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ABSTRACT 

KOK-LIM LOW: View Planning for Range Acquisition of Indoor Environments 

(Under the direction of Anselmo Lastra) 

 

This dissertation presents a new and efficient next-best-view algorithm for 3D 

reconstruction of indoor environments using active range sensing. A major challenge in 

range acquisition for 3D reconstruction is an efficient automated view planning algorithm to 

determine a sequence of scanning locations or views such that a set of acquisition constraints 

and requirements is satisfied and the object or environment of interest can be satisfactorily 

reconstructed. Due to the intractability of the view planning problem and the lack of global 

geometric information, a greedy approach is adopted to approximate the solution. A practical 

view metric is formulated to include many real-world acquisition constraints and 

reconstruction quality requirements. This view metric is flexible to allow trade-offs between 

different requirements of the reconstruction quality. A major contribution of this work is the 

application of a hierarchical approach to greatly accelerate the evaluation of the view metric 

for a large set of views. This is achieved by exploiting the various spatial coherences in the 

acquisition constraints and reconstruction quality requirements when evaluating the view 

metric. The hierarchical view evaluation algorithm is implemented in a view planning system 

targeted for the acquisition of indoor environments using a monostatic range scanner with 3D 

pose. The results show great speedups over the straightforward method used in many 

previous algorithms. The view planning system has also been shown to be robust for real-

world application.  

The dissertation also describes how the view metric can be generalized to incorporate 

general acquisition constraints and requirements, and how the hierarchical view evaluation 

algorithm can be generalized to scanners with general pose, and to scanners with bistatic 

sensors. A simple extension is also proposed to enable the hierarchical view evaluation 
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algorithm to take into account each view’s sensitivity to the potential pose errors in the 

physical positioning of the scanner.  

A computed new view must produce a range image that can be accurately registered to 

the previous scans. In this work, a metric is developed to estimate the registration accuracy of 

the views. This metric considers the amount of overlap, the range measurement errors, and 

the shape complexity of the surfaces. 
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Chapter 1  
 

Introduction 

Active range sensing is being used in a wide range of applications. In manufacturing 

inspection, manufactured parts are scanned from a set of different views, and the acquired 

range data provides information on the surface geometry to allow detection of possible 

defects on the parts. In CAD/CAM, old parts are often reverse-engineered by making range 

scans of them and using the range data to reconstruct digital 3D models of the parts. Other 

applications include object recognition in computer vision, and visual exploration and 

navigation in robotics. 

In computer graphics, traditionally, 3D digital models of objects and environments have 

been modeled using CAD-like modeling tools or are procedurally generated [Foley1992]. 

When it comes to modeling complex real-world objects with large amounts of geometric 

details, these approaches often prove inadequate and impractical. This is the main reason we 

are beginning to see, in the computer graphics community, the increasing use of active range 

sensing to reconstruct 3D models of real-world objects. 

To create a high-quality 3D reconstruction of an object or environment, a huge amount of 

range data has to be acquired, stored and processed. Even just a decade ago, this was a major 

challenge. Today, the situation has improved considerably, thanks to the advancement in 

range scanning technology, the great increase in affordable computer processing power and 

storage, the inventions of efficient algorithms, and the availability of powerful specialized 

software tools. As an indicator of the high reconstruction quality that can be achieved today, 

in the Digital Michelangelo Project [Levoy2000, Levoy2003], the digital model of the 23-

foot tall statue of David consists of two billion polygons, and was created from 480 range 

scans made at a sampling resolution of 0.29 mm and depth resolution of 50 microns.  
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Multiple range scans from different scanning locations are almost always necessary to 

reconstruct a fairly complete model of a geometrically-nontrivial object or environment, 

since it is impossible to acquire the entire object or environment from any single scanning 

location. This is mainly due to occlusions, sensing surfaces at grazing angles, and the 

imaging limitations of the range scanner, such as its limited field of view and depth of field. 

They result in holes in the model. Figure 1.1 shows an example of a model made from a 

single simulated scan of a synthetic indoor environment. These holes must be filled in by 

additional scans made from different locations. The range data from the multiple scans are 

then merged together in post-acquisition processing to obtain a more complete 3D model of 

the object or environment. Figure 1.2 shows two views of a model constructed by merging 

range data from eight different scans. 

The set of scanning locations must be chosen carefully so that a 3D digital model of the 

object or environment can be satisfactorily reconstructed with minimal number of scans. This 

task is called view planning, and generally, in addition to the scanning locations, it also 

involves the determination of the scanner’s orientations and imaging parameters. A scanner’s 

pose (position and orientation) and its associated imaging parameters are collectively called a 

view. Usually, there are many constraints and requirements that have to be considered when 

selecting a view. For example, the scanner must never be placed too close to any surfaces, 

and the surfaces to be scanned must be within the limited field of view of the scanner. 

View planning is not only important to the acquisition of range data, it is also essential 

for the efficient acquisition of colors and surface reflectance properties of objects or 

environments [Lensch2003]. Both geometric information and surface reflectance properties 

are necessary for realistic reconstruction. However, the work described in this dissertation is 

concerned only with the acquisition of surface geometry using range scanners.  
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Figure 1.1: A model produced by a single simulated range scan of a synthetic indoor 
environment. The holes in the model are the results of occlusions, sensing at grazing angles, 
over-absorbent surfaces, and the limited field of view of the scanner. 

 

 
Figure 1.2: Two different views of a model reconstructed from eight range scans of the same 
synthetic indoor environment shown in Figure 1.1. Except for the first location, seven of the 
eight different scanning locations are planned by an automated view planner. The 
reconstructed model has significantly fewer and smaller holes than those from any single 
scan. 

1.1  Motivation 

Traditionally, view planning for range acquisition relies heavily on human decisions. 

Unless the object to be scanned is geometrically very simple, the set of selected views can be 

very inefficient, i.e. far more than the optimal, and they may not satisfy the reconstruction 

quality requirements. This can be a serious problem because by the time the deficiencies are 

(b) (a) 
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discovered, the site or the object may no longer be readily accessible. One possible way to 

improve the manual view planning is to provide online visualization feedback to the human 

operator. 

With online visualization feedback, after each new scan is made, it is immediately 

registered and merged with the partial model. The updated partial model is displayed 

interactively to the human operator, who can then observe the effect of each new scan on the 

partial model. Effective visualization should also provide other relevant information that can 

help the human operator plan the next scanning view. For example, the partial model’s 

surfaces could be color-coded to indicate which regions have not met the quality requirement. 

One of the major challenges is to have very efficient registration, merging, and rendering 

of the partial model, so that the human operator does not need to wait too long for the 

visualization feedback. Rusinkiewicz has implemented a real-time model acquisition system 

[Rusinkiewicz2002] that allows range scans to be made at video rate and provides real-time 

visualization feedback to the human operator. While it is claimed that real-time visualization 

feedback is effective for manual view planning to completely scan an object, the acquired 

scans can be excessively too many. In order to maintain reliable registration, the whole 

system pipeline has to run at very high rates, and that has limited the system to be feasible 

only for small objects. 

Humans are relatively good at high-level view planning for coverage of simple objects, 

but even experienced operators will encounter considerable difficulty with topologically and 

geometrically complex shapes [Scott2003]. Online visualization feedback may be helpful, 

but manual view planning is generally a slow and error-prone process [Levoy2000]. When 

multiple constraints and requirements have to be considered, it can become overwhelming or 

impossible for the human operators to produce a reasonably good view plan.  

Automated view planning might be able to take over the difficult view planning task from 

human operators. There have been some successes [Pito1996a, Reed1997, Sequeira1996, 

González-Baños1999, Nüchter2003], but most of them were only demonstrated to work for 

relatively simple objects or environments. Their problems and solutions were often over-

simplified, where important practical acquisition constraints and reconstruction quality 

requirements were left out, and only a very small and incomplete set of views was evaluated. 

Nevertheless, by using automated view planning, it becomes possible to fully automate the 
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entire model acquisition process if the scanner can be positioned by a software-controllable 

positioning system, and the scanner’s imaging parameters can be set by software too. In a 

semi-automatic system, the automated view planner may have to provide a visual guide to 

tell the human operator where to position, how to orient, the scanner and how to set the 

scanner’s parameters. 

1.1.1  Reconstruction of Environments 

Most of previous reconstructions have been on single small to mid-sized objects. With 

great improvements in the sampling density and depth precision of many of today’s long-

range scanners, together with the reduction in size and weight, reconstruction of 

environments have become more common. These environments include building interior, 

building exteriors, natural environments, and even part of a city. High-quality environment 

reconstruction has many important applications, such as building 3D digital archives of 

heritage sites, generating digital models of architectural structures for architecture and 

engineering studies, creating virtual worlds for virtual reality, and recording crime scenes for 

law enforcement purposes. 

Range acquisition of real-world environments is generally more difficult than for objects. 

Unlike a small object, which can be brought to a laboratory for range acquisition, scanning a 

real-world environment requires the scanner and other equipment to be transported and set up 

at the location. The scanning team usually has less control over the scanning conditions in an 

environment than in a laboratory. For example, in an outdoor environment, there may be 

people or cars moving around, and weather may be unsuitable. The demand on the scanner 

positioning system may be high too. For example, when scanning a mid-sized interior, an 

ideal positioning system should be able to reach every location in the empty space if all 

visible surfaces are to be acquired. Real-world environments can be cluttered with many 

objects, which results in high visibility complexity. This makes view planning very difficult. 

Moreover, to fully automate the acquisition process, an obstacle-free path has to be planned 

when moving the scanner from one viewpoint to the next. 

In this work, the goal is to automate view planning for the range acquisition of real-world 

indoor environments to reconstruct models for virtual reality walkthrough. Most common 
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indoor environments, such as offices and residential dwellings, are complex enough and 

challenging for automated view planning. Compared to most outdoor environments, 

acquisition conditions inside indoor environments are generally much easier to control. For 

example, it is easier to keep people out of the region to be scanned, keep objects from being 

shifted and moved, and remove or cover up objects that cannot be scanned well (for example 

large and shiny objects). Moreover, the acquisition will not be affected by the change of 

weather. This allows the research to better focus on the view planning issue and not be 

concerned with other unrelated issues. Chapter 3 gives details about the requirements on the 

indoor environments. 

1.2  Automated View Planning  

As mentioned before, the goal of this work is to automate view planning for the range 

acquisition of real-world indoor environments to reconstruct 3D digital models for virtual 

reality walkthrough. For 3D reconstruction, a priori knowledge of the environment’s 

geometry is not available to the view planner. The first scan is made from a view 

appropriately selected by a human operator, and for the subsequent scans the planner must 

determine the next best views based on the information it has already collected from the 

previous scans. This is why the view planning problems for 3D reconstruction are often 

called the next-best-view problems.  

Since global geometric information is unknown, a next-best-view problem cannot be 

solved globally to get an optimal solution. It is inherently a local optimization problem 

[Kakusho1995]. This local problem is NP-hard, and is often solved approximately using a 

greedy-approach approximation algorithm [Scott2003]. Using the greedy approach, the view 

planning solution operates in a tight iterative approach as part of the model acquisition cycle 

shown in Figure 1.3. During a typical acquisition session, the model acquisition cycle is 

repeated multiple times. In each cycle, after a scan is made, it is first registered (or aligned) 

with the partial model of the environment. Then the information of the new scan is merged 

into the partial model, and this updated model is used for the computation of a new view for 

the next scan. 
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Figure 1.3: The model acquisition cycle with automated view planning. 

A greedy next-best-view algorithm computes by evaluating a view metric function for 

each view, and outputting the view that maximizes the metric function as the best view for 

the next scan. Each view may consist of several parameters, and thus the solution space may 

be high-dimensional. The view metric must be designed to take into account the requirements 

on the reconstruction quality and the many acquisition constraints. Some of the common 

reconstruction quality requirements are the completeness of coverage and the sampling 

quality of the acquired surfaces. Examples of acquisition constraints include the visibility 

between the scanner and the surface to be acquired, the limited field of view and depth of 

field of the scanner, and the minimum clearance distance between the location of the scanner 

and any object in the environment. 

The major challenge to a practical next-best-view solution is to develop an efficient 

method to evaluate the view metric function for a large set of views, using information 

provided by a partial model of the environment. The evaluation of each view can be 

computationally very expensive, since a large amount of information of the partial model 

may be involved, and visibility computations and constraint evaluations are expensive. This 

is the main difficulty that has limited many previous next-best-view algorithms to incomplete 

search space, simple and small objects, incomplete set of constraints, and low-quality 

acquisition. Some early algorithms even ignore self-occlusion of the objects [Connolly1985]. 
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1.3  Contributions 

One of the major contributions of this work is the novel application of a hierarchical 

approach to greatly accelerate the evaluation of the view metric function for a large set of 

views. This is achieved by exploiting the various spatial coherences in the acquisition 

constraints and reconstruction quality requirements when evaluting the view metric. For 

example, if an acquisition constraint is satisfied between a view v and a surface point p, then 

usually the same constraint is also satisfied between p and other views in the neighborhood 

of v, and likewise, between v and other surface points in the neighborhood of p. This two-

way spatial coherence can be exploited by grouping adjacent views and surfaces in the partial 

model into view volumes and surface patches, respectively, and adaptively subdividing them 

during evaluation according to the change of spatial coherence of the constraints and 

requirements. The algorithm has been implemented in a view planning system and has 

demonstrated great speedups (one to two orders of magnitude) over the straightforward view 

evaluation method used in previous next-best-view algorithms. 

In the experiments described in this work, the hierarchical view evaluation approach is 

applied to my target next-best-view problem in which the range scanner is monostatic and the 

views are 3D positions with fixed orientation. A monostatic range scanner has only a single 

viewpoint, as opposed to a scanner based on triangulation, which has two or more viewpoints. 

This dissertation further describes how the hierarchical approach can be generalized to 

scanners with more general pose, and to scanners with bistatic sensors (for example, a 

triangulation-based range sensor). The dissertation also describes how general acquisition 

constraints and requirements can be incorporated into the hierarchical approach. 

The dissertation also proposes a simple extension to the hierarchical view evaluation 

algorithm to take into account each view’s sensitivity to the potential pose errors in the 

physical positioning of the scanner. To the best of my knowledge, this is the first next-best-

view algorithm that directly incorporates views’ sensitivity to pose errors in the computation 

of new views. 

Another contribution of this work is the design and formulation of a simple, general and 

practical view metric that is able to include many real-world acquisition constraints and 
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reconstruction quality requirements. This metric is also flexible to allow trade-offs between 

different requirements of the reconstruction quality. 

One of the most important acquisition constraints is that the computed new view must 

produce a range image that can be accurately registered to the partial model. The registration 

is essential to localize the actual pose of the scanner, and also to allow the new range image 

to be correctly merged to the partial model. However, this registration is not guaranteed to be 

successful. Factors that affect the registration accuracy between two surfaces are (1) the 

amount of overlap between them, (2) the shape constraint on the 3D rigid-body 

transformation between the two surfaces, and (3) the range measurement errors. In this work, 

a registration accuracy metric has been derived to estimate the registration error, and is used 

to ensure that the new scan to be acquired from the planned view can be successfully 

registered with the previous ones. The registration accuracy metric considers all three factors 

that affect the registration accuracy.  

To the best of my knowledge, this work is the first to be able to exhaustively evaluate a 

large set of 3D views with respect to a large set of surfaces, and to include many practical 

acquisition constraints and reconstruction quality requirements, especially the sampling 

quality requirement, and the registration constraint that considers surface shape complexity 

and range measurement errors. 

1.4  Thesis 

My thesis is 

Efficient and practical next-best-view computation for range acquisition of 

indoor environments can be achieved using a hierarchical approach that 

exploits the various spatial coherences in the acquisition constraints and 

reconstruction quality requirements. 

In support of my thesis, I have investigated and implemented a next-best-view planning 

system that takes into account the many practical real-world acquisition constraints and 

reconstruction quality requirements. I have implemented the hierarchical approach of view 
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evaluation to exploit the various spatial coherences in the acquisition constraints and quality 

requirements. Simulations have been performed, and the results show great speedups over the 

straightforward view evaluation method used in many previous next-best-view algorithms. 

Typical speedups range from 10 to 100 times. The system has been tested on a real indoor 

environment using the DeltaSphere-3000 range scanner [DeltaSphere], and has been shown 

to be robust for real-world practical use. The results of the view planning for both the real 

acquisition and simulations have been very satisfactory. Figure 1.4 shows the sequence of 

five views computed for the acquisition of a real indoor environment, and the resulting model 

constructed from the five scans. 

1.5  Organization 

This dissertation is organized as follows: 

• Chapter 2 provides brief introductions to the active range sensing technologies and 

the 3D reconstruction process, and reviews the previous work on view planning for 

3D reconstruction and other applications.  

• The first two sections of Chapter 3 introduces the general view planning problem and 

defines the specific view planning problem that concerns this work. The later sections 

present an overview of the proposed next-best-view algorithm and describe in detail 

the view metric and some of the major components of the solution.  

• One of the major solution components is presented in Chapter 4, which describes how 

the hierarchical view evaluation method is used to efficiently evaluate the acquisition 

constraints and reconstruction quality requirements. In the later part of the chapter, 

the hierarchical approach is generalized for more general scanning pose, acquisition 

constraints and quality requirements.  

• Chapter 5 addresses the issues regarding the registration of a new range scan to the 

partial model. This is another major component of the next-best-view solution. The 

first part explains how registration is performed in the view planning system, and the 

later section derives some conditions to pre-determine whether the range scan 

produced at a view can be successfully registered. The chapter uses an example to 
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illustrate how the registration conditions can be used and to demonstrate the 

effectiveness of the conditions.  

• In Chapter 6, three sets of results are presented to demonstrate the use of the next-

best-view planning system for the range acquisition of indoor environments. Two sets 

are from simulations and one set from scanning a real indoor scene. 

• Chapter 7 discusses some issues not addressed in the earlier chapters, describes 

directions for future work, and concludes the dissertation.  

 

 
Figure 1.4: The results of the acquisition of a real indoor environment using five 3D views 
computed by the next-best-view planning system. (a) The chain of five scanner views from 
which the five scans were made. These views may be at different heights from the floor. (b) 
The triangle mesh model constructed by merging the five scans. 

 

(b) (a) 



 

Chapter 2  
 

Background 

The work described in this dissertation assumes the use of an active range sensing device 

to obtain the geometric information of an environment. The next-best-view algorithm 

analyzes the partial geometric information to derive views for acquiring new geometric 

information. After the range data are sufficiently acquired, they usually need to go through a 

3D reconstruction process in order to be properly integrated into a 3D digital model.  

This chapter provides a brief introduction of 3D modeling from active range sensing, and 

reviews the previous work on view planning. View planning is used in the data acquisition 

stage of the 3D reconstruction process, which is the first stage of the process. 

2.1  3D Modeling From Active Range Sensing 

There are several ways to create a detailed 3D digital model of a real-word object or 

environment. Some objects have geometric shapes that can be accurately described by a set 

of mathematical formulae or rules, which can be readily programmed into a computer to have 

the 3D models generated. However, there are still many objects that cannot be conveniently 

modeled using this approach. These objects require explicit measurements of their surface 

geometry. The simpler of these objects may just require position measurements of only a 

small well-chosen set of surface points. The position measurements are then used on a CAD 

model to determine the positions of the modeling primitives. On the other hand, objects with 

high geometric complexity will require dense measurements of their surfaces. 
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Active range sensing has become a common approach to make dense, detailed geometric 

measurements of complex real-world objects and environments. With an adequately dense 

set of measurements of an object, geometric details can be accurately reconstructed on the 

3D digital model. Active range sensing is described in more details in the following 

subsection, and the next subsection explains the 3D reconstruction process in which a 3D 

model is constructed from the set of range measurements. 

2.1.1  Active Range Sensing 

There are two classes of non-contact measurement techniques for acquiring 3D surface 

geometry of objects—passive sensing and active sensing. Passive sensing techniques attempt 

to imitate the way the human eyes work. Light (or other form of energy) is received by the 

sensing device from the environment, and no energy is emitted for the purpose of sensing. 

Examples of passive techniques include stereo vision and shape-from-X techniques (e.g. 

shape-from-shading) [Trucco1998, Forsyth2002]. These techniques can only work well 

under restrictive ideal conditions, and are not suitable for most general class of objects and 

environments. For example, in stereo vision, the stereo matching problem is ill-posed in 

general, and the matching process can break down if the object’s surface is insufficiently 

textured. 

Active sensing techniques overcome the problems of passive sensing by emitting 

structured light (or other form of energy) in the direction of the object or environment to be 

digitized. A detector then receives the structured light that is reflected from the object’s 

surface. Active sensing can be classified into triangulation and time-of-flight systems.  

Triangulation range sensors work on the principle of triangulating a measurement spot on 

the object from a pair of physically separated structured light source and light detector. 

Triangulation-based range sensors are capable of very precise (less than 100 micrometers 

[Blais2003]) depth measurement, but they usually have a very short standoff distance (about 

a meter). Therefore, they are more suitable for measuring small objects. 

Time-of-flight range sensing is based on the measurement of time delays generated by 

light traveling in a medium. In a pulsed-wave time-of-flight system, the distance is computed 

from the time taken for the emitted light pulse to travel from the source to the target surface 
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and get reflected back to the source. Very accurate timing sources are required and depth 

precisions (usually around centimeters) are much lower than those of triangulation-based 

systems [Blais2003]. Time-of-flight systems based on continuous wave modulation get 

around the measurement of short pulses by modulating the power of the laser beam. Time 

delay is computed from the phase difference between the emitted and received waveforms1. 

Using continuous wave modulation, sub-millimeter depth precision can be achieved over 

long distance (10 to 100 meters) [Blais2003]. Time-of-flight systems are best suited to 

distance measurement and environment modeling at medium to long ranges. 

Time-of-flight range sensors are usually monostatic sensors, meaning that the light 

emitter and detector are at almost the same location. A surface point on an object can be 

measured by a monostatic sensor if it is visible to the single location where the emitter and 

detector are located. Sensors based on triangulation are bistatic or multistatic because the 

light emitter and detector must be at different positions. A surface point can be measured 

only if it is simultaneously visible to both the light emitter and detector.  

Most of the active range sensors that use laser emit only spot or profile structured light. 

This allows only one point or a profile of points on the objects to be measured at a time. In 

order to obtain a two-dimensional range map, the spot or profile structured light has to sweep, 

or “scan” across an imaginary two-dimensional imaging plane. This is usually done using 

rotating mirrors, and/or a mechanical pan-tilt unit to steer the laser source. Such devices are 

often called range scanners. When a scan is complete, a range image is produced.  

A range image is an organized point cloud. In an organized point cloud, each point’s 

connectivity with its neighboring points is known and is usually implicit. In an unorganized 

point cloud, each point’s relationship with its neighboring points is unknown. Organized 

point clouds are produced by systematically sweeping the structured light source across the 

imaginary two-dimensional imaging domain. 

Informative surveys of the different active range sensing technologies can be found in 

[Besl1989], [Beraldin2000] and [Blais2003]. A short review of the different types of time-of-

flight sensing techniques is presented in [Sequeira1999]. A fairly exhaustive list of optical 

3D sensors manufacturers is provided in [Papadopoulos2001]. 

                                                 
1Continuous wave modulation is used in the DeltaSphere-3000 3D Scene Digitizer [DeltaSphere]. This 

range scanner is used in experiments described in this dissertation. 
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2.1.2  The 3D Reconstruction Process 

The 3D reconstruction process produces a 3D digital model by acquiring and integrating 

multiple sets of range data of an object or environment. It is assumed that each set of range 

data is a range image—an organized point cloud—and this section focuses on reconstruction 

methods for organized point clouds. 

The process of 3D reconstruction of an object or environment typically consists of the 

following steps, as seen in Figure 2.1: (1) range acquisition, (2) range image registration, (3) 

merging of range images, and (4) post processing. The registration, merging and the post 

processing are usually very time-consuming, therefore they are normally done offline, after 

all the range scans have been acquired. Details of the steps are given next, and more detailed 

examinations of some of the 3D reconstruction steps can be found in [Forsyth2002], and in 

[Hilton1997a]. 

 

 
Figure 2.1: Steps in the 3D reconstruction process. 

(1) Range acquisition. In the range acquisition step, the range scanner is positioned at 

a set of different poses (and/or the object is moved with respect to the scanner) to 

scan different parts of the object. Imaging parameters of the scanner can be set 

differently at each pose. For example, the sampling density and field of view can be 

adjusted appropriately for each pose. A range image is produced when the scanner 

makes a “scan” of the object from a given pose and obtains a 2D array of range 

points expressed in the scanner’s local imaging coordinate frame. The objective of 

the acquisition step is to acquire range images that cover as much of the object’s 

surface as possible. This almost always requires multiple scans to be made due to 

the self-occlusion by the object, and also due to the imaging limitations of the 

scanner, such as a limited range and a limited field of view. If the 3D model to be 
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reconstructed has to meet some quality requirements, then the acquisition process 

must attempt to satisfy them. For example, to achieve a certain minimum sampling 

density on all visible object surface regions, the scanner must be placed at an 

appropriate distance and orientation from each surface region. If the range images 

have to be registered after the acquisition step, then it must be ensured that every 

scan has enough overlapping regions with at least one or two other scans, and the 

overlapping regions must have sufficient geometric complexity to constrain the 

relative 3D rigid-body transformation between the range images. To ensure that the 

constraints and requirements are satisfied, proper planning of the scanner’s positions 

and orientations (and imaging parameters) is necessary. 

(2) Range image registration. The next step is to register the multiple range images, so 

that they are aligned with one another in a common coordinate frame. During the 

range acquisition step, if the pose of the scanner is precisely known when each scan 

is being made, then it is not necessary to register the range scans, because the scans 

just have to be appropriately transformed into a common coordinate frame. 

However, this is normally not the case because the positioning and pose 

measurement systems always have errors, and their accuracies are usually much less 

than the depth accuracy and sampling density of the scanner. 

In order to achieve successful registration of all the range images, every range 

image must have sufficient overlapping regions with at least one other range image 

and the overlapping regions must have sufficient shape complexity. To start the 

registration, most registration algorithms require all the range images be already 

roughly aligned [Chen1992, Nishino2002]. This rough alignment may come from 

the approximate pose data provided by the tracking system or the positioning system 

of the scanner, or it may come from a human operator who manually positions the 

range images to roughly align them. After that, an iterative optimization method is 

usually used to achieve more precise alignment among all the range images 

[Pulli1999, Bergevin1996, Nishino2002]. Many of such registration algorithms that 

simultaneously align multiple range images are based on the idea of the Iterative 

Closest Point (ICP) algorithm [Besl1992, Chen1992, Rusinkiewicz2001]. The ICP 

algorithm is used for pair-wise registration of only two surfaces. 
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(3) Merging of range images. After the scans have been registered, there is redundant 

data at the overlapping regions. The objective of the merging step is to combine 

surface information in all the scans into a single non-redundant model. An ideal 

merging algorithm should take into consideration the physical characteristics of the 

scanner and the measurement quality or uncertainty of each individual range point, 

so as to create the most plausible model. Many of the merging methods for 

organized point clouds can be classified as surface mesh integration approaches 

[Turk1994, Boissonnat1984, Rutishauser1994, Soucy1995, Pito1996b], or 

volumetric approaches [Curless1996, Hilton1997, Roth1997].  

The zippering method [Turk1994] proposed by Turk and Levoy is a surface 

mesh integration approach. Each scan is first converted to a triangle mesh. The 

redundant surfaces at the overlapping regions between each pair of meshes are 

removed by eroding their boundaries until they just meet. Then, the boundary 

triangles on one mesh are clipped against those on the other mesh. Next, the 

redundant clipped triangles are removed, and the two triangle meshes are joined 

together by re-triangulation of the boundary region. After all the meshes have been 

zippered together, each vertex in the final model is moved to a consensus position 

given by a weighted average of positions from the original range images. 

An example of a volumetric approach is the method proposed by Curless and 

Levoy [Curless1996]. Each range image is first scan-converted to a discrete signed 

distance function represented in a 3D uniform grid. Then, one at a time, each signed 

distance function is weighted by its corresponding weight function and accumulated 

into a resulting signed distance function. The weight function represents the 

measurement confidence at each point of the range image. Finally, using the 

marching cubes algorithm [Lorensen1987], the final model is generated by 

extracting an isosurface from the volumetric grid of the resulting signed distance 

function. 

The resulting 3D model from the above merging methods is a polygonal 

boundary representation of the 3D object. 

(4) Post Processing. Many types of post processing operations can be done to the 

merged model. Some of the common ones are hole filling, simplification, surface 
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fittings, and surface fairing. Holes on the reconstructed model can come from a few 

sources. Self-occlusion by the object, together with the physical limitations in 

positioning the scanner, is one unavoidable cause. Another cause is the difficult 

reflectance properties on the object surface—both overly-absorbent and overly-

reflective surface can cause “drop outs,” that is, missing samples in the range 

images. Another cause of holes comes from human errors. It may be due to human 

carelessness that some visible parts of the objects are just missed during range 

acquisition. Holes in the reconstructed model are difficult to patch up automatically, 

unless additionally knowledge about the object can be provided to the hole-filling 

algorithm. This knowledge can be provided interactively by a human operator 

[Wang2002], or the algorithm just uses some heuristic assumptions about the 

missing surfaces [Wang2003a, Davis2002].  

If the merged model is a polygon mesh, it usually consists of an excessive 

number of polygons. This model can be optimized by reducing the number of 

polygons at low-curvature regions [Schroeder1992, Garland1997]. Another form of 

optimizing or approximating the merged model is to fit higher-order surface 

primitives to the model’s surface. A good review of some of these methods can be 

found in [Söderkvist1999]. The model may also be smoothed by some surface 

fairing methods, for example [Taubin1995], to reduce the effects caused by noise in 

the range images. 

2.2  Previous Work on View Planning 

This section reviews previous approaches to the view planning problems. View planning 

problems can be broadly classified into two groups: (1) non-model-based view planning 

(NMBVP) problems or next-best-view (NBV) problems, and (2) model-based view planning 

(MBVP) problems. In contrast to non-model-based view planning or next-best-view planning, 

model-based view planning operates with a priori knowledge of the geometric information of 

the objects or environments of interest. It is often employed in automatic inspection of 

manufactured parts where CAD models of the parts are already available before the actual 
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manufacturing and inspection. Although the next-best-view problems are the focus of this 

work, their similarities with the MBVP problems become apparent when each iteration of the 

NBV problems is recast as a problem in scanning well-defined areas that represent missing 

data in the current geometry [Hall-Holt1998].  

In this section, reviews of the previous work on view planning are divided into four 

application areas. For non-model-based view planning, the two areas are 3D reconstruction 

of objects and 3D reconstruction of indoor environments, whereas for model-based view 

planning, the two areas are object inspection and image-based modeling and rendering. The 

four application areas are listed in the following table. 

 Application Areas 

Non-model-based view planning • 3D reconstruction of objects 
• 3D reconstruction of indoor environments 

Model-based view planning • Object inspection 
• Image-based modeling and rendering 

 

The reviews focus on the view evaluation approaches taken by the different view 

planning algorithms, the dimensionality of the views, the solution space that is explored, and 

the different acquisition constraints and requirements that are considered by the view 

planning. 

There are a few past surveys of the research work in view planning. Scott et al. 

[Scott2003] offered a thorough definition of the view planning problem in their 

comprehensive survey of the existing view planning approaches. The focus is on automated 

3D object reconstruction and inspection by means of active, triangulation-based range 

sensors. The paper describes the components of a typical imaging environment, the steps in a 

reconstruction cycle, the assumptions, requirements and constraints, and some possible 

performance measures. It then surveys and compares different techniques for automated 3D 

object reconstruction and inspection. Work on view planning for environment reconstruction 

has been intentionally excluded. The authors classified the view planning problems into two 

top-level categories—model-based and non-model-based, and further subcategorized the 

different techniques according to the particular geometric representation used. 

The survey by Tarabanis et al. [Tarabanis1995] is probably the most cited view planning 

survey paper. The paper initially considers three vision tasks—inspection, object recognition, 

and scene/object reconstruction, but the reviewed papers are exclusively on inspection via 
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conventional intensity imaging. The focus is on the determination of camera and illumination 

poses and parameters, so that important object features can be robustly detected. The view 

planning methods are categorized into the generate-and-test approach, the synthesis approach, 

and expert systems. Many of the papers described in their paper are summarized in Section 

2.2.3. 

Other short reviews of papers on the next-best-view problems have been written by Hall-

Holt [Hall-Holt1998] and Hilton [Hilton1997a], and they are found on the World Wide Web. 

2.2.1  3D Reconstruction of Objects 

Almost all existing view planning methods for 3D object reconstruction employ the 

straightforward greedy approach by attempting to search for the view that maximizes a view 

metric function based on the currently known information about the object. The greatest 

difference among these methods may be their view metric functions, which reflect what 

constraints and requirements are being considered in the view planning. Other differences 

include the view space considered, the sampling of the view space, the methods of evaluation 

of the metric functions on the sample views, and the representations of the partial models. 

The paper by Connolly [Connolly1985] is probably the first paper on next-best-view 

planning for 3D reconstruction of objects from range images. The goal is to determine a set 

of “covering views” of a given object. Connolly took the greedy approach. An occupancy 

octree is used to represent the partial model. The range sensor is assumed to always point 

towards the center of the object, and the solution at each iteration is a direction for placing 

the sensor. The view space considered is therefore only two-dimensional.  

Connolly described two algorithms to search for the next best view—one is called the 

planetarium algorithm, and another the normal algorithm. In the planetarium algorithm, a 

sphere is set up around the object. The sphere is evenly sampled along the latitudes and 

longitudes, and at each sample point, a hidden-line image of the octree partial model is 

generated from only the surface and unseen-space voxels. The area of the visible unseen-

space voxels in the simulated image is determined and provides a measure of how good the 

sample viewpoint is, and the best of all the sample viewpoints is chosen as the sensor 

direction. The planetarium algorithm takes into account self-occlusion of the object. 
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The planetarium algorithm was deemed too slow, so the normal algorithm was presented. 

