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Abstract  

DARRELL ROSS DUBOSE JR: P2Y Receptor Trafficking in Polarized Epithelial Cells 
(Under the direction of Dr. Robert Nicholas) 

 

A layer of interconnected epithelial cells line the organs of the human body. 

These cells have three functions: absorption of nutrients, secretion of wastes, and 

protection from pathogens. Chemically, epithelial cells are the mediators of nearly all 

interactions between the body and the world around us. In order to function properly, 

epithelial cells must maintain two distinct membrane regions with unique protein and lipid 

compositions. Disruption of these compositions results in diseases like cystic fibrosis, 

retinitis pigmentosa, nephrogenic diabetes insipidus, Dubin-Johnson syndrome, and 

polycystic kidney disease. To this day, many of the mechanisms underlying apical 

versus basolateral protein sorting remain unknown. The work presented here is focused 

on the sorting of the P2Y family of G protein coupled receptors and the transport of 

receptors between the apical and basolateral membrane regions of epithelial cells. Two 

separate but linked projects are detailed in this thesis. The first project details the 

delimitation and determination of key amino acids in the apical targeting sequence of the 

P2Y4 receptor. The second project describes the development of a novel technique for 

determining the trafficking itineraries of proteins in polarized epithelial cells that is then 

applied to understand the trafficking mechanisms for the P2Y1, P2Y2, and P2Y4 

receptors. Together, these studies highlight the complexity and diversity of sorting and 

trafficking mechanisms at work in epithelial cells and suggest methods by which they 

may be better understood.  
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Chapter 1: Introduction 

G protein coupled receptors and G protein signaling 

G protein coupled receptors (GPCRs) are metabotropic transmembrane 

receptors – they mediate slow (second to minute responses) changes in cell physiology 

in response to extracellular ligands. GPCRs comprise about 750 proteins (in humans) 

that share a common seven-transmembrane structure. Of those, about half are olfactory 

or chemosensory receptors, 180 have known endogenous ligands, and 187 are known 

as orphan receptors (Vassilatis et al., 2003). An orphan receptor is a GPCR that is 

expected to be a receptor with an endogenous cognate ligand based on sequence 

homology with known receptors, but that ligand has not yet been discovered. GPCRs 

are of particular interest because they affect nearly every aspect of cell biology and are 

often expressed in a restricted, tissue-dependent manner. This, combined with 

extracellular binding sites, makes GPCRs highly attractive as potential drug targets. 

Indeed, almost half of the drugs on the market today target GPCRs (Drews, 2000). 

All GPCRs have an extracellular N-terminus, thread through the plasma 

membrane seven times, and have an intracellular C-terminus. The basic structure of 

GPCRs forms an extracellular binding site to a wide range of external ligands and 

binding of these ligands causes a conformational change that activates intracellular 

effectors. The normal effector of a GPCR is a heterotrimeric G protein, though more 

recent evidence indicates GPCRs also have G protein-independent activity (McGarrigle 

and Huang, 2007). 
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G proteins act as molecular switches that regulate intracellular signaling. There are two 

types of G proteins: small (or Ras-like) G proteins and heterotrimeric G proteins. Small G 

proteins consist of a single catalytic subunit and are not directly associated with GPCRs. 

Heterotrimeric G proteins have three subunits: the catalytic alpha subunit (Gα), as well 

as beta and gamma subunits that form obligate heterodimers and are referred to simply 

as Gβγ or βγ. At rest, Gα is bound to GDP and exists as a heterotrimer with Gβγ and 

cannot interact with downstream effectors. When stimulated by an agonist-bound GPCR, 

GDP is released from Gα and GTP, which is present at high concentrations in the cell, 

binds to the G protein and causes a conformational change that releases Gα•GTP from 

Gβγ and allows it to bind effectors. Gβγ can also interact with effectors and trigger 

downstream signaling events. GTP is hydrolyzed to GDP by the inherent GTPase 

activity of Gα, which promotes rebinding to Gβγ, and signaling ceases.  

The nucleotide cycling of G proteins is a tightly controlled process; the two 

slowest steps, GDP release and GTP hydrolysis, are regulated by other proteins. The 

first step, release of GDP, is catalyzed by guanine nucleotide exchange factors (GEFs). 

There is a large class of specific GEFs for small G proteins, but for heterotrimeric G 

proteins the GEF is normally a GPCR. The second step of the cycle is the hydrolysis of 

GTP. Although G proteins have the inherent ability to hydrolyze GTP, it is rather slow; 

the reaction proceeds much faster with the association of a second class of enzymes – 

GTPase-activating proteins (GAPs). There are a variety of GAPs for both small and 

heterotrimeric G proteins, but some of the most common are known as regulators of G 

protein signaling (RGS) proteins. 

There are at least 27 Gα, 5 Gβ, and 14 Gγ subunits (Albert and Robillard, 

2002;Hildebrandt, 1997), but downstream signaling is mainly dependent on the Gα 

subtype of the trimer. There are four classes of Gα proteins: Gq, Gs, Gi, and G12/13.  
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Figure 1.1. G proteins are tightly regulated molecu lar switches.  G proteins cycle 

between inactive, GDP-bound, and active, GTP-bound states. Activation, the exchange 

of GDP for GTP is catalyzed by Guanine Nucleotide Exchange Factors (GEFs). 

Deactivation, the hydrolysis of GTP to GDP is catalyzed by GTPase Activating Proteins 

(GAPs).  
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These subunits have variable affinities for different GPCRs, and often a GPCR will signal 

through only one of the four classes. 

GTP-bound Gq adopts a conformation that allows it to interact with its primary 

effector, phospholipase C. While bound to Gq-GTP, phospholipase C catalyzes the 

hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and 

inositol 1,4,5-trisphosphate (IP3). PIP2 in the cell membrane normally stabilizes the 

opening of ion channels, including the epithelial sodium channel, ENaC. The reduction in 

PIP2 concentration by PLC is sufficient to reduce ion flux through these channels. Upon 

cleavage, IP3 is released into the cytoplasm, where it is free to bind its cognate receptor 

on the surface of the endoplasmic reticulum, releasing stored calcium ions. This spike in 

calcium activates a variety of effectors, including cell surface chloride and potassium 

channels, calmodulin, and protein kinase C. The DAG fragment remains membrane 

bound, where it recruits and activates protein kinase C. In addition to PLC, Gq can bind 

RhoGEFs (similar to G12/13, described below), beginning signaling cascades that affect 

the cytoskeleton. 

Adenylate cyclase (AC) is the primary effector of both Gs and Gi. GTP-bound Gs 

binds AC to stimulate the production of cAMP. GTP-bound Gi binds AC at an allosteric 

site, blocking cAMP production. As a potent second messenger, cAMP activates many 

effectors, including cyclic-nucleotide gated ion channels and protein kinase A(which 

phosphorylates and activates CFTR as well as many other targets). Note that some of 

these ion channels are Ca2+ permeable, and as such can replicate some aspects of Gq 

signaling.  

The final subtype, G12/13, couples receptors to Rho-family small G proteins 

through activation of RhoGEFs. Rho G proteins can then activate several signaling 

cascades, including those beginning with PI3K, PAK, FAK, and ROCK. Generally, these 

result in cytoskeletal rearrangement, often affecting cell motility, shape, or contractility. 
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Figure 1.2. GPCR signaling is dependent on the G α subtype.  GPCRs signal through 

heterotrimeric G proteins. Gq activates PLC, resulting in increased intracellular Ca2+ and 

activation of PKC. Gs stimulates production of cAMP by adenylate cyclase, resulting in 

activation of PKA and a variety of ion channels; Gi inhibits these same effects. G12/13 

binds rhoGEFs, activating Rho small G proteins, which act primarily to remodel the 

cytoskeleton.  
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Additionally, the Gβγ dimer can also trigger signaling events when dissociated 

from Gα. Gβγ directly binds inwardly rectifying K+ channels and voltage-gated Ca2+ 

channels, activating the former and inhibiting the latter.  The dimer interacts with both 

AC and PLC and plays a role in their activation.  Gβγ also plays a role in the scaffolding 

and activation of kinase cascades, including PI3Ks and MAPKs. There may be variable 

effects from the various β and γ isoforms, but if they exist are poorly understood. 
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Nucleotide Signaling 

Nucleotides are ubiquitous small molecules in nature involved in a wide variety of 

biological processes. They are the building blocks of DNA, RNA, and many enzymatic 

co-factors. They are also energy “currency”, used to drive forward reactions that would 

otherwise be unfavorable. They are cycled into potent second-messengers that 

transduce intracellular signals (e.g. cyclic AMP and cyclic GMP). Lastly, they are 

extracellular signaling molecules that bind transmembrane receptors, often in an 

autocrine/paracrine manner, to convey a signal across the plasma membrane. It is this 

receptor signaling role that is pertinent to this work. 

Nucleotide receptors have been found in all cell types, where they mediate a 

plurality of cell activities. There are two distinct families of nucleotide receptors: P2X and 

P2Y. P2X receptors are transmembrane channels that open in response to binding 

extracellular ATP. Once open, Ca2+ and Na+ ions pass through the pore and depolarize 

the cell membrane. P2X receptors are primarily involved in synaptic and neuromuscular 

signaling. A functional P2X receptor is composed of three P2X subunits. There are 

seven known P2X subunits which can combine to form a variety of homo- and 

heteromeric receptors. The P2X subunits are designated P2X1 through P2X7. 

The second family of nucleotide receptors, P2Y receptors, is part of the G protein 

coupled receptor superfamily.  
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P2Y Receptors 

P2Y receptors are a family of GPCRs that respond to extracellular nucleotides. 

There have been eight P2Y receptors identified to date—P2Y1, P2Y2, P2Y4, P2Y6, 

P2Y11, P2Y12, P2Y13, and P2Y14. The numbering is not sequential because several 

receptors have been named as a P2Y receptor, only to be determined later either to not 

to be activated by nucleotides at all, or to be homologues of a mammalian P2Y receptor. 

For example, the p2y3 receptor was later determined to be the avian homologue of the 

human P2Y6 receptor (Li et al., 1998). P2Y receptors can be divided into two subclasses 

based on their downstream signaling properties. The P2Y1–like receptors (P2Y1, P2Y2, 

P2Y4, P2Y6, and P2Y11) signal primarily through Gq, while the P2Y12-like receptors 

(P2Y12, P2Y13, and P2Y14) signal primarily through Gi. The P2Y11 receptor, while most 

efficiently coupling to Gq, also signals through Gs to stimulate AC. The receptors can 

also be characterized by their activating ligands, as shown in Figure 1.3. 

P2Y receptors are expressed in a wide variety of tissue types, but the subtype and 

density of the receptors varies significantly. For example, the P2Y1 receptor is most 

highly expressed in brain, prostate, and placental tissues while P2Y2 receptors are 

expressed at the highest levels in muscle, lung, and immune cells (Moore et al., 2001). 

The physiological output of P2Y receptor signaling also varies. A single receptor often 

has different signaling outcomes when expressed in different cell types. For example, in 

epithelial cells, activation of the P2Y1 receptor leads to chloride secretion, while in 

platelets it induces shape change. 
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UTP=   UDP-
Ligand            ADP         ATP UTP        UDP          ATP            ADP ADP        glucose

Receptor        P2Y 1 P2Y2 P2Y4 P2Y6 P2Y11              P2Y12             P2Y13           P2Y14 

Signaling      Gq Gq Gq Gq Gq Gs Gi Gi Gi

Response PLC     PLC PLC     PLC PLC       AC        AC AC           AC

 
 
Figure 1.3. Endogenous agonists and signaling pathw ays of the eight cloned P2Y 

receptors.  
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P2Y1 Receptor 

The P2Y1 receptor is a 373-amino acid protein encoded by a single exon on the 

forward strand of chromosome 3 (Genbank Accession Number S81950). For 

endogenous nucleotides, the P2Y1 receptor responds primarily to ADP (Ki = 0.92 µM), 

but also to ATP (Ki = 17.7 µM), albeit with lesser efficacy (Palmer et al., 1998;Waldo and 

Harden, 2004). Synthetic agonists include 2-MeSADP (Ki = 0.0099 µM), ATPγS (Ki = 

1.33 µM), 2-MeSATP (Ki = 1.87 µM), ADPβS (Ki = 2.42 µM), and (N)-methanocarba-

2MeSADP (MRS2365, EC50 = 34 nM) (Bourdon et al., 2006;Waldo and Harden, 2004). 

Of these, only MRS2365 is highly selective for the P2Y1 receptor. Selective antagonists 

(a rarity for P2Y receptors) have also been developed for the P2Y1 receptor: MRS2179 

(pKB = 6.75 (Moro et al., 1998), MRS2279 (pKB = 8.10) (Boyer et al., 2002), and 

MRS2500 (Ki = 0.79 nM and KB = 1.74 nM) (Kim et al., 2003). These compounds have 

been instrumental in the study of P2Y1 receptor physiology.  

As mentioned above, the P2Y1 receptor is involved in a wide variety of 

physiological processes depending on the tissue in which it is expressed. Of specific 

interest to this work, the Gq coupled P2Y receptors (including P2Y1) induce luminal ion 

flux in epithelial cells, thus modulating osmotic balance between the body and external 

fluids (Christofi et al., 2004;Fang et al., 2006;Lee et al., 2007;Matos et al., 

2005;Rajagopal et al., 2011). Interestingly, the P2Y1 receptor is expressed only on the 

basolateral surface of all the epithelial cells in which its location has been investigated, 

meaning that it only responds to ADP released within the organ (i.e. those tissues with 

access to the basolateral membrane) and not from the lumen (Wolff et al., 2005). In 

contrast, P2Y2, P2Y4, and P2Y6 receptors are primarily expressed at the apical 

membrane and therefore respond to nucleotides released at the luminal compartment.  

In the circulatory system, the P2Y1 receptor is involved in both endothelial-

dependent and eNOS-stimulated smooth muscle relaxation (da Silva et al., 2009;Ralevic 
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and Burnstock, 1998). In platelets, the P2Y1 receptor induces shape change that, along 

with P2Y12 receptor activation, leads to aggregation (Hechler et al., 1998). P2Y1 receptor 

antagonists are currently being investigated as potential antithrombotic agents (Bird et 

al., 2012). In bone, the P2Y1 receptor functions in osteoclastic bone resorption (Hoebertz 

et al., 2001). The P2Y1 receptor regulates a variety of functions in the nervous system as 

well. It inhibits N-type calcium channels (Filippov et al., 2000), modulates synaptic 

transmission (von Kugelgen and Wetter, 2000), and has a role in astrocyte calcium 

signaling (Fumagalli et al., 2003). 

P2Y2 Receptor 

The P2Y2 receptor is a 377-amino acid protein encoded by a single exon on the 

forward strand of chromosome 11. There are three known splice variants, but they differ 

only in the 5’UTR; hence, the encoded proteins are identical (Genbank Accession 

Numbers NM_176072, NM_002564, and NM_176071). The P2Y2 receptor responds 

equally well to UTP (EC50 = 0.14 µM) and ATP (EC50 = 0.23 µM) (Lazarowski et al., 

1995), but does not respond to the diphosphate forms of either nucleotide (Nicholas et 

al., 1996). Very recently, several potent, selective P2Y2 receptor agonists were 

synthesized. Among these, 4-thio-β,γ-difluoromethylene-UTP (EC50 = 0.134 µM) showed 

>50-fold selectivity over the P2Y4 and P2Y6 receptors and is metabolically stable (El-

Tayeb et al., 2011). This reagent should greatly aid future studies of the receptor. 

Nonselective agonists include Ap4A (EC50 = 0.72 µM), ATPγS (EC50 = 1.72 µM), 5BrUTP 

(EC50 = 2.06 µM), dCp4U (INS37217) (EC50 = 0.22 µM), and Up4U (INS365) (EC50 = 0.1 

µM) (Pendergast et al., 2001;Yerxa et al., 2002). Some progress has been made 

(Weyler et al., 2008), but thus far no selective antagonists of the P2Y2 receptor have 

been developed. 
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Like the P2Y1 receptor, the P2Y2 receptor stimulates ion flux in epithelial cells via 

Gq activation (Ghanem et al., 2005;Hosoya et al., 1999;Hwang et al., 1996;Parr et al., 

1994;Rajagopal et al., 2011). In contrast to the P2Y1 receptor, the P2Y2 receptor is 

expressed primarily at the apical surface and thus responds to luminal signals (Wolff et 

al., 2005). This physiological activity is pronounced in epithelium of both the lung and the 

lacrimal duct. As such, agonists of the P2Y2 receptor are under investigation as potential 

therapeutic agents for cystic fibrosis and dry eye disease (Hosoya et al., 1999;Pintor et 

al., 2002;Yerxa et al., 2002). 

Additionally, the P2Y2 receptor has been linked with a long list of physiological 

activities, including both vasodilatation and vasoconstriction (da Silva et al., 

2009;Ralevic and Burnstock, 1998), apoptosis in colorectal carcinoma cells (Burnstock 

and Knight, 2004), bone remodeling (Hoebertz et al., 2002), monocyte recruitment (Seye 

et al., 2003), cell proliferation (Burrell et al., 2003;Greig et al., 2003;Muscella et al., 

2003;Schafer et al., 2003); neutrophil degranulation and infiltration (Ayata et al., 

2012;Meshki et al., 2004), inflammation (Kruse et al., 2012;Schuchardt et al., 2011), 

HIV-1 infection (Seror et al., 2011), amyloid precursor processing (Leon-Otegui et al., 

2011), wound healing (Boucher et al., 2011), metastasis (Schumacher et al., 2013), and 

neuroprotection (Chorna et al., 2004;Weisman et al., 2012). 

P2Y4 Receptor 

The P2Y4 receptor is a 365-amino acid protein encoded by a single exon on the 

reverse strand of the X chromosome (Genbank Accession Number X91852). The only 

endogenous full agonist of the human P2Y4 receptor is UTP. Measured EC50 values 

have varied slightly, from 2.5 µM (Communi et al., 1995) to 0.55 µM (Kennedy et al., 

2000). UDP is a partial agonist if it has any activity at all (Nguyen et al., 1995;Nicholas et 

al., 1996), and ATP is a relatively potent competitive antagonist (Kennedy et al., 2000). 
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Interestingly, the rat P2Y4 receptor responds to a wider variety of ligands. Both UTP 

(EC50 = 0.20 µM) and ATP (EC50 = 0. 51 µM) are agonists, as well as Ap4A (EC50 = 1.24 

µM), ITP (EC50 = 1.82 µM), GTP (EC50 = 2. 28 µM), CTP (EC50 = 7.24 µM), and XTP 

(EC50 = 22.9 µM) (Kennedy et al., 2000). These differences in agonist activation have 

been traced to three amino acids (Asn-177, Ile-183, and Leu-190) in the second 

extracellular loop of the rat receptor (Herold et al., 2004). Until recently, no selective 

ligands of any type were known for the P2Y4 receptor, making pharmacological 

differentiation between the P2Y2 receptor and P2Y4 receptor difficult. Recently, a few 

moderately selective P2Y4 receptor agonists have been synthesized. First, iso-CMP 

(EC50 = 4.98 µM) is >20-fold selective for the P2Y4 receptor versus P2Y2 and P2Y6 

receptors (El-Tayeb et al., 2011). A second group synthesized N4-(phenylpropoxy)-CTP 

(MRS4062, EC50 = 23 nM), Up4-[1]3’-deoxy-3’-fluoroglucose (MRS2927, EC50 = 62 nM), 

and N4-(phenylethoxy)-CTP (EC50 = 73 nM), each of which has 10-fold or greater 

selectivity for the P2Y4 receptor versus P2Y2 and P2Y6 receptors (Maruoka et al., 2011). 

High expression levels of the P2Y4 receptor have been detected in the placenta, 

intestine, pituitary, and brain, with lower levels in liver, bone marrow, monocytes and 

lymphocytes (Communi et al., 1995;Jin et al., 1998;Moore et al., 2001), but relatively few 

physiological functions are known.  

Like the P2Y1 and P2Y2 receptors, the P2Y4 receptor functions to control ion flux 

and water homeostasis across epithelial cells via Gαq activation (Ghanem et al., 

2005;Robaye et al., 2003). This function of the P2Y4 receptor is most apparent in the 

intestine, where it is highly expressed (Moore et al., 2001). The jejunum of P2Y4 

receptor-knockout mice has been shown to lack a chloride secretion response to 

nucleotides, indicating a clear role for the P2Y4 receptor in this process (Robaye et al., 

2003). This makes P2Y4 receptor an attractive pharmacological target to relieve the 

intestinal abnormalities associated with cystic fibrosis. P2Y4 receptor antagonists may 
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also be of therapeutic value. Bacterial infection of the gut is known to cause nucleotide 

release and chloride secretion. As excess luminal chloride secretion is a central 

mediator of diarrhea symptoms (Field et al., 1989;Kunzelmann and Mall, 2002), 

pharmacological inhibition of the P2Y4 receptor (and likely the P2Y2 receptor as well) 

may attenuate infection symptoms. 

