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ABSTRACT 

LESHARA M FULTON: Immune Mechanisms Important for the Pathogenesis of Acute 
Graft-versus-Host Disease 

 (Under the direction of Jonathan Serody) 

 

Allogeneic stem cell transplantation is a standard treatment for patients with high-risk 

relapsed leukemia, aplastic anemia, congenital bone marrow failure syndromes, and relapsed 

or recurrent lymphoid malignancies.  Over 20,000 allogeneic transplants are conducted 

annually worldwide, confirming its effectiveness as a treatment for patients with otherwise 

lethal malignancies.  Cure rates range from 15-80% depending on preexisting conditions and 

diagnoses. Patients receive high dose chemotherapy to eliminate malignant cells and allow 

engraftment of donor cells. However, this intense treatment regimen leaves patients 

vulnerable to infections, relapse, and acute graft-versus-host disease (aGvHD). 

aGvHD is a disease characterized by selective epithelial damage to target organs.  

Complications from aGvHD result in increased morbidity and mortality in transplant 

recipients.  aGvHD is initiated by mature CD4+ and CD8+ T cells present in the stem cell 

inoculum.  These donor T cells replenish host T cell immunity and promote engraftment.  

Conversely, damage to target tissue, predominantly the skin, liver, and gastrointestinal tract, 

in aGvHD is caused by immunologically functional donor T lymphocytes that respond to 

genetic disparities in host antigens. 
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Our laboratory has focused on the migration of T cells in aGvHD pathogenesis.  

Coronins are a family of seven-actin binding proteins found in all eukaryotic organisms. 

Functional data in non-mammalian systems have shown a role for Coronins in cell migration, 

motility, and cytokinesis.  The most well studied of the proteins, Coronin 1A (Coro 1A) is 

expressed primarily in hematopoietic cells and the focus of our studies. 

Here, we demonstrate a requirement for Coro 1A in the pathogenesis of acute GvHD.  

Delayed entry and impaired egress from secondary lymphoid tissues were observed in T cells 

deficient in Coro 1A.  Decreased expression of the C-C chemokine receptor type 7 (CCR7) 

and the signaling lipid receptor, sphingosine 1 phosphate receptor 1 (S1Pr1) were detected in 

Coro 1A deficient T cells.  Egress to target aGvHD was limited by Coro 1A deficient cells 

due to accumulation in gastrointestinal lymph nodes.  These data suggest that therapeutic 

approaches that prevent entry and egress from secondary lymphoid organs may effective 

treatment options for acute GvHD.  
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CHAPTER ONE 

INTRODUCTION TO ACUTE GRAFT VERSUS HOST DISEASE AND CORONINS 

 

1.1 Introduction to Transplantation 

Overview of Graft versus Host Disease 

In the 1950s a syndrome referred to as “runt disease” or “wasting disease” was described 

in mice following ablative radiation treatment and bone marrow or splenic transfer.  

Introduction of immunologically functional cells after radiation treatment induced the 

development of “runt disease”, characterized by weight loss, hunched posture, and 

diarrhea[1].  The development of this graft-versus-host response was independent of age or 

gender however scientists noted that immunological disparity also caused disease 

progression[1]. 

In the mid 1960s Billingham developed three requirements for the development of graft-

versus-host disease (GvHD): immunologically functional cells must be present in the graft, 

the recipient must contain tissue antigens that are not found in the donor, and the recipient 

must be incapable of mounting an immune response[2].  Genetic disparity between the donor 

and an immune deficient recipient initiates an immune response by donor cells.  Cells of the 

adaptive immune system, specifically T cells, are the major contributor for this immune 

response during GvHD.  These donor T cells are activated after interacting with host innate 
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immune cells that act as antigen presenting cells.  Host antigen presenting cells are often 

dendritic cells but can also include macrophages, B cells, and some epithelial cell subsets[3].   

Genetic differences between host and recipient are recognized by T cells via presentation 

of peptides by major histocompatibility complex (MHC) antigens.  These differences can 

exist at the level of the MHC protein (major mismatch) or in the type of peptides presented 

by the MHC protein (miHA) [4].  MHC presentation occurs through the MHC class I or 

MHC class II pathways of antigen presentation.  MHC class I proteins present primarily self-

proteins that are cytosolic and transported to the surface for presentation.  Conversely 

extracelluar antigens require endocytosis or phagocytosis presentation by MHC class II 

proteins.  MHC class II proteins are presented by professional antigen presenting cells that 

include dendritic cells, macrophages, and B cells[3]. 

The involvement of T cells in the pathogenesis of GvHD is well known.  Suppression of 

helper T cell expansion by regulatory T cells has been shown to inhibit GvHD 

development[5,6].  However, which helper T cell populations are essential for the 

development of GvHD remains unclear.  With the constant identification of new T cell 

subsets, the complexity of a seemingly simple question continues.   

 

Allogeneic Stem Cell Transplantation 

Allogeneic stem cell transplantation (allo-SCT) is a common treatment for malignant and 

non-malignant diseases including relapsed or high-risk acute leukemia, recurrent low-grade 

lymphoma, aplastic anemia, and genetic bone marrow failure syndromes[7-9].  Over 20,000 

allogeneic transplants are conducted annually worldwide, confirming its effectiveness as a 

treatment for patients with otherwise lethal malignancies[10,11].  Cure rates range from 15-
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80% depending on preexisting conditions and diagnoses[10].  Patients receive high dose 

chemotherapy to eliminate malignant cells and allow engraftment of donor cells.  Anti-tumor 

properties that decrease the probability of relapse are mediated by immune cells infused with 

donor bone marrow or stem cells[12].  However, this intense treatment regimen leaves 

patients vulnerable to infections, relapse, and acute graft-versus-host disease (aGvHD)[13].  

 

Acute Graft-versus-Host Disease: Phases and Treatments 

aGvHD, a disease characterized by selective epithelial damage to target organs, occurs in 

30-100% of allogeneic transplant patients[14].  Complications from aGvHD result in 

increased morbidity and mortality in transplant recipients.  aGvHD is initiated by mature 

CD4+ and CD8+ T cells present in the stem cell inoculum.  These donor T cells replenish host 

T cell immunity and promote engraftment[15].  Conversely, damage to target tissue, 

predominantly the skin, liver, and gastrointestinal tract, in aGvHD is caused by 

immunologically functional donor T lymphocytes that respond to genetic disparities in host 

antigens[16].  T lymphocytes are activated following interactions with host antigen 

presenting cells (APCs) in lymphoid tissue[17,18].  Following T cell activation there is 

migration of these cells to GvHD target organs where they mediate tissue destruction 

(Fig.1.1) [19,20].  

Attempts to control aGvHD have been directed at blocking T cell proliferation and/or 

effector cytokine production.  Current drugs used to prevent or treat aGvHD include the 

calcineurin inhibitor cyclosporine, which mitigates aGvHD by inhibiting expression of 

NFAT-specific proteins including IL-2 and IL-2R during the activation phase and prednisone 

which is cytolytic to T cells and blocks cytokine production[21].  Although effective for 
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some patients, the variability in disease symptoms and the substantial side effects associated 

with these treatments, especially glucocorticoids, emphasizes the need for more effective 

treatments.  
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1.2 T Cell Function 

Originating from stem cells in the bone marrow, T cells are an important aspect of cell-

mediated immunity.  There are multiple types of T cells which can be categorized into three 

subgroups: cytotoxic T cells, helper T cells, and regulatory (or suppressive) T cells.  

Cytotoxic T cells, also known killer T cells or CD8+ T cells, are responsible for the 

elimination of intracellular pathogens.  Damage and destruction of pathogens is carried out 

through the elaboration of cytotoxins and cytokines including granzymes, perforin and 

interferon gamma.  Helper T cells also recognize foreign antigens, however they do not 

typically possess cytolytic ability.  The main function of helper T cells is to assist other 

immune cell during an adaptive immune response.  They are involved in the generation of 

IL-2 which induces the proliferation of cytotoxic T cells and in B cell antibody class 

switching. 

Regulatory T cells (Tregs) are essential for maintaining homeostasis amongst immune 

cells.  This has been shown both clinically in patients with the disease immunodysregulation 

polyendocrinopathy enteropathy X-linked syndrome (IPEX) who have mutations in the 

critical transcription factor FoxP3 that is generated by Tregs and in animal models using 

genetic approaches to ablate the function of FoxP3 in which widespread autoimmune disease 

occurs[22-24].  Based on these data the primary function of Tregs was originally defined as 

maintenance of self-tolerance to prevent autoimmunity[25].  However, continued research 

has extended the list of Treg functions to include allergy suppression[26], immune response 

regulation[27], and induction of oral tolerance[28].  
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1.3 T Cell Subsets 

T Helper Type 1 And T Helper Type 2 Cells 

Prior to the 18th century little was known about the blood and lymph.  This ignorance 

sparked the interests of a young scientist by the name of William Hewson.  During the late 

1700s Hewson observed ‘colorless cells’ in the thymus that were rare in comparison to the 

population of flat, red cells[29].  Hewson believed that these ‘colorless cells’ were the 

precursors to the more populous red cells.  However, with the discovery of stains, a 

distinction between red cells and white cells was confirmed.  Furthermore the white cell 

population was found to be heterogeneous, containing many varieties of immune cells, 

amongst them were thymic derived cells involved in cellular immunity.  These cells were 

distinguished from B cells by the absence of antibody secretion[30].  T cells were further 

divided into cytotoxic and helper T cells by surface marker expression[31]. 

Worked published in 1986 by Mosmann et al. divided this T cell population into two 

distinct groups[32]. T helper type 1 (Th1) cells produced interferon gamma (IFN-γ), 

interleukin 2 (IL-2), IL-3, and granulocyte macrophage colony-stimulating factor (GM-CSF).  

While T helper type 2 (Th2) cells also secrete IL-3 they were distinguished from Th1 cells by 

the production of B cell stimulating factor 1, mast cell growth factor 2, and T cell growth 

factor 2[32].  Later RNA hybridization and monoclonal antibodies were used to show that 

Th2 cells also generated IL-4 and IL-5[33].  Initially the differentiation of Th1 and Th2 cells 

from naïve CD4+ T cells was thought to be largely dependent on IL-12 and IL-4 

respectively[34].  Further examination revealed an IFN-γ positive feedback looped that 

introduced T box transcription factor (TBX21) as the transcription factor required for the 
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generation of Th1 cells[35].  Th2 differentiation however, was dependent on the T cell 

specific transcription factor GATA-3[36] (Fig 1.2).  

Until relatively recently it was thought that Th1 and Th2 cells were the only CD4+ T 

helper cell lineages.  However, in 2005 a novel T cell population distinct from both Th1 and 

Th2 cells was identified[37].  These cells term Th17 cells are distinct in cytokine secretion 

and requirements for differentiation. 

 

T Helper 17 Cells 

The idea that other T cell lineages aside from Th1 existed was questioned when mice 

unable to produce IFN-γ or lacking other molecules involved in Th1 differentiation such as 

IL-12p35, IL-12 receptor β, or IL-18 developed more severe disease than their WT 

counterparts[38-40].  In 2000 researchers investigating IL-6 homologs identified a new 

cytokine chain p19, which would later be named IL-23, that formed heterodimers with the 

p40 subunit of IL-12[41].  Using an experimental autoimmune encephalomyelitis model 

researchers demonstrated that IL-23 not IL-12 was important for disease manifestations[42].  

More importantly IL-23 was shown to generate and expand IL-17 producing cells that could 

induce disease when adoptively transferred[43].  This research and others lead to the 

proposal of Th17 cells as a novel T helper subset distinct from Th1 and Th2[37,44].  The 

differentiation of Th17 cells is dependent on multiple factors.  In mice differentiation to Th17 

cells require transforming growth factor β (TGF-β), a potent inhibitor of Th1 and Th2 

cells[45,46], along with IL-6, IL-21, and in some cases IL-1β[47].  In addition to these 

cytokines, expression of Th17 cells is dependent on retinoid-related orphan receptor γt 

(RORγt) [48,49].  The requirement for RORγt in Th17 differentiation was determined as 



	
   8	
  

mice reconstituted with RORγt deficient bone marrow cells had impaired Th17 

differentiation[50].  Although RORγt is important for Th17 cell differentiation a close family 

member, RORα, has similar functions to RORγt.  RORα is selectively expressed on T cells 

and can also induce the transcription of IL-17A and IL-17F[49].  The transcription factor 

signal transducer and activator of transcription 3 (STAT-3) regulates the expression of 

RORα and RORγt[51].  Thus both the cooperation of the ROR transcription factors and 

STAT3 are required for Th17 cell differentiation. 

Th17 cells are responsible for clearance of pathogens that require a massive inflammatory 

response for which Th1 or Th2 immune responses are not adequate.  Gram positive, Gram 

negative, fungi-like, and of course tissue inflammation all trigger robust Th17 responses[52-

54].  The involvement of Th17 cells in disease has been linked to their secretion of the pro-

inflammatory cytokines IL-17A, IL-17F, IL-21, IL-22, and TNF[55,56] (Fig 1.2).  

Additionally Th17 cells are involved in the generation of chemokines that recruit neutrophils 

to mucosal surfaces[57,58].  Experimental models and human studies have implicated Th17 

cells in autoimmune diseases, transplantation reactions, tumor development, and allergy.  

 

T Helper 22 Cells 

Interleukin 22 (IL-22) was originally thought to be a Th1 associated cytokine[59].  

However its expression in IL-17 producing cells linked it with Th17 cells.  More recently two 

independent groups analyzing patients with psoriasis and atopic dermatitis identified a T cell 

population in human samples that produced IL-22 but not IL-17 or IFN-γ[60,61].  These cells 

were further classified by their expression of the skin homing receptors C-C chemokine 

receptor type 6 (CCR6), CCR4, and CCR10.  The production of IL-22 correlated with the 
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expression of CCR10, while higher IL-17 production was seen in the absence of CCR10, 

distinguishing Th22 cells from Th17 cells[60].  Expression of IL-22 by Th17 cell is highly 

dependent on the transcription factor RORγt.  However, the expression of RORγt was 

absence in this newly discovered population[61]and the aryl hydrocarbon receptor (AHR), a 

transcription factor that may be associated with IL-22 production, was implicated as a 

regulator of Th22 cells[60].  Distinguishing Th22 cells from Th17 cells, Th22 cells produce 

chemokine (C-C motif) ligand (CCL7) and CCL15 while CCL20 is found on Th17 cells[62].  

Furthermore IL-6 and TNF were also critical for the differentiation of Th22 cells[60].  The 

transcription factors baconuclin 2 (BCN2) and foxhead box protein O4 (FOXO4) were 

expressed at high levels in Th22 clones suggesting the involvement of multiple transcription 

factors in the differentiation of Th22 cells[60]. 

In addition to IL-22 Th22 cells also produced the proinflammatory cytokines IL-10 and 

TNF.  Th22 cells have been implicated in numerous diseases including Rheumatoid arthritis, 

Crohn’s disease, and eczema[56,63,64]. 

 

Regulatory T Cells  

Regulatory T cells (Tregs) were first identified as immune suppressors in the 1970[65].  

The lack of markers to identify regulatory T cells as a distinct T cell subset caused many 

researchers to question their existence.  In the mid 1990s Sakaguchi identified the alpha 

chain of the IL-2 receptor, CD25, as a marker for Tregs[66].  Later researchers identified the 

forkhead box transcription factor, Foxp3, gene in scurfy mice that displayed defects in 

autoimmune disease due to uncontrolled T cell proliferation [24].  The expression of Foxp3 

was linked to regulatory T cells and used as a primary marker for this cell population. 
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Conventional Tregs are now identified by the expression of CD4, CD25, and Foxp3.  More 

recently a number of Treg subsets have been identified with varying markers for 

identification.  The current list of Treg populations includes inducible Tregs, natural Tregs, type 

1 regulatory T cells, and T helper 3[67].  CD8+ regulatory T cells have also demonstrated 

suppressive function similar to conventional CD4+ Tregs[68].  Although Tregs were not the 

focus of these studies, our group and others have demonstrated their importance in aGvHD in 

murine models and clinically[6,69,70]. 

 

T Cells and aGvHD 

Patients and murine models of aGvHD have shown high levels of the Th1 cytokines, 

TNF and IFN-γ, causing some researchers to believe that Th1 cells mediate aGvHD, 

specifically tissue pathology[21,71].  IFN-γ has been shown to be important for the 

manifestation of aGvHD however, in the absence of IFN-γ aGvHD is exacerbated[72].  

Nikolic et al. showed that Th1 and Th2 cells contribute to gastrointestinal tract pathology in 

aGvHD however, hepatic and skin manifestations were attributed to Th2 cells[73].  

Controversial data has been found with Th17 cells in aGvHD as well.  In vitro polarized 

Th17 cells were shown to mediate lung and skin pathogenesis[74] yet, the absence of Th17 

cells exacerbated aGvHD[75].  The involvement of Th22 cells in GvHD has not been 

investigated however, the role of IL-22 in skin manifestations suggests a skin specific role 

for this cell population.  
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1.4 Mouse Models of Acute GvHD 

Experimental models of aGvHD are essential for expanding the knowledge and 

understanding of the disease.  T cell alloreactivity, an early event in aGvHD pathogenesis, 

was identified using mouse models of the disease[16].  The majority of mouse models of 

aGvHD involved the transfer of T cell depleted bone marrow cells with varying numbers of 

specific T cells given intravenously to lethally irradiated recipients.  Donor and recipient 

genotype as well as recipient radiation dose affect the severity and organ involvement in 

disease onset. 

