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ABSTRACT 

Matthew P. Dannenberg: Environmental Limitations to Forest Growth and Productivity in 

North America 

(Under the direction of Conghe Song and Erika Wise) 

 

Terrestrial primary production—the carbohydrates produced by plants via 

photosynthesis—is the entry point of energy and carbon into ecosystems, forming the base of 

the food chain and a sink for anthropogenic CO2. Primary production can be limited by 

unfavorable environmental conditions, including non-optimal temperatures, water deficits, or 

inadequate nutrient supply. At present, our ability to model how environmental factors reduce 

primary production remains limited. This leads to uncertainty both in the remotely sensed 

models used to monitor primary production and in climate models that depend on accurate 

representation of the land surface and biosphere. 

Given the importance of vegetation to humanity and the Earth system, in this 

dissertation I use tree rings and remote sensing to examine the environmental drivers of forest 

growth and productivity in North America. In particular, this research examines how forests 

are influenced by climate, atmospheric circulation, and land surface characteristics like 

topography and soil quality. I first examine how the seasonality of temperature and 

precipitation affect growth of ponderosa pine in the U.S. Pacific Northwest. I then develop a 

new tree-ring “environmental stress” index, which I use to model the climatic, topographic, 

and edaphic drivers of forest growth across the conterminous U.S. Finally, I examine how 

variability of the Pacific storm track acts as a synoptic-scale driver of hydroclimate and 

vegetation activity in western North America. 
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In this research, I show that forest primary productivity is significantly influenced by 

moisture supply across multiple seasons, particularly in western North America. Westerly 

Pacific storm tracks are largely responsible for delivery of moisture to this region, and I show 

that northerly shifts of these storm tracks reduce both water supply and primary production in 

the northwestern U.S. Using a set of machine learning model experiments, I also demonstrate 

that models of forest growth that incorporate topographic and soil characteristics outperform 

those based solely on climate. Taken together, these findings provide a framework for 

improving the models used to reconstruct past climate from tree-ring data and to monitor 

primary production with remote sensing, while also providing insight into potential 

influences of a warming climate on the biosphere.
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CHAPTER 1: INTRODUCTION 

 

Overview 

Vegetation on Earth’s land surface provides many of the key resources and services 

that humans and other animals rely upon. Terrestrial primary production—the carbohydrates 

produced by plants via photosynthesis—is the entry point of energy and carbon into 

ecosystems and the fundamental source of food for all land-dwelling organisms [Chapin et 

al., 2011]. Recent estimates suggest that approximately 80% of available net primary 

production has already been appropriated for human use, with the remainder representing a 

key “planetary boundary” for future human activity [Running, 2012]. Uptake of CO2 through 

plant productivity is also a major component of the global carbon cycle [Pan et al., 2011]. 

Historically, primary production by terrestrial vegetation has acted as a large sink for CO2, 

with approximately 25% of annual anthropogenic CO2 emissions being removed from the 

atmosphere by plants [Ciais et al., 2013].  

The productivity of terrestrial vegetation can be limited or co-limited by multiple 

climate or environmental factors [Nemani et al., 2003; Garbulsky et al., 2010]. Precise 

knowledge of the environmental drivers of vegetation productivity is therefore needed both to 

monitor current vegetation activity over large areas and to project potential changes in 

ecosystem structure and function under a changing climate. At present, this knowledge is 

limited, particularly regarding how environmental limitations to plant growth vary spatially 

and temporally over large areas. The current generation of remotely sensed primary 

production models, for example, generally assume instantaneous responses of plant 

productivity to temperature and moisture [e.g., Running et al., 2004], while largely ignoring 
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the effects of soils, topography, and lags between the climate system and plant activity. 

Estimating the effects of water stress on primary production is particularly challenging 

[Zhang et al., 2015], and error in primary production estimates derived from remotely sensed 

data can partly be traced to uncertainties in the parameterization of these environmental 

limitations [Cai et al., 2014]. Likewise, global climate models depend on accurate 

representation of environmental limitations to vegetation productivity. While projected 

changes in temperature, hydroclimate, and atmospheric circulation during the 21st century 

will likely have a strong impact on the primary production of the biosphere, there remains 

significant disagreement over whether the positive influences of climate change on vegetation 

(e.g., CO2 fertilization and longer growing seasons) will outweigh its negative consequences 

(e.g., greater water stress and higher respiration rates) [Settele et al., 2014; Allen et al., 2015; 

Smith et al., 2016; Ballantyne et al., 2017].  

Given the importance of vegetation for provisioning of ecosystem goods and services 

to humanity, as well as the current limitations in our understanding of how vegetation is 

limited by environmental conditions, my research is motivated by a fundamental question of 

contemporary biogeoscience: how do vegetated ecosystems interact with and respond to 

variation in other Earth systems? In this dissertation, I examine the environmental drivers 

of vegetation activity in North America and how sensitivity to those environmental drivers 

varies spatially and temporally. In particular, this work focuses on how vegetation activity in 

North America is influenced by three interacting components of the atmosphere and 

lithosphere (Figure 1.1):  

(1) Local weather and climate conditions experienced by plants (e.g., temperature, 

precipitation, and vapor pressure deficit), with a particular focus on how the 

seasonality of climate affects ecosystem processes. 
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(2) Atmospheric circulation systems, particularly midlatitude storm tracks, which are 

largely responsible for water delivery to western North America. 

(3) Land surface characteristics, specifically topography and soil structure and 

quality, that affect the ability of plants to obtain belowground resources like soil 

water and nutrients.  

 

Figure 1.1. The Earth system perspective on the environmental limitations to vegetation 

activity that underlies this dissertation. The general Earth system of interest is represented in 

bold and underlined text, while the specific processes examined are represented in smaller 

text below each system. 

 

In this Introduction, I first review the necessary background for the dissertation, 

focusing on two aspects of previous work that are relevant to all subsequent chapters: (1) the 

current state of knowledge regarding climatic and land surface limitations to vegetation 

activity, particularly at the level of individual plants, and (2) the two different, but 

complementary, measures of vegetation activity that I will use in the subsequent chapters to 

assess environmental limitations to plant growth at regional to continental scales. I then 

introduce the structure of the dissertation, including the main research questions, methods, 
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and findings of each individual chapter. I conclude with a summary of how this dissertation 

will contribute to current conversations in the fields of physical geography and 

biogeoscience. 

 

Background 

Environmental limitations to vegetation activity 

In order to assess the environmental drivers of vegetation activity over a large area, 

which is the fundamental goal of my dissertation, it is necessary to understand the 

physiological processes that connect individual plants with their environment. At the leaf 

level, the photosynthetic process starts with diffusion of CO2 from the atmosphere into leaves 

through the stoma. However, when stomata are open, water is also lost from the leaf to the 

atmosphere. This loss of water from the leaf is replenished by water from the soil. To prevent 

excessive loss of water, plants regulate stomatal apertures based on the availability of soil 

moisture and the strength of the atmospheric sink for moisture. Low soil moisture, high vapor 

pressure deficit, and low leaf water potential therefore limit photosynthesis by restricting 

diffusion of CO2 into stomata.  

Moisture stress can also directly affect photosynthetic processes through metabolic 

damage or down-regulation (e.g., reduced ATP and RuBP synthesis or permanent 

photoinhibition) [Flexas, 2002; Pallardy, 2008] and through increased risk of xylem 

embolisms, cavitation, and hydraulic failure [McDowell et al., 2011; Williams et al., 2013]. 

Extreme duration and intensity of water stress can result in mortality due to carbon starvation 

(i.e., depletion of carbohydrate reserves due to greater reduction of photosynthesis than 

maintenance and growth respiration), disruption of xylem water transport, or increased 

susceptibility to biotic attack [McDowell et al., 2011]. Water availability can also impact 

primary production indirectly through its control on nutrient cycling [Chapin et al., 2011], by 
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reducing the capacity of plants to repair damage, and by exacerbating temperature-induced 

damage to the photosynthetic apparatus [Allakhverdiev et al., 2008]. 

Temperature can affect vegetation activity both directly and indirectly. For example, 

temperature directly affects the rates of biochemical reactions in photosynthesis, with optimal 

temperatures that vary among different plant species and biomes [Pallardy, 2008]. At low 

temperatures, biochemical reactions occur at slower rates while high temperatures can lead to 

enzyme deactivation, protein denaturation, damage to photosystem II, generation of reactive 

oxygen species, and increased photorespiration [Allakhverdiev et al., 2008; Pallardy, 2008]. 

Freezing temperatures also subject plants to increased risk of xylem embolisms and cavitation 

[Pallardy, 2008; Chapin et al., 2011] and limit the ability of plant roots to obtain 

belowground resources [Archibold, 1995]. Temperature is a dominant control on the length of 

the vegetation growing season [Richardson et al., 2013], though changes in the length of the 

growing season do not necessarily lead to proportional increases in primary production or net 

ecosystem exchange due to the effects of temperature on water availability and ecosystem 

respiration [Angert et al., 2005; Hu et al., 2010; Brzostek et al., 2014; Zhang et al., 2014; 

Dannenberg et al., 2015]. In arid and semi-arid regions, high temperatures can exacerbate 

soil water limitation through increases in vapor pressure deficit and evaporative demand, 

which can lead to stomatal closure and thus lower rates of carbon assimilation [McDowell et 

al., 2011; Williams et al., 2013].  

Finally, non-climatic environmental factors, such as soils and topography, can affect 

primary production through their control on the ability of plants to obtain necessary 

belowground resources. The nutrient content of soils can be an important limiting factor to 

the growth and productivity of terrestrial vegetation, particularly as a result of insufficient 

nitrogen or phosphorous, both of which are often in short supply in terrestrial ecosystems but 

which are necessary for formation of proteins, enzymes, and nucleic acids [Pallardy, 2008; 
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Chapin et al., 2011]. Structural characteristics of soils, including soil depth and porosity, 

affect soil water storage and the ease with which plants can extract water from the soil 

[Chapin et al., 2011; Hornberger et al., 2014]. Likewise, topography affects the lateral 

redistribution of water within a watershed [Beven and Kirkby, 1979; Hornberger et al., 

2014], which is an important control on soil moisture [Western et al., 1999] and therefore on 

ecosystem carbon and water fluxes [Riveros-Iregui and McGlynn, 2009; Emanuel et al., 

2010, 2011; Riveros-Iregui et al., 2011]. Land surface characteristics like topography and soil 

structure and quality therefore represent important spatial constraints on the ability of plants 

to obtain belowground resources like water and nutrients.  