In addition to the intestine, the P2Y4 receptor has a role in auditory 

neurotransmission. It is expressed in vestibular dark cell epithelium and strial marginal 

cells, where it controls K+ secretion (Hur et al., 2007;Lee et al., 2006;Marcus and 

Scofield, 2001). The P2Y4 receptor has also been implicated in vasodilation (Burnstock, 

2002;McMillan et al., 1999), cell proliferation (Burnstock, 2002), and cardiac 

development (Horckmans et al., 2012). 

P2Y6 Receptor 

The P2Y6 receptor is a 328-amino acid protein encoded by a single exon on the 

forward strand of chromosome 11. There are eight splice variants, seven of which 

encode the same protein; they differ only in the 5’UTR (Genbank Accession Numbers 

NM_176797, NM_176798, NM_176796, NM_001277204, NM_001277205, 

NM_001277206, and NM_001277207). A single splice variant begins translation at an 

alternate start site and encodes additional amino acids at the N-terminus of the protein 

(Genbank Accession Number NM_001277208). 

The P2Y6 receptor is activated endogenously by UDP (EC50 = 300 nM), and to a 

lesser extent UTP (EC50 = 6 µM) and ADP (EC50 = 30 µM). ATP has little effect, even at 

millimolar concentrations (Communi et al., 1996;Nicholas et al., 1996). In addition, the 

synthetic ligands 5BrUTP (EC50 = 800 nM) and UDPβS (EC50 = 25 nM) (Communi et al., 

1996;Malmsjo et al., 2000) are agonists. UDPβS is very selective for the P2Y6 receptor 

over the P2Y2 and P2Y4 receptors (Goody et al., 1972;Malmsjo et al., 2000). More 
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recently, 5-OMe-UDP (EC50 = 0.08 µM) and N3-phenacyl-β,γ-dichloromethylene-UTP 

(EC50 = 0.142 µM) were synthesized and shown to be selective for the P2Y6 receptor 

versus the P2Y4 receptor but not the P2Y2 receptor (El-Tayeb et al., 2011;Ginsburg-

Shmuel et al., 2010). Additionally, three compounds have been synthesized that are 

insurmountable, selective antagonists of the P2Y6 receptor; diisothiocyanate derivatives 

of 1,2-diphenylethane (MRS2567, IC50 = 126 nM), 1,4-di-(phenylthioureido)butane 

(MRS2578, IC50 = 37 nM), and 1,4-phenylendiisothiocyanate (MRS2575, IC50 = 155 nM, 

human only) (Mamedova et al., 2004).  

The P2Y6 receptor is expressed in particularly high levels in the spleen, and has 

also been detected in placenta, thymus, intestine, vascular smooth muscle, lung, kidney, 

bone, adipose, heart, and parts of the brain (Communi et al., 1996;Moore et al., 

2001;Ralevic and Burnstock, 1998). 

Like the receptors above, the P2Y6 receptor also regulates ion flux in epithelial 

cells (Burnstock and Knight, 2004). Of particular interest, it seems to play a primary role 

in gallbladder epithelia, where it may be a therapeutic target to correct Cl- secretion in 

cystic fibrosis patients (Lazarowski et al., 2001). Some evidence has been presented 

indicating that the P2Y6 receptor also stimulates Cl- secretion in various epithelial cells 

through a second mechanism involving the CFTR channel (Dulong et al., 2007;Kottgen 

et al., 2003;Schreiber and Kunzelmann, 2005;Wong et al., 2009). However, none of 

these studies directly demonstrates that the effects observed are dependent on P2Y6 

receptor activation, and each uses 100 µM UDP, which is more than 300-fold higher 

than the EC50 in other assays. Also, in early experiments with the P2Y6 receptor, no 

direct coupling of P2Y6 to Gs was observed (Chang et al., 1995).  

In addition to its role in epithelial cells, the P2Y6 receptor is involved in several 

physiological responses. Included are key roles in immune response and inflammation. 

The P2Y6 receptor induces IL-6 and IL-8 expression in macrophages and monocytes, 
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respectively, and suppresses T-cell activation during allergic inflammation (Bar et al., 

2008;Giannattasio et al., 2011;Warny et al., 2001). UDP, acting through the P2Y6 

receptor, has also been shown to induce chemokine production in microglia and 

astrocytes (Kim et al., 2011). In bone, the P2Y6 receptor stimulates differentiation into 

osteoclasts and increases their resorptive activity (Orriss et al., 2011). In the 

vasculature, activation of the P2Y6 receptor causes relaxation of endothelial cells and 

contraction of nitric-oxide-blocked vascular smooth muscle cells (Bar et al., 2008). 

Lastly, it has a cytoprotective role, preventing TNFα-induced apoptosis (Kim et al., 

2003;Kim et al., 2003;Mamedova et al., 2008). 

P2Y11 Receptor 

The P2Y11 receptor is a 374-amino acid protein encoded by two exons on the 

forward strand of chromosome 19 (Genbank Accession Number AJ298334). 

Transcription of the P2Y11 receptor has an uncommon feature. Through alternate 

splicing a chimeric protein can be formed between the P2Y11 receptor and Ssf1, the 

neighboring gene on chromosome 19. This alters the extracellular N-terminus of the 

receptor, removing the first 5 amino acids and instead fusing the Ssf1 protein. Chimeric 

mRNA was detected in a variety of human tissues and the presence of a 90kDa protein 

product was identified from transfected CHO cells. ATP and other agonists have 

reduced potency and/or efficacy at the chimeric receptor, but the function of this fusion 

protein is unknown (Communi et al., 2001). 

The P2Y11 receptor is expressed in a wide range of cell types and has 

particularly high expression in the brain, pituitary, spleen, and lymphocytes (Moore et al., 

2001). It is unique among the P2Y receptors because it couples strongly to two different 

classes of G protein alpha subunits, Gαq and Gαs (Communi et al., 1997). The human 

P2Y11 receptor responds to adenine but not uridine nucleotides (though see (White et 
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al., 2003) regarding UTP), with a preference for ATP over ADP. In contrast, ADP is more 

potent than ATP at the canine receptor (Qi et al., 2001). Interestingly, agonist potency at 

the P2Y11 receptor varies between the Gαq and Gαs pathways. Originally, it was reported 

that all agonists were more potent at stimulating cAMP production than IP (EC50 = 17.4 

and 65 µM, respectively for ATP) (Communi et al., 1999). However, these two assays 

were performed in two different cell lines, CHO and 1321N1. It was later discovered that, 

when expressed in the same cell line, P2Y11 agonists are more potent stimulating IP3 

production than cAMP production (EC50 = 3.6 and 62.4 µM, respectively for ATP in CHO 

cells, 8.5 and 130 µM in 1321N1 cells) (Qi et al., 2001). The P2Y11 receptor also 

responds to the synthetic agonists, ATPγS, BzATP, dATP, ADPβS, 2MeSATP, and 

2MeSADP in roughly that rank order, but again the exact EC50 values vary between 

assays (Communi et al., 1999;Qi et al., 2001). More recently, β-NAD+, and NAADP+ 

were shown to be P2Y11 agonists (Moreschi et al., 2006;Moreschi et al., 2008). Also, a 

non-nucleotide agonist, NF546 (4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-

3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) 

tetrasodium salt) (EC50 = 0.54 µM, Ca2+ assay) (Meis et al., 2010), and two antagonists, 

NF340 (4,4′-(carbonylbis(imino-3,1-(4-methyl-phenylene)carbonylimino)) 

bis(naphthalene-2,6-disulfonic acid) tetrasodium salt) (IC50 = 0.37 µM, Ca2+ assay) and 

NF157 (8,8′-[carbonylbis[imino-3,1-phenylenecarbonylimino(4-fluoro-3,1-

phenylene)carbonylimino]]bis-1,3,5-naphthalene trisulfonic acid hexasodium salt) (IC50 = 

0.46 µM, Ca2+ assay) were synthesized and shown to be antagonists at the P2Y11 

receptor, although the selectivity of these compounds is not remarkable (Meis et al., 

2010;Ullmann et al., 2005). 

Considering its almost ubiquitous expression, it is surprising that the P2Y11 

receptor has been linked with relatively few physiological processes. In epithelial cells, 

P2Y11 stimulates electrolyte secretion in pancreatic duct cells, at least a portion of which 
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involves the cAMP pathway (Nguyen et al., 2001). Similarly, the P2Y11 receptor has 

been shown to function in nasal epithelial cells and in MDCK cells (Kim et al., 

2004;Torres et al., 2002). Outside of epithelial physiology, the P2Y11 receptor is involved 

in immune responses, through modulation of cytokine production (Alkayed et al., 

2012;Communi et al., 2000;Meis et al., 2010;Sakaki et al., 2013;Schnurr et al., 

2003;Wilkin et al., 2001), it inhibits the proliferation of certain cells (Schafer et al., 

2006;Xiao et al., 2011), and may have a cardioprotective role (Djerada et al., 2013). 

P2Y12 Receptor 

The P2Y12 receptor is a 342 amino acid protein encoded by a single exon on the 

reverse strand of chromosome 3. There are two splice variants, but they differ only in the 

5’UTR; the encoded proteins are identical (Genbank Accession Numbers NM_022788 

and NM_176876). 

The P2Y12 receptor was the first nucleotide receptor discovered that signals 

through Gi rather than Gq (Cooper and Rodbell, 1979). Interestingly, this activity was 

discovered more than twenty years before the molecular identity of the receptor was 

known (Hollopeter et al., 2001;Takasaki et al., 2001;Zhang et al., 2001). Expression of 

the P2Y12 receptor has been detected in platelets and their precursors, spinal cord, brain 

(especially glia), differentiating osteoclasts, and nasal epithelial and inferior turbinate 

cells (Sasaki et al., 2003;Shirasaki et al., 2013;Su et al., 2012;Zhang et al., 2001). 

Endogenously, the P2Y12 receptor is potently activated by ADP (EC50 = 60.7 nM) 

(Zhang et al., 2001). ATP is a partial agonist with much lower potency (EC50 = ~26 µM) 

(Simon et al., 2001) and high ATP concentrations antagonize ADP-induced aggregation 

in platelets (Park and Hourani, 1999). Synthetic agonists include 2-MeSATP (EC50 = 3.4 

nM), 2-MeSADP (EC50 = 14.1 nM), ATPγS (EC50 = 110 nM), ADPβS (EC50 = 20 nM), 

and 2-ClATP (EC50 = 636 nM) (Zhang et al., 2001). Synthetic antagonists of the P2Y12 
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receptor are administered clinically as antithrombotics. Clopidogrel and prasugrel, as 

well as their clinical predecessor ticlopidine, are prodrugs, the active metabolites of 

which irreversibly bind and inactivate the P2Y12 receptor (Gachet et al., 1992). Ticagrelor 

(AZD6140) is a reversible, non-competitive antagonist (Van Giezen et al., 2009) and 

cangrelor (AR-C69931MX, IC50 = 0.4 nM) is a competitive antagonist (Norgard, 2009), 

though the latter is also an antagonist of the P2Y13 receptor (Marteau et al., 2003). 

In addition to the well documented role in platelet aggregation, the P2Y12 

receptor may have a role in osteoclast function, as P2Y12 knockout mice and mice 

treated with clopidogrel are protected from multiple conditions that trigger pathologic 

bone loss (Su et al., 2012). The full role of the P2Y12 receptor in the nervous system has 

not been well characterized, but it has been implicated in microglial chemotaxis and the 

development of neuropathic pain (Ohsawa et al., 2007;Tozaki-Saitoh et al., 2008). 

Despite its striking basolateral polarity (Wolff et al., 2005) and expression in nasal 

epithelium (Shirasaki et al., 2013), no role has yet been established for the P2Y12 

receptor in epithelial cells. 

P2Y13 Receptor  

The P2Y13 receptor is a 354 amino acid protein encoded by two exons on the 

reverse strand of chromosome 3 (Genbank Accession Number NM_176894). This is an 

area where several P2Y receptor genes are encoded (including the P2Y1 receptor), and 

the P2Y13 receptor was discovered due to its homology with the nearby P2Y12 receptor 

(Communi et al., 2001). 

Like the P2Y12 receptor, the P2Y13 receptor responds with nanomolar potency to 

extracellular ADP (EC50 = 60 nM). ATP is also a potent agonist (EC50 = 261 nM), along 

with synthetic ligands 2-MeSADP (EC50 = 19 nM), ADPβS (EC50 = 31 nM), 2-MeSATP 

(EC50 = 32 nM), Ap3A (EC50 = 72 nM), and IDP (EC50 = 552 nM) (Zhang et al., 2002). As 
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mentioned above, the clinical drug cangrelor (AR-C69931MX, IC50 = 4.6 nM) is a potent 

antagonist of the P2Y13 receptor (Marteau et al., 2003). A moderately selective (>20-fold 

vs. P2Y1 or P2Y12) antagonist of the P2Y13 receptor was recently synthesized, MRS2211 

(IC50 = 1.1 µM) (Kim et al., 2005). 

The physiological roles of the P2Y13 receptor are not well characterized. Various 

reports have suggested that the P2Y13 receptor has a role in N-type calcium channel 

regulation (Wirkner et al., 2004), high-density lipoprotein and cholesterol transport 

(Fabre et al., 2010;Jacquet et al., 2005), neuroprotection (Espada et al., 2010), 

regulation of insulin secretion (Amisten et al., 2010), mast cell degranulation (Gao et al., 

2010), inhibition of neuronal differentiation (Yano et al., 2012), and osteogenesis 

regulation (Wang et al., 2013). 

P2Y14 Receptor  

The P2Y14 receptor is a 338 amino acid protein encoded by a single exon on the 

reverse strand of chromosome 3 adjacent to P2Y12 and P2Y13 receptors. There are two 

splice variants, but they differ only in the 5’UTR; the encoded proteins are identical 

(Genbank Accession Numbers NM_001081455 and NM_014879). 

The P2Y14 receptor (formerly known as GPR105 or KIAA0001) is the most 

recently identified member of the P2Y receptor family (Abbracchio et al., 2003;Chambers 

et al., 2000) It also has the most unique pharmacological profile, responding to UDP 

(EC50 values ranged from 29 to 74 nM, depending on cell line) (Carter et al., 2009), 

UDP-glucose (EC50 = 80 nM), UDP-galactose (EC50 = 124 nM), UDP-glucuronic acid 

(EC50 = 370 nM), and UDP-N-acetylglucosamine (EC50 = 710 nM) (Chambers et al., 

2000) Synthetic agonists include UDPβS (EC50 = 26 nM), 2-MeSUDP (EC50 = 2 nM), 

difluoro-α,β-methylene-UDP (MRS2802, EC50 = ~50 nM) and UDP-β-propylester 

(MRS2907, EC50 = ~50 nM), with the latter two showing high selectivity for the P2Y14 
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receptor over the P2Y6 receptor (Carter et al., 2009). A very potent, selective, 

competitive antagonist of the P2Y14 receptor was also synthesized (4-((piperidin-4-yl)-

phenyl)-7-(4-(trifluoromethyl)-phenyl)-2-naphthoic acid (PPTN, IC50 = 8 nM) (Barrett et 

al., 2013;Gauthier et al., 2011). 

UDP-glucose has been shown to be released from a variety of cell types where it 

can act as an endogenous ligand for the P2Y14 receptor (Lazarowski et al., 2003). P2Y14 

receptor mRNA has been detected at low levels in a wide range of cells and at higher 

levels in neutrophils, lymphocytes, and megakaryocytic cell lines (Chambers et al., 

2000;Moore et al., 2003). The P2Y14 receptor was also detected by 

immunohistochemistry on brain glia (Moore et al., 2003). Functionally, the P2Y14 

receptor has been associated with chemotaxis in hematopoietic stem cells (Lee et al., 

2003) and neutrophils (Barrett et al., 2013;Sesma et al., 2012), gastric function (Bassil et 

al., 2009), release of pro-inflammatory cytokines (Muller et al., 2005) and mast cell 

degranulation (Gao et al., 2010). A recent study using P2Y14 receptor knockout mice has 

identified a role for the receptor in the tolerance to radiation-induced genotoxic stress in 

utero. Paradoxically, exogenous application of UDP-glucose provided nearly identical 

levels of protection as gene deletion (Kook et al., 2013). 
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Epithelial Cells and Cell Polarization 

Monolayers of epithelial cells line the lumens of essentially all of the body’s 

organs, including those of the digestive, respiratory, urinary, and reproductive systems. 

They have three basic functions – absorption of nutrients, secretion of wastes, and 

protection from external pathogens. Depending on the subtype of epithelial cell, they 

may serve one, two, or all three of these functions.  

Cell polarization – an asymmetry in shape, structure, or function - is an essential 

characteristic of many cell types, including neurons, endothelial, and epithelial cells. 

Cells create and maintain this polarity by specific sorting of lipids and proteins to 

different regions of the cell membrane (Giepmans and van Ijzendoorn, 2009). This 

involves a complex system of tightly regulated processes, the mechanisms of which are 

only beginning to be understood (Brown et al., 2009;Weisz and Rodriguez-Boulan, 

2009). 

Polarization in epithelial cells takes the form of two distinct membrane regions 

separated by a specialized protein structure known as the tight junction. The separation 

of the two regions formed by the tight junction is complete, preventing free diffusion of 

both water and ions across the monolayer. This is often called the “fence” function of the 

tight junction. As the tight junction exists at the apical end of the lateral membrane, the 

two membrane regions formed by the tight junctions are referred to as apical and 

basolateral. The apical membrane is the portion of the cell membrane that faces the 

organ lumen and is in contact with the external milieu. The basolateral membrane faces 

the underlying cells and basement membrane of the organ and is in direct contact with 

the interstitial fluid that fills the spaces between the cells.  

In addition to separating the two membrane regions, the tight junction also 

connects epithelial cells to each other, forming a continuous sheet, or monolayer, of  
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Apical Surface Tight Junction

Basolateral Surface

= Basolateral proteins

= Apical proteins

= Unsorted proteins

 
 

Figure 1.4. Epithelial cells have two distinct memb rane domains.  All epithelial cells 

have distinct apical (facing the lumen), and basolateral (facing the basement membrane 

and cell interstitium) membranes, separated by tight junctions. Some transmembrane 

proteins exist in both domains, while others are preferentially sorted either apically or 

basolaterally.  
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cells. The protein meshwork between the cells is water- and ion-tight, preventing 

paracellular diffusion between the lumen and the underlying tissues. This also helps 

protect the body from external pathogens, and is referred to as the “gate” or “barrier” 

function.  

While the tight junction is a complex and impressive evolved structure, it would 

serve little purpose if the epithelial cells could not control the lipid and protein contents of 

each region. Epithelial cells deliver proteins to the correct membrane domains by a 

variety of mechanisms. The intracellular machinery acts on targeting signals contained 

within the amino acid sequence, or modifications of the individual proteins. 
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Sorting Signals in Transmembrane Proteins 

The intracellular machinery of epithelial cells has evolved mechanisms to detect 

signals within many proteins that direct their expression to only one side of the tight 

junction. These signals take many forms; they can be post-translational modifications or 

primary sequences, they can be presented on either the cytoplasmic/extravesicular face 

or the extracellular/intravesicular face of vesicles, and they can be conserved among 

many different proteins, or unique to only one protein. 

Apical-targeting signals 

Apical-targeting signals fall into four categories: 1) Association with lipid rafts, 2) 

glycosylation, 3) GPI anchors, and 4) amino acid sequences (Folsch, 2008). As the 

mechanisms involved are poorly understood, these signals are not necessarily mutually 

exclusive. For example, a GPI anchor often makes a protein more likely to be associated 

with a lipid raft (Brown and Rose, 1992). 

Cholesterol-rich and detergent-resistant lipid rafts are separated out of the trans-

golgi network and targeted to the apical membrane of epithelial cells (Schuck and 

Simons, 2004). Some proteins associate with rafts by partitioning into these detergent-

resistant membrane fractions and thus are delivered to the apical membrane (Schuck et 

al., 2003). This was the original theory of apical sorting in epithelial cells (van Meer and 

Simons, 1988). Only recently, however, has the formation of these lipid rafts in the trans-

Golgi network been demonstrated, albeit in yeast (Klemm et al., 2009). 

