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ABSTRACT

DANIEL SOQUES: Regime-switching Models of the Business Cycle.
(Under the direction of Neville Francis)

A popular way to describe the business cycle is as a movement between distinct phases of

expansion and recession. During expansions, output growth and employment are relatively high,

whereas recessions are characterized by sluggish output growth and high unemployment. Hamilton

(1989) used regime-switching models to describe this evolution of the business cycle. In this dis-

sertation, I extend the model of Hamilton (1989) to address a number of prevalent macroeconomic

questions regarding business cycle comovement.

First, in joint work with Neville Francis and Michael T. Owyang, we assess the leading role

played by U.S. in the global economy by analyzing if U.S. output growth informs the timing of

business cycle turning points of other nations. We find that the U.S. economic growth influences

both the timing and duration of business cycle phases for Canada, Germany, the United Kingdom,

and, to a lesser extent, Mexico. Conversely, we find no relationship between U.S. output growth

and the business cycles of France, Italy, and Japan.

In the second paper, again with Neville Francis and Michael T. Owyang, we study the comove-

ment of international business cycles in a time series clustering model with regime-switching. We

extend the framework of Hamilton and Owyang (2012) to include time-varying transition proba-

bilities to determine what drives similarities in business cycle turning points. We find three groups

of countries which experience idiosyncratic recessions relative to the global business cycle. Addi-

tionally, we find the primary indicator of international recessions to be large movements in asset

prices.

In a third paper with James D. Hamilton and Michael T. Owyang, we extend Hamilton and

Owyang (2012) which examined the comovements of state-level business cycles using a clus-

tered Markov-switching approach. Here, we consider whether industries also comove and, if so,
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whether this comovement is limited to subsectors within a single industry classification. We find

four industry clusters, with their composition implying some degree of propagation of recessions

up the production chain.
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CHAPTER 1

DOES THE UNITED STATES LEAD FOREIGN BUSINESS CYCLES?

1.1 Introduction

The U.S. is the largest of the world’s economies. In 2012, the U.S. accounted for 22.4 percent

of the world’s gross domestic product (GDP) and 35.1 percent of the world’s total market capi-

talization.1 The importance of the U.S. to the global economy was highlighted during the recent

Great Recession of 2007-2009. A financial shock originating for the most part in the U.S. led to a

worldwide downturn, which had detrimental and lasting effects on both developed and emerging

economies. This dynamic is summarized by the phrase, “when the U.S. sneezes, the rest of the

world catches a cold.”

Given this role as a global economic leader, a number of recent studies investigate the spillover

effects of the U.S. economy onto other nations. Arora and Vamvakidis (2004) use a fixed-effects

panel regression and find that U.S. economic growth has positive effects on the rest of the world,

especially for developing countries. Helbling et al. (2007) use multiple methodologies to deter-

mine the effect of the U.S. economy on other countries. By conducting an event study, they find

that U.S. recessionary periods coincide with global downturns. They also use simple regressions

while controlling for potential common unobserved shocks and country-specific effects and find

that a 1-percentage-point decline in U.S. growth leads to an average 0.16-percentage-point drop in

output growth across their sample of countries, with Canada, Latin America, and Caribbean coun-

tries being the most strongly influenced. Lastly, they use the more dynamic approach of structural

vector autoregressions (SVARs) to allow for both foreign and domestic effects, where they find

U.S. growth significantly impacts growth in Latin America, the Newly Industrialized Economies

1Source: World Bank.
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(Hong Kong, Korea, Singapore, and Taiwan), and the Association of Southeast Asian Nations (In-

donesia, Malaysia, the Philippines, and Thailand). Antonakakis (2012) uses a dynamic measure of

correlation to examine the synchronization of G7 business cycles across a long time-series (1870

to 2011). They find U.S. recessions have positive effects on business cycle comovements after the

1971 breakdown of the Bretton-Woods system, with an increased level of synchronization during

the Great Recession.

The goal of this paper is to assess the influence that U.S. output growth has on the business

cycles of other nations. In particular, we ask if U.S. economic growth signals economic turning

points in other countries. In our setting, we cannot identify which structural innovations (shocks)

drive spillovers from the U.S. to other countries, or if the proximate shock leading to the turning

point is global in nature. Rather, we are merely interested in the comovement between U.S. output

and economic downturns of other countries. However, we do analyze the timing of when the U.S.

affects other countries. So, we could appeal to other studies as to what the driving forces were

during a given time period.2

Despite the inability of our model to offer a complete characterization of these shocks, our

study should be of relevant interest to policymakers and others interested in the dependence of

foreign business cycles on the U.S. economy. Our results imply that the trajectory of U.S. out-

put growth informs both the timing and duration of economic turning points in certain foreign

economies. Proper analysis of these cross-country linkages give policymakers, both in the U.S.

and abroad, a better understanding of the trade-offs faced when conducting independent and coor-

dinated actions.

Since our focus is on economic turning points, we use the regime-switching model of Hamilton

(1989) with time-varying transition probabilities (TVTP) as outlined by Goldfield and Quandt

(1973), Diebold et al. (1994), and Filardo (1994). This framework allows us to not only identify

economic turning points, but also the degree to which U.S. output growth influences the evolution

2For analysis of the specific mechanisms (trade openness, financial market linkages, etc.) by which the U.S.
transmits shocks to the rest of the world, see Calvo, Leiderman and Reinhart (1993), Kose and Yi (2001), Uribe and
Yu (2006), Mackowiak (2007), Edwards (2010), Bayoumi and Bui (2010), and Kim, Wagan and Akbar (2013).
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of the underlying state—recession or expansion—of a nation’s economy. We consider regime-

switching models with both two (recession and expansion) and three states (recession, low-growth

expansion, and high-growth expansion).

Our panel of countries includes the Canada, France, Germany, Italy, Japan, Mexico, and the

United Kingdom (U.K.), covering the time period 1960:Q2 - 2013:Q4. We find that U.S. output

growth informs the timing and duration of recessions for Canada, Germany, the U.K., and, to a

lesser extent, Mexico. For the remaining countries (France, Italy, and Japan), we find no relation-

ship between U.S. output growth and business cycle turning points.

The paper proceeds as follows: Section 2.2 details the regime-switching model. Section 1.3 de-

scribes the data and outlines the estimation methodology. Section 2.5 presents our results. Section

2.6 concludes.

1.2 Model

Burns and Mitchell (1946) characterized the business cycle as distinct phases of expansion and

recession. As defined by the National Bureau of Economic Research (NBER), a recession is a

wide-spread decline in economic activity typically lasting from a few months to over a year. On

the other hand, expansions are characterized by positive growth in economic activity and, typically,

longer durations.

Models of a country’s business cycle are typically estimated with that country’s data alone.

Regime shifts are characterized by sudden and persistent shifts in the growth rate of the economic

indicators, usually domestic GDP. In this paper, we are interested in contagion of economic out-

comes across countries. To this end, we will augment the standard business cycle model to account

for possible contagion by a dominant country—in this case, the U.S.

The model we adopt is based on the business cycle model of Hamilton, who characterizes the

cycle as a two-state process with random regime changes. In his framework, the mean growth rate

of a country’s output, yt, depends on a latent state variable, st = {1, 2}. The state of the economy

at any time is either “recession” (st = 1) or “expansion” (st = 2). Assuming no autoregressive

3



terms for simplicity, this model is given by

yt =

 µ1 + εt, if st = 1 (recession)

µ2 + εt, if st = 2 (expansion)
,

where the error variance, εt ∼ N (0, σ2), is constant across states. Consistent with the NBER’s

definition of the business cycle, we restrict the average growth rate of output to be positive during

expansionary periods (µ2 > 0) and negative during recessionary periods (µ1 < 0).

In principle, we could include any number of states K in the model in order to better match

certain features of business cycles. For example, Kim and Piger (2000), Kim and Murray (2002),

and Billio et al. (2013) include three-states in their regime-switching model of the business cycle.

Additional states can reflect persistent differences in business cycle characteristics such as fast

versus slow growth expansion regimes or deep versus shallow recessions. The generalized K-state

model is given by

yt =



µ1 + εt if st = 1,

µ2 + εt if st = 2,
...

...

µK + εt if st = K,

with the identifying restriction µ1 < µ2 < . . . < µK . We consider both a two-state (“recession”

and “expansion”) and a three-state (“recession”, “low-growth expansion”, and “high-growth ex-

pansion”) model for each country. We normalize the states such that µ1 < 0 < µ2 < µ3. This

provides econometric identification as well as an interpretations for future discussion.

1.2.1 Transition Probabilities

The NBER’s Business Cycle Dating Committee provides ex post historical dates for which

the U.S. is in expansion or recession. Many other countries do not have “official” business cycle

turning points. The model leaves the state of the economy unobserved, and, therefore, requires an

assumption about the evolution process of the state variable. Ideally, a model of economic business

cycles matches two features of the data: (1) both expansions and recessions are highly persistent,

4



and (2) expansions have longer average durations than recessions.

A standard assumption of regime-switching models is to assume the state variable follows a

first-order Markov process with fixed transition probabilities (FTPs) [e.g., as in Hamilton (1989)].

The Markov property imposes that the current value of the state variable, st, is a function of its

previous value, st−1. In the two-state model, the transition matrix governing the Markov process

is represented as

P =

 p11 p12

p21 p22

 ,
with FTPs

pji = Pr [st = j|st−1 = i] , (1.1)

where the columns of P each sum to 1 (i.e.,
∑

j pji = 1 for i = 1, 2). Thus, if a country was in

expansion last period (st−1 = 2), the probability that it remains in expansion this period (st = 2)

is p22, and the probability that the economy enters a recession this period (st = 1) is p12 = 1− p22.

Similarly, given that a country was in recession last period (st = 1), the probability that it remains

in recession this period (st = 1) is p11, and the probability the economy recovers and enters

expansion this period (st = 2) is p21 = 1− p11.

Persistence is generated in the Markov process when the diagonal elements of the transition ma-

trix are greater than the off-diagonal elements. Previous studies typically find the persistence prob-

ability of expansion, p22, to be greater than the persistence probability of recession, p11, coinciding

with the observation that the average duration of expansions is greater than that for recessions. For

example, Hamilton (1989) found a persistence probabilities for the U.S. of approximately 0.90 for

expansions and 0.75 for recessions, implying expected durations of 10 quarters for expansions and

4 quarters for recessions, similar to those defined by the NBER.

Because we are interested in how U.S. output growth informs economic turning points of other

nations, we extend Hamilton’s model to allow a foreign (U.S.) output growth rate to directly affect

the evolution of the underlying economic state of other nations.3 We assume the Markov process

3We assume that the foreign output growth rate, in this case, is exogenous and unaffected by the domestic regime.
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is governed by time-varying transition probabilities (TVTP), which are functions of exogenous

covariates and last period’s state. In our case, we use the one-period lag of U.S. output growth,

yUSt−1, as the single covariate which influences the switching process. The time-varying transition

matrix in the two-state model is

Pt =

 p11,t p12,t

p21,t p22,t

 ,
with TVTP

pji,t = Pr
[
st = j|st−1 = i, yUSt−1

]
=

exp (αji + βjiy
US
t−1)

2∑
k=1

exp (αki + βkiyUSt−1)

.

Here, αji is the time-invariant parameter and βji is the coefficient on lagged U.S. output growth.

The FTP model is nested under the TVTP framework if the covariate has no effect under each

state realization (i.e., βji = 0 for i = 1, 2 and j = 1, 2). Note that the time-invariant parameter

αji and the coefficient βji depend on both the previous state (st−1 = i) and the potential current

state (st = j) thereby reflecting the Markov property. Also, this parameterization allows U.S.

output growth to have asymmetric effects since we assume the coefficient is state dependent (i.e.,

βj1 6= βj2 for j = 1, 2 and β1i 6= β2i for i = 1, 2 ). In order to identify the transition parameters,

we must normalize one of the state’s transition parameters to be zeros. For the two-state model,

we use state 2: α2i = 0 and β2i = 0 for i = 1, 2.

For the general K-state model, the time-varying transition matrix is

Pt =



p11,t p12,t . . . p1K,t

p21,t p22,t
... . . .

pK1,t pKK,t


,

with TVTP

pji,t = Pr [st = j|st−1 = i,xt] =
exp (αji + βjiy

US
t−1)

K∑
k=1

exp (αki + βkiyUSt−1)

, (1.2)
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where we can impose the identification restrictions on state K: αKi = 0 and βKi = 0 for i =

1, 2, . . . , K. We collect the unrestricted transition parameters into the [2K × (K − 1)] matrix Γ =

[γ1, . . . , γK−1], where γi = [αi1, . . . , αiK , βi1, . . . , βiK ]′ for i = 1, . . . , K − 1.

1.2.2 Determining the Effects of U.S. Output Growth

The effect of U.S. output growth on other countries’ turning points appears to be summarized

by the coefficient βji in the transition equations. However, interpreting these coefficients in the

logistic framework of TVTP is less straightforward than in a simple linear regression model. One

of the ways to assess the effect of U.S. output growth on the transition dynamics is by looking at

the marginal effect of a change in yUSt−1 on each transition probability pji,t for j = 1, . . . , K and

i = 1, . . . , K. We calculate the marginal effect of yUSt−1 on pji,t by taking the partial derivative of

(1.2) with respect to yUSt−1:
∂pji,t
∂yUSt−1

= pji,t
(
βji − β̄

)
,

where β̄ =
∑

k pki,tβji is the probability weighted mean of the coefficient across states.

In the two-state model, the marginal effect of a change in yUSt−1 on the probability of recession

(st = 1) simplifies to
∂p1i,t
∂yUSt−1

= β1ip1i,t(1− p1i,t),

which depends on the previous period’s state. Determining the sign of this marginal effect is

straightforward because it is irrespective of the value of yUSt−1 and therefore time-invariant. If β1i <

β2i = 0, then the probability of experiencing a recession (expansion) next period falls (rises) as

lagged U.S. output growth rises. We expect to find this relationship for countries that tend to

comove with the U.S. economy. Conversely, if β1i > β2i = 0, then the probability of experiencing

a recession (expansion) next period rises (falls) as lagged U.S. output growth rises. We expect

to find this relationship for countries that move opposite (“decouple”) from the U.S. economy. If

β1i = β2i = 0, then the marginal effect is zero and lagged U.S. output growth does not influence

the transition probabilities. Therefore, no relationship exists between U.S. output growth and

economic turning points for the country under consideration.

Unlike the sign, the magnitude of the marginal effect in the two-state model is time-varying
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because it depends on the value of yUSt−1. For example, assume parameter values α11 = −1 and

β11 = −1 in a simple two-state version of our model (K = 2). First, consider the case where

U.S. output growth is two-standard-deviations above its historical mean (yUSt−1 = 2). Then, the

marginal effect of further changes in yUSt−1 on the persistence probability of recession is -0.05.

However, if U.S. output growth is relatively low at two standard deviations below its historical

mean (yUSt−1 = −2), then the absolute magnitude of this marginal effect quadruples to -0.20. Thus,

the current status of the U.S. economy informs not only the probability of recession in the country

of interest, but also the current degree of influence U.S. output growth has over this probability.

In the general K-state model, both the sign and magnitude of the marginal effects depend on

the value of yUSt−1. In order to fully assess the effect of U.S. output growth at different points in

time, we calculate the marginal effects over a range of possible values of yUSt−1.

1.3 Data and Estimation

1.3.1 Data

We use the seasonally-adjusted, annualized quarter-to-quarter growth rate of real GDP as our

measure of economic activity growth (yt) for each country. We use the data from the Quarterly Na-

tional Accounts database provided by Organisation for Economic Co-operation and Development

(OECD). The countries included in our sample are the U.S.’ G7 counterparts (Canada, France,

Germany, Italy, Japan, and the U.K.) and Mexico, given its geographic proximity and economic

relationship with the U.S. Our time-series covers 1960:Q2 to 2013:Q4 for Canada, Germany, Italy,

Japan, and the U.K., 1970:Q2 to 2013:Q4 for France, and 1980:Q2 to 2013:Q4 for Mexico. Table

B.1 provides summary statistics for our sample.

For the transition covariate, yUSt−1, we use the one period lag of U.S. output growth from the

OECD’s Quarterly National Accounts database, covering the time period 1960:Q1 to 2013:Q3. To

simplify the interpretation of the results, we standardize the time series of U.S. output growth to

have zero mean and unit variance. Thus, yUSt−1 = 0 implies the U.S. is at its historical average

growth rate over our sample period, approximately 3.04%. Similarly, yUSt−1 = c means the U.S.

is growing at c standard deviations away from its historical average growth rate. For example,

yUSt−1 = 2 implies that U.S. output grew at 9.80% last period since the standard deviation of U.S.
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output growth from 1960:Q1 to 2013:Q2 is approximately 3.38.