In the normal algorithm, the area of the octree faces that are common to both unseen-space 

and empty-space voxels is considered. Six separate area sums are kept since the faces can be 

oriented in six axis-aligned directions. One of the two directions along each of the three axes 

is chosen if it has the larger area sum. The final sensor direction is computed as the sum of 

the three chosen directions weighted by their respective area sums. This algorithm considers 

only local visibility and global self-occlusion is ignored. 

The paper does not address the issues of errors in range images, in registration, and in 

positioning of the range scanner. The models of the range sensor and the positioning system 

are not described at all. Although the author mentioned the collision avoidance constraint in 

the conclusion, only the visibility/occlusion constraint is actually considered in one of his 

algorithms. The author also did not mention how the hidden-line images in the planetarium 

algorithm are generated. Nevertheless, the sampling of viewpoints on a sphere, and the 

assumption that the sensor is always pointing at a center point, are used by other researchers 

in many later next-best-view algorithms, for example [Whaite1990, Banta1995, Zha1997, 

García1998]. 

Among the many next-best-view algorithms, the method of Pito [Pito1996, Pito1996a, 

Pito1999] is unique in that an intermediate 4D representation is used to record information of 

discrete light rays that can reach surface points on the partial model of the object. This 

representation is similar in idea to that of light field rendering [Levoy1996]. 

When searching for the best view, a potentially large set of discrete views has to be 

evaluated before the best of them is chosen for the next acquisition. In order to increase the 

efficiency of the evaluation, Pito introduced a 4D scalar field, dubbed the positional space, 

which consists of a 2D positional space surface (PSS) and the positional space directions 

(PSD). The positional space is used to record the light rays that can reach points on the 

occlusion surfaces and the low-confidence surfaces of the partial model. The PSS, which is a 

surface enclosing the object, is discretized into uniform cells for representation. Each cell is 

attached with a set of PSD, which is a polar coordinate system, and is also discretized for 

representation. Therefore, each sample in the discretized positional space represents the sum 

of “values” of the surface points observed by a bundle of approximately equal rays.  
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To evaluate a view, each ray from the view is transformed into the positional space, and 

the corresponding “surface value” already in the positional space is retrieved. These values 

are accumulated for each view, and the view with the highest accumulated value is chosen as 

the next acquisition view. 

Although the scanner’s pose used in Pito’s experiment has only one degree of freedom, 

the positional space method can be applied to pose of higher degree of freedom. The method 

can also be applied to wide range of scanner models, as long as each ray from the scanner 

can be modeled. However, many important issues about the positional space representation 

have not been addressed. Since the method requires a somewhat expensive overhead to 

compute the positional space representation, it is only advantageous when the number of 

views to be evaluated exceeds some value. Another issue is the space requirement of the 

positional space representation. A major issue that is worth investigating are the implications 

of the discretization resolutions of the PSS and the PSD. 

Whaite and Ferrie [Whaite1990, Whaite1991] presented an approach to view planning 

based on the paradigm of minimizing uncertainty. They assumed that each range image can 

be segmented into regions. Their objective is to reconstruct the object model by fitting a 

superellipsoid to each region, and view planning is used to acquire range images so that the 

uncertainty in the fitting can be minimized. 

For each segmented region of range points, the best-fit superellipsoid is computed. Due 

to noise in the range data, and the fact that not every true surface can be exactly fitted with a 

superellipsoid, there is uncertainty about the validity of the best-fit superellipsoid. This 

uncertainty is expressed as a volume of region (uncertainty region) in the superellipsoid 

parameter space around the parameters of the best-fit superellipsoid. A confidence level is 

chosen to define the boundary of the uncertainty region, and all parameters values within the 

boundary represent acceptable superellipsoids. Since the uncertainty region can be very 

complex, Whaite and Ferrie proposed to approximate it with an ellipsoid, called the ellipsoid 

of confidence, which is derived from the second-order approximation of the local 

neighborhood around the parameters of the best-fit superellipsoid. The ellipsoid of 

confidence is defined by a covariance matrix that can be conveniently obtained from Hessian 

matrix produced by the Levenburg-Marquardt optimization. 
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The ellipsoid of confidence is then transformed, with approximation, into the 3D space to 

form a shell of uncertainty around the best-fit superellipsoid. From the shell of uncertainty, a 

surface uncertainty measure is used to assign uncertainty value to each point on the best-fit 

superellipsoid. An uncertainty image can be formed by rendering the superellipsoid with 

pixels shaded with the uncertainty values on the superellipsoid surface. 

The range scanner is assumed to be positioned on a sphere, directed to the center. Each 

new scanner position is obtained by choosing a nearby position on the sphere that produces 

an uncertainty image that has the highest total uncertainty value. The uncertainty image is a 

z-buffered image of the uncertainty images of all the current superellipsoids in the partial 

model. Therefore, self-occlusion is taken care of. 

Though the positioning system used in their experiment has error much larger than that of 

the range data, the authors did not address the problem of misalignment of range images. 

However, they did mention that misalignment of range images is a problem for integrating 

data from different views.  

Reed et al. [Reed1997, Reed1998] presented a semi-automated view planning method, 

where an occluded surface must first be selected by the user as the target surface. A visibility 

volume is computed for the target surface by considering occlusions and the imaging 

constraints, such as the minimum standoff distance, the required minimum resolution, and 

the maximum inclination of the range sensor to the target surface. The target surface can be 

entirely seen by any point in the visibility volume without occlusion. The visibility volume is 

then intersected with the volume that represents all the possible placements of the range 

camera allowed by the robotic arm. The real sensor is then moved into the resulting volume 

and directed towards the target surface, but Reed did not mention any particular method to 

determine the final sensor position inside the resulting volume. The view planning method is 

based on the approach of the MVP system [Tarabanis1995a], which is described in a later 

section. 

The imaging environment consists of a triangulation-based range camera mounted on a 

robotic arm, and a turntable on which the object of interest is placed. However, in his model 

reconstruction algorithm and view planning algorithm, the range camera is simply assumed 

to be a monostatic sensor. It is not clear over how many degrees of freedom the range camera 

can be positioned and what parameters can be set.  
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The partial model is represented as a solid model bounded by mesh surfaces derived from 

the acquired range images. After a range image is acquired, a solid is formed by sweeping the 

mesh in the sensing direction. Each surface on the solid is tagged as an imaged surface or an 

occluded surface. The new solid is then merged with the existing composite partial model via 

regularized set intersection, and the surface-type tags are correctly propagated to the new 

composite model. Registration of the range images is done by calibration of the range camera, 

robot arm and turntable. 

2.2.2  3D Reconstruction of Indoor Environments 

The next-best-view problems for 3D reconstruction of indoor environments are 

apparently more difficult than that for objects, probably due to the much larger volume of 

view space and the difficulty and ineffectiveness of simplifying the view space into more 

convenient space that encloses the object, such as a view cylinder or a view sphere. 

Nevertheless, some work on view planning for environments still oversimplify the view 

space to just a 2D horizontal plane. 

Sanchiz and Fisher [Sanchiz1999] presented a NBV algorithm for 3D reconstruction of 

an unknown indoor scene. Their approach assumes the value of each view in the view space 

follows a smooth function, and use a combination of a hill-climbing optimization method and 

an exhaustive search method to search for a local optimal view at each acquisition iteration.  

The view space considered is five-dimensional—3D position, pan and tilt. Each test view 

is evaluated by a specially designed objective function, whose value is determined by the 

amount of existing and unknown surfaces that can be seen from the view. Sufficient existing 

surfaces must be seen at a new view to ensure overlap with the newly acquired surfaces, so 

that they can be registered. Low-resolution ray tracing is used to estimate the amount of each 

surface type seen from the test view. The amount of surface quality improvement is also 

incorporated into the objective function. 

The optimization of the objective function is done using two methods. A hill-climbing 

method is used for the 3D position of the range scanner. For every 3D position tested, an 

exhaustive search approach is used to find the pan and tilt.  
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The authors provided some results from experiments on synthetic 3D scenes. One 

drawback they discovered is that when almost the whole scene is recovered and there just 

remain few isolated views, the objective function is almost flat in the whole view space, and 

the local hill-climbing method will fail.  

Sequeira et al. [Sequeira1996, Sequeira1999] took a different approach to the problem. 

Each new range image is segmented into polygonal planar patches, and merged with the 

patches in the partial model. The occlusion surfaces are represented by planar patches. 

Each view planning iteration may produce more than one view. The algorithm starts by 

creating a view volume for each occlusion patch, in which any point can see the occlusion 

patch entirely. Each view volume is represented by a 3D polyhedron, and its shape and 

volume are determined by occlusion by other surfaces, the minimum stand-off distance of the 

scanner from the occlusion patch, its maximum range, minimum clearance distance from all 

surfaces, and the angle between the occlusion patch’s normal and the direction to the 

scanner’s position. Many of these 3D view volumes are then intersected, and the result may 

be zero, one, or more “global” volumes.  

In each global volume, the best 3D view position is determined by optimizing an 

objective function, which favors view positions that can see a large projected area of the 

occlusion patches, have small angle between the viewing directions and the occlusion 

patches’ normals, and are close enough to the occlusion patches for denser sampling. After a 

3D position is determined in a global volume, the other acquisition parameters are 

determined, such as the image field and the image resolution. Overlap constraint is also 

considered when selecting the parameter values. In order to cover the occlusion patches 

visible from the 3D position, more than one scan may be needed from the same location. The 

authors did not provide details about how the parameter values and the number of scans are 

determined. 

Many essential details are not included in the papers. For example, it is not clear whether 

the global volumes are the results of the intersection of all viewing volumes, or the results of 

the intersections of many different subsets of viewing volumes. The latter seems to make 

more sense, but it immediately leads to a combinatorial problem. Another problem with this 

method is that for some occlusion patches, there may exist no viewpoint that can see the 

patches in their entirety, and therefore no view will be computed for these patches. However, 
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many of these patches can still be fully covered by combining the partial visibility from more 

than one viewpoint.  

González-Baños et al. [González-Baños1999, González-Baños1998, González-

Baños2001] reduced the view planning problem for 3D reconstruction of indoor scenes into a 

2D problem. They separated the view planning into two distinct stages. The first stage builds 

a 2D map, similar to a floor plan, using a 2D next-best-view algorithm. The next stage then 

uses the 2D map in a 2D model-based view planning algorithm to produce a set of 

viewpoints to acquire 2D range images of 3D surfaces. Both stages employ a randomized 

strategy to generate 2D test viewpoints. 

The result of the 2D map-building algorithm [González-Baños1999] is a polygon 

representing a cross-section through the environment at a given height. The range sensor is 

mounted on a mobile robot, and it acquires a 1D range image by making a 180-degree sweep 

in a horizontal plane at the given height above the floor. Each range image is combined into a 

composite partial model represented as polylines and “safe regions”. Safe regions are derived 

by shrinking the empty space enclosed by the polylines and occlusion edges when the 

maximum reliable range of the range sensor, and the allowable inclination angle of the laser 

to the surfaces are considered. 

The next best view is computed by generating a set of random 2D positions in the shrunk 

safe region of the current partial model, evaluating each of them, and choosing the best. The 

safe region is shrunk by the radius of the robot to avoid collision. Each test position is 

evaluated by considering the lengths of the acquired edges and occlusion edges that it can see, 

and the path length from the previous scanning position. The length of the acquired edges 

must be above a threshold to ensure sufficient overlap for model alignment. The lengths of 

edges visible from a test position are approximated by casting a fixed number of equally 

spaced rays. The 2D map building is terminated when there is no occlusion edge in the 

partial model, or when there is no occlusion edge longer than a threshold. 

In the second stage, the 2D map is used as the model for planning 2D viewpoints to 

acquire 2D range images. The objective is to minimize the number of sensing operations. 

Two randomized greedy algorithms were proposed [González-Baños1998], but they were not 

implemented. The first algorithm begins by sampling the interior of the polygonal 2D map, 

and computes the portion of the polygon’s perimeter “scannable” from each sample 
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viewpoint. A point on the perimeter is scannable from a sample viewpoint if it is visible, is 

within the range of the scanner, and its angle of inclination to the direction of the viewpoint 

is smaller than a threshold. The perimeter is then decomposed into elements such that no 

portion of the perimeter is only partially scannable from any sample viewpoint. Each element 

is associated with the sample viewpoints that can scan it. Finally, a subset of the sample 

viewpoints is selected using the greedy algorithm for the set-covering problem. 

The second algorithm tries to improve the first one by not producing sample viewpoints 

that cannot cover any part of the perimeter. The algorithm starts by selecting a point on the 

unseen portion of the perimeter and computing a region from which the point can be scanned. 

The region is randomly sampled, and the sample viewpoint that has the highest coverage is 

added to the solution. The 2D map is updated to reflect the change in the unseen portion. 

Next, another point on the updated unseen portion of the perimeter is selected and the above 

steps repeated until the unseen boundary is less than a threshold. 

Nüchter et al. [Nüchter2003] used a next-best-view approach very similar to the 2D map-

building algorithm of González-Baños et al. [González-Baños1999] for automated range 

acquisition of indoor environments. A 2D range image is acquired at each viewpoint (as 

opposed to a 1D range image). It is then registered and merged with the partial model. A 2D 

horizontal cross-section of the partial model is extracted and used for planning the next 

viewpoint, using a randomized strategy to generate sample viewpoints. 

2.2.3  Object Inspection 

For quality and manufacturing process control, manufactured parts must be inspected to 

identify defects and to assess their deviations from the reference models. Some of the 

inspection tasks are non-contact and can be automated using computer vision systems. Such 

an inspection system may use active range sensing to acquire geometric information of the 

object, but in many cases, ordinary non-stereo intensity or color images are sufficient for the 

required purposes. Sometimes, complete coverage of an object’s surface is not necessary 

because views are required to observe only a selected set of important features on the 

object’s surface. To aid the identification of the important features in the intensity or color 

images, many inspection systems include appropriately positioned light sources to illuminate 
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the object, so that the features can be made to appear more prominent. Effective inspection 

requires proper planning of the views of the camera and the corresponding light source 

positions. Since a reference geometric model of the object is available beforehand to the view 

planner, a complete plan of the camera views and light positions can be pre-compute before 

the actual inspection. 

Like most methods in 3D reconstruction of objects, many feature-detection view planning 

methods assume the camera views (and light source positions) are located on an imaginary 

view sphere, and the camera is always directed towards the center of the sphere. The 

HEAVEN system by Sakane et al. [Sakane1987, Sakane1991] computes, for each feature of 

interest, one camera view and three light source positions, so that the feature can be imaged 

unoccluded and unshadowed. During actual inspection, the acquired images are used to 

derive geometric information about the feature using a photometric stereo technique 

[Woodham1980]. The camera view and three light positions are selected from a set of 

discrete locations on a sphere surrounding the object, and the camera is assumed to always 

point towards the center of the sphere. These discrete locations are created by recursive 

subdivision of an icosahedron. Those locations that are occluded from the feature of interest 

are eliminated. Next, all combinations of four unoccluded locations for the camera and three 

light sources are compared according to a criterion, and the best combination is chosen. The 

criterion estimates how well the surface geometric information can be derived using the 

photometric stereo setup, and is a function of the directions from the feature to the three light 

sources, and the feature’s surface normals to the camera and light sources.  

Each camera view or light source position computed by the HEAVEN system is only 

two-dimensional. However, the overall computation is expensive due to the combinatoric 

complexity of exploring all combinations of four locations, even though the occluded 

locations have already been eliminated from consideration. The solution space is essentially 

eight dimensional. 

The VIO system [Sakane1992] is very similar to the HEAVEN system, in that the camera 

and light source are assumed to be on a view sphere. Each solution of the system is a position 

of the camera, a position of a light source, and a subset of edge features to monitor on the 

target object. Discrete locations on the view sphere are first grouped into regions according 

to the set of objects edges they can see. Each region is independently evaluated with respect 
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to the edge features on the object, and those that do not meet a specified threshold are 

eliminated from further consideration. Then, all possible camera-illuminator pairs are formed 

from the remaining locations on the sphere, and each pair is ranked based on how well and 

how many features can be imaged with the setup. The highest-ranked is taken to be the best 

choice. 

To avoid the combinatorial problems of considering camera and light positions 

simultaneously, Yi et al. [Yi1990] implemented a camera-illuminator planning system that 

first computes the best camera position, independently of the light position, and then 

compute the best light position given the computed camera position. Again, the camera and 

light positions are assumed to be on a view sphere. 

Tarabanis et al. took a very different approach from the above methods in their MVP 

sensor planning system [Tarabanis1991, Tarabanis1995a, Tarabanis1996]. Instead of 

sampling the search space and testing each sample point, the MVP system uses the task 

requirements to characterize the solution space analytically. The MVP system does not 

include illumination planning, but each camera view is eight-dimensional, consisting of the 

5D camera pose, the distance between the back principal point and the image plane, the focal 

length, and the lens aperture. To compute the best 8D camera view, firstly, a polyhedron is 

constructed to represent the set of 3D viewpoints that can see all the features in their entirety. 

Other constraints, such as the feature-resolution, depth-of-field and field-of-view constraints 

are characterized by analytic closed-form relationships. These constraints form bounding 

hypersurfaces in the 8D space, and the final step is to perform a constrained optimization to 

find the 8D point in the bounded space that is furthest from all the bounding hypersurfaces 

and the polyhedron faces. This view is considered the best because it satisfies all the 

specified constraints and it is the most robust to sensor placement and configuration errors. 

Not all automatic object inspection systems work by detecting features. Tarbox and 

Gottschlich [Tarbox1995] implemented a more general-purpose inspection system, called 

IVIS, that is more suitable for inspecting featureless objects. In contrast with the above 

feature-detection systems, this system uses a triangulation-based active range sensor to 

acquire a complete geometric model of the object during actual inspection. Thus, the view 

planning component of the system is required to plan a set of views to completely cover the 

object surface. Each view consists of a camera position and a structured light source position, 
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which are both located on a discretely sampled view sphere. For each location of the camera, 

only six possible light source positions are considered, and they are all of a fixed distance 

(baseline distance) from the camera.  

Three view planning algorithms were proposed in [Tarbox1995]. Central to the 

algorithms is the measurability matrix, which records whether each discrete surface point on 

the object is measurable from each camera-light source pair. A surface point is measurable 

by a camera-light source pair if it is visible from both locations and the angle of incidence of 

the light ray to the surface point is within a specified threshold. One of the view planning 

algorithms uses a greedy approach, where at each step, the view that can measure the most 

uncovered surface points is selected. Another algorithm takes a global optimization approach 

to attempt to find the least number of views to cover the entire object surface. The algorithm 

starts by generating a small set of randomly selected views and then perturbing the views in a 

simulated annealing process [Kirkpatrick1983, Aarts1985]. After the process, if the resulting 

views do not cover the entire object, the number of views is incremented and randomly 

placed on the sphere, and the simulated annealing process repeated. 

2.2.4  Image-Based Modeling and Rendering 

In image-based modeling and rendering (IBMR), a 3D scene is modeled as a collection of 

reference images, rather than a set of conventional geometric primitives. Novel views of a 

scene can then be synthesized from the reference images using a variety of interpolation and 

re-projection techniques, for example [Chen1993] and [McMillan1995]. IBMR has several 

important advantages over traditional modeling and rendering: (i) the images can be of real 

world scenes, thus making the task of modeling such scenes much easier; (ii) image-based 

rendering algorithms are typically inexpensive and can be performed on general purpose 

computers; (ii) the rendering time is typically independent of the geometrical and physical 

complexity of the scene being rendered. 

A complete IBMR solution involves both sampling and reconstruction of the plenoptic 

function [McMillan1995], which is a 5-dimensional function that describes all the infinite-

resolution images that can be seen at all viewpoints in space (it can actually be reduced to a 

4-dimensional function of all rays in space). Most of the research has been on reconstruction 
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algorithms (efficient warping, splatting, etc.), and research in the important problem of 

properly sampling the plenoptic function has been less active. Proper sampling typically 

involves acquiring images of the scene from some appropriately selected viewpoints and 

view directions, and at the appropriate resolutions. The following three papers propose 

different techniques to attempt to solve the sampling problem for synthetic models.  

Given a polygonal 3D model of a scene, a viewing volume, and a sampling quality 

threshold, Fleishman et al. [Fleishman1999] proposed a method to compute a small set of 

viewpoints in the viewing volume such that every polygon visible from the viewing volume 

is visible from at least one of the computed viewpoints. Each visible polygon is associated 

with only one viewpoint, even though it may be visible to many. The end result is an image-

based model made up of a set of masked reference images, where each masked reference 

image from a viewpoint consists of pixels from the polygons associated to the viewpoint. 

Their method starts by subdividing the polygons in the input 3D model to reduce the 

problem of polygons being partially visible from the viewpoints in the view volume. The 

next step evaluates the visibility of the polygons from each viewpoint in the view volume. 

Since rays that go into the interior of the view volume always intersect the volume’s 

boundary, every surface point visible from the view volume is visible from the volume’s 

boundary. Therefore, only viewpoints on the volume’s boundary are evaluated.  

The boundary is first tessellated into small patches, and then a hemispherical image of the 

input scene is rendered from the center of each patch. Each polygon in the scene is rendered 

in its unique color. In practice, each hemispherical image is rendered as multiple planar 

images. Each planar image is traversed and the colors of the pixels are used to determine 

which scene polygons are visible, and the number of pixels of each color is used to determine 

the sampling quality of the polygon. Each visible polygon and its sampling quality are 

associated with the planar camera (view), and this information is put into a database. 

A greedy strategy is used to select a subset of cameras. For each camera in the database, a 

list of adequately sampled polygons is computed. Then all the cameras in the database are 

ranked according to the number of adequately sampled polygons that it adds to those already 

covered by previously selected cameras. A camera is selected at each iteration until all the 

visible polygons are adequately covered by the union of the selected cameras. For the 

alternative problem of selecting only k camera positions that cover as much of the scene as 
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possible, Fleishman et al. proposed another camera ranking strategy. Polygons that are most 

likely to be seen should be favored, so for each scene polygon, the number of cameras that 

can see it is counted, and a camera is ranked according to the sum of the visible cameras of 

its associated polygons. From these selected camera positions (and parameters), the masked 

reference images are generated. 

Stuerzlinger [Stuerzlinger1999] addressed a similar view planning problem for IBMR, 

but dealt with only the visibility portion of the problem, and did not consider surface 

sampling quality. A hierarchical visibility algorithm is used to compute the visibility between 

the viewing regions (viewing volumes) and the scene surfaces. A similar algorithm has been 

used in hierarchical radiosity [Hanrahan1991]. The basic idea is that if a surface polygon and 

a viewing region are partially visible to each other, then one of them is subdivided and the 

visibility computation is continued on the smaller viewing regions or polygons. This process 

repeats recursively until the “shaft” between the surface polygon and the viewing region is 

completely unoccluded or completely occluded, or when the potential visibility error is 

below a threshold. A link is created if the surface polygon and the viewing region are 

completely or partially visible to each other. Shaft culling [Haines1994] is used to speed the 

visibility determination. The result is a hierarchy of surface polygons and a hierarchy of 

viewing regions, with links between the polygons and viewing volumes. 

The next step of the algorithm is to select a set of good viewing regions that can see all 

the visible surfaces. The method starts by enumerating all the finest viewing regions and all 

the finest subdivided polygons. The links between them are used to create a two-dimensional 

visibility array, which is indexed by viewing region and polygon number. Each array entry is 

set if the polygon and the viewing region are partially or completely visible to each other. 

After this, a global optimization search, using simulated annealing, is performed to select a 

small set of viewing regions. It works by changing the vector of solutions randomly. The 

objective function is the total surface area of all polygons visible from the candidate viewing 

regions. The method calls the optimization procedure repeatedly with increasing numbers of 

viewing regions. As soon as the maximum total surface area is reached, the loop terminates. 

Finally, for each selected viewing region, a good viewpoint in it is found. This search is 

also performed using simulated annealing, and the objective is to maximize the total visible 

surface area. However, the computed viewpoint does not always see all the surfaces that are 
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visible from the viewing region. Stuerzlinger argued that this is not very common, and 

moreover, surfaces that are missed by this viewpoint may be visible to viewpoints in other 

viewing regions. 

In the work by Wilson and Manocha [Wilson2003], the objective is to compute image-

based simplifications of a large and complex synthetic environment so that the environment 

can be rendered at interactive rates for walkthrough applications. In the preprocessing phase, 

a set of viewpoints is computed, and from each of them, the environment is sampled with a 

panoramic color image with range (depth) at each pixel. Since the panoramic images may 

overlap one another, the next step removes redundant samples in the images. For each image, 

the remaining samples are used to create textured polygonal meshes, called textured depth 

meshes, and care is taken to avoid connecting samples across depth discontinuities. Each 

mesh is then simplified to reduce the number of polygons, and the result is stored in a 

database, ready to be used for rendering during walkthrough of the environment. 

The set of viewpoints used to generate the panoramic images is computed in the 

following way. First, the large environment is decomposed into smaller sections, and a set of 

viewpoints is computed for each section independently. Each section has a navigable region, 

and all computed viewpoints must lie within it. A 2D rectangular region is assumed in the 

paper.  

A greedy approach is used to select the viewpoints. First, viewpoints at the four corners 

of the navigable region are put into the solution set. Subsequently, at each iteration, a set of 

candidate viewpoints is generated, and an objective function is evaluated to select the best 

candidate as the next viewpoint. To generate the candidate viewpoints, a 2D Voronoi 

diagram is created from the viewpoints already in the solution set, and the candidate 

viewpoints are the Voronoi vertices inside the navigable region, and the intersections of the 

Voronoi edges with the navigable region’s boundary. The objective function is evaluated for 

each candidate viewpoint, and the one that can see the largest projected area of the global 

void surfaces (or occlusion surfaces) is chosen. The global void surfaces are the resulting 

skins when the surfaces and skins (occlusion surfaces) seen by each of the previous 

viewpoints are merged together.  

 



 

Chapter 3  
 

A Next-Best-View Solution 

One of the problems in the acquisition of range images for 3D reconstruction is the 

determination of a sequence of scanner views such that the object or environment of interest 

can be satisfactorily acquired and reconstructed. Unless the object or environment is 

geometrically very simple, this view planning task is generally difficult for human operators 

to accomplish.  

The goal of the work presented in this dissertation is to automate the view planning task 

for the range acquisition of indoor environments, where a priori knowledge of the 

environments’ geometry is not available. View planning problems of this type, where a priori 

knowledge about the object’s or environment’s geometry is not available, are generally 

known as non-model-based view planning problems or next-best-view problems. There are 

many challenges to a practical solution to a next-best-view problem. First of all, it must 

overcome the intractability inherent in the problem. The next major difficulty is to be able to 

efficiently evaluate a large set of scanner views to determine the most appropriate ones. Each 

view may consist of several parameters, and thus the solution space may be high-dimensional. 

If the range images are to be acquired at very high density, and the view planning performed 

with high resolution, another difficulty of automated view planning for environments is 

handling and processing the potentially huge data set, which can lead to unacceptably time-

consuming computation and insufficient system memory. 

In this chapter, I first introduce the basic view planning problem and the general next-

best-view problem, and present the computational difficulties that are inherent in them. Then, 

in Section 3.2, I define the specific next-best-view problem that concerns this work, describe 

the solution strategy that I have chosen to approach the problem, and state the objectives a 
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solution should achieve. Section 3.3 gives an overview of my next-best-view algorithm, and 

gives details about how the partially acquired scene can be represented and about the view 

metric function used in the search for the next best views. Later chapters present detailed 

descriptions of the different components in the solution. One of the major components of the 

solution is the efficient evaluation of views with respect to the partially acquired scene, and it 

is deferred to the next chapter. Furthermore, in Chapter 5, another component—surface 

registration—is explored in great details. The main contributions of this work are presented 

in Chapters 4 and 5. 

3.1  The Next-Best-View Problem 

The objective of automated view planning for 3D reconstruction of objects or 

environments is to automatically determine an efficient set of scanner views such that the 

acquisition constraints are met and a digital model of the object or environment can be 

satisfactorily reconstructed. A view is defined as a pose of the scanner and the associated 

imaging parameters. Examples of acquisition constraints include the field of view of the 

scanner and the minimum distance that must be observed between the scanner and the object. 

The efficiency of a set of planned views is measured according to different metrics. It can be 

the total number of scans, the amount of acquired data, or the total scanning time. An object 

or environment can be satisfactorily reconstructed if all surfaces accessible to the scanner 

have been acquired with the required quality wherever possible. The relationship between 

view planning and reconstruction quality is elaborated in Section 3.2. 

For 3D reconstruction, a priori knowledge of the object’s or environment’s geometry is 

not available to the view planner. The first scan is made from a view appropriately selected 

by a human operator, and for the subsequent scans, the planner must determine the next best 

views based on the information it has already collected from the previous scans. This is why 

the view planning problems for 3D reconstruction are also called the next-best-view 

problems. They are part of the more general view planning problems, which also include 

view planning for objects whose a priori geometric information is known, which are known 

as the model-based view planning problems. 
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In the most fundamental model-based view planning problem, where only visibility is 

considered and each viewpoint can see in all directions, the objective is to determine the 

minimum number of viewpoints, such that every surface point on the object or in the 

environment is visible to at least one of the viewpoints. This problem has been shown to be 

NP-hard, and is equivalent to an extended version of the well-known art-gallery problem 

[O’Rourke1987]. With suitable discretization of the model surfaces and the viewpoint space, 

the basic model-based view planning problem can be reduced to the set-covering problem 

[Tarbox1995, Scott2001d].  

Although NP-complete, it is well known that the set-covering problem has a polynomial-

time approximation algorithm whose solution is worse than the optimal by at most a 

logarithmic factor [Cormen1990]. The algorithm uses a greedy approach at each iteration to 

select the subset that covers the most uncovered elements. In the basic model-based view 

planning problem, this is equivalent to selecting the scanner view that can acquire the most 

new information. This greedy approach has been used in many other model-based view 

planning algorithms. 

Since global geometric information is unknown, a next-best-view problem cannot be 

solved globally to get an optimal solution. It is inherently a local optimization problem 

[Kakusho1995]. The local optimization is applied to only the known geometric information, 

which has been acquired by the previous scans. With appropriate representation of the 

unknown occluded regions, for example, with occlusion surfaces (which are artificial 

surfaces added to connect surfaces on opposite sides of depth discontinuities caused by 

occlusions; see Figure 3.9(a)), an optimal solution is the smallest set of viewpoints such that 

all points on the occlusion surfaces are visible from at least one viewpoint. A model-based 

view planning algorithm can be applied to get the locally optimal solution. Then, the set of 

new viewpoints is used to acquire new surfaces to update the partial model, and the local 

optimization is repeated on the new partial model.  

The local problem remains NP-hard, and thus the greedy approximation algorithm is 

often used in the local optimization. When the greedy approach is used, one would want to 

keep the partial model as up-to-date as possible by incorporating the latest scan, and ensure 

that the next computed viewpoint is based on this most up-to-date information. This naturally 

leads to a tight iterative approach. It is tight in the sense that at the end of each iteration, only 



 37

a single new viewpoint is produced, and after the scan is made, it is immediately 

incorporated for the computation of the next viewpoint. This tight iterative greedy approach 

is used in almost all existing next-best-view algorithms. 

However, each iteration of the greedy approach is still very computationally expensive 

due to the potentially huge search space and expensive visibility computations. This apparent 

computation difficulty has limited many next-best-view algorithms to incomplete search 

space, simple and small objects, and low-quality acquisition. Some early algorithms even 

ignore self-occlusion of the objects [Connolly1985]. 

When only visibility is considered and each viewpoint can see in all directions, then the 

size of the search space is proportional to the size of the viewpoint space partition (VSP) and 

the aspect graph (dual of the VSP) of the object [Plantiga1990]. Each aspect, or a region in 

the VSP, of a polyhedral object is a maximal set of viewpoints that can see the same set of 

polygons, forming images of the same topological appearance, i.e. the structures of the 

polygons’ boundary line segments and intersection points in the images are the same. For a 

non-convex polyhedral object, the number of aspects is O(n9), where n is the number of 

vertices [Plantiga1990]. At present, the best time bound for computing the aspect graph is 

O(n9 log n).  

With the VSP of the partial model, at each iteration of the greedy algorithm, the objective 

is to select a viewpoint in an aspect that can see the largest total area of occlusion surfaces2. 

Although the number of vertices, m, of the occlusion surfaces can be much less than n, the 

number of aspects is generally larger than O(m9). This is because occlusion surfaces can be 

occluded by true surfaces, adding complexity to the VSP. The size of such a VSP is O(m3n6). 

The above discussion assumes 3D viewpoint locations, unlimited field of view, and direct 

visibility. In practice, besides the 3D location, other parameters of the scanner have to be 

determined in the solution, such as the scanner’s orientation, the adjustable field of view, and 

the scanning resolution. These parameters add additional dimensionality to the already huge 

search space.  

                                                 
2All viewpoints in an aspect see the same set of occlusion surfaces but do not necessary see the same 

amount of surface area of the occlusion surfaces. Therefore, additional optimization must be performed within 
the aspect to find the viewpoint that sees the largest area of occlusion surfaces. Since, from within the aspect, 
the occlusion surfaces are in the same topological appearance, the optimization function should be smooth, and 
a numerical optimization method may be used to find the best viewpoint. 
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In addition, besides the simple direct visibility requirement, usually, multiple other 

requirements and constraints need to be taken into account. For example, a surface is 

considered satisfactorily acquired only if it is entirely visible to the scanner and its sampling 

density is higher than a threshold. These additional requirements and constraints may further 

increase the complexity of the search. In the next section, I specify the requirements and 

constraints specific to the next-best-view problem addressed in this work. 

3.2  Problem Specifications 

This section defines the specific view planning problem addressed in this work. The main 

objective of view planning is to produce a sequence of scanner views such that the set of 

range images acquired at the views can satisfy the requirements on the quality of the 

reconstruction. The relationship between view planning and reconstruction quality is 

discussed first. Then, the section presents the practical approach adopted by this work, and 

explains the objectives of the solution. Finally, it states the other assumptions, requirements 

and constraints that must be observed by the solution. 