Glycosylation is a carbohydrate modification that is added to proteins in the 

endoplasmic reticulum and modified in the trans-Golgi network. Both N- and O-linked 

glycosylation modifications have been identified as apical-targeting signals. N-linked 

glycosylation is always added to asparagine residues within an Asn-X-Ser or Asn-X-Thr 

motif. O-linked glycosylation is a modification of serine or threonine residues, but there is 
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no consensus sequence for the attachment. The role of glycosylation in polarized 

trafficking was first demonstrated for the soluble protein clusterin (referred to then only 

as an 80 kD glycoprotein). Normally, clusterin is secreted only into the apical media, but 

following tunicamycin treatment (which inhibits N-glycosylation) it is secreted equally into 

the apical and basolateral compartments (Urban et al., 1987). It was later determined 

that many transmembrane glycoproteins were also sorted apically (Lisanti et al., 1989). 

Yeaman et al. found that O-linked glycosylation is necessary for the apical sorting of the 

p75 neurotrophin receptor tyrosine kinase (Yeaman et al., 1997). Both forms of 

glycosylation have been implicated in the sorting of several other proteins, including 

endolyn (Potter et al., 2004) and lactase-phlorizin hydrolase (Delacour et al., 2006).  

A GPI anchor is a glycolipid modification that is added to the N-terminus of an 

otherwise soluble protein. GPI anchored proteins are generally expressed only on the 

apical membrane of epithelial cells, including MDCK cells (Lisanti et al., 1989), but this is 

not the case for all epithelial cells (Zurzolo et al., 1993). The apical targeting of GPI-

anchored proteins was originally thought to be a product of their integration into lipid 

rafts (Brown and Rose, 1992). While this is likely the underlying mechanism for many 

proteins, more recent data has demonstrated apical targeting of a GPI-anchored protein 

independent of its raft association (Castillon et al., 2013). Furthermore, in the same cell 

line, the prion protein PrP(C), a GPI-anchored protein that is N-glycosylated and 

partitions into detergent-resistant lipid rafts, is targeted to the basolateral membrane 

(Puig et al., 2011;Sarnataro et al., 2002). 

The final category of apical signals, based on amino acid sequences, is 

extremely diverse. While a variety of protein-based apical-targeting signals have been 

described, there is little consensus or knowledge of the underlying mechanisms to be 

found. Most of the signals identified are unique amino acid sequences, varying from a 

few amino acids to 20 or more and usually present in a cytoplasmic domain (Folsch, 
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2008). The closest example of a conserved apical targeting motif was described for 

three sodium-dependent acid transporter proteins. A peptide sequence from the rat 

sodium-dependent bile acid transporter containing the sequence NKGF was shown by 

NMR to adopt a β–turn conformation that was critical for apical delivery (Sun et al., 

2003). Apical targeting of the related excitatory amino acid transporter-3 and the human 

sodium-dependent vitamin C transporter were shown to depend on similar sequences 

(NGGF and FKGF, respectively) and computer modeling suggested that they too form 

β–turn conformations (Cheng et al., 2002;Subramanian et al., 2004).  

Amino acid-based sorting signals are the only type that has been shown to be 

involved in the polarized targeting of GPCRs, although this does not mean the other 

types of signals play no role in targeting. In addition to the P2Y receptors, apical-

targeting signals have been described for the A1 adenosine receptor, two metabotropic 

glutamate receptors, mGluR1b and mGluR7, a serotonin receptor 5HT1B, a muscarinic 

acetylcholine receptor M2AchR, and rhodopsin (Chmelar and Nathanson, 2006;Chuang 

and Sung, 1998;Francesconi and Duvoisin, 2002;Jolimay et al., 2000;Wang et al., 2004). 

The rhodopsin targeting signal has the most well-defined mechanism for apical targeting. 

Portions of the rhodopsin C-tail interact directly with the microtubule motor dynein light 

chain Tctex-1, which directs it along the cytoskeleton to the apical surface (Tai et al., 

2001).  

In addition to targeting signals that promote direct delivery of newly synthesized 

proteins to its intended membrane domain, there are signals that direct trafficking after 

the protein has reached the plasma membrane. This involves selective internalization 

and movement to the opposite membrane region, a process called transcytosis. The 

best described apical transcytosis signal is from the polymeric immunoglobulin receptor 

(pIgR) (Luton et al., 2009). The pIgR is initially delivered to the basolateral membrane, 

and then accumulates at the apical membrane at steady-state, both constitutively and 
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when stimulated by immunoglobulins (Schaerer et al., 1990). Ligand binding stimulates 

transcytosis by inducing phosphorylation of a residue within the basolateral-targeting 

signal (Casanova et al., 1991), after which a separate signal drives the receptor to the 

apical surface (Luton et al., 2009). 

Basolateral-targeting signals 

Unlike apical signals, all known basolateral-targeting signals are amino acid 

sequences. There are three defined basolateral-targeting motifs and a large assortment 

of other signal sequences that are either unique or so poorly conserved that their 

similarities are not readily apparent.  

The first basolateral-targeting signal described was within the pIgR C-tail, 

mentioned above, which is apparently unique to that protein (Casanova et al., 1991). 

This was shortly followed by the discovery of an NPVY basolateral-targeting signal in the 

cytoplasmic domain of the LDL receptor (as well as a second, less efficient signal) 

(Matter et al., 1992). This sequence overlaps the previously determined clathrin-

mediated internalization signal of the receptor, which by species comparison was shown 

to depend on the same NPXY motif (where X is any amino acid) (Chen et al., 1990). Not 

surprisingly, the NPXY motif was shown to direct basolateral targeting by interacting with 

the epithelial-specific subunit (µ1B) of the AP-1 clathrin adaptor protein (Folsch et al., 

1999). LLC-PK1, a porcine epithelial cell line, does not express µ1B and proteins 

containing NPXY-dependent signals are mis-sorted to the apical membrane. Exogenous 

expression of µ1B in LLC-PK1 cells corrects the sorting defect (Folsch et al., 1999). 

The second conserved basolateral targeting motif also relies on a tyrosine 

residue, as demonstrated by mutational analysis of the VSV-G viral glycoprotein 

expressed in MDCK cells (Thomas et al., 1993). Similar basolateral targeting sequences 

from the asialoglycoprotein receptor (Geffen et al., 1993), and lysosomal acid 
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phosphatase (Prill et al., 1993) established the consensus sequence YXXΦ, where X is 

any amino acid and Φ is an amino acid with a bulky hydrophobic side chain (Thomas 

and Roth, 1994). As with the NPXY motif, YXXΦ signals also direct proteins to the 

basolateral membrane of polarized epithelial cells by interaction with the µ1B clathrin 

adaptor protein (Ohno et al., 1995;Ohno et al., 1999). YXXΦ-containing signals have 

also been identified as determinates for other types of vesicular sorting, including 

lysosomal (Guarnieri et al., 1993), endoplasmic reticulum (Mallabiabarrena et al., 1992), 

and trans-golgi network targeting (Bos et al., 1993;Humphrey et al., 1993;Wong and 

Hong, 1993), as well as endocytosis (Chang et al., 1991;Girones et al., 1991). 

Therefore, basolateral targeting cannot be assumed from the presence of a YXXΦ motif 

alone. These signals have been shown to interact with the µ-subunits of AP-1, AP-2, and 

AP-3, with some specificity derived from the amino acids surrounding the tyrosine 

residue (Ohno et al., 1998), which likely determines their intracellular functions. 

The last class of conserved basolateral-targeting signals is based on a di-

hydrophobic (often, but not always, a di-leucine) pair. This motif was first identified in the 

IgG Fc Receptor FcRII-B2 (Hunziker and Fumey, 1994;Matter et al., 1994). However, 

like the previous motifs, di-leucine motifs have also been shown to direct endocytosis 

and lysosomal targeting (Letourneur and Klausner, 1992;Pond et al., 1995). As with 

NPXY and YXXΦ motifs, di-leucine motifs were also shown to interact with clathrin 

adaptor proteins, the γ/σ1 subunits of AP-1 or δ/σ3 of AP-3 (Janvier et al., 2003).  

Up to now, this discussion of basolateral-targeting signals has focused solely on 

conserved motifs. However, a number of labs, including our work with P2Y receptors, 

detailed below, have identified basolateral-targeting sequences that contain none of the 

above motifs. Furthermore, they appear to have very little in common with each other, 

suggesting a wider diversity of mechanisms than first envisioned. Notable proteins with 

apparently unique basolateral-targeting signals include the transferrin receptor (Odorizzi 
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and Trowbridge, 1997), metabotropic glutamate receptor-1a (Francesconi and Duvoisin, 

2002), α2A, α2B and α2C adrenergic receptors (Wozniak and Limbird, 1996), follicle-

stimulating hormone receptor (Beau et al., 1998), thyroid-stimulating hormone receptor 

and luteinizing hormone receptor (Beau et al., 2004), H/K-ATPase (Dunbar et al., 2000), 

and the M3 acetylcholine receptor (Nadler et al., 2001). 
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Polarized Expression of P2Y Receptors 

Seven of the eight identified human P2Y receptors show polarized expression in 

cultured epithelial cell lines (Fig. 1.5) (Wolff et al., 2005). This is the largest number of 

related, polarized isoforms reported to date, making them a unique experimental model. 

Steady-state expression of P2Y2, P2Y4, and P2Y6 receptors is almost entirely apical in 

kidney, colon, and bronchial epithelial cell lines (MDCK, Caco-2, and 16HBEo-, 

respectively) (Wolff et al., 2005). In contrast, the P2Y1, P2Y11, P2Y12 and P2Y14 

receptors are localized to the basolateral membrane; only the P2Y13 receptor is 

unsorted. One of the few restrictions to the study of P2Y receptors is the lack of high-

affinity, isoform-specific antibodies (Yu and Hill, 2013). Thus, the authors generated cell 

lines that stably expressed P2Y receptor constructs with hemagglutinin (HA) epitope 

tags for confocal immunofluorescence. To ensure that there was no effect on receptor 

localization, pharmacological data for wild-type and HA-tagged receptors were collected 

in Ussing Chambers for apical and basolateral agonist administration (Wolff et al., 2005). 

As a number of polarized targeting signals had previously been isolated to the 

cytoplasmic tails of transmembrane proteins, initial experiments to identify the P2Y 

targeting signals consisted of the generation of a pair of mutant constructs for each 

polarized receptor. The first was a simple truncation just past the end of the seventh 

transmembrane domain, and the second a chimeric construct consisting of the main 

body of the unsorted bradykinin-2 (BK2) receptor with a P2Y replacement C-tail. The 

results, as illustrated in Figure 1.6, indicated the presence of apical-targeting signals in 

the main body of the P2Y1, P2Y2, and P2Y6 receptors and the C-tail of the P2Y4 

receptor. Basolateral-targeting signals were found in the C-tails of the P2Y1, P2Y11, 

P2Y12 and P2Y14 receptors, as well as the main body of the P2Y12 receptor (DuBose et 

al., 2013;Qi et al., 2005;Wolff et al., 2005). 
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Figure 1.5. Confocal microscopy of wild-type (WT) M DCK(II) cells and MDCK(II) 

cells expressing HA-tagged human P2Y receptors.  MDCK(II) epithelial cells 

expressing each of the HA-tagged P2Y receptor subtypes and WT MDCK(II) cells were 

examined using confocal microscopy. For each cell line, the top panel is a confocal 

image in which the focus plane was parallel to the monolayer (XY scan), whereas the 

bottom panel shows the focus plane as a vertical cross section of the monolayer (XZ 

scan). The white line in the XY scan indicates the path of the XZ scan. Green 

fluorescence represents HA-tagged P2Y receptor, and red fluorescence represents the 

ZO-1 subunit of the tight junction protein complex. The lack of green fluorescence in WT 

MDCK(II) cells demonstrates the specificity of the anti-HA antibody. Reprinted with 

permission from Wolff et al, AJP, 2005.  
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Receptor Distribution Nterm-TM7(Body) C-tail

P2Y1 Basolateral Apical (1st ECL) Basolateral

P2Y2 Apical Apical (1st ECL) No Signal

P2Y4 Apical No Signal Apical

P2Y6 Apical Apical (1st ECL) Not Tested

P2Y11 Basolateral Not Expressed Basolateral

P2Y12 Basolateral Basolateral Basolateral

P2Y13 Unsorted N/A N/A

P2Y14 Basolateral Not Expressed Basolateral

 
 

 
Figure 1.6. P2Y receptor-targeting signals are cont ained within the main body and 

C-terminal tail of the receptors.  Polarized sorting of three constructs are shown. The 

first is a full-length receptor, the second lacks the C-terminal tail, and the third is the C-

terminal tail appended chimerically to the main body of the unsorted BK2 receptor. 
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The Apical-sorting signal of the P2Y 2 Receptor 

Perhaps the most striking finding of these initial receptor constructs was the 

apparent difference in the mechanism of apical targeting of P2Y2 and P2Y4 receptors, 

despite their overall high homology (52% amino acid identity). This difference, coupled 

with the high homology of the two receptors, provided a useful approach to further 

delineate the P2Y2 receptor apical-targeting signal. A series of chimeric constructs were 

created that contained the N-terminal region of the P2Y2 receptor fused at various points 

to the corresponding region of the P2Y4 receptor lacking its C-tail and thus its targeting 

signal. In this way, the location of the apical targeting sequence of the P2Y2 receptor was 

narrowed down to the first extracellular loop (Qi et al., 2005).  

Sequence alignment of the first extracellular loops of the P2Y2 and P2Y4 

receptors narrowed the list of possible critical residues to just nine amino acids. These 

amino acids were mutated in the P2Y2 receptor to the corresponding residue in the P2Y4 

receptor, allowing identification of four critical amino acids: Arg95, Gly96, Asp97, and 

Leu108. Interestingly, the RGD sequence is a well-characterized integrin-binding motif, 

suggesting that perhaps interactions with integrins are involved in apical targeting. 

However, further analysis was not consistent with this possibility. RGE and QGE 

mutations, both of which would not be expected to bind integrins, did not disrupt apical 

targeting (Qi et al., 2005).  

Interestingly, it was later determined that this apical-targeting signal was 

conserved in the P2Y6 receptor, where it is the only signal in the receptor (unpublished 

results), and the P2Y1 receptor, where it is overridden by the basolateral signal in the 

P2Y1 receptor C-terminal tail (Wolff et al., 2010) (see below). No other receptors to date 

have been found that share this targeting signal. In fact, it is still the only extracellular, 

amino acid-based targeting signal that has been described. 
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The Basolateral-sorting signal of the P2Y 1 Receptor 

Initial studies as described above demonstrated that the P2Y1 receptor contained 

two signals: a cryptic apical signal in the main body of the receptor (later shown to be in 

the first extracellular loop; see above) and a dominant basolateral signal in the C-

terminal tail. The C-terminal tail, when used to replace the endogenous C-terminal tails 

of a variety of GPCRs, was capable of moving these receptors completely to the 

basolateral surface. While the extracellular apical-targeting signal appears to play no 

role in polarized sorting of the P2Y1 receptor (See Chapter 3; DuBose et al., in 

preparation), it did provide a useful tool for characterization of the dominant basolateral-

targeting signal in the C-terminal tail (Wolff et al., 2010). As demonstrated by the P2Y1 

receptor ∆CT truncation construct, disruption of the basolateral targeting sequence 

uncovers the cryptic apical signal, and thus mutation of key amino acids required for 

basolateral sorting resulted in a receptor that not only was no longer basolateral, or even 

unsorted, but expressed entirely at the apical domain of epithelial monolayers. 

The basolateral-targeting signal in the C-terminal tail of the P2Y1 receptor is very 

unusual and unlike any signal characterized to date. Unlike the basolateral motifs 

described above, the signal is quite long (25 aa), and no single amino acid mutation is 

sufficient to disrupt basolateral targeting (Wolff et al., 2010). One of the most unusual 

properties of the signal is that it is sequence- and direction independent. The entire 

basolateral-targeting signal could be inverted N�C or even scrambled without disrupting 

basolateral targeting. An in-depth mutagenesis approach revealed that the targeting 

function of the signal is dependent on several factors: 1) the number of charged 

residues, but not the total charge of those residues, 2) the distance of the signal from the 

plasma membrane, and 3) a still unknown function of the non-charged residues, as 

mutation of all of those residues while leaving the charged residues intact also disrupted 

basolateral targeting (Wolff et al., 2010). 
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Polarized Sorting of Other P2Y Receptors 

The apical-sorting signal of the P2Y4 receptor is described herein in Chapter 2. 

Similar to the basolateral signal in the P2Y1 receptor, the apical signal in the P2Y4 

receptor is unlike any previously described apical-targeting signal and appears to be 

unique to the P2Y4 receptor (DuBose et al., 2013). The P2Y12 receptor has two 

basolateral-targeting signals: one within its C-tail that appears to be dependent on the 

PDZ ligand (unpublished results), and one within the main body of the receptor that has 

yet to be explored further (DuBose et al., 2013). The P2Y14 receptor C-tail contains a 

basolateral-targeting signal that shares many of the properties of the P2Y1 receptor 

signal, although it bears little sequence homology. This signal, like that of the P2Y1 

receptor, is long (~23 amino acids), dependent on the number of charged residues, but it 

is also dependent on the type of charge (positive) and several hydrophobic residues 

(unpublished results). The P2Y11 receptor basolateral-targeting signal has yet to be 

explored beyond its general location within the C-tail of the receptor. 

The most interesting finding of these experiments is just how different the 

targeting signals are, even among such closely related receptors. Only P2Y2 and P2Y6 

receptors appear to rely on the same mechanism for polarized targeting. It will be very 

interesting to learn whether these varied signals are simply different entry points into 

common sorting mechanisms, perhaps decoded by different adaptor proteins, or if these 

signals represent truly independent mechanisms for protein sorting that run in parallel 

within epithelial cells. 
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Trafficking Itineraries and Technological Limitations 

A second area of interest for our lab, in addition to identifying and characterizing 

the targeting signals of P2Y receptors, has been to define the physical pathway that a 

receptor takes through the vesicular trafficking machinery to reach its final membrane 

destination. Ideally, this would include every subset of endosomal compartments that a 

protein traverses as well as every molecular interaction that drives it along its way. This 

type of experiment is, of course, quite technically challenging. In the broadest sense, all 

of these individual interactions can be summed up into one of two categories: direct and 

indirect. 

Direct delivery refers to a mechanism in which a protein undergoes all of its 

polarized sorting during its biosynthesis before reaching the plasma membrane for the 

first time. In this pathway, all (or nearly all) of the newly synthesized protein appears on 

the same side of the tight junction where the protein is found at steady-state. With 

indirect targeting, newly synthesized proteins appear at both apical and basolateral 

membrane domains and are only later sorted to their polarized steady-state locations. 

There are many subdivisions and possible mechanisms that can underlie either of these 

mechanisms, but until recent technological advances even this distinction was difficult to 

make. 

Historically, the way to distinguish between direct or indirect targeting was to 

perform an [35S]cysteine/methionine pulse-chase experiment, then biotinylate 

extracellular proteins at either the apical or basolateral membranes at various times after 

the chase. Following biotinylation, the cell monolayers were lysed and the biotinylated 

proteins precipitated with (strept)avidin to separate the apical or basolateral proteins 

from the remaining cellular pool. These streptavidin-biotinylated protein complexes then 

had to be disrupted (a difficult process given the stability and extremely high affinity of 
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streptavidin for biotin), and the released material was then re-precipitated with a 

receptor-specific antibody to separate the receptor from the remaining biotinylated 

proteins. This 2nd precipitation was then separated by SDS-PAGE and detected by 

autoradiography. Western blotting could not be used as it would detect all of the proteins 

that were already present at the membrane of interest instead of just those that were 

labeled during the pulse. 

While this technique has been used to study the delivery mechanisms of several 

polarized proteins (Anderson et al., 2005;Chmelar and Nathanson, 2006;Keefer and 

Limbird, 1993;Wozniak and Limbird, 1996), it suffers from three important drawbacks. 

First, the method relies on high expression of the protein of interest into sorting 

machinery that has been shown to be saturable (Marmorstein et al., 2000;Matter et al., 

1992). Second, the method requires that the rates of transcytosis be slower than the 

rates of initial delivery, such that an accumulation of protein can be detected before 

moving to its final polarized location. Third, there is no direct demonstration that the 

trafficking itineraries observed are due to selective delivery or transcytosis rather than 

selective internalization and degradation. 

