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ABSTRACT

AMBER JACKSON: Multiscale Modeling of Multiphase Flow in Porous Media Using
the Thermodynamically Constrained Averaging Theory Approach

(Under the direction of Cass T. Miller )

Traditional approaches to multiscale modeling of multiphase flow and transport are

riddled with deficiencies and inconsistencies across scales. The thermodynamically con-

strained averaging theory (TCAT) approach for modeling flow and transport phenomena

in multiscale porous medium systems addresses many of the shortcomings of traditional

models. The TCAT approach is used here, in conjunction with primary restrictions to the

system of interest, to formulate two distinct hierarchies of models: macroscale two-fluid-

phase flow of continuous fluids and two-fluid-phase flow and transport in a transition

region between a multiphase porous medium system and a free flow system. Applica-

tion of the TCAT approach produces a constrained entropy inequality for each system

and secondary restrictions and approximations allow for simplified entropy inequalities

to be determined in each case. The simplified entropy inequality is formulated relying

upon approximations of terms involving geometric variables and recently derived evo-

lution equations for specific entity measures that include interfacial areas and common

curve lengths. The general model formulation and entropy inequality are then used to

close a series of successively less complex models. The formulated models are compared

to existing models when available. The advantages of the models produced using the

TCAT approach are highlighted and the remaining open issues are discussed.
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CHAPTER 1

Introduction

1.1. Porous Medium Systems

A porous medium is a solid material permeated by an interconnected three-dimensional

network of capillary channels of nonuniform sizes and shapes, commonly referred to as

pore or, less accurately, void spaces [20]. The pore structure in a porous medium can be

characterized by its morphology and topology. The morphology of a porous medium is

the characterization of the distribution of sizes of the pore space; the way in which these

pore spaces are then connected is the topology of the pore space [65]. Porous medium

systems occur routinely in nature and industry with a wide range of applications in-

cluding oil recovery, carbon sequestration, seismic phenomena, and water protection and

restoration [37, 53, 72, 122, 145].

Shallow subsurface systems are an application of flow through a porous medium

system that is of critical importance for a number of reasons including: reliance on

groundwater as a source of supply, the routine practice of subsurface waste disposal, and

protection and restoration of water quality [135]. In fact, the domestic water use of nearly

half the population of the United States relies upon groundwater [71, 167]; however,

widespread sources of soil and groundwater contamination by hazardous chemicals is

threatening this valuable resource. Depending on the phenomena of interest, a subsurface

porous medium system can be described by single-phase flow, single-phase flow and



transport, multiphase flow, or multiphase flow and transport models. The issues involved

in modeling subsurface porous media can vary greatly, and this variance as well as interest

in the many other application areas, provides a clear motivation for general frameworks

for formulating mathematical models.

For our purposes, single fluid phase flow, which we will refer to as single-phase flow,

refers to the characterization of a single fluid phase moving through a porous media.

Examples of systems for which single-phase flow is applicable would be flow of water

through rock fractures with applications to underground excavations [109] and the flow

of groundwater in shallow subsurface systems with applications to groundwater supply

and management [135].

Single-phase flow and transport systems are those in which there is interest in not only

the flow of the fluid through the porous medium, but also the behavior of the individual

components present within the fluid or solid phases. They can be used to describe such

phenomena as the sorption of chemicals from a fluid onto the solid phase [17, 119, 139],

desorption of components through mass transfer from the solid phase into a fluid phase

[33, 41, 49, 94], and reaction of chemical components leading to such processes as ion

exchange or biodegradation [29, 30]. An example of single-phase flow and transport can

arise in subsurface systems when contaminants enter a groundwater supply. This can

occur through a variety of sources: improperly stored or transported hazardous wastes,

leaking landfills, fertilizer, road salt runoff, and dissolution of contaminants from near

surface sources [36]. In these cases, the individual components in the fluid may play

an important role in the system dynamics, making it necessary to determine not only

the overall flow of the fluid through the porous medium, but also the behavior of the

individual chemical components.
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Multiphase flow in porous medium systems involves systems in which the pore space

is filled with at least two distinct immiscible fluid phases that can be in the form of liquids

or gases. Multiphase systems require that the dynamics of not only solid-fluid interac-

tions, but also fluid-fluid interactions be resolved. Examples of applications requiring an

understanding of multiphase flow in porous media include oil recovery [37] and flow in

the unsaturated zone above the water table [138].

Multiphase flow and transport systems are those in which there is interest in not only

the flow of the fluids through the porous medium, but also the behavior of the individual

components present within the phases. Such systems include all of the issues involved

with species transport such as sorption, desorption, ion exchange, and biodegradation,

but with the added complication of multiple fluid phases from which the transport may

arise. Examples of importance in subsurface porous medium are the dissolution and

movement of chemical contaminants in a groundwater supply [34, 36, 57, 118].

The last two decades have seen tremendous efforts devoted to investigating the com-

plex processes governing each of these categories and in pursuing effective remediation

strategies for applications involving contamination of the subsurface [36, 108, 153]. To

date standard remediation technologies still remain expensive and unpredictable in their

success when applied at the field-scale [105, 135, 151, 174]; making evident the impor-

tance of finding more effective and cost efficient methods for characterizing the complex

processes governing porous medium systems. Mathematical models play an important

role in this pursuit.
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1.2. Modeling Multiphase Systems

Understanding and predicting the processes involved in multiphase flow in porous

media requires three different components; experimentation, theory, and simulation. For

naturally occurring subsurface systems, information can be obtained by extensive field-

scale characterization, but this method is both expensive and time-consuming. As such,

mathematically based numerical modeling that combines both theory and simulation

provides an indispensable tool, reducing the amount of field-scale investigations and

often making those that must be performed, for purposes of parameter estimation, more

cost efficient [134].

The purpose of formulating models for multiphase flow in shallow subsurface systems

include (1) to better understand and predict the movement of fluids through a porous

media, (2) to develop strategies for remediation of contaminated groundwater sources,

and (3) to use the information gained to optimize strategies for sustainability and man-

agement of groundwater resources [135].

There exist standard approaches for formulating models to describe multiphase flow

in porous media. The models are typically associated with the scale being considered,

with the most common models being formulated at the microscale and macroscale.

The microscale, also referred to as the pore scale, is the scale at which there is

complete resolution of the pore morphology and topology. In this case, the length scale

of the fluid system is much larger than that of a single molecule or its mean free path,

and hence fluids are considered continuous at this scale [4]. The concept of a point is

essential to the treatment of fluids as a continuum. A microscale point is considered

to be an ensemble of many molecules contained in a small volume. A porous medium
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system at the microscale is said to consist of points over which the individual phases can

be assigned definite dynamic and kinematic properties.

The macroscale, which is often referred to as the lab scale or porous medium con-

tinuum scale, is the scale at which instruments and techniques for experimentally deter-

mining characteristics of porous media exist. At the macroscale a point is considered to

encompass tens to hundreds of pore diameters [75] and the different phases in the porous

medium system are described as overlapping continua, each occupying a fraction of space

[82].

Regardless of scale, there are two main components for models of multiphase flow

in porous media, conservation equations and closure relations [134]. Closure relations

are typically a combination of equations of state (EOS) and constitutive relations that

can be used in conjunction with the conservation equations to form a closed system of

equations, i.e. an equivalent number of equations and unknowns.

1.2.1. Microscale Modeling. With detailed information available at the microscale,

pore-scale modeling allows for the study of essential phenomena in multiphase fluid flow

[28, 148]. Pore-scale modeling presents an important tool for developing constitutive

relations deemed difficult or even impossible to obtain by lab experiments and it provides

a significant means to investigating the role of relatively new variables such as interfacial

area and common curve length for use in system closure [58, 103, 181].

Pore-scale modeling through simulation allows for a greater variety of quantitative

data to be collected; it affords more versatility in choosing parameters; and provides

an easier means for design of numerical experiments. Over the last decade, the avail-

ability of relatively inexpensive high-performance computers coupled with advances in
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micro-modeling experiments and high-resolution imaging has caused a surge of interest

in pore-scale modeling. This surge continues to help advance not only computational

aspects of pore-scale modeling, but also the theoretical basis upon which the numerical

models are built. Still, applications are limited to relatively small domains and simpli-

fied problems [148]. With ever increasing computational power and continued interest

in multiphase flow, it is foreseeable that pore-scale simulations will soon be capable of

simulating microscopic flows and parameters that include larger scale heterogeneities.

1.2.2. Macroscale Modeling. The majority of porous medium flow simulators are

based on continuum theory. Typical macroscale models consist of the governing conser-

vation equations, which are closed using equations of state and constitutive relations.

Performing experiments to derive constitutive relationships can be difficult and expen-

sive; however, constitutive relations play a crucial role in the accuracy of such subsurface

models. Traditional approaches to formulating models for multiphase flow in porous

media exist and have been used widely [43, 121, 123, 159]. Despite the routine use

of the standard approaches, there are aspects of the resulting models that limit both

their effectiveness and predictability. Even in cases where the numerical solution is con-

sidered precise and the model parameters are specified, errors may still occur; the two

fundamanetal reasons for which are that the representation of the physics is inadequate

or that the parameters that appear are not clearly defined and not easily measurable

[84].
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1.3. Continuum Modeling

Over the past two decades a wide array of research to build improved models for

multiphase flow in porous media has been undertaken [38, 53, 59, 72, 75, 80, 96, 127,

144, 158, 180]. The traditional approach to formulating models for multiphase flow in

porous medium systems, the limitations of traditional approaches, the advances that

have been made in an effort to produce more theoretically reasonable models, and the

desired properties of new approaches are discussed in turn.

1.3.1. Traditional Approach. While macroscale continuum modeling of multiphase

flow in porous medium systems has recently received a lot of attention in the research

community (e.g. [13, 37, 84, 128, 135, 137]), traditional approaches are still commonly

implemented by researchers (e.g. [43, 66, 156, 159]). A traditional model for multiphase

flow at the macroscale typically involves

(i) applying simplifying assumptions

(ii) specifying the minimum set of mass conservation equations necessary to describe

the behavior of interest;

(iii) using a multiphase form of Darcy’s law to approximate conservation of momen-

tum equations;

(iv) defining equations of state; and

(v) specifying constitutive relations among fluid pressures, saturations, and perme-

abilities.
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Several simplifying assumptions are commonly made including asserting that the solid

phase is inert, that the solid can be modeled without including its conservation equations

explicitly in the formulation, and that the system is isothermal.

1.3.1.1. Conservation Equations. A general conservation of mass equation can be written

as:

(1.1)
∂(ειρι)

∂t
+∇· (ειριvι) = 0

where ι is a phase qualifier, ει is the volume fraction of the pore space filled by phase ι;

ρι is the density of the phase; and vι is the velocity of the phase. The volume fraction,

ει, can be written as εsι where ε is the porosity of the porous medium system and sι is

the saturation of the ι phase. Given this relationship, a continuity statement is used

(1.2)
∑
ι

sι = 1,

which states that the pore space is jointly filled by the fluid phases present in the system.

Formal momentum balance equations are not traditionally included in the standard

approach for continuum formulations of multiphase flow. Instead, it is traditional in the

environmental literature to substitute a multiphase extension of Darcy’s law. Darcy’s

law, which actually represents single-fluid-phase flow for a control volume in cases of low

Reynolds number, is extended in order to define the Darcy velocity, ειvι. This extension

assumes that the pressure gradient of the individual phases is a driving force for that

specific phase [62, 177]. This extension can be written for an isotropic porous medium
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system as:

(1.3) ειvι =
−κκrι
νι

(∇pι − ριg)

where κ is the intrinsic permeability; κrι is the relative permeability relation defining the

reduction of κ due to the incomplete saturation of fluid phase ι; νι is the dynamic viscosity

of fluid ι; pι denotes the pressure in phase ι; and g is the gravitational acceleration.

Substituting Eqn. 1.3 into Eqn. 1.1 yields:

(1.4)
∂(ερι)

∂t
+∇·

[
ρι
κκrι

νι
(∇pι − ριg)

]
= 0

for each phase, ι, of interest in the multiphase porous medium system.

Since most multiphase environmental model formulations assume an isothermal sys-

tem, they do not consider an energy balance equation, although there are some notable

exceptions [68, 69, 86, 149].

1.3.1.2. Closure Relations. Closure of the set of balance equations requires a sufficient

number of additional equations such that the number of unknowns and the number of

equations are equal. This can be accomplished by stipulating EOS and constitutive

relations. Typical EOS express the equilibrium relationships based on thermodynamic

models that are empirical in origin [157]. For example, in standard formulations of

multiphase flow in porous media in which conservation of energy is omitted by argument

of an isothermal system and compositional effects are not being considered, an EOS
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relating fluid pressure and density is posited as

(1.5) ρι = ρι (pι)

A constitutive relation for linking the saturation of the phases and the capillary

pressure, pc, which is typically interpreted as the differences in pressure between the

fluid phases, can be written as:

(1.6) pc = pc(sι)

and for relative permeabilities, which are commonly written as functions of phase satu-

ration,

(1.7) κrι = κrι (sι)

Constitutive relationships are approximate, often uncertain, and typically empirically

based [134]. There are many specific forms that exist, many of which are hysteretic in

nature and difficult to measure.

1.3.2. Deficiencies of Traditional Models. Deficiencies in traditional approaches for

formulating macroscale models for multiphase flow in porous media are widely acknowl-

edged [78, 79, 101, 102, 134], and efforts to develop a sound theoretical basis upon which

new models can be constructed have been undertaken [77, 84, 93, 98, 116, 129, 164, 175,

178].
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The traditional approach to modeling multiphase flow in porous media leads to mul-

tiple issues of concern. These issues include, but are not limited to, a lack of rigorous

connection with the pore scale physics, inadequate definition of variables, implicit ap-

proximations concerning system behavior, as well as lack of a structured framework for

model refinement, extension, and simplification [84].

The classical approach to modeling multiphase flow in porous media lacks a rigorous

connection with pore-scale physics by proposing conservation equations and closure rela-

tions directly at the macroscale. When microscale physics is not a part of the macroscale

formulation procedure, correspondence of physical descriptions between scales is not at-

tained [84].

The lack of a rigorous connection between the microscale and the macroscale thus has

two serious consequences. First, macroscale equations are written in terms of macroscale

quantities, the definitions of which can be too vague or ill-defined for direct measurability.

For example, at the microscale notions such as temperature and pressure are well under-

stood; however, a rigorous connection of these quantities to the macroscale formulation

is lacking [84]. As a result, issues may arise such as in the case of a varying microscale

pressure within a macroscale region under conditions of no flow. In this situation the

choice of a representative macroscale pressure to describe the thermodynamic state of

that region is not obvious and it is unclear as to which property’s gradient is balanced by

the gravitational effects [83]. Second, processes observable and studied at the microscale

that are known to influence system behavior are not incorporated into the model. An

example of this situation is fluid wettability as measured by the contact angle, which

is the angle formed between fluid-fluid interface and the solid phase at the pore scale.

Wettability is well known to dramatically influence behavior of multiphase flow at the
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macroscale, but does not appear in traditional models of flow at that scale [84]. In addi-

tion, microscopic thermodynamic notions are often used to discuss macroscopic systems

in which they are no longer meaningful [134].

Standard modeling approaches include implicit approximations resulting from the

use of closure relations. While such approaches may provide useful models in some

cases, the implicit nature of the assumptions causes difficulty in assessing model errors

and in proposing corrective actions [84]. An example of an implicit approximation for

standard multiphase flow models is the use of a modified form of Darcy’s law instead of a

formal conservation of momentum equation. This approximation can potentially obscure

important physical phenomena—such as viscous coupling between different fluids and

the transient nature among relations involving fluid pressures and saturations—which

are understood as important for some systems [14, 160].

1.3.3. Evolving Approaches. To advance macroscale models, the deficiencies of tra-

ditional models must be addressed. Clearly macroscale modeling is in fact a multi-scale

problem based on the physics of multiphase flow. Many researchers have attempted to

develop rigorous macroscale models that are consistent with smaller-scale representations

[16, 21, 25, 55, 77, 80, 98, 99, 129, 136, 143, 178]. They use the notion of averaging or

upscaling as a means to connect the microscale physics to a macroscale model [38, 145].

Formulating models in this way affords the ability to produce models that are consis-

tent across scales, have well-defined macroscale variables that relate to properties at the

microscale, and can include microscale phenomena.
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Along the lines of including microscale phenomena comes advancements in the un-

derstanding of the pore-scale physics. The impact of pore-scale properties, such as in-

terfacial areas, on larger scales is one such area that has received notable attention

[46, 47, 53, 75, 80, 142, 152]. In particular, the role of interfaces as observed through

viscous and capillary coupling has led the field toward including interfacial effects at the

macroscale. An example of a mechanism employed to accomplish this, is the inclusion of

interfaces as jump conditions or discontinuities between phases [13]. Another approach

is to include balance equations for not only phases, but interfaces and common curves in

the model formulation [80, 85, 110, 136, 137, 144].

Including the transient behavior associated with the approach to a capillary pressure

equilibrium state is yet another evolving approach to advance macroscale models. It

is commonly accepted that the relationship between capillary pressure and saturation

demonstrates memory effects in the form of hysteresis; and capillary pressure-saturation

relationships that include both hysteretic and dynamic effects are an active area of re-

search [23, 96, 97, 163]. However, advances in pore-scale modeling suggest that the

hysteretic behavior can in fact be reduced or eliminated by the inclusion of additional

variables of dependence such as interfacial areas, common curve lengths, and interfacial

curvatures [80, 103, 113].

1.3.4. Desired Approach Properties. The development of a complete and consistent

theory for macroscale modeling of multiphase flow in porous media requires mathemati-

cal tools that allow the equations and thermodynamics to be formulated consistently and

in such a way that the variables have physical, measurable meaning [84]. An acceptable

approach must establish a clear connection between pore-scale physics and larger scale
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behavior; obey the second law of thermodynamics [80]; and include only well-defined vari-

ables and measurable parameters. The approach should be consistent across scales and

have a flexible framework for guiding the formulation of models for describing multiphase

flow in porous media [84]. Ideally this framework should allow for model refinement, ex-

tension, and simplification.

Even with the desired approach properties in mind and recent advances to the field,

such as those listed in §1.3.3, open issues remain [84, 110, 134, 135, 144]. The clear

statement and understanding of the open issues is fundamental to resolving current dif-

ficiencies in model formulations.

1.4. Open Issues

The inherent heterogeneity in subsurface porous media together with the complexity

involved in the physics of such systems [48, 56, 73], often over multiple scales [54], results

in a significant challenge to the development of fundamental theories crucial to the design

of approaches for modeling multiphase flow in porous medium systems.

1.4.1. Consistency Across Scales. A more satisfying approach than that taken by

traditional models is based on formal averaging to produce mass, momentum, and en-

ergy conservation equations that are formulated about volumes, interfacial areas between

each pair of phases, and common curves for all unique three-phase intersections [78, 102].

Supplementing these averaged equations with constitutive relations resulting from con-

straining an averaged entropy inequality, the second law of thermodynamics, and certain

other equilibrium thermodynamic relations [50, 99] allows for all macroscale variables to
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be defined in terms of microscale counterparts. Unfortunately, while helping to resolve

many inconsistency issues, formal averaging approaches along these lines result in large

systems of equations, with an even larger number of unknowns, which must be substan-

tially simplified in order to be tractable with currently available computational resources

[134]. In addition to creating a larger set of equations, formal averaging introduces con-

siderable complexity to the system. However, formal averaging methods have been able

to provide some enlightening information when applied to specific systems of interest

[2, 85, 87, 110], and hold promise for providing improved understanding of other com-

plex systems. Nonetheless, it is important to note formal averaging requires the existence

of a representative elementary volume (REV), a region of porous medium large enough

to include all phases and of a sufficient size that the values of averages that characterize a

phase are independent of that size [84], yet most natural systems are stochastic in nature

and the strict assumption of an REV and clearly separable length scales may not be met

for many such systems ( i.e. [155]).

1.4.2. General Constitutive Relation Formulation. The problem of formulating

comprehensive constitutive theory has resulted in several approaches. Mapping mi-

croscale quantities to macroscale quantities such that a differential equation arises whose

solution completes the closure problem [178] is an approach that has most often been

applied for a rigid solid matrix. This approach has the drawback of not including inter-

face dynamics and macroscale thermodynamics. An entropy inequality formulation with

equations for interfaces was developed by Kalaydjian [115], however it omits common

curves and makes significant assumptions. Mixture theory can be used for multiphase

flow [8], but closure conditions are incomplete because interface effects are neglected.
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Use of the entropy inequality in obtaining porous medium flow equations have been for-

mulated to include interfaces [25, 27, 78] with the postulation of the thermodynamic

dependence of internal energy improved by making the postulations in terms of extensive

variables and the closure conditions clarified by stating the need for dynamics of geo-

metric variables [75]. The closure conditions developed were based on approximations to

averaging theorems and neglected to account for the average orientation of the interfaces

within the averaging volume, limiting their applicability [93].

To overcome the shortcomings of the above approaches, consistency across scales

as discussed in §1.4.1, is necessary as well as the inclusion of dynamics for interfaces

and common curves. However, the result of including averaged balance equations for

interfaces and common curves increases the discrepancy that already existed in traditional

approaches between the number of equations and the number of unknown variables.

These new variables must be approximated using additional constitutive relations and

evolution equations. Closure relations consistent with the second law of thermodynamics

[26, 78, 80, 99] present the most conceptually satisfying approach in that they can include

interface and common curve dynamics. A particularly challenging part of this approach

however is formulating the second law constraint at a scale consistent with the scale of the

governing equations. While an averaged entropy inequality has been derived, statement

of the functional dependence of macroscale entropy on macroscale properties in a manner

consistent with microscale thermodynamics has only been accomplished in relatively few

instances [85, 87, 110].

Closure of the conservation equations has two main elements, evolution equations for

the geometric densities that arise, such as volume fractions and interfacial area densi-

ties, and proper formulation of the thermodynamics. The geometric densities are not
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subject to conservation equations, rather they must be considered from a mathematical

perspective, for which unique relations among the geometric densities do not exist [84].

Equations indicating how these densities evolve are desired, but are not generally avail-

able [133]. Currently, approximate relations are employed [75, 93], but finding better

relations is an open issue in the field.

The other important element to closure, the proper formulation of the thermody-

namics at the macroscale, is complicated as a result of dealing with dynamic systems.

Classical thermodynamics relates to the study of systems at equilibrium, thus researchers

are forced to deal with extensions of thermodynamics for systems which vary in space

and time. Several theoretical approaches to the general field of thermodynamics exist

and have been successfully applied at the microscale [114, 130]. However, a consistent

macroscale representation requires averaging the thermodynamics from the microscale

to the macroscale [84]. The choice of an optimal thermodynamic theory for use at the

macroscale has yet to be determined, and comparisons of competing theories should be

investigated for a range of models and systems.

1.4.3. pSk Relations. Pressure, saturation, and permeability constitutive relations,

commonly referred to as pSk relations, are of central importance for modeling of mul-

tiphase systems. The modeling of these relations can be broken into several categories,

including pressure-saturation (pS) relations, saturation-permeability (Sk) relations, and

hysteresis models.

Frequently used pS relations, which describe capillarity, include the Brooks-Corey

(BC) model [40], the van Genuchten (VG) model [173], and the Parker et al. model

[150]. These models were experimentally determined and relate the capillary pressure to
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the saturation; they are relations that depend on the porous media and fluid properties,

and have parameters which vary according to the porous medium system of interest.

Similarly Sk empirical relations exist [52]. The two most commonly used are the

Mualem [141] and Parker et al. [150] statistical models. While Sk relations were de-

veloped as a means to include the physical properties of the porous medium, measuring

these relations for more than two fluid phases is of significant difficulty [134].

Hysteresis in pS and Sk relations arise due to pore-scale effects associated with contact

angle hysteresis, because of non-wetting fluid entrapment during saturation path reversals

[125], and because the effect of interfacial area is commonly neglected. Nonetheless,

non-hysteretic pS and Sk relations are often used because they require far less data

and computational resources[134]. pSk relations tend to be minimally calibrated, but

even if they were measured extensively, several issues still require attention, namely the

treatment of non-wetting phase entrapment, the effects of interfacial spreading, mixed

wettability, and dynamics.

1.4.3.1. Non-wetting phase entrapment. Non-wetting phase (NWP) entrapment is an is-

sue of central importance to multiphase environmental systems. When the non-wetting

phase appears in the subsurface as a source of contaminant and becomes trapped in a

residual form in a water wet system, the accurate modeling of its formation and mobiliza-

tion become vital steps for realistic assessment, analysis, and remediation. A macroscopic

NWP-entrapment model that captures the displacement history to correctly predict the

initial-residual NWP saturation [117, 172] has been referred to as the residual-initial

NWP relation and is used as a sub-model in hysteretic pSk relations. Understanding

and predicting NWP entrapment as well as understanding and predicting the behavior
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of the NWP once it is entrapped, i.e. appearing as a disconnected phase, are both areas of

open research. Recent efforts have been made to study NWP entrapment [5, 19, 154, 179]

and the importance of such characterizations is widely acknowledged.

1.4.3.2. Interfacial spreading and mixed wettability. Interfacial tensions must be balanced

between gas-aqueous, non-aqueous phase liquids (NAPL)-aqueous, and gas-NAPL inter-

faces [3], which may lead to spreading of a NAPL on a gas-aqueous interface. It has

been found that spreading can greatly influence both the advancement of imbibition

fronts and lateral migration at the water table [9, 131]. The additional driving force

resulting from the spreading of NAPLs remains an issue for further investigation. In ad-

dition, other interfacial phenomena such as solid phase wettability, which is important in

mixed-wettability porous medium systems, are still not well characterized. These inter-

facial effects are believed to play a crucial role in formulating improved pSk constitutive

relations and some work has been done to characterize these effects [35, 63, 106, 113, 174].

1.4.3.3. Dynamics. The mass and momentum balance equations are inherently dynamic

however, they are often closed using constitutive equations, such as pSk relations that

are empirical in nature and usually collected at pseudo-static equilibrium [134]. For

these closure relations to actually be independent of dynamic effects, their relations

must not be affected by the rate at which steady state is reached or by the number of

intermediate points used to form the relation. Evidence for dynamic effects has been

found experimentally [24, 60, 64, 166, 168–170], the extent of dynamic effects is not fully

understood and deserves further study.
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1.5. Dissertation Overview

The overall goal of this work is to improve macroscale models of multiphase flow in

porous media for the case of two-fluid-phases. The primary hypotheses of this work are

that (1) traditional and currently used models for multiphase flow suffer from inade-

quately defined variables, a lack of connection between scales, and inflexible frameworks;

(2) pore scale analysis can be used to elucidate the deficiencies in standard models and

to test proposed constitutive relations and their consistency across scales; and (3) new

approaches can provide consistent, well-defined, flexible models for two-phase flow in

porous medium systems.

Specific research objectives include:

(1) to formulate a hierarchy of improved macroscale models for flow of two contin-

uous fluids in a porous medium system;

(2) to formulate a model for describing the transition region between two distinct

mediums with differing entity sets for the case where one of the mediums includes

two-fluid-phase flow and transport in a porous medium system; and

(3) to compare the derived models with those commonly applied in the literature.

The modeling approach for accomplishing the goals of this work is the thermody-

namically constrained averaging theory (TCAT) approach. The TCAT approach [84]

provides a more comprehensive and logical theoretical basis for modeling multiphase

flow than the traditional approach, while also making efforts towards not only connect-

ing the microscale to the desired scale through averaging of the conservation and balance

equations, but also presenting a consistent and methodical process of upscaling which
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allows for model revision, extension, and simplification. TCAT differs from previous av-

eraging theory work in this area in that it involves averaging of the thermodynamics and

equilibrium conditions in addition to the conservation and balance equations; it includes

equations for all microscale entities present in a system thus including evolution equa-

tions for entities such as interfacial areas; it uses the averaged conservation equations and

thermodynamics to constrain an entropy inequality using a force-flux pair approach to

develop closure relations; and it provides well defined variables, clearly separates between

exact forms and approximations, and provides a detailed set of assumptions.

Transformation of conservation equations from the microscale to macroscale is made

possible with the use of averaging theorems [10, 15, 81, 165, 176], which convert averages

of derivatives of microscale quantities into derivatives of macroscale averages. Analogous

in form and function to the transport and divergence theorems, they change the order

of integration and differentiation, and are useful for dealing with phases that occupy a

portion of a three-dimensional space. For TCAT-based models, several classes of desirable

transformations of integrals over a domain (phases, interfaces, or common curves) arise

routinely. These transformations have been developed and published as theorems using

generalized functions [81]. Miller and Gray [136], in a publication on the foundational

components necessary to utilize the TCAT approach, also present a set of multiscale

deviation theorems that are a necessary addition to the transformations referenced above.

Averaged equations contain quantities that must be approximated by constitutive

relations in order to close the system of equations. An averaged entropy inequality,

constrained by the averaged conservation equations and averaged thermodynamics, can

be used in order to guide the formulation of the constitutive relations.
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Several theoretical approaches to the general field of thermodynamics exist and the

choice of one such theory when developing a TCAT model requires some consideration.

Gray and Miller [83] present a summary of various classes of thermodynamic theories and

a more thorough discussions of the theories can be found in [114] and [130]. A consistent

macroscale formulation has been developed for multiphase flow along the lines of Classical

Irreversible Thermodynamics (CIT) [76], which is a theory that includes irreversible

processes and is built upon the local equilibrium assumption. This formulation results

from averaging the microscale CIT theory to the macroscale, which creates additional

terms in the thermodynamic expressions that must be accounted for.

The TCAT approach is meant to be used as a systematic methodology for formulating

porous medium models using rigorous averaging of continuum conservation principles

and microscale thermodynamics and is intended as a framework for generating consistent,

closed models, over a range of scales from micro to mega scales. The scale of each equation

is transformed systematically eliminating any ambiguity in the meaning of variables at

larger scales and providing consistency between the definitions of variables across scales.

The steps to the TCAT approach can be written as:

(1) an entropy inequality (EI) expression for the entire system of concern is gener-

ated by averaging from the microscale to the scale of interest;

(2) an appropriate set of mass, momentum, and energy conservation equations are

formulated by averaging from the microscale to the scale of interest for all rele-

vant entities (phases, interfaces, etc.);

(3) an appropriate microscale thermodynamic theory is averaged up to the desired

scale, and differential forms of internal energy dependence for spatial and tem-

poral derivatives are generated;
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(4) equilibrium conditions are formulated;

(5) the EI is augmented using the product of Lagrange multipliers with conservation

equations and differential, consistent-scale thermodynamic equations;

(6) the set of Lagrange multipliers is determined to select the combination of con-

servation equations that describes the physics of interest and to eliminate time

derivatives in an effort to write entropy generation in terms of products of dissipa-

tive fluxes and forces transforming the augmented EI (AEI) into the constrained

EI (CEI);

(7) geometric identities and approximations are applied to the CEI to eliminate

additional remaining time derivatives as needed to produce the simplified EI

(SEI);

(8) the resultant SEI is used to guide the formulation of general forms of closure

approximations consistent with the second law of thermodynamics; and

(9) microscale and macroscale modeling and experimentation are used to advance

appropriate forms of closure relations.

Aside from the choice of thermodynamic theories, the TCAT approach can be con-

sidered “exact” until the formation of the SEI (step 7), and hence any improvements in

approximations that may be found or deemed necessary would not require starting a new

formulation from the beginning, but rather revisiting this step.

The dissertation consists of two focused model developments, and a summary and

conclusions chapter. Chapter 2, was published in Advances in Water Resources in 2009.

Detailed in this work are the elements of the TCAT approach necessary to construct

a model for two-fluid-phase flow in porous media for the case of two continuous fluids.

Chapter 3 will be submitted to Advances in Water Resources. Detailed in this work are
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the elements of the TCAT approach necessary to construct a model for two-fliud-phase

flow and transport within a transition region. Assumptions and restrictions placed on

the systems are outlined in detail. Resulting formulations are compared to traditional

models when available and notable advantages are discussed. All models presented in-

clude closure relations that are in functional form, and determining expressions for these

relationships is necessary for application of the models. The Summary and Discussion

chapter, Chapter 4, includes possible extensions to the work presented here and addi-

tional areas of research in need of attention to further advance the overall goals of this

work.
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CHAPTER 2

Thermodynamically Constrained Averaging Theory Approach
for Modeling Flow and Transport Phenomena in Porous

Medium Systems: 6. Two-Fluid-Phase Flow

2.1. Introduction

This paper is the sixth in a series of efforts to produce complete, rigorous closed models

that describe flow and transport phenomena in multiscale porous medium systems using

the thermodynamically constrained averaging theory (TCAT) approach. Work to date

has provided an overview of the general TCAT approach [84], introduced mathematical

fundamentals and theorems necessary to generate macroscale equations [136], illustrated

the application of the method for single-fluid-phase, single-species flow [85], developed

fundamental components of the theory for multispecies models [137], and described the

application of the method for single-fluid-phase, multi-species flow [87]. The present

study is focused on two-fluid-phase flow in porous media in which the fluid phases are

continuous.

A traditional model for multiphase flow in an isothermal system void of compositional

effects at the macroscale is typically derived [e.g., 1, 23, 51, 59, 134] by (1) writing

equations for mass conservation of each phase; (2) using a modified Darcy’s law as an

approximate momentum equation for each phase; (3) writing the system of equations in

terms of fluid pressures and saturations; (4) specifying an equation of state relating fluid

pressures to their densities; (5) assuming an incompressible solid phase and immiscible

fluid phases; and (6) specifying constitutive relationships for fluid saturations and relative

permeabilities as functions of fluid pressures.



The traditional model for two-fluid-phase flow is established firmly and used rou-

tinely for applications in soil science [e.g., 43, 104], contaminant hydrology [e.g., 36, 121],

petroleum engineering [e.g., 37, 70], and many other fields. While the traditional model

is commonly used it is not without flaws [78, 79, 84, 101, 102, 134]. These flaws include

the lack of a rigorous connection between microscale physics and macroscale models,

assumed dependence of fluid saturations on fluid pressures alone—leading to hysteresis,

dynamics in the relationship between fluid pressures and saturations that is typically

ignored, and the lack of explicit account for the physics associated with interfaces and

common curves. The TCAT approach can be used to construct models that resolve many

of the common shortcomings associated with traditional multiphase flow models and also

reveal the assumptions that are inherent in traditional models.

The overall goal of this work is to develop a hierarchy of models to describe continuous

two-fluid-phase flow in porous medium systems. The specific objectives of this work are:

(1) to formulate a constrained entropy inequality that connects formally the second law

of thermodynamics to quantities appearing in mass, momentum, and energy conservation

equations; (2) to produce a simplified entropy inequality that can be used to guide the

formulation of closure relations needed to produce well-posed models; (3) to detail the

restrictions and approximations needed to produce a hierarchy of two-fluid-phase flow

models; (4) to populate the hierarchy of models with formulations that cover a range of

sophistication and physical fidelity; and (5) to discuss ways in which the general models

developed can be further specified, linked to the microscale, and evaluated.

The basic steps involved with formulating a TCAT model for continuous two-fluid-

phase flow are identical to those previously outlined and shown in previous work [84,

85, 87, 136, 137]. Minimal re-discussion of these details is needed, and the focus of this

work is on the novel aspects of the present contribution. These novel aspects include

the extension of the TCAT approach to multiple fluid-phase systems, the forms of the

constrained entropy inequality (CEI) and simplified entropy inequality (SEI), closure

approximations, and the hierarchy of models proposed.
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2.2. System Definition

Two scales are of interest in this work. The microscale, or pore scale, is a scale at

which the details of the extent of all phases, interfaces, and common curves are known.

The macroscale, or porous medium continuum scale, is a scale at which all quantities

are expressed as averages over a representative elementary volume (REV) [20]. TCAT

models are developed at the macroscale, where an appropriate REV is assumed to exist.

These models provide a rigorous connection to the microscale by expressing macroscale

quantities in terms of clearly defined averages of microscale quantities.

Following the standard TCAT notation, the system of concern in this work consists

of the set of domains of entities given by

(2.1) E = {Ωι|ι ∈ I} = {Ωw,Ωn,Ωs,Ωwn,Ωws,Ωns,Ωwns},

where I, the index set of entity qualifiers, is given by

(2.2) I = {w, n, s, wn,ws, ns, wns},

where Ω represents a domain of interest, the members of the index set specify the wet-

ting phase (w), the non-wetting phase (n), the solid phase (s), the wetting-non-wetting

interface (wn), the wetting-solid interface (ws), the non-wetting-solid interface (ns), and

the wetting-non-wetting-solid common curve (wns).

The connected entity set defines all the entities in contact with a particular entity Ωι

(i.e., the interfaces that bound a phase, the two phases and common curve that bound

an interface, the three interfaces and the common points that bound a common curve).

This set is defined by

(2.3) Ecι = {Ωκ|(Ω̄ι ∩ Ω̄κ 6= ∅) ∧ (Ω̄ι 6= Ω̄κ),∀Ωκ ∈ E},

where the closure of the domain of the entities is defined as Ω̄ι = Ωι ∪ Γι, Γι is the

boundary of Ωι, and Icι is the index set corresponding to Ecι so Ecι = {Ωκ|κ ∈ Icι}. Ecι
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is the set of entities that form an internal boundary for entity Ωι. For example, in the

case of the wn interface, Ecwn = {Ωw,Ωn,Ωwns}.
Thus, the systems of concern include a porous medium in which the solid phase is

filled by two fluid phases. Specifically excluded is the case in which one of the fluid phases

is entrapped. The system of concern applies in many cases, such as drainage of a wetting

fluid saturated media or the simultaneous flow of two continuous fluid phases.

2.3. Equilibrium Conditions

In order to exploit the system entropy inequality (EI) to guide the formulation of ap-

propriate closure relations, it is important to arrange the EI into products of independent

fluxes and groupings of forces known to vanish at equilibrium. The development of such

equilibrium conditions for microscale properties can be accomplished using variational

methods [7, 31, 32] and the macroscale equilibrium conditions are obtained as averages

of these results [91]. The particular equilibrium conditions needed for the present study

have been derived in [137] and the expressions obtained are given here for convenience.

At equilibrium, the mass-averaged macroscale velocity satisfies the condition that it

is constant and equal in all entities. This may be expressed as

(2.4) vι − vs = 0 ∀ι ∈ I

with

(2.5) dι = 0 ∀ι ∈ I.

where dι is the rate of strain of entity ι. The macroscale temperatures are also constant

and equal for all entities such that

(2.6) θι − θs = 0 ∀ι ∈ I
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along with

(2.7) ∇θι = 0 ∀ι ∈ I.

In the current study, the transport of chemical species between phases is not being

considered. Nevertheless, there is a need to account for the formation and dissipation of

interfaces between phases and of common curves. These entities are formed as mixtures

of the pure phase materials. In this case,

(2.8) Mw = µw + ψw = µw,wn + ψwn = µw,ws + ψws = µw,wns + ψwns,

(2.9) Mn = µn + ψn = µn,wn + ψwn = µn,ns + ψns = µn,wns + ψwns

and

(2.10) Ms = µs + ψs +

〈
σs:

Cs
ρsjs

〉
Ωs,Ωs

− 1

ρs

〈
ts:I

3

〉
Ωs,Ωs

= µs,ws + ψws

= µs,ns + ψns = µs,wns + ψwns,

where Mw, Mn, and Ms are constants, µι and ψι are the chemical and gravitational

potentials of entity ι, respectively, µι,κ is the chemical potential of the material comprising

the pure phase ι in interface or common curve entity κ, ρ is density, I is the identity

tensor, σs is the Lagrangian stress tensor, Cs is the Greens’ deformation tensor, ts =

(2/js)σs: (∇Xx∇Xx) is the microscale Cauchy stress tensor, js = |∂
′x
∂X
| is the solid-

phase Jacobian, x represents the position in the solid phase, X represents the initial

position in the solid phase,∇Xx is the gradient of a spatial location vector relative to its

initial location, and the angled bracket notation represents the averaging operator [83].

Since the quantities M ι in Eqns (2.8)–(2.10) are constants, their gradients are zero so

that, for example,

(2.11) ∇
(
µι + ψι

)
= ∇

(
µs + ψs +

〈
σs:

Cs
ρsjs

〉
Ωs,Ωs

− 1

ρs

〈
ts:I

3

〉
Ωs,Ωs

)
= 0.
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The macroscale geometric variables are not evolving with time at equilibrium so that

their material derivatives are zero

(2.12)
Dsει

Dt
= 0 ∀ι ∈ I,

where ει is the specific measure of entity ι. Within the solid phase the equilibrium

condition is

(2.13)

〈
ρs∇

(
ts:I

3ρs

)
−∇·ts

〉
Ωs,Ωs

= 0.

This equation, along with the microscale versions of the equilibrium constraints and

the Gibbs-Duhem equation, can be used to deduce the equilibrium condition

(2.14)

〈
∇·ts −∇σs:

Cs
js

〉
Ωs,Ωs

= 0.

For the system under consideration, various unit vectors can be identified that con-

tribute to the quantitative description of the system. The outward normal from phase

ι on its boundary is designated as nι such that ι ∈ {w, n, s}. At the common curve

forming the boundary of an interface αβ between the α and β phases, a unit vector

can be identified that is tangent to the interface and also normal to the boundary curve

of the interface pointing outward from the interface. This unit vector is denoted nαβ

where αβ ∈ {wn,ws, ns}. Also, the unit vector tangent to the wns common curve is

designated as lwns. In addition, the microscale contact angle between the wn and ws

interfaces is designated as ϕws,wn. From geometric considerations, these quantities can

be inter-related at a common curve on a smooth surface and expressed in terms of ns,

nws, and ϕws,wn. The following identities apply at the interface

(2.15) nα = −nβ on Ωαβ .

On the common curve at the smooth solid surface with normal ns

(2.16) nwn = cosϕws,wnnws − sinϕws,wnns,
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(2.17) nns = −nws.

Also along the wns common curve the identity exists such that

(2.18) lwns ·∇′′lwns = lwns ·∇lwns ·nsns + lwns ·∇lwns ·nwsnws.

Then the normal curvature, κNwns, and the geodesic curvature, κGwns are defined,

respectively as

(2.19) κNwns = lwns ·∇lwns ·ns

and

(2.20) κGwns = lwns ·∇lwns ·nws

so that Eqn (2.18) may be written

(2.21) lwns ·∇′′lwns = κNwnsns + κGwnsnws.

The corresponding macroscale normal and geodesic curvatures are defined according to

(2.22) κwnsN = 〈κNwns〉Ωwns,Ω and κwnsG = 〈κGwns〉Ωwns,Ω .

The macroscale contact angle is defined such that

(2.23) cosϕws,wn =

〈
cos
(
ϕws,wn

)〉
Ωwns,Ωwns

[〈cos
(
ϕws,wn

)〉2Ωwns,Ωwns + 〈sin (ϕws,wn)〉2Ωwns,Ωwns ]1/2
or, equivalently

(2.24) sinϕws,wn =

〈
sin
(
ϕws,wn

)〉
Ωwns,Ωwns

[〈cos
(
ϕws,wn

)〉2Ωwns,Ωwns + 〈sin (ϕws,wn)〉2Ωwns,Ωwns ]1/2 .
The macroscale surface curvature, Jκι , obtained as the divergence of nι averaged over

the κ interface is defined by

(2.25) Jκι =
〈∇′·nι〉Ωκ,Ωκ,γκ ≈ 〈∇′·nι〉Ωκ,Ωκ = Jκι , κ ∈ II, ι ∈ (IP ∩ Icκ) .
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The macroscale pressure of phase ι averaged over an interface κ is denoted pκι where

(2.26) pκι = 〈pι〉Ωκ,Ωκ , ι ∈ If , and κ ∈ Icι

and macroscale interfacial tension of surface ι averaged over the common curve wns is

defined by

(2.27) γwnsι = 〈γι〉Ωwns,Ωwns , ι ∈ II,

where If is the index set of all fluid phases.

Next, define χι for ι ∈ (II ∩ Iss) as

(2.28) χι =

 1 on Ωι

0 elsewhere on Ωss,

where ss denotes the entire surface of the solid phase. Then

(2.29) χssι = 〈χι〉Ωss,Ωss , ι ∈ (II ∩ Iss) .

Similarly a Dirac delta function, δC(xκ), can be defined such that

(2.30) 〈δC(xκ)fι〉Ωss,Ωss = 〈fι〉Ωκ,Ωss =
εκ

εss
fκι , ι ∈ I, κ ∈ (IC ∩ Icss) .

These functions allow for averages over interfaces and the common curve to be written

as averages over the solid surface. The expression for the equilibrium balance of normal

stress at the solid surface is

(2.31)
〈
χws

(
pw + γws∇′·ns − ρwsgws·ns

)〉
Ωss,Ωss

+
〈
χns

(
pn + γns∇′·ns − ρnsgns·ns

)〉
Ωss,Ωss

+ 〈ns · ts·ns〉Ωss,Ωss
+
〈
δC(xwns)

(
γwnsκNwns − γwn sinϕws,wn − ρwnsgwns·ns

)〉
Ωss,Ωss

= χssws

(
pwsw + γwsJwss − 〈ρwsgws·ns〉Ωws,Ωws

)
+χssns

(
pnsn + γnsJnss − 〈ρnsgns·ns〉Ωns,Ωns

)
+ 〈ns · ts·ns〉Ωss,Ωss
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+
εwns

εss

(
γwnsκwnsN − γwnswn sinϕws,wn − 〈ρwnsgwns·ns〉Ωwns,Ωwns

)
= 0,

where gι is the microscale body force acceleration vector acting on entity ι and integral

separability has been assumed. At the wn interface, the macroscale equilibrium condition

obtained is

(2.32)
〈
pw − pn − γwn∇′·nw + ρwngwn·nw

〉
Ωwn,Ωwn

= pwnw − pwnn − γwnJwnw + 〈ρwngwn·nw〉Ωwn,Ωwn = 0.

The vector equilibrium condition in any direction tangent to the solid surface is obtained

as

(2.33)
〈
δC(xwns)

(
γwn cosϕws,wn + γws − γns + γwnsκGwns

)
nws

〉
Ωss,Ωss

−〈δC(xwns)ρwnsgwns·nwsnws − ns · ts·I′
〉

Ωss,Ωss
= 0,

where I′ is the surface identity tensor. These equilibrium conditions will play an impor-

tant role subsequently in work to obtain macroscale closure conditions.

2.4. Augmented Entropy Inequality

A key step in the development of a TCAT-based model is the specification of the

augmented entropy inequality (AEI). A properly formed AEI connects the conservation

of mass, momentum, and energy equations to an EI for the entire system using appro-

priate averaged thermodynamic expressions that relate material derivatives of entropy to

material derivatives appearing in the conservation equations. Because the components

of a continuous two-fluid-phase flow model have already been derived [76, 80, 137], these

components may be combined into an AEI given by

(2.34)
∑
ι∈I

(Sι + λιMMι + λιP ·P
ι + λιEE ι + λιT T ι

)
= Λ ≥ 0,
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where Sι represents an EI, Mι is a conservation of mass equation, Pι is a conservation

of momentum equation, E ι is a conservation of total energy equation, T ι is a thermody-

namic expression for the material derivatives of internal energy, λ’s and λ’s are Lagrange

multipliers, the subscripts of which specify the respective equation, while the superscript

ι is an entity qualifier, and Λ is the entropy produced by the system. In formulating the

AEI, all conservation equations are arranged such that they are equal to zero. There-

fore, adding the products of λ’s and a conservation equation affect neither the sign nor

the magnitude of Λ. The Lagrange multipliers are free parameters and as such may be

chosen arbitrarily. Selecting the Lagrange multipliers to eliminate some of the material

derivative terms in the AEI allows the formulation to focus on the dissipative processes

involved in two-fluid-phase flow. To make clear the distinction between those material

derivatives that can be eliminated and the remainder of the terms in the balance and

conservation equations, shorthand notation is employed for the remaining terms.

The system EI is

(2.35)
∑
ι∈I

Sι =
∑
ι∈I

(
Dιηι

Dt
+ ηιI:dι −∇·

(
ειϕι

)
− ειbι

)
= Λ ≥ 0,

where ηι is the entropy density, t is time, ϕι is an entropy flux vector, bι is an entropy

source density, and Λ is the entropy production rate density for the system. We can write

the shorthand expression for the entropy inequality as

(2.36)
∑
ι∈I

Sι =
∑
ι∈I

(
Dιηι

Dt
+ Sιr

)
= Λ ≥ 0,

where Sιr represents the residual terms in the entropy inequality, Eqn (2.35). Residual

terms refers to the collection of all terms in the original equation not explicitly listed in

the shorthand form.
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Similarly each of the conservation equations may be written in shorthand notation.

Conservation of mass equations are expressed

(2.37) Mι =
Dι (ειρι)

Dt
+ ειριI:dι −

∑
κ∈Icι

κ→ι
M = 0 for ι ∈ I

with the shorthand form

(2.38) Mι =
Dι (ειρι)

Dt
+Mι

r = 0 for ι ∈ I,

where ρι is the mass density,
κ→ι
M represents mass exchange from the κ to the ι entity,

and Mι
r accounts for the residual terms in Eqn (2.37).

Conservation of momentum equations for the system entities may be written as

(2.39) Pι =
Dι
(
ειριvι

)
Dt

+ ειριvιI:dι −∇·
(
ειtι
)
− ειριgι

−
∑
κ∈Icι

(
κ→ι
Mv +

κ→ι
T

)
= 0 for ι ∈ I.

These have the corresponding shorthand form

(2.40) Pι =
Dι
(
ειριvι

)
Dt

+Pιr = 0 for ι ∈ I,

where tι is the stress tensor,
κ→ι
Mv represents momentum exchange from the κ to the ι

entity due to mass transfer,
κ→ι
T represents momentum exchange from the κ to the ι

entity due to interfacial stress, and Pιr represents the residual terms in Eqn (2.39).

Conservation of total energy equations are written as

(2.41) E ι =
Dι
[
Eι + ειρι

(
1
2vι·vι +Kι

E + ψι
)]

Dt

+

[
Eι + ειρι

(
1

2
vι·vι +Kι

E + ψι
)]

I:dι −∇·
(
ειtι·vι + ειqι

)
−ειhι −

〈
ρι
∂ψι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)
= 0 for ι ∈ I.
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Expansion of the material derivative and introduction of shorthand notation yields

(2.42) E ι =
DιEι

Dt
+ vι·

Dι
(
ειριvι

)
Dt

+

(
Kι
E −

vι·vι

2
+ ψι

)
Dι (ειρι)

Dt

+E ιr = 0 for ι ∈ I,

where Eι is the internal energy density; Kι
E is the kinetic energy per unit mass due

to microscale velocity fluctuations; ψι is the gravitational potential; qι is the heat flux

density vector; hι is an energy source density,
κ→ι
ME ,

κ→ι
Tv , and

κ→ι
Q express the transfer of

energy from entity κ to entity ι due to mass transfer, interfacial stress, and heat transfer,

respectively, and E ιr represents the residual terms in the conservation of energy equation.

Thermodynamic expressions for the material derivatives of internal energy are based

upon averaging classical irreversible thermodynamic (CIT) expressions from the mi-

croscale to the macroscale and differentiation of those expressions, which has been de-

tailed in previous work [76, 84, 91, 137]. This procedure yields for the fluid phases

(2.43) T ι =
DιEι

Dt
− θιD

ιηι

Dt
− µιD

ι (ειρι)

Dt
+ pι

Dιει

Dt

+

〈
ηι

Dι
(
θι − θι

)
Dt

+ ρι
Dι
(
µι − µι

)
Dt

− Dι (pι − pι)
Dt

〉
Ωι,Ω

= 0 ι ∈ If ,

where θι is the macroscale temperature of entity ι. For the solid phase,

(2.44)

T s =
DsEs

Dt
− θsDsηs

Dt
− µsDs (εsρs)

Dt
+

〈
ηs

Ds
(
θs − θs

)
Dt

+ ρs
Ds
(
µs − µs

)
Dt

〉
Ωs,Ω

−
∑
ι∈Ics

〈(
Cs
js

:σs

)
(vι − vs) ·ns

〉
Ωι,Ω

−
〈
ns ·

[
ts·
(
vs − vs

)]〉
Ωss,Ω

+

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

+ εsσ:C
s

js
I:ds − 〈ts〉Ωs,Ω:ds

−∇·
〈(

ts − σs:
Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

= 0.
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The material derivative of the thermodynamic expression for the interface internal energy

per unit volume yields

(2.45) T ι =
DιEι

Dt
− θιD

ιηι

Dt
− µιD

ι (ειρι)

Dt
− γιD

ιει

Dt

+

〈
ηι

D′ι
(
θι − θι

)
Dt

+ ρι
D′ι
(
µι − µι

)
Dt

〉
Ωι,Ω

+

〈
D′ι (γι − γι)

Dt

〉
Ωι,Ω

−∇θι·
〈
nκnκ ·

(
vι − vι

)
ηι

〉
Ωι,Ω

−∇µι·
〈
nκnκ ·

(
vι − vι

)
ρι

〉
Ωι,Ω

−∇γι·
〈
nκnκ ·

(
vι − vι

)〉
Ωι,Ω

, ι ∈ II,

where nκ is the unit normal to the surface ι with κ ∈ Icι ∩ IP, and

(2.46)
D′ι
Dt

=
Dι

Dt
+
(
vι − vι

)
·nκnκ ·∇.

For the common curve

(2.47) T ι =
DιEι

Dt
− θιD

ιηι

Dt
− µιD

ι (ειρι)

Dt
+ γι

Dιει

Dt

+

〈
ηι

D′′ι
(
θι − θι

)
Dt

+ ρι
D′′ι

(
µι − µι

)
Dt

〉
Ωι,Ω

−
〈

D′′ι (γι − γι)
Dt

〉
Ωι,Ω

−∇θι·
〈

(I− lιlι)·
(
vι − vι

)
ηι

〉
Ωι,Ω

−∇µι·
〈

(I− lιlι)·
(
vι − vι

)
ρι

〉
Ωι,Ω

+∇γι·
〈

(I− lιlι)·
(
vι − vι

)〉
Ωι,Ω

, ι ∈ IC,

where lι is the unit vector tangent to Ωι, and

(2.48)
D′′ι
Dt

=
Dι

Dt
+
(
vι − vι

)
· (I− lιlι) ·∇.
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For the interfaces and common curves, the compositional nature of these entities is man-

ifest in an implicit summation of chemical potential terms, which is compressed in the

above notation, without loss of generality.

It may be observed that all thermodynamic equations can be written using shorthand

notation as

(2.49) T ι =
DιEι

Dt
− θιD

ιηι

Dt
− µιD

ι (ειρι)

Dt
+ T ιr = 0, ι ∈ I,

where T ιr represents the residual terms not explicitly shown in the shorthand form. It

follows that the precise definition of this variable depends upon the type of entity, but

the respective definition for each entity type can be easily deduced from the complete

forms listed.

2.5. Constrained Entropy Inequality

2.5.1. Lagrange Multiplier Solution. A key step in TCAT model building is con-

structing a CEI. The CEI is important because it represents a general and exact statement

of the second law of thermodynamics that is derived based upon a set of primary restric-

tions for a given system. Ultimately, the CEI is used, pending some approximations, to

guide the formulation of allowable closure relations. Deriving a CEI for a given system

requires a substantial amount of manipulation, but once formulated a CEI can be used

to derive a hierarchy of models of varying complexity and fidelity. The goal is to match

the sophistication of the final model to the level of sophistication necessary to describe

a physical system of concern. The steps needed to derive a CEI for a continuous two-

fluid-phase flow system are detailed below, while relying upon the literature for certain

well-established aspects of the formulation.

Closure relations are sought for dissipative processes. To formulate these relations,

the near equilibrium case is examined. To facilitate this focus, material derivative expres-

sions are removed from the EI through judicious selection of the Lagrange multipliers.
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Substitution of Eqs. (2.38), (2.40), (2.42), and (2.49) into Eqn (2.34) gives a system with

42 explicitly written material derivatives. By considering only these 42 material deriva-

tives, although some additional material derivatives do remain in the residual terms, a

unique solution for the λ’s can then be accomplished as outlined in [85]. This yields

(2.50)



λιM
λιP

λιE
λιT


=

1

θι



Kι
E + µι + ψι −

(
vι·vι

)
2

vι

−1

1


for ι ∈ I.

Substitution of these results into Eqn (2.34) and using Eqs. (2.38), (2.40), (2.42), and

(2.49) yields a CEI of the form

(2.51)
∑
ι∈I

1

θι

[
θιSιr +

(
Kι
E + µι + ψι −

(
vι·vι

)
2

)
Mι

r + vι·Pιr − E ιr + T ιr
]

= Λ ≥ 0.

2.5.2. Thermodynamics Simplifications. The expressions denoted by T ιr result from

the averaging of CIT-based expressions relating material derivatives of internal energy

to other quantities. Some manipulation of these terms is desirable to facilitate the for-

mulation of the final form of the CEI. These manipulations are detailed in turn for each

of the entities of concern.

Beginning with the fluid phases, the material derivatives and velocities are referenced

to a common frame, namely the macroscale, mass-averaged solid-phase velocity, vs. Note

that the solid-phase thermodynamics is already referenced to vs. The referencing of the

fluid phases is accomplished using the identity:

(2.52)
Dι

Dt
=

Ds

Dt
+ vι,s·∇,
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where vι,s = vι − vs is the macroscale mass-average relative velocity of entity ι with

respect to the reference velocity vs. The thermodynamic expressions in the CEI then

become, for ι ∈ If ,

(2.53) T ιr =

〈
ηι

Ds
(
θι − θι

)
Dt

+ ρι
Ds
(
µι − µι

)
Dt

− Ds (pι − pι)
Dt

〉
Ωι,Ω

+
〈
vι,s·

[
ηι∇

(
θι − θι

)
+ ρι∇

(
µι − µι

)
−∇ (pι − pι)

]〉
Ωι,Ω

+pι
Dsει

Dt
+ pιvι,s·∇ει.

The microscale Gibbs-Duhem equation can be used to deduce

(2.54)
〈
vι,s· (ηι∇θι + ρι∇µι −∇pι)

〉
Ωι,Ω

= 0, ι ∈ If ,

which may be used to simplify Eqn (2.53) to

(2.55) T ιr =

〈
ηι

Ds
(
θι − θι

)
Dt

+ ρι
Ds
(
µι − µι

)
Dt

− Ds (pι − pι)
Dt

〉
Ωι,Ω

−vι,s·
[
ηι∇θι + ειρι∇µι −∇ (ειpι)

]
+ pι

Dsει

Dt
.

The material derivative term involving the fluid pressure can be simplified by applying

Theorem MC[3,(3,0),0] [136] giving〈
Ds (pι − pι)

Dt

〉
Ωι,Ω

=
∑
κ∈Icι

〈
(pι − pι)

(
vs − vκ

)
·nι
〉

Ωκ,Ω

=
∑
κ∈Icι

[〈
pι

(
vs − vκ

)
·nι
〉

Ωκ,Ω

]
+ pι

Dsει

Dt
.(2.56)

Combination of this result with Eqn (2.55) yields

(2.57) T ιr =

〈
ηι

Ds
(
θι − θι

)
Dt

+ ρι
Ds
(
µι − µι

)
Dt

〉
Ωι,Ω
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−vι,s·
[
ηι∇θι + ειρι∇µι −∇ (ειpι)

]
+
∑
κ∈Icι

〈
pι

(
vκ − vs

)
·nι
〉

Ωκ,Ω
.

Consider the residual term for the solid-phase thermodynamics and note that

(2.58)
〈
ns · ts·

(
vs − vs

)〉
Ωss,Ω

=
〈
ns · ts·I·

(
vs − vs

)〉
Ωss,Ω

=
〈
ns · ts·

(
nsns + I′

)
·
(
vs − vs

)〉
Ωss,Ω

=
〈
ns · ts·nsns·

(
vs − vs

)〉
Ωss,Ω

+
〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

.

Thus the solid-phase thermodynamics residual can be written as

(2.59) T sr =

〈
ηs

Ds
(
θs − θs

)
Dt

+ ρs
Ds
(
µs − µs

)
Dt

〉
Ωs,Ω

−
∑
ι∈Ics

〈(
Cs
js

:σs

)
(vι − vs) ·ns

〉
Ωι,Ω

−
〈
ns · ts·nsns·

(
vs − vs

)〉
Ωss,Ω

−
〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

+

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

+εsσ:C
s

js
I:ds − 〈ts〉Ωs,Ω:ds −∇·

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

= 0.

A similar process can be applied for the case of interfaces. At the microscale, it is

necessary to restrict the material derivative to the interface, which is accomplished using

the expression

(2.60)
D′ι
Dt

=
∂′
∂t

+ vι·∇′,

where

(2.61)
∂′
∂t

=
∂

∂t
+ vι·nκnκ ·∇

and

(2.62) ∇′ = ∇− nκnκ ·∇,
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where κ ∈ (Icι ∩ IP). Eqn (2.60) may be rearranged to

(2.63)
D′ι
Dt

=
D′s
Dt

+ vι,s·∇′.

Combination of this form with Eqn (2.45) gives

(2.64) T ιr =

〈
ηι

D′s
(
θι − θι

)
Dt

+ ρι
D′s
(
µι − µι

)
Dt

+
D′s (γι − γι)

Dt

〉
Ωι,Ω

+
〈
vι,s·

[
ηι∇′

(
θι − θι

)
+ ρι∇′

(
µι − µι

)
+∇′ (γι − γι)

]〉
Ωι,Ω

−∇θι·
〈
nκnκ ·

(
vι − vι

)
ηι

〉
Ωι,Ω

−∇µι·
〈
nκnκ ·

(
vι − vι

)
ρι

〉
Ωι,Ω

−∇γι·
〈
nκnκ ·

(
vι − vι

)〉
Ωι,Ω

− γιD
sει

Dt
− γιvι,s·∇ει.

The microscale Gibbs-Duhem equation can be applied to show

(2.65)
〈
vι,s·

(
ηι∇′θι + ρι∇′µι +∇′γι

)〉
Ωι,Ω

= 0, ι ∈ II,

which may be used to simplify Eqn (2.64) to

(2.66) T ιr =

〈
ηι

D′s
(
θι − θι

)
Dt

+ ρι
D′s
(
µι − µι

)
Dt

+
D′s (γι − γι)

Dt

〉
Ωι,Ω

−vι,s·
〈
ηι∇′θι + ρι∇′µι +∇′γι

〉
Ωι,Ω

−∇θι·
〈
nκnκ ·

(
vι − vι

)
ηι

〉
Ωι,Ω

−∇γι·
〈
nκnκ ·

(
vι − vι

)〉
Ωι,Ω

−∇µι·
〈
nκnκ ·

(
vι − vι

)
ρι

〉
Ωι,Ω

− γιD
sει

Dt
− γιvι,s·∇ει.

Theorem MC[2,(3,0),0] [136] may be applied to write the material derivative of inter-

facial tension term from Eqn (2.66) as

(2.67)

〈
D′s (γι − γι)

Dt

〉
Ωι,Ω

= ∇·
〈
nκnκ ·

(
vι − vs

)
(γι − γι)

〉
Ωι,Ω

−
〈(∇′·nκ)nκ ·

(
vι − vs

)
(γι − γι)

〉
Ωι,Ω

+ 〈nκnκ (γι − γι)〉Ωι,Ω:ds
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−
∑

j∈(Icι∩IC)

〈
nι·
(
vj − vs

)
(γι − γι)

〉
Ωj ,Ω

,

where κ ∈ (Icι ∩ IP). Theorems T[2,(3,0),0] and G[2,(3,0),0] [82] may be employed in

averaging a constant to obtain

(2.68) γι
Dsει

Dt
= −∇·

〈
nκnκ ·

(
vι − vs

)
γι
〉

Ωι,Ω
+∇γι·

〈
nκnκ ·

(
vι − vs

)〉
Ωι,Ω

+
〈(∇′·nκ)nκ ·

(
vι − vs

)
γι
〉

Ωι,Ω
− 〈nκnκγι〉Ωι,Ω:ds

+
∑

j∈(Icι∩IC)

〈
nι ·

(
vj − vs

)
γι
〉

Ωj ,Ω
,

where ι ∈ II, and κ ∈ (Icι ∩ IP). Combining Eqs. (2.66), (2.67), and (2.68) yields

(2.69) T ιr =

〈
ηι

D′s
(
θι − θι

)
Dt

+ ρι
D′s
(
µι − µι

)
Dt

〉
Ωι,Ω

− vι,s·γι∇ει

−vι,s·
〈
ηι∇′θι + ρι∇′µι +∇′γι

〉
Ωι,Ω

−∇γι·〈nκnκ〉Ωι,Ω·vι,s

−∇θι·
〈
nκnκ ·

(
vι − vι

)
ηι

〉
Ωι,Ω

−∇µι·
〈
nκnκ ·

(
vι − vι

)
ρι

〉
Ωι,Ω

+∇·
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(∇′·nκ)nκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

+〈nκnκγι〉Ωι,Ω:ds −
〈
nι ·

(
vwns − vs

)
γι

〉
Ωwns,Ω

.

Eqn (2.63) and the product rule can be used to show

(2.70) − vι,s·
〈
ηι∇′θι + ρι∇′µι +∇′γι

〉
Ωι,Ω

= −vι,s·
〈
ηι (∇− nκnκ ·∇) θι

〉
Ωι,Ω

− vι,s·
〈
ρι (∇− nκnκ ·∇)µι

〉
Ωι,Ω

−vι,s·〈(∇− nκnκ ·∇) γι〉Ωι,Ω
= −vι,s·ηι∇θι +∇θι·

〈
ηι (nκnκ) ·vι,s

〉
Ωι,Ω

− vι,s·ειρι∇µι

+∇µι
〈
ρι (nκnκ) ·vι,s

〉
Ωι,Ω

− vι,s·ει∇γι +∇γι·〈nκnκ〉Ωι,Ω·vι,s.
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Eqn (2.70) can be combined with Eqn (2.69) to write a final form of the residual term

for interfacial thermodynamics

(2.71) T ιr =

〈
ηι

D′s
(
θι − θι

)
Dt

+ ρι
D′s
(
µι − µι

)
Dt

〉
Ωι,Ω

−vι,s·
[
ηι∇θι + ειρι∇µι +∇ (γιει)

]
+∇θι·

〈
nκnκ ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+∇µι·
〈
nκnκ ·

(
vι − vs

)
ρι

〉
Ωι,Ω

+∇·
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(∇′·nκ)nκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

+ 〈nκnκγι〉Ωι,Ω:ds

−
〈
nι ·

(
vwns − vs

)
γι

〉
Ωwns,Ω

.

Applying a similar approach to that used to simplify the interface thermodynamics

to the residual term for a common curve results in

(2.72) T ιr =

〈
ηι

D′′s
(
θι − θι

)
Dt

+ ρι
D′′s

(
µι − µι

)
Dt

〉
Ωι,Ω

−vι,s·
[
ηι∇θι + ειρι∇µι −∇ (ειγι)

]
− 〈(I− lιlι) γι〉Ωι,Ω:ds

+∇θι·
〈

(I− lιlι)·
(
vι − vs

)
ηι

〉
Ωι,Ω

+∇µι·
〈

(I− lιlι)·
(
vι − vs

)
ρι

〉
Ωι,Ω

−∇·
〈

(I− lιlι)
(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(

lι ·∇′′lι
)
·
(
vι − vs

)
γι

〉
Ωι,Ω

.

The detailed residual terms of the thermodynamic expressions are in a convenient

form. The manipulations performed to derive these expressions are exact and all terms are

well-defined averages of microscale quantities. The only remaining material derivatives

in these residual terms involve averages of deviations of microscale temperature and

chemical potential deviations from their macroscale expressions.

2.5.3. Flux-Force Form. The only remaining material derivatives in the CEI not ref-

erenced to vs appear in the E ιr portion. These can be referenced to vs by making use of
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the identity

(2.73) ειρι
Dι
(
Kι
E + ψι

)
Dt

= ειρι
Ds
(
Kι
E + ψι

)
Dt

+ ειριvι,s·∇
(
Kι
E + ψι

)
.

Two additional terms appearing in E ιr can be expanded using the product rule. The

divergence of the stress tensor term may be written as

(2.74) ∇·
(
ειtι·vι

)
= vι·∇·

(
ειtι
)

+ ειtι:dι,

making use of the fact that tι is symmetric. The divergence of the heat flux vector

may be rearranged to show

(2.75) − 1

θι
∇·
(
ειqι

)
= −∇·

(
ειqι

θι

)
− ειqι(

θι
)2 ·∇θι.

Eqs. (2.73), (2.74), and (2.75) can be used to write the residual portion of the energy

equation as

(2.76) E ιr = ειρι
Ds
(
Kι
E + ψι

)
Dt

+ ειριvι,s·∇
(
Kι
E + ψι

)
+

[
Eι + ειρι

(
1

2
vι·vι +Kι

E + ψι
)]

I:dι − vι·∇·
(
ειtι
)

−ειtι:dι − θι∇·
(
ειqι

θι

)
+ θι

ειqι(
θι
)2 ·∇θι − ειhι

−
〈
ρι
∂ψι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)
= 0, for ι ∈ I.

The residual terms Sιr, Mι
r, Pιr, E ιr, and T ιr are next substituted back into Eqn

(2.51). Cancellation of like terms along with extensive but routing manipulations are

then employed. These routine manipulations include applying the product rule, algebraic

rearrangements, and regrouping of terms into force-flux pairs consistent with derived

equilibrium conditions. The completion of these manipulations provides the final form

of the CEI
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(2.77)

−
∑

ι∈{If∪II∪IC}
∇·
(
ειϕι − ειqι

θι

)

−∇·
{
εsϕs − 1

θs

[
εsqs −

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]}

−
∑
ι∈IP

[
ειbι − 1

θι

ειhι +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

〈
ρι

Ds
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

]

−
∑
ι∈II

[
ειbι − 1

θι

ειhι +

〈
ηι

D′s
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

〈
ρι

D′s
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

]

−εwnsbwns +
1

θwns

εwnshwns +

〈
ηwns

D′′s
(
θwns − θwns

)
Dt

〉
Ωwns,Ω


+

1

θwns

〈
ρwns

D′′s
(
µwns + ψwns − µwns − ψwns −Kwns

E

)
Dt

〉
Ωwns,Ω

+
∑
ι∈If

ει

θι

(
tι + pιI

)
:dι +

εs

θs

(
ts − ts

)
:ds +

∑
ι∈II

ει

θι

(
tι − γιI

)
:dι

+
εwns

θwns

(
twns + γwnsI

)
:dwns +

∑
ι∈{If∪II∪IC}

ειqι(
θι
)2 ·∇θι

+
1(
θs
)2

[
εsqs −

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]
·∇θs

−
∑
ι∈IP

∑
κ∈Icι

1

θκ

κ→ι
M
[(
Kι
E + ψι + µι

)
−
(
Kκ
E + ψκ + µκ

)]
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− 1

θwns

∑
κ∈Icwns

wns→κ
M

[(
Kκ
E + ψκ + µκ

)
−
(
Kwns
E + ψwns + µwns

)]

+
∑
ι∈IP

∑
κ∈Icι

[
κ→ι
Q +

(
Eι

ειρι
− µι

)
κ→ι
M + vι,s·

(
κ→ι
T +

vι,κ

2

κ→ι
M

)](
1

θι
− 1

θκ

)

+
∑
ι∈II

[
wns→ι
Q +

(
Eι

ειρι
− µι

)
wns→ι
M + vι,s·

(
wns→ι

T +
vι,wns

2

wns→ι
M

)](
1

θι
− 1

θwns

)

+
∑
ι∈If

∑
κ∈Icι

〈
pι

(
vκ − vs

)
·nι
〉

Ωκ,Ω

(
1

θι
− 1

θκ

)

−
∑
ι∈If

1

θι

[
ειριgι + ειρι∇

(
Kι
E + ψι + µι

)
+ ηι∇θι

−∇ (ειpι) +
∑
κ∈Icι

(
κ→ι
T +

vι,κ

2

κ→ι
M

)]
·vι,s

−
∑
ι∈II

1

θι

[
ειριgι + ειρι∇

(
Kι
E + ψι + µι

)
+ ηι∇θι +∇ (ειγι)

−
∑

κ∈Icι∩IP

(
ι→κ
T +

vκ,ι

2

ι→κ
M

)
+

(
wns→ι

T +
vι,wns

2

wns→ι
M

)]
·vι,s

− 1

θwns

[
εwnsρwnsgwns + εwnsρwns∇

(
Kwns
E + ψwns + µwns

)
+ ηwns∇θwns

−∇ (εwnsγwns)−
∑

κ∈Icwns

(
wns→κ

T +
vκ,wns

2

wns→κ
M

)]
·vwns,s

+
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

∑
κ∈Ics

〈
Cs
js

:σs (vκ − vs) ·ns
〉

Ωκ,Ω
− 1

θs

〈
ns · ts·nsns ·

(
vs − vs

)〉
Ωss,Ω

+
∑
ι∈II

1

θι
∇θι·

〈
nκnκ ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
ι∈II

1

θι
∇·
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω
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+
∑
ι∈II

1

θι

[
〈nκnκγι〉Ωι,Ω:ds −

〈
nι ·

(
vwns − vs

)
γι

〉
Ωwns,Ω

]

+
∑
ι∈II

1

θι
∇
(
Kι
E + ψι + µι

)
·
〈
nκnκ ·

(
vι − vs

)
ρι

〉
Ωι,Ω

+
1

θwn

〈(
pw − pn − γwn∇′·nw + ρwnnw ·gwn

) (
vwn − vs

)
·nw

〉
Ωwn,Ω

− 1

θws

〈(
pw + γws∇′·ns − ρwsns ·gws

) (
vws − vs

)
·ns
〉

Ωws,Ω

− 1

θns

〈(
pn + γns∇′·ns − ρnsns ·gns

) (
vns − vs

)
·ns
〉

Ωns,Ω

+
1

θwns

〈
ρwns

(
vwns − vs

)
· (I− lwnslwns) ·gwns

〉
Ωwns,Ω

− 1

θwns
∇·
〈

(I− lwnslwns) ·
(
vwns − vs

)
γwns

〉
Ωwns,Ω

− 1

θwns

〈(
lwns ·∇′′lwns

)
·
(
vwns − vs

)
γwns

〉
Ωwns,Ω

+
1

θwns
∇θwns·

〈
(I− lwnslwns)·

(
vwns − vs

)
ηwns

〉
Ωwns,Ω

+
1

θwns
∇
(
Kwns
E + ψwns + µwns

)
·
〈

(I− lwnslwns) ·
(
vwns − vs

)
ρwns

〉
Ωwns,Ω

− 1

θwns
〈(I− lwnslwns) γwns〉Ωwns,Ω:ds = Λ ≥ 0.

