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ASYMPTOTIC BOUNDARY OBSERVABILITY FOR THE WAVE

EQUATION ON SIMPLICES

ZIQING LU

Abstract. In this paper, we consider the wave equation on an n-dimensional sim-
plex with Dirichlet boundary conditions. Our main result is an asymptotic observ-
ability identity from any one face of the simplex.

1. Introduction

In this paper, we study the wave equation (∂2
t − ∆)u = 0 on all n-dimensional

simplex with Dirichlet boundary conditions. We obtain an asymptotic observability
property from any one face of the simplex. This generalizes the result in [CS18] from
triangles to to simplices in Rn. The proof is similar to that of [CS18]. It uses commu-
tators and integration by parts arguments, but involves a coordinate transformation
and linear algebra as well.

The formal statement of the problem is represented by (1.1):
(∂2
t −∆)u = 0 on (0,∞)× Ω,

u
∣∣∣
∂Ω

= 0,

u(0, x1, x2, . . . , xn) = u0(x1, x2, . . . , xn),

ut(0, x1, x2, . . . , xn) = u1(x1, x2, . . . , xn)

(1.1)

where u is real-valued and u0 ∈ H1
0 (Ω) ∩H3(Ω) and u1 ∈ H1

0 (Ω) ∩H2(Ω). Regarding
this problem, the main theorem is the following:

Theorem 1.1. Let Ω ⊆ Rn be a simplex with faces F0, F1, F2, . . . , Fn and suppose
u solves the wave equation on Ω. For any finite time T > 0, following we obtain the
asymptotic observability identity for any one face of the simplex Ω:∫ T

0

∫
F0

|∂νu|2dS0dt =
TArea(F0)

nV ol(Ω)
Ẽ(0)

(
1 +O

(
1

T

))
, (1.2)

where ∂νu is the normal derivative on F0and dS0 is the induced surface measure. ˜E(t)
is the conserved energy of the solution u to the wave equation, defined by:

Ẽ(t) =

∫
Ω
|∂tu|2 + |∇u|2dV. (1.3)

Remark 1. Observability in this paper means we can observe the initial energy by
taking a measurement on one face.

1
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2. History

The study of observability is based on the prerequisite that waves propagate along
straight-line paths in a homogeneous medium. Waves reflect off the boundary satisfying
the law of reflection, so that the angle of incidence is the same as the reflection angle.

The idea of observability originates from Rauch-Taylor’s paper [RT74] , where
they studied geometric control for the damped wave equation utt−∆u+ a(x)∂tu = 0.
The idea is if every ray passes through the damping region where a > 0, energy decays
exponentially as E(t) 6 Ce−t/c. For example, the first picture of Figure 1 is not
geometric control while the second one is.

Figure 1. Rays Passing Through Subset Of Domain

The closely related idea of observability asks if you can ”see” the initial energy
by taking the measurement of a subset of the domain or a subset of the boundary.
In the work of Bardos-Lebeau-Rauch [BLR92], the observability from a subset of the
boundary was studied in depth. The condition for observability, similar to in Rauch-
Taylor is that all rays hit the control region on the boundary transversally, as indicated
in Figure 2.

Figure 2. Rays Hitting The Control Region On The Boundary

In the work of Christianson-Stafford [CS18], an asymptotic observability property
from any one side of a triangle is proved. The proof was split into the cases of acute
triangles and obtuse triangles, shown by Figure 3. Waves are assumed to propagate
along straight-line paths at an unit speed, traveling from the opposite corner to the



ASYMPTOTIC BOUNDARY OBSERVABILITY FOR THE WAVE EQUATION ON SIMPLICES 3

interested side. The result was obtained with an argument of the method of this paper,
by the use of commutator and integration by parts arguments.

Figure 3. Asymptotic Observability On One Side Of Triangles

3. Preliminaries

This section of preliminaries provides lemmas and definitions required in the main
proof.