In Chapter 3 (DuBose, in prep.), we describe a straightforward method for 

making these measurements using a recently developed covalent fluorophore 

attachment technology (see below) that avoids each of these limitations, and apply it to 

determine the trafficking itineraries of the P2Y1, P2Y2, and P2Y4 receptors. 
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In Vivo Covalent Fluorophore Attachment 

Several technologies have recently been developed for the covalent labeling of 

proteins in live cells. The first and simplest approach relies on the specific labeling of a 

tetra-cysteine motif within an alpha-helix by 4′,5′-bis(1,3,2-dithioarsolan-2-yl)fluorescein 

in the presence of AsCl3 (Griffin et al., 1998). The benefit of this method is the relatively 

small genetic alteration necessary to create a target protein. The downside is that it is 

limited to a few fluorophore choices, the fluorophores are prohibitively expensive, and 

each site is capable of binding either one or two fluorophore molecules, complicating 

quantification. 

Two methods, BioEase™ and AviTag™, rely on the specific biotinylation of 

relatively small (72 and 15 amino acids, respectively) tags by biotin protein ligases, 

followed by recognition by (strept)avidin probes (Ashraf et al., 2004;de Boer et al., 2003). 

While an improvement in many ways over previous methods, this technology is more 

suited to protein purification than fluorescence labeling. 

The last two methods involve the attachment of a larger, enzyme-based “epitope” 

to the protein of interest. The enzymes react covalently with specific types of small 

molecules at a 1:1 stoichiometry, allowing the attachment of a wide variety of probes. 

The obvious downside to these techniques is that the presence of a large protein domain 

connected to the protein of interest may cause steric hindrance or otherwise impede its 

normal function. 

The HALO-tag is a 34 kDa mutant of the Rhodococcus rhodochrous 

dehalogenase enzyme. A single histidine to phenylalanine substitution causes it to 

specifically react with probes displaying chloroalkane chains, forming an ester bond, 

rather than releasing the halogen-free product. These bonds are stable, form quickly at 
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room temperature and are suitable for both microscopy and biochemical applications 

(Los et al., 2008). 

The SNAP-tag is a 20 kD derivative of the human O6-alkylguanine-DNA 

alkyltransferase (Keppler et al., 2003). It has been engineered through directed evolution 

to react with O6-benzylguanine derivatives rather than methylated guanosine residues 

(Gronemeyer et al., 2006;Juillerat et al., 2003). The reaction forms a stable thioether 

linkage between the protein of interest and a wide variety of fluorescent (or other) 

probes. Like the Halo-tag, this linkage is stable and forms quickly at room temperature. 

Additionally, a second derivative, CLIP-tag, has been developed that is selective for O6-

benzylcytosine derivatives, allowing for simultaneous two-color labeling of live cells 

(Gautier et al., 2008). Due to its smaller size and greater variety of labeling options, we 

found this system to be most appropriate for our current and future studies of P2Y 

receptor trafficking. 



 

 

 
 
 
 
 

Chapter 2: Apical Targeting of the P2Y 4 Receptor is Directed by 

Hydrophobic and Basic Residues in the Cytoplasmic T ail 

Overview 

The P2Y4 receptor is selectively targeted to the apical membrane in polarized 

epithelial cell lines and has been shown to play a key role in intestinal chloride secretion. 

In this study, we delimit a 23 amino acid sequence within the P2Y4 receptor C-tail that 

directs its apical targeting. Using a mutagenesis approach, we found that four 

hydrophobic residues near the C-terminal end of the signal are necessary for apical 

sorting, whereas two basic residues near the N-terminal end of the signal are involved to 

a lesser extent. Interestingly, mutation of the key hydrophobic residues results in a 

basolateral enrichment of the receptor construct, suggesting that the apical targeting 

sequence may prevent insertion or disrupt stability of the receptor at the basolateral 

membrane. The signal is not sequence specific, as inversion of the 23 amino acid 

sequence does not disrupt apical targeting. We also show that the apical targeting 

sequence is an autonomous signal and is capable of redistributing the normally 

basolateral P2Y12 receptor, suggesting that the apical signal is dominant over the 

basolateral signal in the main body of the P2Y12 receptor. The targeting sequence is 

unique to the P2Y4 receptor, and sequence alignments of the C-terminal tail of 

mammalian orthologs reveal that the hydrophobic residues in the targeting signal are 

highly conserved. These data define the novel apical-sorting signal of the P2Y4 receptor, 

which may represent a common mechanism for trafficking of epithelial transmembrane 

proteins.
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Introduction 

Nucleotides are ubiquitous small molecules involved in a wide variety of 

biological processes. In addition to playing essential roles in phosphorylation, energy 

utilization and metabolism, and synthesis of nucleic acids and enzymatic co-factors, 

nucleotides are also released from cells where they serve as extracellular ligands for 

transmembrane receptors involved in signal transduction (Lazarowski et al., 

2003;Lazarowski, 2012). Nucleotide receptors have been found in all cell types, where 

they mediate a broad range of cell activities. There are two distinct families of nucleotide 

receptors, P2X and P2Y. P2X receptors are ion channels that open in response to 

extracellular ATP, while the P2Y receptors are a family of G protein coupled receptors 

(GPCRs) that respond to extracellular nucleotides (Coddou et al., 2011;von Kugelgen 

and Harden, 2011). Eight P2Y receptors have been identified to date—P2Y1, P2Y2, 

P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14. The numbering is not sequential because 

several receptors were reported to be P2Y receptors but later determined to either not 

respond to nucleotides or to be orthologs of existing mammalian P2Y receptors (Herold 

et al., 1997;Janssens et al., 1997;Li et al., 1998;Qi et al., 2004). 

The P2Y receptors can be divided into two subclasses based on their 

downstream signaling properties. The P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and 

P2Y11) signal primarily through Gαq, while the P2Y12-like receptors (P2Y12, P2Y13, and 

P2Y14) signal primarily through Gαi. The P2Y11 receptor also signals through Gαs to 

stimulate adenylyl cyclase (Communi et al., 1997;Qi et al., 2001). The receptors can also 

be characterized by their activating ligands: P2Y1, P2Y11, P2Y12, and P2Y13 receptors 

are activated by adenine nucleotides (either ADP or ATP), P2Y4, P2Y6, and P2Y14 

receptors are activated by uracil nucleotides (UDP or UTP), and the P2Y2 receptor is 

activated equally by ATP and UTP. The P2Y14 receptor is unusual as it is activated by 

both UDP and UDP-sugars (Carter et al., 2009). 
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P2Y receptors are expressed in a variety of tissue types, and the subtype and 

density of the receptors varies significantly. P2Y4 receptor mRNA is widely distributed 

and most abundant in the intestine (Moore et al., 2001), where it has been shown to play 

a role in luminal Cl- secretion (Robaye et al., 2003). Since bacterial invasion can induce 

nucleotide release (Crane et al., 2002;McNamara et al., 2001;Tran Van Nhieu et al., 

2003) and Cl- secretion is the known mediator of diarrhea symptoms (Field et al., 

1989;Field et al., 1989;Kunzelmann and Mall, 2002), antagonists of the P2Y4 receptor 

may have therapeutic value for the treatment of infectious diarrhea. Agonists of the P2Y4 

receptor may also be useful as it has been hypothesized that stimulation of the Cl- 

secretory pathway may alleviate intestinal abnormalities associated with cystic fibrosis 

(Robaye et al., 2003). Unfortunately, there are currently no selective ligands for the P2Y4 

receptor available. The P2Y4 receptor has also been implicated in the control of K+ 

secretion in vestibular dark cell epithelium and in mouse colon (Marcus and Scofield, 

2001;Matos et al., 2005). 

Epithelial cells are specialized cells that form water- and ion-impermeable 

barriers between organ lumens and underlying cells and tissues (Brown et al., 2009). 

This impermeable barrier is created by tight junctions, which are multi-protein complexes 

that surround and connect the cells that form the epithelial monolayer, as well as 

separate the epithelial cell plasma membrane into two distinct compartments (Giepmans 

and van Ijzendoorn, 2009). The apical membrane faces the lumen and contacts the 

external milieu, while the basolateral membrane faces the underlying cells and is in 

contact with the interstitial fluid. Formation of this barrier allows epithelial cell monolayers 

to regulate absorption and excretion of water, salts, nutrients, and toxins by selective 

expression and distribution of transmembrane channels, pumps, and receptors. The 

proper targeting of these proteins to the correct membrane surface is critical for the 

proper function of the monolayer. Our lab has investigated the targeting of the entire 
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family of P2Y receptors, and shown that seven of the eight P2Y receptors are strongly 

polarized when expressed in epithelial cell lines (Wolff et al., 2005).  

Despite the fact that aberrant protein sorting is often associated with disease 

states, the mechanisms by which epithelial cells establish and maintain these polarized 

distributions are poorly understood (Keitel et al., 2003;Kleizen et al., 2000;Marr et al., 

2002;Marr et al., 2002;Rotin et al., 2001). It is well established that many proteins 

contain amino acid sequences that act as trafficking signals to direct the protein to the 

appropriate membrane (Folsch, 2008;Rodriguez-Boulan et al., 2004;Weisz and 

Rodriguez-Boulan, 2009). Tyrosine- and di-hydrophobic-based signals have been shown 

to interact with clathrin adaptor complex proteins and to direct basolateral targeting 

(Folsch et al., 1999;Hunziker et al., 1991;Hunziker and Fumey, 1994;Matter et al., 

1994;Ohno et al., 1995). In contrast, post-translational modification, such as 

glycosylation or glypiation, is often sufficient to confer apical targeting (Lisanti et al., 

1989;Scheiffele et al., 1995;Vagin et al., 2009;Wilson et al., 1990;Yeaman et al., 1997). 

Oligomerization and lipid raft association have also been suggested to direct apical 

trafficking (Lingwood and Simons, 2010;Paladino et al., 2004;Paladino et al., 

2006;Schuck and Simons, 2004). 

Beyond these conserved signals, a wide array of seemingly unrelated sorting 

signals have been described (Folsch, 2008;Weisz and Rodriguez-Boulan, 2009). Our lab 

has described such signals for the P2Y1 and P2Y2 receptor. The P2Y1 receptor is 

directed to the basolateral membrane by a 25-amino-acid signal located within its C-

terminal tail, whose function depends on nine charged residues. The signal functions 

even after inverting or scrambling the sequence in the context of the full receptor, 

indicating that it is sequence independent (Wolff et al., 2010). The P2Y2 receptor is 

sorted to the apical membrane of MDCK(II) cells and contains an apical-targeting signal 

in its first extracellular loop that is dependent on four amino acids: Arg95, Gly96, Asp97, 
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and Leu108 (Qi et al., 2005). This signal is highly unusual because, following receptor 

synthesis, it is located on the inside of vesicles and therefore inaccessible to intracellular 

sorting machinery. This is the only protein-based extracellular apical-targeting signal 

identified in any protein to date. 

The P2Y4 receptor is expressed almost exclusively at the apical surface at 

steady-state in MDCK(II), Caco-2, and 16HBE14o- cells (Wolff et al., 2005). Even 

though P2Y2 and P2Y4 receptors are 52% identical and both are targeted to the apical 

membrane in MDCK(II) cells, they do not share a common sorting signal. We have 

previously shown that the apical-sorting signal of the P2Y4 receptor, in contrast to the 

P2Y2 receptor, is located within its C-terminal tail (Qi et al., 2005). When the C-terminal 

tail of the P2Y4 receptor is deleted, the truncated receptor is unsorted, whereas fusion of 

the P2Y4 C-tail to the unsorted BK2 receptor just after transmembrane segment 7 (TM7) 

results in its expression at the apical membrane. In this study, we delimit the P2Y4 

targeting signal, identify key amino acids within this signal that are responsible for apical 

targeting, and demonstrate its dominance over a basolateral signal in the main body of 

the P2Y12 receptor. These data add to the known targeting signals by which P2Y 

receptors are sorted to distinct membrane surfaces, and may represent a novel 

mechanism for polarized trafficking. 
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Methods 

Construction of Mutant and Chimeric Receptors—Construction and cloning of 

HA-tagged P2Y4 and BK2/Y4 receptors into the retroviral vector pLXSN was 

accomplished as described previously (Qi et al., 2005;Wolff et al., 2005). Targeted 

mutations were introduced into the P2Y4 receptor C-tail of these constructs by overlap-

extension PCR (Ho et al., 1989), whereas P2Y4 receptor truncation constructs were 

made using PCR with a 5’ vector primer and 3’ primers containing a stop codon at the 

appropriate location followed by a XhoI site to facilitate cloning. 

The P2Y12/P2Y4 receptor chimera was constructed using overlap extension PCR. 

One set of primers amplified the P2Y12 receptor coding sequence from the second codon 

(with an MluI site to facilitate cloning) through the codon for Ser304, the start of the C-

tail, and also included the first seven codons of the P2Y4 receptor C-tail starting at 

Asp311. The second set of primers amplified the C-tail of the P2Y4 receptor starting at 

Asp311 through the end of the gene and contained a XhoI site at the end of the 

downstream primer. After the initial amplification, the two PCR products were isolated, 

then combined and amplified with only the outside primers. The resulting product was 

digested with MluI and XhoI and ligated into a similarly digested modified pLXSN vector 

that added an HA-tag to the N-terminus of the chimera. 

The P2Y4 receptor C-tail invert construct was created using two long primers (68 

and 69 nucleotides) whose respective 3’ ends overlapped by 30 nucleotides. These 

primers encoded the P2Y4 receptor C-tail in which the codons for the targeting signal 

were inverted N→C and included SalI and SbfI restriction sites at the ends of the 

primers. The primers were annealed, filled in with the Klenow fragment of DNA 

polymerase I (New England Biolabs, Ipswich, MA), and digested with SalI and SbfI. The 

digested fragment was cloned into a modified pLXSN-HA-P2Y4 plasmid in which SalI 
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and SbfI sites were introduced by incorporating silent mutations into the codons for 

Arg314/Arg315 and Ser345, respectively.  

We initially created receptor mutants in the context of either the BK2-P2Y4 C-tail 

chimeric receptor or the P2Y4 receptor. While confocal microscopy revealed essentially 

identical targeting as observed with modified P2Y4 receptor constructs described below, 

cell surface expression was often too low for accurate quantification of apical versus 

basolateral receptor distribution (data not shown). Therefore, we introduced a cleavable 

signal sequence (MKTIIALSYIFCLVPA) and FLAG epitope tag (DYKDDDDA) 

immediately upstream of the HA-tag to increase receptor expression (Guan et al., 1992). 

All of the constructs shown in Figure 2.3A, with the exception of the BK2/P2Y4-C321S 

receptor, contained this addition. Inclusion of the signal sequence increased steady-

state receptor levels, which facilitated imaging and quantification, without having an 

appreciable effect on localization in polarized monolayers. 

Cell culture—All cells were grown in a humidified incubator at 37°C in a 5% 

CO2/95% air atmosphere. Type II Madin-Darby canine kidney cells (MDCK(II); ATCC, 

Rockville, MD) were maintained in 1:1 DMEM/F12 medium containing 5% fetal bovine 

serum and 1X pen/strep. PA317 cells were maintained in DMEM containing 10% fetal 

bovine serum and 1X pen/strep. 

Retroviral infection—Recombinant retroviruses were produced by calcium 

phosphate-mediated transfection of PA317 cells with pLXSN plasmids as previously 

described (Comstock et al., 1997). Retroviral particles in the culture supernatant were 

harvested 3 days after transfection and used to infect MDCK(II) cells. Infected cells were 

selected for 7-10 days in medium containing 1 mg/mL G418. After selection, cells were 

maintained in medium containing 0.4 mg/mL G418. Surface expression of receptors was 

confirmed by radioimmunoassay with an antibody directed against the HA-epitope tag as 

described previously (Brinson and Harden, 2001). 



48 

 

Confocal Fluorescence Microscopy—MDCK(II) cells were seeded at 6 x 105 

cells/well in 12 mm Transwell inserts (Corning Life Sciences, Acton, MA) and grown for 

5-7 days with daily medium changes to allow the cells to form polarized monolayers. 

Cells were prepared for confocal microscopy as described previously (Wolff et al., 2005). 

Briefly, cells were washed and fixed in 2% PFA in PBS with 2 mM CaCl2 and 2 mM 

MgCl2 for 30 minutes at 4 ºC. After fixation, cells were permeabilized with cold (-20 ºC) 

methanol for 30 seconds. Cells were then quenched by three washes of 150 mM sodium 

acetate in 1% non-fat dry milk (NFDM) and blocked by three more washes in 1% NFDM. 

Cells were incubated with a 1:1000 dilution of mouse monoclonal anti-HA antibody 

(HA.11; Covance, Berkeley, CA) and a 1:500 dilution of rabbit anti-ZO-1 antibody 

(Zymed Laboratories Inc., South San Francisco, CA) in 1% NFDM overnight at 4 ºC. 

Cells were then washed three times and incubated with both goat anti-mouse Alexa-488 

and goat anti-rabbit Alexa-594 (Molecular Probes, Eugene, OR), each diluted 1:500 in 

1% NFDM, for one hr at room temperature. After washing five times in PBS and once in 

Molecular Probes Equilibration Buffer, the polyester membranes were removed from the 

transwell inserts with a scalpel and mounted under cover slips in Slow Fade A mounting 

media (Invitrogen, Carlsbad, CA). 

Confocal images were acquired using an Olympus Fluoview 300 laser scanning 

microscope system equipped with a PlanApo 60x oil-immersion objective. Multiple 

representative XY (parallel to the apical cell membrane) and XZ (vertical cross-section) 

images were acquired from each monolayer. For apically sorted or unsorted receptors 

an XY slice through the apical membrane is shown, whereas for basolaterally sorted 

receptors an XY slice below the level of the apical membrane is shown. In both 

instances, the XZ image shows the relative receptor expression at the two membrane 

regions. The brightness and contrast of the resulting images were adjusted in Adobe 

Photoshop with the goal of highlighting membrane expression while minimizing 
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background fluorescence. In most cases, auto-fluorescence of the polyester membrane 

has been removed for clarity. Representative images are shown for each receptor 

construct. 

Polarized Cell-surface Biotinylation—MDCK(II) cells were seeded on 12 mm (6 x 

105 cells/well) or 24 mm (1.2 x 106 cells/well) Transwell inserts and grown for 5-7 days 

with daily medium changes to allow the cells to form a polarized monolayer. A polarized 

biotinylation assay was used to quantify cell-surface expression of HA-tagged receptors 

essentially as described previously (Wolff et al., 2005). Briefly, cells were carefully 

cooled to 4ºC and kept cold for the entire assay to avoid potential nucleotide release and 

redistribution due to receptor activation. Cells were washed twice in PBS++ (phosphate-

buffered saline, pH 8.0, plus 2 mM CaCl2 and 2 mM MgCl2), then PBS++ containing 2 

mg/mL Sulfo-NHS-SS-Biotin (Pierce, Rockford, IL) was applied to either the apical or 

basolateral surface, and the reaction was allowed to proceed for 20 min. Following 

aspiration of the biotinylation solution, the cells were incubated with PBS++ containing 

100 mM glycine (pH 8.0) for 10 minutes to quench the reaction, and then washed three 

times with PBS++.  

Proteins extracts were prepared by adding RIPA lysis buffer (50 mM Tris HCl pH 

8.0, 100 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.5% deoxycholate, and 0.1% SDS) 

to washed cells and passing the lysate through a 25-gauge needle 7-10 times to ensure 

complete disaggregation. Insoluble materials were removed by centrifugation at 13,000 x 

g for 30 minutes, and the resulting supernatant was incubated for 90 minutes with 35 µL 

(for 12 mm inserts) or 50 µL (for 24 mm inserts) of immobilized NeutrAvidin resin 

(Pierce). The resin was washed twice with Tris-Triton buffer (50 mM Tris•HCl, pH 7.4, 

100 mM NaCl, 5 mM EDTA, and 1% Triton X-100) and biotinylated proteins were 

released from the resin by incubating with 30 µL of 2× SDS-PAGE sample buffer 

containing 100 mM dithiothreitol for 10 minutes at 37ºC. Eluted proteins were separated 
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on a 10% SDS-PAGE gel and transferred to a PVDF membrane overnight at 4ºC. HA-

tagged proteins were detected with a peroxidase-conjugated monoclonal antibody 

(3F10, Roche Biochemicals, Indianapolis, IN) at 1:500 dilution and visualized with 

SuperSignal West Pico chemiluminescent substrate (Pierce). Bands were quantified 

from scanned images with ImageJ software (Schneider et al., 2012). 
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Results 

Delimitation of the apical-targeting signal of the P2Y4 receptor—We showed 

previously that the human P2Y4 receptor is sorted to the apical membrane of three 

different epithelial cell types (MDCK(II), 16HBE14o-, and Caco-2 cells), and that the 

apical targeting sequence is located within the C-tail of the receptor (Qi et al., 2005;Wolff 

et al., 2005). To delimit the C-terminal end of the apical-targeting signal, we constructed 

a series of HA-tagged human P2Y4 receptors in which increasing amounts of the C-

terminus were truncated. The truncated receptors were expressed in MDCK(II) cells and 

their steady-state localization was determined by confocal microscopy (Fig. 2.1). XZ 

scans of the full-length human P2Y4 receptor and P2Y4 receptors truncated at amino 

acids 355 or 343 revealed that these receptors were localized to the apical membrane at 

steady state, indicating that the signal remained intact (Fig. 2.1). In contrast, the P2Y4 

receptor truncated at amino acid 332 resulted in an unsorted phenotype. These data 

indicate that the C-terminal end of the apical targeting sequence is no further 

downstream than amino acid 343. 

