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ABSTRACT 

Lauren A. Rackoff Tompkins: Tissue Reservoirs of HIV-1: Insights from the Central Nervous System 
(Under the direction of Ronald Swanstrom) 

 

 Cellular and anatomical reservoirs of HIV-1 preclude a cure to infection. Efforts to characterize 

these reservoirs are an important part of developing a strategy to eradicate all forms of HIV-1. The central 

nervous system (CNS) is a unique bodily compartment that can support viral replication independent of 

that in the blood (compartmentalization) and may be an anatomical reservoir of unique viruses. In this 

‘proof of principle’ study, we characterized viral sequences (RNA and provirus) from the blood, 

cerebrospinal fluid, brain, and liver of two infected donors who died with HIV-1-associated dementia and 

disparate states of viral replication (compartmentalized versus equilibrated). We show that selective 

pressures exist within CNS and liver tissue to drive expansion of particular viral species. We found 

macrophage-tropic viral lineages archived in the brain, implicating macrophages as a potential cellular 

reservoir. By including more donors and tissues, our study provides insight towards HIV-1 reservoirs and 

cure research.  
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CHAPTER I. ASSESSING TISSUE RESERVIORS OF HIV-1 IN DONORS WHO DIED WITH HIV-
ASSOCIATED DEMENTIA 

 
 
 

INTRODUCTION 

 

1.1 HIV-1 Disease Burden And Molecular Biology 

 

1.1.1 The HIV-1 pandemic: treatable, but not curable 

Human immunodeficiency virus type 1 (HIV-1) is the cause of acquired immunodeficiency 

syndrome (AIDS), where uncontrolled infection in the blood and lymphoid organs depletes CD4+ T cells 

and thus diminishes immune competence over time. HIV-1 primarily infects CD4+ T cells and productive 

infection usually results in cell death via toxic effects of viral replication or immune attack. When a 

sufficient number of CD4+ T cells are lost, HIV-infected people become susceptible to opportunistic 

infections, cancers, and other co-morbidities. Without treatment, HIV-1 disease progresses to AIDS in 

about 10-15 years, and most people die within a few years of AIDS diagnosis. Roughly 37 million people 

are currently living with HIV-1, with an estimated 5,600 new infections occurring per day. The disease 

burden is greatest in low- and middle-income countries: 70% of people with HIV-1 live in Africa and 65% 

of AIDS-related deaths also occur in Africa [1]. 

The introduction of antiretroviral therapy (ART) has drastically changed the landscape of HIV-1 

morbidity and mortality. ART controls viral replication and thus disease progression, thereby extending 

longevity in HIV-infected people. At the end of 2013, 12.9 million people globally were receiving ART, 

11.7 million of them in low- and middle-income countries [1, 2]. An additional 1.9 million people were 

newly enrolled in ART in 2014, which is one of the largest annual increases in treatment initiation to date. 

Still, only 14.8 of the 37 million HIV-1+ people are receiving ART, which means that the majority of people 

are untreated and capable of transmitting the virus (60% or 22.2 of 37 million) [1, 2]. Efforts are underway 

to continually increase the number of people on therapy, and the World Health Organization is now 
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recommending a “treat-all” approach where all populations and age groups are recommended to receive 

ART as soon after diagnosis as possible [1]. 

HIV-1 infection is indeed treatable, but there is currently no cure. Although ART is successful at 

achieving viral suppression (i.e. very low or undetectable viral load), these drugs must be taken 

throughout life to control infection. A major focus of current research is to eradicate HIV-1 and cure 

infected patients. Viral persistence in cellular and anatomical reservoirs precludes a cure, thus efforts to 

characterize these reservoirs are an important part of developing a strategy for eradicating all forms of 

HIV-1. 

 

1.1.2 HIV-1 particle structure and genome organization 

 HIV-1 is a single-stranded RNA (ssRNA), enveloped virus that belongs to the Lentivirus genus, 

Retroviridae family. The HIV-1 genome is ~9.7 kilobases in length, has a 5’ cap and 3’ polyA tail, and 

encodes for nine genes that are flanked by long terminal repeats (LTR): gag, pol, env, vif, vpr, tat, rev, 

vpu, and nef. Structural proteins are encoded in the env gene (viral envelope, “Env protein”) and the gag 

gene (the Gag polyprotein precursor, which is processed into the matrix [MA], capsid [CA], and 

nucleocapsid [NC] structural proteins). The pro and pol genes encodes the viral enzymes protease (Pro), 

integrase (IN), and reverse transcriptase (RT). The remainder of genes encode accessory proteins (Vif, 

Vpr, Vpu, and Nef) or regulatory proteins (Tat and Rev) [3].  

 Two identical copies of the ssRNA viral genome are packaged within a conical capsid core. The 

dimeric ssRNA genome associates with NC protein to form a NC-RNA complex that is surrounded by CA 

protein to form the conical capsid core [4]. A spherical shell composed of MA protein surrounds the core. 

MA protein is embedded in the viral envelope, a lipid bilayer derived from the infected host cell 

membrane. Trimeric Env proteins are also embedded in the viral envelope and are exposed as spikes on 

the outer surface of the virion. A mature virion contains all of the components required for infectivity: the 

dimeric ssRNA genome, cellular tRNALys3 molecules to prime cDNA synthesis, the viral structural 

proteins that form a functional virion and permit attachment to viral receptors expressed on permissive 

cells, and the three viral enzymes. Vpr, Vif, and Nef are also packaged in the virion, as well as cellular 

proteins incorporated during budding from an infected cell.   
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1.1.3 The viral life cycle of HIV-1 

 The first step of the HIV-1 replication cycle is attachment to the surface of a permissive cell via 

interactions between HIV-1 Env protein and the cell-surface viral receptor, CD4, and co-receptors, CCR5 

or CXCR4 [5]. Viral Env is a heavily glycosylated trimeric protein composed of the gp120 surface 

glycoprotein, which is exposed on the outer face of the viral particle, and the gp41 transmembrane 

glycoprotein, which is embedded in the viral membrane (viral envelope). These proteins remain tethered 

to one another noncovalently in the viral envelope. Both gp120 and gp41 originate from the same 

precursor protein, gp160, which is proteolytically cleaved by host furin-like proteases in an infected cell.  

 Cell attachment begins with gp120 binding CD4 on the cell surface. This interaction initiates a 

cascade of conformational changes in viral Env gp120 and gp41 eventually leading to fusion with the 

cellular membrane [5]. First, gp120-CD4 association induces conformational changes in gp120 that allow 

interaction with the viral co-receptor, CCR5 or CXCR4. Co-receptor binding causes exposure of the 

hydrophobic gp41 fusion peptide, which inserts into the host cell membrane thereby tethering the viral 

and cell membranes. Each gp41 monomer within the trimer bends at a hinge region to form a stable six-

helix bundle, which is the driving force in forming a fusion pore. Contents of the viral particle are then 

delivered into the cell cytoplasm through the fusion pore.  

 Upon release of the viral core into the cell cytoplasm, the viral capsid is uncoated and viral 

genomic RNA and proteins are released [5]. In the cytoplasm, viral RNA is reverse transcribed to DNA by 

viral RT. Viral RT has an RNA-dependent DNA polymerase for synthesizing a DNA copy of the viral 

genome and RNase H activity for degrading RNA in the RNA:DNA replication intermediate. The pre-

integration complex (PIC), composed of viral genomic DNA and viral and cellular proteins, is then formed 

and translocates into the cell nucleus through the intact nuclear envelope, allowing HIV-1 to replicate in 

non-dividing cells [6]. With the help of viral IN, viral DNA is integrated into a host cell chromosome 

(provirus), which is an essential step of the viral life cycle [7]. Integration can happen anywhere in the 

host genome, but tends to favor transcriptionally active genes. A recent study has highlighted the 

importance of the nuclear architecture in integration site selection, as integration occurs near the nuclear 

pore and favors active transcriptional units as opposed to chromatin regions located deeper within the 
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nucleus [8]. Viral integration allows the virus to persist in the form of an infected cell that can become a 

reservoir when dormant (latent infection).  

 The HIV-1 provirus can then be transcribed using cellular machinery, namely RNA polymerase II, 

with the help of the viral Tat protein [9]. Viral transcripts, spliced or unspliced, are then transported out of 

the nucleus, a process mediated in part by the viral Rev protein, for translation of viral proteins or 

packaging into a nascent virion (viral assembly) in the cell cytoplasm [10]. Viral gag, pro, pol, and env are 

translated into polyprotein precursors, which are then further processed/cleaved by the viral Pro or a host 

protease during and after viral assembly and budding [11]. Viral assembly occurs at the cell surface, 

where two copies of an unspliced, full-length viral RNA genome, viral proteins, and components of the cell 

cytosol are packaged into an immature virion that buds from the cell surface. In a highly ordered process 

of maturation, viral Pro cleaves the structural viral polyprotein precursors (Gag and Gag-Pro-Pol), 

ultimately leading to the formation of a mature, infectious viral particle.   

 

1.2 Tissue Reservoirs Of HIV-1 

 

1.2.1 HIV-1 persistence in viral reservoirs 

 HIV-1 persistence in cellular and anatomical reservoirs precludes a cure to infection. Two 

essential criteria exist to define a viral reservoir of HIV-1 [12]. First, a reservoir must preserve replication-

competent virus in some form (i.e. viral particles or viral genomes) so that the virus can reestablish 

productive infection in the future. Second, a reservoir must have mechanisms of longevity. For example, 

reservoirs composed of virions would require escape from biochemical decay, as seen with virion 

particles that become trapped extracellularly in dendritic cell processes. Cell-associated viral reservoirs, 

however, require cell survival and escape from immune control including cytotoxic T cell (CTL) activity. 