3.2.1  View Planning and Reconstruction Quality 

The goal of 3D reconstruction is to produce a 3D model of the real-world object or 

environment (both will be referred to as object in this section, unless otherwise distinguished) 

that is suited for the specific application. Different applications have different quality 

requirements on the reconstructed models. For example, a 3D digital model of a sculpture for 

museum archival purposes usually requires much higher resolution and fidelity than a model 

used in a virtual building walkthrough. The range acquisition process can affect the 

reconstruction quality in the following three ways:  

(1) Completeness. The more surface area of the object that is acquired by the range 

scanner, the more complete the reconstructed model can be. The amount of surface 

area that can be acquired is limited by many factors, such as the total number of 

scans that can be afforded, self-occlusions by the object, and the scanner’s limited 



 39

field of view and depth of field. When the object does not fit completely inside the 

scanner’s field of view and/or depth of field, multiple scans have to be made to 

cover the full size of the object. From a single scanner position, usually, some 

surfaces are occluded by other surfaces that are closer to the scanner. To measure 

these occluded surfaces successfully, multiple scans from different scanner positions 

are required. However, since it may be impossible to position the scanner at any 

location and orientation, because of physical obstruction and the limitation of the 

positioning system, not all occluded surfaces can be measured.  

Each scan takes time to make and requires other resources, such as storage and 

manual labor, and these place a limit on the total number of scans that can be 

afforded. Consequently, when planning views for the limited number of scans, it is 

natural to want to maximize the amount of surface area that can be measured. 

(2) Surface sampling quality. To achieve the desired reconstruction quality, the 

surfaces of the object must be measured to meet a sampling quality requirement. 

This sampling quality requirement ensures that small surface features are captured 

in the range images and can be successfully reproduced in the reconstructed model 

up to the required resolution. The sampling quality at a surface point consists of the 

surface sampling density in its neighborhood and the range measurement error. The 

surface sampling density is expressed as the number of samples per unit area, and is 

a function of the scanner’s scanning resolution, the surface point’s distance from the 

sensor, and its orientation with respect to the sensor.  

A sample’s range measurement error is the result of systematic error and random 

error. The systematic error is often caused by miscalibration of the scanner, while 

the random error is caused by measurement uncertainty. Range measurement 

uncertainty can be affected by many factors, such as the surface point’s distance 

from the sensor [Beraldin2000], the angle of incidence of the light beam on the 

surface point, and the surface reflectance properties. The error is unknown, and is 

usually specified as a distribution function or just a standard deviation.  

Therefore, to satisfy the sampling quality requirement at a surface point, the 

scanner must not only be able to measure it without occlusion, but must also be at 

the right distance and direction from the surface point. Effective view planning must 



 40

take this into account to maximize the surface area that reaches the required 

sampling quality. Surface sampling quality of a surface region can be enhanced by 

combining multiple scans of the same area during merging of the range data, where 

overlapping data sets can increase the sampling density and “smooth out” the 

random errors. 

(3) Surface registration accuracy. Before the range images can be merged into one 

model, they must first be aligned together into a common coordinate system 

[Pulli1999, Bergevin1996, Nishino2002]. In order to be able to be registered to each 

other, every range image must have overlap with at least one other range image. 

Moreover, the overlap regions must have enough samples and enough geometric 

constraint on the 3D rigid-body transformation so that range images can be 

registered accurately (Chapter 5 has more details on this). Large registration errors 

may result in obvious topological errors in the reconstructed model, while small 

registration errors may cause small surface features in the overlap regions to be 

“washed out”. To prevent registration failure during model reconstruction, scanner 

views must be carefully chosen during range acquisition. One strategy is to ensure 

that when a new view is chosen, it should be able to register with the combined 

surface of the previous scans. The requirement for accurate surface registration may 

further increase the number of scans in the acquisition stage, because some surface 

regions have to be acquired multiple times to ensure overlap between range images.  

3.2.2  Solution Objectives 

I have adopted the greedy approach for the computation of the next best view in this work. 

The view planning solution operates in a tight iterative approach as part of the model 

acquisition cycle shown in Figure 3.1. At the end of each cycle, only a single new viewpoint 

is produced, and after the scan is made, it is immediately incorporated into the partial model 

for the computation of the next viewpoint. 

During a typical acquisition session, the model acquisition cycle is repeated multiple 

times. In each cycle, after a scan is made, it is first registered (or aligned) with the partial 

model of the object or the environment. Then the information of the new scan is merged into 
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the partial model, and this updated model is used for the computation of a new view for the 

next scan. 

 

 
Figure 3.1: The model acquisition cycle with automated view planning. 

A greedy next-best-view algorithm computes by evaluating a view metric function for 

each view, and outputting the view that maximizes the metric function as the best view for 

the next scan. Since we are striving for reconstruction quality, the view metric must take into 

account the three reconstruction quality requirements described in Section 3.2.1. In the 

simple case in which there is only the completeness (visibility) requirement, the view metric 

is simply the total amount of new surface area that can be seen by the view. However, when 

the three reconstruction quality requirements have to be considered simultaneously, the 

metric is no longer well-defined, because these requirements are in contention with each 

other. For example, trying to maximize the amount of surface area that reaches the required 

sampling quality may reduce the amount of new surface area that can be acquired. The three 

quality requirements must be combined into a scalar value, and trade-offs must be made 

between them. The formulation of a practical view metric is presented in Section 3.3. 

Sometimes, the total number of scans to be made is not specified beforehand, and the 

range acquisition may be terminated preemptively by the human operator. Therefore, it is 

advantageous to maximize the amount of acquired information of the object or environment 

as early as possible, which is what a greedy algorithm does. 

The next major challenge to a practical solution is to develop an efficient method to 

evaluate the view metric function. Even though the solution space in my specific problem is 

only three-dimensional, the metric function will still have to be evaluated for a large set of 

views. The evaluation of each view can be very computationally expensive, since the partial 
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model can be very complex and of high resolution, and there are other requirements and 

constraints that need to be handled. Chapter 4 presents a novel method to evaluate a large set 

of views efficiently. 

Besides the reconstruction quality requirements, there are additional important 

requirements and constraints that need to be observed when performing the view planning 

computation, and they are described in the following sections. 

3.2.3  Indoor Environments 

The target application of the view planning is to acquire range images of real-world 

indoor environments to reconstruct models for virtual reality walkthrough. Most of the 

previous reconstructions have been on single small to mid-sized objects. Range acquisition of 

real-world environments is generally more difficult than for objects. Real-world indoor 

environments can be cluttered with many objects, which results in high visibility complexity. 

This makes automated view planning more important and challenging. Moreover, an object 

has a bounding volume, and the scanner is usually positioned outside the volume, whereas, in 

an indoor environment, the scanner has to be placed inside. Therefore, viewpoints must avoid 

collision with objects inside the space, and to fully automate the acquisition process, an 

obstacle-free path has to be planned when moving the scanner from one viewpoint to the next. 

For an object, there is nothing like the discovery of a completely new room in an indoor 

environment. The scanner must be placed appropriately (e.g. near the door) to acquire 

significant new information and yet to ensure registration.  

For view planning, the indoor environment is assumed to be enclosed, so that there is a 

well-defined finite set of surfaces to be acquired and a bounded volume of space where the 

scanner can be located. This requirement is not strictly necessary because whenever surfaces 

outside the region of interest are acquired, we can have the human operator mark out the 

regions not of interest, so that they will not be included in the subsequent view planning 

computation. Assuming an enclosed environment simplifies the system. 

All the surfaces in the enclosed environment are assumed to be within the range of the 

range scanner wherever it is positioned in the environment. When a surface is out of the 

range of the range scanner, it will appear as a region of drop-outs (no measurement) in the 
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range image, and thus the volume between the sensor location and the surface cannot be 

identified as empty. Figure 3.2 shows an example scan in which a large part of the 

environment is beyond the range of the scanner. Only a small volume can be identified to be 

empty, and the next viewpoint planned by the view planner can only be inside the small 

volume. Most likely, the next viewpoint still cannot resolve the status of most of the 

unknown volume. This leads to an excessively large set of viewpoints. 

It is also assumed that there is no extended surface region in the environment that is 

overly absorbent or overly specular-reflective of the light beam emitted from the range 

sensor. An overly-absorbent surface does not reflect sufficient light energy back to the sensor 

detector, and will appear as a region of drop-outs in the range image, similar to a surface that 

is beyond the range of the scanner. This may result in an unnecessarily large set of 

viewpoints. An overly-specular-reflective surface may deflect the light beam to other 

surfaces, and this can cause drop-outs and outliers in the range image.  

The floor in the indoor environment is assumed to be flat and level. This requirement is 

necessary because of the restricted way the range scanner can be positioned. The scanner can 

only be positioned on flat and empty regions of the floor, and must not be on top of any 

object. Requiring a flat and level floor should make the detection of low-lying obstacles 

easier. If the scanner can be placed anywhere in the empty space, then this requirement is not 

necessary. 

 

 
Figure 3.2: An example scan in which most of the surfaces are beyond the range of the 
scanner. Only a small volume can be identified to be empty, and the rest is of unknown status.  
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3.2.4  Range Scanner and Range Images 

This work assumes that the range sensor is monostatic. Monostatic refers to the fact that 

the transmitter and receiver of light (or other forms of energy) are located at the same 

location. This excludes the class of range sensors based on triangulation, where the 

transmitters and receivers need to be at different locations. Many range sensors based on the 

time-delay (time-of-flight) principle are monostatic. The consequence of this requirement is 

that the visibility of a surface point depends only on a single line of sight from the sensor 

location.  

The next assumption is that all the range samples in a range image are measured from the 

same sensor location, as if there is a single center of projection or viewpoint for the entire 

range image. This requires the sensor to be swept in a rotational manner about the sensor 

location, as opposed to a translational sweep which produces a range image that has multiple 

centers of projection.  

The monostatic and single-center-of-projection assumptions should simplify the visibility 

evaluations during the view planning computation, but more importantly, the “visibility 

coherence” around the single viewpoint can be better exploited for more efficient visibility 

evaluations using the hierarchical approach described in Chapter 4. 

It is also assumed that the range scanner has a 360° horizontal field of view, and it is 

always oriented such that its vertical axis is parallel to the vertical of the environment. 

Together, the two assumptions simplify each scanner view to just a 3D location, instead of a 

6D pose. To allow acquisition of the floors and ceilings of indoor environments, it is required 

that the vertical field of view of the scanner should span from below the horizon to above it. 

Many mid-range and long-range scanners on the market today have 360° horizontal field of 

views and limited vertical field of views, for example, the DeltaSphere-3000 3D Scene 

Digitizer [DeltaSphere], the MENSI GS200 3D Laser Scanner [MENSI], and several models 

by RIEGL [RIEGL]. 

The DeltaSphere-3000 3D Scene Digitizer [DeltaSphere] is one of the range scanners that 

fulfill the above scanner requirements. It is used in the view planning experiments described 

in this dissertation. Figure 3.3 shows a DeltaSphere-3000 mounted on a tripod. The scanner 

scans the environment by rotating itself step-by-step about the tripod, and in each step, a 
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rotating mirror sweeps a laser beam in a vertical plane. The range sensor is monostatic, and 

the center of projection of the range image is located at the center of the rotating mirror. The 

field of view of the scanner is adjustable. When placed in the normal upright pose, as shown 

in Figure 3.3, the scanner can have a maximum horizontal field of view of 360°, and a 

maximum vertical field of view spanning from 55° below the horizon to 90° above the 

horizon. The depth of field is also adjustable, but the maximum range extends from about 1 

foot to 50 feet from the sensor. At this maximum depth of field, the range measurement 

precision is about 0.3 inch standard deviation. The scanner can scan with a maximum 

scanning resolution of 20 samples per degree in both the vertical and horizontal directions. 

The scanning time is dependent only on the horizontal field of view and the scanning 

resolution. A scan with 360° horizontal field of view and 10 samples per degree resolution 

takes about 8 minutes to complete. 

 

 
Figure 3.3: A DeltaSphere-3000 3D Scene Digitizer mounted on a tripod. Photograph 
courtesy of DeltaSphere, Inc. 

The local 3D coordinate frame of the range image has its origin located at the center of 

the rotating mirror, and all range measurements are expressed as distances from the origin. 

Each sample 3D point in the range image is expressed in polar coordinates (r, θ, φ ) in the 

scanner’s local coordinate frame, where r is the distance from the origin to the 3D point, θ is 
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the azimuth angle, and φ is the elevation angle (see Figure 3.4). The polar coordinates can be 

easily converted to Cartesian coordinates. 

 

 
Figure 3.4: The local 3D coordinate frame of the DeltaSphere-3000 range scanner. The origin 
is located at the viewpoint and its y-axis is pointing up. Each sample 3D point in the range 
image is expressed in polar coordinates ( r, θ, φ ), where r is the distance from the origin to 
the 3D point, θ is the azimuth angle, and φ is the elevation angle. 

An example range image produced by the DeltaSphere-3000 is shown in Figure 3.5. The 

horizontal field of view of the scan is 360° ( °°−= 180 180 Kθ ), and the vertical field of view 

is 125° ( °°−= 70 55 Kφ ). The scanning resolution is 10 samples per degree in both the 

vertical and horizontal directions. In the figure, the intensity at each pixel is proportional to 

the range value at the corresponding sample. The brown-colored pixels correspond to drop-

outs, which are samples that cannot be measured successfully by the sensor. The 

DeltaSphere-3000 also records the reflected laser intensity detected at each sample point, and 

Figure 3.6 shows the image of the reflected laser intensities corresponding to the range image 

in Figure 3.5. The sample points in the range image are converted into Cartesian coordinates, 

and the 3D points are used to create a triangle-mesh model shown in Figure 3.7. 
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Figure 3.5: A panoramic range image produced by the DeltaSphere-3000 scanner. The 
intensity at each pixel is proportional to the range value at the corresponding sample. The 
brown-colored pixels correspond to drop-outs, which are samples that cannot be measured by 
the sensor. 

 

 
Figure 3.6: The image of the reflected laser intensities corresponding to the range image in 
Figure 3.5. 
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Figure 3.7: A 3D triangle-mesh model created from the range image in Figure 3.5. 

3.2.5  Scanner Views 

A scanner view consists of a pose of the scanner with respect to a reference coordinate 

frame and a set of values for the associated adjustable imaging parameters. The most general 

pose is a 3D rigid-body transformation composed of a 3D rotation and a 3D translation. This 

is also often referred to as a 6D pose. In many cases, the scanner is restricted to only a subset 

of the six dimensions. For example, a scanner mounted on a mobile robot, with a fixed 

position and orientation with respect to the robot, may have poses, with respect to an indoor 

environment, that are made up of a 2D translation in the horizontal plane and a 1D rotation 

about the vertical axis. A range scanner may have a set of imaging parameters that are 

adjustable, such as the field of view, the depth of field, and the scanning resolution. These 

parameters increase the dimensionality of a view. If any of the adjustable parameters is fixed 

at a constant value for the entire acquisition process, then it should not be included in the 

views, and should instead be considered an acquisition constraint of the scanner. 

For this work, each scanner view to be computed is a 3D translation with respect to a 

coordinate frame in the environment. It is assumed that the horizontal field of view is always 

360°, and the other scanner’s parameters’ values are user-specified, and will remain constant 

throughout the entire acquisition session. The scanner is assumed to be always in the upright 

orientation. It (more correctly, the scanner’s local coordinate frame) can still be rotated about 
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the vertical axis, but the 360° horizontal field of view makes it irrelevant. Therefore, what 

remains in a view is a 3D position of the scanner. The other parameters, namely, the vertical 

field of view, the depth of field, and the scanning resolution, will be treated as acquisition 

constraints in the view planning computation.  

3.2.6  Acquisition Constraints 

Limitations and characteristics of the range sensing device often become constraints that 

must be observed when planning a view of the scanner. These acquisition constraints can be 

grouped into the following three types: 

(1) Positioning constraints. These constraints determine whether the scanner can be 

physically positioned at a location in the 3D empty space. For example, the 

scanner’s position may be constrained by the physical construction of the scanner 

and the positioning device, and needs some space around it to operate, and thus the 

viewpoint must be kept at least a minimum clearance distance away from any object 

in the environment. The scanner may be placed only between a minimum and a 

maximum height above the floor, but must never be placed above any object. A 

view that satisfies the positioning constraints is a feasible view. 

(2) Sensing constraints. These constraints determine whether a surface point in the 

scene can be measured from a view. A surface point cannot be measured by the 

scanner if there is no clear line of sight from the scanner’s viewpoint to the point. If 

the scanner has a limited field of view and a limited depth of field, then all surface 

points not in the field of view and depth of field cannot be measured. Moreover, 

when the light beam from the range sensor is at a grazing angle to a surface point, 

the range measurement usually becomes unreliable. Measurements of this type of 

points are usually discarded when they are detected in the range image. Detection is 

done by estimating a surface normal at the range sample and checking whether the 

angle of incidence of the light beam to the sample is larger than a threshold angle. 

This is referred to as the angle-of-incidence constraint, and given a scanner position, 

all surface points not satisfying this constraint are considered not measured. 
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(3) Registration constraint. When the scanner is positioned at a pose planned by the 

view planner, it is assumed that there will be positioning error. Therefore, after a 

new scan is made by the scanner, it has to be aligned or registered to the previous 

scans accurately so that the new information can be merged properly with the old 

one (see Figure 3.1), and the scanner can be re-localized. However, registration of 

the new scan to the previous ones is not guaranteed to be successful. It is affected by 

several factors, and depends a lot on the planned view from which the scan is made. 

Therefore, when planning a new view to make the next scan, the view planning 

algorithm must take the factors into consideration, to ensure that the new range scan 

acquired from the planned view can be successfully registered with the previous 

ones. This issue is explored in greater detail in Chapter 5.  

The difference between the registration constraint described here and the 

registration accuracy requirement for reconstruction quality is that the registration 

constraint is for the registration accuracy of a new scan to the partial model during 

the acquisition process, whereas the latter is for the registration in post-acquisition 

reconstruction. The required accuracies for both purposes are generally not the same, 

but if the registration constraint is satisfied during acquisition, the same registration 

accuracy can also be achieved during the post-acquisition reconstruction. In this 

dissertation, I assume that the required accuracies are the same for both purposes, 

and will focus on the registration constraint instead of the registration accuracy 

requirement for reconstruction quality. 

3.3  Solution  

In this section, I present a solution to the view planning problem defined in the previous 

section. The algorithm involves a greedy optimization to search for the best view, according 

to a view metric, for the next scan. Before I describe the formulation of the view metric, I 

first describe a strategy to represent the unknown regions in the partial model. This 

representation should give clues about how the missing surfaces could be acquired. Finally, 



 51

the section presents an overview of the next-best-view algorithm and lists all the major 

components that made up the solution. 

3.3.1  Partial Models 

A partial model of the environment should not only record the surfaces that have been 

acquired, but also give clues to how the unknown surfaces can be acquired. To achieve the 

sampling quality requirement, it should also keep track of the sampling quality of the 

surfaces. It should also provide some means for surface registration to be performed between 

it and the new scan, and allow information in the new scan to be merged. Since the computed 

view can only be positioned at a location which has been determined to be empty, the partial 

model must keep track of known empty space in the environment. All the above are 

necessary to support the generation of feasible views (views that satisfy the positioning 

constraints), and to evaluate them using the view metric. 

In this section, I first describe how a partial model may be constructed from a single scan, 

and later describe how partial models can be merged to produce a more complete partial 

model.  

3.3.1.1  Partial Model from a Single Scan 

When a surface region has been acquired by the scanner, the view planning system can be 

sure that the volume of space between the scanner and the surface region is empty. However, 

occlusions, drop-outs and the limited field of view of the scanner result in unknown volumes 

of space whose status is yet to be determined. A simulated example is shown in Figure 3.8. In 

the example, a light-blue box is placed in a room (the room’s ceiling is not shown), and the 

scanner is set up pointing towards the box (in the direction of the red axis). On the box, there 

is a dark circular area right in front of the scanner. Figure 3.8(b) shows the surfaces 

successfully acquired by the scanner. The dark circular area is too absorbent of the light from 

the scanner, so it appears as a region of drop-outs in the range image. The occlusion by the 

front face of the light-blue box not only causes part of the wall to be occluded, but the status 

of the volume of space between the box face and the occluded region of the wall remains 
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unknown. As for the circular area of drop-outs, the conical volume of space between it and 

the scanner’s viewpoint has unknown status too. Finally, the limited field of view of the 

scanner results in all 3D space outside the field of view to be unknown in status. In the 

example, the simulated scanner’s field of view is limited both vertically and horizontally, 

which is a more common scenario than the 360° horizontal field of view used in the specific 

view planning problem. 

To differentiate the volumes that are known to be empty from those that are of unknown 

status, false surfaces are added to the surface model in Figure 3.8(b) to bound the known 

empty space, so as to keep the model “water-tight”. Three types of false surfaces can be 

added: (1) occlusion surfaces for occlusions, (2) hole-boundary surfaces for holes caused by 

drop-outs, and (3) image-boundary surfaces for range image boundaries caused by limited 

field of view of the scanner. These false surfaces are shown in Figure 3.9. 

 

 
Figure 3.8: (a) The scanner is pointing towards the light-blue box (in the direction of the red 
axis). On the box, there is a dark circular area right in front of the scanner. (b) The surfaces 
acquired by the scanner. The dark circular area is too absorbent of the light from the scanner, 
so it appears as a region of drop-outs in the range image. 

scanner  
position 

(a) (b) 
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Figure 3.9: Three different types of false surfaces. (a) The occlusion surfaces are shown in 
red. (b) The hole-boundary surfaces are shown in blue. (c) The image-boundary surfaces are 
shown in green. 

Occlusion surfaces are false surfaces that connect surfaces across depth boundaries. 

When a range image is converted to a triangle mesh by connecting neighboring range sample 

points to form triangles, the occlusion surfaces will be those very elongated triangles that 

extend across large depth differences. There are many heuristics to detect occlusion surfaces 

in a triangle mesh created from a range image. For example, if a triangle’s longest edge is 

beyond a threshold length, it is considered a triangle of the occlusion surfaces. Another 

method, which is scale-independent, is to use the angle between the triangle’s normal vector 

and the sensor’s line of sight to the center of the triangle. If the angle is greater than a 

threshold angle, the triangle is considered a part of the occlusion surfaces. The volume 

bounded by the occlusion surfaces and behind the occluder is considered on the outside of 

the known empty space, and it is unknown in status, thus the next scanner view should not be 

located in that volume of space.  

Drop-outs in the range image result in holes in the triangle mesh. Hole-boundary surface 

triangles are added to connect the boundaries of the holes to the scanner’s viewpoint, as 

shown in Figure 3.9(b). In the example, the space bounded inside the cone is considered on 

the outside of the known empty space. Similarly, image-boundary surface triangles are added 

to connect samples on the range image boundaries to the scanner’s viewpoint. The space 

outside the scanner’s field of view is considered on the outside of the known empty space. 

With the true surfaces acquired by the scanner and the added false surfaces, the known 

empty space is properly bounded. What is created is a solid model [Hoffmann1989] of the 

known empty space. 

(b) (c) (a) 



 54

The false surfaces provide clues to how the unknown volumes can be resolved by 

subsequent scans. One strategy is to place the next view in the known empty space where it 

can see as much area of the false surfaces as possible. This allows the next scan to 

“penetrate” as much of the false surfaces as possible, in the hope of resolving the unknown 

volumes behind them. This strategy is incorporated in the view metric described in Section 

3.3.2. 

3.3.1.2  Merging Partial Models 

Two partial models are merged by computing the union of their known empty space and 

the union of their surfaces, with the additional rules that (1) the empty space and the true 

surfaces have precedence over all false surfaces, and (2) the precedence of one false surface 

over another is arbitrary. The first rule means that if a false surface point in one partial model 

coincides with a point in the empty space of the other model, the result is empty space; or, if 

a false surface point in one partial model coincides with a true surface point in the other 

model, the result is the true surface point. Before the two partial models can be merged, they 

must be registered or aligned to each other. 

The result of the merging is another partial model that can later be merged with other 

partial models of the same environment. This is how information from many scans can be 

accumulated to get a more complete partial model of the environment. 

A 2D analogy of the merging process is shown in Figure 3.10. The 2D partial model in 

Figure 3.10(a) is a 2D version of the one shown in Figure 3.9. Figure 3.10(b) is a partial 

model created from a scan made from another viewpoint. The result of the merging is a 

partial model that has more known empty space and more true surfaces, and the volumes of 

unknown status have become smaller. It is always true that the unknown volumes will never 

become larger.  
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Figure 3.10: Merging of two partial models. The magenta regions are known empty space. 
The thick black lines are true surfaces, the red lines are occlusions surfaces, the blue lines are 
hole-boundary surfaces, and the green lines are image-boundary surfaces.  

To support the evaluation of the view metric function, some attributes, for example the 

sampling quality, are associated with each surface point in the partial model. These attributes 

have to be properly combined during merging, and the details are described in Section 3.4. 

The data structure used to represent the partial models, and the implementation of the 

construction and merging of the partial models are also described in that section. 

3.3.2  View Metric 

In each iteration of the model acquisition cycle (Figure 3.1), after the latest scan has been 

merged into the cumulative partial scene model, a greedy approach is followed to search for 

the best view for the next scan. During the search, a view metric function is evaluated for 

each candidate view, and the view with the highest metric value is selected as the best view. 

(a) (b) 

(c) 

true surface 

occlusion surface 

hole-boundary surface 

image-boundary surface 

empty space 



 56

The view metric should lead to a new view that exhibits the maximum improvement on the 

reconstruction quality. However, as we have learnt, the three reconstruction quality 

requirements (completeness, surface sampling quality, and surface registration accuracy) are 

in conflicting competition with each other, and therefore they cannot be all maximized 

simultaneously. Trade-offs among the three requirements must be made in the optimization 

metric according to the task at hand and the relative importance of each requirement.  

For this work, I use the view metric shown in Equation (3.1), where ( )vh  is the metric 

value for a view v: 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) dppqD,p,vs,p,vcpwvrvfvh
Sp

     min  0max
 
∫
∈

−⋅⋅⋅⋅=  (3.1) 

where 

• S is the set of all surface points in the current partial scene model; it includes all true 

and false surfaces; 

• ( )vf  is 1 if view v is a feasible view, i.e. all the positioning constraints (see Section 

3.2.6) are satisfied at view v, otherwise ( )vf  is 0; 

• ( )vr  is 1 if the registration constraint is satisfied at view v, otherwise ( )vr  is 0; 

• ( )p,vc  is 1 if all the sensing constraints between view v and the surface point p are 

satisfied, otherwise ( )p,vc  is 0; the visibility between view v and p is one of the 

sensing constraints (see Section 3.2.6); 

• ( )p,vs  is the sampling density at surface point p if it is scanned from view v; this is 

referred to as the new scan sampling density; 

• D is the sampling density requirement for all surfaces; 

• ( )pq  is the maximum sampling density at which surface point p has been scanned 

previously; this is referred to as the recorded sampling density; if p is on a false 

surface, then ( )pq  is 0;  

• ( )pw  is the weight or importance value assigned to the surface type of surface point p; 

the four different surface types are the true surfaces, the occlusion surfaces, the hole-

boundary surfaces, and the image-boundary surfaces.  



 57

The function max(a, b) returns the larger of a and b, and the function min(a, b) returns the 

smaller of a and b. 

Basically, ( )( ) ( )( )pqD,p,vs, −  min  0max  is the improvement to the recorded sampling 

density at surface point p if a new scan is made at view v, and given that all the acquisition 

constraints are satisfied. However, there is no improvement if the recorded sampling density 

( )pq  has already reached or exceeded the requirement D, even if the new scan sampling 

density ( )p,vs  from view v is higher than the requirement D. The improvement in sampling 

density is summed up over all surface points in the partial scene model, including surface 

points on false surfaces. The metric value ( )vh  is the total gain in the number of surface 

samples at view v, given that the acquisition constraints are satisfied. 

In the metric, the false surfaces are treated just like the true surfaces, only that their 

recorded sampling density is 0. The weight ( )pw  is used to trade off between the 

completeness and the surface sampling quality requirements. To favor completeness, one can 

assign a large weight value to the occlusion surfaces and a small value to the true surfaces, 

and vice versa.  

The registration constraint is represented by a binary function ( )vr  in the metric, which 

indicates whether the registration accuracy can or cannot be achieved for view v. The 

estimation of the registration accuracy is presented in Chapter 5. 

In the metric, range measurement errors are not included as part of the surface sampling 

quality. The range measurement errors are not independent of the sampling density on a 

surface region. When the sampling density is high, the surface region is near to the scanner 

and/or it is facing directly at the scanner. These are the cases when range measurement errors 

tend to be small. Similarly, when the sampling density is low, the range measurement errors 

will tend to be larger. Therefore, the sampling density alone may be a good measurement of 

the relative surface sampling quality.  

In order to evaluate the view metric, the recorded sampling density ( )pq  must be 

available for each surface point on the partial model. The recorded sampling density is an 

attribute associated with the surface point. Another attribute that is necessary for the 

evaluation of the metric is the surface normal at the surface point. 
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In the later sections of this chapter and in the next two chapters, I describe the details of 

how the metric function can be evaluated efficiently. 

3.3.3  Algorithm Overview 

The strategy to evaluate ( )vh  for all the views is to evaluate Equation (3.1) in pieces, 

from the least to the most expensive to compute. This evaluation strategy results in the 

execution flow of the major steps shown in Figure 3.11, which shows the model acquisition 

cycle with the view planning stage expanded. The main input to the next-best-view algorithm 

is the cumulative partial scene model which has just been updated by merging the latest scan. 

The result of the algorithm is a new view for making the next scan, or a decision to terminate 

the acquisition process. The purpose, and the execution order, of each step of the algorithm is 

briefly explained here, and the details, including implementation, are presented in the later 

sections of this chapter and in the next two chapters. 

 

 
Figure 3.11: The model acquisition cycle with the view planning stage expanded to reveal the 
major steps and the execution flow of the proposed next-best-view algorithm. 
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(A) Compute feasible views. Using the partial scene model, this step computes the set 

of views that satisfy the positioning constraint function ( )vf . The reason that the 

feasible views are computed first is that this step is less expensive to compute and 

the infeasible views should be eliminated as early as possible to save computation 

time in the main view evaluation step. 

(B) Evaluate views. This step evaluates the integral part of Equation (3.1) for all the 

feasible views. From here onwards, the integral part is referred to as ( )vg , i.e. 

 ( ) ( ) ( ) ( )( ) ( )( ) dppqD,p,vs,p,vcpwvg
Sp

     min  0max
 
∫
∈

−⋅⋅=  (3.2) 

where v is a feasible view. One of the main contribution of this work is the use of a 

hierarchical view evaluation method to efficiently evaluate ( )vg  for a large set of 

views. After all the feasible views have been evaluated, if they all have metric 

values (scores) below a threshold value, the view planner will suggest termination 

of the acquisition process. The details of this step are presented in Chapter 4. 

(C) Rank views. The feasible views are ranked in descending order of their current 

metric values or scores. 

(D) Check registration constraint. Starting from the highest-score view to the lowest, 

the registration constraint function, ( )vr , is evaluated to determine whether the 

registration constraint is satisfied by each view. A view is checked for the 

registration constraint only if it is at least a specified distance away from all the 

previously-checked views, otherwise it is skipped. This is because views with 

similar scores tend to cluster near each other and they usually have similar 

registration accuracies too. The first view found to satisfy the constraint is output as 

the next best view.  

The reason for checking the registration constraint last is that it is the most 

expensive to evaluate, and it is hoped that it is evaluated for as few views as 

possible. The details of this step are presented in Chapter 5. 

(E) Extract planar patches. To support the hierarchical view evaluation in Step (B), 

surface points in the partial scene model are grouped into planar patches. Only 

surface points on false surfaces, and surface points whose recorded sampling 
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densities are less than the sampling density requirement D, are grouped into patches. 

If all the surfaces have already reached the sampling density requirement, or all the 

patches are less than a specified size, the scene is considered satisfactorily acquired 

and the acquisition process can be terminated. 

(F) Rank patches. The planar patches are then ranked in descending order of their 

importance. The reason for ranking the patches is that there may not be enough time 

to consider all the patches for the evaluation of the views. Sometimes, only a limited 

duration is allotted for the view planning computation, and, when time is limited, 

only the most important patches will be used to evaluate the views. 

3.4  Partial Model Representation 

Section 3.3.1 has shown some of the basic requirements on the partial model 

representation. A practical representation of the partial model should have the following 

qualities: (1) it can represent surfaces as well as volumes of space, (2) it must be space-

efficient, (3) it supports efficient and robust merging operations, (4) it supports surface 

registration with new scans, and (5) it facilitates view evaluation.  

An octree-based [Samet1989a, Samet1989b] volumetric representation of the partial 

model has been chosen for the implementation of the next-best-view solution. As we see later 

in the section, this representation possesses the required qualities listed above. Even though 

the surfaces have to be approximated by discrete voxels in the octree, the accuracy is 

sufficient for the application. Octree-based representations of partial models have been used 

in some previous next-best-view algorithms [Connolly1985, Sanchiz1999] and in model-

based view planning [Tarbox1995]. 

Boundary representation (B-rep) of a solid model [Hoffmann1989] is an alternative for 

the partial model representation. In comparison to an octree-based representation, the B-rep 

can represent surfaces more accurately. However, practical implementations of geometric 

modeling operations (e.g. Boolean set operations) on B-rep solids have always been plagued 

by robustness issues [Hoffmann1989]. In practice, the surface mesh obtained from a range 

image produced by the Deltasphere-3000 scanner may be self-intersecting at the seam 
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connecting the beginning and the end of a horizontally 360° scan, and this degeneracy may 

cause the B-rep operations to fail. Nevertheless, B-rep solid representation has been used in 

previous next-best-view algorithms [Reed1997]. 

The storage requirement of an octree model is proportional to the total surface area in the 

represented object [Hunter1978]. This is a great improvement over uniform 3D occupancy 

maps, which require storage space proportional to the volume of the represented objects. 

Uniform 3D occupancy maps have been used in some of the previous next-best-view 

algorithms [Banta1995, Massios1998] to represent partial models, and unsurprisingly they 

are restricted to simple and small objects, and the low-resolution partial models often result 

in low-quality view planning. The octree representation and its operations are generally 

easier to implement than those of B-rep, and it is more robust with degenerated triangle 

meshes. Boolean set operations, which are needed for the merging of two partial models, are 

also straightforward and robust for the octree representation [Hunter1979]. Moreover, the 

octree models also directly support acceleration of ray-casting [Foley1992], which is 

performed very frequently during view evaluation. 