Figure B.1 plots the time-series of real GDP growth for a subset of our sample (Canada, Ger-

many, and Japan). Grey bars represent U.S. recession dates as defined by the NBER’s Business

Cycle Dating Committee and are included only for reference. For each country, real GDP growth

tends to fall during periods of U.S. recession, implying some connection between U.S. and other

countries’ growth.

1.3.2 Estimation

We estimate both the two- and three-state models using the Gibbs sampler, a Markov-chain

Monte Carlo algorithm used in a Bayesian environment. Rather than drawing from the full joint

posterior distribution directly, the Gibbs sampler draws each of the four parameter blocks from

their individual conditional posterior distribution given the draws for the other blocks. First, we

partition the parameters and latent variables into four blocks: (1) the average growth rates µ =

[µ1, . . . , µK ]′; (2) the error variance σ2; (3) the transition probability parameters Γ; and (4) the

time-series of the latent state variable, s = [s1, . . . , sT ]′. We run the sampler for 100,000 iterations,

discarding the first 50,000 to achieve convergence.

Prior distributions for the parameters of the two- and three-state model are given in Tables

B.2 and B.3, respectively. In each case, we use conjugate prior distributions. Following Kim

and Nelson (1999), the steps to draw the average growth rate and error variance parameters are

straightforward. The conditional posterior distribution for the vector of average growth rates, µ, is

multivariate normal and the posterior for the error variance, σ2, is inverse-Gamma.

The transition probability parameters can be rewritten as a differences in random utility model

(dRUM) as outlined by Frühwirth-Schnatter and Frühwirth (2010) and Kaufmann (2011). Under

the dRUM, we assume each state has a continuous, latent utility value. Conditional on knowing

the state at each point in time, the observed state is the one with the highest utility. The conditional

posterior distribution of the transition parameter vector, γi, is multivariate normal for each state

i = 1, . . . , K − 1. The unobserved state variable is drawn using the filter from Hamilton (1989)

with the smoothing algorithm from Kim (1994). For the general K-state model, we use the multi-

state extension of the filter as outlined by Kaufmann (2011).
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Choosing between using two states (“recession” and “expansion”) and three states (“recession”,

“low-growth expansion”, and “high-growth expansion”) is a model selection problem. We use

Bayesian Information Criterion (BIC) to choose which model is best suited for each country. BIC

is calculated as

BIC = −2 log[L(Θ, s,y,yUS)] +N log(T )

whereN is the number of parameters in the model, T is the number of time-series observations, and

L(Θ, s,y,yUS) is the value of the likelihood function given model parameters Θ = {µ, σ2, α, β},

the state vector s, and the data y = [y1, . . . , yT ] and yUS =
[
yUS0 , . . . , yUST−1

]
. BIC accounts

for the likelihood of the data, while penalizing models with a large number of parameters. BIC

was shown by Raftery (1995) and Kass and Raftery (1995) to approximate the Bayes factor of

competing models, and thus provides an adequate solution to our model selection issue. The BIC

is calculated at each iteration of the Gibbs sampler and the optimal model for each country is the

one which minimizes the median BIC calculation.

1.4 Results

Table B.4 gives the model selection results for each country. The two-state model is preferred

for Germany, Japan, and Mexico, while the three-state model is chosen for Canada, France, Italy,

and the U.K. These results suggest a more stable expansion output growth rate for the former

countries, while the latter countries appear to have both low and high growth expansions.

We present the estimated mean growth rate and variance parameters for each country in Table

B.5. Germany, Japan, and Mexico each have much higher error variance than the other countries

in sample, possibly due to the lack of third state in their optimal model to capture high-growth

dynamics. The lack of two expansion states also explains the higher estimated mean expansionary

growth rate for these countries since it is capturing episodes of both high- and low-growth.

We discuss the remaining results in two subsections. The first outlines the estimated recession

timing for each country across time. The second subsection assesses the ability of U.S. output

growth to inform business cycle turning points for each country.
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1.4.1 Timing of Business Cycle Phases

Figure B.2 presents the probability implied by our model that a country is in a state of reces-

sion at each time period in our sample. In technical terms, these are the posterior probability of

recession, Pr[st = 1|ΩT ] for each country conditional on ΩT , the information at time t. For each

t, Pr[st = 1|ΩT ] is the percentage of Gibbs iterations for which a recession state is drawn at each

time period. Although all of the countries in our sample experience some similar recessions (e.g.,

the first oil crisis of the mid 1970’s and the Great Recession of 2007-2009), there are substantive

differences in the timing of entering recessions as well as their durations. For example, we find

that most countries enter recession after the NBER determined that the Great Recession of 2007-

2009 in U.S. already began. Although some countries (e.g., Canada, Mexico, and the U.K.) exit

this recession with the U.S., others (e.g., Italy and Japan) experience lasting effects of the global

downturn leading to a “double-dip” recession.

For completeness, we plot the posterior probability of expansion in Figure B.3. Countries

following the two-state model (Germany, Japan, and Mexico) have a single expansion state and

therefore a single posterior probability of expansion, whereas countries following the three-state

model (Canada, France, Italy, and the U.K.) have two expansion states (low- and high-growth).

For the latter, we include the posterior probabilities of the low-growth expansion state in Figure

B.3 and we plot separately the posterior probabilities for the high-growth state in Figure B.4.

Consistent with the empirical literature on business cycles, we find the expansion state(s) to

be highly persistent with longer average duration(s) than the recession state. The high-growth

expansion state accounts for periods of relatively high-growth prior to 1985, the beginning of the

period known as the Great Moderation. For France, the high-growth expansion state also captures

two notable economic periods: the movement away from dirigisme in the late 1980s, and the

beginning of Euro integration in the late 1990s.

11



1.4.2 Does U.S. output growth drive business cycles?

The focus of this paper is on whether U.S. output growth informs economic turning points of

other nations.4 In our modelling framework, this relationship is captured in the transition dynamics

of the state variable. Table B.6 displays the median posterior draws for the transition probability

parameters for all the countries in our sample. As we noted in Section 1.2.2, the coefficients βji

in the transition equations suggest how U.S. output growth influences the state dynamics of the

country of interest. They are not, however, the sole determinants of the (marginal) effect of a

change in lagged U.S. output growth on the transition probabilities on the business cycle of a given

country. Because the marginal effects depend on both the value of lagged U.S. output growth yUSt−1

and the previous state of the economy st−1, we calculate them across all possible combinations

of st−1 and yUSt−1.5 We do this for each iteration of the Gibbs sampler, thereby constructing the

posterior distribution for each of the marginal effects.

Figures B.5 through B.11 display the marginal effect of a change in lagged U.S. output growth

on each of the transition probabilities. The horizontal axis for each figure reflects different values

for U.S. output growth, negative four to positive four standard deviations from its historical aver-

age. The vertical axis plots the marginal effect of a change in U.S. output growth on the respective

transition probability conditional on the value for yUSt−1 and the previous state st−1. In each figure,

the blue line represents the posterior median of the marginal effect and the shaded region represents

the 68% coverage of the posterior distribution.

A positive marginal effect implies that an increase in lagged U.S. output growth increases the

respective transition probability pji,t = Pr(st = j|st−1 = i, yUSt−1). Conversely, a negative marginal

effect implies that an increase in lagged U.S. output growth decreases the respective transition

probability. That is, for countries that comove with the U.S., we expect to find a positive (negative)

4Note that we cannot infer causality of the business cycle in the structural sense, but rather we assess if U.S. output
acts as an informative indicator of other countries’ turning points. Therefore, countries for which our model indicates
that U.S. output growth is not a significant indicator does not imply a lack of structural mechanisms which propagate
shocks between the two nations.

5We consider values for yUS
t−1 between negative four standard deviations and positive four standard deviations of

its historical mean. This corresponds to a range of -10.5 to 16.6, which includes the historical minimum (-8.7) and
maximum (15.3) values of U.S. output growth.
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marginal effect of yUSt−1 on the probability of transitioning to an expansion (recession) and the

persistence of expansion (recession). For countries that decouple from the U.S., we expect to find

a negative (positive) marginal effect of yUSt−1 on the probability of transitioning to an expansion

(recession) and the persistence of expansion (recession).

For each country, we assess the ability of U.S. output growth to inform (1) the timing of en-

tering a recession, (2) the persistence or duration of a recession, and (3) transitions between states

of low- and high- growth expansion (for countries following the three-state model). We assess the

first dynamic by looking at the marginal effect of U.S. output growth on the transition probability

from expansion (st−1 = 2 or 3) to recession (st−1 = 1), so the relevant transition probabilities

are p12,t and p13,t. For recession persistence, we see if U.S. output influences the transition prob-

ability of staying in recession this period (st = 1) given the economy was in recession last period

(st−1 = 1) with relevant transition probability p11,t.We analyze the the last aspect by looking at

both the persistence probability of both low- (p22,t) and high-expansion (p33,t) states in addition to

the transition probabilities between the two expansion states (p23,t and p32,t).

The three countries for which U.S. output growth has the most influence are Canada, Germany,

and the U.K.. For these countries, lagged U.S. output growth influences both the timing of entering

a recession as well as the duration of a recession. The results show that each of these countries

comove with the U.S.: higher U.S. output growth implies a lower probability of recession, and

lower output growth implies a higher probability of recession (↑ yUSt−1 ⇒↓ p1i,t, ↑ p2i,t for all i).

Figure B.7 presents the marginal effects for Germany, which follows the simpler two-state model.

For Germany, the marginal effect of U.S. output growth is largest (in absolute terms) at low levels

of yUSt−1, or when the U.S. is likely in a state of recession. Therefore when the U.S. economy is

in dire circumstances (as signalled by low output growth), Germany is more susceptible to any

further movements in U.S. output relative to more “normal” economic times.

In addition to informing the timing and duration of recessions, U.S. output growth also influ-

ences the transition dynamics of low- and high-growth expansion for Canada, as seen in Figure

B.5. When U.S. growth is relatively low (i.e., below its historical mean), increases in U.S. output

growth imply a higher persistence of low-growth expansion (↑ p22,t). However, when U.S. growth
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is relatively high (i.e., above its historical mean), increases in U.S. output growth decrease the

persistence of low-growth expansion and increase the probability of transitioning to high-growth

expansion (↑ p32,t) -as well as the persistence probability of high-growth expansion (↑ p33,t). This

result reflects the strong economic relationship between Canada and the U.S. since it not only

informs the timing of recessions but also the timing of varying degrees of expansion.

For Mexico, lagged U.S. output growth informs the duration of recession but not the timing

of entering recession. When U.S. output growth falls, the persistence probability of recession in

Mexico rises (↑ p11,t) implying a longer expected duration of recession. The lack of U.S. output

growth influencing the timing of Mexico entering recession could be due to the fact that Mexico

experienced idiosyncratic recessions unrelated to the U.S. (e.g. the 1994 Mexican peso crisis),

which tended to be shorter than coincident recessions with the U.S. (e.g. the recession of the early

1980’s and the Great Recession of 2007-2009).

The results for France, Italy, and Japan suggest that lagged U.S. output growth does not influ-

ence the timing or duration of recession for these countries. For France and Italy, increases in U.S.

output growth increase the persistence probability of high-growth expansion (↑ p33,t), but only at

low-levels of U.S. output growth.

Recent studies on business cycle synchronization offer two possible explanations of our results:

stage of development and common language. Regarding the first explanation, Kose et al. (2012)

find that emerging market economies and advanced economies have decoupled during the global-

ization period but countries inside each respective group have converged. This finding is consistent

with our result that the U.S. is more informative for the business cycles of advanced countries like

Canada, Germany, and the U.K., and less so for the developing country in our sample, Mexico.

Another plausible explanation is that countries with a common language tend to have similar

business cycles.6 We find that U.S. output growth informs the business cycles for each of the

countries in our sample with English as the de facto or official language.

6See Artis et al. (2011) and Francis et al. (2012), Ductor and Leiva-Leon (2014).
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1.5 Conclusion

In this paper, we assessed whether U.S. economy drives business cycle turning points of other

nations. We extended the nonlinear business cycle model of Hamilton (1989) to allow U.S. output

growth to influence the probability of a country moving between states of expansion and recession.

We found that the U.S. does inform the timing and duration of recessions for Canada, Germany, the

U.K., and, to a lesser extent, Mexico. Additionally, we found no informative relationship between

U.S. output growth and the business cycles of France, Italy, and Japan.

It is important to keep in mind that the results here suggest only that the U.S. does not appear to

lead France, Italy, and Japan. If these countries business cycles react intraquarter to fluctuations in

U.S. output, they would show up as a false negative in the estimation. Further, if a common world

shock affects the U.S. before other countries, the result might be a false positive. However, our

analysis provides a framework for approaching the question of Granger causality across business

cycles.
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CHAPTER 2

BUSINESS CYCLES ACROSS SPACE AND TIME

2.1 Introduction

Recent evidence suggests the presence of an overarching world business cycle with a number of

underlying regional business cycles.1 For instance, all countries experience global shocks, such as

the financial crisis of 2009, but only a subset of countries experience idiosyncratic regional shocks,

such as the European debt crisis which began in 2011. This paper seeks to answer a number of

questions regarding how the world business cycle interacts with less-pervasive business cycles that

are isolated to a subset of countries: How has this relationship between global and regional cycles

evolved over time? What factors determine business cycle similarities across countries? What

drives international turning points?

One way to model the business cycle is as a movement between distinct latent states of expan-

sion and recession [see Burns and Mitchell (1946)].2 Distinguishing periods of recession can be

done through a simple rule such as two consecutive periods of economic contraction, or through

richer statistical methods. For example, Hamilton (1989) outlined a two-state Markov-switching

model of the U.S. economy and found similar recession dates to those outlined by the NBER. Since

that seminal paper, numerous studies have implemented Markov-switching frameworks to estimate

1Kose, Otrok, and Whiteman (2003, 2008) determined that both regional and global factors account for a relatively
large portion of the variation in economic growth across countries. Bordo and Helbling (2011) conducted historical
analysis of international business cycle synchronization over the past , and similarly found an increase in the impor-
tance of global shocks over time. On the other hand, Kose, Otrok, and Prasad (2012) and Hirata, Kose, and Otrok
(2012) found a decline in the importance of global factors, but an increase in business cycle comovement within both
emerging and developing economies.

2Alternatively, there is a large literature on modelling business cycles through dynamic factors as opposed to
looking at business cycle phases. See Kose, Otrok, and Whiteman (2003, 2008), Kose, Otrok, and Prasad (2012),
Hirata, Kose, and Otrok (2012), and Francis, Owyang, and Savaşçin (2012), among others.
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business cycle phases for multiple economies and compare common movements ex post.3 Typi-

cally these studies assume independence across economies where individual cycles are estimated

separately from one another in a univariate setting. These univariate Markov-switching models

therefore do not lend themselves to properly analyze the comovement and interaction of multiple

economies.

Hamilton and Owyang (2012, henceforth HO) constructed a regional business cycle model to

consider a large number of economies inside of a single Markov-switching framework. In their ap-

plication, they analyze the U.S. national business cycle and its interaction with state-level business

cycles. To alleviate the parameter proliferation problem associated with using a large cross-section,

HO implement time-series clustering by assuming that states tend to move together in a small num-

ber of endogenously-determined groupings determined by historical employment growth rates and

other state-specific characteristics, such as industry composition. They find evidence that all states

tend to experience national downturns, but the specific timing of entering or exiting recession dif-

fers depending on the shock which initially led to the downturn.

A shortfall of HO’s model is that they assume the underlying business cycle regime evolves

according to fixed transition probabilities (FTP). Markov-switching models with FTP (e.g., Hamil-

ton, 1989; HO) assume the current regime is a function of only the previous regime(s), and may

miss vital information (contained in macroeconomic data) signalling business cycle turning points.

For example, the probability of a global recession should rise when there is a financial crisis. To

reflect this, the variables driving the time-variation of the transition probabilities should contain

financial statistics informing the model of an impending downturn.

We adopt the framework of HO and apply it to countries rather than states, with the primary

methodological innovation being the inclusion of time-varying transition probabilities (TVTP).