Latent infection, a state with no active replication, is the best characterized cellular reservoir of HIV-1, but 

another type of reservoir could be composed of productively infected cells with slow turnover. The 

concept of a reservoir is further complicated by the detection of cells that clonally expand in vivo through 

transactivation of cellular growth-promoting genes by integrated viral DNA [13]. 
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A reservoir will most likely occur in cells that are normally infected with HIV-1. This virus infects 

cells that express the viral receptor CD4 and co-receptor (CCR5 or CXCR4). Activated CD4+ T cells are 

the most permissive cell type for HIV-1. Latently infected resting memory CD4+ T cells are the hallmark 

reservoir of HIV-1 infection and are thought to predominantly arise from productive infection of activated 

CD4+ T cells as they are transitioning back into a resting state [14]. Latently infected T cells contain 

replication-competent HIV-1 genomic DNA (provirus) integrated within the human genome in the absence 

of ongoing viral replication. Although dormant, latently infected resting T cells can be induced to become 

activated and thereby transcribe integrated DNA to generate new progeny virions capable of productive 

infection. It is important to note that integrated DNA can be either intact or defective, thus many infected T 

cells contain HIV-1 DNA that is incapable of producing functional virions [15]. Latently infected cells are 

established early after a person becomes infected and these cells persist even in the presence of ART-

mediated viral suppression. Persistence of the latent reservoir is due in part to the virus escaping immune 

surveillance, as integrated viral DNA in latently infected cells is likely transcriptionally silent and does not 

produce antigens that signal immune attack [16]. 

A second type of HIV-1 reservoir could be a productively infected cell with slow turnover, which is 

illustrated in HIV-1 infection of the central nervous system (CNS). The CNS is a bodily compartment 

separated from the periphery by the blood-brain barrier. HIV-1 enters the CNS and can establish 

productive infection with features that are distinct from those in the blood [17-22]. One such feature 

involves comparing disparate viral decay kinetics in the blood and cerebrospinal fluid (CSF), the latter of 

which bathes the CNS and is an indirect measure of CNS infection. After the onset of suppressive ART, 

which prevents new infections without affecting previously infected cells, the blood viral load decreases 

rapidly (1-2 weeks) due to rapid turnover of short-lived infected T cells [23-25]. For most people, the same 

pattern of rapid viral decay is observed in the CSF. However, occasionally the viral load decays much 

more slowly in the CSF than in the blood, which suggests that cells with a longer half-life than T cells can 

support HIV-1 replication in the CNS [20, 26].  

The concept of anatomical reservoirs is a current topic of interest, and the CNS is a unique 

anatomical compartment capable of sustaining viral replication and potentially harboring viral reservoirs 

that differ from those in the blood. Tissues exposed to the peripheral blood may also harbor unique viral 
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reservoirs, as tissue microenvironments are highly structured and functionally specialized. Importantly, 

only 1-2% of lymphocytes in the body are present in the blood at any given time [27, 28], whereas the 

vast majority of lymphocytes are tissue-resident, indicating that a greater frequency of permissive cells 

are present in the tissues compared to the blood [29]. Consistent with the idea of tissue reservoirs 

differing from the blood, reservoir establishment in at least some tissues appears to precede that in the 

blood, as demonstrated by a recent rhesus macaque animal model of HIV-1 infection [30]. In macaques 

treated with suppressive ART at day three post-infection with simian immunodeficiency virus (SIV), viral 

DNA was found in lymph node and gut tissue before detectable viremia and in the absence of SIV DNA in 

PBMCs. Importantly, treatment interruption was associated with rebound virus, which indicates that the 

reservoir was indeed established in these macaques. Understanding how tissues act as anatomical 

compartments for viral replication and reservoir establishment will be important for disease treatment 

methods and advancement towards finding a cure for HIV-1. 

 

1.2.2 The CNS is a unique bodily compartment and a potential anatomical reservoir of HIV-1 

 HIV-1 is detectable in the CSF early in acute infection, indicating that virus enters the CNS and 

may replicate there [22]. HIV-1 infection of the CNS can cause neurocognitive dysfunction ranging in 

severity from mild forms of impairment to full-blown dementia (HIV-associated dementia, HAD), diseases 

collectively termed HIV Associated Neurocognitive Dysfunction (HAND). Incidence of HAD in HIV-infected 

people has decreased dramatically with the use of antiretroviral therapy (ART), yet milder forms of HAND 

have increased in prevalence in people undergoing ART [31]. Up to 50% of patients being treated for 

HIV-1 have some neurocognitive impairment, and the mechanisms of mild HAND pathogenesis in ART-

mediated, virally suppressed people are unknown. Studies have highlighted the likely contribution of 

chronic low-grade CNS inflammation to neurocognitive disease [32-35]. Indeed, people with ART-

suppressed plasma viremia can have higher viral load in the CSF, which correlates with increased CNS 

inflammation and immune activation. Whether persistent CNS viral replication or release of virus from 

cellular reservoirs is responsible for chronic inflammation is yet to be determined. Understanding the 

complexity of CNS infection and mechanisms of pathology requires knowledge of CNS anatomy and 

physiology. 
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The CNS, consisting of the brain and spinal cord, is an anatomical compartment isolated from the 

rest of the body by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) [36]. The 

BBB and BCSFB are semipermeable barriers that limit exchange of substances between the CNS and 

peripheral blood. These physiologically distinct barriers influence the composition of CNS fluid, including 

the CSF and CNS interstitial fluid, which differs greatly from the blood. For example, concentrations of 

white blood cells, albumin, and immunoglobulin G (IgG) in the CSF are all <1% of that in the blood in spite 

of the fact that the water portion of the CSF is derived from the blood plasma. Key to barrier function of 

the BBB and BCSFB are intercellular tight junctions, which connect cerebrovascular endothelial cells 

(BBB) or choroid plexus epithelial cells (BCSFB). Otherwise, the BBB and BCSFB differ in physical 

composition and function. 

The BBB is present along CNS blood vessels throughout the brain. Tight junction-connected BBB 

endothelial cells are separated from the brain parenchyma (the brain tissue proper) by two basement 

membranes: the endothelial and parenchymal. At the capillary level, these membranes are fused, but at 

all other vascular levels, these membranes separate to delineate the CSF-filled perivascular space [37]. 

The BBB exhibits specialized function based on its position within the overall CNS vasculature: nutrient 

transport occurs primarily at capillaries that lie in close proximity to neurons, whereas immune modulation 

occurs at the postcapillary venule (a small vessel that blood flows through after leaving the capillaries) 

where the perivascular space can accommodate the presence and movement of cells [38]. 

The BCSFB resides in the choroid plexus located in each of the four brain ventricles. The choroid 

plexus is composed of fenestrated, permeable blood vessels (vessels containing endothelial pores) 

surrounded by tight junction-connected epithelial cells that are directly exposed to the CSF [39]. 

Ependymal cells of the choroid plexus produce CSF from arterial blood. Newly produced CSF fills the 

brain ventricles, circulates around the exterior surfaces and perivascular spaces of the brain, and 

ultimately is reabsorbed into venous blood at the meninges. CSF flow is mediated by pulsation of the 

choroid plexus and action of ependymal cell cilia. Interstitial fluid of the brain parenchyma is also drained 

into the CSF, a fluid that acts as a surrogate for lymph by mediating immune surveillance throughout the 

CNS.  
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The CSF is considered to be an immunologically active fluid as it houses T cells, B cells, and 

monocytes, cells which have limited access to the CNS [36]. During physiologic conditions, T cells are 

primarily restricted to the CSF. However, monocytes can exit blood vessels, enter the brain, and 

differentiate into macrophages that primarily concentrate around CNS vasculature (perivascular 

macrophages), but can also be found in the meninges (meningeal macrophages) and choroid plexus 

(choroid plexus macrophages). CNS myeloid cells, as well as microglia (resident macrophages of the 

brain), have antigen-presenting capability and are considered important for immune surveillance and 

interaction with circulating central memory T cells. 

 HIV-1 is found in the CNS very early after transmission, although the associated mechanisms of 

entry are not well understood [22]. One theory, which is the most favored, proposes trafficking of HIV-

infected CD4+ T cells into the CNS as part of routine immune surveillance or in the context of 

neuroinflammation. Alternatively, HIV-1 virions could cross the BBB/BCSFB, likely in the setting of high 

blood viral load. Consistent with this hypothesis, some studies suggest that HIV-1 can specifically 

interfere with the production of proteins involved in the maintenance of tight junctions thereby disrupting 

the integrity of the BBB [34]. In contrast, the work of Price and colleagues has shown that, in the absence 

of neurocognitive symptoms, the CSF viral load decreases late in infection while the viral load in the blood 

is on average increasing. This disparity in viral load occurs as CD4+ T cells are being depleted in the 

blood and white blood cell (WBC) count drops in the CSF, the latter of which suggests that T cells in the 

CSF are also reducing in number. These data suggest that the reduction in CSF viral load is due to a loss 

of CD4+ T cells that come from the blood, and thus virus enters the CNS in the form of trafficking T cells 

[35]. 

Brain pathology affects barrier function of the BBB/BCSFB, and as an associated immune 

response is mounted, this increases the number of CNS-infiltrating immune cells. During inflammation, 

CNS inflammatory cells secrete leukocyte-attracting chemokines and endothelial cells upregulate 

expression of adhesion molecule receptors, thereby aiding immune cell recruitment and extravasation 

into the CNS [38]. Neuroinflammation can be a protective immune response to CNS tissue damage or 

infection, but immune pathology can also compromise the BBB/BCSFB, which alters CNS homeostasis 

and the proportions of immune cells in the brain.  
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HIV-1 infection is associated with increased inflammation and immune activation both 

systemically and in the CNS. Neuroinflammation and BBB/BCSFB integrity both appear to affect the 

population of HIV-1 present in an infected CNS in a multifaceted, dynamic manner. Theories behind some 

of this complexity have been proposed based on studies comparing viral populations in the CSF, a 

surrogate for examining the CNS in living people, with those in the peripheral blood of the same 

individuals [22]. First, in people who have very low or undetectable CSF viral load, it is likely that virus is 

not replicating, at least not appreciably, in the CSF or CNS, but perhaps gains transient entry to the CNS. 

CSF virus likely comes from infected CD4+ T cells in the blood that cross the BBB/BCSFB and release 

viral progeny in the CNS. Second, in people who have elevated levels of HIV-1 in the CSF that is 

genetically similar to virus in the peripheral blood, it is likely that CSF virus also comes from migrating 

infected T cells, but now in higher levels as part of an immune response associated with increased white 

blood cell count in the CSF (pleocytosis). Low-level, focal replication in the CSF or CNS could also 

account for increased viral load with or without pleocytosis, although without establishment of a persistent 

CNS infection. Third, in people who have detectable CSF virus that is genetically distinct from that in the 

peripheral blood, CSF virus could come from transient, clonal amplification of certain viral species in the 

CSF or CNS that may or may not establish persistent infection over time. The term “compartmentalized” 

viral replication is used to describe independent replication of HIV-1 within a given bodily compartment, 

and is illustrated by genetic differences in the viral population between compartments, such as the 

CSF/CNS and blood. “Equilibrated” viral replication defines a state where HIV-1 populations are 

genetically similar between two compartments due to ongoing or recent intercompartmental movement of 

viruses. 