3.4.1  Creating Octree Partial Models 

Each range image is first converted to a closed triangle mesh with added false surfaces, 

and an octree model is then created from the triangle mesh. If the range image is not from the 

very first scan, the triangle mesh has to be first registered with the cumulative partial model 

of the previous scans before it is converted to an octree, and the new octree model is then 

merged with the cumulative octree model.  

Before the range image is converted to a triangle mesh, it is filtered to reduce noise and 

outliers. In the implementation, a median filter is used to reduce outliers and then anisotropic 

diffusion [Black1998] is applied to further smooth the range image. Next, small isolated 

regions of drop-outs are filled in using simple linear interpolation of the surrounding samples. 

If many of these small holes are left intact, they will create an excessive number of cone-like 

volumes (see Figure 3.9(b)) of unknown status. This can greatly reduce the amount of large 

contiguous empty space for feasible views, and thus may exclude many potentially good 

views from being considered for the next view.  
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The filtered range image is converted to a triangle mesh by connecting neighboring range 

sample points to form triangles. The false surface triangles are added as described in Section 

3.3.1.1. Next, an octree is constructed to voxelize the closed triangle mesh. An octree cell is 

recursively subdivided if it contains or intersects any triangle of the mesh, and the 

subdivision stops when the cell reaches the specified minimum cell size. My implementation 

of the voxelization uses an efficient triangle-box overlap test algorithm described in 

[Akenine-Möller2001]. 

Six types of cells can be in an octree, and they are all leaf nodes of the octree. They are 

listed in decreasing precedence below.  

(1) Empty-space cells. Each empty-space cell represents part of the 3D space that has 

been identified as empty. 

(2) True surface cells. Each true surface cell contains or intersects at least a true 

surface triangle of the mesh. If the cell is also intersected by false surface triangles, 

the true surface will take precedence and the cell is still classified as a true surface 

cell. Each cell contains two attributes—a surface normal, and the best surface 

sampling density (recorded sampling density) at the surface region represented by 

the cell. The cell’s surface normal is estimated by summing the normal vectors of 

the true surface triangles that intersect the cell. The best sampling density is 

approximated by 0.5/Amin where Amin is the area of the smallest true surface triangle 

that intersects the cell. The sampling density is measured in the number of samples 

per unit area. 

(3) Occlusion surface cells. An occlusion surface cell contains or intersects at least an 

occlusion surface triangle of the mesh. The occlusion surfaces are given precedence 

over the other two types of false surfaces, so if the cell is also intersected by hole-

boundary or image-boundary surface triangles, it is still classified as an occlusion 

surface cell. The cell’s surface normal is computed similarly to that of a true surface 

cell, and its recorded sampling density is 0. 

(4) Hole-boundary surface cells. Similar to an occlusion surface cell. The hole-

boundary surfaces have precedence over image-boundary surfaces. The cell has a 

surface normal and its recorded sampling density is 0. 
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(5) Image-boundary surface cells. Similar to an occlusion surface cell. The cell has a 

surface normal and its recorded sampling density is 0. 

(6) Solid-space cells. Each solid-space cell represents a volume of 3D space that is 

either solid or is of unknown status and has to be resolved by additional scans. 

During the conversion of the triangle mesh to an octree, after the surfaces have been 

voxelized, the remaining cells in the octree are either empty-space or solid-space, and they 

have to be distinguished. This can be done as follows. From the scanner viewpoint where the 

range image is acquired, a ray is shot towards the center of the cell. If the ray intersects the 

cell before the triangle mesh, then the cell is an empty-space cell, otherwise it is a solid-space 

cell.  

 

 
Figure 3.12: (a) A horizontally 360° scan of a synthetic scene is made from the position 
specified by the coordinate frame (pointed at by a white arrow). The ceiling of the room is 
not shown in all three images. (b) The triangle mesh created from the range image. The gray-
shaded surfaces are the true surfaces, red are the occlusion surfaces, blue are the hole-
boundary surfaces, and green are the image-boundary surfaces. The fireplace in the scene is 
too dark and results in a region of drop-outs in the range image. This region is bounded by 
hole-boundary surfaces (blue) in the triangle mesh. (c) An octree model is created by 
voxelizing the triangle mesh. Each surface voxel is 4 inches wide. 

(a) 

(b) (c) 
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Figure 3.13: The empty-space cells of the octree model shown in Figure 3.12(c). (a) A view 
from the top. (b) A view from the bottom. 

Figure 3.14 shows three 2D examples of octree models. All the surface cells are at the 

specified minimum cell size, and the empty-space and solid-space cells can have different 

cell sizes. Surface cells are also referred to as surface voxels in this dissertation. During 

merging of two octrees, the precedence of the cells follows the order in which they are listed 

above, with empty-space cells having the highest precedence and solid-space cells having the 

lowest. Even though the false surfaces are given precedence during creation of the different 

types of surface cells, the precedence among the false surfaces is actually irrelevant and can 

be arbitrarily assigned. 

An octree model of a scan of a synthetic room is shown in Figure 3.12 and Figure 3.13. 

Figure 3.12(c) shows the surface cells and Figure 3.13 shows the empty-space cells of the 

model. It can be seen that all the surface cells are of the same size, but the empty-space cells 

can be of different sizes. 

3.4.2  Merging Partial Models 

After a new scan is made, its triangle mesh is registered, converted to an octree model as 

described in Section 3.4.1, and then merged with the cumulative octree model of the previous 

scans.  

The top-level nodes of the two octrees to be merged must bound exactly the same volume 

in the 3D space. The merging starts by traversing both octrees top-down in parallel, and 

(a) 

(b) 
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when the same volumes of space from the two octrees are compared, the one with the higher 

precedence (according to the precedence of the cell types) will appear in the result. The 

details of the algorithm are very similar to those of the Boolean set operations on octrees 

described in [Foley1992]. Figure 3.14 shows a 2D analogy of the merging of two octree 

models. Since empty-space cells have the highest precedence, the empty space in the 

cumulative partial model will always remain empty regardless of the new scans that will be 

merged. This is equivalent to the union of empty space of the partial models as mentioned in 

Section 3.3.1.2.  

 

 
Figure 3.14: A 2D analogy of the merging of two octree models. (a) and (b) are the input 
octree models and (c) is the result. 

When a surface cell in one octree coincides with a surface cell of the same type in the 

other octree, their attributes should be combined. In one of the ways to do that, the resulting 

surface cell’s surface normal is the sum of the surface normals of the input cells, and the 

(a) (b) 

(c) 
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solid-space 



 66

resulting recorded sampling density is the higher of the two inputs. When two surface cells of 

different types coincide, the resulting cell type and attributes are those of the higher 

precedence cell.  

In practice, because of range measurement errors and registration error, two true surface 

cells representing the same surface region may not coincide. When the two octrees are 

merged as described by the above method, one of two true surface cells will most likely 

coincide with empty space and be eliminated from the result, and its attributes will just be 

discarded without being used. The other true surface cell will most likely coincide with solid 

space. The eliminated true surface cell’s attributes should be combined with those of the 

other true surface cell that is not eliminated. To do that, for each true surface cell cA in octree 

A, the nearest true surface cell cB in a small neighborhood in octree B is found. If the surface 

normal of cA and the surface normal of cB are within an angular threshold, their attributes are 

combined and put back into cA. This is repeated conversely for each true surface cell in octree 

B, but the old attributes of the true surface cells in octree A are used. Finally, octrees A and B 

are merged normally as described earlier. 

For more efficient merging of two octrees, each interior node of the octree records the 

types of cells in its descendants. This can be done using a bit vector, where each type of cell 

is assigned a different bit position in the bit vector, and they are combined bottom-up in the 

ancestor nodes by bit-wise OR operations.  

3.5  Computing Feasible Views 

Feasible views are views that satisfy all the positioning constraints. As described in the 

overview of the next-best-view algorithm in Section 3.3.3, for efficiency, the integral part of 

the view metric in Equation (3.1) is evaluated only for feasible views. The positioning 

constraints considered in this specific view planning problem are (1) the scanner viewpoint 

must be placed at least a minimum clearance distance away from any object in the 

environment, (2) the scanner viewpoint can be positioned only between a minimum and a 

maximum heights above the floor, and (3) the scanner must never be placed above any object. 

This section describes how feasible views are computed and represented. 
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First, it is assumed that the floor is approximately parallel to, say, the x-z plane, and the y-

axis is pointing vertically upwards. Then, the height of the objects in the environment and the 

height of the scanner viewpoint above the floor are measured only in the y direction. When 

the scanner is making the first scan, it may not be positioned perfectly vertically in the real 

environment. The acquired model must then be oriented so that the floor becomes parallel to 

the x-z plane. In the implementation, it is assumed that the bottom-most rows of the first 

range image are always the measurements of the floor only. A plane is then fitted to these 

“floor samples” and the model is oriented so that the fitting plane becomes parallel to the x-z 

plane. This needs to be performed only for the first scan because subsequent scans will be 

oriented correctly when they are registered to the cumulative partial model. 

The set of feasible views are represented as 3D volumes in which every 3D point satisfies 

all the three positioning constraints. Figure 3.15 shows the resulting volumes of feasible 

views for an example model. 

 

 
Figure 3.15: A side-view cross section of a room. The cyan regions are the feasible view 
volumes that satisfy the three positioning constraints. The two dotted lines indicate the 
minimum and maximum heights between which the scanner viewpoint can be positioned. To 
be considered an obstacle, an object must be over a threshold height above the floor  

In the implementation, an octree is used to represent the feasible view volumes. Initially, 

this feasible view octree is a cube that encloses all the empty space in the cumulative partial 

model. The cube is then “carved” until it becomes the feasible view volumes. The non-

empty-space cells in the partial octree model are used to “carve” the feasible view octree. 

First, every non-empty-space cell, whose top side is above the obstacle threshold height from 

the floor, is extruded upwards to infinity. The obstacle threshold height is used to prevent 

errors on the floor measurements and small low-lying objects from being considered as 

feasible view 
volume 

empty 
space 

feasible 
view 

volume 
too low to be 
considered  
an obstacle 
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obstacles that will keep the scanner from being positioned on top of them. The extruded cells 

are then enlarged by the minimum clearance distance on all sides. Next, a large box is placed 

just above the scanner viewpoint maximum height, and another one just below the minimum 

height. These two boxes are large enough to enclose the empty space above the maximum 

height and below the minimum height. Finally, the feasible view octree cells are recursively 

subdivided until each cell does not intersect any of the modified non-empty-space cells and 

the two boxes. The subdivision also stops when the cell reaches a minimum viewcell size. 

Figure 3.16 shows an example of the feasible view volumes computed by the 

implemented algorithm. 

 

 
Figure 3.16: A view of the feasible view volumes for the octree partial model shown in 
Figure 3.12(c). The feasible view volumes are shown in cyan color. The minimum viewcell 
size is 4 inches wide. 

3.6  Extracting Planar Patches 

Referring to the integral part of the view metric in Equation (3.2), we recall that each 

feasible view v is evaluated with every surface point whose recorded sampling density ( )pq  

is less then the sampling density requirement D. For a view v, the values of ( )p,vc  (the 

binary function for the sensing constraints) and ( )p,vs  (the new scan sampling density) may 

remain constant or vary only slightly within some relatively large surface region. Similarly, 
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for a surface point p, the values of ( )p,vc  and ( )p,vs  may remain constant or vary only 

slightly within some large, contiguous set of views. One of the major contributions of this 

work is the exploitation of this two-way spatial coherence to efficiently evaluate the view 

metric function. To exploit the spatial coherence, similar surface points and similar views are 

first grouped together.  

In the implementation of the next-best-view algorithm, the surface cells in the cumulative 

partial model are grouped into a set of planar patches. Only surface cells whose best 

sampling densities (or recorded sampling densities) are less than the sampling density 

requirement D are grouped. These include the false surface cells. The surfaces cells are 

grouped into four types of patches, according to the type of the surface cells. A cell may only 

be grouped with other cells of the same type. 

The planar patches are created in the following way. First, a surface cell is used as the 

seed of the new patch, and the cell’s center point and surface normal are used as the initial 

fitting plane. The patch is grown in a “flood-fill” manner by including ungrouped cells that 

are 26-neighbor adjacent to cells that are already in the patch. A cell is added to the patch 

only if it is of the same type, has not reached the sampling density requirement, has a surface 

normal that is not too different from that of the fitting plane, and is not too far from the plane. 

The fitting plane is constantly updated when new cells are added to the patch. It is computed 

by fitting a plane to the center points of the cells already in the patch. When no new cell can 

be added to the patch, the patch is considered completed, and a new ungrouped cell is used as 

the seed to start a new patch.  

Each planar patch has the following attributes that are needed during view evaluation: (1) 

a bounding rectangle, (2) an approximate surface area, (3) the average recorded sampling 

density, and (4) the sampling deficit. The bounding rectangle is used to make easy the 

evaluation of the sensing constraints and the subdivision of the patch. A bounding rectangle 

of the patch can be computed by applying principal component analysis [Kendall1977] on 

the cells’ center points to generate the two axes of the rectangle in 3D space. The cells are 

then projected onto the plane defined by the two axes, and a bounding rectangle is computed 

on the plane.  

An approximate surface area of each patch can be computed by “rasterizing” the patch’s 

surface cells on the bounding rectangle. This can be done by laying a 2D grid on the 



 70

bounding rectangle, and then project the surface cells’ center points onto the grid. The area of 

the occupied grid cells are summed up to get the approximate surface area of the patch. Care 

must be taken to ensure that the resolution of the grid is not so high that holes will appear on 

the grid even though the patch is contiguous. To increase accuracy of the surface area 

approximation, one can increase the resolution of the grid and project multiple points from 

each surface cell onto the grid. The computation described here may be accelerated using 

graphics hardware, where the patch’s surface cells are drawn onto a frame-buffer and the 

number of pixels that are switched on are used to compute the approximate surface area of 

the patch. 

The average recorded sampling density is computed by summing up the recorded 

sampling densities of all the cells in the patch and then dividing the sum by the number of 

cells.  

The sampling deficit is computed as 

 sampling deficit = (D − average recorded sampling density) ⋅ approximate surface area  

where D is the sampling density requirement. Since the average recorded sampling density of 

the patch is less than or equal to D, the sampling deficit is non-negative. The sampling deficit 

is the number of samples that still need to be acquired so that the average recorded sampling 

density of the patch can reach D. It actually corresponds to ( )( ) ( )( )pqD,p,vs, −  min  0max  of 

Equation (3.2) when ( ) Dp,vs ≥  and ( ) Dpq < . 

In the implementation, patches that are too large are subdivided until their bounding 

rectangles are smaller than a threshold maximum length, which is typically set at 5 to 10 feet 

in the experiments. Figure 3.17 shows examples of the planar patches extracted from the 

octree model shown in Figure 3.12(c). 
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Figure 3.17: (a) A true surface patch consisting of true surface cells whose recorded sampling 
densities are less than the requirement. The yellow rectangle is the bounding rectangle of the 
patch and the yellow dots indicate the cells that are included in the patch. (b) A set of 
occlusion surface patches, whose bounding rectangles are shown in magenta color. 

3.7  Ranking Planar Patches 

We recall that the reason for ranking the patches is that there may not be enough time to 

consider all the patches for the evaluation of the views, and therefore one would want to 

evaluate the views using the most important patches. Here, the patches are ranked in 

descending order of their importance. The most important patch should potentially have the 

greatest impact on the value of ( )vg  in Equation (3.2). This leads to the use of the following 

patch importance value:  

 patch importance value of P = ( )Pw  ⋅ sampling deficit of P  

where P is the patch, and ( )Pw  is the weight assigned to the surface type of P, which is the 

same as the weight ( )pw  in Equation (3.2). The patches are then sorted in descending order 

on their patch importance values. 

 

(a) (b) 



 

Chapter 4  
 

View Evaluation 

One of the main steps in the next-best-view algorithm is the evaluation of the integral 

part of the view metric function in Equation (3.1) for each feasible view. This is termed view 

evaluation. The major challenge to a practical next-best-view solution is to develop an 

efficient method to evaluate a large set of views, using information provided by the 

cumulative partial model of the environment. The evaluation of each view can be 

computationally very expensive, since a large amount of information of the partial model 

may be involved, and visibility computations and other sensing constraint evaluations are 

expensive. This is the main difficulty that has limited many previous next-best-view 

algorithms to an incomplete search space, simple and small objects, incomplete sets of 

constraints, and low-quality acquisition.  

A major contribution of this work is the novel application of a hierarchical approach to 

greatly accelerate view evaluations by exploiting the various spatial coherences in the 

acquisition constraints and reconstruction quality requirements in the view metric. In this 

work, the hierarchical view evaluation approach is applied to the specific next-best-view 

problem in which the range scanner is monostatic and the views are 3D positions with fixed 

orientation. The hierarchical approach is described in detail in the earlier part of this chapter. 

In the later part of the chapter, the hierarchical approach is generalized for more general 

scanning poses, acquisition constraints and quality requirements.  



 73

4.1  Hierarchical View Evaluation 

We recall from Equation (3.2), the integral part of the view metric is 

 ( ) ( ) ( ) ( )( ) ( )( ) dppqD,p,vs,p,vcpwvg
Sp

     min  0max
 
∫
∈

−⋅⋅= ,  

in which each feasible view v is evaluated with every surface point whose recorded sampling 

density ( )pq  is less than the sampling density requirement D. These surfaces are referred to 

as under-sampled surfaces, and they include false surfaces. Equation (3.2) can be evaluated 

by first uniformly discretizing the feasible view volumes and the under-sampled surfaces at 

sufficiently high resolutions. Unfortunately, a brute-force approach of evaluation of Equation 

(3.2) for all discrete views would be prohibitively expensive.  

The amount of computation can actually be reduced by exploiting the spatial coherences 

in the sensing constraints and the sampling quality function in Equation (3.2). The basic idea 

is that if a constraint is satisfied between a view v1 and a surface point p1 on the partial model, 

very likely the same constraint is also satisfied between another view v2 and p1, provided v2 is 

near to v1. The same constraint is also very likely to be satisfied between v1 and another 

surface point p2 that is near p1. These spatial coherences can be exploited using a hierarchical 

approach. Neighboring views are first grouped into view volumes, and neighboring surface 

points are grouped into surface patches. The constraint is evaluated between each view 

volume V and each patch P. If it is entirely satisfied or entirely not satisfied between V and P, 

then the constraint evaluation is considered completed between every view in V and every 

surface point in P. If the constraint is partially satisfied between V and P, then we subdivide 

either V or P, and continue the evaluation on the children. 

4.1.1  Formulation 

Suppose all the under-sampled surfaces in the partial model have been partitioned into 

{ }N,,i|Pi K1= , where each iP  is a patch. Then, Equation (3.2) can be rewritten as 
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i
iP,vgvg
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 (4.1) 

where 

 ( ) ( ) ( ) ( )( ) ( )( ) dppqD,p,vs,p,vcpwP,vg
Pp

     min  0max
 
∫
∈

−⋅⋅= . (4.2) 

Now, we will focus on evaluating views with respect to a patch, instead of with all the 

surfaces in the partial model. Suppose the values of ( )pw , ( )p,vc , ( )p,vs , and ( )pq  remain 

constant between a view volume V and a patch P, where Vv∈  and Pp∈ . Then ( )P,vg  can 

be computed as 

 ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )PaPqD,P,Vs,P,VcPwP,VgP,vg ⋅−⋅⋅==   min  0max  (4.3) 

where 

• ( )Pw  is the weight or importance value assigned to the surface type of the surface 

points that made up patch P. It is assumed that all the surface points in P are of the 

same type. The four different surface types are the true surfaces, the occlusion 

surfaces, the hole-boundary surfaces, and the image-boundary surfaces; 

• ( )P,Vc  indicates whether all the sensing constraints are satisfied between every view 

Vv∈  and every surface point Pp∈ . ( ) 1=P,Vc  if ( ) 1=p,vc  for all Vv∈  and 

Pp∈ , or ( ) 0=P,Vc  if ( ) 0=p,vc  for all Vv∈  and Pp∈ , otherwise ( )P,Vc  is 

undefined; 

• ( )P,Vs  is the new scan sampling density on patch P if it is scanned from any view 

Vv∈ ; 

• ( )Pq  is the recorded sampling density of patch P. It is just the average of the recorded 

sampling densities of all the surface points in P;  

• ( )Pa  is the surface area of patch P.  

In actual fact, the value of ( )p,vs  does not stay constant between V and P. However, if 

every ( )p,vs  between V and P is bounded within a small interval, then it is considered 
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approximately constant. The value of ( )p,vs  between V and P is considered approximately 

constant when 

 
( ) ( )

( ) sP,Vs
P,VsP,Vs

ε≤
−

max

minmax  (4.4) 

where ( )P,Vsmax  and ( )P,Vsmin  are the maximum and the minimum new scan sampling 

densities, respectively, between V and P, and 0≥sε  is a user-specified relative error bound. 

When this is the case, one can let ( )P,Vs  be any ( )p,vs  between V and P. For conservative 

satisfaction of the sampling quality requirement, ( )P,Vs  is chosen to be ( )P,Vsmin . Then, 

the relative representative error of ( )P,Vs  is defined as 

 
( ) ( )

( )P,Vs
P,VsP,Vs

max

max −
. (4.5) 

With the condition in Equation (4.4) satisfied and ( ) ( )P,VsP,Vs min= , the value of 

( )P,Vg  can be computed using Equation (4.3). If any sensing constraint in ( )P,Vc  is found 

entirely not satisfied between V and P, then ( )P,Vs  need not be computed and the result is 

( ) 0=P,Vg . 

If ( )p,vc  is not constant or ( )p,vs  is not approximately constant between V and P, then 

( )P,Vg  cannot be computed using Equation (4.3). In this case, one can subdivide either 

patch P or view volume V, and apply Equation (4.3) on the sub-patches or the sub-volumes. 

If patch P is subdivided, then 

 ( ) ( ) ( )kP,VgP,VgP,Vg ++= L1  (4.6) 

where kP,,P K1  are the sub-patches of patch P. If view volume V is subdivided, then 

( )P,Vg  is replaced with ( ) ( )P,Vg,,P,Vg mK1 , where mV,,V K1  are the sub-volumes of V. 

Then, ( ) =P,vg ( )P,Vg i  if iVv∈ . The subdivision stops when ( )p,vc  is constant and 
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( )p,vs  is approximately constant between the view volume and the patch. The subdivision is 

thus adaptive to the rates of change of ( )p,vc  and ( )p,vs  

4.1.2  Algorithm and Implementation 

The success of the hierarchical view evaluation approach depends on the efficiency of 

evaluating ( )P,Vc  and ( )P,Vs . In the specific next-best-view problem addressed by this 

work, ( )p,vc  consists of the four separate sensing constraints described in Section 3.2.6, 

which are 

• The maximum-range constraint, represented by ( )p,vc0 . If the distance between 

view v and surface point p is more than the maximum effective range of the range 

sensor, then ( ) 00 =p,vc , otherwise ( ) 10 =p,vc ; 

• The vertical-field-of-view constraint, represented by ( )p,vc1 . If the surface point p 

is outside the vertical field of view of the scanner at view v, then ( ) 01 =p,vc , 

otherwise ( ) 11 =p,vc ; 

• The angle-of-incidence constraint, represented by ( )p,vc2 . If the angle between the 

surface normal vector at p and the direction vector from p to v is greater than a 

threshold angle, then ( ) 02 =p,vc , otherwise ( ) 12 =p,vc ; 

• The visibility constraint, represented by ( )p,vc3 . If the line of sight from v to p is 

occluded, then ( ) 03 =p,vc , otherwise ( ) 13 =p,vc . 

The binary function ( )p,vc  is defined as ( ) =p,vc ( ) ( ) ( ) ( )p,vcp,vcp,vcp,vc 3210 ⋅⋅⋅ .  

Similarly, ( )P,Vc  is also made up of ( )P,Vc0 , ( )P,Vc1 , ( )P,Vc2 , and ( )P,Vc3 , where 

for 30 ,,i K= , ( ) 1=P,Vci  if ( ) 1=p,vci  for all Vv∈  and Pp ∈ , or ( ) 0=P,Vci  if 

( ) 0=p,vci  for all Vv∈  and Pp ∈ , otherwise ( )P,Vci  is undefined. The function ( )P,Vc  

is defined as ( ) =P,Vc ( ) ( ) ( ) ( )P,VcP,VcP,VcP,Vc 3210 ⋅⋅⋅ , but ( )P,Vc  is undefined if at least 

one ( )P,Vci  is undefined and all the other are either 1 or undefined. If at least one ( )P,Vci  is 

0, ( )P,Vc  will be 0. Intuitively, when ( )P,Vci  is undefined, it means that the corresponding 

constraint is only partially satisfied between V and P.  
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To avoid redundant computations, an important point to note from Equation (4.3) is that 

as soon as any one of ( )P,Vci  or ( )( ) ( )( )PqD,P,Vs, −  min  0max  has been determined to be 

0, the computations of the others can be skipped because ( )P,Vg  can already be determined 

to be 0. 

Methods are needed to group views into volumes and surface points into patches, which 

should be appropriately represented to facilitate the subdivisions of view volumes and 

patches. As described in Chapter 3, the feasible view volumes are represented in a feasible 

view octree in the implementation. The under-sampled surfaces are represented as voxels in a 

partial octree model, and they are then grouped into planar patches, where each patch is 

tightly bounded by a rectangle. The feasible view octree and the rectangle-bounded planar 

patches provide efficient ways to group and subdivide view volumes and surface patches. A 

node in the feasible view octree is referred to as a viewcell. 

In Figure 4.1 is a simplified C-like procedure to evaluate ( )P,Vg . Here, input viewcell V 

is a feasible view volume. Each input Boolean element c_in[i] is true if ( )P,Vci  is 

already known to be 1, otherwise c_in[i] is false to indicate that ( )P,Vci  is unknown. 

The input Boolean argument s_uniform is true if the relative representative error of 

( )P,Vs  is known to be bounded by sε , otherwise s_uniform is false. The input 

argument s is ( )P,Vs  if s_uniform is true. Initially, the procedure EvaluateView() 

is called with all c_in[i]=false and s_uniform=false. 
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1 EvaluateView( Viewcell *V, Patch *P,  
2               bool c_in[4], bool s_uniform, float s ) 
3 { 
4  if ( s_uniform  &&  MIN( s, D ) - q(P) <= 0 ) return; 
5  
6  bool c[4] = { c_in[0], c_in[1], c_in[2], c_in[3] }; 
7  
8  for ( int i = 0; i < 4; i++ ) 
9   if ( !c[i] ) 
10   { 
11    int t = EvaluateConstraint( i, V, P ); 
12    if ( t == 0 ) return; 
13    if ( t == 1 ) c[i] = true; 
14   } 
15  
16  if ( !s_uniform ) 
17  { 
18   float sMin, sMax; 
19   EvaluateSamplingDensity( V, P, &sMin, &sMax ); 
20   if ( sMax <= q(P) ) return; 
21   if ( ( sMax - sMin ) / sMax <= epsilon_s )  
22   { 
23    s_uniform = true; 
24    s = sMin; 
25    if ( MIN( s, D ) - q(P) <= 0 ) return; 
26   }  
27  } 
28  
29  if ( c[0] && c[1] && c[2] && c[3] && s_uniform ) 
30  { 
31   V->score += w(P) * ( MIN( s, D ) - q(P) ) * a(P); 
32  } 
33  else if ( ToSubdividePatchFirst( V, P ) ) 
34  { 
35   SubdividePatch(P); 
36   for ( int k = 0; k < P->numChildren; k++ ) 
37    EvaluateView( V, P->child[k], c, s_uniform, s ); 
38  } 
39  else 
40  { 
41   SubdivideViewcell(V); 
42   for ( int m = 0; m < V->numChildren; m++ ) 
43    EvaluateView( V->child[m], P, c, s_uniform, s ); 
44  } 
45 } 

Figure 4.1: A procedure EvaluateView() to evaluate ( )P,Vg . 
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The program code in Figure 4.1 is explained below:  

• Line 4: If the relative representative error of ( )P,Vs  is already known to be bounded 

by sε , and if ( )( ) ( )( )PqD,P,Vs, −  min  0max  is 0, then the procedure can be quickly 

exited because ( ) 0=P,Vg ; 

• Lines 8–14: Evaluate each ( )P,Vci  if ( )P,Vci  is unknown. The function 

EvaluateConstraint(i,V,P) evaluates ( )P,Vci  and returns 0 or 1 to indicate 

( ) 0=P,Vci  or ( ) 1=P,Vci , respectively, or returns any other integer values to 

indicate ( )P,Vci  is undefined. If it is found that any ( ) 0=P,Vci , then the procedure 

can be quickly exited because ( ) 0=P,Vg . The implementation of the function 

EvaluateConstraint() is described in the next section; 

• Lines 16–27: If it is not known whether the relative representative error of ( )P,Vs  is 

bounded by sε  (epsilon_s), the function EvaluateSamplingDensity 

(V,P,&sMin,&sMax) evaluates the minimum and maximum new scan sampling 

densities between V and P. In line 20, the procedure is exited if it is certain that 

( )( ) ( )( )PqD,P,Vs, −  min  0max  will be 0. Using the results sMin and sMax, the 

relative representative error of ( )P,Vs  is checked to see whether it is bounded by sε . 

If so, ( )P,Vs  is assigned the value of sMin. Again, the procedure is exited if 

( )( ) ( )( )PqD,P,Vs, −  min  0max  is 0. The implementation of the function 

EvaluateSamplingDensity() is described in the next section; 

• Lines 29–32: If all ( ) 1=P,Vci  and the relative representative error of ( )P,Vs  is 

bounded by sε , then ( )P,Vg  is computed as in Equation (4.3) and the result added to 

the score of viewcell V. The function q(P) returns the average recorded sampling 

density of patch P, and the function a(P) returns the approximate surface area of P; 

• Lines 33–38: If some of the ( )P,Vci  is unknown (or undefined) or the relative 

representative error ( )P,Vs  is not bounded by sε , then either the viewcell V or the 

patch P needs to be subdivided. Here, the patch is subdivided because the function 

ToSubdividePatchFirst(V,P) returns true. Figure 4.2 shows an 



 80

implementation of the function ToSubdividePatchFirst(). The function 

SubdividePatch(P) subdivides patch P into sub-patches if it is not already 

subdivided. Next, the procedure EvaluateView() is recursively called with V and 

every sub-patch of P. Note that all ( )P,Vci  and ( )P,Vs  are passed to 

EvaluateView() for the evaluation of ( )kP,Vg , where kP  is a sub-patch of P. 

• Lines 40–44: Similarly, here, the viewcell is subdivided instead of the patch. The 

function SubdivideViewcell(V) subdivides viewcell V into sub-viewcells if it 

is not already subdivided. Then, the procedure EvaluateView() is recursively 

called with P and every sub-viewcell of V. 

 
1 bool ToSubdividePatchFirst( Viewcell *V, Patch *P ) 
2 { 
3  if ( !Subdivisible(V) && Subdivisible(P) ) 
4   return true; 
5  else if ( Subdivisible(V) && !Subdivisible(P) ) 
6   return false; 
7  else if ( V->width <= P->length ) 
8   return true; 
9  else 
10   return false; 
11 } 

Figure 4.2: An implementation of the function ToSubdividePatchFirst(). 

In the actual implementation, when a patch is subdivided, it is subdivided into four, or 

perhaps fewer, sub-patches by splitting its bounding rectangle at the center. An example is 

shown in Figure 4.3. The bounding rectangles of the sub-patches are recomputed, but they 

remain in the same orientation as the bounding rectangle of the parent patch. The orientation 

is kept the same so that the bounding rectangles of the sub-patches do not overlap. The 

average recorded sampling density and approximate surface area of each sub-patch are 

recomputed as described in Section 3.6. When a viewcell V is subdivided, it is subdivided 

into eight equal octants, which are added to the feasible view octree as eight child nodes of 

viewcell V. Each sub-viewcell will have an initial score of 0. The score of each viewcell V 
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will be the sum of ( )P,Vg  over all the patches and sub-patches P that have been successfully 

evaluated with V. 

 

 
Figure 4.3: The bounding rectangles of the four sub-patches after a patch is subdivided. The 
orientation of each sub-patch’s bounding rectangle remains the same as that of the original 
patch. 

The subdivision of a patch or a viewcell stops when it has reached a user-specified 

minimum size. When an indivisible patch is passed to the function 

EvaluateConstraint() and EvaluateSamplingDensity(), it is treated as a 

point at the center of the patch. Similarly, an indivisible viewcell is treated as a point at the 

center of the viewcell. 

It is important to note that when ( ) 1=P,Vci  for some i, it is also true that ( ) 1=k
i P,Vc  

and ( ) 1=P,Vc m
i  for all sub-patches kP  of P and all sub-viewcells mV  of V. Therefore, 

when ( ) 1=P,Vci  for some i, and EvaluateView() is called with the sub-patches kP  of 

P or the sub-viewcells mV  of V, there is no need to recompute ( )k
i P,Vc  and ( )P,Vc m

i . This 

is similar for ( )P,Vs , when its relative representative error has been determined to be 

bounded by sε . This important observation can eliminate a large amount of computation and 

demonstrates the great benefit of evaluating the four constraints separately as ( )P,Vci  for 

30 ,,i K= , instead of combining them into one ( )P,Vc . This is because once a constraint is 

determined to be 0 or 1 for V and P, it needs not be evaluated anymore for their descendents. 

The relative representative error bound sε  determines how accurate ( )P,Vs  is to be 

computed. Smaller sε  results in more accurate ( )P,Vs  but also results in more levels of 
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subdivision of the viewcell and patch. This property allows one to vary the value of sε  to 

trade-off between efficiency and accuracy. 

Another optimization that can be added to the algorithm is to order the evaluations of the 

constraints and the sampling density so that the most efficient one is first and the least 

efficient last. This is to exploit the many early exits in the algorithm, so that the more 

inefficient evaluations are less likely to be executed. Generally, the visibility constraint 

( )P,Vc3  is the most expensive to evaluate, thus it should be placed at the end. 