 

The canopy and the cambium: two perspectives on vegetation activity 

Variation in climate and land surface characteristics can affect vegetation processes 

both in the leaves of plant canopies and in the vascular cambium, which can be measured 

using remote sensing and tree rings, respectively. At the canopy level, solar radiation in the 

visible spectrum (i.e., photosynthetically active radiation (PAR)) provides the energy to drive 

photosynthesis. Healthy, productive plant canopies therefore tend to absorb most incoming 

PAR, while reflecting or transmitting most incoming near infrared radiation. The reflectance 

of the land surface in these spectral regions can be estimated through remote sensing, 

meaning that remotely sensed vegetation indices based on the difference between near 

infrared and visible reflectance (such as the normalized difference vegetation index) can be 

used to map and monitor canopy-level vegetation processes over large areas repeatedly 

through time. These vegetation indices form the basis for monitoring vegetation structure and 

function [Song et al., 2015], including important processes in ecosystem carbon cycling like 

the fraction of PAR absorbed by plant canopies [e.g., Myneni et al., 2002], gross and net 
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primary production [e.g., Running et al., 2004], and land surface phenology [e.g., Moody and 

Johnson, 2001].  

The carbohydrates produced through photosynthesis provide both the energy and the 

molecular structure needed for cell division and expansion in the vascular cambium of woody 

tissues [Fritts, 1976; Pallardy, 2008]. In regions where photosynthetic and cambial processes 

are limited by climate (either temperature or water availability), the widths of tree rings may 

vary annually as a function of climate. This variability provides the fundamental basis for 

using tree rings as proxies for past variation in temperature [e.g., Mann et al., 1998, 2008; 

Luterbacher et al., 2004], precipitation [e.g., Neukom et al., 2010; Yi et al., 2012], streamflow 

[e.g., Wise, 2010c; Littell et al., 2016], and atmospheric circulation [e.g., Wise and 

Dannenberg, 2014]. The annual tree rings formed through cambial processes also represent 

the primary production that is allocated to woody growth, allowing long-term estimates of 

annual aboveground primary production based on measurements of tree-ring widths [e.g., 

Graumlich et al., 1989; Rathgeber et al., 2000]. Unlike remote sensing, tree-ring 

chronologies are located at discrete point locations and do not provide continuous spatial 

coverage of vegetation processes. However, they have demonstrated significant skill at 

representing productivity across entire landscapes [Beck et al., 2013; Bunn et al., 2013], 

including for grasslands near the tree-ring site [Liang et al., 2009], suggesting that tree rings 

are likely useful indicators of ecosystem productivity across large regions and even for 

regions dominated by other plant functional types. 

Together, remote sensing and tree-ring data provide complementary information on 

vegetation activity (Table 1.1). Remote sensing provides spatially continuous, but indirect, 

estimates of canopy structure and function at regular intervals over the past several decades. 

Tree rings, on the other hand, provide long-term, direct measurements of growth at discrete 

locations. Combining these two sources of vegetation information can therefore provide two 
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perspectives on the terrestrial carbon cycle across a range of spatial, temporal, and process 

scales [Babst et al., 2014].  

 

Table 1.1. Complementary characteristics of remote sensing and 

tree-ring estimates of vegetation activity. 

 

Remote Sensing Tree Rings 

Spatial Scale Continuous Discrete 

Frequency Daily - Monthly Annual 

Length of Record Decades Centuries - Millennia 

Process Measured Canopy Cambium 

Type of Measurement Indirect Direct 

 

 

Dissertation Structure and Contributions 

 In this dissertation, I use both remote sensing and tree-ring data to examine the 

environmental factors that limit vegetation activity over large areas of North America, with 

the overarching goal of identifying the spatial and temporal drivers of vegetation activity 

in this region. Each chapter examines a different aspect of environmental limitations to plant 

growth (Figure 1.2), ranging from atmospheric circulation to the local climatic conditions 

experienced by plants to physical land surface characteristics. Below, I present a brief 

summary of each individual chapter as well as the key contributions of the dissertation as a 

whole. 
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Figure 1.1. Spatial scales and Earth systems examined in each chapter. 

 

Summary of Chapter 2 

Research Questions: How does sub-annual growth of a prominent tree species in the 

western U.S. (Pinus ponderosa subsp. ponderosa) respond to seasonal climate variability? 

What are the implications of that response both for reconstruction of past climate and for 

understanding the consequences of future hydroclimatic change for these ecosystems? 

Aims and Methods: In this chapter, I examine how the seasonality of precipitation and 

temperature affect tree growth, as measured by total ring width, earlywood width, adjusted 

latewood width, and blue intensity chronologies from a network of six Pinus ponderosa sites 

in and surrounding the upper Columbia River basin of the U.S. Pacific Northwest. I also 

evaluate the potential for combining multiple tree-ring metrics together in reconstructions of 

past cool- and warm-season precipitation.  

Key Findings: Warm-season precipitation tends to be a limiting factor across all sites 

and tree-ring metrics. Earlywood and latewood widths differ primarily in their sensitivity to 

conditions in the year prior to growth, while total and earlywood widths from the lowest 
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elevation sites also show relatively strong dependence on cool-season moisture. Temperature 

is not strongly limiting at any of the sites nor for any tree-ring metric. Effective correlation 

analyses and composite-plus-scale tests suggest that combining multiple tree-ring metrics 

together may improve reconstructions of warm-season precipitation. For cool-season 

precipitation, total ring width alone explains more variance than any other individual metric 

or combination of metrics. The composite-plus-scale tests show that ponderosa pine tree rings 

in the upper Columbia River basin are asymmetric in their responses precipitation extremes: 

while growth indices strongly reflect low (but not high) precipitation extremes during the 

cool season, they reflect high (but not low) precipitation extremes during the warm season. 

 

Summary of Chapter 3 

Research Questions: What are the dominant sources of “environmental stress” in 

vegetated ecosystems of the conterminous United States? How responsive are these 

ecosystems to climate conditions prior to the growing season? What are the consequences of 

failing to account for topography and soil characteristics in models of environmental stress? 

Aims and Methods: I develop a data-driven approach for estimation of environmental 

stress effects on forest growth (based on tree-ring widths) and assess the environmental 

drivers of both spatial and temporal variation of forest growth stress. I first test and evaluate 

the new environmental stress index at six ponderosa pine tree-ring sites in the U.S. Pacific 

Northwest and then apply the index to a large network of tree-ring widths across the 

conterminous United States. Finally, I use correlation analyses and a series of machine 

learning model experiments to examine the climatic, topographic, and edaphic drivers of 

growth in ecoregions of the U.S. 

Key Findings: Comparison of the newly developed environmental stress index to 

annual gross primary production from nearby eddy covariance flux towers demonstrates that 
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the environmental stress index captures meaningful information on primary production at the 

continental scale. Tree growth in ecosystems of the western United States relies on water that 

is delivered prior to the growing season, a key finding given that many primary production 

models do not include physically-meaningful lags between the climate system and ecosystem 

carbon uptake.  In addition, topographic and soil characteristics, which are not typically 

included in the current generation of remote sensing-based primary production models, are 

important drivers of spatial gradients in mean environmental stress in most of the eastern U.S. 

 

Summary of Chapter 4 

Research Questions: How have the hydroclimate and water resources of western 

North America responded to historical Pacific storm track variability? How have storm track-

induced changes in water supply affected primary production, phenology, and fire regimes in 

this region?  

Aims and Methods: I estimate cool-season Pacific storm track position and intensity 

for the period 1980-2014 using 300 hPa meridional wind velocity from the North American 

Regional Reanalysis. Using historical climate data, I examine the sensitivity of water 

resources (the climatic water balance, snowpack, and streamflow) to variation in the position 

and intensity of the storm track. To examine the sensitivity of ecological systems to storm 

track variability, I develop or obtain estimates of forest growth, land surface phenology, and 

wildfire area from a large network of tree-ring widths and remotely sensed data from 

AVHRR and Landsat. 

Key Findings: Over the study period, cool-season storm tracks entered western North 

America between approximately 41°N to 53°N. I show that cool-season moisture availability 

and snow water equivalent both exhibit strong responses to this variability in storm track 

position, with positive correlations to storm track latitude in eastern Alaska and northwestern 
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Canada but negative correlations in the northwestern U.S. Likewise, tree-ring widths and 

remotely sensed estimates of peak greenness show that ecosystems of the western U.S. tend 

to be greener and more productive following winters with south-shifted storm tracks, while 

Canadian ecosystems tend to be greener in years when the cool-season storm track is shifted 

to the north. On average, larger areas of the northwestern U.S. are burned by moderate to 

high severity wildfires when storm tracks are displaced north, and the average burn area per 

fire also tends to be higher in years with north-shifted storm tracks. A persistent shift in the 

position of Pacific storm tracks during the 21st century would likely alter hydroclimatic and 

ecological regimes in western North America, particularly in the western U.S., where water 

supply and vegetation activity are closely linked to the position of the Pacific storm track. 

 

Overall contributions of the dissertation 

Taken together, the research performed in this dissertation makes two primary 

contributions within the fields of physical geography and Earth system science. First, by 

examining the sensitivity of North American forests to climate seasonality and land surface 

characteristics, this dissertation will lay a framework for improving both the tree-ring models 

used to reconstruct past climate and the remotely sensed models used to monitor primary 

production. Second, this research will contribute to understanding how future climate change 

will influence vegetation activity in North America, particularly in the dry regions of western 

North America where changes in temperature, drought, snowpack, evaporative demand, and 

precipitation seasonality have occurred in the recent past [Barnett et al., 2008; Pederson et 

al., 2011; Kapnick and Hall, 2012] and are expected to continue in the future [Cayan et al., 

2008; Seager and Vecchi, 2010; Ashfaq et al., 2013; Pierce and Cayan, 2013; Pierce et al., 

2013; Seager et al., 2013; Cook et al., 2014, 2015; Rupp et al., 2016].  
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CHAPTER 2: SEASONAL CLIMATE SIGNALS FROM MULTIPLE TREE-RING 

METRICS: A CASE STUDY OF PINUS PONDEROSA IN THE UPPER COLUMBIA 

RIVER BASIN1 

 

Introduction 

Temperature increases over the 21st century will alter hydroclimatic regimes in many 

regions, and these impacts will be highly seasonal [Lute et al., 2015]. In the U.S. Pacific 

Northwest, climate models project relatively little change in total annual precipitation, but 

this precipitation may be redistributed from the warm season to the cool season, resulting in 

an enhanced seasonal precipitation cycle in which dry summers become drier and wet winters 

become wetter [Mote and Salathé, 2010]. Even with projected increases in winter 

precipitation, warmer temperatures could lead to reductions in snowpack and an increasingly 

rain-dominated climate. In the western U.S., for example, climate change has led to 

significant reductions in mountain snowpack which are nearly unprecedented in historical 

and paleoclimate records [Barnett et al., 2005; Mote et al., 2005; Pederson et al., 2011; Luce 

et al., 2013]. Declining snowpacks, combined with seasonality shifts, are a major challenge 

for water resource managers in these regions [Hamlet and Lettenmaier, 1999; Leung et al., 

2004; Crawford et al., 2015], increasing the need to understand historical variation of 

precipitation and drought on sub-annual time scales. These changes in hydroclimate will also 

have significant consequences for the functioning of terrestrial ecosystems [Settele et al., 

2014], including likely changes in vegetation distribution, fire regimes, and carbon uptake 

                                                   
1 This chapter previously appeared as an article in the Journal of Geophysical Research: Biogeosciences. The 

original citation is as follows:  

 

Dannenberg, M. P., and E. K. Wise (2016), Seasonal climate signals from multiple tree-ring metrics: a case 

study of Pinus ponderosa in the upper Columbia River basin, J. Geophys. Res. Biogeosciences, 121, 1178-1189, 

doi:10.1002/2015JG003155. 
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and storage [Boisvenue and Running, 2010; Rogers et al., 2011; Notaro et al., 2012; Jiang et 

al., 2013]. 