Roughly 30% of acutely HIV-1 infected people have pleocytosis, which generally correlates with 

higher viral load in the CSF [22, 40]. Thus, increased viral burden in the CSF could result from an influx of 

infected cells in response to neuroinflammation. Consistent with this hypothesis, BBB dysfunction, 

indicated by an increased CSF/blood albumin ratio, often accompanies pleocytosis. A loss of barrier 

integrity in the context of enhanced immune cell trafficking to the CNS could allow more infected cells 

and/or cell-free virus to enter the CNS. Viral replication in the CSF/CNS also increases viral load in the 

CSF, irrespective of pleocytosis. Yet, pleocytosis occurs in a fraction of people with compartmentalized 
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CNS replication, and in an even greater proportion of people with equilibrated replication. How 

pleocytosis affects viral replication in the CNS is unclear, and it is plausible that pleocytosis occurs as a 

consequence of CNS HIV-1 infection. On the other hand, an influx of permissive cell types for infection 

could also promote viral replication in the CNS (Sturdevant 2015; Spudich 2005).  

 

1.2.3 Potential cellular reservoirs in the CNS 

CD4+ T cells 

The primary target of HIV-1 infection is the CD4+ T cell, however, there are relatively few T cells 

in the healthy CNS. The concentration of T cells found in the CSF is less than 1% of that found in blood 

and even fewer, if any, are seen in the brain parenchyma. Despite the low absolute number of T cells 

present, the CSF has a relatively large proportion of permissive T cells; the CSF cellular composition 

includes primarily T cells (90% of total CSF cells), which are mostly of memory phenotype (central and 

effector) and recently activated (CD69+) [36]. As noted above, pro-inflammatory conditions promote 

immune cell influx into the CSF/CNS, thus increasing the number of potential target cells for HIV-1 

replication.  

The traditionally described cellular reservoir of HIV-1 is the latently infected T cell. For such a cell 

to contribute to a CNS reservoir of HIV-1, the cell must reside over time in the CNS. CD8+ T cells have 

been shown to persist in the CNS of mice infected with vesicular stomatitis virus (VSV) [41]. These cells 

are CD103+, which is an integrin found on tissue-resident CD8+ T cells, and expression of CD103 follows 

antigen recognition in the brain. Furthermore, CD103 appears to be important for retention of CD8+ T 

cells in the CNS, as knockdown of this molecule resulted in reduced accumulation of CNS T cells. 

Interestingly, CNS-resident CD8+ T cells in the brain parenchyma were shown to form clusters, some of 

which contained CD4+ T cells. Although CNS CD4+ T cells were not analyzed thoroughly in this study, 

another study showed that tissue-resident CD4+ T cells in the skin are antigen-experienced and express 

CD103 [42]. Taken together, these data suggest that a population of CNS-resident CD4+CD103+ T cells 

could exist in the CNS and harbor HIV-1.  

Some evidence exists in support of HIV-1 replication in CNS T cells. In some cases there is 

elevated viral load in the CSF sufficient to indicate HIV-1 replication in the CSF/CNS and rapid viral decay 
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in the CSF upon ART initiation, suggesting that this virus was replicating in a short-lived cell, such as a T 

cell [26]. Some people with rapid CSF viral decay have compartmentalized replication of HIV-1 in the 

CSF, and CSF virus is T cell-tropic, meaning that the virus replicates best in T cells compared to other 

cell types. Such individuals likely have a CNS-derived population of HIV-1 arising from infected T cells, a 

population that differs from T cell-tropic virus in the blood. Alternatively, people with relatively high CSF 

viral load, equilibrated viral population, and evidence of pleocytosis may also have HIV-1 replicating in 

CNS T cells due to an increase in CSF/CNS T cell concentration, but in a manner that does not result in a 

distinct population of virus in the CSF compared to the blood [22].  

 

Macrophages 

Slow decay of CSF virus with ART suggests that, in this case, HIV-1 is being produced from a 

longer-lived cell type than a T cell. HIV-1 cell tropism depends at least in part on CD4 receptor expression 

density on the surface of a cell. R5 T cell-tropic virus replicates robustly in cells that express high levels of 

CD4 (T cells), but poorly in cells that express low levels of CD4, including macrophages, which have a 

similar number of cell surface CD4 molecules to T cells, but the molecules are less densely packed due 

to the larger surface area of macrophages [26].  

The ability to use low levels of CD4 for cell entry is an evolved feature of the viral Env protein that 

cannot be attributed to a single mutation [43]. Rather, macrophage tropism likely evolves as an 

adaptation to the lack of CD4-rich target cells in the CNS, and the evolution of macrophage tropism 

appears to involve multiple genetic changes that differ between people. Pleocytosis further complicates 

macrophage-tropic evolution as it may alter the relative proportion of permissive cell types in the CNS 

thereby supporting viral replication from either T cell- or macrophage-tropic lineages. Indeed, a rhesus 

macaque animal model of HIV-1 infection showed that infection causes activation of bone marrow-derived 

monocytes and increased traffic of activated monocytes to the CNS with subsequent differentiation in to 

CNS macrophages [44].  

  The CNS is rich in macrophages that could serve as a reservoir for HIV-1. Perivascular 

macrophages, choroid plexus macrophages, and meningeal macrophages are all bone marrow-derived 

and are named for anatomical regions in which they reside. These cells could be infected by 
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macrophage-tropic virus or with much lower efficiency by an R5 T cell-tropic virus. Perivascular 

macrophages are likely exposed to cell-free or cell-associated virus that crosses the BBB. Such virus 

could come from either the blood or CSF, depending on barrier physiology at the point of entry. Indeed, 

immunohistochemical staining of autopsied brain shows the presence of HIV-1 nucleic acid and protein in 

perivascular macrophages. Similarly, meningeal macrophages, located at the superficial brain meninges, 

are likely also exposed to blood or CSF virus that crosses the leptomeningeal BBB. Choroid plexus 

macrophages, on the other hand, are likely exposed to predominantly blood virus, as these macrophages 

are located in the choroid plexus stroma, which harbors fenestrated capillaries that provide blood for the 

production of CSF.  

A rhesus macaque animal model of HIV-1 infection suggested that the virus could migrate 

between the CNS meningeal and parenchymal regions or replicate autonomously in each of them [45]. 

The rapid migration of genetically homogeneous virus throughout the brain was associated with faster 

disease progression and widespread encephalitis. Furthermore, compartmentalized replication in the 

meninges versus parenchyma was associated with localized detrimental inflammation within these 

respective brain regions. One macaque with compartmentalized replication in the meninges versus 

parenchyma was suggested to have macrophage-tropic virus present in both regions, an observation that 

exemplifies how regional macrophages may contribute to CNS infection and disease. Collectively, these 

data suggest that the uncontrolled replication of HIV-1 in different brain regions, and potentially in regional 

macrophages, may be detrimental for local physiology through induction of pathological inflammation.  

 

Microglia 

Microglia are resident macrophages of the CNS and the predominant immune cell type in the 

brain parenchyma. Unlike macrophages, microglia are not bone marrow-derived, rather they arise during 

embryonic development and are maintained throughout adulthood via local proliferation [46]. Microglia 

have immune functions including phagocytic ability, inflammatory cytokine secretion, and weak antigen-

presentation. Studies using HIV-infected human brain tissue at autopsy show that microglia can contain 

HIV-1 nucleic acid and protein. Furthermore, as with monocyte-derived macrophages, HIV-1 can infect 

microglia in vitro, suggesting that this cell type is permissive to HIV-1 infection. Like macrophages, 
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microglia have low surface densities of CD4, so virus capable of successfully infecting these cells is likely 

macrophage-tropic [26]. Microglia are thought to have very long life spans, even longer than CNS bone 

marrow-derived macrophages, thus persistent infection of these cells could constitute a CNS reservoir of 

HIV-1. Alternatively, persistent replication in this cell compartment deep in the brain parenchyma could 

maintain an active reservoir even in the face of poorly penetrating anti-HIV-1 therapy. 

 

Astrocytes 

Astrocytes provide mechanical and metabolic support for neurons and are the most abundant cell 

type in the brain [47]. Viral DNA has been detected in astrocytes of HIV-infected people, and astrocytes 

can be infected at low levels in vitro [48]. However, it is unclear whether astrocytes are productively 

infected in vivo, as they express no CD4 [49], the viral receptor. Indeed, an analysis of macrophage-tropic 

HIV-1 env genes from individuals with HIV-associated dementia failed to detect CD4-independent 

infection by their encoded Env proteins [50]. Yet, CD4-independent infection was characterized in another 

study where rhesus macaques were infected with chimeric human/simian immunodeficiency virus (SHIV) 

that contains an R5 T cell-tropic HIV-1 env in the context of an SIV backbone. Still, only one HIV-1 env 

clone isolated from the CNS of a single infected macaque was able to infect CD4- cells in vitro, so it is 

difficult to draw definitive conclusions from a single observation [51]. An alternative explanation for the 

presence of HIV-1 nucleic acid in astrocytes is that these cells have phagocytic ability and could ingest 

infected T cells [52]. The extent to which HIV-1 can enter cells in the absence of receptor and/or co-

receptor is a poorly studied issue that deserves more attention given the number of cells without viral 

receptors present in a person and the concern that these alternative cell types could contribute to the 

reservoir. 

 

1.2.4 Logistics and complications in evaluating the CNS reservoir 

The defining criterion of a reservoir is that the virus is preserved in some form that allows for 

reestablishment of productive infection. In the case of the blood reservoir, latently infected CD4+ T cells 

can be isolated from the blood and used in a viral outgrowth assay to directly assess the prototypical 

latent reservoir [16]. Such methods are essentially moot for analyzing the CNS reservoir due to the 
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logistics of collecting viable CNS cells postmortem in a timely manner. An alternative method of 

determining whether HIV-1 in the CNS can reestablish infection is to characterize virus in the CSF that 

emerges following ART treatment interruption (rebound virus).  