The C-tail of the P2Y4 receptor confers apical targeting to the normally unsorted 

BK2 receptor when fused to the receptor just past TM7 (Qi et al., 2005). To delimit the 

N-terminal end of the apical targeting sequence, we created chimeric receptors 

comprised of the body of the BK2 receptor (N-terminus through TM7) fused with 

progressively smaller portions of the P2Y4 C-tail (Fig. 2.2). The longest of these 

constructs has a C-tail that starts at the putative beginning of the P2Y4 C-tail (Asp311) 

and ends at the end of the apical-targeting signal (Asp343) as determined in Fig. 2.1. 

The other two chimeric receptors have shorter lengths of the P2Y4 C-tail fused to the 

body of the BK2 receptor, beginning at Cys321 and Lys325 respectively. Fusion of  
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Figure 2.1. The P2Y 4 apical-targeting signal ends before Asp343. A, HA-tagged wild 

type and truncated P2Y4 receptors with the C-tail sequences shown were stably 

expressed in MDCK(II) cells. B, subcellular localization of the receptor constructs in 

polarized monolayers was analyzed by confocal microscopy. The receptor tags are 

marked by green fluorescence while red fluorescence marks ZO-1, a tight junction 

protein. For all fluorescence micrographs in this study, the lager images are scans of the 

XY plane (parallel to the apical membrane) and the smaller images are XZ scans along 

the white line shown in the XY scan.   
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Figure 2.2. The P2Y 4 apical-targeting signal begins after Cys321.  A, HA-tagged BK2-

P2Y4 chimeric receptors with the indicated C-tail sequences were stably expressed in 

MDCK(II) cells. B, subcellular localization of the receptor constructs in polarized 

monolayers was analyzed by confocal microscopy. C, surface expression of the receptor 

constructs was determined by a polarized biotinylation assay (see Methods). 

Quantification is based on densitometry data of apical (AP) and basolateral (BL) bands 

(n≥3). Error bars represent the standard deviation of each data set. The BK2-Y4CT 325-

343 construct was not detected in our biotinylation assay, presumably because it does 

not reach the cell surface in sufficient quantities.  
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amino acids 311-343 or 321-343 of the P2Y4 C-tail was sufficient to confer polarized 

sorting of the BK2 receptor to the apical surface of MDCK(II) cells (Fig. 2.2B), and the 

apical localization of these chimeric receptors revealed by confocal microscopy was 

confirmed by an established polarized cell-surface biotinylation assay (Fig. 2.2C) (Keefer 

and Limbird, 1993;Qi et al., 2005;Wolff et al., 2005). In contrast to the other chimeras, 

the BK2 receptor with the fewest number of amino acids (325-343) of the P2Y4 C-tail 

was not sorted to the apical membrane. This receptor construct was presumably 

unstable and failed to reach the cell surface, as we were unable to pull down sufficient 

quantities of receptor to produce a visible band in our biotinylation assay. These data 

indicate that the N-terminal end of the apical-targeting signal of the P2Y4 receptor is no 

farther upstream than amino acid 321.  

Taken together, these experiments defined a 23-amino-acid sequence (Cys321 

to Asp343) that is both necessary and sufficient to target the P2Y4 or the BK2 receptor to 

the apical surface. This sequence is unique to the P2Y4 receptor, bears no similarity to 

any known sorting signal, and does not contain any known binding motifs or conserved 

domains. 

Identification of key amino acids in the P2Y4 apical targeting sequence—Because 

its length made single residue mutational analysis unlikely to yield useful information, we 

mutagenized amino acid groups (e.g. charged, polar, non-polar, etc.) to discern their role 

in apical targeting (Fig. 2.3) as we have done previously for the basolateral targeting 

sequence of the P2Y1 receptor (Wolff et al., 2010). We began by analyzing a P2Y4 

receptor construct in which all of the serine and threonine residues in the C-tail were 

mutated to alanine. Previous work had established that agonist-dependent 

phosphorylation of Ser333 and Ser334 within the apical targeting sequence is required 

for P2Y4 receptor desensitization and internalization (Brinson and Harden, 2001), which  
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Figure 2.3. Subcellular localization of receptor co nstructs with mutant P2Y 4 C-

tails.  A, mutant receptors with the C-tail sequences shown were stably expressed in 

MDCK(II) cells. The delimited apical-targeting sequence is marked in green and the 

amino acid mutations of each construct are marked in red. B, subcellular localization of 

the receptor constructs in polarized monolayers was analyzed by confocal microscopy.  
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Figure 2.4. Surface expression of receptor construc ts with mutant P2Y 4 C-tails. 

Mutant receptors (see Figure 2.3 for specific sequences) were stably expressed in 

MDCK(II) cells. A, surface expression of the mutant receptor constructs was determined 

by polarized biotinylation. B, Quantification is based on densitometry data of apical (AP) 

and basolateral (BL) bands (n≥3). Error bars represent the standard deviation of each 

data set.   
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potentially could affect steady-state receptor distribution. However, these mutations had 

no effect on the polarized expression of the P2Y4 receptor (Figs. 2.3 & 2.4). 

We next targeted the single cysteine residue (Cys321) in the apical targeting 

sequence, as palmitoylation of cysteines has been implicated in protein stability as well 

as trafficking (Huang and El-Husseini, 2005;Linder and Deschenes, 2007). We found 

that a C321S mutation had no effect on receptor localization of the BK2/P2Y4 C-tail 

chimeric receptor (Figs. 2.3 & 2.4). Likewise, mutation of three consecutive glycines or 

the PQP triad near the beginning of the sequence to alanines in the context of the P2Y4 

receptor had no effect on apical targeting (Figs. 2.3 & 2.4). 

Charged residues within the basolateral targeting sequence of the P2Y1 receptor 

are critical to its function (Wolff et al., 2010). To address the role of charged residues in 

the P2Y4 receptor apical-targeting signal, we mutated the acidic and/or basic residues of 

the apical targeting sequence to alanine. Mutation of the glutamate and aspartate 

residues to alanine had no effect on targeting, whereas mutation of lysine and arginine 

residues to alanine reduced apical polarization by 24% (61% apical versus 85% apical 

for wild-type P2Y4). Mutation of both the basic and acidic amino acids to alanine closely 

matched the results of mutating the basic residues alone.  

We also made mutations to a small hydrophobic region in the latter half of the 

apical targeting sequence (one valine and three leucine residues within six residues). 

Mutation of these four amino acids to alanine markedly disrupted the apical targeting of 

the P2Y4 receptor and in fact promoted pronounced (but not complete) basolateral 

targeting (63% basolateral). These data highlight the importance of these four 

hydrophobic residues for proper apical targeting of the P2Y4 receptor. 

The apical-targeting signal of the P2Y4 receptor is sequence-independent-We 

previously showed that the 25-amino acid basolateral-targeting signal of the P2Y1 

receptor was functional either in its normal N->C direction or inverted in a C->N direction 
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(i.e. where the last amino acid of the signal becomes the first amino acid in the inverted 

construct’s signal sequence), suggesting that the basolateral-targeting signal was 

sequence-independent (Wolff et al., 2010). To determine if there is any sequence or 

directional specificity to the apical targeting sequence of the P2Y4 receptor, the signal 

was inverted in the context of the full-length receptor and its localization was determined 

by confocal microscopy (Figs. 2.3 & 2.4). Surprisingly, the inverted signal was still able 

to direct complete apical targeting to the P2Y4 receptor. This lack of sequence- and 

direction-specificity may indicate that only a few key amino acids within the sequence 

and/or a particular structure of the P2Y4 receptor C-tail (which is preserved upon 

inversion) are necessary for proper polarization. 

The P2Y4 receptor apical targeting sequence redistributes a basolaterally 

targeted receptor—There are numerous examples of membrane proteins that have more 

than one targeting signal, and these signals can be either redundant or opposing. For 

opposing signals, it has been generally assumed that when both apical and basolateral 

signals reside within the same protein, the basolateral signal is dominant (Matter et al., 

1994). For example, we have shown that the P2Y1 receptor contains both an apical 

signal in the main body of the receptor and a basolateral-targeting signal in the C-tail, 

with the basolateral-targeting signal completely dominant over the apical signal (Wolff et 

al., 2010). However, dominance of a basolateral signal over an apical signal is not 

always observed (Chuang and Sung, 1998). 

To address whether the apical-targeting signal of the P2Y4 receptor can be 

dominant over a basolateral-targeting signal, we fused the C-tail of the P2Y4 receptor to 

the main body of the P2Y12 receptor. Unpublished work in our lab has shown that the 

P2Y12 receptor contains two redundant basolateral-sorting signals; one in its C-tail, and 

one in the main body (N-terminus to TM7) of the receptor. The HA-tagged P2Y12 

receptor truncated at the start of its C-tail is targeted to the basolateral membrane 
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(P2Y12∆CT; 95% basolateral; Fig. 2.5). Fusion of the C-tail of the P2Y4 receptor to the 

P2Y12 receptor results in a protein that is mostly, but not completely, redirected to the 

apical surface of MDCK(II) cells (76% apical; Fig. 2.5).  
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Figure 2.5. The P2Y 4 apical-targeting signal is dominant over a basolat eral signal. 

The HA-tagged P2Y12 receptor lacking its C-tail and P2Y12-P2Y4 C-tail chimera were 

stably expressed in MDCK(II) cells. A, subcellular localization of the receptor constructs 

in polarized monolayers was analyzed by confocal microscopy. B, surface expression of 

the receptor constructs was determined by polarized biotinylation. Quantification is 

based on densitometry data of apical (AP) and basolateral (BL) bands (n≥3). Error bars 

represent the standard deviation of each data set.   
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Discussion 

Seven of the eight known P2Y receptors are sorted to distinct membrane 

surfaces when expressed in polarized epithelial cells, including the P2Y4 receptor. We 

show here that the P2Y4 receptor contains a 23-amino-acid sequence in its C-tail that is 

both necessary and sufficient to direct apical targeting in MDCK(II) cells. The signal is 

autonomous, as it is functional even when fused to other GPCRs. The signal depends 

primarily on the presence of 4 hydrophobic residues near the C-terminal end of the 

sequence, and less so on basic amino acids. Other amino acids in this sequence appear 

to have little to no effect on apical targeting. Surprisingly, the apical-targeting signal 

functions normally even when inverted and is capable of redirecting a basolaterally 

targeted GPCR to the apical membrane. The properties of this novel apical-sorting 

signal have not been described for any apical signal identified to date. 

Alignment of the C-terminal tail of the P2Y4 receptor from a broad range of 

mammalian orthologs indicates that the most important residues of the signal (i.e. basic 

and hydrophobic residues) are conserved. For example, the four key hydrophobic 

residues are highly conserved, with only slight variations (L→R in M. domestica 

(opossum) and S. harrisii (tasmanian devil), and V→G in A. melanoleuca (panda)) (Fig. 

2.6). Conservation of the basic amino acids is not as strong as with the hydrophobic 

residues, but when they are not conserved, other nearby residues are changed to basic 

amino acids such that there is at least one basic amino acid within the N-terminal region 

of the signal (the exceptions, T. belangeri (tree shrew) and O. cuniculus (European 

rabbit), have no basic residues within the same region). This may indicate that the 

specific position of these amino acids is not critical, as long as positive charges are 

located nearby. Consistent with this idea, inversion the targeting sequences in the P2Y4 

receptor (Fig. 2.3) and the P2Y1 receptor (Wolff et al., 2010), or scrambling the  



62 

 

 

Figure 2.6. Conservation of the apical-targeting se quence of the P2Y 4 receptor.  

Known mammalian P2Y4 receptor C-tail amino acid sequences are shown. Sequences 

were aligned using ClustalW and shaded using Boxshade 3.21, both available on the 

World Wide Web (http://www.ch.embnet.org/). Residues that are conserved in greater 

than 50% of the sequences are shaded black. Positions with similar residues in greater 

than 50% of the sequences are shaded grey. The key hydrophobic amino acids for 

apical targeting are marked with red arrows. Protein sequence accession numbers or 

ensembl.org identification numbers are as follows: Homo sapiens (human), P51582.1; 

Pan troglodytes (chimpanzee), XP_003317560.1; Pongo abelii (orangutan), 

XP_002834732.1; Gorilla gorilla (gorilla), ENSGGOP00000000615; Macaca mulatta 

(macaque), NP_001185632.1; Otolemur garnettii (bush baby), ENSOGAP00000021789; 

Callithrix jacchus (marmoset), XP_002807938.1; Sus scofra (pig), NP_001231097.1; 

Bos Taurus (cow), NP_001243486.1; Canis lupus familiaris (dog), XP_003640305.1; 

Felis catus (cat), ENSFCAP00000007557; Sarcophilus harrisii (Tasmanian devil), 

ENSSHAP00000006770; Ailuropoda melanoleuca (panda), ENSAMEP00000021321; 

Rattus norvegicus (rat), NP_113868.1; Mus musculus (mouse), NP_065646.1; 

Oryctolagus cuniculus (rabbit), XP_002720124.1; Tupaia belangeri (tree shrew), 

ENSTBEP00000001285; Spermophilus tridecemlineatus (squirrel), 
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ENSSTOP00000015075; Cricetulus griseus (Chinese hamster), XP_003509162.1; 

Pteropus vampyrus (megabat), ENSPVAP00000013535; Myotis lucifugus (microbat), 

ENSMLUP00000018666; and Monodelphis domestica (opossum), XP_001362915.1. 
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basolateral targeting sequence in the P2Y1 receptor, had little to no effect on steady-

state localization, indicating that the absolute positions of important residues are not 

critical and that these sorting signals function in a sequence-independent manner. Taken 

together, these data suggest that other orthologs of the P2Y4 receptor are also trafficked 

to the apical membrane of epithelial cells in their respective hosts by a similar 

mechanism involving the C-tail of the receptor.  

The apical-sorting signal of the P2Y4 receptor is a member of a large group of 

heterogeneous sequences of various lengths with little sequence homology, 

characteristic motifs, or known common-binding partners (Francesconi and Duvoisin, 

2002;Takeda et al., 2003). Several studies with three apically expressed sodium-

dependent acid transporters suggest that a beta-turn secondary structure motif may be 

important in apical sorting. A 14-amino-acid sequence in the C-tail of the rat ileal 

sodium-dependent bile acid transporter (Abst) was shown to direct apical targeting, and 

NMR studies indicated that a 4-amino acid tetramer (NKGF) within this sequence formed 

a beta-turn that was suggested to be important in apical targeting (Sun et al., 2003). 

Apical targeting of two other members of this family, the human sodium-dependent 

vitamin C transporter and the excitatory amino acid transporter-3, was shown to depend 

on similar sequences for apical sorting (Cheng et al., 2002), and computer modeling 

suggested that these sequences also form β–turns (Subramanian et al., 2004). 

However, both potential phosphorylation sites within the apical signal of Abst and its 

interaction with the 16 kDa subunit c of the vacuole proton pump were also shown to be 

important in apical targeting, suggesting a more complex sorting mechanism than simple 

recognition of a secondary structure element (Sun et al., 2003;Sun et al., 2004). 

The mechanism of apical sorting directed by the apical signal in the P2Y4 

receptor appears to be distinct from that of the acid transporters. Hydrophobic and basic 

amino acids are the most important for proper apical targeting of the P2Y4 receptor, and 
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our experiments rule out a role of phosphorylation in this process. We have not ruled out 

the possibility that the P2Y4 apical targeting sequence forms a beta-turn (albeit with a 

different sequence of amino acids than the acid transporters) or other secondary 

structure that is selectively stabilized by lipids or proteins at the apical membrane, 

although modeling programs do not predict a beta turn in the region comprising the 

hydrophobic cluster (data not shown). 

Four members of the G protein coupled receptor family (including the P2Y4 

receptor) have been shown to contain apical sorting sequences within their C-tails. Even 

among receptors from the same superfamily, there is no apparent common mechanism 

for apical targeting. The final 32 amino acids of rhodopsin, the best characterized of the 

four apical signals, interact with the Tctex-1 dynein light chain, a minus-end microtubule 

motor, presumably directing rhodopsin to the apical membrane along the cell’s 

cytoskeleton (Tai et al., 2001). The exact amino acids responsible for targeting 

rhodopsin are unknown, but there are no hydrophobic clusters or sequence similarity to 

P2Y4. While we have shown that apical targeting of the P2Y4 receptor is most dependent 

on hydrophobic residues, apical targeting of the metabotropic glutamate receptor 1b 

isoform is dependent on three basic residues (Francesconi and Duvoisin, 2002). The C-

tail of the serotonin 5-HT1B receptor operates as an apical-targeting signal through an as 

yet unknown mechanism (Jolimay et al., 2000). This sequence also appears to be 

distinct from the P2Y4 receptor, but there is a group of two hydrophobic residues flanked 

by two charged residues. 

Taken together, the diversity of cytoplasmic apical-targeting signals may simply 

reflect a diverse set of adaptor proteins that may be resolved by common sorting 

mechanisms, as others have speculated (Hodson et al., 2006). However, relatively few 

sorting signals and even fewer binding partners and mechanisms are currently known. It 

is possible that as more signals are discovered and characterized, more commonalities 
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will begin to appear. What is emerging from our studies of the sorting signals in the P2Y1 

and P2Y4 receptors is that there is a set of sorted proteins that do not interact with 

proteins in the sorting machinery in a manner that depends on specific protein-protein 

interactions; instead, these sorting proteins likely recognize a secondary structure or 

physiochemical state, but how this is achieved is not clear. If the apical-targeting 

sequence does interact directly with another protein, it seems more likely that it would 

resemble the interaction of a GPCR with arrestin proteins, which are involved in receptor 

internalization (Benovic et al., 1987;Lohse et al., 1990). Arrestin proteins bind to a broad 

range of different receptors in a manner that is dependent on charged residues (usually 

through phosphorylation) but is sequence independent (Ferguson et al., 1996). 

The two P2Y receptors with the highest identity (52%), P2Y2 and P2Y4, are both 

located at the apical membrane, but their targeting sequences are markedly different (Qi 

et al., 2005). The P2Y2 receptor has an apical-targeting signal located in the first 

extracellular loop that is absent in the P2Y4 receptor. In contrast, the C-terminus of the 

P2Y4 receptor directs apical targeting, whereas the C-terminus of the P2Y2 receptor 

does not contain any targeting information (Qi et al., 2005). This difference has important 

mechanistic implications. For example, once the P2Y2 receptor is synthesized and 

inserted into the endoplasmic reticulum, the apical signal in the extracellular loop 

becomes inaccessible to cytosolic sorting proteins, whereas the apical signal in the C-

terminus of the P2Y4 receptor is available. Given the distinct locations of the apical 

signals, it will be informative to examine the mechanistic similarities (and differences) by 

which these receptors reach steady-state. 

Curiously, many membrane proteins contain more than one targeting sequence, 

and these signals can be either redundant or opposing. In at least two proteins, mGluR1 

and PMCA2, alternative splicing determines their distribution, indicating a functional and 

physiological reason for multiple targeting signals (Chicka and Strehler, 
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2003;Francesconi and Duvoisin, 2002). Within the P2Y family, we have shown that the 

P2Y1 receptor contains a cryptic apical targeting sequence in addition to its dominant 

basolateral targeting sequence (Wolff et al., 2010), and the P2Y12 receptor contains 

redundant basolateral sequences (unpublished results). It was thought that when 

opposing targeting sequences are present in the same protein, the basolateral signal is 

always dominant, as is the case for the P2Y1 receptor. However, we show here that the 

P2Y4 receptor apical-targeting signal is able to override most (but not all) of the 

basolateral targeting encoded in the P2Y12 receptor lacking its C-tail. These data are 

consistent with those from Chuang et al. who showed that the apical targeting sequence 

in the C-tail of rhodopsin can overcome the basolateral signal in the single pass protein, 

CD7 (Chuang and Sung, 1998). Thus, both apical and basolateral-targeting signals can 

overcome an opposing signal elsewhere in the protein, and likely depend on context and 

location. 