The annual growth rings of trees can be used both to understand the sensitivity of tree 

growth to climate variability and to make inferences about past climate variability and 

change, including past variation of hydroclimate on seasonal timescales. Tree rings are 

frequently used as indicators of past environmental variation due to the sensitivity of cambial 

processes to climate, the longevity of many tree species, the relative simplicity and cost 

effectiveness of data collection, and the precise annual crossdating of each ring [Fritts, 1976; 

Jones et al., 2009; St. George, 2014]. Tree-ring widths and densities have been used to infer 

past temperatures [Mann et al., 1998, 2008; Jones et al., 2009], precipitation [Touchan et al., 

2005; Neukom et al., 2010], atmospheric circulation [Wise and Dannenberg, 2014], 

streamflow [Wise, 2010c], snow cover [Pederson et al., 2011], and drought [Cook et al., 

1999, 2004]. The climate signals and seasonality recorded in tree rings reflect the 

environmental factors that are most limiting to growth, which in turn depend upon both the 

local environmental conditions, such as climate regime and topography, and the physiology 

of the tree species, including leaf phenology and longevity [Fritts, 1976]. The climate 

sensitivity of tree rings therefore varies geographically. In the southwestern U.S., for 

example, tree growth is most responsive to winter precipitation, while sites at high northern 

latitudes are often most responsive to temperature [St. George, 2014; St. George and Ault, 

2014].  

In some circumstances, additional tree-ring metrics, such as sub-annual ring widths 

and densities, may further enhance and isolate seasonal climate signals that are not resolvable 

from total ring-width alone. Earlywood and latewood widths (EW and LW, respectively) may 

be sensitive to water availability in different seasons. In the U.S. Southwest, EW reflects 

cool-season precipitation [Stahle et al., 2009; Griffin et al., 2013; Meko et al., 2013] while 
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LW reflects warm-season precipitation [Meko and Baisan, 2001; Stahle et al., 2009; Griffin 

et al., 2013]. Previous studies in western Canada and the U.S. Intermountain West have also 

examined seasonal climate signals in sub-annual ring widths, including at ponderosa pine and 

Douglas-fir sites in British Columbia, Canada [Watson and Luckman, 2002] and Douglas-fir 

sites in Idaho and Montana [Crawford et al., 2015]. Watson and Luckman [2002] found that 

both EW and LW are positively correlated with summer precipitation, though EW is more 

sensitive than LW to precipitation in winter and in the year prior to growth. While there is 

substantial overlap in the seasonal precipitation signals embedded in EW and LW 

chronologies, Crawford et al. [2015] found that EW is most sensitive to spring precipitation 

(April–June) while LW is most sensitive to precipitation later in the growing season (June–

August). Neither EW nor LW were strongly correlated with temperature in these studies 

[Watson and Luckman, 2002; Crawford et al., 2015]. 

The maximum density of tree-ring latewood is often strongly and positively 

dependent on summer temperature [e.g., Briffa et al., 2004; Kirdyanov et al., 2008; Wilson et 

al., 2014], but it is expensive and time-consuming to obtain. Since the amount of blue light 

reflected from tree-ring latewood is inversely related to the density of latewood cells, the 

intensity of blue light reflectance from tree-ring latewood (blue intensity, or BI) can provide a 

reliable proxy for maximum latewood density with a similar climate signal at a fraction of the 

cost [McCarroll et al., 2002, 2011; Rydval et al., 2014; Wilson et al., 2014]. Combining 

multiple tree ring metrics with complementary seasonal climate signals may improve the 

reconstruction of past climate [McCarroll et al., 2003, 2011].  

In this chapter, I examine the sensitivity of Pinus ponderosa subsp. ponderosa 

(ponderosa pine) tree-ring chronologies to seasonal climate variability at a network of six 

sites in and surrounding the U.S.’s upper Columbia River basin (CRB) in Washington state. 

The objectives of this study are to determine the sensitivity of different ponderosa pine 
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metrics to seasonal climate variability within the upper CRB and to evaluate the potential for 

a multi-metric tree ring reconstruction of past precipitation in both the cool and warm 

seasons. This work provides additional tests of the climate signals embedded in a relatively 

new paleoclimate proxy, BI. Results from this study demonstrate the utility of sub-annual 

ring widths for capturing seasonal climate signals and the potential for combining multiple 

tree-ring metrics in reconstructions of past hydroclimate on a sub-annual temporal scale in 

the Pacific Northwest region of the U.S. 

 

Data and Methods 

Study Area and Climate Data 

 The upper CRB (HUC Subregion 1702) is a semi-arid region covering most of central 

and eastern Washington in the U.S. Pacific Northwest (Figure 2.1). Monthly mean maximum 

temperatures and monthly precipitation were obtained for the period 1913-2012 from the 

PRISM (Parameter-elevation Relationships on Independent Slopes Model) Climate Group 

[Daly et al., 2008], and were averaged and downloaded for the upper CRB from WestMap 

(http://www.cefa.dri.edu/Westmap/). During the period 1981-2010, mean temperatures 

ranged from below freezing during winter months to approximately 20°C in July and August 

(Figure A1). Annual precipitation in the CRB ranged from approximately 350 mm to more 

than 700 mm (with a mean of approximately 500 mm), with most precipitation received 

during the winter months (Figure A1). 

http://www.cefa.dri.edu/Westmap/
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Figure 2.1. Six tree-ring sites in and surrounding the upper Columbia River Basin (HUC 

Subregion 1702; dark grey shading). 

 

Tree-Ring Data 

Increment cores were collected from six sites in and surrounding the upper CRB 

during summers 2011-2014 (Figure 2.1; Table A1). Site elevations ranged from 

approximately 825 meters to nearly 1400 meters above sea level. Trees with fire or lightening 

scars, which were widespread at several of the sites, were avoided when possible. Cores were 

collected, processed, and cross-dated following standard dendrochronological procedures 

[Stokes and Smiley, 1968]. Total ring width (TRW) was measured to 0.001 mm precision for 

at least one core per dated tree using a Velmex measuring system. Earlywood and latewood 

widths were measured following procedures outlined in Griffin et al. [2011]. Using the dplR 

package in the R statistical program [Bunn, 2008; R Core Team, 2014], all ring width series 

were detrended with a cubic smoothing spline with a wavelength two-thirds the length of the 

series and a frequency response of 0.5 [Cook and Peters, 1981; Cook, 1985], and site-level 

residual chronologies were formed using Tukey’s biweight robust mean. Since LW is 

partially dependent on prior EW [Stahle et al., 2009; Griffin et al., 2011, 2013; Crawford et 
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al., 2015], an adjusted LW index (LWadj) was developed for each measured core prior to site-

level averaging based on the residuals of a linear regression of the detrended LW width on 

the detrended EW width [Griffin et al., 2011]. After quality control of ring width 

measurements using COFECHA [Holmes, 1983] and removing series with low correlations to 

the master chronologies, most ring-width chronologies achieved an expressed population 

signal (EPS) > 0.85 over the period 1913-2012 with the exception of LWadj chronologies at 

sites 1, 2, and 4, which each had EPS > 0.8 (Table A1). 

A subset of cores from each site were scanned at 3200 DPI on a flatbed scanner, and 

BI chronologies were developed using the CooRecorder software [Rydval et al., 2014]. 

Previous studies have suggested extracting resins from cores prior to scanning using soxhlet 

extraction or acetone baths [Campbell et al., 2007, 2011; Rydval et al., 2014; Wilson et al., 

2014], but I was not able to perform any resin extraction since these cores were subsequently 

used in isotope analyses. While the lack of resin extraction would likely pose a significant 

problem for a reconstruction due to large color differences between heartwood and sapwood, 

I focused solely on the climate signal in tree-ring metrics during the instrumental period 

(1913-2012). Most BI series consisted entirely of sapwood during the study period, but 

heartwood–sapwood boundaries were visually identified in the core scans and the heartwood 

BI was not considered in further analyses. Additional details of the blue intensity 

methodology are available in Appendix 3 (Text A1).  

 

Analyses 

I examined the sensitivity of different tree-ring metrics to seasonal climate variability 

using un-rotated principal component analysis (PCA), which I performed separately for each 

of the four tree-ring metrics over the period 1913-2012 using the six different site 

chronologies as variables to highlight the common signals among the sites. PCA was 



19 

performed using singular value decomposition on the covariance matrices of P. ponderosa 

metrics. Using the Seascorr program in the MATLAB programming environment [Meko et 

al., 2011], I performed running correlations between the first two components of each tree-

ring metric (a total of eight chronologies) and 1-, 3-, 6-, and 9-month composites of upper 

CRB-averaged precipitation (the primary variable) and maximum temperature (the secondary 

variable). Seasonal correlations between tree-ring metric PCs and the primary variable were 

calculated using the Pearson correlation coefficient. The relationship between tree-ring 

metrics and the secondary variable was assessed using partial correlation analysis (i.e., the 

correlation after the influence of the primary variable is removed), with significance of 

correlations estimated using Monte Carlo simulations [Meko et al., 2011]. 