HIV-1 rebound virus appears in the CSF roughly two weeks after the detection of virus in the 

blood [53]. Phylogenetic analysis of rebound viral populations in the CSF versus blood could be used to 

determine if populations in these two compartments differ, indicating that “compartmentalized” CSF 

rebound virus comes from the CNS and thus illustrates the presence of a CNS reservoir of HIV-1. 

Furthermore, if viral species previously confined to the CSF arise in the blood during rebound, then re-

establishment of systemic infection would be influenced by the CNS reservoir. Although it would be 

difficult to prove what cell type recrudesced CNS virus originates from, the use of in vitro infectivity assays 

would illustrate cell tropism of rebound virus. The phenotype of CSF rebound virus likely depends on the 

state of viral replication in the CNS prior to initiation of ART, therefore, studies are required to 

characterize viral populations throughout the brain of ART-naïve as well as experienced individuals.  

Although evidence greatly supports the concept of HIV-1 persistence being attributable to latency, 

the immune privileged CNS may represent a unique anatomical reservoir, as crosstalk with the periphery 

is limited due to the BBB, and many ART drugs are relatively poor at penetrating the CSF/CNS. 

Treatment intensification using ART drugs with optimal CNS penetrance (relative to others) does not 

reduce levels of HIV-1 RNA in the CSF [54]. These data suggest that low level viral replication does not 

account for the presence of residual CSF virus. However, treatment intensification studies are limited in 

informing our understanding of latency in the CNS. Examination of CSF rebound virus could help fill this 

gap in knowledge. CNS viral persistence is further complicated by the fact that the cellular composition of 

the CNS is macrophage-rich with limited exposure to T cells, which reside primarily within the CSF. Thus 

it is possible that mechanisms of HIV-1 persistence differ between the CSF/meninges and the 

CNS/parenchyma and these mechanisms are affected by the presence of neuroinflammation, which 

alters the interaction between these bodily compartments. Finally, we do not understand the extent to 

which viral replication in the parenchyma is "reported" as virus in the CSF. 
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1.3 Examining HIV-1 Proviruses Archived in Tissues on a Whole Body Scale 

 

We hypothesize that at least some tissues, likely the CNS, are unique environments where HIV-1 

replicates and diversifies, thereby seeding anatomical reservoirs that differ from the blood reservoir. To 

address our hypothesis, we analyzed cell-free virus from bodily fluids (blood and CSF) and cell-

associated viral sequences obtained from autopsied tissues of HIV-1-infected donors using phylogenetic 

methods. Our initial analysis focused on donors who died with HAD, as they are more likely to exhibit 

compartmentalized replication in the CNS and thus harbor distinct viruses potentially capable of infecting 

multiple cell types. Since we utilized samples from ART-naïve patients, cells containing HIV-1 DNA 

represent active infectious events (either productive or nonproductive) as well as persistent, dormant 

infections constituting cellular reservoirs. Furthermore, we characterized potential cell types supporting 

recent viral replication using a cell entry assay that illustrates viral infectivity of different permissive cell 

types based on receptor expression. Future directions include expanding our analysis to additional 

tissues of HAD donors, as well as including a greater number of HAD donors and a group of ART-treated 

donors.  

 

METHODS 

 

Study Design 

We obtained repository specimens from the National NeuroAIDS Tissue Consortium (NNTC), 

which stores tissues generously donated for research by people who died with HIV-1. We obtained blood, 

CSF, and at least one type of tissue from 11 donors who died with HAD (Table 1). Brain tissue was 

available for five of 11 donors; only liver tissue was available for the remaining six. The majority of donors 

had a final CD4 count below 400 cell/mm3 (82%; n = 9/11) and all were viremic at death. 

 

PCR Amplification of HIV-1 Genes and Sequencing 

Viral RNA was extracted from bodily fluids (blood and CSF) using the QIAmp Viral RNA Mini Kit 

(Qiagen). Prior to extraction, virus was concentrated by pelleting via centrifugation at 25,000xg for 1.5 
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hours at 4°C. Purified viral RNA was reverse transcribed using Superscript III Reverse Transcriptase 

(Invitrogen) and oligo-d(T)20 according to the manufacturer’s instructions. cDNA was subjected to single 

genome amplification (also known as end-point dilution PCR) for analysis of individual viral genomes. 

cDNA was serially diluted to end-point and the full-length env gene was obtained using Platinum Taq 

High Fidelity polymerase (Invitrogen) and primers that anneal within vif (F5010; 5’-

TGCCAAGAAAAGCAAAGATCATTAG-3’) and 3’ LTR U3 (LTRDN1; 5’-

GACTCTCGAGAAGCACTCAAGGCAAGCTTTATTGAG-3’), followed by semi-nested PCR using primers 

LTRDN1 and B5957UP1 (5’-GATCAAGCTTTAGGCATCTCCTATGGCAGGAAGAAG-3’). Full-length env 

(~2.5 kb) was sequenced from ~3.7 kb PCR amplicons at the UNC-CH Genome Analysis Facility. 

Chromatograms were analyzed for quality in Sequencher and chromatograms with double peaks, 

indicating amplification from more than one cDNA template, were excluded from analysis.  

For analysis of proviruses in tissues, total DNA was extracted using DNeasy Blood and Tissue Kit 

(Qiagen) according to the manufacturer’s protocol. Briefly, ~2-3mm3 pieces of tissue were cut, 

mechanically disrupted, and digested overnight in the presence of proteinase K, prior to DNA extraction 

using a column-based method. DNA was quantified using UV-Vis spectrophotometry (Eppendorf). DNA 

was end-point diluted and subjected to multiple rounds of PCR amplification of various HIV-1 genes as 

described previously [15]. A thorough description of this protocol is included below in the “Method 

Development” portion of the results section. 

 

Phylogenetic Analysis of Viral Genes 

 DNA sequence alignments of viral env or gag obtained from bodily fluids or tissues (i.e. viral RNA 

or DNA, respectively) were performed using ClustalΩ. Phylogenetic trees were inferred using the 

neighbor-joining method and 500 bootstrap replicates (MEGA 5.2.2). Compartmentalized viral replication 

was assessed using the Slatkin & Maddison statistical test of population structure with 10,000 

permutations (HyPhy). Highlighter plots were generated using the tool available through the Los Alamos 

National Laboratory HIV Database.  
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Cloning HIV-1 env for Protein Expression 

 Viral env amplicons were chosen for cloning based on the phylogenetic tree structure, so that at 

least one amplicon was used to represent each viral lineage. First-round PCR products were used as 

template in a nested PCR reaction using Phusion Hot Start High Fidelity DNA Polymerase (Finnzymes) 

and cloning primers. These primers were identical to those used in nested amplification of viral env 

except for the addition of 5’-CACC-3’ at the 5’ end of the forward primer for the purpose of topoisomerase 

cloning. PCR amplicons were gel-purified using the QIAquick Gel Extraction Kit (Qiagen) and 50ng of 

purified amplicons were cloned into the pcDNA3.1D/V5-His-TOPO expression vector (Invitrogen) using 

the pcDNA 3.1 Directional TOPO Expression Kit (Invitrogen). The entire cloning reaction was transformed 

into MAX Efficiency Stbl2 competent cells (50ul) per the manufacturer’s instructions. Bacterial colonies 

were screened for unidirectional insertion of viral env using colony PCR (Platinum Taq DNA Polymerase, 

Invitrogen). DNA was extracted from 3-6 colonies using QIAprep Spin Miniprep Kit (Qiagen).  

 

Co-transfection for Generating Env-pseudotyped Virus 

 For transfection, 293T cells were seeded at a density of 4.8 x 105 cells/well in 6-well tissue culture 

plates (DMEM, 10% FBS, 100 mg/ml penicillin and streptomycin culture medium). A 1:1 w/w ratio of env 

clone and backbone (pNL4-3.LucR-E-; NIH AIDS Research and Reference Reagent Program, Division of 

AIDS, NIAID, NIH) was used for co-transfection of 293T cells in serum-free DMEM using Fugene 6 

Transfection Reagent (Roche). Transfection medium was replaced five hours later with culture medium 

and cells were incubated at 37°C, 5% CO2 for 48 hours. Supernatants containing pseudotyped virus were 

harvested, passed through a 0.45 uM filter (Millipore), and stored at -80°C. 

 

Single-cycle Infection of Reporter Cells for Determining Cell tropism 

 Affinofile cells are HEK293 cell derivatives that constitutively express viral co-receptor CXCR4 

and can be differentially induced to express variable levels of viral receptor CD4 and viral co-receptor 

CCR5 using doxycycline and ponasterone A (Invitrogen), respectively. Titration of Env-pseudotyped 

luciferase reporter viruses was performed in triplicate on Affinofile cells with maximum induction levels for 

both CD4 (6 ng/ml doxycycline) and CCR5 (5 uM ponasterone A) surface expression. In order to ensure 
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that subsequent experiments were performed within the linear range of cell infectivity, a volume of virus 

stock equivalent to 800,000 relative light units (RLUs) of luciferase expression was calculated for use in 

cell tropism experiments.  

 For all Affinofile cell experiments, 96-well black bottom tissue culture plates were treated with 

10% poly-L lysine and then seeded with 1.85 x 104 cells/well (DMEM, 10% 12-14 kD dialyzed FBS, 50 

mg/ml blasticidin culture medium). 18 to 24 hours later, expression of CD4 and CCR5 was induced at two 

conditions in triplicate: CD4hi/CCR5hi (6 ng/ml doxycycline and 5 uM ponasterone A, respectively) and 

CD4lo/CCR5hi (5 uM ponasterone A only). Induction medium was removed 18 to 24 hours later and 

replaced with 100 ul/well of fresh, warmed culture medium containing 800,000 RLUs of Env-pseudotyped 

luciferase reporter virus. Plates were spinoculated at 2,000 rpm for 2 hours at 37°C, and then incubated 

at 37°C, 5% CO2 for 48 hours. Infection medium was removed prior to cell lysis for luciferase expression 

analysis (Firefly Luciferase Assay System, Promega). Lysates were stored at -80°C prior to thawing and 

analysis using a luminometer. Between any medium change and before cell lysis, cells were washed 

twice with 1X PBS. The ability to utilize low levels of CD4 expression for cell entry (macrophage tropism) 

was defined by percent infectivity of CD4lo/CCR5hi relative to CD4hi/CCR5hi cells in terms of RLUs with a 

12% cutoff for defining macrophage tropism. 

