.  

 Ivanova et al. (2007) described stationary distribution for the group design UD(s, cL, 

cU) when dose-response curve is increasing. We prove a similar result for a non-decreasing 

curve (Xiao and Ivanova, 2011a).  

THEOREM. If the true response rates are *
1 2 ... ...j Kp p p p        and the 

solution of equation (1) for a group design UD(s, cL, cU) is equal to * , the mode of the 

stationary distribution for the assignments of UD(s, cL, cU) spans doses ,...,j Kd d .  

 2.2 Adaptive Isotonic Estimation of the Minimum Effective and Peak Doses 

  High precision of estimation of doses of interest in dose-ranging studies is essential 

for evaluating a drug. For example, selecting too high a dose can result in unacceptable 

toxicity, while choosing too low a dose decreases the chance of showing efficacy in the 

confirmatory phase, thus reducing the chance of getting regulatory approval of the drug.  The 

minimum effective dose (MED) and the peak dose are the two doses people are mostly 

interested. The MED is often defined as the lowest dose with response significantly different 

from placebo, or it can be defined as the dose with the mean response equal to 0  , where 
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0  is the mean response of placebo and   is the minimum clinically important difference 

(ICH E4 Guideline, 1994). The peak dose, also sometimes referred to as the maximum useful 

dose, is the maximum dose beyond which no further beneficial effect is seen (ICH E4 

Guideline, 1994). Statistically, we define the peak dose here as the lowest dose with mean 

response of max  , where max  is the maximum mean response and   is a small constant, 

for example,   can be set to equal to max 00.1( )  . 

When dose-response curve plateaus near the value of the mean response of interest, 

the goal is usually to find the lowest dose on the plateau. Cheung (2008) pointed out that 

existing methods might not be appropriate in this case. For example, the CRM converges to 

one of those doses but not necessarily the lowest one. The stationary distribution of a group 

design (Wetherill, 1963) will be uniformly spread across all target doses (Xiao and Ivanova, 

2011a). That is, existing adaptive methods will not work for estimating the peak dose, the 

lowest dose on the plateau. Also, existing methods have not been designed for the case when 

the target is defined based on the mean response at one of the doses, for example, at placebo.  

Isotonic assumptions can be made in most dose-finding trials. Utilizing the isotonic 

assumption usually leads to increased efficiency in the estimation of the target dose 

compared to a trial where this assumption is not utilized. Our investigation shows that this is 

especially true if the dose-response curve has a plateau. Researchers have successfully 

estimated the dose-response curve under an isotonic model without assuming a parsimonious 

model for dose-response relationship in several recent publications. For example, Conaway 

et al. (2004), Yuan and Chappell (2004), Ivanova and Wang (2006) and Ivanova and Kim 

(2009) proposed frequentist methods; Li et al. (2008) and Bekele et al. (2008) proposed 

Bayesian approaches for various dose-finding problems.  
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Often a set of known covariates are believed to be associated with response to 

treatment. For an example, a large pharmaceutical company recently conducted a proof-of-

concept study in which the in- and out-patient status was believed to be associated with 

therapeutic response to treatment. Researchers have proposed a number of adaptive methods 

to address the problem of estimating the target dose for each level of covariate (O'Quigley 

and Paoletti, 2003; Ivanova and Wang, 2006).  A more challenging problem is to find dose 

for each subject according to his/her covariate values when the outcome is binary. A recent 

publication by Thall et al. (2009) addressed this problem. When a target dose is defined using 

a reference dose (for example, placebo) and when the mean response is modeled with 

identity link function using a linear model with covariates, the target doses for different 

levels of covariate coincide. In such trials the role of covariates is similar to that in a 

comparative multi-arm trial: balancing with respect to covariates is preferred (Atkinson, 

1999) for validity and increased efficiency of estimation. Balancing is more challenging in 

the context of an adaptive dose-finding trial compared to a parallel group study.  

We will investigate the optimal allocation when the MED and peak doses are 

estimated using isotonic regression; we then use the knowledge of optimal allocation to 

construct sequential dose-finding design to estimate the MED and peak doses (Xiao and 

Ivanova, 2011b). We will also describe how to randomize subjects to doses in the course of 

adaptive trial while balancing allocations with respect to known covariates (Xiao and 

Ivanova, 2011b).  

2.3 Dose-finding when the Target Dose is on a Plateau of a Dose-response Curve 

  Efficacy is usually the most important thing to consider in selecting candidate doses 

of a drug in Phase II dose-finding trials, and estimating MED is almost always one of the 
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goals of the trial. Often times both efficacy and safety are taken into consideration when 

selecting the best dose, as increasing the dose results in both higher efficacy and increased 

toxicity or adverse event rates. The common approach is to quantify the trade-off between 

efficacy and the adverse event rate through a utility function. Such function incorporates both 

efficacy and safety into a measure of overall clinical "utility" (Thall et al., 2002; Ivanova, 

2003; Dragalin and Fedorov, 2006; Thall and Cook, 2004; Berry et al., 2001; Fedorov and 

Wu, 2007; Ivanova et al., 2009). That utility function often has an "umbrella" or "inverse U” 

shape. The objective of a trial, therefore, is to maximize the overall clinical "utility" of the 

drug. We will refer to the dose that maximizes the utility function as the optimal dose.  

 An additional objective may be to test efficacy and adverse event rates at the MED or 

the optimal dose against placebo and/or an active control. Therefore, a good assignment 

strategy for a dose-ranging study will be the one that provides both a good-quality estimation 

of the target dose and the increased sample size at the estimated target dose to yield better 

power of treatment comparisons. 

Most dose-finding designs (one notable exception is the design in Berry et al., 2001) 

assume a certain order of the means of the dose-response curve, such as non-decreasing, 

umbrella, or various partial orders. Isotonic estimates have been successfully used in adaptive 

dose-finding studies by Conaway et al. (2004), Yuan and Chappell (2004), and more recently 

by Li et al. (2008) and Bekele et al. (2008) in the context of a Bayesian dose-finding trial.  

Most dose-finding designs are fully sequential designs proposed for oncology studies 

where the experimentation starts at the lowest dose and the dose is gradually escalated 

because of ethical considerations. That is probably why most of the adaptive dose-finding 
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methods for non-oncology dose-finding studies are also fully sequential or multi-stage 

designs (Berry et al., 2001; Ivanova et al., 2008; Ivanova et al., 2009).  

However, the logistics of implementing a fully sequential dose-finding study can be 

daunting. This is one reason why the most common design in dose-ranging studies is equal 

allocation to all doses. A two-stage design seems to be a reasonable compromise between a 

multi-stage and a single-stage approach. Miller et al. (2007) recently investigated a two-stage 

strategy for a dose-ranging study that is optimal across several parametric models. They 

concluded that the proposed two-stage strategy offers minor benefit compared to a single-

stage design in terms of the efficiency of estimating the target dose. Dragalin and Fedorov 

(2006) investigated the optimal two-stage designs for two correlated binary endpoints that 

follow a bivariate probit model and concluded that the two-state strategy is superior to equal 

allocation. 

We propose Bayesian two-stage designs for dose-ranging trials under the following 

three models: estimating MED under assumption of non-decreasing dose-response curve, 

estimating the dose with the highest response under umbrella order assumption, estimating 

MED under isotonic matrix order (Ivanova et al., 2011). The latter problem arises when 

several different administration schedules are investigated.  

 

 

 



 

 
 

CHAPTER 3 DOSE-FINDING WHEN THE TARGET DOSE IS ON A 

PLATEAU OF A DOSE-RESPONSE CURVE 

Consider a problem of estimating a dose with certain response rate. Most dose-

finding designs for this problem were developed and studied in cases where the mean dose-

response is strictly increasing in dose. In Phase II dose-finding studies often the dose-

response curve plateaus in the range of interest and there are several doses with the mean 

response equal to target. In this case it is usually of interest to find the lowest of these doses 

since higher doses might have higher adverse event rates. It is often desirable to compare the 

response rate at the estimated target dose with placebo and/or active control. We investigate 

which of the several known dose-finding methods is the most suitable when dose response 

curve plateaus. Some of the designs tend to spread the allocation among the doses on the 

plateau, others, like the continual reassessment method and the t-statistic design, concentrate 

allocation at one of the doses with the t-statistic design selecting the lowest dose on the 

plateau more frequently. 

KEY WORDS:  Proof-of-concept; Phase II trials; Group up-and-down designs; 

Continual reassessment method; t-statistic design. 

3.1 Introduction 

Estimating the doses of interest with high precision in proof-of-concept studies is 

vital for the future development of a drug. The goal of a proof-of-concept study is often to 

find the lowest dose with a certain expected target response rate. Often it is also of interest to 
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compare the response or adverse event rates at the target dose to placebo or active control. 

Hall, Meier, and Diener (2005) described a proof-of-concept trial for a treatment of migraine 

headaches. There were two goals in the study. The first goal was to find the lowest dose with 

the response rate of 0.6, and the second goal was to compare the response rate at the 

estimated dose with placebo. Two of the seven scenarios considered by Hall et al. (2005), 

(0.3,0.3,0.4,0.5,0.6,0.6,0.6) and (0.3,0.6,0.6,0.6,0.6,0.6,0.6), had several doses with the target 

response rate of 0.6. It is not unlikely in a Phase II trial that the response rates will plateau 

around the rate of interest. When there are several doses with the mean response equal to 

target, the investigators are interested in finding the lowest of these doses. One of the reasons 

is because such a dose is likely to have a more favorable adverse event profile. To achieve 

the second goal in Hall et al. (2005) study, it is important to maximize the number of subjects 

at the estimated target dose. More and more adaptive designs developed for Phase I trials are 

used in Phase II to target a certain efficacy quantile. As most of dose-finding designs were 

developed and studied for a strictly increasing dose-response curve, it is not known which of 

these designs will work the best when there is a possibility of a plateau of a dose-response 

curve with rates close to the target rate. In this paper we investigate, theoretically and via 

simulations, the performance of several dose-finding designs such cases. The designs studied 

are group designs (Wetherill, 1963; Ivanova, 2006), the continual reassessment method 

(CRM) (O’Quigley, Pepe , and Fisher, 1990), and the dose-finding design based on t-statistic 

(Ivanova and Kim, 2009). 

3.2 Group Designs 

Let D = {d1,..,dK} be the ordered set of doses selected for the study. A subject’s 

response at kd  is a Bernoulli random variable with parameter kp , where 1 ... Kp p  . The 
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goal is to find the lowest dose with the response rate . Because we are interested in situation 

where there is a plateau at the target response rate, we will consider scenarios where 

1 2 ... ...j Kp p p p       .  Note that if the plateau is significantly below or above the 

target, the designs will perform as well as they perform for a strictly increasing curve. 

First we consider a group design, as this was selected by the investigators of the 

migraine headache trial (Hall et al., 2005). Subjects are treated in cohorts of size s starting 

with the lowest dose. Let X(dj)  Bin(s, pj) be the number of subjects with response in the 

most recent cohort assigned to dose dj. Let cL and cU be two integers such that 0 L Uc c s   . 

Assume that the most recent cohort of subjects was assigned to dose level dj, j = 1, 2… , K. 

Then 

(1) If X(dj)  cL, the next cohort of s subjects is assigned to dose dj+1; 

(2) If cL < X(dj) < cU, the dose is repeated for the next cohort of s subjects; 

(3) If X(dj)  cU, the next cohort of s subjects is assigned to dose dj-1.  

Appropriate adjustments are made at the lowest and highest doses. The process is continued 

until N subjects are assigned. This design is denoted as UD(s, cL, cU), where s is the cohort 

size, cL is the lower cut-off and cU is the upper cut-off.  