Lemma 3.1 (Conserved Energy). For the solution u to the wave equation (1.1). The
energy is conserved:

Ẽ(t) = Ẽ(0). (3.1)

Proof. Start with the wave equation (∂2
t − ∆)u = 0. By multiplying ut and by inte-

grating the wave equation on the domain, we have the following computations:∫
Ω

(∂2
t −∆)uutdV = 0

⇒
∫

Ω
∂2
t uutdV −

∫
Ω

∆uutdV = 0

⇒
∫

Ω
∂2
t uutdV +

∫
Ω
∇Tu∇utdV −

∫
∂Ω
∂νuutdS = 0,

(3.2)

where ν is the outward unit normal vector and dS is the induced surface measure.
Because u vanishes on the boundary, ut

∣∣∣
∂Ω

= 0 holds. We could therefore cancel

out the last term in the previous computation and prove that the energy is conserved
due to result of (3.2):

Ẽ′(t) =

∫
Ω
uttut + ututt +∇Tut∇u+∇Tu∇utdV

= 2

∫
Ω
uttut +∇Tu∇utdV

= 0.

(3.3)

�
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Definition 3.1 (Elliptic Operator). A constant coefficient elliptic operator P on Ω ⊆
Rn is defined by

P = −
n∑

i,j=0

Kij∂xi∂xj , (3.4)

where K is an n× n symmetric, positive definite matrix.

Lemma 3.2 (Ellipticity). Let Ω ⊆ Rn be a simplex. If u ∈ H1
0 (Ω)∩H3(Ω), then there

exists an constant C such that

‖∇u‖L2(Ω) 6 C〈Pu, u〉L2 . (3.5)

The following lemma is a modified version of Theorem 4 published in the paper
[Chr17] by Christianson. The modified version can be directly used in the main proof
of this paper.

Lemma 3.3 (Green’s formula for (3.4)). Let Ω′ ∈ Rn be the standard simplex and

g
∣∣∣
∂Ω′

= 0. Let P be an elliptic operator. Then for functions f, g ∈ C∞(Ω), we have,∫
Ω′

(Pf)gdV =

∫
Ω′
f(Pg)dV +

∫
∂Ω′

f(νTK)∂gdSdt (3.6)

where ν is the outward unit vector on every face of the simplex Ω.

This paper inherits the notation that Christianson used in the paper [Chr17] to
define higher dimension simplicies.

Definition 3.2 (Simplex). Let independent vectors ~p1, ~p2, . . . , ~pn ∈ Rn span from the
origin, then a simplex Ω in Rn is defined as:

Ω = {
n∑
i=1

ci~pi :

n∑
i=0

ci 6 1 and ci > 0, ~pi ∈ Rn} (3.7)

We denote the face where ci = 0, i = 1, . . . , n as Fi and the remaining face F0
1.

Let matrix A be

 | | |
~p1 ~p2 . . . ~pn
| | |

. Because the column vectors ~p1, ~p2, . . . , ~pn are

linearly independent, there exists an inverse matrix of A. Denote this inverse matrix
by B.

In particular, we have standard simplex Ω′ ∈ Rn.

Definition 3.3 (Standard Simplex). Let unit vectors ~e1 = [1, 0, 0, . . . , 0]T ,
~e2 = [0, 1, 0, . . . , 0]T , . . . , ~en = [0, 0, 0, . . . , 1]T ∈ Rn be n linear independent vectors.
The standard simplex, denoted by Ω′, is defined by all convex combinations of these
linearly independent unit vectors:

Ω′ = {
n∑
i=1

di~ei :

n∑
i=0

di 6 1 and di > 0, ~ei ∈ Rn} (3.8)

1By choosing a different corner as the origin, we can get the result for any one of the faces.
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This standard simplex has n + 1 faces F ′0, F
′
1, . . . , F

′
n, where F ′i is the face with

di = 0, i = 1, 2, . . . , n while the remaining face is F ′0.
The standard rectangular coordinates of the standard simplex Ω′ are denoted as

(y1, y2, . . . , yn) in Rn while the rectangular coordinates of the original simplex Ω are
denoted as (x1, x2, . . . , xn) in this paper.