Markov-switching models with TVTP have two particular advantages over standard fixed transi-

tion alternatives. First, the economic regime is a function of both the previous regime as well as

past macroeconomic conditions. We can therefore include a set of covariates which inform the

3See Owyang, Piger, and Wall (2005), Owyang, Piger, Wall, and Wheeler (2008) and Altuğ and Bildirici (2012),
among others.
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model of the timing of regime switches. The second advantage of using TVTP is that the expected

duration of a given state is also time-varying. This feature is more intuitive than models with con-

stant expected duration (i.e., models with FTP) because recessions tend to have different lengths

depending on the economic climate and their proximate causes. For example, economists expect

that a recession caused by a negative financial shock will last longer than a recession due to say a

contractionary oil shock. Similarly, the expected length of a recession should depend on the rela-

tive magnitudes of the underlying shocks. For example, a large shock to oil prices implies a longer

expected recession relative to a much smaller oil price shock.

Since it is infeasible to include every variable believed to influence international turning points,

the choice of which variables to include in the switching process is crucial to the model’s impli-

cations. For this study, we choose four variables which economic theory and previous empirical

studies determined to have predictive ability and substantive relationships with previous reces-

sions. These include term spreads, oil price shocks, global stock market returns, and global house

price movements.

We use the Bayesian technique of Gibbs sampling to perform posterior inference. Our dataset

includes 37 countries, covering the time period of 1970:Q3 - 2013:Q2. In that time frame, we

find two instances of global recession: the first oil crisis in 1974 - 1975 and the global financial

crisis of 2008 - 2009. We find three groups of countries, or “clusters,” which tend to experience

their own independent timing of recessions. As previous studies suggest, geographic proximity is

an important factor in determining the groupings of these countries.4 However, we find that trade

openness, industrialization, and similar institutional factors, such as linguistic diversity are also

important.

From the TVTP setup, our results suggest that the primary drivers of international turning

points are movements in asset prices. We do not find that any one cluster is particularly exposed

to a single type of shock, but rather idiosyncratic recession timing across all clusters depends upon

4We should note this result comes from analyzing the cluster compositions ex post and finding a tendency of
countries to cluster based on geographic proximity. We plan on testing this by including continent dummies in the
prior specification.
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fluctuations in asset prices. This result reinforces the finding by Reinhart and Rogoff (2009) and

Helbling et al (2011) of the importance of financial markets in propagating recessions to a global

level.

The outline of the paper is as follows: Section 2.2 outlines the model. Section 2.3 explains the

estimation technique. Section 2.4 describes the data. Section 2.5 presents the estimation results

and findings. Section 2.6 concludes the paper.

2.2 Model

The central framework of our model is the multivariate regime-switching framework of Hamil-

ton and Owyang (2012, HO). We assume each economy’s growth rate depends on a latent regime

indicator which takes one of two possible states at each time period. These states represent the

business cycle, with alternating phases of expansion and recession. In expansion states, the econ-

omy grows at a relatively higher average rate than in recession states.

Standard regime-switching models (e.g., Hamilton, 1989; HO) assume the regime indicator

follows a first-order Markov process with fixed transition probabilities (FTP). Here, the proba-

bility of the current period’s state (i.e., expansion or recession) depends upon last period’s state,

allowing the model to capture regime persistence. For example, Hamilton (1989) found in a sim-

ple one-country model that expansionary periods tend to be followed by expansionary periods and

recessionary periods tend to be followed by recessionary periods. This characteristic matches the

dating of recessions by the NBER’s Business Cycle Dating Committee.

However, the regime-switching model with FTP has a number of shortcomings. First, the evo-

lution of the regime is an implicit probabilistic process. The model is parsimonious and tractable,

but operates as a “black box” with underlying dynamics that may be of interest to researchers and

policymakers. Second, regime persistence is constant across time periods. A framework wherein

the expected duration of a regime (e.g., a recession) is a function of current economic conditions

is more appealing. Therefore, we assume the switching process for the aggregate regime variable

follows time-varying transition probabilities (TVTP).5 In the model with TVTP, the underlying

5Time-varying transition probabilities were first considered by Diebold, Lee, and Weinbach (1994), Filardo (1994),
Filardo and Gordan (1998), and more recently by Kim, Piger, and Startz (2008), Kaufmann (2011), and Bazzi et al.
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transition probabilities are a function of exogenous transition covariates, in addition to the previ-

ous state. In our application, the transition covariates are measures of global shocks and economic

conditions informing the timing of business cycle turning points. The inclusion of TVTP in the

regime-switching process allows us to consider what shocks tend to drive groups of countries into

and out of recession.

In addition to the modeling assumptions placed on the transition dynamics, we must also

consider the interaction of business cycles across countries. Typically, regime-switching mod-

els which consider multiple countries assume either full dependence or full independence across

country business cycles. In the case of full dependence, all countries follow the same cycle and

can therefore be summarized by a single, global regime indicator. Conversely in the case of full

independence, each country’s cycle is estimated separately from the others’ and assumes that each

country’s business cycle state offers no information for other countries’ states. We opt for an in-

termediate assumption wherein we model a global business cycle while allowing for deviations for

groups of countries, or what we call “clusters”. Following HO and Francis, Owyang, and Savaşçin

(2012, henceforth FOS), we determine cluster composition endogenously through similar move-

ments in economic growth as well as a set of country-specific characteristics which enter through

the prior distribution.

Let N be the number of countries considered in the model. Let ynt be the growth rate of real

GDP for country n at time period t. Let snt be country n’s business cycle regime indicator: snt = 1

if in recession, and snt = 0 if in expansion. Country n’s average growth rate in expansion is µ0n,

and the average growth rate in recession is µ0n + µ1n. The multi-country regime-switching model

is given by

yt= µ0+µ1�st+εt, εt
i.i.d∼ N(0,Σ), (2.1)

where yt = [y1t, . . . , yNt]
′, st = [s1t, . . . , sNt]

′, µ0 = [µ01, . . . , µ0N ]′, µ1 = [µ11, . . . , µ1N ]′, and

εt = [ε1t, . . . , εNt]
′. The symbol � represents element-by-element multiplication.

We assume the error vector εt is independent of the state vector, sτ , for all time periods (i.e.

(2014).
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E[ε′tsτ ] = 0 ∀ τ ). Additionally, we assume the covariance matrix is diagonal : Σ= diag(σ2
1, . . . , σ

2
N).

This assumption implies that coincident recessions are the only channel through which economic

growth is correlated across countries. Therefore, business cycle synchronization shows up as sim-

ilar recession timing reflected in the regime vector st in our model.

2.2.1 Clustering

Each country’s regime indicator can take one of two possible values at any given time period

(0 for expansion or 1 for recession). When the number of countries (N ) is large, the regime vector

st can take 2N possible values. Left unrestricted, the model cannot be feasibly estimated due to the

number of possible combinations the regime vector can take and the resulting parameter prolifera-

tion problem. One potential solution is to assume all of the country cycles are fully dependent, and

therefore follow the same global business cycle. Conversely, we could assume full independence

across country cycles and estimate each individual country’s regime variable independent of the

others’.6

Instead we opt for an assumption between the case of full dependence and full independence.

We restrict the number of possible values for the regime vector through a time-series clustering

framework.7 Clustering assumes there are a number of unobserved groupings – or, “clusters” –

of countries which experience similar business cycle turning points apart from the global cycle.

Country-members of each respective group experience idiosyncratic recessionary periods while

non-members are in expansion. It is important to note that this assumption abstracts away from

business cycle turning points isolated to a single country or a small group of countries. Therefore,

recessions must be substantially pervasive across countries in order to show up in our model. This

assumption is justified by the recent empirical evidence from Kose et al. (2012), which suggests

that a large portion of economic growth is due to both global and regional factors.

6Full independence implies that for two countries A and B, the business cycle regimes for each country sA,t

and sB,t satisfy Pr (sA,t = i, sB,t = j) = Pr (sA,t = i) Pr (sB,t = j). Or equivalently, Pr (sA,t = i|sB,t = j) =
Pr (sA,t = i).

7See Frühwirth-Schnatter and Kaufmann (2008), HO, FOS, and Hernández-Murillo et al. (2013). The time-series
clustering framework reduces these possible values to K+ 2 (where K+ 2 << 2N ), giving us a numerically tractable
model.
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Assume there is an aggregate latent regime variable zt ∈ {1, . . . , K,K + 1, K + 2} indicating

which cluster of countries is in recession at time t. Associated with each aggregate state zt = k

is a (N × 1) vector hk = [h1k, . . . , hNk]
′, where hnk = 1 when country n is a member of cluster

k and hnk = 0 when country n is not a member of cluster k. Thus, we refer to hnk as a cluster

membership indicator.

Selecting theK+2 clusters to include out of the 2N possible combinations is a model selection

issue. We opt to always include the two “global” clusters; when all countries are simultaneously

in either recession or expansion. Ex ante, we associate these global clusters with the aggregate

regimes zt = K + 1 (all countries in recession, hK+1 = [1, . . . , 1]′) and zt = K + 2 (all countries

in expansion, hK+2 = [0, . . . , 0]′).

For the remaining aggregate regimes zt = 1, . . . , K, a group of countries is in recession while

simultaneously all remaining countries are in expansion. These regimes are associated with what

we call “idiosyncratic” clusters since one group of countries experiences an idiosyncratic reces-

sion in relation to the rest of the countries in our sample when these regimes are realized. Country

membership hnk in each of the idiosyncratic clusters is an unobserved variable determined en-

dogenously. We infer cluster membership from similar movements in economic growth as well

as country-specific covariates which enter through a hierarchal prior specification. Following

FOS, we restrict each country to be a member of one and only one idiosyncratic cluster (i.e.,∑K
k=1hnk = 1). This assumption stands in contrast to the model of HO, which did not restrict U.S.

states to a single cluster, but allowed for each state to be a member of either one cluster, multiple

clusters, or none of the clusters. Our assumption uncovers the “strongest” comovement relation-

ships across countries, whereas leaving cluster membership unrestricted offers the flexibility to

capture relatively weaker instances of economic comovement.

We rewrite (2.1) as a mixture model with K + 2 components:

yt|zt = k ∼ N(mk,Σ) for k = 1, . . . , K + 2, (2.2)
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where

mk = µ0+µ1�hk.

2.2.2 Evolution of the Regime

We assume the switching process for the aggregate regime variable zt follows time-varying

transition probabilities (TVTP). The underlying transition probabilities are a function of a set of

transition covariates vt = [v1t, . . . , vLt]
′ in addition to the realization of last period’s state zt−1.

Following Kaufmann (2011), we adopt a centered parameterization in order to properly identify

the time-varying and time-invariant portions of the transition probabilities. Formally, the TVTP

takes the multinomial logistic representation:

pji,t = Pr(zt = j|zt = i,vt) =
exp

[
(vt − v̄) γvji + γji

]∑K+2
k=1 exp [(vt − v̄) γvki + γki]

, (2.3)

where γvji is a (L×1) vector of coefficients for the transition covariates and γji is the time-invariant

transition parameter.8 We set the arbitrary threshold vector v̄ to be the mean of the covariates. For

identification purposes, we define state K + 2 as the reference state, implying γvK+2,i = 0L+1 and

γK+2,i = 0 for all i = 1, . . . , K + 2. We compile the transition probabilities at time period t in the

transition matrix Pt, where pji,t is the element in the jth row and ith column.

We impose the identifying restrictions µ0n ≥ 0 and µ1n < 0 for all n. These restrictions identify

the business cycles states by ensuring that on average countries grow faster during expansions

relative to recessions.9 We also need the restrictions to avoid label switching between the two

worldwide states and two growth rate parameters during estimation.

In order to identify the idiosyncratic clusters, we must impose restrictions on the transitions of

the aggregate state variable, zt. Following HO, we deny transitions from one idiosyncratic state

to a different idiosyncratic state by imposing pji,t = 0 for all t where i 6= j, i ≤ K, and j ≤ K.

8Note that the framework with time-varying transition probabilities nests the simplier fixed transition probability
setup. In the FTP case, γvji = 0 for all i, j.

9Notice that we do not restrict the average growth rate in recessionary periods (µ0n + µ1n), thus allowing for the
possibility of postive growth in recessions.
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Thus, individual clusters experience idiosyncratic recessions relative to the world, but not directly

following another cluster experiencing its own idiosyncratic recession in the previous period. This

assumption focuses our attention on cluster deviations from the global business cycle (rather than

between clusters) and significantly reduces the number of parameters to be estimated.

2.3 Estimation

We use the Bayesian technique of Gibbs sampling [Gefland and Smith (1990), Casella and

George (1992), Carter and Kohn (1994)] to estimate the model. Gibbs sampling is a Markov-chain

Monte Carlo (MCMC) technique which separates the model parameters and latent variables into

blocks. Each block is drawn from their conditional posterior distributions rather than directly draw-

ing from the unconditional joint posterior density. This method is particularly useful in instances

where it is difficult or infeasible to sample directly from the full joint posterior distribution, as is

the case with our model.

We have a total of four blocks to be estimated. The first block is the entire set of growth

and variance parameters, θ = {θ1, . . . , θN}, where θn = {µn0, µn1, σ2
n}. The second block is the

aggregate state time series, Z = {z1, . . . , zT}. The third block consists of the entire set of transition

probability parameters, γ = {γ1, . . . , γK+2}, where γj =
[
γv′j1, γj1, . . . , γ

v′
jK+2, γjK+2

]′ represents

the entire set of transition parameters governing the transition probabilities to state j. The fourth

block, H = {β, ξ, λ, h} , includes the cluster membership indicators, h = {h1, . . . ,hK+2}, as well

as the set of hyperparameters and latent variables determining the prior for cluster association,

β = {β1, . . . , βK+2}, ξ = {ξ1, . . . , ξK+2}, and λ = {λ1, . . . , λK+2}.10

2.3.1 Priors

We must define prior distributions for the parameters. These distributions are given in Table

B.7. The mean growth rate parameters have a normal prior distribution. The variance parameters

have an inverse-Gamma prior distribution. Following Kaufmann (2011), the transition parameters

have a normal prior distribution.

Following Frühwirth-Schnatter and Kaufmann (2008), HO, Francis, Owyang, and Savaşçin

10Note: ξk = [ξ1k, . . . , ξNk]′ and λk = [λ1k, . . . , λNk]′.
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(2012), and Hernández-Murillo et al. (2013), we assume that country n’s prior probability of

membership in idiosyncratic cluster k = 1, . . . , K depends on a (Q × 1) country-specific cluster

covariate vector, xnk:

p(hnk) =


exp(x′nkβk)

1+exp(x′nkβk)
if hnk = 1

1
1+exp(x′nkβk)

if hnk = 0
. (2.4)

This assumption allows countries to endogenously cluster based on comovements in real GDP

growth and country-specific covariates rather than imposing country groupings exogenously. Fol-

lowing Holmes and Held (2006) and HO, we rewrite (2.4) under the assumption that cluster mem-

bership is determined by an underlying latent variable ξnk with associated variance λnk:

hnk =

 1 if ξnk > 0

0 else
,

where

ξnk|βk, λnk ∼ N (x′nkβk, λnk)

λnk = 4ψ2
nk

ψnk ∼ KS,

where KS represents the distribution of the Kolmogorov-Smirnov test statistic.

2.3.2 Posterior Inference

In this section, we give a brief overview of the posterior draws. Appendix A outlines the

specifics of each sampling step in further detail.

We draw each country’s individual parameter set θn = {µn0, µn1, σ2
n} conditional on know-

ing all other countries’ parameter values. The posterior distribution for a country’s mean growth

rates is multivariate normal, while the posterior for a country’s variance is inverse-Gamma. This

sampling step is standard for Markov-switching models [see Kim and Nelson (1999)].

The latent state vector, Z, is drawn conditional on the other model parameters. We implement

the filter outlined by Hamilton (1989) with smoothed transition probabilities from Kim (1994). We
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combine the mutiple-state extension of the filter – outlined by HO – with the inclusion of TVTP as

in Kaufmann (2011).

We utilize the difference random utility model (dRUM) outlined by Frühwirth-Schnatter and

Frühwirth (2010) and Kaufmann (2011) to sample the transition probability parameters ,γ. The

dRUM is a data augmentation method that gives us a linear regression of γj with logistic errors.

The logistic errors can be approximated by a mixture of normal distributions, so that the pos-

terior distribution for γj is normal conditional on knowing the state vector and the other states’

transition parameters. After drawing the entire set of transition parameters, we calculate the tran-

sition probabilities at each point in time and obtain the entire time series of transition matrices,

P = {P1, . . . , PT}.