Eqn (2.77) is the final CEI for the two-fluid-phase system. Additional work is needed

so that both factors in all force-flux pairs will be zero at equilibrium. The appearance of

terms in Eqn (2.77) is impacted by the choice of the microscale thermodynamic functional

dependence, a choice which is reasonable but not unique. No mathematical approxima-

tions have been employed in obtaining this equation from Eqn (2.34). Thus, Eqn (2.77)

provides a starting point for the formulation of a range of complete closed models for two-

fluid-phase flow. The subsequent steps to obtain those models require approximations

appropriate for the physical system under consideration and may take different forms

depending on the systems studied and the approximate relations employed.
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2.6. Restrictions and Approximations

The conservation equations given in §2.4 require closure relations to arrive at a set

of solvable models. The development of closure relations is guided by the simplified EI

(SEI). The final models derived are based upon both restrictions that detail aspects of

the specific system being considered and approximations relied upon to produce closure

relations and thus solvable systems. An important aspect of the TCAT approach is that

these restrictions and approximations are carefully detailed and the models derived can

be revisited if they are found to be inadequate.

Restrictions are considered statements that specify the physical system being mod-

eled. When these restrictions are specified before the AEI is formulated, they are termed

primary restrictions. Secondary restrictions are applied after the final CEI is derived.

The distinction is important because secondary restrictions are relatively easy to relax,

while primary restrictions limit the systems of concern without a complete model refor-

mulation.

Approximations are needed to produce a closed, solvable model. These approxima-

tions involve mathematical steps needed to produce the SEI and to formulate closure

relations based upon the SEI. The validity of the approximations will be testable in most

cases, and improved approximations may be both possible and necessary in certain in-

stances. A set of restrictions and approximations for this work and their significance is

noted.

Primary Restriction 1 (Deterministic Macroscale Averaging). A discrete macro-

scopic length scale exists such that all macroscale quantities of concern are well-defined

and insensitive to the single size of the representative elementary volume employed for

the deterministic models derived.

Primary restriction 1 is a standard assumption needed to produce deterministic

macroscale models based upon a clear separation of length scales. When a clear separa-

tion of length scales does not exist, the fundamental averaging operators and theorems

relied upon in this work need to be revisited.
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Primary Restriction 2 (Entities). The particular system of interest is comprised

of a wetting fluid, a non-wetting fluid, and a solid phase. The juxtaposition of these

phases results in three interfaces and a common curve. The species composition of the

phase entities is not considered.

Primary restriction 2 indicates that interest is limited to the behavior of individual

entities in a porous medium system. The distribution of species that comprise the phase

entities is not considered here. Each phase entity is modeled as being comprised of a

single chemical component.

Primary Restriction 3 (Classical Irreversible Thermodynamics).

Classical irreversible thermodynamics is applicable to the porous medium system at the

microscale.

Primary restriction 3 fulfills the need within the TCAT approach to choose a ther-

modynamic approach. Additionally, the selection is made at the microscale, and the

consequences of this choice are rigorously established by averaging to the macroscale. It

is possible to select an alternative microscale thermodynamic approach.

Primary Restriction 4 (Continuous Phases). The system of concern consists of

continuous wetting and non-wetting phases along with a solid phase.

Primary restriction 4 is a statement that only continuous wetting and non-wetting

fluid phases will be present in the system; no disconnected fluids are present. In the case

of the solid phase, there is a matrix such that all the solid particles are in contact with

other solid particles and the solid phase may be treated as a continuum.

Approximation 1 (Simplified Entropy Inequality). The four approximations used

to produce the SEI are: (1) the geometric tensor is independent of entity measures,

densities, velocities, interfacial tension, and entropy, such that integrals of products of

these quantities may be split into products of integrals; (2) changes in entity measures

are not independent and can be approximated using averaging theorems; (3) the systems
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of concern are macroscopically simple; and (4) terms involving products of microscale

quantities related to solid-phase deformation that are known to vanish at equilibrium are

negligible.

Approximation 1 summarizes a set of conditions imposed to produce the SEI upon

which the closure relations are based. This approximation is a reasonable first approxi-

mation; it is testable based upon microscale simulations; and it can be relaxed if system

behavior dictates this is necessary. The simple system component of this assumption

allows for the heat and entropy fluxes and sources to be related and posits that these

processes do not contribute to the production of entropy.

Approximation 2 (Closure Approximations). Closure approximations will be posited

to be zero order with respect to the macroscale rate of strain tensor and first-order Taylor

series approximations with respect to all other forces being considered.

Neglect of the rate of strain in constitutive relations for porous media flow, as stated

in Approximation 2, is typical within the system but may have to be relaxed if wall

effects are important or for a very high velocity flow. Linear dependence on the forces

is an implicit statement that the system is “near enough” to equilibrium that higher

order dependences can be neglected. This statement does not eliminate Onsager-like

cross-coupling effects.

Secondary Restriction 1 (Isothermal). The system of concern is isothermal.

Secondary restriction 1 eliminates the need to solve conservation of energy equations

and to develop closure relations for quantities involving heat flux. If one is interested in

modeling, for example, geothermal processes, this restriction would be eliminated and

constitutive forms involving heat would be needed.

Secondary Restriction 2 (Immiscible). The entities of concern are completely

immiscible.

51



Secondary restriction 2 is a statement that no mass exchange between phases takes

place.

Secondary Restriction 3 (Solid Properties). The solid phase is linearly compress-

ible, elastic, isotropic, only slightly deformable and solely as a result of normal stress,

primarily deformed in the vertical direction with small spatial gradients in such deforma-

tions, and the curvature of the solid phase is independent of the fluid phase contacting

the surface.

This restriction allows for the inclusion of solid-phase deformation but for a very

specific and relatively simple case. The solid-phase deformation is considered to be slow

and horizontal spatial gradients are assumed to be negligible. This restriction also allows

for the solid-phase curvature to be treated as essentially constant in time and independent

of the fluid saturation conditions.

Approximation 3 (Equations of State). The system is described by standard equa-

tions of state (EOS), averaged up to the macroscale, relating mass densities to fluid

pressures.

Approximation 3 asserts that the EOS commonly used in the hydrologic and petroleum

literature are sufficient for describing macroscale behavior when averaged up to the

macroscale for the system of interest.

Approximation 4 (Spatial Gradients). Spatial gradients of mass densities are neg-

ligible.

Spatial derivatives of macroscale mass densities appear as products with other vari-

ables. This approximation implies that the other variables in the product change much

more rapidly than the phase densities of concern in this work. This assumption is rea-

sonable, but it is also straightforward to consider these spatial variations as well.

Approximation 5 (Acceleration of Momentum). Local and advective rates of change

of momentum at the macroscopic scale are negligible.
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Approximation 5 states there is negligible acceleration with time of the entities and

negligible advective acceleration of the entities at the macroscale, i.e. when considering

acceleration of the macroscale velocities. This assertion simplifies the momentum equa-

tions and is a common approximation used to arrive at a momentum equation similar to

the multiphase extension to Darcy’s Law.

Approximation 6 (Fluctuation Terms). Integral material derivative fluctuation terms

relating microscale and macroscale quantities arising in the Gibbs-Duhem equation can

be neglected.

The fluctuations terms are contained in an integral over the domain corresponding to

the entity of interest, with each of the time derivatives written as a difference between a

macroscale quantity and its microscale precursor. In cases where the system is spatially

homogeneous at the microscale for a given property, the corresponding integral term

vanishes. Even in cases where the system is not microscopically spatially homogeneous

these terms may vanish. In general, while not zero, in many practical cases the fluctuation

terms may be small. Thus neglecting these terms is a feasible first approximation.

Approximation 7 (Deviation Terms). Terms accounting for deviations in kinetic

energy can be neglected.

Kι
E is the kinetic energy due to microscale velocity fluctuations and can be considered

a measure of the deviations in kinetic energy. In cases where the velocity difference be-

tween microscale and macroscale velocities are small, this difference squared, as it appears

in Kι
E can as a first approximation be justifiably neglected. Thus, this statement says

that the integral of the product of the difference between the microscale and macroscale

velocities is, to first order, zero.

Approximation 8 (Massless Interfaces and Common Curves). The interfaces and

common curves are assumed to be massless.
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Massless interfaces and common curves eliminate the need for conservation of mass

equations for these entities and simplifies the form of the conservation of momentum

equations for these entities.

2.7. Simplified Entropy Inequality

An objective of this work is to produce a SEI based upon the CEI that can be used

to guide the formulation of closed models. A useful SEI will consist solely of force-flux

pairs with all forces and fluxes equal to zero at equilibrium. The steps needed to derive

such an SEI from the CEI are approximate in nature. If better approximations become

available, or should an exact relation be derived for a particular system, alternatives to

the approximations used here and detailed in §2.6 may be employed to produce the SEI.

The resultant SEI may be used to derive closure relations for a wide range of models

based upon any additional secondary restrictions applied to the system and the precise

form of the closure relations chosen. We summarize the steps needed to derive the SEI.

First, restrict the system to be isothermal according to Secondary Restriction 1 and

to have no mass exchange between phases according to Secondary restriction 2. The

condition of no mass exchange implies that for phase ι,

(2.78) (vκ − vι) ·nι = 0 on Ωκ,

where ι ∈ IP and κ ∈ Icι. Consistent with Approximation 7, the terms involving devia-

tion kinetic energy are assumed to be negligible since they are second order in velocity

deviations. Also all terms that contain interface or common curve densities are eliminated

based on Approximation 8.

Next, the terms in the averaging operators that involve integrals of nιnι over the κ

domain are considered. Since these terms are related to the orientation of the κ entity,

they are referred to collectively as geometric orientation terms.
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Define the geometric orientation tensor for the κ interface, Gκ, as

(2.79) Gκ = 〈Gκ〉Ωκ,Ωκ = 〈nιnι〉Ωκ,Ωκ for ι ∈ (Icκ ∩ IP) .

For the wns common curve, the geometric orientation tensor, Gwns, is defined as

(2.80) Gwns = 〈Gwns〉Ωwns,Ωwns = 〈(I− lwnslwns)〉Ωwns,Ωwns .

Knowledge of the microscale is sufficient to compute the geometric tensor without

error and thereby test the macroscale models derived from this theory. In general, the

geometric tensor appears within averaging operators as a product involving other terms.

We approximate these geometric product terms by assuming independence among cer-

tain groupings of variables according to Approximation 1, which allows for integrals of

products to be expressed as products of integral expressions. To be specific, the following

approximations are used involving the geometric tensors

(2.81)
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

≈ ειGι·vι,sγι,

(2.82) 〈nκnκγι〉Ωι,Ω ≈ ειGιγι,

(2.83)
〈

(I− lwnslwns) ·
(
vwns − vs

)
γwns

〉
Ωwns,Ω

≈ εwnsGwns·vwns,sγwns

and

(2.84) 〈(I− lwnslwns) γwns〉Ωwns,Ω ≈ εwnsGwnsγwns.

Entropy and heat source and flux terms are assumed to not contribute to entropy

production. The assumption of a thermodynamically simple system is invoked in Ap-

proximation 1 to equate these respective terms and assert that the resulting expressions

are identically equal to zero. The conditions employed are based on Eqn (2.77), but are
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also consistent with the identification of simple systems at the microscale. For macro-

scopically simple systems, the entropy and heat fluxes are related by

(2.85) ειϕι − ειqι

θι
= 0 for ι ∈ {w, n, ws, wn, ns, wns}

and

(2.86) εsϕs − 1

θs

[
εsqs −

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]
= 0.

If more complex relationships are found to be necessary based on observations of a system

of interest, the right sides of these expressions can be set to some non-zero constitutive

function of the force variables in the SEI.

Similarly, energy and entropy source terms are related according to

(2.87) ειbι − 1

θι

ειhι +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

〈
ρι

Ds
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

= 0 for ι ∈ IP,

(2.88) ειbι − 1

θι

ειhι +

〈
ηι

D′s
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

〈
ρι

D′s
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

= 0 for ι ∈ II,

(2.89) εwnsbwns − 1

θwns

εwnshwns +

〈
ηwns

D′′s
(
θwns − θwns

)
Dt

〉
Ωwns,Ω


− 1

θwns

〈
ρwns

D′′s
(
µwns + ψwns − µwns − ψwns −Kwns

E

)
Dt

〉
Ωwns,Ω

= 0.

56



We can derive geometric density approximations using theorem G[3,(3,0),0] [82]

(2.90) 〈∇f〉Ωι,Ω = ∇〈f〉Ωι,Ω +
∑
κ∈Icι

〈nιf〉Ωκ,Ω for ι ∈ IP.

Setting f = 1 yields

(2.91) 0 = ∇ει +
∑
κ∈Icι

〈nι〉Ωκ,Ω for ι ∈ IP.

Theorem T[3,(3,0),0] [82] is

(2.92)

〈
∂f

∂t

〉
Ωι,Ω

=
∂

∂t
〈f〉Ωι,Ω −

∑
κ∈Icι

〈nι ·vκf〉Ωκ,Ω for ι ∈ IP,

and for f = 1

(2.93) 0 =
∂ει

∂t
−
∑
κ∈Icι

〈nι ·vκ〉Ωκ,Ω for ι ∈ IP.

Combining Eqn (2.93) with the dot product of vs and Eqn (2.91) gives

(2.94)
Dsει

Dt
=
∑
κ∈Icι

〈
nι ·

(
vκ − vs

)〉
Ωκ,Ω

for ι ∈ IP.

From Eqn (2.94) we obtain for the w phase, since nw = −ns on the ws interface

(2.95)
Dsεw

Dt
= −

〈
ns ·

(
vws − vs

)〉
Ωws,Ω

+
〈
nw ·

(
vwn − vs

)〉
Ωwn,Ω

,

while a corresponding expression for the s phase may be written

(2.96)
Dsεs

Dt
=
〈
ns ·

(
vws − vs

)〉
Ωws,Ω

+
〈
ns ·

(
vns − vs

)〉
Ωns,Ω

.

For this equation, we make the approximation that

(2.97) χssws
Dsεs

Dt
≈
〈
ns ·

(
vws − vs

)〉
Ωws,Ω

.
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Thus substitution of Eqn (2.97) into Eqn (2.95) yields:

(2.98)
Dsεw

Dt
+ χssws

Dsεs

Dt
≈
〈
nw ·

(
vwn − vs

)〉
Ωwn,Ω

.

The following geometric approximation can be derived in a similar manner using

gradient and transport theorems for the appropriate domains.

(2.99)
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

≈ (εws + εns)
Dsχssws

Dt

+χssns∇· (εwsGss) ·vws,s − χssws∇· (εnsGss) ·vns,s

+χssnsε
wsGss:dws − χsswsεnsGss:dns.

In obtaining this equation, use has been made of Secondary restriction 3 stipulating that

the curvature of the solid grain surface is independent of the fluid phase it contacts.

Applying all of the above mentioned restrictions and approximations outlined in this

section to Eqn (2.77), the SEI may be written as follows:

(2.100)
∑
ι∈If

ει

θ

(
tι + pιI

)
:dι +

εs

θ

(
ts − ts

)
:ds +

εwn

θ

[
twn − γwn (I− Gwn)

]
:dwn

+
1

θ

[
εwstws − εwsγws (I− Gws)

−χssns
(
γwnsws + γwnswn cosϕws,wn − γwnsns + γwnsκwnsG

)
Gss
]

:dws

+
1

θ

[
εnstns − εnsγns (I− Gns)

+χssws

(
γwnsws + γwnswn cosϕws,wn − γwnsns + γwnsκwnsG

)
Gss
]

:dns

+
εwns

θ

[
twns + γwns (I− Gwns)

]
:dwns

−
∑
ι∈If

1

θ

(
ειριgι + ειρι∇

(
ψι + µι

)
−∇ (ειpι) +

∑
κ∈Icι

κ→ι
T

)
·vι,s

−1

θ

(
∇· [εwnγwn (I− Gwn)] +

∑
κ∈Icwn

κ→wn
T

)
·vwn,s
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−1

θ

(
∇· [εwsγws (I− Gws)] +

∑
κ∈Icws

κ→ws
T + χssns

(
γwnsws + γwnswn cosϕws,wn

−γwnsns + γwnsκwnsG

)
∇· (εwsGss)

)
·vws,s

−1

θ

(
∇· [εnsγns (I− Gns)] +

∑
κ∈Icns

κ→ns
T − χssws

(
γwnsws + γwnswn cosϕws,wn

−γwnsns + γwnsκwnsG

)
∇· (εnsGss)

)
·vns,s

−1

θ

(
−∇· [εwnsγwns (I− Gwns)]−

∑
κ∈Icwns

wns→κ
T

)
·vwns,s

−1

θ

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

+
1

θ

(
Dsεw

Dt
+ χssws

Dsεs

Dt

)
(pwnw − pwnn − γwnJwnw )

−1

θ

Dsεs

Dt

[
(pwsw + γwsJwss )χssws + (pnsn + γnsJnss )χssns + 〈ns · ts·ns〉Ωss,Ωss

+
(
γwnsκwnsN − γwnswn sinϕws,wn

) εwns
εss

]
−1

θ
εss

Dsχssws
Dt

(
γwnsws + γwnswn cosϕws,wn − γwnsns + γwnsκwnsG

)
= Λ ≥ 0.

This equation has been arranged such that it is a sum of products of fluxes (the first

factor in each summed product) and forces (the second factor in each summed product).

Knowledge that the forces are zero at equilibrium comes from the derived thermodynamic

equilibrium conditions [137] summarized here in §2.3.

2.8. Closure Relations

Eqn (2.100) is a formal constraint on the form of the closure relations, but it does

not provide the precise form of the needed closure relations. The approximations and

restrictions detailed in §2.6 provide additional guidance on how Eqn (2.100) will be

used to provide closure relation approximations and ultimately the form of the closed

models. Based upon Approximation 2, that the fluxes are zero order in the rate of strain
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tensors, the following approximations are obtained for the stress tensors since the factors

multiplying the rates of strain must be zero

tw + pwI = 0,(2.101)

tn + pnI = 0,(2.102)

ts − ts = 0,(2.103)

twn − γwn (I− Gwn) = 0,(2.104)

tws − γws (I− Gws) = 0,(2.105)

tns − γns (I− Gns) = 0,(2.106)

twns + γwns (I− Gwns) = 0.(2.107)

The zero-order approximations for these fluxes model the flow as being macroscopically

inviscid, which is reasonable for many porous medium systems. In addition, stress tensors

for the interfaces and the common curve depend only upon interfacial, or curvilinear,

tensions and the orientation of the surfaces and curve. If the macroscale rate of strain

tensors are not close to zero, a higher order approximation could be posited. When

highly resolved microscale descriptions of a system are available, the adequacy of this

approximation can be evaluated. For most environmental systems, the closure relations

noted above will be adequate.

Also by Approximation 2, the entropy inequality will be linear in each of the force

terms. Therefore, closure Eqns (2.101)–(2.107) and requiring linearity, Eqn (2.100) sim-

plifies to

(2.108)

−
∑
ι∈If

1

θ

(
ειριgι + ειρι∇

(
ψι + µι

)
−∇ (ειpι) +

∑
κ∈Icι

κ→ι
T

)
·vι,s
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−
∑
ι∈II

1

θ

(
∇· [ειγι (I− Gι)] +

∑
κ∈Icι

κ→ι
T

)
·vι,s

−1

θ

(
−∇· [εwnsγwns (I− Gwns)]−

∑
κ∈Icwns

wns→κ
T

)
·vwns,s

+
1

θ

(
Dsεw

Dt
+ χssws

Dsεs

Dt

)
(pwnw − pwnn − γwnJwnw )

−1

θ

Dsεs

Dt

[
(pwsw + γwsJwss )χssws + (pnsn + γnsJnss )χssns + 〈ns · ts·ns〉Ωss,Ωss

+
(
γwnsκwnsN − γwnswn sinϕws,wn

) εwns
εss

]
−1

θ
εss

Dsχssws
Dt

(
γwnsws + γwnswn cosϕws,wn − γwnsns + γwnsκwnsG

)
= Λ ≥ 0.

This equation is a sum of products of independent fluxes with independent forces where,

in general, each flux is a linear function of all the forces and each force is zero at equi-

librium. The non-negative property of this equation requires that each force will also be

zero at equilibrium.

Consider the flux terms from Eqn (2.108) that form products with the relative veloc-

ities, vι,s. A cross-coupled flux approximation can be written by expressing the flux as

a linear function of both its conjugate force and the other velocity forces. The linearized

expression for the force is then

(2.109) ειριgι + ειρι∇
(
ψι + µι

)
−∇ (ειpι) +

∑
κ∈Icι

κ→ι
T = −

∑
κ∈I

R̂
ι
κ·vκ,s, ι ∈ If ,

where R̂
ι
κ are second-rank, symmetric resistance tensors.

Similarly for momentum transfer of the ι interface a linear cross-coupled approxi-

mation can be formulated from the flux that multiplies the force term, vι,s, and the

connected entities as

(2.110) ∇· [ειγι (I− Gι)] +
∑
κ∈Icι

κ→ι
T = −

∑
κ∈I

R̂
ι
κ·vκ,s, ι ∈ II.
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Similarly for momentum transfer to the wns common curve

(2.111) ∇· [εwnsγwns (I− Gwns)] +
∑

κ∈Icwns

wns→κ
T =

∑
κ∈I

R̂
wns
κ ·vκ,s.

When the superscripts and subscripts on the resistance tensors, R̂
ι
κ, differ, the tensor

accounts for cross-coupling. The resistance tensors depend upon the morphology of the

system and are assumed to be functions of the independent variables around which the

linearizations were not performed such as the specific measures of the entities, volume

fractions, interfacial areas, and the common curve length. The factors containing the

geometric tensors, Gι, that multiply the divergence of the interfacial tensions are the

macroscale mechanism for including the particular orientations that the interfaces and

common curves have at the microscale and in particular the microscopic gradients in

interfacial tension will only drive flow in directions tangent to the surface [93].

The material derivative of the solid-phase fraction in Eqn (2.108) is considered a

flux term for a conjugate force term that vanishes at equilibrium. The linearized force

neglecting any coupling is expressed as

(2.112) − Dsεs

Dt
=

1

ĉs

[
(pwsw + γwsJwss )χssws + (pnsn + γnsJnss )χssns

+〈ns · ts·ns〉Ωss,Ωss +
(
γwnsκwnsN − γwnswn sinϕws,wn

) εwns
εss

]
,

where ĉs is a non-negative compressibility parameter. Eqn (2.112) is an expression of the

dynamic relationship among the normal forces acting on the solid surface.

The material derivative of the wetting-phase fraction in combination with the material

derivative of the solid-phase fraction appears in Eqn (2.108) as a flux term multiplying a

force related to capillary effects at the fluid-fluid interface. The linearized force without

considering cross-coupling is

Dsεw

Dt
+ χssws

Dsεs

Dt
= ε

Dssw

Dt
+ (sw − χssws)

Dsε

Dt
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=
1

ĉwn
(pwnw − pwnn − γwnJwnw ) .(2.113)

The product of the mean macroscale curvature, Jwnw , and the interfacial tension, γwn,

is the macroscale capillary pressure, such that Eqn (2.113) indicates a disequilibrium in

capillary forces will cause a change in saturation to occur.

The final grouping of geometric terms in Eqn (2.108) can be identified as a flux term

that multiplies a force that can be shown to be zero at equilibrium. Thus the linearized

expression for the flux can be written as:

(2.114) −Dsχssws
Dt

=
1

ĉwns

(
γwnsws + γwnswn cosϕws,wn − γwnsns + γwnsκwnsG

)
.

This equation indicates a disequilibrium in the force balance at the common curve tangent

to the solid surface, commonly referred to as spreading pressure [93], will cause a change

in the fraction of the solid surface in contact with the wetting fluid.

2.9. Model Formulation

The purpose of this section is to produce a set of complete, closed, and solvable

models in terms of measurable parameters and macroscale variables. The models are

based upon the conservation equations given in §2.4, the restrictions and approximations

summarized in §2.6, and the closure relations given in §2.8.

The steps involved in producing the target models include (1) specification of the

appropriate set of conservation equations, (2) application of the restrictions and approx-

imations, (3) inclusion of the closure relations, (4) determination of additional closure

relations needed to close the system, and (5) assembling of the individual components

into a closed model.

2.9.1. Full Model Equations and Unknowns. Using the restrictions and approxi-

mations presented in §2.6, for the case of two-fluid-phase flow, the following conservation
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of mass equations apply

(2.115)
Dι(ειρι)

Dt
+ ειριI:dι = 0 for ι ∈ IP,

as do the conservation of momentum equations

(2.116)
Dι(ειριvι)

Dt
+ ειριvιI:dι −∇·

(
ειtι
)
− ειριgι −

∑
κ∈Icι

κ→ι
T = 0 for ι ∈ I.

Recalling the constitutive equations resulting from the SEI, Eqns (2.109)–(2.111), to-

gether with Approximations 5 and 8, and Eqns (2.101)–(2.107), the conservation of mo-

mentum equations in Eqn (2.116) may be expressed as

(2.117)
∑
κ∈I

R̂
ι
κ·vκ,s = −ειρι∇

(
ψι + µι

)
for ι ∈ If ,

(2.118) R̂
ι
ι·vι,s = −

∑
(κ∈I)∩(κ6=ι)

R̂
ι
κ·vκ,s for ι ∈ II

and

(2.119) R̂
wns
wns·vwns,s = −

∑
κ∈(IP∪II)

R̂
wns
κ ·vκ,s.

The assumption is made that the distribution of the phases within the volume is uniform

enough that ∇ψι = −gι for all ι, thus the variables ψι do not have to be considered as

unknowns; this assumption will not hold for all systems. Allowing for this assumption,

Eqn (2.115) and Eqns (2.117)–(2.119) comprise a system of 21 scalar equations, three for

mass and 18 for momentum—neglecting the solid phase, with a corresponding set of 29

unknowns:

(2.120) {εw, εn, εs, ρw, ρn, ρs,vs,vw,s,vn,s,vwn,s,vws,s,vns,s,vwns,s, µw, µn}.

In addition to the equations indicated so far, three additional dynamic equations that

resulted from the entropy inequality, namely Eqns (2.112)–(2.114), are available. These
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equations, however, add 24 additional variables to the list of unknowns. In addition to

the variables that appear in the equations identified so far, εwn is included in anticipation

of the fact that it will arise subsequently. Thus, the 25 additional variables are

(2.121) {ε, εws, εwn, εwns, 〈ns · ts·ns〉Ωss,Ωss , pwsw , pwnw , pnsn , pwnn , γws, γns, γwn, γwnswn ,

γwnsws , γwnsns , γwns, sw, χssws, χ
ss
ns, J

ws
s , Jnss , Jwnw , κwnsN , κwnsG , ϕws,wn}.

The counts of equations and unknown variables stand at 24 and 54, respectively, so that

30 additional constraints are needed to close the system.

2.9.2. Full Model Closure Relations. In this section the relations, at least as func-

tional dependences, that are employed in closing the full model are provided. These

relations are of three types: (1) exact identities; (2) approximate equations of state;

and (3) approximate dynamic relations. The latter two of these types are subject to

improvement depending on data and insight.

2.9.2.1. Identities. First, the specific entity measures of the phases can be eliminated

because they are related to the porosity and wetting-phase saturation according to

(2.122) εs = 1− ε,

(2.123) εw = swε

and

(2.124) εn = (1− sw)ε.

Additionally, the solid surface area fractions must sum to 1, so one of these may be

eliminated using the identity

(2.125) χssns = 1− χssws.
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Making use of these four identities, 26 closure constraints are still required.

2.9.2.2. Equations of State. The macroscale equations of state that will be employed here

make use of Approximation 6, that the fluctuation integrals can be ignored. Also recall

the restriction of this study to isothermal systems. The first two equations used follow

directly from the Gibbs-Duhem equation for the fluid phases and relate the chemical

potential to the pressure according to

(2.126)

(
∂µι

∂pι

)
θι

=
1

ρι
for ι ∈ If .

These two equations introduce the new pressure variables as replacements for chemical

potentials and therefore they do not reduce the number of closure relations needed.

However, if the surface averages of pressure are approximated by the volume-average

pressures, then surface averaged pressures can be eliminated using

(2.127) pwsw = pwnw = pw

and

(2.128) pnsn = pwnn = pn.

Because of Secondary restriction 3, J ιss = Jsss .

Equations of state can be introduced to relate densities to effective pressures

(2.129) β̂ι =
1

ρι

(
∂ρι

∂pι

)
θι

for ι ∈ If ,

(2.130) β̂s = − 1

ρs

(
∂ρs

∂〈ns · ts·ns〉Ωss,Ωss

)
θs

,
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where β̂ι is the fluid compressibility. Additionally, the bulk compressibility or bulk

modulus, α̂b, relates the change in porosity with pressure and is defined by

(2.131) α̂b = − 1

(1− ε)ρs
(

∂[(1− ε)ρs]
∂〈ns · ts·ns〉Ωss,Ωss

)
θs

.

In considering massless, isothermal interfaces and common curve, the equations of state

for the tensions associated with these entities are simply that the interfacial tensions are

constants. The macroscale tensions corresponding to a surface are also considered to

have the same value whether averaged over the interface or just over the common curve.

Thus six values of interfacial tension and one value of the common curve tension are

specified, reducing the number of needed closure relations by seven.

Finally, constitutive equations are proposed for the fluid-fluid interfacial curvature,

the normal and geodesic curvatures, and the contact angle. These quantities are ther-

modynamic properties of the system. The four EOS employed are

(2.132) γwnJwnw = pc(sw, εwn, χssws),

(2.133) κwnsN = κwnsN (sw, χssws, ε
wns),

(2.134) κwnsG = κwnsG (sw, χssws, ε
wns)

and

(2.135) ϕws,wn = ϕws,wn(sw, εwn, χssws).

The first of these relations defines the equilibrium capillary pressure. The hypothesized

functional dependences must be obtained experimentally and are subject to revision.

These four state equations bring the total number invoked here to 21 and reduce the

number of closure conditions still needed to five. These remaining conditions will be

obtained as dynamic constraints.
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2.9.2.3. Dynamic Conditions. Approximate relations for evolution of the geometric vari-

ables have been obtained through the application of time and space averaging theorems

[93]. This work provides three equations while introducing no additional unknown vari-

ables. The geometric equations are

(2.136)
Ds(εws + εns)

Dt
− Jsss

Dsεs

Dt
≈ −∇· (εwsGws) ·vws,s − εwsGws:dws

−∇· (εnsGns) ·vns,s − εnsGns:dns,

(2.137)
Dsεwn

Dt
− εss cosϕws,wn

Dsχssws
Dt

− Jwnw
Dsεw

Dt

−
(
χsswsJ

wn
w − εwns

εss
sinϕws,wn

)
Dsεs

Dt

≈ χssns cosϕws,wn
(
∇· (εwsGws) ·vws,s + εwsGws:dws

)
−χssws cosϕws,wn

(
∇· (εnsGns) ·vns,s + εnsGns:dns

)
−∇· (εwnGwn) ·vwn,s − εwnGwn:dwn

and

(2.138)
Dsεwns

Dt
+ κwnsG (εws + εns)

Dsχssws
Dt

+
εwns

εss
κwnsN

Dsεs

Dt

≈ −κwnsG χssns∇·(εwsGws)·vws,s − κwnsG χssnsε
wsGws:dws

+κwnsG χssws∇· (εnsGns) ·vns,s + κwnsG χsswsε
nsGns:dns

−∇· (εwnsGwns) ·vwns,s − εwnsGwns:dwns.

Although εns has not appeared in the list of unknowns, it is derivable from χssws and εws.

In fact, it is more convenient to replace εws with the total solid specific surface area, εss.

Then εws = χsswsε
ss and εns = (1− χssws)εss.
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The last two dynamic conditions to be invoked involve the solid phase velocity. The

divergence of the solid velocity, ∇·vs = ds:I is related to the material derivative of the

mass of phase s per total volume through the conservation of mass equation. Therefore

∇·vs will be retained in the analysis whenever solid deformation is being considered and

will be treated as an additional variable. However, whenever the undifferentiated solid

velocity appears multiplying a gradient, that term will be considered small. Therefore,

for example,

(2.139)
Ds

Dt
≈ ∂

∂t
.

Although the divergence of the solid velocity is significant in comparison to other terms

in the analysis, neglect of the solid velocity itself provides three dynamic conditions

(2.140) vs = 0,

with the divergence of velocity, ds:I, one additional variable. Thus the problem statement

is complete, though somewhat complex.

2.9.3. Closed Full Model. Based on the closure relations employed above, some of

the variables listed in Eqns (2.120) and (2.121) can be explicitly eliminated from further

consideration. It is convenient to restate the full problem here in terms of the variables

that require attention. The heart of a porous media model is the mass conservation

equations. For a fluid phase, Eqn (2.115) can be rearranged to

(2.141)
∂(εsιρι)

∂t
+∇·(εsιριvι,s) +∇·(εsιριvs) = 0 for ι ∈ If .

The constitutive relations given by Eqns (2.129)–(2.131) can be used along with Eqn

(2.139) to obtain

(2.142) ε
∂sι

∂t
+ sι

([
α̂b + (1− ε)β̂s

] ∂〈ns · ts·ns〉Ωss,Ωss
∂t

+ εβ̂ι
∂pι

∂t

)

69



+∇·(εsιvι,s) = 0 for ι ∈ If ,

where the solid-phase mass conservation equation has been used to eliminate ∇·vs, and

εsιvι,s·∇ρι has been assumed to be negligible in comparison to the other terms in the

equation. The list of 31 unknowns that must be monitored along with the problem

description is

(2.143) {sw, ε,vw,s,vn,s,vwn,s,vws,s,vns,s,vwns,s, 〈ns · ts·ns〉Ωss,Ωss , pw, pn,

εwn, χssws, ε
ss, εwns, γwnJwnw , κwnsN , κwnsG , ϕws,wn}.

These variables are modeled using 31 equations consisting of: two equations of mass

conservation given in Eqn (2.142); 18 momentum Eqns (2.117)–(2.119); three conditions

from the EI Eqns (2.112)–(2.114); five EOS Eqn (2.131) and Eqns (2.132)–(2.135); and

three dynamic conditions Eqns (2.136)–(2.138). Note that all material derivatives relative

to the s phase will be changed to partial time derivatives according to Eqn (2.140). Thus

the general two-phase model with interfaces and a common curve has been closed in a

general functional form using the EI.

2.9.4. Model Formulation Neglecting Common Curves. The general model de-

veloped above can be simplified by neglecting the properties and dynamics of the common

curve. These restrictions are in addition to the restrictions and approximations of §2.6.

If the effects of the common curve are neglected, as is done in standard models, the model

formulation of §2.9.3 will simplify. The list of 31 unknowns is reduced to 25, namely

(2.144) {sw, ε,vw,s,vn,s,vwn,s,vws,s,vns,s, 〈ns · ts·ns〉Ωss,Ωss , pw, pn, εwn, χssws, εss,

γwnJwnw , ϕws,wn},

where the relative velocity of the common curve, vwns,s, the geometric density of the

common curve, εwns, and the normal and geodesic curvatures, κwnsN and κwnsG , have all
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been discarded. The conservation of momentum equations for the common curve is no

longer necessary to describe the system of interest. Also, the dynamic condition, Eqn

(2.138), is no longer relevant. Because the normal and geodesic curvatures are eliminated

from the list of unknowns, the EOS for these variables, Eqn (2.133) and Eqn (2.134),

are unnecessary. The form of Eqn (2.114) will change slightly when the common curve

is neglected with the new form being

(2.145) γwnsws + γwnswn cosϕws,wn − γwnsns = −ĉwnsDsχssws
Dt

.

Eqn (2.145) still indicates a disequilibrium in the force balance at the common curve,

but since the common curve properties are not being considered, the product of the

curvilinear tension and geodesic curvature has been neglected here.

The resulting 25 variables are modeled using 25 equations consisting of: two equations

of mass conservation given in Eqn (2.142); 15 momentum equations, Eqns (2.117) and

(2.118); three equations from the EI, Eqn (2.112), Eqn (2.113), and Eqn (2.145); three

equations of state Eqn (2.131), Eqn (2.132), and Eqn (2.135); and two dynamic conditions

Eqns (2.136) and (2.137). Note again all material derivatives relative to the s phase are

changed to partial time derivatives according to Eqn (2.140).

2.9.5. Model Formulation Neglecting Common Curves and Interfaces. Tradi-

tional two-fluid-phase flow models neglect the contributions of both common curves and

interfaces by assigning these entities no properties. The list of 25 unknowns resulting

from neglecting just common curves is reduced further to the set of 12 unknowns, namely

(2.146) {sw, ε,vw,s,vn,s, 〈ns · ts·ns〉Ωss,Ωss , pw, pn, γwnJwnw }.

where the relative velocities of the interfaces, the geomtric densities of the interfaces,

the area of the solid surface, the geometric ratios, and the contact angle have all been

neglected. The conservation of momentum equation for the interfaces is no longer nec-

essary to describe the system of interest. The dynamic conditions, Eqns (2.136) and
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(2.137), are no longer employed. The exclusion of the contact angle excludes its equation

of state, Eqn (2.135). In addition, the constitutive relations resulting from the EI are

effected such that Eqn (2.114) is no longer needed. Also, with regard to Eqn (2.113), a

problem arises with this equation in that the last term contains χssws which is not deter-

mined in this formulation that neglects interfaces. Therefore, essentially, an additional

equation of state is needed to express χssws in terms of the unknowns of the problems.

In general this equation of state needs to be determined experimentally. However, some

simple hypotheses may be useful. For example, one could set χssws = sw implying that

the fraction of solid surface in contact with the wetting phase is equal to the fraction of

the pore space occupied by the w phase. This is a widely used approximation. Another

option might be to specify χssws = 1 which might be particularly apt if one is considering

drainage starting with a fully saturated system.

Additionally, specification of the capillary pressure as a function of εwn in addi-

tion to saturation cannot be accomplished without some measure of the interfacial area.

Therefore, within the constraints of this formulation, it seems appropriate to specify the

capillary pressure γwnJwnw as a function only of sw. Thus the functional form previously

given as an equation of state in Eqn (2.132) can be written as

(2.147) −γwnJwnw = pc(sw)

and Eqn (2.113), using χssws = sw, can be written as

(2.148) pw − pn − γwnJwnw = ĉwnε
Dssw

Dt
.

Eqn (2.112) also takes a modified form,

(2.149) sw (pw + γwsJsss ) + (1− sw) (pn + γnsJsss ) + 〈ns · ts·ns〉Ωss,Ωss = −ĉsDsεs

Dt

and note that γι and Jsss are parameters. The resulting 12 variables are then modeled

using 12 equations consisting of: two equations of mass conservation given in Eqn (2.142);
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six momentum equations, Eqn (2.117); two equations from the EI, Eqns (2.148) and

(2.149); and two EOS Eqns (2.131) and (2.147).

To recover a model resembling a traditional model for two-phase flow, the hydraulic

conductivity tensor, K̂
ι
, is defined as

(2.150) K̂
ι

= ει2(R̂
ι
ι)
−1,

so that Eqn (2.117) may be expressed in what is commonly called the Darcian form

(2.151) ειvι,s = −K̂
ι·
(
∇pι − ριgι

)
for ι ∈ If .

Substitution of Eqn (2.151) into the conservation of mass equation, Eqn (2.142) yields

ε
∂sι

∂t
+ sι

([
α̂b + (1− ε)β̂s

] ∂〈ns · ts·ns〉Ωss,Ωss
∂t

+ εβ̂ι
∂pι

∂t

)

(2.152) −∇·
[
K̂
ι·
(
∇pι − ριgι

)]
= 0 for ι ∈ If .

The second term in this equation is often neglected in traditional models based on the

argument that the rate of change of a pressure multiplied by a compressibility is much

smaller than the rate of change of saturation. With this assumption, Eqn (2.152) becomes

(2.153) ε
∂sι

∂t
−∇·

[
K̂
ι·
(
∇pι − ριgι

)]
= 0 for ι ∈ If .

Eqn (2.148) is a simplification of a dynamic equation whose equilibrium form is typically

taken to be the relation between the capillary and fluid pressures employed in standard

multiphase models even when the system is changing slowly such that

(2.154) −γwnJwnw = pc(sw) = pn − pw.

The relation pc(sw) is the standard closure relation, for which several specific forms have

been advanced. For cases in which an entrapped non-wetting phase fluid is allowed, this

relation is hysteretic in form. The time rate of change of porosity is generally considered
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considered to be negligible such that ε is a specified quantity. The unknowns in traditional

models are the three variables {sw, pw, pn} and the governing equations are Eqn (2.153),

Eqn (2.147), and specification of the function pc(sw). The conductivity, K̂
ι

= K̂
ι
(sw) is

also a typical closure relation, which may be hysteretic for the case of an entrapped non-

wetting phase fluid. For systems in which significant changes in the porosity occur, the

morphology and topology of the pore space will change, thus the pc(sw) and K̂
ι

= K̂
ι
(sw)

relations will also be effected, becoming pc(ε, sw) and K̂
ι

= K̂
ι
(ε, sw).

2.10. Discussion

The approach to modeling multiphase flow in porous media presented here builds on

and extends information presented in preceding papers in this TCAT series. The general

steps involved in the TCAT approach were presented in the first paper [84]. The necessary

mathematical foundation for use in the TCAT can be found in the second paper [136],

and the equilibrium conditions were presented in the fourth paper [137]. The TCAT

approach has been used to specify a closed model in the case of single-phase flow [85] and

single-phase flow and species transport in a porous medium [87]. The primary objective of

the present work is to detail the TCAT approach for a specific application of multiphase

flow in porous media. The relatively simple example of two-fluid-phase flow was chosen

to demonstrate the approach and provide some specific applications. To accomplish the

objective, a constrained entropy inequality connecting the second law of thermodynamics

and quantities appearing in the conservation equations is formulated. Restrictions on the

system of interest and approximations are detailed that allow for the formulation of a

simplified entropy inequality, which is used to guide closure relations necessary to produce

well-posed models. A hierarchy of three models are presented by imposing additional

assumptions on the system. The general TCAT approach can be employed to describe

many other systems, such as multiple fluid systems with compositional effects.

The class of problems considered, two-fluid-phase flow, and the specific closed models

developed, represent relatively simple instances of multiphase-flow. To this end, the three
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closed model formulations presented in §2.9 each deserve discussion. These discussions

must first highlight the restrictions and approximations leading to the model formulations

and then comment on the consequences of these constraints as well as the consequences

arising from alternative choices.

The primary restrictions on the system are those that specify the physical system

being modeled and that are posited at the start of the TCAT process. Primary restric-

tion 1 requires a clear separation of lengths scales which may or may not exist in natural

systems. This issue is an open topic of debate. The models derived are deterministic

in form. Their extension to stochastic form will follow naturally from the deterministic

models by maintaining a consistent deterministic model form while allowing macroscopic

parameters and auxiliary conditions to be stochastic in nature. Alternative approaches

would be to relax this single REV assertion to include REV’s that vary as a function

of the quantity being considered or to consider the averaging from the microscale to the

macroscale in a stochastic sense. Primary restrictions 2 and 4 require examination of

a specific instance of a multiphase flow problem, namely one composed of continuous

wetting and non-wetting fluid phases and a solid phase without consideration of the

components of the phases. Alternatively, many other entities could be included in the

TCAT approach such as additional fluid phases, films, discontinuous phases, and species

considerations within the entities. Primary restriction 3 is a statement of the thermody-

namic theory to be considered. Thermodynamics was needed to connect the conservation

equations to the EI. Other thermodynamic theories exist, and were reviewed previously

in [84]. For cases in which CIT is not sufficient to describe observations, an alternative

thermodynamic theory can be incorporated by averaging the theory from the microscale

to the macroscale and using it in place of CIT in the EI.

Secondary restrictions on the system are those that specify the physical system being

modeled, but do not have to be applied until after the final CEI is developed. As

a result, unlike the primary restrictions, the secondary restrictions are relatively easy

to relax because they do not require a complete model reformulation. The secondary
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restrictions asserted in this paper are that of an isothermal system with immiscible fluids

and an incompressible solid. These restrictions are an explicit statement of a simple

two-fluid-phase flow case, yet are consistent in many cases with traditional models used

in practice. Relaxing Secondary restriction 1 to fluid flow in a non-isothermal porous

medium system, is an active area of research with many unresolved questions. Relaxing

Secondary restriction 2 would amount to allowing mixing at the interface and would

then be considering the case of not only mass transfer, but also species effects. Relaxing

Secondary restriction 3, the description of the solid phase, would be necessary for systems

where significant consolidation occurs.

Finally, a set of approximations were used to arrive at the final SEI and to formulate

constitutive equations from the SEI. Approximation 1 was made to simplify the geomet-

ric aspects of the SEI and ultimately influenced the form of the constitutive equations. If

better approximations become available they can be used instead. These approximations

are believed to be reasonable first approximations, and they are testable based upon

microscale simulations. Approximation 2, which asserts that at most a first-order de-

pendence among force-flux pairs is known to be overly restrictive in certain cases. Many

unresolved issues remain for extension to higher-order theory. However, the inclusion of

cross-coupling is an improvement to traditional models. Approximation 3, claims that

standard equations of state are sufficient for the system; if better EOS are developed they

can be used to replace the standard equations. Approximations 4–8 are all statements

that allow simplification of the system, if a more complex system is desired they can be

omitted.

In §2.9.3 the first closed model is formulated which follows from the system described

by all of the restrictions and approximations of §2.6. The system is a generalization of

traditional models that includes well-defined variables; it is consistent across scales; and

it includes the influence and evolution of interfaces and a common curve. These are all

crucial components for useful macroscale models of two-fluid-phase flow in porous media.
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While advantages exist for including as much information as possible in a model

description, a trade-off exists between the completeness of a model and the ease of devel-

oping a useful and accurate simulation. Therefore, a simpler second model formulation

is presented in §2.9.4, which neglects the effects of the common curve. Although com-

mon curve effects could be first order effects in some cases, even this reduced model still

has many advantages over the traditional models used in practice because it includes

well-defined variables; it is consistent across scales; and it accounts for the influence and

evolution of interfaces.

Finally in §2.9.5, the assumption that interfaces need not be modeled explicitly is

made to demonstrate the assumptions inherent in a derived model equivalent in form

to the traditionally assumed model for two-fluid-phase flow. We emphasize that the

impact of interfaces on pore-scale phenomena has been demonstrated [132, 147], yet

traditional models do not account for this effect. Furthermore it is useful to arrive at

a two-fluid-phase flow model that is consistent with the traditional model because such

a derivation makes explicit the assumptions that support this model. Additionally, the

methods used to derive the macroscale variables within the model provide the advantages

of precisely defined variables that are rigorously connected to the microscale; clearly

expressed assumptions required to arrive at the model; and a foundation upon which the

assumptions can be relaxed to produce alternative models.

2.11. Summary

Detailed in this work are the elements of the TCAT approach necessary to construct

models for multiphase porous medium systems. The results are novel in the inclusion

of interfaces and common curves, the rigorous treatment of the thermodynamics, the

utilization of equilibrium conditions to guide the formulation of the SEI, the use of a

Lagrange multiplier approach to connect conservation equations to the entropy inequality,

the separation of exact results from approximations, and the framework for refinement,

simplification, and extension.
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The TCAT approach combined with a set of assumptions is used to produce three

models, each a simplification of the previous model. The simplest model, is a model sim-

ilar to a traditional two-fluid-phase flow model. However, this model boasts advantages

over traditional models in that the unknown quantities are well-defined and firmly con-

nected to the microscale. We also note that this model is not obtained so much as a target

for which a complex mathematical framework has been constructed but as a consequence

of careful mathematical analysis and some particular assumptions. Through the inclu-

sion of interfaces, a second, more conceptually satisfying, model has been developed that

has the advantage of accounting for phenomena that occur as a result of the interfaces.

The most encompassing model discussed accounted for common curve properties as well

as the interfaces. While interfaces and common curves are both neglected in traditional

models it is believed these entities produce first-order effects and play an important role

in the true physics of the system.

Potential extensions to the two-fluid-phase flow model are considered and include sys-

tems for which consolidation is important, systems that are non-isothermal, and systems

for which species transport is desired. In addition to potential model extensions, should

better approximations become available then those listed in §2.6, they can be used in

producing the final SEI without altering any of the formulation up to that point. The

TCAT approach provides the foundation for model extension, revision, and simplification

and has been demonstrated for a simple case of a two-fluid-phase flow model formulation.
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CHAPTER 3

Thermodynamically Constrained Averaging Theory Approach
for Modeling Flow and Transport Phenomena in Porous

Medium Systems: 9. Transition Region Models

3.1. Introduction

Previous work in this series [84–88, 110, 136, 137] has focused on the development

of foundational aspects of the thermodynamically constrained averaging theory (TCAT).

Efforts to date have focused on fundamental aspects of single-fluid phase [85, 87, 88] and

two-fluid-phase [110] porous medium systems at both the macroscale [85, 87, 110] and

the megascale [88]. In addition, species transport for non-dilute systems has been consid-

ered [87, 137]. The purpose of this series of work is to generate models that are consistent

across scales, include the full set of entities of concern (e.g., phases, interfaces, common

curves, and common points), posed in terms of well-defined variables, and constrained

by the second law of thermodynamics.

Recently, considerable interest has arisen over the modeling of transition regions be-

tween domains that contain different sets of entities [6, 74, 112, 124, 140, 146]. For

example, at Earth’s surface a domain that contains a solid, a water phase, a gas, and

the corresponding interfaces and common curve is in contact with the atmosphere that

may only contain a gas phase. Many other sorts of transition regions arise as well in

both natural and engineered systems, e.g., coupled surface and subsurface flows, flows

in blood vessels and biological tissues, industrial filtration, thermal insulation, and fuel

cells [12, 95, 107]. Models that represent the transfer of mass, momentum, and energy

between two distinct regions and which meet the overall goals common to TCAT models

have not yet been formulated.



The overall goal of this work is to extend the development of TCAT to the modeling

of transition regions. The specific objectives of this work are: (1) to derive a set of

macroscale conservation and balance equations that apply to transition regions, (2) to

formulate a general constrained entropy inequality (CEI) that can be used to derive

models of transition regions under a variety of limiting conditions, (3) to construct a

simplified entropy inequality (SEI) posed in terms of flux-force pairs that can be used to

guide closure relations for transition region models, (4) to generate a closed model for a

dilute porous medium transition region, and (5) to discuss ways in which the formulated

models can be further developed and applied.

3.2. Background

The most widely considered transition region is the interface between an open fluid

(free flow) and a porous medium. At the macroscale, the coupled system is described

as two different continuum flow domains (free flow, porous medium) separated by an

interface. It can be a sharp interface (Fig. 3.1, left) or a small transition zone of thickness

d (Fig. 3.1, right). Correct specification of the coupling conditions for the transition

between the two flow domains is essential for a complete and accurate mathematical

description of flow and transport processes in compositional system [6, 22, 74, 112, 124,

146, 162].

Figure 3.1. Sharp interface (left) and transition region (right) between
free flow and porous medium
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In general, two different approaches are proposed to deal with the underlying problem

of coupling flow between a porous medium and a free-flow region: the single-domain

approach, and the two-domain approach.

The single-domain approach is based on solution of the Brinkman equation [39], which

is a superposition of the Stokes equation and Darcy’s law, over the entire domain. There

is no need to specify interface conditions between the free flow and the porous medium,

since the velocity and stress continuity across the interface are naturally fulfilled. The

transition from the free-flow region to the porous medium region is achieved by specifying

spatial variations of permeability and porosity, and by introducing an effective viscosity

in the porous medium system [74, 161]. Since this modeling approach avoids the explicit

formulation of interface conditions, it has been used widely for numerical simulations

of coupled systems. However, model results are very sensitive to parameter values used

in the model, and these values are generally not known from physical considerations,

especially when considering a multiphase system.

The two-domain approach employs a different model in each of the two regions and

couples these models at the interface using appropriate conditions [6, 12, 22, 44, 45, 74, 95,

107, 111, 112, 126, 146, 162, 171]. In the free-flow region, the Navier-Stokes equations are

used to describe momentum conservation while Darcy’s law, or the Brinkman extension

to this equation, is used as an approximate conservation of momentum equation in the

porous medium.

When the porous medium model is based on Darcy’s law, the Beavers-Joseph velocity

jump condition [22] is widely used to couple the two different flow domains, in conjunction

with restrictions that arise due to mass conservation and a balance of normal forces across

the interface [124]. The Beavers-Joseph condition establishes the connection between the

free-flow velocity and the porous medium velocity tangent to the interface. It has been

shown that setting the tangential velocity equal to zero along the interface is not physical.

The Beavers-Joseph condition has been studied experimentally for flow that is parallel to

the interface between two flow domains [22] to estimate a dimensionless jump coefficient.
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This coefficient depends on the structure of the permeable material within the boundary

region and the location of the interface.

Saffman [162] proposed a modification of the Beavers-Joseph condition that con-

tains only variables in the free-flow region, since the porous medium velocity is much

smaller than the free-flow velocity, and can thus be neglected. Mathematical justification

of the Beavers-Joseph-Saffman interface condition was derived rigorously by Jäger and

Mikelić [111, 112] by homogenization techniques, and the velocity jump coefficient was

determined through an auxiliary boundary-layer problem. A generalization of Beavers-

Joseph-Saffman coupling condition was obtained by Hassanizadeh and Gray [100] using

a volume averaging approach.

Some authors distinguish between two qualitatively different flow directions: “near

parallel flow”, where the velocity in the free fluid is much larger than the filtration velocity

in the porous medium, and “near normal flow”, where velocities in the two regions have

comparable magnitudes. For these two classifications, different coupling conditions have

been proposed [120, 126]. However, these conditions cannot be applied to a general flow

situation.

As an alternative to Darcy’s law, the Brinkman equation can be used to model the

porous medium flow. The main advantage of this equation lies in the similarity in form

employed for the stress tensor in the porous medium and the free-flow domains. For

a Brinkman model, the continuity of the velocity at the interface is satisfied automati-

cally; and continuity of the normal component of the stress tensor is often imposed at

the interface [11, 107]. However, this last condition is purely mathematical since in the

porous medium the influence of the solid matrix is not taken into account by consider-

ing stress continuity. Instead of this condition, Ochoa-Tapia and Whitaker proposed a

stress jump condition [146] derived using the volume averaging technique. This condition

involves an empirical coefficient that cannot be easily determined. Recently, Chanderis

and Jamet [44, 45] derived the velocity jump and stress jump conditions at the interface

with a two-step upscaling approach and the method of matched asymptotic expansions.
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Some other fluid flow and heat transfer interface conditions are available in the literature,

e.g., [6, 74, 171].

To date, single domain and two-domain coupling approaches with different interface

conditions have been developed only for single-phase, single-component systems, but in

practice we are often interested in multiphase, multi-component flows. Recently, the

classical two-domain concept has been extended to two-component non-isothermal flow

with two fluid phases inside the porous medium and a single fluid phase in the free-flow

region [140]. A flat interface, that has no thickness, cannot store mass, momentum or

energy and is in thermodynamic equilibrium, is considered. The coupling conditions

are based on assumptions of mechanical, thermal and chemical equilibrium, and the

Beavers-Joseph velocity jump condition. The concept is restricted to free flow parallel to

the porous medium and a sharp interface.

Macroscale coupling approaches are available for free flow that is either parallel or

perpendicular to the porous medium. No general approach has been developed for the

coupling of flow systems with chemical species and more than one fluid phase. Thus, a

general coupling formulation that includes the macroscale flow and transport behavior

at the interface between the flow regions is needed. Such a formulation can be developed

in the context of TCAT.

3.3. Primary Restrictions

The formulation of a TCAT model is guided by a set of primary restrictions, secondary

restrictions, SEI approximations, and closure approximations. The primary restrictions

fix the nature of the system being considered and dictate details of the formulation

procedure that result, after some manipulation, in a constrained entropy inequality. The

appropriate selection of the primary restrictions is important because these restrictions

limit features of a system that can be considered. On the other hand, specifying a very

general set of primary restrictions, while leading to the potential to formulate a rich

hierarchy of models, results in significant complexity in formulating and reducing the
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entropy inequality (EI). Thus, a balance is sought in formulating the primary restrictions

so that a significant hierarchy of models can be formulated from the resultant entropy

inequality without unnecessary complexity. The primary restrictions relate to continuum

mechanical requirements, the spatial dimensionality of the system, the entities of concern,

the phenomena one wishes to model, and the microscale thermodynamic theory relied

upon. We will detail each of these restrictions in turn.

Primary Restriction 1 (Deterministic Macroscale Averaging). A discrete macro-

scopic length scale exists such that all macroscale quantities of concern are well-defined

and insensitive to the size of the representative elementary volume (REV) used to derive

the deterministic models.

Primary Restriction 1 is a common restriction applied to TCAT models. We specify

that a separation of length scales exists such that the scale at which the model is formu-

lated leads to values of all variables that are well defined in an average sense, and the

values of these variables are not sensitive to small changes in the size of the averaging

region. Put another way, we require a local form of the model at the scale at which we

formulate the model. Once derived at the scale of focus in this work, such a model can

be upscaled to non-local situations in which a heterogeneous domain exists at a scale

above the macroscale.

Primary Restriction 2 (Spatial Domain). The model will be formulated at the

macroscale in two spatial dimensions and at the megascale in the third spatial dimension,

which is the direction normal to the boundary between the two distinct domains, Ω1 and

Ω2.

Primary Restriction 2 specifies a spatial domain that is macroscale in two dimensions

and megascale in the third dimension. By the macroscale we mean a scale above the

microscale or pore scale, where a point implies an averaged value about some representa-

tive elementary volume and all entities may exist at such a point. The megascale is the

system scale where the system is averaged over the entire length of the domain in the
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megascale dimension. In this case, a megascale will be used to represent the transition

region normal to the boundary between the two distinct domains. This restriction im-

plies that all macroscale quantities will have variability in only two spatial dimensions.

This restriction on all macroscale variables will be implicit and will not be specifically

denoted in any way.

Primary Restriction 3 (Transition Region Entities). The transition region is

formulated in terms of the union of sets of entities that correspond to each region,

E = E1 ∪ E2, where E is the set of entities of concern in the transition region Ω, E1

is the set of entities in region 1 with domain Ω1 and E2 is the set of entities in region

2 with domain Ω2. We specify that E = {EP,EI,EC} or that the set of entities con-

sists of a set of phases, interfaces, and common curves. We further specify the system

of focus such that EP = {Ωw,Ωg,Ωs}, where Ωw denotes the domain of a water phase,

Ωg denotes the domain of a gas phase, and Ωs denotes the domain of a solid phase;

EI = {Ωwg,Ωws,Ωgs} where the two subscripts denote the corresponding phases that

form an interface; and EC = {Ωwgs}, where Ωwgs denotes the common curve domain

that forms at the intersection of the three interfaces.

Primary Restriction 3 specifies that the transition region will include all entities in

both the single-fluid-phase portion of the domain and the two-fluid-phase porous medium

portion of the domain. Furthermore, these entities are restricted to two fluid phases, a

solid phase, three interfaces, and a common curve. This restriction dictates the scope

of systems for which a hierarchy of models will be developed. More complex systems,

for example those containing three fluid phases, are excluded from consideration at this

point. This limits the complexity of the system that needs to be considered.

Primary Restriction 4 (Phenomena Modeled). The phenomena to be modeled

includes conservation of momentum, and energy in each entity and the conservation of

a mass of each species in each entity.

Primary Restriction 4 specifies the level of detail to be considered in the TCAT

model. Compositional effects are specified but only with regard to the conservation of
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mass. This excludes the modeling of species momentum or species energy. It also implies

that the velocity of individual species will need to be approximated based upon closure

relations rather than a set of separate momentum conservation equations for species-

phase combinations.

Primary Restriction 5 (Microscale Thermodynamic Theory). Classical irreversible

thermodynamics (CIT) will be used as the underlying thermodynamic theory to describe

the local equilibrium states of the system considered at the microscale.

Primary Restriction 5 specifies the microscale thermodynamic theory that will be

relied upon to connect the entropy inequality (EI) with the conservation equations in

order to constrain the closure relations. While many different theories are possible [e.g.

84], we will rely upon CIT for this purpose. CIT is the simplest possible choice of an

underlying thermodynamic theory, and it has shown significant utility for deriving a

range of models using the TCAT approach [85–87, 110].

3.4. Averaging Theorems

Conservation and balance equations can be derived at the macroscale by applying the

averaging operator defined by

(3.1) 〈Pi〉Ωj ,Ωk,W =



∫
Ωj

WPi dr

∫
Ωk

W dr
for dim Ωj > 0, dim Ωk > 0,

∑
h∈Ωj

PihW∫
Ωk

W dr
for dim Ωj = 0, dim Ωk > 0,

∑
h∈Ωj

PihW∑
h∈Ωk

W
for dim Ωj = 0, dim Ωk = 0,

where Pi is a microscale quantity to be averaged, and W is a weighting function. If

W is not specified, it is assumed to be 1 and the macroscale property appears with
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a superscript, Pi. For the case of a mass averaged quantity, the superscript on the

macroscale property has a single overbar, Pi. All other weighting functions or specially

defined macroscale properties are indicating through a superscript with a double overbar,

Pi. For the common case when Ωk = Ω the averaged quantity is normalized by an integral

over the entire REV. The case when dim Ωj = 0 represents a domain that consists of a

set of common points. For this case the averaging operator corresponds to a summation

over the set of points, h, that comprise Ωj . Cases will arise in which the point form is

used to denote a boundary of a common curve. Common forms of the averaging operator

have been detailed previously [136].
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Figure 3.2. Schematic depiction of domain, coordinate system, averaging
region, entities, and unit vectors.
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The set of macroscale conservation and balance equations needed to derive the TCAT

models of focus in this work have not yet appeared in the literature. In order to derive

these equations, a set of averaging theorems from [82] are detailed below. Figure 3.2

is a schematic representation of the domain, entities, and unit vectors associated with

the transition region of concern in this work, which can be used to map the physical

system to terms appearing in the theorems of interest. The divergence, gradient, and

transport theorems needed to transform microscale quantities defined over volumes to

two macroscale dimensions and one megascale dimension are:

Theorem 3.4.1 (D[3,(2,0),1]).

(3.2) 〈∇·f ι〉Ωι,Ω = ∇8·〈f ι〉Ωι,Ω +
∑
κ∈Icι

〈nι · f ι〉Ωκ,Ω + 〈e·f ι〉ΓιM ,Ω ι ∈ IP,

Theorem 3.4.2 (G[3,(2,0),1]).

(3.3) 〈∇fι〉Ωι,Ω = ∇8〈fι〉Ωι,Ω +
∑
κ∈Icι

〈nιfι〉Ωκ,Ω + 〈efι〉ΓιM ,Ω ι ∈ IP,

and

Theorem 3.4.3 (T[3,(2,0),1]).

(3.4)

〈
∂fι
∂t

〉
Ωι,Ω

=
∂8

∂t
〈fι〉Ωι,Ω −

∑
κ∈Icι

〈nι ·vκfι〉Ωκ,Ω − 〈e·vextfι〉ΓιM ,Ω ι ∈ IP,

where the partial time derivative restricted to a point on the moving macroscale interface

is defined as

(3.5)
∂8

∂t
=

∂

∂t
+ vι·NN ·∇,

the phase domain is denoted Ωι with a boundary consisting of a component on the external

boundary of the REV and an internal component within the REV denoted Γι = Γιe ∪Γιi,

IP is the index set of phases, Icι is the index set of the connected entities, which is

comprised of interfaces, the microscale spatial function fι and spatial vector function f ι

are defined, continuous and differentiable in Ωι and in time, vκ is the velocity of the
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κ interface, ∇8 = ∇ − NN ·∇ is a two-dimensional macroscale del operator, N is a

unit vector tangent to the axis corresponding to the megascopic dimension of the REV,

e is the unit normal vector directed outward from the boundary of the REV, nι is a unit

outward normal vector from phase ι on its boundary, the boundary of the REV, Γ, is

the union of the boundary in the macroscale directions, Γm, and the megascale direction,

ΓM , Γ = Γm ∪ ΓM , the interface formed by the intersection of the phase with the REV

boundary at the megascale ends is ΓιM = Γιe ∩ΓM , and vext is the velocity vector of the

boundary of the REV.

The divergence, gradient, and transport theorems needed to transform microscale

quantities defined over interfaces to two macroscale dimensions and one megascale di-

mension are:

Theorem 3.4.4 (D[2,(2,0),1]).

(3.6)
〈∇′·f ι〉Ωι,Ω = ∇8·

〈
f ι
′〉

Ωι,Ω
+
〈(∇′·nα)nα · f ι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι · f ι〉Ωκ,Ω +

〈
e·f ι
nι · e

〉
ΓιM ,Ω

ι ∈ II,

Theorem 3.4.5 (G[2,(2,0),1]).

(3.7)
〈∇′fι〉Ωι,Ω = ∇8〈fι〉Ωι,Ω −∇8·〈nαnαfι〉Ωι,Ω +

〈(∇′·nα)nαfι
〉

Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nιfι〉Ωκ,Ω +

〈
efι

nι · e

〉
ΓιM ,Ω

ι ∈ II,

and

Theorem 3.4.6 (T[2,(2,0),1]).

(3.8)

〈
∂′fι
∂t

〉
Ωι,Ω

=
∂8

∂t
〈fι〉Ωι,Ω +∇8·〈nαnα·vιfι〉Ωι,Ω −

〈(∇′·nα)nα·vιfι
〉

Ωι,Ω

−
∑

κ∈(Icι∩IC)

〈nι ·vκfι〉Ωκ,Ω −
〈

e·vextfι
nι · e

〉
ΓιM ,Ω

ι ∈ II,
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where the partial time derivative restricted to a point on the moving microscale interface

is defined as

(3.9)
∂′
∂t

=
∂

∂t
+ vι·nαnα ·∇,

the partial time derivative restricted to a point on the moving macroscale interface is

defined as

(3.10)
∂8

∂t
=

∂

∂t
+ vι·NN ·∇,

the interface domain is defined as Ωι = Ω̄α∩Ω̄β with a boundary consisting of a component

on the external boundary of the REV and an internal component within the REV denoted

Γι = Γιe∪Γιi for α, β ∈ IP, IP is the index set of phases, II is the index set of interfaces,

IC is the index set of common curves, Icι is the index set of connected entities, which

consists of phases and common curves, the microscale spatial function fι and spatial

vector function f ι are defined, continuous and differentiable in Ωι and in time, vκ is the

velocity of the κ common curve, ∇′ = ∇−nαnα ·∇ is a two-dimensional microscale del

operator, nα is a unit vector normal to Ωα oriented outward at the boundary and also

normal to Ωι, ∇8 = ∇ −NN ·∇ is a two-dimensional macroscale del operator, N is a

unit vector tangent to the axis corresponding to the megascopic dimension of the REV,

f ι
′ = f ι−nαnα · f ι is a microscale vector tangent to the Ωι surface, e is the unit normal

vector directed outward from the boundary of the REV, nι is a unit vector tangent to the

Ωι surface and outward normal from the bounding common curve, the boundary of the

REV is the union of the boundary in the macroscale directions, Γm, and the megascale

direction, ΓM , Γ = Γm ∪ ΓM , the curve formed by the intersection of the interface with

the REV boundary at the megascale ends is ΓιM = Γιe ∩ ΓM , and vext is the velocity

vector of the boundary of the REV.

The divergence, gradient, and transport theorems needed to transform microscale

quantities defined over common curves to two macroscale dimensions and one megascale

dimension are:
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Theorem 3.4.7 (D[1,(2,0),1]).

(3.11)
〈∇′′·f ι〉Ωι,Ω = ∇8·

〈
f ′′ι
〉

Ωι,Ω
− 〈(lι ·∇′′lι) ·f ι〉Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈nι · f ι〉Ωκ,Ω +

〈
e·f ι
nι · e

〉
ΓιM ,Ω

ι ∈ IC,

Theorem 3.4.8 (G[1,(2,0),1]).

(3.12)
〈∇′′fι〉Ωι,Ω = ∇8·〈lιlιfι〉Ωι,Ω −

〈(
lι ·∇′′lι

)
fι
〉

Ωι,Ω
+

∑
κ∈(Icι∩IPt)

〈nιfι〉Ωκ,Ω

+

〈
efι

nι · e

〉
ΓιM ,Ω

ι ∈ IC,

and

Theorem 3.4.9 (T[1,(2,0),1]).

(3.13)

〈
∂′′fι
∂t

〉
Ωι,Ω

=
∂8

∂t
〈fι〉Ωι,Ω +∇8·〈(vι − lιlι ·vι) fι〉Ωι,Ω

+
〈(

lι ·∇′′lι
)
·vιfι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈nι ·vκfι〉Ωκ,Ω

−
〈

e·vextfι
nι · e

〉
ΓιM ,Ω

ι ∈ IC,

where the partial time derivative restricted to a point on the moving microscale common

curve is defined as

(3.14)
∂′′
∂t

=
∂

∂t
+ vι· (I− lιlι) ·∇,

the partial time derivative restricted to a point on the moving macroscale interface is

defined as

(3.15)
∂8

∂t
=

∂

∂t
+ vι·NN ·∇,

the common curve domain is defined as Ωι = Ω̄α ∩ Ω̄β ∩ Ω̄γ with a boundary consisting

of a component on the external boundary of the REV and an internal component with
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the REV denoted Γι = Γιe ∪ Γιi for α, β, γ ∈ IP, IP is the index set of phases, IC is

the index set of common curves, IPt is the index set of common points, Icι is the index

set of connected entities, which consists of interfaces and common points, the microscale

spatial function fι and spatial vector function f ι are defined, continuous and differentiable

in Ωι and in time, vκ is the velocity of the κ common point, ∇′′ = lιlι ·∇ is a one-

dimensional microscale del operator, lι is a unit vector tangent to the ι common curve,

∇8 = ∇ − NN ·∇ is a two-dimensional macroscale del operator, N is a unit vector

tangent to the axis corresponding to the megascopic dimension of the REV, f ′′ι = lιlι · f ι

is a microscale vector tangent to the ι common curve, Γ, e is the unit normal vector

directed outward from the boundary of the REV, nι is the unit vector tangent to the

common curve and positive outward at common point boundaries such that nι · lι = ±1,

the boundary of the REV is the union of the boundary in the macroscale directions, Γm,

and the megascale direction, ΓM , Γ = Γm ∪ ΓM , the external boundary of the ι common

curve is given by a set of points defined as Γιe = Ω̄ι ∩ΓM , and vext is the velocity of the

boundary of the REV.

3.5. Conservation and Balance Equations

The TCAT models of focus in this work require conservation of mass equations for a

species, conservation of momentum and energy equations, and a balance of entropy equa-

tion, all for phases, interfaces, and common curves. These equations must be macroscopic

in two spatial dimensions and megascopic in the third spatial dimension, which will be

the dimension in which a transition is made between two distinct types of regions. This

set of conservation equations has not yet been published in the averaging literature. How-

ever, the derivation of this set of equations can be accomplished by applying a form of

the averaging operator given by Eq. (3.1) and available averaging theorems [82] summa-

rized in §3.4 to available forms of microscale conservation and balance equations [137].

Routine calculations, similar to those detailed in [137], show that identical forms of the

conservation and balance equations can be derived for all entities using this approach.
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Details of the calculations are included in Appendix B. General forms of these macroscale

conservation and balance equations are given below.