Hall et al. (2005) used UD(4,2,3) in the headache trial, where the dose is increased if 

2 or less responses are observed, and the dose is reduced if 3 or more responses were 

observed (Hall et al., 2005). When the dose-response curve is strictly increasing, 1 ... Kp p 

, the assignments in a group design will cluster around the dose with response rate *  

(Ivanova, Flournoy and Chung, 2007), where *  is the solution of  

Pr{Bin(s, * )  cL}= Pr{Bin(s, * )  cU}.   (1) 
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For UD(4,2,3), *  = 0.6143. Therefore, it was appropriate to use UD(4,2,3) to target the 

response rate of  = 0.6. See Ivanova et al, 2007 for guidelines on how to choose design 

parameters s, cL, cU to target desired quintile . The investigators of the trial justified using 

UD(4,2,3) for  = 0.6 via simulations. The question is how well this group design behaves if 

the condition 1 ... Kp p   is violated. The theorem below states that for a dose-response 

curve with *
1 2 ... ...j Kp p p p       , for large sample size N the assignments will be 

equally spread over doses ,...,j Kd d  rather than concentrating on one of these doses.  

THEOREM. If the true response rates are *
1 2 ... ...j Kp p p p        and the 

solution of equation (1) for a group design UD(s, cL, cU) is equal to * , the mode of the 

stationary distribution for the assignments of UD(s, cL, cU) spans doses ,...,j Kd d . The proof 

of the theorem is in the Appendix A. 

For example, if response rates at the doses are (0.3, * , * , * , * , * , * ) with *  = 

0.6143, and the total sample size in the trial is relatively large, the proportions of subjects 

allocated to the seven doses in the limit by UD(4,2,3) is 1( , , , , , , )        with 1 0.082   

and 0.153  . The more doses are on the plateau, the smaller the proportion of subjects 

allocated to each of the doses on the plateau and the smaller the power of comparison with 

placebo.  

3.3 Dose Finding Based on t-statistic 

The t-statistic design was proposed by Ivanova and Kim (2009). It can be used with 

any type of outcome. Let 1( ) ( ( ),..., ( ))Kt n t n tn  be the number of subjects at each of the K 

doses right after subject t, t N , has been assigned, that is, 1( ) ... ( )Kn t n t t   . Let jiY  be 
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the observation from the ith subject assigned to dose jd , i = 1,.., ( )jn t . Let 

( )

1
ˆ / ( )jn t

j ji ji
p Y n t


   be the current estimate of response rate at dose jd , computed from all 

subjects assigned to jd  so far. Define  ( )j jT n t , ( ) 2,3...jn t  , to be the t-statistic 

  ˆ
( )

垐(1 ) / ( )
j

j j

j j j

p
T n t

p p n t





. 

If ˆ 0jp   or 1,  ( )j jT n t  is equal to   or   depending on the sign of ˆ jp  . Subjects 

are assigned in cohorts or one at a time. Suppose the most recent subject t was assigned to 

dose jd . The next subject is assigned as follows: 

(i) if  ( )j jT n t   , the next subject is assigned to dose dj+1; 

(ii) if  ( )j jT n t   , the next subject is assigned to dose dj-1; 

(iii) if  ( )j jT n t    , the next subject is assigned to dose dj. 

Ivanova and Kim (2009) recommended to set design parameter 1  . The 

performance of the t-statistic design where there is a plateau in the range of interest is 

assessed by simulations in Section 3.5.  

3.4 The Continual Reassessment Method (CRM) 

The CRM is a dose-finding method proposed by O’Quigley et al. (1990). It uses a 

working model for dose-response relationship, for example, where i ip b , where 1( ,..., )Kb b  

is a set of constants and  is a parameter to be estimated. The CRM has been shown to 

converge to the target dose (O'Quigley and Shen, 1996) if used in continuous dose space. If 

used with discrete doses, given a working model, the CRM converges to the target dose or 

nearby doses with response rates close to the target within so called indifference interval. 
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Extending the argument from Cheung and Chappell (2000) for a case when a dose-response 

curve plateaus, the CRM converges to one of the doses on plateau or a dose within 

indifference interval. Therefore, the CRM will yield an increased sample size at one of the 

doses on the plateau or a nearby dose with response close to , although this dose might not 

be the lowest dose on the plateau. In the simulation study we used 1 7( ,..., )b b  = 

(0.1,0.2,0.3,0.4,0.5,0.6,0.7) and exponential prior with mean 1 for parameter .  

3.5 Simulation Study 

In addition to the two scenarios from Hall et al. (2005), four more scenarios were 

used to compare the different designs in our simulation study (Table 1). The target treatment 

response rate is  = 0.6, and placebo response rate is 0.3. 

We investigated the performance of the group design UD(4,2,3) used in Hall et al. 

(2005), the CRM and the t-statistic design. The sample size was fixed at 120 subjects with 40 

subjects assigned to placebo and 80 to various doses of the drug. This sample size was 

chosen because 40 subjects per group yield 80% power if treatments with true rates of 0.3 

and 0.6 are compared using one-sided 0.05 level test. Subjects were assigned in cohorts of 6 

with 2 subjects assigned to placebo and 4 to a dose of the drug. At the end of the trial, 

response rates in the t-statistic and the group designs were estimated using isotonic 

regression (Barlow, Bartholomew, Bremner, and Brunk, 1972) and then the dose with the 

estimated response rate closest to the target was declared the estimated target dose. If there 

were two or more such doses, the highest dose with the estimated value below  was chosen. 

If all the estimated values at these doses were higher than , the lowest of these doses was 

chosen. For the CRM design, the estimated target dose was defined as in O’Quigley et al. 

(1990) as the dose that would have been recommended for the next subject. 
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Results for each design/scenario combination are based on 5000 simulation runs. The 

primary goal of our study was to estimate the target dose. Table 2 showed the selection 

probability of each dose as the estimated target dose under each design. All designs perform 

well in selecting a dose with the target response rate, not necessarily the lowest, with the 

CRM performing the best. The results for the lowest dose on the plateau are in bold. The t-

statistic design selects the lowest dose on the plateau more frequently than others in scenarios 

1 – 4, and the CRM performs the best in Scenario 6 where the dose-response curve is strictly 

increasing. The average sample size at each dose is shown in Table 3, with the results for the 

lowest dose on the plateau shown in bold.  

Another goal of the trial was to compare the response rate at the estimated target dose 

with the placebo. That is why it is important to have a large sample size at the estimated 

target dose. The distributions of the sample size at the estimated target dose are displayed in 

Table 4. The CRM and the t-statistic design have larger average sample size at the estimated 

target dose compared to the group design.  

The lowest dose on the plateau is often of interest because it is likely to have better 

adverse event profile than higher doses. We constructed plausible adverse event rate 

scenarios (Table 1), and compared the estimated dose with placebo based on both efficacy 

and adverse event rates. The adverse event rate at the estimated dose was compared with the 

rate of placebo using one sided test with the null hypothesis that the adverse event rate of the 

drug is higher than placebo rate plus 0.2. Table 5 displays the proportion of trials where the 

estimated target dose is shown to have the efficacy rate significantly better than placebo rate 

and adverse event rate significantly lower than placebo rate plus 0.2. As far as power for joint 

comparison, the t-statistic design performs the best because it yields large sample size at the 
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estimated target dose on average and also selects the lowest dose on the plateau more often 

than other designs.  

3.6 Conclusion 

It is not uncommon for a dose-response curve to plateau, yielding several doses with 

the same mean response. We are not aware of existing designs that target the lowest dose on 

the plateau of a dose response curve. We investigated the performance of several known 

dose-finding designs developed for strictly increasing curves in the case when a dose-

response curve plateaus. Both the CRM and the t-statistic design performed well with the t-

statistic design selecting the lowest dose on the plateau more frequently. We have 

demonstrated theoretically and by simulations that a group design is not a good design choice 

if it is likely that a dose-response curve plateaus near the response rate of interest. Until 

designs to target the lowest dose on the plateau are developed, we recommend using the 

CRM if the goal is to find any dose on the plateau with a certain mean response. We 

recommend using the t-statistic design if it is of interest to find the lowest dose on the 

plateau.   

We considered the case where a dose-response curve is assumed to be non-

decreasing.  The methods we have studied are not appropriate when there might be a 

downturn of a dose-response curve at higher doses such is in Ivanova, Liu, Snyder and 

Snavely (2009), where a dose-finding method that works with umbrella shaped efficacy 

curve and incorporates toxicity is proposed. 

 



 

 
 

CHAPTER 4 ADAPTIVE ISOTONIC ESTIMATION OF THE MINIMUM 

EFFECTIVE AND PEAK DOSES 

We obtain the optimal allocation for estimating the minimum effective and peak 

doses in a dose-ranging trial when the set of dose level is fixed and isotonic regression is 

used as a method of estimation. We propose fully sequential strategy for subject assignment. 

The proposed strategy includes adaptive randomization procedure to balance the allocation to 

placebo and active doses. We also consider estimation in presence of covariates, in which 

case randomization procedure also balances the allocation with respect to a set of known 

covariates. 

KEY WORDS: Dose-ranging; Minimum effective dose; Peak dose; Phase II trials; 

Up-and-down designs.  

4.1 Introduction 

High precision of estimation of doses of interest in dose-ranging studies is essential 

for evaluating a drug. The minimum effective dose (MED) and the peak dose are the two 

doses most of interest. The MED is the smallest dose with a discernible useful effect (ICH E4 

Guideline, 1994). The MED is often defined as the lowest dose with response significantly 

different (referring to statistical significance) from placebo. Alternatively it can be defined in 

continuous dose space as the dose with the mean response equal to 0  , where 0  is the 

mean response of placebo and   is the minimum clinically important difference. The MED 

may not exist, if mean response at all doses in the range studied is less than 0  . The peak 
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dose, also sometimes referred to as the maximum useful dose, is a maximum dose beyond 

which no further beneficial effect is seen (ICH E4 Guideline, 1994). Locating the peak dose 

is usually of interest after the drug was shown to be efficacious. The peak dose is the lowest 

dose on the plateau of a dose-response curve. Mathematically, in continuous dose space we 

define the peak dose here as the lowest dose with mean response of max  , where max  is 

the maximum mean response and   is a small constant. 

There is a long history of adaptive dose-finding methods for estimating a dose with a 

certain mean response when outcome is binary (e.g. Wetherill, 1963; O'Quigley et al., , 1990; 

Babb et al., 1998) and for continuous outcomes (e.g. Eichhorn and Zacks, 1973; Ivanova and 

Kim, 2009). All of these methods have been developed under the assumption that the mean 

response is strictly increasing with dose. When dose-response curve plateaus near the value 

of the mean response of interest, the goal is usually to find the lowest dose on the plateau. 

Cheung (2008) pointed out that existing methods might not be appropriate in this case, for 

example, the CRM converges to one of such doses and not necessarily the lowest one (Xiao 

and Ivanova, 2011). The stationary distribution of a group design (Wetherill, 1963) will be 

uniformly spread across all target doses (Xiao and Ivanova, 2011). That is, existing adaptive 

methods will not work for estimating the peak dose, the lowest dose on the plateau. Also, 

existing methods have not been designed for the case when finding the target dose requires 

estimating mean responses at other doses, for example, finding the location of the MED 

requires estimation of placebo response.  

We make an assumption that the mean response is non-decreasing with dose. Such 

isotonic assumptions can be made in most of dose-finding trials. Using the isotonic 

assumption usually leads to increased efficiency in the estimation of the target dose 
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compared to a trial where this assumption is not utilized. Our investigation shows that this is 

especially true if the dose-response curve has a plateau. Isotonic estimates were successfully 

used in adaptive dose finding by Conaway et al. (2004); Yuan and Chappell (2004); and 

recently by Li et al. (2008) and Bekele et al. (2008) in the context of a Bayesian dose-finding 

trial.  