The following transformation takes the arbitrary simplex Ω in Rn to the standard
simplex Ω′. Let ~x = [x1, x2, . . . , xn]T denote one vector in the simplex Ω and ~y =
[y1, y2, . . . , yn]T denote the corresponding vector of ~x in the standard simplex Ω′, then
we could obtain the following equation by considering the relation between the sets of
basis of the simplex Ω and that of the standard simplex Ω′:

~x = A~y (3.9)

For example, when ~y = ~ej = [0, . . . , 1, 0, . . . , 0]T , where 1 is at the jth position of the
vector, we have this relation:

~x =

 | | |

~p1 ~p2
... ~pn

| | |

 ~ej = ~pj (3.10)

By observing this relation, we claim that ∇x = BT∇y after the transformation.
The proof of this claim is in Appendix A.

Since the Laplacian operator is −∆x = −∇Tx∇x on the simplex Ω, the above claim
implies this equation is equivalent to P = −(BT∇y)T (BT∇y) = −∇TyBBT∇y on the
standard simplex Ω′. Denote it by P .

According to (1.3), the energy of the solution to the wave equation in y-coordinate
can be defined as :

E(t) =

∫
Ω′
|ut|2 + |BT∇u|2dV. (3.11)

We claim that this energy is also conserved:

E(t) = E(0). (3.12)

Proof of (3.12).

E(t)′ =

∫
Ω′
uttut + ututt + (BT∇ut)(BT∇u) + (BT∇u)(BT∇ut)

= 2

∫
Ω′
uttut + (BT∇u)(BT∇ut)

= 0.

(3.13)

�

The method used in this proof is similar to that of Lemma 3.1.

Lemma 3.4. Consider the vector field X =
∑n

i=0 xi∂xi and the second order constant
coefficient symmetric operator T = −

∑n
i,j=1 aij∂xi∂xj . Then:

[T,X] = 2T (3.14)
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Proof. When i = j, i = 1, . . . , n,

[−aii∂2
xi , x1∂x1 + x2∂x2 + · · ·+ xn∂xn ]

=
n∑
k=1

[−aii∂2
xi , xk∂xk ]

= [−aii∂2
xi , xi∂xi ] +

n∑
k=1,k 6=i

[−aii∂2
xi , xk∂xk ]

= −aii∂2
xi(xi∂xi) + xi∂xi(aii∂

2
xi) +

n∑
k=1,k 6=i

(−aii∂2
xi(xk∂xk) + xk∂xk(aii∂

2
xi))

= −aii∂xi(∂xi + xi∂
2
xi) + xiaii∂

3
xi + 0

= −aii∂2
xi − aii∂

2
xi − xiaii∂

3
xi + xiaii∂

3
xi

= −2aii∂
2
xi

(3.15)

When i 6= j, i, j = 1, . . . , n,

[−aij∂xi∂xj , x1∂x1 + x2∂x2 + · · ·+ xn∂xn ]

=

n∑
k=1

[−aij∂xi∂xj , xk∂xk ] +

n∑
k=1,k 6=i,j

[−aij∂xi∂xj , xk∂xk ]

= [−aij∂xi∂xj , xi∂xi ] + [−aij∂xi∂xj , xj∂xj ] + 0

= −aij∂xi∂xj (xi∂xi) + xi∂xi(aij∂xi∂xj )

− aij∂xi∂xj (xj∂xj ) + xj∂xj (aij∂xi∂xj )

= −aij∂xj (∂xi + xi∂
2
xi) + xiaij∂

2
xi∂xj

− aij∂xi(∂xj + xj∂
2
xj ) + xjaij∂

2
xj∂xi

= −2aij∂xj∂xi

(3.16)

�

4. Proof of the Theorem

Let the vector field be Y = y1∂y1 + y2∂y2 + · · · + yn∂yn on the standard simplex
Ω′. For P = −∇TBBT∇, we will compute:∫ T

0

∫
Ω′

[∂2
t + P, Y ]uudV, (4.1)

in two different ways. The two approaches are based on different ways of dealing with
the commutator. One approach starts with using Lemma 3.4 while in the other
approach we evaluate the commutator explicitly.