The entity based conservation of energy equation for a domain that is megascale in

one spatial dimension and macroscale in the remaining two spatial dimensions can be

written as

(3.16) E ι =
DιEι

Dt
+ vι·

Dι
(
ειριvι

)
Dt

+
∑
i∈Is

(
Kι
E −

vι·vι

2
+ ψiι

)
Dι
(
ειριωiι

)
Dt

+
∑
i∈Is

ειριωiι
Dι
(
Kι
E + ψiι

)
Dt

+

Eι + ειρι
(

vι·vι

2
+Kι

E

)
+
∑
i∈Is

ειριωiιψiι

 I:d8ι

−∇8·
(
ειt8ι·vι

)
−∇8·

(
ειq8ι

)
− ειhιT −

∑
i∈Is

ειριωiι
(

giιT − giι
)
·vι

−
∑
i∈Is

(
ειψiιriι +

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

)
−
∑
κ∈Icι

∑
i∈Is

iκ→iι
ME +

κ→ι
Tv +

κ→ι
Q



+

〈(Eι + ρι
vι·vι

2 +
∑
i∈Is

ριωiι

(
ψiι +

uiι·uiι
2

))
e·
(
vι − vext

)
nι · e

〉
ΓιM ,Ω

−
〈

e· (tι·vι + qι)

nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ I,

where ι is an entity qualifier, i is a species qualifier, Eι is the internal energy density,

vι is the macroscale mass averaged velocity, ει is a specific entity measure of the ι

entity (e.g., volume fraction, specific interfacial area, specific common curve length), ρι

is the macroscale mass density, Kι
E is the macroscale kinetic energy per unit mass due to

microscale velocity fluctuations, ψiι is the gravitational potential, ωiι is the mass fraction

of species i in the ι entity, d8ι is the rate of strain tensor restricted to the transition

region, t8ι is the macroscale 3x3 stress tensor restricted to the transition region such that

the tensor has zero in the direction normal to the averaging surface, similarly for the
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microscale stress tensor terms, tι, when ι ∈ II, tι = t′ι contains zero in the dimension

normal to the surface, and when ι ∈ IC, tι = t′′ι , which contains zeros in two of the

dimensions, q8ι is the non-advective heat flux density vector which similarly to the stress

tensor has been restricted to the transition region at the macroscale and at the microscale

maintains its dimensionality when restricted to the surface or common curve with zeros

in the additional dimensions such that qι = q′ι for ι ∈ II and qι = q′′ι for ι ∈ IC, hιT is

the total heat source density, giι is the external body force, giιT is the total body force,

riι is the rate of mass production of species i resulting from all reactions in entity ι,
iκ→iι
ME

represents the transfer of energy from entity κ to entity ι due to mass transfer of species

i per unit volume per unit time,
κ→ι
Tv represents the transfer of energy from entity κ to

entity ι due to work and deviations from mean processes per unit volume per unit time,
κ→ι
Q represents the transfer of energy from entity κ to entity ι resulting from heat transfer

and deviations from mean processes per unit volume per unit time, uiι is the dispersion

velocity, I is the index set of entities, Is is the index set of species, I is the identity tensor,

integration at points indicates a summation over the points, and nι · e = 1 when ι ∈ IP.

In shorthand notation we have

(3.17) E ι =
DιEι

Dt
+ vι·

Dι
(
ειριvι

)
Dt

+
∑
i∈Is

(
Kι
E −

vι·vι

2
+ ψiι

)
Dι
(
ειριωiι

)
Dt

+E ιr = 0 for ι ∈ I,

where E ιr accounts for the residual terms in Eq. (3.16) that are not explicitly written in

Eq. (3.17).

The entity based conservation of momentum equation for a domain that is megascale

in one spatial dimension and macroscale in the remaining two spatial dimensions can be

written as

(3.18) Pι =
Dι
(
ειριvι

)
Dt

+ ειριvιI:d8ι −∇8·
(
ειt8ι

)
−
∑
i∈Is

ειριωiιgiιT
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−
∑
κ∈Icι

∑
i∈Is

iκ→iι
Mv +

κ→ι
T

+

〈
e·
[
ρι
(
vι − vext

)
vι − tι

]
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ I,

which may be written in shorthand form as

(3.19) Pι =
Dι
(
ειριvι

)
Dt

+Pιr = 0 for ι ∈ I,

where
iκ→iι
Mv represents the transfer of momentum as a result of the transfer of mass of

species i from connected entity κ to entity ι per unit volume per unit time,
κ→ι
T represents

the transfer of momentum from entity ι to entity κ due to stress and deviations from

mean processes per unit volume per unit time, and Pιr accounts for the residual terms

from Eq. (3.18) that are not explicitly expressed in Eq. (3.19).

The conservation of mass equation for a species i in entity ι for a domain that is

megascale in one spatial dimension and macroscale in the remaining two spatial dimen-

sions can be written as

(3.20) Miι =
Dι
(
ειριωiι

)
Dt

+ ειριωiιI:d8ι +∇8·
(
ειριωiιuiι

)
− ειriι −

∑
κ∈Icι

iκ→iι
M

+

〈
e·ριωiι

(
vι − vext

)
nι · e

〉
ΓιM ,Ω

+

〈
e·ριωiιuiι

nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ I.

where the material derivative has been referenced to the macroscale mass averaged entity

velocity, vι and
iκ→iι
M represents the transfer of mass of species i from connected entity

κ to entity ι per unit volume per unit time.

Eq. (3.20) can be written in shorthand notation as

(3.21) Miι =
Dι
(
ειριωiι

)
Dt

+Miι
r = 0 for ι ∈ I,

where Miι
r accounts for the residual terms in Eq. (3.20).
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Summing the balance of entropy equations that are macroscale in two spatial dimen-

sions and megascale in the remaining spatial dimension over all entities provides the

balance of entropy of the transition region system

(3.22)
∑
ι∈I

Sι =
∑
ι∈I

(
Dιηι

Dt
+ ηιI:d8ι −∇8·

(
ειϕ8ι

)
− ειbιT

+

〈
e·
[(

vι − vext
)
ηι −ϕι

]
nι·e

〉
ΓιM ,Ω

)
= Λ ≥ 0,

where η is the entropy density, ϕ8ι is the non-advective entropy density flux vector which

is a three dimensional vector restricted to the transition region, at the microscale ϕι = ϕ′ι
for ι ∈ II and ϕι = ϕ′′ι for ι ∈ IC , bιT is the total entropy source density, and Λ is the

entropy production rate density for the system.

We can write a shorthand expression for the entropy inequality as

(3.23)
∑
ι∈I

Sι =
∑
ι∈I

(
Dιηι

Dt
+ Sιr

)
= Λ ≥ 0,

where Sιr represents the residual terms in the entropy inequality Eq. (3.22). Residual

terms refer to the collection of all terms in the original equation not explicitly listed in

the shorthand form.

3.6. Thermodynamics

We will rely on CIT at the microscale for the underlying thermodynamic theory

[61], which is needed to link terms that appear in the entropy inequality with terms

that appear in conservation equations. Since our desire is to produce models that are

macroscale in two spatial dimensions and megascale in the third spatial dimension, it

will be necessary to upscale established CIT expressions from the microscale to the de-

sired scale. To accomplish this upscaling, we will average the microscale CIT up to the

appropriate mixed macroscale and megascale forms needed. While such forms have not
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appeared in the literature, this formulation builds upon previous work to develop aver-

aged CIT expressions that are consistent across multiple length scales [76, 84, 87, 137].

Since this formulation is a routine calculation that is very similar to previous work, we

will summarize the results without providing the details of the averaging procedure and

simplifications that were performed using the theorems given in §3.4.

The averaged macroscale and megascale CIT expression relating material derivatives

of thermodynamic quantities for a fluid phase is

(3.24) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+
∑
κ∈Icι

〈
nι ·

(
vκ − vs

)
pι

〉
Ωκ,Ω

+
〈
e·
(
vext − vs

)
pι

〉
ΓιM ,Ω

+

〈
ηι

Ds
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
Ds
(
µiι − µiι

)
Dt

〉
Ωι,Ω

−vι,s·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειpι)

 = 0 for ι ∈ If ,

where p is the fluid pressure, θ is the temperature, µ is the chemical potential, vι,s =

vι − vs, and If is the index set of fluid phases.

The averaged macroscale and megascale CIT expression relating material derivatives

of thermodynamic quantities for the solid phase is

(3.25) T s =
DsEs

Dt
− θsDsηs

Dt
−
∑
i∈Is

µis
Ds
(
εsρsωis

)
Dt

+

〈
ηs

Ds
(
θs − θs

)
Dt

+
∑
i∈Is

ρsωis
Ds
(
µis − µis

)
Dt

〉
Ωs,Ω

−εst8s:d8s + εsσs:
Cs

js
I:d8s −∇8·

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

−
〈
ns · ts·

(
vs − vs

)〉
Ωss,Ω

−
〈
e·ts·

(
vs − vs

)〉
ΓsM ,Ω

97



+

〈(
∇·ts − Cs

js
:∇σs

)
·
(
vs − vs

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

ns · (vκ − vs)

〉
Ωκ,Ω

−
〈

e· (vext − vs)σs:
Cs
js

〉
ΓsM ,Ω

.

where js is the solid-phase Jacobian, ss denotes the solid surface, σ is the Lagrangian

stress tensor, and C is the Green’s deformation tensor.

The averaged macroscale and megascale CIT expression relating material derivatives

of thermodynamic quantities for an interface is

(3.26) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+ 〈nαnαγι〉Ωι,Ω:d8s

+∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(∇′·nα)nα ·

(
vι − vs

)
γι

〉
Ωι,Ω

+∇8θι·
〈
nαnα·

(
vι − vs

)
ηι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IC)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

+
∑
i∈Is

∇8µiι·
〈
nαnα·

(
vι − vs

)
ριωiι

〉
Ωι,Ω

−
〈

e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

+

〈
ηι

D′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′s
(
µiι − µiι

)
Dt

〉
Ωι,Ω

−vι,s·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι +∇8 (ειγι)

 = 0 for ι ∈ II,

where γ is the interfacial tension.

The averaged macroscale and megascale CIT expression relating material derivatives

of thermodynamic quantities for a common curve is

(3.27) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

−∇8·
〈

(I− lιlι) ·
(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(

lι ·∇′′lι
)
·
(
vι − vs

)
γι

〉
Ωι,Ω

+∇8θι·
〈

(I− lιlι) ·
(
vι − vs

)
ηι

〉
Ωι,Ω
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+
∑
i∈Is

∇8µiι·
〈

(I− lιlι) ·
(
vι − vs

)
ριωiι

〉
Ωι,Ω

− 〈(I− lιlι) γι〉Ωι,Ω:d8s

+
∑

κ∈(Icι∩IPt)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

+

〈
e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

+

〈
ηι

D′′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′′s

(
µiι − µiι

)
Dt

〉
Ωι,Ω

−vι,s·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειγι)

 = 0 for ι ∈ IC,

where γ is the curvilineal tension.

Each of the thermodynamic equations can be written in shorthand notation as

(3.28) T ι =
DιEι

Dt
− θι

Dιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+ T ιr = 0 for ι ∈ I,

where T ιr accounts for the residual terms found in Eq. (3.24), Eq. (3.25), Eq. (3.26), and

Eq. (3.27) depending on the entity ι.

3.7. Entropy Inequality

As has been detailed in previous work in this series [84, 85, 87, 110], the formulation of

a constrained entropy inequality (CEI) is a key step in the formulation of a TCAT model.

The CEI represents an exact expression, given the limitations stated by a set of primary

restrictions, for the second law of thermodynamics that connects the thermodynamics and

conservation principles of a system to support the derivation of a set of closure relations

and resultingly also a hierarchy of closed models. The derivation of a CEI for a given

system requires a significant amount of manipulation, however these details are routine

in nature and have been shown in previous work for other systems [85, 87, 88, 110].

While it is not necessary to present the details of the derivation of the CEI for the

transition region model of concern in this work, the CEI itself has significant archival

value because it is the starting point for the application of a set of secondary restrictions
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and approximations that lead to a simplified entropy inequality (SEI), which is used

to generate sets of permissable closure relations. Because multiple sets of secondary

restrictions and approximations are possible, it is convenient to be able to return to the

CEI to reformulate alternative sets of closure relations as needed in the future. Thus

we will briefly outline the steps taken to derive the CEI in this section for the transition

region model of concern in this work, while ommitting the routine manipulations needed

to derive the final form of this expression. We also introduce the secondary restrictions

and formal approximations that are used to reduce the CEI to the SEI and present the

resulting SEI.

3.7.1. Constrained Entropy Inequality. An augmented entropy inequality (AEI)

can be written for the transition region model as

(3.29)
∑
ι∈I

Sι + λιEE ι + λιP ·P
ι +

∑
i∈Is

λiιMMiι + λιT T ι
 = Λ ≥ 0,

where λ denotes a Lagrange multiplier, the subscript is an equation qualifier, and the su-

perscript is an entity or species-entity qualifer. The specific forms of the equations given

by S, E ,P ,M, and T are given by Eqs. (3.16), (3.18), (3.20), (3.22), and (3.24)–(3.27),

respectively. These equations are expressed in terms of entropy, energy, and momentum

per entity measure and species mass per entity measure. Thus compositional effects will

be resolved through the conservation of mass equation, but all other thermodynamic

quantities will not be compositional in nature. For example, the conservation of mo-

mentum for a phase, interface, or common curve will be modeled explicitly, while the

conservation of momentum for a species in a phase, interface or common curve will not be

explicitly modeled through a conservation equation but rather through the development

of an appropriate set of closure relations. An alternative approach is possible and has

been explored elsewhere [84].

The Lagrange multipliers in Eq. (3.29) can be solved to eliminate a subset of the

material derivatives. In particular, Eq. (3.17), Eq. (3.19), Eq. (3.21), Eq. (3.23), and
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Eq. (3.28) have been written in such a way that the material derivatives that appear

explicitly may be made to cancel. A unique solution for the λ’s that satisfies this goal is

then accomplished as outlined in [85]. The result being

(3.30)



λiιM
λιP

λιE
λιT


=

1

θι



Kι
E + µiι + ψiι − vι·vι

2

vι

−1

1


for ι ∈ I, i ∈ Is.

Substitution of the above Lagrange multipliers and the conservation, balance, and

thermodynamic equations into the AEI, Eq. (3.29), together with manipulations similar

to what has been done in previous TCAT papers [85, 87, 110] gives the following CEI:

(3.31) −
∑

ι∈(If∪II∪IC)

∇8·

ειϕ8ι − 1

θι

ειq8ι +
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι


+

∑
ι∈(If∪II∪IC)

(∇8·N
)
N· 1

θι

∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι

−∇8·
{
εsϕ8s − 1

θs

[
εsq8s +

∑
i∈Is

εsρsωis
(
µis + ψis

)
u8is

−
〈

I8·
(

ts − σs:
Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]}

+
(∇8·N

)
N·
[

1

θs

∑
i∈Is

εsρsωis
(
µis + ψis

)
uis

+
1

θs

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]

−
∑
ι∈IP

[
ειbιT −

1

θι

ειhιT +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι − ψiι −Kι

E

)
Dt

〉
Ωι,Ω

]
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−
∑
ι∈II

[
ειbιT −

1

θι
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i∈Is

〈
ρwgsωiwgs

D′′s
(
µiwgs + ψiwgs − µiwgs − ψiwgs −Kwgs
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+
∑
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1
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(
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+
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+
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1
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− 1

θκ

)〈
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(
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− 1

θs

∑
κ∈Ics

〈(
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)
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− 1

θs

〈
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+
∑
ι∈II

1

θι

[
∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

+ 〈nαnαγι〉Ωι,Ω:d8s
]

+
1

θwg

〈pw − pg − γwg∇′·nw +
∑
i∈Is

ρwgωiwgnw·giwg


(
vwg − vs

)
·nw

〉
Ωwg,Ω

− 1
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∑
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)
·ns

〉
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− 1

θgs
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∑
i∈Is
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(vgs − vs
)
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〉
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− 1

θwgs
∇8·
〈(
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)
·
(
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)
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〉
Ωwgs,Ω

− 1

θwgs

〈(
I− lwgslwgs

)
γwgs

〉
Ωwgs,Ω

:d8s

− 1

θwgs

〈(
lwgs·∇′′lwgs

)
·
(
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)
γwgs
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Ωwgs,Ω

+
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1

θwgs
∇8
(
K
wgs
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)
·
(
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)
ρwgsωiwgs

〉
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+
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∑
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〈(
vwgs − vs

)
·
(
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〉
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+
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θwgs
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〈(
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)
·
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−
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1
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〈
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(
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+
∑
ι∈If

1
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〈
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(
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)
nι · e

〉
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+
∑
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(
v8ι − v8s)

θι
·
〈
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nι · e

〉
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+
∑
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1
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(
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)
nι · e

〉
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−
∑
ι∈II

(
v8ι − v8s)

θι
·
〈

e·γιI′
nι · e

〉
ΓιM ,Ω
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+
1
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〈
e·τ ′′wgs·

(
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)
nwgs · e

〉
ΓwgsM ,Ω

+

(
v8wgs − v8s)

θwgs
·
〈

e·γwgsI′′
nwgs · e

〉
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+
∑
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vι,s·N
θι

N ·
〈

epι
nι · e

〉
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−
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N ·
〈
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nι · e

〉
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+
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θwgs

N ·
〈

eγwgs
nwgs · e

〉
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−
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ι∈I

∑
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1

θι

〈
e·
(
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)
ριωiι

(
µiι + ψiι −Kι

E − µiι − ψiι
)

nι · e

〉
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−
∑
ι∈I

∑
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1

θι

〈e·
(
vι − vext

)
ριωiι

((
vι−vι

)
·
(
vι−vι

)
2 +
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2

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

〈e·
∑
i∈Is

ριωiιuiι

(
µiι+ψiι

θι
− µiι+ψiι

θι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈( 1
θι
− 1

θι

)
e·
[
qι −

(
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)
θιηι

]
nι · e

〉
ΓιM ,Ω

= Λ ≥ 0,

where τ ι is the viscous stress tensor for entity ι, I8 is the macroscale surface identity

tensor, and I′ and I′′ are the microscale surface and common curve identity tensors

respectively. In the case where both subscript and superscript qualifiers are present in

an averaged variable, the superscript indicates the domain over which the subscripted

microscale quantity has been averaged.

Eq. (3.31) is the final CEI for the two-fluid-phase flow and species transport system

that is macroscale in two spatial dimensions and megascale in the third spatial dimen-

sion. It has been written in terms of force-flux products, but additional work is needed

to ensure both factors in all force-flux pairs will be zero at equilibrium. The choice of

the microscale thermodynamic functional dependence is responsible in part for the ap-

pearance of terms in Eq. (3.31). No mathematical approximations have been employed

in obtaining Eq. (3.31) beyond the primary restrictions detailed in §3.3. The subsequent
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steps needed to obtain complete closed models require additional restrictions and approx-

imations appropriate for the physical system under consideration and may take different

forms depending on the systems studied and the approximate relations employed.

3.7.2. Secondary Restrictions and SEI Approximations. The primary restrictions

presented in §3.3 define the general type of system to be modeled and the microscale

thermodynamic theory to be used in formulating these models. Lengthy, but routine,

manipulations result in the formulation of a CEI. While the CEI is useful for archival

purposes because of its exact nature and generality, it is not suitable for use to guide

the formulation of closure relations needed to produce specific well-posed models. What

is needed is a form of the EI that is arranged strictly as the sum of force-flux pairs

that each vanish at equilibrium. We call such a form the SEI. The SEI is derived by

reducing the scope of the system being considered beyond that originally specified by the

primary restrictions and by mathematically approximating certain terms that appear in

the CEI to allow arrangement to the desired form. The scope of the system is reduced

by specifying a set of secondary restrictions. A set of formal SEI approximations are

stated that enable the final derivation of the SEI. Once an appropriate form SEI has

been produced, a hierarchy of models of varying sophistication can be derived that are

consistent with the SEI. Alternative sets of secondary restrictions and SEI approximations

are possible, and each set would in turn lead to an alternative form of the SEI and a

potentially different hierarchy of models. Formal statements of the elements selected to

derive an SEI are detailed below.

Secondary Restriction 1 (Solid Properties). The solid-phase particles are non-

deformable and of uniform constant composition.

Secondary Restriction 1 indicates the solid phase does not undergo deformations,

diffusion within the solid is negligible, and mass transfer does not occur between solid

phase and other entities present within the system.

Secondary Restriction 2 (Non-reactive). The system is non-reactive.
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Secondary Restriction 2 specifies that no biogeochemical reactions occur between the

species present in the system.

Secondary Restriction 3 (Massless and Frictionless). Interfaces and common

curves are massless and frictionless.

Secondary Restriction 3 reduces the conservation of mass equation for interfaces to

a jump condition between phases at the interface. The common curve conservation of

mass equation can be neglected because it becomes trivially zero.

Secondary Restriction 4 (Species). The system is restricted to an inert solid

phase that does not change in composition, and two species in each of the fluid phases.

This restriction is sufficiently general to account for evaporation of water to the gas

phase and to account for volatilization of a dilute species from the aqueous phase to the

gas phase, which are two target applications for the closed models. This restriction could

be relaxed easily and more general models developed.

SEI Approximation 1 (Deviation Terms). Subscale kinetic energy due to velocity

deviations can be neglected

Kinetic energy due to velocity fluctuations and differences between the species velocity

within an entity and the entity velocity itself can be considered a measure of the deviations

in kinetic energy. In cases where these velocity differences are small, this difference

squared can as a first approximation be justifiably neglected. Approximation 1 states

that the integral of the product of the difference between the microscale and macroscale

velocities as well as the integral of the product of the difference between the species

velocity within a given entity and that entity’s velocity, are to first order, zero.

SEI Approximation 2 (Higher Order Terms). In the force-flux arrangement of

terms, products of two or more forces do not play a role in the linearization process and

are thus neglected.
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Products of terms appear in the CEI that involve two or more forces multiplying a

flux term. In the linearization process, these terms can be assumed to be higher order

and can be dropped in the SEI.

SEI Approximation 3 (Macroscopically Simple System). The system of concern is

what we consider to be a macroscopically simple in the thermodynamic sense.

We define a macroscopically simple system to be a system in which the entropy flux

is balanced by the sum of the heat and diffusive flux, and the entropy source is balanced

by the sum of the heat source and the material derivative of temperature and potential

fluctuation terms.

SEI Approximation 4 (Geometric Tensor Independence). Geometric tensors are

independent of entity measures, densities, velocities, and interfacial and curvilinear ten-

sion, such that integrals of products of these quantities may be split into products of

integrals.

The orientation of entities arise from thermodynamics and play an important role

in evolution equations and closure relations. The form of these orientation tensors exist

as microscale products with a variety of other quantities. To a first approximation,

these quantities are assumed independent, allowing expression in terms of macroscale

quantities. Microscale experimental and computational approaches can be used to check

the validity of these approximations.

SEI Approximation 5 (Solid Surface Independence). Normal velocities and cur-

vatures of material points on the solid surface do not depend on which fluid phase they

contact.

A secondary restriction on the system is that the solid particles do not deform. Thus,

this approximation means that particle motion of the solid surface is independent of the

fluid contacting the solid at the microscale. This will be the case if solid particle motion

is through translation alone or if the rotational component is independent of the phase

in contact with the solid.
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SEI Approximation 6 (Relative Solid-Phase Mobility). The solid is relatively im-

mobile compared to the velocities of the fluid phases.

This approximation requires that consolidaton and expansion due to solid phase mo-

tion happen on a time scale that is long compared to the motion of the fluid phases

present in the system, which is a reasonable approximation for the target systems of

interest in this work.

SEI Approximation 7 (Solid-Phase Curvature Deviations). The average of the

product of the deviation between the microscale and macroscale solid phase curvatures

and the relative velocity of the fluid-solid interface in the normal direction to the solid

phase is assumed to be negligibly small.

If the curvature of the solid phase is not correlated with the microscale velocity, then

this approximation is void of error. Even if correlation between the terms exists, both

terms in the product will be small for the systems of focus in this work; this is a mild

approximation.

SEI Approximation 8 (Entity Measure Evolution). The evolution of specific inter-

facial areas and specific common curve lengths are formualted using averaging theorems

and are simplified using approximations related to the solid behavior, integral splitting

approximations, and closure approximations.

Two specific problems arise in the CEI related to entity measures. First, terms

that result in time derivatives of entity measures arise in various terms of the CEI and

these time derivatives are not independent. Arrangement into a strict force-flux form

requires an appropriate grouping of these terms. The inter-dependence of these terms

can be derived using established averaging theorems [90]. Second, a deficit of equations

exists because entity measures are not conserved quantities, which in turn requires the

formulation of evolution equations that provide a means to close the system. Certain

terms in the evolution equation must be approximated with a closure approximation to
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produce a solvable evolution equation. Microscale methods can be used to check the

assumptions made in the derivation of these evolution equations.

SEI Approximation 9 (Capillary Pressure Dynamics). The dynamics of capillary

pressure is influenced primarily by changes in the curvature of the interface, while dif-

ferences between microscale and macroscale values of interfacial tension and pressures

evaluated at the interface are of lower order importance.

Because fluid pressures equilibrate relatively rapidly in a closed porous medium sys-

tem and interfacial tensions vary primarily with composition and temperature, curvature

effects will generally be dominant. This will not be the case if significant changes in

solute concentrations that include surfactants occur, or if the difference between the

temperature and the critical temperature changes significantly. Because our focus is not

on surfactant systems and the critical temperature of water is large compared to normal

temperatures, this assumption is mild.

3.7.3. Simplified Entropy Inequality. A SEI provides useful information for the

formulation of closed models, but to do so, the SEI must consist solely of force-flux pairs

with all forces and fluxes equal to zero at equilibrium. Examination of Eq. (3.31) reveals

that several terms are not strictly in force-flux form. The steps needed to transform the

CEI into the desired form of SEI are based on the system being considered as detailed by

the secondary restrictions and upon the formal SEI approximations made. The resultant

SEI may then be used to derive closure relationships for a wide range of models that

are in agreement with the primary and secondary restrictions to the system. If better

approximations, or exact expressions, are discovered in the future, then they need only

be applied at this stage to the CEI in order to improve the SEI formulation.

The secondary restrictions and the SEI approximations listed above are applied so

that the SEI can then be written in a convenient form for closure relationship purposes,

with each force and flux term zero at equilibrium:
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〈
e·γwgsI′′·NN

nwgs · e

〉
ΓwgsM ,Ω

)

+
∑
ι∈If

∑
κ∈Icι

1

θκ

∑
i∈Is

[(
µiκ + ψiκ

)
−
(
µiι + ψiι

)] iκ→iι
M

+
∑
ι∈If

∑
κ∈Icι

(
1

θι
− 1

θκ

)[
κ→ι
Q +

∑
i∈Is

(
Eκι
ειρκι

− µκiι
)
iκ→iι
M

+
(
vκι − vs

)
·
κ→ι
T

]
+
∑
κ∈Ics

(
1

θs
− 1

θκ

)
κ→s
Q

+
∑
ι∈II

(
1

θι
− 1

θwgs

)[
wgs→ι
Q +

(
v
wgs
ι − vs

)
·
wgs→ι

T

]

+
1

θwg

(
p
wg
w − pwgg − γwgJwgw

) [Dsεw

Dt
+ χssws

Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓwM,Ω

−χssws
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

− γwg(
p
wg
w − pwgg

) k̂wg1
(
εwg − εwgeq

) ]

−
[∑
ι∈If

χssιs

θιs
(pιsι + γιsJ ιss ) +

1

θs
〈ns · ts·ns〉Ωss,Ωss

+
χsswgs

θwgs

(
γwgsκ

wgs
N − γwgswg sinϕws,wg

)]
×

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)

− 1

θwgs

(
γwgsκ

wgs
G + γ

wgs
ws − γwgsgs + γ

wgs
wg cosϕws,wg

)(
εss

Dsχssws
Dt

−χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+ χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

)

113



+
∑
ι∈If

1

θι

〈
e·τ ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑

ι∈I/If

〈(
1

θι
− 1

θι

)
e· [qι − (vι − vext) θιηι]

〉
ΓιM ,Ω

−
∑
ι∈IP

∑
i∈Is

1

θι

〈
e· (viι − vext) ριωiι

(
µiι + ψiι − µiι − ψiι

)〉
ΓιM ,Ω

+
∑
ι∈If

〈(
1

θι
− 1

θι

)
e·
[
qι − (vι − vext) θιηι

+
∑
i∈Is

ριωiιuiι (µiι + ψiι)
]〉

ΓιM ,Ω

= Λ ≥ 0,

where G is a geometric orientation tensor, ϕws,wg is the contact angle, κ
wgs
N is the normal

curvature, κ
wgs
G is the geodesic curvature, Jκι for ι ∈ IP and κ ∈ Icι are macroscale

surface curvatures, χssκ is the fraction of the solid surface in contact with the κ entity

where κ ∈ Ics, k̂
wg
1 is the generation rate coefficient for wg interfacial area, and ε

wg
eq is

the equilibrium specific interfacial area.

3.8. Model Closure

The SEI expression in Eq. (3.32) is the starting point for the selection of closure

relations to produce closed thermodynamically consistent models of two-fluid-phase flow

and species transport in a porous medium to free-flow transition region. The selection

of the closure relations is non-unique and the generality of the SEI allows for a large

range of problems to be considered based on the particular problem of interest and level

of sophistication required. While restrictions and approximations were applied to derive

Eq. (3.32), this expression is still more general in nature than we will consider. To

simplify matters, we will specify a set of closure approximations to guide the production

of a set of closed models. These approximations can be modified to produce alternative

models if the resultant models produced based upon the closure approximations that

follow are found to be inadequate for some case of concern.
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Closure Approximation 1 (Domain Curvature). The curvature of the domain in

the megascale direction is neglected.

Curvature terms appear in the conservation equations and the SEI. The curvature

in the megascale direction will be small for many applications of interest and when

this situation is the case the corresponding terms will be relatively unimportant. The

appropriateness of this approximation will be straightforward to assess from the physical

system being considered.

Closure Approximation 2 (Dilute). Each of the fluid phases will be assumed to

be dilute.

It was previously assumed that the fluid phases are binary mixtures. The primary

species of interest in the liquid phase (e.g.,water) is sufficiently volatile that volatilization

to the gas phase can occur, and the dominant gas-phase species is assumed to be slightly

soluble in the liquid phase. For these conditions, we can assume an ideal dilute solution

with activity coefficients equal to unity.

Closure Approximation 3 (Body Force). The macroscale body force will be ap-

proximated as the product of the macroscale entity measure, and macroscale density, and

the gradient in the microscale potential.

This approximation is reasonable because the transition region is thin in the vertical

dimension in which the gravitational potential acts, and densities and volume fractions

are only available as averages through this thin region and would typically have limited

variability, making this approximation reasonable.

Closure Approximation 4 (Momentum Approximations). Acceleration and iner-

tial contributions to the conservation of momentum, aside from gravitational effects, will

be neglected.
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Because the Reynolds number for flow in the transition region is expected to be small

for most cases and the interfacial transport of momentum terms are dominant and non-

gravitational acceleration and inertial terms can be shown to be a second-order effect.

Closure Approximation 5 (Closure Order). Closure approximations will be posited

zero-order with respect to the macroscale rate of strain tensor and first-order with respect

to all other forces being considered.

Neglect of the rate of strain in constitutive relations for porous medium flow is appro-

priate if viscous forces at the boundary of the solid phase are dominant, as is typically

the case for porous medium systems, which behave as if they are macroscopically invis-

cid. Because of this observation, we will use a zero-order closure for the flux multiplying

the rate of strain tensor. If the zero-order approximation proves to be inadequate, this

closure approximation will need to be revised. Similarly, the starting point for other

closure relations will be a first-order approximation. We will include Onsager-like cross

coupling where certain fluxes depend upon more than one force. Because of conditions

on the system (e.g., massless interfaces and common curve, non-deforming solid phase)

many cross-coupling terms can be neglected. Linear closure relations are a reasonable

starting point and have been found adequate for many systems investigated to date.

Closure Approximation 6 (State Equations). State equations express the inter-

relationship among variables at equilibrium and are written in a general functional form.

The hypothesized functional dependencies must be obtained experimentally or through

microscale computations, and reasonable specific forms are currently available in certain

cases at the microscale. For example, relationships between fluid densities, pressures,

temperatures, and composition are well established at the microscale; note that care is

needed in extending such relations to the macroscale. The investigation of relationships

among fluid pressures, saturations, interfacial areas, and curvatures is an active areas of

research.
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3.8.1. SEI Closure Relations. The SEI for a transition region, given in Eq. (3.32), is

written in force-flux form and can be used to guide the formulation of closure relations

within the transition region. To do this, we linearize the remaining force-flux products.

The zero-order closure for the stress tensors can be expressed as

(3.33) t8ι = −pιI8 for ι ∈ If ,

(3.34) t8s = t8s,

(3.35) t8ι = γι
(
I8 − G8ι) for ι ∈ II,

and

(3.36) t8wgs = −γwgs (I8 − G8wgs) .
As specified by Secondary Restriction 4, we consider only a two species, or binary, system

for the fluid phases with an inert solid phase, where the index set of species in the fluid

phases is given as Isf = {g, w} and the system is considered to be dilute. A first-order

closure scheme is used to specify the dispersion velocity for such a binary system as

(3.37) ωgιu8gι = −xgιxwιD̂gwι·∇8
(
µgι + ψgι − µwι − ψwι

)
for ι ∈ If ,

where D̂
gwι

is a second-rank, symmetric tensor for which the third row and column

contain zeros , and xiι is the mole fraction of species i in entity ι.

For the fluid phases, the linearized heat fluxes are

(3.38) ειq8ι +
∑

i∈{g,w}
ειριωiι

(
µiι + ψiι

)
u8iι = −ειK̂ιq·∇8

(
1

θι

)
for ι ∈ If ,

while the linearized heat flux for the solid phase is

(3.39) εsq8s = −εsK̂sq·∇8
(

1

θs

)
,
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where K̂
ι
q is a second-rank, symmetric heat conduction tensor, and the corresponding

closure relations for heat conduction in interfaces and common curves are written as

(3.40) ειq8ι = −ειK̂ιq·∇8
(

1

θι

)
for ι ∈ (II ∪ IC).

A first-order, cross-coupled approximation for fluid phase SEI terms involving the

inter-entity transfer of momentum whose conjugate forces are the entity velocities relative

to the macroscale solid-phase velocity can be written as

(3.41)
∑

i∈{g,w}
ειριωiι∇8

(
µiι + ψiι

)
+

∑
i∈{g,w}

ειριωiιg8iι −∇8 (ειpι)− 〈e·pιI8〉ΓιM ,Ω

+
∑
κ∈Icι

κ→ι
T ·I8 = −(ει)2

∑
κ∈If

[
I8·R̂ικ·

(
v8κ − v8s

)
+ I8·R̂ικ·NN ·vκ,s

]

for ι ∈ If , where R̂
ι
κ are second-rank, symmetric, positive semi-definite resistance tensors.

Cross-coupling is accounted for when the subscript and superscript on the resistance

tensor differ. The resistance tensors are dependent upon the morphology and topology

of the entity distributions. The macroscale mechanism for including the orientation of

the interfaces at the microscale is the geometric tensors, Gι.

For the interfaces we have

(3.42) ∇8·
[
ειγι

(
I8 − G8ι)]− ∑

κ∈Icι

ι→κ
T ·I8 +

〈
e·γιI′·I8
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ II,

and for the common curve

(3.43) −∇8·
[
εwgsγwgs

(
I8 − G8wgs)]− ∑

κ∈Icwgs

wgs→κ
T ·I8−

〈
e·γwgsI′′·I8

nwgs · e

〉
ΓwgsM ,Ω

= 0.

In the megascale direction, the flux terms whose conjugate forces are the relative

velocities can be written by expressing the flux as a linear function of both its conjugate

force and the velocity force for the other fluid such that for ι ∈ If ,
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(3.44)
∑

i∈{g,w}
ειριωiιgiι·NN − 〈e·pιI·NN〉ΓιM ,Ω +

∑
κ∈Icι

κ→ι
T ·NN

= −(ει)2
∑
κ∈If

[
NN · R̂ικ·NN ·vκ,s + NN · R̂ικ·I8·vκ,s

]
.

For ι ∈ II we have

(3.45) −
∑
κ∈Icι

ι→κ
T ·NN +

〈
e·γιI′·NN

nι · e

〉
ΓιM ,Ω

= 0,

and for the common curve

(3.46) −
∑

κ∈Icwgs

wgs→κ
T ·NN −

〈
e·γwgsI′′·NN

nwgs · e

〉
ΓwgsM ,Ω

= 0.

The mass exchange term considering massless interfaces can be linearized such that

(3.47)
iwg→iw
M = K̂M

[(
µig + ψig

)
−
(
µiw + ψiw

)]
,

where K̂M is a scalar mass transfer coefficient and
iwg→iw
M = −

iwg→ig
M .

Energy exchanges between entities are linearized by their conjugate force and cross-

coupled with the force associated with the work of volume change. For the case of a fluid

phase ι, this means

(3.48)
wg→ι
Q +

∑
i∈{g,w}

(
E
wg
ι

ειρ
wg
ι
− µwgiι

)
iwg→iι
M +

(
v
wg
ι − vs

)
·
wg→ι

T

= K̂
wg
ι,Q

(
1

θι
− 1

θwg

)
− K̂wg

ι,W

(
p
wg
w − pwgg − γwgJwgw

)
for ι ∈ If ,

and

(3.49)
κ→ι
Q = K̂κ

ι,Q

(
1

θι
− 1

θκ

)
for κ ∈ {ws, gs}, ι ∈ (Icκ ∩ IP) ,

where K̂κ
ι,Q are scalar inter-entity heat transfer parameters, and K̂κ

ι,W are scalar coeffi-

cients for work of expansion of entity ι.
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For heat transfer between the common curve and interfaces,

(3.50)
wgs→ι
Q +

(
v
wgs
ι − vs

)
·
wgs→ι

T = K̂
wgs
ι,Q

(
1

θι
− 1

θwgs

)
+K̂

wgs
ι,W

(
γwgsκ

wgs
G + γ

wgs
ws − γwgsgs + γ

wgs
wg cosϕws,wg

)
for ι ∈ II.

Capillary effects at the fluid-fluid interface are included through the use of averaging

theorems following the approach of [90], where the linearized force without considering

cross-coupling is written as

(3.51) τ̂A

[
Dsεw

Dt
+ χssws

Dsεs

Dt
− γwg(

p
wg
w − pwgg

) k̂wg1
(
εwg − εwgeq

)
−
〈
e·
(
vext − vs

)〉
ΓwM,Ω

− χssws
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

=
(
p
wg
w − pwgg − γwgJwgw

)
,

where

(3.52) ε
wg
eq = ε

wg
eq
(
sw, J

wg
w
)
,

and the coefficient k̂
wg
1 is defined as

(3.53) k̂wg =

(
J
wg
w γwg

p
wg
w − pwgg

− 1

)
k̂
wg
1 ,

where k̂wg is a function of the system variables, k̂
wg
1 is the generation rate coefficient for

the fluid-fluid interfacial area, sw is the wetting phase saturation, and τ̂A is a positive

coefficient for capillary pressure dynamics. The approximation in Eq. (3.51) is based on

the assumption that the solid-phase dynamics are negligible in comparison to fluid-phase

dynamics related to capillary pressure transients. The product of the mean macroscale

curvature, J
wg
w , and the interfacial tension, γwg, is the macroscale capillary pressure,

such that Eq. (3.51) indicates a disequilibrium in capillary forces will cause a change

in saturation or interfacial area to occur. The dynamic relationship among the normal
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forces acting on the solid surface can be linearized as follows:

(3.54) − ĉs
(

Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
=
∑
κ∈Ics

χssκ

θκ
(pκι + γκJκs )

+
1

θs
〈ns · ts·ns〉Ωss,Ωss +

χsswgs

θwgs

(
γwgsκ

wgs
N − γwgswg sinϕws,wg

)
,

where ι ∈ (If ∩ Icκ) and ĉs is a non-negative compressibility parameter. The final group-

ing of geometric terms indicates a disequilibrium in the force balance at the common

curve tangent to the solid surface will cause a change in the fraction of the solid surface

in contact with the wetting fluid. This grouping can be linearized as

(3.55)

− ĉwgs
(
εss

Dsχssws
Dt

− χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+ χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

)

=
(
γwgsκ

wgs
G + γ

wgs
ws − γwgsgs + γ

wgs
wg cosϕws,wg

)
,

where ĉwgs is a non-negative surface wetting parameter.

The remaining closure approximations are for the boundary terms. For the viscous

stress tensor of a fluid phase, a fist-order closure appoximation is

(3.56)
dr̂top
ι

ε
top
ι ρ

top
ι

·
〈
ρι

(
vι − vι

)〉
ΓιMtop

,Ω
= 〈e·τ ι〉ΓιMtop

,Ω ,

where d is the interface thickness. Similarly for the viscous stress of a fluid at the bottom

boundary we have

(3.57)
dr̂bot
ι

εbot
ι ρbot

ι
·
〈
ρι

(
vι − vι

)〉
ΓιMbot

,Ω
= 〈e·τ ι〉ΓιMbot

,Ω ,

where ι ∈ If , i ∈ {w, g}, and r̂ι are second-rank, symmetric, positive semi-definite

resistance tensors. The superscript top indicates averaging over the boundary in the

megascale direction at the top of the REV and the superscript bot indicates averaging
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over the boundary in the megascale direction at the bottom of the REV. The remaining

boundary terms are approximated in a similar manner.

Heat transfer over the REV boundary is approximated using the linear closure rela-

tions

(3.58) dη
top
ι k̂

top
ι,q

〈
1

ηι

(
1

θι
− 1

θι

)〉
ΓιMtop ,Ω

=

〈
e·

qι − (vι − vext) θιηι +
∑

i∈{g,w}
ριωiιuiι (µiι + ψiι)

〉
ΓιMtop ,Ω

,

and

(3.59) dηbot
ι k̂bot

ι,q

〈
1

ηι

(
1

θι
− 1

θι

)〉
ΓιMbot

,Ω

=

〈
e·

qι − (vι − vext) θιηι +
∑

i∈{g,w}
ριωiιuiι (µiι + ψiι)

〉
ΓιMbot

,Ω

,

for ι ∈ If , i ∈ {g, w}, and

(3.60) dη
top
ι k̂

top
ι,q

〈
1

ηι

(
1

θι
− 1

θι

)〉
ΓιMtop ,Ω

=

〈
e·
[
qι −

(
vι − vext

)
θιηι

]
nι·e

〉
ΓιMtop ,Ω

,

and

(3.61) dηbot
ι k̂bot

ι,q

〈
1

ηι

(
1

θι
− 1

θι

)〉
ΓιMbot

,Ω
=

〈
e·
[
qι −

(
vι − vext

)
θιηι

]
nι·e

〉
ΓιMbot

,Ω

,

for ι ∈ {s, wg, ws, gs, wgs}, and k̂ι,q are scalar heat transfer closure parameters.

The transfer of mass normal to the boundary is approximated linearly as

(3.62) −
dk̂

top
iι,M

ε
top
ι ρ

top
ι ω

top
iι

〈
ριωiι

(
µiι + ψiι − µiι − ψiι

)〉
ΓιMtop

,Ω

= 〈ριωiιe· (viι − vext)〉ΓιMtop
,Ω ,
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(3.63) −
dk̂bot
iι,M

εbot
ι ρbot

ι ωbot
iι

〈
ριωiι

(
µiι + ψiι − µiι − ψiι

)〉
ΓιMbot

,Ω

= 〈ριωiιe· (viι − vext)〉ΓιMbot
,Ω ,

where ι ∈ If , i ∈ {w, g},

(3.64) −
dk̂

top
s,M

ε
top
s ρ

top
s

〈
ρs

(
µs + ψs − µs − ψs

)〉
ΓsMtop

,Ω

= 〈ρse· (vs − vext)〉ΓsMtop
,Ω = 0,

and

(3.65) −
dk̂bot
s,M

εbot
s ρbot

s

〈
ρs

(
µs + ψs − µs − ψs

)〉
ΓsMbot

,Ω
= 〈ρse· (vs − vext)〉ΓsMbot

,Ω ,

where k̂
top
iι,M ,k̂bot

iι,M ,k̂
top
s,M , and k̂bot

s,M are scalar mass transfer coefficients for the transfer of

mass normal to the top and bottom boundary of the REV. Because of the restriction on

entities, solid phase cannot cross the top boundary, so this term has been set to zero.

3.8.2. System Equations. Application of the closure relations given by Eq. (3.37)

together with the restrictions and formal approximations noted in sections §3.3, §3.7.2,

and §3.8 allow the species mass conservation equations, Eq. (3.20), to be written as

(3.66)
Dg
(
εgρgωig

)
Dt

+ εgρgωigI:d8g + K̂M

[(
µig + ψig

)
−
(
µiw + ψiw

)]
−∇8·

[
εgρgxigxjgD̂

ijg·∇8
(
µig + ψig − µjg − ψjg

)]
−k̂topig,M

(
µ
top
ig + ψ

top
ig − µig − ψig

)
−k̂botig,M

(
µbotig + ψbotig − µig − ψig

)
= 0 for i, j ∈ {g, w}, i 6= j,

(3.67)
Dw
(
εwρwωiw

)
Dt

+ εwρwωiwI:d8w − K̂M
[(
µig + ψig

)
−
(
µiw + ψiw

)]
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−∇8·
[
εwρwxiwxjwD̂

ijw·∇8
(
µiw + ψiw − µjw − ψjw

)]
−k̂topiw,M

(
µ
top
iw + ψ

top
iw − µiw − ψiw

)
−k̂botiw,M

(
µbotiw + ψbotiw − µiw − ψiw

)
= 0 for i, j ∈ {g, w}, i 6= j,

and

(3.68) ρs
Dsεs

Dt
+ εsρsI:d8s − k̂bots,M

(
µbots + ψbots − µs − ψs

)
= 0.

Application of the closure relations, the restrictions and formal approximations, as well

as assuming the averages over the REV boundaries are separable integrals, allows the

momentum conservation equations to be written as

(3.69)∑
i∈{g,w}

εgρgωig∇8
(
µig + ψig

)
+ v

wg
g

∑
i∈{g,w}

K̂M

[(
µig + ψig

)
−
(
µiw + ψiw

)]
−

∑
i∈{g,w}

k̂
top
ig,M

(
µ

top
ig + ψ

top
ig − µig − ψig

)
v

top
g

−
∑

i∈{g,w}
k̂bot
ig,M

(
µbot
ig + ψbot

ig − µig − ψig
)

vbot
g − r̂top

g ·
(
v

top
g − vg

)
−r̂bot

g ·
(
vbot
g − vg

)
= −(εg)2

∑
κ∈If

R̂
g
κ·vκ,s,

and

(3.70)∑
i∈{g,w}

εwρwωiw∇8
(
µiw + ψiw

)
− v

wg
w

∑
i∈{g,w}

K̂M

[(
µig + ψig

)
−
(
µiw + ψiw

)]
−

∑
i∈{g,w}

k̂
top
iw,M

(
µ

top
iw + ψ

top
iw − µiw − ψiw

)
v

top
w

−
∑

i∈{g,w}
k̂bot
iw,M

(
µbot
iw + ψbot

iw − µiw − ψiw
)

vbot
w − r̂top

w ·
(
v

top
w − vw

)
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−r̂bot
w ·

(
vbot
w − vw

)
= −(εw)2

∑
κ∈If

R̂
w
κ ·vκ,s,

for the fluid phases g and w respectively.

For the solid phase, only the component in the N direction will play a role, so the

conservation of momentum equation in the megascale direction can be expressed as

(3.71) − εsρsgs·NN −
∑

i∈{g,w}
εwρwωiwgiw·NN −

∑
i∈{g,w}

εgρgωiggig·NN

−k̂bot
s,M

(
µbot
s + ψbot

s − µs − ψs
)

vbot
s ·NN − ε

top
s

d
N·ttop

s ·NN

+
εbots
d

N·tbot
s ·NN +

ε
top
w p

top
w

d
N − εbotw pbot

w

d
N +

ε
top
g p

top
g

d
N

−ε
bot
g pbot

g

d
N = −

∑
ι∈If

(ει)2
∑
κ∈If

[
NN · R̂ικ·NN ·vκ,s + NN · R̂ικ·I8·vκ,s

]
.

Since the interfaces and common curves are considered massless, they contribute no

momentum, and conservation of momentum equations are not included in the set of

system equations.

As an alternative to looking at the conservation of total energy, we instead use the

conservation of internal energy. The transformation from total energy to internal energy

is straightforward and can be found in [86].

The internal energy is described by

(3.72) E ι − vι·Pι +
∑
i∈Is

1

2
vι·vιMiι −

∑
i∈Is

ειριωiιgiι·vι −
∑
i∈Is

Dι
(
ειριωiιψiι

)
Dt

−
∑
i∈Is

ειριωiιψiιI:d8ι +
∑
κ∈Icι

ψκι
∑
i∈Is

iκ→iι
M +

∑
i∈Is

ειψiιriι

+
∑
i∈Is

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

−
〈 ∑
i∈Is

ριωiιψiιe·
(
vι − vext

)
nι · e

〉
ΓιM ,Ω

= 0.
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The internal energy for a fluid phase after application of the restrictions and approxima-

tions for the system can be written

(3.73)
DιEι

Dt
+
(
Eι + ειpι

)
I8:d8ι +∇8·

[
ειK̂

ι
q·∇8

(
1

θι

)]
− ειhι

−∇8·
[
ειρι

(
µgι + ψgι − µwι − ψwι

)
xgιxwιD̂

gwι·∇8
(
µgι + ψgι − µwι − ψwι

)]
−

∑
i∈{g,w}

µ
wg
iι K̂M

[(
µij + ψij

)
−
(
µiι + ψiι

)]
+ vι,s·∇8·

(
ειpιI8

)
−vι,s·

∑
i∈{g,w}

ειριωiιgiι − vι,s·
∑

i∈{g,w}
ειριωiι∇8

(
µiι + ψiι

)
− vι,s·

∑
κ∈If

(ει)2 R̂
ι
κ·vκ,s

−
∑
κ∈Icι

K̂κ
ι,Q

(
1

θι
+

1

θκ

)
+ K̂

wg
ι,W

(
p
wg
w − pwgg − γwgJwgw

)

+N ·
(
v

top
ι − v

top
ext

) ∑
i∈{g,w}

ε
top
ι ρ

top
ι ω

top
iι

d
µ

top
iι

−N ·
(
vbot
ι − vbot

ext

) ∑
i∈{g,w}

εbotι ρbotι ωbotiι
d

µbotiι

+
ε
top
ι p

top
ι

d
N ·

(
v

top
ext − vs

)
− εbotι pbot

ι

d
N ·

(
vbot

ext − vs
)

−
[
r̂
top
ι ·

(
v

top
ι − vι

)]
·
(
v

8top
ι − v8ι

)
−
[
r̂bot
ι ·

(
vbot
ι − vι

)]
·
(
v8bot
ι − v8ι

)
−k̂topι,q

 1

θι
− 1

θ
top
ι

+ N ·
∑

i∈{g,w}

ε
top
ι ρ

top
ι ω

top
iι

d
u
top
iι

(
µ
top
iι + ψ

top
iι

)

−k̂botι,q
(

1

θι
− 1

θbotι

)
−N ·

∑
i∈{g,w}

εbotι ρbotι ωbotiι
d

ubotiι

(
µbotiι + ψbot

iι

)
= 0,

for ι ∈ If , j ∈ If , j 6= ι. For the solid phase,

(3.74)
DsEs

Dt
+
(
EsI8 − εst8s

)
:d8s +∇8·

[
εsK̂

s
q·∇8

(
1

θs

)]
− εshs

−
∑
κ∈Ics

K̂κ
s,Q

(
1

θs
− 1

θκ

)
− ε

top
s

d
N · ttop

s ·
(
v

top
s − vs

)
+
εbot
s

d
N · tbot

s ·
(
vbot
s − vs

)
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−N ·
(
v

top
s − v

top
ext

)(εtop
s ρ

top
s

d
µ

top
s +

ε
top
s

d
σ

top
s :

Ctop
s

j
top
s

)

+N ·
(
vbot
s − vbot

ext

)(εbot
s ρbot

s

d
µbot
s +

εbot
s

d
σbot
s :

Cbot
s

jbot
s

)

−k̂tops,q

 1

θs
− 1

θ
top
s

− k̂bots,q
(

1

θs
− 1

θbots

)
= 0.

For the solid-fluid interfaces, ι ∈ {ws, gs}, the internal energy can be expressed as

(3.75)
DιEι

Dt
+
[
EιI8 − ειγι (I8 − G8ι)] :d8ι +∇8·

[
ειK̂

ι
q·∇8

(
1

θι

)]
− ειhι

−vι,s·∇8·
[
ειγι

(
I8 − G8ι)]+

∑
κ∈(Icι∩IP)

K̂ι
κ,Q

(
1

θκ
− 1

θι

)

−K̂wgs
ι,Q

(
1

θι
− 1

θwgs

)
− K̂wgs

ι,W

(
γwgsκ

wgs
G + γ

wgs
ws − γwgsgs + γ

wgs
wg cosϕws,wg

)

−k̂topι,q

 1

θι
− 1

θ
top
ι

− k̂botι,q
(

1

θι
− 1

θbotι

)
= 0.

The internal energy of the fluid-fluid interface is similar to the fluid-solid interface except

that mass can be exchanged.

(3.76)
DwgEwg

Dt
+
[
EwgI8 − εwgγwg (I8 − G8wg)] :d8wg +∇8·

[
εwgK̂

wg
q ·∇8

(
1

θwg

)]
−εwghwg − vwg,s·∇8·

[
εwgγwg

(
I8 − G8wg)]− K̂wgs

wg,Q

(
1

θwg
− 1

θwgs

)
+

∑
i∈{g,w}

(
µ
wg
iw − µ

wg
ig

)
K̂M

[(
µig + ψig

)
−
(
µiw + ψiw

)]

+
∑

κ∈Icwg∩If

[
K̂
wg
κ,Q

(
1

θκ
− 1

θwg

)
− K̂wg

κ,W

(
p
wg
w − pwgg − γwgJwgw

) ]

−K̂wgs
wg,W

(
γwgsκ

wgs
G + γ

wgs
ws − γwgsgs + γ

wgs
wg cosϕws,wg

)
−k̂topwg,q

 1

θwg
− 1

θ
top
wg

− k̂botwg,q
 1

θwg
− 1

θbotwg

 = 0.
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Finally, for the common curve, the expression for internal energy is given by

(3.77)

DwgsEwgs

Dt
+
[
EwgsI8 + εwgsγwgs

(
I8 − G8wgs)] :d8wgs +∇8·

[
εwgsK̂

wgs
q ·∇8

(
1

θwgs

)]
−εwgshwgs + vwgs,s·∇8·

[
εwgsγwgs

(
I8 − G8wgs)]+

∑
κ∈Icwgs

K̂
wgs
κ,Q

(
1

θκ
− 1

θwgs

)

+
∑

κ∈Icwgs

K̂
wgs
κ,W

(
γwgsκ

wgs
G + γ

wgs
ws − γwgsgs + γ

wgs
wg cosϕws,wg

)

−k̂topwgs,q

 1

θwgs
− 1

θ
top
wgs

− k̂botwgs,q
 1

θwgs
− 1

θbotwgs

 = 0.

The model represented by Eqs. (3.67)–(3.77) contains more unknowns than equations,

thus requiring additional closure relations and EOS for a well-posed model.

3.8.3. Evolution Equations. Approximate relations for the evolution of geometric

variables have been obtained through the application of time and space averaging theo-

rems [89]. Using this same process, but applying the averaging theorems found in §3.4,

the approximate forms for the fluid-solid interfacial areas are

(3.78)
Dsεws

Dt
+ εwsGss:d8s − Jwss χssws

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)

−εssDsχssws
Dt

− χssws
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

−χssws
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

≈ 0,

and

(3.79)
Dsεgs

Dt
+ εgsGss:d8s − Jgss χssgs

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)

−εssDsχssgs
Dt

− χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω
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−χssgs
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

≈ 0,

where χssι = ει/εss for ι ∈ {ws, gs, wgs}. We will consider wetting to be a dynamic

process that can be modeled according to

(3.80)
Dsχssws

Dt
≈ −k̂ws (χssws − χsswseq

)
,

where the equilibrium wetted fraction as a function of saturation and average curvature

of the fluid-fluid interface is

(3.81) χsswseq = χsswseq
(
sw, J

wg
w
)
,

and k̂ws is a wetting rate parameter. Note that

Dsχssgs
Dt

= −Dsχssws
Dt

.

A general fluid-fluid interface evolution equation assuming a linear constitutive rela-

tion for the processes leading to entrapment and mobilization, can then be written as in

[89] using averaging theorems from §3.4 as

(3.82)
Dsεwg

Dt
+∇8·

[
εwg

(
wwg + Gwg·vs

)]
+ εwgGwg:d8s

−Jwgw
(

Dsεw

Dt
+ χssws

Dsεs

Dt

)
+ k̂wg

(
εwg − εwgeq

)
+
(
J
wg
w χssws − χsswgs sinϕws,wg

)〈
e·
(
vext − vs

)〉
ΓsM ,Ω

−εssDsχssws
Dt

cosϕws,wg + χsswgs
Dsεs

Dt
+ J

wg
w

〈
e·
(
vext − vs

)〉
ΓwM,Ω

− cosϕws,wg

χssws
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

− χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω


−
〈

e·
(
vext − vs

)
nwg · e

〉
ΓwgM,Ω

≈ 0,
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where the average macroscale interface velocity normal to the interface is defined as

(3.83) wwg =
〈
nwnw ·vwg

〉
Ωwg,Ωwg

.

For the common curve, after application of the averaging theorems, the macroscale normal

and geodesic curvatures can be added in a subtracted out to create a a convenient form.

Following the arguments of [89] we define the resulting difference between the microscale

and macroscale curvatures as

(3.84) ewgs = −
〈(
κNwgs − κwgsN

)
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

−
〈(
κGwgs − κwgsG

)
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

,

and linearly approximate this term by

(3.85) ewgs ≈ −k̂wgs (εwg − εwgseq
)
,

where ε
wgs
eq = ε

wgs
eq (sw, J

wg
w ) is the equilibrium common curve length density and k̂wgs

is a common curve generation rate coefficient. Then the evolution of the common curve

can be written as

(3.86)
Dsεwgs

Dt
+∇8·

[
εwgs

(
wwgs − Gwgs·vs

)]
+ εwgsGwgs:d8s

+κ
wgs
G εss

Dsχssws
Dt

+ κ
wgs
N χsswgs

(
Dsεs

Dt

)
+ k̂wgs

(
εwg − εwgseq

)
+κ

wgs
G

χssws
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

− χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω


−κwgsN

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

−
〈

e·
(
vext − vs

)
nwgs · e

〉
Γwgs,Ω

≈ 0,

where the average velocity of the common curve in the direction normal to the common

curve is defined as

(3.87) wwgs =
〈(

I− lwgslwgs
)
·vwgs

〉
Ωwgs,Ωwgs

.
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The solid is specified as non-deformable and the curvature of the solid surface as inde-

pendent of the fluid contacting it, thus we can reasonably make the approximation that

Jwss ≈ J
gs
s and will be a specified quantity. The evolution equations together with the

constitutive relationships found in Eq. (3.51), Eq. (3.54), and Eq. (3.55) introduce seven

additional equations and the unknowns

(3.88) {pwsw , p
gs
g , 〈ns · ts·ns〉Ωss,Ωss ,wwg,wwgs, εss, sw, sg, κ

wgs
N }.

3.8.4. Identities, Equations of State, and Closure Relations. The relationship

between specific entity measures of the phases,

(3.89) sw =
εw

1− εs , εg = 1− εs − εw, sg = 1− sw, and εss = εws + εgs,

can be used to determine sw, εg, sg, and εss. In [89] constitutive relationships for the

average macroscale interface velocity normal to the interface were proposed and are

applicable to the system of interest here, such that

(3.90) wwg ≈ Gwg·
(
Âwvw + Âgvg

)
and

(3.91) wwgs ≈ (Gwgs − Gss) ·
(
B̂wvw + B̂gvg

)
,

where Â and B̂ are parameters that will depend on the ratio of the wetting fluid to

gas viscosities, the saturations, and interfacial area densities. We can also note that

for the system of interest the velocity of the interface is primarily due to the movement

of the interface rather than movement within the interface and thus we can make the

approximations

vwg ≈ wwg, vws ≈ wws, vgs ≈ wgs, and vwgs ≈ wwgs.
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We can use the derivation of [92] for a closure relationship for the solid stress on the

system. For a non-deformable system, this relationship is given as

(3.92) εst8s = −χssws (pwsw + γwsJwss ) I8 − (1− χssws)
(
p
gs
g + γgsJ

gs
s
)
I8

+
εwgs

εss
γ
wgs
wg sinϕws,wgI8 + (εwpw + εgpg) I8 − εwg (I8 − G8wg) γwg

−εws (I8 − G8ws) γws − εgs (I8 − G8gs) γgs.
Equations of state, formulated through averaging of known microscale equations of state

to the macroscale, will provide the remaining constitutive equations necessary to create

a closed system. We can write these equations in functional form. For the densities,

(3.93) ρι = ρι
(
θι, pι

)
for ι ∈ If .

The pressures used in these relationships are the volume averaged macroscale pressures.

The other unknown pressures, the surface averaged pressures can be approximated by

the volume averages such that

(3.94) pwsw ≈ p
wg
w ≈ pw and p

gs
g ≈ p

wg
g ≈ pg.

Similarly to the pressures, the surface averaged chemical potentials and velocities can be

approximated by the mass averaged chemical potentials and velocities, respectively, such

that

(3.95) µ
wg
iw ≈ µiw, µ

wg
ig ≈ µig, v

wg
w ≈ vw, and v

wg
g ≈ vg.

The bulk compressibility or bulk modulus, α̂b, relates the change in porosity with pressure

[85] and is defined by

(3.96) α̂b = − 1

(1− ε)ρs
(

∂[(1− ε)ρs]
∂〈ns · ts·ns〉Ωss,Ωss

)
θs

.
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In considering massless interfaces and common curves, the tensions associated with

these entities can be approximated to be constant. We also say that

(3.97) γ
wgs
wg ≈ γwg, γ

wgs
ws ≈ γws, and γ

wgs
gs ≈ γgs.

The remaining unknowns will be expressed as equations of state written in functional

form given by:

(3.98) Eι = Eι
(
θι, pι, ρι

)
for ι ∈ I,

(3.99) µiι = µiι
(
θι, pι, ριωiι

)
for ι ∈ {w, g, s},

(3.100) J
wg
w = J

wg
w (sw, εwg, χssws) ,

and

(3.101) ϕws,wg = ϕws,wg (sw, εwg, χssws) .

The system equations in section §3.8.2, together with the restrictions and approximations

on the system, the geometric evolution equations in section §3.8.3, and the approxima-

tions, identities, and equations of state in section §3.8.4 form a closed model.

3.9. Discussion

The interaction of two domains with differing entity sets appears routinely in envi-

ronmental settings (e.g., flows in fractured rocks and evaporation from soils), industrial

applications (e.g., filters, fuel cells, thermal insulation, drying processes), and biological

processes (e.g., flows in blood vessels and tissue, transport of drugs and nutrients). The

governing equations for individual domains have been widely investigated, but a chal-

lenge arises in describing the coupling between the models at the interface. In general,

either a single-domain or two-domain approach is adopted [44, 74]. The single-domain
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approach is very sensitive to parameters that are not readily available, the two-domain

approach considers only sharp interfaces with no thermodynamic properties, and neither

approach is capable, in its current state, to account for multi-component, multiple fluid

systems.

In this work, we have developed transition region models that are capable of coupling

two-fluid-phase, multi-component systems in which at least one of the domains adjacent

to the transition region is a porous medium. To accomplish this goal, the TCAT approach

is extended from previous model formulations to consider both two-fluid-phase flow and

multi-component transport, and is averaged in the direction that is typically chosen

approximately normal at the megascale to the intersection of the different regions to

be joined. We note that the averaging theorems applied to achieve this formulation for

the conservation equations causes a loss of some information in the normal direction,

transforming spatial derivatives into boundary terms. However, the result of this process

is a model for a domain, which unlike the interfaces for typical two-domain approaches,

is capable of containing and evolving mass, momentum, and energy. A closed model for

the transition region is given.

While the foundational theoretical framework for modeling transition regions has

been developed in this work and a closed model has been specified that can be used to

model a variety of common applications of concern, follow-up work would be of use. This

work can be divided into applications and extensions. The applications work that should

be considered includes the joining of the transition region model specified herein with a

porous medium model and a free-flow model to produce a complete model formulation.

Once such a complete model is formulated, it should be solved numerically, validated,

and verified by comparing to experimental data. The case of water evaporation from

a porous medium would seem to be an especially important and accessible application.

Other applications are possible for the formulation developed in this work as well.

Many extensions to this work are possible as well, such as transition regions that vary

in thickness or curvature, non-dilute systems, deformable solid systems, and in general
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any system for which the secondary restrictions and approximations, and closure approx-

imations made in this work are not appropriate. A convenient aspect about the approach

taken in this work is that the conservation equations and constrained entropy inequal-

ity would apply to many additional conditions; only certain aspects of the derivation of

the simplified entropy inequality and model closure would need to be revisited to model

other systems. This would make such extensions to this work relatively straightforward

in many cases. Certainly, extensions to the theory should match the sophistician needed

to model accurately a given system of concern and model-experiment comparisons are

important. These experiments may be laboratory or field based, or they may be the

result of higly resolved microscale simulations over a sufficiently large domain to test the

averaged model.
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CHAPTER 4

Summary and Discussion

Current modeling of porous medium systems is beset with inconsistencies and ill-

defined variables. The application of the classic experimental work of Darcy for the

simplest of single-fluid-phase porous media to more complex systems and the absence

of careful transformation of all microscale quantities to the scale of interest has con-

tributed to these problems. The purpose of this work on the TCAT approach is to

lay the foundation for rigorous model building for a variety of porous medium systems,

while producing well-defined variables, connecting scales, providing thermodynamic con-

sistency, and including the evolution of interfaces and common curves as mechanisms for

modeling physically observable phenomena. The approach that has evolved to accom-

plish this goal is to present the components of the machinery needed to formulate models

and to apply the components in order to create frameworks that support a hierarchy

of models. Thus the intent of these works is not just to present solutions for a single

problem, but to establish a series of frameworks that can be applied to entire families of

problems.

This work outlined the shortcomings of traditional models as well as the elements

of the TCAT approach needed for constructing macroscale models for two-fluid-phase

porous medium systems. A clear separation of exact results from approximations, which

are both needed to produced closed models, was detailed for each system. Novel aspects

of this work include the application to two-fluid-phase flow systems and two-fluid-phase

flow and species transport in transition regions. The manuscripts presented here built

upon the TCAT foundation, which includes papers that outline the TCAT approach [84]

and that provide the mathematical tools necessary [136, 137] for model formulation.



In Chapter 2, the class of problem considered was two-fluid-phase flow through a

porous medium. The TCAT approach combined with the detailed set of restrictions

and approximations was used to produce a hierarchy of three models. One strength of

the TCAT approach is that a complete, explicit list of restrictions and approximations

needed to produce all three model instances is provided, as are the means to produce

alternative models based upon a different or relaxed set of restrictions and approxima-

tions. The simplest model was derived in an effort to recover a formulation similar to

traditional two-fluid-phase flow models. While conceptually satisfying to show that with

careful mathematical manipulations and the correct choice of restrictions and approx-

imations, a form similar to traditional models can be achieved, it was not the overall

goal of the formulation. Nonetheless, even this seemingly similar formulation boasts the

benefit of having well-defined variables and consistency across scales. The two additional

models presented each included interface dynamics and the most complex formulation

also included the effects of the common curve. It has been observed that interfacial area

in particular can play an important role in the physics of the system. Thus, models

including mechanisms for understanding the physics are appealing.

In Chapter 3, transition region equations were sought to couple a free flow domain

and two-fluid-phase porous medium domain. Again a two-fluid-phase flow system was

considered with the additional complexity of species transport. The general model was

derived to be macroscale in the dimensions of the transition region surface and megascale

in the direction normal to the boundary between the two domains being coupled. The

necessary theorems to accomplish this averaging were provided and a closed model was

developed. The transition region model can be used to couple a single-phase free flow

domain and a two-fluid-phase porous medium and is sufficiently general to be applied to

wide array of applications. One such specific application is evaporation of water from

and unsaturated ground source into the atmosphere. The transition region model can be

coupled at its top boundary with the free flow domain and at the bottom boundary with

the porous media domain. Coupling conditions necessary for linking these two domains
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via the transition region must be determined. Additional applications for the transition

region model are possible. For example, setting all the temperatures equal and looking

at an isothermal system would allow for the removal of the energy equation from the

system of equations to be solved. The resulting model could be applied to such systems

as high humidity evaporation systems, in which temperature changes can be neglected,

or the transport of CO2 from the subsurface to the free flow regime. The transition

region model is novel in that no macroscale coupling approach is available for coupling of

flow systems with chemical species and more than one fluid-phase. Thus, while specific

examples can be highlighted, the general formulation itself is a basis for a plethora of

new and useful models.

An important element in each application of the TCAT approach is that the model

formulation process proceeds in a series of formal, well-defined intermediate steps that

provide convenient starting points for new model aspects without requiring the substan-

tial foundational efforts needed to derive such elements as the CEI or the SEI.

Given the primary restrictions on the class of problem of concern and the applicability

of CIT as an appropriate thermodynamic theory, the CEI that are derived are exact

expressions. The CEI however, is not strictly in the desired form of a set of forces

multiplying a set fluxes, which is needed to guide model closure. Because of this, a series

of approximations and restrictions are applied to reduce the CEI to the SEI, which is

strictly written in force-flux form. Alternative sets of restrictions and approximations

to achieve force-flux forms can be used starting from the CEI to produce alternative

forms of the SEI if such efforts are deemed necessary. For instance, if a different set of

secondary restrictions is needed to adequately describe the porous medium of concern

or if improved approximations become available. It should be noted that reducing the

CEI to the SEI is much less effort than deriving the CEI, which requires a substantial

series of manipulations. The sort of manipulations required to derive the CEI have been

detailed in previous papers in the TCAT series [85, 87, 136, 137].
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The SEI is used to guide the formulation of closure relations. A linear form of these

closure relations is detailed, which are deemed a reasonable first approximation, but are

neither unique nor of high complexity. The closure relations are in turn used to produce

a complete set of closed equations for conservation of mass, momentum, and energy as

needed for the system of concern. These closed equations can be applied to model a

range of physical systems.

Still, the preceding should not be construed to suggest that all porous medium formu-

lation problems are within reach. While the TCAT approach makes great strides toward

correcting many deficiencies in traditional models and sheds some insight into the open

research issues discussed in the introduction, there is still a tremendous amount of work

to be done. Many unresolved issues exist that will require substantial, creative effort

to produce a mature level of understanding. As an example, significant work remains

to be done in looking at the effect of different thermodynamic approaches as well as

the inclusion of stochastic models. Alternative thermodynamic approaches exist, and

some of these approaches were reviewed previously [83]. For cases in which CIT must

be extended such that thermodynamics are consistent with observations, that extended

thermodynamic approach can be incorporated into the present framework at the mi-

croscale and then averaged to the macroscale. The averaging of such a framework to the

macroscale would follow a similar approach to that used here. Determining the optimal

thermodynamic theory, if one such choice exists for all systems, remains an open issue.

In addition, all the models derived in this work require a clear separation of length scales

that may not exist for many natural systems [155]. As an alternative to this, the single

REV assumption could be relaxed to include REV’s that vary as a function of quantity

being considered or even to the stochastic case where averaging from the microscale is con-

sidered in a stochastic sense. Both of these approaches warrant additional consideration.

Finally, the approximations used for both simplification to the SEI’s and for formulating

the closure relationships are subject to improvements. One way to accomplish this goal,

would be the use of microscale simulations to examine the constitutive relationships for
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such things as the evolution of the geometric densities, capillary pressure, permeabilities,

and dynamic force balances.

Microscale and macroscale experimentation and simulation are necessary for success-

ful application of the hierarchy of models presented in this work. The models developed

must be tested via simulation. Unfortunately, pore-scale simulations of multiphase sys-

tems at REV scales remain a challenge. In addition, parameter estimation is crucial

for implementation purposes, but experimentation methods can be timely and expensive

for those parameters that are measurable. With the advancement of theoretical models

for two-fluid-phase flow and transport therefore, comes the need for advancements in

numerical simulation tools and experimentation techniques.

The hierarchy of models presented here, while novel and capable of tackling several

of the shortcomings of traditional models, are just the first step toward a complete and

physically consistent means of modeling multiphase flow phenomena in porous medium

systems. The main challenge for the future is the validation of the hierarchy of models

and the resolution of the open issues highlighted in this work.
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APPENDIX A

TCAT6: Two-Fluid Phase Flow Details and Calculations

A.1. Conservation Equations

Conservation and balance equations can be derived at the macroscale by applying the

averaging operator defined by

(A.1) 〈Pi〉Ωj ,Ωk,W =

∫
Ωj

WPi dr

∫
Ωk

W dr
for dim Ωj > 0, dim Ωk > 0,

where Pi is a microscale quantity to be averaged, and W is a weighting function. If

W is not specified, it is assumed to be 1. For the common case when Ωk = Ω the

averaged quantity is normalized by an integral over the entire REV. Common forms of

the averaging operator have been detailed previously [136].

A.1.1. Conservation Equations for a Phase. Consider the overall conservation of

total energy for a phase at the microscale, which may be written as

(A.2)
∂

∂t

[
Eι + ρι

(vι·vι
2

+ ψι

)]
+∇·

{[
Eι + ρι

(vι·vι
2

+ ψι

)]
vι

}
−∇· (tι·vι + qι)− hι − ρι

∂ψι
∂t

= 0 for ι ∈ IP,

where ι is an entity qualifier that is subscripted for microscale quantities, IP is the index

set of phases, Eι is the internal energy density, ρι is the mass density, vι is the velocity

vector for entity ι, ψι is the body force potential, tι is the stress tensor, qι is the non-

advective heat flux density vector, and hι is the heat source density.

Applying the averaging operator given by Eq. (A.1) to Eq. (A.2) yields

(A.3)

〈
∂

∂t

[
Eι + ρι

(vι·vι
2

+ ψι

)]〉
Ωι,Ω

+
〈
∇·
{[
Eι + ρι

(vι·vι
2

+ ψι

)]
vι

}〉
Ωι,Ω



−〈∇· (tι·vι + qι)〉Ωι,Ω − 〈hι〉Ωι,Ω −
〈
ρι
∂ψι
∂t

〉
Ωι,Ω

= 0 for ι ∈ I.