Cluster membership and the associated prior hyperparameters are drawn in four substeps. We

first draw the coefficients in the prior, βk , from a normal distribution conditional on knowing the

other model parameters and prior hyperparameters. Following Holmes and Held (2006), we draw

the latent variable ξnk from a truncated logistic distribution. We then draw the variance of this dis-

tribution, λnk, conditional on this new draw of ξnk. Country n’s idiosyncratic cluster membership

indicator, hnk, is drawn conditioned on the membership indicators for the other countries and the

new parameter draws. After incorporating the hierarchical prior, cluster membership depends on

similarity in fluctuations across countries’ economic growth rates.

2.3.3 Choosing the Number of Clusters

Determining the optimal number of idiosyncratic clusters, K, is a model selection problem.

Ideally, we would calculate the marginal likelihood p (Y |Θ) across a number of potential idiosyn-

cratic clusters. HO implement cross-validation to approximate the marginal likelihood of different

models. Cross-validation is computationally intensive since it involves testing the out-of-sample fit

of each model to approximate its marginal likelihood. Hernández-Murillo et al. (2013) determine

the optimal number of clusters based on Bayesian Information Criterion (BIC), which was shown

by Kass and Raftery (1995) to well-approximate the marginal likelihood.

We calculate BIC at each MCMC iteration with the associated draws for the parameters and
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latent variables. McLachlan and Peel (2010) find through simulations that BIC may overrate mod-

els with a large number of clusters. Thus, we also calculate the Integrated Classification Criterion

(ICL-BIC) which penalizes models for both complexity and the presence of overlapping clusters.

Since these information criterion are decreasing with the likelihood and increasing in the penalty

factors (complexity and/or overlapping clusters), the optimal number of clusters is the model with

the smallest BIC or ICL-BIC.

2.4 Data

We use quarterly real GDP growth as our indicator of economic activity for each country. Our

sample includes 37 countries11 covering the time period 1970:Q3 - 2013:Q2. For a majority of the

advanced economies, we use the OECD’s Quarterly National Accounts dataset. We supplement

this with Oxford Economics’ (henceforth OE) Global Economic Databank, which provides real

GDP data for many of the developing and emerging economies of our sample.12 The OE data

runs from 1980:Q1 - 2013:Q2 which results in an unbalanced panel when grouped with the OECD

dataset.13

In order to control for the Great Recession, we allow for a structural break in the average

growth rates beginning in the first quarter of 2008 through the third quarter of 2009. We represent

this break by rewriting (2.2) as:

yt|zt = k ∼ N(m∗k,Σ) for k = 1, . . . , K + 2,

11Countries included in our sample include Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China,
Denmark, Finland, France, Germany, Hong Kong, India, Indonesia, Ireland, Italy, Japan, Korea, Luxembourg,
Malaysia, Mexico, Netherland, New Zealand, Norway, Philippines, Portugal, Singapore, South Africa, Spain Swe-
den, Switzerland, Taiwan, Thailand, United Kingdom, United States, and Venezuela.

12The OECD provides data for Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland,
Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Portugal, South Korea, Spain, Sweden, Switzerland,
United Kingdom, and the United States. The OE dataset includes Argentina, Brazil, Chile, China, Hong Kong, India,
Indonesia, Malaysia, Mexico, Philippines, Singapore, South Africa, Thailand, and Venezuela.

13Previous studies on international business cycles use data from the Penn World Tables which would allow us to
include a larger subset of countries. However, this data is only available at an annual frequency which may miss
important business cycle movements occurring on a quarterly basis.
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where

m∗k = (µ0 +Dtµ
∗
0) + (µ1 +Dtµ

∗
1)�hk.

and Dt is a dummy variable which is equal to 1 during the Great Recession time period (2008:Q1 -

2009:Q3) and 0 otherwise. This specification controls for the potential structural break during this

time period by allowing for lower average growth rates.

In addition to the data for real GDP growth, the model also requires data on two sets of covari-

ates: (1) country-specific covariates influencing the prior distribution of cluster membership, and

(2) transition covariates driving the regime-switching process.

2.4.1 Cluster Covariates

The cluster covariates are country-specific variables which potentially inform business cycle

synchronization across countries by influencing the prior distribution on cluster membership. We

consider six variables: (1) the degree of trade openness, (2) financial integration, (3) the degree of

industrialization, (4) oil rents, (5) a formalism index, (6) an ethnolinguistic index, and (7) continent

dummies. The top panel of Table B.8 lists the sources for each cluster covariate as well as any

transformations made to the raw data.

The degree of trade openness of a country is measured as total trade as a percentage of its GDP

using data from Penn World Tables 8.0. A country with a high degree of trade openness is more

exposed to foreign demand and supply shocks, leading to a higher degree of synchronization with

its trading partners. However, economic theory also suggests that countries with a high degree of

trade openness may have more divergent cycles due to production specialization (Imbs, 2004). We

do not separate these channels, but rather examine how trade openness influences synchronization

inside of our different clusters of countries.

We measure financial openness as the sum of total foreign assets and total foreign liabilities

as a percentage of GDP, with data provided by Lane and Milesi-Ferretti (2007). Recent theoreti-

cal studies reached conflicting conclusions of how financial openness affects synchronization [See

discussion in Kalemi-Ozcan (2013)]. On one hand, an idiosyncratic negative shock to productivity
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will lead to lower domestic investment and financial outflows to unaffected foreign economies, im-

plying lower levels of synchronization. On the other hand, a negative shock affecting all countries

will lead to a reduction in investment in all economies, implying higher levels of synchronization.

Empirical studies have also been unable to resolve the question of how financial openness affects

business cycle synchronization, since different papers have found it can increase, decrease, or have

no impact on synchronization [See Imbs (2010), Kalemli-Ozcan et al. (2013), and Davis (2014)].

In this paper, we leave this channel unrestricted. A higher degree of financial openness may be a

characteristic of synchronization between one group of countries, whereas another cluster may be

characterized by countries with relatively lower levels of financial integration.

Investment share of GDP reflects the degree of industrialization of a country, with a high invest-

ment share of GDP reflecting an emerging or developing economy that is experiencing catch-up

growth. As noted by Kose et al. (2012), countries at a similar stage of development tend to ex-

perience a higher degree of synchronization especially during the time period considered in our

sample.

Oil rents as a share of GDP measure the oil wealth of a nation and the degree to which its

economy is dependent upon oil production. The output of economies who are heavily dependent

on oil production will be subject to the same commodity price shock, and therefore may experience

a higher degree of business cycle synchronization.

We also include two gravity measures to capture similarities in institutions across countries.

The literature has shown that countries with similar institutions may be inclined to have more

similar business cycle timing.14 The first is a formalism index provide by Djankov et al. (2003)

which measures the degree of formality of the civil court system. Economic agents inside countries

which have similar methods for solving legal disputes may be more likely to conduct business with

each other, and have a higher degree of economic integration. The second gravity metric is an

ethnolinguistic index from La Porta et al. (1999) which measures the degree of language diversity.

Similar to legal systems, countries that share a common language will be more likely to trade with

14See Imbs (2004), Baxter and Kouparitsis (2005), and Francis et al. (2012).

29



each other and therefore be more synchronized.

Continent dummies capture geographic proximity and common movements across regions. We

include dummies for Asia, Europe, North America, and South America, and leave the remaining

countries (Australia, New Zealand, and South Africa) without a continent dummy variable.

2.4.2 Transition Covariates

By construction of the model, the transition covariates are macroeconomic variables which

inform the model when business cycle turning points occur. Whereas the cluster covariates mea-

sured country-specific factors which influence synchronization, the transition covariates inform the

regime-switching process of (lagged) economic conditions. We place our focus on four covariates

which economic theory and empirical evidence have shown to have predictive ability for business

cycle turning points. While the cluster covariates reflect country-specific characteristics, the tran-

sition covariates reflect global economic conditions. The transition covariates we use are (1) an

interest rate term spread, (2) a measure of oil price movements, (3) stock market returns, and (4)

housing price growth. We use the one-period lag of each variable to meet sufficient conditions

proposed by Filardo (1998) that the covariates be uncorrelated with the state variable. The bottom

panel of Table B.8 lists the sources for each transition covariate as well as any transformations

made to the raw data.

Numerous studies show the term spread’s ability to forecast output and instances of recession.15

One notable explanation is that term spread movements could be reflecting changes in monetary

policy.16 A contractionary monetary policy shock – i.e. an increase in the short-term interest rate

– will mitigate both inflation and inflation expectations. However, the short-term interest rate is

expected to fall back to its original level in the future, thereby implying some downward pressure

on the long-term interest rate. The short-rate increases by relatively more than the long-term rate,

15See Harvey (1988), Stock and Watson (1989), Dueker (1997), Estrella and Mishkin (1998), Hamilton and Kim
(2002), Kauppi and Saikkonen (2008), Katayama (2010), among many others. Stock and Watson (2003) and Whee-
lock and Wohar (2009) survey the literature on the relationship between the term spread and economic activity.

16See Estrella (2005).
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leading to a fall in the term spread – a flattening of the yield curve – prior to the decrease in eco-

nomic activity implied by the contractionary policy shock. Another plausible explanation outlined

by Harvey (1988) is related to agents’ expectation of future economic growth. When agents fore-

see an economic downturn, they desire to smooth their future consumption stream. Agents sell

short-term bonds and buy long-term bonds, thereby inverting the yield curve and decreasing the

term spread. We use the difference between the 10-year and 3-month U.S. Treasury security yields

as our term spread metric.17

Our second transition covariate is a measure of oil price movements. Hamilton (2003) and

Barsky and Kilian (2004) survey the primary channels through which oil price shocks can lead to

recessions.18 On the supply side of the economy, a spike in the price of oil increases input costs for

firms, thereby decreasing productivity and driving down output. On the demand side, an oil price

shock decreases household consumption and savings since consumers’ demand for oil tends to be

inelastic. Additionally, countries have heterogenous responses to an oil price shock depending on

if they are a net exporter or importer of oil. If a group of countries is a net exporter of oil, then

the increase in income due to rising oil prices may outweigh the aforementioned costs incurred

by households and non-oil-producing firms. In our model, this would be represented by a neg-

ative coefficient for oil price growth in the transition probability of these oil-producing countries

experiencing an idiosyncratic recession. Therefore, when the price of oil rises, the probability of

this cluster of countries experiencing a recession goes down. Conversely, clusters comprised of

countries which are net-importers of oil should have a higher probability of recession when the

price of oil rises.

We use the world price of oil from the IMF’s International Financial Statistics as our measure

of oil prices.19 To gauge movements in this price, we use the net oil price increase formulated

17Ideally, we would prefer to use a world interest rate spread. Since there is no such rate available, we use the U.S.
term spread as a proxy for a “global” term spread.

18Also, see Raymond and Rich (1997), Kilian (2008), and Engemann, Kliesen, and Owyang (2011).

19The IMF’s world price of oil is a weighted average of U.K. Brent (light), Dubai (medium), and West Texas
Intermediate (heavy). Prior to 1983, Alaska North Slope (heavy) was used in place of West Texas Intermediate.
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by Hamilton (1996, 2003), which accounts for both the asymmetry of oil price shocks and the

evolution of the price of oil over the previous year. If the current oil price exceeds the maximum

price over the previous four quarters, the shock is calculated as the log difference between the two

prices. Conversely, if the current oil price is less than the maximum price over the previous four

quarters, the shock is set to zero.

Our third covariate is the return on a stock market index, which we measure as the log dif-

ference of the MSCI World stock market index.. Stock market returns reflect shocks to consumer

wealth and financial health. Decreases in consumer wealth due to lower equity values depress con-

sumption, thereby increasing the probability of entering a recession. Similarly, deteriorations in

financial health increase uncertainty about future economic conditions which decreases investment.

Estrella and Mishkin (1998) and Katayama (2010) show the predictive ability of stock market re-

turns in predicting U.S. recessions. Nyberg (2010) found that stock market returns had predictive

power for recessions in both the U.S. and Germany.

Our fourth and final transition covariate is the growth in global housing prices, as measured

by the log difference of the Federal Reserve Bank of Dallas’ Global Real Housing Price Index.

A number of recent studies find a significant link between housing and business cycle turning

points.20 One potential reason for this relationship is that housing reflects a large portion of con-

sumer wealth. Therefore, household behavior reacts strongly to declines in housing wealth and

induces a relatively large shortfall in aggregate demand. Also, Claessens et al. (2012) found that

business cycles associated with housing busts tend to have longer recessions and slower recoveries,

which in our model comes through the persistence probability of the regimes.

2.5 Results

We approximate the joint posterior distribution of the model with 50,000 iterations of the Gibbs

sampler after an initial burn-in period of 50,000 iterations. We consider models with differing num-

bers of idiosyncratic clusters K = 2, . . . , 7, and calculate the posterior median of the information

criterion for each one. The model with K = 3 idiosyncratic clusters minimizes both BIC and

20See Leamer (2007), Owyang and Ghent (2010), Claessens et al. (2010, 2012), Hirata et al. (2014).
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ICL-BIC, with K = 5 clusters being the second-best model.21

Table B.9 reports the estimates for each country’s state-dependent growth rate (µ0n and µ1n)

and variance parameters (σ2
n). As expected, developed countries tend to have lower growth rates in

both expansion and recession compared to the emerging and developing economies in our sample,

but also smaller volatility. For some of the rapidly developing countries (e.g., China and India), the

mean growth in recession is greater than zero, implying a recessionary period in these countries is

characterized by relatively slower, but still positive, economic growth.

2.5.1 Cluster Composition

Figure B.12 is a choropleth map showing the posterior probabilities of cluster membership for

cluster 1. Countries with red shading have a high posterior probability of membership , while

countries in yellow have a low probability. Countries in white are not included in our sample.

Cluster 1 is comprised solely of European countries. In fact, Switzerland is the only European

country in our sample with a low probability of membership in cluster 1.

Figure B.14 shows the cluster membership probabilities for cluster 2. Countries with high prob-

abilities of membership include Australia, Canada, Chile, India, South Africa, Switzerland, and the

U.S. Besides Chile and Switzerland, these countries were all former British territories. Other coun-

tries with relatively high membership probabilities (i.e., greater than 0.50) include Brazil, China,

and Mexico.

Lastly, Figure B.16 shows the cluster membership probabilities for cluster 3. This cluster

is comprised of mostly Southeastern Asian countries, including Hong Kong, Indonesia, Japan,

Malaysia, New Zealand, Singapore, Taiwan, and Thailand. Other countries with relatively high

probabilities of membership are Argentina, Korea, and the Philippines.

These cluster results coincide with previous studies, such as Castles and Obinger (2008), FOS,

and Ductor and Leiva-Leon (2015), which each found a European and English-speaking group of

countries. Additionally, Ductor and Leiva-Leon (2015) find a Southeast Asian cluster similar to the

composition of cluster 3 from our results. These similarities are not unexpected given that these

21Model selection results are available from the authors upon request.
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previous studies also use real GDP as a cluster variable (or in some instances, a gravity variable)

in determining country groupings.

In our model, cluster membership is not only determined by similar GDP growth rates, but also

a set of country-specific characteristics which enter through the prior distribution. This assumption

allows us to determine which country characteristics are important in determining cluster compo-

sition. Due to the multinomial logistic representation of this prior, we translate the coefficients βqk

into the corresponding discrete derivative, δqk, for each cluster covariate q and idiosyncratic cluster

k. Explicitly, this derivative is given by

δqk = Pr [hk = 1|xq = x̄q + σq, x−q = x̄−q]− Pr [hk = 1|xq = x̄q − σq, x−q = x̄−q] ,

where x̄q =
∑N

n=1xnq is the average covariate value across all countries, and σq is the standard

deviation of cluster covariate q. The discrete derivative measures the amount the prior probability

of cluster membership changes with respect to a single covariate (i.e., country-specific character-

istic) while holding all other covariates at their respective averages. For example, suppose two

countries had average country characteristics with the exception of a sole cluster covariate q. For

one country, the covariate q is one standard deviation above the mean value (x̄q +σq), while for the

other country, this covariate is one standard deviation below (x̄q − σq). The discrete derivative δqk

is the difference between the implied (prior) probabilities of these two countries being included in

cluster k.

Table B.10 gives the posterior median of the discrete derivative, δqk, for each cluster charac-

teristic. We find that a country with a relatively high degree of trade openness (i.e., one standard

deviation above the sample mean) would have a prior probability 0.36 lower of being included

in cluster 2 relative to a country with a relatively low degree of trade openness (i.e., one standard

deviation below the sample mean), ceteris paribus. Similarly, a country with a high degree of trade

openness has a 0.39 higher probability of being in cluster 3 relative to a country that trades rela-

tively less. For cluster 1, a lower enthnolinguistic index increases the probability of membership.