Depletion of T cells from donor bone marrow allows for standardizing the number of 

donor T cells given to each recipient, while the bone marrow cells are necessary for 

hematopoietic reconstitution following irradiation.  Disease severity and tissues affected 

using mouse models of aGvHD is dependent of a number of factors.  The degree of MHC 

protein and peptide disparity between mouse strains is directly proportional to disease 

severity.  Additionally, donor T cell subsets and dose of T cells administered affect the 

severity of disease[76,77].  Surprisingly the variations between environmental pathogens 

amongst different laboratories can also affect the pathogenesis of aGvHD[78]. 

Regardless of the degree of genetic disparity, all MHC-mismatched models of aGvHD 

use some dose of conditioning therapy whether myeloablative or non-myeloablative.  Most 

MHC-mismatched models require both CD4+ and CD8+ T cells.  However, CD8+ T cell 

specific activity (MHC Class I response) can be evaluated using B6.C-H2bm1 (bm1) mouse, a 

transgenic mouse containing a mutant alpha helix in the H-2Kb class I MHC molecule.  

Similarly CD4+ T cell specific pathogenesis can be analyzed using B6.C-H2bm12 (bm12), a 
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mutant MHC II mouse strain.  aGvHD pathogenesis using CD8+ T cells involves perforin, 

Fas ligand, and granzyme after T cell receptor engagement[79,80].  The effects of CD4+ 

alloreactive T cells, conversely, are mediated by TNF[81]. 

Both major and minor histocompatibility (miHA) mismatched murine models of GvHD 

are commonly used.  Although MHC mismatch transplants are rarely performed in the 

patient population because of increased risk for GvHD, these models provide insight into 

disease development and potential treatment options.  

 Our studies used murine transplantation models to examine the effectiveness of specific T 

cell populations and knockout phenotypes.  These MHC mismatched models include the 

parent into F1, C57BL/6 into B6D2F1 and the complete MHC mismatched, C57BL/6 into 

BALB/c.  Murine models are also used to study the impact of miHA in transplantation.  

Additionally our studies use the C57BL/6 into BALB.b minor mismatch model for miHA 

analysis[82].  All three models are well established and provide insight into clinical 

manifestation and potential treatment options for aGvHD.  

 

C57BL/6 into BALB.b Minor Mismatch GvHD Model 

 The most clinically relevant mouse model of GvHD is the minor mismatch model.  These 

models display less systemic GvHD symptoms however GvHD lethally is still seen in 

recipient mice.  Although multiple models exist our laboratory uses the C57BL/6 into 

BALB.b miHA GvHD model.  This model, that is mainly dependent on CD4+ T cells, uses 

lethal irradiation of recipient animals with concurrent infusion of donor T cells and T cell 

depleted bone marrow cells[82].  GvHD induced damage to the liver, gastrointestinal tract, 

and skin are seen in recipient mice. 
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Minor HA mismatch models are used on occasion in our laboratory.  However our 

studies have focused on haploidentical MHC mismatched transplantation, a scenario seen 

more with the increased need for transplant donors. 

 

C57BL/6 into B6D2 Haploidentical MHC Mismatch GvHD Mouse Model 

Hematopoietic stem cell transplantation is often the only option for patients with 

otherwise incurable diseases.  HLA-match siblings are often ideal donors for patients 

however, only a small percentage of patients have siblings as a donor option, leaving an 

unrelated match as the only alternative.  The expansion of the worldwide donor program has 

made finding a suitable donor easier for transplant patients although many other challenges 

remain.  Donor populations in ethnic minorities are small and the probability of finding a 

HLA match is often less than 10 percent[83].  Furthermore the process of finding a match 

and harvesting samples can take up to 4 months.  Time is of the essence for these patients 

and often more complications or death occur during this extended waiting period.  HLA-

mismatch transplants are not ideal and carry their own set of complications however, the 

availability of this population often makes them a popular choice.  

A commonly used model in which the donor and recipient are partially matched is the 

parent into F1 transplantation model.  This model typically uses lethal irradiation of recipient 

mice and is dependent on both donor CD4+ and CD8+ T cells combined with T cell depleted 

bone marrow cells[84].  Donor mice are C57BL/6 while lethally irradiated recipients are the 

F1 generation of a C57BL/6 mouse crossed with DBA/2 mouse, more commonly known as 

B6D2.  Using this transplantation model, recipient mice succumb to disease by day 30 with 

irradiation.  Other groups have also used this model without irradiation to study aGvHD 
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effects during reduced intensity conditioning or nonmyeloablative treatment regimes[85].  In 

the absence of irradiation disease symptoms appear between day 30 and day 50 post 

transplantation[84].  Pathophysiology using the parent into F1 model with irradiation 

includes weight loss due to gastrointestinal involvement and skin manifestations.  

 

C57BL/6 into BALB/c Complete MHC Mismatch GvHD Mouse Model 

Due to the high treatment related mortality and post transplantation complications 

complete HLA-mismatched transplantations are not completed clinically.  However, a well 

established murine transplantation model uses a completely mismatched MHC protein to 

induce GvHD.  Although less relevant to the clinical transplant setting, this model provides 

insight into the contribution of specific cell populations, treatment options, and potential 

patient responses.   

 The C57BL/6 into BALB/c transplant models uses lethally irradiated recipients with 

mismatched donor cells.  Donor cells are transplanted concurrently with T cell depleted bone 

marrow cells into recipient mice.  Disease onset occurs between day 10 and day 30.  

Characteristics of disease development in using this model include severe weight loss, ruffled 

fur, and decreased activity.  Further histological analysis shows lymphocyte infiltration in 

target GvHD organs with hydrophic degeneration, Civatte bodies, and keratosis in the 

skin[86]. 

 Mouse models are beneficial for determining treatment options and outcomes.  As 

treatment options remain limited for GvHD patients these resources are essential for GvHD 

research.  
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1.5 T Cell Migration and GvHD  

The migration of T cells after transplantation has been determined by our group using 

enhanced green fluorescent protein labeled T cells[87].  Within hours of transplantation 

donor T cells migrate to lymphoid organs.  Between 48 and 72 hours these cells are activated 

by antigen presenting cells found in lymphoid tissue and proliferate.  In the first week these 

activated T cells migrate to GvHD target organs including the liver, gastrointestinal tract, 

lung, and skin where they cause damage through the generation of cytokines and via 

cytolytic activity, a finding that has also been confirmed by other groups[88]. 

 Most recently our group has investigated the role of migratory proteins in T cell 

migration in GvHD.  The contribution of C-C chemokine receptor expression and selectins 

have previously been determined by our group and others[6,70,89].  Our investigation of T 

cell migration post transplantation was further extended with the identification of actin 

interacting proteins, known as Coronins, that are important for cytoskeleton dynamics.  

 

1.6 Actin Cytoskeleton Protein Dynamics 

Actin Cytoskeleton Dynamics 

Proper function and organization of the cytoskeleton is required for many cellular 

activities including cell migration, motility, and trafficking.  In cells actin exists in two states, 

monomeric and filamentous (F-actin).  Regulation of cytoskeleton dynamics are maintained 

through the homeostatic balance of these two actin forms.  As an ATPase nucleotide 

hydrolysis allows the transition between G actin and F actin states[90].  The asymmetric 

structure of actin is determined by nucleotide dependent changes that alter the stability of the 

filament[91].  Chemical messengers sent via chemokines, growth factors, and hormones are 
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believed to trigger cytoskeleton rearrangement however the mechanism by which these 

factors mediate their effects remains elusive[90]. 

 

Origin of Coronins 

In 1991 a protein specific for the projections of growing Dictyostelium discoideum was 

identified[92].  This protein was later termed ‘coronin’ for its crown shaped appearance when 

stained with antibody.  Mutant Dictyostelium discoideum lacking Coronin showed reduced 

phagocytosis and motility, processes that require F-actin.  Furthermore, coronin was shown 

to cosediment with F-actin, leading to the classification of coronin as an actin binding 

protein[93].  

The coronin family of proteins consists of 12 subfamilies with 6 being exclusive to 

vertebrates.  Coronin 1A was the first member of the coronin family discovered by de Hostos 

et al.[92].  Shortly thereafter the two closely related proteins Coronin 1B and Coronin 1C, 

also termed Coronin 2 and Coronin 3 respectively, were identified[94-96].  Although 

phagocytosis was found to be evolutionarily conserved between the family of proteins their 

functions remained unclear[93].  Gerisch et al. later hypothesized that coronins were 

involved in actin regulation and polymerization[97].  Their hypothesis was correct but it 

wasn’t until the discovery of the Arp2/3 complex that involvement of coronins in actin 

dynamics was more clearly defined. 

Polymerization and depolymerization of actin is important for the regulation of the 

cytoskeleton.  The rate-limiting step in actin polymerization is nucleation[93].  Identification 

and characterization of the Arp2/3 complex identified its primary mechanism as nucleating 

during F-actin polymerization[98,99].  The Arp2/3 complex is a family of seven proteins 
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involved in the synthesis of F-actin.  The interaction of coronin proteins with the Arp2/3 

complex was determined after coronin 1A was found in human neutrophil Arp2/3 

samples[100].  These data were further confirmed in budding yeast demonstrating the 

interaction of coronin 1A with Arp2/3 and F-actin[101]. 

Interaction with Arp2/3 has not been limited to Coronin 1A.  Researchers at the 

University of North Carolina at Chapel Hill showed disrupted interactions of Coronin 1B 

with the Arp2/3 complex through phosphorylation of protein kinase C (PKC)[102].  Reduced 

ruffling and altered mobility were seen in cells that contained a mutation in the serine 2 

residue[102].  Modification of Arp2/3 complex interactions through the phosphorylation of 

serine 2 have also been seen for Coronin 1A[103].  A clear role for Coronins in actin 

regulation has been shown although the exact mechanism by which coronins facilitate these 

effects remains elusive.  

 

Classes of Coronins 

 Currently, the mammalian family of coronins includes seven coronin genes.  However 

nomenclature based on sequence similarity, function, or simply numbering has been a 

constant debate.  In 2001 the Human Genome Organization nomenclature committee 

introduced nomenclature based on phylogeny of the coronin proteins[104].  This system 

divided the proteins into two classes: Type I and Type II.  

 There are three members of the type 1 coronins: Coronin 1A, Coronin 1B, and Coronin 

1C.  Coronin 1A, also known as tryptophan aspartate-coating coat protein (TACO)[105] and 

p57, was originally identified as a protein that co-purified with phospholipase activity[106].  

Coronin 1A is expressed primarily in hematopoietic cells and to a lesser extent neural 
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tissue[104].  Coronin 1A has been shown to be important in the regulation of leukocyte 

specific events[105].  A ubiquitously expressed isoform, Coronin 1B is found at the leading 

edge of migrating fibroblasts[107].  The least studied of the type 1 coronins, Coronin 1C is 

also ubiquitously expressed with reduced expression compared to Coronin 1B[108].  Coronin 

1B functions in cytokinesis, cell motility, and regulation of leading edge dynamics[93].  

Coronin 1C is involved in cell proliferation, invasion, migration, filopodia growth, 

cytokinesis, and the secretion of norepinephrine[109,110].  

 Type 2 coronins vary structurally from type 1 coronins and are found only in 

vertebrates[104].  There are two members of the type 2 Coronins: Coronin 2A and Coronin 

2B.  Coronin 2A is found in the uterus, brain, testes, and ovary while Coronin 2B is 

expressed primarily in the brain[104].  Like many of the Coronins the functions of Coronin 

2A and Coronin 2B remains unclear. 

 

Coronins and Disease 

 For years scientist questioned the importance of actin cytoskeleton integrity and human 

disease.  However, identifying the link between cytoskeleton rearrangement and disease 

proved to be elusive.  The involvement of Coronin 1A in normal peripheral T cell 

development and its importance in actin cytoskeleton structure lead to research regarding its 

role in disease.  Within the past decade numerous groups have compelling data suggesting a 

role for Coronin 1A in multiple diseases[111-113].  

 Shiow et al. used a mouse forward genetics approached to determine the cause of thymus 

migration defects and lymph node trafficking in the cataract Shionogi mouse strain[114].  

This research was coupled with clinical studies to determined genotype and phenotype 
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correlations in patients with severe combined immunodeficiency (SCID) [111].  SCID 

patients are characterized by defects in T cells numbers and defects in T and B cell function 

which if left untreated can result in death.  Analyses of 16 patients identified a single patient 

who had a 2 base pair deletion in the paternal Coronin 1A coding sequence and a de novo 

deletion in the maternal Coronin 1A coding sequence[111].  Additionally variations in copy 

number at this same chromosome region are linked to autism spectrum disorders, a condition 

that was also present in the patient[111].  Although the patient population was limited to one 

this study provided early insight into actin cytoskeleton dynamics and disease. 

 In another study Dwight Kono’s group suggested a requirement for Coronin 1A in the 

development of systemic lupus erythematosus (SLE)[112].  Screening of multiple gene 

associated with the lupus-modifying locus reveled Coronin 1A as a potential regulatory gene.  

Mice containing the mutant Coronin 1A gene, created by a single nonsense mutation, were 

less susceptible to disease[112].  Decreased T cell numbers in the periphery and thymus 

coupled with accumulation of F-actin in T cells, and defects in calcium flux in mutant mice 

were consistent with previously published data[103,112,115]. 

 

1.7 Dissertation Aims 

Bone marrow transplantation for blood disorders and cancers has been effective for many 

years.  However, post transplantation complications specifically acute graft-versus-host 

disease continue to be a problem.  Specific cell populations, cytokine receptors, and ligands 

have been studied to determine their role in aGvHD.  Although these studies have been 

beneficial, identifying molecules as potential drug targets remains difficult. 
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The main goal of this study was to identify proteins that may contribute to pathogenesis 

of aGvHD.  Our studies expanded upon previous work from our laboratory suggesting a role 

for Th17 cells in disease.  Alteration of cell migration, motility, and function can often be 

attributed to actin cytoskeleton dynamics.  Here we are the first to identify an actin 

cytoskeleton protein that is important for the induction and severity of aGvHD pathogenesis.   



Figure 1.1 
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Figure 1.1 Pathophysiology of acute GvHD (From Ferrara et al[20]). During the initial 

precondition phases host tissues are damaged due to chemotherapy and irradiation.  Host 

antigen presenting cells are also activated during this first step.  Donor T cells that have 

contaminated bone marrow or stem cell inoculums proliferate, differentiate, and are activated in 

phase II.  The final phase, the effector phase, is marked by tissue damage and inflammation due 

to cytokines and other effector molecules. 
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Figure 1.2 Naïve T Cell Differentiation. After activation from antigen presenting cells 

naïve T cells differentiate into different T cell subsets depending upon cytokines and 

transcriptions factors present. 
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CHAPTER TWO 

ATTENUATION OF ACUTE GVHD IN THE ABSENCE OF THE TRANSCRIPTION 

FACTOR RORγT∗ 

2.1 Introduction 

Allogeneic stem cell transplantation (allo-SCT) is a common treatment for patients 

with high-risk leukemia, recurrent low-grade lymphomas, aplastic anemia, and congenital 

bone marrow failure syndromes [1-3].  The effectiveness of allo-SCT is limited by the 

development of acute graft-versus-host disease (aGvHD).  aGvHD, a disease characterized 

by selective epithelial damage to target organs, is mediated by mature T cells present in the 

stem cell or bone marrow inoculums [4-7].  Interactions of donor T cells with predominantly 

host antigen presenting cells (APC) leads to activation and differentiation of donor T cells 

ultimately resulting in inflammation in GvHD target organs, which includes primarily the 

skin, liver, and gastrointestinal tract [8].  
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Previous GvHD research has focused on cytokine production in T cell subsets.  High 

levels of interferon γ (IFN-γ) and interleukin-2 (IL-2) found in patients after allo-SCT led 

investigators to conclude that GvHD was mediated predominantly by proinflammatory Th1 

cells[9,10].  However and conversely, inhibition of Th1 cytokines leads to disease 

exacerbation in GvHD[11,12].  As both protective and detrimental effects are seen with Th1 

cytokines the exact role of these cytokines in GvHD remains elusive [13].  More recent 

investigations of T cell subsets in GvHD have been directed towards a new subset of CD4+ T 

cells, Th17 cells.  Th17 cell differentiation and expansion requires TGF-β1, IL-6, IL-23, 

TNF, and IL-1β [14-16].  The development of Th17 cells is dependent on the transcription 

factors retinoid-related orphan receptor (ROR)γt, RORα, IRF-4 and STAT3 [17-19].  Th17 

cells produce proinflammatory cytokines such as TNF, IL-21, and IL-22 [20-22]in addition 

to IL-17A and IL-17F.  IL-21 has been found by our group to be critical for blocking the 

generation of inducible Treg cells[20] while IL-22 has been found to be important for the 

induction of psoriasis in experimental models [23].  IL-17A and IL-17F bind to the IL-17 

receptor found on leukocytes, epithelial cells, mesothelial cells, endothelial cells, 

keratinocytes, and fibroblasts.  Binding of IL-17A and IL-17F to the IL-17 receptor enhances 

production of g-CSF, IL-6, and chemokines that recruit neutrophils such as CXCL1 and 

CXCL8 [24].   