To start our first approach, we could apply Lemma 3.4 to compute the com-
mutator, because P is an elliptic operator. Then, since u the satisfies wave equation,
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integration by parts gives:

∫ T

0

∫
Ω′

[∂2
t + P, Y ]uudV dt =

∫ T

0

∫
Ω′

2PuudV dt

=

∫ T

0

∫
Ω′

(P − ∂2
t )uudV dt

=

∫ T

0

∫
Ω′
−∇TBBT∇uudV dt−

∫ T

0

∫
Ω′
∂2
t uudV dt

=

∫ T

0

∫
Ω′
−(BT∇)TBT∇uudV dt−

∫ T

0

∫
Ω′
∂2
t uudV dt

=

∫ T

0

∫
Ω′

(BT∇)u(BT∇)udV dt+

∫ T

0

∫
Ω′
∂tu∂tudV dt

−
∫

Ω′
∂tuudV

∣∣∣T
0

=

∫ T

0

∫
Ω′
|BT∇u|2dV dt+

∫ T

0

∫
Ω′
|∂tu|2dV dt

−
∫

Ω′
∂tuudV

∣∣∣T
0

=

∫ T

0

∫
Ω′
|BT∇u|2 + |∂tu|2dV dt−

∫
Ω′
∂tuudV

∣∣∣T
0

= TE(0)−
∫

Ω′
∂tuudV

∣∣∣T
0

(4.2)

Notice that at the last step of the previous computation, we used result of (3.12) .
We next compute (4.1) by a different approach. We first evaluate the commuta-

tor explicitly and then use integration by parts. The second term generated by the
commutator cancels out because of the homogeneous wave equation. Indeed,

∫ T

0

∫
Ω′

[∂2
t + P, Y ]uudV dt =

∫ T

0

∫
Ω′

(∂2
t + P )Y uu− Y (∂2

t + P )uudV dt

=

∫ T

0

∫
Ω′
∂2
t Y uu+ PY uudV dt

(4.3)
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After we apply Lemma 3.3 to the second term and use integration by parts twice
on the first term, we have:∫ T

0

∫
Ω′
∂2
t Y uu+ PY uudV dt

=

∫ T

0

∫
Ω′
Y u∂2

t udV dt+

∫
Ω′
∂tY uudV

∣∣∣T
0
−
∫

Ω′
Y u∂tudV

∣∣∣T
0

+

∫ T

0

∫
Ω′
Y uPudV dt+

∫ T

0

∫
∂Ω′

Y u(νTBBT )∇udSdt

=

∫ T

0

∫
Ω′
Y u(∂2

t + P )udV dt+

∫
Ω′
∂tY uudV

∣∣∣T
0

−
∫

Ω′
Y u∂tudV

∣∣∣T
0

+

∫ T

0

∫
∂Ω′

Y u(νTBBT )∇udSdt

=

∫
Ω′
∂tY uudV

∣∣∣T
0
−
∫

Ω′
Y u∂tudV

∣∣∣T
0

+

∫ T

0

∫
∂Ω′

Y u(νTBBT )∇udSdt

(4.4)

where ν is the outward normal vector to every face, and dS is the reduced differential
displacement.