For cluster 2, lower trade openness is the only significant country characteristic which influences
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the prior membership probability. Finally, we find that many of the country characteristics influ-

ence the prior probability of membership in cluster 3, including a higher degree of trade openness,

a lower stage of development22, less domestic oil production, and more financial integration. These

results imply that a number of factors apart from geography influence country comovement. There-

fore, simply imposing country groupings based on geographic proximity overlooks these important

economic relationships which need to be accounted for in models of international business cycles.

Another way to analyze how the country characteristics affect cluster groupings is by looking at

the implied probabilities of membership based solely on the cluster covariates. These membership

probabilities differ from the ones previously presented (i.e., the probabilities presented in Figures

B.12, B.14, and B.16) in that those probabilities take into account comovement in output growth

across countries as well as the country characteristics entering the prior We present the probabilities

implied only by the cluster covariates for each cluster in Figures B.13, B.15, and B.17.

For cluster 1, we see from Figure B.13 that the prior information places a high weight on

most European countries, some South American countries (e.g., Argentina, Brazil, and Chile), and

Japan. After considering output growth, Figure B.12 infers that the cluster becomes more refined

to solely European countries.

Figure B.15 shows that the prior information for cluster 2 implies a relatively high membership

probability on Canada, India, South Africa, the U.K., and the U.S. When output growth is also

included, the cluster membership probabilities shown in Figure B.14 on all of these countries rises

to the highest quintile (except the U.K., which clusters with its European counterparts in cluster

1). Additionally, Australia and Chile are added, implying the country characteristics entering the

prior distribution offer little to explain why these two countries cluster with the other members in

cluster 2. Finally, the prior information for cluster 3 from Figure B.17 shows a high weight on the

Southeast Asian countries, China, New Zealand, and Venezuela. Accounting for output growth, the

cluster profile centers on the Southeast Asian countries and New Zealand, while adding Argentina

22Industrialization is measured by the capital-income ratio. Typically, developing countries have a higher capital-
income ratio than their developed counterparts. Therefore, this cluster is comprised of developed countries by our
industrialization metric.
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and Japan, as seen in Figure B.16. These results imply that although our cluster covariates are

accounting for some of the reasons for comovement, there are also other factors unaccounted for

in our set of covariates for which some countries comove with others. Next, we analyze the degree

to which certain shock processes affect comovement due to countries having a similar degree of

exposure.

2.5.2 Recession Timing and Its Determinants

The optimal model according to BIC indicated K = 3 idiosyncratic clusters. Added to the two

global regimes (all countries in expansion, or all countries in recession), this implies the optimal

model can take one of six possible aggregate regimes at any given time period. The first two

regimes correspond to global expansion (zt = 1) and recession (zt = 2), during which all countries

are simultaneously in an economic upturn or downturn, respectively. The remaining three regimes

(zt = 3, 4, 5) are idiosyncratic regimes wherein one cluster of countries is in recession while the

remaining countries experience expansion. For example, regime 3 (zt = 3) implies the countries

in cluster 1 are in recession while all other countries in the sample are in expansion.

Figure B.18 shows the posterior probabilities of being in each regime at each time period.

These probabilities are computed as the percentage of MCMC iterations for which a regime is

drawn. For each time period, we deem the regime to be the modal draw. These probabilities

are useful because they offer us an explicit timing of the interaction between the global business

cycle and the endogenously-determined cluster cycles. For instance it allows us to answer ques-

tions about whether global recessions were preceded or followed by idiosyncratic recessions of

particular country clusters.

The top panel of Figure B.18 shows the probability of global recession. We also include gray

bars representing official NBER recession dates for the U.S. for comparison. We find two instances

of a global recession: (1) 1974:Q4-1975:Q1 and (2) 2008:Q2-2009:Q2. This first global recession

is commonly associated with the first major oil crisis, while the second coincides with the recent

global financial crisis. These results are in line with those of Kose et al (2012) and Fushing et al.
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(2010), which both find global recessions during these time periods.23

The bottom three panels of Figure B.18 show the probability of an idiosyncratic recession in

one of the endogenously-determined clusters. Here, the gray bars reflect the timing of global reces-

sions implied by our model. We should note that two periods of global recession are preceded by

idiosyncratic recessions. The first oil crisis follows a recession in cluster 2 (the English-speaking

cluster), and the global financial crisis follows a recession in cluster 3 (the Southeast Asian clus-

ter). The timing of the first global recession is easily understood by looking at the sharp drop in

equity values across the member countries of cluster 2 which occurred prior to the global propaga-

tion of the oil crisis. The timing of the global financial crisis is more puzzling since the common

narrative is that the crisis began in the U.S. The reason is that output growth in the other countries

in cluster 2 did not yet begin to experience a significant downturn compared to the Southeast Asian

countries which comprised cluster 3. By the fourth quarter of 2008, the crisis had spread enough

to be labelled a global recession according to our model. This result highlights the regional aspect

of our model rather than looking at the effects on individual countries.

We now compare the estimated recession timing for each cluster with the actual recession histo-

ries of the specific country-groupings. Figure B.19 shows the probability that cluster 1 experiences

either a global recession (the blue line) or an idiosyncratic recession (the orange line). Since this

cluster is primarily comprised of the European countries in our sample, a natural benchmark is the

recession dating according to the CEPR Business Cycle Dating Committee, which is represented

by the gray bars. It is clear that our estimated timing of recession for the European cluster (cluster

1) covers many of the recession dates outlined by the CEPR.

Figure B.20 displays a similar comparison for the estimated recession dates for cluster 2, where

23There are some notable differences in global recession timing across these two previous studies and ours. Kose
et al. (2012) finds additional global downturns during 1982 and 1991. Fushing et al. (2010) finds downturns during
1980:04 and 2000:08 - 2001:05.

These differences can be attributed to differences in data and methodology. Kose et al. (2012) use annual data to
construct a timing of the global business cycle. Therefore, they are only able to identify business cycle turning points
at an annual frequency whereas we can do so at a quarterly frequency. To classify recessions, they look solely at the
peaks and troughs in the growth rate of world GDP per capita and reinforce these dates by looking at the movement of
other macroeconomic aggregates around these points (similar to the NBER and CEPR dating methods). Fushing et al.
(2010) use monthly data on an individual country basis. However, they simply look at correlated movements, where
we look at common movement in a large panel of countries in a single model.
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the blue line again represents the posterior probability of a global recession and the orange line rep-

resents the probability of an idiosyncratic recession for cluster 2. The gray bars reflect US recession

dates according to the NBER’s Business Cycle Dating Committee, which are used for comparison

since this cluster includes the US and its main trading partners. Again, our estimated timing of re-

cession matches up well with that of the NBER. The relatively low probability of recession for the

early 1990’s recession reflects the weakness of this recession to propagate internationally. Also,

our dating misses the early 1980’s and early 2000’s recession given that the recession effects are

relatively more prevalent in cluster 1 and cluster 3, respectively.24

For cluster 3, there does not exist an accepted timeline of business cycle dates for the Asian

countries included in that cluster. Instead, we match our estimated recession dates to major eco-

nomic events in Asia during those time periods. Table B.11 lists the estimated idiosyncratic re-

cession dates for cluster 3 and the associated economic event(s) in the region. Again, we find our

results are consistent with documented recessions or downturns in this region.

Ultimately, we would like to determine how common shocks affect the timing of recessions

across country groupings. Does a specific shock lead to a recession in a certain cluster, or is a

single, common shock responsible for differences in recession timing? Table B.12 displays the

posterior mean of the discrete derivatives for each of the transition covariates, with bold indicating

that 68% of the posterior distribution does not include zero. These discrete derivatives can be

interpreted as how each transition covariate (e.g., term spread movements, global house prices,

equity returns, and oil price shocks) affects the regime dynamics of the model (i.e., how zt evolves

across time). Specifically, the derivatives are calculated as follows: Suppose covariate l is one

standard deviation above its historical mean while all other covariates are at their respective means.

We can then calculate the associated “high” transition probability pHji . Similarly, we can calculate

the “low” transition probability pLji by assuming the covariate is one standard deviation below its

historical mean. The discrete derivative is the difference between the two probabilities: δlji =

pHji − pLji. To give a concrete example, the δ211 = 0.19 given in the first column and first row in

24Recall, only one idiosyncratic cluster can be in recession at a time. Therefore, our model does not allow for
overlapping recessions across two idiosyncratic clusters.
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the top panel of Table B.12 implies that the persistence probability of the global expansion regime

(i.e., the probability a global expansion regime continues into the current period given that the

previous period was a global expansion) is 0.19 larger when global house price growth is one

standard deviation above its historical mean compared to when it is one standard deviation below.

Therefore, long global expansions are characterized by relatively robust growth in house prices.

In addition to house price growth, the length of global expansions appears to be driven by

increases in oil prices. This result seems counter-intuitive since large increases in oil prices are

commonly attributed to supply-side recessions. However, this positive relationship comes from

the steady rise in oil demand during good economic times (i.e., global expansions) rather than the

negative effects of sharp oil supply shocks of the 70’s and 80’s.

The persistence of global recession periods is negatively related to equity returns. This result

follows from the fact that both of the global recessions in our sample are characterized by large

losses in values of equities. Interestingly, we do not find a similar role for house price growth

during periods of recessions. Rather, house prices appear to be an indicator of transitions between

global expansion and idiosyncratic cluster recessions. Conditional on being in a state of global

expansion, a large loss in global housing wealth increases the probability of transitioning to a

recession in cluster 1 or 3.

The dynamics of cluster 1 depend heavily upon the state of asset prices. The persistence of an

idiosyncratic recession in cluster 1 is characterized by large losses in both global house and equity

prices, whereas recoveries of cluster 1 into global expansion are similarly characterized by growth

in housing and equities. When transitioning from global recession to a recession in cluster 1, we

find countries outside of cluster 1 tend to enter recovery from a global recession as global equities

recover, whereas cluster 1 countries tend to lag and stay in recession. The sensitivity of cluster

1 to asset prices may be a function of the fact that the member countries for the most part have

developed financial markets. Since they are well-integrated to global asset markets, these countries

are more exposed to downturns in financial wealth.

Our results suggest that recessions in cluster 2 are caused by a variety of shocks. In a global

expansion regime, the probability of cluster 2 entering a recession increases with either (1) an
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inversion of the yield curve, (2) large losses in equity markets, or (3) oil price increase shocks.

When cluster 2 is in recession, the probability of the idiosyncratic recession propagating to a

global level goes up as the yield curve continues to invert, whereas the probability of entering a

global expansion is positively related to equity price growth. After accounting for the members

of cluster 2 (US and its trading partners along with China and its trading partners), these results

suggest cluster 2 is not exposed to any one shock in particular but rather comovement occurs due

to one of the major economies (US or China) falling into recession.

Similar to cluster 1, the probability of cluster 3 entering a recession is also dependent on falling

house and equity prices. The persistence of recession in cluster 3 correlates with (1) an inverting

yield curve, (2) increases in equity markets, or (3) oil price increase shocks. If global housing and

equity markets continue to deteriorate, then the probability rises of an idiosyncratic recession in

cluster 3 spreading to the global level. Conversely, a normalization of the yield curve and/or the

absence of oil price increase shocks increases the probability of recovering and entering a global

expansion. The sensitivity of cluster 3 is not surprising given its composition of Asian countries

and the numerous financial crises associated with that region.

Overall, we find that recession timing across the clusters and the world depends largely on

movements in asset (house and equity) prices. Following Reinhart and Rogoff (2009) and Helbling

et al. (2011), this suggests that financial frictions are one of the main contributing factors in

propagating recessions to a global level. Potential explanations for this result include the financial

accelerator model of Bernanke and Gertler (1989), which suggest that the effect of financial shocks

on the real economy become amplified as falling global asset prices deteriorate international firms’

balance sheets.

2.6 Conclusion

In this paper, we analyzed the relationship between the world business cycle and the underlying,

regional cycles. We outlined a multivariate Markov-switching model with endogenously clustering

and time-varying transition probabilities, allowing us to determine what country-characteristics

determine business cycle synchronization and what variables drive international business cycles.

We found three groups of countries that experience idiosyncratic recessions relative to global
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downturns. Geographic proximity appears to be an important determinant of synchronization

across countries, but we also find important roles for trade openness, stage of development, and

institutional factors such as linguistic diversity. This finding implies that studies on international

business cycle synchronization need to consider a host of factors when grouping countries.

Finally, we analyzed the driving forces behind recession timing of these idiosyncratic clusters,

and found asset prices to be a key indicator of the timing of global recessions. Additionally we

found the European and Asian clusters to be highly sensitive to movements in housing and equity

price movements, while a cluster comprised of US and China was open to a variety of global

shocks
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CHAPTER 3

BUSINESS CYCLE COMOVEMENTS IN INDUSTRIAL SUBSECTORS

3.1 Introduction

Business cycles are often thought of as the transitions between two distinct economic regimes,

expansion and recession (e.g., Burns and Mitchell, 1946). The notion of regimes, albeit statis-

tically convenient, stems from the idea that these phases are asymmetric. For example, Morley

and Piger (2009) show that expansions tend to be slow and steady while recessions are typically

short but deep. In economic models, the statistical characterization of the business cycle regimes

has taken many forms. In particular, Hamilton (1989) proposed that transitions between phases

of the business cycle follow a first order Markov process. This paper spawned a rather substantial

literature analyzing, among other things, differences in the cycle across time.

Recently, some studies have considered differences in the business cycle across space – that is,

the U.S. business cycle can be decomposed into regional, state, or city cycles. Within the context

of Markov-switching models, Owyang, Piger, and Wall (2005, OPW) found that states’ business

cycles, though similar to the national cycle, may exhibit both idiosyncratic timing and growth

rates. OPW show that state cycles, when estimated independent of one another, may experience

recessions earlier, later, or not at all relative to the nation.1 Building on this work, Hamilton and

Owyang (2012, HO) proposed a model in which states’ business cycles moved together forming

a national cycle.2 HO also simultaneously allows a small number of clusters of states to move

apart from the national cycle. Thus, states may have heterogeneity in their turning points with

respect to the national cycle or experience recessions completely unrelated to the national cycle.

1Owyang, Piger, Wall, and Wheeler (2008) also studied the business cycles of cities. Their results as to the
potential variety of the timing of the turning points were consistent with those for states in the previous paper.

2Stock and Watson (2010) also reinvestigated the notion that aggregate cycles can be identified by examining a
large number of disaggregate series.
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HO found two groups of states that enter recessions before the nation, a group of states that stayed

in recession after the nation recovered, and a group of states that experienced recessions unrelated

to the nation. In addition, HO found that a state’s industrial mix was an important determinant of

the cluster to which the state belonged.

The literature studying the comovements between industrial sectors is substantial. Murphy,

et al (1989); Cooper and Haltiwanger (1990); and Christiano and Fitzgerald (1998) are among

the many the studies which have documented industrial comovements. [results here] Carlino

and Defina (2004) compare the comovement between pairs of industrial sectors using a cohesion

index. Comin and Phillipon (2005) attribute the decline in aggregate volatility to a decline in

the sychronization of industries. Hornstein (2000) shows that industries comove both within and

across sectors. See Kim and Kim (2006) for a relatively recent survey.

Because industrial mix appears to be an important determinant of the comovement of states’

economies, this paper investigates the business cycle linkages between disaggregate industries.

We consider 84 of the the four-digit NAICS industrial sectors during the period 1972 - 2014 to

determine (1) whether comovements occur, (2) whether they are a pervasive feature of the U.S.

business cycle, (3) whether they are limited to industries within a single classification – i.e., do

subsectors in the same broad classification move together more than subsectors across industrial

classes, and (4) whether they are determined by industries’ relative position in the prodcution

stream.

The model we propose is similar to that of HO. We assume there exists a national business cy-

cle in which all sectors move together. Some industrial sectors, however, may belong to particular

clusters which may differ from the national cycle by entering or leaving their own “idiosyncratic”

recessions. The number of possible clusters is small relative to the number of total industrial sec-

tors and is chosen by Bayesian information criterion. While the framework is similar in flavor to

the original HO paper, we do not rely on industry-level covariates as we did in HO to inform our

prior as to which industries cluster together. Instead, we adopt a uniform prior which weights each
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industry’s cluster inclusion probability equally.3 Additionally, our model differs from HO in that

we decompose each industry’s IP growth into trend and cycle components through an unobserved

components framework.