Keppel et al using IL-17A knockout (-/-) CD4+ T cells demonstrated that IL-17 

contributes to aGVHD[25].  In contrast, Yi et al has shown that IL-17A-/- T cells exacerbated 

aGVHD due to augmented release of IFN-γ [26].  Recent studies in our laboratory 

demonstrated that in vitro differentiated Th17 cells generated substantial cutaneous and 

pulmonary pathology in murine models of aGvHD[27] but multiple pathways may have been 
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involved, with IL-17A and TNF being dominant.  To better understand the effects of Th17 

cells that are differentiated or activated in vivo, we elected not to focus on a particular 

cytokine effector pathway such as IL-17A itself, which would limit conclusions that can be 

drawn regarding Th17 cells.  Instead, we performed studies using RORC-/- donor T cells that 

are incapable of producing the array of cytokines generated by Th17 cells including IL-17A, 

IL-17F, IL-21, IL-22 and TNF.  In the absence of RORC conventional T cells attenuated 

GvHD in a haploidentical, minor, and complete mismatched model.  The absence of RORC 

expression by CD4+ T cells alone was sufficient to attenuate GvHD in the haploidentical 

model, but had little impact on GvHD in a complete mismatched model.  Interestingly, we 

found increased generation of IL-17 from lesional tissue in BALB/c recipient mice even 

when transplanted with donor T cells lacking RORC.  These data indicate that T cell 

generation of RORγt is important to the pathogenesis of acute GvHD. 

2.2 Methods 

Mice 

C57BL/6J (H2b) (termed B6), BALB/cJ (H2d), C.B10-H2b/LiMcdJ (termed BALB.b), 

B6.129S6-Tbx21tm1Glm/J (termed T-bet-/-), B6 x DBA/2 F1 (B6D2 F1: H2bxd), and B10.BR-

H2k H2-T18a/SjSnJJrep mice were purchased from The Jackson Laboratory (Bar Harbor, 

ME).  B6 RORC-/- mice were generated as described[28].  Donor and recipient mice were 

age-matched males between 8 and 16 weeks.  All experiments were performed in accordance 

with protocols approved by the University of North Carolina Institutional Animal and Care 

Use Committee.  
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Transplantation Models 

Total T cells or CD4+ T cells were isolated using Cedarlane T recovery column kit or CD4+ T 

cell recovery kit (Cedarlane, Burlington, NC) respectively, followed by antibody depletion 

using phycoerythrin (PE) conjugated anti-mouse B220 and anti-mouse CD25 antibodies 

(Ebioscience, San Diego, CA) and magnetic bead selection using anti-PE beads (Miltenyi 

Biotec, Cambridge, MA).  Isolated CD4+ T cell were further purified using anti-mouse CD8 

PE antibody.  T cell depleted bone marrow bone marrow (TCD BM) and conventional T cells 

were prepared using previously described methods[29].  Histopathology specimens were 

generated as described[30] and analyzed by one of us (APM) blinded to the genotype of 

donor used.  Scoring of tissues was performed per our previous method[31].  
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Serum and Organ Cytokine Analysis 

Transplant recipient animals were anesthetized and perfused with phosphate-buffered saline.  

Whole organs were removed and homogenized.  Cytokine levels were measured using 

enzyme-linked immunosorbent assay (ELISA) kits against IFN-γ, IL-17A, and TNF 

(Biolegend, San Diego CA). 

 

Intracellular Cytokine Staining 

Single cells suspensions of livers were digested using collagenase A and DNAse I.  Liver 

cells were stimulated with phorbol myristate acetate (PMA), ionomycin and brefeldin A for 4 

hours.  Cells were harvested and stained for anti-mouse TNF (Ebioscience, San Diego, CA).  

Flow cytometry analyses were conducted using FlowJo analysis software (Ashland, OR). 

 

Real Time PCR Analysis 

RNA was extracted from organs using TRIzol reagent (Invitrogen, Carlsbad CA) according 

to the manufacturer’s recommendations.  First strand cDNA synthesis was performed with 

1µg RNA as previously described[27].  Equal amounts of cDNA were analyzed by real time 

quantitative PCR, in triplicate, using TaqMan universal PCR master mix (Applied 

Biosystems, Foster City, CA) and the ABI 7300 Real Time PCR System with primer specific 

standard curves.  The expression level of each gene was normalized to the housekeeping 

gene, GusB, using the standard curve method before fold activation was determined.  

TaqMan gene expression assay probes for interferon gamma, tumor necrosis factor, and 

interleukin 17A/F were purchased from Applied Biosystems.  
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GvHD Scoring 

Mice were observed twice weekly for clinical GvHD signs and symptoms based on a 

previously established clinical scoring system[32].   

 

GvL Analysis 

Recipient mice were infused with 1 x 104 P815 murine mastocytoma cells (ATCC: TIB-64) 

on the transplantation.  Weight loss and survival were monitored bi-weekly.  Necropsies 

were performed on mice to confirm death by tumor infiltration. 

 

Statistical Analysis 

Survival differences were evaluated using Mantel-Cox log rank test.  Survival curves were 

generated using the method of Kaplan and Meier [33].  Differences in GvHD clinical and 

pathology scores were determined using Mann-Whitney test.  P values < 0.05 were 

considered statistically significant. 
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2.3 Results 

2.3.1 Attenuated GvHD in the Absence of RORC 

Previous work demonstrated that blocking IFN-γ exacerbated aGvHD suggesting that 

another T cell lineage may be important in GvHD pathology[12].  As our previous work 

using in vitro differentiated Th17 cells demonstrated their ability to induce lethal aGvHD, we 

used mice in which the RORC locus (RORC-/-) was altered using homologous recombination 

to further clarify the contribution of the Th17 subset to GvHD induction under non-

polarizing conditions.  These mice lack both RORγ and RORγt isoforms generated from this 

locus.  CD25-negative (CD25-) naïve whole T cells (comprised of CD4+ T cells and CD8+ T 

cells; termed Tconv) from WT C57BL/6 (WT) or RORC-/- donors were transferred into 

lethally irradiated B6D2 F1 recipients.  In addition to T cells, mice were injected with T cell 

depleted bone marrow (TCD BM) cells from WT donors.  Recipient mice given RORC-/- 

Tconv had a substantial improvement in survival with all B6D2 F1 recipient mice surviving 

until day 60 post transplantation (Fig 2.1A).  Using a semi-quantitative scoring system we 

evaluated the clinical manifestations of aGvHD[34] in B6D2 F1 recipient mice.  A 

significant difference in the aGvHD score starting on day 10 and continuing through the 

completion of the experiment was found in irradiated B6D2 F1 recipient mice transplanted 

with RORC-/- Tconv compared to WT Tconv (Fig 2.1B). 

 To determine whether the reduced aGVHD lethality observed with the infusion of 

RORC-/- Tconv vs WT Tconv was model dependent, we evaluated two additional 

transplantation models.  Lethally irradiated BALB/c mice given CD25-depleted donor Tconv 

from either WT or RORC-/- donors with WT TCD BM had improved median survival (Fig 

2.1C) with a diminished GvHD score (Fig 2.1D) when receiving RORC-/- compared to WT 
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Tconv.  Similarly, the median survival was improved when BALB.B mice were administered 

RORC-/- Tconv compared to WT Tconv (Supplemental Fig 2.1).  However, in BALB.B 

recipients, there was only a transient improvement in GvHD score from days 10-17 post 

transplant.  Thus, in three different GvHD models using CD25-depleted Tconv, the absence 

of RORC in donor T cells improved survival.   

 

2.3.2 Decrease Tissue Pathology in GvHD Target Organs using RORC-/- Donor T Cells 

 Clinically, multiple organs can be affected in aGvHD including the skin, liver, GI 

tract and the lung.  To determine if RORC-/- Tconv affected aGvHD at a specific site we 

evaluated the tissue pathophysiology in the liver, GI tract, lung and spleen of RORC-/- Tconv 

recipients compared to WT Tconv recipients.  Fifteen days post transplantation the organs of 

recipient animals were harvested and pathology analyses conducted.  Recipients of RORC-/- 

Tconv displayed significantly less pathology in the liver, colon, lung, and spleen compared to 

WT Tconv recipients (p< 0.05, Fig 2.2).  Decreased pathology in recipient mice transplanted 

with RORC-/- donor Tconv was specific to GvHD target organs as minimal GvHD pathology 

was detected in the kidney of WT and RORC-/- Tconv recipients.  The aggressive nature of 

GI tract GvHD precluded the development of significant cutaneous GvHD in this model, and 

therefore cutaneous tissue was not evaluated.  These data demonstrate that the function of 

RORC in the pathophysiology of aGvHD is not limited to a specific organ site. 

 

2.3.3 In Vivo Cytokine Production Using RORC-/- Tconv Cells 

 Th17 cells generate a number of cytokines that may be important to the pathogenesis 

of aGvHD such as TNF, IL-17F, IL-21, and/or IL-22.  Cytokine analyses were performed on 
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serum and organ samples from RORC-/- Tconv vs WT Tconv in B6D2 F1 recipients on day 

14 post transplantation.  Interestingly, the administration of donor T cells unable to express 

RORC was associated with a modest increase in the production of IFN-γ in the serum of 

recipient mice compared to those receiving WT Tconv (Fig 2.3A).  A substantial decrease in 

IL-17 and TNF were seen in the serum of recipients RORC-/- Tconv compared to WT Tconv 

recipients (Fig 2.3A).  The decrease in TNF production in the serum was associated with 

statistically significant decreased production of TNF in the colon however no differences 

were seen in cytokine production in other organs (Fig 2.3B).   

 

To determine if the lack of differences in pro-inflammatory cytokines outside of the 

difference in the generation of TNF in the colon was due to the time point we evaluated, we 

analyzed mRNA expression of IFN-γ, and IL-17A from lesional tissue on days 10 and 18 

post transplantation.  No difference was found in the expression of these cytokines in the 

colon, liver or spleen of recipients of WT compared to RORC -/- T cells plus TCD B6 bone 

marrow.  Thus, the absence of RORC in donor T cells led to a marked decrease in the 

generation systemically of the pro-inflammatory cytokines TNF and IL-17A, and of TNF 

specifically in the colon. 

 

2.3.4. RORC-/- CD4+ T Cells Mediate GvHD in a Haploidentical Transplantation 

Previous investigators have found that the infusion of donor T cells lacking RORC 

did not affect the incidence or severity of aGvHD when administered to lethally irradiated 

BALB/c recipients[35].  However, the T cell inoculum for these experiments was comprised 

exclusively of CD4+ T cells.  The difference found by our group in the outcome of BALB/c 
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recipients receiving RORC-/- T cells occurred when infusing CD4+ and CD8+ T cells.  To 

determine if the different T cell inoculums mediate the changes in outcome initially, we 

confirmed the data from Icozlan et al.  BALB/c mice receiving RORC-/- CD4+ T cells did not 

have improved survival or GvHD scores compared to recipients given WT CD4+ T cells (Fig 

2.4A).  Next, we determined if the absence of RORC by donor CD4+ T cells would impact 

the outcome in the haploidentical B6 into B6D2 model.  All B6D2 recipients of RORC-/- 

CD4+ T cells survived until completion of the experiment with minimal evidence of clinical 

GvHD, while recipients of WT CD4+ T cells succumbed to disease by day 35 post 

transplantation (Fig 2.4B).  This indicated that the difference in the outcome of recipient 

mice given donor RORC-/- CD4+ T cells was model dependent.  These data demonstrate a 

requirement for RORC CD4+ T cell expression for GvHD pathogenesis in the haploidentical 

transplant setting.  

 

2.3.5 Cytokine Production in RORC-/- CD4+ T Cell Recipients 

Differences in outcome using RORC-/- CD4+ T cells in the haploidentical versus the 

complete mismatch model are likely due to increased genetic disparity and potentially 

increased GvHD due to the ability of a smaller number of donor T cells to mediate GvHD, or 

GvHD mediated through different pro-inflammatory pathways.  To elucidate the differences 

in outcome using RORC-/- CD4+ T cells in the B6 into BALB/c transplant model compared to 

the B6 into B6D2 transplant model, we evaluated cytokine production in the serum and 

organs from recipient animals.  Lethally irradiated B6D2 recipients were transplanted with 3 

x 106 RORC-/- or WT CD4+ T cells with 3 x 106 WT TCD BM cells while lethally irradiated 

BALB/c recipients were infused with 5 x 105 RORC-/- or WT CD4+ T cells supplemented 
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with 5 x 106 WT TCD BM cells.  Serum and tissue homogenates from the liver, GI tract, 

lung and spleen were collected from recipients 14 days post transplantation.  We found that 

B6D2 recipients of RORC-/- CD4+ T cells had increased TNF production in the serum with 

decreased IFN-γ production compared to B6D2 recipients of WT CD4+ T cell (Fig 2.4C), 

however neither of these values reached statistical significance.  B6D2 recipients of RORC-/- 

CD4+ T cells had a significant decrease in the production of TNF and IFN-γ in the colon 

compared to B6D2 recipients of WT CD4+ T cells (Fig 2.4D).  This was not found in 

BALB/c recipients given either RORC-/- or WT donor CD4+ T cells. Interestingly, IL-17 

production in the liver of BALB/c recipients was 8 times higher than IL-17 production in 

B6D2 recipients (Fig 2.4D) and not altered by the infusion of donor T cells lacking RORC.  

To determine if differences in the production of IL-17A was specific to BALB/c recipients, 

we analyzed a second MHC mismatched model.  Lethally irradiated B10.BR mice were 

injected with 3 x 106 WT or RORC-/- CD4+ T cells with 3 x 106 TCD BM.  TNF and IFN 

generation in the liver and colon of B10.BR recipients did not differ in the absence of RORC-

/-.  Interestingly, similar to BALB/c recipients, increased expression of IL-17 was seen in 

recipient B10.BR mice given either RORC-/- or WT CD4+ T cells (Fig 2.4D).  These data 

suggest that the generation of IL-17A in the completely mismatched MHC transplant models 

is more dependent on production by cells other than donor T cells.  Moreover, we found that 

the absence of RORC in donor T cells mediated protection against GvHD only in models in 

which there was a decrease in the production of TNF systemically and in the colon after the 

infusion of RORC-/- T cells.   
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2.3.6 RORC and TNF Production 

Our data indicate a role for RORC in the function of CD4+ T cells in the 

haploidentical transplant model.  To determine if there was a function for RORC in donor 

CD8+ T cells, we transplanted mice with either RORC or WT CD4+ or CD8+ T cells.  Three 

cohorts of lethally irradiated B6D2 F1 recipients were used for these experiments.  One 

group received 2 x 106 RORC-/- CD4+ T cells with 2 x 106 WT CD8+ T cells supplemented 

with 3 x 106 TCD BM cells.  A second group received 2 x 106 WT CD4+ T cells with RORC-

/- CD8+ T cells supplemented with 3 x 106 WT TCD BM cells.  A final group received only 3 

x 106 TCD BM cells. Interestingly, more than 80 percent of mice that received RORC-/- CD4+ 

T cells with WT CD8+ T cells survived until day 50 post transplantation while those 

receiving WT CD4+ T cells with RORC-/- CD8+ T cells died from GvHD by day 30 post 

transplantation (Fig 2.5A).  Intracellular cytokine analyses of TNF and IFN-γ production 

were conducted on T cells isolated from liver of WT CD4+ T, RORC-/- CD8+ T cell and 

RORC-/- CD4+, WT CD8+ T cell recipients 10 days post transplantation.  Overall production 

of both TNF and IFN-γ were equivalent between the two groups.  However in both cohorts 

independent of whether RORC-/- CD4+ T cells or RORC-/- CD8+ T cells were injected, WT T 

cells were the primary producers of TNF (Fig 2.5B).  These data suggest that the production 

of TNF by CD4+ and not CD8+ T cells is critical to the pathogenesis of GvHD in this model. 

 

2.3.7 Tissue Specific Role for T-bet in aGvHD 

To determine if the inability to produce proinflammatory cytokines was sufficient to 

attenuate aGvHD we investigated the transcription factor that controls the expression of the 
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Th1 cytokine IFN-γ, Tbx21(T-bet).  Donor CD25- Tconv from T-bet-/- or WT mice 

supplemented with WT TCD BM were transplanted into lethally irradiated B6D2 F1 

recipients.  Interestingly, in this model, no difference was found in survival or GvHD score in 

mice receiving WT compared to T-bet-/- Tconv (Fig 2.6A).  However, analysis fifteen days 

post transplantation revealed statistically significant decreased pathology in the ileum of 

recipients of T-bet-/- compared to wild type Tconv cells (p< 0.05, Fig 2.6B).  A trend for 

decreased pathology was also seen in the colon (p = 0.08, Fig 2.6B).  However, we did not 

find a difference in tissue pathology in other GvHD target organs given WT compared to T-

bet-/- T cells (data not shown).  These data support the established function for Th1 cells in 

the pathophysiology of GvHD in the GI tract, but indicate that in this haploidentical 

transplant model, T cell generation of T-bet was not critical for GvHD lethality[36].  