Eq. (A.3) contains averages of terms involving differential operators, and we wish

to transform these to differential operators applied to averages. Applying the Diver-

gence Theorem D[3,(3,0),0] and the Transport Theorem T[3,(3,0),0] to Eq. (A.3) and

rearranging terms yields

(A.4)
∂

∂t

〈
Eι + ρι

(vι·vι
2

+ ψι

)〉
Ωι,Ω

+∇·
〈[
Eι + ρι

(vι·vι
2

+ ψι

)]
vι

〉
Ωι,Ω

−∇·〈tι·vι + qι〉Ωι,Ω − 〈hι〉Ωι,Ω −
〈
ρι
∂ψι
∂t

〉
Ωι,Ω

+
∑
κ∈Icι

〈[
Eι + ρι

(vι·vι
2

+ ψι

)]
nι · (vι − vκ)

〉
Ωκ,Ω

−
∑
κ∈Icι

〈nι · (tι·vι + qι)〉Ωκ,Ω = 0 for ι ∈ I.

Considering Eq. (A.4) term by term to evaluate the averaging operators gives for the

time derivative term

(A.5)
∂

∂t

〈
Eι + ρι

(vι·vι
2

+ ψι

)〉
Ωι,Ω

=
∂

∂t

[
Eι + ειρι

(
vι·vι

2
+Kι

E + ψι
)]

,

or

(A.6)
∂

∂t
〈ETι〉Ωι,Ω =

∂

∂t
EιT ,

where

ETι = Eι + ρι

(vι·vι
2

+ ψι

)
,(A.7)

Eι = 〈Eι〉Ωι,Ω ,(A.8)

ειριKι
E =

〈
ρι

(
vι − vι

)
·
(
vι − vι

)
2

〉
Ωι,Ω

,(A.9)

ειριψι = 〈ριψι〉Ωι,Ω ,(A.10)
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EιT = Eι + ειρι
(

vι·vι

2
+Kι

E + ψι
)
, and(A.11)

EιT = 〈ETι〉Ωι,Ω .(A.12)

For the first divergence term in Eq. (A.4) things are a bit more complicated by the

existence of the product of the internal and kinetic energy terms with the velocity. This

term can be written as

(A.13) ∇·〈ETιvι〉Ωι,Ω = ∇·
〈[

EιT
ειρι

+

(
ETι
ρι
− EιT
ειρι

)]
ρι

[
vι +

(
vι − vι

)]〉
Ωι,Ω

,

or

(A.14) ∇·〈ETιvι〉Ωι,Ω = ∇·
(
EιTvι

)
+∇·

〈
ETι

(
vι − vι

)〉
Ωι,Ω

.

Evaluating the last term in Eq. (A.13) gives

(A.15) ∇·
〈
ETι

(
vι − vι

)〉
Ωι,Ω

= ∇·
〈

(Eι + ριψι)
(
vι − vι

)〉
Ωι,Ω

+∇·
〈[

vι·
(
vι − vι

)
+

(
vι − vι

)
·
(
vι − vι

)
2

]
ρι

(
vι − vι

)〉
Ωι,Ω

.

The second divergence term in Eq. (A.4) may be written as

(A.16) ∇·〈tι·vι + qι〉Ωι,Ω = ∇·
〈
tι·vι + tι·

(
vι − vι

)
+ qι

〉
Ωι,Ω

.

Combining terms from Eqs. (A.15) and (A.16) and dropping the divergence operator,

which is applied to all terms, gives

(A.17) ειtι·vι + ειqι =
〈[

tι − ρι
(
vι − vι

)(
vι − vι

)]
·vι
〉

Ωι,Ω

+

〈
qι −

[
Eι + ρι

((
vι − vι

)
·
(
vι − vι

)
2

+ ψι

)](
vι − vι

)〉
Ωι,Ω

+
〈
tι·
(
vι − vι

)〉
Ωι,Ω

,
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where the first term on the right hand side (RHS) is the dot product of the macroscale

stress tensor and macroscale velocity and the second two terms on the RHS sum to the

macroscale heat source vector.

The remaining terms to be evaluated in Eq. (A.4) involve the transfer of energy at

internal boundaries to interfaces. The inter-entity transfer of energy can be written as

(A.18) −
∑
κ∈Icι

〈ETιnι · (vκ − vι) + nι · (tι·vι + qι)〉Ωκ,Ω =

−
∑
κ∈Icι

〈[
EιT
ειρι

+

(
ETι
ρι
− EιT
ειρι

)]
ριnι · (vκ − vι)

〉
Ωκ,Ω

−
∑
κ∈Icι

〈
nι ·

{
tι·
[
vι +

(
vι − vι

)]
+ qι

}〉
Ωκ,Ω

,

= −
∑
κ∈Icι

EιT
ειρι
〈ριnι · (vκ − vι)〉Ωκ,Ω

−
∑
κ∈Icι

〈
nι ·

{
tι·
[
vι +

(
vι − vι

)]
+ qι

}〉
Ωκ,Ω

−
∑
κ∈Icι

〈(
Eι
ρι
− Eι

ειρι
−Kι

E + ψι − ψι
)
ριnι · (vκ − vι)

〉
Ωκ,Ω

−
∑
κ∈Icι

〈(
vι·
(
vι − vι

)
+

(
vι − vι

)
·
(
vι − vι

)
2

)
ριnι · (vκ − vι)

〉
Ωκ,Ω

.

Eq. (A.18) can be written as

(A.19)
∑
κ∈Icι

〈ETιnι · (vκ − vι) + nι · (tι·vι + qι)〉Ωκ,Ω

=
∑
κ∈Icι

[
κ→ι
ME +

(
κ→ι
Tv +

κ→ι
Q

)]
,
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where the transfer terms are defined as

κ→ι
ME =



(
EιT
ειρι

)
κ→ι
M for dim Ωι > dim Ωκ,

−
(
EκT
εκρκ

)
ι→κ
M for dim Ωκ > dim Ωι,

(A.20)

κ→ι
Tv =

 vι·
κ→ι
T for dim Ωι > dim Ωκ,

−vκ·
ι→κ
T for dim Ωκ > dim Ωι,

(A.21)

(A.22)
κ→ι
M =

 〈ριnι · (vκ − vι)〉Ωκ,Ω for dim Ωι > dim Ωκ,

−〈ρκnκ · (vι − vκ)〉Ωι,Ω for dim Ωκ > dim Ωι,

(A.23)
κ→ι
T =



〈nι · tι〉Ωκ,Ω +
〈
nι ·

[
ρι (vκ − vι)

(
vι − vι

)]〉
Ωκ,Ω

for dim Ωι > dim Ωκ,

−〈nκ · tκ〉Ωι,Ω −
〈
nκ ·

[
ρκ (vι − vκ)

(
vκ − vκ

)]〉
Ωι,Ω

for dim Ωκ > dim Ωι,

(A.24)
κ→ι
Q = 〈nι ·qι〉Ωκ,Ω +

〈
nι · tι·

(
vι − vι

)〉
Ωκ,Ω

+

〈
ρι

(
Eι
ρι
− Eι

ειρι
+ ψι − ψι

)
nι · (vκ − vι)

〉
Ωκ,Ω

+

〈
ριωiι

((
vι − vι

)
·
(
vι − vι

)
2

−Kι
E

)
nι · (vκ − vι)

〉
Ωκ,Ω

for dim Ωι > dim Ωκ,

and

(A.25)
κ→ι
Q = −〈nκ ·qκ〉Ωι,Ω −

〈
nκ · tκ·

(
vκ − vκ

)〉
Ωι,Ω

−
〈(

Eκ
ρκ
− Eκ

εκρκ
+ ψκ − ψκ

)
ρκnκ · (vι − vκ)

〉
Ωι,Ω
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−
〈((

vκ − vκ
)
·
(
vκ − vκ

)
2

−Kκ
E

)
ρκnκ · (vι − vκ)

〉
Ωι,Ω

for dim Ωκ > dim Ωι.

Here
κ→ι
M represents transfer of mass from the κ entity to the ι entity per unit volume

per unit time,
κ→ι
T represents momentum transfer from the κ entity to the ι entity due

to stress and deviation from mean processes per unit volume per unit time, and
κ→ι
Q

represents transfer of energy from the κ entity to the ι entity resulting from heat transfer

and deviation from mean processes per unit volume per unit time.

Combining Eqns.(A.4), (A.5), (A.14), (A.17), and (A.19) gives the conservation of

energy equation for a phase

(A.26) E ι =
DιEιT

Dt
+ EιT I:dι −∇·

(
ειtι·vι + ειqι

)
− ειhι

−
〈
ρι
∂ψι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)
= 0 for ι ∈ IP,

where the rate of strain tensor is defined as

dι =
1

2

[
∇vι +

(
∇vι

)T
]
.

Continuum mechanical equations must satisfy the axiom of objectivity, which means

that all velocities must be referenced to a common frame of reference. Conservation

equations must remain valid under a change in the reference velocity. Here we develop

the macroscale mass and momentum conservation equations for a phase volume following

the approach in [114] that was applied to microscale equations. If we adjust all velocities

in Eq. (A.26) by subtracting a constant reference velocity V then we obtain

(A.27)

Dι

[
Eι + ειρι

((
vι−V

)
·
(
vι−V

)
2 +Kι

E + ψι

)]
Dt

+

[
Eι + ειρι

((
vι −V

)
·
(
vι −V

)
2

+Kι
E + ψι

)]
I:dι
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−∇·
(
ειtι·

(
vι −V

)
+ ειqι

)
− ειhι

+

〈
ρι
∂ψι
∂t
− ρι∇ψiι·V

〉
Ωι,Ω

−
∑
κ∈Icι

(
Eι

ειρι
+

(
vι −V

)
·
(
vι −V

)
2

+Kι
E + ψι

)
κ→ι
M

−
∑
κ∈Icι

[
κ→ι
T ·

(
vι −V

)
+
κ→ι
Q

]
= 0, for ι ∈ IP.

Expanding terms and combining quantities such that terms as they originally appeared

in Eq. (A.26) are evident gives

(A.28)
Dι
[
Eι + ειρι

(
vι·vι

2 +Kι
E + ψι

)]
Dt

−V·
Dι
(
ειριvι

)
Dt

+
V·V

2

Dιειρι

Dt

+

[
Eι + ειρι

(
vι·vι

2
+Kι

E + ψι
)]

I:dι − ειριV·vιI:dι

+
V·V

2
ειριI:dι −∇·

(
ειtι·vι + ειqι

)
+∇·

(
ειtι·V

)
− ειhι

−V·〈ρι∇ψι〉Ωι,Ω +

〈
ρι
∂ψι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

(
Eι

ειρι
+

vι·vι

2
+Kι

E + ψι

)
κ→ι
M −

∑
κ∈Icι

V·vι
κ→ι
M

+
V·V

2

∑
κ∈Icι

κ→ι
M −

∑
κ∈Icι

(
κ→ι
T ·vι +

κ→ι
Q

)
+
∑
κ∈Icι

κ→ι
T ·V = 0 for ι ∈ IP.

Here we should take into account the connection between the microscale acceleration vec-

tor, gι, and the microscale body force potential, ψι, expressed as ριgι·vι = −ρι∇ψι·vι.
The vector V can be made a factor in collecting terms such that Eq. (A.28) can be

written in the form

(A.29) E ι −V·Pι +
V·V

2
Mι = 0

where E ι, Pι, and Mι are each independent of V. Since V is an arbitrary constant

vector, the null vector is a valid choice. This implies E ι = 0, which we also know to
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be the case because this condition is identical to the conservation of energy equation as

given by Eq. (A.26). With this condition imposed, Eq. (A.29) reduces to

(A.30) −V·
(
Pι − V

2
Mι
)

= 0

Since V is an arbitrary vector, it can be chosen to be non-zero and orthogonal to Pι.

Satisfaction of Eq. (A.30) then requires Mι = 0. Making use of this constraint, we see

that since V need not be orthogonal to Pι, Pι itself must also equal 0.

These considerations imply a conservation of momentum equation for phases of the

form

(A.31) Pι =
Dι
(
ειριvι

)
Dt

+ ειριvιI:dι −∇·
(
ειtι
)

−ειριgι −
∑
κ∈Icι

(
κ→ι
Mv +

κ→ι
T

)
= 0 for ι ∈ IP

and a conservation of mass equation for phases of the form

(A.32) Mι =
Dι (ειρι)

Dt
+ ειριI:dι −

∑
κ∈Icι

κ→ι
M = 0 for ι ∈ IP,

where

(A.33)
κ→ι
Mv =

 vι
κ→ι
M for dim Ωι > dim Ωκ,

−vκ
ι→κ
M for dim Ωκ > dim Ωι.

A similar process can be carried out for interfaces and common curves.

A.1.2. Conservation Equations for an Interface. The microscale conservation of

energy equation for an interface ι is

(A.34)
∂′ETι
∂t

+∇′· (ETιvι)−∇′·
(
t′ι·vι + q′ι

)− hι
−ρι∂

′ψι
∂t

+
∑

κ∈(Icι∩IP)

ETκ (vι − vκ) ·nκ
∣∣∣∣
Ωι
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+
∑

κ∈(Icι∩IP)

nκ · (tκ·vκ + qκ)

∣∣∣∣
Ωι

= 0 for ι ∈ II.

Integrating Eq. (A.34) over the interfacial area, Ωι, we have

(A.35)

〈
∂′ETι
∂t

〉
Ωι,Ω

+
〈∇′· (ETιvι)〉Ωι,Ω − 〈∇′· (tι′·vι + qι

′)〉
Ωι,Ω

−〈hι〉Ωι,Ω −
〈
ρι
∂′ψι
∂t

〉
Ωι,Ω

+
∑

κ∈(Icι∩IP)

〈ETκnκ · (vι − vκ)〉Ωι,Ω

+
∑

κ∈(Icι∩IP)

〈nκ · (tκ·vκ + qκ)〉Ωι,Ω = 0 for ι ∈ II.

Applying T[2,(3,0),0] to the first term in Eq. (A.35) yields

(A.36)

〈
∂′ETι
∂t

〉
Ωι,Ω

=
∂

∂t
〈ETι〉Ωι,Ω +∇·〈nαnα ·vιETι〉Ωι,Ω

−〈(∇′·nα)nα ·vιETι
〉

Ωι,Ω
−

∑
κ∈(Icι∩IC)

〈nι ·vκETι〉Ωκ,Ω .

Applying D[2,(3,0),0] to the divergence terms in Eq. (A.35) provides

(A.37)
〈∇′· (ETιvι)〉Ωι,Ω = ∇·〈ETι (vι − nαnα ·vι)〉Ωι,Ω

+
〈(∇′·nα)nα ·ETιvι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι ·ETιvι〉Ωκ,Ω

and

(A.38)
〈∇′· (tι′·vι + qι

′)〉
Ωι,Ω

= ∇·〈t′ι·vι + q′ι
〉

Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈
nι ·

(
t′ι·vι + q′ι

)〉
Ωκ,Ω

.

Substituting these into Eq. (A.35) and canceling like terms we get

(A.39)
∂

∂t
〈ETι〉Ωι,Ω +∇·〈ETιvι〉Ωι,Ω −∇8·

〈
t′ι·vι + q′ι

〉
Ωι,Ω
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−〈hι〉Ωι,Ω −
〈
ρι
∂′ψι
∂t

〉
Ωι,Ω

+
∑

κ∈(Icι∩IP)

〈nκ · (vι − vκ)ETκ〉Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι · (vι − vκ)ETι〉Ωκ,Ω +
∑

κ∈(Icι∩IP)

〈nκ · (tκ·vκ + qκ)〉Ωι,Ω

−
∑

κ∈(Icι∩IC)

〈
nι · t′ι·vι

〉
Ωκ,Ω

−
∑

κ∈(Icι∩IC)

〈
nι ·q′ι

〉
Ωκ,Ω

.

Considering Eq. (A.39) term by term to evaluate the averaging operators gives for the

time derivative term

(A.40)
∂

∂t

〈
Eι + ρι

(vι·vι
2

+ ψι

)〉
Ωι,Ω

=
∂

∂t

[
Eι + ειρι

(
vι·vι

2
+Kι

E + ψι
)]

.

Evaluating divergence terms in the same way as for phases provides

(A.41) ∇·〈ETιvι〉Ωι,Ω = ∇·
(
EιTvι

)
+∇·

〈
(Eι + ριψι)

(
vι − vι

)〉
Ωι,Ω

+∇·
〈(

vι·
(
vι − vι

)
+

(
vι − vι

)
·
(
vι − vι

)
2

)
ρι

(
vι − vι

)〉
Ωι,Ω

.

The second divergence term in Eq. (A.39) may be written as

(A.42) ∇·〈t′ι·vι + q′ι
〉

Ωι,Ω
= ∇·

〈
t′ι·vι + t′ι·

(
vι − vι

)
+ q′ι

〉
Ωι,Ω

.

Combining Eqs. (A.41) and (A.42) gives

(A.43) ειtι·vι + ειqι =
〈[

t′ι − ρι
(
vι − vι

)(
vι − vι

)]
·vι
〉

Ωι,Ω

+

〈
q′ι −

[
Eι + ρι

((
vι − vι

)
·
(
vι − vι

)
2

+ ψι

)](
vι − vι

)〉
Ωι,Ω

+
〈
t′ι·
(
vι − vι

)〉
Ωι,Ω

,
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where the first term on the RHS is the macroscale stress tensor for an interface and the

second two terms on the RHS sum to the macroscale heat source vector for an interface.

The inter-entity transfer of energy from the phases that form the interface to the

interface can be written as

(A.44) −
∑

κ∈(Icι∩IP)

〈nκ · (vι − vκ)ETκ〉Ωι,Ω −
∑

κ∈(Icι∩IP)

〈nκ · (tκ·vκ + qκ)〉Ωι,Ω

= −
∑

κ∈(Icι∩IP)

EκT
εκρκ

〈ρκnκ · (vι − vκ)〉Ωι,Ω

−
∑

κ∈(Icι∩IP)

〈(
Eκ
ρκ
− Eκ

εκρκ
−Kκ

E

)
ρκnκ · (vι − vκ)

〉
Ωι,Ω

−
∑

κ∈(Icι∩IP)

〈[
ψκ − ψκ + vκ·

(
vκ − vκ

)]
ρκnκ · (vι − vκ)

〉
Ωι,Ω

−
∑

κ∈(Icι∩IP)

〈(
vκ − vκ

)
·
(
vκ − vκ

)
2

ρκnκ · (vι − vκ)

〉
Ωι,Ω

−
∑

κ∈(Icι∩IP)

〈
nκ ·

(
tκ·
[
vκ +

(
vκ − vκ

)]
+ qκ

)〉
Ωι,Ω

.

Using notation from Eqs. (A.22)–(A.25), Eq. (A.44) can be written as

(A.45)
∑

κ∈(Icι∩IP)

〈nκ · (vι − vκ)ETκ〉Ωι,Ω +
∑

κ∈(Icι∩IP)

〈nκ · (tκ·vκ + qκ)〉Ωι,Ω

= −
∑

κ∈(Icι∩IP)

[
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

]
.

The transfer of energy from a commom curve to an interface is simplified analogously

to the case of the transfer of energy from a phase to an interface, where integration

is performed over the lower dimensional entity and the transfer terms are written with

respect to the higher dimensional entity, resulting in the short-hand expression
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(A.46) −
∑

κ∈(Icι∩IC)

〈ETιnι · (vκ − vι) + nι · (tι·vι + qι)〉Ωκ,Ω =

−
∑

κ∈(Icι∩IC)

[
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

]
.

Collecting results, Eq. (A.39) can be written in final form for the conservation of

energy in an interface as

(A.47) E ι =
DιEιT

Dt
+ EιT I:dι −∇·

(
ειtι·vι + ειqι

)
− ειhiι

−
〈
ρι
∂′ψι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)
= 0 for ι ∈ II.

The continuum mechanical principle of Galilean invariance can be applied to the

macroscale conservation of energy equations for an interface to derive the conservation

of momentum and conservation of mass equations for the interface. The results are

(A.48) Pι =
Dι
(
ειριvι

)
Dt

+ ειριvιI:dι −∇·
(
ειtι
)

−ειριgι −
∑
κ∈Icι

(
κ→ι
Mv +

κ→ι
T

)
= 0 for ι ∈ II,

where
κ→ι
Mv is defined as in Eq. (A.33),

κ→ι
T is defined in Eq. (A.23), and the general

macroscale conservation of mass equation for an interface ι can be written

(A.49) Mι =
Dι (ειρι)

Dt
+ ειριI:dι −

∑
κ∈Icι

κ→ι
M = 0 for ι ∈ II,

where
κ→ι
M is defined in Eq. (A.22).

A.1.3. Conservation Equations for a Common Curve. The microscale conserva-

tion of energy equation for a common curve ι is

(A.50)
∂′′ETι
∂t

+∇′′· (ETιvι)−∇′′·
(
t′′ι ·vι + q′′ι

)− hι
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−ρι∂
′′ψι
∂t

+
∑

κ∈(Icι∩II)

ETκ (vι − vκ) ·nκ
∣∣∣∣
Ωι

+
∑

κ∈(Icι∩II)

nκ · (tκ·vκ + qκ)

∣∣∣∣
Ωι

= 0 for ι ∈ IC.

Integrating Eq. (A.50) over the ι common curve, we have

(A.51)

〈
∂′′ETι
∂t

〉
Ωι,Ω

+
〈∇′′· (ETιvι)〉Ωι,Ω − 〈∇′′· (tι′′·vι + qι

′′)〉
Ωι,Ω

−〈hι〉Ωι,Ω −
〈
ρι
∂′′ψι
∂t

〉
Ωι,Ω

+
∑

κ∈(Icι∩II)

〈ETκnκ · (vι − vκ)〉Ωι,Ω

+
∑

κ∈(Icι∩II)

〈nκ · (tκ·vκ + qκ)〉Ωι,Ω = 0 for ι ∈ IC.

Applying T[1,(3,0),0] to the first term in Eq. (A.51) yields

(A.52)

〈
∂′′ETι
∂t

〉
Ωι,Ω

=
∂

∂t
〈ETι〉Ωι,Ω +∇·〈(vι − lιlι ·vι)ETι〉Ωι,Ω

+
〈(

lι ·∇′′lι
)
·vιETι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈nι ·vκETι〉Ωκ,Ω .

Applying D[1,(3,0),0] to the first divergence term in Eq. (A.51)

(A.53)
〈∇′′· (ETιvι)〉Ωι,Ω = ∇·〈ETιlιlι ·vι〉Ωι,Ω

−〈(lι ·∇′′lι) ·ETιvι〉Ωι,Ω +
∑

κ∈(Icι∩IPt)

〈nι ·ETιvι〉Ωκ,Ω ,

and similarly for the second divergence term

(A.54)
〈∇′′· (tι′′·vι + qι

′′)〉
Ωι,Ω

= ∇·〈t′′ι ·vι + q′′ι
〉

Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈
nι ·

(
t′′ι ·vι + q′′ι

)〉
Ωκ,Ω

.

Substituting these into Eq. (A.51) and canceling like terms we get
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(A.55)
∂

∂t
〈ETι〉Ωι,Ω +∇·〈ETιvι〉Ωι,Ω −∇·

〈
t′′ι ·vι + q′′ι

〉
Ωι,Ω

−〈hι〉Ωι,Ω −
〈
ρι
∂′′ψι
∂t

〉
Ωι,Ω

+
∑

κ∈(Icι∩II)

〈nκ · (vι − vκ)ETκ〉Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈nι · (vι − vκ)ETι〉Ωκ,Ω +
∑

κ∈(Icι∩II)

〈nκ · (tκ·vκ + qκ)〉Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈
nι · t′′ι ·vι

〉
Ωκ,Ω

−
∑

κ∈(Icι∩IPt)

〈
nι ·q′′ι

〉
Ωκ,Ω

.

Considering Eq. (A.55) term by term to evaluate the averaging operators gives for the

time derivative term

(A.56)
∂

∂t

〈
Eι + ρι

(vι·vι
2

+ ψι

)〉
Ωι,Ω

=
∂

∂t

[
Eι + ειρι

(
vι·vι

2
+Kι

E + ψι
)]

.

Evaluating divergence terms in the same way as for phases and interfaces provides

(A.57) ∇·〈ETιvι〉Ωι,Ω = ∇·
(
EιTvι

)
+∇·

〈
(Eι + ριψι)

(
vι − vι

)〉
Ωι,Ω

+∇·
〈(

vι·
(
vι − vι

)
+

(
vι − vι

)
·
(
vι − vι

)
2

)
ρι

(
vι − vι

)〉
Ωι,Ω

.

The second divergence term in Eq. (A.55) may be written as

(A.58) ∇·〈t′′ι ·vι + q′′ι
〉

Ωι,Ω
= ∇·

〈
t′′ι ·vι + t′′ι ·

(
vι − vι

)
+ q′′ι

〉
Ωι,Ω

.

Combining Eqs. (A.57) and (A.58) gives

(A.59) ειtι·vι + ειqι =
〈[

t′′ι − ρι
(
vι − vι

)(
vι − vι

)]
·vι
〉

Ωι,Ω

+

〈
q′′ι −

[
Eι + ρι

((
vι − vι

)
·
(
vι − vι

)
2

+ ψι

)](
vι − vι

)〉
Ωι,Ω

+
〈
t′′ι ·
(
vι − vι

)〉
Ωι,Ω

,
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where the first term on the RHS is the macroscale stress tensor for a common curve and

the second two terms on the RHS sum to the macroscale heat source vector for a common

curve.

Using the exchange term definitions, Eqs. (A.22)–(A.25), and Eq. (A.59), Eq. (A.55)

can be written in final form for the conservation of energy of a common curve as

(A.60) E ι =
DιEιT

Dt
+ EιT I:dι −∇·

(
ειtι·vι + ειqι

)
− ειhiι

−
〈
ρι
∂′′ψι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)
= 0 for ι ∈ IC.

The continuum mechanical principle of Galilean invariance can be applied to the

macroscale conservation of energy equations for an interface to derive the conservation

of momentum and conservation of mass equations for the interface. The results are

(A.61) Pι =
Dι
(
ειριvι

)
Dt

+ ειριvιI:dι −∇·
(
ειtι
)

−ειριgι −
∑
κ∈Icι

(
κ→ι
Mv +

κ→ι
T

)
= 0 for ι ∈ II,

where
κ→ι
Mv is defined as in Eq. (A.33),

κ→ι
T is defined in Eq. (A.23), and the general

macroscale conservation of mass equation for an interface ι can be written

(A.62) Mι =
Dι (ειρι)

Dt
+ ειριI:dι −

∑
κ∈Icι

κ→ι
M = 0 for ι ∈ II,

where
κ→ι
M is defined in Eq. (A.22).

A.1.4. Conservation Equations for General Entities. Looking at the final form of

the energy, momentum, and mass equations for phases, interfaces, and common curves,

the forms are very similar. In fact, if we state that when ι ∈ II

(A.63)
∂ψι
∂t

=
∂′ψι
∂t

,
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and when ι ∈ IC

(A.64)
∂ψι
∂t

=
∂′′ψι
∂t

,

then we can write a generalized form for all entities ι ∈ I. Thus the conservation of

energy equation can be written as

(A.65) E ι =
Dι
[
Eι + ειρι

(
1
2vι·vι +Kι

E + ψι
)]

Dt

+

[
Eι + ειρι

(
1

2
vι·vι +Kι

E + ψι
)]

I:dι −∇·
(
ειtι·vι + ειqι

)
−ειhι −

〈
ρι
∂ψι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)
= 0 for ι ∈ I,

the conservation of momentum equation is

(A.66) Pι =
Dι
(
ειριvι

)
Dt

+ ειριvιI:dι −∇·
(
ειtι
)
− ειριgι

−
∑
κ∈Icι

(
κ→ι
Mv +

κ→ι
T

)
= 0 for ι ∈ I,

and the conservation of mass equation is

(A.67) Mι =
Dι (ειρι)

Dt
+ ειριI:dι −

∑
κ∈Icι

κ→ι
M = 0 for ι ∈ I.

A.2. Entropy Balance Equations

The microscale entropy balance equations for phases, interfaces, and common curves

can be averaged to the macroscale and summed over all entities to represent the entropy

of the entire system of interest. According to the Second Law of Thermodynamics, we

know that the entropy of the system must be greater than or equal to zero. We can

use this information along with the previously developed conservation equations and the

thermodynamic relationships to constrain the entropy inequality. The resulting inequality
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can be used to guide closure relationships. To accomplish this goal we must formulate

the needed entropy equations.

A.2.1. Entropy Balance Equations for Phases. The microscale balance of entropy

equation for phase entity ι is

(A.68) Sι =
Dιηι
Dt

+ ηιI:dι −∇·ϕι − bι = Λι,

where ηι is the entropy density of entity ι, ϕι is the non-advective entropy density flux

vector, bι is the entropy source density, and Λι is the entropy production rate den-

sity. Applying the averaging operator Eq. (A.1) and transport and divergence theorems,

T[3,(3,0),0] and D[3,(3,0),0], to Eq. (A.68) gives

(A.69) Sι =
Dιηι

Dt
+ηιI:dι−∇·

(
ειϕι

)
− ειbι−

∑
κ∈Icι

(
κ→ι
Mη +

κ→ι
Φ

)
= Λι for ι ∈ IP,

where

(A.70) ηι = 〈ηι〉Ωι,Ω , ειbι = 〈bι〉Ωι,Ω , Λι = 〈Λι〉Ωι,Ω ,

(A.71) ειϕι =
〈
ϕι − ηι

(
vι − vι

)〉
Ωι,Ω

,

(A.72)
κ→ι
Mη =



(
ηι

ειρι

)
κ→ι
M for dim Ωι > dim Ωκ,(

ηκ

εκρκ

)
κ→ι
M for dim Ωκ > dim Ωι,

(A.73)
κ→ι
Φ = 〈nι ·ϕι〉Ωκ,Ω +

〈
ρι

(
ηι
ρι
− ηι

ειρι

)
nι · (vκ − vι)

〉
Ωκ,Ω

for dim Ωι > dim Ωκ,
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and

(A.74)
κ→ι
Φ = −〈nκ ·ϕκ〉Ωι,Ω −

〈
ρκ

(
ηκ
ρκ
− ηκ

εκρκ

)
nκ · (vι − vκ)

〉
Ωι,Ω

for dim Ωκ > dim Ωι,

where the quantity
κ→ι
Φ represents the transfer of entropy from the κ entity to the ι entity

due to processes other than phase change per unit volume per unit time.

A.2.2. Entropy Balance Equations for an Interfaces. The microscale balance of

entropy for interface entity ι is

(A.75) Sι =
∂′ηι
∂t

+∇′· (ηιvι)−∇′·ϕ′ι − bι

−
∑

κ∈(Icι∩IP)

(−ϕκ + ηκ (vκ − vι)) ·nκ
∣∣∣∣
Ωι

= Λι for ι ∈ II.

Integrating Eq. (A.75) over the interface surface Ωι and applying T[2,(3,0),0] and

D[2,(3,0),0] yields

(A.76)
∂

∂t
〈ηι〉Ωι,Ω +∇·〈ηιvι〉Ωι,Ω −∇·

〈
ϕ′ι
〉

Ωι,Ω
− 〈bι〉Ωι,Ω

−
∑

κ∈(Icι∩IP)

〈nκ· (−ϕκ + ηκ (vκ − vι))〉Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι· [−ϕι + ηι (vι − vκ)]〉Ωκ,Ω = 〈Λι〉Ωι,Ω .

Setting vι = vι +
(
vι − vι

)
in the second term and averaging to the macroscale we get

(A.77)
∂ηι

∂t
+∇·

(
ηιvι

)
−∇·

(
ειϕι

)
− ειbι

−
∑

κ∈(Icι∩IP)

〈nκ· (−ϕκ + ηκ (vκ − vι))〉Ωι,Ω
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+
∑

κ∈(Icι∩IC)

〈nι· [−ϕι + ηι (vι − vκ)]〉Ωκ,Ω = Λiι for ι ∈ II,

where

(A.78) ειϕι =
〈
ϕ′ι − ηι

(
vι − vι

)〉
Ωι,Ω

.

For the connected entities we can add in and subtract out the terms

(A.79)
ηκ

εκρκ
〈ρκnκ· (vι − vκ)〉Ωι,Ω for ι ∈ II, κ ∈ IP

and

(A.80)
ηι

ειρι
〈ριnι· (vκ − vι)〉Ωκ,Ω for ι ∈ II, κ ∈ IC

such that

(A.81) −
∑

κ∈(Icι∩IP)

〈nκ· (−ϕκ + ηκ (vκ − vι))〉Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι· [−ϕι + ηι (vι − vκ)]〉Ωκ,Ω

= −
∑
κ∈Icι

(
κ→ι
Mη +

κ→ι
Φ

)
,

where use is made of the definitions in Eqs. (A.72)–(A.74).

Thus the macroscopic entropy equation for entity ι can be written

(A.82) Sι =
∂ηι

∂t
+∇·

(
ηιvι

)
−∇·

(
ειϕι

)
− ειbι −

∑
κ∈Icι

(
κ→ι
Mη +

κ→ι
Φ

)
= Λι,

which putting into material derivative form gives us

(A.83) Sι =
Dιηι

Dt
+ ηιI:dι −∇·

(
ειϕι

)
− ειbι −

∑
κ∈Icι

(
κ→ι
Mη +

κ→ι
Φ

)
= Λι for ι ∈ II,

where
κ→ι
Mη and

κ→ι
Φ are defined in Eqs. (A.72)–(A.74).

159



A.2.3. Entropy Balance Equations for Common Curves. The same process can

be applied to the microscale entropy equation for a common curve. The microscale

balance of entropy equation for common curve ι can be written as

(A.84) Sι =
∂′′ηι
∂t

+∇′′· (ηιvι)−∇′′·ϕ′′ι − bι −
∑

κ∈(Icι∩II)

nκ· [−ϕκ + ηκ (vκ − vι)]

= Λι for ι ∈ IC.

Integrating Eq. (A.84) over the ι common curve and applying Theorems D[1,(3,0),0]

and T[1,(3,0),0] yields

(A.85)
∂

∂t
〈ηι〉Ωι,Ω +∇·〈ηιvι〉Ωι,Ω −∇·

〈
ϕ′′ι
〉

Ωι,Ω
− 〈bι〉Ωι,Ω

−
∑

κ∈(Icι∩II)

〈nκ· [(vκ − vι) ηκ −ϕκ]〉Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈nι · [(vι − vκ) ηι −ϕι]〉Ωκ,Ω = 〈Λι〉Ωι,Ω .

Setting vι = vι +
(
vι − vι

)
in the second term, averaging to the macroscale, adding in

and subtracting out terms for the connected entity summations and defining

(A.86) ειϕι =
〈
ϕ′′ι − ηι

(
vι − vι

)〉
Ωι,Ω

,

the macroscopic entropy equation for entity ι can be written

(A.87) Sι =
∂ηι

∂t
+∇·

(
ηιvι

)
−∇·

(
ειϕι

)
−ειbι−

∑
κ∈Icι

(
κ→ι
Mη +

κ→ι
Φ

)
= Λι for ι ∈ IC,

which putting into material derivative form gives us

(A.88)

Sι =
Dιηι

Dt
+ ηιI:diι − ∇·

(
ειϕι

)
− ειbι −

∑
κ∈Icι

(
κ→ι
Mη +

κ→ι
Φ

)
= Λι for ι ∈ IC.
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A.2.4. System Entropy Balance Equation. Noting that the final form of the en-

tropy balance equations is the same for phases, interfaces, and common curves, we can

write

(A.89) Sι =
Dιηι

Dt
+ ηιI:diι−∇·

(
ειϕι

)
− ειbι−

∑
κ∈Icι

(
κ→ι
Mη +

κ→ι
Φ

)
= Λι for ι ∈ I.

Then the sum over all entities produces the entropy inequality of the entire system,

which by the Second Law of Thermodynamics must be greater than or equal to zero.

Thus we have

(A.90)
∑
ι∈I

Sι =
∑
ι∈I

(
Dιηι

Dt
+ ηιI:dι −∇·

(
ειϕι

)
− ειbι

)
= Λ ≥ 0 for ι ∈ I.

A.3. Thermodynamics

Thermodynamic manipulations for phases and the interface are presented in the main

text of the paper; we present the details for the common curve here. A similar process

to that used to simplify the interface thermodynamics can be applied to the case of

common curves. At the microscale, it is necessary to restrict the material derivative to

the common curve, which is accomplished using

(A.91)
D′′ι
Dt

=
∂′′
∂t

+ vι·∇′′,

and

(A.92)
D′′ι
Dt

=
D′′s
Dt

+ vι,s·∇′′,

where

(A.93)
∂′′
∂t

=
∂

∂t
+ vι· (I− lιlι) ·∇

(A.94) ∇′′ = lιlι ·∇
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ι ∈ IC, and nι is a vector tangent to the common curve. Eq. (2.47) can be written

in terms of material derivatives restricted to the common curve and referenced to the

macroscale velocity of the solid phase giving

(A.95) T ιr =

〈
ηι

D′′s
(
θι − θι

)
Dt

+ ρι
D′′s

(
µι − µι

)
Dt

− D′′s (γι − γι)
Dt

〉
Ωι,Ω

+
〈
vι,s·

[
ηι∇′′

(
θι − θι

)
+ ρι∇′′

(
µι − µι

)
−∇′′ (γι − γι)

]〉
Ωι,Ω

−∇θι·
〈

(I− lιlι)·
(
vι − vι

)
ηι

〉
Ωι,Ω

−∇µι·
〈

(I− lιlι)·
(
vι − vι

)
ρι

〉
Ωι,Ω

+∇γι·
〈

(I− lιlι)·
(
vι − vι

)〉
Ωι,Ω

+ γι
Dsει

Dt
+ γιvι,s·∇ει.

The microscale Gibbs-Duhem equation for common curves can be used to deduce

(A.96)
〈
vι,s·

(
ηι∇′′θι + ρι∇′′µι −∇′′γι

)〉
Ωι,Ω

= 0 ι ∈ IC,

which may be used to simplify Eq. (A.95) to

(A.97) T ιr =

〈
ηι

D′′s
(
θι − θι

)
Dt

+ ρι
D′′s

(
µι − µι

)
Dt

− D′′s (γι − γι)
Dt

〉
Ωι,Ω

−vι,s·
〈
ηι∇′′θι + ρι∇′′µι −∇′′γι

〉
Ωι,Ω

−∇θι·
〈

(I− lιlι)·
(
vι − vι

)
ηι

〉
Ωι,Ω

−∇µι·
〈

(I− lιlι)·
(
vι − vι

)
ρι

〉
Ωι,Ω

+∇γι·
〈

(I− lιlι)·
(
vι − vι

)〉
Ωι,Ω

+ γι
Dsει

Dt
+ γιvι,s·∇ει.

Theorem MC[1,(3,0),0] [136] can be applied to write the material derivative of lineal

tension term from Eq. (A.97) as

(A.98)

〈
D′′s (γι − γι)

Dt

〉
Ωι,Ω

= ∇·
〈

(I− lιlι) ·
(
vι − vs

)
(γι − γι)

〉
Ωι,Ω

+
〈(

lι·∇′′lι
)
·
(
vι − vs

)
(γι − γι)

〉
Ωι,Ω

+ 〈(I− lιlι) (γι − γι)〉Ωι,Ω:ds.
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Theorem G[1,(3,0),0]

(A.99)
〈∇′′fι〉Ωι,Ω = ∇〈fι〉Ωι,Ω −∇·〈(I− lιlι) fι〉Ωι,Ω −

〈
lι·∇′′lιfι

〉
Ωι,Ω

,

and Theorem T[1,(3,0),0] [82]

(A.100)

〈
∂′′fι
∂t

〉
Ωι,Ω

=
∂

∂t
〈fι〉Ωι,Ω +∇·〈(I− lιlι) ·vιfι〉Ωι,Ω +

〈
lι ·∇′′lι ·vιfι

〉
Ωι,Ω

,

can be combined taking fι = 1 and multiplying by γιvs· and γι, respectively, to obtain

(A.101) γι
Dsει

Dt
= −∇·

〈
(I− lιlι) ·

(
vι − vs

)
γι
〉

Ωι,Ω
− 〈(I− lιlι) γ

ι〉Ωι,Ω:ds

+∇γι·
〈

(I− lιlι) ·
(
vι − vs

)〉
Ωι,Ω

−
〈
lι ·∇′′lι ·

(
vι − vs

)
γι
〉

Ωι,Ω
.

Combining Eqs. (A.97), (A.98), and (A.101) yields

(A.102) T ιr =

〈
ηι

D′′s
(
θι − θι

)
Dt

+ ρι
D′′s

(
µι − µι

)
Dt

〉
Ωι,Ω

− 〈(I− lιlι) γι〉Ωι,Ω:ds

−vι,s·
〈
ηι∇′′θι + ρι∇′′µι −∇′′γι

〉
Ωι,Ω

+∇γι·〈(I− lιlι)〉Ωι,Ω·vι,s

+vι,s·γι∇ει −∇θι·
〈

(I− lιlι)·
(
vι − vι

)
ηι

〉
Ωι,Ω

−∇µι·
〈

(I− lιlι)·
(
vι − vι

)
ρι

〉
Ωι,Ω

−∇·
〈

(I− lιlι)
(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(

lι ·∇′′lι
)
·
(
vι − vs

)
γι

〉
Ωι,Ω

.

Eq. (A.94) and the product rule can be used to show

(A.103) − vι,s·
〈
ηι∇′′θι + ρι∇′′µι −∇′′γι

〉
Ωι,Ω

= −vι,s·
〈
ηι (lιlι) ·∇θι + ρι (lιlι) ·∇µι − (lιlι) ·∇γι

〉
Ωι,Ω

= −∇θι·
〈
ηι (lιlι) ·vι,s

〉
Ωι,Ω

−∇µι·
〈
ρι (lιlι) ·vι,s

〉
Ωι,Ω

+∇γι·
〈

(lιlι) ·vι,s
〉

Ωι,Ω
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= ∇θι·
〈
ηι (I− lιlι) ·vι,s

〉
Ωι,Ω

+∇µι·
〈
ρι (I− lιlι) ·vι,s

〉
Ωι,Ω

−∇γι·
〈

(I− lιlι) ·vι,s
〉

Ωι,Ω
− vι,s·ηι∇θι − vι,s·ειρι∇µι

+ει∇γι·vι,s.

Eq. (A.103) can be combined with Eq. (A.102) to write a final form of the residual term

for common curve thermodynamics

(A.104) T ιr =

〈
ηι

D′′s
(
θι − θι

)
Dt

+ ρι
D′′s

(
µι − µι

)
Dt

〉
Ωι,Ω

−vι,s·
[
ηι∇θι + ειρι∇µι −∇ (ειγι)

]
− 〈(I− lιlι) γι〉Ωι,Ω:ds

+∇θι·
〈

(I− lιlι)·
(
vι − vs

)
ηι

〉
Ωι,Ω

+∇µι·
〈

(I− lιlι)·
(
vι − vs

)
ρι

〉
Ωι,Ω

−∇·
〈

(I− lιlι)
(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(

lι ·∇′′lι
)
·
(
vι − vs

)
γι

〉
Ωι,Ω

.

A.4. Constrained Entropy Inequality

The AEI given by Eq. (2.34) provides a connection between the system EI and the

conservation equations using the thermodynamic relations. The Lagrange multipliers,

Eq. (2.50), are choosen in a way to eliminate some of material derivatives to arrive at a

final form of the CEI, which will be used to guide the formulation of the closed models.

Once these material derivatives are removed, the resultant expression is referenced to

a common frame of reference to satisfy the continuum mechanical axiom of objectivity

and the resultant terms are placed into the force-flux pairs according to the entropy

production postulate.

Substituting Eq. (2.50) into Eq. (2.34) and simplifying by cancelling out material

derivatives gives Eq. (2.51). Expanding the shorthand expressions for Sιr, E ιr,Pιr,Miι
r ,

and T ιr and canceling terms gives

164



(A.105)
∑
ι∈I

[
ηιI:dι −∇·

(
ειϕι

)
− ειbι

]

+
∑
ι∈I

1

θι

µιειριI:dι −(Kι
E + µι + ψι −

(
vι·vι

)
2

) ∑
κ∈Icι

κ→ι
M


−
∑
ι∈I

vι

θι
·

ειριgι +
∑
κ∈Icι

(
κ→ι
Mv +

κ→ι
T

)
−
∑
ι∈I

1

θι

ειριDs
(
Kι
E + ψι

)
Dt

+ ειριvι,s·∇
(
Kι
E + ψι

)

−
∑
ι∈I

1

θι

EιI:dι − ειtι:dι − θι∇·(ειqι
θι

)
− θι ε

ιqι(
θι
)2 ·∇θι


+
∑
ι∈I

1

θι

ειhι +

〈
ρι
∂ψι
∂t

〉
Ωι,Ω

+
∑
κ∈Icι

(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)
+
∑
ι∈If

1

θι

〈
ηι

Ds
(
θι − θι

)
Dt

+ ρι
Ds
(
µι − µι

)
Dt

〉
Ωι,Ω

+
∑
ι∈If

vι,s

θι
·

[−ηι∇θι − ειρι∇µι +∇ (ειpι)
]

+
∑
κ∈Icι

〈
pι

(
vκ − vs

)
·nι
〉

Ωκ,Ω


+

1

θs

〈
ηs

Ds
(
θs − θs

)
Dt

+ ρs
Ds
(
µs − µs

)
Dt

〉
Ωs,Ω

− 1

θs

∑
ι∈Ics

〈(
Cs
js

:σs

)
(vι − vs) ·ns

〉
Ωι,Ω

− 1

θs

〈
ns · ts·nsns ·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

+
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

+
1

θs
εsσs:

Cs

js
I:ds − 1

θs
〈ts〉Ωs,Ω:ds

− 1

θs
∇·
〈(

ts − σs:
Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

+
∑
ι∈II

1

θι

〈
ηι

D′s
(
θι − θι

)
Dt

+ ρι
D′s
(
µι − µι

)
Dt

〉
Ωι,Ω
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−
∑
ι∈II

vι,s

θι
·
[
ηι∇θι + ειρι∇µι +∇ (ειγι)

]

+
∑
ι∈II

1

θι

[
∇θι·

〈
nκnκ ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+∇µι·
〈
nκnκ ·

(
vι − vs

)
ρι

〉
Ωι,Ω

]

+
∑
ι∈II

1

θι

[
∇·
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(∇′·nκ)nκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

]

+
∑
ι∈II

1

θι

[
〈nκnκ · γι〉Ωι,Ω:ds −

〈
nι ·

(
vwns − vs

)
γι

〉
Ωwns,Ω

]

+
1

θwns

〈
ηwns

D′′s
(
θwns − θwns

)
Dt

+ ρwns
D′′s

(
µwns − µwns

)
Dt

〉
Ωwns,Ω

− 1

θwns
〈(I− lwnslwns) γwns〉Ωwns,Ω:ds

−vwns,s

θwns
·
(
ηwns∇θwns + εwnsρwns∇µwns − εwnsγwns

)
+

1

θwns
∇θwns·

〈
(I− lwnslwns)·

(
vwns − vs

)
ηwns

〉
Ωwns,Ω

+
1

θwns
∇µwns·

〈
(I− lwnslwns)·

(
vwns − vs

)
ρwns

〉
Ωwns,Ω

− 1

θwns
∇·
〈

(I− lwnslwns)
(
vwns − vs

)
γι

〉
Ωwns,Ω

− 1

θwns

〈(
lwns ·∇′′lwns

)
·
(
vwns − vs

)
γwns

〉
Ωwns,Ω

= Λ ≥ 0

where nκ is the outward unit normal vector to phase κ, where κ ∈ (Icι∩ IP) when ι ∈ II.

Further extensive but routine manipulations of Eq. (A.105) are required to arrive

at the final form of the CEI, including applying the product rule, algebraic rearrange-

ments, and regrouping the terms in the equation into force-flux pairs in order to recover

equilibrium conditions. The details of these manipulations follow.

There exists terms arising from the product of a velocity in non-objective form with

a term involving the gravitational acceleration body force gι, which can be put into the
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objective form for phase entities

(A.106) −ειριvι·gι +

〈
ρι
∂ψι
∂t

〉
Ωι,Ω

= −ειριvι,s·gι +

〈
ρι

Dsψι
Dt

〉
Ωι,Ω

for ι ∈ IP,

for interface entities

− ειριvι·gι +

〈
ρι
∂ψι
∂t

〉
Ωι,Ω

= −ειριvι,s·gι +

〈
ρι

D′sψι
Dt

〉
Ωι,Ω

+
〈
ρι

(
vι − vs

)
·nκnκ ·gι

〉
Ωι,Ω

for ι ∈ II,

(A.107)

and for common curves

− ειριvι·gι +

〈
ρι
∂ψι
∂t

〉
Ωι,Ω

= −ειριvι,s·gι +

〈
ρι

D′′sψι
Dt

〉
Ωι,Ω

+
〈
ρι

(
vι − vs

)
· (I− lιlι) ·gι

〉
Ωι,Ω

for ι ∈ IC,

(A.108)

where κ ∈ (Icι ∩ IP) for ι ∈ II,

Ds

Dt
=

D′s
Dt
−
(
vι − vs

)
·nknk ·∇ and(A.109)

Ds

Dt
=

D′′s
Dt
−
(
vι − vs

)
· (I− lwnslwns) ·∇.(A.110)

The macroscale Euler equations for internal energy for phases, interfaces, and common

curves can be used to deduce

(A.111) ειpι = ηιθι + µιειρι − Eι for ι ∈ If ,

(A.112) 0 = ηsθs + µsεsρs + εsσs:
Cs

js
− Es,

(A.113) −ειγι = ηιθι + µιειρι − Eι for ι ∈ II,

and

(A.114) εwnsγwns = ηwnsθwns + µwnsεwnsρwns − Ewns.
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Eqs. (A.106)–(A.114) can be used to write Eq. (A.105) as

(A.115) −
∑
ι∈If

∇·
(
ειϕι − ειqι

θι

)

−
∑
ι∈If

{
ειbι − 1

θι

ειhι +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

〈
ρι

Ds
(
µι − µι + ψι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

}

+
∑
ι∈If

ει

θι

(
tι + pιI

)
:dι −

∑
ι∈If

vι,s

θι
·
[
ειριgι + ειρι∇

(
Kι
E + ψι

)]

−
∑
ι∈If

vι,s

θι
·
[
ηι∇θι + ειρι∇µι −∇ (ειpι)

]

+
∑
ι∈If

 ειqι(
θι
)2 ·∇θι +

∑
κ∈Icι

1

θι

〈
pι

(
vκ − vs

)
·nι
〉

Ωκ,Ω


−
∑
ι∈If

1

θι

[
Kι
E + µι + ψι −

(
vι·vι

)
2

] ∑
κ∈Icι

κ→ι
M

−
∑
ι∈If

1

θι

∑
κ∈Icι

[
vι·
(
κ→ι
Mv +

κ→ι
T

)
−
(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)]

−∇·
{
εsϕs − 1

θs

[
εsqs −

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]}

−εsbs +
1

θs

εshs +

〈
ηs

Ds
(
θs − θs

)
Dt

〉
Ωs,Ω


+

1

θs

〈
ρs

Ds
(
µs − µs + ψs − ψs −Ks

E

)
Dt

〉
Ωs,Ω

+
εs

θs

(
ts − ts

)
:ds − 1

θs

[
Ks
E + µs + ψs −

(
vs·vs

)
2

] ∑
κ∈Ics

κ→s
M
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−vs

θs
·
∑
κ∈Ics

(
κ→s
Mv +

κ→s
T

)
+

1

θs

∑
κ∈Ics

(
κ→s
ME +

κ→s
Tv +

κ→s
Q

)

+
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

∑
κ∈Ics

〈
Cs
js

:σs (vκ − vs) ·ns
〉

Ωκ,Ω
− 1

θs

〈
ns · ts·nsns ·

(
vs − vs

)〉
Ωss,Ω

+
1(
θs
)2

[
εsqs −

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]
·∇θs

−
∑
ι∈II

∇·
(
ειϕι − ειqι

θι

)

−
∑
ι∈II

{
ειbι − 1

θι

ειhι +

〈
ηι

D′s
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

〈
ρι

D′s
(
µι − µι + ψι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

}

+
∑
ι∈II

ει

θι

(
tι − γιI

)
:dι −

∑
ι∈II

vι,s

θι
·
[
ειριgι + ειρι∇

(
Kι
E + ψι

)]

−
∑
ι∈II

vι,s

θι
·
[
ηι∇θι + ειρι∇µι +∇ (ειγι)

]

+
∑
ι∈II

ειqι(
θι
)2 ·∇θι −

∑
ι∈II

1

θι

[
Kι
E + µι + ψι −

(
vι·vι

)
2

] ∑
κ∈Icι

κ→ι
M

−
∑
ι∈II

1

θι

∑
κ∈Icι

[
vι·
(
κ→ι
Mv +

κ→ι
T

)
−
(
κ→ι
ME +

κ→ι
Tv +

κ→ι
Q

)]

+
∑
ι∈II

1

θι

〈
ρι

(
vι − vs

)
·nκnκ ·gι

〉
Ωι,Ω

+
∑
ι∈II

[
1

θι
∇θι·

〈
nκnκ ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
1

θι
∇µι·

〈
nκnκ ·

(
vι − vs

)
ρι

〉
Ωι,Ω

]

+
∑
ι∈II

[
1

θι
∇·
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

− 1

θι

〈(∇′·nκ)nκ ·
(
vι − vs

)
γι

〉
Ωι,Ω

]
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+
∑
ι∈II

[
1

θι
〈nκnκγι〉Ωι,Ω:ds − 1

θι

〈
nι ·

(
vwns − vs

)
γι

〉
Ωwns,Ω

]

+
∑
ι∈II

1

θι
∇
(
Kι
E + ψι

)
·
〈
nκnκ ·

(
vι − vs

)
ρι

〉
Ωι,Ω

−∇·
(
εwnsϕwns − εwnsqwns

θwns

)

−εwnsbwns +
1

θwns

εwnshwns +

〈
ηwns

D′′s
(
θwns − θwns

)
Dt

〉
Ωwns,Ω


+

1

θwns

〈
ρwns

D′′s
(
µwns − µwns + ψwns − ψwns −Kwns

E

)
Dt

〉
Ωwns,Ω

+
εwns

θwns

(
twns + γwnsI

)
:dwns +

εwnsqwns(
θwns

)2 ·∇θwns

−vwns,s

θwns
·
[
εwnsρwnsgwns + εwnsρwns∇

(
Kwns
E + ψwns

)]
−vwns,s

θwns
·
[
ηwns∇θwns + εwnsρwns∇µwns −∇ (εwnsγwns)

]
− 1

θwns

[
Kwns
E + µwns + ψwns −

(
vwns·vwns

)
2

] ∑
κ∈Icwns

κ→wns
M

− 1

θwns

∑
κ∈Icwns

[
vwns·

(
κ→wns

Mv +
κ→wns

T

)
−
(
κ→wns
ME +

κ→wns
Tv +

κ→wns
Q

)]

+
1

θwns

〈
ρwns

(
vwns − vs

)
· (I− lwnslwns) ·gwns

〉
Ωwns,Ω

+
1

θwns
∇θwns·

〈
(I− lwnslwns)·

(
vwns − vs

)
ηwns

〉
Ωwns,Ω

+
1

θwns
∇µwns·

〈
(I− lwnslwns)·

(
vwns − vs

)
ρwns

〉
Ωwns,Ω

− 1

θwns
∇·
〈

(I− lwnslwns)
(
vwns − vs

)
γwns

〉
Ωwns,Ω

− 1

θwns

〈(
lwns ·∇′′lwns

)
·
(
vwns − vs

)
γwns

〉
Ωwns,Ω

+
1

θwns
∇
(
Kwns
E + ψwns

)
·
〈

(I− lwnslwns) ·
(
vwns − vs

)
ρwns

〉
Ωwns,Ω

170



− 1

θwns
〈(I− lwnslwns) γwns〉Ωwns,Ω:ds = Λ ≥ 0

Terms involving the inter-entity transfer of mass, momentum, and energy need to be

rearranged into force-flux form. The straightforward, but somewhat lengthy, manipu-

lations needed to derive this form are guided by the a priori knowledge of equilibrium

conditions, which can be utilized to derive forms in which the forces are known to be

zero at equilibrium. The needed rearrangement is accomplished by extracting all terms

involving the transfer of momentum, mass, and energy from Eq. (A.115) and manipu-

lating them to derive the desired form. These manipulations are detailed in turn. First,

consider terms involving the interfacial transport of momentum, which may be written

as

(A.116) T = −
∑
ι∈I

vι

θι
·
∑
κ∈Icι

κ→ι
T +

∑
ι∈I

1

θι

∑
κ∈Icι

κ→ι
Tv

= −vw

θw
·
(
wn→w

T +
ws→w

T

)
+

1

θw

(
vw·

wn→w
T + vw·

ws→w
T

)
−vn

θn
·
(
wn→n

T +
ns→n

T

)
+

1

θn

(
vn·

wn→n
T + vn·

ns→n
T

)
−vs

θs
·
(
ws→s

T +
ns→s

T

)
+

1

θs

(
vs·

ws→s
T + vs·

ns→s
T

)
−vwn

θwn
·
(
−
wn→w

T −
wn→n

T +
wns→wn

T

)
+

1

θwn

(
−vw·

wn→w
T − vn·

wn→n
T + vwn·

wns→wn
T

)
−vws

θws
·
(
−
ws→w

T −
ws→s

T +
wns→ws

T

)
+

1

θws

(
−vw·

ws→w
T − vs·

ws→s
T + vws·

wns→ws
T

)
−vns

θns
·
(
−
ns→n

T −
ns→s

T +
wns→ns

T

)
+

1

θns

(
−vn·

ns→n
T − vs·

ns→s
T + vns·

wns→ns
T

)
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−vwns

θwns
·
(
−
wns→wn

T −
wns→ws

T −
wns→ns

T

)
+

1

θwns

(
−vwn·

wns→wn
T − vws·

wns→ws
T − vns·

wns→ns
T

)
.

Noting that all terms multiplied by phase velocities cancel as well as the common curve

terms that are multiplied by interface temperatures, leaves us with

(A.117) T = −vwn

θwn
·
(
−
wn→w

T −
wn→n

T

)
+

1

θwn

(
−vw·

wn→w
T − vn·

wn→n
T

)
−vws

θws
·
(
−
ws→w

T −
ws→s

T

)
+

1

θws

(
−vw·

ws→w
T − vs·

ws→s
T

)
−vns

θns
·
(
−
ns→n

T −
ns→s

T

)
+

1

θns

(
−vn·

ns→n
T − vs·

ns→s
T

)
−vwns

θwns
·
(
−
wns→wn

T −
wns→ws

T −
wns→ns

T

)
+

1

θwns

(
−vwn·

wns→wn
T − vws·

wns→ws
T − vns·

wns→ns
T

)
,

or putting in objective form by referencing all velocities to vs

(A.118) T =
1

θwn

[
vwn,s·

(
wn→w

T +
wn→n

T

)
−
(

vw,s·
wn→w

T + vn,s·
wn→n

T

)]
+

1

θws

[
vws,s·

(
ws→w

T +
ws→s

T

)
− vw,s·

ws→w
T

]
+

1

θns

[
vns,s·

(
ns→n

T +
ns→s

T

)
− vn,s·

ns→n
T

]
+

vwns,s

θwns
·
(
wns→wn

T +
wns→ws

T +
wns→ns

T

)
− 1

θwns

(
vwn,s·

wns→wn
T + vws,s·

wns→ws
T + vns,s·

wns→ns
T

)
.

Adding and subtracting like terms to put into force-flux pairs gives

(A.119) T = −vw,s

θw
·
wn→w

T − vn,s

θn
·
wn→n

T +
vwn,s

θwn
·
(
wn→w

T +
wn→n

T

)
+

(
1

θw
− 1

θwn

)
vw,s·

wn→w
T +

(
1

θn
− 1

θwn

)
vn,s·

wn→n
T
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−vw,s

θw
·
ws→w

T +
vws,s

θws
·
(
ws→w

T +
ws→s

T

)
+

(
1

θw
− 1

θws

)
vw,s·

ws→w
T

−vn,s

θn
·
ns→n

T +
vns,s

θns
·
(
ns→n

T +
ns→s

T

)
+

(
1

θn
− 1

θns

)
vn,s·

ns→n
T

−vwn,s

θwn
·
wns→wn

T − vws,s

θws
·
wns→ws

T − vns,s

θns
·
wns→ns

T

+

(
1

θwn
− 1

θwns

)
vwn,s·

wns→wn
T +

(
1

θws
− 1

θwns

)
vws,s·

wns→ws
T

+

(
1

θns
− 1

θwns

)
vns,s·

wns→ns
T +

vwns,s

θwns

(
wns→wn

T +
wns→ws

T +
wns→ns

T

)
.

This resultant form is convenient because forces consisting of referenced velocities and

differences in the inverse of temperatures are known to be zero at equilibrium from a

previously performed variational analysis.

The terms from Eq. (A.115) that involve the dot product of velocities and mass

exchange between pairs of entities can be written as

(A.120) M =
∑
ι∈I

vι·vι

2θι

∑
κ∈Icι

κ→ι
M −

∑
ι∈I

vι

θι
·
∑
κ∈Icι

κ→ι
Mv +

∑
ι∈I

1

θι

∑
κ∈Icι

κ→ι
MEv ,

where
κ→ι
MEv represents the inter-entity exchange of energy due to momentum exchange.

It may be observed that all terms in Eq. (A.120) for the cases in which ι = w, n, s

sum to zero. Furthermore, for the cases in which ι = ws,wn, ns all terms associated

with mass transfer from the common curve also sum to zero. Thus, the expanded form

of Eq. (A.120) becomes

(A.121) M = −vwn·vwn

2θwn

(
wn→w
M +

wn→n
M

)
+

vwn

θwn
·
(

vw
wn→w
M + vn

wn→n
M

)
− 1

2θwn

(
vw·vw

wn→w
M + vn·vn

wn→n
M

)
−vws·vws

2θws

(
ws→w
M +

ws→s
M

)
+

vws

θws
·
(

vw
ws→w
M + vs

ws→s
M

)
− 1

2θws

(
vw·vw

ws→w
M + vs·vs

ws→s
M

)
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−vns·vns

2θns

(
ns→n
M +

ns→s
M

)
+

vns

θns
·
(

vn
ns→n
M + vs

ns→s
M

)
− 1

2θns

(
vn·vn

ns→n
M + vs·vs

ns→s
M

)
−vwns·vwns

2θwns

(
wns→wn
M +

wns→ws
M +

wns→ns
M

)
+

vwns

θwns
·
(

vwn
wns→wn
M + vws

wns→ws
M + vns

wns→ns
M

)
− 1

2θwns

(
vwn·vwn

wns→wn
M + vws·vws

wns→ws
M + vns·vns

wns→ns
M

)
.

Putting in objective form by referencing velocities to the solid-phase velocity and can-

celing like terms yields

(A.122) M = −vwn,s·vwn,s

2θwn

(
wn→w
M +

wn→n
M

)
+

vwn,s

θwn
·
(

vw,s
wn→w
M + vn,s

wn→n
M

)
− 1

2θwn

(
vw,s·vw,s

wn→w
M + vn,s·vn,s

wn→n
M

)
−vws,s·vws,s

2θws

(
ws→w
M +

ws→s
M

)
+

vws,s

θws
·vw,s

ws→w
M − 1

2θws
vw,s·vw,s

ws→w
M

−vns,s·vns,s

2θns

(
ns→n
M +

ns→s
M

)
+

vns,s

θns
·vn,s

ns→n
M − 1

2θns
vn,s·vn,s

ns→n
M

−vwns,s·vwns,s

2θwns

(
wns→wn
M +

wns→ws
M +

wns→ns
M

)
+

vwns,s

θwns
·
(

vwn,s
wns→wn
M + vws,s

wns→ws
M + vns,s

wns→ns
M

)
− 1

2θwns

(
vwn,s·vwn,s

wns→wn
M + vws,s·vws,s

wns→ws
M + vns,s·vns,s

wns→ns
M

)
.

Looking at just those terms involving θwn. We can regroup the terms as well as add

in and subtract out terms to get:

(A.123)

M = −vw,s

2θw
·vw,wn

wn→w
M − vn,s

2θn
·vn,wn

wn→n
M +

vwn,s

2θwn
·
(

vw,wn
wn→w
M + vn,wn

wn→n
M

)

174



+

(
1

2θw
− 1

2θwn

)
vw,s·vw,wn

wn→w
M +

(
1

2θn
− 1

2θwn

)
vn,s·vn,wn

wn→n
M .

Similarly, this process can b repeated for all of the other terms, giving

(A.124)

M = −vw,s

2θw
·vw,wn

wn→w
M − vn,s

2θn
·vn,wn

wn→n
M +

vwn,s

2θwn
·
(

vw,wn
wn→w
M + vn,wn

wn→n
M

)

+

(
1

2θw
− 1

2θwn

)
vw,s·vw,wn

wn→w
M +

(
1

2θn
− 1

2θwn

)
vn,s·vn,wn

wn→n
M

−vw,s

2θw
·vw,ws

ws→w
M +

vws,s

2θws
·
(

vw,ws
ws→w
M + vs,ws

ws→s
M

)

+

(
1

2θw
− 1

2θws

)
vw,s·vw,ws

ws→w
M

−vn,s

2θn
·vn,ns

ns→n
M +

vns,s

2θns
·
(

vn,ns
ns→n
M + vs,ns

ns→s
M

)

+

(
1

2θn
− 1

2θns

)
vn,s·vn,ns

ns→n
M

−vwn,s

2θwn
·vwn,wns

wns→wn
M +

(
1

2θwn
− 1

2θwns

)
vwn,s·vwn,wns

wns→wn
M

−vws,s

2θws
·vws,wns

wns→ws
M +

(
1

2θws
− 1

2θwns

)
vws,s·vws,wns

wns→ws
M

−vns,s

2θns
·vns,wns

wns→ns
M +

(
1

2θns
− 1

2θwns

)
vns,s·vns,wns

wns→ns
M

+
vwns,s

2θwns
·
(

vwn,wns
wns→wn
M + vws,wns

wns→ws
M + vns,wns

wns→ns
M

)
.

This form is attractive because each grouping of terms matches a flux-force pair.

Looking at the remaining energy transfer terms

(A.125) Q =
∑
ι∈I

1

θι

∑
κ∈Icι

κ→ι
Q ,

can be expanded as follows:

(A.126) Q =
1

θw

(
wn→w
Q +

ws→w
Q

)
+

1

θn

(
wn→n
Q +

ns→n
Q

)
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+
1

θs

(
ws→s
Q +

ns→s
Q

)
+

1

θwn

(
wns→wn

Q −
wn→w
Q −

wn→n
Q

)
+

1

θws

(
wns→ws

Q −
ws→w
Q −

ws→s
Q

)
+

1

θns

(
wns→ns
Q −

ns→n
Q −

ns→s
Q

)
+

1

θwns

(
−
wns→wn

Q −
wns→ws

Q −
wns→ns
Q

)
.

Which rewriting in flux-force form is

(A.127) Q =

(
1

θw
− 1

θwn

)
wn→w
Q +

(
1

θw
− 1

θws

)
ws→w
Q +

(
1

θn
− 1

θwn

)
wn→n
Q

+

(
1

θn
− 1

θns

)
ns→n
Q +

(
1

θs
− 1

θws

)
ws→s
Q +

(
1

θs
− 1

θns

)
ns→s
Q

+

(
1

θwn
− 1

θwns

)
wns→wn

Q +

(
1

θws
− 1

θwns

)
wns→ws

Q +

(
1

θns
− 1

θwns

)
wns→ns
Q .

Using these new flux-force groupings for the exchange terms and grouping other force-flux

pairs which already exist, the final CEI can be written as

(A.128)

−
∑

ι∈{If∪II∪IC}
∇·
(
ειϕι − ειqι

θι

)

−∇·
{
εsϕs − 1

θs

[
εsqs −

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]}

−
∑
ι∈IP

{
ειbι − 1

θι

ειhι +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

〈
ρι

Ds
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

}

−
∑
ι∈II

{
ειbι − 1

θι

ειhι +

〈
ηι

D′s
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

〈
ρι

D′s
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

}
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−εwnsbwns +
1

θwns

εwnshwns +

〈
ηwns

D′′s
(
θwns − θwns

)
Dt

〉
Ωwns,Ω


+

1

θwns

〈
ρwns

D′′s
(
µwns + ψwns − µwns − ψwns −Kwns

E

)
Dt

〉
Ωwns,Ω

+
∑
ι∈If

ει

θι

(
tι + pιI

)
:dι +

εs

θs

(
ts − ts

)
:ds +

∑
ι∈II

ει

θι

(
tι − γιI

)
:dι

+
εwns

θwns

(
twns + γwnsI

)
:dwns +

∑
ι∈{If∪II∪IC}

ειqι(
θι
)2 ·∇θι

+
1(
θs
)2

[
εsqs −

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]
·∇θs

−
∑
ι∈IP

∑
κ∈Icι

1

θκ

κ→ι
M
[(
Kι
E + ψι + µι

)
−
(
Kκ
E + ψκ + µκ

)]

− 1

θwns

∑
κ∈Icwns

wns→κ
M

[(
Kκ
E + ψκ + µκ

)
−
(
Kwns
E + ψwns + µwns

)]

+
∑
ι∈IP

∑
κ∈Icι

[
κ→ι
Q +

(
Eι

ειρι
− µι

)
κ→ι
M + vι,s·

(
κ→ι
T +

vι,κ

2

κ→ι
M

)](
1

θι
− 1

θκ

)

+
∑
ι∈II

[
wns→ι
Q +

(
Eι

ειρι
− µι

)
wns→ι
M + vι,s·

(
wns→ι

T +
vι,wns

2

wns→ι
M

)](
1

θι
− 1

θwns

)

+
∑
ι∈If

∑
κ∈Icι

〈
pι

(
vκ − vs

)
·nι
〉

Ωκ,Ω

(
1

θι
− 1

θκ

)

−
∑
ι∈If

1

θι

[
ειριgι + ειρι∇

(
Kι
E + ψι + µι

)
+ ηι∇θι

−∇ (ειpι) +
∑
κ∈Icι

(
κ→ι
T +

vι,κ

2

κ→ι
M

)]
·vι,s

−
∑
ι∈II

1

θι

[
ειριgι + ειρι∇

(
Kι
E + ψι + µι

)
+ ηι∇θι +∇ (ειγι)

−
∑

κ∈Icι∩IP

(
ι→κ
T +

vκ,ι

2

ι→κ
M

)
+

(
wns→ι

T +
vι,wns

2

wns→ι
M

)]
·vι,s
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− 1

θwns

[
εwnsρwnsgwns + εwnsρwns∇

(
Kwns
E + ψwns + µwns

)
+ ηwns∇θwns

−∇ (εwnsγwns)−
∑

κ∈Icwns

(
wns→κ

T +
vκ,wns

2

wns→κ
M

)]
·vwns,s

+
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

∑
κ∈Ics

〈
Cs
js

:σs (vκ − vs) ·ns
〉

Ωκ,Ω
− 1

θs

〈
ns · ts·nsns ·

(
vs − vs

)〉
Ωss,Ω

+
∑
ι∈II

1

θι
∇θι·

〈
nκnκ ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
ι∈II

1

θι
∇·
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

+
∑
ι∈II

1

θι

[
〈nκnκγι〉Ωι,Ω:ds −

〈
nι ·

(
vwns − vs

)
γι

〉
Ωwns,Ω

]

+
∑
ι∈II

1

θι
∇
(
Kι
E + ψι + µι

)
·
〈
nκnκ ·

(
vι − vs

)
ρι

〉
Ωι,Ω

+
1

θwn

〈(
pw − pn − γwn∇′·nw + ρwnnw ·gwn

) (
vwn − vs

)
·nw

〉
Ωwn,Ω

− 1

θws

〈(
pw + γws∇′·ns − ρwsns ·gws

) (
vws − vs

)
·ns
〉

Ωws,Ω

− 1

θns

〈(
pn + γns∇′·ns − ρnsns ·gns

) (
vns − vs

)
·ns
〉

Ωns,Ω

+
1

θwns

〈
ρwns

(
vwns − vs

)
· (I− lwnslwns) ·gwns

〉
Ωwns,Ω

− 1

θwns
∇·
〈

(I− lwnslwns) ·
(
vwns − vs

)
γwns

〉
Ωwns,Ω

− 1

θwns

〈(
lwns ·∇′′lwns

)
·
(
vwns − vs

)
γwns

〉
Ωwns,Ω

+
1

θwns
∇θwns·

〈
(I− lwnslwns)·

(
vwns − vs

)
ηwns

〉
Ωwns,Ω

+
1

θwns
∇
(
Kwns
E + ψwns + µwns

)
·
〈

(I− lwnslwns) ·
(
vwns − vs

)
ρwns

〉
Ωwns,Ω

− 1

θwns
〈(I− lwnslwns) γwns〉Ωwns,Ω:ds = Λ ≥ 0.
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A.5. Simplified Entropy Inequality

Starting from the CEI given in Eq. (2.77), the restrictions and approximations out-

lined in §2.6 can be applied to produce an SEI. To do this, we first restrict the system

to be isothermal according to Secondary Restriction 1 and to have no mass exchange be-

tween phases according to Secondary Restriction 2. The condition of no mass exchange

implies that for phase ι,

(A.129) (vκ − vι) ·nι = 0 onΩκ,

where ι ∈ IP and κ ∈ Icι. Consistent with Approximation 7, the terms involving devia-

tion kinetic energy are assumed to be negligible since they are second order in velocity

deviations. Also all terms that contain interface or common curve densities are elimi-

nated based on Approximation 8. Applying these two restrictions to the CEI results in

the following SEI:

(A.130) −
∑

ι∈{If∪II∪IC}
∇·
(
ειϕι − ειqι

θ

)

−∇·
{
εsϕs − 1

θ

[
εsqs −

〈(
ts − σs:C

s

js
I

)
·
(
vs − vs

)〉
Ωs,Ω

]}

−
∑
ι∈IP

[
ειbι − 1

θ

(
ειhι +

〈
ηι

Ds (θ − θ)
Dt

〉
Ωι,Ω

)

−1

θ

〈
ρι

Ds
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

]

−
∑
ι∈II

[
ειbι − 1

θ

(
ειhι +

〈
ηι

D′s (θ − θ)
Dt

〉
Ωι,Ω

)

−1

θ

〈
ρι

D′s
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

]

−εwnsbwns +
1

θ

(
εwnshwns +

〈
ηwns

D′′s (θ − θ)
Dt

〉
Ωwns,Ω

)
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+
1

θ

〈
ρwns

D′′s
(
µwns + ψwns − µwns − ψwns −Kwns

E

)
Dt

〉
Ωwns,Ω

+
∑
ι∈If

ει

θ

(
tι + pιI

)
:dι +

εs

θ

(
ts − ts

)
:ds +

∑
ι∈II

ει

θ

(
tι − γιI

)
:dι

+
εwns

θwns

(
twns + γwnsI

)
:dwns

−
∑
ι∈If

vι,s

θ
·
[
ειριgι + ειρι∇

(
ψι + µι

)
+∇ (ειpι) +

∑
κ∈Icι

κ→ι
T

]

−
∑
ι∈II

vι,s

θ
·
[
∇ (ειγι) +

∑
κ∈Icι

κ→ι
T

]

−vwns,s

θ
·
[
−∇ (εwnsγwns)−

∑
κ∈Icwns

wns→κ
T

]

+
1

θ

〈(
∇·ts −∇σs:C

s

js

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θ

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

−1

θ

〈
ns · ts·nsns ·

(
vs − vs

)〉
Ωss,Ω

+
∑
ι∈II

1

θ
∇·
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

+
∑
ι∈II

1

θ

[
〈nκnκγι〉Ωι,Ω:ds −

〈
nι ·

(
vwns − vs

)
γι

〉
Ωwns,Ω

]

+
1

θ

〈(
pw − pn − γwn∇′·nw

) (
vwn − vs

)
·nw

〉
Ωwn,Ω

−1

θ

〈(
pw + γws∇′·ns

) (
vws − vs

)
·ns
〉

Ωws,Ω

−1

θ

〈(
pn + γns∇′·ns

) (
vns − vs

)
·ns
〉

Ωns,Ω

−1

θ
∇·
〈

(I− lwnslwns)
(
vwns − vs

)
γwns

〉
Ωwns,Ω

−1

θ

〈(
lwns ·∇′′lwns

)
·
(
vwns − vs

)
γwns

〉
Ωwns,Ω

−1

θ
〈(I− lwnslwns) γwns〉Ωwns,Ω:ds = Λ ≥ 0.