Often there is a set of known covariates that are believed to be associated with 

response to treatment. Our motivating example is a recent Phase II dose-finding trial 

conducted by a large pharmaceutical company where it was believed that in- and out-patient 

status were associated with therapeutic response to treatment. A number of adaptive methods 

address the problem of estimating the target dose for each level of covariate (e.g., O'Quigley 

and Paoletti, 2003; Ivanova and Wang, 2006). A recent publication by Thall et al. (2009) 

addressed a rather challenging problem of dosing each subject according to his/her covariate 

values when the outcome is binary. Both the MED and the peak dose are defined using a 

reference dose, placebo or the highest dose. When defined this way, the target dose will not 

depend on covariates as long as effects of dose and covariates are additive (no interaction). In 

dose-finding trials the role of covariates is similar to that in a comparative multi-arm trial: 

balancing with respect to covariates is preferred (Atkinson, 1999) for validity and to increase 

efficiency of estimation. Balancing is more challenging in the context of an adaptive dose-

finding trial compared to a parallel group study. We describe how to randomize subjects to 

doses in the course of adaptive trial while balancing allocations with respect to known 

covariates.   
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4.2 Optimal Allocation for Estimating the MED and Peak Doses 

4.2.1 Notation. 

Let 0{ ,..., }Kd d  be the set of ordered dose levels selected for a trial with 0d  denoting 

placebo and Kd  denoting the highest dose, for example, the maximum tolerated dose 

established in earlier trials. Let n be the total sample size, let ni be the number of subjects 

assigned to id  at the time a total of n subjects are assigned, 0 ... Kn n n   . Let ijY denote 

the response of the jth subject, j = 1, 2,..., ni, assigned to id , i = 0, 1,..., K. Let ijx  be a K×1 

vector of covariates associated with the jth subject assigned to the ith dose. Consider a linear 

model 

, 0,1,..., , 1, 2,...,ij i ij ij iY x i K j n       .    (1) 

Here i  is the mean response at id ,  is the regression parameter associated with covariate 

vector ijx  and ),0(~ 2 Nij .  

The MED is defined as the dose with the mean response of 0 +  , where 0   is the 

minimum clinically important difference specified before the trial. The peak dose is defined 

as the lowest dose with the mean response of γK  , where ,   0, reflects the proximity to 

the highest mean response. For example, in a seven-dose trial with sigmoid dose-response 

curve with true mean responses at seven doses of (0.2,0.21,0.25,0.5,0.74,0.79,0.8), the MED 

defined with 0.35   is 3d  and the peak dose defined with  = 0.06 is dose 4d . If the dose-

response curve is flat, the peak dose will coincide will placebo. It is of interest to locate the 

peak dose only if there is dose response and therefore the peak dose is as high or higher than 

the MED.    
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4.2.2 Isotonic estimation of the target dose. 

Let  0垐 ?,...,U U U
K μ  be the vector of maximum likelihood estimates (MLE) 

obtained from model (1) where U stands for unconstrained estimator, and 
 
be its variance 

covariance matrix. The constrained MLE,  0垐 ?,..., K   , is the estimator that maximizes 

the likelihood according to model (1) under the restriction 0垐 ... K   . When  0垐,...,U U
K   

are independent, the constrained MLEs can be computed by applying the pool adjacent 

violator algorithm to unconstrained estimates (Robertson et al., 1988). That is, if 

0垐 ...U U
K   , 垐 Uμ μ ; otherwise, the data from adjacent doses where the assumption of 

monotonicity is violated are pooled (see  Robertson et al., 1988, or Stylianou and Flournoy, 

2002, for more details). In presence of covariates the pool adjacent violator algorithm applied 

to unconstrained MLEs will not yield the constrained MLEs and might result in the estimates 

with increased mean squared error (Hwang and Peddada, 1994). A projection approach that 

takes covariance into account (Silvapulle and Sen, 2005) cannot be used here since the 

variance is not known. We computed constrained MLEs directly by maximizing the 

likelihood in (1) (see section 7.2.1, p 246 of McCullagh and Nelder, 1989, for details).  

Further, we define two estimators based on μ̂ . The first will be referred to as the 

lowest dose estimator and is defined as the lowest dose on the plateau of doses with the 

estimated mean response closest to target. This estimator is suitable for estimating the peak 

dose. For example, if μ̂ = (0.22,0.22,0.45,0.45,0.76,0.76,0.76), the estimated mean response 

closest to 6 6垐 0.06 0.7       is 4 5 6垐 ? 0.76     , and the lowest dose estimator will 

select 5d  as the estimated peak dose. The second estimator is referred to as the closest dose 
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estimator and is suitable for estimating the MED. It selects the lowest dose among doses with 

the mean response closest to target if their estimated mean is higher than the target; and 

selects the highest of the doses if their estimated mean is lower than the target. In the 

example above, when estimating the MED with 0.3   the estimated mean response closest 

to 0ˆ 0.3 0.52    is 2 3垐 0.45   , and the closest dose estimator will select the highest 

dose on the plateau, 3d , as the estimated MED since 0.45 < 0.52. 

4.2.3 Optimal allocation to estimate the MED and Peak Dose. 

When developing an adaptive allocation it is important to know which fixed 

allocation is the most efficient for estimating the target dose. An optimal design is an 

allocation that optimizes a certain criterion with respect to the proportion of subjects 

0( ,..., )Kw w , 0iw  , assigned to each support point, dose, 0( ,..., )Kd d . The classical optimal 

design (Pukelsheim, 1993) in continuous dose space optimizes a certain quantity of interest, 

such as the volume of the confidence ellipsoid (D-optimal design) or the average variance of 

parameter estimates (A-optimal design). With discrete dose space, it is most natural to 

maximize the probability of correct selection of the target dose. Since in most of dose-finding 

trials we work with a set of doses that have been selected before the trial, we are concerned 

with identifying the optimal weights for the doses.  In most cases, the optimal design depends 

on true model parameters that are not known before the experiment. This is true in case of 

isotonic estimation as well.  

In the result below s = 0 and  =  when the MED is being estimated; s = K and  = -

 when the peak dose is being estimated. The following is true (the proof is in Appendix B).  

Proposition. The probability of correctly selecting the target dose defined as the dose 

with the mean response equal to s  , s {0, K} by applying the closest dose or the lowest 
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dose estimator to the weighted average of components of ˆUμ  depends only on { }iw , 

 ( ) /i s n    and  2/n   .   

When the pooled adjacent violator algorithm is used resulting isotonic estimates are 

the weighted average of components of ˆUμ , hence it follows from the Proposition that the 

optimal weights are a function of  ( ) /i s n    and  2/n   .  In case when ˆUμ
 
are not 

correlated, the optimal weights are a function of  ( ) /i s n    only.  

Consider the problem of estimating a dose with a mean response , where  is a 

known constant, and when no covariates are present. We use a two-step approach to compute 

the optimal design. In the first step we determine which support points have non-zero weight. 

Then, compute optimal weights for these support points. In the first step, for given 

 /i n   we compute the optimal design numerically using the Nelder-Mead algorithm 

(Nelder and Mead, 1965). In all dose-response scenarios the optimal design for the lowest 

dose estimator is at most three-point design with allocations to 1d  , d , and 1d  , where d  

is the true target dose. Moreover, unless 1     is very large, the optimal design for the 

lowest dose estimator is a two-point design with allocations to 1d   and d . Since in the peak 

dose estimation a dose-response curve plateaus and 1      , where   is small, the 

optimal design to estimate the peak dose using the lowest dose estimator is a three-point 

design with allocation to 1d  , d   and Kd , where d  is the true peak dose. For the closest 

dose estimator the optimal design is at most a three-point design with non-zero weights at the 

true target dose, d , the dose right below, 1d  , and the dose right above, 1d  . Therefore the 
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optimal design to estimate the MED using the closest dose estimator is at most a four-point 

design with allocation to 0d , 1d  , d , and 1d  , where d  is the true MED.   

In the second step of the optimal design calculations, we use normal cumulative 

distribution function to compute optimal weights. The optimal weights to estimate the peak 

dose are computed based on  ( ) /K n    and  1( ) /K n    . The probability of 

correctly selecting id  as the estimated target dose is equal to 

  
  

1 1

1 , ,

垐 垐 垐 垐Pr 2
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where ,ˆU
K  denotes the sample mean of a pooled sample obtained at d  and Kd . 

Equivalently,  
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    (2) 

Note that expression to the right of 2  can be written as a function of 1垐 垐( , )U U U U
K K       . 

Vector 1垐 垐( , )U U U U
K K        follows bivariate normal distribution with mean vector 

1( , )K K        and variance covariance matrix with diagonal 

 2
1/ 1/ 1/ ,1/ 1/K Kn w w w w      and off-diagonal elements  2 / Kw n . The probability 

P can be computed using cumulative function of the multivariate normal distribution.  The 

optimal allocation 1( , , )Kw w w   is the one that maximizes P over 1( , , )Kw w w  , 0 1kw  , 

k =   – 1, , K.  We computed the optimal allocation using the Nelder-Mead algorithm.  

Figure 1 displays 1( , , )Kw w w   plotted against total sample size for 1( , , )K    =
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(0.5,0.74,0.8)  with 0.25  . This mean vector is one of the scenarios in Bretz et al. (2005) 

(Table 6, scenario 5). The optimal allocation for sample sizes larger than in a typical trial is 

displayed to illustrate that, for the set-up considered, the optimal allocation proportion to 

1d   gets smaller and the allocations to d  and Kd  increase as 2 / n
 
gets smaller. This is 

because   is closer to K  than it is to 1  , therefore it is more efficient to spend resources 

on distinguishing between   and K , than between   and 1  .  The probability of 

correctly identifying the target dose in the range of sample sizes of interest for optimal 

allocation is similar to equal allocation to the three doses with minimum relative efficiency of 

1[20,100]
min (1/ 3,1/ 3,1/ 3) / ( , , ) 0.99opt opt opt

Kn
P P w w w 

 . 

That is, to estimate the peak dose well, we need to assign about equal number of subjects to 

the peak dose, a dose right below and the highest dose with no assignments to other doses. 

Interestingly, unbalanced allocation with many more subjects assigned to the peak dose is 

only beneficial when the standard error of the estimated mean is very small compared to the 

difference between means. Also, in the estimation of the peak dose increased allocation to the 

doses on the plateau other than the peak and the high dose, substantially decrease the 

precision of the estimation of the peak dose. 

The optimal weights for the four-point design to estimate the MED are calculated 

similarly. Figure 2 displays 0 1 1( , , , )w w w w     plotted against total sample size for 

0 1 1( , , , )       = (0.2,0.25,0.5,0.74)  with 0.25   (Table 6, scenario 5). The conclusion 

is similar, allocating approximately equal number of subjects to each of the four doses yields 

good quality of estimation of the target dose. As 2 / n  gets smaller, the allocation 

proportions to 1d   and 1d   decrease and the allocations to 0d  and d  increase.  
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Optimal allocations in Section 4.2 were computed under the assumptions of 

independence among unconstrained estimates. When covariates are present the unconstrained 

estimates are no longer independent, and optimal allocations are computed under given 

correlation structure. Our simulation study of trials with covariates yielded similar optimal 

designs: three or four point designs with balanced allocation are nearly optimal.   

4.3 Adaptive Design to Estimate the MED and Peak Doses 

4.3.1 Adaptive strategy to estimate the MED and the Peak Dose. 

In Section 4.2 we computed the optimal design for estimating the MED and peak 

doses. As is the case for most parametric models, the optimal allocation depends on the true 

model. For isotonic model, one needs to know the location of the target dose to construct the 

optimal design. Therefore our adaptive strategy will be to locate the target dose and to have 

allocations to the target dose and other two or three key doses approximately equal. We use 

this as a guideline to design an adaptive strategy. Ivanova and Kim (2009) introduced a dose-

finding design based on t-statistic to locate the dose with a certain mean response. We 

modify their strategy to target optimal (or nearly optimal) allocation. According to the t-

statistic design, subjects can be assigned in groups or one at a time. Assume that the most 

recent assignment was to dose id . Let iT  be the test statistic testing H0: 0( )i     = 0 

against the two-sided alternative computed using constrained MLEs ˆi , ˆK  and the 

estimated common variance from linear model (1) . Then,  

(i) If iT   , the next group of subjects is assigned to doses 1id  ; 

(ii)  If iT    , the next group of subjects is assigned to doses id ; 

(iii)  If iT   , the next group of subjects is assigned to doses 1id  . 
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Applying this rule when the current dose is 1d  or Kd  might cause the dose assignment to be 

outside 1{ ,..., }Kd d .  Thus for i = 1 or K, when the rule would cause a treatment to be outside 

of the dose levels, the current dose is repeated instead.   