The procedure EvaluateView() in Figure 4.1 evaluates a feasible viewcell with 

respect to only one patch. To complete the view planning step in the model acquisition cycle, 

all feasible viewcells in the initial feasible view octree have to be evaluated with respect to 

all patches in the partial model. We recall that the time for the view planning step may be 

limited, and in this case one would want to evaluate the views with respect to the most 

important patches. In Section 3.7, the patches are ranked based on their importance values. 

When execution time is limited, all initial feasible viewcells are evaluated with the most 

important patches until the allotted time expires. 

When the entire view evaluation is completed or when the allotted time has expired, 

some of the initial feasible viewcells will have descendent viewcells created by subdivisions. 

Each viewcell V has a score that is the accumulated value of ( )P,Vg  over all the patches and 

sub-patches P that have been successfully evaluated with V. In the above implementation, a 

viewcell’s score is not propagated down to its children. Since each child viewcell contains 

part of the view volume of its parent viewcell, the scores in the children should include the 

parent’s score. Therefore, the score of each viewcell should be updated by adding the scores 

of its ancestors. The updates are done after all patches have been evaluated with the views, or 

after the allotted time has expired. Figure 4.4 illustrates how the scores are propagated and 

updated. 



 83

 

 
Figure 4.4: After the entire view evaluation is completed or after the allotted time has expired, 
the score of each viewcell is updated by adding the scores of its ancestors. 

All the feasible viewcells that are leaf nodes in the resulted feasible view octree are 

collected into the candidate viewcell set. The center of each candidate viewcell is one of the 

candidate views that will be considered for the next best view. These candidate views are 

sorted in decreasing order on their updated scores. If the scores of all candidate views are 

below a specified threshold value, the view planning system will suggest the termination of 

the acquisition process.  

In the next step of the next-best-view algorithm, the candidate views are checked for the 

registration constraint. Starting from the highest-score candidate view to the lowest, the 

registration constraint is checked to determine whether it is satisfied by each view. A view is 

checked for the registration constraint only if it is at least a specified distance away from all 

the previously-checked views, otherwise it is skipped. This is because views with similar 

scores tend to cluster near each other and they usually have similar registration accuracies too. 

The first view found to satisfy the constraint is output as the next best view. 

There is one inefficiency in the procedure EvaluateView() listed in Figure 4.1. The 

procedure accepts only feasible viewcells. However, many of the initial feasible viewcells in 

the feasible view octree may already be very small when the octree is created. It is very 

inefficient to call EvaluateView() with a large number of small viewcells, and evaluate 

the constraints and sampling quality on them. An improvement to this is to allow 

EvaluateView() to also accept partially feasible viewcells as input. Each partially 

feasible viewcell has some descendent viewcells that are feasible. The constraints and 

. . . 

. . . 
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. . . 
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sampling quality evaluations are applied to a partially feasible viewcell as if it were a feasible 

viewcell. After that, a partially feasible viewcell will always be subdivided, and its non-

feasible sub-viewcells will be ignored, but the other sub-viewcells will be passed to 

EvaluateView() for evaluation.  

An issue not yet addressed by the above view evaluation algorithm is the effects on the 

views’ scores caused by the potential scanner’s physical pose errors. The hierarchical 

algorithm can be slightly modified to take into consideration these effects, and a simple 

solution is proposed in Section 4.1.4. 

4.1.3  Constraint and Sampling Density Evaluations 

This section describes the implementation of EvaluateConstraint() and 

EvaluateSamplingDensity() to evaluate ( )P,Vci  and ( )P,Vs , respectively. The 

success of the hierarchical view evaluation depends on how efficiently they can be evaluated.  

In actual fact, EvaluateConstraint(i,V,P) need not evaluate ( )P,Vci  precisely, 

in the sense that when EvaluateConstraint(i,V,P) returns 1 or 0, it implies that 

( ) 1=P,Vci  or ( ) 0=P,Vci , respectively, but the inverse implication may not be true. When 

( ) 1=P,Vci  or ( ) 0=P,Vci , EvaluateConstraint(i,V,P) may return undefined. 

This is preferred when it is expensive to precisely determine whether ( ) 1=P,Vci  or 

( ) 0=P,Vci . By returning undefined, the precise evaluation of the constraint is left to the 

sub-patches of P or the sub-viewcells of V, and because of their smaller sizes, they are more 

likely to belong to one of the easy cases. Of course, when ( )P,Vci  is undefined, 

EvaluateConstraint(i,V,P) must return undefined. 

For the same purpose, EvaluateSamplingDensity(V,P,&sMin,&sMax) need 

not return the precise minimum and maximum new scan sampling densities between V and P. 

It is allowed to underestimate the minimum new scan sampling density and overestimate the 

maximum new scan sampling density. 

The following sections describe the algorithms. There are certainly some other efficient 

ways to accomplish these operations. When V is indivisible or P is indivisible, where they are 

treated as points, the algorithms are generally trivial, so they are not described here. 



 85

4.1.3.1  Maximum-Range Constraint 

Let the maximum effective range of the range sensor be maxR . When ( ) 10 =P,Vc , the 

distance between any point in patch P and any view in V is equal to or less than maxR . To 

determine this, four spheres of radius maxR  are centered at the four corners of the patch’s 

bounding rectangle. If the entire viewcell V is inside all the four spheres, then 

EvaluateConstraint(0,V,P) returns 1. The viewcell can be approximated with a 

bounding sphere to speed up the computation a little, but the result is less precise. If the 

viewcell (or its bounding sphere) intersects or is inside some but not all the four spheres, 

undefined is returned. 

When ( ) 00 =P,Vc , the distance between any point in patch P and any view in V is 

greater than maxR . This can be determined as follows. Let C be the convex hull of the four 

spheres of radius maxR  that are centered at the four corners of the patch’s bounding rectangle. 

The convex hull is shown in Figure 4.5. If the viewcell is entirely outside the convex hull C, 

then ( ) 00 =P,Vc . By approximating the viewcell with a sphere, it is not hard to efficiently 

determine whether the sphere is outside the convex hull. In the extreme, one can even 

approximate the convex hull C with a bounding box. When the viewcell (or its bounding 

sphere) has been determined to be outside the convex hull, 

EvaluateConstraint(0,V,P) returns 0. 

For all other cases, EvaluateConstraint(0,V,P) returns undefined to indicate 

that the actual value of ( )P,Vc0  is still uncertain, or that the constraint is satisfied by only 

some, but not all, pairs of views and patch points. 
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Figure 4.5: The convex hull of the four spheres of radius maxR  that are centered at the four 
corners of the patch’s bounding rectangle. The red rectangle is the patch’s bounding 
rectangle. 

4.1.3.2  Vertical-Field-of-View Constraint 

The scanner used in the specific view planning problem has a 360° horizontal field of 

view, but the vertical field of view is limited, as shown in Figure 4.6. To determine whether a 

surface point is within the vertical field of view, we compute the angle between the y-axis 

(vertical axis) and the vector from the view position to the surface point. If the angle is less 

than topθ  or more than (180°− botθ ), then the surface point is outside the vertical field of view. 

When ( ) 01 =P,Vc , every point in patch P is outside the field of view of every view in V. 

Figure 4.7 illustrates a method to determine whether ( ) 01 =P,Vc . If the directions of all the 

four directed lines in Figure 4.7(a) are in the bottom outside region of the vertical field of 

view, then EvaluateConstraint(1,V,P) returns 0. Similarly, in Figure 4.7(b), if the 

directions of all the four directed lines are in the top outside region, 

EvaluateConstraint(1,V,P) also returns 0. If some of these directed lines are inside 

and some are outside the vertical field of view, then EvaluateConstraint(1,V,P) 

returns undefined. 

convex hull C 

patch’s 
bounding 
rectangle 
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Figure 4.6: The vertical field of view of the scanner. If the direction from the view position to 
a surface point is in the “inside” region, then the surface point is in the field of view of the 
scanner at the view position. 

 

 
Figure 4.7: (a) The four directed lines are tangent to the sphere and point at the four corners 
of the patch’s bounding rectangle. Each directed line touches the sphere at the lowest point 
where it is still tangent to the sphere. If the angles between the y-axis and all the directed 
lines are larger than 180°− botθ , then the patch is entirely in the bottom outside region of the 
vertical field of view of the viewcell. (b) Each of the four directed lines touches the sphere at 
the highest point where it is still tangent to the sphere. If the angles between the y-axis and all 
the directed lines are less than topθ , then the patch is entirely in the top outside region of the 
vertical field of view of the viewcell. 
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To determine whether ( ) 11 =P,Vc , one can use the method illustrated in Figure 4.8. If all 

the four corners of the patch’s bounding rectangle are on the positive sides (the side where 

the normal vector is pointing) of both planes A and B, then the patch is entirely inside the 

vertical field of view of every view in the viewcell and the value to be returned by 

EvaluateConstraint(1,V,P) is 1. Otherwise, EvaluateConstraint(1,V,P) 

returns undefined. 

 

 
Figure 4.8: Determining whether a patch is entirely inside the vertical field of view of every 
view in the viewcell. Planes A and B are both tangent to the bounding sphere of the viewcell. 
The planes’ normal vectors nA and nB are coplanar with the normal vector nP of the patch. If 
all the four corners of the patch’s bounding rectangle are on the positive side (the side where 
the normal vector is pointing) of both planes A and B, then the patch is entirely inside the 
vertical field of view of every view in the viewcell. 

4.1.3.3  Angle-of-Incidence Constraint 

The angle of incidence, φ, of a surface point p from a view position v is the angle 

between the surface normal vector at p and the direction vector from p to v. If this angle is 

greater than a threshold angle maxφ , then ( ) 02 =p,vc , otherwise ( ) 12 =p,vc .  

To determine whether ( ) 12 =P,Vc , four open-ended cones are set up at the four corners 

of the patch’s bounding rectangle as shown in Figure 4.9. The base of each cone extends 

infinitely in the direction of the patch’s normal vector, and the half angle at the apex of each 

cone is maxφ . If the viewcell V (or its bounding sphere) is entirely inside all four cones, then 
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( ) 12 =P,Vc , and EvaluateConstraint(2,V,P) returns 1. If the viewcell intersects or 

is inside some but not all four cones, then EvaluateConstraint(2,V,P) returns 

undefined. 

To determine whether ( ) 02 =P,Vc , the viewcell V (or its bounding sphere) must be 

entirely outside the open-ended convex hull that encloses all the four cones in Figure 4.9. In 

this case, EvaluateConstraint(2,V,P) returns 0, otherwise it returns undefined. 

 

 
Figure 4.9: The four open-ended cones set up at the four corners of the patch’s bounding 
rectangle. The base of each cone extends infinitely in the direction of the patch’s normal 
vector, and the half angle at the apex of each cone is maxφ . nP is the normal vector of the 
patch. 

4.1.3.4  Visibility Constraint 

Visibility between the scanner viewpoint and each surface point seems to be the most 

important, and sometimes the only, sensing constraint that is evaluated in almost all existing 

next-best-view algorithms. Here, we are testing the visibility between a viewcell and a 

rectangle-bounded patch.  

When ( ) 13 =P,Vc , it implies that every point in the viewcell can see every point on the 

patch without obstruction, i.e. the viewcell and the patch are totally visible to each other. To 

determine that, one has to ensure that there is no occluder in the shaft [Haines1994] between 

the viewcell and the patch, which is the 3D volume occupied by the line segments connecting 

every point in the viewcell to every point on the patch. A 2D analogy of the shaft between a 

viewcell and a patch’s bounding rectangle is shown in Figure 4.10.  
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To determine ( ) 13 =P,Vc , bounding planes are constructed to enclose the shaft between 

the viewcell and the patch’s bounding rectangle. For efficiency, one can reduce the number 

of bounding planes needed by enclosing an approximation volume larger than the exact shaft. 

The surface and solid-space voxels in the partial octree model are then tested, in a top-down 

traversal manner, against all the bounding planes to find out if any of the voxels is inside or 

intersects the volume bounded by the bounding planes. The optimizations used in 

hierarchical view frustum culling [Assarsson2000] are applied to test the voxels against the 

bounded volume. 

If no surface and solid-space voxel is found to be inside or intersect the bounded volume, 

EvaluateConstraint(3,V,P) returns 1 to indicate total visibility between the 

viewcell and the patch. 

 

 
Figure 4.10: Bounding planes are constructed to enclose the shaft between the viewcell and 
the patch’s bounding rectangle. 

When ( ) 03 =P,Vc , the viewcell and the patch are totally invisible to, or totally occluded 

from, each other. Determining total invisibility or total occlusion between two extended 

objects is a difficult problem because the total occlusion may be caused by multiple 

occluders that are not connected to each other [Cohen-Or2003]. This is made worse in the 

case when there are many individual small occluders. In computer graphics, most of the 

methods that deal with visibility between extended objects are for occlusion culling in 

interactive walkthrough [Cohen-Or2003], for computing shadows and for global illumination 

computation [Teller1993, Durand1999]. These methods are mostly used in preprocessing 
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stages and are usually very computationally expensive, and many cannot sufficiently 

combine the occlusion of individual small occluders to quickly determine total occlusion. 

In my case, many small voxels of the partial octree model may appear in the shaft 

between V and P. If it can be determined that, within the shaft, there is no path, straight or 

non-straight, between some point in the viewcell and some point on the patch, then one can 

conclude that V and P are totally occluded from each other. Of course, the inverse 

implication is not true because even if a path exists, V and P may still be totally occluded. 

This is fine for the function EvaluateConstraint(3,V,P) because it is allowed to 

return undefined even if V and P are actually totally occluded. The method of finding a path 

seems very suitable for indoor environments where there are large walls and partitions, and it 

will be able to correctly detect total occlusion when V and P are on opposite sides of some 

large wall or in different rooms. This can avoid many unnecessary subdivisions of the 

viewcells or the patches due to the inability to detect total occlusion early. 

However, finding a path from V to P takes time quadratic to the number of voxels in the 

shaft [O’Rourke1998]. When a large shaft is obstructed or almost obstructed, there will be a 

large number of voxels in it, and it will take a long time to determine whether a path exists. 

In the absence of an efficient algorithm, I have chosen to use a probabilistic approach to 

estimate total occlusion between a viewcell and a patch. The method is illustrated in Figure 

4.11. On the viewcell’s bounding sphere, the great circle parallel to the patch is first 

identified. Then, an equal number of random points is generated in each quadrant of the disc 

bounded by the great circle, and in each quadrant of the patch’s bounding rectangle. Rays are 

shot from the random points on the disc to the points on the patch’s bounding rectangle. In 

the implementation, 16 random rays are generated in this way. If all the random rays are 

occluded, then it is estimated that the patch is totally occluded from the viewcell, and 

EvaluateConstraint(3,V,P) returns 0. Otherwise, it is assumed that the patch is 

partially visible from the viewcell, and EvaluateConstraint(3,V,P) returns 

undefined. The hierarchical structure of the partial octree model is exploited to accelerate the 

determination of whether a ray intersects any non-empty-space voxels [Foley1992]. 
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Figure 4.11: Generating random rays from the viewcell’s bounding sphere to the patch’s 
bounding rectangle to estimate total occlusion. 

There is no ill-effect when total occlusion is erroneously declared as partial visibility, 

except that it may cause an unnecessary subdivision of the viewcell or the patch. On the other 

hand, it may be undesirable when partial visibility is erroneously declared as total occlusion, 

since the patch will be disregarded even though it may increase the score of the viewcell. If 

the occluders between the viewcell and the patch are few and small, then this method is less 

likely to make a mistake. The most difficult case is when the viewcell and the patch are 

almost, but not totally, occluded. An example is when the viewcell and the patch are on 

opposite sides of a large wall that has a very small window. Most likely, the method will 

declare total occlusion for this case. However, since the method is probabilistic, the chance 

that the patch will not be “missed” by the same viewcell is relatively higher if many model 

acquisition cycles are considered instead of just one. 

4.1.3.5  New Scan Sampling Densities 

The function EvaluateSamplingDensity(V,P,&sMin,&sMax) outputs the 

minimum and the maximum new scan sampling densities between V and P. First, I define the 

new scan sampling density between a view position v and a surface point p. Let α be the one-

dimensional angle interval between two successive samples acquired by the range scanner, 

and r be the distance from the view position v to the surface point p. Figure 4.12(a) shows a 

case where the angle of incidence from the view position to the surface point is 0. In this case, 

( ) rl 22tan 1=α , where 1l  is the distance between two consecutive samples around p. Since 

α is very small, ( ) 22tan αα ≈ . Then, rlrl αα ≈⇒≈ 11 22 . The one-dimensional 

sampling density around point p is rld α11 1 ≈= . 
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Figure 4.12: α is the one-dimensional angle interval between two successive samples 
acquired by the range scanner, and r is the distance from the view position v to the surface 
point p. In (b), φ is the angle of incidence from v to p. 

In Figure 4.12(b), the angle of incidence is φ, and 2l  can be approximated as 

φαφ coscos12 rll ≈≈ . Therefore, in general, the one-dimensional sampling density around 

point p is 

 
rl

d
α
φcos1

2
≈= . (4.7) 

The 2D new scan surface sampling density at p is approximated by  

 ( )
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2 cos


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

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r
dp,vs

α
φ . (4.8) 

When the values of α and d are fixed, the locus of the view position is the surface of a 

sphere with radius 1/(2αd), and the sphere touches p as shown in Figure 4.13. All points 

inside the sphere have one-dimensional sampling densities greater than d, and points outside 

have one-dimensional sampling densities less than d. This sphere is referred to as the 

sampling density sphere of p. 
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Figure 4.13: The sampling density sphere of p. The sphere has radius 1/(2αd), and its surface 
is the set of view positions where the one-dimensional sampling density at p is always d. The 
set of view positions inside the sphere has one-dimensional sampling densities greater than d. 

To compute the minimum sampling density from the viewcell V to the patch P, for each 

patch point, the smallest sampling density sphere is constructed to entirely enclose the 

viewcell. Let S be the largest of these smallest sampling density spheres, and let its radius be 

R. The one-dimensional sampling density represented by S is therefore 1/(2αR), and the 

minimum 2D sampling density from the viewcell V to the patch P is 1/(2αR)2. 

Since the function EvaluateSamplingDensity() is allowed to under-estimate the 

minimum sampling density, it is sufficient to construct, for each corner of the patch’s 

bounding rectangle, the smallest sampling density sphere that encloses the viewcell, and let S 

be the largest of the four spheres. The minimum 2D sampling density from the viewcell V to 

the patch P is estimated as 1/(2αR)2, where R is the radius of S. The viewcell may be 

approximated by a bounding sphere to reduce computation. 

Using the same idea, to compute the maximum sampling density from the viewcell V to 

the patch P, for each patch point, the largest sampling density sphere is constructed such that 

it touches a point of the viewcell but does not enclose the viewcell. Let S be the smallest of 

these largest sampling density spheres, and let its radius be R. The one-dimensional sampling 

density represented by S is therefore 1/(2αR), and the maximum 2D sampling density from 

the viewcell V to the patch P is 1/(2αR)2. 
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The function EvaluateSamplingDensity() is allowed to over-estimate the 

maximum sampling density. Let p be the point on the patch’s bounding rectangle that is 

closest to the viewcell’s bounding sphere. Then, let S be the largest sampling density sphere 

of p that touches a point of the viewcell’s bounding sphere but does not enclose the bounding 

sphere. The maximum 2D sampling density from the viewcell V to the patch P is estimated 

as 1/(2αR)2, where R is the radius of S. 

4.1.4  View Sensitivity to Pose Errors 

When the scanner is being positioned at a planned view, there may be pose error. Some 

views are very sensitive to pose errors, in that the view scores in the neighborhood of such a 

view varies greatly. The problem with using a sensitive view as the planned view is that 

many surfaces expected to be acquired at the planned pose may not be acquired at the actual 

pose. 

Pose error sensitivity can be easily incorporated into the hierarchical view evaluation 

algorithm. When evaluating a constraint or the new scan sampling density between a 

viewcell and a patch, the viewcell is first enlarged by the expected or maximum pose error in 

each of its dimensions. The effect of this is a lower viewcell score that accounts for only the 

surface points that can be acquired by every view within the pose error bound of the views in 

the original viewcell. A surface point that can be acquired by some but not all views in the 

enlarged viewcell will not be included in the score. 

4.2  Results 

This section presents some example results of the hierarchical view evaluation algorithm 

described in the previous section. The results are compared to those of the straightforward 

view evaluation method. In a straightforward method, when the feasible view volumes are 

evaluated with a patch, all the feasible viewcells and the patch are first subdivided to their 

highest resolutions, and then every smallest viewcell is evaluated with every smallest patch 

element. Table 4.1 shows some of the parameter values used in the examples. The results 
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were obtained on a laptop computer with an Intel Pentium 4-M 1.6GHz CPU, and 768 MB of 

DDR RAM. 

 
Parameter Value 

Scanner angular sampling density, 1/α 5 samples/degree 

Surface sampling density requirement, D 20 samples/inch2 

Scanner maximum range, maxR  600 inches = 50 feet 

Angle-of-incidence threshold, maxφ  70° 

Surface voxel width 2 inches 

Smallest viewcell width 4 inches 

Smallest patch element length ≤ 4 inches 

Table 4.1: Some parameter values used in the experiment. 

The scene is a synthetic midsize living room, represented as a polygonal model. Figure 

4.14(a) shows the triangle mesh created from the first range scan. The image shows the 

scanner position where the scan is made and shows all the false surfaces. The ceiling of the 

room is not shown. Figure 4.14(b) shows the feasible view volumes and the true surface 

voxels in the partial scene model. The feasible view volumes are made up of viewcells of 

different sizes. There are 8,481 initial viewcells, and the total volume is equivalent to 28,802 

smallest viewcells (each is 4 inches wide).  
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Figure 4.14: (a) The triangle mesh created from the first range scan of a living room. The 
scanner position is shown at the origin of the axes. Occlusion surfaces are shown in red, hole-
boundary surfaces in blue, and image-boundary surfaces in green. The ceiling of the room is 
not shown. (b) The octree partial scene model is shown with the feasible view volumes 
(cyan). The feasible view volumes are made up of viewcells of different sizes. There are 
8,481 initial viewcells, and the total volume is equivalent to 28,802 smallest viewcells (each 
is 4 inches wide). 

The under-sampled surface voxels in the octree scene model are then grouped into 971 

planar patches, each no larger than 10 feet × 10 feet. One of the occlusion surface patches is 

shown in Figure 4.15(a) in magenta color. The patch has 1020 smallest elements. This patch 

is then evaluated with the feasible view volumes. Figure 4.15(a) and (b) show the result when 

the straightforward and the hierarchical view evaluation methods are used, respectively. The 

best 500 candidate viewcells are shown. The three axes originate from the highest-score 

viewcell. The results appear to be almost identical, but the computation time of the 

straightforward method is more than 20 times that of the hierarchical method. In the 

hierarchical method, the user-specified relative representative error bound of ( )P,Vs  is 

%s 25=ε . 

Figure 4.16 shows the accumulated results when a second patch is evaluated with the 

feasible view volumes. This patch has 1023 smallest elements. Again, the best 500 candidate 

viewcells are shown. The results appear identical, but the difference in the computation times 

is large.  

(a) (b) 
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Figure 4.15: The results of evaluating the patch with the feasible view volumes. The best 500 
candidate viewcells are shown. The three axes originate from the highest-score viewcell. 

 

 
Figure 4.16: The accumulated results of evaluating another patch with the feasible view 
volumes. The best 500 candidate viewcells are shown. 

In the next experiment, the hierarchical view evaluation method is run with different 

relative representative error bounds, sε , on the new scan sampling density evaluations. The 

tests are on the patch shown in Figure 4.15. The hierarchical method is run using %s 50=ε , 

%s 25=ε ,and %s 5=ε . The resulting viewcells’ scores are compared to those computed by 

the straightforward method, and the relative errors in their scores are shown in Figure 4.17. 

hierarchical method 
17.8 seconds 

straightforward method 
262.4 seconds 

(a) (b) 

straightforward method 
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(a) (b) 

hierarchical method 
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In the graphs, there appears to be some anomaly in the score relative errors for %s 25=ε , 

and %s 5=ε , where some relative errors are not bounded by sε . Actually, this is not 

unexpected because sε  is only a bound on the relative error of ( )P,Vs , not on 

( )( ) ( )( )PqD,P,Vs, −  min  0max . The main source of the large score relative errors is the 

“cut-off” effect of the min function. Despite this anomaly, the majority of the score relative 

errors are within their respective bounds.  

Table 4.2 shows the computation times when the patch shown in Figure 4.15 is evaluated 

with different values of sε . The higher the value of sε , the shorter the computation time. 

This demonstrates the ability of the hierarchical method to trade-off between computational 

accuracy and speed. 

 

 
Figure 4.17: The relative errors of the viewcells’ scores when they are evaluated with relative 
representative error bounds of %s 50=ε , %s 25=ε  and %s 5=ε  on ( )P,Vs . 
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 %s 5=ε  %s 25=ε  %s 50=ε  

Computation time 14.8 sec 11.9 sec 10.4 sec 

Number of sampling  
density evaluations 18,260,821 7,562,709 2,765,184 

Table 4.2: The effects of using different values of sε  to bound the relative representative 
error of ( )P,Vs . 

4.3  Generalization  

The hierarchical approach for view evaluation is not only applicable to views of 3D 

translational poses. With the same approach as for the case of 3D translational pose, it can be 

generalized to views with general 6D poses. In practice, a range scanner is seldom rolled or 

rotated about the axis that goes through the viewpoint and the center of the field of view. 

Therefore, the most general pose in practice is 5D: a 3D translation of the viewpoint, a 

horizontal pan and a vertical tilt. 

In this section, I first present how the hierarchical approach can be applied to two 

example view planning problems. In the first problem, the views are 2D poses located on a 

sphere, and in the second, the views are 3D poses, each consisting of a 2D horizontal 

translation and a rotation about the vertical axis. Next, the view metric and the corresponding 

view evaluation algorithm are generalized for views with general poses. The generalization 

provides a framework to formulate and implement practical solutions for greedy next-best-

view planning. I also describe how the hierarchical approach can be extended to bistatic 

range sensors and discuss the issues and possible difficulties that may arise. 

4.3.1  Example View Planning Problems 

4.3.1.1  2D Pose on a Sphere 

In the previous next-best-view planning algorithms for range acquisition of objects, many 

researchers have greatly simplified their problems by assuming that (1) the scanner is 
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monostatic, (2) the scanner’s viewpoint is always located on a sphere (called the view sphere 

or viewing sphere), and (3) the object to be scanned is placed approximately at the center of 

the sphere and the scanner is always directed towards the center [Connolly1985, García1998, 

Banta1995, Massios1998, Reed1997]. Figure 4.18 shows such a setup. By fixing the roll of 

the scanner and other scanning parameters, each view of the scanner is basically a 2D pose. 

In the previous work, to find the best view for the next scan, the sphere is uniformly 

discretized into discrete views, which are then exhaustively evaluated according to some 

view metric. The most popular sphere discretization is to recursively subdivide the faces of a 

regular icosahedron. A regular icosahedron is a polyhedron made up of 20 faces that are 

equilateral triangles. Each level of subdivision of the triangles replaces each triangle with 

four smaller ones. 

 

 
Figure 4.18: The commonly-assumed setup to scan an object. The viewpoint of the scanner is 
assumed to be on a view sphere and the scanner’s field of view is always centered at the 
center of the sphere.  

This 2D view planning problem is a good candidate for applying the hierarchical 

approach. Each triangle on the regular icosahedron represents a viewcell. Each viewcell is 

actually not the triangle, but the “triangular” portion of the sphere (I refer to it as the “curved 

triangle”) approximated by the triangle. The subdivision of the triangle provides a means to 

subdivide the curved triangle. There may be many sensing constraints that need to be tested 

for each view, and here I describe only the visibility constraint evaluation and the sampling 

density estimation.  

view sphere 

scanner 

object 
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To determine total visibility between a viewcell and a patch, a bounding volume is 

constructed to enclose the shaft between the patch’s bounding rectangle and the viewcell. If 

the object being scanned is much smaller than the view sphere, then the patch will be small 

and very close to the view sphere’s center, and the triangle can be used as an approximation 

of the corresponding curved triangle when constructing the shaft. The rest of the procedure to 

test for total visibility and total occlusion is similar to that described in Section 4.1.3.4. 

To determine the minimum and maximum new scan sampling densities between a 

viewcell and a patch, one can use methods similar to those in Section 4.1.3.5. For minimum 

sampling density, for each corner of the patch’s bounding rectangle, the smallest sampling 

density sphere is set up to enclose the triangle. Only the three vertices of the triangle need to 

be tested to find each smallest sampling density sphere. The largest of the four sampling 

density spheres represents the minimum sampling density. To determine the maximum 

sampling density, one needs to find the smallest sampling density sphere that touches the 

triangle. This will be an over-estimate of the actual maximum sampling density when the 

curved triangle is used instead, and therefore is acceptable. 

4.3.1.2  2D Translation and 1D Rotation 

In this problem instance, the scanner has fixed and limited vertical and horizontal fields 

of view. The scanner’s viewpoint is fixed at a specified height above the floor, and therefore 

the y-coordinate of the scanner’s position is fixed. The scanner can be oriented by rotating 

about the vertical axis. The pose of each view is 3D. The first two dimensions are the (x, z) 

coordinates of the scanner’s viewpoint, and the third dimension represents ω, the horizontal 

direction in which the scanner is pointed. 

Before view evaluations, the positioning constraints are tested for each view to determine 

if it is feasible. Whether a view is feasible depends only on its (x, z) coordinates, not its 

horizontal direction ω. The result is a set of feasible view volumes. 

Each viewcell is a 3D cuboid in its parameter space. When evaluating a viewcell with a 

patch, not all sensing constraints are affected by all three parameters of the views. For 

example, the maximum-range constraint, the vertical-field-of-view constraint, the angle-of-

incidence constraint, and the visibility constraint are affected only by the (x, z) coordinates, 
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and not by the viewing direction ω. Even the new scan sampling densities are affected by (x, 

z) but not ω. In this example, only the horizontal-field-of-view constraint is affected by all (x, 

z) and ω.  

Besides the horizontal-field-of-view constraint, all the other sensing constraints and the 

new scan sampling densities between a viewcell and a patch can be evaluated similarly as in 

Section 4.1.3. For the horizontal-field-of-view constraint, the function 

EvaluateConstraint() returns 1 when the patch is entirely inside all horizontal fields 

of view represented in the viewcell, and returns 0 when the patch is entirely outside every 

horizontal field of view in the viewcell. Otherwise, EvaluateConstraint() returns 

undefined. 

It can be seen that it is not necessary to subdivide in all three dimensions when a viewcell 

is subdivided. For example, if the visibility constraint is the only one causing the viewcell 

subdivision, it is more efficient to subdivide only in the x and z dimensions. On the other 

hand, if the horizontal-field-of-view constraint is the only one causing the viewcell 

subdivision, one may choose to subdivide only in the ω dimension or to subdivide in all three 

dimensions. Furthermore, ω is of a different entity type from x and z, and the desired 

subdivision resolution for it may be different from those of x and z. Therefore, it may be 

possible that the viewcell cannot be subdivided in all three dimensions because ω has 

reached its highest resolution but x and z have not. 

For the above reasons, the data structure of the viewcell hierarchy must be improved to 

support the subdivision in only a subset of dimensions. A possible solution is to let each non-

leaf viewcell to have one, two, or all three of the following groups of children: 

(7) Group 1: 4 children; produced by subdivision in the x and z dimensions. 

(8) Group 2: 2 children; produced by subdivision in the ω dimension. 

(9) Group 3: 8 children; produced by subdivision in the x, z and ω dimensions. 

During view evaluation, each of the three groups is independently evaluated. However, after 

all the evaluations, the scores in all three subtrees must be combined, and propagated down 

from the highest level to the leaves. Although this approach can be more efficient for 

viewcell evaluation, the memory requirement is higher. 
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Heuristics are also needed to decide whether to subdivide the viewcell or the patch. For 

example, when EvaluateConstraint() returns undefined for the horizontal-field-of-

view constraint, and if the patch can fit entirely inside some horizontal field of view in the set 

represented by the viewcell, then the viewcell may be chosen to be subdivided, otherwise the 

patch is chosen. 

4.3.2  Generalized Hierarchical View Evaluation 

The hierarchical view evaluation can be applied to the following generalized integral part 

of the view metric function: 

 ( ) ( ) ( ) ( ) ( ) dpp,vfp,vfp,vcp,vcvg
Sp

MK    
 

1010∫
∈

−− ⋅= LL  (4.9) 

where each ( )p,vci  is a binary function indicating whether a sensing constraint is satisfied, 

and each ( )p,vfi  is a continuous-value function. Of course, ( )p,vc0  to ( )p,vcK 1−  can be 

combined into one binary function ( )p,vc . However, as explained in Section 4.1.2, 

evaluating the constraints separately has the benefit that when one individual constraint is 

already satisfied for a viewcell V and P, it does not need to be re-evaluated when V or P is 

subdivided. The same reasoning applies to ( )p,vf0  to ( )p,vfM 1− . The function ( )pw  that 

appears in the original view metric function in Equation (3.1) can be absorbed into one of the 

( )p,vfi .  

Similar to Equation (4.3), ( )P,Vg  is defined as 

 ( ) ( ) ( ) ( ) ( ) ( )PaP,VfP,VfP,VcP,VcP,Vg MK ⋅⋅= −− 1010 LL  (4.10) 

where ( ) 1=P,Vci  if ( ) 1=p,vci  for all Vv∈  and Pp∈ , or ( ) 0=P,Vci  if ( ) 0=p,vci  for 

all Vv∈  and Pp∈ , otherwise ( )P,Vci  is undefined; and each ( )P,Vfi  is a representative 

of all the values ( )p,vfi  between V and P. Let ( )P,Vf ,i min  and ( )P,Vf ,i max  be the minimum 

and maximum ( )p,vfi  between V and P, then ( )P,Vfi  is a value ranging from ( )P,Vf ,i min  
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to ( )P,Vf ,i max . To stop the subdivision of V or P, one has to make sure that the relative 

representative error of ( )P,Vfi  must be bounded by iε , that is 

 
( ) ( )

( ) i
,i

i,i

P,Vf
P,VfP,Vf

ε≤
−

max

max     and    
( ) ( )

( ) i
i

,ii

P,Vf
P,VfP,Vf

ε≤
− min . (4.11) 

The generalized view evaluation algorithm is shown in Figure 4.19. It is assumed that the 

input viewcell V is feasible. Each input Boolean element c_in[i] is true if ( )P,Vci  is 

already known to be 1, otherwise c_in[i] is false if ( )P,Vci  is unknown. The input 

Boolean argument f_uniform_in[i] is true if the relative representative error of 

( )P,Vfi  is known to be bounded by iε , otherwise f_uniform_in[i] is false. The 

input argument f_in[i] is ( )P,Vfi  if f_uniform_in[i] is true. Initially, the 

procedure EvaluateView() is called with all c_in[i]=false and 

f_uniform_in[i]=false. 