I assessed the potential for combining multiple tree-ring metrics in precipitation 

reconstructions using composites of the ponderosa pine BI and ring width PCs. Many 

approaches have been developed for compositing proxy time-series, but compositing 

generally involves either a weighted or unweighted averaging of standardized proxy records 

[Jones et al., 2009]. Here, I standardized the first two PCs of each tree-ring metric to a 

common mean and variance so that all variables are on the same scale. I then formed a total 

of 21 composites using weighted averages of different metrics and PCs (Tables 2.1 and 2.2), 

where the weight was derived from the percentage of the variance explained in a linear 

relationship between a given component and the climate time-series of interest [McCarroll et 

al., 2011]. I calculated “effective correlations” [McCarroll et al., 2003, 2011] between these 

ponderosa pine composites and two precipitation composites: cool-season precipitation (Pcool, 

defined as the total precipitation from October through March) and warm-season 

precipitation (Pwarm, defined as the total precipitation from May through August). A Lilliefors 

test of normality [Lilliefors, 1967] indicated that warm-season precipitation was not normally 

distributed, so all subsequent tests were performed using log-transformed Pwarm.  
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In addition to the effective correlation analysis, I assessed the potential for a multi-

metric tree ring reconstruction of cool- and warm-season precipitation in the upper CRB 

using a series of composite-plus-scale (CPS) tests. The CPS approach is a flexible tool for 

climate reconstruction [Jones et al., 2009] that has been used with a variety of paleoclimate 

proxies, including tree-ring datasets [Briffa et al., 2001; Esper et al., 2002] and multiproxy 

datasets [Crowley and Lowery, 2000; Mann and Jones, 2003; Moberg et al., 2005; Neukom et 

al., 2011; Emile-Geay et al., 2013]. In CPS methods, the mean and variance of composited 

proxy series are re-scaled to match the mean and variance of the target climate variable 

[Jones et al., 2009]. I tested seven ponderosa pine composites for both Pcool and Pwarm, each 

containing both PCs of at least one metric (composites labeled “COMBO” in Tables 2.1 and 

2.2). The mean and variance of each composite were re-scaled to match the mean and 

variance of Pcool and Pwarm over the 1913-2012 study period. Additional details of the CPS 

methods used in this study are available in Appendix 3 (Text A2). While this variance-scaling 

approach does not suffer from the variance loss inherent in other reconstruction methods 

(e.g., inverse regression), the mean squared error in the model will, by definition, be inflated 

relative to a least squares solution [McCarroll et al., 2015]. I therefore assessed the potential 

skill of seasonal precipitation reconstructions in the CRB using a variance-scaled adaptation 

of the coefficient of determination (R2
vs), which can be interpreted in a manner similar to the 

commonly used reduction of error and coefficient of efficiency statistics, where R2
vs > 0 

indicates that the variance-scaled reconstruction is more skillful than a reconstruction based 

solely on the climatological mean [McCarroll et al., 2015].  

Since part of the justification for variance-scaled reconstructions is to better capture 

the full range of climate variability (including extreme events), I examined the sensitivity of 

ponderosa pine chronologies to extreme wet and extreme dry years during both the cool and 

warm seasons using the “extreme value capture” (EVC) statistic [McCarroll et al., 2015]. I 
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defined extreme precipitation thresholds in each season based on the upper and lower 10 th 

percentiles of the 100 year PRISM record and then calculated the proportion of these years 

that were correctly identified as extremely dry (EVC low) or extremely wet (EVChigh) in the 

CPS predictions. Since I defined extreme events as the upper and lower 10th percentiles, there 

is a 
1

10
 chance that the CPS-predicted precipitation will correctly identify an extreme year by 

chance alone. As in McCarroll et al. [2015], I used the binomial distribution to determine 

when the number of correctly identified extremes is significantly different than expected by 

chance. 

 

Table 2.1. Effective correlations between Pcool and tree-ring PCs, and the 

variance-scaled R2 (R2
vs) and extreme value capture statistics for both extreme 

low (EVClow) and extreme high precipitation (EVChigh) events for COMBO 

composites. The model with the highest R2
vs is shown in bold and italics. 

 

PC1 PC2 COMBO R2
vs EVClow EVChigh 

TRW 0.36 0.46 0.56 0.12 0.7*** 0.2 

EW 0.37 0.35 0.49 <0 0.5** 0.3 

LWadj 0.16 0.19 0.24 <0 0.1 0.3 

BI 0.35 -0.19 0.38 <0 0.4* 0.2 

EW + LWadj 0.38 0.36 0.52 0.04 0.5** 0.2 

EW + LWadj + BI 0.39 0.36 0.51 0.02 0.5** 0.1 

All Four 0.39 0.42 0.56 0.11 0.5** 0.1 

* p<0.05 
   

   ** p<0.01 
   

   *** p<0.001 
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Table 2.2. Effective correlations between Pwarm and tree-ring PCs, and the 

variance-scaled R2 (R2
vs) and extreme value capture statistics for both extreme 

low (EVClow) and extreme high precipitation (EVChigh) events for COMBO 

composites. The model with the highest R2
vs is shown in bold and italics. 

 

PC1 PC2 COMBO R2
vs EVClow EVChigh 

TRW 0.48 -0.30 0.56 0.13 0.2 0.5** 

EW 0.42 -0.28 0.51 0.03 0.2 0.4* 

LWadj 0.53 -0.24 0.57 0.14 0.1 0.7*** 

BI 0.52 0.27 0.57 0.15 0 0.5** 

EW + LWadj 0.61 0.33 0.66 0.32 0 0.6*** 

EW + LWadj + BI 0.59 0.34 0.65 0.30 0 0.8*** 

All Four 0.59 0.34 0.66 0.31 0.1 0.6*** 

* p<0.05 
   

   ** p<0.01 
   

   *** p<0.001 
   

    

Results 

The first component of the PCA emphasizes the growth patterns common to all sites 

(i.e., positive loadings on all sites) (Figure A2). The second component may reflect 

differences in elevation among sites (Figure A3), though further research would be needed to 

confirm this relationship given the limited sample size in this study (n = 6). For TRW and 

EW, low elevation sites (sites 1 and 4) occupy one end of the PC2 spectrum while the highest 

elevation site (site 2) occupies the other. This suggests that while these sites have similar 

primary signals in TRW and EW (likely due to similar growth-limiting factors), they have 

different secondary signals that may indicate the presence of additional growth-limiting 

factors at some sites, perhaps related to site elevation. For TRW and EW, sites 1 and 4 also 

occupy one end of the PC2 spectrum with sites 5 and 6 representing the opposite extreme for 

LWadj and site 5 for BI (Figure A2). The first principal components represent substantially 

more variance than the remaining components (Figure A4). The first and second principal 

components explain 58.8-70.7% and 11.0-14.8% of the variance among sites, respectively 

(Table A3). Together, the first two components explain 73.6-81.7% of the variance among 

sites. 
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Pairwise correlations among the tree-ring metric PCs indicate that there is a wide 

range in the amount of variance that is shared by different measures of tree growth (Table 

2.3). Since each individual tree ring is mostly composed of EW, this metric is closely related 

to TRW (r2>0.8 for both PCs). As highlighted in previous research [e.g., Griffin et al., 2011], 

unadjusted LW is closely coupled to prior EW and that dependence is also reflected in the 

EW and LW principal components in the U.S. Pacific Northwest (r2=0.53 for PC1; r2=0.39 

for PC2). The core-level adjustment of LW substantially reduces this dependence on prior 

EW (r2=0.03 for PC1; r2=0.09 for PC2) so that LWadj and EW represent discrete climate 

signals, as in previous studies [Stahle et al., 2009; Griffin et al., 2011, 2013; Crawford et al., 

2015]. BI is closely related to all other tree-ring metrics (r2≥0.22), particularly with 

unadjusted LW (r2=0.83 for PC1; r2=0.42 for PC2), which demonstrates that the processes 

contributing to formation of latewood width and density are not independent of each other 

and that these metrics likely share a similar climate signal. The common signal shared by LW 

and BI is reduced following adjustment of LW for dependence on prior EW (r2=0.53 for PC1; 

r2=0.22 for PC2). 

 

Table 2.3. Shared variance (r2) among PC1 metrics (lower-

left of matrix) and among PC2 metrics (upper-right of 

matrix). 

 

TRW EW LW LWadj BI 

TRW - 0.82 0.64 0.21 0.32 

EW 0.96 - 0.39 0.09 0.24 

LW 0.67 0.53 - 0.61 0.42 

LWadj 0.09 0.03 0.58 - 0.22 

BI 0.51 0.38 0.83 0.53 - 

 

Correlations between PC1 of each metric and seasonal climate variables show that the 

dominant climate signal embedded in TRW and EW series in the upper CRB is spring and 

summer precipitation in the year of growth, late-summer and autumn precipitation during the 
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previous growing season, and some additional contribution from winter precipitation (Figure 

2.2; full Seascorr results in Figure A5). For LWadj, the upper CRB chronologies primarily 

reflect summer precipitation (May through August) in the year of growth, with very little 

contribution from prior growing season conditions. The BI signal is similar to the ring width 

signals and primarily reflects warm-season precipitation in both the year of growth and the 

prior growing season. After accounting for the influence of precipitation on growth, there are 

generally low and non-significant correlations between maximum temperature and tree-ring 

metrics at these sites (Figure A5).  

 

Figure 2.2. Pearson correlation coefficients between the first principal component of each 

tree-ring metric and 3-month precipitation composites (* = previous year). Dark blue shading 

indicates significance at a 99% level, and light blue shading indicates significance at a 95% 

level. Full Seascorr results (including correlations at different time-scales and with maximum 

temperature) are shown in Figure A5. 

 

PC2 of each metric highlights differences in growth among the upper CRB sites, 

which generally reflect differing responses among the sites to winter precipitation (Figure 

2.3; full Seascorr results in Figure A6). The second PC of TRW and EW are both positively 
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correlated with precipitation during the cool season and negatively correlated with warm-

season precipitation. Seascorr results for TRW and EW chronologies at Sites 1 and 4 (not 

shown), which are both low elevation sites with positive loadings in PC2, differ substantially 

from the other sites. Whereas most sites correlate most strongly with warm-season 

precipitation with little dependence on cool-season precipitation, Sites 1 and 4 are most 

strongly correlated with precipitation from the previous autumn through early spring. The 

negative correlation between warm-season precipitation and PC2 of TRW and EW may 

reflect a lack of warm-season precipitation dependence at Sites 1 and 4, in combination with 

additional warm-season precipitation dependence at Site 2, which has negative loadings in 

PC2. In contrast, PC2 of LWadj contains very little cool-season precipitation signal and 

instead reflects warm-season precipitation in the year of growth, similar to PC1 of LWadj. In 

general, PC2 of BI is not highly correlated to either cool-season or warm-season 

precipitation. As with PC1, there are very few significant correlations between PC2 and 

maximum temperature after accounting for the variance explained by precipitation (Figure 

A6). While I chose to use residual chronologies in this study, standard chronologies contain 

very similar seasonal precipitation signals for all four tree ring metrics (Figures A7-A8). 
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Figure 2.3. Pearson correlation coefficients between the second principal component of each 

tree-ring metric and 3-month precipitation composites (* = previous year). Dark blue shading 

indicates significance at a 99% level, and light blue shading indicates significance at a 95% 

level. Full Seascorr results (including correlations at different time-scales and with maximum 

temperature) are shown in Figure A6. 