Next, using the identities provided in Eqs. (2.15)–(2.22), the SEI can be rearranged to

give
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(A.131) −
∑

ι∈{If∪II∪IC}
∇·
(
ειϕι − ειqι

θ

)

−∇·
{
εsϕs − 1

θ

[
εsqs −

〈(
ts − σs:C

s

js
I

)
·
(
vs − vs

)〉
Ωs,Ω

]}

−
∑
ι∈IP

[
ειbι − 1

θ

(
ειhι +

〈
ηι

Ds (θ − θ)
Dt

〉
Ωι,Ω

)

−1

θ

〈
ρι

Ds
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

]

−
∑
ι∈II

[
ειbι − 1

θ

(
ειhι +

〈
ηι

D′s (θ − θ)
Dt

〉
Ωι,Ω

)

−1

θ

〈
ρι

D′s
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

]

−εwnsbwns +
1

θ

(
εwnshwns +

〈
ηwns

D′′s (θ − θ)
Dt

〉
Ωwns,Ω

)

+
1

θ

〈
ρwns

D′′s
(
µwns + ψwns − µwns − ψwns −Kwns

E

)
Dt

〉
Ωwns,Ω

+
∑
ι∈If

ει

θ

(
tι + pιI

)
:dι +

εs

θ

(
ts − ts

)
:ds +

∑
ι∈II

ει

θ

(
tι − γιI

)
:dι

+
εwns

θwns

(
twns + γwnsI

)
:dwns

−
∑
ι∈If

vι,s

θ
·
[
ειριgι + ειρι∇

(
ψι + µι

)
+∇ (ειpι) +

∑
κ∈Icι

κ→ι
T

]

−
∑
ι∈II

vι,s

θ
·
[
∇ (ειγι) +

∑
κ∈Icι

κ→ι
T

]

−vwns,s

θ
·
[
−∇ (εwnsγwns)−

∑
κ∈Icwns

wns→κ
T

]

+
1

θ

〈(
∇·ts −∇σs:C

s

js

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θ

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω
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−1

θ

〈
ns · ts·nsns ·

(
vs − vs

)〉
Ωss,Ω

+
∑
ι∈II

1

θ

[
∇·
〈
nκnκ ·

(
vι − vs

)
γι

〉
Ωι,Ω

+ 〈nκnκγι〉Ωι,Ω:ds
]

+
1

θ

〈(
pw − pn − γwn∇′·nw

) (
vwn − vs

)
·nw

〉
Ωwn,Ω

−1

θ

〈(
pw + γws∇′·ns

) (
vws − vs

)
·ns
〉

Ωws,Ω

−1

θ

〈(
pn + γns∇′·ns

) (
vns − vs

)
·ns
〉

Ωns,Ω

−1

θ

〈(
γwnsκN − γwn sin(ϕws,wn)

)
ns ·

(
vwns − vs

)〉
Ωwns,Ω

−1

θ

〈(
γws + γwn cos(ϕws,wn)− γns + γwnsκG

)
nws·

(
vwns − vs

)〉
Ωwns,Ω

−1

θ
∇·
〈

(I− lwnslwns)
(
vwns − vs

)
γwns

〉
Ωwns,Ω

−1

θ
〈(I− lwnslwns) γwns〉Ωwns,Ω:ds = Λ ≥ 0.

Using the definitions for the geometric tensors, the approximations given by Eqs. (2.81)–

(2.84), noting that

(A.132)
∇· (ειGι·vι,sγι) = ∇· (ειGιγι) ·vι,s + ειGιγι:∇vι,s

= ∇· (ειGιγι) ·vι,s + ειGιγι:
(
dι − ds

)
,

and regrouping, the SEI becomes

(A.133) −
∑

ι∈{If∪II∪IC}
∇·
(
ειϕι − ειqι

θ

)

−∇·
{
εsϕs − 1

θ

[
εsqs −

〈(
ts − σs:C

s

js
I

)
·
(
vs − vs

)〉
Ωs,Ω

]}

−
∑
ι∈IP

[
ειbι − 1

θ

(
ειhι +

〈
ηι

Ds (θ − θ)
Dt

〉
Ωι,Ω

)

−1

θ

〈
ρι

Ds
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

]
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−
∑
ι∈II

[
ειbι − 1

θ

(
ειhι +

〈
ηι

D′s (θ − θ)
Dt

〉
Ωι,Ω

)

−1

θ

〈
ρι

D′s
(
µι + ψι − µι − ψι −Kι

E

)
Dt

〉
Ωι,Ω

]

−εwnsbwns +
1

θ

(
εwnshwns +

〈
ηwns

D′′s (θ − θ)
Dt

〉
Ωwns,Ω

)

+
1

θ

〈
ρwns

D′′s
(
µwns + ψwns − µwns − ψwns −Kwns

E

)
Dt

〉
Ωwns,Ω

+
∑
ι∈If

ει

θ

(
tι + pιI

)
:dι +

εs

θ

(
ts − ts

)
:ds

+
∑
ι∈II

ει

θ

[
tι − γι (I− Gι)

]
:dι +

εwns

θwns

[
twns + γwns (I− Gwns)

]
:dwns

−
∑
ι∈If

vι,s

θ
·
[
ειριgι + ειρι∇

(
ψι + µι

)
+∇ (ειpι) +

∑
κ∈Icι

κ→ι
T

]

−
∑
ι∈II

vι,s

θ
·
[
∇· [ειγι (I− Gι)] +

∑
κ∈Icι

κ→ι
T

]

−vwns,s

θ
·
[
−∇· [εwnsγwns (I− Gwns)]−

∑
κ∈Icwns

wns→κ
T

]

+
1

θ

〈(
∇·ts −∇σs:C

s

js

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θ

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

−1

θ

〈
ns · ts·nsns ·

(
vs − vs

)〉
Ωss,Ω

+
1

θ

〈(
pw − pn − γwn∇′·nw

) (
vwn − vs

)
·nw

〉
Ωwn,Ω

−1

θ

〈(
pw + γws∇′·ns

) (
vws − vs

)
·ns
〉

Ωws,Ω

−1

θ

〈(
pn + γns∇′·ns

) (
vns − vs

)
·ns
〉

Ωns,Ω

−1

θ

〈(
γws + γwn cos(ϕws,wn)− γns + γwnsκG

)
nws·

(
vwns − vs

)〉
Ωwns,Ω

−1

θ

〈(
γwnsκN − γwn sin(ϕws,wn)

)
ns ·

(
vwns − vs

)〉
Ωwns,Ω

= Λ ≥ 0.
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Geometric density approximations can be derived in the same manner for interfaces

and common curves as they were for phases (Eqs. (2.95)–(2.97)). Starting from the

gradient and transport theorems for interfaces, G[2,(3,0),0] and T[2,(3,0),0] respectively,

and letting our integration be over the ws interface with function value of 1,

(A.134) 0 = ∇εws −∇·〈nsns〉Ωws,Ω +
〈
(∇′·ns)ns

〉
Ωws,Ω

+ 〈nws〉Ωwns,Ω

and

(A.135)

0 =
∂εws

∂t
+∇·〈nsns ·vws〉Ωws,Ω −

〈(∇′·ns)ns ·vws
〉

Ωws,Ω
− 〈nws ·vwns〉Ωwns,Ω .

Taking the vector product of Eq. (A.134) with the macroscale velocity of the solid phase,

vs, and adding the result to Eq. (A.135) yields:

(A.136) 0 =
Dsεws

Dt
−∇·〈nsns〉Ωws,Ω·vs +∇·〈nsns ·vws〉Ωws,Ω

−
〈(∇′·ns)ns ·

(
vws − vs

)〉
Ωws,Ω

−
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

.

This means that

(A.137)
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

=
Dsεws

Dt
−∇·〈nsns〉Ωws,Ω·vs

+∇·〈nsns ·vws〉Ωws,Ω −
〈(∇′·ns)ns ·

(
vws − vs

)〉
Ωws,Ω

≈ Dsεws

Dt
−∇· (εwsGws) ·vs +∇·

[
(εwsGws) ·〈vws〉Ωws,Ωws

]
−Jwss

〈
ns ·

(
vws − vs

)〉
Ωws,Ω

≈ Dsεws

Dt
+∇· (εwsGws) ·vws,s + εwsGws:dws − Jwss χssws

Dsεs

Dt
.

Similarly, integrating over the ns interface yields

(A.138)
〈
nns ·

(
vwns − vs

)〉
Ωwns,Ω

≈
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Dsεns

Dt
+∇· (εnsGns) ·vns,s + εnsGns:dns − Jnss χssns

Dsεs

Dt
.

Adding Eq. (A.137) and Eq. (A.138) produces

(A.139) 0 ≈ Ds (εws + εns)

Dt
+∇· (εwsGws) ·vws,s +∇· (εnsGns) ·vns,s

+εwsGws:dws + εnsGns:dns − (Jwss χssws + Jnss χssns)
Dsεs

Dt
.

We can also obtain directly by integrating over the entire solid surface

(A.140) 0 ≈ Ds (εws + εns)

Dt
+∇· (εssGss) ·

(
χsswsv

ws,s + χssnsv
ns,s
)

+ (εssGss) :dss − (Jwss χssws + Jnss χssns)
Dsεs

Dt
.

However, noting that dss is dotted with a symmetric tensor, this can be written as

(A.141) dss = χsswsd
ws + χssnsd

ns + vws,s∇χssws + vns,s∇χssns,

to obtain

(A.142) 0 ≈ Ds (εws + εns)

Dt
+∇· (εssGss) ·

(
χsswsv

ws,s + χssnsv
ns,s
)

+χssws (εssGss) :dws + χssns (εssGss) :dns

+ (εssGss) :vws,s∇χssws + (εssGss) :vns,s∇χssns

− (Jwss χssws + Jnss χssns)
Dsεs

Dt
,

which rearranges to

(A.143) 0 ≈ Ds (εws + εns)

Dt
+∇· (εwsGss) ·vws,s +∇· (εnsGss) ·vns,s

+εwsGss:dws + εnsGss:dns − Jsss
Dsεs

Dt
,
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where

(A.144) Jsss = Jwss χssws + Jnss χssns.

Note that the difference between Eq. (A.139) and Eq. (A.143) resides in the use of Gss.

Because independence of orientation for integration purposes has been assumed, this

indeed means that

(A.145) Gss = Gws = Gns.

Now multiply Eq. (A.143) by χssws and rearrange using the product rule

(A.146) 0 ≈ Dsεws

Dt
− (εws + εns)

Dsχssws
Dt

+ χssws∇· (εwsGss) ·vws,s

+χssws∇· (εnsGss) ·vns,s + χsswsε
wsGss:dws + χsswsε

nsGss:dns − χsswsJsss
Dsεs

Dt
.

Since this is equal to zero, it may be subtracted from Eq. (A.137)

(A.147)
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

≈

+∇· (εwsGws) ·vws,s + εwsGws:dws − Jwss χssws
Dsεs

Dt

+ (εws + εns)
Dsχssws

Dt
− χssws∇· (εwsGss) ·vws,s − χssws∇· (εnsGss) ·vns,s

−χsswsεwsGss:dws − χsswsεnsGss:dns + χsswsJ
ss
s

Dsεs

Dt
.

Making use of Eq. (A.145) in this expression and collecting terms

(A.148)
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

≈ (εws + εns)
Dsχssws

Dt

+χssns∇· (εwsGss) ·vws,s − χssws∇· (εnsGss) ·vns,s

+χssnsε
wsGss:dws − χsswsεnsGss:dns.
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In obtaining this equation, use has been made of Secondary Restriction 3 stipulating

that the curvature of the solid grain surface is independent of the fluid phase it contacts.

Applying Eqs. (2.22)–(2.33) to terms from Eq. (A.133) in addition to assuming indepen-

dence between our geometric approximation terms and other quantities within our SEI

results in the following approximations:

(A.149)
1

θ

〈(
pw − pn − γwn∇′·nw

) (
vwn − vs

)
·nw

〉
Ωwn,Ω

≈ 1

θ

〈(
pw − pn − γwn∇′·nw

)〉
Ωwn,Ωwn

(
Dsεw

Dt
+ χssws

Dsεs

Dt

)
≈ 1

θ
(pwnw − pwnn − γwnJwnw )

(
Dsεw

Dt
+ χssws

Dsεs

Dt

)
,

(A.150) − 1

θ

〈(
pw + γws∇′·ns

) (
vws − vs

)
·ns
〉

Ωws,Ω

≈ −1

θ

〈(
pw + γws∇′·ns

)〉
Ωws,Ωws

χssws
Dsεs

Dt

≈ −1

θ
(pwsw + γwsJwss )χssws

Dsεs

Dt
,

(A.151) − 1

θ

〈(
pn + γns∇′·ns

) (
vns − vs

)
·ns
〉

Ωns,Ω

≈ −1

θ

〈(
pn + γns∇′·ns

)〉
Ωns,Ωns

χssns
Dsεs

Dt

≈ −1

θ
(pnsn + γnsJnss )χssns

Dsεs

Dt
,

(A.152) − 1

θ

〈[
γwnsκNwns − γwn sin(ϕws,wn)

]
ns ·

(
vwns − vs

)〉
Ωwns,Ω

≈ −1

θ

〈[
γwnsκNwns − γwn sin(ϕws,wn)

]〉
Ωwns,Ωwns

χsswns
Dsεs

Dt

≈ −1

θ

[
γwnsκwnsN − γwnswn sin(ϕws,wn)

] εwns
εss

Dsεs

Dt
,

and
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(A.153) − 1

θ

〈(
γws + γwn cosϕws,wn − γns + γwnsκGwns

)
nws·

(
vwns − vs

)〉
Ωwns,Ω

≈ −1

θ

〈
γws + γwn cosϕws,wn − γns + γwnsκGwns

〉
Ωwns,Ωwns

×
[

(εws + εns)
Dsχssws

Dt
+ χssns∇· (εwsGss) ·vws,s − χssws∇· (εnsGss) ·vns,s

+χssnsε
wsGss:dws − χsswsεnsGss:dns

]
.

Applying all of the above mentioned approximations along with the definitions for a

macroscopically simple system, the SEI may be written as follows:

(A.154)
∑
ι∈If

ει

θ

(
tι + pιI

)
:dι +

εs

θ

(
ts − ts

)
:ds +

εwn

θ

[
twn − γwn (I− Gwn)

]
:dwn

+
1

θ

[
εwstws − εwsγws (I− Gws)

−χssns
(
γwnsws + γwnswn cosϕws,wn − γwnsns + γwnsκwnsG

)
Gss
]

:dws

+
1

θ

[
εnstns − εnsγns (I− Gns)

+χssws

(
γwnsws + γwnswn cosϕws,wn − γwnsns + γwnsκwnsG

)
Gss
]

:dns

+
εwns

θwns

[
twns + γwns (I− Gwns)

]
:dwns

−
∑
ι∈If

1

θ

(
ειριgι + ειρι∇

(
ψι + µι

)
−∇ (ειpι) +

∑
κ∈Icι

κ→ι
T

)
·vι,s

−1

θ

(
∇· [εwnγwn (I− Gwn)] +

∑
κ∈Icwn

κ→wn
T

)
·vwn,s

−1

θ

(
∇· [εwsγws (I− Gws)] +

∑
κ∈Icws

κ→ws
T + χssns

(
γwnsws + γwnswn cosϕws,wn

−γwnsns + γwnsκwnsG

)
∇· (εwsGss)

)
·vws,s

−1

θ

(
∇· [εnsγns (I− Gns)] +

∑
κ∈Icns

κ→ns
T − χssws

(
γwnsws + γwnswn cosϕws,wn
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−γwnsns + γwnsκwnsG

)
∇· (εnsGss)

)
·vns,s

−1

θ

(
−∇· [εwnsγwns (I− Gwns)]−

∑
κ∈Icwns

wns→κ
T

)
·vwns,s

−1

θ

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

+
1

θ

(
Dsεw

Dt
+ χssws

Dsεs

Dt

)
(pwnw − pwnn − γwnJwnw )

−1

θ

Dsεs

Dt

[
(pwsw + γwsJwss )χssws + (pnsn + γnsJnss )χssns + 〈ns · ts·ns〉Ωss,Ωss

+
(
γwnsκwnsN − γwnswn sinϕws,wn

) εwns
εss

]
−1

θ
εss

Dsχssws
Dt

(
γwnsws + γwnswn cosϕws,wn − γwnsns + γwnsκwnsG

)
= Λ ≥ 0.

A.6. Dynamic Conditions

Approximate relations for the evolution of geometric variables have been obtained

through the application of time and space averaging theorems [93]. The geometric equa-

tions are derived from G[2,(3,0),0] and T[2,(3,0),0] as follows. For the surface area of the

fluid-fluid interface, relations may be obtained from using the same theorems applied to

the wn interface. These equations are, respectively:

(A.155) 0 = ∇εwn −∇·〈nwnw〉Ωwn,Ω +
〈(∇′·nw)nw

〉
Ωwn,Ω

+ 〈nwn〉Ωwns,Ω

and

(A.156) 0 =
∂εwn

∂t
+∇·〈nwnw ·vwn〉Ωwn,Ω −

〈(∇′·nw)nw ·vwn
〉

Ωwn,Ω

−〈nwn ·vwns〉Ωwns,Ω .

Taking the vector product of Eq. (A.155) with the macroscale velocity of the solid phase,

vs, and adding the result to Eq. (A.156),
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(A.157) 0 =
Dsεwn

Dt
+∇·〈nwnw ·vwn〉Ωwn,Ω −∇·〈nwnw〉Ωwn,Ω·vs

−
〈(∇′·nw)nw ·

(
vwn − vs

)〉
Ωwn,Ω

−
〈
nwn ·

(
vwns − vs

)〉
Ωwns,Ω

.

This equation contains no approximations , however the presence of the normal vectors

in the integrals makes these difficult to evaluate exactly. Making use of the geometric

parameter definitions the integral terms may be approximated as

(A.158)
Dsεwn

Dt
≈ −∇· (εwnGwn) ·vwn,s − εwnGwn:dwn + Jwnw

(
Dsεw

Dt
+ χssws

Dsεs

Dt

)
+
〈
nwn ·

(
vwns − vs

)〉
Ωwns,Ω

.

From geometric considerations, the unit vector nwn = nws cosϕws,wn − ns sinϕws,wn.

Now Eq. (A.158) may be written as

(A.159)
Dsεwn

Dt
− Jwnw

(
Dsεw

Dt
+ χssws

Dsεs

Dt

)
≈ −∇· (εwnGwn) ·vwn,s − εwnGwn:dwn

+ cosϕws,wn
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

− sinϕws,wn
εwns

εss
Dsεs

Dt
.

Similarly for the fluid-solid interfaces

(A.160)
Dsεws

Dt
− Jwss χssws

Dsεs

Dt
≈ −∇· (εwsGws) ·vws,s − εwsGws:dws

+
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

,

and

(A.161)
Dsεns

Dt
− Jnss χssns

Dsεs

Dt
≈ −∇· (εnsGns) ·vns,s − εnsGns:dns

−
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

.

For the common curve, G[1,(3,0),0] and T[1,(3,0),0] are used for the wns domain to yield

(A.162)
Dsεwns

Dt
= −∇· (εwnsGwns) ·vwns,s − εwnsGwns:dwns
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−
〈
lwns ·∇lwns ·

(
w − vs

)〉
Ωwns,Ω

,

and

(A.163)
Dsεwns

Dt
= −∇· (εwnsGwns) ·vwns,s − εwnsGwns:dwns

−κwnsN
εwns

εss
Dsεs

Dt
− κwnsG

〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

.

The objective now is to combine Eqs. (A.159)–(A.161) and Eq. (A.163) to eliminate

the integrals that appear. Summing Eq. (A.160) and Eq. (A.161) gives us

(A.164)
Ds(εws + εns)

Dt
− (Jwss χssws + Jnss χssns)

Dsεs

Dt

≈ −∇· (εwsGws) ·vws,s − εwsGws:dws −∇· (εnsGns) ·vns,s

−εnsGns:dns,

or

(A.165)
Ds(εws + εns)

Dt
− Jsss

Dsεs

Dt
≈ −∇· (εwsGws) ·vws,s − εwsGws:dws

−∇· (εnsGns) ·vns,s − εnsGns:dns.

It is desirable to obtain an expression for the change in the fraction of the solid surface

in contact with the non-wetting phase, χssns. This can be done by substituting χssnsε
ss for

εns in Eq. (A.161)) and then using the equation for the entire solid surface, Eq. (A.143)

to eliminate
Dsεss

Dt
from the result. The result of these manipulations is:

(A.166) 0 = εss
Dsχssns

Dt
+ (1− χssns)∇· (εnsGns) ·vns,s + (1− χssns) εnsGns:dns

−χssns (Jnss − Jsss )
Dsεs

Dt
− χssns∇· (εwsGws) ·vws,s − χssnsεwsGws:dws

+
〈
nws ·

(
vwns − vs

)〉
Ωwns,Ω

.

191



Multiply this equation by cosϕws,wn and add to Eq. (A.159) to obtain

(A.167) 0 =
Dsεwn

Dt
+ εss cosϕws,wn

Dsχssns
Dt

− cosϕws,wnχssns (Jnss − Jsss )
Dsεs

Dt

+∇· (εwnGwn) ·vwn,s + εwnGwn:dwn − Jwnw
(

Dsεw

Dt
+ χssws

Dsεs

Dt

)
−χssns cosϕws,wn

{
∇· (εnsGns) ·vns,s +∇· (εwsGws) ·vws,s

}
−χssns cosϕws,wn

{
εnsGns:dns + εwsGws:dws

}
+ cosϕws,wn

{
∇· (εnsGns) ·vns,s + εnsGns:dns

}
+
εwns

εss
sinϕws,wn

Dsεs

Dt
.

Now note that

(A.168) 0 =
Dsεn

Dt
+
〈
ns ·

(
vns − vs

)〉
Ωns,Ω

+
〈
nw ·

(
vwn − vs

)〉
Ωwn,Ω

≈ Dsεn

Dt
+ χssns

Dsεs

Dt
+

Dsεw

Dt
+ χssws

Dsεs

Dt
,

which multiplying by Jwnw and adding to Eq. (A.167)) gives us

(A.169) 0 ≈ Dsεwn

Dt
+ εss cosϕws,wn

Dsχssns
Dt

− cosϕws,wnχssns (Jnss − Jsss )
Dsεs

Dt

+∇· (εwnGwn) ·vwn,s + εwnGwn:dwn

−χssns cosϕws,wn
{
∇· (εnsGns) ·vns,s +∇· (εwsGws) ·vws,s

}
−χssns cosϕws,wn

{
εnsGns:dns + εwsGws:dws

}
+ cosϕws,wn

{
∇· (εnsGns) ·vns,s + εnsGns:dns

}
+χsswns sinϕws,wn

Dsεs

Dt
+ Jwnw

Dsεn

Dt
+ Jwnw χssns

Dsεs

Dt

=
Dsεwn

Dt
− εss cosϕws,wn

Dsχssws
Dt

− cosϕws,wnχssns (Jnss − Jsss )
Dsεs

Dt

+∇· (εwnGwn) ·vwn,s + εwnGwn:dwn

−χssns cosϕws,wn
{
∇· (εnsGns) ·vns,s +∇· (εwsGws) ·vws,s

}
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−χssns cosϕws,wn
{
εnsGns:dns + εwsGws:dws

}
+ cosϕws,wn

{
∇· (εnsGns) ·vns,s + εnsGns:dns

}
+
εwns

εss
sinϕws,wn

Dsεs

Dt
− Jwnw

Dsεw

Dt
− Jwnw χssws

Dsεs

Dt
,

or

(A.170)
Dsεwn

Dt
− εss cosϕws,wn

Dsχssws
Dt

− Jwnw
Dsεw

Dt

−
(
χsswsJ

wn
w − χsswns sinϕws,wn

) Dsεs

Dt

≈ χssns cosϕws,wn
(
∇· (εwsGws) ·vws,s + εwsGws:dws

)
−χssws cosϕws,wn

(
∇· (εnsGns) ·vns,s + εnsGns:dns

)
−∇· (εwnGwn) ·vwn,s − εwnGwn:dwn.

Multiplying Eq. (A.166) by κwnsG and subtracting it from Eq. (A.163)

(A.171) 0 ≈ Dsεwns

Dt
+∇· (εwnsGwns) ·vwns,s + εwnsGwns:dwns

+κwnsN χsswns
Dsεs

Dt
− κwnsG εss

Dsχssns
Dt

− κwnsG χssws∇· (εnsGns) ·vns,s

−κwnsG χsswsε
nsGns:dns + κwnsG χssns (Jnss − Jsss )

Dsεs

Dt

+κwnsG χssns∇· (εwsGws) ·vws,s + κwnsG χssnsε
wsGws:dws,

or

(A.172)
Dsεwns

Dt
+ κwnsG (εws + εns)

Dsχssws
Dt

+ χsswnsκ
wns
N

Dsεs

Dt

≈ −κwnsG χssns∇·(εwsGws)·vws,s − κwnsG χssnsε
wsGws:dws

+κwnsG χssws∇· (εnsGns) ·vns,s + κwnsG χsswsε
nsGns:dns

−∇· (εwnsGwns) ·vwns,s − εwnsGwns:dwns.
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APPENDIX B

TCAT9: Transition Region Details and Calculations

B.1. Phase Equations

Consider the overall conservation of total energy equation for a phase at the mi-

croscale, which may be written as

(B.1)
∂

∂t

[
Eiι + ριωiι

(viι·viι
2

+ ψiι

)]
+∇·

{[
Eiι + ριωiι

(viι·viι
2

+ ψiι

)]
viι

}
−∇· (tiι·viι + qiι)− ψiιriι − hiι − eiι − piι·viι −

viι·viι
2

riι

−ριωiι
∂ψiι
∂t

= 0 for ι ∈ IP,

where ι is a phase qualifier that is subscripted for microscale quantities, i is a species

qualifier that is subscripted for microscale quantities, IP is the index set of phases, Eiι

is the internal energy density, ρι is the mass density, ωiι is the mass fraction of species i

in the ι entity, viι is the velocity vector for species i in entity ι, ψiι is the body source

potential, tiι is the stress tensor, qiι is the non-advective heat flux density vector, riι is

inter-species reaction rate, hiι is the heat source density, eiι is the inter-species rate of

transfer of internal energy, and piι is the inter-species rate of transfer of momentum. The

interspecies transfer and reaction terms include the effects of all other species on species

i.

Applying an instance of the averaging operator given by Eq. (3.1) to Eq. (B.1) yields

(B.2)

〈
∂

∂t

[
Eiι + ριωiι

(viι·viι
2

+ ψiι

)]〉
Ωι,Ω

+
〈
∇·
{[
Eiι + ριωiι

(viι·viι
2

+ ψiι

)]
viι

}〉
Ωι,Ω

−〈∇· (tiι·viι + qiι)〉Ωι,Ω − 〈ψiιriι〉Ωι,Ω − 〈hiι〉Ωι,Ω − 〈eiι〉Ωι,Ω

−〈piι·viι〉Ωι,Ω −
〈viι·viι

2
riι

〉
Ωι,Ω
−
〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

= 0 for ι ∈ IP.



Eq. (B.2) contains averages of terms involving differential operators, and we wish to

transform these to differential operators applied to averages. We also wish to accomplish

this transformation, while evaluating the dimension corresponding to the transition region

change at the megascale and the other two dimensions at the macroscale. Applying

Theorems D[3,(2,0),1] and T[3,(2,0),1] given by Eqs. (3.2) and (3.4) to Eq. (B.2) and

rearranging terms yields

(B.3)
∂8

∂t

〈
Eiι + ριωiι

(viι·viι
2

+ ψiι

)〉
Ωι,Ω

+∇8·
〈[
Eiι + ριωiι

(viι·viι
2

+ ψiι

)]
viι

〉
Ωι,Ω

−∇8·〈tiι·viι + qiι〉Ωι,Ω − 〈ψiιriι〉Ωι,Ω − 〈hiι〉Ωι,Ω − 〈eiι〉Ωι,Ω

−〈piι·viι〉Ωι,Ω −
〈viι·viι

2
riι

〉
Ωι,Ω

−
〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

+
∑
κ∈Icι

〈[
Eiι + ριωiι

(viι·viι
2

+ ψiι

)]
nι · (viι − vκ)

〉
Ωκ,Ω

+
〈[
Eiι + ριωiι

(viι·viι
2

+ ψiι

)]
e· (viι − vext)

〉
ΓιM ,Ω

−
∑
κ∈Icι

〈nι · (tiι·viι + qiι)〉Ωκ,Ω

−〈e· (tiι·viι + qiι)〉ΓιM ,Ω = 0 for ι ∈ IP.

Considering Eq. (B.3) term by term to evaluate the averaging operators gives for the

time derivative term

(B.4)
∂8

∂t

〈
Eiι + ριωiι

(viι·viι
2

+ ψiι

)〉
Ωι,Ω

=
∂8

∂t

[
Eiι + ειριωiι

(
viι·viι

2
+Kiι

E + ψiι

)]
,

or

(B.5)
∂8

∂t
〈ETiι〉Ωι,Ω =

∂8

∂t
EiιT ,
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where

ETiι = Eiι + ριωiι

(viι·viι
2

+ ψiι

)
,(B.6)

EiιT = Eiι + ειριωiι

(
viι·viι

2
+Kiι

E + ψiι

)
,(B.7)

EiιT = 〈ETiι〉Ωι,Ω ,(B.8)

Eiι = 〈Eiι〉Ωι,Ω ,(B.9)

ειριωiιKiι
E =

〈
ριωiι

(
viι − viι

)
·
(
viι − viι

)
2

〉
Ωι,Ω

,(B.10)

ειριωiιψiι = 〈ριωiιψiι〉Ωι,Ω .(B.11)

Introducing dispersion velocity uiι = viι − vι, we can write Eq. (B.7) in the following

form

(B.12) EiιT = Eiι + ειριωiι

vι·vι

2
+

uiι·uiι

2
+ uiι·vι +Kiι

E + ψiι

 .

For the first divergence term in Eq. (B.3) things are a bit more complicated by the

existence of the product of the internal and kinetic energy terms with the velocity. This

term can be written as

(B.13) ∇8·〈ETiιviι〉Ωι,Ω =

∇8·
〈 EiιT

ειριωiι
+

ETiι
ριωiι

− EiιT
ειριωiι

 ριωiι [viι +
(
viι − viι

)]〉
Ωι,Ω

,

or

(B.14) ∇8·〈ETiιviι〉Ωι,Ω = ∇8·
(
EiιT viι

)
+∇8·

〈
ETiι

(
viι − viι

)〉
Ωι,Ω

,

or

(B.15) ∇8·〈ETiιviι〉Ωι,Ω = ∇8·
(
EiιT vι

)
+∇8·

(
EiιT uiι

)
+∇8·

〈
ETiι

(
viι − viι

)〉
Ωι,Ω

.
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Evaluating the last term in Eq. (B.15) gives

(B.16) ∇8·
〈
ETiι

(
viι − viι

)〉
Ωι,Ω

= ∇8·
〈

(Eiι + ριωiιψiι)
(
viι − viι

)〉
Ωι,Ω

+∇8·
〈viι·

(
viι − viι

)
+

(
viι − viι

)
·
(
viι − viι

)
2


ριωiι

(
viι − viι

)〉
Ωι,Ω

.

The second divergence term in Eq. (B.3) may be written as

(B.17) ∇8·〈tiι·viι + qiι〉Ωι,Ω = ∇8·
〈
tiι·viι + tiι·

(
viι − viι

)
+ qiι

〉
Ωι,Ω

.

Combining terms from Eqs. (B.16) and (B.17) and dropping the divergence operator,

which is applied to all terms, gives

(B.18) ειtiι·viι + ειqiι =
〈[

tiι − ριωiι
(
viι − viι

)(
viι − viι

)]
·viι
〉

Ωι,Ω

+

〈
qiι −

Eiι + ριωiι


(
viι − viι

)
·
(
viι − viι

)
2

+ ψiι

(viι − viι
)〉

Ωι,Ω

+
〈
tiι·
(
viι − viι

)〉
Ωι,Ω

,

where the first term on the right hand side (RHS) is the dot product of the macroscale

stress tensor and velocity for a species in a phase and the second two terms on the RHS

sum to the macroscale heat source vector for a species in a phase.

The product of the potential and reaction term and the heat source term can be

evaluated to give

(B.19) ειψiιriι + ειhiι = 〈ψiιriι + hiι〉Ωι,Ω ,

where

(B.20) ειψiιriι =
〈
ψiιriι

〉
Ωι,Ω

,
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and

(B.21) ειhiι =
〈
hiι +

(
ψiι − ψiι

)
riι

〉
Ωι,Ω

.

The inter-species energy transfer terms can be evaluated to give

(B.22) ειeiιT =
〈
eiι + piι·viι +

viι·viι
2

riι

〉
Ωι,Ω

,

where eiιT is the total macroscale interspecies transfer of energy due to internal energy,

momentum, and reaction transfer mechanisms from all other species in the ι entity to

the i species in the ι entity.

Remaining terms to be evaluated in Eq. (B.3) involve transfer of energy at internal

boundaries to interfaces and the transfer of energy at the external boundary of the

transition region. The inter-entity transfer of energy can be written as

(B.23) −
∑
κ∈Icι

〈ETiιnι · (vκ − viι) + nι · (tiι·viι + qiι)〉Ωκ,Ω =

−
∑
κ∈Icι

〈[
EκT iι
ειρκι ω

κ
iι

+

(
ETiι
ριωiι

− EκT iι
ειρκι ω

κ
iι

)]
ριωiιnι · (vκ − viι)

〉
Ωκ,Ω

−
∑
κ∈Icι

〈
nι ·

{
tiι·
[
vκiι +

(
viι − vκiι

)]
+ qiι

}〉
Ωκ,Ω

,

or as

(B.24) −
∑
κ∈Icι

〈ETiιnι · (vκ − viι) + nι · (tiι·viι + qiι)〉Ωκ,Ω =

−
∑
κ∈Icι

EκT iι
ειρκι ω

κ
iι

〈ριωiιnι · (vκ − viι)〉Ωκ,Ω

−
∑
κ∈Icι

〈
nι ·

{
tiι·
[
vκiι +

(
viι − vκiι

)]
+ qiι

}〉
Ωκ,Ω

−
∑
κ∈Icι

〈(
Eiι
ριωiι

− Eκiι
ειρκι ω

κ
iι

−Kκ
Eiι + ψiι − ψκiι

)
ριωiιnι · (vκ − viι)

〉
Ωκ,Ω
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−
∑
κ∈Icι

〈(
vκiι·

(
viι − vκiι

)
+

(
viι − vκiι

)
·
(
viι − vκiι

)
2

)

ριωiιnι · (vκ − viι)

〉
Ωκ,Ω

,

where

EκT iι = ει〈ETiι〉Ωκ,Ωκ ,(B.25)

Eκiι = ει〈Eiι〉Ωκ,Ωκ ,(B.26)

vκiι = 〈viι〉Ωκ,Ωκ,ριωiι ,(B.27)

ρκι = 〈ρι〉Ωκ,Ωκ ,(B.28)

ωκiι = 〈ωiι〉Ωκ,Ωκ,ρι ,(B.29)

ρκι ω
κ
iιK

κ
Eiι =

〈
ριωiι

(
viι − vκiι

)
·
(
viι − vκiι

)
2

〉
Ωκ,Ωκ

,(B.30)

and

ψκiι = 〈ψiι〉Ωκ,Ωκ,ριωiι .(B.31)

In the case where both subscript and superscript qualifiers are present in the variable,

the superscript indicates the domain over which the subscripted microscale quantity has

been averaged.

Eq. (B.24) can be written as

(B.32) −
∑
κ∈Icι

〈ETiιnι · (vκ − viι) + nι · (tiι·viι + qiι)〉Ωκ,Ω =

−
∑
κ∈Icι

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

) ,
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where the transfer terms are

iκ→iι
MEi

=



(
EκT iι
ειρκι ω

κ
iι

)
iκ→iι
M for dim Ωι > dim Ωκ,(

EιT iκ
εκρικω

ι
iκ

)
iκ→iι
M for dim Ωκ > dim Ωι,

(B.33)

jκ→iι
Tvi =

 vκiι·
jκ→iι

T for dim Ωι > dim Ωκ,

vιjκ·
jκ→iι

T for dim Ωκ > dim Ωι,

(B.34)

(B.35)
iκ→iι
M =

 〈ριωiιnι · (vκ − viι)〉Ωκ,Ω for dim Ωι > dim Ωκ,

−〈ρκωiκnκ · (vι − viκ)〉Ωι,Ω for dim Ωκ > dim Ωι,

(B.36)

jκ→iι
T =



〈
zT

jκ→iι
nι · tiι

〉
Ωκ,Ω

+ δij
〈
nι ·

[
ριωiι (vκ − viι)

(
viι − vκiι

)]〉
Ωκ,Ω

for dim Ωι > dim Ωκ,

−
〈

zT
jκ→iι

nκ · tjκ

〉
Ωι,Ω

− δij
〈
nκ ·

[
ρκωiκ (vι − viκ)

(
viκ − vιiκ

)]〉
Ωι,Ω

for dim Ωκ > dim Ωι,

(B.37)
jκ→iι
Q =

〈
zQ

jκ→iι
nι ·qiι

〉
Ωκ,Ω

+

〈
zT

jκ→iι
nι · tiι·

(
viι − vκiι

)〉
Ωκ,Ω

+δij

〈
ριωiι

(
Eiι
ριωiι

− Eκiι
ειρκι ω

κ
iι

+ ψiι − ψκiι
)

nι · (vκ − viι)

〉
Ωκ,Ω

+δij

〈
ριωiι

((
viι − vκiι

)
·
(
viι − vκiι

)
2

−Kκ
Eiι

)
nι · (vκ − viι)

〉
Ωκ,Ω

for dim Ωι > dim Ωκ,

(B.38)
jκ→iι
Q = −

〈
zQ

jκ→iι
nκ ·qjκ

〉
Ωι,Ω

−
〈

zT
jκ→iι

nκ · tjκ·
(
vjκ − vιjκ

)〉
Ωι,Ω
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−δij
〈(

Eiκ
ρκωiκ

− Eιiκ
εκρικω

ι
iκ

+ ψiκ − ψιiκ
)
ρκωiκnκ · (vι − viκ)

〉
Ωι,Ω

−δij
〈((

viκ − vιiκ
)
·
(
viκ − vιiκ

)
2

−Kι
Eiκ

)
ρκωiκnκ · (vι − viκ)

〉
Ωι,Ω

for dim Ωκ > dim Ωι.

Here
iκ→iι
M represents transfer of mass of species i in the κ entity to the i species in

the ι entity per unit volume per unit time,
jκ→iι

T represents momentum transfer from

species in the κ entity to the i species in the ι entity due to stress and deviation from

mean processes per unit volume per unit time,
jκ→iι
Q represents transfer of energy from

species in the κ entity to the i species in the ι entity resulting from heat transfer and

deviation from mean processes per unit volume per unit time, and δij is the Kronecker

delta function.

The terms zT
jκ→iι

and zQ
jκ→iι

are introduced to account for the fractional contributions

of stress and heat energy, respectively, transferred from all of the species in a connected

entity to a given species in the reference entity.

(B.39) zT
jκ→iι

= zQ
jκ→iι

= δij for dim Ωι > dim Ωκ.

These definitions change when the reference entity is a lower dimension than the con-

nected entity. Because stress energy and heat energy transfer are not confined to the

same species in each entity and overall conservation must be preserved, it follows that

(B.40)
∑
i∈Is

zT
jκ→iι

=
∑
i∈Is

zQ
jκ→iι

= 1.

The definitions are constrained such that energy and momentum exchange when summed

over all species and entities must vanish. This formulation is introduced so that the final

conservation and balance equations are identical for each entity. While the details are

somewhat complicated, the notions being represented are straightforward.
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Combining Eqns.(B.3), (B.4), (B.15), (B.18), (B.19), (B.22), and (B.32) gives the

conservation of energy equation for a species in a phase

(B.41) E iι =
DiιEiιT

Dt
+ EiιT I:d8iι −∇8·

(
ειtiι·viι + ειqiι

)
− ειψiιriι − ειhiι − ειeiιT

−
〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

)
+〈ETiιe· (viι − vext)− e· (tiι·viι + qiι)〉ΓιM ,Ω = 0 for ι ∈ IP,

where the rate of strain tensor is defined as

d8iι =
1

2

[
∇8viι +

(
∇8viι

)T
]
.

The continuum mechanical principle of Galilean invariance can be applied to Eq. (B.41)

to derive the conservation of momentum equation for a species in a phase

(B.42) Piι =
Diι
(
ειριωiιviι

)
Dt

+ ειριωiιviιI:d8iι −∇8·
(
ειtiι

)
− ειriιviι − ειpiι

−ειριωiιgiι −
∑
κ∈Icι

iκ→iιMvi +
∑
j∈Is

jκ→iι
T


+〈e·ριωiιviι (viι − vext)− e·tiι〉ΓιM ,Ω = 0 for ι ∈ IP,

where

(B.43)
iκ→iι
Mvi =

 vκiι
iκ→iι
M for dim Ωι > dim Ωκ,

vιiκ
iκ→iι
M for dim Ωκ > dim Ωι,

and the general macroscale conservation of mass equation for species in a phase

(B.44) Miι =
Diι
(
ειριωiι

)
Dt

+ ειριωiιI:d8iι − ειriι −
∑
κ∈Icι

iκ→iι
M

+〈e·ριωiι (viι − vext)〉ΓιM ,Ω = 0 for ι ∈ IP.
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The microscale balance of entropy equation for species i in phase ι is

(B.45) Siι =
Diιηiι

Dt
+ ηiιI:diι −∇·ϕiι − biι = Λiι,

where ηiι is the entropy density of species i in entity ι, ϕiι is the non-advective entropy

density flux vector, biι is the entropy source density, and Λiι is the entropy production

rate density. Applying the averaging operator in Eq. (3.1) and Theorems D[3,(2,0),1]

and T[3,(2,0),1] to Eq. (B.45) gives

(B.46) Siι =
Diιηiι

Dt
+ ηiιI:d8iι −∇8·

(
ειϕiι

)
− ειbiι −

∑
κ∈Icι

iκ→iιMηi +
∑
j∈Is

jκ→iι
Φ


+〈e· [(viι − vext) ηiι −ϕiι]〉ΓιM ,Ω = Λiι for ι ∈ IP,

where

(B.47) ηiι = 〈ηiι〉Ωι,Ω , ειbiι = 〈biι〉Ωι,Ω , Λiι = 〈Λiι〉Ωι,Ω ,

(B.48) ηκiι = ει〈ηiι〉Ωκ,Ωκ , ειϕiι =
〈
ϕiι − ηiι

(
viι − viι

)〉
Ωι,Ω

,

(B.49)
iκ→iι
Mηi =



(
ηκiι

ειρκι ω
κ
iι

)
iκ→iι
M for dim Ωι > dim Ωκ,(

ηιiκ
εκρικω

ι
iκ

)
iκ→iι
M for dim Ωκ > dim Ωι,

(B.50)
jκ→iι

Φ =

〈
zΦ

jκ→iι
nι ·ϕiι

〉
Ωκ,Ω

+δij

〈
ριωiι

(
ηiι
ριωiι

− ηκiι
ειρκι ω

κ
iι

)
nι · (vκ − viι)

〉
Ωκ,Ω

for dim Ωι > dim Ωκ,
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and

(B.51)
jκ→iι

Φ = −
〈

zΦ
jκ→iι

nκ ·ϕiκ

〉
Ωι,Ω

−δij
〈
ρκωiκ

(
ηiκ
ρκωiκ

− ηιiκ
εκρικω

ι
iκ

)
nκ · (vι − viκ)

〉
Ωι,Ω

for dim Ωκ > dim Ωι,

where zΦ
jκ→iι

accounts for the fractional contribution of entropy from species j in entity

κ to species i in entity ι. As was the case for similar contributions of stress and heat,

zΦ
jκ→iι

= δij for dim Ωι > dim Ωκ. The quantity
jκ→iι

Φ represents the transfer of entropy

from the κ entity to the i species in the ι entity due to processes other than phase change

per unit volume per unit time.

B.2. Interface Equations

Conservation and balance equations for interfaces and common curves can be de-

rived in the same manner as phases starting from the microscale form of the energy

equation averaging to the macroscale, simplifying with an appropriate set of transport

and divergence theorems, and applying the principle of Galilean invariance to obtain the

macroscale version of the momentum and mass equations.

The microscale conservation of energy equation for a species i in an interface ι is

(B.52)
∂′ETiι
∂t

+∇′· (ETiιviι)−∇′·
(
t′iι·viι + q′iι

)− ψiιriι − hiι
−eTiι − ριωiι

∂′ψiι
∂t

+
∑

κ∈(Icι∩IP)

ETiκ (vι − viκ) ·nκ
∣∣∣∣
Ωι

+
∑

κ∈(Icι∩IP)

∑
j∈Is

nκ ·
(

zT
jκ→iι

tjκ·vjκ + zQ
jκ→iι

qjκ

)∣∣∣∣
Ωι

= 0 for ι ∈ II.

Integrating Eq. (B.52) over the interfacial area Ωι we have
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(B.53)

〈
∂′ETiι
∂t

〉
Ωι,Ω

+
〈∇′· (ETiιviι)〉Ωι,Ω − 〈∇′· (tiι′·viι + qiι

′)〉
Ωι,Ω

−〈ψiιriι〉Ωι,Ω − 〈hiι〉Ωι,Ω − 〈eTiι〉Ωι,Ω −
〈
ριωiι

∂′ψiι
∂t

〉
Ωι,Ω

+
∑

κ∈(Icι∩IP)

〈ETiκnκ · (vι − viκ)〉Ωι,Ω

+
∑

κ∈(Icι∩IP)

∑
j∈Is

〈
nκ ·

(
zT

jκ→iι
tjκ·vjκ + zQ

jκ→iι
qjκ

)〉
Ωι,Ω

= 0 for ι ∈ II.

Applying T[2,(2,0),1] given by Eq. (3.8) to the first term in Eq. (B.53) yields

(B.54)

〈
∂′ETiι
∂t

〉
Ωι,Ω

=
∂8

∂t
〈ETiι〉Ωι,Ω +∇8·〈nαnα ·viιETiι〉Ωι,Ω

−〈(∇′·nα)nα ·viιETiι
〉

Ωι,Ω
−

∑
κ∈(Icι∩IC)

〈nι ·vκETiι〉Ωκ,Ω

−
〈

e·vextETiι
nι · e

〉
ΓιM ,Ω

.

Applying D[2,(2,0),1] given by Eq. (3.6) to the first divergence term in Eq. (B.53) provides

(B.55)
〈∇′· (ETiιviι)〉Ωι,Ω = ∇8·〈ETiι (viι − nαnα ·viι)〉Ωι,Ω

+
〈(∇′·nα)nα ·ETiιviι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι ·ETiιviι〉Ωκ,Ω

+

〈
e·viιETiι

nι · e

〉
ΓιM ,Ω

,

and to the second divergence term

(B.56)
〈∇′· (tiι′·viι + qiι

′)〉
Ωι,Ω

= ∇8·
〈
t′iι·viι + q′iι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈
nι ·

(
t′iι·viι + q′iι

)〉
Ωκ,Ω

+

〈
e·
(
t′iι·viι + q′iι

)
nι · e

〉
ΓιM ,Ω

.

Substituting these into Eq. (B.53) and canceling like terms we get
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(B.57)
∂′
∂t
〈ETiι〉Ωι,Ω +∇8·〈ETiιviι〉Ωι,Ω −∇8·

〈
t′iι·viι + q′iι

〉
Ωι,Ω

−〈ψiιriι〉Ωι,Ω − 〈hiι〉Ωι,Ω − 〈eTiι〉Ωι,Ω −
〈
ριωiι

∂′ψiι
∂t

〉
Ωι,Ω

+
∑

κ∈(Icι∩IP)

〈nκ · (vι − viκ)ETiκ〉Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι · (viι − vκ)ETiι〉Ωκ,Ω

+
∑

κ∈(Icι∩IP)

∑
j∈Is

〈
nκ ·

(
zT

jκ→iι
tjκ·vjκ + zQ

jκ→iι
qjκ

)〉
Ωι,Ω

−
∑

κ∈(Icι∩IC)

〈
nι · t′iι·viι

〉
Ωκ,Ω

−
∑

κ∈(Icι∩IC)

〈
nι ·q′iι

〉
Ωκ,Ω

+

〈
e·
[
ETiι

(
viι − vext

)− t′iι·viι − q′iι
]

nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ II.

Considering Eq. (B.57) term by term to evaluate the averaging operators gives for the

time derivative term

(B.58)
∂8

∂t

〈
Eiι + ριωiι

(viι·viι
2

+ ψiι

)〉
Ωι,Ω

=
∂8

∂t

[
Eiι + ειριωiι

(
viι·viι

2
+Kiι

E + ψiι

)]
.

Evaluating divergence terms in the same way as for the phase provides

(B.59) ∇8·〈ETiιviι〉Ωι,Ω = ∇8·
(
EiιT vι

)
+∇8·

(
EiιT uiι

)
+∇8·

〈
(Eiι + ριωiιψiι)

(
viι − viι

)〉
Ωι,Ω

+∇8·
〈viι·

(
viι − viι

)
+

(
viι − viι

)
·
(
viι − viι

)
2


ριωiι

(
viι − viι

)〉
Ωι,Ω

.
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The second divergence term in Eq. (B.57) may be written as

(B.60) ∇8·
〈
t′iι·viι + q′iι

〉
Ωι,Ω

= ∇8·
〈
t′iι·viι + t′iι·

(
viι − viι

)
+ q′iι

〉
Ωι,Ω

.

Combining equations Eqs. (B.59) and (B.60) gives

(B.61) ειtiι·viι + ειqiι =
〈[

t′iι − ριωiι
(
viι − viι

)(
viι − viι

)]
·viι
〉

Ωι,Ω

+

〈
q′iι −

Eiι + ριωiι


(
viι − viι

)
·
(
viι − viι

)
2

+ ψiι

(viι − viι
)〉

Ωι,Ω

+
〈
t′iι·
(
viι − viι

)〉
Ωι,Ω

,

where the first term on the RHS is the macroscale stress tensor for a species in an interface

and the second two terms on the RHS sum to the macroscale heat source vector for a

species in an interface.

The inter-entity transfer of energy from the phases that form the interface to the

interface can be written as

(B.62) −
∑

κ∈(Icι∩IP)

〈nκ · (vι − viκ)ETiκ〉Ωι,Ω

−
∑

κ∈(Icι∩IP)

∑
j∈Is

〈
nκ ·

(
zT

jκ→iι
tjκ·vjκ + zQ

jκ→iι
qjκ

)〉
Ωι,Ω

=

−
∑

κ∈(Icι∩IP)

EιT iκ
εκρικω

ι
iκ

〈ρκωiκnκ · (vι − viκ)〉Ωι,Ω

−
∑

κ∈(Icι∩IP)

〈(
Eiκ
ρκωiκ

− Eιiκ
εκρικω

ι
iκ

−Kι
Eiκ

)
ρκωiκnκ · (vι − viκ)

〉
Ωι,Ω

−
∑

κ∈(Icι∩IP)

〈[
ψiκ − ψιiκ + vιiκ·

(
viκ − vιiκ

)]
ρκωiκnκ · (vι − viκ)

〉
Ωι,Ω

−
∑

κ∈(Icι∩IP)

〈(
viκ − vιiκ

)
·
(
viκ − vιiκ

)
2

ρκωiκnκ · (vι − viκ)

〉
Ωι,Ω

207



−
∑

κ∈(Icι∩IP)

∑
j∈Is

〈
nκ ·

{
zT

jκ→iι
tjκ·

[
vιjκ +

(
vjκ − vιjκ

)]
+ zQ
jκ→iι

qjκ

}〉
Ωι,Ω

.

Using notation from Eqs. (B.35)–(B.39), Eq. (B.62) can be written as

(B.63)
∑

κ∈(Icι∩IP)

〈nκ · (vι − viκ)ETiκ〉Ωι,Ω

+
∑

κ∈(Icι∩IP)

∑
j∈Is

〈
nκ ·

(
zT

jκ→iι
tjκ·vjκ + zQ

jκ→iι
qjκ

)〉
Ωι,Ω

=

−
∑

κ∈(Icι∩IP)

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

) .
The transfer of energy from a common curve to an interface is simplified analogously

to the case of the transfer of energy from a phase to an interface, where integration

is performed over the lower dimensional entity and the transfer terms are written with

respect to the higher dimensional entity, resulting in the short-hand expression

(B.64) −
∑

κ∈(Icι∩IC)

〈ETiιnι · (vκ − viι) + nι · (tiι·viι + qiι)〉Ωκ,Ω =

−
∑

κ∈(Icι∩IC)

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

) .
Collecting results, Eq. (B.57) can be written in final form for the conservation of

energy for a species in an interface as

(B.65) E iι =
DiιEiιT

Dt
+ EiιT I:d8iι −∇8·

(
ειtiι·viι + ειqiι

)
− ειψiιriι − ειhiι − ειeiιT

−
〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

)
+

〈
ETiιe·

(
viι − vext

)− e·
(
t′iι·viι − q′iι

)
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ II.
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The continuum mechanical principle of Galilean invariance can be applied to the

macroscale conservation of energy equations for species i in interface ι to derive the

conservation of momentum and conservation of mass equations for species i in interface

ι

(B.66) Piι =
Diι
(
ειριωiιviι

)
Dt

+ ειριωiιviιI:d8iι −∇8·
(
ειtiι

)
− ειriιviι − ειpiι

−ειριωiιgiι −
∑
κ∈Icι

iκ→iιMvi +
∑
j∈Is

jκ→iι
T


+

〈
e·ριωiιviι

(
viι − vext

)− e·t′iι
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ II,

where
iκ→iι
Mvi is defined as in Eq. (B.43),

jκ→iι
T is defined in Eq. (B.36), and the general

macroscale conservation of mass equation for species i in interface ι can be written

(B.67) Miι =
Diι
(
ειριωiι

)
Dt

+ ειριωiιI:d8iι − ειriι −
∑
κ∈Icι

iκ→iι
M

+

〈
e·ριωiι

(
viι − vext

)
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ II,

where
iκ→iι
M is defined in Eq. (B.35).

The microscale balance of entropy equation for a species in an interface is

(B.68) Siι =
∂′ηiι
∂t

+∇′· (ηiιviι)−∇′·ϕ′iι − biι

−
∑

κ∈(Icι∩IP)

−∑
j∈Is

zΦ
jκ→iι

ϕjκ + ηiκ (viκ − vι)

 ·nκ∣∣∣∣
Ωι

= Λiι for ι ∈ II.

Integrating Eq. (B.68) over the interface surface Ωι and applying T[2,(2,0),1] and

D[2,(2,0),1] yields

(B.69)
∂8

∂t
〈ηiι〉Ωι,Ω +∇8·〈ηiιviι〉Ωι,Ω −∇8·

〈
ϕ′iι
〉

Ωι,Ω
− 〈biι〉Ωι,Ω
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−
∑

κ∈(Icι∩IP)

〈
nκ·

−∑
j∈Is

zΦ
jκ→iι

ϕjκ + ηiκ (viκ − vι)

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι· [−ϕiι + ηiι (viι − vκ)]〉Ωκ,Ω

+

〈
e·ηiι

(
viι − vext

)
nι · e

〉
ΓιM ,Ω

−
〈

e·ϕ′iι
nι · e

〉
ΓιM ,Ω

= 〈Λiι〉Ωι,Ω .

Setting viι = viι +
(
viι − viι

)
in the second term and averaging to the macroscale we

get

(B.70)
∂8ηiι

∂t
+∇8·

(
ηiιviι

)
−∇8·

(
ειϕiι

)
− ειbiι

−
∑

κ∈(Icι∩IP)

〈
nκ·

−∑
j∈Is

zΦ
jκ→iι

ϕjκ + ηiκ (viκ − vι)

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι· [−ϕiι + ηiι (viι − vκ)]〉Ωκ,Ω

+

〈
e·ηiι

(
viι − vext

)
nι · e

〉
ΓιM ,Ω

−
〈

e·ϕ′iι
nι · e

〉
ΓιM ,Ω

= Λiι,

where

(B.71) ειϕiι =
〈
ϕ′iι − ηiι

(
viι − viι

)〉
Ωι,Ω

.

For the connected entities we can write

(B.72) −
∑

κ∈(Icι∩IP)

〈
nκ·

−∑
j∈Is

zΦ
jκ→iι

ϕjκ + ηiκ (viκ − vι)

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nι· [−ϕiι + ηiι (viι − vκ)]〉Ωκ,Ω

= −
∑
κ∈Icι

iκ→iιMη +
∑
j∈Is

jκ→iι
Φ

 ,
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where use is made of Eqs. (B.49)–(B.51).

Thus the macroscopic entropy equation for species i in entity ι can be written

(B.73)

Siι =
∂8ηiι

∂t
+∇8·

(
ηiιviι

)
−∇8·

(
ειϕiι

)
− ειbiι −

∑
κ∈Icι

iκ→iιMηi +
∑
j∈Is

jκ→iι
Φ


+

〈
e·
[(

viι − vext
)
ηiι −ϕ′iι

]
nι · e

〉
ΓιM ,Ω

= Λiι,

which putting into material derivative form gives us

(B.74) Siι =
Diιηiι

Dt
+ ηiιI:d8iι −∇8·

(
ειϕiι

)
− ειbiι −

∑
κ∈Icι

iκ→iιMηi +
∑
j∈Is

jκ→iι
Φ


+

〈
e·
[(

viι − vext
)
ηiι −ϕ′iι

]
nι · e

〉
ΓιM ,Ω

= Λiι for ι ∈ II,

where
iκ→iι
Mηi and

iκ→iι
Φ are defined in Eqs. (B.49)–(B.51).

B.3. Common Curve Equations

The microscale conservation of total energy equation for a species i in a common

curve ι is

(B.75)
∂′′ETiι
∂t

+∇′′· (ETiιviι)−∇′′·
(
t′′iι·viι + q′′iι

)− ψiιriι − hiι
−eTiι − ριωiι

∂′′ψiι
∂t

+
∑

κ∈Icι∩II

nκ ·ETiκ (vι − viκ)

∣∣∣∣
Ωι

+
∑

κ∈(Icι∩II)

∑
j∈Is

nκ ·
(

zT
jκ→iι

tjκ·vjκ + zQ
jκ→iι

qjκ

)∣∣∣∣∣
Ωι

= 0 for ι ∈ IC.

Integrating Eq. (B.75) over the ι common curve yields
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(B.76)

〈
∂′′ETiι
∂t

〉
Ωι,Ω

+
〈∇′′· (ETiιviι)〉Ωι,Ω − 〈∇′′· (t′′iι·viι + q′′iι

)〉
Ωι,Ω

−〈ψiιriι〉Ωι,Ω − 〈hiι〉Ωι,Ω − 〈eTiι〉Ωι,Ω −
〈
ριωiι

∂′′ψiι
∂t

〉
Ωι,Ω

+
∑

κ∈(Icι∩II)

〈nκ ·ETiκ (vι − viκ)〉Ωκ,Ω

+
∑

κ∈(Icι∩II)

〈∑
j∈Is

nκ ·
(

zT
jκ→iι

tjκ·vjκ + zQ
jκ→iι

qjκ

)〉
Ωκ,Ω

= 0 for ι ∈ IC.

Applying T[1,(2,0),1] to the first term in Eq. (B.76) we get

(B.77)

〈
∂′′ETiι
∂t

〉
Ωι,Ω

=
∂8

∂t
〈ETiι〉Ωι,Ω +∇8·〈(vι − lιlι ·vι)ETiι〉Ωι,Ω

+
〈(

lι ·∇′′lι
)
·vιETiι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈nι ·vκETiι〉Ωκ,Ω

−
〈

e·vextETiι
nι · e

〉
ΓιM ,Ω

.

Since the term involving I− lιlι involves only normal components and since

(B.78) lι ·∇′′lι · lι = 0

showing that the curvature term does not have a normal component, then Eq. (B.77)

can be written as

(B.79)

〈
∂′′ETiι
∂t

〉
Ωι,Ω

=
∂8

∂t
〈ETiι〉Ωι,Ω +∇8·〈(viι − lιlι ·viι)ETiι〉Ωι,Ω

+
〈(

lι ·∇′′lι
)
·viιETiι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈nι ·vκETiι〉Ωκ,Ω

−
〈

e·vextETiι
nι · e

〉
ΓιM ,Ω

.

Applying D[1,(2,0),1] to the first divergence term in Eq. (B.76) provides

(B.80)
〈∇′′· (ETiιviι)〉Ωι,Ω = ∇8·〈lιlι ·viιETiι〉Ωι,Ω −

〈(
lι ·∇′′lι

)
·viιETiι

〉
Ωι,Ω
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+
∑

κ∈(Icι∩IPt)

〈nι ·viιETiι〉Ωκ,Ω +

〈
e·viιETiι

nι · e

〉
ΓιM ,Ω

and to the second divergence term gives

(B.81)
〈∇′′· (t′′iι·viι + q′′iι

)〉
Ωι,Ω

= ∇8·
〈
t′′iι·viι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈
nι · t′′iι·viι

〉
Ωκ,Ω

+

〈
e·t′′iι·viι

nι · e

〉
ΓιM ,Ω

+∇8·
〈
q′′iι
〉

Ωι,Ω
+

∑
κ∈(Icι∩IPt)

〈
nι ·q′′iι

〉
Ωκ,Ω

+

〈
e·q′′iι
nι · e

〉
ΓιM ,Ω

.

Combining Eqs. (B.76)–(B.81) and simplifying yields

(B.82)
∂8

∂t
〈ETiι〉Ωι,Ω +∇8·〈ETiιviι〉Ωι,Ω −∇8·

〈
t′′iι·viι + q′′iι

〉
Ωι,Ω

−〈ψiιriι〉Ωι,Ω − 〈hiι〉Ωι,Ω − 〈eTiι〉Ωι,Ω −
〈
ριωiι

∂′′ψiι
∂t

〉
Ωι,Ω

+
∑

κ∈(Icι∩II)

〈nκ · (vι − viκ)ETiκ〉Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈nι · (vκ − viι)ETiι〉Ωκ,Ω

+
∑

κ∈(Icι∩II)

∑
j∈Is

〈
nκ ·

(
zT

jκ→iι
t′jκ·vjκ + zQ

jκ→iι
q′jκ

)〉
Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈
nι ·

(
t′′iι·viι + q′′iι

)〉
Ωκ,Ω

+

〈
e·
[
ETiι

(
viι − vext

)− t′′iι·viι − q′′iι
]

nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ IC.

Using the exchange term definitions, Eqs. (B.33)–(B.38), and defining the macroscale

stress tensor and heat flux vector according to

(B.83) ειtiι·viι + ειqiι =
〈[

t′′iι − ριωiι
(
viι − viι

)(
viι − viι

)]
·viι
〉

Ωι,Ω
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+

〈
q′′iι −

Eiι + ριωiι


(
viι − viι

)
·
(
viι − viι

)
2

+ ψiι

(viι − viι
)〉

Ωι,Ω

+
〈
t′′iι·
(
viι − viι

)〉
Ωι,Ω

,

we arrive at the conservation of total energy equation for the common curve

(B.84) E iι =
DiιEiιT

Dt
+ EiιT I:d8iι −∇8·

(
ειtiι·viι + ειqiι

)
− ειψiιriι − ειhiι − ειeiιT

−
〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

)
+

〈
ETiιe·

(
viι − vext

)− e·
(
t′′iι·viι + q′′iι

)
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ IC.

Applying Galilean invariance to the macroscale conservation of energy equations for

species i in common curve ι yields the conservation of momentum and conservation of

mass equations for species i in common curve ι. For the momentum equation we write

(B.85) Piι =
Diι
(
ειριωiιviι

)
Dt

+ ειριωiιviιI:d8iι −∇8·
(
ειtiι

)
− ειriιviι − ειpiι

−ειριωiιgiι −
∑
κ∈Icι

iκ→iιMvi +
∑
j∈Is

jκ→iι
T


+

〈
e·ριωiιviι

(
viι − vext

)− e·t′′iι
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ IC,

where
iκ→iι
Mvi is defined as in Eq. (B.43), and

iκ→iι
T is defined in Eq. (B.36).

The general macroscale conservation of mass equation for species i in common curve

ι can be written

(B.86) Miι =
Diι
(
ειριωiι

)
Dt

+ ειριωiιI:d8iι − ειriι −
∑
κ∈Icι

iκ→iι
M
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+

〈
e·ριωiι

(
viι − vext

)
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ IC,

where
iκ→iι
M is defined in Eq. (B.35).

The microscale balance of entropy equation for species i in a common curve ι can be

written as

(B.87)

Siι =
∂′′ηiι
∂t

+∇′′· (ηiιviι)−∇′′·ϕ′′iι − biι −
∑

κ∈(Icι∩II)

nκ· [−ϕiκ + ηiκ (viκ − vι)]

= Λiι for ι ∈ IC.

Integrating Eq. (B.87) over the ι common curve and applying Theorem 3.4.7 and

Theorem 3.4.9 yields

(B.88)
∂8

∂t
〈ηiι〉Ωι,Ω +∇8·〈ηiιviι〉Ωι,Ω −∇8·

〈
ϕ′′iι
〉

Ωι,Ω
− 〈biι〉Ωι,Ω

−
∑

κ∈(Icι∩II)

〈nκ· [(viκ − vι) ηiκ −ϕiκ]〉Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈nι · [(viι − vκ) ηiι −ϕiι]〉Ωκ,Ω

+

〈
e·
[(

viι − vext
)
ηiι −ϕ′′iι

]
nι · e

〉
ΓιM ,Ω

= 〈Λiι〉Ωι,Ω .

Setting viι = viι +
(
viι − viι

)
in the second term and averaging to the macroscale we

get

(B.89)
∂8ηiι

∂t
+∇8·

(
ηiιviι

)
−∇8·

(
ειϕiι

)
− ειbiι

−
∑

κ∈(Icι∩II)

〈nκ· [(viκ − vι) ηiκ −ϕiκ]〉Ωι,Ω
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+
∑

κ∈(Icι∩IPt)

〈nι · [(viι − vκ) ηiι −ϕiι]〉Ωκ,Ω

+

〈
e·
[(

viι − vext
)
ηiι −ϕ′′iι

]
nι · e

〉
ΓιM ,Ω

= Λiι,

where

(B.90) ειϕiι =
〈
ϕ′′iι − ηiι

(
viι − viι

)〉
Ωι,Ω

.

For the connected entities we can write

(B.91) −
∑

κ∈(Icι∩II)

〈nκ· [(viκ − vι) ηiκ −ϕiκ]〉Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈nι · [(viι − vκ) ηiι −ϕiι]〉Ωκ,Ω

= −
∑
κ∈Icι

iκ→iιMη +
∑
j∈Is

jκ→iι
Φ

 .

Thus the macroscopic entropy equation for species i in entity ι can be written

(B.92)

Siι =
∂8ηiι

∂t
+∇8·

(
ηiιviι

)
−∇8·

(
ειϕiι

)
− ειbiι −

∑
κ∈Icι

iκ→iιMηi +
∑
j∈Is

jκ→iι
Φ


+

〈
e·
[(

viι − vext
)
ηiι −ϕ′′iι

]
nι · e

〉
ΓιM ,Ω

= Λiι for ι ∈ IC,

which putting into material derivative form gives us

(B.93) Siι =
Diιηiι

Dt
+ ηiιI:d8iι −∇8·

(
ειϕiι

)
− ειbiι −

∑
κ∈Icι

iκ→iιMηi +
∑
j∈Is

jκ→iι
Φ


+

〈
e·
[(

viι − vext
)
ηiι −ϕ′′iι

]
nι · e

〉
ΓιM ,Ω

= Λiι for ι ∈ IC.
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Noting that nι · e = 1 for ι ∈ IP, we can write the conservation of energy, mass, and

momentum as well as the entropy inequality each in a single form for phases, interfaces,

and common curves allowing for a single equation to be written for ι ∈ I.

B.4. General Conservation Equations

The general conservation of energy equation for species i in entity ι is given by

(B.94) E iι =
DiιEiιT

Dt
+ EiιT I:d8iι −∇8·

(
ειtiι·viι + ειqiι

)
− ειψiιriι − ειhiι − ειeiιT

−
〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

−
∑
κ∈Icι

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

)
+

〈
ETiιe·

(
viι − vext

)− e· (tiι·viι + qiι)

nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ I.

Summing EiιT over all species with velocities written in terms of dispersion velocities,

uiι = viι − vι and uiι = viι − vι,

(B.95)
∑
i∈Is

EiιT = Eι + ειρι
(

vι·vι

2
+Kι

E

)
+
∑
i∈Is

ειριωiιψiι,

where

Eι =
∑
i∈Is

Eiι, and(B.96)

Kι
E =

∑
i∈Is

ωiι

uiι·uiι

2
+Kiι

E

 .(B.97)

Using the definition of the dispersion velocity to replace all species velocities, we can

define the macroscale stress tensor for entity ι as

(B.98) tι =
∑
i∈Is

(
tiι − ριωiιuiιuiι

)
,
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and the macroscale heat flux vector for entity ι as

(B.99) ειqι =
∑
i∈Is

(
ειqiι −

{[
Eiι + ειριωiι

Kiι
E +

uiι·uiι

2

+ ειριωiιψiι

]
I

−ειtiι
}
·uiι
)
.

For the transition region, the non-advective fluxes can be decomposed into the por-

tions over the surface and the portion in the megascale direction. So for vectors, this

means for example that

(B.100) qι = I8·qι + NN ·qι = q8ι + NN ·qι.

The divergence of the heat flux vector can then be written as

(B.101) ∇8·
(
ειqι

)
= ∇8·

(
ειq8ι

)
+
(∇8·N

) (
ειN·qι

)
.

For tensors, for example the stress tensor, the decomposition can be written as

(B.102) tι = I8·tι·I8 + I8·tι·NN + NN · tι·I8 + NN · tι·NN.

We define t8ι = tι −NN · tι·NN, then

(B.103) ∇8·
(
ειtι·vι

)
= ∇8·

(
ειt8ι·vι

)
+
(∇8·N

) (
ειN·tι·NN ·vι

)
.

Taking the decompositions and Eq. (B.7) into account, and summing over all species

i gives

(B.104) E ι =

Dι

(
Eι + ειρι

(
vι·vι

2 +Kι
E

)
+
∑
i∈Is

ειριωiιψiι

)
Dt

+

Eι + ειρι
(

vι·vι

2
+Kι

E

)
+
∑
i∈Is

ειριωiιψiι

 I:d8ι

−∇8·
(
ειt8ι·vι

)
−∇8·

(
ειq8ι

)
− ειhιT

218



−
∑
i∈Is

ειριωiι
(

giιT − giι
)
·vι −

∑
i∈Is

(
ειψiιriι +

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

)

−
∑
κ∈Icι

∑
i∈Is

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

)
+
∑
i∈Is

〈
ETiιe·

(
viι − vext

)− e· (tiι·viι + qiι)

nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ I,

where

(B.105) hιT =
∑
i∈Is

hiι +
(∇8·N

) (
N·qι

)
,

(B.106)
∑
i∈Is

ειριωiιgiιT =
∑
i∈Is

ειριωiιgiι +
(∇8·N

) (
ειN·tι·NN

)
,

and

(B.107)
∑
i∈Is

ειeiιT = 0.