To simplify the term integrate on the boundary in (4.4), we study every face of
the simplex by writing out the vector field Y = y1∂y1 + y2∂y2 + · · · + yn∂yn . On face
F ′1, we have that:

Y u
∣∣∣
F ′1

= (y1∂y1 + y2∂y2 + · · ·+ yn∂yn)u

= (0 · ∂y1)u+ y2 · 0 + y3 · 0 + · · ·+ yn · 0
= 0

(4.5)

by observing that y1 = 0 on F ′1 and that the tangential derivatives ∂y2u, ∂y3u, . . . , ∂ynu

of F ′1 are all equal to 0 since u
∣∣∣
∂Ω′

= 0. Therefore, we could conclude that Y u
∣∣∣
F ′1

= 0.

Similarly, the same result applies on the other n− 1 faces of the standard simplex:

Y u
∣∣∣
F ′1

= (y1∂y1 + y2∂y2 + · · ·+ yn∂yn)u = 0

Y u
∣∣∣
F ′2

= (y1∂y1 + y2∂y2 + · · ·+ yn∂yn)u = 0

...

Y u
∣∣∣
F ′n

= (y1∂y1 + y2∂y2 + · · ·+ yn∂yn)u = 0.

(4.6)

However, on face F ′0, the condition is different because none of the spatial variables
is 0 or none of ∂y2u, ∂y3u . . . , ∂ynu are tangential derivatives. We need to find its
tangential vectors.

Notice that the unit normal derivative on this face is ∂νu = 1√
n

[1, 1, . . . , 1]∇u.

Because the tangential derivatives are orthogonal to the normal derivative, we could
choose different tangential vectors and take advantage of the fact that they all equal
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to 0. The first tangential derivative we choose is 1√
n

[1,−1, 0, . . . , 0]∇u and it satisfies:

1√
n

[1,−1, 0, . . . , 0]∇u = 0 ⇒ ∂y1u = ∂y2u (4.7)

Similarly, by choosing other tangential derivatives for the face F0 and by setting them
equal to 0, we conclude that:

∂y1u = ∂y2u = · · · = ∂ynu (4.8)

Therefore, using the conclusion above, the normal vector can be represented as:

∂νu =
1√
n

(∂y1 + ∂y2 + · · ·+ ∂yn)u

=
1√
n

(n∂y1u)

=
√
n∂y1u

=
√
n∂y2u

= . . .

=
√
n∂ynu

(4.9)

which implies that: 
∂y1u = 1√

n
∂νu

∂y2u = 1√
n
∂νu

...

∂ynu = 1√
n
∂νu

(4.10)

Since y1 + y2 + · · ·+ yn = 1,

Y u
∣∣∣
F ′0

= (y1∂y1 + y2∂y2 + · · ·+ yn∂yn)u

= (y1 + y2 + · · ·+ yn)
1√
n
∂νu

= 1× 1√
n
∂νu

=
1√
n
∂νu.

(4.11)

Now the integration on the boundary can be simplified into the form:
∫ T

0

∫
F ′0

1√
n
∂νu(νTBBT )∇udS′0dt,

which only involves face F ′0. As a result, the second approach (4.4) is simplified to:∫ T

0

∫
Ω′

[∂2
t + P, Y ]uudV dt =

∫
Ω′
∂tY uudV

∣∣∣T
0
−
∫

Ω′
Y u∂tudV

∣∣∣T
0

+

∫ T

0

∫
F ′0

1√
n
∂νu(νTBBT )∇udS′0dt

(4.12)



10 ZIQING LU

We now study the first term of this simplified version (4.12), using integration by parts
and the chain rule:∫

Ω′
∂tY uudV

∣∣∣T
0

= −
∫

Ω′
∂tu

n∑
j=1

∂yj (yju)dV
∣∣∣T
0

= −
∫

Ω′
∂tu(nu+

n∑
j=1

yj∂yju)dV
∣∣∣T
0

= −n
∫

Ω′
∂tuudV

∣∣∣T
0
−
∫

Ω′
∂tuY udV

∣∣∣T
0
.