 

RESULTS 

 

Method Development: Probe Enrichment of Provirus 

 Our primary goal was to analyze viral DNA sequences from both productively and latently 

infected cells present in tissues from HIV-infected donors. To this end, we attempted to develop a 

sensitive polymerase chain reaction (PCR)-based method for amplifying HIV-1 DNA extracted from 

infected tissues. Total DNA (cellular and viral DNA) was extracted from in vitro infected cells (control 

experiments) or ~3 mm3 pieces of infected tissue (Qiagen DNeasy). Extracted total DNA contains cellular 

DNA in excess of viral DNA (perhaps by 1 billion-fold by mass), which increases the likelihood of off-

target amplification. In order to improve the specificity of HIV-1 DNA amplification, we attempted to enrich 

for HIV-1 DNA in total DNA extracted from cells using a positive-selection purification method. In short, 
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we designed a nucleic acid probe for hybridization to HIV-1 sequence present in total DNA, followed by 

streptavidin-biotin purification of nucleic acid hybrids on magnetic beads. The DNA fraction enriched for 

viral DNA was then subjected to single genome amplification (SGA), also known as end-point dilution 

PCR, where a nucleic acid template is diluted for use in subsequent PCR steps to ensure that a single 

viral genome is amplified. This technique allows for phylogenetic analysis of viral populations within an 

individual.  

We designed two ~50 base pair (bp) RNA probes complementary to conserved regions in env 

and nef of the HIV-1 genome. These probes are composed of “Locked Nucleic Acids” (LNAs), for optimal 

hybridization efficiency. LNAs have a methylene bridge that locks the ribose ring of each nucleotide in the 

optimal confirmation for base pairing, thereby increasing binding affinity and stability for specific, low 

abundance sequences [55]. The 5’ end of each LNA probe is conjugated to biotin via a triethyleneglycol 

(TEG) spacer 15 atoms in length. The TEG spacer is more than twice the length of the standard six-

carbon spacer, which increases the distance between the hybridized molecule and the surface of the 

magnetic sphere for reduced steric hindrance. The 5’ biotin-TEG modification allows for purification of 

nucleic acid hybrids on streptavidin-coated magnetic beads. The 3’ end of each LNA probe is modified 

with hexanediol, a six-carbon glycol spacer that blocks extension by DNA polymerase. This modification 

prevents the hybridized probe from interfering with downstream PCRs by blocking extension of DNAs at 

the probe-binding site.  

We used a control cell line called “8E5” to optimize our method. 8E5 cells are a derivative of 

A3.01 cells, which is a continuous human CD4+ T cell line that is permissive to HIV-1 infection [56]. The 

majority of A3.01 cells die from infection, but some CD4-downregulated cells survive and contain 

provirus. 8E5 cells were selected from a pool of A3.01 survivor cells infected with LAV (1% nt pairwise 

distance from HXB2) [57]. 8E5 cells contain a single copy of defective provirus. In the region of pol that 

encodes RT, a single nucleotide insertion introduces a frameshift in the open reading frame (ORF) 3, 

which is corrected by a compensatory mutation in vpr to maintain expression of viral env and other genes 

in ORF3. This mutation results in the translation of an enzymatically inactive, truncated RT protein [58]. 

8E5 cells support provirus transcription and virus production, but RT-defective progeny virions are not 

infectious [57, 58]. Therefore, we are able to extra total DNA from a known number of 8E5 cells and 
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equate cell number with provirus copy number. In method development, we controlled for provirus copy 

number in experiments using 8E5 provirus as template DNA. We also added controlled amounts of 293T 

cell DNA relative to 8E5 DNA in order to reflect a putative range of viral-to-cellular DNA ratios in natural 

infection. Thus, our control system better represents naturally infected cells as opposed to using a 

plasmid control. Our immediate goal was to amplify full-length env sequences from infected tissues in 

order to characterize viral populations and replication, as well as cell tropism. 

Although our protocol was successful at purifying provirus from background DNA, it was 

unsuccessful at purifying all or even a majority of input proviruses: we could only purify ~1% of input 

proviruses with this method. We spent a great deal of time attempting to optimize our method, but were 

not able to improve our efficiency (Table 2). It is likely that the addition of more probes spanning the HIV-

1 genome would improve provirus recovery as another lab developed such a method for Plasmodium 

falciparum (malaria) sequencing, and we are currently investigating this possibility [59]. We then moved 

on to alternative methods of provirus amplification. 

 

Method Development: Full-Length Provirus PCR 

Robert Siliciano and colleagues (Johns Hopkins U.) published a promising method for PCR 

amplification of HIV-1 DNA in latently infected T cells [15]. In short, resting CD4+ T cells were purified 

from PBMCs of patients on suppressive ART and total DNA was extracted for PCR amplification of 

proviruses. Proviruses were amplified in limiting dilution PCR and then a series of second-round nested 

PCRs. First-round limiting dilution PCR amplifies essentially the entire viral genome using primers that 

anneal within the U5 regions of the 5’ and 3’ LTRs (9.1 kb; Figure 1). Replicate PCR wells in the first-

round reaction were then screened for the presence of provirus with a nested second-round PCR. In 

similar additional PCRs, overlapping fragments spanning the viral genome are obtained for sequence 

analysis (Figure 1). 

We used the same mixed DNA controls as before (mixtures of 8E5 and 293T cell DNA) in 

reproducing the method published by Siliciano and colleagues. We first assessed the efficiency of this 

method using known quantities of proviral 8E5 DNA. Total DNA was extracted from 8E5 cells and 

quantified with UV spectrophotometry. Serially diluted 8E5 DNA was subjected to first-round PCR in 
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replicates. In order to screen for the presence of provirus in first-round PCR replicate wells, 1 ul of first-

round product was used as template in the second-round nested PCR targeting gag. We found that gag 

amplification consistently resulted in a single band of approximately the correct size (~1.5 kb) and almost 

always was the expected HIV-1 sequence.  

All first-round PCR wells that were positive for gag were then subjected to env amplification in a 

second nested PCR. Unfortunately, we found that only ~30% of the time we could obtain both gag and 

env from the same first-round PCR well. Furthermore, env PCR resulted in non-specific amplification of 

the human genome, resulting in a band of incorrect size or multiple bands that were sequence-verified as 

human genomic sequence. Since obtaining env is important for cell tropism analysis, we sought to 

determine why the gag PCR appeared relatively efficient compared to env. We found that the same first-

round PCR wells were consistently positive for any subsequent PCRs, whereas those that are gag+/env- 

were always negative in subsequent PCRs. We also designed primers to amplify a small ~500 bp 

fragment of the LTR, and found that additional wells (gag-) were positive for LTR, indicating the presence 

of provirus missed by the gag PCR. PCR efficiency was usually best for LTR (~500 bp), then for gag 

(~1500 bp), then for env (~3kb), and finally for overlapping fragments spanning the whole genome (~5 kb 

each) indicating that PCR of smaller fragments is more efficient than larger ones. Our experiments show 

that first-round PCR of the essentially full viral genome is inefficient, resulting in too few template copies 

for subsequent PCRs.  

After thorough analysis and speaking directly with the Siliciano lab, we found that increasing the 

primer concentration was important for improving env amplification efficiency. In a side-by-side 

comparison of 1 uM versus 0.4 uM primer in all PCRs using 8E5 template DNA, we found that only gag+ 

reactions obtained with 1 uM primer were also positive for env+ in every replicate well. However, 

increasing primer concentration does not increase the total number of LTR+ wells. These data collectively 

indicate that the effect of increasing primer concentration in first-round PCR increased the copy number 

of proviruses rather than our ability to detect them. We think that this improvement in first-round PCR 

efficiency is due to a greater probability of correctly priming the HIV-1 genome in the initial cycles of first-

round PCR. When too little primer is present, the human genome, which is in vast excess to the single 

provirus present in any given well, is primed in the initial cycles of PCR and therefore amplified instead of 
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the provirus. Indeed, when HIV-1 sequence was not obtained from a given PCR amplicons, the amplicons 

almost always corresponded to human genomic sequence. We reformatted our general workflow for the 

remainder of this study moving forward and an associated protocol is attached (Supplemental 1).  

 

Assessing Compartmentalized Viral Replication 

We conducted a preliminary phylogenetic analysis of two individuals with disparate states of viral 

replication (donors 30005 and 10129). Blood and CSF were available from roughly 11 months prior to the 

date of death for each donor. We first compared viral env sequences from circulating virus (viral RNA) in 

the blood plasma and CSF. In donor 30005, the population of virus in the blood is distinct from that in the 

CSF, indicating compartmentalized replication within the CSF/CNS (Figure 2). The Slatkin & Maddison 

statistical test of population structure was used to confirm compartmentalization (p = <0.0001). Regions in 

env with the greatest sequence variability between the blood and CSF viral populations are in V1/V2 and 

V4/V5 with the majority of differences in the V1 and V4 hypervariable regions.  

A similar analysis was completed for donor 10129. In this donor, blood and CSF virus are mixed 

within the overall population, which indicates that virus is similar between compartments and thus is in an 

equilibrated state (Figure 2). A lack of compartmentalized replication was confirmed with the Slatkin & 

Maddison statistical test of population structure (p = 0.4637). Due to a relatively low CSF viral load in this 

donor (328 cp/ml), few env sequences were obtained from the entirety of the sample, thereby sacrificing 

some statistical power. Low CSF viral load in this donor suggests that virus predominantly replicates in 

the peripheral blood and tissues of this donor, but not appreciably in the CNS. 