We note that for dim Ωι > dim Ωκ

(B.108)
∑
i∈Is

iκ→iι
MEi

=
EκTι
ειρκι

∑
i∈Is

iκ→iι
M +

∑
i∈Is

(
EκT iι
ειρκι ω

κ
iι

− EκTι
ειρκι

)
iκ→iι
M

=
∑
i∈Is

iκ→iι
ME +

∑
i∈Is

(
EκT iι
ειρκι ω

κ
iι

− EκTι
ειρκι

)
iκ→iι
M ,

and

(B.109)
∑
i∈Is

∑
j∈Is

jκ→iι
Tvi =

∑
i∈Is

∑
j∈Is

vκι ·
jκ→iι

T +
∑
i∈Is

∑
j∈Is

(
vκiι − vκι

)
·
jκ→iι

T

=
κ→ι
Tv −

∑
i∈Is

vκι ·
(
vκiι − vκι

) iκ→iι
M +

∑
j∈Is

(
vκiι − vκι

)
·
jκ→iι

T

 ,
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where we have defined the microscale stress tensor as

(B.110) tι =
∑
i∈Is

(tiι − ριωiιuiιuiι) .

Similarly if dim Ωκ > dim Ωι then

(B.111)
∑
i∈Is

iκ→iι
MEi

=
EιTκ
εκρικ

∑
i∈Is

iκ→iι
M +

∑
i∈Is

(
EιT iκ
εκρικω

ι
iκ

− EιTκ
εκρικ

)
iκ→iι
M

=
∑
i∈Is

iκ→iι
ME +

∑
i∈Is

(
EιT iκ
εκρικω

ι
iκ

− EιTκ
εκρικ

)
iκ→iι
M ,

and

(B.112)∑
i∈Is

∑
j∈Is

jκ→iι
Tvi =

κ→ι
Tv −

∑
i∈Is

vικ·
(
vιiκ − vικ

) iκ→iι
M +

∑
j∈Is

(
vιiκ − vικ

)
·
jκ→iι

T

 .

The heat transfer term for an entity may then be defined as

(B.113)
κ→ι
Q =

∑
i∈Is

[ ∑
j∈Is

jκ→iι
Q − vκι ·

(
vκiι − vκι

) iκ→iι
M +

∑
j∈Is

(
vκiι − vκι

)
·
jκ→iι

T

+

(
EκT iι
ειρκι ω

κ
iι

− EκTι
ειρκι

)
iκ→iι
M

]
for dim Ωι > dim Ωκ,

and

(B.114)
κ→ι
Q =

∑
i∈Is

[ ∑
j∈Is

jκ→iι
Q − vικ·

(
vιiκ − vικ

) iκ→iι
M +

∑
j∈Is

(
vιiκ − vικ

)
·
jκ→iι

T

+

(
EιT iκ
εκρικω

ι
iκ

− EιTκ
εκρικ

)
iκ→iι
M

]
for dim Ωκ > dim Ωι,

such that the inter-entity exchange of energy may be written as

(B.115)∑
κ∈Icι

∑
i∈Is

iκ→iιMEi
+
∑
j∈Is

(
jκ→iι
Tvi +

jκ→iι
Q

) =
∑
κ∈Icι

∑
i∈Is

iκ→iι
ME +

κ→ι
Tv +

κ→ι
Q

 .
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Summing the last term of Eqn (B.104) over all species i provides

∑
i∈Is

〈
ETiιe·

(
viι − vext

)
nι · e

〉
ΓιM ,Ω

−
∑
i∈Is

〈
e· (tiι·viι + qiι)

nι · e

〉
ΓιM ,Ω

.

which using the definition of the total energy density and microscale dispersion velocity

can be written as

(B.116)
∑
i∈Is

ETiιe·
(
viι − vext

)
nι · e

−
∑
i∈Is

e· (tiι·viι + qiι)

nι · e

=
∑
i∈Is

(
Eiι + ριωiι

(vι+uiι)·(vι+uiι)
2 + ριωiιψiι

)
e·
(
vι + uiι − vext

)
nι · e

−
∑
i∈Is

e· [tiι· (vι + uiι) + qiι]

nι · e
.

Considering

(B.117) Eι =
∑
i∈Is

Eiι, vι =
∑
i∈Is

ωiιviι,

(B.118) qι =
∑
i∈Is

{
qiι −

[(
Eiι + ριωiι

uiι·uiι
2

+ ριωiιψiι

)
I− tiι

]
·uiι
}
,

and noting that ∑
i∈Is

ωiιuiι = 0,

we rewrite Eqn (B.116) as

(B.119)
∑
i∈Is

ETiιe·
(
viι − vext

)
nι · e

−
∑
i∈Is

e· (tiι·viι + qiι)

nι · e

=

(
Eι + ρι

vι·vι
2 +

∑
i∈Is

ριωiιψiι

)
e·
(
vι − vext

)
nι · e

+
∑
i∈Is

ριωiι
uiι·uiι

2 e·
(
vι − vext

)
nι · e

− e· (tι·vι + qι)

nι · e
.
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Therefore the conservation of energy equation for an entity within a transition region

can be written

(B.120) E ι =

Dι

(
Eι + ειρι

(
vι·vι

2 +Kι
E

)
+
∑
i∈Is

ειριωiιψiι

)
Dt

+

Eι + ειρι
(

vι·vι

2
+Kι

E

)
+
∑
i∈Is

ειριωiιψiι

 I:d8ι

−
∑
i∈Is

∇8·
(
ειt8ι·vι

)
−∇8·

(
ειq8ι

)
− ειhιT −

∑
i∈Is

ειριωiι
(

giιT − giι
)
·vι

−
∑
i∈Is

(
ειψiιriι +

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

)
−
∑
κ∈Icι

∑
i∈Is

iκ→iι
ME +

κ→ι
Tv +

κ→ι
Q



+

〈(Eι + ρι
vι·vι

2 +
∑
i∈Is

ριωiι

(
ψiι +

uiι·uiι
2

))
e·
(
vι − vext

)
nι · e

〉
ΓιM ,Ω

−
〈

e· (tι·vι + qι)

nι · e

〉
ΓιM ,Ω

= 0.

Applying the product rule to the material derivative and rearranging

(B.121) E ι =
DιEι

Dt
+ vι·

Dι
(
ειριvι

)
Dt

+
∑
i∈Is

(
Kι
E −

vι·vι

2
+ ψiι

)
Dι
(
ειριωiι

)
Dt

+
∑
i∈Is

ειριωiι
Dι
(
Kι
E + ψiι

)
Dt

+

Eι + ειρι
(

vι·vι

2
+Kι

E

)
+
∑
i∈Is

ειριωiιψiι

 I:d8ι

−
∑
i∈Is

∇8·
(
ειt8ι·vι

)
−∇8·

(
ειq8ι

)
− ειhιT −

∑
i∈Is

ειριωiι
(

giιT − giι
)
·vι

−
∑
i∈Is

(
ειψiιriι +

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

)
−
∑
κ∈Icι

∑
i∈Is

iκ→iι
ME +

κ→ι
Tv +

κ→ι
Q
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+

〈(Eι + ρι
vι·vι

2 +
∑
i∈Is

ριωiι

(
ψiι +

uiι·uiι
2

))
e·
(
vι − vext

)
nι · e

〉
ΓιM ,Ω

−
〈

e· (tι·vι + qι)

nι · e

〉
ΓιM ,Ω

= 0,

or in shorthand notation we have

(B.122) E ι =
DιEι

Dt
+ vι·

Dι
(
ειριvι

)
Dt

+
∑
i∈Is

(
Kι
E −

vι·vι

2
+ ψiι

)
Dι
(
ειριωiι

)
Dt

+E ιr = 0 for ι ∈ I,

where E ιr accounts for the residual terms in Eq. (B.121) that are not explicitly written in

Eq. (B.122).

The species-entity conservation of momentum equation can be written as

(B.123) Piι =
Diι
(
ειριωiιviι

)
Dt

+ ειριωiιviιI:d8iι −∇8·
(
ειtiι

)
− ειriιviι − ειpiι

−ειριωiιgiι −
∑
κ∈Icι

iκ→iιMvi +
∑
j∈Is

jκ→iι
T


+

〈
e·ριωiιviι

(
viι − vext

)− e·tiι
nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ I,

but since we are interested in the overall conservation of momentum equation for an

entity, we sum over all species i noting that

∑
i∈Is

ωiιviι = vι, and(B.124)

∑
i∈Is

(
piι + riιviι

)
= 0.(B.125)

Summing over all species and recalling the definition for the microscale stress tensor,

Eq. (B.110), we can write
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(B.126)
∑
i∈Is

Diι
(
ειριωiιviι

)
Dt

+ ειριωiιviιI:d8iι −∇8·
(
ειtiι

)
=

Dι
(
ειριvι

)
Dt

+ ειριvιI:d8ι −∇8·
(
ειtι
)
.

The inter-entity exchange terms can be written for dim Ωι > dim Ωκ as

(B.127)
∑
i∈Is

iκ→iι
Mvi =

∑
i∈Is

vκiι
iκ→iι
M =

∑
i∈Is

[
vκι +

(
vκiι − vκι

)] iκ→iι
M

=
∑
i∈Is

iκ→iι
Mv +

∑
i∈Is

(
vκiι − vκι

) iκ→iι
M ,

or similarly for dim Ωκ > dim Ωι

(B.128)
∑
i∈Is

iκ→iι
Mvi =

∑
i∈Is

vιiκ
iκ→iι
M =

∑
i∈Is

[
vικ +

(
vιiκ − vικ

)] iκ→iι
M

=
∑
i∈Is

iκ→iι
Mv +

∑
i∈Is

(
vιiκ − vικ

) iκ→iι
M ,

and the transfer of momentum from the κ to the ι entity as

(B.129)
κ→ι
T =

∑
i∈Is

∑
j∈Is

jκ→iι
T +

∑
i∈Is

(
vκiι − vκι

) iκ→iι
M ,

for dim Ωι > dim Ωκ, and as

(B.130)
κ→ι
T =

∑
i∈Is

∑
j∈Is

jκ→iι
T +

∑
i∈Is

(
vιiκ − vικ

) iκ→iι
M ,

for dim Ωκ > dim Ωι.

Again recalling the definitions for microscale and macroscale stress tensors given in

Eq. (B.110) and Eq. (B.98) respectively, we sum the last term in Eq. (B.123) over all

species i yielding

(B.131)∑
i∈Is

〈
e·
[
ριωiιviι

(
viι − vext

)− tiι
]

nι · e

〉
ΓιM ,Ω

=

〈
e·
[
ριvι

(
vι − vext

)− tι
]

nι · e

〉
ΓιM ,Ω

.
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Combining Eqns (B.123)–(B.131), decomposing the stress tensor into its normal and

surface components, and applying Eq. (B.106) yields a general entity-based momentum

equation of the form

(B.132) Pι =
Dι
(
ειριvι

)
Dt

+ ειριvιI:d8ι −∇8·
(
ειt8ι

)
−
∑
i∈Is

ειριωiιgiιT

−
∑
κ∈Icι

∑
i∈Is

iκ→iι
Mv +

κ→ι
T

+

〈
e·
[
ριvι

(
vι − vext

)− tι
]

nι · e

〉
ΓιM ,Ω

= 0 for ι ∈ I,

which may be written in shorthand as

(B.133) Pι =
Dι
(
ειριvι

)
Dt

+Pιr = 0 for ι ∈ I,

where Pιr accounts for the residual terms from Eq. (B.132) that are not explicitly ex-

pressed in Eqn (B.133).

The balance of entropy equation for species i in entity ι is given by

(B.134) Siι =
Diιηiι

Dt
+ ηiιI:d8iι −∇8·

(
ειϕiι

)
− ειbiι −

∑
κ∈Icι

iκ→iιMηi +
∑
j∈Is

jκ→iι
Φ


+

〈
e·
[(

viι − vext
)
ηiι −ϕiι

]
nι · e

〉
ΓιM ,Ω

= Λiι for ι ∈ I,

where ϕiι = ϕ′iι when ι ∈ II and ϕiι = ϕ′′iι when ι ∈ IC.

Since we are interested in balance of entropy for the whole entity, we sum over species

i noting that

(B.135) ηι =
∑
i∈Is

ηiι, bι =
∑
i∈Is

biι, ειϕι =
∑
i∈Is

(
ειϕiι − ηiιuiι

)
,

and

(B.136) Λι =
∑
i∈Is

Λiι.
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Using the dispersion velocity, we can write

(B.137)
∑
i∈Is

Diιηiι

Dt
+ ηiιI:d8iι −∇8·

(
ειϕiι

)
− ειbiι


=

Dιηι

Dt
+ ηιI:d8ι −

∑
i∈Is

∇8·

ειϕiι − ∑
i∈Is

ηiιuiι

− ειbι
=

Dιηι

Dt
+ ηιI:d8ι −∇8·

(
ειϕι

)
− ειbι.

The inter-entity exchange terms can be written for dim Ωι > dim Ωκ as

(B.138)
∑
i∈Is

iκ→iι
Mηi =

∑
i∈Is

ηκiι
iκ→iι
M =

∑
i∈Is

[
ηκι +

(
ηκiι − ηκι

)] iκ→iι
M

=
∑
i∈Is

iκ→iι
Mη +

∑
i∈Is

(
ηκiι − ηκι

) iκ→iι
M ,

or similarly for dim Ωκ > dim Ωι

(B.139)
∑
i∈Is

iκ→iι
Mηi =

∑
i∈Is

ηιiκ
iκ→iι
M =

∑
i∈Is

[
ηικ +

(
ηιiκ − ηικ

)] iκ→iι
M

=
∑
i∈Is

iκ→iι
Mη +

∑
i∈Is

(
ηιiκ − ηικ

) iκ→iι
M ,

and the transfer of entropy from the κ to the ι entity as

(B.140)
κ→ι
Φ =

∑
i∈Is

∑
j∈Is

jκ→iι
Φ +

∑
i∈Is

(
ηκiι − ηκι

) iκ→iι
M ,

for dim Ωι > dim Ωκ, and as

(B.141)
κ→ι
Φ =

∑
i∈Is

∑
j∈Is

jκ→iι
Φ +

∑
i∈Is

(
ηιiκ − ηικ

) iκ→iι
M ,

for dim Ωκ > dim Ωι.
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Summing the last term in Eqn (B.134) over all species i and taking into account that

ϕι =
∑
i∈Is

(ϕiι − ηiιuiι) yields

(B.142)∑
i∈Is

〈
e·
[(

viι − vext
)
ηiι −ϕiι

]
nι · e

〉
ΓιM ,Ω

=

〈
e·
[(

vι − vext
)
ηι −ϕι

]
nι · e

〉
ΓιM ,Ω

.

Combining Eqns (B.134)–(B.142), decomposing ϕι into its normal and surface compo-

nents and defining a total entropy source term

(B.143) bιT = bι +
(∇8·N

) (
N ·ϕι

)
,

a general entity-based entropy balance equation can be written as

(B.144) Sι =
Dιηι

Dt
+ ηιI:d8ι −∇8·

(
ειϕ8ι

)
− ειbιT −

∑
κ∈Icι

∑
i∈Is

iκ→iι
Mη +

κ→ι
Φ


+

〈
e·
[(

vι − vext
)
ηι −ϕι

]
nι·e

〉
ΓιM ,Ω

= Λι.

Summing over all entities provides the equation for the entropy of the system

(B.145)
∑
ι∈I

Sι =
∑
ι∈I

(
Dιηι

Dt
+ ηιI:d8ι −∇8·

(
ειϕ8ι

)
− ειbιT

+

〈
e·
[(

vι − vext
)
ηι −ϕι

]
nι·e

〉
ΓιM ,Ω

)
= Λ ≥ 0.

We can write a shorthand expression for the entropy inequality as

(B.146)
∑
ι∈I

Sι =
∑
ι∈I

(
Dιηι

Dt
+ Sιr

)
= Λ ≥ 0,

where Sιr represents the residual terms in the entropy inequality, Eq. (B.145).
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B.5. Fluid-Phase Thermodynamics

We will consider liquids and solids separately, because of the differences that exist

in the underlying microscale CIT formulations for these different types of matter. The

microscale CIT expression for the energy of a fluid phase per unit volume, denoted ι ∈ If ,

where If is the index set of fluid phases, is the Euler equation given by [18, 42]

(B.147) Eι − ηιθι −
∑
i∈Is

ριωiιµiι + pι = 0 for ι ∈ If ,

where θι is the temperature, µiι is the chemical potential, and pι is the fluid pressure.

The averaging operator can be applied to Eq. (B.147) to derive the macroscale Euler

equation of the form

(B.148) Eι − ηιθι −
∑
i∈Is

ειριωiιµiι + ειpι = 0 for ι ∈ If ,

where

(B.149) θι = 〈θι〉Ωι,Ωι,ηι .

Taking the partial derivative of Eq. (B.147) with respect to time, adding and subtracting

products involving macroscale temperature and chemical potential, applying an instance

of the microscale Gibbs-Duhem equation,

(B.150)
∑
i∈Is

ριωiι
∂µiι
∂t

+ ηι
∂θι
∂t
− ∂pι

∂t
= 0,

and rearranging yields

(B.151)
∂Eι
∂t
− θι∂ηι

∂t
−
∑
i∈Is

µiι
∂(ριωiι)

∂t
−
(
θι − θι

) ∂ηι
∂t

−
∑
i∈Is

(
µiι − µiι

) ∂(ριωiι)

∂t
= 0 for ι ∈ If .
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Applying the averaging operator, the transport theorem given by Eq. (3.4), and the

product rule to Eq. (B.151) results in

(B.152)
∂8Eι

∂t
− θι∂

8ηι

∂t
−
∑
i∈Is

µiι
∂8 (ειριωiι)

∂t

−
∑
κ∈Icι

〈
nι ·vκ

Eι − θιηι − ∑
i∈Is

µiιριωiι

〉
Ωκ,Ω

−
〈

e·vext

Eι − θιηι − ∑
i∈Is

µiιριωiι

〉
ΓιM ,Ω

−
〈
∂
[(
θι − θι

)
ηι

]
∂t

+
∑
i∈Is

∂
[(
µiι − µiι

)
ριωiι

]
∂t

〉
Ωι,Ω

+

〈
ηι
∂
(
θι − θι

)
∂t

+
∑
i∈Is

ριωiι
∂
(
µiι − µiι

)
∂t

〉
Ωι,Ω

= 0.

Substituting Eq. (B.147) in Eq. (B.152) and applying the transport theorem given by

Eq. (3.4) to the fourth line of this equation results in

(B.153)
∂8Eι

∂t
− θι∂

8ηι

∂t
−
∑
i∈Is

µiι
∂8 (ειριωiι)

∂t

−
∑
κ∈Icι

〈
nι ·vκ

(θι − θι) ηι +
∑
i∈Is

(
µiι − µiι

)
ριωiι − pι

〉
Ωκ,Ω

−
〈

e·vext

(θι − θι) ηι − ∑
i∈Is

(
µiι − µiι

)
ριωiι − pι

〉
ΓιM ,Ω

−∂
8

∂t

〈(
θι − θι

)
ηι +

∑
i∈Is

(
µiι − µiι

)
ριωiι

〉
Ωι,Ω

+
∑
κ∈Icι

〈
nι ·vκ

(θι − θι) ηι +
∑
i∈Is

(
µiι − µiι

)
ριωiι

〉
Ωκ,Ω
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+

〈
e·vext

(θι − θι) ηι +
∑
i∈Is

(
µiι − µiι

)
ριωiι

〉
ΓιM ,Ω

+

〈
ηι
∂
(
θι − θι

)
∂t

+
∑
i∈Is

ριωiι
∂
(
µiι − µiι

)
∂t

〉
Ωι,Ω

= 0,

which may be written as

(B.154)
∂8Eι

∂t
− θι∂

8ηι

∂t
−
∑
i∈Is

µiι
∂8 (ειριωiι)

∂t

+
∑
κ∈Icι

〈nι ·vκpι〉Ωκ,Ω + 〈e·vextpι〉ΓιM ,Ω

+

〈
ηι
∂
(
θι − θι

)
∂t

+
∑
i∈Is

ριωiι
∂
(
µiι − µiι

)
∂t

〉
Ωι,Ω

= 0.

Applying the gradient operator to Eq. (B.147), adding and subtracting macroscale tem-

perature and chemical potential terms, and applying the microscale Gibbs-Duhem equa-

tion,

(B.155)
∑
i∈Is

ριωiι∇µiι + ηι∇θι −∇pι = 0,

yields

(B.156) ∇Eι − θι∇ηι −
∑
i∈Is

µiι∇ (ριωiι)−
(
θι − θι

)
∇ηι

−
∑
i∈Is

(
µiι − µiι

)
∇(ριωiι) = 0.

Applying the averaging operator, the gradient theorem given by Eq. (3.3), and the prod-

uct rule to Eq. (B.156) gives

(B.157) ∇8Eι − θι∇8ηι −
∑
i∈Is

µiι∇8
(
ειριωiι

)
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+
∑
κ∈Icι

〈
nι

Eι − θιηι − ∑
i∈Is

µiιριωiι

〉
Ωκ,Ω

+

〈
e

Eι − θιηι − ∑
i∈Is

µiιριωiι

〉
ΓιM ,Ω

−
〈
∇
[(
θι − θι

)
ηι

]〉
Ωι,Ω

−
〈∑
i∈Is

∇
[(
µiι − µiι

)
ριωiι

]〉
Ωι,Ω

+
〈
ηι∇

(
θι − θι

)〉
Ωι,Ω

+

〈∑
i∈Is

ριωiι∇
(
µiι − µiι

)〉
Ωι,Ω

= 0.

Applying the gradient theorem to the fourth line in Eq. (B.157), canceling the gradient

of the average term that vanishes, using Eq. (B.147), and rearranging yields

(B.158) ∇8Eι − θι∇8ηι −
∑
i∈Is

µiι∇8
(
ειριωiι

)
−
∑
κ∈Icι

〈nιpι〉Ωκ,Ω − 〈epι〉ΓιM ,Ω

+
〈
ηι∇

(
θι − θι

)〉
Ωι,Ω

+

〈∑
i∈Is

ριωiι∇
(
µiι − µiι

)〉
Ωι,Ω

= 0.

Taking the dot product of Eq. (B.158) with vι and addition to Eq. (B.154) yields

(B.159) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+
∑
κ∈Icι

〈
nι ·

(
vκ − vι

)
pι

〉
Ωκ,Ω

+
〈
e·
(
vext − vι

)
pι

〉
ΓιM ,Ω

+

〈
ηι

Dι
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
Dι
(
µiι − µiι

)
Dt

〉
Ωι,Ω

= 0 for ι ∈ If .

Eq. (B.159) can also be converted to a form where the material derivatives are referenced

to the solid-phase velocity vs by noting

(B.160)
Dι

Dt
=

Ds

Dt
+
(
vι − vs

)
·∇,
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and defining

(B.161) vι,s = vι − vs.

Application of Eq. (B.160) to the material derivatives within averaging operators in

Eq. (B.159) yields

(B.162) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+
∑
κ∈Icι

〈
nι ·

(
vκ − vι

)
pι

〉
Ωκ,Ω

+
〈
e·
(
vext − vι

)
pι

〉
ΓιM ,Ω

+

〈
ηι

Ds
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
Ds
(
µiι − µiι

)
Dt

〉
Ωι,Ω

+vι,s·
〈
ηι∇

(
θι − θι

)
+
∑
i∈Is

ριωiι∇
(
µiι − µiι

)〉
Ωι,Ω

= 0 for ι ∈ If .

Using the Gibbs-Duhem equation, Eq. (B.155), we can write the last term in Eq. (B.162)

as

(B.163) vι,s·
〈
ηι∇

(
θι − θι

)
+
∑
i∈Is

ριωiι∇
(
µiι − µiι

)〉
Ωι,Ω

= vι,s·
〈
−ηι∇θι −

∑
i∈Is

ριωiι∇µiι +∇pι
〉

Ωι,Ω

.

Application of the product rule yields

(B.164) vι,s·
〈
−ηι∇θι −

∑
i∈Is

ριωiι∇µiι +∇pι
〉

Ωι,Ω

= vι,s·
〈
−∇

(
ηιθ

ι
)

+ θι∇ηι +∇pι
〉

Ωι,Ω

−vι,s·
〈∑
i∈Is

[
∇
(
ριωiιµ

iι
)
− µiι∇ (ριωiι)

]〉
Ωι,Ω

.
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Applying the gradient averaging theorem given by Eq. (3.3) to Eq. (B.164) and canceling

like terms, we get

(B.165) vι,s·
〈
−ηι∇θι −

∑
i∈Is

ριωiι∇µiι +∇pι
〉

Ωι,Ω

= vι,s·

−∇8
(
ηιθι

)
+ θι∇8ηι −

∑
i∈Is

[
∇8
(
ειριωiιµiι

)
− µiι∇8

(
ειριωiι

)]

+∇8 (ειpι) +
∑
κ∈Icι

(
−
〈
nιηιθ

ι
〉

Ωκ,Ω
+ θι〈nιηι〉Ωκ,Ω + 〈nιpι〉Ωκ,Ω

)

+
∑
κ∈Icι

∑
i∈Is

(
−
〈
nιριωiιµ

iι
〉

Ωκ,Ω
+ µiι〈nιριωiι〉Ωκ,Ω

)

−
〈
eηιθ

ι
〉

ΓιM ,Ω
+ θι〈eηι〉ΓιM ,Ω + 〈epι〉ΓιM ,Ω

+
∑
i∈Is

(
−
〈
eριωiιµ

iι
〉

ΓιM ,Ω
+ µiι〈eριωiι〉ΓιM ,Ω

)
= vι,s·

−ηι∇8θι −
∑
i∈Is

ειριωiι∇8µiι +∇8 (ειpι)


+vι,s·

 ∑
κ∈Icι

〈nιpι〉Ωκ,Ω + 〈epι〉ΓιM ,Ω

 .

Substituting Eq. (B.165) into Eq. (B.162), we can write the macroscale thermodynamic

expression for a fluid phase as

(B.166) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+
∑
κ∈Icι

〈
nι ·

(
vκ − vs

)
pι

〉
Ωκ,Ω

+
〈
e·
(
vext − vs

)
pι

〉
ΓιM ,Ω

+

〈
ηι

Ds
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
Ds
(
µiι − µiι

)
Dt

〉
Ωι,Ω
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−vι,s·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειpι)

 = 0 for ι ∈ If .

B.6. Solid-Phase Thermodynamics

The microscale Euler equation for internal energy per unit volume of the solid phase

can be written as

(B.167) Es − θsηs −
∑
i∈Is

ρsωisµis − σs:
Cs
js

= 0.

The macroscale Euler equation for internal energy per total volume is then

(B.168) Es − θsηs −
∑
i∈Is

εsρsωisµis − εsσs:C
s

js
= 0,

where

(B.169) σs:
Cs

js
=

〈
σs:

Cs
js

〉
Ωs,Ωs

.

Taking the partial derivative of Eq. (B.167) with respect to time and applying the Gibbs-

Duhem equation gives us

(B.170)
∂Es
∂t
− θs∂ηs

∂t
−
∑
i∈Is

µis
∂(ρsωis)

∂t
− σs:

∂

∂t

(
Cs
js

)
= 0.

Introduction of macroscale variables θs, µs, and σs, allows this equation to be rearranged

to

(B.171)
∂Es
∂t
− θs∂ηs

∂t
−
∑
i∈Is

µis
∂(ρsωis)

∂t
− σs: ∂

∂t

(
Cs
js

)
−
(
θs − θs

) ∂ηs
∂t

−
∑
i∈Is

(
µis − µis

) ∂(ρsωis)

∂t
−
(
σs − σs

)
:
∂

∂t

(
Cs
js

)
= 0.
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Applying an averaging operator from the general form given by Eq. (3.1), transport

Theorem 3.4.3, and the product rule to Eq. (B.171) results in

(B.172)
∂8Es

∂t
− θs∂

8ηs

∂t
−
∑
i∈Is

µis
∂8 (εsρsωis)

∂t
− σs:∂

8

∂t

(
εs

Cs

js

)

−
∑
κ∈Ics

〈
ns ·vκ

Es − θsηs − ∑
i∈Is

µisρsωis − σs:
Cs
js

〉
Ωκ,Ω

−
〈

e·vext

Es − θsηs − ∑
i∈Is

µisρsωis − σs:
Cs
js

〉
ΓsM ,Ω

−
〈
∂

∂t

[(
θs − θs

)
ηs

]
+
∑
i∈Is

∂

∂t

[(
µis − µis

)
ρsωis

]〉
Ωs,Ω

−
〈
∂

∂t

((
σs − σs

)
:
Cs
js

)〉
Ωs,Ω

+

〈
ηs
∂
(
θs − θs

)
∂t

+
∑
i∈Is

ρsωis
∂
(
µis − µis

)
∂t

+
Cs
js

:
∂
(
σs − σs

)
∂t

〉
Ωs,Ω

= 0.

Substituting Eq. (B.167) into Eq. (B.172), applying the transport theorem given by

Eq. (3.4) to the fourth and fifth lines of this equation, and cancelling like terms results

in

(B.173)
∂8Es

∂t
− θs∂

8ηs

∂t
−
∑
i∈Is

µis
∂8 (εsρsωis)

∂t
− σs:∂

8

∂t

(
εs

Cs

js

)

+

〈
ηs
∂
(
θs − θs

)
∂t

+
∑
i∈Is

ρsωis
∂
(
µis − µis

)
∂t

+
Cs
js

:
∂
(
σs − σs

)
∂t

〉
Ωs,Ω

= 0.

Applying the gradient operator to Eq. (B.167), adding and subtracting the macroscale

temperature, the chemical potential, and the Lagrangian stress tensor yields

(B.174) ∇Es − θs∇ηs −
∑
i∈Is

µis∇(ρsωis)− σs:∇
(

Cs
js

)
−
(
θs − θs

)
∇ηs
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−
∑
i∈Is

(
µis − µis

)
∇(ρsωis)−

(
σs − σs

)
:∇
(

Cs
js

)
= 0.

Applying the averaging operator, the dot product rule to the last three terms, and the

gradient theorem given by Eq. (3.3) to Eq. (B.174) gives us

(B.175) ∇8Es − θs∇8ηs −
∑
i∈Is

µis∇8
(
εsρsωis

)
− σs:∇8

(
εs

Cs

js

)

+
〈
ηs∇

(
θs − θs

)〉
Ωs,Ω

+
∑
i∈Is

〈
ρsωis∇

(
µis − µis

)〉
Ωs,Ω

+

〈
Cs
js

:∇
(
σs − σs

)〉
Ωs,Ω

= 0.

Taking the dot product of Eq. (B.175) with vs and adding to Eq. (B.173) produces

(B.176) T s =
DsEs

Dt
− θsDsηs

Dt
−
∑
i∈Is

µis
Ds
(
εsρsωis

)
Dt

− σs:D
s

Dt

(
εs

Cs

js

)

+

〈
ηs

Ds
(
θs − θs

)
Dt

+
∑
i∈Is

ρsωis
Ds
(
µis − µis

)
Dt

〉
Ωs,Ω

+

〈
Cs
js

:
Ds
(
σs − σs

)
Dt

〉
Ωs,Ω

.

Consider the terms that appear in Eq. (B.176)

(B.177) T =

〈
Cs
js

:
Ds
(
σs − σs

)
Dt

〉
Ωs,Ω

− σs:D
s

Dt

(
εs

Cs

js

)
.

Application of the product rule yields

(B.178) T = −Ds

Dt

(
εsσs:

Cs

js

)
+

〈
Cs
js

:
Dsσs

Dt

〉
Ωs,Ω

.

Application of the averaging theorems given by Eq. (3.3) and Eq. (3.4) provides

(B.179) T = −
〈

Ds

Dt

(
σs:

Cs
js

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

(
vκ − vs

)
·ns
〉

Ωκ,Ω
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−
〈

e·
(
vext − vs

)
σs:

Cs
js

〉
ΓsM ,Ω

+

〈
Cs
js

:
Dsσs

Dt

〉
Ωs,Ω

.

Applying the product rule and regrouping terms

(B.180) T = −
〈
σs:

Ds

Dt

(
Cs
js

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

(
vκ − vs

)
·ns
〉

Ωκ,Ω

−
〈

e·
(
vext − vs

)
σs:

Cs
js

〉
ΓsM ,Ω

.

The reference velocity for the material derivative can be converted to the microscale using

(B.181)
Ds

Dt
=

Ds

Dt
−
(
vs − vs

)
·∇,

which may be applied to Eq. (B.180) giving

(B.182) T = −
〈
σs:

Ds

Dt

(
Cs
js

)〉
Ωs,Ω

+

〈
σs:

(
vs − vs

)
·∇
(

Cs
js

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

(
vκ − vs

)
·ns
〉

Ωκ,Ω
−
〈

e·
(
vext − vs

)
σs:

Cs
js

〉
ΓsM ,Ω

.

Making use of the identities

Ds

Dt

(
1

js

)
= − 1

js
I:ds(B.183)

and

DsCs
Dt

= 2 (∇Xx∇Xx) :ds,(B.184)

where ∇Xx is the derivative of a microscale location on the solid phase with respect to

its initial location [67], yields

(B.185)
Ds

Dt

(
Cs
js

)
=

(
2

js
(∇Xx∇Xx)− Cs

js
I

)
:ds,

and using Eq. (B.181) allows Eq. (B.185) to be written as

(B.186)
Ds

Dt

(
Cs
js

)
=

(
2

js
(∇Xx∇Xx)− Cs

js
I

)
:ds −

(
vs − vs

)
·∇
(

Cs
js

)
.
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Substituting Eq. (B.185) for the first term in Eq. (B.182) we have

(B.187) T = −
〈

2

js
σs: (∇Xx∇Xx) :ds

〉
Ωs,Ω

+

〈
σs:

Cs
js

I:ds

〉
Ωs,Ω

+

〈
σs:

(
vs − vs

)
·∇
(

Cs
js

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

(
vκ − vs

)
·ns
〉

Ωκ,Ω

−
〈

e·
(
vext − vs

)
σs:

Cs
js

〉
ΓsM ,Ω

.

Applying the product rule to the third term on the RHS of Eq. (B.187) and combining

terms gives

(B.188) T = −
〈

2

js
σs: (∇Xx∇Xx) :ds

〉
Ωs,Ω

+

〈
∇·
((

vs − vs
) Cs
js

)
:σs

〉
Ωs,Ω

+

〈
σs:

Cs
js

I:ds
〉

Ωs,Ω
−
∑
κ∈Ics

〈
σs:

Cs
js

(
vκ − vs

)
·ns
〉

Ωκ,Ω

−
〈

e·
(
vext − vs

)
σs:

Cs
js

〉
ΓsM ,Ω

.

Adding and subtracting d8s to the first term on the RHS of Eq. (B.188), and evaluating

the third term on the RHS of this equation yields

(B.189)

T = −
〈

2

js
σs: (∇Xx∇Xx) :

(
ds − d8s

)〉
Ωs,Ω

−
〈

2

js
σs: (∇Xx∇Xx) :d8s

〉
Ωs,Ω

+

〈
∇·
((

vs − vs
) Cs
js

)
:σs

〉
Ωs,Ω

+ εsσs:
Cs

js
I:d8s

−
∑
κ∈Ics

〈
σs:

Cs
js

(
vκ − vs

)
·ns
〉

Ωκ,Ω
−
〈

e·
(
vext − vs

)
σs:

Cs
js

〉
ΓsM ,Ω

.

Finally, the product rule and the averaging theorem given by Eq. (3.2) are applied to

the first and third terms on the RHS of Eq. (B.189), which is a derived expression for

Eq. (B.177), resulting in
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(B.190) − σs:D
s

Dt

(
εs

Cs

js

)
+

〈
Cs
js

:
Ds
(
σs − σs

)
Dt

〉
Ωs,Ω

=

−
〈

2

js
σs: (∇Xx∇Xx)

〉
Ωs,Ω

:d8s + εsσs:
Cs

js
I:d8s

−∇8·
〈(

2

js
σs: (∇Xx∇Xx)− σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
ns ·

(
2

js
σs: (∇Xx∇Xx)− σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωκ,Ω

−
〈

e·
(

2

js
σs: (∇Xx∇Xx)− σs:

Cs
js

I

)
·
(
vs − vs

)〉
ΓsM ,Ω

+

〈[
∇·
(

2

js
σs: (∇Xx∇Xx)

)
− Cs
js

:∇σs
]
·
(
vs − vs

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

ns ·
(
vκ − vs

)〉
Ωκ,Ω

−
〈

e·
(
vext − vs

)
σs:

Cs
js

〉
ΓsM ,Ω

.

Eq. (B.190) can be simplified to

(B.191) − σs:D
s

Dt

(
εs

Cs

js

)
+

〈
Cs
js

:
Ds
(
σs − σs

)
Dt

〉
Ωs,Ω

=

−
〈

2

js
σs: (∇Xx∇Xx)

〉
Ωs,Ω

:d8s + εsσs:
Cs

js
I:d8s

−∇8·
〈(

2

js
σs: (∇Xx∇Xx)− σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
ns ·

(
2

js
σs: (∇Xx∇Xx)

)
·
(
vs − vs

)〉
Ωκ,Ω

−
〈

e·
(

2

js
σs: (∇Xx∇Xx)

)
·
(
vs − vs

)〉
ΓsM ,Ω

+

〈[
∇·
(

2

js
σs: (∇Xx∇Xx)

)
− Cs
js

:∇σs
]
·
(
vs − vs

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

ns · (vκ − vs)

〉
Ωκ,Ω

−
〈

e· (vext − vs)σs:
Cs
js

〉
ΓsM ,Ω

.
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Substitution of Eq. (B.191) into Eq. (B.176) provides the macroscale thermodynamic

expression for the solid phase in the transition region

(B.192) T s =
DsEs

Dt
− θsDsηs

Dt
−
∑
i∈Is

µis
Ds
(
εsρsωis

)
Dt

+

〈
ηs

Ds
(
θs − θs

)
Dt

+
∑
i∈Is

ρsωis
Ds
(
µis − µis

)
Dt

〉
Ωs,Ω

−
〈

2

js
σs: (∇Xx∇Xx)

〉
Ωs,Ω

:d8s + εsσs:
Cs

js
I:d8s

−∇8·
〈(

2

js
σs: (∇Xx∇Xx)− σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
ns ·

(
2

js
σs: (∇Xx∇Xx)

)
·
(
vs − vs

)〉
Ωκ,Ω

−
〈

e·
(

2

js
σs: (∇Xx∇Xx)

)
·
(
vs − vs

)〉
ΓsM ,Ω

+

〈[
∇·
(

2

js
σs: (∇Xx∇Xx)

)
− Cs
js

:∇σs
]
·
(
vs − vs

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

ns · (vκ − vs)

〉
Ωκ,Ω

−
〈

e· (vext − vs)σs:
Cs
js

〉
ΓsM ,Ω

.

Defining the solid phase stress tensor such that,

(B.193) ts =
2

js
σs: (∇Xx∇Xx) ,

noting that

(B.194) 〈ts〉Ωs,Ωs:d8s = ts:d8s =
(
t8s + NN·ts·NN

)
:d8s = t8s:d8s,

and that integration over the solid surface, Ωss, is equivalent to the summation of inte-

gration over the interfaces in Ics, allows the macroscale thermodynamic expression for

the solid phase in the transition region to be written as

240



(B.195) T s =
DsEs

Dt
− θsDsηs

Dt
−
∑
i∈Is

µis
Ds
(
εsρsωis

)
Dt

+

〈
ηs

Ds
(
θs − θs

)
Dt

+
∑
i∈Is

ρsωis
Ds
(
µis − µis

)
Dt

〉
Ωs,Ω

−εst8s:d8s + εsσs:
Cs

js
I:d8s −∇8·

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

−
〈
ns · ts·

(
vs − vs

)〉
Ωss,Ω

−
〈
e·ts·

(
vs − vs

)〉
ΓsM ,Ω

+

〈(
∇·ts − Cs

js
:∇σs

)
·
(
vs − vs

)〉
Ωs,Ω

−
∑
κ∈Ics

〈
σs:

Cs
js

ns · (vκ − vs)

〉
Ωκ,Ω

−
〈

e· (vext − vs)σs:
Cs
js

〉
ΓsM ,Ω

.

B.7. Interface Thermodynamics

An interface is a two-dimensional entity and the stress in a surface is due to interfacial

tension effects. The microscale thermodynamic expression obtained from CIT for an

interface ι is

(B.196) Eι − θιηι −
∑
i∈Is

ριωiιµiι − γι = 0,

where γι is the interfacial tension. Application of an averaging operator yields

(B.197) Eι − θιηι −
∑
i∈Is

ειριωiιµiι − ειγι = 0.

The partial time derivative of Eq. (B.196) is taken while holding the surface coordi-

nates constant and the Gibbs-Duhem equation is applied such that

(B.198)
∂′Eι
∂t
− θι∂

′ηι
∂t
−
∑
i∈Is

µiι
∂′(ριωiι)

∂t
= 0,

or after introduction of macroscale variables
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(B.199)
∂′Eι
∂t
− θι∂

′ηι
∂t
−
∑
i∈Is

µiι
∂′(ριωiι)

∂t
−
(
θι − θι

) ∂′ηι
∂t

−
∑
i∈Is

(
µiι − µiι

) ∂′(ριωiι)
∂t

= 0.

Applying an averaging operator and the transport theorem given by Eq. (3.8) to the

first three terms in Eq. (B.199) we see that

(B.200)

〈
∂′Eι
∂t

〉
Ωι,Ω

=
∂8

∂t
〈Eι〉Ωι,Ω +∇8·〈nαnα·vιEι〉Ωι,Ω −

〈(∇′·nα)nα·vιEι
〉

Ωι,Ω

−
∑

κ∈(Icι∩IC)

〈nι ·vκEι〉Ωκ,Ω −
〈

e·vextEι
nι · e

〉
ΓιM ,Ω

,

(B.201) − θι
〈
∂′ηι
∂t

〉
Ωι,Ω

= −θι ∂
8

∂t
〈ηι〉Ωι,Ω − θι∇8·〈nαnα·vιηι〉Ωι,Ω

+θι
〈(∇′·nα)nα·vιηι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

θι〈nι ·vκηι〉Ωκ,Ω

+θι
〈

e·vextηι
nι · e

〉
ΓιM ,Ω

,

and

(B.202) −
∑
i∈Is

µiι
〈
∂′(ριωiι)

∂t

〉
Ωι,Ω

= −
∑
i∈Is

µiι
∂8

∂t
〈ριωiι〉Ωι,Ω

−
∑
i∈Is

µiι∇8·〈nαnα·vιριωiι〉Ωι,Ω +
∑
i∈Is

µiι
〈(∇′·nα)nα·vιριωiι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

∑
i∈Is

µiι〈nι ·vκριωiι〉Ωκ,Ω +
∑
i∈Is

µiι
〈

e·vextριωiι
nι · e

〉
ΓιM ,Ω

.

Applying the product rule to the last two terms in Eq. (B.199) and using the transport

theorem given by Eq. (3.8) we arrive at

(B.203) −
〈(

θι − θι
) ∂′ηι
∂t

〉
Ωι,Ω

= −∂
8

∂t

〈(
θι − θι

)
ηι

〉
Ωι,Ω
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−∇8·
〈
nαnα·vι

(
θι − θι

)
ηι

〉
Ωι,Ω

+
〈(∇′·nα)nα·vι

(
θι − θι

)
ηι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈
nι ·vκ

(
θι − θι

)
ηι

〉
Ωκ,Ω

+

〈
e·vext

(
θι − θι

)
ηι

nι · e

〉
ΓιM ,Ω

+

〈
ηι
∂′
∂t

(
θι − θι

)〉
Ωι,Ω

and

(B.204) −
∑
i∈Is

〈(
µiι − µiι

) ∂′(ριωiι)
∂t

〉
Ωι,Ω

= −
∑
i∈Is

∂8

∂t

〈(
µiι − µiι

)
ριωiι

〉
Ωι,Ω

−
∑
i∈Is

∇8·
〈
nαnα·vι

(
µiι − µiι

)
ριωiι

〉
Ωι,Ω

+
∑
i∈Is

〈(∇′·nα)nα·vι
(
µiι − µiι

)
ριωiι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

∑
i∈Is

〈
nι ·vκ

(
µiι − µiι

)
ριωiι

〉
Ωκ,Ω

+
∑
i∈Is

〈
e·vext

(
µiι − µiι

)
ριωiι

nι · e

〉
ΓιM ,Ω

+
∑
i∈Is

〈
ριωiι

∂′
∂t

(
µiι − µiι

)〉
Ωι,Ω

.

Combining Eqs. (B.196)–(B.204) results in

(B.205)
∂8Eι

∂t
− θι∂

8ηι

∂t
−
∑
i∈Is

µiι
∂8 (ειριωiι)

∂t
+∇8·〈nαnα·vιγι〉Ωι,Ω

+∇8θι·〈nαnα·vιηι〉Ωι,Ω +
∑
i∈Is

∇8µiι·〈nαnα·vιριωiι〉Ωι,Ω

−〈(∇′·nα)nα·vιγι
〉

Ωι,Ω
−

∑
κ∈(Icι∩IC)

〈nι ·vκγι〉Ωκ,Ω −
〈

e·vextγι
nι · e

〉
ΓιM ,Ω

+

〈
ηι
∂′
∂t

(
θι − θι

)〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

∂′
∂t

(
µiι − µiι

)〉
Ωι,Ω

= 0.
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The surface gradient of Eq. (B.196) can be evaluated to obtain a form similar to Eq. (B.199)

(B.206) ∇′Eι − θι∇′ηι −
∑
i∈Is

µiι∇′(ριωiι)−
(
θι − θι

)
∇′ηι

−
∑
i∈Is

(
µiι − µiι

)
∇′(ριωiι) = 0.

Applying an averaging operator and the product rule to Eq. (B.206) yields

(B.207)
〈∇′Eι〉Ωι,Ω − θι〈∇′ηι〉Ωι,Ω − ∑

i∈Is

µiι
〈∇′ (ριωiι)〉Ωι,Ω

−
〈
∇′
[(
θι − θι

)
ηι

]〉
Ωι,Ω

−
∑
i∈Is

〈
∇′
[(
µiι − µiι

)
ριωiι

]〉
Ωι,Ω

+
〈
ηι∇′

(
θι − θι

)〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι∇′

(
µiι − µiι

)〉
Ωι,Ω

= 0.

Gradient Theorem 3.4.4 can be applied to line one and line two of Eq. (B.207). Some

terms in line two vanish as a result of the definitions of the macroscale variables. Then

Eq. (B.196) can be applied so that

(B.208) ∇8Eι − θι∇8ηι −
∑
i∈Is

µiι∇8
(
ειριωiι

)
−∇8·〈nαnαγι〉Ωι,Ω

+
〈(∇′·nα)nαγι

〉
Ωι,Ω

+
∑

κ∈(Icι∩IC)

〈nιγι〉Ωκ,Ω +

〈
eγι

nι · e

〉
ΓιM ,Ω

−∇8θι·〈nαnαηι〉Ωι,Ω −
∑
i∈Is

∇8µiι·〈nαnαριωiι〉Ωι,Ω

+
〈
ηι∇′

(
θι − θι

)〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι∇′

(
µiι − µiι

)〉
Ωι,Ω

= 0.

Taking the dot product of Eq. (B.208) with vι and addition to Eq. (B.205) yields the

transition region thermodynamic expression for interface ι as

(B.209) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+ 〈nαnαγι〉Ωι,Ω:d8ι
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+∇8·
〈
nαnα ·

(
vι − vι

)
γι

〉
Ωι,Ω

−
〈(∇′·nα)nα ·

(
vι − vι

)
γι

〉
Ωι,Ω

+∇8θι·
〈
nαnα·

(
vι − vι

)
ηι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IC)

〈
nι ·

(
vκ − vι

)
γι

〉
Ωκ,Ω

+
∑
i∈Is

∇8µiι·
〈
nαnα·

(
vι − vι

)
ριωiι

〉
Ωι,Ω

−
〈

e·
(
vext − vι

)
γι

nι · e

〉
ΓιM ,Ω

+

〈
ηι

D′ι
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′ι
(
µiι − µiι

)
Dt

〉
Ωι,Ω

= 0.

The material derivative expressions within averaging operators can be converted to ma-

terial derivatives referenced to the macroscale solid-phase velocity taking into account

Eq. (B.160) and Eq. (B.161)

(B.210) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+ 〈nαnαγι〉Ωι,Ω:d8ι

+∇8·
〈
nαnα ·

(
vι − vι

)
γι

〉
Ωι,Ω

−
〈(∇′·nα)nα ·

(
vι − vι

)
γι

〉
Ωι,Ω

+∇8θι·
〈
nαnα·

(
vι − vι

)
ηι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IC)

〈
nι ·

(
vκ − vι

)
γι

〉
Ωκ,Ω

+
∑
i∈Is

∇8µiι·
〈
nαnα·

(
vι − vι

)
ριωiι

〉
Ωι,Ω

−
〈

e·
(
vext − vι

)
γι

nι · e

〉
ΓιM ,Ω

+

〈
ηι

D′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′s
(
µiι − µiι

)
Dt

〉
Ωι,Ω

+vι,s·
〈
ηι∇′

(
θι − θι

)
+
∑
i∈Is

ριωiι∇′
(
µiι − µiι

)〉
Ωι,Ω

= 0 for ι ∈ II.

The last term in Eq. (B.210) can be transformed in the same way as for the fluid phases,

i.e., taking into account the microscale Gibbs-Duhem equation, applying the product

rule, and using the averaging gradient theorem given by Eq. (3.7).

(B.211) vι,s·
〈
ηι∇′

(
θι − θι

)
+
∑
i∈Is

ριωiι∇′
(
µiι − µiι

)〉
Ωι,Ω

245



= vι,s·
〈
ηι∇′θι − ηι∇′θι +

∑
i∈Is

ριωiι∇′µiι −
∑
i∈Is

ριωiι∇′µiι
〉

Ωι,Ω

= vι,s·
〈
−ηι∇′θι −

∑
i∈Is

ριωiι∇′µiι −∇′γι
〉

Ωι,Ω

= vι,s·
〈
−∇′

(
ηιθ

ι
)

+ θι∇′ηι −∇′γι
〉

Ωι,Ω

−vι,s·
〈∑
i∈Is

[
∇′
(
ριωiιµ

iι
)
− µiι∇′ (ριωiι)

]〉
Ωι,Ω

= vι,s·
(
−∇8

(
ηιθι

)
−∇8 (ειγι) + θι∇8ηι

−
∑
i∈Is

[
∇8
(
ειριωiιµiι

)
− µiι∇8

(
ειριωiι

)]
+∇8·

〈
nαnαηιθ

ι
〉

Ωι,Ω

−θι∇8·〈nαnαηι〉Ωι,Ω +
∑
i∈Is

∇8·
〈
nαnαριωiιµ

iι
〉

Ωι,Ω

−
∑
i∈Is

µiι∇8·〈nαnαριωiι〉Ωι,Ω +∇8·〈nαnαγι〉Ωι,Ω −
〈(∇′·nα)nαηιθ

ι
〉

Ωι,Ω

+θι
〈(∇′·nα)nαηι

〉
Ωι,Ω

−
∑
i∈Is

〈(∇′·nα)nαριωiιµ
iι
〉

Ωι,Ω

+
∑
i∈Is

µiι
〈(∇′·nα)nαριωiι

〉
Ωι,Ω

− 〈(∇′·nα)nαγι
〉

Ωι,Ω

+
∑

κ∈(Icι∩IC)

(
−
〈
nιηιθ

ι
〉

Ωκ,Ω
+ θι〈nιηι〉Ωκ,Ω − 〈nιγι〉Ωκ,Ω

)

+
∑

κ∈(Icι∩IC)

∑
i∈Is

(
−
〈
nιριωiιµ

iι
〉

Ωκ,Ω
+ µiι〈nιριωiι〉Ωκ,Ω

)

−
〈

eηιθ
ι

nι · e

〉
ΓιM ,Ω

+ θι
〈

eηι
nι · e

〉
ΓιM ,Ω

−
〈

eγι
nι · e

〉
ΓιM ,Ω

+
∑
i∈Is

−〈eριωiιµ
iι

nι · e

〉
ΓιM ,Ω

+ µiι
〈

eριωiι
nι · e

〉
ΓιM ,Ω

)

= vι,s·

−ηι∇8θι −
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειγι)
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+vι,s·

∇8θι·〈nαnαηι〉Ωι,Ω +
∑
i∈Is

∇8µiι·〈nαnαριωiι〉Ωι,Ω


+vι,s·

[
∇8·〈nαnαγι〉Ωι,Ω −

〈(∇′·nα)nαγι
〉

Ωι,Ω

]

−vι,s·

 ∑
κ∈(Icι∩IC)

〈nιγι〉Ωκ,Ω +

〈
eγι

nι · e

〉
ΓιM ,Ω

 .

Substituting Eq. (B.211) into Eq. (B.210) yields

(B.212) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

+ 〈nαnαγι〉Ωι,Ω:d8s

+∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(∇′·nα)nα ·

(
vι − vs

)
γι

〉
Ωι,Ω

+∇8θι·
〈
nαnα·

(
vι − vs

)
ηι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IC)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

+
∑
i∈Is

∇8µiι·
〈
nαnα·

(
vι − vs

)
ριωiι

〉
Ωι,Ω

−
〈

e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

+

〈
ηι

D′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′s
(
µiι − µiι

)
Dt

〉
Ωι,Ω

−vι,s·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι +∇8 (ειγι)

 = 0 for ι ∈ II.

B.8. Common Curve Thermodynamics

The microscale thermodynamic expression obtained from CIT for a common curve ι

is

(B.213) Eι − θιηι −
∑
i∈Is

ριωiιµiι + γι = 0,
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where γι is the lineal tension. The corresponding macroscale Euler equation derived by

applying an averaging operator is

(B.214) Eι − θιηι −
∑
i∈Is

ειριωiιµiι + ειγι = 0.

The partial time derivative of Eq. (B.213) is taken while holding the curvilinear

coordinates constant such that

(B.215)
∂′′Eι
∂t
− θι∂

′′ηι
∂t
−
∑
i∈Is

µiι
∂′′(ριωiι)

∂t
= 0,

and it follows from the Gibbs-Duhem equation that

(B.216) ηι
∂′′θι
∂t

+
∑
i∈Is

ριωiι
∂′′µiι
∂t
− ∂′′γι

∂t
= 0.

Eq. (B.215) can be written adding and subtracting macroscale variables as

(B.217)
∂′′Eι
∂t
− θι∂

′′ηι
∂t
−
∑
i∈Is

µiι
∂′′(ριωiι)

∂t
−
(
θι − θι

) ∂′′ηι
∂t

−
∑
i∈Is

(
µiι − µiι

) ∂′′(ριωiι)
∂t

= 0.

Applying an averaging operator and Theorem 3.4.9 to Eq. (B.217) results in

(B.218)

〈
∂′′Eι
∂t

〉
Ωι,Ω

=
∂8

∂t
〈Eι〉Ωι,Ω +∇8·〈(vι − lιlι ·vι)Eι〉Ωι,Ω

+
〈(

lι ·∇′′lι
)
·vιEι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈nι ·vκEι〉Ωκ,Ω −
〈

e·vextEι
nι · e

〉
ΓιM ,Ω

.

Averaging the second and third terms of Eq. (B.217) in the same way, applying the

product rule to the last two terms, averaging these terms, and simplifying the resultant

expression using Eq. (B.213) yields

(B.219)
∂8Eι

∂t
− θι∂

8ηι

∂t
−
∑
i∈Is

µiι
∂8 (ειριωiι)

∂t
−∇8·〈(vι − lιlι ·vι) γι〉Ωι,Ω
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−〈(lι ·∇′′lι) ·vιγι〉Ωι,Ω +
∑

κ∈(Icι∩IPt)

〈nι ·vκγι〉Ωκ,Ω +

〈
e·vextγι

nι · e

〉
ΓιM ,Ω

+∇8θι·〈(I− lιlι) ·vιηι〉Ωι,Ω +
∑
i∈Is

∇8µiι·〈(I− lιlι) ·vιριωiι〉Ωι,Ω

+

〈
ηι
∂′′
∂t

(
θι − θι

)〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

∂′′
∂t

(
µiι − µiι

)〉
Ωι,Ω

= 0.

The curvilinear gradient of Eq. (B.213) can be evaluated to obtain a form similar to

Eq. (B.217),

(B.220) ∇′′Eι − θι∇′′ηι −
∑
i∈Is

µiι∇′′(ριωiι)−
(
θι − θι

)
∇′′ηι

−
∑
i∈Is

(
µiι − µiι

)
∇′′(ριωiι) = 0.

Application of an averaging operator and Theorem 3.4.8 to the first term in Eq. (B.220)

yields

(B.221)
〈∇′′Eι〉Ωι,Ω = ∇8·〈lιlιEι〉Ωι,Ω −

〈(
lι ·∇′′lι

)
Eι
〉

Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈nιEι〉Ωκ,Ω +

〈
eEι
nι · e

〉
ΓιM ,Ω

.

Adding and subtracting ∇8〈Eι〉Ωι,Ω , we obtain

(B.222)
〈∇′′Eι〉Ωι,Ω = ∇8Eι +∇8·〈(lιlι − I)Eι〉Ωι,Ω −

〈(
lι ·∇′′lι

)
Eι
〉

Ωι,Ω

+
∑

κ∈(Icι∩IPt)

〈nιEι〉Ωκ,Ω +

〈
eEι
nι · e

〉
ΓιM ,Ω

.

Using a similar procedure for the second two terms in Eq. (B.220) we get

(B.223) − θι〈∇′′ηι〉Ωι,Ω = −θι∇8ηι − θι∇8·〈(lιlι − I)ηι〉Ωι,Ω + θι
〈(

lι ·∇′′lι
)
ηι
〉

Ωκ,Ω

−
∑

κ∈(Icι∩IPt)

θι〈nιηι〉Ωκ,Ω − θι
〈

eηι
nι · e

〉
ΓιM ,Ω
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and

(B.224) −
∑
i∈Is

µiι
〈∇′′ (ριωiι)〉Ωι,Ω = −

∑
i∈Is

µiι∇8
(
ειριωiι

)
−
∑
i∈Is

µiι∇8·〈(lιlι − I)ριωiι〉Ωι,Ω +
∑
i∈Is

µiι
〈(

lι ·∇′′lι
)
ριωiι

〉
Ωι,Ω

−
∑
i∈Is

∑
κ∈(Icι∩IPt)

µiι〈nιριωiι〉Ωκ,Ω −
∑
i∈Is

µiι
〈

eριωiι
nι · e

〉
ΓιM ,Ω

.

Applying the product rule to the last two terms in Eq. (B.220) and using the gradient

theorem given by Eq. (3.12) yields

(B.225) −
〈(
θι − θι

)
∇′′ηι

〉
Ωι,Ω

= −
〈
∇′′
[(
θι − θι

)
ηι

]〉
Ωι,Ω

+
〈
ηι∇′′

(
θι − θι

)〉
Ωι,Ω

= −∇8
[(
θι − θι

)
ηι

]
−∇8·

〈
(lιlι − I)

(
θι − θι

)
ηι

〉
Ωι,Ω

+
〈(

lι ·∇′′lι
) (
θι − θι

)
ηι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IPt)

〈
nι

(
θι − θι

)
ηι

〉
Ωκ,Ω

−
〈

e
(
θι − θι

)
ηι

nι · e

〉
ΓιM ,Ω

+
〈
ηι∇′′

(
θι − θι

)〉
Ωι,Ω

and

(B.226) −
∑
i∈Is

〈(
µiι − µiι

)
∇′′(ριωiι)

〉
Ωι,Ω

= −
∑
i∈Is

〈
∇′′
[(
µiι − µiι

)
ριωiι

]〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι∇′′

(
µiι − µiι

)〉
Ωι,Ω

= −
∑
i∈Is

∇8
[(
µiι − µiι

)
ριωiι

]
−
∑
i∈Is

∇8·
〈

(lιlι − I)
(
µiι − µiι

)
ριωiι

〉
Ωι,Ω

+
∑
i∈Is

〈(
lι ·∇′′lι

) (
µiι − µiι

)
ριωiι

〉
Ωι,Ω

−
∑

κ∈(Icι∩IPt)

∑
i∈Is

〈
nι

(
µiι − µiι

)
ριωiι

〉
Ωκ,Ω
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−
∑
i∈Is

〈
e
(
µiι − µiι

)
ριωiι

nι · e

〉
ΓιM ,Ω

+
∑
i∈Is

〈
ριωiι∇′′

(
µiι − µiι

)〉
Ωι,Ω

.

Combining Eqs. (B.221)–(B.226) and substituting Eq. (B.213),

(B.227) ∇8Eι − θι∇8ηι −
∑
i∈Is

µiι∇8
(
ειριωiι

)
−∇8·〈(lιlι − I)γι〉Ωι,Ω

−∇8θι·〈(I− lιlι) ηι〉Ωι,Ω −
∑
i∈Is

∇8µiι·〈(I− lιlι) ριωiι〉Ωι,Ω

+
〈(

lι ·∇′′lι
)
γι
〉

Ωι,Ω
−

∑
κ∈(Icι∩IPt)

〈nιγι〉Ωκ,Ω −
〈

eγι
nι · e

〉
ΓιM ,Ω

+

〈
ηι∇′′

(
θι − θι

)
+
∑
i∈Is

ριωiι∇′′
(
µiι − µiι

)〉
Ωι,Ω

= 0.

Taking the dot product of Eq. (B.227) with vι and addition to Eq. (B.219) yields the

transition region thermodynamic expression for common curve ι

(B.228) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

−∇8·
〈

(I− lιlι) ·
(
vι − vι

)
γι

〉
Ωι,Ω

−
〈(

lι ·∇′′lι
)
·
(
vι − vι

)
γι

〉
Ωι,Ω

+∇8θι·
〈

(I− lιlι) ·
(
vι − vι

)
ηι

〉
Ωι,Ω

+
∑
i∈Is

∇8µiι·
〈

(I− lιlι) ·
(
vι − vι

)
ριωiι

〉
Ωι,Ω

− 〈(I− lιlι) γι〉Ωι,Ω:d8ι

+
∑

κ∈(Icι∩IPt)

〈
nι ·

(
vκ − vι

)
γι

〉
Ωκ,Ω

+

〈
e·
(
vext − vι

)
γι

nι · e

〉
ΓιM ,Ω

+

〈
ηι

D′′ι
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′′ι

(
µiι − µiι

)
Dt

〉
Ωι,Ω

= 0.

The material derivative expressions found within an averaging operator can be converted

to material derivatives referenced to the solid-phase velocity,
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(B.229) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

−∇8·
〈

(I− lιlι) ·
(
vι − vι

)
γι

〉
Ωι,Ω

−
〈(

lι ·∇′′lι
)
·
(
vι − vι

)
γι

〉
Ωι,Ω

+∇8θι·
〈

(I− lιlι) ·
(
vι − vι

)
ηι

〉
Ωι,Ω

+
∑
i∈Is

∇8µiι·
〈

(I− lιlι) ·
(
vι − vι

)
ριωiι

〉
Ωι,Ω

− 〈(I− lιlι) γι〉Ωι,Ω:d8ι

+
∑

κ∈(Icι∩IPt)

〈
nι ·

(
vκ − vι

)
γι

〉
Ωκ,Ω

+

〈
e·
(
vext − vι

)
γι

nι · e

〉
ΓιM ,Ω

+

〈
ηι

D′′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′′s

(
µiι − µiι

)
Dt

〉
Ωι,Ω

+vι,s·
〈
ηι∇′′

(
θι − θι

)
+
∑
i∈Is

ριωiι∇′′
(
µiι − µiι

)〉
Ωι,Ω

= 0.

The last term in Eq. (B.229) can be modified in the same way as for the fluid phases and

interfaces. First we use the microscale Gibbs-Duhem equation such that

(B.230) vι,s·
〈
ηι∇′′

(
θι − θι

)
+
∑
i∈Is

ριωiι∇′′
(
µiι − µiι

)〉
Ωι,Ω

= vι,s·
〈
ηι∇′′θι − ηι∇′′θι +

∑
i∈Is

ριωiι∇′′µiι −
∑
i∈Is

ριωiι∇′′µiι
〉

Ωι,Ω

= vι,s·
〈
−ηι∇′′θι −

∑
i∈Is

ριωiι∇′′µiι +∇′′γι
〉

Ωι,Ω

.

Next, we apply the product rule as well as the averaging gradient theorem given by

Eq. (3.12) to obtain

(B.231) vι,s·
〈
−ηι∇′′θι −

∑
i∈Is

ριωiι∇′′µiι +∇′′γι
〉

Ωι,Ω

= vι,s·
〈
−∇′′

(
ηιθ

ι
)

+ θι∇′′ηι +∇′′γι
〉

Ωι,Ω
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−vι,s·
〈∑
i∈Is

[
∇′′
(
ριωiιµ

iι
)
− µiι∇′′ (ριωiι)

]〉
Ωι,Ω

= vι,s·
(
∇8·
〈
−lιlιηιθ

ι
〉

Ωι,Ω
+ θι∇8·〈lιlιηι〉Ωι,Ω

−
∑
i∈Is

(
∇8·
〈
lιlιριωiιµ

iι
〉

Ωι,Ω
− µiι∇8·〈lιlιριωiι〉Ωι,Ω

)

+∇8·〈lιlιγι〉Ωι,Ω +
〈(

lι ·∇′′lι
)
ηιθ

ι
〉

Ωι,Ω
− θι〈(lι ·∇′′lι) ηι〉Ωι,Ω

+
∑
i∈Is

[〈(
lι ·∇′′lι

)
ριωiιµ

iι
〉

Ωι,Ω
− µiι〈(lι ·∇′′lι) ριωiι〉Ωι,Ω

]

−〈(lι ·∇′′lι) γι〉Ωι,Ω −
〈

eηιθ
ι

nι · e

〉
ΓιM ,Ω

+ θι
〈

eηι
nι · e

〉
ΓιM ,Ω

+

〈
eγι

nι · e

〉
ΓιM ,Ω

−
∑

κ∈(Icι∩IPt)

〈
nιηιθ

ι
〉

Ωκ,Ω
+

∑
κ∈(Icι∩IPt)

θι〈nιηι〉Ωκ,Ω +
∑

κ∈(Icι∩IPt)

〈nιγι〉Ωκ,Ω

−
∑

κ∈(Icι∩IPt)

∑
i∈Is

〈
nιριωiιµ

iι
〉

Ωκ,Ω
+

∑
κ∈(Icι∩IPt)

∑
i∈Is

µiι〈nιριωiι〉Ωκ,Ω

+
∑
i∈Is

−〈eριωiιµ
iι

nι · e

〉
ΓιM ,Ω

+ µiι
〈

eριωiι
nι · e

〉
ΓιM ,Ω

)

= vι,s·

−ηι∇8θι −
∑
i∈Is

ειριωiι∇8µiι +∇8 (ειγι)


+vι,s·

∇8θι·〈(I− lιlι) ηι〉Ωι,Ω +
∑
i∈Is

∇8µiι·〈(I− lιlι) ριωiι〉Ωι,Ω

−∇8·〈(I− lιlι) γι〉Ωι,Ω −
〈(

lι ·∇′′lι
)
γι
〉

Ωι,Ω
+

〈
eγι

nι · e

〉
ΓιM ,Ω

+
∑

κ∈(Icι∩IPt)

〈nιγι〉Ωκ,Ω

 .

Substituting Eq. (B.231) into Eq. (B.229) we get the expression for the thermodynamics

of a common curve,
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(B.232) T ι =
DιEι

Dt
− θιD

ιηι

Dt
−
∑
i∈Is

µiι
Dι
(
ειριωiι

)
Dt

−∇8·
〈

(I− lιlι) ·
(
vι − vs

)
γι

〉
Ωι,Ω

−
〈(

lι ·∇′′lι
)
·
(
vι − vs

)
γι

〉
Ωι,Ω

+∇8θι·
〈

(I− lιlι) ·
(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
i∈Is

∇8µiι·
〈

(I− lιlι) ·
(
vι − vs

)
ριωiι

〉
Ωι,Ω

− 〈(I− lιlι) γι〉Ωι,Ω:d8s

+
∑

κ∈(Icι∩IPt)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

+

〈
e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

+

〈
ηι

D′′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′′s

(
µiι − µiι

)
Dt

〉
Ωι,Ω

−vι,s·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειγι)

 = 0 for ι ∈ IC.

B.9. End Term Manipulations

The end terms arising from the energy, momentum, mass, and entropy equations

respectively are:

(B.233)

+

〈e·
(
vι − vext

)(
Eι +

∑
i∈Is

ριωiι
uiι·uiι

2 + ρι
vι·vι

2 +
∑
i∈Is

ριωiιψiι

)
nι · e

〉
ΓιM ,Ω

−
〈

e· (tι·vι + qι)

nι · e

〉
ΓιM ,Ω

,

(B.234)

〈
e·
[
ριvι

(
vι − vext

)− tι
]

nι · e

〉
ΓιM ,Ω

,
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(B.235)

〈
e·ριωiι

(
vι − vext

)
nι · e

〉
ΓιM ,Ω

+

〈
e·ριωiιuiι

nι · e

〉
ΓιM ,Ω

,

and

(B.236)

〈
e·
[(

vι − vext
)
ηι −ϕι

]
nι·e

〉
ΓιM ,Ω

.

The end terms arising from the thermodynamics depend on the entity being considered,

for fluid phases we have

(B.237)
〈
e·
(
vext − vs

)
pι

〉
ΓιM ,Ω

or equivalently

〈
e·
(
vext − vs

)
pι

nι · e

〉
ΓιM ,Ω

,

because nι · e = 1 when ι is a phase. Therefore, for the solid phase we can write the end

terms as

(B.238) −
〈

e·ts·
(
vs − vs

)
ns · e

〉
ΓsM ,Ω

−
〈

e·
(
vext − vs

)
σs:

Cs
js

ns · e

〉
ΓsM ,Ω

.

The interface end term is

(B.239) −
〈

e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

,

and the end term arising from the thermodynamics of common curves is

(B.240)

〈
e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

.

In the CEI, the terms from Eqs. (B.233)–(B.240) will appear multiplied by their respective

Lagrange multipliers (see Eq. (3.30)) and summed over all entities. If we write out just

the end term contributions as they will appear in the CEI we have

(B.241) −
∑
ι∈I

1

θι

〈e·
(
vι − vext

)(
Eι +

∑
i∈Is

ριωiι

(uiι·uiι
2 + ψiι

)
+ ρι

vι·vι
2

)
nι · e

〉
ΓιM ,Ω
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+
∑
ι∈I

1

θι

〈
e· (tι·vι + qι)

nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

vι

θι
·
〈

e·
[
ριvι

(
vι − vext

)− tι
]

nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)〈
e·ριωiι

(
vι − vext

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

∑
i∈Is

1

θι

(
µiι + ψiι

)〈e·ριωiιuiι
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈
e·
[(

vι − vext
)
ηι −ϕι

]
nι·e

〉
ΓιM ,Ω

+
∑
ι∈If

1

θι

〈
e·
(
vext − vs

)
pι

nι · e

〉
ΓιM ,Ω

− 1

θs

〈
e·ts·

(
vs − vs

)
ns · e

〉
ΓsM ,Ω

− 1

θs

〈
e·
(
vext − vs

)
σs:

Cs
js

ns · e

〉
ΓsM ,Ω

−
∑
ι∈II

1

θι

〈
e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

1

θι

〈
e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

.

Looking at just the terms multiplied by energy and entropy and applying Eq. (B.147)

when ι is a fluid phase, we have

(B.242) − 1

θι

〈
e·
(
vι − vext

)
Eι

nι·e

〉
ΓιM ,Ω

+

〈
e·
(
vι − vext

)
ηι

nι·e

〉
ΓιM ,Ω

= − 1

θι

〈
e·
(
vι − vext

)
(Eι − θιηι)

nι·e

〉
ΓιM ,Ω

+

〈(
1

θι
− 1

θι

)
e·
(
vι − vext

)
θιηι

nι·e

〉
ΓιM ,Ω

= − 1

θι

∑
i∈Is

〈
e·
(
vι − vext

)
ριωiιµiι

nι·e

〉
ΓιM ,Ω

+
1

θι

〈
e·
(
vι − vext

)
pι

nι·e

〉
ΓιM ,Ω

+

〈(
1

θι
− 1

θι

)
e·
(
vι − vext

)
θιηι

nι·e

〉
ΓιM ,Ω

for ι ∈ If .
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When ι = s, we apply Eq. (B.167) such that

(B.243) − 1

θs

〈
e·
(
vs − vext

)
Es

ns·e

〉
ΓsM ,Ω

+

〈
e·
(
vs − vext

)
ηs

ns·e

〉
ΓsM ,Ω

= − 1

θs

∑
i∈Is

〈
e·
(
vs − vext

)
ρsωisµis

ns·e

〉
ΓsM ,Ω

− 1

θs

〈
e·
(
vs − vext

)
σs:

Cs
js

ns·e

〉
ΓsM ,Ω

+

〈(
1

θs
− 1

θs

)
e·
(
vs − vext

)
θsηs

ns·e

〉
ΓsM ,Ω

.