Our studies of the P2Y4 receptor have shown strong apical polarization in cell 

lines derived from kidney, lung, and colon epithelia, suggesting that the sorting 

mechanism for this receptor is common to all epithelial cells (Wolff et al., 2005). Even so, 

it is possible that epithelial cells exist that do not sort the P2Y4 receptor in the same 

manner or to the same extent as in MDCK(II) cells. Indeed, one group has shown P2Y4 

receptor-mediated functional responses at both the apical and basolateral membranes in 

a study of nucleotide-stimulated Cl- secretion in mouse jejunum and colon (Ghanem et 

al., 2005). There are caveats to these experiments – the measurements were taken 

using only a single, saturating dose of UTP in a “leaky” membrane preparation – but they 

may demonstrate a variation in the location of the P2Y4 receptor in different epithelial 

cells. In contrast, using P2Y2 and P2Y4 receptor knock-out mice, members of this same 

group found no evidence of basolateral P2Y4 receptor function in mouse colon when 

studying nucleotide-induced K+ secretion (Matos et al., 2005). Unfortunately, the lack of 
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selective, high affinity antibodies makes it impossible to directly detect the native P2Y4 

receptor. 

Our studies have provided important information about the steady-state 

localization of P2Y receptors, but how they achieve steady state is not clear. Previous 

work showed that the P2Y4 receptor undergoes internalization and recycling much faster 

than other P2Y receptors (Brinson and Harden, 2001), but the lack of an effect on apical 

targeting from mutating the two Ser residues (Ser 333 and Ser 334) responsible for 

desensitization and internalization strongly suggests that internalization and recycling is 

not important in the establishment of the steady-state apical localization. It is further 

unclear when and where the sorting of P2Y receptors and most other polarized 

transmembrane proteins occurs. Recent improvements in fluorescence microscopy 

technology should make it possible to answer not only these questions of spatial 

regulation, but also the regulation of these proteins over time, and these experiments are 

in progress. 



 

 

 
 
 
 
 

Chapter 3: Distinct Trafficking Itineraries of the P2Y1, P2Y2, and P2Y4 

Receptors in Polarized Madin-Darby Canine Kidney Ep ithelial Cells 

Overview 

Multiple nucleotide-activated P2Y receptors are expressed in a polarized manner 

in epithelial cells, where they regulate ion transport. We previously illustrated that the 

P2Y1 receptor is expressed exclusively at the basolateral membrane, whereas P2Y2 and 

P2Y4 receptors are expressed at the apical membrane. While the steady state locations 

and protein sorting signals of these receptors are firmly established, little is known about 

the mechanism(s) whereby polarized distribution is achieved. For example, it is unknown 

whether sorting occurs during protein synthesis and transport to the membrane surface 

or via transcytosis after cell surface delivery. To distinguish between these pathways, we 

developed a novel method utilizing commercial SNAP-tag technology and applied it to 

determine the trafficking itineraries of these P2Y receptors. SNAP-tagged receptors 

present at the plasma membrane of MDCK cell monolayers were blocked with non-

fluorescent substrate, different membrane-impermeable fluorescent substrates were 

added to the apical and basolateral surfaces, and the membrane region where newly 

synthesized proteins first appeared was determined by confocal microscopy and image 

analysis. These data reveal that the basolaterally located P2Y1 receptor is delivered 

directly to the basolateral surface of MDCK cells, while apically located P2Y2 and P2Y4 

receptors reach the apical surface via unsorted delivery followed by selective basolateral 

to apical transcytosis. An estimate of the molar quantity of each receptor delivered to 

each membrane surface also is provided by this technology.   
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Introduction 

Polarity is a crucial characteristic of neurons, endothelial cells, and epithelial cells 

that enables spatially specific inputs and cell-specific physiological responses. Cells 

establish and maintain polarity by mechanisms that stringently sort and traffic proteins 

and lipids to specific membrane compartments. Polarized epithelial cells form a 

monolayer with distinct apical and basolateral membrane regions separated by a protein 

complex called the tight junction. Proper maintenance of these membrane regions allows 

epithelial cells to perform their primary function of selective exchange of nutrients and 

waste between the body and external milieu. 

The mechanisms underlying apical versus basolateral sorting of transmembrane 

proteins are poorly understood. We and others have identified sorting signals in several 

G protein-coupled receptors (GPCRs) (Beau et al., 1998;Beau et al., 2004;DuBose et 

al., 2013;Iverson et al., 2005;Nadler et al., 2001;Qi et al., 2005;Saunders et al., 

1998;Wolff et al., 2010). Multiple subtypes of the family of nucleotide-activated P2Y 

receptors are widely expressed on epithelial cells, and our lab illustrated that seven of 

the eight P2Y receptor subtypes exhibit polarized distribution at steady-state when 

expressed in Madin-Darby Canine Kidney (MDCK) epithelial cells (Wolff et al., 2005). 

P2Y2, P2Y4, and P2Y6 receptors are located on the apical membrane, and P2Y1, P2Y11, 

P2Y12, and P2Y14 receptors are located on the basolateral membrane. The targeting 

signals of the P2Y1 and P2Y4 receptors are in the C-terminal tails of these signaling 

proteins, are relatively long (between 20-25 amino acids), and are functional even when 

inverted N->C in the primary sequence (DuBose et al., 2013;Wolff et al., 2010). In 

contrast, the apical signal of the P2Y2 receptor is located in the first extracellular loop (Qi 

et al., 2005) and is the first extracellular, protein-based sorting signal identified. While 

these studies defined the location, sequence, and characteristics of the signal within 
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each P2Y receptor protein, they offered little insight into how cells read these structure-

based signals to traffic the receptor to its eventual location at steady-state. 

Membrane proteins in epithelial cells undergo a normal protein life-cycle – 

synthesis at the endoplasmic reticulum, post-translational modification during movement 

through the trans-Golgi network, vesicular delivery to the cell surface, internalization and 

recycling, and eventual lysosomal degradation. At some point during these steps, sorted 

proteins are directed specifically toward one of the two membrane regions. Sorting 

occurs either intracellularly (in the trans-Golgi network or by subdivision of vesicles) prior 

to direct delivery of the protein to its final surface destination or by delivery of the protein 

from its initial surface destination to the opposite membrane compartment through 

internalization into vesicles and membrane fusion in a process known as transcytosis 

(Apodaca et al., 2012). Techniques that differentiate between these two basic 

possibilities help classify and define the mechanisms for the various sorting signals. 

Existing techniques that address these sorting mechanisms, however, are either 

cumbersome, interfere with cell function, require high levels of recombinant receptor 

expression, require specialized equipment and/or software, or require incubation 

temperatures that markedly slow rates of vesicle delivery and transcytosis (Hua et al., 

2006;Paladino et al., 2006;Polishchuk et al., 2004;Wozniak and Limbird, 1996). With the 

goal of defining the trafficking itineraries of basolaterally versus apically localized P2Y 

receptors, we developed methodology that enables quantification of existing cell surface 

receptors versus newly synthesized receptors in a straightforward and readily accessible 

manner. This system employs fusion of the N-terminus of each receptor with the SNAP 

tag protein, a 20 kDa variant of human O6-alkylguanine-DNA-alkyltransferase 

engineered to react specifically with O6-benzylguanine derivatives (Gronemeyer et al., 

2006). Fusion of the SNAP tag to the N-termini of the P2Y1, P2Y2, or P2Y4 receptors did 
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not affect steady-state targeting, downstream signaling, or regulation of these receptors 

in MDCK cells. By first blocking cell-surface receptors in polarized monolayers, then 

adding different fluorescent SNAP-tag substrates to the apical and basolateral 

compartments and allowing newly synthesized receptors to approach steady-state, we 

were able to determine the trafficking itineraries of the three P2Y receptors. Advantages 

of this labeling system over traditional immunofluorescence approaches include the 

small size and variety of fluorescent substrates, the rapid rate at which proteins are 

labeled, and the formation of a long-lived covalent bond between fluorophore and 

protein. Application of this technology unambiguously demonstrates that the basolateral 

P2Y1 receptor is targeted directly to the basolateral membrane, whereas the P2Y2 and 

P2Y4 receptors are delivered to both membrane surfaces but then undergo transcytosis 

from the basolateral to the apical membrane during the progression to steady-state. This 

approach not only provides assessment of trafficking mechanisms, but presumably can 

be applied to estimate apical:basolateral ratios at steady-state of any protein of interest 

using standard techniques. 
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Materials and Methods 

Construction of SNAP-HA-P2Y Receptors – To produce SNAP-HA-P2Y receptor 

constructs, we amplified the SNAP-tag sequence fused to an N-terminal, cleavable 

signal sequence from pSNAP-ADRβ2 (New England Biolabs, Ipswich, MA). The 

upstream primer contained an EcoRI site and a consensus Kozak site (ACCATGG, with 

the start codon underlined) at its 5’ end (Kozak, 1984), while the downstream primer 

contained at its 5’ end an MluI site, an HA-epitope tag sequence, and 12 bp encoding a 

Gly-Ser-Gly-Ser linker. The amplified fragment was digested with EcoRI and MluI and 

ligated into similarly digested pLXSN plasmids containing P2Y1, P2Y2, or P2Y4 

sequences, fusing the SNAP-HA tag sequence in-frame with the receptor coding 

sequences. 

Cell Culture – All cells were maintained in a humidified 37°C i ncubator under 5% 

CO2. Growth media for Type II MDCK cells (ATCC, Rockville, MD) was 1:1 DMEM:F12 

containing 5% fetal bovine serum and 1X pen/strep. PA317 cells (for producing retroviral 

particles) and 1321N1 cells (for assessing signaling properties) were grown in DMEM 

containing 4.5 g/L glucose, 10% fetal bovine serum, and 1X pen/strep. 

Retroviral Infection – Retroviruses were produced by calcium phosphate-

mediated transfection of PA317 packaging cells with pLXSN plasmids as described 

previously (Comstock et al., 1997;DuBose et al., 2013). Media containing recombinant 

virus was harvested three days after transfection and used to infect MDCK or 1321N1 

cells. After incubating for 24 hours, the media was replaced with media containing 1 

mg/mL G418 for 7-10 days (until mock-infected cells were dead) to select for infected 

cells. The presence of receptor protein was confirmed by radioimmunoassay with an 

antibody that detects the HA-tag. In all cases, G418-resistant cell populations were used 

for experiments. 
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SNAP-tag Labeling – Stock solutions of SNAP reagents (New England Biolabs, 

Ipswich, MA) were made by dissolution in DMSO, and working solutions were made by 

200-fold dilution into growth media (supplemented to 50 mM HEPES to maintain the pH 

at 7.4). The non-fluorescent blocking reagent (SNAP-Surface Block, C8 propanoic acid 

benzylguanine) was used at a final concentration of 20 µM, while the fluorescent 

reagents (SNAP-Surface Alexafluor 488, based on Alexafluor 488; SNAP-Surface 488, 

based on Atto-Tec 488; and SNAP-Surface 549, based on Dyomics Dy549) were each 

used at 5 µM. MDCK cell monolayers were formed by seeding 5 × 105 cells/cm2 on 

Transwell support membranes (Corning Life Sciences, Acton, MA) and growing for 7 

days with daily media changes. Live cell monolayers were labeled for 30 minutes at 

19°C to reduce vesicle movement. Potato apyrase (Si gma-Aldrich, St. Louis, MO) was 

added to the media at 0.5 units/mL to reduce autocrine activation of P2Y receptors. 

Excess reagent was removed by two 5 min and one 30 min wash in growth media at 

19°C. 

Confocal Fluorescence Microscopy – Following SNAP-tag labeling, cell 

monolayers in the Transwell inserts were fixed in 4% paraformaldehyde for 30 min at 

4°C, rinsed in 1X phosphate-buffered saline (PBS), and the membranes were removed 

from their supports and mounted under coverslips in Slow Fade A mounting media 

(Invitrogen, Carlsbad, CA). Some monolayers (e.g. those in Fig. 3.1) were counter-

labeled with a monoclonal antibody against the HA-tag (HA.11; Covance, Berkeley, CA) 

and a fluorescent secondary antibody (Goat anti-mouse Alexafluor 594; Molecular 

Probes, Eugene, OR) before mounting. These monolayers underwent further processing 

after fixation as described previously (DuBose et al., 2013;Wolff et al., 2010). Briefly, 

cells were permeabilized in methanol at -20°C for 3 0 sec and then washed with 150 mM 

sodium acetate plus 1% non-fat dry milk (NFDM) in PBS containing 2 mM CaCl2 and 2 
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mM MgCl2 (PBS++). Cells were further blocked in 1% NFDM in PBS++, and then labeled 

overnight at 4°C with HA.11 at a 1:1000 dilution. S econdary antibody was applied in the 

same buffer at a 1:500 dilution for 1 hour at room temperature. 

Fluorescence micrographs were acquired using an Olympus Fluoview 300 laser-

scanning microscope system through a PlanApo 60X oil immersion objective. Multiple 

surface and cross-sectional images were acquired for each monolayer, and 

representative images are shown. Quantification was accomplished by comparing 

average pixel density of highlighted apical and lateral sections using ImageJ software 

(Schneider et al., 2012). Selections were highlighted with the ‘Selection Brush Tool’, the 

width of which was kept constant (25 pixels) so that area quantified was proportional to 

the length of selected membrane segments, to account for variations in the height of the 

monolayers. Non-specific fluorescence from SNAP-surface-labeled MDCK cells 

expressing HA-P2Y1 receptors lacking the SNAP-tag was quantified and subtracted from 

the values determined for each of the labeled SNAP-tagged receptors. 

SNAP-HA-P2Y Receptor Signaling – The signaling responses of the SNAP-

tagged receptors were quantified using a FLIPR calcium flux assay (Sullivan et al., 

1999). MDCK cells expressing the SNAP-tagged receptors could not be used for this 

assay, as they natively express P2Y1, P2Y2, and P2Y11 receptors (Insel et al., 1996;Post 

et al., 1996;Post et al., 1998). Instead, retrovirally infected 1321N1 cells expressing 

SNAP-HA-tagged P2Y1, P2Y2, or P2Y4 receptors were plated at 5000 cells/well in a 384 

well plate 24 hr prior to assay. Cells were loaded with Calcium Plus Assay Kit dye and 

responses to the cognate natural agonist (ADP for P2Y1 and UTP for P2Y2 and P2Y4 

receptors) were measured using a FLIPR Tetra fluorescence image plate reader 

(Molecular Devices, Sunnyvale, CA). Concentration-response curves were created by 

plotting mean peak fluorescence (+/- SEM) of quadruplicate readings versus the 
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logarithm of agonist concentration. Response from a buffer-only addition was subtracted 

as background. Curves were fitted and EC50 values calculated with GraphPad Prism (La 

Jolla, CA) using least squares nonlinear regression and holding the Hill Slope fixed at 

1.0 for concentrations between 10-10.5 and 10-5 M. 

SNAP-HA-P2Y Agonist Induced Internalization – Agonist-promoted 

internalization of SNAP-HA-P2Y constructs in MDCK cells was quantified by a cell 

surface radioimmunoassay as described previously (Brinson and Harden, 2001;Qi et al., 

2005). Briefly, MDCK cells expressing SNAP-HA-P2Y or HA-P2Y receptors were plated 

at 1  × 105 cells per well 48 hr prior to performing the assay. Agonists (ADP for the P2Y1 

receptor, UTP for P2Y2 and P2Y4 receptors) were added directly to cells without a media 

change at a final concentration of 100 µM and incubated for times between 2 min and 60 

min. Cells were then chilled on ice, fixed in 4% paraformaldehyde for 30 min, and then 

blocked in DMEM with 50 mM HEPES (pH 7.4) and 10% fetal bovine serum. The cells 

were then incubated in blocking buffer containing a 1:1000 dilution of the HA.11 antibody 

at room temperature for 1 hr, washed, and blocking buffer containing a 1:500 dilution of 

125I-labeled goat anti-mouse antibody (Perkin-Elmer, Waltham, MA) was added at room 

temperature for 2 hr. Following thorough washing with PBS, the cells were solubilized 

overnight in 1 M NaOH and the amount of 125I-antibody bound was quantified by gamma 

counting. 

Construction and Purification of GST-SNAP Protein – To produce a GST-SNAP 

control protein, the SNAP coding sequence was amplified using pLXSN-SNAP-HA-P2Y1 

plasmid as template and the resulting amplified fragment was subcloned into pGEX-2V 

(Fedarovich et al., 2006). The upstream primer contained an in-frame BamHI site, 

codons for a seven amino acid linker (GSGSKLT), and the first seven codons of the 

SNAP tag, while the downstream primer comprised the complementary sequence of the 
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last six codons and the stop codon of the SNAP tag, and an EcoRI site. Following PCR 

amplification, the fragment was digested with BamHI and EcoRI and ligated into a 

similarly digested pGEX2V vector. The pGEX-2V-SNAP plasmid was transformed into E. 

coli BL21*, the cells were grown to an OD600 = 0.8 and then induced with 500 µM IPTG 

for 4 hr at 37°C. GST-SNAP protein was purified by a single pass over a 5 mL 

glutathione-sepharose FPLC column (GE Healthcare, Piscataway, NJ). GST-SNAP-

containing fractions were identified by SDS-PAGE, pooled, and dialyzed into PBS 

containing 50 mM DTT. Protein concentration was determined using a standard Bradford 

assay (Bradford, 1976). 

Analysis of SNAP reaction kinetics – The kinetics of GST-SNAP reacting with 

SNAP-Surface 488 or SNAP-Surface 549 (5 µM final concentration) were determined in 

vitro at 37°C. Samples were removed from the reacti on tube at various times and added 

directly to 0.5 vol of 3X SDS sample buffer to stop the reaction. Labeled proteins were 

separated by electrophoresis on an SDS-10% polyacrylamide gel and detected 

sequentially in two wavelength-filtered channels (526 nm short-pass emission filter with 

488 nm excitation and 580 nm band-pass-30 emission filter with 532 nm excitation) 

using a Typhoon fluorescence scanner. Fluorescence intensities of the bands were 

quantified using ImageJ software. One-phase exponential association curves were fit 

using Graphpad Prism. To determine the stability of the thioether bond between the 

SNAP protein and fluorophores, GST-SNAP labeled with SNAP-Surface 488 or SNAP-

Surface 549 was added to MDCK growth media and incubated at 37°C under 5% CO 2 in 

a humidified incubator. Samples were taken and diluted into 3X SDS sample buffer at 

various times up to 24 hrs. Labeled proteins were separated by electrophoresis on an 

SDS-10% polyacrylamide gel and fluorescence intensity was quantified as described 

above. One-phase exponential decay curves were fit using Graphpad Prism. Prior to this 
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experiment, the GST-SNAP proteins were dialyzed into PBS to remove excess 

fluorophore reagents, eliminating the possibility of SNAP tags re-labeling with excess 

reagent during the experiment. 

Initial delivery and post-delivery movement of SNAP-HA-P2Y Receptors – We 

utilized the capacity of the SNAP-tag to undergo a single covalent reaction with cell-

impermeable fluorescent benzylguanine substrates to determine the initial delivery 

locations of SNAP-HA-P2Y receptors. Polarized monolayers were first incubated with a 

non-fluorescent blocking reagent to prevent subsequent fluorescent labeling of receptors 

already at the cell surface. After washing out excess blocking reagent, different SNAP 

fluorescent dyes (5 µM) in growth media were added to the apical and basolateral 

compartments. Cells were incubated for up to 12 hr; at each timepoint, samples of the 

apical and basolateral media were taken and fluorescence was measured to ensure that 

the two dyes were not leaking across the monolayer. Excess fluorophore was washed 

out at 19°C, then the cells were fixed and prepared  for confocal microscopy as described 

above. Fluorescence intensity of the two different fluorophores and their movement 

between the apical and basolateral membranes over time were used to assess receptor 

delivery itineraries. To balance intensity between the two color channels during each 

experiment, two wells of SNAP-HA-P2Y receptor expressing cells were labeled at steady 

state. One well was labeled with SNAP-Surface Alexafluor-488 (shown in green) in the 

apical compartment and SNAP-Surface 549 (shown in red) in the basolateral 

compartment, whereas the additions in other well were reversed (SNAP-Surface 549 

apical, SNAP-Surface Alexafluor-488 basolateral). The ratio of intensities at the 

dominant membrane (basolateral for P2Y1, apical for P2Y2 and P2Y4) was used to 

correct for signal output throughout the experiment. 
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Immunoprecipitation of SNAP-HA-P2Y Receptors – Polarized monolayers of 

MDCK expressing one of the three SNAP-HA-P2Y receptors were grown in 24 mm 

Transwell inserts and labeled for 30 min at 19oC with fluorescent substrate. The cells 

were washed three times with growth media, also at 19oC, and then lysed in ice cold 

RIPA buffer (50 mM Tris HCl pH 8.0, 100 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.5% 

deoxycholate, and 0.1% SDS) containing a protease-inhibitor cocktail (Sigma-Aldrich, St. 