Eight additional donors will eventually be included in this study, two of which have 

compartmentalized viral replication in the CNS as determined by viral env sequences in the CSF and 

blood (Table 1, work completed by Laura Kincer and Sarah Joseph). Multiple brain and peripheral tissues 

are available for both additional compartmentalized donors for whole body analysis of proviruses.  
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HIV-1 env Sequences from Brain Tissue Resemble Those in the CSF and Distinct Viral Lineages 

Exist within Different Brain Regions 

Our analysis of proviral sequences was initially based on viral env, since the viral Env protein 

determines cell tropism based on the efficiency of CD4 receptor utilization. Assessing cell tropism of an 

archived provirus reveals which cell type(s) the virus was capable of replicating in. To analyze proviruses 

archived in brain tissue (viral DNA), 42 viral env sequences were obtained from total DNA extracted from 

donor brain tissues (Table 1). 31 of 42 env sequences came from donor 30005, 21 of 31 env genes from 

this donor are defective as they contained deletions and 10 env genes are putatively functional. Donor 

30005 had highly compartmentalized viral replication in the CSF (viral RNA) 11 months prior to death, 

and five full-length env sequences (four functional and one defective) were obtained from provirus in the 

frontal and occipital lobes for incorporation into the phylogenetic tree of cell-free virus described above. 

Proviral sequences in the brain most closely resemble virus in the CSF compared to the blood, 

suggesting compartmentalized replication within the overall CNS at death as well as 11 months prior. 

Three sequences obtained from the frontal lobe suggest the presence of a brain region-specific viral 

lineage (100% bootstrap), which appears to be distinct from CSF virus, although the statistical 

significance is low (<70% bootstrap).  

PCR amplification of env in tissue DNA is relatively inefficient compared to gag, at least with our 

protocol. Therefore, we had a greater number of gag sequences to analyze with phylogenetics. We 

compared gag sequences obtained from virus in the blood plasma and CSF (viral RNA) and virus in 

tissues (viral DNA; Figure 3) of donor 30005. As predicted, virus obtained form brain tissue more closely 

resembles CSF virus as opposed to that in the blood. Furthermore, compartmentalized viral replication in 

the CNS at death was verified using predominantly proviral sequences. The presence of brain region-

specific viral lineages was also confirmed with our gag data as the frontal and occipital lobes contain 

lineages that are distinct from one another. Furthermore, multiple lineages exist within each lobe: three in 

the frontal lobe and two in the occipital lobe.  

Clonal amplification of particular viral species occurred in both lobes, which, in the absence of 

ART, suggests that selective pressure exists within these brain regions. Clonal viral sequences could 

have arisen from either a local burst of viral replication or from clonal expansion of latently infected cells. 
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The presence of two CSF viruses, which came from a sample collected 11 months prior to death, within 

the clonal lineage in the occipital lobe suggests that clonally expanded cells arose from an infectious 

event, likely from viral clones of CSF virus C6, that occurred at least 11 months prior to death.  

A highlighter plot of each clonal viral lineage within the tree for donor 30005 was used to find 

evidence of viral replication as opposed to clonally expanded cells (Figure 4 and data not shown). We 

analyzed highly similar occipital lobe sequences using a representative of eight identical gag sequences 

(seven from brain tissue and one from the CSF) as the master sequence with which every other 

sequence is compared: the CSF virus (C6) was chosen, as it represents actively replicating virus 11 

months prior to tissue collection at death. This analysis compares sequence variation relative to the 

seven clonal sequences within a lineage composed of highly similar sequences. If clonal expansion of 

cells occurred, then we would expect to see identical nucleotide differences in the remaining sequences 

when grouped by branch length (i.e. the five sequences with medium branch lengths and the three with 

longer). However, this lineage appears to have come from a single infectious event followed by local 

replication in neighboring cells, as nucleotide differences at any given position in the remaining 

sequences are randomly distributed. The same was observed in a similar analysis of the frontal lobe 

(data not shown). 

11 env genes were obtained for donor 10129, and all but one (occipital lobe) came from the liver. 

7 of 11 env genes are putatively functional (1 sequence needs to be verified) and 4 of 11 are defective (3 

with deletions and 1 with stop codons). In donor 10129, the CSF viral load was very low compared with a 

high blood viral load (328 v. >750,000 cps/ml), suggesting that no appreciable viral replication occurred in 

the CNS. Similarly to the CSF, few HIV-1 proviral sequences (env or gag) were obtained from the brain of 

this donor (occipital and frontal lobes and cerebellum were sampled). Indeed, only one env sequence was 

obtained from the brain, particularly the occipital lobe, and this sequence corresponded to a defective 

provirus due to a deletion from pol to env (data not shown). Thus, no functional env genes (viral DNA) 

were obtained from the brain of donor 10129 and only 7 functional env genes (viral RNA) were obtained 

from 1 mL of CSF. Furthermore, there was no evidence of compartmentalized or clonal replication in the 

CSF/CNS. These data collectively suggest that virus did not replicate in the CNS of this donor, 

irrespective of HAD diagnosis for this donor. 
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The CSF we received from donor 10129 was exhausted in the initial analysis of viral env due to 

low CSF viral load, therefore CSF gag sequences could not be obtained for this donor. Few proviral gag 

sequences were obtained from the brain, 2 from the frontal and 1 from the occipital lobe, again 

suggesting a lack of appreciable viral replication in the brain. The equilibrated state of virus throughout 

the body in this donor was also verified with gag sequences (Figure 5). 

 

Individual Viral Lineages Also Exist within the Liver, a Peripheral Tissue Exposed to Blood Virus 

In donor 30005, 3 of 5 full-length proviral env sequences obtained from the liver (viral DNA) 

grouped with those in the blood (viral RNA), indicating that virus can travel between these compartments, 

as predicted. There are two liver viruses distinct from those that grouped with the blood: E4 and D3. Liver 

virus E4 is more similar to blood virus than CSF virus, but is still a statistically significant distinct entity 

(93% bootstrap). Liver virus D3 is positioned near a unique viral lineage (blood virus A8 and CSF virus 

B3, 100% bootstrap) in the phylogenetic tree, but with a poor bootstrap value of 51%. These distinct liver 

sequences may represent minor viral lineages that are sampled poorly with env PCR. Therefore, we 

analyzed gag sequences, as a greater number were available than env. 

Comparison of HIV-1 proviral gag sequences from donor 30005 revealed individual viral lineages 

within a given tissue, including the liver (Figure 3). At least two viral lineages were found within the liver: 

one that resembles virus in the blood and another that resembles CSF virus. Since sequences obtained 

from the frontal lobe as well as the liver resemble the clonal lineage within the occipital lobe, we created a 

highlighter plot to determine if any sequence features are shared between compartments. Indeed, when 

designating CSF virus H2 as the master sequence, two additional CSF sequences (A3 and B2), four 

frontal lobe sequences (G8, H5, F9, and H9), and one liver sequence (B12) all contain the same two 

mutations observed in the occipital lobe clonal lineage (Figure 4). These data suggest that virus produced 

in the occipital lobe can travel to the frontal lobe, likely via CSF, and replicate there. It is important to note 

that CSF flow directionality favors this hypothesis. CSF virus that seeded the brain and locally replicated 

may have then exited the CNS, entered the periphery, and replicated in liver tissue. 

The same first-round PCR products (amplified provirus) were used as template in subsequent, 

nested gag and env PCRs so that both genes could be characterized for an individual provirus when 
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possible. Both gag and env sequences were obtained for eight viruses in donor 30005. The env and gag 

trees for this donor have the same cluster patterns (Figure 3), and since more gag sequences are 

available than env, the gag tree can inform our understanding of how prevalent viruses with certain env 

genes are. Indeed, unique liver virus D3 represents a major lineage in the gag tree, which is more closely 

related to the CSF/CNS viral population than that in the blood. Furthermore, this lineage appears to have 

developed from viral replication shortly before death, as no blood or CSF (collected 11 months prior to 

death) sequences are present in this lineage, but are present in others.  

In donor 10129, env sequences could only be obtained from liver tissue (none from the brain). 

The presence of one cluster of env sequences from the liver suggests the presence of tissue-specific 

lineages. Additionally, there was clonal amplification of virus in the liver in the absence of ART or 

compartmentalized viral replication in the CNS (based on gag). Since the proviruses composing the 

clonal lineage are all hypermutants and therefore non-infectious, these sequences likely came from 

expansion of infected cells through cell division. Otherwise, analysis of gag sequences from this donor 

confirmed that virus was generally equilibrated throughout the body (Figure 5).  

 

Macrophage-Tropic Virus is Archived as Provirus in Brain Tissue 

 Viral env sequences from the blood and CSF of donors 30005 and 10129 were analyzed for cell 

tropism using our Affinofile assay. Viral env genes were individually cloned into an expressional vector for 

generating pseudotyped virus. 293T cells were co-transfected with an env clone and an env-deficient viral 

backbone genome (pNL4-3) for the production of pseudotyped virus capable of a single infection. The 

pNL4-3 backbone also contains a luciferase gene in viral nef for the reporter. Affinofile cells were induced 

to express CCR5 and either CD4hi or CD4lo prior to infection with pseudotyped virus. Luciferase 

expression, indicative of single-round infection, was measured in relative light units (RLU) and normalized 

to background (backbone-only). Cell tropism was characterized by percent infectivity of CD4lo relative to 

CD4hi, where macrophage-tropic virus was defined as equal or greater efficiency of CD4lo utilization 

compared to a macrophage-tropic control (pseudotyped BaL). T cell-tropic virus was defined as poorly 

utilizing CD4lo compared to BaL and a T cell-tropic control virus was used (pseudotyped JR-CSF).  



27 

 

 The CSF of donor 30005, with highly compartmentalized viral replication in the CSF/CNS, 

contained macrophage-tropic virus in each viral lineage, whereas the blood contained T cell-tropic virus 

(Figure 2, work completed by Sarah Joseph and Laura Kincer). It is important to note that two CSF 

viruses grouped with virus in the blood and one of the two was confirmed to be T cell-tropic. These 

viruses either represent a small number of T cell-tropic CSF virus, or, perhaps more likely, minor blood 

contamination during lumbar puncture in collecting this donor’s CSF.  

Although cell tropism analyses have not yet been completed for proviral sequences, three 

proviruses from the frontal lobe and two from the occipital lobe grouped with the overall CSF viral 

population, and may represent macrophage-tropic viruses. One provirus in particular (occipital lobe virus 

C10) is most similar to a CSF viral lineage that is macrophage-tropic and is closely related in amino acid 

composition to the CSF virus that was assessed for tropism (CSF virus E7; pairwise distance = 0.8%). 