 

Effective correlation analyses between Pcool and the 21 tree-ring metric composites 

indicate that the highest correlations (r = 0.56; Table 2.1) are achieved with a model that 

includes both PCs of TRW with no additional tree-ring metrics (Figure 2.4 a-b). In addition 

to being more parsimonious, the CPS model that includes only TRW is slightly more skillful 

(R2
vs = 0.12) than the four metric composite (R2

vs = 0.11) and successfully captures more of 

the extremely dry cool seasons (EVClow = 0.7; p < 0.001) than the model that contains all four 

metrics (EVClow = 0.5; p < 0.01). CPS models based on EW, LWadj, or BI have no 

reconstructive skill (R2
vs < 0) unless combined with at least one other metric. There is a 

distinct asymmetry in the sensitivity of the tree-ring composites to precipitation extremes: 

while most of the CPS models (except the one based solely on LWadj) are able to capture a 

significant fraction of extremely dry cool seasons, none of the ponderosa pine composites are 

able to capture a significant proportion of extremely wet cool seasons. 
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Figure 2.4. (a) Time plot of observed (grey) and predicted (black) October – March 

precipitation (Pcool) in the CRB based on a CPS model of TRW (both PC1 and PC2). Dashed 

horizontal lines show thresholds for identification of years with extreme precipitation. (b) 

Scatter plot of observed Pcool and TRW-predicted Pcool. Filled circles indicate extreme years 

that were correctly identified (black) or not identified (gray) as extreme by the tree-ring CPS 

models. (c) Time plot of observed (grey) and predicted (black) May – August precipitation 

(Pwarm) in the CRB based on a CPS model of EW and LWadj (both PC1 and PC2). Dashed 

horizontal lines show thresholds for identification of years with extreme precipitation. (d) 

Scatter plot of observed Pwarm and predicted Pwarm. Filled circles indicate extreme years that 

were correctly identified (black) or not identified (gray) as extreme by the tree-ring CPS 

models. 

 

Effective correlations between Pwarm and composites of ponderosa pine metrics (Table 

2.2) indicate that warm-season precipitation is most strongly correlated with a composite 

containing both PCs of EW and LWadj (r = 0.66). While the individual metrics are each 

correlated with Pwarm with approximately equal strength (0.51 ≤ r ≤ 0.57), including TRW and 

BI along with EW and LWadj does not improve the overall correlation with Pwarm. As 

suggested by the seasonal correlation analyses (Figures 2.2 and 2.3), the dominant signal in 

the network of CRB sites is related to warm-season precipitation, and the CPS skill for Pwarm 

therefore tends to be stronger than for Pcool. All COMBO composites exhibit at least some 

skill (R2
vs > 0), though a CPS model composed of EW and LWadj (Figure 2.4 c-d) is 
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considerably more skillful than any individual metric. In contrast to the cool-season CPS 

tests, warm seasons that are extremely wet are successfully identified by most tree ring-based 

CPS models (EVChigh ≥ 0.4; p < 0.05). Warm seasons that are extremely dry are poorly 

reflected in the CPS-predicted Pwarm (EVClow ≤ 0.2; p > 0.05). While the variance explained 

by the CPS model declines when BI is added to the EW + LWadj composite, the proportion of 

extremely wet warm seasons that are correctly identified by the CPS model increases from 

60% to 80%.  

 

Discussion 

Results from this research demonstrate that different tree-ring metrics contain 

different seasonal precipitation signals in the upper CRB, particularly in their sensitivity to 

cool-season and prior growing season precipitation, though the dominant signals tend to 

reflect dependence on warm-season precipitation. In some cases, combining tree-ring metrics 

with complementary signals improves CPS model skill. Total ring width of P. ponderosa 

provides the strongest relationship to cool-season precipitation (r2 = 0.31; R2
vs = 0.12), and 

including additional tree-ring metrics does not improve the CPS model of Pcool. However, 

including multiple tree-ring metrics in a warm-season precipitation model offers substantial 

gains in model strength: while the best single tree-ring metric explains 32% of Pwarm variance, 

a model that includes both EW and LWadj explains 44% of Pwarm variance. 

Like previous studies of sub-annual ring widths in western Canada and the U.S. 

Intermountain West [Watson and Luckman, 2002; Crawford et al., 2015], there is very little 

evidence of temperature dependence in these tree-ring chronologies and substantial overlap in 

the EW and LW precipitation signals. While EW reflects precipitation in both the previous 

growing season and year of growth, LW reflects precipitation later in the year of growth. EW 

at these sites is also significantly correlated with cool-season precipitation, particularly at two 
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low elevation sites, which both have positive loadings in PC2 (Figures 2.3 and A2) and which 

are most strongly correlated with precipitation from autumn of the previous year through 

spring. The differences in precipitation signal between TRW/EW and LWadj may reflect the 

usage of stored photosynthate from the previous growing season for EW formation and the 

usage of photosynthate produced in the year of growth for LW formation [Kagawa et al., 

2006; Offermann et al., 2011].  

The signals embedded in these sub-annual ponderosa pine metrics differ from those 

found in other regions. In parts of the U.S. Southwest, for example, EW primarily reflects 

cool-season precipitation while LW tends to reflect warm-season precipitation delivered via 

the North American monsoon system [Meko and Baisan, 2001; Stahle et al., 2009; Griffin et 

al., 2013]. While previous studies have documented significant relationships between BI and 

warm-season temperature [McCarroll et al., 2011; Rydval et al., 2014; Wilson et al., 2014], I 

found very little evidence of temperature dependence in the BI chronologies from the upper 

CRB (after accounting for the variance explained by precipitation). 

The precipitation–tree growth relationships found in this study (r2 = 0.31 for Pcool; r2 = 

0.44 for Pwarm) compare favorably to those found in other studies of P. ponderosa in 

northwestern North America, where precipitation typically explains anywhere from 20-50% 

of total ring width variance depending on site and season of interest [Graumlich, 1987; 

Kusnierczyk and Ettl, 2002; Knutson and Pyke, 2008; Knapp and Soulé, 2011; Soulé and 

Knapp, 2011]. It is possible that model strength could be further improved through inclusion 

of tree-ring chronologies from other sites and species. Cool-season precipitation 

reconstructions in particular may benefit from inclusion of subalpine conifer species such as 

subalpine fir (Abies lasiocarpa) and mountain hemlock (Tsuga mertensiana) that are 

negatively correlated with winter precipitation and spring snowpack [Peterson and Peterson, 

1994, 2001; Peterson et al., 2002; Lutz et al., 2012]. Like the P. ponderosa chronologies 
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developed in this study, Douglas-fir (Pseudotsuga menziesii) chronologies in northwestern 

North America are often strongly correlated with warm-season precipitation [Watson and 

Luckman, 2001; Littell et al., 2008; Lo et al., 2010; Crawford et al., 2015], but with slight 

differences in seasonality [Watson and Luckman, 2002] which may complement the P. 

ponderosa warm-season precipitation signal and improve reconstruction of Pwarm. 

My results suggest that ponderosa pine metrics vary in their sensitivity to extreme 

precipitation in the U.S. Pacific Northwest. Among individual metrics, TRW successfully 

identifies 70% of extremely dry cool seasons, while LWadj only correctly identifies 10%. 

Likewise, CPS models based on LWadj are able to successfully identify 70% of extremely wet 

warm seasons, but none of the other three metrics correctly identify more than 50%. Tree 

ring-based predictions of warm-season precipitation are able to skillfully identify extremely 

wet years but not extremely dry years, while predictions of cool-season precipitation 

successfully capture extremely dry years but not extremely wet years. This suggests that 

inferences regarding extreme events from these models or comparison between extremes in 

the instrumental and paleoclimate records would be stronger for extremely wet years in the 

warm season but stronger for extremely dry years in the cool season. Asymmetries in the 

ability to capture extreme events may stem in part from asymmetries in the distributions of 

precipitation itself. For example, the distribution of warm-season precipitation (Figures 2.4 c-

d) is highly skewed, with most years clustered near the lower end of the precipitation 

distribution. It may therefore be more difficult for tree-ring-based models to distinguish the 

driest years, which may be only slightly drier than other years that are not identified as 

extreme based on a 10% threshold. On the other hand, the wettest years are clearly separated 

from the bulk of the distribution and may therefore be easier to identify using tree-ring data 

since they are more distinct from the climatological norm. Quantifying the ability of 

reconstructions to capture extremes can improve interpretation of past climate through the 
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delineation of these strengths, weaknesses, and asymmetries in extreme value capture 

[McCarroll et al., 2015]. 

 

Summary and Conclusions 

Seasonal biases in tree-ring records remain a major challenge for the reconstruction 

and interpretation of past climates, particularly in the U.S. Pacific Northwest [Steinman et al., 

2012]. Previous studies have highlighted significant potential for improving seasonal climate 

reconstructions using combinations of multiple tree-ring metrics, including traditional TRW, 

sub-annual ring widths, and proxies for tree-ring latewood density. Using a network of TRW, 

EW, LWadj, and BI chronologies from six Pinus ponderosa sites in and surrounding the upper 

CRB, I examined the sensitivities of these four ponderosa pine metrics to seasonal climate 

variability and evaluated the potential for sub-annual precipitation reconstruction using 

multiple metrics in the U.S. Pacific Northwest. 

I found that all ring-width indices in this region are sensitive to warm-season 

precipitation, which is the season during which the least precipitation is received. In the upper 

CRB, TRW and EW are sensitive to warm-season precipitation in both the year of growth 

and in the previous growing season, while LWadj is not sensitive to conditions prior to the 

year of growth. Like previous studies in western Canada and the U.S. Intermountain West 

[Watson and Luckman, 2002; Crawford et al., 2015], there is considerable seasonal overlap 

in the precipitation signals embedded in TRW, EW, and LWadj, but peak correlations between 

warm-season precipitation and LWadj are stronger than other metrics and occur later in the 

growing season. Like Watson and Luckman [2002], I also identified positive and significant 

correlations between TRW and EW indices and cool-season precipitation at some sites. The 

BI signal in the upper CRB is similar to the ring-width metrics, with the first component 

containing a warm-season precipitation signal (in both the year of growth and in the prior 
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growing season). Unlike previous studies in Scandinavia [McCarroll et al., 2011] and British 

Columbia [Wilson et al., 2014], I did not find a strong relationship between BI and 

temperature in my semi-arid study region. 

Effective correlation analyses and CPS tests suggest that use of multiple tree-ring 

metrics may improve seasonal precipitation reconstructions, though the magnitude of 

improvement may differ depending on the season of interest. In my study area, for example, 

TRW alone can explain more cool-season precipitation variance than all metrics combined. A 

composite index of EW and LWadj explains substantially more variance in warm-season 

precipitation than any single metric, thus highlighting the potential to capture seasonal 

climate signals embedded in sub-annual ring widths that are not resolvable by TRW alone. 