Louis, MO). Membranes were disaggregated by 7 passages through a 25-gauge needle 

followed by several bursts of sonication, and receptors were extracted overnight at 4°C 

with constant oscillation. Insoluble material was removed by centrifugation at 13,000 × g 

for 30 min. The supernatant was incubated with HA.11 antibody at a 1:150 dilution for 

1.5 hours at 4°C with constant oscillation, followe d by the addition of 35 µL of a 50% 

slurry of protein A/G beads (pre-incubated with 0.1% BSA), and the mixture was 

incubated an additional 1.5 hours at 4°C with const ant oscillation. The beads were 

washed extensively in RIPA buffer, and bound proteins were released from the beads by 

addition of 15 µL of 2X SDS loading buffer containing 100 mM DTT. The entire sample 

was then submitted to electrophoresis on an SDS-10% polyacrylamide gel and 

fluorescent bands were detected using a Typhoon fluorescence scanner as described 

above. Fluorescence intensities of the bands were quantified using ImageJ software.  

These experiments were originally performed with SNAP-Surface Alexafluor-488 

as the green fluorophore, but these experiments were disregarded due to unacceptable 

levels of intracellular accumulation when the substrate was added to the basolateral 

compartment for 12 hours. This artifact was confirmed by confocal microscopy and was 

not detected with either SNAP-Surface 549 or SNAP-Surface 488. 

Quantification of labeled receptors - Molar quantities of protein were estimated 

using fluorescently labeled GST-SNAP proteins to create a standard curve. GST-SNAP 
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protein was labeled in vitro with SNAP-Surface 488 or SNAP-Surface 549 fluorescent 

substrate (forming GST-SNAP-ATTO-488 and GST-SNAP-DY-549, respectively), 

amounts from 11 fmol to 1.4 pmol were separated on SDS-10% polyacrylamide gels, 

and the resulting fluorescent bands were visualized using a Typhoon scanner as 

described above. We observed that the fluorescence intensity plateaued at higher 

protein concentrations and thus used least-squares nonlinear regression to fit 

rectangular hyperbolic curves to our standards. The GST-SNAP-DY-549 standard 

produced no detectable background in the green channel, while there was significant 

cross-channel background in the red channel produced by the GST-SNAP-ATTO-488 

standard.  

In order to use the standard curves to estimate the moles of receptors, we 

assumed that the protein attached to the SNAP-tag does not affect either the ability to 

bind substrate or the fluorescence quantum yield. If so, the moles of receptor labeled 

with each fluorophore (g and r in the equations below) can be calculated for each 

immunoprecipitated sample by taking measurements in each fluorescence channel and 

then solving a system of two equations after the background signal is manually 

subtracted: 

F�  �  S��g�  	 X��r� 

F�  �  S��r�  	  X��g�  

Fg and Fr are the fluorescence intensities measured in the two channels for a sample, Sg 

and Sr are the functions of the two standard curves (GST-SNAP-ATTO-488 and GST-

SNAP-DY-549, respectively, in our experiments), and Xg and Xr are the cross-channel 

background functions calculated for each fluorophore. Note that these four functions are 

of only two unknowns, g and r, the moles of each fluorophore in a sample. We used 
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Mathematica 9 (Wolfram, Champaign, IL) to evaluate this system of equations. This 

provides a solution that can be used for molar quantification of samples labeled with any 

fluorophore and filter set combination, provided that there is some resolution between 

the S and X functions. However, because Xg = 0 for the fluorophores in our experiments, 

the solution is simplified as follows (also calculated using Mathematica 9). 

If S� �
B� � g

k� 	 g
 ; X� � 0 ; S� �

B� � r

k� 	 r
 and X� �  

B� � g

k� 	 g
  

 

Then F� �
B� � g

k� 	 g
 and F� �

B� � r

k� 	 r
	

B� � g

k� 	 g
 

 

Solving for g and r yields g �
F� � k�

B� # F�

 and 

 

r � #
k��B�F�k� # F�F�k� # B�F�k� 	 F�F�k��

B�F�k� 	 B�F�k� # F�F�k� 	 B�B�k� # B�F�k� # B�F�k� 	 F�F�k�

 

 

We used this solution, with specific B and k values from our standard curves, to 

calculate the moles of each fluorophore (which correlates 1:1 with moles of receptor if 

we assume 100% binding) in each immunoprecipitated sample.  
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Results 

Overall strategy.  In order to determine the trafficking itineraries of P2Y1, P2Y2, 

and P2Y4 receptors, we developed an approach that met the following criteria: i) capacity 

to distinguish receptors already at the cell surface (and likely at steady-state) from newly 

synthesized receptors; ii) capacity to label receptors with different probes at the two 

membrane domains of polarized cells; and iii) capacity to label receptors in a stable 

manner at a single site with fast kinetics. We settled on fusing a SNAP tag domain, 

which reacts covalently with O6-benzylguanine derivatives in a 1:1 stoichiometry 

(Keppler et al., 2003), to the N-termini of the three P2Y receptors. The experimental 

design was straightforward: initially block existing cell surface receptors in a polarized 

monolayer with a non-fluorescent derivative, add different cell-impermeable fluorescent 

substrates at the two surfaces, and allow the cells to reach steady state. Importantly, 

newly synthesized receptors will be labeled with the fluorescent substrate present at the 

membrane surface to which they are initially delivered irrespective of where the 

receptors reside at steady state. 

Analysis of SNAP-HA-tagged P2Y receptors.  Each SNAP-receptor construct 

comprised a cleavable signal sequence, the SNAP-tag domain, a four amino acid linker, 

and an HA-epitope tag fused in-frame to the second amino acid of the native receptor 

(Fig. 3.1A). These constructs were cloned into the retroviral plasmid pLXSN and stably 

expressed in MDCK and 1321N1 human astrocytoma cells. Although we have not 

quantified the level of expression of these receptors, previous work from our laboratory 

showed that HA-P2Y1 receptors were expressed at ~180 fmol/mg protein, and based on 

RIA analysis, the SNAP-HA fusion proteins were expressed at similar levels. We first 

examined the steady-state distribution of the SNAP-HA receptors in polarized 

monolayers by labeling both sides of the monolayer with SNAP-Surface Alexafluor 488,  
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Figure 3.1. Design and Labeling of SNAP-HA-P2Y Rece ptors.  A) Each receptor 

construct consisted of a cleavable signal sequence, the SNAP tag, a short linker 

segment, an HA epitope, and a P2Y receptor. B) Z-stack images of polarized MDCK 

cells expressing SNAP-HA-P2Y1, SNAP-HA-P2Y2, or SNAP-HA-P2Y4 labeled with 

SNAP-Surface Alexafluor 488 and immunostained at the HA epitope. C) Z-stack images 

of polarized MDCK cells expressing SNAP-HA-P2Y1, SNAP-HA-P2Y2, or SNAP-HA-

P2Y4 pre-treated with SNAP-Surface Block, then labeled with SNAP-Surface Alexafluor 

488 and immunostained at the HA epitope. Representative images are shown in all 

cases.  

A 

B 
Anti-HA immunofluorescence SNAP-label fluorescence Merge 

SNAP-HA-P2Y1 

SNAP-HA-P2Y2 

SNAP-HA-P2Y4 

C 
Anti-HA immunofluorescence SNAP-label fluorescence Merge 

SNAP-HA-P2Y1 

SNAP-HA-P2Y2 

SNAP-HA-P2Y4 
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fixing the cells, incubating with primary HA and fluorescently labeled secondary 

antibodies, and then examining the monolayers by confocal microscopy. SNAP-HA-P2Y1 

and SNAP-HA-P2Y4 receptors were localized nearly 100% to the basolateral and apical 

surfaces, respectively, consistent with previous results for the same receptors bearing 

only an N-terminal HA-tag (Wolff et al., 2005). SNAP-HA-P2Y2 also was localized to the 

apical membrane, but perhaps less completely than previously observed for HA-P2Y2 

(Fig. 3.1B). Pretreatment with a non-fluorescent SNAP-tag substrate (C8 propanoic acid 

benzylguanine) completely abolished the SNAP-fluorophore signal, but did not block the 

binding of anti-HA antibody (Fig. 3.1C). 

To ensure that the SNAP tag did not interfere with receptor function, we 

compared the activities of SNAP-HA-P2Y receptors to those of HA-P2Y receptors 

measuring downstream signaling responses and agonist-dependent receptor 

internalization. Agonist-promoted Ca2+ mobilization responses of each receptor were 

quantified in 1321N1 cells since unlike MDCK cells, these cells do not express 

endogenous P2Y receptors that would confound interpretation (Filtz et al., 1994). As 

shown in Figure 3.2A, the responses of the two variants of each P2Y receptor were 

nearly identical. We also examined agonist-promoted internalization of the receptors 

using a cell-intact radioimmunoassay with the anti-HA antibody (Brinson and Harden, 

2001). MDCK cells expressing either SNAP-HA-P2Y or HA-P2Y receptors were treated 

with cognate agonists (100 µM ADP for P2Y1 and 100 µM UTP for P2Y2 and P2Y4) for 

times up to 60 min, and the kinetics and extent of agonist-promoted internalization were 

similar for the two variants of the three different receptors (Fig. 3.2B). Thus, the 

presence of SNAP-HA at the N-termini of the P2Y receptors does not alter their signaling 

properties, capacity to undergo agonist-promoted internalization, or steady-state 

localization in polarized   
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Figure 3.2. Activity of SNAP-HA-P2Y Receptors.  A) Calcium signaling in response to 

cognate agonists in 1321N1 cells expressing SNAP-HA-P2Y or HA-P2Y receptors. The 

graphs show mean ± SEM of representative experiments. Measurements were 

performed in quadruplicate, and the experiment was repeated three times. B) 

Internalization of SNAP-HA-P2Y or HA-P2Y receptors in response to 100 µM agonists in 

MDCK cells. These measurements were performed in triplicate and the experiment was 

repeated three times. A representative data set is shown. Curves were fit and ‘half-life’ 

calculated using least squares nonlinear regression one-phase decay. 

  

A 

B 
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monolayers. These results strongly suggest that the presence of a SNAP-HA domain 

does not alter the trafficking itineraries of the three P2Y receptors in MDCK cells. 

We purified a GST-SNAP fusion protein to assess the kinetics of labeling and to 

confirm the stability of the fluorescent label attached to the SNAP tag. Incubation of the 

fusion protein with 5 µM SNAP-Surface 488 or SNAP-Surface 549 (the same 

concentration used in the experiments described below) at 37oC resulted in essentially 

complete labeling of the protein within the first minute of exposure (Fig. 3.3A). The 

stability of the covalent labeling of the protein was determined by incubating the GST-

SNAP protein with 5 µM SNAP reagent for 30 min, dialyzing the protein to remove 

excess reagent, and then incubating the protein with cell medium at 37oC for various 

times before assessing the amount of bound label by SDS-PAGE (Fig. 3.3B). These 

data show that the fluorescent tag remains covalently attached to the SNAP enzyme for 

at least 24 hours at 37oC. 

Trafficking itineraries of P2Y receptors. Polarized monolayers of MDCK cells 

expressing SNAP-HA-P2Y1, -P2Y2, or -P2Y4 receptors were first incubated at 19oC on 

both sides of the monolayers with a non-fluorescent substrate (SNAP-Surface Block, C8 

propanoic acid benzylguanine) to block all cell surface receptors. The surface block-

containing medium was removed and the monolayers were washed with fresh medium. 

SNAP-Surface Alexafluor-488 (shown in green) then was added to the apical surface, 

and SNAP-Surface 549 (based on Dyomics DY-549; shown in red) was added to the 

basolateral surfaces. The cells were returned to 37oC and incubated for up to 12 hours. 

Receptors newly synthesized during the 12 hour incubation are labeled with fluorescent 

substrate present at the membrane surface where the receptors first appear (Figs. 3.4A, 

3.5A, & 3.6A). Importantly, the SNAP-reagents do not diffuse between the apical and 

basolateral   
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Figure 3.3. SNAP-tag Kinetics, Stability, and Membr ane Leak.  A) Binding kinetics for 

purified GST-SNAP and 5 µM SNAP-Surface 488 or SNAP-Surface 549 at 37°C. At 

each time point, samples were diluted into 3X SDS sample buffer to stop the reaction. B) 

Stability of GST-SNAP-488 or GST-SNAP-549 in MDCK growth media at 37°C. In both 

A and B, labeled proteins were separated by electrophoresis on an SDS-10% 

polyacrylamide gel and detected using a Typhoon fluorescence scanner. Fluorescence 

intensities of the bands were quantified using ImageJ software and one-phase 

exponential curves were fit using Graphpad Prism. C) Leak of SNAP-Surface Alexafluor 

488 or SNAP-Surface 549 across polarized MDCK monolayers. Apical and Basolateral 

media samples were taken during each of the time points of the experiments in Figures 

3.4 through 3.6. Fluorescence in two wavelength-filtered channels was measured using 

a Polarstar 96-well platereader.  
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compartments (<3% leak after 12 hours, Fig. 3.3C), and therefore, covalent labeling is 

membrane surface-specific. 

DY-549 fluorescence accumulated at the basolateral membrane of SNAP-HA-

P2Y1 cells within 2 hours of labeling, and the amount of labeling increased to steady-

state levels in 8 to 12 hours (Fig. 3.4A,B). These data suggest that new SNAP-HA-P2Y1 

receptors are primarily sorted intracellularly and traffic directly to the basolateral 

membrane. Very little Alexafluor-488 fluorophore accumulated during this time, although 

low levels of fluorescence were observed at later times of incubation. This fluorescence 

also was primarily at the basolateral membrane, suggesting that a secondary 

mechanism rescues mis-targeted receptors. An identical distribution of receptors at 

steady state was observed when SNAP-Surface Alexafluor-488 was added to the 

basolateral surface and SNAP-Surface 549 to the apical surface or vice versa, indicating 

that labeling was not influenced by the properties of the two substrates (Fig. 3.4B). 

These images were used to calibrate the quantification for differences in the two color 

channels as described in Materials and Methods. Quantification is shown as total apical 

vs basolateral signal with red and green colored bars to indicate contributions from each 

channel (Fig. 3.4C). 

In contrast to the SNAP-HA-P2Y1 receptor, the SNAP-HA-P2Y2 and SNAP-HA-

P2Y4 receptors were labeled equally with both SNAP-Surface Alexafluor-488 (apical) 

and SNAP-Surface 549 (basolateral) within as little as 2 hours (Figs. 3.5 & 3.6). For the 

SNAP-HA-P2Y2 receptor, the levels of Alexafluor-488 fluorescence (representing 

receptors delivered to the apical membrane) never seemed to reach steady state, and 

nearly all of these receptors remained at the apical membrane. Receptors labeled at the 

basolateral membrane with SNAP-Surface 549 increased steadily over 12 hours, and by  
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Figure 3.4. Cell Surface Delivery of SNAP-HA-P2Y 1. A) Following SNAP-Surface 

Block pre-treatment, SNAP-Surface Alexafluor 488 was applied apically and SNAP-

Surface 549 was applied basolaterally for various times to MDCK cells expressing 

SNAP-HA-P2Y1. B) SNAP-HA-P2Y1 MDCK cells at steady-state were labeled with the 

two fluorophores in both the same and reverse orientations. These images were used to 

correct for differences in the two color channels and provide a reference point for 

quantification. Representative Z-stack confocal micrographs are shown in all cases. C) 

Fluorophore accumulation was quantified using ImageJ software. Mean corrected 

average pixel density results from 6 images per time point are shown.  
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Figure 3.5. Cell Surface Delivery of SNAP-HA-P2Y 2. A) Accumulation of apical and 

basolateral fluorophores over time. B) SNAP-HA-P2Y2 MDCK cells at steady-state. C) 

Quantification of fluorescence accumulation. See Figure 3.4 legend for more detail. 
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Figure 3.6. Cell Surface Delivery of SNAP-HA-P2Y 4. A) Accumulation of apical and 

basolateral fluorophores over time. B) SNAP-HA-P2Y4 MDCK cells at steady-state. C) 

Quantification of fluorescence accumulation. See Figure 3.4 legend for more detail. 
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12 hours more of the signal was present at the apical membrane than the basolateral 

membrane. This result strongly suggests that the P2Y2 receptor is delivered to the cell 

surface in an unsorted manner and achieves its apical localization primarily through 

basolateral to apical transcytosis. SNAP-HA-P2Y4 receptors were nearly equally labeled 

with DY-549 (basolateral) and Alexafluor-488 (apical) within 2 hours and the 

fluorescence intensity increased to a maximum over 8 hours (Fig. 3.6), which also is 

consistent with delivery of the P2Y4 receptor to both membrane regions followed by 

basolateral to apical transcytosis that results in steady-state apical distribution. Almost 

all of the fluorescence (in both channels) was at the apical membrane, even at the 

earliest time point, indicating that the process of transcytosis for the P2Y4 receptor is 

much more rapid than observed with the P2Y2 receptor. 

Biochemical analysis of receptor delivery in MDCK m onolayers.  To extend 

the utility of the SNAP-tag method for analyzing the trafficking itineraries of polarized 

proteins, we also applied this technology for biochemical quantification using whole 

MDCK monolayers. Polarized monolayers (on 24 mm transwell inserts) of MDCK cells 

expressing SNAP-HA-P2Y constructs were treated similarly to the method described 

above, and then were washed, lysed and the receptors immunoprecipitated with anti-HA 

antibody as described in Materials and Methods. The immunoprecipitates were treated 

with SDS-PAGE sample buffer, separated by electrophoresis, and submitted to 

fluorescent scanning on a Typhoon imaging system. This technique has two distinct 

advantages over microscopy: 1) it eliminates any potential investigator bias, as the 

sample is an entire population of cells rather than hand-selected cell patches for 

imaging, and 2) it provides molar quantification of the receptors.  
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Figure 3.7. Biochemical Quantification of SNAP-HA-P 2Y Receptors.  A) Standard 

curve of GST-SNAP protein labeled with SNAP-Surface 549. B) Standard curve of GST-

SNAP protein labeled with SNAP-Surface 488. C) HA immunoprecipitation of SNAP-HA-

P2Y receptors from MDCK monolayers labeled with SNAP-Surface 488 in the apical 

media and SNAP-Surface 549 in the basolateral media, either at steady state or after 

surface receptor block followed by 12 hours of fluorophore accumulation. Image analysis 

and quantification were performed as described in Materials and Methods. Mean ± SEM 

of two independent experiments are shown. D) HA immunoprecipitation of SNAP-HA-

P2Y receptors from MDCK monolayers labeled with SNAP-Surface 549 in the apical 

media and SNAP-Surface 488 in the basolateral media. Quantification from a single 

experiment is shown.  
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To quantify receptor levels, we labeled the GST-SNAP protein in vitro with the 

same fluorescent substrates used in the immunoprecipitation experiments. The reaction 

mixtures were then separated by SDS-PAGE and scanned on the Typhoon imager (at 

the same settings as the immunoprecipitates) to produce standard curves for each 

fluorophore (Fig. 3.7 A,B).  