These data suggest that macrophage-tropic virus is archived as provirus in brain tissue. Likewise, three 

proviruses from the liver grouped with the blood virus population, which contains T cell-tropic virus, and 

likely have the same tropism.  

Liver virus D3 has a unique env that is distinct from those in the major blood and CSF viral 

populations, yet its gag resembles macrophage-tropic CNS virus (Figure 3). In contrast, liver virus E4 has 

a unique env, but its gag resembles T cell-tropic blood virus. Viruses D3 and E4 may represent 

macrophage-tropic and T cell-tropic viral lineages in the liver, respectively. Furthermore, since virus D3 is 

part of a viral lineage in the liver that appears to have arisen shortly before death when the CD4+ T cell 

count was very low, it is tempting to speculate that the loss of permissive T cells in a macrophage-rich 

tissue, such as the liver, favored viral replication in tissue macrophages. We are currently cloning all full-

length, putatively functional env genes obtained from tissues of this donor for cell tropism analysis.  

In donor 10129, virus in the blood and CSF are all T cell-tropic (Figure 2). This donor had an 

equilibrated state of virus throughout the body and no indication of compartmentalized viral replication in 

the CNS. Coupled with a low CSF viral load, these data indicate that virus was not replicating appreciably 

in the CNS and therefore had limited selective pressure to replicate in an alternative cell type, such as a 

macrophage. If such a selective pressure exists within macrophage-rich peripheral tissues, such as the 

liver, then a greater sample size of donors may be required to address this possibility. 
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DISCUSSION AND FUTURE DIRECTIONS  

 

 HIV-1 infection is incurable due to viral persistence in cellular and anatomical reservoirs despite 

ART-mediated viral suppression. The CNS is a unique bodily compartment that can support viral 

replication independent of that in the periphery and may be an anatomical reservoir for HIV-1. The 

presence of barriers between the CNS and periphery allows compartmentalized viral replication in the 

CNS. “Compartmentalization” is statistically inferred from a phylogenetic tree where the viral population in 

the CSF, representative of the CNS, is distinct from that in the blood. This type of replication often 

correlates with macrophage-tropism of virus sampled from the CSF. Macrophages may serve as a 

cellular reservoir within the CNS due to their long half-life, ability to support HIV-1 replication, and high 

frequency relative to T cells in the CNS.  

 We conducted a preliminary analysis of two donors with disparate states of viral replication 

(30005 – compartmentalized; 10129 – equilibrated). Our pilot study showed that HIV-1 env and gag 

sequences from brain tissue resemble those in the CSF, specifically in donor 30005. The frontal and 

occipital lobes of this donor contain lineages that are distinct from one another and multiple lineages exist 

within each lobe. These data suggest some degree of compartmentalized replication in the context of 

tissue architecture and associated selective pressures. Indeed, we found clonal amplification of virus in 

the occipital and frontal lobes. Furthermore, we found that virus can intermix between different regions of 

the brain, thereby diversifying the overall population of virus in the brain, yet not to a degree of diversity 

seen in the periphery. 

A recent SIV study in macaques showed that compartmentalized viral replication can occur in the 

meninges versus parenchyma of the brain in the context of both rapid and conventional disease 

progression with encephalitis [45]. CSF virus grouped only with virus in the meninges for one animal, 

whereas for the rest, CSF virus grouped with both the meningeal and parenchymal viruses. Furthermore, 

similar viruses were found within two distinct perivascular lesions. These data collectively highlight the 

importance of CNS structure with respect to viral replication in the brain. Our study confirmed this 

observation and furthermore did so in the context of full-length env as opposed to V1/V2 only, where the 

former allows characterization of functional versus defective env sequences. We found that the majority 
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of env sequences in the brain of donor 30005 were defective, which is consistent with previous studies of 

latent virus in PBMCs [15]. We also showed that different regions in the brain (i.e. brain lobes) harbor 

distinct populations of virus that can share genetic information.  

We found that individual viral lineages exist within the liver of donor 30005, a peripheral tissue 

exposed to blood virus. The same appears to be true for donor 10129, although a greater number of 

sequences are required for confirmation. Clonal amplification of hypermutated provirus also occurred in 

the liver of donor 10129, in the absence of compartmentalized viral replication in the CNS. This lineage 

likely arose from expansion of infected cells through cell division, which was not observed in donor 

30005, where instead clonal sequences in the brain came from local viral replication. The presence of 

clonal lineages suggests that selective pressures exist within the peripheral tissues as well as the CNS to 

drive viral evolution. It is possible that clonal lineages composed of highly similar viral sequences arose 

by chance through founder effect or a population bottleneck, but the presence of “tissue-specific” lineages 

composed of more diverse viral sequences within a cluster reiterate the likelihood of selective pressure 

imposed by the tissue environment.   

Clonal amplification of virus in particular tissues has been shown previously, but identical viral 

clones were also found in other tissues and no tissue-specific clustering patterns were observed [60, 61]. 

In contrast, our study shows both clonal amplification and tissue-specificity (of more diverse sequences 

within a cluster) of virus in the liver. It is possible that when more tissues are sampled, viral clustering 

patterns in the liver will change, intermixing virus in the liver with virus in other tissues. Still, we 

hypothesize that, due to either selective pressure by the tissue microenvironment or chance (i.e. founder 

effect or a population bottleneck), certain viral species are more fit than others to replicate in a tissue, 

which is likely influenced by the local population of permissive immune cells (i.e. relative proportions of T 

cells and macrophages).  

The CSF of donor 30005, with highly compartmentalized viral replication in the CSF/CNS, 

contained macrophage-tropic virus in each viral lineage, whereas the blood contained T cell-tropic virus. 

Macrophage-tropic virus is also archived as provirus in brain tissue, as three proviruses from the frontal 

lobe and two from the occipital lobe grouped with the overall CSF viral population. Importantly, ART-

treated patients can have undetectable or very low viral load in the blood and higher viral load in the CSF, 
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termed “CSF viral escape”, where escape virus could originate from either trafficking cells that release 

virus in the CNS for local replication or from CNS-resident macrophages releasing virus from a reservoir 

[62]. The presence of provirus containing functional gag and env in macrophage-tropic viral lineages in 

the brain supports the idea of macrophages as a cellular reservoir for HIV in the CNS. When considering 

the observed similarity between certain proviruses in the brain and liver of donor 30005, it is possible that 

evolutionary features of CNS virus (i.e. macrophage-tropism) are transferred to the population of virus in 

the liver. The liver is a tissue rich in resident macrophages and could be an ideal source for macrophage-

tropic virus in the periphery.  

Studies have found that macrophage tropism occurs only in people who have compartmentalized 

viral replication in the CSF/CNS. Indeed, donor 30005 died with HAD and a high viral load in the CSF due 

to CSF/CNS compartmentalization. Since the CSF of this donor contained entirely macrophage-tropic 

virus, it is likely that macrophages sustained viral replication in the CNS when CD4+ T cell count was 

falling. Importantly, macrophage-tropic virus persisted in the CNS of this donor for at least 11 months 

prior to death, suggesting that selective pressures to drive macrophage-tropism exist prior to total CD4+ T 

cell depletion. The general paucity of CD4+ T cells in the CNS and/or the influence of tissue 

microenvironments may select for macrophage-tropic virus gradually, as proposed [43].  

This pilot study was a ‘proof of principle’ trial in analyzing proviral sequences archived in various 

tissues throughout the body. Here we characterized the differences in viral populations within brain and 

liver tissues, as well as in blood and cerebrospinal fluids, of a highly CNS compartmentalized donor 

versus an equilibrated donor. With the development of a plausible method and workflow (Supplemental 

1), additional tissues from the two initial donors, as well as those from new donors (Table 1), are currently 

being analyzed for incorporation to this study. With a greater sample size, we hope to gain statistical 

power and further characterize viral populations on a whole body scale for donors in disparate states of 

viral replication.  

 

 

 

 



Donora 
Blood VL (cps/

ml)b 
CSF VL (cps/

ml)b 
CSF/blood VL 

Ratio 

CSF/CNS 
Compartment.? (p 

value) Tissues Availablec 
# Sequences 

(gag, env) 
30005 287309 31251 0.11 Yes, p < 0.0001 Blood 8, 30 

In
iti

al
 A

na
ly

si
s 

  CSF 10, 23 
  Frontal lobe 14, 6 
  Occipital lobe 22, 18 
  Cerebellum 1, 1 
  Basal Ganglia 
  Liver 35, 8 
  Lymph node 
  Spleen 
          Testis   

10129 >750000 328 <0.0004 No, p = 0.4637 Blood 6, 22 
  CSF 0, 7 
  Frontal lobe 2, 0 
  Occipital lobe 1, 0 
  Cerebellum 0, 0 
  Basal Ganglia 
  Choroid plexus 
  Liver 50, 8 
  Lymph node 
  Spleen 
          Testis   

6800127569 >750,000 >750,000 n/a, ~1 Yes, p < 0.0007 Blood n/a, 18 

A
dd

iti
on

al
 C

om
pa

rt
m

en
ta

liz
ed

 

  CSF n/a, 18 
  Liver   
  Frontal lobe (gray matter)   
  Frontal lobe (white matter)   
  Occipital lobe   
  Cerebellum   
  Basal Ganglia   
  Leptomeninges   
          Lymph node   

7100616568 489796 >750000 >1.53 Yes, p < 0.0002 Blood n/a, 11 
  CSF n/a, 14 
  Liver   
  Frontal lobe (gray matter)   
  Frontal lobe (white matter)   
  Occipital lobe   
  Cerebellum   
  Basal Ganglia   
  Choroid plexus   
  Leptomeninges   
          Spleen   

7200537480 40133 2747 0.07 No, p = 0.2495 Blood n/a, 18 

A
dd

iti
on

al
 N

ot
 C

om
pa

rt
m

en
ta

liz
ed

 

  CSF n/a, 8 
  Liver   
  Frontal lobe (gray matter)   
  Frontal lobe (white matter)   
  Occipital lobe   
  Cerebellum   
  Basal Ganglia   
  Choroid plexus   
          Spleen   

6800207680 15906 76 0.005 n/a Blood n/a, 17 
  CSF n/a, 1 
          Liver   

10119 312240 <50 <0.0002 n/a Blood   
  CSF n/a, 0 
          Liver   

30020 >750000 <50 n/a, ~0.0001 n/a Blood   
  CSF n/a, 0 
      Liver   

20024 222840 501 0.002 n/a Blood   
  CSF n/a, 3 
  Liver   

10105 5722 650 0.11 n/a Blood   
  CSF n/a, 2 
          Liver   

10051 20103 180 0.009 n/a Blood   
  CSF n/a, 0 
          Liver   

Footnotes 
a: Five additional donors with low CSF viral load (4/5 below detection limit) could also be included in this study.  
b: Final blood and CSF viral loads (at or one year prior to death) were provided by NNTC. 
c: Tissues were collected at death and were provided by NNTC. Tissues in italics have not yet been analyzed. 