To estimate the MED, we set 0  , in the above design in which case the adaptive 

rule will allocate to either 1id   or 1id   after allocating id . If 0    , the limiting 

allocation for the t-statistic design is allocating to 1d  , d , and 1d   with proportion 

(0.25,0.5,0.25). This proposed strategy provides acceptable balance in allocations to 1d  , d

, and also allows the design to “move fast” among doses in the early stages of the trial 

(Ivanova and Kim, 2009). 

To estimate the peak dose, one needs to make sure that the design converges to the 

lowest dose on the plateau and also that the allocation close to optimal is achieved. We 

accomplish this by a choice of   and by modified the decision rule in the design. To make 

sure that the design reaches the lowest dose of the plateau, we replace the action “if 

iT    , repeated the dose” in the design described above with the action “if iT   

, assign next subject to 1id   with some probability  or repeat the dose with probability 1- 

while keeping   strictly above 0. Ivanova and Kim (2009) pointed out that it is 

advantageous to have small   in the beginning of the trial for “fast movement” with larger 

  later in the trial. For example, a trial with 8 cohorts and 3 subjects per cohort yielded the 

optimal 0.45   for the first 2 cohorts and 1.05   for the cohorts 3-8 (Ivanova and Kim, 

2009).  Following this suggestion, we propose setting 3/[1 exp(3 0.05 )]
in in    . Defining 

jn  in such a way makes   equal to about 0.5 for small ni, equal to about 1.0 when ni = 46; 

jn tends to 3.0 when ni goes to infinity.  The choice of the value  is guided by the optimal 
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allocation for estimating of the peak dose. The value of  = 1 results in equal allocation 

(which is nearly optimal) to the target dose and a dose level right below in the limit, therefore 

we set  = 1 in the adaptive strategy. This results in a simple allocation strategy for 

estimating a target dose when dose-response curve is assumed to be non-decreasing: increase 

the dose if 
ii nT   , where ni is the number of subjects assigned to dose di so far; otherwise 

decrease the dose. 

4.3.2 Covariate adjusted randomization. 

In a dose-ranging study subjects are usually assigned in cohorts. In a trial estimating 

the MED, at each step a dose is adaptively chosen from 1{ ,..., }Kd d  and some subjects in a 

cohort are randomized to placebo 0d . In a trial estimating the peak dose some subjects in 

each cohort are randomized to Kd  and some to one of 1 1{ ,..., }Kd d  . To ensure balanced 

allocation between Kd  and the estimated target dose we propose to keep the allocation to Kd  

approximately equal to the allocation to a dose with the most assignments. For trials 

estimating the MED the allocation is kept balanced between placebo and a dose with 

maximum assignments. In the remainder of this section we will use the estimation of the 

peak dose as an example. In order to achieve balance in assignments with respect to 

covariates between Kd  and the current dose recommended by the adaptive strategy based on 

the data available so far, we propose to use a method similar to minimization (Taves 1974; 

Pocock and Simon 1975). For ease of presentation, we describe the method for a single 

covariate with two levels x = 0 and x = 1. Let ( )ixn t  be the number of subjects assigned to 

dose id , i = 0,…,K, with the covariate level x, x = 0, 1, right after subject t has been assigned, 

and let 0 1( ) ( ) ( )i i in t n t n t  , that is, 
1

0 0 0
( ) ( )

K K

ix ii x i
n t n t t

  
    . Let dose id  be the 
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current dose. A new subject, subject t + 1, entering the study will be assigned to either id  or 

to the highest dose Kd .  Define the measure of discrepancy (MD) as follows 

1,..., 1

( 1) ( 1) ( 1) ( 1)
( 1) max ( 1)

( 1) ( 1) ( 1) ( 1)
Kx ix i K

K i
i K

K i i K

n t n t n t n t
MD W n t n t

n t n t n t n t 

   
     

    
 

Here W is the weight similar to the weight used in minimization; we used W = 0.5 in the 

simulation study. The value of MD is computed assuming that subject t + 1 is assigned to id , 

and then computed assuming that subject t + 1 is assigned to Kd . The subject is assigned to 

the dose with the smaller value of MD. In the case when the values of MD are the same, the 

subject is randomized to one of the doses with equal probability. When there are no 

covariates, this strategy is still useful as it helps to keep the number of subjects assigned to 

placebo approximately equal to the number of subjects assigned to the estimated target MED.  

4.4 Simulation Study 

Our simulation study investigates the effect of balancing assignments to doses with 

respect to covariates, adjusting for covariates, doing both or neither, and compared adaptive 

strategies with equal allocation. Simulation results are based on 5000 simulation runs. Table 

6 displays seven scenarios from Bretz et al. (2005) that we considered. A two-level covariate, 

in-patient with x = 0, Pr(x = 0) = 0.4, and out-patient with x = 1, with covariate effect β = 0.5 

was considered. To estimate the MED defined as the dose with the mean response equal to 

0 0.35   we used the adaptive strategy described in Section 4.3.1; to balance with respect to 

covariates we used the algorithm described in Section 4.3.2. Unless specified otherwise the 

simulations were performed with balancing with respect to covariates and adjusting for 

covariates in the analysis.  
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It is useful to have a lead-in phase with equal number of assignments to all doses. 

Such lead-in phase ensures that all doses are tested and provides data for initial estimation of 

the MED. The estimated MED after the lead-in is used as a starting dose for the adaptive 

design. Forty two subjects, 26% of the total sample size of 162, were assigned in the lead-in 

phase, 6 subjects to each dose. It is always desirable to stop the trial for futility if a drug is 

not beneficial, that is, if the null hypothesis H0: 0 +K   , 0.35  , is rejected in favor of 

one-sided alternative 0 +K   . Looks for futility were performed at each interim and at 

the final analysis. Given the goals of a Phase II trial, we suggest setting the probability of 

rejecting an efficacious drug at 0.05 or lower. The Pocock stopping boundary was used in 

sequential monitoring to minimize the expected sample size if the treatment is not effective. 

If the trial was stopped early for futility or futility was established during the final analysis 

none of the doses was selected as the estimated MED. 

Table 7 displays the proportion of trials in which the true MED was selected as the 

estimated MED. In adaptive design, after lead-in subjects were assigned in 5 cohorts, 24 

subjects per cohort. That is, there were 5 interim and one final analysis. Data were generated 

from scenarios in Table 6 with  = 0.25. We report results when balancing with respect to the 

covariate, adjusting for the covariate, neither or both were performed. The results where the 

allocation was balanced with respect to covariates but covariates were ignored in the 

analysis, and where the allocation was not balanced but covariates were used in the analysis 

were only slightly worse than those for adaptive design with balancing and adjusting. These 

findings were consistent across various numbers of analyses and for both the MED and the 

peak dose estimation. Thus one needs to at least either balance assignments with respect to 

covariates or adjust for covariates in the analysis. It is interesting to note that balancing with 
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respect to and adjusting for covariates when 0   yielded very similar quality of estimation 

to the case where covariate effect was 0. On the other hand, it is clear from the comparison of 

the adaptive adjusted design and adaptive design was no balancing or adjustment with 

respect to covariates that disregarding covariates that are associated with the outcome in 

design and analysis have negative effect on quality of estimation of the target dose. 

Compared with equal allocation, adaptive design yields much higher probability of selecting 

the correct MED.  

 Table 8 displays results for the average sample size at the estimated target dose. 

Adaptive design assigns more subjects on average to the estimated target dose, which 

increases the power of comparisons that involve the estimated target dose. Adaptive design 

assigns about twice as many subjects to the estimated target dose on average compared to 

equal allocation in all non-null scenarios. As far as futility stopping, all trials were stopped 

for futility in the null scenario, scenario 1, and the average sample size in scenario 1 was 63. 

For the equal allocation, in the null scenario futility was declared at the end of every trial 

after 160 patients were treated. None of trials was stopped early for futility in scenarios 2-7 

when adaptive design was used.  

 To study the effect of the number of interim analyses on the design performance we 

performed simulations with the total of 2 analyses (with two doses selected in stage 2), 3 

analyses (2 cohorts of size 60), 4 analyses (3 cohorts of size 40), 6 analyses (5 cohorts of size 

24), 9 analyses (8 cohorts of size 15) and 13 analyses (12 cohorts of size 10). Each trial had a 

lead-in phase with 42 subjects total equally allocated to 7 doses. The average (over non-null 

scenarios) percent selection of the target dose was 0.84, 0.87, 0.88, 0.88, 0.88 and 0.89. The 

average sample size at the estimated target dose (averaged over seven scenarios) was 38, 39, 
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44, 44, 43 and 43.  Regardless of the number of analysis, the probability of stopping early for 

futility was 1 in the null scenario, the average sample size was 117, 84, 72, 62, 58 and 58 for 

2, 3, 4, 6, 9, and 13 for 2, 3, 4, 6, 9, and 13 analysis correspondingly. None of trials was 

stopped early for futility in scenarios 2-7.  

 We also repeated simulations with different values of . The probabilities of correct 

selection of the MED in non-null scenarios were 0.49, 0.37, 0.38, 0.67, 0.65, 0.76 for  = 

0.65. These numbers are to be compared with selection probabilities for equal allocation, 

0.39, 0.30, 0.33, 0.58, 0.61, 0.69. Average sample sizes at the estimated MED were 37, 36, 

36, 39, 42, 41 for  = 0.65. The probability of stopping early for futility was 0.6 in scenario 

1, with the average sample size of 142. For equal allocation futility was declared in 0.23 of 

the trials. None of trials was stopped early for futility in scenarios 2-7 when adaptive design 

was used. When the variability of the outcome was large ( = 1.3 and larger) while keeping 

the sample size the same, selection probabilities were low and adaptive design did not bring 

much benefit compared to equal allocation.  

Often patient response is not known prior to assignment of the next cohort. We 

repeated the simulations under the following staggered entry model: the outcome is available 

on day 7 after the start of the treatment; the accrual rate was 5 patients per week; the 

adaptation was performed at the time when new cohort is initiated based on all data available 

at that point. The probability of correct selection for adaptive design decreased on average by 

0.01 for each scenario with the almost same number of patients at each dose. 

We also performed simulations to estimate the peak dose defined as the lowest dose 

with the mean response of γK  , where 0.06  . The conclusions were similar to those of 

the MED. With lead-in phase allocating 6 subjects per dose and four cohorts with 30 patients 
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each, the probabilities of correct selection of the peak dose in non-null scenarios were 0.46, 

0.70, 0.55, 0.73, 0.88, 0.95. These results should be compared to 0.38, 0.55, 0.47, 0.66, 0.81, 

0.88 for equal allocation. There was almost no additional benefit in increasing the number of 

analyses and slight benefit as far as the average sample size at the target dose. For  = 0.65, 

the probabilities of correct selection of the peak dose were 0.27, 0.35, 0.40, 0.51, 0.56, 0.67 

for adaptive design, and 0.22, 0.31, 0.34, 0.43, 0.50, 0.55 for equal allocation. Estimation of 

the peak dose would be normally one of the objectives of a dose-finding trial with other 

objectives being, for example, the estimation of the MED and/or establishing dose-response. 

Such a trial will have a stopping rule for futility described earlier. If futility is established 

during the trial none of the doses is to be selected as the estimated peak dose. 