 
1 EvaluateView( Viewcell *V, Patch *P,  
2               bool c_in[K], bool f_uniform_in[M], float f_in[M] ) 
3 { 
4  bool c[K], f_uniform[M]; 
5  float f[M]; 
6  CopyArray( c, c_in, K ); 
7  CopyArray( f_uniform, f_uniform_in, M ); 
8  CopyArray( f, f_in, M ); 
9  
10  bool all_c = true; 
11  
12  for ( int i = 0; i < K; i++ ) 
13  { 
14   if ( !c[i] ) 
15   { 
16    int t = EvaluateConstraint( i, V, P ); 
17    if ( t == 0 ) return; 
18    if ( t == 1 ) c[i] = true; 
19   } 
20   all_c = ( all_c && c[i] ); 
21  } 
22  
23  bool all_f_uniform = true; 
24  float all_f = 1.0; 
25  
26  for ( int i = 0; i < M; i++ ) 
27  { 
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28   if ( !f_uniform[i] ) 
29   { 
30    float fMin, fMax; 
31    EvaluateFunction( i, V, P, &fMin, &fMax ); 
32    f[i] = Representative( fMin, fMax ); 
33    if ( RelativeError( f[i], fMin, fMax ) <= epsilon[i] ) 
34     f_uniform[i] = true; 
35   } 
36   all_f_uniform = ( all_f_uniform && f_uniform[i] ); 
37   all_f = all_f * f[i]; 
38  } 
39  
40  if ( all_c && all_f_uniform ) 
41  { 
42   V->score += all_f * a(P); 
43  } 
44  else if ( ToSubdividePatchFirst( V, P, c, f_uniform, f ) ) 
45  { 
46   SubdividePatch(P); 
47   for ( int i = 0; i < P->numChildren; i++ ) 
48    EvaluateView( V, P->child[i], c, f_uniform, f ); 
49  } 
50  else 
51  { 
52   SubdivideViewcell( V, c, f_uniform, f ); 
53   for ( int i = 0; i < V->numChildren; i++ ) 
54    EvaluateView( V->child[i], P, c, f_uniform, f ); 
55  } 
56 } 

Figure 4.19: A generalized procedure EvaluateView() to evaluate ( )P,Vg . 

The function EvaluateFunction(i,V,P,&fMin,&fMax) returns estimates of 

( )P,Vf ,i min  and ( )P,Vf ,i max  in fMin and fMax, respectively. The function 

Representative(fMin,fMax) returns a value between fMin and fMax, and 

RelativeError(f[i],fMin,fMax) returns the maximum relative representative 

error of f[i]. Now, the function ToSubdividePatchFirst() may need information 

about which constraints ( )P,Vci  have been satisfied and which functions ( )P,Vfi  have 

become uniformly-valued to decide to subdivide the viewcell or patch. As mentioned in the 

last section, it may not be necessary to subdivide the viewcell in all dimensions, so the 

function SubdivideViewcell() may need information about ( )P,Vci  and ( )P,Vfi  to 

make the decision.  
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The major difficulty in extending the hierarchical view evaluation algorithm to views 

with 5D poses may be the memory requirement. 

4.3.3  Extension to Bistatic Range Sensors 

The next-best-view problem and solution have been described with the assumption that 

the range sensor is monostatic, and each range image is made from a single viewpoint or 

center of projection. In this section, I attempt to extend the hierarchical view evaluation 

method to a bistatic range sensor. In a bistatic range sensor, the light source and the light 

detector are located at different positions, and this results in two separate “viewpoints”. The 

major difference of a bistatic sensor from a monostatic sensor is that a surface point must be 

visible to both viewpoints in order to be measured.  

An example, similar to that in Section 4.3.1.2, is used to describe the possible solution for 

the bistatic case. The triangulation-based scanner is assumed to have fixed and limited 

vertical and horizontal fields of view. The scanner’s position is fixed at a specified height 

above the floor, and therefore the y-coordinate of the scanner’s position is fixed. Here, the 

midpoint between the two viewpoints is arbitrarily chosen as the origin of the local 

coordinate frame of the scanner, and its (x, z) position in the global coordinate frame is the 

view position of the scanner. This is shown in Figure 4.20. The positions and orientations of 

the two viewpoints are fixed relative to the local coordinate frame of the scanner. The 

scanner can be oriented by rotating about the vertical axis, and its horizontal direction ω is 

measured from the x-axis. The pose of each view is 3D. The first two dimensions are the (x, z) 

coordinates of the scanner’s view position, and the third dimension represents ω, the 

horizontal direction in which the scanner is pointed. 
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Figure 4.20: Top view of a bistatic range scanner. The scanner consists of a light source and 
a camera located at different locations. The view position is assumed to be at the midpoint 
between the centers of projection of the light source and the camera.  

In this case, each 3D viewcell represents a square area of (x, z) view positions and the 

range of horizontal directions. To test the visibility constraint on a viewcell V and a patch P, 

one has to first find the set of all possible positions each viewpoint can have when the 

scanner is at the views inside the viewcell. Figure 4.21 shows a viewcell and the swept 

volumes of the two viewpoints induced by the views in the viewcell. In the example, each 

swept volume is a bounded area on a plane parallel to the x-z plane.  

Each swept volume is tested for visibility with the patch. If any swept volume is totally 

occluded from the patch, then the viewcell is declared totally occluded from the patch and 

can be skipped over for this patch. If both swept volumes are totally visible from the patch, 

then the viewcell is declared totally visible from the patch and no further visibility test is 

needed between the children of the viewcell and those of the patch. If any swept volume is 

partially visible from the patch, then the viewcell or the patch will have to be subdivided. The 

viewcell has to keep track of which swept volume is totally visible and which is partially 

visible, so that the totally visible one will not be tested again. It may not be necessary to 

compute the exact swept volume for each viewpoint. A simple bounding rectangle can be 

used as an approximation. 
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Figure 4.21: The swept volumes of the two viewpoints represented by the given viewcell. 

 

 
Figure 4.22: The swept volumes of the two viewpoints induced by (a) a sub-viewcell resulted 
from the subdivision in the x and z dimensions, (b) a sub-viewcell resulted from the 
subdivision in the ω dimension. 

The swept volumes induced by the sub-viewcells are subsets of their parent’s swept 

volumes. This is illustrated in Figure 4.22. It is a necessary property for the hierarchical view 

evaluation to work. In Figure 4.22(a), the original viewcell is subdivided in the x and z 

dimensions, and the red swept volumes are induced by one of the four sub-viewcells. In 

Figure 4.22(b), the subdivision is in the ω dimension, and the red swept volumes are induced 

by one of the two sub-viewcells. However, it is easy to observe from Figure 4.22 that the 
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swept volumes of different sub-viewcells are actually overlapping each other. This is an 

undesirable property, and although the hierarchical view evaluation can still work correctly, 

it can greatly reduce the performance of the algorithm because the overlapped parts of the 

swept volumes will be tested multiple times. 

Another inefficiency can be observed from Figure 4.21 and Figure 4.22. Some of the 

swept volumes are very elongated and even non-convex, and when such a swept volume is 

approximated with a simple shape, such as a bounding rectangle, the rectangle may be much 

larger than the actual swept volume. A heuristic to reduce the problem is to subdivide in the 

ω dimension when the swept volumes are too elongated. Another undesirable property is that 

the swept volumes of a viewcell can overlap with the swept volumes of another disjoint 

viewcell, thus incurring more duplicated computation. 

In the example problem given in Section 4.3.1.2, many sensing constraints are affected 

by only the x and z dimensions of the viewcell, and not by the horizontal pan direction. In the 

bistatic case, this is not true because the range of horizontal pan angles of the viewcell affects 

the size and shape of the swept volumes. It is between the swept volumes and the patch that 

the constraints are actually evaluated. Therefore, partial satisfaction of one of these sensing 

constraints may cause the viewcell to subdivide in the ω dimension too. 

The above inefficiencies with the swept volumes also appear in cases where the views are 

4D and 5D poses. It is interesting to note that, with the bistatic range scanner model in Figure 

4.20, the vertical tilt of the scanner does not have any effect on the swept volumes of the 

viewpoints. This is because the two viewpoints always stay in the same horizontal plane 

regardless of the tilt. However, the vertical-field-of-view constraint must still be evaluated by 

considering the range of vertical tilt angles represented in the viewcell, and the viewcell may 

need to be subdivided in the dimension of the vertical tilt angle.  

In terms of computational correctness, the hierarchical view evaluation approach can be 

applied to bistatic range scanners. However, it is not clear how the above undesirable 

properties may affect the performance improvement that can be gained from the hierarchical 

view evaluation approach. 
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4.4  Discussion and Related Work  

Exhaustive evaluation of all feasible views. The fact that the all the feasible views are 

exhaustively evaluated during the computation of every next best view implies that every 

surface point in the environment that is accessible to at least a feasible view will eventually 

be acquired. It also guarantees that in every scan, new information is expected to be acquired. 

This is also true when only a limited amount of time is allowed for the computation of each 

next best view, and only a subset of patches are evaluated. In randomized next-best-view 

algorithms [González-Baños1999, Nüchter2003], random trial views are generated, evaluated, 

and the best is chosen as the next best view. In contrast to my approach, if time is limited or 

the number of trial views is limited, the randomized methods cannot guarantee to find a view 

that is expected to acquire new information. This is also a problem in [Sanchiz1999], where a 

numerical optimization approach is used to search the neighborhood of the current view. If 

the objective function is “flat” in the neighborhood of the current view, then the method may 

not find a new view that is expected to add new information. 

Consideration of pose errors in solution. Section 4.1.4 describes how the hierarchical 

approach can be extended to take into account the effects on the views’ scores caused by the 

potential scanner’s physical pose errors. To my knowledge, this is the first next-best-view 

algorithm that directly incorporates scanner’s pose errors in the computation of new views. 

The work by Tarbox and Gottschlich [Tarbox1995] seems to be the only other one that has 

attempted to address the pose error issue, but in the context of a model-based view planning 

problem. Their method is very inefficient. The object’s surfaces and the view space are first 

discretized. For each surface element, the set of views that can measure the surface element 

is computed. For each set of views, morphological erosion is applied to remove views that 

are near the set boundaries. These removed views are considered not robust to pose 

variations. 

Trade-off between speed and accuracy. A nice property of the hierarchical view 

evaluation algorithm is that it provides a mechanism to trade-off between computation speed 

and accuracy. This can be done by adjusting the relative representative error bound, iε , of 

each ( )P,Vfi  in the generalized integral part of the view metric function in Equation (4.9). A 
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larger value of iε  favors accuracy over speed. However, the speedup may sometimes be 

insignificant, because even though the function ( )P,Vfi  is no longer evaluated as often, the 

sensing constraints ( )P,Vci  and other ( )P,Vfi  may still continue to cause subdivisions of 

the viewcells and patches.  

Improvement of total occlusion determination. One of the main problems with the 

current implementation of the hierarchical view evaluation algorithm is the use of the 

probabilistic method to determine total occlusions. If the viewcell and patch are actually 

partially visible, but are erroneously declared totally occluded, then evaluation of the 

viewcell and patch will be prematurely terminated. If the viewcell contains the only feasible 

views that can see the patch, then the patch will be totally missed by all views. 

A possible improvement is to segment the partial scene model into large polygons. These 

polygons are then used for checking total occlusion. For example, if one of the polygons 

blocks the entire shaft between the viewcell and the patch, then total occlusion is reported, 

otherwise the viewcell or patch is subdivided. Of course, this cannot detect all total 

occlusions. The initial polygons segmented from the partial scene model are usually complex. 

They may be concave, have holes, and have many vertices. To have efficient total occlusion 

tests, each polygon must be first simplified or replaced with a simple shape, such as a 

rectangle or a disc. The simple shape must be totally enclosed by the original polygon. Then, 

these simplified polygons must be spatially sorted so that the polygons that intersect a shaft 

can be quickly found. The main challenge of this method is an efficient design and 

implementation.  

This method may be more suitable for indoor environments that have many large flat 

walls and have multiple rooms or partitions.  

Indoor environments. One of the reasons that the hierarchical approach is implemented 

and tested on indoor environments is that indoor environments usually have large planar 

surfaces, such as walls, ceilings and floors. These result in large planar patches, which 

potentially allow better exploitation of spatial coherence by the hierarchical view evaluation 

algorithm.  
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4.4.1  Related Work 

The main idea of the proposed hierarchical view evaluation algorithm comes from the 

hierarchical radiosity algorithm [Hanrahan1991]. Hanrahan et al. introduced a hierarchical 

approach to rapidly compute the form factors between surface patches. Their algorithm can 

be generalized to evaluate pair-wise interactions between extended objects. The hierarchical 

approach was later applied by Stuerzlinger to a model-based view planning problem to 

compute a set of 3D camera positions to maximize the amount of surface area of a synthetic 

scene model that can be imaged by the cameras [Stuerzlinger1999]. The problem is highly 

simplified in that only the visibility constraint is considered and each camera is assumed to 

have a full spherical field of view.  

The main difference of this work from Stuerzlinger’s is the extension of the hierarchical 

approach to include many considerations, constraints and requirements to enable practical 

view planning for real-world range acquisition. Besides for 3D monostatic views, the idea is 

extended to views with other poses, and to bistatic views. A general view metric has been 

formulated and is accompanied by a generalized hierarchical view evaluation algorithm to 

provide a computation framework for greedy next-best-view solutions. The hierarchical 

algorithm has also been extended to take into consideration the effects of the scanner’s pose 

errors on the views’ scores. 

 



 

Chapter 5  
 

Surface Registration 

When the scanner is being positioned at the pose suggested by the view planner, errors in 

the positioning and pose measurement system may cause the actual pose to be different from 

the planned pose. As a result of this unknown pose error, the range scan acquired from the 

new scanner pose will be misaligned with the current partial scene model. In order to 

correctly merge the new scan into the partial scene model, they must first be registered or 

aligned with each other. The pose error is usually much worse than the range measurement 

errors and the sampling densities of the scanner. Therefore, by matching points in the range 

image with those in the partial scene model, one may be able to compute a good estimate of 

the correct pose to bring the range scan into alignment with the partial scene model. 

The purpose of the alignment is not only for the merging of the scan into the partial scene 

model. For autonomous range acquisition, where the scanner is mounted on a mobile robot, 

the registration is able to provide a much more accurate localization of the mobile robot, and 

greatly reduces the effect of accumulated drift in the robot’s motion. 

In Sections 5.1 and 5.2, I describe a commonly-used shape registration method, the 

iterative closest point (ICP) algorithm, and show how it is used in my view planning system 

to align a new scan to the scene model. 

However, registration of two surfaces is not guaranteed to be successful every time. 

Registration failures can occur for several reasons, for example,  

(1) when there is insufficient overlap between the two surfaces, 

(2) when there is insufficient shape constraint on the 3D rigid-body transformation 

between the two surfaces, 

(3) when the range measurement errors are too large, 
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(4) when the initial relative pose between the two surfaces is too large, and 

(5) when the “frequencies” of the surfaces are too high for the initial relative pose 

[Low2003]. 

Therefore, when planning a new view to make the next scan, the view planner must take 

the above factors into consideration, to ensure that the new range scan acquired from the 

planned view can be successfully registered with the current scene model to within a certain 

error tolerance. In Sections 5.3, I present a novel method that allows the view planner to 

analyze a candidate view for Factors (1), (2) and (3), so that the next scan will have a high 

probability of being registered successfully to within a specified error bound.  

Factors (4) and (5) are not considered here. They should not cause a problem for the 

application of view planning for indoor environments, since the initial pose errors are usually 

small in comparison to the size of the scene, and there are many large low-frequency surfaces, 

such as walls, floor and ceiling. The relationship between the ICP algorithm, the initial 

relative pose, and the “frequencies” of the surfaces is explored in [Low2003], which also 

proposes to address the issue of Factor (5) by smoothing the surfaces. 

5.1  The Iterative Closest Point (ICP) Algorithm 

Since its introduction by Besl and McKay [Besl1992], and by Chen and Medioni 

[Chen1992], the Iterative Closest Point (ICP) algorithm and its many variants have become 

the most widely-used approaches for aligning three-dimensional surfaces, especially for 

surfaces created from range images. Because there are many variants that do not use the 

closest corresponding points when matching points from the two surfaces, it has been 

suggested that “Iterative Corresponding Point” is a better term to describe the class of 

algorithms based on the original ICP algorithm [Rusinkiewicz2001]. A comprehensive 

survey of the many ICP variants can be found in [Rusinkiewicz2001]. 

For 3D surface registration, the inputs to the ICP algorithm are (1) a set of 3D points on 

the source surface, (2) a set of 3D points on the target surface, and (3) an initial guess of the 

3D rigid-body transformation to transform the source surface to align with the target. In 

many ICP variants, surface normals at the 3D points are also required. The initial guess of the 
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relative pose can be obtained by many different methods, such as from the scanner 

positioning and tracking devices, from user input, or from using one of the object recognition 

methods, such as those that use surface feature identification [Faugeras1986], spin-image-

based surface signatures [Johnson1997, Ruiz-Correa2001], the Hough transform 

[Stockman1982], or principal component analysis of the range images [Skočaj2001]. In the 

view planning system presented in this dissertation, the planned pose is used as the initial 

guess because of the fact that the actual pose will be close to the planned pose. 

The ICP algorithm iteratively refines the 3D rigid-body transformation by matching 

points on one surface to points on the other, and minimizes an error metric. This is repeated 

until a termination condition is reached, such as when the change in the result is small 

enough or until the number of iterations reaches a specified limit. More specifically, each 

iteration consists of the following steps:  

(1) select a subset of points on one or both surfaces; 

(2) match each point in the subset to a point on the other surface to form a point pair; 

(3) reject bad point pairs; 

(4) minimize an error metric formed by the accepted point pairs to obtain a 3D rigid-

body transformation; and 

(5) transform all points in the source surface by the 3D rigid-body transformation. 

Step (1) is not necessary if all the points are to be used. However, range images usually 

have a huge number of points, and it is too computationally expensive to use all of them. The 

most common methods to select the subset of points are uniform subsampling and random 

sampling of the range image. Points may be selected in only one or in both surfaces. 

In Step (2), the original ICP algorithm [Besl1992] matches each selected point with the 

closest point on the other surface. A k-d tree is often used to speed up the closest point search 

[Friedman1977]. Many other matching methods have been proposed, and some of them are 

compared in [Rusinkiewicz2001] to study their effects on the convergence rate of the ICP 

algorithm. 

The purpose of Step (3) is to eliminate outliers, which may have a large effect on the 

minimization result in Step (4) when a least-squares error metric is used. Many strategies 

have been used to reject point pairs. They include rejecting a point pair if the distance 

between them is more than a user-specified threshold, rejecting a point pair if their surface 
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normals are too different (the angle between the surface normals is greater than a threshold), 

and rejecting a point pair if any of the points is on a surface boundary [Turk1994]. When the 

closest-point matching is used in Step (2), the last rejection strategy is very useful for 

eliminating erroneous pairings at the boundaries of the surfaces. An example of such cases is 

shown in Figure 5.1. 

 

 
Figure 5.1: Elimination of erroneous pairings at the boundaries of surfaces. Points on the 
lower surface are matched with the closest points on the upper surface.  

In Step (4), an error function is formed using the remaining point pairs, and the goal of 

the minimization is to find the 3D rigid-body transformation that minimizes the error 

function. Two error metrics are commonly used. One is known as the point-to-point metric 

and the other the point-to-plane metric. Suppose T]1[ ,s,s,s z,iy,ix,ii =s  are the homogeneous 

coordinates of a selected point on the source surface, T]1[ ,t,t,t z,iy,ix,ii =t  are the 

homogeneous coordinates of its corresponding point on the target surface, 
T]0[ ,n,n,n z,iy,ix,ii =n  is the unit normal vector at it , and M is a 4×4 3D rigid-body 

transformation matrix, then the point-to-point error metric is  

 ( )∑ −⋅=−−
i

iiE 2
pointtopoint tsM  (5.1) 

and the point-to-plane metric is 

 ( )( )∑ ⋅−⋅=−−
i

iiiE 2
planetopoint ntsM . (5.2) 
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The goal of the minimization is to find the M that minimizes either pointtopoint −−E  or 

planetopoint −−E . For the point-to-point metric, the optimal M can be computed efficiently using 

the SVD method [Arun1987] or the unit quaternion method [Horn1987]. Unlike the point-to-

point metric, which has a closed-form solution, the point-to-plane metric is usually solved 

using standard nonlinear least-squares methods, such as the Levenberg-Marquardt method 

[Press1992]. Although the point-to-plane metric takes more time to solve, it has been 

observed to have significantly better convergence rates than the point-to-point metric 

[Rusinkiewicz2001, Pulli1999, Low2003]. A theoretical analysis of the convergence of the 

point-to-plane metric is described in [Pottmann2002]. 

Fortunately, when the relative orientation (rotation only) between the two input surfaces 

is small, one can approximate the nonlinear least-squares optimization problem with a linear 

one, and use linear optimization methods to compute the solution more quickly. This 

approximation is based on the substitution of sin θ by θ and cos θ by 1 in the rotation matrix 

[Rusinkiewicz2001]. Details of this approximation are found in [Low2004]. 

In light of the above, it is possible to achieve more efficient registration by using both 

metrics in the ICP algorithm. The point-to-point metric is used in the first few iterations of 

the ICP algorithm until the relative orientation between the two input surfaces is small 

enough. Then, the “linearized” point-to-plane metric is used in the subsequent iterations. In 

this way, one may be able to enjoy the efficiency and high convergence rates of the 

“linearized” point-to-plane metric without subjecting it to large relative orientation when the 

approximation errors of the “linearization” may be large. This hybrid approach is used in the 

view planning system described in this dissertation, and has been observed, in almost all 

cases, to converge significantly faster than using the point-to-point metric alone. The 

“linearized” point-to-plane metric has been very robust even when the relative orientation 

between the two input surfaces is fairly large, sometimes as large as 30°.  
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5.2  Surface Registration in the View Planner 

During range acquisition using views planned by the view planner, each new range scan, 

except the first one, is registered to the partial scene model as soon as it is available. This 

section describes the implementation of the surface registration used in the view planner. 

The inputs to the surface registration are 

(1) a triangle mesh constructed from the range image (the source surface), 

(2) the set of all true surface voxels in the octree partial scene model (the target surface), 

and 

(3) the current planned pose (the initial guess of the 3D rigid-body transformation). 

The triangle mesh is originally constructed with respect to the local coordinate frame of 

the scanner. Just before the first ICP iteration starts, it is transformed by the current planned 

pose into the coordinate frame of the partial scene model, and into rough alignment with the 

surfaces of the partial scene model.  

In the first step of an ICP iteration, the center of every true surface voxel is paired with 

the closest vertex on the triangle mesh. To accelerate the closest-point searches, a k-d tree is 

built for the vertices of the original triangle mesh. Note that the k-d tree need not be rebuilt 

every ICP iteration even though the triangle mesh is repeatedly being transformed. All we 

need to do is to transform the query point (a voxel center) into the original coordinate frame 

of the triangle mesh before making the closest-point search in the k-d tree.  

Next, some of the point pairs are rejected according to the following conditions. A pair is 

rejected  

(1) if the two points are more than a threshold distance apart (typically one to two feet),  

(2) if the angle between the surface normal vectors at the two points is larger than a 

threshold (typically 45°), or 

(3) if the vertex is on a boundary of the triangle mesh. 

For checking the third condition, each vertex of the triangle mesh has been assigned a 

flag during mesh creation to indicate whether it is on a mesh boundary. There can be three 

types of boundaries in a mesh: (1) hole boundaries, (2) depth boundaries, and (3) image 

boundaries. Hole boundaries are the result of holes or missing range samples in the range 

image, depth boundaries occur at depth discontinuities between adjacent samples, and image 
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boundaries occur at the boundaries of the range image. Figure 5.2 shows a simple example 

that includes all three types of boundaries. 

 

 
Figure 5.2: There are three types of boundaries in a triangle mesh created from a range image: 
(1) hole boundaries (blue lines), (2) depth boundaries (red lines), and (3) image boundaries 
(green lines).  

Both the point-to-point and the point-to-plane metrics are used for solving the 3D rigid-

body transformation. The point-to-point metric is used until the orientation difference 

between the results of two successive iterations is less than a threshold. After that, the 

“linearized” point-to-plane metric is used. This threshold is typically a 10° rotation about 

each coordinate axis. 

The ICP registration stops when the number of iterations reaches a limit or when the 

change in the results of two successive iterations is small enough. The change is small 

enough when the translation is less than a distance threshold and the rotation about every 

coordinate axis is less than an angle threshold. 

5.3  Predetermining Registration Accuracy of a View 

The view planner must try its best to avoid the situation in which the newly acquired 

range scan fails to register, or fails to register accurately enough, with the partial scene model. 

To do that, the view planner must examine each candidate view before the actual scan is 

image  
boundary 

hole  
boundary 

depth  
boundaries 
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made, to help ensure that the planned view will produce a range scan that can be accurately 

registered with the current partial scene model. Three of the factors3 that affect registration 

accuracies are: 

(1) the range measurement errors of the scanner, 

(2) the amount of overlap between the two surfaces, or the number of point pairs that 

can be used in the registration, and 

(3) the amount of shape constraint on the 3D rigid-body transformation between the two 

surfaces. 

The lack of shape constraint on the 3D rigid-body transformation can result in 

catastrophic registration failure. For example, when a plane is being registered to another 

plane (see Figure 5.3), the first plane can “slide” and “spin” on the second plane without 

being constrained in those motions, and thus cannot be registered successfully. 

 

 
Figure 5.3: Registering two planes can result in catastrophic failure because one plane can 
“slide” and “spin” on the other. 

In this section, I derive a registration accuracy metric to estimate registration accuracy, 

and demonstrate how it is applied to test a candidate view to determine whether it satisfies 

the registration constraint. The metric consists of two registration accuracy conditions, and 

they take into consideration all three factors listed above. 

The derivations of the registration accuracy conditions are built upon the constraint 

analysis in [Simon1996]. In his doctoral dissertation, Simon presented a means to measure 

                                                 
3Registration errors can also be caused by nonlinear distortion of distances in the range measurements. This 

is the result of calibration error in the range scanner.  
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the relative amount of constraint on the 3D rigid-body transformation exerted by the shape of 

a surface. More specifically, his method is able to compute, for a set of surface points, a 

value that represents the amount of constraint on the 3D rigid-body transformation when the 

surface is being aligned with itself. Being a relative measurement, this value is only useful 

for comparing with the values of other point sets, so as to determine which point set has the 

best constraint on the transformation. It does not indicate the absolute accuracy that can be 

achieved with each point set during registration. My registration accuracy conditions extend 

Simon’s constraint analysis to estimate absolute registration accuracies. 

Before I present my derivations of the registration accuracy conditions, I review Simon’s 

constraint analysis in detail. I adopt the notation used in [Simon1996]. 

5.3.1  Simon’s Constraint Analysis 

The basic idea of the constraint analysis is as follows. Let P be a set of points on a 

surface. Suppose a small 3D rigid-body transformation is applied to P to produce the point 

set P′, in which some of the points may no longer be on the original surface. Let PE ′  be the 

sum of the squared distance between each point in P′ and the original surface. The constraint 

analysis tries to quantify the sensitivity of PE ′  to each component of the 3D rigid-body 

transformation. The higher the sensitivity is with respect to a certain component, the stronger 

the constraint on the motion corresponding to the component. 

The following describes how PE ′  is computed. Since, given an arbitrary surface, there is 

no closed-form analytical expression for the distance between a point x, and the surface, a 

first-order approximation of the true point-to-surface distance is used: 

 ( ) ( )
( )x
xx

F
FD
∇

=  (5.3) 

where ( ) 0=xF  is the implicit equation of the surface, ( )xF∇  is the magnitude of the 

gradient to the surface, x is a point which may or may not lie on the surface and ( )xD  is the 

approximate distance.  
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Let sx  be a point that lies on the surface, i.e. ( ) 0=sD x . This point can be perturbed by 

applying a differential transformation T to it. T can be represented by a homogeneous 

transformation which is a function of the 6 parameters ( xt , yt , zt , xω , yω , zω ), where ( xω , 

yω , zω ) are rotations about the x, y and z axes, respectively, and ( xt , yt , zt ) are the 

translations along the newly rotated x, y and z axes. The rate of change of D with respect to 

an arbitrary transformation T of the point sx  is given by 

 ( ) ( )( ) 







×

=
∂
∂

=
s

s

s
ss D

x

x

nx
n

x
t

x TV  (5.4) 

where T][ zyxzyx ,,,t,t,t ωωω=t  and 
sxn  is the unit normal to the surface evaluated at the 

point sx . Equation (5.4) can be written as 

 ( )( ) ( ) t
nx

n
txx

x

x ddD
s

s

s
ss

T
T  








×

==VT . (5.5) 

By squaring Equation (5.5), we get 

 ( )( ) ( ) ( ) ( ) txttxxtx ddddD ssss      TTT2 MVVT ==  (5.6) 

where ( ) ( ) ( )sss xxx T VVM =  is a symmetric, positive semi-definite 6×6 matrix. By 

summing the quantity in Equation (5.6) over a set, P, of discrete surface points, we get 

 ( )( ) ( )( ) ( ) tΨttxtxx
xx

ddddDE
P

s
P

ssP
ss

    TT2 =









== ∑∑

∈∈

MTT . (5.7) 

The PE ′  that was mentioned in the beginning of the section is actually ( )( )sPP EE xT=′ , 

where ( ){ }PP ss ∈=′ xx :T . The matrix Ψ  is a scatter matrix that contains information 

about the distribution of the original ( )sxV  over all points in P. Now, by performing 

principal component analysis [Kendall1977] to Ψ , we can factorize it into the form 
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where 654321 λλλλλλ ≥≥≥≥≥  are the eigenvalues of Ψ , and iq  are the corresponding 

unit eigenvectors. Each eigenvector, iq , represents a differential transformation where the 

first three elements are the translation components and the last three elements are the rotation 

components. 

Each eigenvalue, iλ , is proportional to the rate of change of the error, PE , induced by a 

transformation in the direction specified by iq . This implies that 1q , which corresponds to 

the largest eigenvalue, represents the transformation of maximum constraint. When an 

eigenvalue, iλ , is close to or equal to zero, transforming the points in the direction specified 

by iq  will not change PE . This means that the set of points has no constraint on the 

transformation in the direction specified by iq . For example, the plane shown in Figure 5.3 

will have three zero eigenvalues, one corresponds to the rotation about the vertical axis, and 

the other two correspond to the translation in the horizontal plane. 

Let P1 and P2 be two different sets of discrete points on a surface. To determine which 

point set has a better “overall” constraint on the transformation, the quantity 16 λλ  (called 

the noise amplification index) of one point set is compared to that of the other point set. The 

point set with the higher noise amplification index is considered better. 

One problem with the result in Equation (5.8) is that the rotation components are 

dependent on the scale of the surface being analyzed. This is the consequence of having sx  

in the cross product in Equation (5.5). Simon addressed this problem by shifting the centroid 

of the point set to the origin and scaling all points so that the average distance from the points 

to the origin is 1. 

Equation (5.8) and the noise amplification index do not provide enough information to 

estimate the absolute registration errors when the points in the point set have been perturbed 
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by noise. In Section 5.3.2, I present an extension to Simon’s constraint analysis to estimate 

absolute bounds on the registration errors. 

5.3.2  Estimating Absolute Registration Errors 

In the following derivations, we consider translation and rotation separately. This makes 

sense because translation and rotation are parameterized by different entity types, i.e. 

translation is parameterized by distance and rotation by angle. Having both entity types in the 

same eigenvectors iq  in Equation (5.8) makes the absolute values of the eigenvalues iλ  hard 

to interpret. Moreover, by considering translation and rotation separately, as we will see, the 

arbitrary scale of the object is no longer a problem for the rotation analysis.  

5.3.2.1  Translational Alignment Error 

Following the derivation in Section 5.3.1, the translation component of ( )sxV  is 

 ( ) ( )( )
sss D xττ nx

τ
x =

∂
∂

= TV  (5.9) 

where T][ zyx t,t,t=τ . Then 

 ( )( ) ( ) τxx ττ dD ss  TVT = . (5.10) 

By squaring Equation (5.10), we get 

 ( )( ) ( ) ( ) ( ) τxττxxτx ττττ ddddD ssss      TTT2 MVVT ==  (5.11) 

where ( ) ( ) ( )sss xxx τττ
T VVM =  is a symmetric, positive semi-definite 3×3 matrix. By 

summing the quantity in Equation (5.11) over the set, P, of discrete surface points, we get 

 ( )( ) ( )( ) ( ) τΨττxτxx τ
x

τ
x

ττ ddddDE
P

s
P

ssP
ss

    TT2 =


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




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∈∈

MTT . (5.12) 
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Using principal component analysis, τΨ  can be factorized into 
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where 321 λλλ ≥≥  are the eigenvalues of τΨ , and the columns of τQ  are the corresponding 

unit eigenvectors. Since the sum of the eigenvalues is equal to the trace of the original matrix 

[Strang1988], 
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where M is the number of points in P. 

For the alignment of the surface to be successful, iλ  must be greater than 0 for 

3 and 2, 1,=i . Ideally, we wish to select the set of points for P such that 

3321 /M=== λλλ , which means that the surface alignment is constrained equally in all 

three orthogonal translation directions. The minimum requirement for alignment is that 

3=M , and that the three surface normals must span the 3D space. In practice, because of 

errors in the range measurements, it is necessary to have 3min >≥ MM , such that the 

translational alignment can be performed to a certain desired accuracy, assuming the surface 

is already correctly oriented. 