We apply Eq. (B.196) when ι is an interface

(B.244) − 1

θι

〈
e·
(
vι − vext

)
Eι

nι·e

〉
ΓιM ,Ω

+

〈
e·
(
vι − vext

)
ηι

nι·e

〉
ΓιM ,Ω

= − 1

θι

∑
i∈Is

〈
e·
(
vι − vext

)
ριωiιµiι

nι·e

〉
ΓιM ,Ω

− 1

θι

〈
e·
(
vι − vext

)
γι

nι·e

〉
ΓιM ,Ω

+

〈(
1

θι
− 1

θι

)
e·
(
vι − vext

)
θιηι

nι·e

〉
ΓιM ,Ω

for ι ∈ II.

Finally, Eq. (B.213) is applied when ι is a common curve

(B.245) − 1

θι

〈
e·
(
vι − vext

)
Eι

nι·e

〉
ΓιM ,Ω

+

〈
e·
(
vι − vext

)
ηι

nι·e

〉
ΓιM ,Ω

= − 1

θι

∑
i∈Is

〈
e·
(
vι − vext

)
ριωiιµiι

nι·e

〉
ΓιM ,Ω

+
1

θι

〈
e·
(
vι − vext

)
γι

nι·e

〉
ΓιM ,Ω

+

〈(
1

θι
− 1

θι

)
e·
(
vι − vext

)
θιηι

nι·e

〉
ΓιM ,Ω

for ι ∈ IC.

Substituting Eqns (B.242)–(B.245) into Eq. (B.241) and regrouping we have

(B.246)
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∑
ι∈If

1

θι

〈
e·tι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

1

θι

〈
e·
(
vι − vs

)
pι

nι · e

〉
ΓιM ,Ω

+
∑
ι∈II

1

θι

〈
e·t′ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

1

θι

〈
e·
(
vι − vs

)
γι

nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

1

θι

〈
e·t′′ι ·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

1

θι

〈
e·
(
vι − vs

)
γι

nι · e

〉
ΓιM ,Ω

+

〈(
1

θι
− 1

θι

)
e·
(
vι − vext

)
θιηι

nι·e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈
e·
(
vι − vext

)
ριωiι

(
µiι + ψiι −Kι

E − µiι − ψiι
)

nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈e·
(
vι − vext

)
ριωiι

((
vι−vι

)
·
(
vι−vι

)
2 +

uiι·uiι
2

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

〈e·
{
ϕι − 1

θι

[
qι +

∑
i∈Is

ριωiιuiι

(
µiι + ψiι

)]}
nι · e

〉
ΓιM ,Ω

.

At the microscale make use of

(B.247) ϕι =
1

θι

qι +
∑
i∈Is

ριωiιuiι (µiι + ψiι)

 for ι ∈ I

and

(B.248) tι = −pιI + τ ι, t′ι = γιI
′ + τ ′ι, and t′′ι = −γιI′′ + τ ′′ι

for ι ∈ If , ι ∈ II, and ι ∈ IC respectively. Substituting in Eq. (B.246) and rearranging,

we get

(B.249)
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∑
ι∈If

1

θι

〈
e·τ ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

vι,s

θι
·
〈

e·pιI
nι · e

〉
ΓιM ,Ω

+
∑
ι∈II

1

θι

〈
e·τ ′ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

vι,s

θι
·
〈

e·γιI′
nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

1

θι

〈
e·τ ′′ι ·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

vι,s

θι
·
〈

e·γιI′′
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈
e·
(
vι − vext

)
ριωiι

(
µiι + ψiι −Kι

E − µiι − ψiι
)

nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈e·
(
vι − vext

)
ριωiι

((
vι−vι

)
·
(
vι−vι

)
2 +

uiι·uiι
2

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

〈e·
∑
i∈Is

ριωiιuiι

(
µiι+ψiι

θι
− µiι+ψiι

θι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈( 1
θι
− 1

θι

)
e·
[
qι −

(
vι − vext

)
θιηι

]
nι · e

〉
ΓιM ,Ω

.

B.10. Constrained Entropy Inequality

The AEI given by Eq. (3.29) provides a connection between the system EI and the

conservation equations using the thermodynamic relations. The Lagrange multipliers,

Eq. (3.30), are chosen in a way to eliminate some of material derivatives to arrive at a

final form of the CEI, which will be used to guide the formulation of the closed models.

Once these material derivatives are removed, the resultant expression is referenced to

a common frame of reference to satisfy the continuum mechanical axiom of objectivity

and the resultant terms are placed into the force-flux pairs according to the entropy

production postulate.
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Substituting Eq. (3.30) into Eq. (3.29) and simplifying by cancelling out material

derivatives gives

(B.250)
∑
ι∈I

[
Sιr −

1

θι
E ιr +

vι

θι
·Pιr

+
1

θι

∑
i∈Is

(
Kι
E + µiι + ψiι − vι·vι

2

)
Miι

r +
1

θι
T ιr
]

= Λ ≥ 0 for ι ∈ I.

Expanding the shorthand expressions for Sιr, E ιr,Pιr,Miι
r , and T ιr leads to the CEI of the

form

(B.251)
∑
ι∈I

[
ηιI:d8ι −∇8·

(
ειϕ8ι

)
− ειbιT

]
+
∑
ι∈I

〈
e·
[(

vι − vext
)
ηι −ϕι

]
nι·e

〉
ΓιM ,Ω

−
∑
ι∈I

1

θι

∑
i∈Is

ειριωiι
Dι
(
Kι
E + ψiι

)
Dt

−
∑
ι∈I

1

θι

Eι + ειρι
(

vι·vι

2
+Kι

E

)
+
∑
i∈Is

ειριωiιψiι

 I:d8ι

+
∑
ι∈I

1

θι

∇8·
(
ειt8ι·vι

)
+∇8·

(
ειq8ι

)
+ ειhιT +

∑
i∈Is

ειριωiι
(

giιT − giι
)
·vι


+
∑
ι∈I

1

θι

∑
i∈Is

(
ειψiιriι +

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

)

+
∑
ι∈I

1

θι

∑
κ∈Icι

∑
i∈Is

iκ→iι
ME +

κ→ι
Tv +

κ→ι
Q

+
∑
ι∈I

1

θι

〈
e· (tι·vι + qι)

nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

1

θι

〈e·
(
vι − vext

)(
Eι +

∑
i∈Is

ριωiι

(uiι·uiι
2 + ψiι

)
+ ρι

vι·vι
2

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

vι

θι
·

ειριvιI:d8ι −∇8·
(
ειt8ι

)
−
∑
i∈Is

ειριωiιgiιT
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−
∑
ι∈I

vι

θι
·
∑
κ∈Icι

∑
i∈Is

iκ→iι
Mv +

κ→ι
T


+
∑
ι∈I

vι

θι
·
〈

e·
[
ριvι

(
vι − vext

)− tι
]

nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)ειριωiιI:d8ι − ειriι −
∑
κ∈Icι

iκ→iι
M


+
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)
∇8·

(
ειριωiιuiι

)

+
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)〈
e·ριωiι

(
vι − vext

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

∑
i∈Is

1

θι

(
µiι + ψiι

)〈e·ριωiιuiι
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

1

θι

〈
ηι

Ds
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
Ds
(
µiι − µiι

)
Dt

〉
Ωι,Ω

+
∑
ι∈If

∑
κ∈Icι

1

θι

〈
nι ·

(
vκ − vs

)
pι

〉
Ωκ,Ω

+
∑
ι∈If

1

θι

〈
e·
(
vext − vs

)
pι

〉
ΓιM ,Ω

−
∑
ι∈If

vι,s

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειpι)


+

1

θs

〈
ηs

Ds
(
θs − θs

)
Dt

+
∑
i∈Is

ρsωis
Ds(µis − µis)

Dt

〉
Ωs,Ω

− 1

θs
εst8s:d8s +

εs

θs
σs:

Cs

js
I:d8s − 1

θs
∇8·
〈(

ts − σs:
Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θs

〈
ns · ts·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

〈
e·ts·

(
vs − vs

)〉
ΓsM ,Ω

+
1

θs

〈(
∇·ts − Cs

js
:∇σs

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θs

∑
κ∈Ics

〈
σs:

Cs
js

ns · (vκ − vs)

〉
Ωκ,Ω

− 1

θs

〈
e· (vext − vs)σs:

Cs
js

〉
ΓsM ,Ω
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+
∑
ι∈II

1

θι

〈
ηι

D′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′s(µiι − µiι)

Dt

〉
Ωι,Ω

+
∑
ι∈II

1

θι
〈nαnαγι〉Ωι,Ω:d8s +

∑
ι∈II

1

θι
∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

+
∑
ι∈II

1

θι
∇8θι·

〈
nαnα ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
ι∈II

∑
i∈Is

1

θι
∇8µiι·

〈
nαnα ·

(
vι − vs

)
ριωiι

〉
Ωι,Ω

−
∑
ι∈II

1

θι

〈(∇′·nα)nα ·
(
vι − vs

)
γι

〉
Ωι,Ω

−
∑
ι∈II

1

θι

∑
κ∈(Icι∩IC)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

−
∑
ι∈II

1

θι

〈
e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

vι,s

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι +∇8 (ειγι)


+
∑
ι∈IC

1

θι

〈
ηι

D′′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′′s(µiι − µiι)

Dt

〉
Ωι,Ω

−
∑
ι∈IC

1

θι
∇8·
〈

(I− lιlι) ·
(
vι − vs

)
γι

〉
Ωι,Ω

−
∑
ι∈IC

1

θι

〈(
lι·∇′′lι

)
·
(
vι − vs

)
γι

〉
Ωι,Ω

−
∑
ι∈IC

1

θι
〈(I− lιlι) γι〉Ωι,Ω:d8s

+
∑
ι∈IC

1

θι

∑
κ∈(Icι∩IPt)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

+
∑
ι∈IC

1

θι
∇8θι·

〈
(I− lιlι) ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
ι∈IC

1

θι

∑
i∈Is

∇8µiι·
〈

(I− lιlι) ·
(
vι − vs

)
ριωiι

〉
Ωι,Ω
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+
∑
ι∈IC

1

θι

〈
e·
(
vext − vs

)
γι

nι · e

〉
ΓιM ,Ω

−
∑
ι∈IC

vι,s

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειγι)

 = Λ ≥ 0,

where α ∈ (Icι ∩ IP).

We can manipulate Eq. (B.251) to place it in a more convenient form for satisfying

our overall goal of having groupings of variables related to non-dissipative processes and

groupings of variables related to dissipative processes, which are arranged in flux-force

pairs and satisfy the axiom of objectivity. Non-dissipative processes are identified to

relate the flux and source of entropy in a system to the flux and source of heat and other

thermodynamic quantities.

Eq. (B.251) contains the remaining material derivatives that must be referenced to

a common frame to lead to a form that will satisfy the continuum mechanical axiom of

objectivity. We select the macroscale solid-phase velocity vs as the reference velocity

and write

(B.252)
Dι

Dt
=
∂8

∂t
+ vι·∇8 =

∂

∂t
+ vι·∇ =

∂8

∂t
+ vs·∇8 + vι,s·∇8 =

Ds

Dt
+ vι,s·∇8,

then we have

(B.253)
∑
i∈Is

ειριωiι
Dι
(
Kι
E + ψiι

)
Dt

=
∑
i∈Is

〈
ριωiι

Ds
(
Kι
E + ψiι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

ειριωiιvι,s·∇8
(
Kι
E + ψiι

)
.

For the like term applied to an interface ι, if we restrict the material derivative to

the microscale surface, then we can group the term inside the averaging operator with

those material derivatives remaining from the thermodynamics. To do that we use the

following identity
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(B.254)

〈
D′s
Dt

〉
Ωι,Ω

=

〈
∂′
∂t

+ vs·∇′
〉

Ωι,Ω

=

〈
∂

∂t
+ vι·nαnα ·∇+ vs· (∇− nαnα ·∇)

〉
Ωι,Ω

=

〈
∂

∂t
+ vs·∇+

(
vι − vs

)
·nαnα ·∇

〉
Ωι,Ω

=

〈
Ds

Dt
+
(
vι − vs

)
·nαnα ·∇

〉
Ωι,Ω

for ι ∈ II,

where α ∈ (Icι ∩ IP) is the outward normal vector from the ι interface. Then we can

write

(B.255)
∑
i∈Is

ειριωiι
Dι
(
Kι
E + ψiι

)
Dt

=
∑
i∈Is

〈
ριωiι

D′s
(
Kι
E + ψiι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

ειριωiιvι,s·∇8
(
Kι
E + ψiι

)
−
∑
i∈Is

〈
ριωiι

(
vι − vs

)
·nαnα ·∇

(
Kι
E + ψiι

)〉
Ωι,Ω

for ι ∈ II.

The gradient of the macroscale quantities in Eq. (B.255) can be moved outside the

averaging operator. Since these macroscale quantities are averaged in the N direction, it

follows that

(B.256) ∇
(
Kι
E + ψiι

)
= ∇8

(
Kι
E + ψiι

)
and

(B.257)
∑
i∈Is

ειριωiι
Dι
(
Kι
E + ψiι

)
Dt

=
∑
i∈Is

〈
ριωiι

D′s
(
Kι
E + ψiι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

ειριωiιvι,s·∇8
(
Kι
E + ψiι

)
−
∑
i∈Is

∇8
(
Kι
E + ψiι

)
·
〈
ριωiι

(
vι − vs

)
·nαnα

〉
Ωι,Ω

for ι ∈ II.

264



Similarly for a common curve, ι, we have

(B.258)

〈
D′′s
Dt

〉
Ωι,Ω

=

〈
Ds

Dt
+
(
vι − vs

)
· (I− lιlι) ·∇

〉
Ωι,Ω

,

and thus

(B.259)
∑
i∈Is

ειριωiι
Dι
(
Kι
E + ψiι

)
Dt

=
∑
i∈Is

〈
ριωiι

D′′s
(
Kι
E + ψiι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

ειριωiιvι,s·∇8
(
Kι
E + ψiι

)
−
∑
i∈Is

∇8
(
Kι
E + ψiι

)
·
〈
ριωiι

(
vι − vs

)
· (I− lιlι)

〉
Ωι,Ω

for ι ∈ IC.

Next we notice that substitution of Pιr into Eq. (B.250) introduced the product of

velocity in non-objective form with several terms arising from the momentum conserva-

tion equation. One of these products involves the gravitational acceleration force, giι,

which can be put into objective form and combined with the average of the partial time

derivative of gravitational potential from the energy equation, ψiι. Using the relation

between the acceleration vector and its potential, giι = −∇ψiι, we can write

(B.260) − vι·
∑
i∈Is

ειριωiιgiι +
∑
i∈Is

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

= −vι,s·
∑
i∈Is

ειριωiιgiι + vs·
∑
i∈Is

〈ριωiι∇ψiι〉Ωι,Ω +
∑
i∈Is

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

= −vι,s·
∑
i∈Is

ειριωiιgiι +
∑
i∈Is

〈
ριωiι

Dsψiι
Dt

〉
Ωι,Ω

for ι ∈ I.

Note that for the solid-phase the first term on the last line of Eq. (B.260) goes to zero.

Applying Eq. (B.254) to the material derivative in Eq. (B.260), the similar expression

for the interfaces is

(B.261) − vι·
∑
i∈Is

ειριωiιgiι +
∑
i∈Is

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω
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= −vι,s·
∑
i∈Is

ειριωiιgiι +
∑
i∈Is

〈
ριωiι

D′sψiι
Dt

〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

(
vι − vs

)
·nαnα ·giι

〉
Ωι,Ω

for ι ∈ II,

and with Eq. (B.258) for the common curve

(B.262) − vι·
∑
i∈Is

ειριωiιgiι +
∑
i∈Is

〈
ριωiι

∂ψiι
∂t

〉
Ωι,Ω

= −vι,s·
∑
i∈Is

ειριωiιgiι +
∑
i∈Is

〈
ριωiι

D′′sψiι
Dt

〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

(
vι − vs

)
· (I− lιlι) ·giι

〉
Ωι,Ω

for ι ∈ IC.

Using the rearrangement of the end terms as derived in Appendix I and shown in

Eq. (B.249), as well as referencing the remaining material derivatives and those veloc-

ities multiplying gravitational acceleration terms to the solid phase as in Eq. (B.255),

Eq. (B.257), and Eqns (B.259)–(B.262), Eq. (B.251) can be written

(B.263)
∑
ι∈I

[
ηιI:d8ι −∇8·

(
ειϕ8ι

)
− ειbιT

]

−
∑
ι∈IP

1

θι

∑
i∈Is

〈ριωiιDs
(
Kι
E + ψiι

)
Dt

〉
Ωι,Ω

+ ειριωiιvι,s·∇8
(
Kι
E + ψiι

)
−
∑
ι∈II

1

θι

∑
i∈Is

〈ριωiιD′s
(
Kι
E + ψiι

)
Dt

〉
Ωι,Ω

+ ειριωiιvι,s·∇8
(
Kι
E + ψiι

)
+
∑
ι∈II

1

θι

∑
i∈Is

∇8
(
Kι
E + ψiι

)
·
〈
ριωiι

(
vι − vs

)
·nαnα

〉
Ωι,Ω

−
∑
ι∈IC

1

θι

∑
i∈Is

〈ριωiιD′′s
(
Kι
E + ψiι

)
Dt

〉
Ωι,Ω

+ ειριωiιvι,s·∇8
(
Kι
E + ψiι

)
+
∑
ι∈IC

1

θι

∑
i∈Is

∇8
(
Kι
E + ψiι

)
·
〈
ριωiι

(
vι − vs

)
· (I− lιlι)

〉
Ωι,Ω
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−
∑
ι∈I

1

θι

Eι + ειρι
(

vι·vι

2
+Kι

E

)
+
∑
i∈Is

ειριωiιψiι

 I:d8ι

+
∑
ι∈I

1

θι

[
∇8·

(
ειt8ι·vι

)
+∇8·

(
ειq8ι

)
+ ειhιT

]

+
∑
ι∈I

1

θι

∑
i∈Is

ειψiιriι +
∑
ι∈IP

1

θι

∑
i∈Is

〈
ριωiι

Dsψiι
Dt

〉
Ωι,Ω

+
∑
ι∈II

1

θι

∑
i∈Is

〈
ριωiι

D′sψiι
Dt

〉
Ωι,Ω

+
∑
ι∈IC

1

θι

∑
i∈Is

〈
ριωiι

D′′sψiι
Dt

〉
Ωι,Ω

+
∑
ι∈I

1

θι

∑
κ∈Icι

∑
i∈Is

iκ→iι
ME +

κ→ι
Tv +

κ→ι
Q


+
∑
ι∈I

vι

θι
·
[
ειριvιI:d8ι −∇8·

(
ειt8ι

)]
−
∑
ι∈If

vι,s

θι
·
∑
i∈Is

(
ειριωiιgiι

)

−
∑
ι∈II

vι,s

θι
·
∑
i∈Is

(
ειριωiιgiι

)
−
∑
ι∈IC

vι,s

θι
·
∑
i∈Is

(
ειριωiιgiι

)

−
∑
ι∈I

vι

θι
·
∑
κ∈Icι

∑
i∈Is

iκ→iι
Mv +

κ→ι
T


+
∑
ι∈II

∑
i∈Is

1

θι

〈
ριωiι

(
vι − vs

)
·nαnα ·giι

〉
Ωι,Ω

+
∑
ι∈IC

∑
i∈Is

1

θι

〈
ριωiι

(
vι − vs

)
· (I− lιlι) ·giι

〉
Ωι,Ω

+
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)(
ειριωiιI:d8ι − ειriι

)

−
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

) ∑
κ∈Icι

iκ→iι
M

+
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)
∇8·

(
ειριωiιuiι

)

+
∑
ι∈If

1

θι

〈
ηι

Ds
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
Ds
(
µiι − µiι

)
Dt

〉
Ωι,Ω
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−
∑
ι∈If

vι,s

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειpι)


+
∑
ι∈If

∑
κ∈Icι

1

θι

〈
nι ·

(
vκ − vs

)
pι

〉
Ωκ,Ω

+
1

θs

〈
ηs

Ds
(
θs − θs

)
Dt

+
∑
i∈Is

ρsωis
Ds(µis − µis)

Dt

〉
Ωs,Ω

− 1

θs
εst8s:d8s +

εs

θs
σs:

Cs

js
I:d8s − 1

θs
∇8·
〈(

ts − σs:
Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

+
1

θs

〈(
∇·ts − Cs

js
:∇σs

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θs

〈
ns · ts·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

∑
κ∈Ics

〈
σs:

Cs
js

ns · (vκ − vs)

〉
Ωκ,Ω

+
∑
ι∈II

1

θι

〈
ηι

D′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′s(µiι − µiι)

Dt

〉
Ωι,Ω

+
∑
ι∈II

1

θι
〈nαnαγι〉Ωι,Ω:d8s +

∑
ι∈II

1

θι
∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

+
∑
ι∈II

1

θι
∇8θι·

〈
nαnα ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
ι∈II

∑
i∈Is

1

θι
∇8µiι·

〈
nαnα ·

(
vι − vs

)
ριωiι

〉
Ωι,Ω

−
∑
ι∈II

1

θι

〈(∇′·nα)nα ·
(
vι − vs

)
γι

〉
Ωι,Ω

−
∑
ι∈II

vι,s

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι +∇8 (ειγι)


−
∑
ι∈II

1

θι

∑
κ∈(Icι∩IC)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

+
∑
ι∈IC

1

θι

〈
ηι

D′′s
(
θι − θι

)
Dt

+
∑
i∈Is

ριωiι
D′′s(µiι − µiι)

Dt

〉
Ωι,Ω
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−
∑
ι∈IC

1

θι
∇8·
〈

(I− lιlι) ·
(
vι − vs

)
γι

〉
Ωι,Ω

−
∑
ι∈IC

1

θι

〈(
lι·∇′′lι

)
·
(
vι − vs

)
γι

〉
Ωι,Ω

−
∑
ι∈IC

1

θι
〈(I− lιlι) γι〉Ωι,Ω:d8s

+
∑
ι∈IC

1

θι

∑
κ∈(Icι∩IPt)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

+
∑
ι∈IC

1

θι
∇8θι·

〈
(I− lιlι) ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
ι∈IC

1

θι

∑
i∈Is

∇8µiι·
〈

(I− lιlι) ·
(
vι − vs

)
ριωiι

〉
Ωι,Ω

−
∑
ι∈IC

vι,s

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειγι)


+
∑
ι∈If

1

θι

〈
e·τ ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

vι,s

θι
·
〈

e·pιI
nι · e

〉
ΓιM ,Ω

+
∑
ι∈II

1

θι

〈
e·τ ′ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

vι,s

θι
·
〈

e·γιI′
nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

1

θι

〈
e·τ ′′ι ·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

vι,s

θι
·
〈

e·γιI′′
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈
e·
(
vι − vext

)
ριωiι

(
µiι + ψiι −Kι

E − µiι − ψiι
)

nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈e·
(
vι − vext

)
ριωiι

((
vι−vι

)
·
(
vι−vι

)
2 +

uiι·uiι
2

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

〈e·
∑
i∈Is

ριωiιuiι

(
µiι+ψiι

θι
− µiι+ψiι

θι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈( 1
θι
− 1

θι

)
e·
[
qι −

(
vι − vext

)
θιηι

]
nι · e

〉
ΓιM ,Ω

,
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where α ∈ (Icι ∩ IP).

Within the CIT framework, entropy production is a result of heat conduction, the

flow of matter, mechanical dissipation, chemical reactions, and electrical currents leading

to irreversible processes. According to the entropy production postulate, the production

of entropy can be expressed as a sum of products of a set of thermodynamic fluxes and

forces that are zero at equilibrium and independent of all other fluxes and forces in the

respective set. Some rearranging is needed to get such a form.

The surficial portion of the non-advective heat flux term may be rearranged using the

product rule to obtain

(B.264)
1

θι
∇8·

(
ειq8ι

)
= ∇8·

(
ειq8ι

θι

)
− ειq8ι·∇8

(
1

θι

)
.

Another application of the product rule that will prove convenient involves rearrange-

ment of the dispersion term that arises from the species mass conservation equation.

Looking at only the surficial portion of this term,

(B.265)
1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)
∇8·

(
ειριωiιu8iι

)
= ∇8·

[
1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)
ειριωiιu8iι

]
−ειριωiιu8iι·∇8

[
1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)]
= ∇8·

[
1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)
ειριωiιu8iι

]
− 1

θι
ειριωiιu8iι·∇8

(
Kι
E + µiι + ψiι − vι·vι

2

)
−ειριωiι

(
Kι
E + µiι + ψiι − vι·vι

2

)
u8iι·∇8

(
1

θι

)
.

Summing Eq. (B.265) over all species allows for

(B.266)
∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

)
∇8·

(
ειριωiιu8iι

)
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=
∑
i∈Is

∇8·
[

1

θι

(
µiι + ψiι

)
ειριωiιu8iι

]

−
∑
i∈Is

1

θι
ειριωiιu8iι·∇8

(
µiι + ψiι

)
−
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι·∇8

(
1

θι

)
.

Applying Eq. (B.264) and Eq. (B.266), as well as the thermodynamic relationships

found in Eq. (B.148), Eq. (B.168), Eq. (B.197), and Eq. (B.214), and regrouping to

combine like terms, Eq. (B.263) can be rewritten as

(B.267) −
∑
ι∈I

∇8·
[
ειϕ8ι − 1

θι

(
ειq8ι +

∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι

)]

+
∑
ι∈I

(∇8·N
)
N· 1

θι

∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι

−
∑
ι∈IP

[
ειbιT −

1

θι

(
ειhιT +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι −Kι

E − ψiι
)

Dt

〉
Ωι,Ω

)]

−
∑
ι∈II

[
ειbιT −

1

θι

(
ειhιT +

〈
ηι

D′s
(
θι − θι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

D′s
(
µiι + ψiι − µiι −Kι

E − ψiι
)

Dt

〉
Ωι,Ω

)]

−
∑
ι∈IC

[
ειbιT −

1

θι

(
ειhιT +

〈
ηι

D′′s
(
θι − θι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

D′′s
(
µiι + ψiι − µiι −Kι

E − ψiι
)

Dt

〉
Ωι,Ω

)]

+
∑
ι∈If

1

θι

(
ειpιI8 + ειt8ι

)
:d8ι − 1

θs

(
εst8s − εst8s

)
:d8s
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−
∑
ι∈II

1

θι

(
ειγιI8 − ειt8ι

)
:d8ι +

∑
ι∈IC

1

θι

(
ειγιI8 + ειt8ι

)
:d8ι

−
∑
ι∈I

∑
i∈Is

1

θι
ειριωiιu8iι·∇8

(
µiι + ψiι

)
−
∑
ι∈I

∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι·∇8

(
1

θι

)

−
∑
ι∈If

(
v8ι − v8s)

θι
·

∑
i∈Is

ειριωiι
[
∇8
(
Kι
E + ψiι

)
+ g8iι

]
−
∑
ι∈If

(
v8ι − v8s)

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειpι)


−
∑
ι∈II

(
v8ι − v8s)

θι
·

∑
i∈Is

ειριωiι
[
∇8
(
Kι
E + ψiι

)
+ g8iι

]
−
∑
ι∈II

(
v8ι − v8s)

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι +∇8 (ειγι)


−
∑
ι∈IC

(
v8ι − v8s)

θι
·

∑
i∈Is

ειριωiι
[
∇8
(
Kι
E + ψiι

)
+ g8iι

]
−
∑
ι∈I

vι,s·N
θι

∑
i∈Is

ειριωiιgiι·N

−
∑
ι∈IC

(
v8ι − v8s)

θι
·

ηι∇8θι +
∑
i∈Is

ειριωiι∇8µiι −∇8 (ειγι)


+
∑
ι∈II

∑
i∈Is

1

θι
∇8
(
Kι
E + ψiι

)
·
〈
ριωiι

(
vι − vs

)
·nαnα

〉
Ωι,Ω

+
∑
ι∈IC

∑
i∈Is

1

θι
∇8
(
Kι
E + ψiι

)
·
〈
ριωiι

(
vι − vs

)
· (I− lιlι)

〉
Ωι,Ω

+
∑
ι∈II

∑
i∈Is

1

θι

〈
ριωiι

(
vι − vs

)
·nαnα ·giι

〉
Ωι,Ω

+
∑
ι∈IC

∑
i∈Is

1

θι

〈
ριωiι

(
vι − vs

)
· (I− lιlι) ·giι

〉
Ωι,Ω
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−
∑
ι∈I

∑
i∈Is

1

θι
ειµiιriι −

∑
ι∈I

(
ειq8ι

)
·∇8

(
1

θι

)

+
∑
ι∈I

1

θι

∑
κ∈Icι

∑
i∈Is

iκ→iι
ME +

κ→ι
Tv +

κ→ι
Q


−
∑
ι∈I

vι

θι
·
∑
κ∈Icι

∑
i∈Is

iκ→iι
Mv +

κ→ι
T


−
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

) ∑
κ∈Icι

iκ→iι
M

+
∑
ι∈If

∑
κ∈Icι

1

θι

〈
nι ·

(
vκ − vs

)
pι

〉
Ωκ,Ω

− 1

θs

〈
ns · ts·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

∑
κ∈Ics

〈(
Cs
js

:σs

)
(vκ − vs) ·ns

〉
Ωκ,Ω

+
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θs
∇8·
〈

I8·
(

ts − σs:
Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

− 1

θs
∇8·
〈
NN·

(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

+
∑
ι∈II

1

θι
∇8θι·

〈
nαnα ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
ι∈II

1

θι
∇8µiι·

〈
nαnα ·

(
vι − vs

)
ριωiι

〉
Ωι,Ω

+
∑
ι∈II

1

θι

[
∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

+ 〈nαnαγι〉Ωι,Ω:d8s
]

−
∑
ι∈II

1

θι

〈(∇′·nα)nα ·
(
vι − vs

)
γι

〉
Ωι,Ω

−
∑
ι∈II

1

θι

∑
κ∈(Icι∩IC)

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

−
∑
ι∈IC

1

θι

[
∇8·
〈

(I− lιlι) ·
(
vι − vs

)
γι

〉
Ωι,Ω

+ 〈(I− lιlι) γι〉Ωι,Ω:d8s
]
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−
∑
ι∈IC

1

θι

〈(
lι·∇′′lι

)
·
(
vι − vs

)
γι

〉
Ωι,Ω

+
∑
ι∈IC

1

θι
∇8θι·

〈
(I− lιlι) ·

(
vι − vs

)
ηι

〉
Ωι,Ω

+
∑
ι∈IC

∑
i∈Is

1

θι
∇8µiι·

〈
(I− lιlι) ·

(
vι − vs

)
ριωiι

〉
Ωι,Ω

+
∑
ι∈IC

∑
κ∈(Icι∩IPt)

1

θι

〈
nι ·

(
vκ − vs

)
γι

〉
Ωκ,Ω

+
∑
ι∈If

1

θι

〈
e·τ ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

(
v8ι − v8s)

θι
·
〈

e·pιI8

nι · e

〉
ΓιM ,Ω

+
∑
ι∈II

1

θι

〈
e·τ ′ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

(
v8ι − v8s)

θι
·
〈

e·γιI′
nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

1

θι

〈
e·τ ′′ι ·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

(
v8ι − v8s)

θι
·
〈

e·γιI′′
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

vι,s·N
θι

N ·
〈

epι
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

vι,s·N
θι

N ·
〈

eγι
nι · e

〉
ΓιM ,Ω

+
∑
ι∈IC

vι,s·N
θι

N ·
〈

eγι
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

1

θι

〈
e·
(
vι − vext

)
ηι

(
θι − θι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈
e·
(
vι − vext

)
ριωiι

(
µiι + ψiι −Kι

E − µiι − ψiι
)

nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈e·
(
vι − vext

)
ριωiι

((
vι−vι

)
·
(
vι−vι

)
2 +

uiι·uiι
2

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

〈e·
∑
i∈Is

ριωiιuiι

(
µiι+ψiι

θι
− µiι+ψiι

θι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈( 1
θι
− 1

θι

)
e·
[
qι −

(
vι − vext

)
θιηι

]
nι · e

〉
ΓιM ,Ω

= Λ ≥ 0.
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The final set of terms that require some expansion and rearrangement are the inter-

entity exchange terms. The objectives of these expansions are to ensure that all velocities

that appear are expressed relative to the solid-phase velocity and to gather terms in force-

flux pairs.

Terms involving the inter-entity transfer of mass, momentum, and energy need to be

rearranged into force-flux form. The straightforward, but somewhat lengthy, manipu-

lations needed to derive this form are guided by the a priori knowledge of equilibrium

conditions, which can be utilized to derive forms in which the forces are known to be

zero at equilibrium. The needed rearrangement is accomplished by extracting all terms

involving the transfer of momentum, mass, and energy from Eq. (B.267) and manipu-

lating them to derive the desired form. These manipulations are detailed in turn. The

specific two-fluid-phase case is considered at this point rather than including common

points, which will not appear in this particular system due to the primary restrictions

imposed.

First, consider terms involving the interfacial transport of momentum, which may be

written as

(B.268) T = −
∑
ι∈I

vι

θι
·
∑
κ∈Icι

κ→ι
T +

∑
ι∈I

1

θι

∑
κ∈Icι

κ→ι
Tv

= −vw

θw
·
(
wg→w

T +
ws→w

T

)
+

1

θw

(
v
wg
w ·

wg→w
T + vwsw ·

ws→w
T

)
−vg

θg
·
(
wg→g

T +
gs→g

T

)
+

1

θg

(
v
wg
g ·

wg→g
T + v

gs
g ·

gs→g
T

)
−vs

θs
·
(
ws→s

T +
gs→s

T

)
+

1

θs

(
vwss ·

ws→s
T + v

gs
s ·

gs→s
T

)
−vwg

θwg
·
(
−
wg→w

T −
wg→g

T +
wgs→wg

T

)
+

1

θwg

(
−v

wg
w ·

wg→w
T − v

wg
g ·

wg→g
T + v

wgs
wg ·

wgs→wg
T

)
−vws

θws
·
(
−
ws→w

T −
ws→s

T +
wgs→ws

T

)
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+
1

θws

(
−vwsw ·

ws→w
T − vwss ·

ws→s
T + v

wgs
ws ·

wgs→ws
T

)
−vgs

θgs
·
(
−
gs→g

T −
gs→s

T +
wgs→gs

T

)
+

1

θgs

(
−v

gs
g ·

gs→g
T − v

gs
s ·

gs→s
T + v

wgs
gs ·

wgs→gs
T

)
−vwgs

θwgs
·
(
−
wgs→wg

T −
wgs→ws

T −
wgs→gs

T

)
+

1

θwgs

(
−v

wgs
wg ·

wgs→wg
T − v

wgs
ws ·

wgs→ws
T − v

wgs
gs ·

wgs→gs
T

)
.

Putting into objective form by referencing all velocities to vs, we arrive at

(B.269)

T = −vw,s

θw
·
(
wg→w

T +
ws→w

T

)
+

1

θw

[(
v
wg
w − vs

)
·
wg→w

T +
(
vwsw − vs

)
·
ws→w

T

]
−vg,s

θg
·
(
wg→g

T +
gs→g

T

)
+

1

θg

[(
v
wg
g − vs

)
·
wg→g

T +
(
v
gs
g − vs

)
·
gs→g

T

]
+

1

θs

[(
vwss − vs

)
·
ws→s

T +
(
v
gs
s − vs

)
·
gs→s

T

]
−vwg,s

θwg
·
(
−
wg→w

T −
wg→g

T +
wgs→wg

T

)
+

1

θwg

[
−
(
v
wg
w − vs

)
·
wg→w

T −
(
v
wg
g − vs

)
·
wg→g

T +
(
v
wgs
wg − vs

)
·
wgs→wg

T

]
−vws,s

θws
·
(
−
ws→w

T −
ws→s

T +
wgs→ws

T

)
+

1

θws

[
−
(
vwsw − vs

)
·
ws→w

T −
(
vwss − vs

)
·
ws→s

T +
(
v
wgs
ws − vs

)
·
wgs→ws

T

]
−vgs,s

θgs
·
(
−
gs→g

T −
gs→s

T +
wgs→gs

T

)
+

1

θgs

[
−
(
v
gs
g − vs

)
·
gs→g

T −
(
v
gs
s − vs

)
·
gs→s

T +
(
v
wgs
gs − vs

)
·
wgs→gs

T

]
−vwgs,s

θwgs
·
(
−
wgs→wg

T −
wgs→ws

T −
wgs→gs

T

)
+

1

θwgs

[
−
(
v
wgs
wg − vs

)
·
wgs→wg

T −
(
v
wgs
ws − vs

)
·
wgs→ws

T
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−
(
v
wgs
gs − vs

)
·
wgs→gs

T

]
.

Rearranging into force-flux pairs gives

(B.270) T = −vw,s

θw
·
wg→w

T − vg,s

θg
·
wg→g

T +
vwg,s

θwg
·
(
wg→w

T +
wg→g

T

)
+

(
1

θw
− 1

θwg

)(
v
wg
w − vs

)
·
wg→w

T +

(
1

θg
− 1

θwg

)(
v
wg
g − vs

)
·
wg→g

T

−vw,s

θw
·
ws→w

T +
vws,s

θws
·
(
ws→w

T +
ws→s

T

)
+

(
1

θw
− 1

θws

)(
vwsw − vs

)
·
ws→w

T +

(
1

θs
− 1

θws

)(
vwss − vs

)
·
ws→s

T

−vg,s

θg
·
gs→g

T +
vgs,s

θgs
·
(
gs→g

T +
gs→s

T

)
+

(
1

θg
− 1

θgs

)(
v
gs
g − vs

)
·
gs→g

T +

(
1

θs
− 1

θgs

)(
v
gs
s − vs

)
·
gs→s

T

−vwg,s

θwg
·
wgs→wg

T − vws,s

θws
·
wgs→ws

T − vgs,s

θgs
·
wgs→gs

T

+

(
1

θwg
− 1

θwgs

)(
v
wgs
wg − vs

)
·
wgs→wg

T

+

(
1

θws
− 1

θwgs

)(
v
wgs
ws − vs

)
·
wgs→ws

T

+

(
1

θgs
− 1

θwgs

)(
v
wgs
gs − vs

)
·
wgs→gs

T

+
vwgs,s

θwgs
·
(
wgs→wg

T +
wgs→ws

T +
wgs→gs

T

)
= −

∑
ι∈I

∑
κ∈Icι

vι,s

θι
·
κ→ι
T +

∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

)(
vκι − vs

)
·
κ→ι
T

+
∑
ι∈II

(
1

θι
− 1

θwgs

)(
v
wgs
ι − vs

)
·
wgs→ι

T .

This resultant form is convenient because forces consisting of referenced velocities and

differences in the inverse of temperatures are known to be zero at equilibrium. Also,

notice that if the velocities with both subscripts and superscripts are replaced by the
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higher dimensional macroscale mass averaged entity velocity, that the resulting form

reduces to the form used in a previous paper, T6 [110].

Similar manipulations can be performed for the terms involving heat exchange to

obtain

(B.271) Q =
∑
ι∈I

1

θι

∑
κ∈Icι

κ→ι
Q =

(
1

θw
− 1

θwg

)
wg→w
Q +

(
1

θw
− 1

θws

)
ws→w
Q

+

(
1

θg
− 1

θwg

)
wg→g
Q +

(
1

θg
− 1

θgs

)
gs→g
Q +

(
1

θs
− 1

θws

)
ws→s
Q

+

(
1

θs
− 1

θgs

)
gs→s
Q +

(
1

θwg
− 1

θwgs

)
wgs→wg
Q +

(
1

θws
− 1

θwgs

)
wgs→ws
Q

+

(
1

θgs
− 1

θwgs

)
wgs→gs
Q

=
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

)
κ→ι
Q +

∑
ι∈II

(
1

θι
− 1

θwgs

)
wgs→ι
Q .

Next consider all terms involving the exchange of mass

(B.272) M =
∑
ι∈I

1

θι

∑
κ∈Icι

∑
i∈Is

iκ→iι
ME −

∑
ι∈I

vι

θι
·
∑
κ∈Icι

∑
i∈Is

iκ→iι
Mv

−
∑
ι∈I

∑
i∈Is

1

θι

(
Kι
E + µiι + ψiι − vι·vι

2

) ∑
κ∈Icι

iκ→iι
M

=
1

θw

∑
i∈Is

 E
wg
Tw

εwρ
wg
w

iwg→iw
M +

EwsTw
εwρwsw

iws→iw
M


+

1

θg

∑
i∈Is

 E
wg
Tg

εgρ
wg
g

iwg→ig
M +

E
gs
Tg

εgρ
gs
g

igs→ig
M


+

1

θs

∑
i∈Is

 EwsTs
εsρwss

iws→is
M +

E
gs
Ts

εsρ
gs
s

igs→is
M


− 1

θwg

∑
i∈Is

 E
wg
Tw

εwρ
wg
w

iwg→iw
M +

E
wg
Tg

εgρ
wg
g

iwg→ig
M −

E
wgs
Twg

εwgρ
wgs
wg

iwgs→iwg
M
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− 1

θws

∑
i∈Is

 EwsTw
εwρwsw

iws→iw
M +

EwsTs
εsρwss

iws→is
M − E

wgs
Tws

εwsρ
wgs
ws

iwgs→iws
M


− 1

θgs

∑
i∈Is

 E
gs
Tg

εgρ
gs
g

igs→ig
M +

E
gs
Ts

εsρ
gs
s

igs→is
M −

E
wgs
Tgs

εgsρ
wgs
gs

iwgs→igs
M


− 1

θwgs

∑
i∈Is

 E
wgs
Twg

εwgρ
wgs
wg

iwgs→iwg
M +

E
wgs
Tws

εwsρ
wgs
ws

iwgs→iws
M +

E
wgs
Tgs

εgsρ
wgs
gs

iwgs→igs
M


−vw

θw
·
∑
i∈Is

(
v
wg
w

iwg→iw
M + vwsw

iws→iw
M

)

−vg

θg
·
∑
i∈Is

(
v
wg
g

iwg→ig
M + v

gs
g

igs→ig
M

)

−vs

θs
·
∑
i∈Is

(
vwss

iws→is
M + v

gs
s

igs→is
M

)

+
vwg

θwg
·
∑
i∈Is

(
v
wg
w

iwg→iw
M + v

wg
g

iwg→ig
M − v

wgs
wg

iwgs→iwg
M

)

+
vws

θws
·
∑
i∈Is

(
vwsw

iws→iw
M + vwss

iws→is
M − v

wgs
ws

iwgs→iws
M

)

+
vgs

θgs
·
∑
i∈Is

(
v
gs
g

igs→ig
M + v

gs
s

igs→is
M − v

wgs
gs

iwgs→igs
M

)

+
vwgs

θwgs
·
∑
i∈Is

(
v
wgs
wg

iwgs→iwg
M + v

wgs
ws

iwgs→iws
M + v

wgs
gs

iwgs→igs
M

)

−
∑
i∈Is

1

θw

(
Kw
E + µiw + ψiw − vw·vw

2

)(
iwg→iw
M +

iws→iw
M

)

−
∑
i∈Is

1

θg

(
K
g
E + µig + ψig − vg·vg

2

)(
iwg→ig
M +

igs→ig
M

)

−
∑
i∈Is

1

θs

(
Ks
E + µis + ψis − vs·vs

2

)(
iws→is
M +

igs→is
M

)

+
∑
i∈Is

1

θwg

(
K
wg
E + µiwg + ψiwg − vwg·vwg

2

)(
iwg→iw
M +

iwg→ig
M −

iwgs→iwg
M

)
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+
∑
i∈Is

1

θws

(
Kws
E + µiws + ψiws − vws·vws

2

)(
iws→iw
M +

iws→is
M −

iwgs→iws
M

)

+
∑
i∈Is

1

θgs

(
K
gs
E + µigs + ψigs − vgs·vgs

2

)(
igs→ig
M +

igs→is
M −

iwgs→igs
M

)

+
∑
i∈Is

1

θwgs

(
K
wgs
E + µiwgs + ψiwgs − vwgs·vwgs

2

)

×
(
iwgs→iwg

M +
iwgs→iws

M +
iwgs→igs

M

)
.

Substituting for the total energy

(B.273) EιTκ = Eικ + εκρικ

(
vικ·vικ

2
+Kι

Eκ + ψικ

)
and regrouping, Eq. (B.272) becomes

(B.274) M =

(
1

θw
− 1

θwg

)(
E
wg
w

εwρ
wg
w

+K
wg
Ew + ψ

wg
w +

v
wg
w ·vwgw

2

) ∑
i∈Is

iwg→iw
M

+

(
1

θw
− 1

θws

)(
Ewsw
εwρwsw

+Kws
Ew + ψwsw +

vwsw ·vwsw
2

) ∑
i∈Is

iws→iw
M

+

(
1

θg
− 1

θwg

) E
wg
g

εgρ
wg
g

+K
wg
Eg + ψ

wg
g +

v
wg
g ·vwgg

2

 ∑
i∈Is

iwg→ig
M

+

(
1

θg
− 1

θgs

) E
gs
g

εgρ
gs
g

+K
gs
Eg + ψ

gs
g +

v
gs
g ·vgsg

2

 ∑
i∈Is

igs→ig
M

+

(
1

θs
− 1

θws

)(
Ewss
εsρwss

+Kws
Es + ψwss +

vwss ·vwss
2

) ∑
i∈Is

iws→is
M

+

(
1

θs
− 1

θgs

)(
E
gs
s

εsρ
gs
s

+K
gs
Es + ψ

gs
s +

v
gs
s ·vgss

2

) ∑
i∈Is

igs→is
M

+

(
1

θwg
− 1

θwgs

) E
wgs
wg

εwgρ
wgs
wg

+K
wgs
Ewg + ψ

wgs
wg +

v
wgs
wg ·vwgswg

2

 ∑
i∈Is

iwgs→iwg
M
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+

(
1

θws
− 1

θwgs

)(
E
wgs
ws

εwsρ
wgs
ws

+K
wgs
Ews + ψ

wgs
ws +

v
wgs
ws ·vwgsws

2

) ∑
i∈Is

iwgs→iws
M

+

(
1

θgs
− 1

θwgs

) E
wgs
gs

εgsρ
wgs
gs

+K
wgs
Egs + ψ

wgs
gs +

v
wgs
gs ·vwgsgs

2

 ∑
i∈Is

iwgs→igs
M

−vw

θw
·
∑
i∈Is

(
v
wg
w

iwg→iw
M + vwsw

iws→iw
M

)

−vg

θg
·
∑
i∈Is

(
v
wg
g

iwg→ig
M + v

gs
g

igs→ig
M

)

−vs

θs
·
∑
i∈Is

(
vwss

iws→is
M + v

gs
s

igs→is
M

)

+
vwg

θwg
·
∑
i∈Is

(
v
wg
w

iwg→iw
M + v

wg
g

iwg→ig
M − v

wgs
wg

iwgs→iwg
M

)

+
vws

θws
·
∑
i∈Is

(
vwsw

iws→iw
M + vwss

iws→is
M − v

wgs
ws

iwgs→iws
M

)

+
vgs

θgs
·
∑
i∈Is

(
v
gs
g

igs→ig
M + v

gs
s

igs→is
M − v

wgs
gs

iwgs→igs
M

)

+
vwgs

θwgs
·
∑
i∈Is

(
v
wgs
wg

iwgs→iwg
M + v

wgs
ws

iwgs→iws
M + v

wgs
gs

iwgs→igs
M

)

−
∑
i∈Is

[
1

θw

(
Kw
E + µiw + ψiw − vw·vw

2

)

− 1

θwg

(
K
wg
E + µiwg + ψiwg − vwg·vwg

2

)]
iwg→iw
M

−
∑
i∈Is

[
1

θw

(
Kw
E + µiw + ψiw − vw·vw

2

)

− 1

θws

(
Kws
E + µiws + ψiws − vws·vws

2

)]
iws→iw
M

−
∑
i∈Is

[
1

θg

(
K
g
E + µig + ψig − vg·vg

2

)

− 1

θwg

(
K
wg
E + µiwg + ψiwg − vwg·vwg

2

)]
iwg→ig
M
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−
∑
i∈Is

[
1

θg

(
K
g
E + µig + ψig − vg·vg

2

)

− 1

θgs

(
K
gs
E + µigs + ψigs − vgs·vgs

2

)]
igs→ig
M

−
∑
i∈Is

[
1

θs

(
Ks
E + µis + ψis − vs·vs

2

)

− 1

θws

(
Kws
E + µiws + ψiws − vws·vws

2

)]
iws→is
M

−
∑
i∈Is

[
1

θs

(
Ks
E + µis + ψis − vs·vs

2

)

− 1

θgs

(
K
gs
E + µigs + ψigs − vgs·vgs

2

)]
igs→is
M

−
∑
i∈Is

[
1

θwg

(
K
wg
E + µiwg + ψiwg − vwg·vwg

2

)

− 1

θwgs

(
K
wgs
E + µiwgs + ψiwgs − vwgs·vwgs

2

)]
iwgs→iwg

M

−
∑
i∈Is

[
1

θws

(
Kws
E + µiws + ψiws − vws·vws

2

)

− 1

θwgs

(
K
wgs
E + µiwgs + ψiwgs − vwgs·vwgs

2

)]
iwgs→iws

M

−
∑
i∈Is

[
1

θgs

(
K
gs
E + µigs + ψigs − vgs·vgs

2

)

− 1

θwgs

(
K
wgs
E + µiwgs + ψiwgs − vwgs·vwgs

2

)]
iwgs→igs

M .

Simplifying terms involving kinetic energy and gravitational potential, and grouping

terms involving products with velocities gives

(B.275) M =

(
1

θw
− 1

θwg

) ∑
i∈Is

(
E
wg
w

εwρ
wg
w
− µwgiw

)
iwg→iw
M

+

(
1

θw
− 1

θws

) ∑
i∈Is

(
Ewsw
εwρwsw

− µwsiw
)
iws→iw
M
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+

(
1

θg
− 1

θwg

) ∑
i∈Is

 E
wg
g

εgρ
wg
g
− µwgig

 iwg→ig
M

+

(
1

θg
− 1

θgs

) ∑
i∈Is

 E
gs
g

εgρ
gs
g
− µgsig

 igs→ig
M

+

(
1

θs
− 1

θws

) ∑
i∈Is

(
Ewss
εsρwss

− µwsis
)
iws→is
M

+

(
1

θs
− 1

θgs

) ∑
i∈Is

(
E
gs
s

εsρ
gs
s
− µgsis

)
igs→is
M

+

(
1

θwg
− 1

θwgs

) ∑
i∈Is

 E
wgs
wg

εwgρ
wgs
wg
− µwgsiwg

 iwgs→iwg
M

+

(
1

θws
− 1

θwgs

) ∑
i∈Is

(
E
wgs
ws

εwsρ
wgs
ws
− µwgsiws

)
iwgs→iws

M

+

(
1

θgs
− 1

θwgs

) ∑
i∈Is

 E
wgs
gs

εgsρ
wgs
gs
− µwgsigs

 iwgs→igs
M

−vw

θw
·
∑
i∈Is

(
v
wg
w

iwg→iw
M + vwsw

iws→iw
M

)
− vg

θg
·
∑
i∈Is

(
v
wg
g

iwg→ig
M + v

gs
g

igs→ig
M

)

−vs

θs
·
∑
i∈Is

(
vwss

iws→is
M + v

gs
s

igs→is
M

)

+
vwg

θwg
·
∑
i∈Is

(
v
wg
w

iwg→iw
M + v

wg
g

iwg→ig
M − v

wgs
wg

iwgs→iwg
M

)

+
vws

θws
·
∑
i∈Is

(
vwsw

iws→iw
M + vwss

iws→is
M − v

wgs
ws

iwgs→iws
M

)

+
vgs

θgs
·
∑
i∈Is

(
v
gs
g

igs→ig
M + v

gs
s

igs→is
M − v

wgs
gs

iwgs→igs
M

)

+
vwgs

θwgs
·
∑
i∈Is

(
v
wgs
wg

iwgs→iwg
M + v

wgs
ws

iwgs→iws
M + v

wgs
gs

iwgs→igs
M

)

− 1

θw

∑
i∈Is

[(
Kw
E + µiw + ψiw

)
−
(
K
wg
Ew + µ

wg
iw + ψ

wg
w

)] iwg→iw
M
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+
1

θwg

∑
i∈Is

[(
K
wg
E + µiwg + ψiwg

)
−
(
K
wg
Ew + µ

wg
iw + ψ

wg
w

)] iwg→iw
M

− 1

θw

∑
i∈Is

[(
Kw
E + µiw + ψiw

)
−
(
Kws
Ew + µwsiw + ψwsw

)] iws→iw
M

+
1

θws

∑
i∈Is

[(
Kws
E + µiws + ψiws

)
−
(
Kws
Ew + µwsiw + ψwsw

)] iws→iw
M

− 1

θg

∑
i∈Is

[(
K
g
E + µig + ψig

)
−
(
K
wg
Eg + µ

wg
ig + ψ

wg
g

)] iwg→ig
M

+
1

θwg

∑
i∈Is

[(
K
wg
E + µiwg + ψiwg

)
−
(
K
wg
Eg + µ

wg
ig + ψ

wg
g

)] iwg→ig
M

− 1

θg

∑
i∈Is

[(
K
g
E + µig + ψig

)
−
(
K
gs
Eg + µ

gs
ig + ψ

gs
g

)] igs→ig
M

+
1

θgs

∑
i∈Is

[(
K
gs
E + µigs + ψigs

)
−
(
K
gs
Eg + µ

gs
ig + ψ

gs
g

)] igs→ig
M

− 1

θs

∑
i∈Is

[(
Ks
E + µis + ψis

)
−
(
Kws
Es + µwsis + ψwss

)] iws→is
M

+
1

θws

∑
i∈Is

[(
Kws
E + µiws + ψiws

)
−
(
Kws
Es + µwsis + ψwss

)] iws→is
M

− 1

θs

∑
i∈Is

[(
Ks
E + µis + ψis

)
−
(
K
gs
Es + µ

gs
is + ψ

gs
s

)] igs→is
M

+
1

θgs

∑
i∈Is

[(
K
gs
E + µigs + ψigs

)
−
(
K
gs
Es + µ

gs
is + ψ

gs
s

)] igs→is
M

− 1

θwg

∑
i∈Is

[(
K
wg
E + µiwg + ψiwg

)
−
(
K
wgs
Ewg + µ

wgs
iwg + ψ

wgs
wg

)] iwgs→iwg
M

+
1

θwgs

∑
i∈Is

[(
K
wgs
E + µiwgs + ψiwgs

)
−
(
K
wgs
Ewg + µ

wgs
iwg + ψ

wgs
wg

)] iwgs→iwg
M

− 1

θws

∑
i∈Is

[(
Kws
E + µiws + ψiws

)
−
(
K
wgs
Ews + µ

wgs
iws + ψ

wgs
ws

)] iwgs→iws
M

+
1

θwgs

∑
i∈Is

[(
K
wgs
E + µiwgs + ψiwgs

)
−
(
K
wgs
Ews + µ

wgs
iws + ψ

wgs
ws

)] iwgs→iws
M
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− 1

θgs

∑
i∈Is

[(
K
gs
E + µigs + ψigs

)
−
(
K
wgs
Egs + µ

wgs
igs + ψ

wgs
gs

)] iwgs→igs
M

+
1

θwgs

∑
i∈Is

[(
K
wgs
E + µiwgs + ψiwgs

)
−
(
K
wgs
Egs + µ

wgs
igs + ψ

wgs
gs

)] iwgs→igs
M

+

(
1

θw
− 1

θwg

)
v
wg
w ·vwgw

2

∑
i∈Is

iwg→iw
M +

(
1

θw
− 1

θws

)
vwsw ·vwsw

2

∑
i∈Is

iws→iw
M

+

(
1

θg
− 1

θwg

)
v
wg
g ·vwgg

2

∑
i∈Is

iwg→ig
M +

(
1

θg
− 1

θgs

)
v
gs
g ·vgsg

2

∑
i∈Is

igs→ig
M

+

(
1

θs
− 1

θws

)
vwss ·vwss

2

∑
i∈Is

iws→is
M +

(
1

θs
− 1

θgs

)
v
gs
s ·vgss

2

∑
i∈Is

igs→is
M

+

(
1

θwg
− 1

θwgs

)
v
wgs
wg ·vwgswg

2

∑
i∈Is

iwgs→iwg
M

+

(
1

θws
− 1

θwgs

)
v
wgs
ws ·vwgsws

2

∑
i∈Is

iwgs→iws
M

+

(
1

θgs
− 1

θwgs

)
v
wgs
gs ·vwgsgs

2

∑
i∈Is

iwgs→igs
M

+
∑
i∈Is

(
vw·vw

2θw
− vwg·vwg

2θwg

)
iwg→iw
M +

∑
i∈Is

(
vg·vg

2θg
− vwg·vwg

2θwg

)
iwg→ig
M

+
∑
i∈Is

(
vw·vw

2θw
− vws·vws

2θws

)
iws→iw
M +

∑
i∈Is

(
vs·vs

2θs
− vws·vws

2θws

)
iws→is
M

+
∑
i∈Is

(
vg·vg

2θg
− vgs·vgs

2θgs

)
igs→ig
M +

∑
i∈Is

(
vs·vs

2θs
− vgs·vgs

2θgs

)
igs→is
M

+
∑
i∈Is

(
vwg·vwg

2θwg
− vwgs·vwgs

2θwgs

)
iwgs→iwg

M

+
∑
i∈Is

(
vws·vws

2θws
− vwgs·vwgs

2θwgs

)
iwgs→iws

M

+
∑
i∈Is

(
vgs·vgs

2θgs
− vwgs·vwgs

2θwgs

)
iwgs→igs

M ,
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which can be written in objective form and simplified to give

(B.276) M =
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

) ∑
i∈Is

(
Eκι
ειρκι

− µκiι
)
iκ→iι
M

+
∑
ι∈II

(
1

θι
− 1

θwgs

) ∑
i∈Is

(
E
wgs
ι

ειρ
wgs
ι
− µwgsiι

)
iwgs→iι
M

+
∑
ι∈IP

∑
κ∈Icι

1

θκ

∑
i∈Is

[(
Kκ
E + µiκ + ψiκ

)
−
(
Kι
E + µiι + ψiι

)] iκ→iι
M

+
∑
ι∈II

1

θwgs

∑
i∈Is

[(
K
wgs
E + µiwgs + ψiwgs

)
−
(
Kι
E + µiι + ψiι

)] iwgs→iι
M

+
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

) ∑
i∈Is

[(
Kκ
Eι + µκiι + ψκι

)
−
(
Kι
E + µiι + ψiι

)] iκ→iι
M

+
∑
ι∈II

(
1

θι
− 1

θwgs

) ∑
i∈Is

[(
K
wgs
Eι + µ

wgs
iι + ψ

wgs
ι

)

−
(
Kι
E + µiι + ψiι

)] iwgs→iι
M

+
vwg,s

θwg
·
∑
i∈Is

((
v
wg
w − vs

) iwg→iw
M +

(
v
wg
g − vs

) iwg→ig
M

)

+
vws,s

θws
·
∑
i∈Is

((
vwsw − vs

) iws→iw
M +

(
vwss − vs

) iws→is
M

)

+
vgs,s

θgs
·
∑
i∈Is

((
v
gs
g − vs

) igs→ig
M +

(
v
gs
s − vs

) igs→is
M

)

+
vwgs,s

θwgs
·
∑
i∈Is

((
v
wgs
wg − vs

) iwgs→iwg
M +

(
v
wgs
ws − vs

) iwgs→iws
M

+
(
v
wgs
gs − vs

) iwgs→igs
M

)

+
vs

θwg
·
∑
i∈Is

((
v
wg
w − vs

) iwg→iw
M +

(
v
wg
g − vs

) iwg→ig
M

)

+
vs

θws
·
∑
i∈Is

((
vwsw − vs

) iws→iw
M +

(
vwss − vs

) iws→is
M

)
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+
vs

θgs
·
∑
i∈Is

((
v
gs
g − vs

) igs→ig
M +

(
v
gs
s − vs

) igs→is
M

)

+
vs

θwgs
·
∑
i∈Is

((
v
wgs
wg − vs

) iwgs→iwg
M +

(
v
wgs
ws − vs

) iwgs→iws
M

+
(
v
wgs
gs − vs

) iwgs→igs
M

)

+

(
1

θw
− 1

θwg

)
(
v
wg
w − vs

)
·
(
v
wg
w − vs

)
2

+
2
(
v
wg
w − vs

)
·vs − vs·vs

2

 ∑
i∈Is

iwg→iw
M

+

(
1

θw
− 1

θws

)((
vwsw − vs

)
·
(
vwsw − vs

)
2

+
2
(
vwsw − vs

)
·vs − vs·vs

2

) ∑
i∈Is

iws→iw
M

+

(
1

θg
− 1

θwg

)
(
v
wg
g − vs

)
·
(
v
wg
g − vs

)
2

+
2
(
v
wg
g − vs

)
·vs − vs·vs

2

 ∑
i∈Is

iwg→ig
M

+

(
1

θg
− 1

θgs

)
(
v
gs
g − vs

)
·
(
v
gs
g − vs

)
2

+
2
(
v
gs
g − vs

)
·vs − vs·vs

2

 ∑
i∈Is

igs→ig
M

+

(
1

θs
− 1

θws

)((
vwss − vs

)
·
(
vwss − vs

)
2

+
2
(
vwss − vs

)
·vs − vs·vs

2

) ∑
i∈Is

iws→is
M
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+

(
1

θs
− 1

θgs

)
(
v
gs
s − vs

)
·
(
v
gs
s − vs

)
2

+
2
(
v
gs
s − vs

)
·vs − vs·vs

2

 ∑
i∈Is

igs→is
M

+

(
1

θwg
− 1

θwgs

)
(
v
wgs
wg − vs

)
·
(
v
wgs
wg − vs

)
2

+
2
(
v
wgs
wg − vs

)
·vs − vs·vs

2

 ∑
i∈Is

iwgs→iwg
M

+

(
1

θws
− 1

θwgs

)
(
v
wgs
ws − vs

)
·
(
v
wgs
ws − vs

)
2

+
2
(
v
wgs
ws − vs

)
·vs − vs·vs

2

 ∑
i∈Is

iwgs→iws
M

+

(
1

θgs
− 1

θwgs

)
(
v
wgs
gs − vs

)
·
(
v
wgs
gs − vs

)
2

+
2
(
v
wgs
gs − vs

)
·vs − vs·vs

2

 ∑
i∈Is

iwgs→igs
M

−
vw,s·

(
v
wg
w − vs

)
+ vw,s·vs +

(
v
wg
w − vs

)
·vs

θw

 ∑
i∈Is

iwg→iw
M

+

(
vw,s·vw,s + 2vw,s·vs + vs·vs

2θw

) ∑
i∈Is

iwg→iw
M

−
(

vwg,s·vwg,s + vs·vs

2θwg

) ∑
i∈Is

iwg→iw
M

−
(

vw,s·
(
vwsw − vs

)
+ vw,s·vs +

(
vwsw − vs

)
·vs

θw

) ∑
i∈Is

iws→iw
M

+

(
vw,s·vw,s + 2vw,s·vs + vs·vs

2θw

) ∑
i∈Is

iws→iw
M
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−
(

vws,s·vws,s + vs·vs

2θws

) ∑
i∈Is

iws→iw
M

−
vg,s·

(
v
wg
g − vs

)
+ vg,s·vs +

(
v
wg
g − vs

)
·vs

θg

 ∑
i∈Is

iwg→ig
M

+

(
vg,s·vg,s + 2vg,s·vs + vs·vs

2θg

) ∑
i∈Is

iwg→ig
M

−
(

vwg,s·vwg,s + vs·vs

2θwg

) ∑
i∈Is

iwg→ig
M

−
vg,s·

(
v
gs
g − vs

)
+ vg,s·vs +

(
v
gs
g − vs

)
·vs

θg

 ∑
i∈Is

igs→ig
M

+

(
vg,s·vg,s + 2vg,s·vs + vs·vs

2θg

) ∑
i∈Is

igs→ig
M

−
(

vgs,s·vgs,s + vs·vs

2θgs

) ∑
i∈Is

igs→ig
M

−vs·
(
vwss − vs

)
θs

∑
i∈Is

iws→is
M +

vs·vs

2θs

∑
i∈Is

iws→is
M

−
(

vws,s·vws,s + vs·vs

2θws

) ∑
i∈Is

iws→is
M

−
vs·
(
v
gs
s − vs

)
θs

∑
i∈Is

igs→is
M +

vs·vs

2θs

∑
i∈Is

igs→is
M

−
(

vgs,s·vgs,s + vs·vs

2θgs

) ∑
i∈Is

igs→is
M

−
vwg,s·

(
v
wgs
wg − vs

)
+ vwg,s·vs +

(
v
wgs
wg − vs

)
·vs

θwg

 ∑
i∈Is

iwgs→iwg
M

+

(
vwg,s·vwg,s + 2vwg,s·vs + vs·vs

2θwg

) ∑
i∈Is

iwgs→iwg
M

−
(

vwgs,s·vwgs,s + vs·vs

2θwgs

) ∑
i∈Is

iwgs→iwg
M
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−
vws,s·

(
v
wgs
ws − vs

)
+ vws,s·vs +

(
v
wgs
ws − vs

)
·vs

θws

 ∑
i∈Is

iwgs→iws
M

+

(
vws,s·vws,s + 2vws,s·vs + vs·vs

2θws

) ∑
i∈Is

iwgs→iws
M

−
(

vwgs,s·vwgs,s + vs·vs

2θwgs

) ∑
i∈Is

iwgs→iws
M

−
vgs,s·

(
v
wgs
gs − vs

)
+ vgs,s·vs +

(
v
wgs
gs − vs

)
·vs

θgs

 ∑
i∈Is

iwgs→igs
M

+

(
vgs,s·vgs,s + 2vgs,s·vs + vs·vs

2θgs

) ∑
i∈Is

iwgs→igs
M

−
(

vwgs,s·vwgs,s + vs·vs

2θwgs

) ∑
i∈Is

iwgs→igs
M .

Noting that products with solid-phase velocities squared cancel out and canceling other

products of solid-phase velocities yields

(B.277) M =
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

) ∑
i∈Is

(
Eκι
ειρκι

− µκiι
)
iκ→iι
M

+
∑
ι∈II

(
1

θι
− 1

θwgs

) ∑
i∈Is

(
E
wgs
ι

ειρ
wgs
ι
− µwgsiι

)
iwgs→iι
M

+
∑
ι∈IP

∑
κ∈Icι

1

θκ

∑
i∈Is

[(
Kκ
E + µiκ + ψiκ

)
−
(
Kι
E + µiι + ψiι

)] iκ→iι
M

+
∑
ι∈II

1

θwgs

∑
i∈Is

[(
K
wgs
E + µiwgs + ψiwgs

)
−
(
Kι
E + µiι + ψiι

)] iwgs→iι
M

+
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

) ∑
i∈Is

[(
Kκ
Eι + µκiι + ψκι

)
−
(
Kι
E + µiι + ψiι

)] iκ→iι
M

+
∑
ι∈II

(
1

θι
− 1

θwgs

) ∑
i∈Is

[ (
K
wgs
Eι + µ

wgs
iι + ψ

wgs
ι

)

−
(
Kι
E + µiι + ψiι

) ]iwgs→iι
M
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+
vwg,s

θwg
·
∑
i∈Is

((
v
wg
w − vs

) iwg→iw
M +

(
v
wg
g − vs

) iwg→ig
M

)

+
vws,s

θws
·
∑
i∈Is

((
vwsw − vs

) iws→iw
M +

(
vwss − vs

) iws→is
M

)

+
vgs,s

θgs
·
∑
i∈Is

((
v
gs
g − vs

) igs→ig
M +

(
v
gs
s − vs

) igs→is
M

)

+
vwgs,s

θwgs
·
∑
i∈Is

((
v
wgs
wg − vs

) iwgs→iwg
M +

(
v
wgs
ws − vs

) iwgs→iws
M

+
(
v
wgs
gs − vs

) iwgs→igs
M

)

+

(
1

θw
− 1

θwg

) (v
wg
w − vs

)
·
(
v
wg
w − vs

)
2

∑
i∈Is

iwg→iw
M

+

(
1

θg
− 1

θwg

) (v
wg
g − vs

)
·
(
v
wg
g − vs

)
2

∑
i∈Is

iwg→ig
M

+

(
1

θw
− 1

θws

) (
vwsw − vs

)
·
(
vwsw − vs

)
2

∑
i∈Is

iws→iw
M

+

(
1

θg
− 1

θgs

) (v
gs
g − vs

)
·
(
v
gs
g − vs

)
2

∑
i∈Is

igs→ig
M

+

(
1

θs
− 1

θws

) (
vwss − vs

)
·
(
vwss − vs

)
2

∑
i∈Is

iws→is
M

+

(
1

θs
− 1

θgs

) (v
gs
s − vs

)
·
(
v
gs
s − vs

)
2

∑
i∈Is

igs→is
M

+

(
1

θwg
− 1

θwgs

) (v
wgs
wg − vs

)
·
(
v
wgs
wg − vs

)
2

∑
i∈Is

iwgs→iwg
M

+

(
1

θws
− 1

θwgs

) (v
wgs
ws − vs

)
·
(
v
wgs
ws − vs

)
2

∑
i∈Is

iwgs→iws
M
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+

(
1

θgs
− 1

θwgs

) (v
wgs
gs − vs

)
·
(
v
wgs
gs − vs

)
2

∑
i∈Is

iwgs→igs
M

−
∑
i∈Is

vw,s

2θw
·
([

2
(
v
wg
w − vs

)
− vw,s

] iwg→iw
M

+
[
2
(
vwsw − vs

)
− vw,s

] iws→iw
M

)

−vwg,s·vwg,s

2θwg

∑
i∈Is

(
iwg→iw
M +

iwg→ig
M

)

−vwg,s

2θwg
·
[
2
(
v
wgs
wg − vs

)
− vwg,s

] ∑
i∈Is

iwgs→iwg
M

−
∑
i∈Is

vg,s

2θg
·
([

2
(
v
wg
g − vs

)
− vg,s

] iwg→ig
M

+
[
2
(
v
gs
g − vs

)
− vg,s

] igs→ig
M

)

−vws,s·vws,s

2θws

∑
i∈Is

(
iws→iw
M +

iws→is
M

)

−vws,s

2θws
·
[
2
(
v
wgs
ws − vs

)
− vws,s

] ∑
i∈Is

iwgs→iws
M

−vgs,s·vgs,s

2θgs

∑
i∈Is

(
igs→ig
M +

igs→is
M

)

−vgs,s

2θgs
·
[
2
(
v
wgs
gs − vs

)
− vgs,s

] ∑
i∈Is

iwgs→igs
M

−vwgs,s·vwgs,s

2θwgs

∑
i∈Is

(
iwgs→iwg

M +
iwgs→iws

M +
iwgs→igs

M

)
.

For the collection of mass exchange quantities, the expansion and regrouping of terms

leads to

(B.278) M =
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

) ∑
i∈Is

(
Eκι
ειρκι

− µκiι
)
iκ→iι
M
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+
∑
ι∈II

(
1

θι
− 1

θwgs

) ∑
i∈Is

(
E
wgs
ι

ειρ
wgs
ι
− µwgsiι

)
iwgs→iι
M

+
∑
ι∈IP

∑
κ∈Icι

1

θκ

∑
i∈Is

[(
Kκ
E + µiκ + ψiκ

)
−
(
Kι
E + µiι + ψiι

)] iκ→iι
M

+
∑
ι∈II

1

θwgs

∑
i∈Is

[(
K
wgs
E + µiwgs + ψiwgs

)
−
(
Kι
E + µiι + ψiι

)] iwgs→iι
M

+
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

) ∑
i∈Is

[(
Kκ
Eι + µκiι + ψκι

)
−
(
Kι
E + µiι + ψiι

)] iκ→iι
M

+
∑
ι∈II

(
1

θι
− 1

θwgs

) ∑
i∈Is

[ (
K
wgs
Eι + µ

wgs
iι + ψ

wgs
ι

)

−
(
Kι
E + µiι + ψiι

) ]iwgs→iι
M

−vw,s

2θw
·
[(

v
wg
w − vwg

)
+
(
v
wg
w − vw

)] ∑
i∈Is

iwg→iw
M

−vw,s

2θw
·
[(

vwsw − vws
)

+
(
vwsw − vw

)] ∑
i∈Is

iws→iw
M

−vg,s

2θg
·
[(

v
wg
g − vwg

)
+
(
v
wg
g − vg

)] ∑
i∈Is

iwg→ig
M

−vg,s

2θg
·
[(

v
gs
g − vgs

)
+
(
v
gs
g − vg

)] ∑
i∈Is

igs→ig
M

+
vwg,s

2θwg
·
[(

v
wg
w − vw

)
+
(
v
wg
w − vwg

)] ∑
i∈Is

iwg→iw
M

+
vws,s

2θws
·
[(

vwsw − vw
)

+
(
vwsw − vws

)] ∑
i∈Is

iws→iw
M

+
vwg,s

2θwg
·
[(

v
wg
g − vg

)
+
(
v
wg
g − vwg

)] ∑
i∈Is

iwg→ig
M

+
vgs,s

2θgs
·
[(

v
gs
g − vg

)
+
(
v
gs
g − vgs

)] ∑
i∈Is

igs→ig
M

+
vws,s

2θws
·
[(

vwss − vs
)

+
(
vwss − vws

)] ∑
i∈Is

iws→is
M
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+
vgs,s

2θgs
·
[(

v
gs
s − vs

)
+
(
v
gs
s − vgs

)] ∑
i∈Is

igs→is
M

−vwg,s

2θwg
·
[(

v
wgs
wg − vwgs

)
+
(
v
wgs
wg − vwg

)] ∑
i∈Is

iwgs→iwg
M

−vws,s

2θws
·
[(

v
wgs
ws − vwgs

)
+
(
v
wgs
ws − vws

)] ∑
i∈Is

iwgs→iws
M

−vgs,s

2θgs
·
[(

v
wgs
gs − vwgs

)
+
(
v
wgs
gs − vgs

)] ∑
i∈Is

iwgs→igs
M

+
vwgs,s

2θwgs
·
[(

v
wgs
wg − vwg

)
+
(
v
wgs
wg − vwgs

)] ∑
i∈Is

iwgs→iwg
M

+
vwgs,s

2θwgs
·
[(

v
wgs
ws − vws

)
+
(
v
wgs
ws − vwgs

)] ∑
i∈Is

iwgs→iws
M

+
vwgs,s

2θwgs
·
[(

v
wgs
gs − vgs

)
+
(
v
wgs
gs − vwgs

)] ∑
i∈Is

iwgs→igs
M

+

(
1

θw
− 1

θwg

)
(
v
wg
w − vs

)
·
(
v
wg
w − vs

)
2

− vw,s·vwg,s

2

 ∑
i∈Is

iwg→iw
M

+

(
1

θw
− 1

θws

)((
vwsw − vs

)
·
(
vwsw − vs

)
2

− vw,s·vws,s

2

) ∑
i∈Is

iws→iw
M

+

(
1

θg
− 1

θwg

)
(
v
wg
g − vs

)
·
(
v
wg
g − vs

)
2

− vg,s·vwg,s

2

 ∑
i∈Is

iwg→ig
M

+

(
1

θg
− 1

θgs

)
(
v
gs
g − vs

)
·
(
v
gs
g − vs

)
2

− vg,s·vgs,s

2

 ∑
i∈Is

igs→ig
M

+

(
1

θs
− 1

θws

) (
vwss − vs

)
·
(
vwss − vs

)
2

∑
i∈Is

iws→is
M

+

(
1

θs
− 1

θgs

) (v
gs
s − vs

)
·
(
v
gs
s − vs

)
2

∑
i∈Is

igs→is
M

+

(
1

θwg
− 1

θwgs

)((v
wgs
wg − vs

)
·
(
v
wgs
wg − vs

)
2
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−vwg,s·vwgs,s

2

)∑
i∈Is

iwgs→iwg
M

+

(
1

θws
− 1

θwgs

)((v
wgs
ws − vs

)
·
(
v
wgs
ws − vs

)
2

−vws,s·vwgs,s

2

)∑
i∈Is

iwgs→iws
M

+

(
1

θgs
− 1

θwgs

)((v
wgs
gs − vs

)
·
(
v
wgs
gs − vs

)
2

−vgs,s·vwgs,s

2

)∑
i∈Is

iwgs→igs
M .