(4.13)

Then we have the second approach summarized as:∫ T

0

∫
Ω′

[∂2
t + P, Y ]uudV dt = −n

∫
Ω′
∂tuudV

∣∣∣T
0
− 2

∫
Ω′
∂tuY udV

∣∣∣T
0
.

+

∫ T

0

∫
F ′0

1√
n
∂νu(νTBBT )∇udS′0dt

(4.14)

Combining this and (4.2), and re-organizing terms, we have:∫ T

0

∫
F ′0

1√
n
∂νu(νTBBT )∇udS′0dt = TE(0) + (n− 1)

∫
Ω′
∂tuudV

∣∣∣T
0

+ 2

∫
Ω′
∂tuY udV

∣∣∣T
0

(4.15)
Now to obtain the observability from face F ′0, we are going to analyze the last two

terms of (4.15) to determine whether we could absorb them into initial energy through
estimation.

Firstly, to estimate the third term on the right side of (4.15), for some fixed time
t0, we use Cauchy’s inequality and triangle equality to obtain:

|
∫

Ω′
∂tuY udV

∣∣∣
t0
| 6 C

∫
Ω′
|∂tu|2dV

∣∣∣
t0

+ C

∫
Ω′

(

n∑
j=1

|yj∂yju|)2dV
∣∣∣
t0

6 C
∫

Ω′
|∂tu|2dV

∣∣∣
t0

+ C

∫
Ω′

(

n∑
j=1

|∂yju|)2dV
∣∣∣
t0

6 C
∫

Ω′
|∂tu|2dV

∣∣∣
t0

+ C

∫
Ω′

(
n∑
i=1

|∂yiu|)(
n∑
k=1

|∂yku|)dV
∣∣∣
t0

= C

∫
Ω′
|∂tu|2dV

∣∣∣
t0

+ C

∫
Ω′

n∑
i=1

n∑
k=1

(|∂yiu||∂yku|)dV
∣∣∣
t0

6 C
∫

Ω′
|∂tu|2dV

∣∣∣
t0

+ C

∫
Ω′

(|∂y1u|2 + |∂y2u|2 + · · ·+ |∂ynu|2)dV
∣∣∣
t0

6 C
∫

Ω′
|∂tu|2 + |∇u|2dV

∣∣∣
t0

(4.16)

Note that every coefficient C changes from line to line but they are independent from
time variable t0. By applying the Lemma 3.2, which can be done since BTB is
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positive definite, we have:

C

∫
Ω′
|∂tu|2 + |∇u|2dV

∣∣∣
t0
6 C

∫
Ω′
|∂tu|2 + 〈BBT∇u,∇u〉dV

∣∣∣
t0

6 C
∫

Ω′
|∂tu|2 + |BT∇u|2dV

∣∣∣
t0

= CE(0)

(4.17)

Thus, combining (4.16) and (4.17) gives :

|
∫

Ω′
∂tuY udV

∣∣∣T
0
| 6 |

∫
Ω′
∂tuY udV

∣∣∣
t=T
|+ |

∫
Ω′
∂tuY udV

∣∣∣
t=0
|

6 CE(0).

(4.18)

Similarly, we perform another estimation for the second term of (4.15) by using
the Cauchy inequality and the Poincaré inequality. Again, the coefficient C changes
but are not depend on t.

(n− 1)

∫
Ω′
∂tuudV

∣∣∣T
0
6 (n− 1)(C

∫
Ω′
|∂tu|2dV

∣∣∣T
0

+ C

∫
Ω′
|u|2dV

∣∣∣T
0

)

6 (n− 1)(C

∫
Ω′
|∂tu|2dV

∣∣∣T
0

+ C

∫
Ω′
|∇u|2dV

∣∣∣T
0

)

6 C
∫

Ω′
|∂tu|2 + 〈BBT∇u,∇u〉dV

∣∣∣
t0

6 C
∫

Ω′
|∂tu|2 + |BT∇u|2dV

∣∣∣T
0

= CE(0)

(4.19)

Therefore combining (4.19) and (4.18) into (4.15) yields:

∫ T

0

∫
F ′0

1√
n
∂νu(νTBBT )∇udS′0dt = TE(0) +O(1)E(0) (4.20)

To obtain the observability on face of the original simplex Ω, we make the following
transformation from the standard simplex Ω′ back to the original simplex Ω.