MDCK monolayers expressing the SNAP-HA-P2Y receptors were pretreated with 

SNAP-Surface Block and then were labeled for 12 hours at the apical and basolateral 

surfaces with SNAP-Surface 488 (based on ATTO-488) and SNAP-Surface 549, 

respectively. This approach allowed quantification of the mass of the three SNAP-HA-

P2Y receptors from the polarized surfaces of monolayers at steady state as well as 

quantification of the accumulation of new, fluorophore-labeled receptors at each surface 

over the 12-hour incubation period (Fig. 3.7C). Results from this experiment correlate 

well with the results from confocal microscopy. SNAP-HA-P2Y1 receptors were labeled 

to a much higher level with the basolateral (SNAP-Surface 549, red) fluorophore than 

with the apical (SNAP-Surface 488) fluorophore, both at steady state (0.16 ± 0.03 fmol 

DY-549 vs 0.05 ± 0.01 fmol ATTO-488) and after block + 12 hour accumulation (0.18 ± 

0.002 fmol DY-549 vs 0.06 ± 0.02 fmol ATTO-488). In contrast, whereas SNAP-HA-P2Y2 

and SNAP-HA-P2Y4 receptors were more strongly labeled with the apical fluorophore 

(SNAP-Surface 488) at steady-state (0.29 ± 0.02 fmol ATTO-488 vs. 0.10 ± 0.03 fmol 

DY-549 for SNAP-HA-P2Y2 and 0.16 ± 0.02 fmol ATTO-488 vs. 0.02 ± 0.006 fmol DY-

549 for SNAP-HA-P2Y4), both receptors showed nearly equivalent labeling with the two 

different fluorophores in the block + 12 hour accumulation samples (0.17 ± 0.001 fmol 

ATTO-488 vs. 0.26 ± 0.14 fmol DY-549 for SNAP-HA-P2Y2 and 0.19 ± 0.004 fmol ATTO-

488 vs. 0.14 ± 0.02 fmol DY-549 for SNAP-HA-P2Y4). These results again are consistent 

with direct delivery to the basolateral membrane of the P2Y1 receptor, and random 
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delivery of the P2Y2 and P2Y4 receptor followed by basolateral to apical transcytosis. To 

ensure that the labeling was not due to an artifact of the individual fluorescent 

substrates, we repeated the experiment with the apical and basolateral fluorophores 

reversed (Fig. 3.7D), and the results were very similar.   
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Discussion 

Historically, the experimental approaches used to address sorting mechanisms 

have suffered from significant limitations. The earliest experiments to distinguish 

between direct delivery and transcytosis relied on metabolic labeling of newly 

synthesized proteins with [35S]methionine combined with biotin labeling at either the 

apical or basolateral surface. For example, Wozniak and Limbird showed that α2A and 

α2C adrenergic receptors are targeted directly to the basolateral membrane, while α2B 

receptors are delivered to the cell membrane unsorted, then enriched at the basolateral 

membrane (Wozniak and Limbird, 1996). While straightforward, this technique relies on 

high expression levels (α2 receptors were expressed at 2-25 pmol/mg protein; (Wozniak 

and Limbird, 1996)), at which saturation of some sorting mechanisms may occur 

(Marmorstein et al., 2000;Matter et al., 1992), and slow enough rates of transcytosis to 

allow detectable levels of protein at the non-enriched surface. Also, this technique lacks 

any direct demonstration that proteins are being moved from one membrane surface to 

the other rather than being mis-targeted, internalized and degraded. 

Using a different approach, Polishchuk et al. (Polishchuk et al., 2004) showed by 

confocal microscopy that a GPI-anchored YFP construct was dependent on a 

transcytotic pathway by inhibiting apical delivery with a basolateral application of tannic 

acid, a cross-linking agent that prevents vesicle fusion. However, these experiments are 

controversial and have been difficult to reproduce, with a subsequent study coming to 

the opposite conclusion (Paladino et al., 2006). This approach is also highly invasive, 

and the effects of tannic acid beyond those on vesicle fusion are unknown. 

More recently, Hua et al. (Hua et al., 2006) demonstrated that Ng-Cam-GFP, but 

not GPI-anchored YFP, was transcytosed from the basolateral to the apical membrane 

using an assay that involved binding of fluorescently labeled antibody to the protein in 
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question at the basolateral compartment, and subsequent movement of the fluorescent 

antibody to the apical membrane (Hua et al., 2006). This approach eliminates many of 

the issues highlighted above, but requires complex image analysis and suffers from 

limited temporal resolution due to the time necessary for antibody labeling. Moreover, 

unpublished experiments from our lab showed that labeling of basolateral receptors (e.g. 

the P2Y1 receptor) with anti-HA-Ab followed by 125I-labeled secondary antibody in intact 

monolayers on a transwell insert was markedly reduced compared to apical receptors 

(e.g. the P2Y2 receptor). These results were not consistent with the distributions 

revealed by fluorescent anti-HA Ab binding in fixed and permeabilized monolayers (Fig. 

1B), suggesting that diffusion of antibodies into the basolateral space between cells is 

limited. Finally, this approach cannot be done on the biochemical level due to the poor 

efficiency of transfection in polarized monolayers. 

With these limitations in mind, we report here the development of a 

straightforward method using the commercially available SNAP tag to determine how 

polarized receptors arrive at their steady-steady location in epithelial cell monolayers. 

This method was used to investigate the trafficking itineraries of three P2Y receptors. 

Our results indicate that the P2Y1 receptor is delivered directly to the basolateral 

membrane, while P2Y2 and P2Y4 receptors are delivered randomly and basolateral 

receptors are then transcytosed to the apical surface. The SNAP tag method also 

provides biochemical quantification of delivery. Its salient advantages suggest that it can 

supplement or supplant other methods that are more problematic or require expensive 

equipment or software. 

Validation of the experimental constructs for these experiments was an important 

consideration, as the SNAP-tag adds significant bulk to the extracellular N-terminus of 

the receptors. All three receptor constructs showed normal agonist-promoted signaling 

and internalization, suggesting that the SNAP-tag does not interfere with these 
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processes. However, we did observe that the SNAP-HA-P2Y2 construct was somewhat 

less polarized at steady state than we had previously reported for the HA-P2Y2 receptor 

(Wolff et al., 2005). It is unlikely that overexpression causes the decreased polarization 

of the SNAP-HA-P2Y2 receptor, as radioimmunoassays showed similar expression 

levels to the HA-P2Y2 receptor, which is sorted normally. Instead, the less robust 

targeting is potentially due to the presence of the targeting signal of the P2Y2 receptor in 

the 1st extracellular loop of the receptor (Qi et al., 2005). We surmise that the bulk of the 

SNAP-tag domain causes steric hindrance to the P2Y2 receptor targeting signal, 

reducing its efficiency to direct transcytosis. Therefore, any discussion of the P2Y2 

receptor signal based on these experiments must have the caveat that the results may 

be influenced by the presence of the tag itself. In contrast, the SNAP-HA-P2Y1 and 

SNAP-HA-P2Y4 receptors displayed no problems in targeting, and consistent with our 

thinking, the targeting signals are located on the cytoplasm side of these GPCR and 

would not be hindered by the N-terminal tag. 

A concern specific to the study of P2Y receptor trafficking is agonist-induced 

internalization caused by the autocrine release of nucleotides. As our experiments 

quantify the net result of all trafficking of a receptor, excessive agonist-induced 

internalization caused by manipulations that induce nucleotide release could affect the 

observed receptor distributions. To minimize this possibility, all experiments were carried 

out in the presence of apyrase, an enzyme that rapidly converts nucleoside di- and 

triphosphates into nucleoside monophosphates, which do not activate P2Y receptors. 

Local concentration spikes of nucleotide within the unstirred layer (Joseph et al., 2003) 

could still lead to some receptor activation, but extended activation should be prevented. 

Indeed, a much higher incidence of labeled intracellular vesicles occurred in experiments 

carried out in absence of apyrase (data not shown). 
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Despite the utility of this method, some experimental protocols proved 

intractable. One goal was to label and monitor intracellular receptors and evaluate their 

intracellular movement in polarized monolayers using cell-permeable versions of the 

SNAP reagents. Although these reagents successfully labeled receptors in nonpolarized 

cells, they were highly inefficient when labeling receptors in fully polarized cell 

monolayers. Specifically, we attempted labeling with SNAP-Cell-TMR Star and SNAP-

Cell-Oregon Green. Additionally, the cell-permeable blocking reagent, SNAP-Cell-Block 

(bromothenylpteridine) did not efficiently wash out of polarized cells, preventing further 

labeling. 

We also attempted to directly determine the rates of transcytosis by performing 

pulse-chase experiments using the SNAP-Surface reagents, but the signal-to-noise ratio 

was too low for meaningful quantification. The SNAP-HA-P2Y4 receptor also was 

particularly problematic since a 30 minute pulse at 37°C from the basolateral side was 

sufficient time for receptors to accumulate at the apical membrane, and thus a longer 

pulse time to increase the signal was not an option. Unfortunately, pulsing at a restrictive 

temperature provided too little signal for quantification. Nonetheless, we anticipate that 

these types of experiment are still viable with this technology in a system with higher 

protein expression levels or slower turnover rates. 

The trafficking itineraries of the P2Y receptors were somewhat unexpected. We 

speculated that because the P2Y1 receptor contains a cryptic apical signal (Wolff et al., 

2010), it might take an indirect path to the basolateral membrane, whereas the P2Y2 and 

P2Y4 receptors, which contain solitary sorting signals, might be directly delivered to the 

apical membrane. However, the cryptic apical signal in the P2Y1 receptor plays no 

obvious role, as nearly all of the SNAP-HA-P2Y1 receptors first appeared at the 

basolateral surface; strongly suggesting that these receptors were sorted intracellularly 

and delivered directly to the basolateral membrane. We did observe that a small fraction 
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of P2Y1 receptors were initially delivered to the apical membrane, but these mis-targeted 

receptors rapidly accumulated at the basolateral membrane, suggesting the existence of 

an additional scavenging mechanism to redirect wayward receptors to the correct 

membrane surface. The small portion of receptors initially delivered to the apical 

membrane may be a normal part of the receptor’s cellular trafficking, due to the cryptic 

apical signal present in the main body of the P2Y1 receptor, or to saturation of the 

intracellular vesicle sorting machinery. In contrast to the P2Y1 receptor, the SNAP-HA-

P2Y2 and SNAP-HA-P2Y4 receptors appeared in roughly equal levels at both membrane 

regions, but receptors at the basolateral membrane were redirected to the apical 

membrane, where they reside at steady state. This suggests that these two receptors 

contain transcytosis signals and are not sorted as part of their vesicular delivery, but 

rather through selective retention and/or active loading of transcytotic vesicles. 

The assays described here should be highly applicable for the discovery of 

mechanisms of polarized sorting. For example, now that we have evidence for 

intracellular sorting of the P2Y1 receptor it will be interesting to determine if its sorting 

signal is dependent on clathrin adapter proteins, as are proteins with NPXY and YXXΦ 

basolateral sorting motifs (Matter et al., 1992;Ohno et al., 1995) (the sorting signal in the 

P2Y1 receptor does not contains either of these two motifs). Additionally, the covalent 

fluorophore attachment technology can be further exploited to explore the details of 

vesicular trafficking. An altered SNAP-tag (dubbed CLIP) is available that is selective for 

benzylcytosine derivatives and can be expressed and labeled concurrently with SNAP-

tagged proteins (Gautier et al., 2008). This type of system could allow for a very precise 

examination of the vesicular sorting and delivery system, simply by observation of when 

and where labeled cargo proteins become separated.  

Proper apical vs. basolateral protein sorting is critical for epithelial cell function. 

For example, reversed polarity trafficking of the Na,K-ATPase and other transmembrane 
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proteins drive the symptoms of polycystic kidney disease (Wilson, 2011). Still, many of 

the sorting mechanisms involved are unknown. One reason is that there appears to be a 

plethora of specialized and individualized mechanisms for protein sorting. For example, 

our results indicate that the cryptic apical signal of the P2Y1 receptor plays no role in 

sorting, as the receptor is delivered directly to the basolateral membrane. This is not 

because the signal is non-functional, since deletion of the C-terminal basolateral signal 

results in apical sorting of the receptor (Wolff et al., 2010). Additionally, the P2Y2 

receptor is sorted to the apical membrane by this same signal sequence (Qi et al., 

2005), and our results suggest that the apical signal is active as a transcytosis signal at 

the basolateral membrane. These results further suggest that the P2Y1 receptor 

basolateral targeting sequence not only directs its initial, vesicular delivery, but also 

inhibits the basolateral to apical transcytosis signal, as basolaterally labeled receptors 

were not observed at the apical surface. This is a feature not previously observed for 

any sorting signal, and is one more level of complexity that must be considered in order 

to fully understand the mechanisms that underlie cell polarity.  



 

 

 
 
 
 
 

Chapter 4: Conclusions and Future Directions 

Conclusions 

The results of our original data presented here are focused on two related 

aspects of P2Y receptor trafficking in a polarized epithelial cell line. In the first project 

(Chapter 2), we delimited and characterized the amino acid sequence that is both 

necessary and sufficient for the apical targeting of the P2Y4 receptor. In the second 

project (Chapter 3), we developed a novel and straightforward method to determine the 

sorting mechanism, i.e. direct delivery or random delivery and transcytosis, and used 

this method to determine the sorting mechanisms of P2Y1, P2Y2, and P2Y4 receptors. 

The first set of experiments (Chapter 2) delimited the apical-targeting signal of 

the P2Y4 receptor to a 23-amino acid sequence, CGGGKPQPRTAASSLALVSLPED, 

within its cytoplasmic C-terminal tail (DuBose et al., 2013). Furthermore, our results 

show that only the four hydrophobic residues (three L and one V) are critical to the 

signal’s function, with a lesser contribution of two basic residues (one each K and R). 

Several interesting features of the targeting signal were discovered during the course of 

these experiments. First, and most strikingly, the entire sequence can be reversed N->C 

without any loss of apical localization. This had only been observed previously for the 

basolateral targeting signal of the P2Y1 receptor (Wolff et al., 2010), and the underlying 

mechanisms behind such flexible targeting signals are still unclear. Second, the signal 

functions autonomously, as it was capable of directing a chimeric BK2/Y4 C-tail receptor 

to the apical membrane and even overcoming the basolateral-targeting signal present in 

the main body of the P2Y12 receptor. The signal was determined to be unique to the 
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P2Y4 receptor, although with so few critical amino acids, other proteins may well use the 

same mechanism. Lending further support to their critical nature, the key hydrophobic 

residues are well conserved among all mammalian species for which sequence data 

were available. 

Our results from the second set of experiments validate and utilize a method to 

determine the trafficking itinerary of P2Y receptors using fluorescent SNAP-tag probes. 

In order to use this method, cell lines were generated expressing the P2Y receptors with 

the SNAP-tag fused to the extracellular N-terminus. Cell surface receptors at steady-

state in a fully polarized monolayer were blocked with a non-fluorescent reagent, and 

newly synthesized receptors were allowed to be transported to the cell surface, where 

they were exposed to different fluorophores at either the apical and basolateral 

membrane. Because there is a single, covalent binding site on each SNAP-tag, only the 

first fluorophore that a receptor is exposed to will react and remain bound regardless of 

where it moves within the cell. A combination of confocal microscopy and 

immunoprecipitation with fluorescence detection were used to determine if receptors are 

delivered directly or via transcytosis and to estimate the molar quantity of receptors at 

each membrane region. 

The results from these experiments indicated that the P2Y1 receptor is delivered 

directly to the basolateral membrane, while P2Y2 and P2Y4 receptors are delivered 

unsorted and eventually reach the apical membrane via selective transcytosis. 

Quantification of immunoprecipitated receptors indicated that between 0.2 and 0.4 pmol 

of each receptor were expressed per 24 mm transwell, or between 120,000 and 240,000 

molecules per cell. 
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Future Directions 

The most obvious extension of this project is the examination of the remaining 

P2Y receptor targeting signals and trafficking itineraries. Thus far, we have defined the 

targeting signals for four of the P2Y receptors: P2Y1 (Wolff et al., 2010), P2Y2 (Qi et al., 

2005), P2Y4 (DuBose et al., 2013), and P2Y6 (unpublished results). Remaining are four 

basolateral signals, one in the C-tail of the P2Y11 receptor, the two basolateral signals of 

the P2Y12 receptor (one in the C-terminal tail and one in the main body of the receptor), 

and one in the C-tail of the P2Y14 receptor (unpublished results). 

Additionally, we should be able to use the method developed in Chapter 3 to 

determine the trafficking itineraries of the remaining P2Y receptors. The P2Y6 receptor 

will almost certainly follow the same itinerary as the P2Y2 receptor, as they share a 

common sorting signal (unpublished results). Because I have shown that the P2Y14 

receptor basolateral-targeting signal is similar in its properties to that of the P2Y1 

receptor targeting signal (unpublished results), it would be very surprising if they did not 

share a common delivery mechanism. The P2Y11 and P2Y12 receptor trafficking 

itineraries remain complete unknowns, though it will be particularly interesting to learn if 

one of the two P2Y12 receptor basolateral-targeting signals is responsible for direct 

targeting and the other for transcytosis, or if they are completely redundant signals. 

Future experiments should also incorporate the alternate SNAP-tag (dubbed 

CLIP-tag) that is selective for benzylcytosine derivatives and allows for coexpression 

and concurrent labeling alongside a SNAP-tagged protein (Gautier et al., 2008). A very 

simple experiment would be to determine if the P2Y2 and P2Y4 receptors follow the 

same vesicular path during their basolateral to apical transcytosis. So long as differently 

colored fluorophores are used for the benzylguanine and benzylcytosine reagents, the 

two proteins could be tracked through the same cell, potentially in real-time if sufficient 
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signal-to-noise ratios could be maintained. If we could solve the permeability issues 

described in Chapter 3, this technique could also be used to evaluate the initial 

biogenesis of the receptors. 

Beyond the limits of our P2Y model, we could apply these techniques to the 

many transmembrane proteins involved in epithelial pathologies. For example, it could 

help determine the mechanism of basolateral targeting of the V2R receptor, another 

GPCR, in kidney epithelia, as well as the mutant forms (which fail to accumulate properly 

at the basolateral membrane), responsible for X-linked diabetes insipidus (Oksche et al., 

1996). 

These techniques should also be useful for non-GPCRs, such as the CFTR 

chloride channel, which can harbor any one of several mutations that cause cystic 

fibrosis, the most common fatal autosomal recessive disease among Caucasians 

(Barrett et al., 2012). Wild type CFTR accumulates at the apical membrane of epithelial 

cells, but its trafficking itinerary is not well defined.  Furthermore, CFTR contains both 

dilucine and tyrosine basolateral targeting signals and C-terminal truncated proteins 

reside at the basolateral membrane (Kleizen et al., 2000). Although the most common 

mutation, ∆F508, results in ER retention of CFTR, there are a group of mutations that 

allow cell-surface delivery, but the protein is unstable at the apical membrane (Haardt et 

al., 1999). Furthermore, when the ∆F508 mutant is rescued by reduced temperature 

processing, it too is destabilized at the apical membrane (Sharma et al., 2004). Thus, 

improved tools to analyze trafficking of CFTR selectively at the apical membrane may 

help to elucidate the underlying deficiencies. 

Perhaps the most relevant disease state to our apical versus basolateral 

targeting studies is polycystic kidney disease (PKD). PKD is a group of genetic diseases 

characterized by the formation of large, fluid-filled cysts instead of normal kidney tubules 

(Wilson, 2011). These malformations appear to be driven by the reversed-polarity sorting 
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of a number of proteins, including EGF receptors, Na+/K+ATPase, E-cadherin, integrins, 

and the NKCC1 cotransporter. However, a number of other polarized proteins are sorted 

normally, including the H+-ATPase, CFTR, and Aquaporin 1 and 2 water channels. The 

mechanisms underlying this partial breakdown of cell polarity remain largely unknown.  

If combined with an effective gene transduction system, our SNAP-tag method 

could possibly be applied to study protein trafficking within an intact kidney. By 

cannulating the renal artery, we could circulate the basolateral dye through the entire 

kidney and use the leaky endothelium to our advantage to deliver the dye to the 

basolateral side of the tubule epithelia. Meanwhile, the tubules themselves could be 

filled with the apical dye. Maximum labeling times would likely be much shorter than in 

cell culture, as the kidney’s normal function would quickly mix the two dyes. However, 

the much higher expression levels of these proteins of interest (relative to P2Y 

receptors) would likely still allow for sufficient fluorescent signal for microscopy of tissue 

sections and biochemical analysis. In this way, the same construct could be expressed 

and observed under normal kidney function or during polycystic pathogenesis, either 

from transgenic models (Nagao et al., 2012) or in human kidneys removed from PKD 

transplant patients. 

Thus, in addition to being an interesting and physiologically important set of 

polarized proteins in their own right, the P2Y receptors have provided an excellent model 

for the development of techniques for apical versus basolateral protein targeting. 
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