This form is attractive because each grouping of terms matches a flux-force pair and this

formulation reduces to the form found in previous TCAT papers when the velocities that

are both subscripted and superscripted are replaced by the higher dimensional macroscale

mass averaged velocity.

Eqs. (B.270), (B.271), and (B.278) can be substituted into Eq. (B.267) to yield, after

expanding some of the summations over entities and regrouping of terms,

(B.279) −
∑

ι∈(If∪II∪IC)

∇8·

ειϕ8ι − 1

θι

ειq8ι +
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι


+

∑
ι∈(If∪II∪IC)

(∇8·N
)
N· 1

θι

∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι

−∇8·
{
εsϕ8s − 1

θs

[
εsq8s +

∑
i∈Is

εsρsωis
(
µis + ψis

)
u8is

−
〈

I8·
(

ts − σs:
Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]}

+
(∇8·N

)
N·
[

1

θs

∑
i∈Is

εsρsωis
(
µis + ψis

)
uis

+
1

θs

〈(
ts − σs:

Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]
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−
∑
ι∈IP

[
ειbιT −

1

θι

ειhιT +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι − ψiι −Kι

E

)
Dt

〉
Ωι,Ω

]

−
∑
ι∈II

[
ειbιT −

1

θι

ειhιT +

〈
ηι

D′s
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

∑
i∈Is

〈
ριωiι

D′s
(
µiι + ψiι − µiι − ψiι −Kι

E

)
Dt

〉
Ωι,Ω

]

−εwgsbwgsT +
1

θwgs

εwgshwgsT +

〈
ηwgs

D′′s
(
θwgs − θwgs

)
Dt

〉
Ωwgs,Ω


+

1

θwgs

∑
i∈Is

〈
ρwgsωiwgs

D′′s
(
µiwgs + ψiwgs − µiwgs − ψiwgs −Kwgs

E

)
Dt

〉
Ωwgs,Ω

+
∑
ι∈If

ει

θι

(
t8ι + pιI8

)
:d8ι +

εs

θs

(
t8s − t8s

)
:d8s

+
∑
ι∈II

ει

θι

(
t8ι − γιI8

)
:d8ι +

εwgs

θwgs

(
t8wgs + γwgsI8

)
:d8wgs

−
∑
ι∈I

∑
i∈Is

1

θι
ειριωiιu8iι·∇8

(
µiι + ψiι

)

−
∑

ι∈(If∪II∪IC)

ειq8ι +
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι

 ·∇8
(

1

θι

)

−
[
εsq8s +

∑
i∈Is

εsρsωis
(
µis + ψis

)
u8is

−
〈

I8·
(

ts − σs:
Cs
js

I

)
·
(
vs − vs

)〉
Ωs,Ω

]
·∇8

(
1

θs

)

−
∑
ι∈If

(
v8ι − v8s)

θι
·
[∑
i∈Is

ειριωiι∇8
(
Kι
E + µiι + ψiι

)
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+
∑
i∈Is

ειριωiιg8iι + ηι∇8θι −∇8 (ειpι)

+
∑
κ∈Icι

κ→ιT ·I8 +

(
v8κ
ι − v8κ)+

(
v8κ
ι − v8ι)

2

∑
i∈Is

iκ→iι
M

]

−
∑
ι∈If

vι,s·N
θι

[∑
i∈Is

ειριωiιgiι·N

+
∑
κ∈Icι

N ·

κ→ιT +

(
vκι − vκ

)
+
(
vκι − vι

)
2

∑
i∈Is

iκ→iι
M

]

−
∑
ι∈II

(
v8ι − v8s)

θι
·
[∑
i∈Is

ειριωiι∇8
(
Kι
E + µiι + ψiι

)
+
∑
i∈Is

ειριωiιg8iι + ηι∇8θι +∇8 (ειγι)

−
∑

κ∈(Icι∩IP)

ι→κT ·I8 +

(
v8ι
κ − v8κ)+

(
v8ι
κ − v8ι)

2

∑
i∈Is

iι→iκ
M



+

wgs→ιT ·I8 +

(
v

8wgs
ι − v8wgs

)
+
(
v

8wgs
ι − v8ι

)
2

∑
i∈Is

iwgs→iι
M

]

−
∑
ι∈II

vι,s·N
θι

[∑
i∈Is

ειριωiιgiι·N

−
∑

κ∈(Icι∩IP)

N ·

ι→κT +

(
vικ − vκ

)
+
(
vικ − vι

)
2

∑
i∈Is

iι→iκ
M



+N ·

wgs→ιT +

(
v
wgs
ι − vwgs

)
+
(
v
wgs
ι − vι

)
2

∑
i∈Is

iwgs→iι
M

]

−
(
v8wgs − v8s)

θwgs
·
[∑
i∈Is

εwgsρwgsωiwgs∇8
(
K
wgs
E + µiwgs + ψiwgs

)
+
∑
i∈Is

εwgsρwgsωiwgsg8iwgs + ηwgs∇8θwgs −∇8 (εwgsγwgs)
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−
∑

κ∈Icwgs

wgs→κT ·I8 +

(
v

8wgs
κ − v8κ

)
+
(
v

8wgs
κ − v8wgs

)
2

∑
i∈Is

iwgs→iκ
M

]

−vwgs,s·N
θwgs

[∑
i∈Is

εwgsρwgsωiwgsgiwgs·N

−
∑

κ∈Icwgs

N ·

wgs→κT +

(
v
wgs
κ − vκ

)
+
(
v
wgs
κ − vwgs

)
2

∑
i∈Is

iwgs→iκ
M

]

+
∑
ι∈II

∑
i∈Is

1

θι
∇8
(
Kι
E + ψiι + µiι

)
·
〈
nαnα ·

(
vι − vs

)
ριωiι

〉
Ωι,Ω

+
∑
ι∈II

1

θι
∇8θι·

〈
nαnα ·

(
vι − vs

)
ηι

〉
Ωι,Ω

−
∑
ι∈I

∑
i∈Is

1

θι
µiιειriι

+
∑
ι∈IP

∑
κ∈Icι

1

θκ

∑
i∈Is

[(
Kκ
E + µiκ + ψiκ

)
−
(
Kι
E + µiι + ψiι

)] iκ→iι
M

+
∑
ι∈II

1

θwgs

∑
i∈Is

[(
K
wgs
E + µiwgs + ψiwgs

)
−
(
Kι
E + µiι + ψiι

)] iwgs→iι
M

+
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

) ∑
i∈Is

[(
Kκ
Eι + µκiι + ψκι

)
−
(
Kι
E + µiι + ψiι

)] iκ→iι
M

+
∑
ι∈II

(
1

θι
− 1

θwgs

) ∑
i∈Is

[ (
K
wgs
Eι + µ

wgs
iι + ψ

wgs
ι

)

−
(
Kι
E + µiι + ψiι

) ]iwgs→iι
M

+
∑
ι∈IP

∑
κ∈Icι

(
1

θι
− 1

θκ

){
κ→ι
Q +

∑
i∈Is

(
Eκι
ειρκι

− µκiι
)
iκ→iι
M +

(
vκι − vs

)
·
κ→ι
T

+

[(
vκι − vs

)
·
(
vκι − vs

)
2

− vι,s·vκ,s

2

] ∑
i∈Is

iκ→iι
M

}

+
∑
ι∈II

(
1

θι
− 1

θwgs

){
wgs→ι
Q +

∑
i∈Is

(
E
wgs
ι

ειρ
wgs
ι
− µwgsiι

)
iwgs→iι
M

+
(
v
wgs
ι − vs

)
·
wgs→ι

T
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+


(
v
wgs
ι − vs

)
·
(
v
wgs
ι − vs

)
2

− vι,s·vwgs,s

2

 ∑
i∈Is

iwgs→iι
M

}

+
∑
ι∈If

∑
κ∈Icι

(
1

θι
− 1

θκ

)〈
pι

(
vκ − vs

)
·nι
〉

Ωκ,Ω

− 1

θs

∑
κ∈Ics

〈(
Cs
js

:σs

)
(vκ − vs) ·ns

〉
Ωκ,Ω

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

〈
ns · ts·nsns·

(
vs − vs

)〉
Ωss,Ω

+
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

+
∑
ι∈II

1

θι

[
∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

+ 〈nαnαγι〉Ωι,Ω:d8s
]

+
1

θwg

〈pw − pg − γwg∇′·nw +
∑
i∈Is

ρwgωiwgnw·giwg


(
vwg − vs

)
·nw

〉
Ωwg,Ω

− 1

θws

〈pw + γws∇′·ns −
∑
i∈Is

ρwsωiwsns·giws

(vws − vs
)
·ns

〉
Ωws,Ω

− 1

θgs

〈pg + γgs∇′·ns −
∑
i∈Is

ρgsωigsns·gigs

(vgs − vs
)
·ns

〉
Ωgs,Ω

− 1

θwgs
∇8·
〈(

I− lwgslwgs
)
·
(
vwgs − vs

)
γwgs

〉
Ωwgs,Ω

− 1

θwgs

〈(
I− lwgslwgs

)
γwgs

〉
Ωwgs,Ω

:d8s

− 1

θwgs

〈(
lwgs·∇′′lwgs

)
·
(
vwgs − vs

)
γwgs

〉
Ωwgs,Ω

+
∑
i∈Is

1

θwgs
∇8
(
K
wgs
E + µiwgs + ψiwgs

)
·
〈(

I− lwgslwgs
)
·
(
vwgs − vs

)
ρwgsωiwgs

〉
Ωwgs,Ω
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+
1

θwgs

∑
i∈Is

〈(
vwgs − vs

)
·
(
I− lwgslwgs

)
·ρwgsωiwgsgiwgs

〉
Ωwgs,Ω

+
1

θwgs
∇8θwgs·

〈(
vwgs − vs

)
·
(
I− lwgslwgs

)
ηwgs

〉
Ωwgs,Ω

−
∑
ι∈II

1

θι

〈
nι ·

(
vwgs − vs

)
γι

〉
Ωwgs,Ω

+
∑
ι∈If

1

θι

〈
e·τ ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

(
v8ι − v8s)

θι
·
〈

e·pιI8

nι · e

〉
ΓιM ,Ω

+
∑
ι∈II

1

θι

〈
e·τ ′ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

(
v8ι − v8s)

θι
·
〈

e·γιI′
nι · e

〉
ΓιM ,Ω

+
1

θwgs

〈
e·τ ′′wgs·

(
vwgs − vwgs

)
nwgs · e

〉
ΓwgsM ,Ω

+

(
v8wgs − v8s)

θwgs
·
〈

e·γwgsI′′
nwgs · e

〉
ΓwgsM ,Ω

+
∑
ι∈If

vι,s·N
θι

N ·
〈

epι
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

vι,s·N
θι

N ·
〈

eγι
nι · e

〉
ΓιM ,Ω

+
vwgs,s·N
θwgs

N ·
〈

eγwgs
nwgs · e

〉
ΓwgsM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈
e·
(
vι − vext

)
ριωiι

(
µiι + ψiι −Kι

E − µiι − ψiι
)

nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

∑
i∈Is

1

θι

〈e·
(
vι − vext

)
ριωiι

((
vι−vι

)
·
(
vι−vι

)
2 +

uiι·uiι
2

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈I

〈e·
∑
i∈Is

ριωiιuiι

(
µiι+ψiι

θι
− µiι+ψiι

θι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈( 1
θι
− 1

θι

)
e·
[
qι −

(
vι − vext

)
θιηι

]
nι · e

〉
ΓιM ,Ω

= Λ ≥ 0.
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B.11. Simplified Entropy Inequality

The CEI is exact given the set of primary restrictions. Because of this exact nature, it

is an important expression for archival purposes. However, the CEI is not in a force-flux

form where all forces and fluxes vanish at equilibrium. We seek such a force-flux form to

guide the development of closure relations, and we call this form the simplified entropy

inequality (SEI). The SEI is derived from the CEI given a set of secondary restrictions and

approximations, which are non-unique and subject to change if the class of system of focus

changes in the future or if improved approximations are developed. Secondary restrictions

limit the system being considered to a subset of the general system for which the CEI was

derived. Approximations are explicit statements of non-exact, but reasonable, approaches

used to simplify expressions that are otherwise non-reducible. While not exact, the

derivation of the SEI is done systematically and the restrictions and approximations are

explicit. The validity of these assumptions can be checked using microscale experimental

or simulation approaches. We will formulate the SEI by systematically examining the

secondary restrictions and approximations and their resultant consequences on the CEI.

The final result that we seek is an inequality consisting of a sum of force-flux pair products

that vanish at equilibrium.

Secondary Restriction 1 states that no deformation takes place and thus the Green’s

deformation tensor becomes the identity tensor and the Lagrangian stress tensor is the

zero tensor, which allows several solid-phase terms to be simplified. Secondary Restriction

2 means riι = 0, which allows all products with this term to be dropped from the CEI.

Secondary Restriction 3 states that the interfaces and common curves are massless and

frictionless, which implies that their mass density is zero and there is no viscous stress.

This restriction reduces the conservation of mass equations for an interface to a jump

condition, eliminates the conservation of mass equation for the common curve, and all

other terms involving mass exchange with the common curve. Approximation 1 is a

statement that terms involving KE and u·u can be neglected, because they are second-

order products of velocity fluctuations that are expected to be small.
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Secondary Restrictions 1–3 and SEI Approximations 1 and 2 can be applied to the

CEI, Eq. (B.279), to yield

(B.280) −
∑
ι∈If

∇8·

ειϕ8ι − 1

θι

ειq8ι +
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι


+
∑
ι∈If

(∇8·N
)
N· 1

θι

∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι

−∇8·
(
εsϕ8s − εsq8s

θs

)
−
∑
ι∈II

∇8·
(
ειϕ8ι − ειq8ι

θι

)

−∇8·
(
εwgsϕ8wgs − εwgsq8wgs

θwgs

)

−
∑
ι∈IP

[
ειbιT −

1

θι

ειhιT +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι − ψiι

)
Dt

〉
Ωι,Ω

]

−
∑
ι∈II

ειbιT − 1

θι

ειhιT +

〈
ηι

D′s
(
θι − θι

)
Dt

〉
Ωι,Ω


−εwgsbwgsT +

1

θwgs

εwgshwgsT +

〈
ηwgs

D′′s
(
θwgs − θwgs

)
Dt

〉
Ωwgs,Ω


+
∑
ι∈If

ει

θι

(
t8ι + pιI8

)
:d8ι +

εs

θs

(
t8s − t8s

)
:d8s

+
∑
ι∈II

ει

θι

(
t8ι − γιI8

)
:d8ι +

εwgs

θwgs

(
t8wgs + γwgsI8

)
:d8wgs

−
∑
ι∈If

∑
i∈Is

1

θι
ειριωiιu8iι·∇8

(
µiι + ψiι

)

−
∑
ι∈If

ειq8ι +
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι

 ·∇8
(

1

θι

)

302



−εsq8s·∇8
(

1

θs

)
−
∑
ι∈II

(
ειq8ι

)
·∇8

(
1

θι

)
− εwgsq8wgs·∇8

(
1

θwgs

)

−
∑
ι∈If

(
v8ι − v8s)

θι
·
(∑
i∈Is

ειριωiι∇8
(
µiι + ψiι

)

+
∑
i∈Is

ειριωiιg8iι −∇8 (ειpι) +
∑
κ∈Icι

κ→ι
T ·I8

)

−
∑
ι∈If

vι,s·N
θι

∑
i∈Is

ειριωiιgiι·N +
∑
κ∈Icι

κ→ι
T ·N


−
∑
ι∈II

(
v8ι − v8s)

θι
·

∇8 (ειγι) +
∑
κ∈Icι

κ→ι
T ·I8

− ∑
ι∈II

vι,s·N
θι

∑
κ∈Icι

κ→ι
T ·N

−
(
v8wgs − v8s)

θwgs
·
(
−∇8 (εwgsγwgs)−

∑
κ∈Icwgs

wgs→κ
T ·I8

)

+
vwgs,s·N
θwgs

∑
κ∈Icwgs

wgs→κ
T ·N

+
∑
ι∈If

∑
κ∈Icι

1

θκ

∑
i∈Is

[(
µiκ + ψiκ

)
−
(
µiι + ψiι

)] iκ→iι
M

+
∑
ι∈If

∑
κ∈Icι

(
1

θι
− 1

θκ

)[
κ→ι
Q +

∑
i∈Is

(
Eκι
ειρκι

− µκiι
)
iκ→iι
M

+
(
vκι − vs

)
·
κ→ι
T

]
+
∑
κ∈Ics

(
1

θs
− 1

θκ

)[
κ→s
Q +

(
vκs − vs

)
·
κ→s
T

]

+
∑
ι∈II

(
1

θι
− 1

θwgs

)[
wgs→ι
Q +

(
v
wgs
ι − vs

)
·
wgs→ι

T

]

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

〈
ns · ts·nsns·

(
vs − vs

)〉
Ωss,Ω

+
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

+
∑
ι∈II

1

θι

[
∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

+ 〈nαnαγι〉Ωι,Ω:d8s
]
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+
1

θwg

〈(
pw − pg − γwg∇′·nw

) (
vwg − vs

)
·nw

〉
Ωwg,Ω

− 1

θws

〈(
pw + γws∇′·ns

) (
vws − vs

)
·ns
〉

Ωws,Ω

− 1

θgs

〈(
pg + γgs∇′·ns

) (
vgs − vs

)
·ns
〉

Ωgs,Ω

− 1

θwgs
∇8·
〈(

I− lwgslwgs
)
·
(
vwgs − vs

)
γwgs

〉
Ωwgs,Ω

− 1

θwgs

〈(
I− lwgslwgs

)
γwgs

〉
Ωwgs,Ω

:d8s

− 1

θwgs

〈(
lwgs·∇′′lwgs

)
·
(
vwgs − vs

)
γwgs

〉
Ωwgs,Ω

−
∑
ι∈II

1

θι

〈
nι ·

(
vwgs − vs

)
γι

〉
Ωwgs,Ω

+
∑
ι∈If

1

θι

〈
e·τ ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

(
v8ι − v8s)

θι
·
〈

e·pιI8

nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

(
v8ι − v8s)

θι
·
〈

e·γιI′
nι · e

〉
ΓιM ,Ω

+

(
v8wgs − v8s)

θwgs
·
〈

e·γwgsI′′
nwgs · e

〉
ΓwgsM ,Ω

+
∑
ι∈If

vι,s·N
θι

N ·
〈

epι
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

vι,s·N
θι

N ·
〈

eγι
nι · e

〉
ΓιM ,Ω

+
vwgs,s·N
θwgs

N ·
〈

eγwgs
nwgs · e

〉
ΓwgsM ,Ω

−
∑
ι∈IP

∑
i∈Is

1

θι

〈
e·
(
vι − vext

)
ριωiι

(
µiι + ψiι − µiι − ψiι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈If

〈e·
∑
i∈Is

ριωiιuiι

(
µiι+ψiι

θι
− µiι+ψiι

θι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈( 1
θι
− 1

θι

)
e·
[
qι −

(
vι − vext

)
θιηι

]
nι · e

〉
ΓιM ,Ω

= Λ ≥ 0.

Combining the fluid phase portion of line 2 of Eq. (B.280) with the grouping on lines 5

and 6 we can write
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(B.281)∑
ι∈If

(∇8·N
)
N· 1

θι

∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι

−
∑
ι∈If

[
ειbιT −

1

θι

ειhιT +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω


− 1

θι

∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι − ψiι

)
Dt

〉
Ωι,Ω

]

= −
∑
ι∈If

[
ειbιT −

1

θι

(
ειhιT +

(∇8·N
)
N·
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι

+

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι − ψiι

)
Dt

〉
Ωι,Ω

)]
.

SEI Approximation 3 states that the system is macroscopically simple, which accord-

ing to the approximation, means that the relationship among entropy fluxes, heat fluxes,

and dispersive fluxes may be equated as

(B.282) ειϕι − 1

θι

ειqι +
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι

 = 0 for ι ∈ If ,

(B.283) εsϕs − 1

θs
εsqs = 0,

(B.284) ειϕι − 1

θι
ειqι = 0 for ι ∈ II,

and

(B.285) εwgsϕwgs − 1

θwgs
εwgsqwgs = 0.
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Also from SEI Approximation 3, the entropy source, the heat source, and material

derivatives of the deviations in temperature and potential terms may be equated. If we

expand the terms of these types that are grouped together we can write

(B.286)

−ειbιT +
1

θι

[
ειhιT +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω

+
(∇8·N

)
N·
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι

+
∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι − ψiι

)
Dt

〉
Ωι,Ω

]

= −ειbι − ει (∇8·N
) (

N ·ϕι
)

+
1

θι

[
ειhι + ει

(∇8·N
) (

N·qι
)

+
(∇8·N

)
N·
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
uiι +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι − ψiι

)
Dt

〉
Ωι,Ω

]

= −ειbι +
1

θι

[
ειhι +

〈
ηι

Ds
(
θι − θι

)
Dt

〉
Ωι,Ω

+
∑
i∈Is

〈
ριωiι

Ds
(
µiι + ψiι − µiι − ψiι

)
Dt

〉
Ωι,Ω

]
= 0 for ι ∈ If .

Similar expansion of the total entropy source and heat flux terms and use of Eq. (B.283),

Eq. (B.284), and Eq. (B.285) yields

(B.287) − εsbs +
1

θs

(
εshs +

〈
ηs

Ds
(
θs − θs

)
Dt

〉
Ωs,Ω

+

〈
ρs

Ds
(
µs + ψs − µs − ψs

)
Dt

〉
Ωs,Ω

)
= 0,
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(B.288) −ειbι +
1

θι

ειhι +

〈
ηι

D′s
(
θι − θι

)
Dt

〉
Ωι,Ω

 = 0 for ι ∈ II,

and

(B.289) −εwgsbwgs +
1

θwgs

εwgshwgs +

〈
ηwgs

D′′s
(
θwgs − θwgs

)
Dt

〉
Ωwgs,Ω

 = 0.

Many of the remaining microscale quantities found within averaging operators include

dyadic products of orientation vectors. These quantities are referred to as geometric

orientation tensors and can be written as

(B.290) Gι = 〈Gι〉Ωι,Ωι = 〈nκnκ〉Ωι,Ωι for ι ∈ II and κ ∈ (Icι ∩ IP) ,

and

(B.291) Gwgs =
〈
Gwgs

〉
Ωwgs,Ωwgs

=
〈
I− lwgslwgs

〉
Ωwgs,Ωwgs

.

While Eq. (B.290) and Eq. (B.291) are exact and accessible given detailed knowledge

of the microscale, these terms appear within averaging operators as products with other

microscale variables. As a result of SEI Approximation 4, we approximate these terms

by assuming independence among certain groupings of variables, allowing integrals of

products to be expressed as products of integrals as in

(B.292)
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

≈ ειGι·vι,sγι,

(B.293) 〈nαnαγι〉Ωι,Ω ≈ ειGιγι,

(B.294)
〈(

I− lwgslwgs
)
·
(
vwgs − vs

)
γwgs

〉
Ωwgs,Ω

≈ εwgsGwgs·vwgs,sγwgs,

and

(B.295)
〈(

I− lwgslwgs
)
γwgs

〉
Ωwgs,Ω

≈ εwgsGwgsγwgs,
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where ι ∈ II, α ∈ (Icι ∩ IP), and G8ι = Gι −NN ·Gι·NN.

Note that

(B.296)
1

θι
∇8·
〈
nαnα ·

(
vι − vs

)
γι

〉
Ωι,Ω

=
1

θι
∇8·

(
ειGι·vι,sγι

)
=

vι,s

θι
·∇8· (ειGιγι) +

1

θι
ειGιγι:d8ι,s

=
v8ι − v8s

θι
·∇8·

(
ειG8ιγι

)
+

vι,s

θι
·
(∇8·N

)
NN · (ειGι·Nγι)

+
ει

θι
G8ιγι:d8ι,s,

where d8ι,s = d8ι − d8s, and

(B.297)
1

θι
〈nαnαγι〉Ωι,Ω:d8s =

1

θι
ειGιγι:d8s =

ει

θι
G8ιγι:d8s.

The same type of manipulations can be done for similar terms which arise averaged over

the common curves.

For a three-phase system, the following relationships between the unit vectors are

valid along the common curve at the smooth solid surface with normal ns,

(B.298) nwg = cosϕws,wgnws − sinϕws,wgns,

and

(B.299) ngs = −nws.

Also along the wgs common curve exists the identity

(B.300) lwgs ·∇′′lwgs = lwgs ·∇′′lwgs ·nsns + lwgs ·∇′′lwgs ·nwsnws.

Then the normal curvature, κNwgs, and the geodesic curvature, κGwgs are defined, re-

spectively, as

(B.301) κNwgs = lwgs ·∇′′lwgs ·ns,
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and

(B.302) κGwgs = lwgs ·∇′′lwgs ·nws,

so that Eqn (B.300) may be written

(B.303) lwgs ·∇′′lwgs = κNwgsns + κGwgsnws.

Applying the approximations given by Eqs. (B.282)–(B.303), the CEI can be simpli-

fied such that the SEI is written as

(B.304)∑
ι∈If

ει

θι

(
t8ι + pιI8

)
:d8ι +

εs

θs

(
t8s − t8s

)
:d8s

+
∑
ι∈II

ει

θι

[
t8ι − γι (I8 − G8ι)] :d8ι +

εwgs

θwgs

[
t8wgs + γwgs

(
I8 − G8wgs)] :d8wgs

−
∑
ι∈If

∑
i∈Is

1

θι
ειριωiιu8iι·∇8

(
µiι + ψiι

)

−
∑
ι∈If

ειq8ι +
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι

 ·∇8
(

1

θι

)

−εsq8s·∇8
(

1

θs

)
−
∑
ι∈II

(
ειq8ι

)
·∇8

(
1

θι

)
− εwgsq8wgs·∇8

(
1

θwgs

)

−
∑
ι∈If

(
v8ι − v8s)

θι
·
(∑
i∈Is

ειριωiι∇8
(
µiι + ψiι

)
+
∑
i∈Is

ειριωiιg8iι

−∇8 (ειpι) +
∑
κ∈Icι

κ→ι
T ·I8

)

−
∑
ι∈If

vι,s·N
θι

∑
i∈Is

ειριωiιgiι·N +
∑
κ∈Icι

κ→ι
T ·N


−
∑
ι∈II

(
v8ι − v8s)

θι
·
(
∇8·

[
ειγι

(
I8 − G8ι)]+

κ→ι
T ·I8

)
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−
∑
ι∈II

vι,s·N
θι

 ∑
κ∈Icι

κ→ι
T ·N − (∇8·N

)
N · ειGι·Nγι


−
(
v8wgs − v8s)

θwgs
·

−∇8·
[
εwgsγwgs

(
I8 − G8wgs)]− ∑

κ∈Icwgs

wgs→κ
T ·I8


+

vwgs,s·N
θwgs

 ∑
κ∈Icwgs

wgs→κ
T ·N − (∇′·N)N · εwgsGwgs·Nγwgs


+
∑
ι∈If

∑
κ∈Icι

1

θκ

∑
i∈Is

[(
µiκ + ψiκ

)
−
(
µiι + ψiι

)] iκ→iι
M

+
∑
ι∈If

∑
κ∈Icι

(
1

θι
− 1

θκ

)[
κ→ι
Q +

∑
i∈Is

(
Eκι
ειρκι

− µκiι
)
iκ→iι
M

+
(
vκι − vs

)
·
κ→ι
T

]
+
∑
κ∈Ics

(
1

θs
− 1

θκ

)[
κ→s
Q +

(
vκs − vs

)
·
κ→s
T

]

+
∑
ι∈II

(
1

θι
− 1

θwgs

)[
wgs→ι
Q +

(
v
wgs
ι − vs

)
·
wgs→ι

T

]

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

− 1

θs

〈
ns · ts·nsns·

(
vs − vs

)〉
Ωss,Ω

+
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

+
1

θwg

〈(
pw − pg − γwg∇′·nw

) (
vwg − vs

)
·nw

〉
Ωwg,Ω

− 1

θws

〈(
pw + γws∇′·ns

) (
vws − vs

)
·ns
〉

Ωws,Ω

− 1

θgs

〈(
pg + γgs∇′·ns

) (
vgs − vs

)
·ns
〉

Ωgs,Ω

− 1

θwgs
〈(γwgsκGwgs + γws − γgs + γwg cosϕws,wg

)
nws ·

(
vwgs − vs

)
〉Ωwgs,Ω

− 1

θwgs

〈(
γwgsκNwgs − γwg sinϕws,wg

)
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

+
∑
ι∈If

1

θι

〈
e·τ ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

(
v8ι − v8s)

θι
·
〈

e·pιI8

nι · e

〉
ΓιM ,Ω
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−
∑
ι∈II

(
v8ι − v8s)

θι
·
〈

e·γιI′
nι · e

〉
ΓιM ,Ω

+

(
v8wgs − v8s)

θwgs
·
〈

e·γwgsI′′
nwgs · e

〉
ΓwgsM ,Ω

+
∑
ι∈If

vι,s·N
θι

N ·
〈

epι
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

vι,s·N
θι

N ·
〈

eγι
nι · e

〉
ΓιM ,Ω

+
vwgs,s·N
θwgs

N ·
〈

eγwgs
nwgs · e

〉
ΓwgsM ,Ω

−
∑
ι∈IP

∑
i∈Is

1

θι

〈
e·
(
vι − vext

)
ριωiι

(
µiι + ψiι − µiι − ψiι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈If

〈e·
∑
i∈Is

ριωiιuiι

(
µiι+ψiι

θι
− µiι+ψiι

θι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈( 1
θι
− 1

θι

)
e·
[
qι −

(
vι − vext

)
θιηι

]
nι · e

〉
ΓιM ,Ω

= Λ ≥ 0.

Several terms remain in Eq. (B.304) that are not in a strict force-flux form. For these

terms, we must either make approximations and rearrangements such that these terms

are in a strict force-flux form, or we can exclude a term if it can be concluded to be

essentially zero based upon our secondary restrictions and SEI approximations. Because

the solid phase does not deform (Secondary Restriction 1), and the velocity of the solid

particles is small (SEI Approximation 6), we will assume that

(B.305)
1

θs

〈(
∇·ts −∇σs:

Cs
js

)
·
(
vs − vs

)〉
Ωs,Ω

≈ 0.

Next consider the term

(B.306) Ts = − 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωss,Ω

.

A first-order closure scheme for this expression would be

(B.307)
〈
ns · ts·I′

〉
Ωss,Ω

≈ R̂t·I′·
〈
vs − vs

〉
Ωss,Ω

.
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Because both terms within the averaging operators are zero, we can neglect this term.

Note this is not as complete as deriving an expression that reduces to the equilibrium

condition that applies to this case, but we haven’t succeeded in extracting this condition

from the CEI.

The next set of terms from Eq. (B.304) that we will deal with involve averages over

interfaces and common curves. These terms may be written as

(B.308) Tavg = − 1

θs

〈
ns · ts·nsns·

(
vs − vs

)〉
Ωss,Ω

+
1

θwg

〈(
pw − pg − γwg∇′·nw

) (
vwg − vs

)
·nw

〉
Ωwg,Ω

− 1

θws

〈(
pw + γws∇′·ns

) (
vws − vs

)
·ns
〉

Ωws,Ω

− 1

θgs

〈(
pg + γgs∇′·ns

) (
vgs − vs

)
·ns
〉

Ωgs,Ω

− 1

θwgs
〈(γwgsκGwgs + γws − γgs + γwg cosϕws,wg

)
nws ·

(
vwgs − vs

)
〉Ωwgs,Ω

− 1

θwgs

〈(
γwgsκNwgs − γwg sinϕws,wg

)
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

.

The terms in Eq. (B.308) that involve fluid pressures need to be manipulated into

force-flux form. We have previously considered terms of a similar form [89, 90]. The

derivation of evolution equations is based upon averaging theorems and approximations

of residual error terms. The situation at hand is somewhat different due to the domain

being megascale in one dimension, thus the averaging theorem formulation must be re-

examined.

Averaging the normal and geodesic curvature over the common curve we have

κ
wgs
N =

〈
κNwgs

〉
Ωwgs,Ω

, and(B.309)

κ
wgs
G =

〈
κGwgs

〉
Ωwgs,Ω

.(B.310)
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Next we define the macroscale contact angle such that

(B.311) cosϕws,wg =

〈
cos
(
ϕws,wg

)〉
Ωwgs,Ωwgs

[〈cos
(
ϕws,wg

)〉2Ωwgs,Ωwgs + 〈sin (ϕws,wg)〉2Ωwgs,Ωwgs ]1/2 ,
and similarly

(B.312) sinϕws,wg =

〈
sin
(
ϕws,wg

)〉
Ωwgs,Ωwgs

[〈cos
(
ϕws,wg

)〉2Ωwgs,Ωwgs, + 〈sin (ϕws,wg)〉2Ωwgs,Ωwgs,]1/2 .
The macroscale surface curvature, Jκι , obtained as the divergence of nι averaged over

the κ interface, is defined by

(B.313) Jκι =
〈∇′·nι〉Ωκ,Ωκ ,

while the surface curvature weighted by the interfacial tension is defined as

(B.314) Jκι =
〈∇′·nι〉Ωκ,Ωκ,γκ ,

where Ωκ = Ω̄ι ∩ Ω̄α, ι and α are phase qualifiers, and κ ∈ II.

We can write

(B.315)
〈
γκ∇′·nι

〉
Ωκ,Ωκ

= γκJκι +
〈
(γκ − γκ)∇′·nι

〉
Ωκ,Ωκ

.

The macroscale pressure of phase ι averaged over an interface κ is denoted pκι where

(B.316) pκι = 〈pι〉Ωκ,Ωκ for ι ∈ If and κ ∈ Icι,

and the macroscale tension of surface ι averaged over the common curve wgs is defined

by

(B.317) γ
wgs
ι = 〈γι〉Ωwgs,Ωwgs for ι ∈ II.

Define the fractional entity measure as

(B.318) χκι =
ει

εκ
for ι, κ ∈ I.
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A common instance of the χ operator occurs when ss denotes the entire surface of the

solid phase and the fraction of the solid surface in contact with the κ phase is

(B.319) χssκs =
εκs

εss
for κ ∈ If ,

where εss is the specific surface area of the solid surface.

We can derive geometric density approximations by extending the formulation of [89]

in accordance with SEI Approximation 8. Because the transport and gradient theorems

for the system under consideration in this work are different than the transport and gradi-

ent theorem for the three-dimensional macroscale system that was previously considered

[89], it will be necessary to reconsider expressions that may be derived based upon the

averaging theorems.

Applying Theorem 3.4.2 and Theorem 3.4.3 to fι = 1, we get

(B.320) ∇8ει = −
∑
κ∈Icι

〈nι〉Ωκ,Ω − 〈e〉ΓιM ,Ω for ι ∈ IP,

and

(B.321)
∂8ει

∂t
=
∑
κ∈Icι

〈nι ·vκ〉Ωκ,Ω + 〈e·vext〉ΓιM ,Ω for ι ∈ IP.

Adding the dot product of Eq. (B.320) with the macroscale velocity of the solid phase

vs to Eq. (B.321) provides

(B.322)
Dsει

Dt
=
∑
κ∈Icι

〈
nι ·

(
vκ − vs

)〉
Ωκ,Ω

+
〈
e·
(
vext − vs

)〉
ΓιM ,Ω

for ι ∈ IP.

For the solid phase, Eq. (B.322) yields

(B.323)
Dsεs

Dt
=
〈
ns ·

(
vws − vs

)〉
Ωws,Ω

+
〈
ns ·

(
vgs − vs

)〉
Ωgs,Ω

+
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

.
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When there is no mass transfer to or from the solid phase, the normal velocity of the

solid phase is equal to the velocity of the fluid-solid interfaces normal to the solid surface.

Because the solid surface ss is equal to the sum of the ws and gs surfaces, we get

(B.324)
Dsεs

Dt
=
〈
ns ·

(
vs − vs

)〉
Ωss,Ω

+
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

,

and as a result of SEI Approximation 5, we can write

(B.325) χssκs
Dsεs

Dt
≈
〈
ns ·

(
vκs − vs

)〉
Ωκs,Ω

+ χssκs

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

,

where κ ∈ If .

Eq. (B.325) can be rearranged to give

(B.326)
〈
ns ·

(
vκs − vs

)〉
Ωκs,Ω

≈ χssκs
Dsεs

Dt
− χssκs

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

,

where κ ∈ If .

Taking into account nw = −ns on the ws interface, we get from Eq. (B.322) for the

w phase

(B.327)
Dsεw

Dt
= −

〈
ns ·

(
vws − vs

)〉
Ωws,Ω

+
〈
nw ·

(
vwg − vs

)〉
Ωwg,Ω

+
〈
e·
(
vext − vs

)〉
ΓwM,Ω

.

Substitution of Eq. (B.325) into Eq. (B.327) gives us

(B.328)
Dsεw

Dt
+ χssws

Dsεs

Dt
≈
〈
nw ·

(
vwg − vs

)〉
Ωwg,Ω

+
〈
e·
(
vext − vs

)〉
ΓwM,Ω

+χssws

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

,

and rearranging yields the approximation

(B.329)
〈
nw ·

(
vwg − vs

)〉
Ωwg,Ω

≈ Dsεw

Dt
+ χssws

Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓwM,Ω

−χssws
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

.

315



A capillary pressure term that arises in the constrained entropy inequality can be

written for the case of a massless interface as

(B.330) θwgTη =
〈(
pw − pg − γwg∇′·nw

) (
vwg − vs

)
·nw

〉
Ωwg,Ω

.

[90] derived an approximation to Eqn (B.330), which can be written as

(B.331) θwgTη ≈
(
Awg − γwg(

p
wg
w − pwgg

) k̂wg1
(
εwg − εwgeq

)) (
p
wg
w − pwgg − Jwgw γwg

)
,

where

(B.332) Awg =
〈(

vwg − vs
)
·nw

〉
Ωwg,Ω

,

is approximated by Eq. (B.329), the equilibrium specific interfacial area of the wg inter-

face is parameterized in general form as

(B.333) ε
wg
eq = ε

wg
eq
(
sw, J

wg
w
)
,

and the coefficient k̂
wg
1 is defined as

(B.334) k̂wg =

(
J
wg
w γwg

p
wg
w − pwgg

− 1

)
k̂
wg
1 ,

where sw is the wetting phase saturation, and k̂wg is a function of system variables. The

approximation in Eq. (B.331) is based on the assumption that the difference between

microscale and macroscale values of interfacial tension and fluid pressures at the interface

are less important than changes in the curvature of the interface. This assumption is

documented in SEI Approximation 9.

Similarly we can apply Theorem 3.4.5 and Theorem 3.4.6 to fι = 1, and we get

(B.335) ∇8ει = ∇8·〈nαnα〉Ωι,Ω −
〈(∇′·nα)nα

〉
Ωι,Ω

−〈nι〉Ωwgs,Ω −
〈

e

nι · e

〉
ΓιM ,Ω

for ι ∈ II, α ∈ (Icι ∩ IP)
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and

(B.336)
∂8ει

∂t
= −∇8·〈nαnα·vι〉Ωι,Ω +

〈(∇′·nα)nα·vι
〉

Ωι,Ω

+
〈
nι ·vwgs

〉
Ωwgs,Ω

+

〈
e·vext
nι · e

〉
ΓιM ,Ω

for ι ∈ II, α ∈ (Icι ∩ IP) .

Adding the dot product of Eq. (B.335) with the macroscale solid-phase velocity vs

to Eq. (B.336) provides

(B.337)
Dsει

Dt
= −∇8·

〈
nαnα ·

(
vι − vs

)〉
Ωι,Ω

− 〈nαnα〉Ωι,Ω:d8s

+
〈(∇′·nα)nα ·

(
vι − vs

)〉
Ωι,Ω

+
〈
nι ·

(
vwgs − vs

)〉
Ωwgs,Ω

+

〈
e·
(
vext − vs

)
nι · e

〉
ΓιM ,Ω

.

Following [89], we can define the average macroscale interface velocity normal to the

interface as

(B.338) wι = 〈nαnα ·vι〉Ωι,Ωι for ι ∈ II, α ∈ (Icι ∩ IP) .

Eqs. (B.337) and (B.338) can be combined, the curvature term can be decomposed,

and the geometric orientation tensor can be used to yield

(B.339)
Dsει

Dt
= −∇8·

[
ει
(
wι − Gι·vs

)]
− ειGι:d8s + J ια

〈
nα ·

(
vι − vs

)〉
Ωι,Ω

+
〈(∇′·nα − J ια)nα ·

(
vι − vs

)〉
Ωι,Ω

+
〈
nι ·

(
vwgs − vs

)〉
Ωwgs,Ω

+

〈
e·
(
vext − vs

)
nι · e

〉
ΓιM ,Ω

for ι ∈ II and α ∈ (Icι ∩ IP) .

We are seeking expressions for the averages of the normal components of vwgs rela-

tive to vs. Eq. (B.339) applies to any interface. Let’s consider the fluid-solid interface
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instances of Eq. (B.339) and let α = s. According to SEI Approximation 7, we note that

(B.340)
〈(∇′·ns − J ιs)ns ·

(
vι − vs

)〉
Ωι,Ω

≈ 0 for ι ∈ {ws, gs}.

Combining Eqs. (B.339) and (B.340) for the ws interface yields

(B.341)
Dsεws

Dt
≈ −∇8·

[
εws

(
wws − Gws·vs

)]
− εwsGws:d8s

+Jwss

〈
ns ·

(
vws − vs

)〉
Ωws,Ω

+
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

+

〈
e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

.

Substituting Eq. (B.326) into Eq. (B.341) yields

(B.342)
Dsεws

Dt
≈ −∇8·

[
εws

(
wws − Gws·vs

)]
− εwsGws:d8s

+Jwss

[
χssws

Dsεs

Dt
− χssws

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

+
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

+

〈
e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

,

or

(B.343)
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ Dsεws

Dt
+∇8·

[
εws

(
wws − Gws·vs

)]
+εwsGws:d8s − Jwss

[
χssws

Dsεs

Dt
− χssws

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

.

Because of SEI Approximation 5, we can write

(B.344) Gws ≈ Ggs ≈ Gss,
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and

(B.345) ns ·vs ≈ ns ·vss ≈ ns ·vws ≈ ns ·vgs ≈ ns ·vwgs,

which allows Eq. (B.343) to be written as

(B.346)
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ Dsεws

Dt
+∇8·

[
εws

(
wws − Gss·vs

)]
+εwsGss:d8s − Jwss

[
χssws

Dsεs

Dt
− χssws

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

.

As a result of SEI Approximations 4 and 5 the second term on the RHS of Eq. (B.346)

vanishes giving

(B.347)
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ Dsεws

Dt
+ εwsGss:d8s

−Jwss
[
χssws

Dsεs

Dt
− χssws

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

.

Eq. (B.347) may also be written as

(B.348)
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ χssws
Dsεss

Dt
+ εss

Dsχssws
Dt

+ χsswsε
ssGss:d8s

−Jwss
[
χssws

Dsεs

Dt
− χssws

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

.

A similar set of manipulations for the gs interface yields

(B.349)
〈
ngs ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ χssgs
Dsεss

Dt
+ εss

Dsχssgs
Dt

+ χssgsε
ssGss:d8s
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−Jgss
[
χssgs

Dsεs

Dt
− χssgs

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

.

Adding Eqs. (B.348) and (B.349) we get

(B.350) 0 ≈ Dsεss

Dt
+ εssGss:d8s − Jsss

[
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

−
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

,

where Jsss = Jwss χssws + J
gs
s χssgs, which can also be written as

(B.351)
Dsεss

Dt
+ εssGss:d8s − Jsss

[
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

≈
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

.

Combining Eqs. (B.348) and (B.351) and assuming Jwss ≈ J
gs
s ≈ Jsss yields

(B.352)
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ εss
Dsχssws

Dt

−χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+ χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

.

Using Eq. (B.345), the normal velocity component of the common curve can be written

as

(B.353)
〈
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ εwgs

εss

〈
ns ·

(
vs − vs

)〉
Ωss,Ω

.

Substituting Eq. (B.324) into Eq. (B.353), we get

(B.354)
〈
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ εwgs

εss

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
.
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Using Eq. (B.324), we can write the first term in the right hand side of Eq. (B.308)

as

(B.355) − 1

θs

〈
ns · ts·nsns·

(
vs − vs

)〉
Ωss,Ω

≈ − 1

θs
〈ns · ts·ns〉Ωss,Ωss

〈
ns·
(
vs − vs

)〉
Ωss,Ω

= − 1

θs
〈ns · ts·ns〉Ωss,Ωss

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
.

The second term of Eq. (B.308) is approximated in Eqns (B.331)–(B.334). Substituting

Eq. (B.315) into the third and the fourth terms of Eq. (B.308) yields

(B.356) − 1

θιs

〈(
pι + γιs∇′·ns

) (
vιs − vs

)
·ns
〉

Ωιs,Ω

≈ − 1

θιs

〈
pι + γιs∇′·ns

〉
Ωιs,Ωιs

〈(
vιs − vs

)
·ns
〉

Ωιs,Ω

≈ − 1

θιs

(
pιsι + γιsJ ιss +

〈
(γιs − γιs)∇′·ns

〉
Ωιs,Ωιs

)〈(
vιs − vs

)
·ns
〉

Ωιs,Ω
.

According to SEI Approximation 7 the third term in Eq. (B.356) is negligibly small. So,

applying Eq. (B.326) we have

(B.357) − 1

θιs

〈(
pι + γιs∇′·ns

) (
vιs − vs

)
·ns
〉

Ωιs,Ω

−χ
ss
ιs

θιs
(pιsι + γιsJ ιss )

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
.

Using Eq. (B.352) and Eq. (B.354) as well as assuming separability of variables, the last

two terms in the right hand side of Eqn (B.308) can be approximated as

(B.358)

− 1

θwgs
〈(γwgsκGwgs + γws − γgs + γwg cosϕws,wg

)
nws ·

(
vwgs − vs

)
〉Ωwgs,Ω

≈ − 1

θwgs

(
γwgsκ

wgs
G + γ

wgs
ws − γwgsgs + γ

wgs
wg cosϕws,wg

)(
εss

Dsχssws
Dt
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−χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+ χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

)
,

and

(B.359) − 1

θwgs

〈(
γwgsκNwgs − γwg sinϕws,wg

)
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ −χ
ss
wgs

θwgs

(
γwgsκ

wgs
N − γwgswg sinϕws,wg

)(Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
.

Finally, we say that the velocities of the phases averaged over the solid-fluid interface sur-

face, vwsw ,vwss ,v
gs
g , and v

gs
s are small and will be assumed to be equal to the macroscale

solid-phase velocity itself, vs. With these changes, the final SEI can be written as

(B.360)∑
ι∈If

ει

θι

(
t8ι + pιI8

)
:d8ι +

εs

θs

(
t8s − t8s

)
:d8s

+
∑
ι∈II

ει

θι

[
t8ι − γι (I8 − G8ι)] :d8ι +

εwgs

θwgs

[
t8wgs + γwgs

(
I8 − G8wgs)] :d8wgs

−
∑
ι∈If

∑
i∈Is

1

θι
ειριωiιu8iι·∇8

(
µiι + ψiι

)

−
∑
ι∈If

ειq8ι +
∑
i∈Is

ειριωiι
(
µiι + ψiι

)
u8iι

 ·∇8
(

1

θι

)

−εsq8s·∇8
(

1

θs

)
−
∑
ι∈II

ειq8ι·∇8
(

1

θι

)
− εwgsq8wgs·∇8

(
1

θwgs

)

−
∑
ι∈If

(
v8ι − v8s)

θι
·
(∑
i∈Is

ειριωiι∇8
(
µiι + ψiι

)

+
∑
i∈Is

ειριωiιg8iι −∇8 (ειpι) +
∑
κ∈Icι

κ→ι
T ·I8

)

−
∑
ι∈If

vι,s·N
θι

∑
i∈Is

ειριωiιgiι·N +
∑
κ∈Icι

κ→ι
T ·N
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−
∑
ι∈II

(
v8ι − v8s)

θι
·
(
∇8·

[
ειγι

(
I8 − G8ι)]+

∑
κ∈Icι

κ→ι
T ·I8

)

−
∑
ι∈II

vι,s·N
θι

( ∑
κ∈Icι

κ→ι
T ·N − (∇8·N

)
N · ειGι·Nγι

)

+

(
v8wgs − v8s)

θwgs
·
(
∇8·

[
εwgsγwgs

(
I8 − G8wgs)]+

∑
κ∈Icwgs

wgs→κ
T ·I8

)

+
vwgs,s·N
θwgs

( ∑
κ∈Icwgs

wgs→κ
T ·N − (∇8·N

)
N · εwgsGwgs·Nγwgs

)

+
∑
ι∈If

∑
κ∈Icι

1

θκ

∑
i∈Is

[(
µiκ + ψiκ

)
−
(
µiι + ψiι

)] iκ→iι
M

+
∑
ι∈If

∑
κ∈Icι

(
1

θι
− 1

θκ

)[
κ→ι
Q +

∑
i∈Is

(
Eκι
ειρκι

− µκiι
)
iκ→iι
M

+
(
vκι − vs

)
·
κ→ι
T

]
+
∑
κ∈Ics

(
1

θs
− 1

θκ

)
κ→s
Q

+
∑
ι∈II

(
1

θι
− 1

θwgs

)[
wgs→ι
Q +

(
v
wgs
ι − vs

)
·
wgs→ι

T

]

+
1

θwg

(
p
wg
w − pwgg − γwgJwgw

) [Dsεw

Dt
+ χssws

Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓwM,Ω

−χssws
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

− γwg(
p
wg
w − pwgg

) k̂wg1
(
εwg − εwgeq

) ]

−
[∑
ι∈If

χssιs

θιs
(pιsι + γιsJ ιss ) +

1

θs
〈ns · ts·ns〉Ωss,Ωss

+
χsswgs

θwgs

(
γwgsκ

wgs
N − γwgswg sinϕws,wg

)]

×
(

Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)

− 1

θwgs

(
γwgsκ

wgs
G + γ

wgs
ws − γwgsgs + γ

wgs
wg cosϕws,wg

)(
εss

Dsχssws
Dt
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−χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+ χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

)

+
∑
ι∈If

1

θι

〈
e·τ ι·

(
vι − vι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈If

(
v8ι − v8s)

θι
·
〈

e·pιI8

nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

(
v8ι − v8s)

θι
·
〈

e·γιI′
nι · e

〉
ΓιM ,Ω

+

(
v8wgs − v8s)

θwgs
·
〈

e·γwgsI′′
nwgs · e

〉
ΓwgsM ,Ω

+
∑
ι∈If

vι,s·N
θι

N ·
〈

epι
nι · e

〉
ΓιM ,Ω

−
∑
ι∈II

vι,s·N
θι

N ·
〈

eγι
nι · e

〉
ΓιM ,Ω

+
vwgs,s·N
θwgs

N ·
〈

eγwgs
nwgs · e

〉
ΓwgsM ,Ω

−
∑
ι∈IP

∑
i∈Is

1

θι

〈
e·
(
vι − vext

)
ριωiι

(
µiι + ψiι − µiι − ψiι

)
nι · e

〉
ΓιM ,Ω

−
∑
ι∈If

〈e·
∑
i∈Is

ριωiιuiι

(
µiι+ψiι

θι
− µiι+ψiι

θι

)
nι · e

〉
ΓιM ,Ω

+
∑
ι∈I

〈( 1
θι
− 1

θι

)
e·
[
qι −

(
vι − vext

)
θιηι

]
nι · e

〉
ΓιM ,Ω

= Λ ≥ 0.

B.12. Evolution Equations

Recall Eq. (B.348)

(B.361)
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ χssws
Dsεss

Dt
+ εss

Dsχssws
Dt

+ χsswsε
ssGss:d8s

−Jwss
[
χssws

Dsεs

Dt
− χssws

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

,

Eq. (B.349)
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(B.362)
〈
ngs ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ χssgs
Dsεss

Dt
+ εss

Dsχssgs
Dt

+ χssgsε
ssGss:d8s

−Jgss
[
χssgs

Dsεs

Dt
− χssgs

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

,

Eq. (B.350)

(B.363)
Dsεss

Dt
+ εssGss:d8s − Jsss

[
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

≈
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

,

and Eq. (B.352)

(B.364)
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ εss
Dsχssws

Dt

−χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+ χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

.

Eqs. (B.362) and (B.363) can be combined to yield

(B.365)
〈
ngs ·

(
vwgs − vs

)〉
Ωwgs,Ω

≈ εss
Dsχssgs

Dt

+χssgs

〈
e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

− χssws
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

.

Combining Eqs. (B.361) and (B.364) produces the evolution equation

(B.366) χssws
Dsεss

Dt
+ εss

Dsχssws
Dt

+ χsswsε
ssGss:d8s

−Jwss
[
χssws

Dsεs

Dt
− χssws

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

− εssDsχssws
Dt
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+χssgs

〈
e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

− χssws
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

≈ 0,

or

(B.367)
Dsεws

Dt
+ εwsGss:d8s − Jwss χssws

[
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−εssDsχssws
Dt

− χssws
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

−χssws
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

≈ 0.

Combining Eqs. (B.362) and (B.365) produces the evolution equation

(B.368) χssgs
Dsεss

Dt
+ εss

Dsχssgs
Dt

+ χssgsε
ssGss:d8s

−Jgss
[
χssgs

Dsεs

Dt
− χssgs

〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

− εssDsχssgs
Dt

−χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+ χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

≈ 0,

or

(B.369)
Dsεgs

Dt
+ εgsGss:d8s − Jgss χssgs

[
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

]

−εssDsχssgs
Dt

− χssgs
〈

e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

−χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

≈ 0.

Recalling Eq. (B.339), we can set ι = wg so that
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(B.370)
Dsεwg

Dt
= −∇8·

[
εwg

(
wwg − Gwg·vs

)]
− εwgGwg:d8s

+J
wg
w

〈
nw ·

(
vwg − vs

)〉
Ωwg,Ω

+
〈(∇′·nw − Jwgw )

nw ·
(
vwg − vs

)〉
Ωwg,Ω

+
〈
nwg ·

(
vwgs − vs

)〉
Ωwgs,Ω

+

〈
e·
(
vext − vs

)
nwg · e

〉
ΓwgM,Ω

,

for α ∈ (Icwg ∩ IP
)
. We can make use of the identity given in Eq. (B.298) to express

nwg in terms of nws and ns. In addition we approximate that the contact angle can

be decoupled from the velocity of the common curve. With those changes, Eq. (B.370)

becomes

(B.371)
Dsεwg

Dt
≈ −∇8·

[
εwg

(
wwg − Gwg·vs

)]
− εwgGwg:d8s

+J
wg
w

〈
nw ·

(
vwg − vs

)〉
Ωwg,Ω

+
〈(∇′·nw − Jwgw )

nw ·
(
vwg − vs

)〉
Ωwg,Ω

+
〈
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

cosϕws,wg

−
〈
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

sinϕws,wg +

〈
e·
(
vext − vs

)
nwg · e

〉
ΓwgM,Ω

.

Next we can apply Eq. (B.329), Eq. (B.352), and Eq. (B.354) to Eq. (B.371) to get

(B.372)
Dsεwg

Dt
≈ −∇8·

[
εwg

(
wwg − Gwg·vs

)]
− εwgGwg:d8s

+J
wg
w

(
Dsεw

Dt
+ χssws

Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓwM,Ω

−χssws
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)

+
〈(∇′·nw − Jwgw )

nw ·
(
vwg − vs

)〉
Ωwg,Ω

+

(
εss

Dsχssws
Dt

− χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

)
cosϕws,wg
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−ε
wgs

εss

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
sinϕws,wg

+

〈
e·
(
vext − vs

)
nwg · e

〉
ΓwgM,Ω

.

Following [89], we define

ewg =
〈(∇′·nw − Jwgw )

nw ·
(
vwg − vs

)〉
Ωwg,Ω

where ewg represents the processes of coalescence and division of phase resulting from

the creation or destruction of interfacial area and is subject to experimentation. We

approximate ewg using a linear relation

ewg ≈ −k̂wg (εwg − εwgeq
)

where ε
wg
eq and k̂wg are as described in Eq. (B.333) and Eq. (B.334). So the evolution of

the wg interface is described by

(B.373)
Dsεwg

Dt
+∇8·

[
εwg

(
wwg + Gwg·vs

)]
+ εwgGwg:d8s

−Jwgw
(

Dsεw

Dt
+ χssws

Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓwM,Ω

−χssws
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)

+k̂wg
(
εwg − εwgeq

)
−
(
εss

Dsχssws
Dt

− χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

)
cosϕws,wg

+
εwgs

εss

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
sinϕws,wg
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−
〈

e·
(
vext − vs

)
nwg · e

〉
ΓwgM,Ω

≈ 0.

For the common curve we use the transport theorem Eq. (3.13) and add to it vs multiplied

by the gradient theorem given by Eq. (3.12). Using the definitions for the geometric and

normal curvatures we are able to write

(B.374)
Dsεwgs

Dt
+∇8·

[
εwgs

(
wwgs − Gwgs·vs

)]
+ εwgsGwgs:d8s

+
〈
κNwgsns ·

(
vwgs − vs

)〉
Ωwgs,Ω

+
〈
κGwgsnws ·

(
vwgs − vs

)〉
Ωwgs,Ω

−
〈

e·
(
vext − vs

)
nwgs · e

〉
Γwgs,Ω

≈ 0.

Adding in and subtracting out the curvatures and using Eqs. (B.352) and (B.354) we

obtain

(B.375)
Dsεwgs

Dt
+∇8·

[
εwgs

(
wwgs − Gwgs·vs

)]
+ εwgsGwgs:d8s

+
〈(
κNwgs − κwgsN

)
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

+
〈(
κGwgs − κwgsG

)
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

+

(
εss

Dsχssws
Dt

− χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

)
κ
wgs
G

+
εwgs

εss

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
κ
wgs
N

−
〈

e·
(
vext − vs

)
nwgs · e

〉
Γwgs,Ω

≈ 0.

Following the arguments of [89] we define
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(B.376) ewgs = −
〈(
κNwgs − κwgsN

)
ns ·

(
vwgs − vs

)〉
Ωwgs,Ω

−
〈(
κGwgs − κwgsG

)
nws ·

(
vwgs − vs

)〉
Ωwgs,Ω

and linearly approximate this term by

ewgs ≈ −k̂wgs (εwg − εwgseq
)

where ε
wgs
eq = ε

wgs
eq (sw, J

wg
w ) is the equilibrium common curve length density and k̂wgs

is a common curve generation rate coefficient. Applying these definitions our expression

becomes

(B.377)
Dsεwgs

Dt
+∇8·

[
εwgs

(
wwgs − Gwgs·vs

)]
+ εwgsGwgs:d8s

+

(
εss

Dsχssws
Dt

− χssgs
〈

e·
(
vext − vs

)
nws · e

〉
ΓwsM ,Ω

+χssws

〈
e·
(
vext − vs

)
ngs · e

〉
ΓgsM ,Ω

)
κ
wgs
G

+
εwgs

εss

(
Dsεs

Dt
−
〈
e·
(
vext − vs

)〉
ΓsM ,Ω

)
κ
wgs
N

−
〈

e·
(
vext − vs

)
nwgs · e

〉
Γwgs,Ω

+ k̂wgs
(
εwg − εwgseq

) ≈ 0.
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[123] W. Klieber and B. Riviére. Adaptive simulations of two-phase flow by discontinuous
Galerkin methods. Computational Methods in Applied Mechanical Engineering,
196:404–419, 2006.

[124] W. J. Layton, F. Schieweck, and I. Yotov. Coupling fluid flow with porous media
flow. SIAM J. Numer. Anal., 40:2195–2218, 2003.

[125] R. J. Lenhard, J. C. Parker, and J. J. Kaluarachchi. A model for hysteretic constitu-
tive relations governing multiphase flow 3. Refinements and numerical simulations.
Water Resources Research, 25(7):1727–1736, 1989.

339



[126] T. Levy and E. Sanchez-Palencia. On boundary conditions for fluid flow in porous
media. Internat. J. Engrg. Sci., 13:923–940, 1975.

[127] W.-.-C. Lo, G. Sposito, and E. Majer. Immiscible two-phase fluid flows in de-
formable porous media. Advances in Water Resources, 25:1105–1117, 2002.

[128] S. Manthey, S. M. Hassanizadeh, and R. Helmig. Macro-scale dynamic effects in
homogeneous and heterogeneous porous media. Transport in Porous Media, 58(1-
2):121–145, 2005.

[129] C. M. Marle. On macroscopic equations governing multiphase flow with diffusion
and chemical reactions in porous media. International Journal of Engineering Sci-
ence, 20(5):643–662, 1982.

[130] G. A. Maugin. The Thermomechanics of Nonlinear Irreversible Behaviors: An
introduction. World Scientific Press, Singapore, 1999.

[131] J. F. McBride, C. S. Simmons, and J. W. Cary. Interfacial spreading effects on
one-dimensional organic liquid imbibition in water-wetted porous media. Journal
of Contaminant Hydrology, 11(1/2):1–25, 1992.

[132] J. E. McClure, D. Adalsteinsson, C. Pan, W. G. Gray, and C. T. Miller. Approx-
imation of interfacial properties in multiphase porous medium systems. Advances
in Water Resources, 30(3):354–365, 2007.

[133] C. A. Miller and P. Neogi. Interfacial Phenomena. Marcel Dekker, New York, 1985.

[134] C. T. Miller, G. Christakos, P. T. Imhoff, J. F. McBride, J. A. Pedit, and J. A.
Trangenstein. Multiphase flow and transport modeling in heterogeneous porous
media: Challenges and approaches. Advances in Water Resources, 21(2):77–120,
1998.

[135] C. T. Miller and W. G. Gray. Hydrogeological research: Just getting started.
Ground Water, 40(3):224–231, 2002.

[136] C. T. Miller and W. G. Gray. Thermodynamically constrained averaging theory
approach for modeling flow and transport phenomena in porous medium systems:
2. Foundation. Advances in Water Resources, 28(2):181–202, 2005.

[137] C. T. Miller and W. G. Gray. Thermodynamically constrained averaging theory
approach for modeling flow and transport phenomena in porous medium systems:
4. Species transport fundamentals. Advances in Water Resources, 31(3):577–597,
2008.

[138] C. T. Miller, G. A. Williams, C. T. Kelley, and M. D. Tocci. Robust solution
of Richards’ equation for non-uniform porous media. Water Resources Research,
34(10):2599–2610, 1998.

[139] U. Mingelgrin and Z. Gerstl. Reevaluation of partitioning as a mechanism of non-
ionic chemicals adsorption in soils. Journal of Environmental Quality, 12:1–11,

340



1983.

[140] K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I. Rybak, and
B. Wohlmuth. A new coupling concept for two-phase compositional porous me-
dia and single-phase compositional free flow. Technical report, Stuttgart Research
Centre for Simulation Technology (SRC Simtech), 2010.

[141] Y. Mualem. A new model for predicting the hydraulic conductivity of unsaturated
porous media. Water Resources Research, 12(3):513–522, 1976.

[142] J. C. Muccino, W. G. Gray, and L. A. Ferrand. Toward an improved understanding
of mulitphase flow in porous media. Reviews of Geophysics, 36(3):401–422, 1998.

[143] M. A. Murad, L. S. Bennethum, and J. H. Cushman. A multi-scale theory of
swelling porous media: I. Application to one-dimensional consolidation. Transport
in Porous Media, 19:93–122, 1995.

[144] J. Niessner and S. M. Hassanizadeh. Non-equilibrium interphase heat and mass
transfer during two-phase flow in porous media - theoretical considerations and
modeling. Journal of Contaminant Hydrology, 32:1756–1766, 2009.

[145] J. Niessner and R. Helmig. Multi-scale modeling of three-phase-three-component
processes in heterogeneous porous media. Advances in Water Resources,
30(11):2309–2325, 2007.

[146] A. J. Ochoa-Tapia and S. Whitaker. Momentum transfer at the boundary between
a porous medium and a homogeneous fluid. I: Theoretical development. Int. J.
Heat Mass Transfer, 38(14):2635–2646, 1995.

[147] C. Pan, E. Dalla, D. Franzosi, and C. T. Miller. Pore-scale simulation of entrapped
non-aqueous phase liquid dissolution. Advances in Water Resources, 30(3):623–640,
2007.

[148] C. Pan, M. Hilpert, and C. T. Miller. Lattice-Boltzmann simulation of two-phase
flow in porous media. Water Resources Research, 40(1), 2004.

[149] S. Panday and M. Y. Corapcioglu. Theory of phase-separate multicomponent con-
taminant transport in frozen soils. Journal of Contaminant Hydrology, 16(3):235–
269, 1994.

[150] J. C. Parker, R. J. Lenhard, and T. Kuppusamy. A parametric model for con-
stitutive properties governing multiphase flow in porous media. Water Resources
Research, 23(4):618–624, 1987.

[151] A. E. Pearce, E. A. Voudrias, and M. P. Whelan. Dissolution of TCE and TCA
pools in saturated subsurface systems. Journal of Environmental Engineering-
ASCE, 120(5):1191–1206, 1994.

[152] I. S. Pop, C. J. van Duijn, J. Niessner, and S. M. Hassanizadeh. Horizontal re-
distribution of fluids in a porous medium: The role of interfacial area in modeling

341



hysteresis. Advances in Water Resources, 32:383–390, 2009.

[153] A. J. Rabideau and C. T. Miller. Two-dimensional modeling of aquifer remediation
influenced by sorption nonequilibrium and hydraulic conductivity heterogeneity.
Water Resources Research, 30(5):1457–1470, 1994.

[154] B. Raeesi and M. Piri. The effects of wettability and trapping on relationships
between interfacial area, capillary pressure and saturation in porous media: A
pore-scale network modeling approach. Journal of Hydrology, 376:337–352, 2009.

[155] M. Rebai and M. Prat. Scale effect and two-phase flow in a thin hydrophobic porous
layer. Application to water transport in gas diffusion layers of proton exchange
membrane fuel cells. Journal of Power Sources, 192:534–543, 2009.

[156] V. Reichenberger, H. Jakobs, P. Bastian, and R. Helmig. A mixed-dimensional
finite volume method for two-phase flow in fractured porous media. Advances in
Water Resources, 29:1020–1036, 2006.

[157] R. C. Reid, J. M. Prausnitz, and B. E. Poling. The Properties of Gases and Liquids.
McGraw-Hill, New York, 1987.

[158] A. Riaz and H. A. Tchelepi. Influence of Relative Permeability on the Stability
Characteristics of Immiscible Flow in Porous Media. Transport in Porous Media,
64:315–338, 2006.

[159] J. Rice and A. Faghri. A transient, multi-phase and multi-component model of a
new passive DMFC. International Journal of Heat and Mass Transfer, 49:4804–
4820, 2006.

[160] W. Rose. Ideas about viscous coupling in anisotropic media. Transport in Porous
Media, 18(1):87–93, 1995.

[161] R. Rosenzweig and U. Shavit. The laminar flow field at the interface of a Sierpinski
carpet configuration. Water Resour. Res., 43:W10402, 2007.

[162] P. G. Saffman. On the boundary condition at the surface of a porous medium.
Studies in Applied Mathematics, 50(2):93–101, 1971.

[163] J. M. Schembre and A. R. Kovscek. Estimation of dynamic relative permeability
and capillary pressure from countercurrent imbibition experiments. Transport in
Porous Media, 65:31–51, 2006.

[164] J. C. Slattery. Single-phase flow through porous media. American Institute of
Chemical Engineers Journal, 15(6):866–872, 1969.

[165] J. C. Slattery. Momentum, Energy, and Mass Transfer in Continua. McGraw-Hill,
New York, 1972.

[166] D. E. Smiles, G. Vachaud, and M. Vauclin. A test of the uniqueness of the soil
moisture characteristic during transient, nonhysteretic flow of water in a rigid soil.

342



Soil Science Society of America Proceedings, 35:534–539, 1971.

[167] W. B. Solley, R. R. Pierce, and H. A. Perlman. Estimated use of water in the u.s.
in 1995. U.S. Geological Survey Circular, 1(200):71, 1998.

[168] F. Stauffer. Time dependence of the relations between capillary pressure, water
content and conductivity during drainage of porous media. In International IAHR
Symposium on Scale Effects in Porous Media, Thessaloniki, Greece, 1978.

[169] G. C. Topp, A. Klute, and D. B. Peters. Comparison of water content-pressure
head data obtained by equilibrium, steady-state, and unsteady-state methods. Soil
Science Society of America Proceedings, 31:312–314, 1967.

[170] G. Vachaud, M. Vauclin, and M. Wakil. A study of the uniqueness of the soil
moisture characteristic during desorption by vertical drainage. Soil Science Society
of America Proceedings, 36:531–532, 1972.

[171] F. Valdés-Parada, J. Alvarez-Ramı́rez, B. Goyeau, and J. Ochoa-Tapia. Computa-
tion of jump coefficients for momentum transfer between a porous medium and a
fluid using a closed generalized transfer equation. Transp. Porous Media, 78:439–
457, 2009.

[172] P. J. van Geel and J. F. Sykes. Laboratory and model simulations of a LNAPL
spill in a variably-saturated sand, 2. Comparison of laboratory and model results.
Journal of Contaminant Hydrology, 17(1):27–53, 1994.

[173] M. T. van Genuchten. A closed-form equation for predicting the hydraulic conduc-
tivity of unsaturated soils. Soil Science Society of America Journal, 44:892–898,
1980.

[174] M. P. Whelan, E. A. Voudrias, and A. Pearce. DNAPL pool dissolution in satu-
rated porous media: Procedure development and preliminary results. Journal of
Contaminant Hydrology, 15(3):223–237, 1994.

[175] S. Whitaker. Diffusion and dispersion in porous media. American Institute of
Chemical Engineers Journal, 13(3):420–427, 1967.

[176] S. Whitaker. Advances in theory of fluid motion in porous media. Industrial and
Engineering Chemistry, 61(12):14–28, 1969.

[177] S. Whitaker. Flow in porous media I: A theoretical derivation of Darcy’s law.
Transport in Porous Media, 1:3–25, 1986.

[178] S. Whitaker. The method of volume averaging. In J. Bear, editor, Theory and
Application of Transport in Porous Media. Kluwer, Dordrecht, Netherlands, 1998.

[179] E. L. Wipfler and S. E. A. T. M. van der Zee. A set of constitutive relationships
accounting for residual napl in the unsaturated zone. Journal of Contaminant
Hydrology, 50:53–77, 2001.

343



[180] D. Z. Zhang, W. B. VanderHeyden, Q. Zou, and N. T. Padial-Collins. Pressure
calculations in disperse and continuous multiphase flows. International Journal of
Multiphase Flow, 33:86–100, 2007.

[181] W. S. Zhao and M. A. Ioannidis. Effect of NAPL film stability on the dissolution
of residual wetting NAPL in porous media: A pore-scale modeling study. Advances
in Water Resources, 30:171–181, 2007.

344