Table 1: Study Population Characteristics 
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Parameter Evaluated 
Sheared v. unsheared total extracted DNA 
Shearing by boiling v. g-Tube 
nef probe v. env probe 
Removal of excess probe prior to bead purification 
More probe 
Longer hybridization time (10X) 
Slow cool hybridization 
More probe + longer hybridization time 
Rehybridization of supernatant from bead purification 
2nd round bead purification on supernatant from 1st bead purification 
More beads 
More beads + smaller volume of binding solution 
Base removal of purified proviruses from beads 

Table 2: Attempts to Optimize Efficiency of Probe Method (Unsuccessful) 
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Figure 1. Method workflow for characterizing proviruses present in extracted total DNA from cells or tissue. First, essentially the full-length 
HIV-1 genome is amplified from 5’ to 3’ LTRs (U5 to U5) to enrich for provirus copy number. Subsequent PCRs are then performed using the 
first-round PCR product as template. Sequences are obtained for each amplicon in subsequent PCRs. Note that this method was developed by 
Robert Siliciano ant colleagues at Johns Hopkins University. 
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Figure 2. Compartmentalized viral replication in the CSF/CNS is associated with macrophage-tropic virus in the CSF. Viral env sequences 
were analyzed in a Neighbor-joining phylogenetic tree for donors 30005 and 10129. Donor 30005 had statistically significant (Slatkin & Maddison 
statistical test) compartmentalized viral replication in the CSF/CNS, whereas donor 10129 did not (equilibrated). Viral env was cloned for making 
pseudotyped virus for cell tropism analysis using Affinofile cells. Viral env clones were defined as macrophage-tropic if percent infectivity at low 
CD4 was at least that of the positive control, BaL (12%). Analyses were completed by Sarah Joseph and Laura Kincer.
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tion in the CNS. Viral env (left) and gag (right) sequences were analyzed in Neighbor-joining phylogenetic trees for donor 30005 (left). Stars (    ) 
designate env and gag sequences that came from the same provirus (same first-round PCR well); arrows (    ) designate macrophage-tropic 
(M-tropic) or T cell-tropic (T-tropic) virus analyzed in Affinofile cells. 

M-tropic

M-tropic

M-tropic

T-tropic

T-tropic

35



99

99

99

92

71
0.005

99

99

97

70

91

90

80

90

100

91

99

99

99

92

71

0.005

Zoom In

Base Number
0                          500                       1000                     1500

C
lo

na
l A

m
pl

ifi
ca

tio
n

(  
 ) 

Id
en

tic
al

 S
eq

ue
nc

es

D
iff

er
en

ce
 fr

om
 C

S
F 

vi
ru

s 
C

6

E12
G7B

A7
B11B

D7
D11
D9

A11
B11

G7

H9
D7B
G10

A8
C10

C11

F12

G8
H5

F9
H9

B12

A2
H5

C2

A3
B2

H2

C6

C6
G7B
G10
G7
D7B
H9
A11
D7
D11
A7
D9
B11B
B11
B2
H2
E12
G8
A8
A3
H5
C11
C10
F9
B12
H9
A2
H5
C2
F12

Figure 4. Clonal amplification of viral species through local replication diversifies the population of virus throughout the CNS and in the 
peripheral liver tissue. Viral gag sequences belonging to a group of viral clones were analyzed through phylogenetics (left). Nucleotide differenc-
es relative to CSF virus C6 are illustrated in the Highlighter Plot (right). (   ) designate identical gag sequences within the occipital lobe. 
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APPENDIX:	  MODIFIED	  PROTOCOL	  FOR	  PROVIRUS	  CHARACTERIZATION	  IN	  TISSUES	  
 

Prepared by Lauren A. R. Tompkins 9/1/15 
Adapted from: Katie Bruner (adapted from Ya-Chi Ho 

Siliciano lab, Johns Hopkins University School of Medicine) 
 
 
General Overview 
	  	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First&Round&PCR&9kb&(U5&to&U5)&
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STEP 1:  Limiting dilution first round PCR of provirus (“SGA1”) 
 

• Obtain DNA extracted from tissue using DNeasy Kit (QIAgen) and record concentration 
(ng/ul) 

• PCR must be done at limiting dilution to amplify from a single provirus template, so first 
find the best amount of DNA input to achieve ~1/3 LTR+ wells 

• Use a maximum of 100ng DNA per well or less and record amount of DNA added per 24 
wells (an example is shown below) 

• See SGA1 master mix preparation below (copied from Excel spreadsheet) 
 
Set up SGA1:  (add to mastermix for 24 wells)  
8uL of extracted DNA spread over 24 wells  
4uL of extracted DNA spread over 24 wells 
2uL of extracted DNA spread over 24 wells 
1uL of extracted DNA spread over 24wells  
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STEP 2:  LTR PCR (to check for wells containing provirus at limiting dilution/clonality) 
and Env PCR (to find wells containing env) 
 

• LTR PCR to find a dilution of tissue DNA where ~1/3 wells are positive for provirus 
(limiting dilution/clonality) 

• Env PCR to find proportion of LTR+ wells containing functional env AND to obtain env 
genes for cloning and Affinofile cell tropism phenotyping 

• See LTR and Env master mix preparation below (copied from Excel spreadsheet) 
 

 
 
 
 
STEP 3:  Sequencing verify LTR and Env amplicons 
 

• Goal is to sequence-verify LTR and Env amplicons 
o LTR: sequence with amplification primers (F9058 and LTR9556R); try direct 

sequencing first, and go back and gel-purify if needed 
o Env: sequence with primers 5EnvIn, R6458, B/CV1, F15, R15, 7320DN, F7510, 

F7913, R8056, F8231, R8398, F8645; try direct sequencing first, and go back 
and gel-purify if needed 

• Wells containing functional, full-length env will be used for characterizing the full-length 
genome described below 
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STEP 4:  Overlapping PCRs to obtain full-length genome 
 

• Perform 4 PCR reactions to obtain overlapping genomic amplicons for any wells 
containing functional env 

• Set up reactions “A”, “B”, “C”, and “D” the same as above for LTR/Env, except using 
different primers and extension times as indicated: 

 
Reaction Primers and Extension Times 
Rxn A: 275F + 3INOut, 5 mins. 
Rxn B: 263F + 3AccOut, 6 mins. 
Rxn C: 5INOut + BLInnerR, 6 mins. 30 secs. 
Rxn D: 5AccOut + 280R, 5 mins. 

 
• Run gel to see whether deletions are present in genome: 

 

 
• IF NO DELETIONS ARE PRESENT: sequence the entire genome using WGS primers 
• IF DELETIONS ARE PRESENT: sequence only the deletion junction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Visualize inner PCRs on a gel and directly sequence bands to determine location of deletion

Subject all outer PCR wells to six inner PCRs

Inner PCR: gag and env inner PCRs to confirm clonality

Outer PCR: from U5 to U5

Intact 

genome

11.7%

Nonsense/

INDEL

3.8%

Incorrect amplicon size – large internal deletion 45.5%

Deletion with 

defined junction

27.2%

Deletion junction not 

precisely defined

18.3%

Ȍ 

deletion

5.6%

A

B

MSD 

mutation 

0.9%

Defective 

genome

10.3%

LTR   gag

  pol

  vif

  vpr

  vpu
  env

 nef  tat
rev LTR

Outer PCR 9,064 bp

gag

 A 4,449 bp

B 5,793 bp

C 6,385 bp

D 4,778 bp

envenv

gag envenv

A B C DA B C D A B C D A B C D

gag A B env C Dgag A B env C Dgag A B env C
Example of a 3’ deletionExample of an intact provirusExample of a 5’ deletion

KMB9_E2425P4-9B20-25KMB6_E38P13C21-25

D

KMB10_E39P19D20-25
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PCR primers  
 

PCR Length Name HXB2 
position Exact sequence Extension 

time 
SGA1 – Provirus PCR 

SGA1 9,064 
BLOuterF 623 – 

649 
AAATCTCTAGCAGTGGCGCCCGAA
CAG 10 m 

BLOuterR 9,662 – 
9,686 TGAGGGATCTCTAGTTACCAGAGTC 

Inner PCRs 

A 4,449 
275F 646 – 

666 ACAGGGACCTGAAAGCGAAAG  
5 m 

3INOut 5,072 – 
5,094 AATCCTCATCCTGTCTACTTGCC  

B 5,793 
263F 651 – 

672 GACCTGAAAGCGAAAGGGAAAC 
6 m 

3AccOut 6,421 – 
6,443 GGCATGTGTGGCCCARAYATTAT 

C 6,385 
5INOut 3,248 – 

3,270 ACTCCATCCTGATAAATGGACAG  
6 m 30 s 

BLInnerR 9,604 – 
9,632 

GCACTCAAGGCAAGCTTTATTGAG
GCTTA  

D 4,778 
5AccOut 4,899 – 

4,922 CGGGTTTATTACAGGGACARCARA 
5 m 

280R 9,650 – 
9,676 

CTAGTTACCAGAGTCACACAACAGA
CG 

LTR  
F9058 9,058 – 

9,083 
AGCCACTTTTTAAAAGAAAAGGGGG
G 1 m 

LTR9556R 9,556 – 
9,577 GAGCTCCCAGGCTCAGATCTGG 

env 2,841 

5EnvIn 
6201-
6231 
 

GAG	  AAA	  GAG	  CAG	  AAG	  ACA	  GTG	  GCA	  
ATG	  AGA	  G	  

3 m 30 s 

3EnvIn 
9007-‐	  
9042	  
 

CTT GTA AGT CAT TGG TCT TAA 
AGG TAC CTG AGG TCT G 
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