The balance of the paper is laid out in the following order: Section 2 presents the empirical

model of clustered Markov switching. Section 3 outlines the estimation via the Gibbs sampler

and describes the disaggregated industrial data. We pay particular attention to the estimation of

the aggregate regimes and the cluster inclusion probabilities as informed by the Dirichlet prior.

Section 4 discusses the empirical findings. Section 5 concludes.

3.2 The Empirical Model

Let yt denote an (N × 1) vector of the log of observed industrial production levels at date t,

whereN is the number of industries. Let Yt = (yt,yt−1, ...,y1)
′ denote the history of observations

through date t. We model yt as having two unobserved components, trend and cycle:

yt = τt + ct

where τt = (τ1t, τ2t, ..., τNt)
′ and ct = (c1t, c2t, ..., cNt)

′. We model the trend component as a

random walk with drift:

τt = δ + δ∗I(t > t∗) + τt−1 + ηt

where δ is the (N × 1) vector of drift parameters, and ηt is an (N × 1) vector of permanent

innovations. We allow for a structural break in the drift parameter at some specified time period

t∗. Let E(ηtη
′
t) = Σ̃, reflecting potential cross-industry correlations in the shocks to trend.

We assume the cyclical component is an AR(p) with a Markov-switching intercept:

ct = µt +

p∑
l=1

φlct−l + εt

where µt is the (N × 1) vector of time-varying average growth, φl is the (N ×N) diagonal matrix

3We also place a small prior probability on the possibility that an industry is unassociated with all of the aggregate
clusters.
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of AR coefficients, and εt is an (N × 1) vector of transitory innovations with E(εtε
′
t) = Σ. For

each industry n, we assume the roots of φn(L) = φ1L + . . . + φpL
p lie strictly outside the unit

circle.

Let st be an (N × 1) vector of recession indicators (so snt = 1 when industry n is in recession

and snt = 0 when industry n is in expansion). Suppose that

µt = µ0 + µ1 � st, (3.1)

where the nth element of the (N × 1) vector µ0 + µ1 is the average cycle IP growth in industry

n during recession, the nth element of the (N × 1) vector µ0 is the average cycle IP growth in

industry n during expansion, and � represents the Hadamard product.

In order for the model to be identified, we must set one of the regime-dependent growth rates

to be 0 (ie., either µ0 = 0 or µ0 +µ1 = 0 must be imposed). Following Kim and Nelson (1999) and

Sinclair (2010), we assume µ0 = 0 and µ1 < 0. Under these restrictions, the model follows Fried-

man’s plucking model, where expansions are periods when the cycle is near trend and recessions

are periods when the cycle is “plucked” downward from trend.

In the most general case, each industry n has both a set of expansion and recession growth

rates (µ0n, µ1n) and its own regime process s̃nt = {sn1, .., snt}. The most degenerate case is one

in which each industry has the same set of expansion and recession growth rates (i.e., µ0n = µ0m

and µ1n = µ1m for all n,m combinations) and the same business cycle (i.e., s̃nt = s̃mt for all n,m

combinations and for all time t). We are interested in an intermediate version of these models in

which industries can be clustered together based on the timing of their business cycles. That is,

we are interested in a model in which N industries take on κ << N different regime processes

and have N different steady-state expansion and recession growth rates. In this case, the national

(aggregate) regime consists of the compilation of the individual industrial regimes, the relationship

between which is specified next.

Let Zt signify the time-t aggregate regime and let H denote an (N×K) matrix whose elements

are all zeros and ones and K is the allowed possible number of aggregate permutations (regimes).
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The row n, column k element of H is one if industry n is in a recession when the aggregate regime

is k. In the simplest possible model (this is the degenerate case above), K = 2, with the first

column being all zeros (every industry is in expansion together when in regime k = 1) and the

second column is all ones (every industry is in recession together when in regime k = 2). A

natural first alternative is K = 3, where the third column just has ones for the manufacturing

subsectors (all manufacturing subsectors are in recession together when in regime k = 3; all other

industries are in expansion during this period). For purposes of discussion, we refer to the regimes

in which all industries move together as “national” regimes and refer to regimes in which some

industries are in recession but others are not as “idiosyncratic” regimes.

The aggregate regime is assumed to follow a K-state Markov process with (K ×K) transition

matrix P. In principle, we could model a world in which Zt is allowed to transition to and from

any aggregate regime. However, for identification, we additionally assume that the transition

probabilities across idiosyncratic regimes are zero. This restriction prohibits two separate sets of

industries from experiencing idiosyncratic recessions in consecutive periods. In other words, a set

of industries can only enter and exit recession through the regime in which all industries are either

in or out of recession. As an example, the “manufacturing” cluster cannot enter recession directly

after the “transportation” cluster without all industries experiencing either a recession or recovery

first.

Thus, we can redefine the regime-dependent cyclical growth rate as

µt = µ(Zt = k) = µ0 + µ1 � hk (3.2)

for hk, the kth column of H. In principle, we can estimate each element of H without re-

striction. However, we can map this framework into the clustered time series framework of

Frühwirth-Schnatter and Kaufmann (2008) by assuming that any industry can enter only a sin-

gle non-degenerate aggregate regime.4 That is, apart from the regimes in which all industries are

either in recession (k = 1) or expansion (k = 2), industries may only be in recession for one

4We allow for an industry to not be a member of any aggregate regime with a small prior probability (0.01).
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aggregate regime (k ≥ 3). Formally,

K∑
k=3

hnk ≤ 1 for all n. (3.3)

Under this assumption, we can define a number of unique industrial clusters κ = K − 2.

3.3 Estimation

The full set of latent variables and parameters includes the series of trend components τT =

(τ
′
1, τ

′
2, ..., τ

′
T )′, the series of cycle components cT = (c

′
1, c

′
2, ..., c

′
T )′, the trend growth rates δ̃ =[δ, δ∗],

the trend variance parameters Σ̃, the recession growth rates µ1, the cycle AR coefficients Φ, the

cycle variance parameters Σ, the transition probabilities P, the series of aggregate state posterior

regimes ZT = (Z1, Z2, ..., ZT )′, the matrix defining the clusters H, and the number of clusters κ.

For now, assume that the number of clusters κ is determined exogenously and is suppressed in the

notation. Then, there are five blocks of parameters to be sampled: the trend and cycle components,

{τT , cT}, each industry’s cycle parameter set θn = {µ1n, σ
2
n, φn(L)}, each industry’s trend param-

eter set θ̃n = {δn, δ∗n, σ̃2
n}, the aggregate business cycle ZT and its associated transition matrix P,

and the matrix H determining the cluster membership.

3.3.1 Priors

Each of the intercept parameters in θn and θ̃n is assumed to have a normal prior distribution.

The conditional variances for each industry is assumed to have an inverse Gamma prior distribu-

tion. The transition probabilities for the aggregate regime process are assumed to have a Dirichlet

prior distribution given the fixed number of regimes. The fixed number of regimes is determined

by the number of clusters. Each industry n’s membership in any cluster is 1
κ
(1 − p0), where κ is

the total number of clusters and p0 is the prior probability that an industry does not belong to any

cluster. Prior hyperparameters are shown in Table B.13.
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3.3.2 Drawing cT, τT|δ̃, Σ̃, µ1,Σ,H,Z,YT

The unobserved components model has the following state-space representation:

∆yt = δ + δ∗I(t > t∗) + Axt + ηt,

xt = Mt + Fxt−1 + ε̃t,

where ∆yt = yt − yt−1, xt = [c′t, c
′
t−1]

′, ε̃t = [ε′t,01xN ]′, and matrices

F =

 φ1 φ2

IN 0

 ,
A = [IN ,−1IN ] ,

Mt = [µ′t,01xN ]
′
,

where µt is defined as in equation 3.2. We carry out the forward-backward filter of Carter and

Kohn (1994) to obtain a draw of xT , and therefore cT . The corresponding draw of the trend

component is then τt = yt − ct for all t = 1, . . . , T .

3.3.3 Drawing δ̃, Σ̃|P,YT, τ
T

Given the draw for τT , we can draw each industry’s trend parameters (δn, δ
∗
n, σ̃

2
n) independent

of the other industries. Premultiplying the trend equation by σ̃−1n , we get

∆τ̃nt = σ̃−1n δn + σ̃−1n I(t > t∗)δ∗n + η̃nt,

where ∆τ̃nt = σ̃−1n (τnt − τnt−1), I(t > t∗) is the indicator function of when t is greater than the

structural break date of t∗, and η̃nt ∼ N(0, 1). We stack equations for t = 1, ..., T , to get

∆τ̃Tn = WT
n δ̃n + η̃Tn ,
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where ∆τ̃Tn = [∆τ̃n2, . . . ,∆τ̃nT ]′, WT
n = [Wn2, . . . ,WnT ]′, Wnt = [σ̃−1n , σ̃−1n I(t > t∗)]′, and

δ̃n = [δn, δ
∗
n]′. The posterior distribution of the drift parameters is

δ̃n|σ̃2
n, τ

T
n ∼ N(dn1,Dn1),

where

dn1 = D−11 (D−10 d0 + WT ′
n ∆τ̃Tn ),

Dn1 = (D−10 + WT ′
n WT ′

n ).

The posterior distribution for the trend variance is therefore

σ̃2
n|δ̃n, τTn ∼ IG

(
ν̃0 + T

2
,
s̃0 + η̂T ′n η̂

T
n

2

)
,

where IG represents the inverse-gamma distribution, η̂Tn = (η̂n1, η̂n2, . . . , η̂nT )′ and η̂nt = ∆τnt −

δn − I(t > t∗)δ∗n.

3.3.4 Drawing µ,Σ|ZT,H, cT

The industries’ cycle parameters (µ1n, σ
2
n) are conditional independent of each other once cT ,

P, ZT, and H are drawn. Let

ςnt =

 1 if hnzt = 1

0 otherwise
.

Premultiplying the cycle equation by σ−1n , we have

c∗nt = µ1nς
∗
nt + ε∗nt, (3.4)

for c∗nt = σ−1n (cnt − φ1cnt−1 − φ2cnt−2), ς∗nt = σ−1n ςnt and ε∗nt = σ−1n εnt so that ε∗nt ∼ N(0, 1).

Stacking the equations for t = 1, ..., T , we get

c̃∗nT = X̃∗nTµ1n+ε̃∗nT ,
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where X̃∗nT = (ς∗n1, ς
∗
n2, . . . , ς

∗
nT )′. Hence, we have the posterior distribution for each industry n:

µ1n|ZT,Σ,H,cT
n ∼ N (m1,M1) ,

where

m1 = M−1
1

(
M−1

1 m1 + X̃∗′nT c̃∗nT

)
,

M1 =
(
M−1 + X̃∗′nT X̃∗nT

)
.

The posterior distribution of the cycle variance is given by

σ−2n |ZT ,µ1n,H, cT
n ∼ IG

(
ν0 + T

2
,
s0 + ε̃′nT ε̃nT

2

)

where ε̃nT = (ε̃n1, ε̃n2, . . . , ε̃nT )′ and ε̃nt = cnt − φ1cnt−1 − φ2cnt−2 − ςnt.

3.3.5 Drawing ZT,P|µ0, µ1,Ω,H, cT

Conditional on H, the aggregate regime process can be drawn by a method similar to a K-state

Markov process [see Kim and Nelson (1999)]. This relies on drawing the vector ZT from the

conditional distribution

p
(
ZT|P, θ,H, cT

)
= p

(
ZT|cT

) T−1∏
t=1

p
(
Zt|Zt+1, c

t
)
,

where p (Zt|Yt) can be obtained from a modification of the Kalman filter [see Hamilton (1989)]

and

p
(
Zt|Zt+1, c

t
)
∝ p (Zt+1|Zt) p

(
Zt|ct

)
.

Recognizing that p (Zt+1|Zt) is simply a transition probability, the regime probabilities can be

written as
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Pr
[
Zt = i|Zt+1, c

t
]

=
p (Zt+1|Zt = i) p (Zt = i|ct)∑K

j=1 p (Zt+1|Zt) p (Zt|ct)
,

and each Zt can be generated using a random draw from a uniform distribution.

Conditional on ZT, the transition probabilities P can be drawn from a Dirichlet posterior in

which the hyperparameters are determined by the number of observed transitions between regimes

[see Kim and Nelson (1999)].

3.3.6 Drawing H|µ0, µ1,Ω,ZT,P,YT

As in Frühwirth-Schnatter and Kaufmann (2008), we assume that the prior distribution for the

clusters is Dirichlet with hyperparameters β0. Then, the posterior cluster probabilities can be

computed as

Pr
[
hnk = 1|cT

n ,Z
T, θn

]
∝ p

(
cT
n |ZT, θn, hnk = 1

)
× Pr [hnk = 1|β−n] ,

where p
(
cT
n |ZT, θn, hnk = 1

)
is the likelihood associated with the drawn parameters and hnk = 1.

The probability Pr [hnk = 1|β−n] is the posterior Dirichlet density with updated hyperparameters

β−n, where β−n reflects the number of industries in each cluster excluding industry n.

3.3.7 Choosing the Number of Clusters

The optimal number of clusters is determined by Bayesian Information Criterion (BIC),which

Kass and Raftery (1995) showed to be a good approximation of Bayes factors. We run the Gibbs

Sampler for K = 2, . . . , 8 idiosyncratic clusters and choose the model which minimizes the BIC.

3.3.8 Data

The business cycle indicator of interest is the annualized, seasonally-adjusted quarterly indus-

trial production at the four-digit NAICS industry level provided by the Federal Reserve Board of

Govenors. Our sample includes 83 industries covering the time period 1972:Q1 - 2014:Q4.

3.4 Empirical Results

According to the information criterion, the optimal model contains four idiosyncratic clusters

(K = 4). Figure B.21 presents the recessionary experiences of the four clusters and the aggregate

depicted through their posterior recession probabilities. Recall that, at each period, the economy
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can reside in a single (aggregate) regime, preventing overlapping cluster recessions. Table B.14

shows the transition probabilities for the aggregate regime. While some transitions are restricted

ex ante (these are shown by zeros in bold), the estimated model yields more transition restrictions

than imposed. Table B.15 lists each industry included in our sample along with its four-digit

NAICS code and the posterior cluster membership probabilities.5

While there are a number of periods in which clusters of industries experience idiosyncratic

recessions, Figure B.21 shows that the aggregate recessions are broadly consistent with the NBER-

defined national recessions, which are indicated by grey shading. For the most part, each industry

cluster exhibits a unique recessionary behavior relative to the aggregate. For example, industries

in group 2 lead the aggregate into recessions by a few months. These harbinger industries include

textile manufacturing, wood products, wholesale trade, and some services, suggesting that the

incidence of most recessions occurs upstream and propagates down. Similarly, group 1 includes

mining, paper products, computer and electronic products, iron and steel products, and some trans-

portation (rail and ship building), suggesting downturns moving down the prodution stream. This

group experiences an isolated recession only during the early 2000’s after the aggregate recession

of 2001 and leading up to the Great Recession.

The third group is comprised of energy, food, chemical products, medical equipment and some

transportation industries. This group tends to stay in prolonged recession following national re-

cessions, implying a longer recovery time for these industries. The fact that many of the sectors

included in this group are necessities (food, energy, and medicine) may be indicative of overall

consumer behavior following a national downturn.

Lastly, membership in group 4 is not very strong across industries given by the low inclusion

probability. One potential explanation for this is that there is only one idiosyncratic recession

captured by this cluster. Therefore, this group may be picking up common movements during this

single time period rather than a long-term relationship across industry business cycles.

5Estimation results for all model parameters are available from the authors upon request.
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3.5 Conclusion

In a previous paper, we examined the cross-state patterns for the propagation of recessions. We

found that some states led the nation into recession, some states lagged the nation in recovery, and

some – particularly energy intensive states – experienced downturns not experienced by the rest of

the nation. We noted these state clusters could be, in large part, characterized by their industrial

mix.