The translation resulting from the alignment can be decomposed into three orthogonal 

directions. In the following, we investigate the relationship between minM  and the 

translational alignment accuracy by looking at the alignment errors in the three orthogonal 

directions. Without loss of generality, we choose the x, y, and z directions. 

Let T][ iii z,y,x  be the 3D coordinates of the ith true surface point, where Mi  , 2, 1, K= . 

Suppose there are two sets of measurements of the surface points, producing the point set A 
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with coordinates T][ AiiAiiAii wz,vy,ux +++  and the point set B with coordinates 

T][ BiiBiiBii wz,vy,ux +++ , where ( Aiu , Biu ), ( Aiv , Biv ), and ( Aiw , Biw ) are measurement 

errors in the x, y, and z directions, respectively.  

Suppose point set B is to be translated so that it is aligned with point set A. For the 

alignment, the correspondences between points in point sets A and B are known. The 

alignment uses the least-squares (least-sum-of-squares) error metric, where we want to find 

the translation vector T][ zyx t,t,t=τ  to translate point set B to minimize 
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Differentiating SSE with respect to xt , yt , and zt , we have 
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SSE is minimum when ( ) ( ) ( ) 0=
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and similarly 
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We now first consider only the translation in the x direction. Let Aiu  and Biu  be the 

values of the independent random variables AiU  and BiU , respectively, and Au  and Bu  be 

the values of the random variables AU  and BU , respectively. Suppose each AiU  has normal 

distribution with mean 
AUµ  and standard deviation 

AUσ , and each BiU  has normal 

distribution with mean 
BUµ  and standard deviation 

BUσ , i.e. 

 ( )
AA UUAi ,N~U σµ       and      ( )

BB UUBi ,N~U σµ  (5.19) 

Then, the sampling distributions [Walpole1993] of AU  and BU  are  
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Since BAx uut    −= , we have 
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UU
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22 σσ
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where xt  is the value of the random variable xT . 

We assume that there is no bias in the measurement errors, therefore 0==
BA UU µµ . 

With the above assumptions, we can be ( ) %1001 α−  confident that the translational 

alignment error in the x direction will not exceed 0>τε  when the following condition is true 

[Walpole1993]: 
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where 

 ( ) ααα −=<<− 122 zZzP  (5.23) 

and Z is a random variable that has the standard normal distribution. 

If AiU  and BiU  are not normal distributions, then the condition in Equation (5.22) is still a 

good approximation as long as M is greater than 30 [Walpole1993]. 

Normally, 
AUσ , 

BUσ , 
AVσ , 

BVσ , 
AWσ , and 

BWσ  are not constant and they may vary 

depending on factors such as the choice of the coordinate system with respect to the surface’s 

orientation, the incident angle of the laser to the surface point, the surface reflectance 

properties, and the distance between the sensor and the surface point. To simplify the 

analysis, and the fact that we can be more conservative in this case, we can assume all the 

above standard deviations are less than or equal to the worst possible RMS error in range 

measurement, RMSe . Then from Equation (5.22), we obtain the more conservative condition 

 ( )2RMS2
2 2 ezM αε ≥τ . (5.24) 

However, the condition in Equation (5.24) is only true in a special case. When a point 
T][ iiii z,y,x=p  is translated by a small distance xt  in the x direction, its contribution to the 

energy function (the constraint), PE  in Equation (5.12), is 
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where in  is the unit normal at ip . We can easily see that ( )( )iD pτT2  is maximum only when 

T]0 0 1[ ,,i ±=n , and in this case we get 
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The R.H.S. of Equation (5.26) is basically the same as the L.H.S. of Equation (5.24). This 

makes sense because Equation (5.24) is derived on the assumption that each point in point set 

B is matched correctly with the corresponding point in point set A. Therefore, the vector 

between each pair of corresponding points is parallel to the direction of the translation. When 

the translation is T]0 0 [ ,,t x , this is equivalent to having a surface normal T]0 0 1[ ,,i ±=n  at 

every point of one of the point sets. Therefore, we can say that the condition in Equation 

(5.24) is true only in the special case when each point ip  is at its maximum constraint on the 

translation in the x direction, that is when T]0 0 1[ ,,i ±=n . However, in the general case when 

each in  can be any unit vector, we have 

 ( )( ) ( )( ) ∑∑
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222
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ττ pp TT . (5.27) 

Now, for the general case, we can be ( ) %1001 α−  confident that the translational 

alignment error in the x direction will not exceed 0>τε  when the following condition is true: 

 ( )2RMS2
1

22 2 ezn
M

i
x,i αε ≥∑

=
τ . (5.28) 

Similarly, we can obtain the following conditions for translations in the y and z directions, 

respectively: 

 ( )2RMS2
1

22 2 ezn
M

i
y,i αε ≥∑

=
τ       and      ( )2RMS2

1

22 2 ezn
M

i
z,i αε ≥∑

=
τ . (5.29) 

By combining the results in Equations (5.28), (5.29), and (5.14), we get 
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Finally, with the results in Equations (5.28), (5.29) and (5.30), for the general case when 

in  can be any unit vector, we get the following condition: 

Translational Alignment Error Condition. We can be ( ) %1001 3α−  confident that 

the translational alignment error in any direction will not exceed 

ττττ εεεε  3222 =++  when 3min1 Mλ ≥ , 3min2 Mλ ≥  and 3min3 Mλ ≥ , where 

( )2RMS2min 6 τεα ezM = . 

Given that a confidence interval has been selected, the translational alignment error 

condition can be used to estimate the value of τε , RMSe , or minM , given that the other two 

values are already provided. For example, suppose we are given point sets A and B, which 

are two different sets of measurements of the same set of true surface points, and the RMS 

measurement error is RMSe . We first use one of the two point sets to compute the values of 

1λ , 2λ  and 3λ  as in Equations (5.9)–(5.13). Then, let 3min 3λ=M , and solve for the value of 

τε  in the equation ( )2RMS2min 6 τεα ezM = . According to the error condition, we can be 

( ) %1001 3α−  confident that, if we register point sets A and B to each other, the translational 

alignment error in any direction will not exceed τε 3 . 

For analyzing candidate views for registration accuracies, RMSe  and τε  are already 

specified, and these allow minM  to be calculated. If a view produces 3min3 Mλ < , then it is 

rejected. Later, In Section 5.3.3, I describe how to compute, for my view planner, a value for 

RMSe , and show, given a candidate view, how 1λ , 2λ  and 3λ  are computed. 
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5.3.2.2  Rotational Alignment Error 

The rotation component of ( )sxV  can be written as 

 ( ) ( )( )
ssss D xθθ nxx

θ
x ×=

∂
∂

= TV  (5.31) 

where T][ zyx ,, ωωω=θ . Then 

 ( )( ) ( ) θxx θθ dD ss  TVT = . (5.32) 

By squaring Equation (5.32), we get 

 ( )( ) ( ) ( ) ( ) θxθθxxθx θθθθ ddddD ssss      TTT2 MVVT == . (5.33) 

By summing the quantity in Equation (5.33) over the set, P, we get 

 ( )( ) ( )( ) ( ) θΨθθxθxx θ
x

θ
x

θθ ddddDE
P

s
P

ssP
ss

    TT2 =









== ∑∑

∈∈

MTT . (5.34) 

Using principal component analysis, θΨ  can be factorized into 
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where 321 γγγ ≥≥  are the eigenvalues of θΨ , and the columns of θQ  are the corresponding 

unit eigenvectors. Since the sum of the eigenvalues is equal to the trace of the original matrix 

[Strang1988], 
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where 
sxφ  is the angle between the vector sx  and 

sxn . 

For the alignment of the surface to be successful, iγ  must be greater than 0 for 

3 and 2, 1,=i . Ideally, we wish to select the set of points for P such that 3321 /S=== γγγ , 

which means that the surface alignment is constrained equally in the rotations about all three 

orthogonal axes. The minimum requirement for alignment is that 3=M , where M is the 

number of points in P, and that the three vector in the set }  { P| ss s
∈× xnx x  must span the 

3D space. In practice, with errors in the range measurements, it is necessary to have 

3min >≥ MM  and 0min >≥ SS , such that the rotational alignment can be performed to a 

certain desired accuracy, assuming the surface is already correctly translated. In the 

following, we investigate the conditions necessary to attain a specified angular accuracy in 

the rotational alignment. 

Let T][ iii z,y,x  be the 3D coordinates of the ith true surface point, where Mi  , 2, 1, K= . 

Suppose there are two sets of measurements of the surface points, producing the point set A 

with coordinates T][ AiiAiiAii wz,vy,ux +++  and the point set B with coordinates 

T][ BiiBiiBii wz,vy,ux +++ , where ( Aiu , Biu ), ( Aiv , Biv ), and ( Aiw , Biw ) are measurement 

errors in the x, y, and z directions, respectively.  

Suppose point set B is to be rotated about the origin so that it is aligned with point set A. 

For the alignment, the correspondences between points in point sets A and B are known. The 

alignment uses the least-squares (least-sum-of-squares) error metric, where we want to find 

the rotation vector T][ zyx ,, ωωω=θ  to rotate point set B to minimize 
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where ( )xωxR , ( )yωyR  and ( )zωzR  are the rotation matrices for rotations of xω , yω  and 

zω  radians about the x-axis, y-axis and z-axis, respectively. Since the rotations will be small, 

we can approximate the matrix ( )zyx ,, ωωωR  by using the approximations θθ ≈sin  and 

1cos ≈θ  when 0≈θ . With this approximation, we get 
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To simplify the analysis, we first consider only the rotation about the x-axis. This gives 

us 
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Differentiating xSSE  with respect to xω , we have 
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Normally Bii wz >>  and Bii vy >> , so we can further simplify the above by  
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xSSE  is minimum when 
( )

0=
∂

∂

x

xSSE
ω

, and this is true when 
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Let Aiv , Biv , Aiw  and Biw  be the values of the independent random variables AiV , BiV , 

AiW  and BiW , respectively. We also let ( ) ( )( )∑
=

−−−
M

i
BiAiiBiAii vvzwwy

1
 be the value of the 

random variable xQ . Assume that each of AiV , BiV , AiW  and BiW  has normal distribution 

with mean 
AVµ , 

BVµ , 
AWµ  and 

BWµ , and standard deviation 
AVσ , 

BVσ , 
AWσ  and 

BWσ , 

respectively, i.e. 

 ( )
AA VVAi ,N~V σµ       and      ( )

BB VVBi ,N~V σµ , 

 ( )
AA WWAi ,N~W σµ       and      ( )

BB WWBi ,N~W σµ  (5.43) 

then the mean [Walpole1993] of xQ  is  

 ( ) ( )( )∑
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i
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zy
1

µµµµµ  (5.44) 

and the standard deviation [Walpole1993] of xQ  is  
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22222222 σσσσσ . (5.45) 
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xQ  satisfies the Lindeberg condition (see Appendix A), and by Lindeberg’s Theorem4 

[Ash1972, pp. 336–337], xQ  converges to a normal distribution, i.e. 
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Since we are assuming there is no bias in the measurement errors, 

0====
BABA VVWW µµµµ . With the above assumptions, we can be ( ) %1001 α−  confident 

that the rotational alignment error about the x-axis will not exceed 0>θε  radians when the 

following condition is true: 
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Assuming 
AUσ , 

BUσ , 
AVσ , 

BVσ , 
AWσ , and 

BWσ  are less than or equal to the worst 

possible RMS error in range measurement, RMSe , we obtain the more conservative condition 
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However, the condition in Equation (5.48) is only valid for a special case. When a point 
T][ iiii z,y,x=p  is rotated a small angle xω  about the x-axis, its contribution to the energy 

function (the constraint), PE  in Equation (5.34), is 

                                                 
4Lindeberg’s Theorem is a generalization of the central limit theorem. The central limit theorem states that 

the sum of many independent identically distributed random variables with finite variance will be 
approximately normally distributed. Lindeberg’s Theorem does not require identical distribution, but 
incorporates a condition (the Lindeberg condition), which, if satisfied, implies that the sum will be 
approximately normally distributed. 
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where in  is the unit surface normal at ip . ( )( )iD pθT2  is maximum if in  is perpendicular to 

both the vector ip  and the x-axis, i.e. 
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Then, 
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and 
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The R.H.S. of Equation (5.52) is basically the same as the L.H.S. of Equation (5.48). This 

is expected because Equation (5.48) is derived on the assumption that each point in point set 

B is matched correctly with the corresponding point in point set A. The vector between each 

pair of corresponding points is parallel to the direction of the rotation. When the rotation is 

about the x-axis, this vector is perpendicular to both the vector ip  and the x-axis. This vector 

can be treated as the normal in . Therefore, we can say that the condition in Equation (5.48) 

is true only in the special case when each point ip  is at its maximum constraint on the 
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rotation about the x-axis, i.e. in  is perpendicular to both the vector ip  and the x-axis. 

However, in the general case when each in  can be any unit vector, we have 
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Now, for the general case, we can be ( ) %1001 α−  confident that the rotational alignment 

error about the x-axis will not exceed 0>θε  radians when the following condition is true: 

 ( ) ( )2RMS2
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θ . (5.54) 

The conditions for rotations about the y-axis and z-axis can be similarly derived 

respectively as 
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By combining the results in Equations (5.54), (5.55), and (5.36), we get 
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 (5.56) 

Finally, with the results in Equations (5.54), (5.55), and (5.56), for the general case when 

in  can be any unit vector, we get the following condition:  
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Rotational Alignment Error Condition. We can be ( ) %1001 3α−  confident that the 

rotational alignment errors about the x-axis, y-axis and z-axis, respectively, will not 

exceed 0>θε  radians when 3min1 S≥γ , 3min2 S≥γ  and 3min3 S≥γ , where 

( )2RMS2min 6 θεα ezS = . 

Similar to the application of the translational alignment error condition for analyzing 

candidate views, if a view produces 3min3 S<γ , then it is rejected.  

5.3.2.3  Remarks 

The three registration accuracy factors listed at the beginning of Section 5.3 are taken 

into account in the two alignment error conditions. For Factor (1), the range measurement 

errors are incorporated into RMSe . For Factor (2), if there is a lot of overlap between the two 

surfaces, and thus a large number of point pairs that can be used in the registration, the values 

of the eigenvalues iλ  and iγ  will likely be large. Larger values for iλ  and iγ  allow minM  

and minS  to be higher in value, which in turn result in smaller error bounds τε  and θε . For 

Factor (3), the values of iλ  and iγ  reflect the amount of constraint the points have on the 

different components of the 3D rigid-body transformation, and each eigenvalue is 

proportional to the registration accuracy that can be achieved in the corresponding motion. 

The derivations of the alignment error conditions assume that the point correspondences 

between the two point sets are known. In practice, these point correspondences may not be 

available, such as when these point sets come from range images of the same surface scanned 

from different scanner positions. Fortunately, in many cases, the ICP algorithm is able to 

provide a good approximation of the point correspondences. As the ICP algorithm iteratively 

refines the alignment of the two surfaces, the matching of point pairs becomes more accurate. 

When the two surfaces are almost correctly aligned, the accuracy of the closest-point 

matching is limited by the sampling spacing between points in each point set. For example, a 

true surface point is sampled in point set A, but not sampled in point set B because it falls 

between two adjacent samples in B. In this case, the sample in A will be matched with one of 
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the two adjacent samples in B. The errors caused by the sampling spacing are considered 

quantization errors, and can be incorporated into RMSe  when using the two alignment error 

conditions.  

Of course, there are ways that these quantization errors can be reduced. For example, we 

can interpolate the two adjacent samples in point set B to produce a new point to pair with the 

point in point set A. Another way to reduce the quantization errors is to use the point-to-plane 

error metric, which is implemented in the view planner. Figure 5.4 illustrates how it helps to 

improve the point matching. In the diagram, the voxel center, c, is first paired with the closest 

vertex, v, on the triangle mesh. If the point-to-point metric is used, then the distance of the 

pair (c, v) is used in the energy function to be minimized. On the other hand, if the point-to-

plane metric is used, then the distance of the pair (c, p) is actually used in the energy function. 

The point p is a better “partner” for c because it is more likely to be, or closer to, the true 

surface point that corresponds to c. 

 

 
Figure 5.4: The use of the point-to-plane error metric improves the accuracy of the point 
matching. 

A limitation of the alignment error conditions is that the errors in the surface normals are 

not taken into consideration. The true surface normals at the measured points are needed to 

compute the eigenvalues in the alignment error conditions, but they are usually not available, 

and estimated normals are used instead. For a range image, we can estimate these normals 

using the sample points by fitting a plane to the points in the neighborhood of each candidate 
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point. The estimation is more accurate if the points are from a relatively smooth region on the 

surface.  

As we will see in Section 5.4, the errors in the surface normals may become a significant 

problem when 3λ  is very small relative to 1λ , or 3γ  is very small relative to 1γ . A solution is 

presented in that section. 

5.3.3  Application of Alignment Error Conditions 

This section describes how the alignment error conditions are used to test candidate 

views produced by the hierarchical view evaluation. It is important to note that the validity of 

using the conditions to test candidate views is based on the assumption that the values of iλ  

and iγ  at the planned pose will not be significantly different from those at the unknown 

actual pose. For my application, this is generally not an issue, as the scanner pose errors are 

very small in comparison to the size of the scene to be acquired. 

To apply the two conditions, we have to first choose and determine the values of the 

several parameters, i.e. (1) the confidence interval ( ) %1001 3α−  and the confidence limit 

2αz , (2) the points’ RMS position error RMSe , (3) the translation error tolerance τε , and (4) 

the rotation angle error tolerance θε . These allow minM  and minS  to be calculated. Then, if a 

candidate view has 3min3 Mλ <  or 3min3 S<γ , it is rejected. 

In my experiments, the alignment error conditions are often applied at a 99% confidence 

interval. Which means 0.0033459901 3 ≈−= .α  and 2.7122 ≈αz .  

Sometimes, the rotational alignment error tolerance is specified as a distance instead of as 

an angle θε . This distance error tolerance must then be converted to an angle tolerance θε  

before it can be used in the rotational alignment error condition. The range measurement 

errors are not the only source of errors that contribute to RMSe . Errors can also come from the 

voxelization of surfaces and inexact point pairing. The following sections provide more 

details. 
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5.3.3.1  Computing the Eigenvalues 

Given a candidate view, in order to compute the eigenvalues iλ  and iγ , we need to find 

out which surface points will be used in the registration should the view be used to make the 

next range scan. We recall that, in the view planner, this new range image will be converted 

to a triangle mesh and registered with the center points of the set of true surface voxels in the 

octree partial scene model. Each surface voxel’s center will be paired with the nearest vertex 

on the triangle mesh. Therefore, the maximum number of point pairs that can be used in the 

registration is the total number of surface voxels in the scene model. However, those surface 

voxels that will not be overlapped by the mesh will not be able to form point pairs to be used 

in the registration.  

Even though the new scan has not been acquired, we can still estimate which surface 

voxels would be used in the registration. To do that, for each surface voxel in the current 

partial scene model, we test whether it satisfies all the scanning constraints with respect to 

the candidate view. If satisfied, the surface voxel is selected for the computation of iλ  and 

iγ . In my implementation of the view planner, each surface voxel is tested to determine 

whether it is within the working range of the sensor, within the field of view of the scanner, 

within the threshold angle of incidence of the laser beam to the surface point, and whether it 

is visible from the candidate viewpoint. 

The center points and the surface normals of the selected surface voxels are then used to 

compute iλ  as stated in Equations (5.9)–(5.13), and iγ  as in Equations (5.31)–(5.35). 

5.3.3.2  Determining the RMS Error eRMS 

The main sources of errors that contribute to RMSe  are 

(1) the range measurement errors,  

(2) the quantization errors caused by the voxelization of the surface, and 

(3) the error caused by pairing each voxel’s center to a mesh vertex that does not 

correspond to the same true surface point as the voxel’s center. 

The range measurement errors are related to the precision or measurement uncertainty of 

the range sensor. For a time-of-flight-based sensor, theoretically, the range precision is 
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constant throughout the sensor’s range [Beraldin2000]. However, in practice, the precision 

actually deteriorates gradually with distance, because of factors such as the divergence of the 

emitted light beam and the attenuation of the returning light energy. As for triangulation-

based range sensors, the precision is inversely proportional to the square of the distance. To 

be conservative about estimating the registration errors, we should use the lowest precision 

within the working range of the sensor or the precision at the furthest surface to be measured. 

The precision is usually specified as the RMS (or standard deviation) of the range errors and 

it is denoted by rangeσ  here. 

The voxelization of the surface introduces a maximum error of ±½ voxel width at each 

voxel’s center in each of the x, y and z directions. This quantization error is uniformly 

distributed between ±½ voxel width, has a mean of zero, and a standard deviation 

[Smith1999] of  

 
12
 widthvoxel

quantvoxel =−σ . (5.57) 

As pointed out in Section 5.3.2.3, when two surfaces are almost correctly aligned, the 

accuracy of the closest-point matching is limited by the spacing between adjacent vertices in 

the triangle mesh. More specifically, when a voxel’s center is matched to a mesh vertex, the 

maximum error is half the sampling spacing in the immediate neighborhood of the vertex. 

This error can be greatly reduced by matching the voxel’s center to the closest point on the 

triangle mesh, instead of only to the vertices. Another way to reduce this error is to use the 

point-to-plane error metric, as explained in Section 5.3.2.3 and Figure 5.4. This type of error 

can be reduced to be approximately equal to the range errors at the vertices, and therefore 

their standard deviation, rangematching σσ = . 

Finally, the RMS error, RMSe , for the alignment error conditions is 

 2
matching

2
quant-voxel

2
rangeRMS σσσ ++=e . (5.58) 
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5.3.3.3  Choosing a Rotation Angle Error Tolerance εθ 

Sometimes, it is more convenient to specify the rotational alignment error tolerance as a 

distance instead of as an angle θε . Since in the translational alignment error condition, the 

translation error tolerance is τε 3  in any direction, it is natural to want to limit the 

maximum rotational-induced translation error to τε 3  also. Suppose the coordinate frame 

for the scene model has been established, and the distance between the origin and the furthest 

point furthestp  in the scene is maxd . The point furthestp  will potentially have the largest 

rotation-induced translation error. To limit this largest translation error to τε 3 , we use 

 







= −

max

1

 2
 3

 2
d

sin τ
θ

ε
ε . (5.59) 

However, the value of θε  computed in Equation (5.59) can be too small and results in a 

very large minS  that makes the rotational alignment error condition too stringent. To derive a 

realistic value for θε , we should consider all the points that would be used in the registration, 

and take into account the distribution of their distances from the origin. One such method has 

been implemented in the view planner, and it is described next.  

Given a candidate view, let V be the set of surface voxels that satisfy all the scanning 

constraints with respect to the view, and let Vvi ∈  for V,,,i   2 1 K= . We wish to limit the 

rotation-induced translation errors of these voxels to within an RMS value RMSτ , i.e. 

 2
RMS
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2
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1

2              1 ττττ N
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i
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N

i
i ≤⇒≤ ∑∑

==

 (5.60) 

where VN = , and iτ  is the rotation-induced translation error of the center of voxel iv . 

Suppose φ  is the amount of rotation that results in iτ  for all V,,,i   2 1 K= , i.e. 

 
2

2 φτ sindii =  (5.61) 
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where id  is the distance between the origin and the center of the voxel iv . Substituting 

Equation (5.61) into (5.60), we get 

 max
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N
sinNsind . (5.62) 

Finally, we choose the angle tolerance maxφε =θ  for the rotational alignment error 

condition. 

5.4  Example 

The synthetic 3D scene shown in Figure 5.5 is used to demonstrate the application of the 

alignment error conditions to test the registration constraint for the candidate views. The 

entire scene is 35.5 feet along the x-axis, 20 feet along the z-axis, and 10 feet along the y-axis 

(vertical axis). A doorway connects the two rooms, and it is 4 feet wide and 8 feet high. Both 

rooms have flat ceilings that are not shown in the figure. The figure also shows the scanner 

pose for making the first scan, where its origin is 5 feet above the floor. This pose will be 

used as the coordinate frame of the volumetric partial scene model. 

Figure 5.6 shows the triangle mesh constructed from the first scan. Again, the ceiling is 

not shown. The scan is made with range precision 50range .=σ  inch. The range image has 

been smoothed using an anisotropic diffusion method [Black1998], so that the surface 

normals at the range samples can be more accurately estimated. Next, the triangle mesh is 

voxelized to create a volumetric partial scene model, where each surface voxel is 2 inches 

wide. 
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Figure 5.5: The synthetic 3D scene that is used to demonstrate the application of the 
alignment error conditions in view planning. The coordinate frame shown is the scanner pose 
for making the first scan, and it will also be used as the coordinate frame of the volumetric 
partial scene model. The ceilings of the two rooms are not shown. 

 

 
Figure 5.6: The triangle mesh of the first scan. The scan is made with range precision 

50range .=σ  inch. The ceiling is not shown. 

y-axis 

x-axis 

z-axis 

scanner position 
for the first scan 
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Figure 5.7: The candidate views produced by the hierarchical view evaluations are tested for 
the alignment error conditions. The highest-score view fails the conditions, and many other 
views are tested until one near to the doorway is found to satisfy both conditions. 

With the volumetric partial scene model, a set of discrete candidate views are produced 

by the hierarchical view evaluations. Figure 5.7 shows the view (pose) with the highest score, 

which, however, does not satisfy the alignment conditions and is rejected. Another 21 views 

(shown in pink) are tested for the alignment error conditions, in descending order of their 

scores. Eventually, the last of them satisfies both of the alignment error conditions and is 

chosen as the planned pose for the next scan.  

The following values are provided for computing the alignment error conditions: 

(1) 2.7122 ≈αz , corresponding to a 99% confidence interval; 

(2) surface voxel width is 2 inches; 

(3) range precision, 50range .=σ  inch; 

(4) 50.=τε  inch; 

(5) maximum RMS value of the rotation-induced translation errors, 50RMS .=τ  inch. 

Since 12 width)(voxelquantvoxel =−σ  and rangematching σσ = , the value of RMSe  is computed 

as  

highest-score 
pose 

final  
planned pose 

volumetric partial 
scene model 
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 912902
matching

2
quant-voxel

2
rangeRMS .e ≈++= σσσ . 

In Table 5.1, we can see the actual values of θε , iλ , iγ , 3minM  and 3minS  computed 

at the highest-score pose and the final planned pose. The values of iλ  and iγ  are listed 

together with their corresponding eigenvectors. All the values, except the eigenvectors, have 

been rounded to 4 significant figures. The highest-score pose is rejected because 

3min3 Mλ <  and 3min3 S<γ , whereas, at the final planned pose, 3min3 Mλ ≥  and 

3min3 S≥γ , and it is therefore accepted. 

 
 Highest-Score Pose Final Planned Pose 

θε  0.001647 radian 
0.09436 degree 

0.002264 radian 
0.1297 degree 

3minM  49.03 49.03 

1λ  
5,521 

[0.996, 0.002, 0.086]T 
9,683 

[0.996, 0.000, 0.086]T 

2λ  38.54 
[0.002, 0.999, −0.042]T 

2,219 
[0.000, 1.000, 0.000]T 

3λ  13.34 
[−0.086, 0.042, 0.995]T 

364.3 
[−0.086, 0.000, 0.996]T 

3minS  4,520,000 2,392,000 

1γ  6,935,000 
[−0.065, 0.268, 0.961]T 

37,540,000 
[−0.004, 0.997, 0.082]T 

2γ  6,483,000 
[0.018, 0.963, −0.267]T 

32,280,000 
[−0.105, −0.082, 0.991]T 

3γ  48,920 
[0.998, 0.000, 0.067]T 

4,403,000 
[0.995, −0.005, 0.104]T 

Table 5.1: The actual values of θε , iλ , iγ , 3minM  and 3minS  computed at the highest-
score pose and the final planned pose. The values of iλ  and iγ  are listed together with their 
corresponding eigenvectors. All the values, except the eigenvectors, have been rounded to 4 
significant figures. 
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The problem with the highest-score pose is that it is too far from the doorway and cannot 

acquire enough surfaces of the other room to overlap the surfaces acquired in the first scan. 

The only overlapping surfaces cannot constrain the translational motion along the y and z 

directions, and the rotational motion about the x-axis. Figure 5.8 shows the scan made at the 

highest-score pose. The insufficiency of the translational constraint is evident in the small 

values of 2λ  and 3λ . Their corresponding eigenvectors indicate the translational directions 

that lack constraint. Similarly, the relatively small value of 3γ  and its corresponding 

eigenvector indicate that the rotation about the x-axis is not sufficiently constrained. 

Figure 5.9 shows the scan made at the final planned pose. We can see that the amount of 

overlapping surfaces with the first scan is significantly higher, especially the surfaces that 

can constrain the translational motion along the y and z directions, and the rotational motion 

about the x-axis. 

 

 
Figure 5.8: The range scan made at the highest-score pose. The scan does not acquire enough 
surfaces of the other room to overlap the surfaces acquired in the first scan. The only 
overlapping surfaces cannot constrain the translational motion along the y and z directions, 
and the rotational motion about the x-axis. 
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Figure 5.9: The range scan made at the final planned pose. The amount of overlapping 
surfaces with the first scan is significantly higher, especially the surfaces that can constrain 
the translational motion along the y and z directions, and the rotational motion about the x-
axis. 

Next, the scan made at each pose is registered to the volumetric partial scene model. The 

ICP algorithm implementation described in Section 5.2 is used. Table 5.2 shows the actual 

errors in the registration. All values are rounded to 3 significant figures. Figure 5.10 and 

Figure 5.11 show the results of the registrations.  

We can see in Table 5.2 that, for the scan made at the final planned pose, the translation 

error in each of x, y, and z directions is less than the threshold 50.=τε  inch, while the 

rotation error about each of the x, y, and z-axis is less than the threshold 0.002264=θε  

radian. We notice that the translation error in the y direction is significantly larger than in the 

other two directions. This may be because, for the convenience of the next-best-view 

computation, the triangle mesh has been oriented such that the floor and the ceiling are 

parallel to the x-z plane. When these large floor and ceiling are voxelized, the voxel 

quantization errors in these voxels are almost constant and are far from being uniformly 

random. This can result in a much larger value of quantvoxel−σ  in the y direction. The vertical 

walls in the model are aligned with neither the x-y plane nor the y-z plane, therefore the voxel 

quantization errors in these voxels are more uniformly distributed in the x and z directions. It 
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is not strictly necessary to have the floor and ceiling oriented to be parallel to the x-z plane, 

but doing it makes the implementation easier and the view planning results easier to 

understand. To adjust for the large constant voxel quantization errors, one may use 

 width)(voxel2
1

quantvoxel =−σ , but that may make the value of RMSe  too large and the 

conditions too stringent. The large voxel quantization errors in the y direction has not 

presented problem in my experiments, and therefore I continue to use 

12 width)(voxelquantvoxel =−σ . 

For the scan made at the highest-score pose, the ICP registration actually cannot converge 

correctly. We see that the translation errors in all of x, y, and z directions are beyond the 

threshold 50.=τε  inch, and the rotation error about the x-axis is beyond the threshold 

0.001647=θε  radian.  

 
 Highest-Score Pose Final Planned Pose 

xt  −1.83 inches 0.0100 inch 

yt  0.579 inch 0.260 inch 

zt  20.8 inches −0.0138 inch 

xω  0.00888 radian 
0.509 degree 

0.000373 radian 
0.0214 degree 

yω  0.000584 radian 
0.0335 degree 

0.000119 radian 
0.00685 degree 

zω  0.000346 radian 
0.0198 degree 

0.000940 radian 
0.0538 degree 

Table 5.2: The registration errors when the scan made at each pose is registered to the 
volumetric partial scene model. 
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Figure 5.10: The scan made from the highest-score pose cannot be registered accurately to 
the volumetric partial scene model. The largest registration error is in the z direction, which 
is very evident from the misalignment of the doorway. 

 

 
Figure 5.11: The scan made from the final planned pose can be registered accurately to 
within the error thresholds 50.=τε  inch and 0.002264=θε  radian.  

So, for what minimum values of τε  and θε  will the alignment error conditions still 

accept the final planned pose? How do these minimum threshold values compare with the 
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actual registration errors we see in Table 5.2? For the first question, the minimum threshold 

values are  

 0.1835min, ≈τε  inch      and      0.001669min, ≈θε  radian. 

This means that for any min,ττ εε ≥  and any min,θθ εε ≥ , the final planned pose will satisfy 

both alignment error conditions. When min,θθ εε = , the corresponding value of 

0.3686RMS ≈τ  inch. 

To answer the second question, we compare the value of 0.1835min, ≈τε  to the 

translation errors =T][ zyx t,t,t T0.0138] 0.260, [0.0100, − , and the value of 

0.001669min, ≈θε  to the rotation errors =T][ zyx ,, ωωω T0.000940] 0.000119, [0.000373, . 

Since the relatively large value of yt , in comparison to xt  and zt , is caused by large constant 

voxel quantization errors in the y direction, it can be treated as an exception and will not be 

considered. Then, by comparing min,τε  to xt  and zt , it seems that the translational alignment 

error condition is quite conservative, because xt>>min,τε  and zt>>min,τε . As for the 

rotational alignment error condition, since min,θε  is not much larger than xω , yω  and zω , the 

condition seems relatively less conservative. 

For the highest-score pose, the minimum values of τε  and θε  where the alignment error 

conditions will be satisfied are 

 0.9585min, ≈τε  inch      and      0.01584min, ≈θε  radian. 

However, referring to the actual translation errors in Table 5.2, where 

=T][ zyx t,t,t T]8205790831[ ., ., .− , the value 0.9585min, ≈τε  seems to be much too small. 

This is because the computed values of 2λ  and 3λ  are relatively much larger than they 

should be. The main cause of this is the errors in the estimated surface normals at the range 

samples. These errors add false constraint in the y and z directions, and since 2λ  and 3λ  have 

small absolute values, their relative errors become large. The smaller the value of iλ  with 



 154

respect to 1λ , the more sensitive it is to errors in the surface normals. Therefore, to avoid 

accepting such views, we may add the condition that the ratio 13 λλ /  must not be less than a 

threshold. In practice, a threshold ratio of 0.01 works in most cases. 