4.5 Discussion 

We proposed sequential strategies to estimate the MED and the peak dose. The 

strategies are based on the optimal design that maximizes the probability of correctly 

selecting the target dose. In many trials, it is desirable to test the mean response at the target 

dose against placebo mean response. In this case the optimality criterion for the design can be 

set as a function of the probability of correct selection of the target dose and the number of 

subjects allocated to target. Another possibility is to fix the probability of correct selection at, 

say, 95% of the optimal and maximize the number of subjects allocated to the target dose.  

One of the limitations of the proposed approach is that the dose-response curve is 

assumed to be non-decreasing. For certain compounds dose-response curve can have a 

downturn in the high range. In that case one can use umbrella isotonic regression (Roberson, 

Wright and Dykstra, 1988) in place of isotonic regression. Then an adaptive strategy can be 

designed to estimate the MED and peak doses.  



CHAPTER 5 TWO-STAGE DESIGNS FOR PHASE II  

DOSE-FINDING TRIALS 

We propose Bayesian adaptive two-stage design to efficiently estimate the minimum 

effective dose or the maximum dose in a dose-finding trial where some monotonicity 

assumptions regarding dose-response relationship can be made. The new design allocates 

subjects in stage 2 according to the posterior distribution of the location of the target dose. 

Simulations show that the proposed two-stage design is superior to equal allocation and to 

two-stage strategy where only one dose is left in stage 2.  

KEY WORDS:  Dose ranging; Minimum effective dose; Maximum dose; Phase 2 

trials; up-and-down designs. 

5.1 Introduction 

Phase 2 dose-finding studies are central for drug development as they identify a small 

subset of doses that are further investigated in a Phase 3 trial. Efficacy is the most important 

consideration in selecting candidate doses of a drug. The minimum effective dose (MED) is 

the smallest dose with a discernible useful effect (ICH E4 Guideline, 1994).  The MED is 

often defined as the dose with the mean efficacy outcome equal to a certain target, where 

target is defined as compared to placebo. Mean efficacy is usually assumed to be non-

decreasing with dose. Often times both efficacy and safety are taken into consideration when 

selecting the best dose, as increasing the dose results in both higher efficacy and increased 

toxicity or adverse event rates. Common approach is to quantify efficacy and adverse event 

rate trade-off through a utility function. Such function incorporates both efficacy and safety 
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into a measure of overall clinical "utility" (Thall, Inoue and Martin, 2002; Ivanova, 2003; 

Dragalin and Fedorov, 2006; Thall and Cook, 2004; Berry et al., 2001; Fedorov and Wu, 

2007; Ivanova et al., 2009).  Utility function often has an "umbrella" or "inverse U” shape 

and the objective of a trial is to maximize overall clinical "utility" of the drug. We will refer 

to the dose that maximizes the utility function as the optimal dose. An additional objective 

may be to test efficacy and adverse event rates at the MED or the optimal dose against 

placebo and/or an active control. Therefore a good assignment strategy for a dose-ranging 

study will be a strategy that provides good quality of estimation of the target dose and 

increased sample size at the estimated target dose to yield better power of treatment 

comparisons. 

Most dose-finding designs (one notable exception is the design in Berry et al. 2001) 

assume a certain order of the means of the dose-response curve, non-decreasing, umbrella or 

various partial orders. In several recent publications the dose-response curve was 

successfully estimated under an isotonic model without assuming a parsimonious model for 

dose-response relationship. Conaway et al. (2004), Yuan and Chappell (2004), Ivanova and 

Wang (2005) and Ivanova and Kim (2009) proposed frequentist methods; Li et al. (2008) and 

Bekele et al. (2008) proposed Bayesian approaches for various dose-finding problems.  

Most of the dose-finding designs are fully sequential as they have been proposed for 

oncology studies where experimentation starts at the lowest dose and dose is gradually 

escalated because of ethical considerations. Perhaps that is why most of the adaptive dose-

finding methods for non-oncology dose-finding studies are also fully sequential or multi-

stage designs (Berry et al., 2001; Ivanova, Bolognese and Perevozskaya, 2008; Ivanova et al., 

2009). The logistics of implementing a fully sequential dose finding study can be daunting. 
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On the other hand, the most common design in dose-ranging studies is equal allocation to all 

doses. A two-stage design seems to be a reasonable compromise between a multistage and a 

single-stage approach. Miller, Guilbaud and Dette (2007) recently investigated a two-stage 

strategy for a dose-ranging study that is optimal across several parametric models. They 

concluded that the proposed two-stage strategy offers minor benefit compared to a single-

stage design in terms of the efficiency of estimation of the target dose. Dragalin et al. (2008) 

investigated optimal two-stage designs for two correlated binary endpoints that follow a 

bivariate probit model and concluded that two-state strategy is superior to equal allocation. 

In this paper we propose Bayesian two-stage designs for dose-ranging trials under the 

following three models: estimating MED under assumption of non-decreasing dose-response 

curve, estimating the dose with the highest response under umbrella order assumption, 

estimating MED under isotonic matrix order. The latter problem arises when several different 

administration schedules are investigated.  

5.2 The Model 

Let 1{ ,..., }Kd d  be the set of ordered dose levels selected for a trial with 1d  denoting 

placebo. Ignoring the monotonicity, a conjugate prior density (Gelman et al., 2004, p. 78) can 

be specified as  

2 2
0 0| ~ ( , / )j j jN k    ,  j = 1, 2,...,K, and 2 2

0 0~ ( , )IG   , 

where IG denotes inverse gamma distribution. Let nj be the number of subjects assigned to 

jd , n = n1+…+nK. Subjects’ response at jd , jy , j = 1, 2,...,K is a vector of nj i.i.d. 2( , )jN    

random variables. The joint posterior of 1( , ... , )K  μ and 2  is the product of  

2| , ~ ( ; )j j jy N M V  , j = 1, 2,...,K, and  2 | ~ ( , )n ny IG   ,                     (1) 
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with 1( , ... , )Ky y   denoting the unrestricted maximum likelihood estimates, and 2
js  denoting 

the empirical variance of jy . We follow the approach of  Dunson and Neelon (2003) and 

Gunn and Dunson (2005) and map unconstrained mean vector μ  from KR   to obtain 

the posterior distribution for the restricted means. Here KR   is defined by a set of 

inequalities on the elements of μ . Since the posterior distribution (1) of unconstrained 

parameter vector μ  follows a simple conjugate form, we can easily obtain the draws via 

Gibbs sampling algorithm, and transform draws to the constrained draws from the posterior 

density for the constrained parameter vector, *μ , using the isotonic transformation approach. 

In the following sections we consider three types of constraints that define  : non-

decreasing, umbrella and matrix order. 

5.3 Two-stage Design to Find the MED  

5.3.1 Estimating the MED.   

In this section dose-response is assumed to be non-decreasing with dose, 

K  ...1 , and the goal is to find the minimum effective dose MED defined as the dose 

with the mean response of  1 , where 0   is the minimum clinically important 

difference specified before the trial. Under the assumption of non-decreasing dose-response 

1 ... K   , in non-Bayesian set-up, the restricted maximum likelihood estimate for μ , 

* *
1垐( , ..., )K   , can be obtained from the unrestricted maximum likelihood estimates, 

),...,( 1 kyy (Robertson, Wright and Dykstra, 1988) as: 
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for j = 1, 2,...,K. Here },...,1{ jL j  and },...,{ KjU j  . Transformation (2) is a least-squares 

projection form KR  to the restricted space . In the Bayesian setting, following Dunson and 

Neelon (2003) we project draws from the unconstrained posterior density (1) onto   using a 

minimal distance mapping. We then work with transformed draws.  

5.3.2 Two stage design. 

The two-stage strategy we proposed is described below. Let N1 and N2 be the total 

sample sizes in two stages correspondingly. The question of how to split the total sample size 

N1 + N2 between the two stages in the best way is considered in Section 5.6. 

Step 1. In stage 1, assign N1/K subjects to each dose.  

Step 2. Update the prior using stage 1 data to obtain unconstrained posterior density of μ . 

Transform each of D draws from the unconstrained posterior density of μ  to follow non-

decreasing order as described in Section 5.3.1. For each draw the location of the MED is 

determined as the dose with the value closest to 1  . These locations are summarized as 

the posterior distribution for the location of the MED 1( ,..., )K π .  

Step 3. Let N2 be the number of subjects available for stage 2 and 
2,...,

max ( )m j
j K

 


 . In stage 2, 

1 2/(1 )j m N     of subjects are assigned do dose dj, j = 2,…, K and 1 2/(1 )m m N     

subjects are assigned to placebo. That is, subjects are allocated proportional to the posterior 

of the MED location except for placebo, where the number of subjects is set to be equal to 

the number allocated to the most likely target dose.  
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Step 4. After stage 2 the data from both stages are combined. The estimated MED is the dose 

dj , j = 2,…,K, such that the posterior mean of 1j   is the closest to  . 

5.3.3 Comparing the MED with placebo. 

It is often of interest to compare the target dose with placebo and/or an active control. 

This comparison should account for both the multiplicity of treatments in stage 2 and the 

selection processes (i.e. interim analysis). The classical Dunnett’s test adjusts for the original 

number of hypotheses but does not take into account selection process. Our simulations show 

that when used with our two-stage design the Dunnett’s test is conservative in terms of 

controlling of the family-wise type I error rate for comparing the MED to placebo. These 

conclusions are similar to those in Koenig et al. (2008). Another approach is to use a 

combination test with the weighted inverse normal combination function applied together 

with the closed testing principle (Posch et al., 2005). In the combination test, t-test p-values 

are calculated for each dose and each stage. The closed testing principle with Simes’ test of 

intersection hypotheses is then used within each stage. The overall p-value for each dose is 

calculated by applying a weighted inverse normal combination function to the two adjusted 

p-values, p and q ,  

1 1( , ) 1 [ (1 ) 1 (1 )]C p q w p w q         . 

Here w , w  0, is a pre-defined weight, and   is the cumulative distribution function 

of the standard normal distribution. The adaptive combination test performs well when one 

treatment comparison is made in stage 2, however, due to the closed testing principle, the 

adaptive combination test becomes more conservative if more arms are selected after the first 

stage. As our proposed two-stage design can have any number of treatment arms in stage 2, 

both testing procedures will be conservative. Instead, we propose to simulate the distribution 
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of the Dunnett’s p-values under the null hypothesis following the proposed two-stage design, 

then the critical value for the test can be obtained as 0.025 percentile of the Dunnett’s p-

values distribution. Our simulations show that the critical value depends on the number of 

doses K, as well as the variance of the outcome. We recommend using conservative guess for 

the variance to obtain the critical value. Such approach will preserve the type I error rate and 

is more efficient than using the Dunnett’s test. If there is no knowledge regarding the 

variance of the outcome, Dunnett’s test will always preserve the type I error rate.      

5.4 Two-stage Design to Find the MED When Two Administration Schedules are 

Investigated  

Several administration schedules can be studied in a phase 2 trial. Often schedules 

can be ordered based on intensity, for example, twice a day administration is more intense 

than once a day, with twice a day yielding higher or same mean response compared to once a 

day. This leads to two-dimensional monotonicity assumption: 1) mean response is non-

decreasing with dose given the schedule, and 2) mean response is non-decreasing with 

schedule given the dose. Let 11 1,..., K   be the vector of mean responses for once a day 

schedule and 21 2,..., K   for twice a day. We have 11 1... K   , 21 2... K   , and 

1 2i i   for any i = 2,…,K. As the first dose is placebo, we additionally have 11 21  . This 

order is often referred to as marix order (Robertson, Wright and Dykstra, 1988). The 

maximum likelihood estimates under matrix order restriction, * , can be computed using the 

Dykstra et al. algorithm (Robertson, Wright and Dykstra, 1988) that can be found in the 

Appendix C.  