 

2.3.8 GvL Response in the Absence of RORC 

 Next, we addressed whether the loss of RORC would impact the anti-tumor activity of 

SCT.  Anti-tumor activity after transplantation was evaluated by adding 1 x 104 P815 cells to 

the donor bone marrow inoculum on day 0.  One group of B6D2 F1 mice received RORC-/- 

Tconv cells in addition to WT TCD BM cells infused with P815 tumor cells.  Since 

recipients of WT Tconv often succumb to GvHD before anti-tumor properties can be 

analyzed syngeneic T cells were used as a control.  Syngeneic controls were given B6D2 

Tconv supplemented with WT TCD BM infused with P815 tumor cells.  Control mice 

received only WT TCD BM infused with P815 tumor cells.  All mice receiving only WT 

TCD BM with P815 tumor cells died by day 20 due to tumor growth. Recipient mice 

receiving B6D2 Tconv died by day 20 due to tumor infiltration (Fig 2.7).  Interestingly, 



	
   46	
  

survival was extended to day 40 in recipient mice given RORC-/- Tconvs and P815 cells 

indicating that the GvL response remained somewhat intact in mice given T cells lacking 

RORC.  To demonstrate that this difference was not mediated by donor bone marrow cells, 

we administered RORC-/- TCD BM or WT TCD BM cells plus P815 cells to lethally 

irradiated B6D2 F1 recipient mice.  As expected all recipient mice succumbed to tumor 

infiltration by day 30 (data not shown).  
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2.4 Discussion 

Acute GvHD is mediated by donor T cells that recognize minor or major MHC 

disparities presented predominantly by host APCs.  This process leads to activation, 

differentiation and T cell effector responses that are critical for the pathophysiology of acute 

GvHD.  Over the past decade multiple investigators have identified new T cell subsets 

characterized by the activity of canonical transcription factors and the generation of specific 

cytokines.  The T cell subset(s) critical for the pathophysiology of acute GvHD is currently 

unclear and the focus of this manuscript.  Here, we find unexpectedly that the loss of the 

Th17 transcription factor, RORC, in donor CD25-depleted T cells led to markedly diminished 

acute GvHD.  In three different models, recipient mice given  RORC-/- Tconv cells had 

significantly less GvHD and increased survival compared to recipients given WT Tconv 

cells.  The absence of RORC was associated with diminished GvHD in all target organs 

evaluated and correlated with diminished systemic generation of pro-inflammatory cytokines.  

The difference in pathology of GvHD target organs was not associated with a difference in 

frequency of regulatory T cells in these organs post transplant (Fulton and Serody 

unpublished).  As was previously found, the absence of RORC on CD4+ T cells had no effect 

on GvHD outcome in a completely mismatched B6 into BALB/c model.  Interestingly, in the 

B6 into B6D2 model, the absence of T-bet in donor T cells led to diminished pathology in the 

GI tract but no overall survival benefit.  When challenged with P815 tumor cells, recipient 

mice receiving donor T cells lacking RORC survived longer than mice receiving bone 

marrow alone, indicating the presence of an anti-tumor GvL response.  However, in both 

instances recipient mice succumbed eventually to tumor growth indicating that the GvL 
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response is modestly compromised using T cells unable to generate RORC perhaps due to the 

diminished generation of TNF.   

 Previous work has clearly indicated a critical role for Th1/Tc1 T cells in the 

pathophysiology of acute GvHD particularly involving the GI tract.  Thus, it was somewhat 

unexpected that the absence of T-bet alone, while diminishing GvHD in the small bowel and 

to a lesser extent the colon, was not associated with an improved overall survival.  T-bet has 

been found to be critical for the generation of IFN-γ by CD4+T cells and NK cells.  However, 

the generation of IFN-γ by CD8+ T cells is not impaired in the absence of T-bet, which may 

be responsible for the similar survival[37].  As we have found that RORC is required in the 

CD4+ T cell compartment, our data would be consistent with a role for IFN-γ generation by 

CD8+ T cells and TNF production by CD4+ T cells in the pathogenesis of acute GvHD.  

Quite recently, Yu et al evaluated the ability of T cells from mice deficient in RORC 

or Tbx21 to induce GvHD[38].  They found diminished GvHD using T cells from B6 Tbx21-/- 

donors but no difference in GvHD using CD4+ T cells from RORC-/- donors when given to 

lethally irradiated BALB/c recipients.  Interestingly, they did find a modest survival benefit 

when infusing CD25-depleted T cells lacking RORC suggesting that the Treg compartment 

may not function in RORC mice as it does in WT mice.  They found that BALB/c recipient 

mice given T cells from mice deficient in both RORC and Tbx21 had markedly diminished 

GvHD.  This was associated with diminished generation of Th1 and Th17 cells and impaired 

expression of chemokine receptors important for the trafficking of donor T cells to GvHD 

target organs.  Our data confirm and extend these findings as they relate to the function of 

RORC by evaluating the mechanism for the decreased GvHD when CD25-depleted donor T 

cells lacking RORC are given to lethally irradiated recipients.  Additionally, we confirmed 
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their previous data regarding the absence of an effect by infusing CD4+ T cells lacking 

RORC in the B6 into BALB/c model.  We found substantially increased IL-17 in the colon 

and liver of BALB/c compared to B6D2 recipient mice after transfer of B6 T cells and TCD 

BM.  Interestingly, the production of IL-17 was not impacted by the infusion of T cells 

lacking RORC suggesting that other donor or perhaps host cells generate substantial 

quantities of IL-17 in BALB/c recipients.  Currently, we are evaluating which recipient cells 

generate IL-17 in BALB/c mice.  Nonetheless, these data indicate that the model used may 

be critically important in interpreting the function of IL-17 after bone marrow 

transplantation. 

We found a substantial difference in the generation of TNF and IL-17A in the serum 

and TNF in the colon of recipient mice given RORC-/- compared to WT T cells.  Our 

previous data has indicated that TNF is critical for the systemic manifestations of GvHD 

mediated by Th17 cells.  Interestingly, here we found that TNF production by CD4+ and/or 

CD8+ T cells was markedly reduced when that subset did not express RORC.  However, this 

was compensated for by production of TNF from the WT T cells when both were given.  

However, GvHD was decreased only when TNF production was diminished by CD4+ T cells 

and not from CD8+ T cells indicating cell intrinsic differences in the function of TNF post 

SCT.  We found an increase in the generation of dual positive IL-17A/IFN-γ T cells when 

WT Tconv cells were infused compared to RORC-/- Tconv cells 12 days post transplantation 

(Supplemental Fig 2.2).  The generation of these cells, which may eventually become Th1 

cells (Carlson and Serody unpublished), may be one mechanism for the decreased incidence 

and severity of aGvHD after the infusion of T cells unable to generate RORC.   
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For allogeneic transplantation to be successful requires the elimination of GvHD 

without compromising the anti-tumor, GvL activity of donor T cells.  Here we found that 

donor T cells lacking RORC still mediated an anti-tumor response against the mastocytoma 

cell line, P815.  Killing of P815 cells is dependent on the generation of IFN-γ and TNF[39].  

This suggests that the decreased generation of TNF in the absence of RORC is not sufficient 

to completely lose the anti-tumor activity of donor T cells.   

In summary, we have shown that donor T cells lacking RORC do not mediate 

substantial acute GvHD in three different transplant models.  This finding is dependent on 

the absence of RORC in CD4+ T cells, correlated with reduced generation of TNF and IL-

17A systemically and TNF in the colon, and was important for the diminished GvHD that 

occurred in clinically relevant transplant models.   
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Figure 2.1. Survival and GvHD scores of B6D2 recipients.  (A-B) B6D2 recipients were lethally irradiated 

(950 cGy) on day -1.  One day following irradiation, 4 x 106 WT or RORC-/- CD25- Tconv cells supplemented 

with 3 x 106 TCD BM were injected intravenously into recipient mice.  Recipient mice were monitored and 

scored weekly.  Control mice received TCD bone marrow cells alone (C-D) BALB/c recipients were lethally 

irradiated (800 cGy) on day -1.  One day after irradiation, 5 x 105 WT or RORC-/- CD25- T cells supplemented 

with 5 x 106 WT TCD BM cells were injected intravenously into irradiated recipients.  Survival was determined 

using the method of Kaplan-Meier. Statistics determined using log-rank test for survival and Mann-Whitney for 

scores. *p<0.05, **p<0.001. A-B n = 13 B6D2 F1 recipients transplanted with RORC-/- or WT Tconvs; n = 4 

bone marrow controls; C-D n = 11 Balb/c recipients given RORC-/- Tconvs and 8 Balb/c recipients given WT 

Tconvs; n = 3 BM controls. Data are combined from 2 individual experiments. 
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Figure 2.2. Decreased tissue pathology in recipient mice given RORC-/- donor T cells. 

4 x 106 (CD25-) Tconv cells from RORC-/- or WT mice with WT TCD BM were 

transplanted into lethally irradiated (950 cGy) B6D2 F1 recipients.  Organs were 

harvested on day 15 post-transplantation and processed as described.  Tissues were 

evaluated by one of us (APM) blinded to the treatment group and scored using a semi-

quantitative GvHD scoring system.  Shown are the mean scores with error bars 

indicating SEM.  Statistical significance was determined using Mann-Whitney test, 

*p<0.05. n = 5 mice analyzed given WT or RORC-/- T cells. n=4 for bone marrow 

controls. Data pooled from an individual transplant using RORC-/- or WT Tconv. 
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Figure 2.3. Increased serum IFN-γ and decreased TNF expression RORC-/- recipients. WT TCD 

BM and RORC-/- or WT Tconv were transplanted into lethally irradiated B6D2 mice. 14 days post 

transplantation (A) serum and (B) organs were collected from B6D2 F1 recipients and analyzed by 

ELISA for the expression of IL-17, TNF and IFN-γ.  Shown are the mean values with error bars 

representing SEM.  Data are pooled from 5 individual B6D2 receiving mice RORC-/- or WT Tconv. 

Statistical analyses were conducted using Mann-Whitney test. Data are combined from 2 individual 

experiments *p<0.05, **p<0.01  



Figure	
  2.4	
  

55 



Figure	
  2.4	
  contd.	
  

56 

C

0

200

400

600

800

1000

TN
F 

pg
/m

L

0

50

100

150

200

TN
F 

pg
/m

L

BALB/cB6D2

LIVER

BALB/CB6D2

COLON

*

0

2000

4000

6000

0

200

400

600

800

1000

IF
N

 p
g/

m
L

BALB/CB6D2

LIVER

BALB/CB6D2

COLON

*

IF
N

 p
g/

m
L

0

2000

4000

6000

8000

IL
-1

7 
pg

/m
L

BALB/CB6D2

LIVER

0

10

20

30

40

50
IL

-1
7 

pg
/m

L

BALB/CB6D2

COLON

WT
RORC-/-

Figure 2.4. Function of RORC in Donor CD4+ T cells is Model Dependent. (A) Lethally irradiated 

BALB/c recipients were injected with 5 x 105 RORC-/- CD4+ or WT CD4+ T cells supplemented with 5 x 

106 WT TCD BM. Survival and GvHD scores are shown. n= 9 for RORC-/- recipients. n=9 for WT 

recipients, n=4 for bone marrow only recipients. (B) Lethally irradiated B6D2 F1 recipients were injected 

with 2 x 106 RORC-/- CD4+ T cells or WT CD4+ T cells supplemented with 3 x 106 WT TCD BM. n= 7 

for RORC-/- CD4+ T cells, n=7 for WT CD4+ T cells, n=3 bone marrow only. p<0.05 for survival. p < 

0.05 from day 17 until the completion of the experiment for the difference in GvHD score. Data are 

combined from 2 individual experiments. (C) Serum and (D) organs were harvested from lethally 

irradiated BALB/c, B6D2 F1, or B10.BR recipients transplanted with RORC-/- or WT CD4+ T cells 14 

days post transplantation. WT B10.BR recipients were harvested 10 days post transplantation. TNF, IFN-

γ, and IL-17 production were determined by ELISA. Data pooled from 5 RORC-/- CD4+ T cell BALB/c 

recipients and 4 WT CD4+ T cell BALB/c recipients, 6 RORC-/- CD4+ T cell B6D2 recipients and 4 WT 

CD4+ T cell B6D2 recipients, 4 RORC-/- CD4+ T cell B10.BR and 3 WT CD4+ T cell B10.BR recipients. 

Statistical analysis determined by Mann-Whitney test. * p<0.05. 
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Figure 2.5. Attenuated GvHD using RORC-/- Tconv cells is mediated by CD4+ T cells.  (A) 

Lethally irradiated B6D2 F1 mice were injected with 3 x 106 TCD BM.  In addition to BM one 

group received 2 x 106 RORC-/- CD4+ T cells and 2 x 106 WT CD8+ T cells, one group received 2 x 

106 WT CD4+ T cells and 2 x 106 RORC-/- CD8+ T cells, and a final group received only BM cells.  

Recipients of RORC-/- CD4+ T cells with WT CD8+ Tcells showed less GvHD reaching statistical 

significance by day 15 post transplantation.  n= 11 recipient mice receiving RORC-/- CD4+ T cells 

and WT CD8+ T cells, n=5 for recipient mice receiving WT CD4+ T cells and RORC-/- CD8+ T cells, 

n=4 for bone marrow only. Data are combined from 2 individual experiments *p<0.05. (B) 10 days 

post transplantation the livers of RORC-/- CD4+, WT CD8+ T cell or WT CD4+, RORC-/- CD8+ T cell 

recipient mice were harvested and T cells isolated. Data are representative from 3 WT CD4, RORC-/- 

CD8+ recipients and 4 RORC-/- CD4+, WT CD8+ recipients.  
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Figure 2.6. T-bet-/- Tconv cells decrease pathology in the GI tract but do not attenuate GvHD.  

(A) B6D2 F1 recipient mice were lethally irradiated (950 cGy) on day -1.  Following irradiation on 

day 0 mice were injected intravenously with 4 x 106 WT or T-bet-/- Tconv cells supplemented with 

3 x 106 WT TCD BM.  Mice were monitored for survival and scored twice weekly for clinical 

GvHD.  n=14 for T-bet-/- recipients, n=11 for WT recipients , n=4 bone marrow only.  All recipient 

mice receiving BM only cells survived until the completion of the experiment.  (B) On day 15 post 

transplantation organs were harvested from WT and T-bet-/- recipients and evaluated for pathology 

as described above.  Error bars indicate SEM. Statistical significance was determined using Mann-

Whitney test. *p<0.05, # p=0.09.  Data are combined from 2 individual experiments. 
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Figure 2.7. Improved anti-tumor responses in the absence of RORC. Lethally irradiated 

B6D2 F1 mice were injected with 3 x 106 TCD BM with or without 4 x 106 WT B6D2 or 

RORC-/- Tconv cells.  Additionally all recipient mice received 1 x 104 P815 cells with the 

BM inoculum.  Survival was determined by Kaplan and Meier method.  An improvement in 

overall survival was found in B6D2 F1 mice given RORC-/- Tconv cells compared to B6D2 

T cells or BM + P815 cells (p < 0.05). n=7 recipients receiving RORC null T cells, n=5 

recipients receiving B6D2 T cells, n=4 recipients receiving BM. Data combined from 2 

individual experiments. 
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Supplementary Figure 2.1. Attenuated GvHD using RORC-/- Tconv cells in minor 

mismatch MHC I GvHD model. Lethally irradiated BALB.B recipients were injected 

intravenously with 3 x 106 RORC-/- Tconv cells or WT Tconv cells supplemented with 5 x 

106 WT TCD BM. P<0.05 difference in median survival using log rank test. GvHD score 

statistic determined using Mann-Whitney test. n=11 recipients receiving RORC-/- T cell 

recipients, n=8 for recipients of WT T cells, n=3 for bone marrow only recipients. *p<0.05  
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Supplementary Figure 2.2. IL-17/IFN-γ Dual producing cells in GvHD target organs. The 

spleen, lung and liver were removed from B6D2 mice transplanted with WT TCD BM plus 

Tconv cells from WT or RORC-/- donors 12 days post transplantation and analyzed for the 

production of IL-17A and IFN-γ. n= 3 mice evaluated per each transplant group. Graphs 

indicate the percentage of cells producing IFN-γ and IL-17.  
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CHAPTER THREE 
 
 
 
 

ALTERED T CELL ENTRY AND EGRESS IN THE ABSENCE OF CORO 1A 

ATTENUATES MURINE ACUTE GRAFT VERSUS HOST DISEASE1 

 

3.1 Introduction 
 

Acute graft-versus-host disease (aGvHD), a disease of selective epithelial damage, is 

a severe complication of allogeneic stem cell transplantation.  aGvHD occurs when mature 

donor T cells recognize host alloantigen and initiate an immune response[1].  Work from our 

group and others has shown that prior to tissue destruction donor T cells must migrate to 

secondary lymphoid tissue where they are activated by host antigen presenting cells (APCs). 

Upon activation, donor T cells migrate to target organs primarily the liver, gastrointestinal 

tract, and lung, where they cause tissue damage and destruction characteristic of aGvHD[2]. 
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Migration of lymphocytes to target organs involves selectins, integrins, and small 

chemotactic proteins known as chemokines[3].  Chemokines bind a family of G-protein 

coupled receptors, C-C chemokine receptors, that direct the migration of lymphocytes to 

target locations.  Our group has demonstrated the importance of migration of donor T cells 

and their interaction with APCs in GvHD pathogenesis[4].  Furthermore the importance of 

secondary lymphoid tissue (SLT) in GvHD pathogenesis has been demonstrated as animals 

lacking all SLT including the spleen display markedly attenuated GvHD[5,6]. 

 
 
 

Numerous biological processes are regulated by the actin cytoskeleton and its 

associated proteins.  The coronin family of actin-associated proteins has been shown to be 

involved in cell migration, motility, and cell survival[7].  Coronins bind F-actin and interact 

with the Arp2/3 complex[8] where they are critical in preventing nucleation of the branched 

F-actin chain.  Coronin 1A (Coro 1A) was the first of the seven family members identified 

and is the most understood.  Coro 1A is expressed primarily in hematopoietic cells and co- 

localizes with F-actin[9].  Expression of Coro 1A in T lymphocytes is important for 

cytoskeleton rearrangement[10-12].  Several groups have evaluated the function of immune 

cells from mice lacking Coro 1A.  These studies have indicated that T cells from Coro 1A 

knockout mice do not function normally, although the mechanisms for this finding are still 

somewhat unclear and focus either on proximal signaling events after activation of the T 

cell receptor and/or the induction of apoptosis due to impaired generation of F-actin[11,12].  