In this paper, we investigated the business cycle properties of the industries themselves and

found that industries behave in much the same manner as the states. Industries upstream in the

production processs often led others into recession. Energy, raw materials, and textiles sectors also

were prone to experience prolonged recessions unrelated to aggregate recessions, indicating that

robust growth in other sectors can offset downturns in these industries (perhaps caused by declines

in the prices of the raw commodity). Future avenues of research include testing to see if similar

broad industry classification as well as connected production (as measured through input-output

matrices) are significant determinants of two industries being in the same grouping.
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APPENDIX A

ESTIMATION DETAILS

This section gives the technical details of the Gibbs sampling technique utilized to estimate the

model. The steps of the sampler are virtually identical to those outlined by HO with the exception

of the TVTP parameter draw, which is outlined by Frühwirth-Schnatter and Frühwirth (2011) and

Kaufmann (2011). There are four steps:

1. Draw the mean growth and variance parameters from p(θ|Θ−θ,Y).

2. Draw the aggregate state vector from p(Z|Θ−Z,Y).

3. Draw the transition probability parameters from p(γ|Θ−γ,v).

4. Draw the cluster membership vector and prior hyperparameters from p(H|Θ−H,Y,x).

A.1 Conditional Likelihood

The likelihood conditional on the model parameters and latent variables is given by

p(Y|Θ) =
N∏
n=1

p(Yn|θn,Z, h),

p(Yn|θn,Z, h) =
T∏
t=1

p(ynt|θn, zt, h),

p(ynt|θn, zt, h) ∝ σ−1n exp

{
− [ynt − µ′nw (zt, h)]2

2σ2
n

}
,

where

w (zt, h) = [1, hn,zt ]
′ .

A.2 Draw θ given Θ−θ,Y

We draw θn conditional on knowing all other countries’ growth rate and error variance param-

eters. We then separate the draw of θn into a step of drawing the error variance conditional on the

growth rates, then drawing the growth rates conditional on the new draw of the error variance.
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Country n’s error variance is drawn from an inverse-gamma distribution:

σ−2n ∼ Γ

(
ν0 + T

2
,
τ0 + τ̂

2

)
,

where

τ̂ =
T∑
t=1

[ynt − µ′nw (zt, h)]
2
.

We draw the mean growth rate parameters for country n from a normal distribution:

µn ∼ N
(
mn, σ

2
nMn

)
,

where

mn = Mn

[
M−1

0 m0 +
T∑
t=1

w(zt, h)ynt

]
,

and

Mn =

[
M−1

0 +
T∑
t=1

w(zt, h)w(zt, h)′

]−1
.

A.3 Draw Z given Θ−Z,Y

Following HO, we have

p (Z|Θ−Z,Y) ∝ p(Y|Θ)p(Z|γ),

where the likelihood conditional on the model parameters and latent variables is given by

p(Y|Θ) =
N∏
n=1

p(Yn|θn,Z, h),

p(Yn|θn,Z, h) =
T∏
t=1

p(ynt|θn, zt, h),

p(ynt|θn, zt, h) ∝ σ−1n exp

{
− [ynt − µ′nw (zt, h)]2

2σ2
n

}
,

w (zt, h) = [1, hn,zt ]
′ .
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Chib (1996) shows that

p (Z|Θ−Z,Y) = p (zT |Y, θ, γ, h)
T−1∏
t=1

p (zt|zt+1, . . . , zT ,Y, θ, γ, h) .

Since zt+1 contains all information about zt embodied by future z or y, we get

p (Z|Θ−Z,Y) = p (zT |YT , θ, γ, h)
T−1∏
t=1

p (zt|zt+1,Yt, θ, γ, h) ,

where Yt = {yτn : τ ≤ t;n = 1, . . . , N}.

Implementing the filter outlined by Hamilton (1989), we calculate the filter density, p (zt|Yt, θ, γ, h),

for t = 1, . . . , T . We then draw the terminal state, zT , from the final filter density, p (zT |YT , θ, γ, h),

and proceeding recursively we draw zT−1, . . . , z1 from the updated filter densities:

p (zt|zt+1,Yt, θ, γ, h) =
pzt+1,zt (vt) p (zt|Yt, θ, γ, h)∑K+2

k=1 pzt+1,k (vt) p (zt = k|Yt, θ, γ, h)

where pji (vt) are the time-varying transition probabilities.

A.4 Draw γ given Θ−γ,v

The estimation method assumes the state variable is determined by underlying state utilities

given by

Uk,t = V′k,tγk + ηk,t, k = 1, . . . , K + 2,

zt = j ⇔ Uj,t = max
k
Uk,t,

where vk,t follows a Type 1 extreme value distribution, and

Vk,t =


[
vtI[zt−1=k], I[zt−1=k],vtI[zt−1=K+1], I[zt−1=K+1],vtI[zt−1=K+2], I[zt−1=K+2]

]′ if k = 1, . . . , K[
vtI[zt−1=1], . . . ,vtI[zt−1=K+2], I[zt−1=1], . . . , I[zt−1=K+2]

]′ if k = K + 1, K + 2
,
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and

γk =


[
γv′kk, γkk, γ

v′
kK+1, γkK+1, γ

v′
kK+2, γkK+2

]′ if k = 1, . . . , K[
γv′k1, γk1, . . . , γ

v′
kK+2, γkK+2

]′ if k = K + 1, K + 2
.

The differences of Vk,t and γk across global (k = K + 1, K + 2) and idiosyncratic states (k =

1, . . . , K) is due to the restriction on the transition probabilities, pji,t = 0 for all t where i 6= j,

i ≤ K, and j ≤ K.

The random utility model (RUM) focuses on drawing these state utilities directly, whereas the

dRUM uses the differences in these latent state utilities. The dRUM representation is outlined by

Kaufmann (2011) as

ωk,t = Uk,t − U−k,t, k = 2, . . . , K + 2, (A.1)

where

U−k,t = max
j 6=k

Uj,t,

giving us the value of the state variable

zt =

 1 if maxk=2,...,K+2 ωk,t < 0

j if ωj,t = maxk=2,...,K+2 ωk,t > 0
.

It follows that

U−k,t = log(χ−k,t) + η−k,t,

where

χk,t = exp (V′k,tγk),

and

χ−k,t =
∑
j 6=k

χj,t.

Therefore, (A.1) can be rewritten as

ωk,t = V′k,tγk + ηk,t − log(χ−k,t) + η−k,t,
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or

ωk,t = V′k,tγk − log(χ−k,t) + εk,t, εk,t ∼ Logistic.

Practically, there are three substeps to the sampling technique for γk. The first substep is to

draw the latent state utility differences from

ωk,t = log
(
χ∗k,tWk,t + I[zt=k]

)
− log

(
1−Wk,t + χ∗k,tI[zt 6=k]

)
,

where

χ∗k,t =
χk,t
χ−k,t

,

and

Wk,t ∼ U (0, 1) .

Next, we must estimate the logistic distribution of the errors, ε, by a mixture of normal distri-

butions with M = 6 components. The components are sampled from

p(Rk,t = r|ωk,t, γ) ∝ wr
sr

exp

[
−0.5

(
ωk,t −V′k,tγk+ log(χ−k,t)

sr

)2
]
, r = 1, . . . , 6,

where the component weights, wr, and component standard deviation, sr, are given in Table 1 of

Frühwirth-Schnatter and Frühwirth (2010).

Finally, we can generate the new draw of γk from a normal posterior distribution:

p(γk|Z,ω,R) = N(gk,Gk),

where

gk = Gk

(
T∑
t=1

Vk,t [ωk,t + log(χ−k,t)]

s2Rk,t

+ G−10k g0k

)
,

and

Gk =

(
T∑
t=1

Vk,tV
′
k,t

s2Rk,t

+ G−10k

)−1
.
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A.5 Draw H given Θ−H,Y,x

We draw the latent variables for cluster determination for state k, Hk = {βk, ξk, λk,hk}, con-

ditional on knowing all other state’s cluster variables, H−k = {Hj : j = 1, . . . , K, j 6= k}.

Draw βk

The posterior for βk follows a normal distribution

βk ∼ N(bk,Bk)

where

bk = Bk

(
B−10 b0 + X′kW

−1
k ξk

)
,

Bk = (B0 + X′kW
−1
k Xk),

Wk = diag (λ1k, . . . , λNk) ,

Xk = [x′1k, . . . , x
′
Nk]
′
.

Draw ξk

The latent variables which determine cluster membership are calculated by

ξnk = x′nkβk − log
(
u−1nk − 1

)
,

where

unk =


1

1+exp(x′nkβk)
u∗nk if hnk = 0

1

1+exp(x′nkβk)
+

exp(x′nkβk)
1+exp(x′nkβk)

u∗nk if hnk = 1
,

and

u∗nk ∼ U [0, 1] .
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Draw λk

A candidate for λnk is calculated as

λnk =


rnk

vnk
if unk ≤ 1

1+vnk

rnkvnk otherwise

where

r2nk = (ξnk − x′nkβk)
2
,

vnk = 1 +
w2
nk −

√
w2
nk (4rnk + w2

nk)

2rnk
,

wnk ∼ N (0, 1) ,

unk ∼ U (0, 1) .

We follow the methodology of Holmes and Held (2006) to either accept the candidate, or repeat

this step until acceptance occurs.

Draw hk

For each country n, we draw hnk by combining the conditional likelihood and prior:

Pr (hn = k|Θ−H,Y, β, ξ, λ) =
p(Yn|hn = k, β, ξ, λ, θ, z)p(hnk = k)∑K
j=1 p(Yn|hn = j, β, ξ, λ, θ, z)p(hnk = j)

. (A.2)
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APPENDIX B

TABLES AND FIGURES

Country Coverage Mean (ȳ) Variance (σ2y) Correlation with U.S. (ρx,y)

Canada 1960:Q2 - 2013:Q4 3.19 11.89 0.52
France 1970:Q2 - 2013:Q4 2.09 5.24 0.32
Germany 1960:Q2 - 2013:Q4 2.44 19.56 0.27
Italy 1960:Q2 - 2013:Q4 2.47 17.13 0.24
Japan 1960:Q2 - 2013:Q4 3.93 28.22 0.21
Mexico 1980:Q2 - 2013:Q4 2.39 28.53 0.26
U.K. 1960:Q2 - 2013:Q4 2.45 15.43 0.26
U.S. 1960:Q1 - 2013:Q3 3.04 11.42 -

Table B.1: Sample Statistics

Parameter Prior Distribution Hyperparameters

µ = [µ1, µ2]
′ N (m0, σ

2M0) m0 = [3,−3], M0 = I2
σ−2 Γ

(
υ0
2
, τ0

2

)
υ0 = 1, τ0 = 1

γ = [α1, α2, β1, β2]
′ N (g0,G0) g0 = 04, G0 = 2I4

Table B.2: Prior Distributions for the Two-state Model

Parameter Prior Distribution Hyperparameters

µ = [µ1, µ2, µ3]
′ N (m0, σ

2M0) m0 = [−2, 2, 6], M0 = I2
σ−2 Γ

(
υ0
2
, τ0

2

)
υ0 = 1, τ0 = 1

γk = [αk1, αk2, αk3, βk1, βk2, βk3]
′ N (g0,G0) g0 = 06, G0 = 2I6

Table B.3: Prior Distributions for the Three-state Model
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Country Two-state Model Three-state Model

Canada 1112.2 1057.6
France 769.1 746.3
Germany 1238.0 1259.9
Italy 1195.2 1174.2
Japan 1026.3 1048.6
Mexico 806.8 855.9
UK 1166.1 1161.2

Table B.4: Bayesian Information Criterion

Parameter Canada France Germany Italy Japan Mexico U.K.

µ1 −2.90 −3.25 −2.86 −2.57 −3.74 −4.60 −2.99
µ2 2.66 1.49 3.19 1.69 3.21 3.66 2.82
µ3 6.78 4.10 - 6.60 - - 8.15
σ2 5.19 2.44 15.53 8.97 16.22 17.21 8.46

Table B.5: Estimates for the Average Growth Rate and Variance Parameters - Median posterior
draws for the state-dependent growth rates, µi, and the variance, σ2.
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Parameter Canada France Germany Italy Japan Mexico U.K.

p11,t α11 −0.17 0.76 −1.17 1.12 −0.49 0.20 1.06
β11 −1.35 −0.81 −1.12 −0.52 −0.25 −0.91 −0.81

p12,t α12 −1.10 −1.46 −2.73 −0.59 −2.91 −2.78 −0.84
β12 −2.49 −1.00 −1.40 −1.36 −0.29 −0.50 −1.27

p13,t α13 −2.23 −3.13 - −2.35 - - 0.36
β13 −1.44 −0.96 - −0.35 - - −0.26

p21,t α21 −0.73 0.09 - −0.18 - - 0.54
β21 −0.46 −0.87 - 0.39 - - 0.82

p22,t α22 2.51 2.94 - 3.58 - - 3.16
β22 −1.53 −0.45 - −0.54 - - −0.02

p23,t α23 0.06 −2.25 - −2.30 - - 0.90
β23 −1.03 −0.31 - −0.65 - - 0.08

Table B.6: Estimates for the Transition Probability Parameters - Median posterior draws for the
parameters governing the transition probabilities, pji,t = Pr[st = j|st−1 = i, yUSt−1]. αji captures the
time-invariant portion of the transtion probability, and βji is the coefficient on lagged U.S. output
growth. Bold indicates that 0 lies outside the 68% posterior coverage.

Parameter Prior Distribution Hyperparameters
µn N (m0, σ

2
nM0) m0 = [1,−2]′, M0 = 2I2 ∀n

σ−2n Γ
(
v0
2
, τ0

2

)
v0 = 1, τ0 = 1 ∀n

γ2 N (g02,G02) g02 =
[
0L(K+2),−2, 2,0K

]
, G0k = I(L+1)(K+2) ∀k

γk N (g0k,G0k) g0k = [03L,−2, 0, 2], G0k = 2I3(L+1) k = 3, . . . , K + 2
βk N(b0k, B0k) b0 = 0(Q+1), B0k = I(Q+1) ∀k

Table B.7: Prior Specifications for Estimation
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Country µ0n µ0n + µ1n σ2
n

Argentina 0.81 -0.78 6.36
Australia 0.84 -0.28 0.81
Austria 0.78 -0.15 0.61
Belgium 0.70 -0.36 0.35
Brazil 0.73 -0.63 1.89
Canada 0.82 -0.61 0.50
Chile 1.34 -1.51 1.75
China 2.37 1.27 2.77
Denmark 0.62 -0.36 1.31
Finland 0.83 -0.36 1.53
France 0.68 -0.14 0.19
Germany 0.68 -0.37 0.69
Hong Kong 1.50 -1.36 2.58
India 1.54 0.56 0.95
Indonesia 1.55 -0.91 2.91
Ireland 1.21 0.36 1.56
Italy 0.63 -0.44 0.55
Japan 0.80 -0.10 1.04
Korea 1.89 0.36 2.33
Luxembourg 1.08 -0.33 1.69
Malaysia 1.71 -0.92 1.54
Mexico 0.96 -0.16 1.23
Netherlands 0.75 -0.45 0.98
New Zealand 0.75 -0.40 1.96
Norway 0.87 0.15 1.35
Philippines 0.93 -0.36 4.12
Portugal 0.89 -0.80 1.20
Singapore 1.95 -1.22 2.06
South Africa 0.73 -0.57 0.78
Spain 0.84 -0.37 0.41
Sweden 0.73 -0.32 1.16
Switzerland 0.51 -0.87 0.38
Taiwan 1.60 -0.12 1.64
Thailand 1.55 -0.71 3.75
United Kingdom 0.73 -0.19 0.66
United States 0.83 -0.64 0.49
Venezuela 0.72 -0.85 10.51

Table B.9: Growth Rates and Variance Parameters - The median posterior draw for the average
GDP growth rate and variance parameters of each country. µ0n is the average growth rate for
country n during a period of expansion. µ0n + µ1n is the average growth rate of country n during
a period of recession. σ2

n is the regime-independent variance for country n’s average annualized
growth rate across the entire sample.
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Cluster Covariate Raw Metric Cluster 1 Cluster 2 Cluster 3
Trade Openness Total Trade (% of GDP) 0.04 -0.42 0.38
Industrialization Capital-Income Ratio -0.07 -0.12 0.19
Legal Systems Formalism Index 0.06 -0.02 -0.03
Language Ethnolinguistic Index -0.17 0.12 0.04
Oil Production Oil Rents 0.04 0.10 -0.14
Financial Openness Foreign Assets & Liabilities (% of GDP) -0.05 -0.06 0.11
Asia 0.03 -0.37 0.34
Europe Continent 0.24 -0.14 -0.10
North America Dummies -0.08 0.14 -0.06
South America -0.08 0.11 -0.03

Table B.10: Hyperparameters for the Prior Distribution of Cluster Membership - This table dis-
plays the posterior medians of the logistic coefficients (βk) determining the prior distribution of
cluster membership. Bold indicates parameters for which the 68% posterior coverage interval
does not include zero. The table also includes the discrete derivatives (δk) implied by the median
coefficients.