The goal of the trial with two administration schedules can be to estimate one MED 

or to estimate two MEDs, one for each administration schedule. The two-stage design we 
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propose will work for either strategy. The two-stage design is similar to the one in Section 

5.3. In the final analysis, depending on the objective, either one MED is selected or two 

MEDs, one for each administration schedule. When comparing the estimated MED with 

placebo as in Section 5.3, we generated the critical value from the distribution of Dunnett’s 

p-values obtained under the null hypothesis. As in the case of a single administration 

schedule, the critical value depends on the number of doses as well as on 2 .  

5.5 Two-stage Design to Find the Optimal Dose  

In this section we consider a problem of finding the maximum of a utility function. 

We assume the umbrella order Khhh    ...... 111 , where the location of the 

peak, h, is unknown. First, assuming a known peak location k, the restricted estimates can be 

obtained as follows:  

* min max
k k
k j

t

h h
k h s

j t
t U s L

h
h s

n y

n
 

 



 
 
 
 
 
 




,      (3) 

for j = 1, 2,...,K.  Here k
jU  and k

jL denote subsets of {1, … , K} such that the ordering 

jj    is known for all k
jLj   and the ordering jj    is known for all k

jUj  . To allow 

for a peak at an unknown location, k , we choose  *  by minimizing the distance across 

different choices of peak:  

* * 1 *

{1,..., }
min {( ) ( ) }k k

k K




   μμ μ μ μ μ ,                                 (4) 

where 1( ,..., )Kdiag V V μ . 
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As in Gunn and Dunson (2005), we transform the unrestricted draws using formulae (3) and 

(4) and then consider the draws of *  to be draws from a Bayesian posterior.  

The two-stage design for estimating the optimal dose is as follows.  

Step 1. In stage 1, assign N1/K subjects to each dose.  

Step 2. Update the prior using stage 1 data to obtain unconstrained posterior density of μ . 

Transform each of D draws from the unconstrained posterior density of μ  to follow umbrella 

order to obtain the posterior distribution for the maximum of the umbrella 1( ,..., )K π .   

Step 3.  Let N2 be the number of subjects available for stage 2 and 
2,...,

max ( )m j
j K

 


 . In stage 

2, 1 2/(1 )j m N     of subjects are assigned do dose dj, j = 2,…, K and 1 2/(1 )m m N     

subjects are assigned to placebo. That is, subjects are allocated proportional to the posterior 

of the optimal dose location except for placebo, where the number of subjects is set to be 

equal to the number allocated to the most likely target dose.  

Step 4. The optimal dose is estimated from combined stage 1 and 2 data, as the mode of the 

posterior distribution for the optimal dose location. 

Methods similar to that in Section 5.3.3 are used to compare the estimated optimal 

dose with placebo. The critical value for the test is obtained as 0.025 percentile of the 

distribution of Dunnett’s p-values under the null following a two-stage design to estimate the 

optimal dose.  Simulations show that the critical value depends on the number of doses K, 

however, unlike the MED case, it does not depend on unknown variance 2.   
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5.6 Simulation Study  

We performed a simulation study to compare the performance of the proposed two-

stage design with a two stage design where only one treatment arm is selected for the second 

stage, and with a single stage design with equal allocation. In both of these designs we select 

the mode of the posterior distribution of the target dose location. In two stage design with a 

single arm carried in stage 2, this is done based on stage 1 data; in a single stage design - 

based on all data. For the two-stage design with a single arm carried in stage 2, we used the 

combination test with w = 0.5 with Simes’ method for testing. We used Dunnett’s test in a 

single stage design.  

Simulation results are based on 10000 simulation runs. The total number of subjects 

in a trial was 180 to estimate the MED, 252 to estimate the MED with two administration 

schedules and 100 to estimate the optimal dose. Scenarios 1-5 in Table I were used for the 

MED simulations and scenarios 6-10 for the optimal dose simulations. All dose-response 

shapes are from Bretz, Pinheiro and Branson (2005) with doses (0, 0.05, 0.45, 0.8, 1) for 

MED and doses (0, 0.25, 0.5, 0.75, 1) for the optimal dose simulations. Table 10 displays 

scenarios with two administration schedules. The dose-response curves are from Bretz, 

Pinheiro and Branson (2005) with doses (0.05, 0.15, 0.30) and (0.40, 0.70, 1.0) for scenario 

1, and doses (0.05, 0.45, 0.85) and (0.30, 0.70, 1.0) for scenario 2.  For a scenario with mean 

vector μ  outcomes at jd  follow normal distribution ),( 2 jN with 65.0 . The 

conjugate prior for j  follows the conditional distribution )/,(| 0
2

0
2

jjj kN   ,  j = 1, 

2,...,K, and ),(~ 00
2 baIG , with 00 j , 12  , 001.00 jk , and 2/001.000  ba . We 

obtain the draws from the posterior density (1) via Gibbs sampling algorithm, and transform 

draws to the constrained draws from the posterior density of the constrained parameter, *μ , 
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as described in Section 5.3.1, 5.4 or 5.5. The above process is repeated 1500 times discarding 

the first 500 iterations as a burn-in.  

First, we investigated what is the optimal way to split the total sample size between 

the two stages. The best proportion for the optimal dose problem was selected based on 

average power for placebo – target dose comparison. Figure 3 presents power averaged over 

corresponding scenarios for the three set-ups. Probability of correct selection follows similar 

pattern and similar results were observed for other values of 2
.  Allocating 0.58 of the 

sample size in stage 1 gives the best average power when the MED is estimated under non-

decreasing or matrix order, allocating 0.42 of the sample is the best to estimate the optimal 

dose. In the simulation study we used proportion 0.5 and allocated equal number of patients 

in stage 1 and stage 2.  

Table 11 reports simulation results for the MED estimation. Reported are the 

probability of selecting each dose as the target dose and probability of correctly rejecting the 

null hypothesis of equality of placebo mean response with the estimated MED. Adaptive 

design yields the same probability of correct selection compared to the equal allocation. 

However, it assigns more subjects to the target dose on average compared to equal allocation 

which leads to much better power. The number of subjects assigned to the estimated MED is 

equal to 36 for equal allocation, compared to the median number of 46 for the adaptive two-

stage strategy with 36 and 52 being the 25the and 75th percentiles. The new adaptive strategy 

yields much higher probability of correctly selecting the MED and higher power for 

comparing with placebo than the two-stage strategy where one dose is left in stage 2. The 

critical value for the adaptive two-stage design was obtained by simulating 40,000 trials 

under the null hypothesis using true 2 = 0.65. Though the critical value depends on 2, the 
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critical values obtained for 2 in [0.4, 0.9] were almost the same as for 2 = 0.65. Since 

critical value increases as variance increases, our recommendation is to use low bound of the 

guess for the variance to obtain the critical value.  

We also compared the new two-stage strategy to estimate the MED with multi-stage 

t-statistic design from Ivanova, Bolognese and Perevozskaya (2008). A total 180 subjects 

were assigned in 20 cohorts of size 9. In the first four cohorts, 5 subjects in each cohort were 

assigned to placebo to provide good estimate of placebo response early in the trial. After that, 

3 subjects in each cohort received placebo. Non-placebo assignments throughout the trial 

were determined according to design in Ivanova, Bolognese and Perevozskaya, 2008. The 

total number of subjects assigned to placebo was 68 subjects. Multi stage strategy yielded 

slightly better probability of selecting the correct MED 0.71, 0.73, 0.47, 0.78 and 0.81 for 

scenarios 1-5 correspondingly, compared to 0.67, 0.67, 0.47, 0.79 and 0.76 for the Bayesian 

two-stage design. The number of subjects assigned to the estimated MED was significantly 

higher: median (25the; 75th percentiles) were 72 (52; 88) for the t-statistic design compared 

to 46 (36; 52) for the two-stage strategy, yielding much higher power of the MED - placebo 

comparison.  

Table 12 shows simulation results for selecting the MED in case of two 

administration schedules. We simulated trials where the goal was to identify one MED. The 

adaptive two-stage strategy performs better comparatively than in the case of a single 

schedule. This is because it utilizes additional isotonic assumptions. The adaptive strategy 

yields better estimation and significantly better power compared to the other two designs. 

The number of subjects assigned to the estimated target dose is 36 for equal allocation, 
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compared to the median number of 47 for the adaptive two-stage strategy with 37 and 56 

being the 25the and 75th percentiles. 

Table 13 displays results for the optimal dose estimation. The conclusions are very 

similar to the ones for the MED, except this time both two-stage strategies yield much higher 

power than equal allocation. The number of subjects assigned to the estimated optimal dose 

is 20 for equal allocation, compared to the median number of 29 for the adaptive two-stage 

strategy with 23 and 32 being the 25the and 75th percentiles. 

We compare the two-stage strategy to estimate the optimal dose with the multi-stage 

design from Ivanova et al. (2009). As recommended in Ivanova et al. (2009), we assigned 

40% of the total sample size of 100 in stage 1 allocating 40 subjects equally among doses, 

after that, subjects were assigned in cohorts of 6. One to two subjects in each cohort received 

placebo and the rest received drug. The number of placebo assignments in each cohort was 

varied in order to keep the total number of placebo assignment approximately equal to the 

number of assignments at the best dose. This was done to ensure good power of optimal dose 

– placebo comparison at the end of the trial. Multi-stage strategy did not improve the 

likelihood of selecting the optimal dose: the probabilities of correctly selecting the optimal 

dose were 0.53, 0.82, 0.96, 0.86 and 0.84 for scenarios 6-10 compared to 0.51, 0.80, 0.95, 

0.85 and 0.83 in Bayesian two-stage design. The number of subjects assigned to the 

estimated optimal dose was also similar: median (25the; 75th percentiles) were 29 (28; 30) 

for the mulit-stage design compared to 29 (23; 32) for the two-stage strategy. Multi-stage 

design is more efficient compared to the two-stage design when more doses are studied, 

larger sample size is used or the variability of the outcome 2 is smaller.  
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We investigated three-stage strategies similar to the proposed Bayesian two-stage 

design. Our conclusion was that adding a stage to the two-stage design does not improve 

power and selection probability by much.    

5.7 Discussion 

Adaptive two-stage design is a reasonable alternative to equal allocation and 

multistage strategies. Compared to a single stage design with equal allocation, it yields larger 

sample size at the estimated target dose and hence provides better power for treatment 

comparison. The logistics of a two-stage trial are more complex compared to a single stage 

design but easier than a muti-stage approach. Two-stage approach allows for an interim 

analysis after stage 1 to stop the trial for futility or efficacy using Bayesian decisions rules.   

Often time there is a set of covariate believed to be associated with response. Since 

the MED is defined using placebo as reference, when the mean response is modeled with 

identity link function using a linear model with covariates, the target doses for different 

levels of covariate coincide. Therefore the proposed two-stage adaptive strategy can be easily 

extended to the case when adjustment with respect to covariate is needed. Another possible 

extension is finding the optimal dose when several administration schedules are considered.



CHAPTER 6 CONCLUSION: HOW TO CHOOSE A DESIGN FOR  

YOUR DOSE-FINDING STUDY? 

6.1 The Choice of a Dose-response Method Depends on the Assumptions Regarding 

Dose-response Curve.  

Existing methods for dose-finding Phase II trials can be classified according to 

assumptions regarding dose-response relationship. If investigators are unwilling to make any 

assumptions regarding dose-response curve, for example, when down-turn in higher range of 

doses cannot be ruled out, the only appropriate adaptive method is the method proposed by 

Berry et al. (2001). It assumes that the dose-response curve is smooth but no other 

assumptions are required. If the dose-response curve is believed to be non-decreasing with 

dose and no further assumptions can be made, one can use isotonic methods (Ivanova et al., 

2008; Ivanova and Kim, 2009; Xiao and Ivanova, 2011a; Ivanova, Xiao and Tymofyeev, 

2011). Though not suitable when dose-response curve plateaus in the range of interest (Xiao 

and Ivanova, 2011a), some Phase I oncology methods can be used successfully in Phase II 

trials with strictly increasing dose-response curve if the outcome is binary and the goal of the 

study is to find a dose with a certain response rate. These method include, for example, group 

designs (Wetherill, 1963) and the CRM (O’Quigley et al., 1990). A number of methods that 

rely on specific shape of a dose-response curve have been proposed (Dragalin and Fedorov, 

2006; Miller, Guilbaud and Dette, 2007). These methods usually are not robust when 

assumptions regarding the dose-response curve do not hold. For example, the method of 

Miller, Guilbaud and Dette (2007) assume that the curve follows one of the three 
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parsimonious parametric models and performs poorly when the true dose response shape is 

very different from the three shapes.  