CPS tests suggest that reconstructions of Pcool and Pwarm in the upper CRB are asymmetric in 

their ability to capture extreme events. While CPS-predicted Pcool successfully identifies 

extremely dry years, there is very little skill in predicting extremely wet years. In contrast, the 

CPS model skillfully predicts extremely wet warm seasons, but not extremely dry ones. This 

asymmetry in the ability of CPS models to capture precipitation extremes suggests that future 

paleoclimate studies from other proxy records may benefit by using EVC as a validation 

metric to formally test the ability of variance-scaled reconstructions to correctly identify 

extreme events. Seasonal climate reconstruction and the capture of extremes in the tree-ring 

record may also benefit from future research to include stable isotope ratios of tree-ring 

cellulose as an additional metric and from the inclusion of chronologies from multiple 

species.  

My results suggest that tree growth in the U.S. Pacific Northwest may be sensitive to 

the enhanced precipitation seasonality that is expected under a changing climate [Mote and 

Salathé, 2010; Rogers et al., 2011]. Projected changes in the seasonality and phase of 

precipitation, in combination with higher summer temperatures and increases in vapor 
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pressure deficit, pose significant threats to vegetated ecosystems that rely on winter 

snowpack for soil moisture recharge [Boisvenue and Running, 2010; Williams et al., 2013]. 

Substantial uncertainties in the responses and feedbacks of vegetation to the impacts of 

climate change limit our ability to project future changes in the distribution and functioning 

of terrestrial ecosystems. Empirical studies on the responses of tree growth to historical 

variation of temperature and water availability can constrain these models and improve our 

understanding of the potential responses of forest ecosystems to climate change [Moorcroft, 

2006]. While tree growth at the six sites used in this study seems to be primarily limited by 

summer water availability, there is substantial variation among sites in their reliance on 

winter precipitation. Growth at Sites 1 and 4, for example, is significantly related to 

precipitation from the previous autumn through early spring. These results suggest that the 

impacts of shifting precipitation seasonality, as expected under a changing climate, on the 

forests of the U.S. Pacific Northwest will likely vary geographically due to differential 

reliance of forests on precipitation from different seasons. Where tree growth is primarily 

dependent on summer precipitation, as in most of my study sites, redistribution of 

precipitation from the warm to the cool season may result in long-term growth declines. The 

impacts of seasonal precipitation redistribution would likely be less severe for forests that 

partially rely on winter precipitation as an additional source of water availability, such as my 

Sites 1 and 4, though changes in the phase of precipitation may pose additional risks for these 

ecosystems that are not examined in this study. Continued research on the consequences of 

seasonal hydroclimate shifts for terrestrial ecosystems that combines inferences from tree-

ring networks (or other sources of information on forest growth, such as remote sensing or 

eddy covariance flux towers) with 21st century climate projections [e.g., Williams et al., 

2013] will help delineate these differing responses. 
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CHAPTER 3: ENVIRONMENTAL STRESSES TO PRIMARY PRODUCTION IN 

THE CONTERMINOUS UNITED STATES 

 

Introduction 

Terrestrial primary production—the amount of carbon sequestered by plants via 

photosynthesis—is the fundamental source of food for all land-dwelling organisms and the 

primary entry point of energy and carbon into ecosystems. Recent estimates suggest around 

80% of available primary production has already been appropriated for human use, with the 

remainder representing a key “planetary boundary” for future human activity [Running, 

2012]. Terrestrial primary production is also a major component of the global carbon cycle, 

which has historically acted as a large sink for human emissions of CO2 [Pan et al., 2011; 

Ciais et al., 2013].  

Many environmental factors plays an important role in regulating the growth and 

productivity of terrestrial vegetation, including climate, soil quality, and ecological processes 

(e.g., disturbance, competition, and succession) [Chapin et al., 2011]. Productivity of 

terrestrial vegetation can be limited or co-limited by multiple climate or environmental 

factors, with high spatial and temporal variability in the dominant environmental stressors 

[Nemani et al., 2003; Garbulsky et al., 2010]. Projected changes in temperature and 

hydroclimate over the 21st century will likely alter environmental stress regimes and thus 

impact the primary production of the biosphere [Boisvenue and Running, 2010; Rogers et al., 

2011; Notaro et al., 2012; Jiang et al., 2013], and many models suggest that the terrestrial 

biosphere will switch from a net sink to a net source of CO2 in response to these changes 

[Settele et al., 2014]. Understanding the environmental factors that control primary 
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production at a range of spatial and temporal scales is therefore crucial for modeling and 

monitoring primary production and for projecting responses of plant growth and productivity 

to future climate change.  

 The complexity of environmental limitations to plant growth—as well as their 

interactions with each other and their importance over different spatial and temporal scales—

adds considerable uncertainty to models that attempt to monitor primary production based on 

satellite data. The dominant paradigm for modeling primary production with remote sensing 

is light-use efficiency (LUE) theory, which estimates plant production as a function of the 

amount of absorbed photosynthetically active radiation (PAR) by plant canopies and their 

efficiency at converting absorbed PAR to carbohydrates [Monteith, 1972, 1977, Song et al., 

2013, 2015]. Many of these models assume a constant optimal LUE that is reduced in 

response to “environmental stresses,” which are typically based on relatively simple functions 

of easily measured meteorological variables, such as temperature and vapor pressure deficit.  

While these environmental stress functions can capture stress-induced reductions in 

LUE in some regions, they may be poorly correlated (or even opposite in sign) in other 

ecosystems [Garbulsky et al., 2010; Zhang et al., 2015]. Differences in primary production 

estimates derived from remotely sensed data can partly be traced to differences in the 

parameterization of these environmental stress scalars [Cai et al., 2014]. Estimating water 

stress is particularly challenging [Zhang et al., 2015], especially in arid and semi-arid regions 

and during periods of extreme drought [Leuning et al., 2005; Gebremichael and Barros, 

2006; Heinsch et al., 2006; Pan et al., 2006; Mu et al., 2007; Nightingale et al., 2007; Zhang 

et al., 2007a; Hwang et al., 2008; Kanniah et al., 2009]. Additionally, few LUE models 

incorporate stresses resulting from non-climatic factors, such as topographic position, 

insufficient nutrient supply, or other ecological factors (e.g., competition for belowground 

resources). Since nutrient supply is particularly important for the physiological processes that 
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drive light-use efficiency, inclusion of soil quality factors in LUE models could lead to 

substantial improvements in primary production estimates [Nightingale et al., 2007], though 

soil data availability and quality would likely present a challenge for large-scale 

implementation. 

Given the limitations of current environmental stress models, in this chapter I develop 

an alternative approach for quantifying environmental stress effects on forest primary 

production using tree-ring data and examine the drivers and seasonality of environmental 

stresses to forest primary production in the conterminous U.S. Widths of tree rings are a 

direct indicator of the net primary production that is allocated to woody growth [Graumlich et 

al., 1989; Rathgeber et al., 2000], and the sensitivity of stomatal, photosynthetic, and cambial 

processes to variation in each tree’s local environment make tree-ring widths ideal indicators 

of long-term variation in forest productivity and environmental stress [Fritts, 1976]. Recent 

studies have demonstrated significant potential for using tree-ring metrics as indicators of 

ecosystem-scale productivity [Beck et al., 2013; Bunn et al., 2013], suggesting that carbon 

cycle models (including those based on remotely sensed data) may benefit from assimilation 

of tree rings [Babst et al., 2014].  

Here, I estimate annual environmental stress effects on plant growth based on tree-

ring widths, species traits, and ecological theory developed for forest gap models. I define 

“environmental stress” as the proportion of the theoretical optimal diameter growth rate that 

is realized in a given year. I first test and evaluate the index at six tree-ring sites in the U.S. 

Pacific Northwest (described in Chapter 2) with detailed tree- and site-level data. I then apply 

the method to a large, continent-wide network of tree-ring widths in the conterminous U.S. 

and compare it to annual gross primary production from nearby flux tower sites. Finally, I use 

the tree-ring environmental stress index to assess the specific environmental factors that limit 
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forest growth in the conterminous U.S., including stresses induced by unfavorable climatic, 

topographic, and edaphic conditions.  

 

Data and Methods 

A Tree-Ring Based Environmental Stress Index 

 At its core, “environmental stress” is the reduction of plant growth below optimal 

levels in response to inadequate resource availability or unfavorable ambient conditions. 

Where measurements of annual tree growth are available, the effects of environmental stress 

can therefore be represented as the ratio between the actual, measured diameter growth in a 

given year and the theoretical optimal diameter growth rate in that same year. While actual 

tree growth is easily measured using standard dendrochronological procedures, optimal 

growth is a theoretical construct that cannot be directly measured but must be estimated using 

species-specific allometric equations such as those used in forest gap models [e.g., Botkin et 

al., 1972; Shugart, 1984; Urban et al., 1993; Song and Woodcock, 2003]. The approach used 

here is the inverse of typical gap model applications: while I am estimating the impacts of 

environmental stress using actual measurements of tree growth, forest gap models typically 

simulate growth and succession of forests based on modeled environmental stresses (e.g., 

light, nutrients, and water availability). 

 To estimate the optimal growth of a given tree in a given year, I follow the approach 

originally proposed for the JABOWA gap model [Botkin et al., 1972]: 

∆𝐷𝑜𝑝𝑡 =
𝐺𝐷[1−𝐷𝐻/𝐷𝑚𝑎𝑥𝐻𝑚𝑎𝑥]

274+3𝑏2𝐷−4𝑏3𝐷2
,         (1) 

Where ∆𝐷𝑜𝑝𝑡 is the optimal diameter growth (in cm) for a given tree in a given year, 𝐺 is a 

species-specific growth factor, 𝐷 is the diameter at breast height (DBH) at the start of the 

year, 𝐻 is the height of a given tree at the start of the year, 𝐷𝑚𝑎𝑥 is the maximum DBH of the 

tree species, 𝐻𝑚𝑎𝑥 is the maximum height of the tree species, and 𝑏2 and 𝑏3 are species-
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specific allometric parameters. This formula assumes: 1) that annual volume increment is 

proportional to canopy leaf area (which is itself proportional to stem sapwood area), and 2) 

that there is an increasing maintenance cost with increasing tree size (i.e., as 𝐷 approaches 

𝐷𝑚𝑎𝑥, volume increment approaches zero) [Botkin et al., 1972; Shugart, 1984]. I estimated 

𝐷𝑚𝑎𝑥, 𝐻𝑚𝑎𝑥, and maximum age based on the maximum observed DBH, height, and age for 

each species provided in Hardin et al. [2001], supplemented with information from the gap 

model literature [Shugart, 1984; Urban et al., 1993]. I estimated the remaining parameters 

(𝐺, 𝑏2, and 𝑏3) using equations provided in Shugart [1984]. A full list of species and 

parameters used in this model is provided in Table A4. 

 For application to tree-ring datasets, where in situ measurements of DBH are not 

typically available, 𝐷 must be estimated using an “inside-out” approach, in which stem 

diameter at the start of a given year is estimated by summing all diameter increments prior to 

that year (𝐷∗). 𝐷∗ can then be substituted for 𝐷 in eqn. 1, resulting in an estimated optimal 

growth rate (∆𝐷𝑜𝑝𝑡
∗ ). Estimating diameters in this manner will systematically underestimate 

annual stem diameters, which I address below. As in many gap models, I estimate 𝐻 as a 

species-specific quadratic function of 𝐷∗.  