Starting from the right side of (4.20), we first transform the energy back to the
original simplex. By using the results introduced in C.2 and C.3 in Appendix C,
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dy = 1
det(A)dx and det(A) = n!V ol(Ω). Therefore,

TE(0) +O(1)E(0) = (T +O(1))

∫
Ω′

(|∂tu1|2 + |BT∇u0|2)dV

= (T +O(1))

∫
Ω′

(|∂tu1|2 + |BT∇u0|2)dy1dy2 . . . dyn

=
T +O(1)

det(A)

∫
Ω
|∂tu1|2 + |∇u0|2dx1dx2 . . . dxn

=
T +O(1)

n!V ol(Ω)

∫
Ω
|∂tu1|2 + |∇u0|2dx1dx2 . . . dxn

=
T +O(1)

n!V ol(Ω)
Ẽ(0)

(4.21)

On the left side of (4.20), to transform from face F ′0 of standard simplex Ω′ back to
the face F0 of original simplex Ω, we first change the graph coordinate dS′0 back to the
rectangular coordinate:

F ′0 = {yn = 1− y1 − y2 − · · · − yn−1}

⇒ dS′0 = (12 + (−1)2 + · · ·+ (−1)2)
1
2dy1dy2 . . . dyn−1

=
√
ndy1dy2 . . . dyn−1.

(4.22)

Then, the left side of (4.20) can be written as:∫ T

0

∫
F ′0

1√
n
∂νu(νTBBT )∇udS′0dt =

∫ T

0

∫
Ω′n−1

√
n√
n
∂νu(νTBBT )∇udy1dy2 . . . dyn−1dt

=

∫ T

0

∫
Ω′n−1

∂νu(νTBBT )∇udy1dy2 . . . dyn−1dt

=
1

(n− 1)!Area(F0)

∫ T

0

∫
F0

∂νu(νT )∇udS0dt

=
1

(n− 1)!Area(F0)

∫ T

0

∫
F0

(∂νu)(∂ν ū)dS0dt

=
1

(n− 1)!Area(F0)

∫ T

0
|∂νu|2dS0dt.

(4.23)

By equating (4.21) and (4.23) through (4.20), we could get our final conclusion of
the observability from one face of the original simplex Ω ⊆ Rn:∫ T

0

∫
F0

|∂νu|2dS0dt =
(n− 1)!Area(F0)

n!V ol(Ω)
E(0)(T +O(1))

=
TArea(F0)

nV ol(Ω)
E(0)

(
1 +O

(
1

T

))
.

(4.24)

This finishes the proof of Theorem 1.1.
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Appendices

A. change variables

Let A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...
an1 an2 . . . ann

. Based on the relation, we have v(x) = v(Ay)

where v is a function.
According to chain rule, we know that,

∂yjv(Ay) = ∂yjv


a11y1 + a12y2 + · · ·+ a1nyn
a21y1 + a22y2 + · · ·+ a2nyn

...
an1y1 + an2y2 + · · ·+ annyn


= vx1a1j + vx2a2j + · · ·+ vxnanj

=
n∑
k=1

vxk(Ay)akj

= ∇Tx v
∣∣∣
x=Ay


a1j

a2j
...
anj

 , j = 1, 2, . . . , n.

(A.1)

Then we have

∇y(v(Ay)) =


∂y1v(Ay)
∂y2v(Ay)

...
∂ynv(Ay)

 =



∇Tx v
∣∣∣
x=Ay


a11

a21
...
an1



∇Tx v
∣∣∣
x=Ay


a12

a22
...
an2


...