6.2 The Choice of a Dose-response Method Depends on the Goal of the Study  

Adaptive designs can only be useful when the target dose is defined before the study 

commences.  In early stage dose-finding trials, the goal is to collect information on a wide 

range of doses and specific estimation objectives are not usually of interest. Equal allocation 

to all the doses in parallel fashion is the most appropriate design choice in this setting. Under 

the assumption that dose-response curve is non-decreasing, if one or more target doses are of 

interest, design choice depends on what are the target doses and what hypotheses are being 

tested. If a single efficacy endpoint is considered, MED and peak doses are usually of 

interest. If both efficacy and AE rates are considered, one can usually quantify efficacy-AE 

trade-off via a utility function. The goal is then to find the dose that maximizes the utility 

function, the optimal dose.   

When choosing the most appropriate design, one important component is the number 

of interim analysis in the study. Increasing the number of interim analysis usually leads to 

increased sample size at the estimated target dose; however the increase in the precision of 

estimation of the target dose, measured as proportion of trials where the target dose was 

selected correctly, is usually modest. As performing multiple interim analyses might be 

logistically challenging, potential gains in efficiency of estimation of target doses and in 

power from additional analyses should be evaluated.   

Table 14 summarizes isotonic dose-finding methods available for Phase II trials and 

presents design comparisons. 
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If there is a need to find the shape of dose-response curve or test for trend, the equal 

allocation is the best choice. If there are known covariates that might influence the outcome 

one needs to either balance assignments to doses with respect to covariates or adjust for them 

in the analysis (Xiao and Ivanova, 2011b).  

6.3 Limitations of Adaptive Dose-finding Approaches Proposed in This Dissertation 

Below is the summary of limitations of the proposed approaches: 

1)  Adaptive designs can be used if response is observed relatively quickly compared to the 

rate of accrual.  

2)  To use an adaptive design the target dose(s) should be defined before the trial.  

3)  Adaptive dose-finding designs most likely will not be more efficient than equal 

allocation, if the goal is to estimate more than two target doses, if it is of interest to assess the 

shape of a dose-response curve, or if available sample size does not provide adequate 

precision of mean responses.  

4)  Proposed methods will yield good results if the true dose-response curve follows the 

specified order restriction (non decreasing, strictly increasing, or umbrella shape dose 

response). 
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APPENDICES 

A. Proof of Theorem   

Let j, j, and j denote the probabilities to decrease the dose from dj to dj-1, to repeat 

the dose dj, or increase the dose from dj to dj+1 in  , ,L UUD s c c .  Here j + j + j = 1 for 

j{1,…,K} are the elements of jth row of transition matrix P, with j being a diagonal 

element, and j, and j being to the left and to the right of j.  These probabilities can be 

computed as follows 

1 0  , 1 11   ,  1 1Pr{ , }LBin s p c   , 

 Pr{ , }j j UBin s p c   ,  Pr{ , }j L j Uc Bin s p c    ,  Pr{ , }j j LBin s p c   , 

 Pr{ , }K K UBin s p c   , 1K K   , K = 0, 

where j{2,…,K-1}. The stationary distribution 1( ,..., )K π  can be obtained by solving 

the balance equations,  j = j-1 j-1 + j j + j+1 j+1, j{1, …, K} (here for convenience 0 = 

K+1 = 0).   The solution is 

1

1
1

21 2

, 1 , ,
j jK

i
j i i i

ji i i

    






 

 
    

 
   

where j{2,…,K}.  Gezmu and Flournoy (2006) showed that j decreases with j while j 

increases with j, so similarly to Durham and Flournoy (1994), the stationary distribution is 

log-concave, also the mode spans dk-1 and dk if k = 1. Since *
1 2 ... ...j Kp p p p      
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and *  is a solution of equation (1), i i      for all i = j,…,K.  Hence 

1 / / 1i i i        for i = j+1 ,…,K, and the mode spans doses d(j+1)-1 ,…, dK. 

B. Proof of the Proposition  

The vector of unrestricted MLEs obtained from model (1),  0垐 ?,...,U U U
K μ , has 

multivariate normal distribution with mean vector  0,..., K μ  and variance covariance 

matrix   with  2 2
0 / ,..., / Kn n   on the diagonal. Let /i iw n n , 0 <  < 1iw , 

0 ... 1Kw w   . First we wish to show that when 0s   and it is known, the probability of 

correctly selecting the target dose by applying the closes dose or the lowest dose estimator to 

the weighted average of components of ˆUμ  depends only on vectors { }iw ,  /i n   and 

matrix  2/n   .  We note that the probability of selecting the correct target dose can be 

expressed as: 

1
1

( ) ' ( ) / 2
( 1) / 2 0.5

1 1

1

(2 ) | |j

KJ
x x

iKA
j i

e dx 





   


   ,   (3) 

where the regions jA , j = 1,…, J, are disjoint sets in the sample space each defined by a set 

of inequalities where the algorithm chooses the correct target dose. For example, when 

 1垐 垐, ,U U U U
K   μ , the two rejoins are shown in formula (2). We note that each of these 

regions may be expressed as an intersection of solution sets of inequalities where each side of 

the inequality is a linear combination of the components of ˆUμ or the absolute value of such a 

combination, and the coefficients are functions of the { }iw . Thus, the regions jA  of the 
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sample space where the closest dose is chosen are given by inequalities of the form described 

above. We rewrite (3) after making the substitution   /i iy x n  , i = 0,…, K. 

1

1

0.5( ) ' ( )

2 / 2 0.5
1 1

0.5( ) ' ( )

/ 2 0.5
1 1

1

(2 / ) |

1
,

(2 ) | |

j

j

n n kJ y y

ikA
j i

n n kJ y y

ikA
j i

e dy
n n

e dy

 
 

 
 










   

 

   

 

 




 

 
 

where  2/n     is the covariance matrix for the iy . This substitution does not change 

the regions jA  because substituting   /iy n  for ix  in the original inequalities that define 

the jA  and dividing through by the positive constant / n  does not change solution set for 

the inequalities, which now depend only on the iw  and the iy . Because the iy  will be 

integrated out, the integral in (3) depends only on the { }iw ,  /i n 
 
and   2/n   . If s  

in the definition of the target dose is not known and is being estimated, the result is obtained 

similarly to the above by considering  0垐 垐,...,U U U U
s K s     . This is because the density is 

from a location-scale family, and the regions of correct selection do not depend on the 

location. Location is irrelevant to the regions of correct selection because the inequalities that 

define them are comparisons of isotonic estimates where the coefficients for each observation 

sum to 1, so shifting all means up by a constant does not change their solution sets. 
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C. The Algorithm for Computing Maximum Likelihood Estimates under Matrix Order 

(Dykstra and Robertson, 1982) 

Step 1. Let )ˆ(ˆ )1()1(
ij  denote the isotonic regression of   over rows, i.e. )1(̂  minimizes 

10
2

1010

2

1 1

2 )()( nfnf iji

K

j ijij   
  subject to jj fff 2110  for j =1, …, K. Let 

)ˆ()( )1()1()1(
ijijijrR    be the first set of ‘row increments’.  

Step 2. Let )~(~ )1()1(
ij  denote the isotonic regression over columns of of )1(R , i.e. )1(~  

minimizes 10
2

10
)1(

1010

2

1 1

2)1( )()( nfrnfr iji

K

j ijijij   
  subject to iKi fff  ...110  

for i = 1,2. Call )(~ )1()1()1( RC    the first set of ‘column increments’. Note that 

)1()1()1(~ CR    

Step 3. At the beginning of the mth cycle, )(ˆ m is obtained by isotonizing )1(  mC  over 

rows. The mth set of row increments is defined by )(ˆ )1()()(  mmm CR  , so that 

)()1()(ˆ mmm RC   . Next obtain )(~ m  by isotonizing )(mR  over columns. The mth 

set of column increments is given by )(~ )()()( mmm RC    or, equivalently, 

)()()(~ mmm CR   . 
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Table 1: Mean response scenarios with their toxicity response curves 
Scenario number Mean response curve Mean toxicity curve 
1 (0.6,0.6,0.6,0.6,0.6,0.6,0.6) (0.1,0.3,0.4,0.5,0.6,0.7,0.8) 
2 (0.3,0.6,0.6,0.6,0.6,0.6,0.6) (0.1,0.1,0.3,0.4,0.5,0.6,0.7) 
3 (0.3,0.3,0.3,0.6,0.6,0.6,0.6) (0.1,0.1,0.1,0.1,0.3,0.4,0.5) 
4 (0.3,0.3,0.3,0.3,0.6,0.6,0.6) (0.1,0.1,0.1,0.1,0.1,0.3,0.4) 
5 (0.3,0.3,0.4,0.5,0.6,0.6,0.6) (0.1,0.1,0.1,0.1,0.1,0.3,0.4) 
6 (0.3,0.4,0.5,0.6,0.7,0.8,0.9) (0.1,0.1,0.1,0.1,0.4,0.5,0.6) 
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Table 2: Proportion of trials in which a dose was selected as the expected target dose 

Scenario  d1 d2 d3 d4 d5 d6 d7 

Scenario 1               
Group Designa 0.29 0.15 0.12 0.11 0.10 0.10 0.13 
CRM  0.33 0.25 0.21 0.13 0.07 0.02 0.00 
t-statistic design 0.63 0.22 0.09 0.04 0.01 0.01 0.00 

Scenario 2                
Group Designa 0.00 0.32 0.16 0.13 0.11 0.12 0.15 
CRM  0.01 0.27 0.28 0.20 0.17 0.06 0.01 
t-statistic design 0.02 0.65 0.20 0.09 0.03 0.01 0.01 

Scenario 3                
Group Designa 0.00 0.00 0.01 0.36 0.19 0.18 0.26 
CRM  0.00 0.00 0.02 0.33 0.34 0.24 0.07 
t-statistic design 0.00 0.00 0.01 0.66 0.21 0.08 0.04 

Scenario 4               
Group Designa 0.00 0.00 0.00 0.01 0.41 0.25 0.34 
CRM  0.00 0.00 0.00 0.03 0.49 0.34 0.15 
t-statistic design 0.00 0.00 0.00 0.01 0.67 0.20 0.12 

Scenario 5               
Group Designa 0.00 0.00 0.01 0.18 0.29 0.22 0.29 
CRM  0.00 0.00 0.00 0.18 0.49 0.25 0.08 
t-statistic design 0.00 0.00 0.02 0.30 0.45 0.16 0.07 

Scenario 6               
Group Designa 0.00 0.01 0.22 0.54 0.21 0.02 0.00 
CRM  0.00 0.00 0.18 0.61 0.20 0.00 0.00 
t-statistic design 0.00 0.01 0.28 0.57 0.13 0.00 0.00 
a Group design is UD(4,2,3). 
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Table 3: Average number of patients over trials at each dose 

Scenario d1 d2 d3 d4 d5 d6 d7 

Scenario 1               
Group Designa 22 17 13 10 7 6 5 
CRM  30 21 15 9 4 1 0 
t-statistic design 56 16 5 2 0 0 0 

Scenario 2                
Group Designa 14 19 15 11 8 7 6 
CRM  6 22 21 16 11 3 0 
t-statistic design 14 45 14 5 2 1 0 

Scenario 3                
Group Designa 5 6 13 19 14 12 11 
CRM  4 4 7 23 23 14 4 
t-statistic design 7 7 13 37 11 3 1 