 Following estimation of ∆𝐷𝑜𝑝𝑡
∗ , the environmental stress index, 𝑆∗, for a given year is 

estimated for each tree as the ratio of measured diameter growth (∆𝐷) to the estimated 

optimal diameter growth rate: 

𝑆∗ =
∆𝐷

∆𝐷𝑜𝑝𝑡
∗ .           (2) 

Annual site-level 𝑆∗ chronologies are then developed by averaging all core-level 𝑆∗ series at 

a given site using Tukey’s biweight robust mean. Following accepted dendrochronological 

practice, I use an expressed population signal (EPS) threshold of 0.85 to exclude years with 

inadequate signal strength from any further analyses [Wigley et al., 1984]. Theoretically, 𝑆∗ 

should be in the range [0,1], and it should capture and integrate the dominant sources of 
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environmental stress experienced by trees, including both interannual variation in stress 

resulting from climate variability as well as perennial sources of stress resulting from 

unfavorable site conditions (e.g., steep slopes or poor soil nutrient status).  

 For comparison, I also define a relative stress index (𝑆𝑟) using methods standard to 

dendrochronology. Following typical detrending methods, I fit stiff smoothing splines (two-

thirds the length of the series with a 50% frequency response) to the measured ring widths 

from each individual core, and divided this fitted curve into the measured ring width series to 

obtain a detrended ring width index [Cook, 1985]. As with 𝑆∗, I averaged the detrended ring 

width index series at each site using Tukey’s biweight robust mean to obtain site-level 𝑆𝑟, 

retaining only the portions of the time-series that exceed an EPS of 0.85 [Wigley et al., 1984]. 

Unlike 𝑆∗, this relative stress index has the same mean across all sites and only represents the 

interannual variation in stress experienced by trees. It therefore cannot capture spatial 

gradients in stress resulting from perennial reductions in growth due to unfavorable site 

conditions, but it also does not suffer from uncertainties introduced by the optimal growth 

model.  

 

Tree-Ring Data 

 I tested the errors introduced to ∆𝐷𝑜𝑝𝑡
∗  and 𝑆∗ due to systematic underestimation of 

annual DBH using increment cores collected at six semi-arid ponderosa pine sites in the U.S. 

Pacific Northwest (Chapter 2; Figure A9), where DBH was measured for each tree at the time 

it was sampled. Cores were collected, processed, and cross-dated following standard 

dendrochronological procedures [Stokes and Smiley, 1968]. Ring widths were measured on a 

Velmex measuring system, and cross-dating was verified using the program COFECHA 

[Grissino-Mayer, 2001]. Ring width series were processed using the dplR package [Bunn, 

2008] in the R statistical environment [R Core Team, 2014].  
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 For continental-scale application of the tree-ring environmental stress index, I 

obtained tree-ring widths from the International Tree-Ring Data Bank (ITRDB) for all sites in 

the conterminous U.S. that at least partially overlap with the period 1980-present (Figure 

3.1). Globally, the ITRDB contains ring width records for more than 3,200 sites, with 

particularly high sampling density within North America and western Europe [St. George, 

2014]. In the conterminous U.S., there are more than 1,000 sites that overlap with the 

AVHRR remote sensing record (a total of more than 12,000 site-years of tree-ring widths) 

and approximately 300 that overlap with the MODIS record (2000-present). Of the ITRDB 

sites used in this study, the most prominent genera are Pinus (35% of the sites, mostly 

ponderosa pine), Quercus (23%, largely white oak and post oak), and Pseudotsuga (12%), 

though other genera are also present, including Tsuga (9%), Abies (4%), Picea (4%), 

Juniperus (4%), Taxodium (3%), Larix (1%), and Liriodendron (1%). 

 

Figure 3.1. Level I ecoregions and distribution of tree-ring sites and flux towers used in this 

study. Open triangles show sites for which I was able to estimate both 𝑆∗ and 𝑆𝑟, and black 

dots show sites for which I was only able to estimate 𝑆𝑟. The AmeriFlux eddy covariance 

flux towers used in this study are shown as outlined gray circles.  
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Evaluation of Tree-Ring Environmental Stress Estimates 

Any uncertainty in ring-width-based estimates of 𝐷∗ will propagate to estimates of 

both ∆𝐷𝑜𝑝𝑡
∗  and 𝑆∗. When increment cores extend to the pith of the tree (Figure A10a), this 

approach should provide relatively accurate estimates of annual tree diameter. However, it is 

likely to underestimate stem diameter in most cases for two reasons: 1) the width-based 

estimate does not include bark (which should have a minimal impact on diameter increment 

estimates), and 2) most increment cores do not extend to the pith of the tree due either to an 

off-center angle of the increment borer when it enter the tree (Figure A10b) or to heartwood 

rot in the center of the tree (Figure A10c). In these cases, the innermost portion of the tree 

will not be included in the diameter estimate. However, these uncertainties are mitigated by 

two factors. First, both of the above sources of error in 𝐷∗ are additive in nature. Thus, as 

trees age and stem diameter increases, the error in 𝐷∗ becomes proportionally smaller. 

Second, annual diameter growth generally decreases as trees age so 𝐷∗ changes little from 

year to year. While ∆𝐷𝑜𝑝𝑡
∗  increases rapidly in the early years of growth, it remains relatively 

constant thereafter. For applications involving relatively old trees where the recent past is of 

primary interest, the fact that ∆𝐷𝑜𝑝𝑡
∗  remains relatively constant reduces the impact of errors 

in 𝐷∗.  

Using measured DBH at the six ponderosa pine sites in the Pacific Northwest, I 

evaluated the error introduced to ∆𝐷𝑜𝑝𝑡
∗  and 𝑆∗ when using the biased “inside-out” 𝐷∗ 

estimates. For each tree at these sites, I calculated 𝐷 based on measured DBH using an 

“outside-in” approach, wherein stem diameter in a given year is estimated by subtracting 

subsequent diameter increments from the measured DBH. Since DBH was accurately 

measured in situ at the time of sampling, these estimates of 𝐷 should be more accurate and 

should not suffer from the systematic underestimation of 𝐷∗ from the “inside-out” approach. 

This method still assumes that growth is homogeneous around the circumference of the tree, 
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that the extracted core is a representative sample of this growth, and that increment cores 

were extracted at breast height. In some cases, when growth is asymmetric around the 

circumference of the tree and increment cores extended near the pith of the tree, the “outside-

in” method may result in negative diameter estimates in early years of growth. These were 

corrected by linearly scaling the 𝐷 time-series for these trees to range from 0 cm to DBH. I 

calculated both ∆𝐷𝑜𝑝𝑡 and 𝑆 using these “outside-in” estimates of 𝐷, and compared them to 

the estimates based on the biased “inside-out” estimates of 𝐷∗. I acknowledge, however, that 

these tests are based solely on a single species (ponderosa pine) from a single region (the U.S. 

Pacific Northwest) for which in situ DBH measurements are available. A priority for future 

research is to perform this sensitivity test using additional species from different regions. 

To assess the ability of 𝑆∗ to capture variation of primary production at a continental 

scale, I compared 𝑆∗ calculated at ITRDB sites to annual gross primary production (GPP) 

estimates from eddy covariance flux towers within 100 km of the tree-ring site (Figure 3.1). 

While this distance will likely result in comparisons between flux sites and ITRDB sites that 

are in different physiographic settings, a large search radius was needed in order to achieve a 

large enough sample size, since flux sites and tree-ring sites are not typically located very 

close to each other. In this dataset, for example, the minimum distance between a flux tower 

and a tree-ring site was approximately 24 km. However, significant correlations between the 

environmental stress index derived from tree rings and GPP estimated at flux towers would 

suggest that the index is adequately capturing the environmental stresses that influence 

primary production at a broad scale. For each flux tower, I obtained daily, level 4 GPP 

estimates from the AmeriFlux network (http://ameriflux.ornl.gov/) and calculated annual 

GPP as the sum of daily GPP over the calendar year. I excluded any year with missing level 4 

daily data or which consisted of more than 25% gap-filled estimates.  
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Climate, topography and soil data 

I assessed the responses of the tree-ring environmental stress indices to climatic, 

topographic, and soil factors. To understand climatic limitations to growth, I used mean 

monthly minimum temperatures (TMIN), mean monthly maximum temperatures (TMAX), 

mean monthly vapor pressure deficit (VPD), and a simple climatic water balance (WB) 

estimate, defined here as total monthly precipitation minus monthly potential 

evapotranspiration calculated using the FAO Penman-Monteith approach [Monteith, 1965; 

Allen et al., 1998]. All climate data were obtained from the Parameter-elevation 

Relationships on Independent Slopes Model (PRISM) [Daly et al., 2008] at approximately 4 

km spatial resolution. Each of the monthly climate variables were aggregated to seasonal 

time-scales by taking the mean of the two temperature variables and summing the two water 

variables over four three-month seasons: September-November (SON) of the previous year, 

December-February (DJF) ending in the year of growth, March-May (MAM), and June-

August (JJA).  

Four topographic indicators were obtained at 1 km resolution from the USGS 

HYDRO1k dataset: elevation, slope, upslope accumulated area (UAA), and the topographic 

wetness index (TWI). UAA represents the total upslope surface area that could contribute 

runoff to a given point, while TWI adjusts UAA by the local slope to better capture the 

tendency of water to accumulate in a given area [Beven and Kirkby, 1979]. As indicators of 

soil texture and quality, I used six metrics from the gridded Global Soil Dataset for use in 

Earth System Models (GSDE) [Wei et al., 2014]: proportions of the soil made up by sand, 

silt, and clay; acidity (pH); organic carbon content; and total nitrogen. For consistency, the 1 

km gridded topographic and soil data were aggregated to the same spatial resolution as the 

climate data (4 km). 
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Modeling the Environmental Drivers of Stress 

To assess the drivers of environmental stress in the conterminous U.S., I conducted a 

set of modeling experiments (Figure 3.2; Table 3.1) at three spatial scales within the 

spatially-hierarchical EPA ecoregion dataset [Omernik, 1987]: a coarse spatial scale (Level I; 

Figure 3.1), a medium spatial scale (Level II), and a fine spatial scale (Level III). Within each 

ecoregion, I located all tree-ring sites that fell within its bounds and pooled the annual stress 

indices from those sites into a single ecoregion-level attribute table. I also extracted the 

climatic, topographic, and soil information from the grid cell nearest to each site to use as 

predictor variables for the environmental stress model. To ensure that both temporal and 

spatial variability of environmental stress are captured within the modeling experiments, I 

used all environmental stress estimates from 1971 through the end of the tree-ring series (all 

of which end in 1980 or later), thus ensuring that each site within the ecoregion-level model 

has at least ten years of stress measurements included. The ecoregion-level attribute tables 

therefore contain variables that vary spatially (topography and soil variables) and that vary 

both spatially and temporally (𝑆∗ and climate variables). 
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Figure 3.2. Flow chart of ecoregion-level environmental stress models. All site-level, annual 

environmental stress time-series, along with their associated climatic, topographic, and soil 

predictors (V1, V2, etc.), are pooled into a single ecoregion-level attribute table. This 

attribute table is used to train an ecoregion-level random forest (RF) regression model to 

predict environmental stress as a function of environmental factors, with approximately two-

thirds of the data used to train the model and one-third left “out of bag” for evaluation. 