∇Tx v
∣∣∣
x=Ay


a1n

a2n
...
ann




= AT∇xv(Ay)

(A.2)

Therefore, ∇x = (A−1)T∇y = BT∇y.
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B. Simplex Volume

We used the fact that the volume of a n-dimensional standard simplex is 1
n! in the

main proof. The proof by induction is presented as following:

Proof. When n = 2, the standard simplex is spanned by two vectors ~v1 = [0, 1] and
~v2 = [1, 0]. We have its area equals to 1

2 = 1
2! .

Given a standard simplex S ∈ Rn−1, assume V ol(S) = 1
(n−1)! . Then for the

standard simplex T ∈ Rn with rectangular coordinates [t1, t2, . . . , tn], we have this
relation satisfied:

t1 + t2 + · · ·+ tn 6 1 (B.1)

Assume tn = k for some constant 0 6 k 6 1, then: t1 + t2 + · · · + tn−1 6 1 − k. The
volume of this simplex S′ ∈ Rn−1 is:∫ 1−k

t1=0

∫ (1−k)−t1

t2=0
· · ·
∫ (1−k)−t1−t2−···−tn−2

tn−1=0
dtn−1 . . . dt2dt1 (B.2)

To use the method of integration by substitution, for each j from 1 to n − 1, let

sj =
tj

1−k and therefore (1− k)dsj = dtj . Regarding the bounds of the integral, all tjs

can be substituted by (1− k)sjs. In particular, we have every sj bounded by:

⇒ 0 6 (1− k)sj 6 (1− k)− (1− k)s1 − (1− k)s2 − · · · − (1− k)sj−1

⇒ 0 6 sj 6 1− s1 − s2 − · · · − sj−1
(B.3)

Because we assumed that the volume of the standard simplex S is 1
(n−1)! , the volume

of this (n-1)-dimensional simplex S′ can be simplified to the form of:

(1− k)n−1

∫ 1

s1=0

∫ 1−s1

s2=0
· · ·
∫ 1−s1−s2−···−sn−2

sn−1=0
dsn−1 . . . ds2ds1 =

(1− k)n−1

(n− 1)!
. (B.4)

After integrating by variable k from 0 to 1, we get the volume of the standard
simplex T ∈ Rn: ∫ 1

0

(1− k)n−1

(n− 1)!
dk =

1

n!
. (B.5)

�

C. Determinant and Volume

Using the same notation indicated in the main proof. The rectangular coordinate
of the original simplex x and that of the standard simplex Ω′ is y is related by:

~x = A~y (C.1)

where A is the matrix with its columns equal to vectors ~p1, ~p2, . . . , ~pn. Their derivatives
satisfies:

dx1dx2 . . . dxn = det(A)dy1dy2 . . . dyn (C.2)

where det(A) denotes the determinant of the Jacobian matrix of the first partial deriva-
tives. Furthermore, by the conclusion of Appendix B, we know that the volume of
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the standard simplex Ω′ is 1
n! and thus we have:

1

det(A)

∫
Ω
dx1dx1 . . . dxn =

∫
Ω′
dy1dy2 . . . dyn

⇒ 1

n!
=

1

det(A)
V ol(Ω)

⇒ det(A) = n!V ol(Ω)

(C.3)

References

[BLR92] Claude Bardos, Gilles Lebeau, and Jeffrey Rauch. Sharp sufficient conditions for the ob-
servation, control, and stablization of waves from the boundary. SIAM J. Control Optim.,
30(5):1024–1065, 09 1992.

[Chr17] Hans Christianson. Equidistribution of neumann data mass on simplices and a simple inverse
problem. Math. Res. Lett., 2017.

[CS18] Hans Christianson and Evan Stafford. Asymptotic boundary observability for the wave equa-
tion on one side of a planar triangle. Ann. Henri Poincaré, 2018.
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