In addition, a third group evaluated the migration of thymocytes using mice with a point 

mutation in Coro 1A that led to hypomorphic function for Coro 1A.  They demonstrated 

impaired migration of thymocytes from these mice in response to sphingosine 1 phosphate 



68	
   

leading to impaired thymic egress[13]. 

 
 
 

Reorganization of the actin cytoskeleton is an early response to chemokine receptor 

stimulation[14].  More recently chemokine receptors have been shown to regulate signaling 

molecules[14].  These molecules have been shown to be important for regulation of 

chemotaxis in lymphocytes and other cells[15,16].  More interestingly, the transcription 

factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) has been 

shown to be involved in the interaction between activation of T cells and changes in the 

cytoskeleton allowing for alterations in mobility[17].  However, the mechanisms by which 

these processes are linked is still not clear. 

 
 
 

Currently, while multiple investigators have indicated that the complete absence of 
 
SLT including the spleen eliminated acute GvHD, it is not clear if GvHD would be impacted 

by the inability of donor T cells to egress from SLT.  The previous work suggesting that the 

absence of Coro 1A led to impaired migration led us to investigate the biology of acute 

GvHD in a system where T cells could not enter or exit SLT.  Here we show that aGvHD is 

completely eliminated by the inability of donor T cells to exit SLT and migrate to GvHD 

target organs.  This is mediated by alterations in the activation of NF-κB in the absence of 

Coro 1A, which leads to significantly decreased expression of the critically important 

migratory proteins S1Pr1 and CCR7. 
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3.2 Methods 

 
Mice 

 
C57BL/6J (H2b) (termed WT), BALB/c, and C57BL/6J x DBA/2 F1 (termed B6D2) were 

purchased from The Jackson Laboratory.  The generation of enhanced green fluorescent 

protein expressing (GFP) C57BL/6 mice has been described previously[2].  Coro 1A 

deficient (Coro 1A-/-) C57BL/6 mice were obtained from Niko Foger and generated as 

described[11,18].  Coro 1A-/- GFP mice were generated by crossing Coro 1A-/- mice with 
 
GFP C57BL/6 mice.  All experiments were performed in accordance with protocols 

 
approved by the University of North Carolina Institutional Animal Care and Use Committee. 

 
 
 
 
Transplantation Models 

 
T cell depleted bone marrow (TCD BM) was prepared as previously described[19].  CD25 

depleted T cells were prepared using a total T cell isolation kit (Cedarlane Laboratories) 

followed by antibody depletion and magnetic cell separation as previously described[6]. 

Histopathology analyses were prepared as previously described and analyzed by one of us 

(A.P.M.) blinded to the genotype of the donor[20]. 

 
Stereomicroscopy 

 
Organs from anesthetized animals were imaged with a Zeiss Stereo Lumar V12 microscope 

with GFP bandpass filter (Carl Zeiss MicroImaging, Inc.) at room temperature.  AxioVision 

(Carl Zeiss) software was used to determine GFP intensities.  WT GFP and Coro 1A-/- GFP 

recipient organs were imaged using the identical magnification (mag) and exposure (exp) 

times for each time point.  Day +3: PP-exp 976ms, mag 32X MLN-exp 2.5s, mag 15X Day 

+14: PP-exp 1s, mag 30X  MLN-exp 1s, mag 20X Colon-exp 4s, mag 13X Liver-exp 2s, 
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mag 40X Lung-exp 4s, mag 18X Day +28: PP-exp 750ms, mag 30X MLN 600ms, mag 20X 

Colon-exp 3s, mag 13X Liver-exp 3s, mag 40X 

 
 
 
Organ GPF Quantification 

 
Organs from recipient animals were homogeneized and absolute GFP levels determine by 

ELISA (Cell Biolabs).  Detailed experimental procedures were conducted as described 

previously[6]. 

 
 
 
In Vivo Competitive Migration Assay 

 
CD25 negative total T cells were isolated as described above from Coro 1A-/- GFP and Thy 

 
1.1+ WT mice.  Recipient B6D2 mice were injected intravenously with equal amounts of 

 
Coro 1A-/- GFP and WT Thy 1.1+ donor T cells.  16 hours post transplantation the mesenteric 

lymph node, inguinal lymph node, and spleen were stained and analyzed by flow cytometry.  

 
Real Time PCR Analysis 

 
Real time PCR was performed as previously described[20].  Gene expression was 

normalized to the housekeeping gene GusB before determining fold induction.  Taqman 

expression assay probes for S1Pr1, S1Pr3, S1Pr5, and CCR7 were purchased from Applied 

Biosystems. 

 
 
Chemotaxis Analysis 

 
Naïve total T cells were isolated using Cedarlane total T cell isolation kit following by 

antibody depletion coupled with negative selection.  Following isolation the cells were 

washed twice with PBS.  5 x 105 or 2 x 105 total T cells in 100µL were added to the 

upper chamber of a PVP treated 5µM pore polycarbonate membrane inside of a 
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ChemoTx chamber system (Neuroprobe).  The bottom chamber was filled with the 

indicated concentrations of sphingosine-1 phosphate (Sigma) or C-C motif chemokine 19 

(Peprotech) and incubated for 3 hours at 37oC. CyQuant cell quantification kit 

(Invitrogen) was used to determine cell migration from the upper chamber to the lower 

chamber. 

 
 
Western Blot Analysis 

 
Freshly isolated naïve T cells were lysed in RIPA (Invitrogen) buffer supplemented with 

protease and phosphatase inhibitors (Roche).  Lysates were separated by SDS-PAGE on a 

4- 

12% Bis-Tris gel (Life Technologies), transferred onto a nitrocellulose membrane and 

incubated in 5% non-fat dry milk to block non-specific binding.  Membranes were 

incubated with the following antibodies purchased from Cell Signaling Technology: 

phospho NF-⎢⎢B p65 (Ser536), NF-⎢⎢B2 p100/p52.  GAPDH antibody was purchased from 

Santa Cruz Biotechnology.  Proteins were detected using anti-rabbit IgG HRP (Promega) 

and the ECL western blotting detection kit according to manufacturer’s instructions (GE 

Healthcare). 

 
 
In Vivo Proliferation 

 
Lethally irradiated B6D2 recipients were transplanted with equal amounts of Coro 1A-/- GFP 

and WT Thy 1.1+ donor total T cells concurrently with WT TCD BM.  10 days post 

transplantation recipient mice were injected intraperitoneally with BrdU labeling reagent 

(Invitrogen).  4 hours after injection the spleens were harvested and stained for BrdU 

(Invitrogen) and the following antibodies from eBioscience: CD45, CD44, CD62L, Thy 1.1. 
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GvHD Scoring 

 
Mice were observed twice weekly for clinical GVHD signs and symptoms based on a 

previously established clinical scoring system[21]. 

 
 
Statistical Analysis 

 
Survival curves were constructed using the Kaplan Meier method.  Median survival was 

determined using the log rank test.  Continuous values including cytokine levels, total cell 

numbers, and GFP expression were determined using two-tailed Student’s T test.  P values 

less that 0.05 were considered significant.  Error bars represent standard error of the mean. 
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3.3 Results 
 
3.3.1 Attenuated GvHD in Multiple Mouse Models Using Coro 1A-/- T Cells 

The expression of Coronin 1A (Coro 1A) has been shown to be important for T cell 

trafficking[12] however the contribution of Coro 1A to disease pathophysiology remains 

unclear[13].  To address the importance of Coro 1A in aGvHD, conventional T cells (Tcons) 

from Coro 1A-/- or C57BL/6 (WT) donors supplemented with WT T cell depleted bone 

marrow (TCD BM) cells were transplanted into lethally irradiated B6D2 F1 recipients.  As 

shown in figure 1A, recipients of Coro 1A-/- Tcons had significantly improved survival 

compared to recipients of WT donor Tcons. Clinical GvHD score confirmed survival data 

demonstrating decreased clinical symptoms in recipients of Coro 1A-/- compared WT T cell 

recipients (Fig 3.1A). 

We further evaluated the importance of Coro 1A in GvHD using a complete 

mismatch (B6 into BALB/c) model.  Lethally irradiated BALB/c recipients were 

administered Tcons from Coro 1A-/- or WT donors with WT TCD BM.  Similar to the 

haploidentical model, recipients of Coro 1A-/- Tcons showed increased survival with minimal 
 
clinical manifestations of GvHD (Fig 3.1B).  Histopathology analysis of GvHD target organs 

revealed decreased pathology in Coro 1A-/- recipients compared to WT recipients (Fig 3.2) 

with a significant difference in the liver and spleen.  Coro 1A-/- Tcon recipients also displayed 

decreased organ cytokine production on day 14 with the values for pro-inflammatory 

cytokine production in the liver being statistically significant (Sup Fig 3.1A).  Thus, the 

absence of Coro 1A from donor T cells led to a profound decrease in the generation of acute 

GvHD in two different models. 
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3.3.2 In Vivo Activation of Coro 1A-/- T Cells 
 

Next we wished to determine mechanisms for the diminished GvHD found after the 

infusion of donor T cells lacking Coro 1A.  Previous work suggested two potential 

mechanisms.  T cells deficient in Coro 1A may be impaired in activation mediated by 

engagement of the T cell receptor[11], or Coro 1A-/- T cells may be impaired in the ability to 

migrate in and out of lymphoid tissue[13].  Thus, we analyzed T cell proliferation using 

BrdU and the expression of CD62L and CD44 from Coro 1A-/- or WT donor T cells isolated 

from lethally irradiated B6D2 recipients.  There was no difference in the proliferation of 

donor WT versus Coro 1A-/- T cells isolated from the spleen as assessed on day 10 post 

transplant (Sup Fig 3.1B).  However, we did find differences in the percentage of activated 

donor T cells in the mesenteric lymph node (MLN) and Peyer’s Patch (PP) (Fig 3.3). 

Expression of CD44 was decreased in the MLN of Coro 1A-/- recipients compared to WT T 

cell recipients although no difference was seen in T cells isolated from the PPs of recipient 

animals.  Similarly the percentage of donor T cells that had downregulated CD62L was 

significantly less from B6D2 mice given donor Coro 1A null compared to WT Tcons cells. 

 
 
 

Next, to determine if the difference in the expression of CD62L was due to intrinsic 

differences in T cell activation, we evaluated T cell activation and proliferation in vitro. 

Interestingly, we did not find a difference in the expression of CD62L, the dilution of CFSE 

or the generation of IFN- by T cells from WT compared to Coro 1A null mice (data not 

shown) activated using either allogeneic APCs or antibodies specific for CD3 and CD28. 

These data suggest that there is an extrinsic problem with the activation of donor T cells in 

the absence of Coro 1A. 
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3.3.3 Accumulated Coro 1A-/- T Cells in Gastrointestinal Tract Lymph Nodes 

 
Donor T cell activation requires the migration of donor cells into the spleen and 

secondary lymphoid tissue of the host.  One hypothesis for the inability to activate donor T 

cells from Coro 1A null donors is the inability of those cells to migrate to SLT.  To 

determine if migration defects contributed to attenuated GvHD using Coro 1A-/- donor T cells 

we crossed Coro 1A-/- mice with mice that constitutively express enhanced green fluorescent 

protein (GFP). Using Coro 1A-/- GFP and WT GFP mice as donors lethally irradiated B6D2 

recipients were administered Tcons with WT (non GFP) TCD BM.  3 days post transplantation 

the mesenteric MLN and PP were imaged by stereomicroscopy.  Increased GFP expression in 

the MLN was seen in WT GFP recipients as compared to Coro 1A-/- GFP recipients, 

suggesting a delay in entry into lymph nodes by Coro 1A-/- T cells (Fig 3.4A).  Surprisingly, 

accumulation of Coro 1A-/- T cells was seen in the MLN and PP of B6D2 recipients 14 days 

post transplantation which continued through 28 days post transplantation (Fig 3.4A). 

Consistent with the accumulation seen in the MLN and PP there was a decrease in donor T 

cells in the liver and colon of Coro 1A-/- T cells as measured by stereomicroscopy and GFP 

ELISA (Fig 3.4A and B).  Migration defects displayed by microscopy were complemented 
 
by blood analysis on day 14 post transplantation that revealed a decrease in circulating T 

cells in B6D2 recipients given T cells from Coro 1A-/- GFP donors compared to WT GFP T 

cell donors (Fig 3.4C).  These data were consistent with impaired entry and egress into 

lymph nodes by Coro 1A-/- T cells. 

To further confirm a defect in entry into and out of lymphoid organs we performed an 
 
in vivo competitive migration assay.  Equal amounts of Coro 1A-/- GFP and WT Thy 1.1+ T 
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cells were injected into lethally irradiated B6D2 recipients.  16 hours post transplantation the 

MLN and inguinal lymph nodes (ILN) were harvested and analyzed by flow cytometry.  As 

demonstrated in figure 3.4D, even at this early time point Coro 1A-/- T cells were markedly 

less efficient in entering the MLN and ILN as compared to WT T cells. 

 
 
 
3.3.4 Decreased SLT Ingress and Egress Receptors In Coro 1A-/- T Cells 

 
Numerous researchers have shown that the C-C chemokines receptor type 7 (CCR7) 

 
is important for entry of T cells into secondary lymphoid organs[22].  Furthermore, data from 

our laboratory has highlighted the importance of CCR7 in migration and GvHD 

pathogenesis[6].  As Coro 1A-/- T cells displayed defects in lymph node entry we questioned 

if Coro 1A-/- T cells had decreased CCR7 expression.  To address this question real time 
 
analysis was performed on freshly isolated Coro 1A-/- and WT T cells.  Surprisingly, Coro 

 
1A-/- T cells expressed 2 fold less CCR7 than WT T cells (Fig 3.5A).  This decrease in CCR7 

was further confirmed using an in vitro chemotaxis assay to the CCR7 ligand, CCL19. 

Similar to the real time data results, Coro 1A-/- T cells displayed impaired migration to 

CCL19 (Fig 3.5A).  Responsiveness of Coro 1A-/- T cells to a chemoattractant was confirmed 
 
using the supernatant from stimulated allogeneic dendritic cells (Sup Fig 3.1C). 

 
In addition to the impaired migration into secondary lymphoid tissue, Coro 1A 

deficient T cells were unable to egress out of lymphoid tissue similar to WT T cells. 

Sphingosine-1 phosphate (S1P) is a signaling sphingolipid that is produced by hematopoietic 

cells that has been shown to be important for lymphocyte egress from SLT.  Of the 5 S1P 

receptors S1Pr1 has been shown to be important for lymphocyte egress[23].  To evaluate S1P 

receptor expression in Coro 1A-/- T cells we used quantitative real time PCR analysis.  Coro 
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1A-/- naïve T cells displayed decreased S1Pr1 expression compared to WT naïve T cells (Fig 
 
3.5C).  However, no difference was found in the expression of the other S1P receptors (Fig 

 
3.5b and data not shown) on Coro 1A deficient T cells.  Additionally, we demonstrated a 

marked impairment in the migration of Coro 1A-/- T cells to S1P compared to WT T cells 

indicating that this difference in expression led to functional differences in response to the 

ligand.  These data indicate that decreased CCR7 and S1Pr1 expression on Coro 1A-/- T cells 

correlated with the decreased migration into and out of lymphoid organs. 

 
 
 
3.3.5 Disruption of the NF-κ B Pathway in the Absence of Coro 1A 

 
To investigate the mechanism for the diminished expression of CCR7 and S1Pr1 by 

Coro 1A-/- T cells, we analyzed signaling pathways in naïve T cells.  Regulation of the 

integrity of the actin cytoskeleton is important for numerous signaling pathways including 

the NF-κB and the mitogen-activated protein kinase (MAPK) pathways[24,25].  Decreased 

phosphorylated p65 was found under stimulating and non-stimulating conditions in Coro 1A-
 

/- naïve T cells (Fig 3.6A).  Alterations in the NF-κB pathway were specific to the canonical 
 

pathway as no changes in the p100 subunit were observed in WT or Coro 1A-/- T cells (Fig 
 
3.6A).  We found no difference in activation using TNF or anti-CD3/anti-CD28 mAb of p38 

in Coro 1A null compared to WT T cells as evaluated by Western blot (Supp Fig 3.2).  Thus, 

the diminished expression of CCR7 and S1P1r correlated with impaired activation of the 

canonical NF-κB pathway[26]. 
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3.3.6 Modest GvL Response using Coro 1A-/- Tcons 

 
T cells responsible for the pathogenesis of aGvHD are also responsible for the graft- 

versus-leukemia effect (GvL) that eliminates residual tumor cells in host recipients. 