It is not quite appropriate to compare min,θε  with the rotation errors in Table 5.2 because 

the large translation error may have caused them to be far from correct. Similar to the 

problem with iλ , the values of iγ  are also affected by errors in the surface normals. 

Therefore, we may also add the condition that the ratio 13 γγ /  must not be less than a 

threshold. Again, a threshold ratio of 0.01 works well in practice. 

 



 

Chapter 6  
 

Results 

Three sets of example results are presented to demonstrate the use of the next-best-view 

planning system for the range acquisition of indoor environments. The first two examples use 

simulated scanners to scan synthetic digital models of a midsize living room and a kitchen, 

respectively, while the third example uses the DeltaSphere-3000 3D Scene Digitizer to scan a 

part of an office building floor. The third example shows that the next-best-view planner is 

useful, practical and robust for real-world environments, where there are complicating factors 

such as noise, outliers, and drop-outs. 

The scanners used in the three examples are assumed to have only 3D translational poses, 

and they both have full horizontal field of view but limited vertical field of view. In all the 

examples, the view evaluation step is limited to only two minutes in every cycle of the 

acquisition process. The importance values of the surface types, ( )pw  in Equation (3.2), and 

( )Pw  in Equation (4.5), are all assumed to be 1.  

Next, Section 6.4 compares the performances of four different view plans for the kitchen 

model. The view plans are the results of using four arbitrarily selected and different first 

views. 

All the timings and results were obtained on a laptop computer with an Intel Pentium 4-

M 1.6GHz CPU, and 768 MB of DDR RAM. 
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6.1  Simulated Scans (Example 1) 

In this example, a simulated range scanner is used to acquire the geometric information 

of the interior of a synthetic midsize living room. The living room is represented as a 

polygonal model. It has approximately 630 square feet of floor area, and the floor is level and 

flat. The largest corner-to-corner distance in the room is about 527 inches. The ceiling is 

about 90 inches (7.5 feet) from the floor. All the doors to the living room are closed, and its 

interior is totally enclosed by opaque surfaces. A top view of the living room is shown in 

Figure 6.1(a), in which the ceiling is not shown. 

The simulated range scanner is similar to a DeltaSphere-3000 3D Scene Digitizer. It is 

assumed to have only 3D translational poses, a full horizontal field of view and a limited 

vertical field of view. Table 6.1 lists the parameter values of the scanner and the values of 

some other parameters used in the experiment. Gaussian noise, with standard deviation of 

rangeσ , is added to the range measurements.  

For the first scan of the room, the scanner is arbitrarily positioned as shown in Figure 

6.1(a) (pointed by the yellow arrow). The scanner pose has been randomly perturbed, so its 

local vertical axis is not exactly parallel to the vertical of the living room. Figure 6.1(b) 

shows the partial octree model and the feasible view volumes created from the first scan. 

Figure 6.1(c) shows the under-sampled true surface patches extracted from the partial octree 

model. 

Figure 6.2 shows the computed pose for the next scan. This pose is the highest-score 

view computed by the view evaluation step, and it satisfies the alignment error conditions. 

The view evaluation step is allowed to take only two minutes. Before the second scan is 

made, the computed pose is randomly perturbed to simulate pose error in the positioning of 

the scanner. The scanner is positioned at a computed pose with an RMS translational error of 

8 inches in each of the x, y, and z directions, and a RMS rotational error of 5 degrees about 

each of the x-axis and z-axis, and a RMS rotational error of 10 degrees about the y-axis 

(vertical axis).  
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Figure 6.1: (a) A view of the living room model. The yellow arrow points to the scanner pose 
for the first scan. (b) The partial octree model and the feasible view volumes (light-blue) 
created from the first scan. (c) The under-sampled true surface patches are shown in yellow. 

 

 
Figure 6.2: (a) The yellow arrow points to the computed pose for the second scan. (b) The 
light-blue arrow points to the scanner pose that is obtained by randomly perturbing the 
computed pose (pointed by the yellow arrow). 

(b) 

(a) 

(b) 

(c) 

(a) 
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Parameter Value 

Scanner angular sampling density, 1/α 10 samples/degree 

Scanner maximum range, maxR  480 inches = 40 feet 

Scanner vertical field of view −55° to 70° 

Scanner minimum clearance distance 12 inches 

Scanner minimum height from floor 30 inches = 2.5 feet 

Scanner maximum height from floor 78 inches = 6.5 feet 

Surface sampling density requirement, D 1 sample/inch2 

Angle-of-incidence threshold, maxφ  70° 

Surface voxel width 2 inches 

Smallest viewcell width 4 inches 

Smallest patch element length ≤ 4 inches 

Relative representative error bound on ( )P,Vs , sε  15% 

Range precision, rangeσ  0.3 inch 

Confidence interval for alignment error conditions, 
( ) %1001 3α ′−  

99% ⇒ ( 2.7122 ≈′αz ) 

Translation error tolerance, τε  1 inch 

Maximum RMS value of the rotation-induced 
translation errors, RMSτ  1 inch 

Minimum threshold for 13 λλ /  0.05 

Minimum threshold for 13 γγ /  0.01 

Table 6.1: Some parameter values used in the first simulated-scan example. 

The pose error results in misalignment between the surfaces in the partial octree model 

and the triangle mesh made from the second scan (see Figure 6.3(a)). The ICP registration 

algorithm is then applied to the surfaces to obtain the proper alignment shown in Figure 

6.3(b). 
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Figure 6.4 shows the partial octree model and the feasible view volumes after the second 

scan has been merged with the first one. In comparison to Figure 6.1(b), one can see that the 

number of false surfaces have been reduced considerably and the feasible view volumes have 

increased in total volume. 

 

 
Figure 6.3: (a) Misalignment between the surfaces in the partial octree model and the triangle 
mesh made from the second scan. (b) The surfaces are now properly aligned after the 
registration step. 

 

 
Figure 6.4: The partial octree model and the feasible view volumes (light-blue) after the 
second scan is merged. 

This acquisition process is manually terminated after the eighth scan has been made. 

Figure 6.5 shows the unperturbed pose of the first scan, and the computed poses for the 

subsequent seven scans. Note that the eight scanner positions may not be at the same height. 

(a) (b) 
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The final partial octree model and feasible view volumes are shown in Figure 6.6. The living 

room is still not completely acquired, as one can see that there are still false surface voxels in 

the partial model.  

 

 
Figure 6.5: The unperturbed pose of the first scan, and the computed poses for the subsequent 
seven scans.  

The graph in Figure 6.7(a) shows the percentage of each type of surface voxels in the 

partial octree model after each scan is merged. After the eighth scan, approximately 9% of 

the surface voxels in the partial octree model are false surface voxels, approximately 0.3% 

are under-sampled true surface voxels, and approximately 91% satisfy the sampling density 

requirement. The rate of increase of the proportion of satisfactory surface voxels diminishes 

with each additional scan. In general, this proportion is not always increasing. For example, 

if a completely new room is “discovered” later in the acquisition process, then there will be a 

large increase in the number of occlusion surface voxels and the proportion of satisfactory 

surface voxels may decrease. 

The graph in Figure 6.7(b) shows the rate of increase of the total volume of the feasible 

view volumes. This graph is always non-decreasing. 
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Figure 6.6: The final partial octree model and the final feasible view volumes. 

 

 
Figure 6.7: (a) The proportions of the different types of surface voxels in the partial models 
after each scan is merged. (b) The total volume of the feasible view volumes. 
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Figure 6.8 shows the triangle-mesh model of the living room constructed from the eight 

range images. A commercial software package, PolyWorks 8 by InnovMetric Software 

[InnovMetric], was used to reconstruct the model. Due to insufficient system memory for the 

reconstruction computation, all the eight range images were downsampled to half the 

resolution in each direction. 

In Figure 6.8(b) and (c), it appears that the holes in the reconstructed model are more 

numerous than those indicated by the false surface voxels in Figure 6.6(c) and (d). There are 

two reasons. The first is that in the next-best-view planning system, each input range image 

is preprocessed to fill small holes caused by drop-outs. This speculative hole-filling is not 

performed in PolyWorks 8. The second reason is that the true surface voxels have higher 

precedence over the false surface voxels, and a voxel that intersects both false and true 

surfaces will be labeled a true surface voxel.  

Table 6.2 shows the average execution time taken by each main step of the acquisition 

cycle. The view evaluation is limited to approximately two minutes. The graph in Figure 

6.9(a) shows how much of the total patch area that has been evaluated by the view evaluation 

step in the two minutes. Besides the first two acquisition cycles, the view evaluation step was 

able to evaluate more than 80% of the total patch area. Figure 6.9(b) shows the total patch 

sampling deficit in each cycle, and how much of the sampling deficit has been evaluated. 

 
Steps Average time (sec) Percentage 

Range image processing 49.1 24.5 

Surface registration 6.4 3.2 

Partial octree model creation and merging 21.9 10.9 

Feasible view octree creation 0.8 0.4 

Patch extraction and ranking 1.4 0.7 

View evaluation 120.4 60.0 

Registration analysis 0.5 0.2 

Total: 200.5 100.0 

Table 6.2: The average execution time of each main step. 
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Figure 6.8: A triangle-mesh model of the living room reconstructed from the eight range 
images. 

 

 
Figure 6.9: (a) The total patch area in the partial octree model after each scan has been 
merged, and the amount that is evaluated in the view evaluation step. (b) The total patch 
sampling deficit and the amount that is evaluated in the view evaluation step. 
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6.2  Simulated Scans (Example 2) 

In the second example, a similar simulated range scanner is used to acquire the geometric 

information of the interior of a synthetic model of a kitchen. The kitchen is represented as a 

polygonal model. A top view of the kitchen is shown in Figure 6.10(a), in which the ceiling 

is not shown. The yellow line marks the approximate boundary of the space accessible to the 

scanner. The main kitchen area is connected to three small storage rooms (surrounded by 

green lines), and together they have approximately 350 square feet of floor area, and the floor 

is level and flat. The largest corner-to-corner distance in the kitchen model is about 390 

inches. The ceiling is about 93 inches (7.75 feet) from the floor. All the other doors to the 

kitchen are closed, and its interior is totally enclosed by opaque surfaces. Figure 10(b) shows 

another view of the kitchen. 

 

 
Figure 6.10: (a) A top view of the kitchen model. The yellow line marks the approximate 
boundary of the space accessible to the scanner, and the green lines mark the space of the 
three small storage rooms. (b) Another view of the kitchen model. 

Similar to the first example, the simulated range scanner is assumed to have only 3D 

translational poses, a full horizontal field of view and a limited vertical field of view. Table 

6.3 lists the parameter values of the scanner and the values of some other parameters used in 

the experiment.  

(a) (b) 
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Parameter Value 

Scanner angular sampling density, 1/α 5 samples/degree 

Scanner maximum range, maxR  600 inches = 50 feet 

Scanner vertical field of view −75° to 75° 

Scanner minimum clearance distance 6 inches 

Scanner minimum height from floor 24 inches = 2 feet 

Scanner maximum height from floor 84 inches = 7 feet 

Surface sampling density requirement, D 2 sample/inch2 

Angle-of-incidence threshold, maxφ  70° 

Surface voxel width 2 inches 

Smallest viewcell width 4 inches 

Smallest patch element length ≤ 4 inches 

Relative representative error bound on ( )P,Vs , sε  12.5% 

Range precision, rangeσ  0.3 inch 

Confidence interval for alignment error conditions, 
( ) %1001 3α ′−  

99% ⇒ ( 2.7122 ≈′αz ) 

Translation error tolerance, τε  1 inch 

Maximum RMS value of the rotation-induced 
translation errors, RMSτ  1 inch 

Minimum threshold for 13 λλ /  0.01 

Minimum threshold for 13 γγ /  0.01 

Table 6.3: Some parameter values used in the second simulated-scan example. 

The first view is arbitrarily positioned near the center of the kitchen, and altogether, ten 

scans are made in this simulation. The acquisition process is manually terminated after the 

tenth scan has been made. In each acquisition cycle, the view evaluation is limited to 

approximately two minutes. Figure 6.11 shows the evolution of the partial octree model as 

each scan is made and merged. The unperturbed poses of the ten scans are shown in Figure 
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6.11(j). Note that the ten scanner positions may not be at the same height. The final feasible 

view volumes and the final partial octree model are shown in Figure 6.12. Figure 6.13 shows 

the triangle-mesh model of the kitchen constructed from the ten range images. PolyWorks 8 

was used to reconstruct the model.  

 

 
Figure 6.11: The evolution of the partial model as each scan is made and merged. The last 
image (j) shows a top view of the final partial model and the ten unperturbed poses in the 
view plan. 
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Figure 6.12: (a) The final feasible view volumes. (b), (c) and (d) Different views of the final 
partial octree model. 
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Figure 6.13: Four different views of a triangle-mesh model of the kitchen reconstructed from 
the ten range images.  

The graph in Figure 6.14(a) shows the percentage of each type of surface voxels in the 

partial octree model after each scan is merged. After the tenth scan, approximately 3% of the 

surface voxels in the partial octree model are false surface voxels, approximately 2% are 

under-sampled true surface voxels, and approximately 95% satisfy the sampling density 

requirement. The rate of increase of the proportion of satisfactory surface voxels slows down 

with each additional scan. There is a slight decrease in the proportion of satisfactory surface 

voxels after the seventh scan is merged. This is caused by the “discovery” of the largest small 

room, which suddenly increases the total under-sampled true surface area.  

The graph in Figure 6.14(b) shows the rate of increase of the total volume of the feasible 

view volumes. This graph is always non-decreasing. A sudden increase in feasible view 

volume can be seen after the seventh scan is merged. Again, this is due to the “discovery” of 

the largest small room. 
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Table 6.4 shows the average execution time taken by each main step of the acquisition 

cycle. The view evaluation is limited to at most two minutes; however, due to the smaller 

size of the environment, the actual time required for view evaluation is often less than the 

allowable two minutes. This can be observed in the graph in Figure 6.15(a), which shows 

how much of the total patch area has been evaluated by the view evaluation step. For the fifth 

and the subsequent scans, the system is able to evaluate 100% of the patches in less than two 

minutes. Figure 6.15(b) shows the total patch sampling deficit in each cycle, and how much 

of the sampling deficit has been evaluated. 

 

 
Figure 6.14: (a) The proportions of the different types of surface voxels in the partial models 
after each scan is merged. (b) The total volume of the feasible view volumes. 
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Steps Average time (sec) Percentage 

Range image processing 13.6 9.6 

Surface registration 7.9 5.6 

Partial octree model creation and merging 13.9 9.8 

Feasible view octree creation 0.7 0.5 

Patch extraction and ranking 0.8 0.5 

View evaluation 104.7 73.8 

Registration analysis 0.2 0.2 

Total: 141.7 100.0 

Table 6.4: The average execution time of each main step. 

 

 
Figure 6.15: (a) The total patch area in the partial octree model after each scan has been 
merged, and the amount that is evaluated in the view evaluation step. (b) The total patch 
sampling deficit and the amount that is evaluated in the view evaluation step. 
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normally contain much more noise, and many more outliers and drop-outs than in the 

simulated case. 

The room that is used in the experiment is part of an office floor. Two photographs of the 

room are shown in Figure 6.16. The room contains reflective objects, such as glass on the 

doors and cabinet, that can cause outliers and drop-outs in the range images. The room is not 

totally enclosed by opaque surfaces—there are small glass windows on the doors that allow 

one to see through into the other rooms. The room has approximately 600 square feet of floor 

area, and the floor is fairly level and flat. The largest corner-to-corner distance in the room is 

about 680 inches. The ceiling is about 108 inches (9 feet) from the floor.  

 

 
Figure 6.16: Two views of the room that was used in the experiment. It is part of an office 
floor. 

The range scanner used is the DeltaSphere-3000 3D Scene Digitizer. Table 6.5 lists the 

parameter values of the scanner and the values of some other parameters used in the 

experiment. At 10-samples-per-degree scanning resolution, the DeltaSphere-3000 takes about 

eight minutes to make a full panoramic scan. 

(a) (b) 
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Parameter Value 

Scanner angular sampling density, 1/α 10 samples/degree 

Scanner maximum range, maxR  480 inches = 40 feet 

Scanner vertical field of view −55° to 70° 

Scanner minimum clearance distance 12 inches 

Scanner minimum height from floor 40 inches = 3.33 feet 

Scanner maximum height from floor 84 inches = 7 feet 

Surface sampling density requirement, D 4 sample/inch2 

Angle-of-incidence threshold, maxφ  70° 

Surface voxel width 2 inches 

Smallest viewcell width 4 inches 

Smallest patch element length ≤ 4 inches 

Relative representative error bound on ( )P,Vs , sε  15% 

Range precision, rangeσ  0.3 inch 

Confidence interval for alignment error conditions, 
( ) %1001 3α ′−  

99% ⇒ ( 2.7122 ≈′αz ) 

Translation error tolerance, τε  1 inch 

Maximum RMS value of the rotation-induced 
translation errors, RMSτ  1 inch 

Minimum threshold for 13 λλ /  0.05 

Minimum threshold for 13 γγ /  0.01 

Table 6.5: Some parameter values used in the real-scan example. 

For the first scan of the room, the scanner is positioned as shown in Figure 6.17(a) 

(pointed to by the yellow arrow). The model in Figure 6.17(a) is the triangle mesh created 

from the first range image. Figure 6.17(b) shows the partial octree model and Figure 6.17(c) 

the feasible view volumes created from the first scan. Figure 6.17(d) shows the under-

sampled true surface patches extracted from the partial octree model. 
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In the partial octree model in Figure 6.17(b), one can observe that there are a large 

number of erroneous occlusion surfaces, originating fairly close to the scanner’s viewpoint. 

These erroneous occlusion surfaces are caused by outliers that appear to be very close to the 

scanner’s viewpoint, and they can be clearly seen in Figure 6.17(c) as some very dark and 

isolated voxels around the scanner’s viewpoint. As a result of these erroneous occlusion 

surfaces, the empty space becomes very fragmented and there is very little contiguous space 

for the feasible view volumes.  

 

 
Figure 6.17: (a) The triangle mesh created from the range image acquired by the first scan. 
The yellow arrow points to the pose of the scanner from which the range image is acquired. 
The ceiling is not shown. (b) The partial octree model. (c) The feasible view volumes (light-
blue). (d) The under-sampled true surface patches are shown in yellow. 

As long as the set of feasible view volumes is not empty, these outliers do not pose much 

of a problem, since most of them will be eliminated when subsequent scans are merged with 

the partial octree model. This is because empty-space has higher precedence than any other 

(a) (b) 

(c) (d) 
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type of surface. Figure 6.18(a) shows the partial octree model after the second scan is merged. 

The scanner pose from which the second scan is made is indicated by the yellow arrow. This 

pose is computed by the view evaluation step. One can see that many of the erroneous 

occlusion surface voxels have been eliminated, and the result is a much larger total volume in 

the feasible view volumes (see Figure 6.18(b)). 

 

 
Figure 6.18: The partial octree model and feasible view volumes after the second scan is 
merged. 

 

 
Figure 6.19: Eight candidate views are checked for the alignment error conditions when 
selecting the best view for the fifth scan. The light-blue arrow points to the overall highest-
score view, and the yellow arrow point to the view that satisfies the alignment error 
conditions. Each view is checked for the alignment error conditions only if it is at least three 
feet away from all other views that have been checked. 

(a) (b) 
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In each cycle, the view evaluation is allowed only approximately two minutes. After this, 

the candidate views are checked for the alignment error conditions. Figure 6.19 shows that 

eight candidate views were checked when selecting the best view for the fifth scan. The light-

blue arrow points to the overall highest-score view, and the yellow arrow points to the view 

that satisfies the alignment error conditions. Each view is checked for the alignment error 

conditions only if it is at least three feet away from all other views that have been checked. 

After a new pose is computed for the next scan, the scanner is manually moved to the 

new location, using the graphical display from the system as a guide to the approximate 

position and orientation. The system also displays the exact height of the new position from 

the floor, and a measuring tape is used to check the actual physical height. The positioning 

typically takes two to five minutes for each scan. From the results of the surface registration, 

the positioning errors were all found to be less than five inches in each of the three 

orthogonal directions, and the orientation errors were all within two degrees from the three 

orthogonal axes. 

The acquisition process was manually terminated after the fifth scan was made. Figure 

6.20(a) shows the pose of the first scan, and the computed poses for the subsequent four 

scans. The final partial octree model and feasible view volumes are shown in Figure 6.20(b). 

The room is still not completely acquired, as one can see that there are still false surface 

voxels in the partial model. The graph in Figure 6.21(a) shows the percentage of each type of 

surface voxels in the partial octree model after each scan is merged. After the fifth scan, 

approximately 22% of the surface voxels in the partial octree model are false surface voxels, 

approximately 8% are under-sampled true surface voxels, and approximately 70% satisfy the 

sampling density requirement. The large proportion of occlusion surface voxels is partly the 

result of the scanner “seeing” through the small windows on the doors into the other rooms. 

These occlusion surfaces will never be eliminated because the openings into the other rooms 

are too small and the view planning system is unable to grow the feasible view volumes into 

the other rooms.  

The graph in Figure 6.21(b) shows the rate of increase of the total volume of the feasible 

view volumes. The increase in volume is the greatest just after the second scan is merged to 

the partial octree model, as this is when most of the erroneous occlusion surface voxels are 

eliminated. 
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Figure 6.20: (a) The pose of the first scan and the computed poses for the subsequent four 
scans. (b) The final partial octree model and feasible view volumes. 

 

 
Figure 6.21: (a) The proportions of the different types of surface voxels in the partial models 
after each scan is merged. (b) The total volume of the feasible view volumes. 

Figure 6.22 shows the triangle-mesh model of the room constructed from the five range 

images. PolyWorks 8 was used to reconstruct the model. Again, due to insufficient system 

memory for reconstruction computation, all the five range images were downsampled to half 

the resolution in each direction. 

Table 6.6 shows the average execution time taken by each main step of the acquisition 

cycle. The view evaluation is limited to approximately two minutes. At 10-samples-per-

degree scanning resolution, the DeltaSphere-3000 takes about eight minutes to make a full 
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panoramic scan. The graph in Figure 6.23(a) shows how much of the total patch area that has 

been evaluated by the view evaluation step in the two minutes. Besides the second 

acquisition cycle, the view evaluation step was able to evaluate more than 70% of the total 

patch area. Figure 6.23(b) shows the total patch sampling deficit in each cycle, and how 

much of the sampling deficit has been evaluated. 

 

 
Figure 6.22: Three different views of the triangle-mesh model of the room reconstructed 
from the five range images. 

(a) (b) 

(c) 
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Steps Average time (sec) Percentage 

Range image processing 29.5 15.5 

Surface registration 8.7 4.6 

Partial octree model creation and merging 24.4 12.8 

Feasible view octree creation 1.2 0.6 

Patch extraction and ranking 4.7 2.5 

View evaluation 120.5 63.1 

Registration analysis 1.7 0.9 

Total: 190.8 100.0 

Table 6.6: The average execution time of each main step. 

 

 
Figure 6.23: (a) The total patch area in the partial octree model after each scan has been 
merged, and the amount that is evaluated in the view evaluation step. (b) The total patch 
sampling deficit and the amount that is evaluated in the view evaluation step. 
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plan consists of ten views—the first view is manually and arbitrarily chosen, and the 

subsequent nine views are computed by the next-best-view planner. 

The simulated range scanner is identical to that in Section 6.2, and the parameter values 

of the scanner and the values of some other parameters used in the experiment are shown in 

Table 6.3. 

Top views of the four view plans are shown in Figure 6.24. In View Plans 0 and 1, the 

first views are in the main kitchen area, whereas in View Plans 2 and 3, they are in two of the 

small rooms. The graph in Figure 6.25(a) compares the four view plans by looking at the 

number of true and false surface voxels in the partial octree model after each scan is merged. 

It can be seen that View Plan 2, which started from a small room, is significantly slower in 

“discovering” most of the surface areas in the environment. This is evident in the view plan 

shown in Figure 6.24. The effect is also reflected in the graphs of Figure 6.25(b) and 6.26(a).  

Figure 6.26(b) compares the total patch area extracted from the partial model after each 

scan is merged. It is interesting to compare the order of occurrences of the “peaks” of the 

four view plans. The “peak” of View Plan 2 occurs later than those of the other three view 

plans. This is an indication that most of the information of the environment is “discovered” 

later than by the other view plans.  

It appears that after the eighth scan, all the graphs of the four view plans begin to 

converge to approximately the same values. Figure 6.27 shows the final partial models 

generated by each view plan after the tenth scans. The differences between these models are 

very few and minor. The conclusion from this experiment is that, if the number of scans is 

small, the choice of the first view can significantly affect the quality of the reconstructed 

model. With a sufficient number of scans, the choice of the first view becomes less important. 

The minimum number of scans required, so that the choice of the first view becomes 

unimportant, is dependent on the geometry of the scene and the capability of the scanner.  
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Figure 6.24: The four different view plans. Each view plan consists of ten views. The views 
surrounded by light-blue circles are the first views. The views may not be of the same height 
from the floor.  

 

 
Figure 6.25: Comparison of the four view plans. (a) The number of true and false surface 
voxels in the partial octree model after each scan is merged. (b) The number of good-quality 
surface voxels in the partial octree model after each scan is merged. 

(a) (b) 

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9
x 10

4

Acquisition cycle number

N
um

be
r o

f t
ru

e 
&

 fa
ls

e 
su

rfa
ce

 v
ox

el
s

view plan 0
view plan 1
view plan 2
view plan 3

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9
x 10

4

Acquisition cycle number

N
um

be
r o

f g
oo

d-
qu

al
ity

 s
ur

fa
ce

 v
ox

el
s

view plan 0
view plan 1
view plan 2
view plan 3

1 
2

3 

4 

5

6

7 8 

9 

10 

1

2 3

4

5

6 

8 9 10 

1

2 

3 4

5 6

8
9

10

1 
2 3 

4 

5 

6

8 

9

10 

7

77

View Plan 1 

View Plan 3 

View Plan 0 

View Plan 2 



 181

 

 
Figure 6.26: Comparison of the four view plans. (a) The total volume of the feasible view 
volumes after each scan is merged. (b) The total patch area extracted from the partial model 
after each scan is merged. 

 

 
Figure 6.27: The partial octree models resulted from the four different view plans. 
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Chapter 7  
 

Conclusion 

The goal of this work is to devise a practical method to automate the view planning for 

the acquisition of range data to reconstruct 3D models of indoor environments. The 

dissertation has presented the view planning problem in detail, and stated the objectives and 

requirements of a solution to the problem. 

This work has demonstrated that it is practical to use a greedy next-best-view planning 

approach for the range acquisition of indoor environments. The proposed hierarchical view 

evaluation method allows exhaustive 3D view evaluations to be possible within reasonable 

time. The hierarchical approach achieves computational efficiency by exploiting the various 

spatial coherences in the acquisition constraints and the sampling quality function in the view 

metric. The algorithm has been implemented in a view planning system and has 

demonstrated great speedups over the straightforward view evaluation method used in 

previous next-best-view algorithms. 

The usefulness of the view planning system also comes from the inclusion of many 

practical real-world acquisition constraints and quality requirements in the view metric. 

Three quality requirements are considered—they are the surface completeness, the surface 

sampling quality, and the surface registration accuracy. The acquisition constraints are 

classified into three groups, namely, the positional constraints, the sensing constraints, and 

the registration constraint. I believe that the view metric and the hierarchical view evaluation 

method are general enough to allow many other useful constraints and requirements to be 

added. For example, if it is required that the new view should not be more than a specified 

distance from the current view, then this constraint can be implemented as one of the 

positional constraints in the view metric function. In another example, if we favor new views 
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that are closer to the current one, then a weighting function can be added to scale the score of 

each view proportional to its distance from the current view. 

Another advantage of the hierarchical view evaluation method is that view sensitivity to 

the potential pose errors of the scanner can be easily incorporated into the evaluation of 

views. With this, each view is evaluated only with the surface elements that can be acquired 

from every pose within the pose error bound of the view. The result is that surfaces that are 

expected to be acquired from a view will be acquired even if the scanner is physically 

positioned with pose error.  

The dissertation has also shown the importance of the registration constraint and the 

effectiveness of the new registration accuracy metric. The constraint ensures that the range 

image to be acquired from the computed new view can be accurately registered to the partial 

model. The registration is essential to localize the actual pose of the scanner, and also to 

allow the new range image to be correctly merged to the partial model. Unlike all the 

previous next-best-view methods that consider the registration constraint, the proposed 

registration accuracy metric is more accurate in that it takes into account not only the amount 

of overlap between the two surfaces, but also the shape constraint on the 3D rigid-body 

transformation between the two surfaces, and the range measurement errors. 

Although the hierarchical view evaluation method has only been applied to 3D views, it 

is potentially applicable to higher-dimensional views. It is also extensible to scanners with 

bistatic sensors, but it is not clear how well the spatial coherences can be exploited to gain 

significant performance improvement over the straightforward method. 

In the following section, some of the limitations of the next-best-view method are 

discussed, and future work and extensions are proposed. 

7.1  Limitations and Future Work 

The most fundamental limitation of the proposed next-best-view method is the non-

optimality of the greedy approach in terms of the number of views in the view plan. Even 

though complete a priori geometric information is not available, with the partial information, 

it is still possible to produce results that are generally better than those from a purely greedy 
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approach. Finding a local optimal set of views for the current partial model is 

computationally difficult because of the exponential time complexity and, moreover, it is 

likely that most of the views in the local optimal solution will become obsolete as new 

information is obtained from subsequent scans. One potential solution may be a hybrid 

between a local optimal approach and a purely greedy approach. With this hybrid approach, 

at each iteration we first find the optimal set of k, or fewer, views for the current partial 

model, where k is a constant specified by the user. Using the greedy approach, the “best” 

view among the k views is chosen for the next scan. After the information of the new scan is 

incorporated into the partial model, a new optimal set of k, or fewer, views is computed for 

the new partial model, and the process repeats until termination. 

It seems that the hybrid approach is able to avoid the obvious non-optimality of the 

purely greedy approach and, with a small value of k (for example, 3), it is able to avoid the 

computational intractability of the NP-complete problems. One of the major challenges to 

implementing this hybrid approach may be the large amount of memory required. 

The hierarchical view evaluation is suitable for indoor environments because these 

environments usually have large planar surfaces such as walls, floors and ceilings, which 

contribute a great deal to the spatial coherence that can be exploited to speed up view 

evaluation. The hierarchical method may not be very efficient for environments or objects 

that have very few or no large planar surface. However, for environments with many large 

curved surfaces, view evaluation efficiency may not be a problem because these curved 

surfaces can be approximated by planar patches during patch extraction.  

There are still a few major problems to be solved in order to extend the hierarchical view 

evaluation to higher-dimensional views. Extension to 5D poses (3D position, pan and tilt) 

seems to be the most useful because, in practice, that is the highest degree of positioning 

freedom necessary for most scanners. We have seen in Section 4.3 that some of the major 

challenges of extending the algorithm to 5D poses are (1) a data structure to allow 

independent subdivision of the solution space in any subset of dimensions, and (2) a very 

space-efficient representation of the solution space, possibly by exploiting the independent 

spatial coherences in the different dimensions. Besides extending the hierarchical algorithm 

to views with higher-dimensional poses, other imaging parameters may be included in the 



 185

views as well. For example, the variable field of view of the scanner and the adjustable 

scanning resolution may be some of the parameters in the views. 

Although I have discussed, in Section 4.3.3, the potential difficulties of applying the 

hierarchical view evaluation method to range scanners with bistatic sensors, it is still 

interesting to explore how we should subdivide the views and how we can approximate the 

swept volumes so that the hierarchical algorithm can become effective for bistatic sensors. 

It seems that the evaluation of the registration constraint can also benefit from using a 

hierarchical evaluation approach. When evaluating the registration constraint for a view, all 

the true surface elements in the partial model are considered. These true surface elements can 

first be grouped into patches, and each candidate view is then evaluated with the patches in a 

hierarchical manner where patches are subdivided if necessary. If all the feasible views are to 

be evaluated for the registration constraint, then the patches are evaluated with the viewcells.  

There are some practical extensions that we can add to the next-best-view planning 

system. We can have a user-interface to let the user add his knowledge of the environment to 

the partial model. For example, he can manually specify that a certain region is empty space. 

This should improve the optimality of the view planning solution, because more information 

is now available earlier to the view planner. Sometimes, only a limited number of scans can 

be afforded and, in this case, it may be useful if the user is allowed to specify which regions 

or surfaces are more important, so that the next-best-view planning system will give priorities 

to those regions. Since the complete model of the scene is not available for the user to 

precisely specify the important surfaces, the user may instead have to specify, over many 

acquisition cycles, the approximate volumetric regions that contain the surfaces. 

With automated view planning, it is possible to fully-automate the whole acquisition 

process if the scanner can be positioned automatically. We can use a mobile robot to move 

the scanner. In this case, the next-best-view solution must also include unobstructed paths for 

the robot to move to the planned position. 
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Appendix A  
 

Lindeberg’s Theorem 

Lindeberg’s Theorem is used in the derivation of the rotational alignment error condition 

in Section 5.3.2.2. In this appendix, the theorem is defined, and then I show how the 

Lindeberg condition is satisfied in my derivation. 

A.1  Definition 

The central limit theorem states that the sum of many independent identically distributed 

random variables with finite variance will be approximately normally distributed. 

Lindeberg’s Theorem is a generalization of the central limit theorem. It does not require 

identical distribution, but incorporates a condition (Lindeberg condition) that, if satisfied, 

implies that the sum will be approximately normally distributed. The theorem is defined in 

[Ash1972] as follows: 

Lindeberg’s Theorem. Let nn XXS ++= L1 , K 2 1 ,,n = , where the kX  are 

independent random variables with finite mean km  and finite variance 2
kσ . Let 
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then nT  converges in distribution to a random variable ∗X  that is normal with mean 

0 and variance 1. 
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A.2  Application 

I describe how the Lindeberg condition is satisfied to arrive at the distribution of xQ  in 

Equation (5.46). From Equation (5.42), we have 

 ∑
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 (A.1) 
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Then, from Equation (5.44), the mean of kX  is 
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Therefore, by Lindeberg’s theorem, ( )( )nnnn SEScT −= −1  converges to a normal distribution 

with mean 0 and variance 1, and that means xn QS =  converges to the normal distribution 
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