Scenario 4               
Group Designa 5 5 6 14 19 16 15 
CRM  4 4 5 7 31 21 8 
t-statistic design 7 7 7 12 34 10 4 

Scenario 5               
Group Designa 5 6 10 16 16 14 12 
CRM  4 4 6 17 29 15 4 
t-statistic design 7 7 13 24 21 6 2 

Scenario 6               
Group Designa 7 12 19 22 14 6 1 
CRM  4 6 16 35 17 2 0 
t-statistic design 7 13 26 27 7 0 0 
a Group design is UD(4,2,3). 
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Table 4: The distribution of trials at the estimated target dose 

Designs Min 1st Median Mean 3th Max 

Scenario 1             
Group Designa 4 16 24 25 32 68 
CRM  4 40 56 54 68 80 
t-statistic design 4 52 80 65 80 80 

Scenario 2              
Group Designa 4 16 24 23 28 52 
CRM  4 36 52 48 60 76 
t-statistic design 4 40 56 53 68 76 

Scenario 3              
Group Designa 4 16 24 23 28 52 
CRM  4 36 52 47 60 68 
t-statistic design 4 36 44 44 56 68 

Scenario 4             
Group Designa 4 20 24 24 28 48 
CRM  4 40 52 47 60 64 
t-statistic design 4 32 40 40 52 64 

Scenario 5             
Group Designa 4 16 20 22 28 48 
CRM  4 32 48 44 56 68 
t-statistic design 4 24 36 36 48 72 

Scenario 6             
Group Designa 4 20 24 24 28 40 
CRM  4 32 44 42 56 72 
t-statistic design 4 28 40 40 52 76 
a Group design is UD(4,2,3). 
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Table 5: Proportion of trials where the estimated target dose is shown to have an efficacy 
rate significantly better than placebo rate and toxicity rate significantly lower than 0.3 

Scenarios Group design  CRM  t-statistic design 

Scenario 1 0.53 0.76 0.85 

Scenario 2 0.56 0.72 0.84 

Scenario 3 0.63 0.76 0.83 

Scenario 4 0.64 0.79 0.80 

Scenario 5 0.59 0.76 0.70 

Scenario 6 0.66 0.76 0.72 
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Table 6: Data generating dose response curves, d = (0,0.05,0.2,0.4,0.6,0.8,1) 

Scenario Model Mean Response 
1 Constant = 0.6 (0.60,0.60,0.60,0.60,0.60,0.60,0.60)

2 Emax = 0.2+0.7d/(0.2+d) (0.20,0.34,0.55,0.67,0.72,0.76,0.78)
3 Linear in log-dose = 0.2+0.6log(5d+1)/log(6) (0.20,0.27,0.43,0.57,0.66,0.74,0.80)

4 Linear = 0.2+0.6d (0.20,0.23,0.32,0.44,0.56,0.68,0.80)
5 Logistic = 0.193+0.607/{1+exp[10log(3)(0.4-d)]} (0.20,0.21,0.25,0.50,0.74,0.79,0.80)

6 Step 1 = 0.2+0.6I(d≥0.2) (0.20,0.20,0.80,0.80,0.80,0.80,0.80)
7 Step 2 = 0.2+0.3I(d≥0.4)+0.3I(d≥0.6) (0.20,0.20,0.20,0.50,0.80,0.80,0.80)
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Table 7: Proportion of trials in which the true MED was selected as the estimated MED 
1) in adaptive trial with balancing with respect to a covariate and adjusting for 
covariate in the analysis (Balance and  Adjust), in adaptive trial with only balancing 
(Balancing only), in adaptive trial with only adjusting (Adjusting only), in adaptive trial 
without balancing or adjusting for covariate (None), in adaptive trial with no covariate 
effect (β = 0) and for equal allocation with balancing and adjusting for covariate.  

Scenario  

Adaptive, 
Balancing Adaptive, Adaptive, Adaptive, Adaptive,

Equal 
allocation, 

and Balancing Adjusting None None Balancing and
Adjusting only only     Adjusting 
β = 0.5 β = 0.5 β = 0.5 β = 0.5 β = 0 β = 0.5 

2 0.88 0.88 0.87 0.76 0.89 0.76 

3 0.78 0.73 0.76 0.62 0.78 0.65 

4 0.78 0.73 0.78 0.65 0.78 0.69 

5 0.96 0.95 0.95 0.88 0.96 0.94 

6 0.91 0.89 0.91 0.83 0.91 0.84 

7 0.99 0.99 0.99 0.96 0.99 0.99 
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Table 8: Average number of subjects allocated to the estimated dose in each design. 
For comparison, equal allocation design with the same total sample size will have 23 
subjects at each dose 

  Adaptive, Adaptive, Adaptive, Adaptive, Adaptive, 
  Balancing and Balancing only Adjusting only None None 
  Adjusting     
Scenario  β = 0.5 β = 0.5 β = 0.5 β = 0.5 β = 0 

2 43 42 38 39 42 

3 42 41 35 37 40 

4 42 41 36 38 41 

5 46 45 44 44 47 

6 46 46 45 45 47 

7 47 46 46 46 48 
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Table 9: Dose-response scenarios. Scenarios 1-5 are to illustrate the 
MED estimation, scenarios 6-10 the optimal dose estimation. The 
MED and the optimal dose are shown in bold. Placebo is dose one. 
Scenario  Model Mean Response 
1 Emax (0.20,0.34,0.68,0.76,0.78) 
2 linear in log-dose (0.20,0.27,0.59,0.74,0.80) 
3 Linear (0.20,0.23,0.47,0.68,0.80) 
4 Truncated-logistic (0.20,0.20,0.22,0.54,0.80) 
5 Logistic (0.20,0.21,0.58,0.79,0.80) 
6 Quadratic (0.20,0.60,0.79,0.75,0.50) 
7 Double-logistic (0.20,0.37,0.79,0.59,0.50) 
8 Exponential (0.20,0.22,0.29,0.43,0.80) 
9 S5 (0.20,0.50,0.50,0.80,0.50) 
10 S6 (0.20,0.40,0.80,0.60,0.40) 
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Table 10: Scenarios for the two administration schedules. 
The MEDs are in bold. Placebo is dose one. 
Scenario  Model Group Mean Response 
1 Linear A (0.20,0.23,0.29,0.38) 
    B (0.20,0.44,0.62,0.80) 
        
2 Logistic A (0.20,0.21,0.58,0.80) 
    B (0.20,0.34,0.78,0.80) 
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Table 11:  Probability of correct identification of the MED, and probability of correctly 
rejecting the null hypothesis that response at the MED is equal to placebo response (Power). 
The best results are in bold. 

Scenario Design d2 d3 d4 d5 Power % 

Emax Two-stage adaptive 0.19 0.67 0.1 0.04 89 

  
Two stage, 1 best 
selected 

0.29 0.46 0.14 0.11 84 

  Equal allocation 0.22 0.6 0.11 0.06 83 

    
Linear in log-
dose 

Two-stage adaptive 0.07 0.67 0.22 0.04 90 

  
Two stage, 1 best 
selected 

0.18 0.51 0.21 0.1 84 

  Equal allocation 0.1 0.62 0.22 0.05 84 

    

Linear Two-stage adaptive 0.02 0.44 0.47 0.07 87 

  
Two stage, 1 best 
selected 

0.08 0.43 0.36 0.12 83 

  Equal allocation 0.03 0.45 0.45 0.08 80 

    
Truncated-
logistic 

Two-stage adaptive 0 0.04 0.79 0.17 86 

  
Two stage, 1 best 
selected 

0.02 0.15 0.64 0.19 72 

  Equal allocation 0.06 0.06 0.79 0.16 76 

    

Logistic Two-stage adaptive 0.04 0.76 0.18 0.02 90 

  
Two stage, 1 best 
selected 

0.12 0.62 0.19 0.06 84 

  Equal allocation 0.06 0.76 0.17 0.02 82 
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Table 12: Probability of selecting each dose as the MED when two administration 
schedules are considered, and probability of correctly rejecting the null hypothesis that 
response at the estimated MED is equal to placebo response (Power). The best results 
are in bold. 

Scenario Design Group d2 d3 d4 Power % 

1 Two-stage adaptive A 0 0.01 0.15 
89 

    B 0.24 0.52 0.05 

  Two stage, 1 best selected A 0.02 0.05 0.22 
73 

    B 0.24 0.35 0.13 

  Equal allocation A 0 0.02 0.17 
78 

    B 0.23 0.47 0.1 

      

2 Two-stage adaptive A 0 0.64 0.11 
91 

    B 0.13 0.11 0 

  Two stage, 1 best selected A 0.03 0.44 0.13 
81 

    B 0.25 0.12 0.02 

  Equal allocation A 0.01 0.6 0.1 
82 

    B 0.17 0.11 0.01 
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Table 13. Probability of selecting each dose as the optimal dose, and probability of 
correctly rejecting at least one null hypothesis (Power). The best results are in bold. 

Scenario Design d2 d3 d4 d5 Power % 

Quadratic Two-stage adaptive 0.1 0.51 0.38 0.03 89 

  
Two stage, 1 best 
selected 

0.13 0.45 0.36 0.06 90 

  Equal allocation 0.09 0.5 0.38 0.02 80 
    
Double-
logistic 

Two-stage adaptive 0.01 0.8 0.14 0.06 83 

  
Two stage, 1 best 
selected 

0.04 0.66 0.2 0.1 83 

  Equal allocation 0.01 0.8 0.14 0.05 73 

    

Exponential Two-stage adaptive 0 0.01 0.04 0.95 87 

  
Two stage, 1 best 
selected 

0.02 0.03 0.09 0.86 83 

  Equal allocation 0 0.01 0.04 0.95 77 
    
Step 1 Two-stage adaptive 0.06 0.06 0.83 0.06 82 

  
Two stage, 1 best 
selected 

0.11 0.1 0.69 0.1 83 

  Equal allocation 0.05 0.05 0.85 0.05 71 
    

Step 2 Two-stage adaptive 0.02 0.83 0.16 0.02 85 

  
Two stage, 1 best 
selected 

0.05 0.69 0.21 0.05 84 

  Equal allocation 0.01 0.82 0.16 0.01 73 
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Table 14: Isotonic dose-finding methods available for Phase II trials and 
design comparisons. 

Target Dose(s) Testing 

Number of adaptations 

1     2    Many 

MED  No Equal 
 

=  IXT2011 < IK2009 

MED  Yes Equal < IXT2011 < IK2009 

Two MEDs No Equal ? IXT2011  ? IBP2008 

Two MEDs Yes Equal ? IXT2011  ? IBP2008 

PEAK  No Equal No design < XI2011 

Optimal dose  No Equal = IXT2011 < ILSS2009 

Optimal dose  Yes Equal < IXT2011 = ILSS2009 

>2 target doses Yes/No Equal            

 

*Comparison have not been made  

IXT2011 = Ivanova, Xiao, Tymofyeev (2011);  

IK2009 = Ivanova and Kim (2009);  

IBP2009 = Ivanova, A., Bolognese, J., and Perevozskaya, I. (2008);  

ILSS2009 = Ivanova, A., Liu, K., Snyder, E., and Snavely, D. (2009);  

XI2011=Xiao and Ivanova (2011b) 
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Figure 1:  Optimal allocation to estimate the peak dose. The solid line is the proportion 

assigned to the true peak dose, d , the dotted line proportion assigned to Kd  and the dashed 

line proportion assigned to 1d  . 
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Figure 2:  Optimal allocation to estimate the MED. The solid line is the proportion assigned 

to the true MED, d , the dotted line proportion assigned to placebo 0d , the dashed line 

proportion assigned to 1d   and the dotted-dashed line to 1d   
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Figure 3:  Power averaged over all scenarios plotted against the proportion allocated in stage 
1 with proportion of 1.0 corresponding to a single stage design. Solid line corresponds to the 
optimal dose estimation, dashed line to the MED estimation and dotted line to the MED 
estimation with two administration schedules.
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