Knowingly, we investigated whether Coro 1A-/- Tcons maintain GvL effects.  WT TCD BM 

with P815 murine mastocytoma cells were transplanted into lethally irradiated B6D2 
 
recipients with either Coro 1A-/- Tcons or WT Tcons. There was a modest improvement in 

overall survival in B6D2 recipients given T cells from Coro 1A-/- donors.  While all mice 

given WT donor T cells succumbed to GvHD on day 20 post transplant, recipients of Coro 

1A-/- T cells died from tumor progression by day 30 post transplant.  All mice given bone 

marrow alone also died by day 20 of tumor progression, demonstrating a statistically 

significant improvement in survival for recipients of Coro 1A deficient T cells (p = 

0.008)(Fig 3.7). 
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3.4 Discussion 

 
The contribution of T cell migration to aGvHD pathogenesis has been well 

studied[6,27].  Our group and others have shown that chemokines and their receptors, 

integrins, and selectins all play a critical role in T cell migration during aGvHD[4,28,29]. 

Here we extend these findings demonstrating that cells deficient in the F-actin associating 

protein, Coronin 1A, are markedly impaired in their ability to mediate acute GvHD across 

different MHC mismatched models.  The diminished GvHD using T cells deficient in Coro 

1A correlated with decreased tissue pathology in the GI tract and liver of recipient mice given 

T cells lacking Coro 1A.  Coro 1A null T cells were impaired in activation in vivo, which 

correlated with the diminished ability to migrate into and then later exit SLT.  Finally, we 

show that signaling cascades downstream of the TCR are impaired in the absence of Coro 

1A.  The reduction in the expression and function of CCR7 and S1Pr1 correlated with 

impaired activation of the canonical NF-κB pathway.  Thus, these data suggest that one 

method of blocking acute GvHD is to prevent the migration of donor lymphocytes in and out 

of SLT. 

 
 
 

The function of SLT in the biology of acute GvHD has been studied elegantly by 

several different investigators predominately using genetic approaches.  These data indicated 

that secondary lymphoid tissue was critical to the induction of acute GVHD[5,30].  However, 

this activity was redundant with all secondary lymphoid tissue and the spleen capable of 

initiating acute GvHD.  Thus, it has not been clear if this process would be amenable to 

clinical intervention.  Here, we show that acute GvHD can be prevented by blocking the 
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migration of T cells into and out of secondary lymphoid tissue, which correlated with the 

impaired function of CCR7 and S1Pr1.  Both CCR7 and S1Pr1 are potential targets for the 

prevention of aGvHD. 

 
 
 

Several laboratories, but most specifically the Cyster laboratory, have shown in a 

number of elegant manuscripts the requirement for S1Pr1 expression on T cells for migration 

of those cells out of lymph nodes via the efferent lymph system[31]. The function of S1Pr1 is 

not limited to lymphocyte migration as S1Pr1 has also been shown to be important in 

inflammatory responses in other immune cells[32].  Similarly other S1P receptors have been 

suggested to function in T cell chemotaxis and migration[33].  Real time analysis of Coro 

1A-/- T cells confirmed decreased expression of S1Pr1 but not S1Pr3 or S1Pr5 in Coro 1A-/- T 
 
cells.  Interestingly, our group has previously evaluated the function of FTY720, which is an 

agonist of S1P that in models prevents acute GvHD pathogenesis[34].  While we were able to 

indicate that FTY720 administration could abrogate acute GvHD, this did not correlate with 

impaired egress of donor T cells from SLT.  Thus, the current data are the first to indicate 

that egress out of SLT is important for the function of donor T cells during acute GvHD[35]. 
 
 
 
 

The importance of the chemokine receptor CCR7 in T lymphocyte migration has been 

well established.  Data from our group demonstrated impaired donor T cell migration to 

secondary lymphoid organs of donor T cells lacking CCR7[6].  However, in our previous 

work we were unable to completely block acute GvHD in the major mismatch model by 

infusing T cells lacking CCR7.  This indicates that the profound decrease in GvHD found 

after the infusion of T cells lacking Coro 1A in BALB/c recipients is not solely due to the 
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absence of CCR7.  This would suggest that blocking migration in and out of secondary 

lymphoid tissue has a more profound effect than blocking the initial interaction of donor T 

cells with APCs. 

 
 
 

One critical question from these evaluations is whether the impaired activation of 

donor Coro 1A deficient T cells is due to cell intrinsic or extrinsic factors or both.  This was 

difficult for us to evaluate in vivo and we specifically sought in vitro evidence of cell intrinsic 

activation problems.  However, using allogeneic APCs to stimulate Coro 1A deficient or WT 

T cells, we were not able to show impaired initial activation, proliferation or cytokine 

production by Coro 1A-/- T cells (data not shown).  Interestingly, there was a modest effect 

on T cell activation in the presence of anti-CD3 mAb suggesting that signaling downstream 
 
of the TCR may be altered in the absence of Coro 1A.  Nevertheless, our data indicated that 

Coro 1A deficient T cells activated by APCs in vitro were able to proliferate and differentiate 

suggesting that impaired activation from these cells in vivo was cell extrinsic.  How the 

absence of Coro 1A affects TCR signaling is not entirely clear and the focus of significant 

work in our and other laboratories. 

 
 
 

Blocking of GvHD that mitigates the GvL response is not a successful strategy for 

improving allogeneic SCT.  Loss of Coro 1A led to some retention of the GvL response 

although this was not similar to that found after allogeneic SCT.  The targeting of Coro 1A 

may be difficult despite its presence solely in the hematopoietic compartment.  However, 

CCR7 and S1P1r are viable pharmacological targets.  It is our contention that the targeting of 
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these proteins may allow for a more robust anti-tumor response compared to blocking the 

function of Coro 1A. 

 
 
 

In summary, we have found that the absence of Coro 1A in donor T cells markedly 

diminished the incidence and severity of acute GvHD.  We demonstrate that Coro 1A-/- T 

cells have impaired migration into and out of secondary lymphoid tissue, which correlated 

with diminished expression of CCR7 and S1P1r.  These data indicate that approaches that 

prevent the migration of T cells into AND out of secondary lymphoid tissue may 

significantly impact the occurrence of acute GvHD.
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Figure 3.1. Attenuated GvHD in the Absence of Coro 1A. (A) 4 x 106 Coro 1A-/- T cells (Tcons) 

or WT T cells supplemented with 3 x 106 WT T cell depleted bone marrow cells (TCD BM) were 

injected into lethally irradiated B6D2 recipients. n=14 for Coro 1A-/- and WT T cell recipients. 

n=4 for bone marrow only. Data are pooled from 3 individual experiments (B) Lethally irradiated 

BALB/c recipients were infused with 5 x 105 Coro 1A-/- or WT Tcons with 5 x 106 WT TCD BM 

cells. Following transplantation mice were monitored for survival and clinical GvHD 

development. n=19 for Coro 1A-/- and WT T cell recipients. n=6 for bone marrow only. Data are 

pooled from 3 individual experiments. *p<0.001 
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Figure 3.2. Histopathology of B6D2 recipients after transplantation of Coro 1A-/- or 

WT T Cells. Lethally irradiated B6D2 mice were transplanted with 4 x 106 Coro 1A-/- or 

WT Tcons with 3 x 106 TCD BM. 14 days post transplantation organs were harvested for 

pathology analyses. n=6 for Coro 1A-/- and WT recipients. n=4 for bone marrow controls. 

p<0.05 
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Figure 3.3. Decreased Activation In Vivo in the Absence of Coro 1A. Coro 1A-/- GFP or WT GFP 

Tcons cells were injected into lethally irradiated B6D2 mice. Mesenteric lymph nodes and Peyer’s 

patches from WT and Coro 1A-/- recipients were harvested 3 days post transplantation. Donor (GFP+) 

T cells were analyzed by flow cytometry for the expression of (A) CD44 and (B) CD62L. n=3 for 

Coro 1A-/- and WT recipients. *p<0.05 
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Figure 3.4. Delayed Entry and Impaired Egress out of Secondary Lymphoid Organs by Coro 

1A-/- T Cells. Coro 1A-/- GFP or WT GFP Tcons supplemented with T cell depleted bone marrow cells 

were infused into lethally irradiated B6D2 recipients. (A) Migration of the cells to the liver, colon, 

mesenteric lymph node and Peyer’s patches was determined using stereomicroscopy. Images were 

collected 3, 14 and 28 days post transplantation. Left panels display GFP expression while right panels 

reflex intensity. Data are representative of 6-8 B6D2 recipients given either Coro 1A-/- GFP or WT GFP 

recipients. (B) GFP ELISA was used to quantify GFP expression in B6D2 recipients 14 days post 

transplantation. n=5 for WT GFP or Coro 1A-/- GFP recipient. (C) Peripheral blood was collected from 

WT or Coro 1A-/- recipients 14 days post transplantation. T cells in the blood were evaluated by flow 

cytometry using CD4 and CD8. n=4 for Coro 1A-/- GFP recipients, n=3 for WT GFP recipients. In vivo 

competitive migration using Coro 1A-/- and WT (Thy 1.1) cells were performed as detailed in methods. 

(D) Flow cytometry analysis of Coro 1A-/- GFP and WT (Thy 1.1) Teffs 16 hours post transplantation. 
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Figure 3.5. Decreased Receptor Expression and Impaired Chemotaxis in the Absence of Coro 

1A. (A) Real time expression of CCR7 and chemotaxis to CCL19 of naïve WT or Coro 1A-/- T cells 

(B) Real time expression of S1Pr1 and S1Pr5 and chemotaxis to S1P in WT and Coro 1A-/- naïve T 

cells. *p<0.05. Data are representation of 2 individual experiments. 
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Figure 3.6. Decreased Activation of NF-κB in Coro 1A-/- T cells. 3 x 106 WT or Coro 1A-/- T cells 

were stimulated for 30 minutes with either 20ng/mL of TNF or 20ng/mL of anti-CD3 and 10ng/mL 

of anti-CD28. T cells were harvested and analyzed by western blot: p100 and phospho p65. Data are 

representative of 3 individual experiments. 
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Figure 3.7. GvL Response using Coro 1A-/- T Cells. 2.5 x 104 P815 murine mastocytoma cells 

supplemented with TCD bone marrow cells were injected into lethally irradiated B6D2 

recipients. Mice were also injected with either Coro 1A-/- or WT Tcons. Mice were monitored for 

survival and tumor infiltration following transplantation. n=8 for Coro 1A-/- or WT T cell 

recipient. n=7 for P815 + bone marrow. Data are pooled from two individual experiments. 
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Supplementary Figure 3.1. Cytokine Production, Proliferation, and Chemotaxis of Coro 1A-/- T 

cells. Lethally irradiated B6D2 recipients were injected with Tcons from Coro 1A-/- or WT donors 

supplemented with WT TCD BM. (A) 14 days post transplantation animals were perfused and 

organs were harvested and homogenized for cytokine production by ELISA. n=5 for Coro 1A-/- or 

WT  (B) 10 days post transplantation mice were injected with BrdU. 4 hours after injection spleens 

were harvested and analyzed by flow cytometery for BrdU uptake (C) Freshly isolated T cells from 

Coro 1A-/- mice were placed inside a chemotaxis chamber with indicated amounts of CCL19 or 

supernatant from bone marrow derived B6D2 dendritic cells. 
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Supplementary Figure 3.2. p38 Expression in Coro 1A-/- T Cells. 3 x 106 Coro 1A-/- or 

WT T cells were stimulated for 30 minutes with either 20ng of soluble TNF or 20µg of anti-

CD3 and 10µg of anti-CD28 antibodies. Following stimulation the cells were harvested and 

western blots performed as described in ‘Methods’.  
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CHAPTER FOUR 

 

L-SELECTIN IS DISPENSABLE FOR T REGULATORY CELL FUNCTION POST 

ALLOGENEIC BONE MARROW TRANSPLANTATION1  

 

4.1 Introduction 

Allogeneic hematopoeitic stem cell transplantation (allo-HSCT) is a potentially 

curative therapy for numerous blood born malignant and non-malignant disorders[1,2].  

Although allo-HSCT holds much promise, the prevalence of graft-versus-host disease 

(GvHD) limits its widespread use [3].  CD4+/CD25+ naturally occurring T regulatory (Treg) 

cells offer a potential solution to the prevention of GvHD.  Importantly, Tregs can suppress 

allo-reactive T cell responses, including those involved in solid organ and skin allograft 

rejection [4].  Multiple groups, including our own, have demonstrated that Tregs are capable 

of inhibiting GvHD without impacting the GvL response [5,6].  

 L-selectin (CD62L) is a member of the selectin family that is involved in leukocyte 

homing [7].  CD62L is constitutively expressed by myeloid cells, naïve lymphocytes and 
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central memory T cells [7,8].  We, and others, have shown the importance of Treg homing 

molecule expression in preventing GvHD [5,9,10]. These studies provided evidence that the 

phenotype of the CD62LHi Treg population was responsible for inhibition of GvHD, however, 

they did not directly assess the role of CD62L in this process.  Decreased expression of 

CD62L may be indicative of a Treg subset that is biologically distinct from CD62Lhi Tregs 

independent of the function of CD62L.   

Using a clinically relevant model of allo-HSCT we now show that CD62L expression 

by Tregs was not required for the inhibition of GvHD as CD62L-/- Tregs provided similar 

protection from lethal acute GvHD compared to WT Tregs.  In addition, CD62L expression 

was not critical for Treg migration to GvHD target organs.  However, the expression of 

CD62L was important for the prompt migration of Tregs to PLNs. 

 

4.2 Methods 

Mice 

Donor mice consisted of male C57BL/6J (B6), (H-2b; The Jackson Laboratory, Bar Harbor, 

ME), Thy1.1+ mice (H-2b; The Jackson Laboratory) and CD62L-/- mice, which have been 

described previously[11].  CD62L-/- mice were crossed with B6 mice expressing the 

enhanced GFP (eGFP) protein to generate eGFP expressing CD62L-/- mice.  The generation 

of B6-eGFP mice has been described [12].  In some experiments Treg cells were isolated from 

FIR mice (expressing red fluorescent protein (RFP) under the FoxP3 promoter) as 

described[13].  Recipient mice were male (C57BL/6JXDBA/2) FI mice, (B6D2) (H-2bxd; The 

Jackson Laboratory).  Within each experiment, all recipient and donor mice were male mice 
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ranging from 9-14 wk.  All animal experiments were performed in accordance with protocols 

approved by the University of North Carolina Institutional Animal Care and Use Committee. 

 

Antibodies and Flow Cytometry 

Antibodies with the following specificities were purchased from eBiosciences (San Diego, 

CA):  anti-CD4 (RM 4.5), CD62L (Mel-14), CD25 (PC61), CD8 (53-6-7), Thy1.1 (HIS51), 

and FoxP3 (FJK-16s).  Acquisition was performed on a FACSCalibur using CellQuest 

software (BD Biosciences; San Jose, CA).  Analysis was performed using FlowJo (Treestar 

Inc., Ashland, OR) software.   
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Preparation of cells for transplant and bone marrow transplants 

T cell depleted bone marrow (TCD BM) cells, Teff cells and Tregs were isolated and infused as 

described[14].  

 

Treg cell expansion 

CD4+/CD25+/RFP+/CD62Lhigh cells were sorted on a MoFlo cell sorter (Dako A/S, Glostrup, 

Denmark) from the spleens of RFP-FoxP3 mice.  Sorted cells were expanded with plate-

bound anti-CD3 (145-2C11, 15mg/ml; eBioscience) and CD28 (37.51, 10mg/ml; 

eBioscience) supplemented with IL-2 (500 units/ml; Peprotech; Rocky Hill, NJ) for 12 days.  

After 12 days, cells were harvested, stained for CD62L and sorted.  Sorted cells were always 

>95% CD4+/mRFP+/CD62LLo. 

 

In vitro suppression assay 

In vitro suppression assays were performed as previously described[10].  

  

GvHD grading 

Mice were observed twice weekly for signs of GvHD using previously described clinical 

scoring system[15].  
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Fluorescence microscopy 

Animals were anesthetized with avertin and organs were imaged with a Zeiss SteREO Lumar 

V12 microscope with eGFP bandpass filter (Carl Zeiss MicroImaging, Inc., Thornwood, NY) 

as described [14].   

 

Competitive Treg Migration Assay 

Competitive migration of WT versus CD62L -/- Treg cells was done as described [14]. 

 

Histopathology 

The sections were scored by one of us (A.P.-M.) who was blinded to the treatment given 

using a previous described method[14] . 

 

Quantitation of chemokine receptor transcripts 

RNA was isolated from sort-purified Tregs using the Qiagen RNeasy Kit (Qiagen; Valencia, 

CA).  Quantitative RT-PCR for chemokine receptor transcripts was performed using primers 

and probes to CCR1, CCR2, CCR4, CCR5, CCR7, CCR8, CCR9, CCR10, CXCR3, and 

CXCR4 (Applied Biosystems; Corvalis, OR).  The ΔCt method was used to normalize 

transcripts to 18S RNA and to calculate fold induction. 

 

Measurement of serum IFN-g 

Serum samples were obtained from mice receiving whole naïve T cells, with or without WT 

Tregs, CD62L-/- Tregs, CD62LLo Tregs or BM only.  Samples were harvested when animals 
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reached a clinical GvHD score of 4.  IFN-g concentrations were determined according to the 

manufacturer’s instructions using ELISA (Biolegend San Diego CA). 

 

Statistical analysis 

For GvHD scoring, we used the Student’s t-test; for overall survival we used Fisher’s exact 

test, and for median survival we used the Mann-Whitney log rank test.  P values ≤ 0.05 were 

considered significant. 