Estimated Recession
Dates for Cluster 3 Economic Event(s) in Asia

1984:Q4 - 1985:Q3 Plaza Accord; Lack of export demand from US recession
1997:Q4 - 1998:Q3 Asian Financial Crisis
2001:Q1 - 2001:Q3 Tech Recession

2003:Q3 SARS Epidemic
2008:Q2 - 2008:Q3 Global Financial Crisis

2010:Q3 USD appreciation and tight regional monetary policy

Table B.11: Cluster 3 Recession Dates and Major Events in Asia - The first column of this table
shows the estimated (idiosyncratic) recession dates for cluster 3 as implied by the posterior regime
probabilities. The second table lists the associated major economic events in Asia during these
time periods.
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Term Spread Previous State (zt−1)
Global Expansion Global Recession Cluster 1 Cluster 2 Cluster 3

Global Expansion 0.03 0.06 0.11 0.01 0.33
Current Global Recession 0 -0.22 -0.01 -0.40 0.05

State Cluster 1 -0.02 0.10 -0.11 - -
(zt) Cluster 2 -0.02 0.03 - 0.39 -

Cluster 3 0.01 0.04 - - -0.37
Housing Prices Previous State (zt−1)

Global Expansion Global Recession Cluster 1 Cluster 2 Cluster 3
Global Expansion 0.20 -0.05 0.29 0.14 0.15

Current Global Recession 0 0.04 0.16 0.31 -0.09
State Cluster 1 -0.13 0.01 -0.45 - -
(zt) Cluster 2 -0.01 -0.02 - -0.44 -

Cluster 3 -0.06 0.03 - - -0.06
Equity Returns Previous State (zt−1)

Global Expansion Global Recession Cluster 1 Cluster 2 Cluster 3
Global Expansion 0.07 -0.07 0.65 0.31 -0.16

Current Global Recession 0 -0.53 0.05 -0.10 -0.10
State Cluster 1 0.01 0.49 -0.70 - -
(zt) Cluster 2 -0.02 0.06 - -0.21 -

Cluster 3 -0.06 0.04 - - 0.26
Oil Price Shock Previous State (zt−1)

Global Expansion Global Recession Cluster 1 Cluster 2 Cluster 3
Global Expansion 0.09 -0.04 -0.10 -0.05 -0.32

Current Global Recession -0.01 0.06 0.05 -0.09 -0.08
State Cluster 1 -0.01 -0.11 0.05 - -
(zt) Cluster 2 -0.04 0.04 - 0.14 -

Cluster 3 -0.03 0.06 - - 0.40

Table B.12: Transition Covariates Effects - This table shows the effects of external shocks on
the transition process of the aggregate regime zt. We present the discrete derivatives δiji for each
covariate on each transition probability pt,ji. The derivatives can be interpreted as the difference in
transition probabilities when the covariate is realtively high and low (i.e., δlji = pHt,ji − pLt,ji).

Parameter Prior Distribution Hyperparameters
µ1n N (m,σ2M) m = −2 ; M= 1 ∀n
σ−2n Γ

(
ν
2
, ι0
2

)
ν0 = 10 ; ι0 = 1 ∀n

σ̃−2n Γ
(
ν̃0
2
, ι̃0
2

)
ν̃0 = 100 ; ι̃0 = 0.1 ∀n

P D (α) αi = 0 ∀i
δ̃n N (d0,D0) d0 = [2, 0]′ ; D0 = I2 ∀n
φn N (g,G) g = 0p ; G = Ip ∀n
hnk Pr(hnk = 1) = 1

κ
(1− p0) p0 = 0.01 ∀n, k

Table B.13: Priors for Estimation
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Previous State (zt−1)
Agg. Exp. Agg. Rec. Cluster 1 Cluster 2 Cluster 3 Cluster 4

Agg. Exp. 0.789 0 0.13 0.12 0 0
Current Agg. Rec. 0 0.68 0 0.30 0.11 0.08

State Cluster 1 0 0.03 0.87 0 0 0
(zt) Cluster 2 0.17 0.11 0 0.55 0 0

Cluster 3 0 0.16 0 0 0.89 0
Cluster 4 0.03 0 0 0 0 0.92

Table B.14: Transition Probabilities - This table shows the posterior median draw of the transition
probabilities for the aggregate state variable (Zt). Zeros in bold indicate transitions that were
restricted ex ante.
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Industry NAICS Cluster 1 Cluster 2 Cluster 3 Cluster 4
Apparel 315 0.48 0.47 0.01 0.02
Leather and allied product 316 0.19 0.65 0.09 0.05
Printing and related support activities 323 0.32 0.59 0.05 0.03
Petroleum and coal products 324 0.22 0.13 0.59 0.04
Logging 1133 0.44 0.16 0.38 0.01
Oil and gas extraction 2111 0.93 0.06 0.00 0.01
Coal mining 2121 0.41 0.25 0.30 0.04
Metal ore mining 2122 0.54 0.31 0.11 0.03
Nonmetallic mineral mining and... 2123 0.24 0.68 0.03 0.04
Support activities for mining 2131 0.35 0.25 0.34 0.02
Electric power generation, transmission... 2211 0.06 0.11 0.78 0.05
Natural gas distribution 2212 0.60 0.34 0.03 0.02
Animal food 3111 0.30 0.32 0.30 0.07
Grain and oilseed milling 3112 0.43 0.14 0.36 0.06
Sugar and confectionery product 3113 0.46 0.38 0.12 0.04
Fruit and vegetable preserving and... 3114 0.30 0.26 0.35 0.09
Dairy product 3115 0.27 0.16 0.32 0.23
Animal slaughtering and processing 3116 0.13 0.19 0.62 0.06
Bakeries and tortilla 3118 0.45 0.46 0.02 0.07
Other food 3119 0.10 0.54 0.32 0.02
Beverage 3121 0.08 0.07 0.84 0.01
Tobacco 3122 0.45 0.38 0.09 0.04
Fiber, yarn, and thread mills 3131 0.33 0.48 0.14 0.03
Fabric mills 3132 0.31 0.62 0.05 0.02
Textile and fabric finishing and fabric... 3133 0.34 0.60 0.01 0.05
Textile furnishings mills 3141 0.32 0.64 0.01 0.02
Other textile product mills 3149 0.13 0.79 0.01 0.06
Sawmills and wood preservation 3211 0.16 0.76 0.05 0.02
Veneer, plywood, and engineered... 3212 0.14 0.75 0.01 0.10
Other wood product 3219 0.12 0.78 0.01 0.07
Pulp, paper, and paperboard mills 3221 0.46 0.24 0.27 0.01
Converted paper product 3222 0.47 0.28 0.15 0.08
Basic chemical 3251 0.15 0.10 0.68 0.06
Resin, synthetic rubber, and artificial and... 3252 0.23 0.34 0.40 0.02
Pesticide, fertilizer, and other agricultural... 3253 0.31 0.14 0.52 0.02
Pharmaceutical and medicine 3254 0.05 0.05 0.88 0.02
Paint, coating, and adhesive 3255 0.45 0.49 0.02 0.03
Soap, cleaning compound, and toilet... 3256 0.04 0.07 0.83 0.05
Plastics product 3261 0.27 0.65 0.01 0.05
Rubber product 3262 0.45 0.28 0.00 0.26
Clay product and refractory 3271 0.51 0.37 0.02 0.07

Table B.15: Cluster Composition - This table shows the posterior cluster inclusion probabilities for
each industry. The second column lists the four-digit classification level according to the NAICS.
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Industry NAICS Cluster 1 Cluster 2 Cluster 3 Cluster 4
Glass and glass product 3272 0.24 0.59 0.01 0.15
Cement and concrete product 3273 0.16 0.75 0.01 0.07
Lime and gypsum product 3274 0.28 0.62 0.04 0.06
Other nonmetallic mineral product 3279 0.21 0.35 0.18 0.24
Alumina and aluminum production... 3313 0.32 0.36 0.27 0.03
Nonferrous metal (except aluminum)... 3314 0.56 0.16 0.21 0.06
Foundries 3315 0.33 0.47 0.01 0.16
Forging and stamping 3321 0.35 0.55 0.01 0.04
Cutlery and handtool 3322 0.50 0.19 0.08 0.21
Architectural and structural metals 3323 0.10 0.84 0.01 0.03
Hardware 3325 0.23 0.72 0.00 0.04
Spring and wire product 3326 0.31 0.56 0.01 0.11
Machine shops; turned product; ... 3327 0.30 0.61 0.01 0.04
Coating, engraving, heat treating,... 3328 0.30 0.46 0.02 0.16
Other fabricated metal product 3329 0.15 0.73 0.05 0.03
Agriculture, construction, and mining... 3331 0.33 0.18 0.28 0.15
Industrial machinery 3332 0.26 0.56 0.01 0.12
Ventilation, heating, air-conditioning, and... 3334 0.16 0.80 0.01 0.01
Metalworking machinery 3335 0.44 0.44 0.04 0.05
Engine, turbine, and power transmission... 3336 0.59 0.19 0.02 0.18
Computer and peripheral equipment 3341 0.61 0.30 0.04 0.04
Communications equipment 3342 0.57 0.32 0.03 0.07
Audio and video equipment 3343 0.52 0.41 0.03 0.03
Semiconductor and other electronic... 3344 0.39 0.43 0.03 0.13
Navigational, measuring, electromedical... 3345 0.43 0.28 0.25 0.02
Electric lighting equipment 3351 0.13 0.82 0.02 0.02
Household appliance 3352 0.25 0.67 0.03 0.03
Electrical equipment 3353 0.35 0.50 0.05 0.06
Other electrical equipment and... 3359 0.43 0.53 0.00 0.02
Motor vehicle 3361 0.21 0.64 0.01 0.14
Motor vehicle body and trailer 3362 0.24 0.46 0.04 0.25
Motor vehicle parts 3363 0.28 0.48 0.01 0.22
Aerospace product and parts 3364 0.21 0.26 0.50 0.02
Railroad rolling stock 3365 0.33 0.23 0.26 0.17
Ship and boat building 3366 0.42 0.17 0.37 0.02
Other transportation equipment 3369 0.14 0.12 0.67 0.07
Household and institutional furniture... 3371 0.26 0.65 0.02 0.06
Medical equipment and supplies 3391 0.07 0.08 0.80 0.04
Newspaper, periodical, book, and... 5111 0.14 0.66 0.17 0.02
Iron and steel products 3311,2 0.55 0.21 0.16 0.07
Commercial and service industry.... 3333,9 0.36 0.39 0.16 0.03
Office and other furniture 3372,9 0.13 0.84 0.01 0.01

Table B.15: Cluster Composition (continued) - This table shows the posterior cluster inclusion
probabilities for each industry. The second column lists the four-digit classification level according
to the NAICS.
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Figure B.1: Real GDP Growth for Canada, Germany, and Japan
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Figure B.2: Posterior Recession Probabilities - The posterior recession probabilities for each coun-
try are calculated as the percentage of MCMC draws for which a recession is drawn (st = 1). Gray
bars represent NBER recession dates for the U.S.
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Figure B.3: Posterior Expansion Probabilities - The posterior expansion probabilities for each
country are calculated as the percentage of MCMC draws for which an expansion is drawn (st = 2).
For countries following the three-state model, these are the posterior probabilities of the low-
growth rate expansion state. Gray bars represent NBER recession dates for the U.S.
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Figure B.4: Posterior High-Growth Expansion Probabilities - The posterior high-growth expan-
sion probabilities for countries following the three-state model are calculated as the percentage of
MCMC draws for which a high-growth expansion is drawn (st = 3). Gray bars represent NBER
recession dates for the U.S.
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Figure B.5: Marginal Effects on the Transition Probabilities for Canada - The blue line represents
the posterior median of the marginal effect of a change in U.S. output growth on the transition
probability given the values for lagged U.S. output growth (yUSt−1) and the past state (st−1). The
shaded region reflects the 68% coverage of the posterior distribution.
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Figure B.6: Marginal Effects on the Transition Probabilities for France - The blue line represents
the posterior median of the marginal effect of a change in U.S. output growth on the transition
probability given the values for lagged U.S. output growth (yUSt−1) and the past state (st−1). The
shaded region reflects the 68% coverage of the posterior distribution.

76



Figure B.7: Marginal Effects on the Transition Probabilities for Germany - The blue line represents
the posterior median of the marginal effect of a change in U.S. output growth on the transition
probability given the values for lagged U.S. output growth (yUSt−1) and the past state (st−1). The
shaded region reflects the 68% coverage of the posterior distribution.
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Figure B.8: Marginal Effects on the Transition Probabilities for Italy - The blue line represents
the posterior median of the marginal effect of a change in U.S. output growth on the transition
probability given the values for lagged U.S. output growth (yUSt−1) and the past state (st−1). The
shaded region reflects the 68% coverage of the posterior distribution.
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Figure B.9: [Marginal Effects on the Transition Probabilities for Japan - The blue line represents
the posterior median of the marginal effect of a change in U.S. output growth on the transition
probability given the values for lagged U.S. output growth (yUSt−1) and the past state (st−1). The
shaded region reflects the 68% coverage of the posterior distribution.
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Figure B.10: Marginal Effects on the Transition Probabilities for Mexico - The blue line represents
the posterior median of the marginal effect of a change in U.S. output growth on the transition
probability given the values for lagged U.S. output growth (yUSt−1) and the past state (st−1). The
shaded region reflects the 68% coverage of the posterior distribution.
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Figure B.11: Marginal Effects on the Transition Probabilities for the U.K. - The blue line represents
the posterior median of the marginal effect of a change in U.S. output growth on the transition
probability given the values for lagged U.S. output growth (yUSt−1) and the past state (st−1). The
shaded region reflects the 68% coverage of the posterior distribution.
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Figure B.12: Probability of Membership in Cluster 1 - This map presents the posterior probabil-
ities of cluster 1 membership based on the country-specific characteristics (e.g., trade openness,
industrialization, etc.) along with the full time series of output growth.

Figure B.13: Probability of Membership in Cluster 1 Due to Cluster Covariates - This map presents
the probabilities implied by the country-specific characteristics (e.g., trade openness, industrializa-
tion, etc.) and the posterior median for the multinomial logistic coefficients.
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Figure B.14: Probability of Membership in Cluster 2 - This map presents the posterior probabil-
ities of cluster 2 membership based on the country-specific characteristics (e.g., trade openness,
industrialization, etc.) along with the full time series of output growth.

Figure B.15: Probability of Membership in Cluster 2 Due to Cluster Covariates - This map presents
the probabilities implied by the country-specific characteristics (e.g., trade openness, industrializa-
tion, etc.) and the posterior median for the multinomial logistic coefficients.

Figure B.16: Probability of Membership in Cluster 3 - This map presents the posterior probabil-
ities of cluster 3 membership based on the country-specific characteristics (e.g., trade openness,
industrialization, etc.) along with the full time series of output growth.
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Figure B.17: Probability of Membership in Cluster 3 Due to Cluster Covariates - This map presents
the probabilities implied by the country-specific characteristics (e.g., trade openness, industrializa-
tion, etc.) and the posterior median for the multinomial logistic coefficients.
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Figure B.18: Posterior Recession Probabilities for Global Clusters- This figure shows the mean
posterior probability of recession for the world (top panel) as well as each idiosyncratic cluster
(bottom panels). Gray bars represent NBER recession dates for the U.S. (top panel) and the esti-
mated aggregate recession dates (bottom panels).
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Figure B.19: Cluster 1 Recessions and the Euro Area Business Cycle - This figure shows probabil-
ity that the countries in cluster 1 are in recession. The blue line represents the posterior probability
of a global recession, and the orange line represents the posterior probability of an idiosyncratic
recession for cluster 1. Gray bars represent recession dates as outlined by the CEPR Euro Area
Business Cycle Dating Committee.

Figure B.20: Cluster 2 Recessions and the US Business Cycle - This figure shows probability
that the countries in cluster 2 are in recession. The blue line represents the posterior probability
of a global recession, and the orange line represents the posterior probability of an idiosyncratic
recession for cluster 2. Gray bars represent recession dates as outlined by the NBER’s Business
Cycle Dating Committee .

86



Figure B.21: Posterior Regime Probabilities for Industry Clusters - This figure shows the posterior
probability of being in a regime at any point in time. The top panel shows the probability of being
in a national recession, and the bottom panels show the probability of being in an idiosyncratic
recession for each respective cluster. Gray bars represent recession dates as defined by the NBER’s
Business Cycle Dating Committee.

87



REFERENCES
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