 

4.3 Results 

4.3.1 CD62L-/- Tregs mediate protection against lethal GvHD 

To determine the precise requirement for CD62L expression in Treg-mediated 

protection during GvHD, we isolated fresh CD4+/CD25+ cells from WT or CD62L deficient 

animals (CD62L-/-).  Unexpectedly, we did not observe a significant difference in the overall 

survival (P=1.0) or median survival time (P=0.86) in recipient mice given WT compared to 

CD62L-/- Tregs (Figure 4.1A).  Both WT and CD62L-/- Tregs recipients had significantly 

improved overall survival (P<0.001) compared to recipients of WT T cells alone.  Our 

previous work has demonstrated that in vitro expanded CD62LLo Tregs were unable to 

ameliorate GvHD pathology[5], however our subsequent analysis of expanded CD4+/CD25+ 

cells has revealed considerable contamination by FoxP3— cells in the CD62LLo fraction (M. 

Carlson, J. Serody; unpublished observation).  We therefore isolated cells from FIR mice in 

which the red fluorescent protein is expressed under control of the FoxP3 promoter[13] and 

thus, Tregs can be identified from the CD4+/CD25+ fraction by their expression of mRFP.  

Recipients of ex vivo expanded mRFP+/CD62LLo Tregs displayed only a very modest 
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improved overall (P=0.09) and median survival time (P=0.12) relative to animals receiving T 

cells alone (Figure 4.1A).  These results demonstrated that CD62L-/- Tregs were capable of 

providing protection from lethal acute and GvHD.  These data also demonstrate that 

contamination of CD62Lo Treg cells with effector cells was not an explanation for the lack of 

activity of CD62LLo Tregs in the current study.  The paucity of CD62LLo Tregs present in FIR 

mice precluded the evaluation of this population of cells without ex vivo expansion.   

 

Next, we determined disease severity using a defined clinical scoring system[15].  

Although the survival outcomes were not significantly different, WT Tregs did afford reduced 

clinical GvHD scores compared to CD62L-/- Tregs during the first 21 days post-transplant 

(P<0.04 for days 7 to 21) (Figure 4.1B).  Starting on day 24, and for the duration of the 

experiment, GvHD scores were not significantly different (P>0.05) in recipients given either 

WT or CD62L-/- Tregs.  Consistent with no improvement in overall or median survival, 

CD62LLo Tregs did not reduce clinical manifestations of GvHD as compared to T cells alone 

(Figure 4.1B).  Collectively, these data demonstrated that CD62L-/- Tregs were able to protect 

animals from lethal GvHD, albeit they did not suppress clinical GvHD manifestations as well 

as WT Treg cells in the first three weeks post transplant.  In addition, CD62L-/- Tregs 

functioned more efficiently to prevent GvHD than mRFP+/CD62LLo Tregs post-

transplantation. 
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4.3.2 CD62L-/- Tregs function normally to suppress T cell responses to allo-antigen in 

vitro 

Because we observed significant differences early post-transplant in the clinical 

appearance of GvHD between recipients of WT and CD62L-/- Tregs, we sought to determine 

the ability of CD62L-/- Tregs to inhibit effector T cell responses to allo-antigen.  To address 

this question, freshly isolated CD4+/CD25+ cells from WT and CD62L-/- mice were co-

cultured with WT CD4+/CD25— responder cells stimulated with irradiated B6D2 

splenocytes.  CD62L-/- and WT Tregs displayed equivalent suppression of WT effector T cells 

up to a 1:8 Treg:Effector cell ratio (Figure 4.1C).  Therefore, the early elevated GvHD scores 

of animals given CD62L-/- Tregs was not due to an intrinsic defect in their suppressive 

function.  As described, CD62LLo Tregs were potent suppressors of allo-reactive T cells in 

vitro up to a ratio of 1:32 Tregs: Effector cells (Supplemental Figure 4.1). 

 

4.3.3 GvHD target organ histopathology 

Given the differences observed in clinical GvHD scores, we were interested in 

determining the impact that phenotypically different Tregs had on individual organ pathology.  

Histopathology scores in the colon were not statistically different between any of the groups 

(Figure 4.2A).  Recipients of WT Tregs demonstrated less pathological damage in the lung as 

compared to recipients of CD62L-/- Tregs (P=0.05) (Figure 4.2B).  Examination of the liver 

demonstrated that both WT and CD62L-/- Tregs significantly inhibited GvHD pathology 

(P<0.03) compared to recipients of effector T cells alone (Figure 4.2C).  Interestingly, 

despite the modest difference in tissue pathology, there were significant difference in serum 
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IFN-γ levels in mice given effector T cells alone compared to WT or CD62L-/- Tregs (P<0.01) 

(Figure 4.2D).  Overall, these results demonstrated that with the exception of worsened lung 

pathology, CD62L-/- Tregs functioned as well as WT Tregs to prevent GvHD, while both were 

potent in their ability to inhibit systemic IFN-g production. 

 

4.3.4 CD62L-/- Tregs traffic to secondary lymphoid tissues and GvHD target organs 

Because we observed differences early on in the clinical manifestation of GvHD 

between recipients of WT and CD62L-/- Tregs, we were interested in determining the 

trafficking pattern of these Tregs.  To evaluate in vivo Treg trafficking, we used a competitive 

lymphocyte migration assay[16].  As illustrated in Figure 4.3A, six days after transfer, 

CD62L-/- Tregs were found at a similar frequency as WT Tregs in the liver, lung, spleen, bone 

marrow, and mesenteric lymph node (MLN), although as expected, there were substantially 

fewer CD62L-/- Tregs in the PLNs of recipient animals.  Further analysis 16 days post- Treg 

transfer showed no difference between WT and CD62L-/- Treg migration to liver, spleen, bone 

marrow, or MLN (Figure 4.3B).  However, although not statistically different, there were 

fewer CD62L-/- Tregs detected in the lung and PLN on day 16 compared to WT Tregs, which 

correlated with the enhanced GvHD in the lung of recipient animals receiving CD62L-/- Tregs 

(Figure 4.3B). 

  

To confirm our findings regarding the function of CD62L in the migration of Tregs in 

a lymphopenic environment, we performed in vivo imaging using fluorescence 

stereomicroscopy.  In the MLN (Figure 4.3C) and spleen (Figure 4.3D) we found similar 

distribution and GFP signal intensity by WT and CD62L-/- Tregs, indicating that the migration 
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and accumulation of CD62L-/- Tregs was indistinguishable from WT Tregs in these organs 

sixteen days post-transplantation.  Interestingly, we observed fewer GFP+ CD62L-/- Tregs in 

the lung (Figure 4.3E) and PLN (Figure 4.3F) at this time point.  Taken together, these 

observations illustrated that CD62L-/- Tregs home to GvHD target organs, similar to WT Tregs, 

with the exception of a modest impairment in migration to the lung.  Differences in the 

migration of WT compared to CD62L-/- Tregs to PLNs were found in the first week post-

transplantation demonstrating the importance of CD62L in the initial migration of Tregs to 

PLNs.  However, at day 16 these differences were minimized indicating that CD62L was not 

absolutely required for the eventual migration of Tregs to PLNs. 

 

4.3.5 CD62LHi, CD62L-/-, and CD62LLo Tregs display differential expression of 

chemokine receptors   

The finding of CD62L-/- Tregs in the PLNs of irradiated recipients was somewhat 

surprising given the role that CD62L plays in T cell rolling and homing to lymph nodes.  

This observation suggests that in the absence of CD62L other proteins important for T cell 

migration may serve a similar function.  To this end we examined the phenotypic profile of 

Tregs based on CD62L expression (Figures 4.4A-4.4C).  As shown in Figure 4D, CD62LHi 

and CD62L-/- Tregs have increased expression of CCR7 mRNA relative to CD62LLo Tregs.  We 

then compared the three Treg types to naïve CD4+/mRFP— cells in their mRNA expression of 

other chemokine receptors.  CD62L-/- Tregs resembled CD62LLo Tregs in the expression of 

CCR2, CCR4, and CXCR3, and resembled CD62LHi Tregs in the expression of CCR9.  

CD62L-/- Tregs had intermediate levels of CCR5 and CCR8, with distinctive expression of 

CCR1 and CCR10.  Collectively, these data demonstrated that the migratory profile of 
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CD62L-/- Tregs was that of an intermediate activated phenotype with higher expression of pro-

inflammatory chemokine receptors compared to CD62LHi Tregs and much greater expression 

of CCR7 compared to CD62LLo Tregs. 
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4.4 Discussion 

In the current work, we were interested in determining whether CD62L itself was 

critical for Treg function and migration into lymphoid tissue.  We demonstrated that CD62L 

was not critical for Treg function to prevent GvHD lethality as CD62L-/- Tregs afforded 

substantial protection from lethal acute GvHD in the clinically relevant model employed.  

WT Tregs yielded reduced clinical scores compared to CD62L-/- Tregs during the first three 

weeks post-transplant, which correlated with delayed migration of CD62L-/- Tregs to PLNs.  

Histopathological analysis of GvHD target organs correlated with the clinical scores, as 

recipients of WT Tregs showed improved pathology in the lung and similar pathology in the 

colon and liver compared to CD62L-/- Tregs.  Lastly, we demonstrated differential chemokine 

receptor expression of Tregs based on CD62L expression, where the CD62L-/- Tregs displayed a 

phenotype that appeared to be an intermediate between the naïve CD62LHi and activated 

CD62LLo. 

 

Previous reports examining the role of CD62L in Treg-mediated inhibition of GvHD 

suggested either that[1] CD62L itself was critically important in the function of Tregs or that 

[2] the CD62LHi phenotype functioned differently than CD62LLo Tregs but that CD62L itself 

was not critical [5,9]. Our data demonstrated that CD62L itself was not critically required for 

the prevention of GvHD lethality or for the ability to migrate into LN post transplantation. 

While there was no difference in either overall or median survival time, our data indicated 

that CD62L did serve as an accessory molecule given the statistical difference in clinical 

scores between WT and CD62L-/- Tregs during the first three weeks post-transplantation.  Of 
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interest, we also observed no statistical difference in clinical scores between CD62L-/- and 

CD62LLo Tregs for the first two weeks post-transplantation suggesting CD62L serves early on 

to promote Treg inhibition of GvHD most likely by enhancing the migration of Tregs into 

lymphoid tissue.   

 

One concern in our previous studies in which we expanded CD4+/CD25+ T cells to 

obtain a CD62LLo population was the difficulty in eliminating CD25+ effector cells from the 

Treg infusion[5].  Here, we have circumvented this concern by using Tregs from FIR mice in 

which mRFP is under control of the FoxP3 promoter and thus cells expressing FoxP3 can be 

detected using flow cytometry[13].  Our data confirm previous observations that CD62LLo 

Tregs were not sufficient to prevent GvHD in the overwhelming majority of transplanted 

recipients.  The possibility of impaired suppressive function of these cells was ruled out by in 

vitro analysis in which CD62LLo Tregs were more proficient suppressors of T cell responses to 

allo-antigen, consistent with previously published data[17].   Therefore, the inability of 

CD62LLo Tregs to provide protection against GvHD could not be explained by impaired 

function but may be due to impaired homing to lymphoid tissue or diminished survival after 

infusion. 

 

Examination of the pathology in individual organs revealed that WT and CD62L-/- 

Tregs ameliorated disease in the liver, whereas WT Treg recipients displayed reduced 

pathology in the lung as compared to CD62L-/- Treg recipients.  The increased lung pathology 

correlated with modestly impaired CD62L-/- Treg migration to the lung. The accumulation of 

IFN-g in the serum has been shown to be a predictor of GvHD mortality[18]. We also 
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documented a substantial reduction in the level of IFN-g in the serum of animals receiving 

either WT or CD62L-/- Tregs an effect not seen in recipients of mRFP+/CD62LLo Tregs (data not 

shown).  Here again, a functional distinction was made between CD62L-/- and CD62LLo Tregs.   

 

While it is clear that Tregs do inhibit effector T cell expansion and suppress effector 

functions, it is less clear as to whether the inhibition is in lymphoid tissues or GvHD target 

organs.  In the current report, we demonstrated that CD62L-/- Tregs migrate to GvHD target 

organs with similar efficiency as WT Tregs, however their accumulation within the PLNs was 

delayed.  It is interesting to note that this delay corresponded with increased clinical GvHD 

scores, thus supporting the hypothesis that entry into lymph nodes by Tregs was important in 

inhibiting the initial expansion of donor T cells.  The inability of CD62LLo Tregs to inhibit 

GvHD has been attributed to ineffective trafficking to secondary lymphoid tissues[9].  

Normal trafficking seen in CD62L-/- Tregs provides another distinction between CD62LLo and 

CD62L-/- phenotypes. 

Other studies have examined chemokine receptor expression on Treg subsets, 

including the CD62LHi and CD62LLo populations[19,20]. Our data is in agreement that the 

CD62LHi fraction expressed high levels of the lymph node homing chemokine receptor 

CCR7.  Of interest, the CD62L-/- population also expressed high levels of CCR7, providing a 

plausible mechanism for their migration to secondary lymphoid tissues. In keeping with an 

activated status the CD62LLo Tregs expressed high levels of CCR5 and CCR8 while the 

CD62L-/- Tregs displayed intermediate expression.   

In summary, our data demonstrate that post-transplant, CD62L was dispensable for 

Treg inhibition of GvHD lethality.   
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Figure 4.1.  CD62L-/- Tregs protect from lethal acute GvHD and are potent suppressers in vitro.  

1.25x106 WT (of which approximately 80% expressed CD62L and 67% had high levels of 

expression of CD62L), CD62LLo Tregs , or CD62L-/- Tregs were transferred with 3x106 TCD BM cells 

into lethally irradiated B6D2 recipients on day 0.  4x106 whole splenic T cells from WT mice were 

then transferred on day +2 (n=9 WT Tregs, n=11 CD62LLo Tregs , n=12 CD62L-/- Tregs, n=10 Effectors 

alone, n=4 BM only).  Animals were monitored for (A) survival and (B) signs of GvHD.  Data 

represent mean score ± SEM at each time point. (C) Suppression of WT responder cell (CD4+/

CD25⎯) proliferation in response to B6D2 alloantigen by WT (█) or CD62L-/- Tregs (▨) was 

determined as described in ‘Materials and Methods’. 
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Figure 4.2.  CD62L-/- and WT Tregs suppress liver pathology. 1.25x106 WT or CD62L-/- Tregs were 

transferred with 3x106 TCD BM cells into lethally irradiated B6D2 recipients on day 0.  4x106 whole 

splenic T cells from WT mice were then transferred on day +2 (n=6 WT Tregs (█), n=7 CD62L-/- Tregs, 

(▤), n=8 Effectors alone (▥), n=3 BM only (⎔).  Animals were harvested when clinical scores reached a 

total of >4.  Animals that did not reach a score of 4 were harvested on days 25-27 post-transplant.  

Histopathological assessment of the (A) colon, (B) lung, (C) liver.  (D) Serum was harvested from 

animals at the time of histopathology assessment and analyzed by ELISA for levels of IFN-γ. 
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Figure 4.3.  CD62L-/- and WT Treg trafficking.  5x105 WT-GFP (█) or CD62L-/--GFP (▨) Tregs 

were transferred with 5x105 Thy1.1+ Tregs along with 3x106 TCD BM cells into lethally irradiated 

B6D2 recipients on day 0.  2x106 whole splenic T cells from WT mice were then transferred on 

day +2.  On days 6 (A) and 16 (B) post-Treg transfer, lymphocytes were isolated from GvHD 

target organs and secondary lymphoid tissues as described in ‘Materials and Methods’.  The ratio 

of eGFP+/FoxP3+:Thy1.1+/FoxP3+ cells are shown (n=4 for each group).  N=4 animals/time point 

(MLNs were pooled for each group, and PLNs were pooled for each group).  1.0x106 WT-GFP 

(top) or CD62L-/--GFP (bottom) Tregs were transferred along with 3x106 TCD BM cells into 

lethally irradiated B6D2 recipients on day 0.  2x106 whole splenic T cells from WT mice were 

then transferred on day +2. 16 days post-Treg transfer animals were anesthetized with avertin and 

organs were imaged with a Zeiss SteREO Lumar.V12 microscope with eGFP bandpass filter.  

Brightfield images (left), and GFP images (middle) were taken for each organ.  GFP intensities 

(right) were determined by software analysis.  (C) MLN (D) spleen (E) lung (F) peripheral lymph 

node.  Original magnification: lung = 25X, spleen = 40X, MLN = 45X, ILN = 45X. Data 

represent mean score ± SEM for each organ. 



Figure 4.4 

118 

CD25

CD
62

L

CD25

CD
62

L

RFP (FoxP3)

A
   

  F
ol

d 
Ch

an
ge

(v
s.

 C
D6

2L
   

Tr
eg

s 
)

D

CD62L  Hi CD62L  -/- CD4  / 
CD25  

+

CCR7

CD62L   Tregs-/-

CD62L    TregsLo

CD62L   TregsHiE

99.4

96.1

CD25 FoxP3

CD
4

99.2

CD4 RFP (FoxP3)

CD
62

L
97.6

B

C

LO

   
  F

ol
d 

Ch
an

ge
(v

s.
 C

D4
  /

 C
D2

5 
 )

+

CCR1 CCR2 CCR4 CCR5 CCR8 CCR9 CCR10 CXCR3 CXCR4

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

CD4  / CD25   +

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

CD62L  Lo

CD25

CD
62

L

CD25

CD
62

L

RFP (FoxP3)

A

   
  F

ol
d 

Ch
an

ge
(v

s.
 C

D6
2L

   
Tr

eg
s 

)

D

CD62L  Hi CD62L  -/- CD4  / 
CD25  

+

CCR7

CD62L   Tregs-/-

CD62L    TregsLo

CD62L   TregsHiE

99.4

96.1

CD25 FoxP3
CD

4

99.2

CD4 RFP (FoxP3)

CD
62

L

97.6

B

C

LO

   
  F

ol
d 

Ch
an

ge
(v

s.
 C

D4
  /

 C
D2

5 
 )

+

CCR1 CCR2 CCR4 CCR5 CCR8 CCR9 CCR10 CXCR3 CXCR4

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

CD4  / CD25   +

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

CD62L  Lo



Figure 4.4 contd 

119 

Figure 4.4.  Treg chemokine receptor expression based on CD62L expression.  Sort purification of 

cells for quantitative real-time PCR analysis.  (A) CD4+/CD25+/mRFP+/CD62LHi Tregs (top) and CD4+/

CD25—/mRFP—/CD62LHi naïve T cells (bottom) were sort purified from mRFP-FoxP3 mice.  (B) 

CD4+/CD25+ Tregs were sort purified from CD62L-/- mice.  (C) CD4+/mRFP+/CD62LLo Tregs were sort 

purified following in vitro expansion.  RNA was extracted and real-time PCR performed as described 

in materials and methods.  (D) CCR7 expression on mRFP+/CD62LHi Tregs (▨), CD4+/CD25+/CD62L-/- 

Tregs (█), naïve CD4+/CD25— T cells (▤), and mRFP+/CD62LLo Tregs (▥).  Data is shown as relative 

change in expression (logarithmic scale) compared to CD4+/mRFP+/CD62LLo Tregs.  E. Chemokine 

receptor expression on mRFP+/CD62LHi Tregs (▨), CD4+/CD25+/CD62L-/- Tregs (█), mRFP+/CD62LLo 

Tregs (▤), and naïve CD4+/CD25— T cells (▥).  Data is shown as relative change in expression 

(logarithmic scale) compared to naïve CD4+/CD25— T cells.  Data are representative of 3 independent 

experiments. 
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Supplemental Figure 4.1.  CD62LLo Tregs are potent suppressers in vitro.  Suppression of WT 

responder cell (CD4+/CD25⎯) proliferation in response to B6D2 alloantigen by CD62LLo Tregs (n) was 

determined as described in ‘Materials and Methods’.   
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CHAPTER FIVE 

DISCUSSION 

 

Previous work from our laboratory demonstrated that in vitro derived Th17 cells were 

responsible for pulmonary and skin manifestations in acute GvHD[1].  Extending these 

studies we evaluated the contribution of the transcription factor required for the 

differentiation of Th17 cells, RORγt (RORC), in the pathogenesis of aGvHD.  Using multiple 

murine models we determined that RORC CD4+ T cell expression was important for acute 

GvHD development.  CD4+ T cells deficient in RORC attenuated aGvHD in a haploidentical 

model but did not alter aGvHD pathogenesis in a complete mismatch BALB/c transplant 

model.  As expected the production of IL-17 was significantly diminished in mice receiving 

cells deficient in RORC using the haploidentcal model.  However IL-17 production was not 

altered in recipients of RORC knockout cells using the BALB/c transplant model likely due 

to the production of IL-17 by other donor or host cells.  While it is typically believed that the 

degree of MHC or miHA disparity is the major difference between murine transplant models 

our data suggests that cytokine production in different models may also alter aGvHD 

pathogenesis. 

Migration of T cells to target organs is essential for GvHD pathogenesis.  The 

involvement of the actin cytoskeleton in T cell migration has been investigated however 

research connecting actin cytoskeleton dynamics and disease has been limited.  We 
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investigated the role of the actin cytoskeleton proteins Coronins in the pathogenesis of acute 

GvHD.  We found that migration of T cells into and out of lymphoid organs was dependent 

on the expression of Coronin 1A.  Furthermore T cells deficient in Coronin 1A accumulated 

in the mesenteric lymph nodes and Peyer’s patches, a finding that could be attributed to 

decreased receptor expression for the signaling sphingolipid S1P.  Our data suggests 

targeting actin cytoskeleton components may offer an alternative method for the treatment 

and prevention of acute GvHD. 

 

5.1 GvHD Prophylaxis and Treatment 

 The specificity of transcription factors to T helper cell populations makes them an 

ideal target for immunotherapy.  Th17 cells self-renew through an autocrine feedback loop 

and produce cytokines that recruit leukocytes to sites of inflammation.  It is possible that the 

rate of disease progression is important for attenuated aGvHD in the absence of RORC on 

CD4+ T cells.  aGvHD pathogenesis in the haploidential transplant model occurs over a 

longer course compared to the completely mismatched MHC transplant model, allowing for 

other immune cells to reach sites of inflammation and mitigate damage.  However during 

rapid and robust disease progression, as seen using a complete MHC mismatch 

transplantation model, recruitment of immune cells may be too slow to prevent or attenuate 

disease.  This hypothesis could be evaluated by decreasing the number of RORC-/- CD4+ T 

cells administered to recipient mice using our completely mismatched MHC transplantation 

model.  Recruitment of immune cells to sites of inflammation would be best analyzed using 

intravital microscopy although experimental this may be challenging.  
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 CD4+ naïve T cells through stimulation of transcription factors and cytokines 

differentiate into multiple T helper cell populations.  CD8+ T cell differentiation is less 

elaborate as they become terminal effectors or memory precursors.  The expression of RORC 

on CD4+ T cells was sufficient to attenuate GvHD however RORC is found on both CD4+ 

and CD8+ T cells, and the expression of RORC on CD8+ T cells was dispensable for aGvHD 

pathogenesis.  Our studies suggested a conversion of Th17 cells to Th1 cells later in disease 

as a large population of dual IL-17/IFN-γ expressing T cells with increased expression of 

serum TNF were found in RORC-/- transplant recipient animals (Sup Fig 2.2)[2].  Attenuated 

aGvHD in the absence of RORC on CD4+ T cells is potential due to the lost of early IL-17, 

TNF and IL-21 that would normal be produced by Th17 cells.  Anti-TNF treatment has been 

pursued by multiple groups as aGvHD is still often thought of as a Th1 mediated disease.  

While TNF antibody treatment alone has been beneficial for some patients the involvement 

of other cytokines is demonstrated in patients whose symptoms persists following antibody 

treatment[3,4].  The involvement of IL-17 in aGvHD has been demonstrated both here and in 

other publications[1,5,6].  Inhibiting both IL-17 and TNF early after transplantation with 

antibody administration may be an effective prophylaxis or treatment for aGvHD.   

 Effective evaluation of Th17 cells in aGvHD is necessary to determine if there is truly 

a conversion from Th17 cells to Th1 cells although this conversion has been suggested in 

other disease models[7].  Using Cre/Lox recombination, mice that express enhanced yellow 

fluorescent protein (eYFP) under the control of the IL-17 promoter can be used to evaluate 

the conversion of Th17 cells to Th1 cells.  IL-17 producing Th17 cells that express eYFP 

would be used as donors for transplantation.  A Th1 cell phenotype can be determined by 

transcription factor and cytokine production analyses.  eYFP expression in donor Th17 cells 
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will persist even if the production of IL-17 is terminated demonstrating the conversion from 

Th17 to Th17 and/or a switch from the production of IL-17 to the production of IFN-γ.  

Trafficking to sites of inflammation, particularly target organs, should also be assessed in 

mice transplanted using Th17 eYFP cells. 
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5.2 Targeting T Cell Migratory Proteins 

In chapter 4 we discussed the effects of elimination of the hematopoietic specific, 

actin associating protein Coro 1A and attenuation of GvHD primarily through migratory and 

trafficking pathway components.  Cells deficient in Coro 1A have delayed entry and are 

impaired in their ability to reach target organs with accumulation in secondary lymphoid 

organs.  This delayed entry is potentially beneficial for transplant recipients as complete 

elimination of T cells increases the probability of infection and eliminates the potential for 

GvL response[8] however some researchers believe that limited T cell depletion may be 

beneficial for some patients who cannot tolerate high dose chemotherapy[9].   

The specificity of Coro 1A to hematopoietic cells made it an ideal candidate for our 

bone marrow transplantation studies.  While our transplants use only T cells to see the effect 

of GvHD, other cells of hematopoietic origin (B cells, macrophages, neutrophils) are also 

likely affected by the absence of Coro 1A.  These cells, although not believed to be major 

contributors in GvHD, also play a role in disease pathogenesis[10,11].  Similarly Coro 1A is 

also expressed on microglia of the brain.  Although the central nervous system (CNS) is not 

traditionally thought to be a target organ for GvHD there are multiple reports of inexplicable 

neurologic manifestations following bone marrow transplantation[12].  Minimizing the 

effects of T cells in bone marrow and stem cell inoculums is often the focus of healthcare 

providers however, knowing the effects of these adverse cell populations would also be 

beneficial for decreasing patient morbidity and mortality. 

Although the majority of Coro 1A deficient T cells accumulated in mesenteric lymph 

nodes and Peyer’s patches after transplantation some cells were able to migrate to target 
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organs.  Once in target organs these cells maintained effector functions similar to wild type 

cells as measure by cytokine production and proliferation.  Interestingly Coro 1A deficient 

cells that accumulated in lymph nodes, although they were activated and produced cytokines, 

did not cause damage and destruction to these lymph nodes.  This could be due to decreases 

in signaling pathways involved in cytolytic damage.  We noted that Coro 1A deficient cells 

upon activation had decreased expression of the canonical NF-κB pathway component p65. 

The transcription factor NF-κB regulates a number of processes including the expression of 

CCR7 that was of interest for our studies.  Defects seen in the NF-κB signaling pathway may 

affect other functions of Coro 1A deficient cells that were not investigated here.   

Research to determine the links between the actin cytoskeleton and TCR activation 

has been ongoing however many questions remain.  Our studies demonstrated alterations in 

the activation of the NF-κB component p65 upon TCR activation in the absence of Coro 1A.  

However a direct interaction of Coro 1A to p65 was not observed through 

immunoprecipatation experiments (Fulton and Serody unpublished).  Rho GTPases have 

been shown to be important in actin cytoskeleton dynamics[13,14].  More importantly Coro 

1A has been shown to be involved in the regulation of Ras-related C3 botulinum toxin 

substrate 1 more commonly known as Rac 1 that is involved in multiple processes including 

cytoskeletal reorganization[15].  Transactivation of the p65 subunit of NF-κB is regulated by 

Rac 1 through IL-1[16].  We hypothesize that Coro 1A regulation of Rac 1 also regulates the 

expression of p65 (Fig 5.1).  Using a pull down assay we can determine if Rac 1 is activated 

in the absence of Coro 1A.  We expect that decreased Rac 1 activation would correlate with 

decreased p65 activation. 
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 Identifying transcription factors that are potential targets for therapy is an easy task 

when working in murine models.  However targeting intercellular proteins for the therapy 

would require the use of microRNA (miRNAs)[17] or small interfering RNA (siRNAs)[18].  

Although Coro 1A is an intracellular protein we were able to link defects in ingress and 

egress by cells deficient in Coro 1A to the decreased expression of the chemokine receptor 

CCR7 and signaling lipid receptor S1Pr1.  Both CCR7 and S1Pr1 are cell surface proteins 

that can be easily target for therapy.   

 

5.3 CD62L and GvHD 

Previous studies from our laboratory have investigated T cell migration in GvHD 

based on receptor expression[19].  Additionally infusion of regulatory T cells has shown 

promising effects in the prevention of GvHD[20,21].  Knowing the importance of the 

selectins in T cell homing we determined if the expression of CD62L (L-selectin) on Tregs 

was important for the prevention of GvHD.  As discussed in chapter 4 Tregs lacking CD62L 

protected recipients from GvHD (Fig 4.1).  Although these were not the results initially 

expected this was not completely surprising as multiple selectins and chemokine receptors 

are involved in T cell homing[22].  

While we did not see a difference between CD62L-/- Tregs and WT Tregs in their 

ability to protect from aGvHD, CD62LLo Tregs were impaired in their ability to protect 

against GvHD.  The inability of CD62LLo Tregs to protect from aGvHD is potentially 

explained by data demonstrating that activated T cells do not cause aGvHD likely due to 

altered functions and inability to traffic to secondary lymphoid organs[23].  The redundancy 

in function is one of the challenges when considering targeting chemokine receptors for 
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therapeutic treatments in the patient population.  Interestingly Tregs deficient in CCR7 and 

CD62L (CCR7-/-CD62L-/-) do not protect from lethal acute GvHD.  Interestingly recipient 

animals have delayed GvHD onset with hair loss and skin manifestations similar to those 

seen in chronic GvHD (Coghill and Serody unpublished). 

 

5.4 Coronin 1B in GvHD 

 As there are multiple members of the Coronin family of proteins there is the potential 

for the involvement of other Coronin proteins in aGvHD.  One of the largest distinguishing 

factors between Coronin proteins is their tissue specific expression, hence our reasoning for 

investigating the role of Coro 1A.  However Coro 1B is ubiquitously expressed making it a 

potential protein to investigate in GvHD.  

We first determined the contribution of Coro 1B to GvHD using our murine 

transplant models.  Increased survival with decreased GvHD scores was observed in Coro 

1B-/- donor T recipients compared to WT T cell recipients using the parent into F1 

haploidentical transplant model (Fig 5.2A).  Interestingly and different from Coro 1A-/- donor 

T cell recipients, Coro 1B-/- donor T cell recipients succumbed to GvHD similar to WT T cell 

recipients using the completely mismatched BALB/c transplant model (Fig 5.2B).  We also 

generated Coro 1B-/- GFP mice and used stereomicroscopy to determine if Coro 1B-/- donor T 

cells had the same accumulation patterns in gastrointestinal lymph nodes as Coro 1A-/- donor 

T cells in the haploidentical transplant model.  No difference in migration to lymphoid 

organs or target organs was seen in recipients of Coro 1B-/- GFP donor T cells compared to 

those that received WT GFP donor T cells (Fulton, Serody, Dant unpublished). These data 

suggests defects in other mechanisms for attenuated GvHD by Coro 1B-/- T cells.  We also 
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examined in vitro proliferation in the presence of allogeneic stimulation using Coro 1B-/- T 

cells.  Surprisingly, Coro 1B-/- T cells were more responsive and proliferated more than wild 

type T cells after 3 and 5 days of stimulation (Fig 5.3).  While there appears to be a role for 

Coro 1B in GvHD experiments both in vitro and in vivo to determine the contribution of 

Coro 1B to disease are ongoing.   

 

5.5 Concluding Remarks 

Global Impact of GvHD Research 

 The main goals of our studies were to identify proteins that were important for 

aGvHD pathogenesis.  More importantly we wanted to determine effective methods for 

targeting these proteins with the ultimate goal of drug development.  Our investigation of 

migratory proteins revealed targetable proteins for drug development.  As aGvHD continues 

to be worldwide problem we hope that our Coro 1A, RORC, and CD62L research is 

beneficial for cost efficient treatment. 

 Allogeneic stem cell transplantation is an effective treatment for many hematological 

malignancies.  However, complications from graft-versus-host disease continues to cause 

morbidity and mortality in transplant patients.  While mortality due to relapse has decreased 

over the past 20 years due to better techniques during transplantation, prophylactic and 

treatment drug development for GvHD remain stagnant.  To date no single drug has been 

approved by the US Food and Drug Administration for the treatment or prevention of 

GvHD[24].  Clinical trials continue to focus on the use of steroids however many studies 

have been unsuccessful[25,26].  For decades we have know that T cells are the major player 

in the disease.  While studies in murine models targeting T cell populations and cytokines 
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show promising results, translating these results to patients continues to pose a challenge[27-

29].   

The data presented here further highlight the importance of T cell populations in 

GvHD and offer potential targets for immunotherapy in disease treatment and prevention. 

Many researchers believe that targeting specific T cell surface molecules may lead to 

effective treatments. Our data support these beliefs although the elimination of CD62L was 

shown to not be critical for Treg protection from aGvHD[28].  Previously it was thought that 

the difference between haploidentical mismatched and complete mismatched transplant 

models lied solely in the degree of genetic disparity, however our investigation of RORC 

demonstrated that cytokine production may also vary between these models altering the 

degree of disease severity[2].   

While the success of individual drugs has been minimal, combination steroid therapy 

has been beneficial for some patients.  Our data confirm the benefits of combinational 

therapy demonstrating that many cytokines and signaling pathways are important for disease 

manifestations.  The identification of novel targets for drug development and the growing 

knowledge about GvHD promises more effective treatment options for patients. 
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Figure 5.1 Coro 1B in GvHD

A

B

Figure 5.2 GvHD Pathogenesis using Coro 1B-/- T Cells. (A) 4 x 106 Coro 1B-/- or WT T cells 

with 3 x 106 TCD bone marrow cells were injected into lethally irradiated B6D2 recipients. n=8 

for Coro 1B-/- and WT recipients, n=3 for bone marrow only. (B) 5 x 105 Coro 1B-/- or WT T 

cells with 5 x 106 TCD BM cells were infused into lethally irradiated BALB/c recipients. n=8 for 

Coro 1B-/-, n=6 for WT, and n=2 for bone marrow only 
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Figure 5.3 In Vitro Proliferation of Coro 1B-/- T Cells. Coro 1B-/- and WT T cells were isolated from 

naïve mice. T cells were labeled with CFSE. Equal amounts of T cells and irradiated B6D2 

splenocytes were cultured for 3 or 5 days before harvesting. Cells were stained for CD4 and CD8 and 

analyzed by flow cytometry. 
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