 

After the ecoregion-level attribute tables were assembled, I used a series of random 

forest (RF) regression model experiments to assess the dominant drivers of environmental 

stress across the conterminous U.S. The RF machine learning method consists of a large 

ensemble of regression trees (here, I use 300 regression trees), in which each tree is “grown” 

using a random subset of observations and predictor variables [Breiman, 2001]. The RF 

method provides several desirable characteristics compared to other regression methods: they 

are not as susceptible to overfitting [Breiman, 2001; Pal, 2005; Gislason et al., 2006; Prasad 

et al., 2006], they are well suited for modeling nonlinearity and interactions among predictor 

variables [Cutler et al., 2007], and they are relatively insensitive to noise and 

multicollinearity in predictor variables [Breiman, 2001; Gislason et al., 2006]. The 
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environmental stress model experiments consisted of four RF models per ecoregion, each 

utilizing a different subset of predictor variables (Table 3.1): one model using climate only 

(C), one using soil and climate (SC), one using topography and climate (TC), and one using 

all predictors (TSC). The same modeling procedure was repeated using the relative tree-ring 

stress index (𝑆𝑟), which varies temporally but has the same mean across all sites.  

 

Table 3.1. Structure of the random 

forest model experiments. 

 

 

Topography Soil Climate 

C 

  

x 

SC 

 

x x 

TC x 

 

x 

TSC x x x 

 

To assess the relative importance of climatic, topographic, and soil sources of 

environmental stress, I calculated the coefficient of determination (r2) for each RF model 

using observations that were left “out of bag” (i.e., observations withheld from model 

calibration). For each “tree” in the random forest, approximately two-thirds of the 

observations were used for training, while the remaining observations were withheld for 

evaluation. To ensure that enough observations were present within each ecoregion, I only fit 

RF models for ecoregions that included at least 75 site-years of environmental stress 

estimates (i.e., approximately 50 for training and 25 for evaluation). In the conterminous 

U.S., all Level I ecoregions except Tropical Wet Forests (the southernmost tip of Florida) 

contained at least 75 site-years of environmental stress estimates (Figure A11). Many of the 

finer scale Level II and III ecoregions (e.g., Warm Deserts) did not include a sufficient 

number of observations (Figure A11) and were therefore excluded from further analyses. The 

full lists of ecoregions used in this study can be found in Tables A5 and A6 of Appendix 2. 

To further assess the seasonal climate drivers of stress, I also calculated Spearman’s rank 

correlation coefficient (ρ) between the tree-ring environmental stress estimates and each 
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climate variable for each of the four seasons. These correlations were calculated at the level 

of whole ecoregions. In other words, the correlations were calculated using all site-years of 

environmental stress (and the climate variable corresponding to each environmental stress 

site-year) within a given ecoregion. 

 

Results 

Evaluation of the Tree-Ring Environmental Stress Index 

At the six ponderosa pine sites in the Pacific Northwest, DBH estimates based on the 

“inside-out” approach were biased relative to the measured DBH (Figure A12). While the 

“inside-out” estimates of DBH were significantly correlated with the in situ measurements of 

DBH (Spearman’s ρ = 0.56; n = 276), they were consistently underestimated (mean bias = 

−23.9 cm; median bias = −19.4 cm). In extreme cases, the ring-width estimated diameters 

were underestimated by more than 50 cm. Diameters were very rarely overestimated, and 

these occurrences likely reflected rare cases where the increment core extended very near to 

pith and where increment cores were taken at a different height than the DBH measurement 

or where growth was asymmetric around the circumference of the tree. 

The persistent low biases in 𝐷∗ estimates contributed to substantial biases in ∆𝐷𝑜𝑝𝑡
∗ , 

but only in the early years of growth (Table 3.2; Figure A13). For 𝐷∗ = [0, 20] cm, ∆𝐷𝑜𝑝𝑡
∗  

was underestimated with extreme outliers exceeding biases of 1 cm. Once 𝐷∗ exceeded 30 

cm, estimates of ∆𝐷𝑜𝑝𝑡
∗  at the six ponderosa pine sites were relatively unbiased compared to 

estimates based on measured diameter. Beyond this diameter threshold, median differences 

between ∆𝐷𝑜𝑝𝑡
∗  and ∆𝐷𝑜𝑝𝑡 never exceeded 0.01 cm and remained nearly unbiased for the 

remainder of the lifespan of the trees. Even the most extreme outliers never exceeded a bias 

of more than 0.05 cm.  
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Table 3.2. Median bias in ΔD*
opt and S* for 

different diameter classes. 

D* (cm) n ΔD*
opt (cm) S* 

[0,10] 11701 -0.086 0.155 

(10,20] 12258 -0.032 0.039 

(20,30] 13292 -0.016 0.016 

(30,40] 13473 -0.009 0.008 

(40,50] 12719 -0.004 0.003 

(50,60] 10941 0.000 0.000 

(60,70] 7259 0.002 -0.001 

(70,80] 3094 0.005 -0.003 

(80,90] 1248 0.005 -0.004 

(90,100] 331 0.005 -0.003 

(100,110] 84 0.004 -0.003 

 

 

The underestimation of ∆𝐷𝑜𝑝𝑡
∗  during the early years of growth propagated into 

overestimation 𝑆∗ in the early years of growth (Table 3.2; Figure A14). When 𝐷∗ was less 

than 30 cm, the magnitude of environmental stresses experienced by trees were substantially 

underestimated in most cases (i.e., 𝑆∗ > 𝑆). When 𝐷∗ exceeded 30 cm, median biases were 

consistently near zero (never exceeding ±0.01), but with some extreme outliers where the 

environmental stresses experienced by trees were substantially overestimated (i.e., 𝑆∗ < 𝑆). 

Based on the evaluation of 𝑆∗ chronologies in the Pacific Northwest (Table 3.2; 

Figures A13-A14), I applied the environmental stress model to ITRDB tree-ring sites, 

excluding any years with 𝐷∗ < 30 cm. While this threshold is based on only a single tree 

species from one region, in situ DBH measurements are unavailable from other tree-ring 

sites, which limits my ability to test the sensitivity of other tree species to bias in ring-width 

based 𝐷∗ estimates. Of the tree-ring sites in the conterminous U.S. that extend into the 1980s, 

462 𝑆∗ chronologies could be developed after removing sites where species-specific 

parameters could not be determined, where inadequate sample sizes and inter-series 

correlations prevented an adequate signal strength (EPS < 0.85), and where there were too 

few trees with 𝐷∗ > 30 cm. The 𝑆𝑟 dataset, meanwhile, included 1,145 tree-ring sites. 
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Annual 𝑆∗ of ITRDB sites was positively and significantly correlated with the annual 

GPP of nearby flux towers. For sites within a 100 km radius, correlations between annual 𝑆∗ 

and annual GPP were ρ=0.48 (Figure 3.3; p<0.01). The relationship was stronger when the 

flux tower and tree-ring site were within 25 km of each other (Spearman’s ρ=0.79; p<0.01), 

but only two tree-ring sites met this criterion.  

 
Figure 3.3. Relationship between annual 𝑆∗ and annual GPP at flux towers within 100 km of 

tree-ring sites.  

 

Environmental Drivers of Stress 

 Correlations between 𝑆∗ and TMIN and TMAX indicate that ecoregions of the 

conterminous U.S. generally respond negatively to higher temperatures (Figure 3.4), with 

notable exceptions near the Great Lakes, New England, and along the west coast. The drier 

intermountain ecoregions of the western U.S. in particular exhibit relatively strong negative 

correlations to TMIN in spring and summer (MAM and JJA, respectively) and to TMAX 

across all four seasons, likely due to the positive relationship between temperature and 

evaporative demand. Correlations between 𝑆𝑟 and temperature at the ecoregion scale are 

generally weaker (particularly for TMIN), though this index remains negatively correlated 

with TMAX throughout much of the U.S., especially with spring (MAM) TMAX in the 

western U.S. and summer (JJA) TMAX in the eastern U.S. (Figure A15). There are very few 

ecoregions in which 𝑆𝑟 is positively correlated with TMAX. 
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Figure 3.4. Spearman’s rank correlation coefficient (ρ) between 𝑆∗ and seasonal minimum 

(TMIN) and maximum (TMAX) temperatures. Only ecoregions with significant correlations 

(p<0.05) are shown. 

 

 Correlations between 𝑆∗ and WB are positive and significant throughout the western 

U.S. (Figure 3.5). Notably, growth in the western U.S. tends to be most strongly correlated 

with WB from autumn of the previous year (SON) through spring in the year of growth 

(MAM), rather than with WB during the growing season. 𝑆∗ is negatively correlated with 
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VPD throughout much of the U.S., particularly west of the Mississippi River, where 𝑆∗ tends 

to be negatively correlated with VPD during all four seasons. In ecoregions of the Great 

Lakes and New England, 𝑆∗ tends to be positively, rather than negatively, correlated with 

VPD from autumn of the previous year (SON) through spring in the year of growth (MAM), 

likely due to the positive relationship between VPD and temperature, which can be a limiting 

factor in these ecoregions (as seen in Figure 3.4). Of ecoregions in the eastern U.S., those in 

the southeast exhibit the strongest correlations between 𝑆∗ and water variables, with positive 

correlations to summer (JJA) water balance and negative correlations to VPD. Correlations 

between 𝑆𝑟 and water variables are generally similar to those for 𝑆∗, though the correlations 

tend to be weaker in most ecoregions (Figure A16). 
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Figure 3.5. Spearman’s rank correlation coefficient (ρ) between 𝑆∗ and seasonal vapor 

pressure deficit (VPD) and water balance (WB). Only ecoregions with significant correlations 

(p<0.05) are shown. 

 

The ecoregion-level TSC models explain 50-95% of the 𝑆∗ variance in most of the 

U.S., with notably poorer performance in the Northern Cascades ecoregion and many 

ecoregions of the southern high plains and Appalachians (Figure 3.6 a-b; Table A5). By 

comparison, the model based on climate only (C) captures much less variance in 𝑆∗. The only 
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ecoregions in which the C models exhibit comparable skill to the TSC models are the driest 

regions of the western U.S. and parts of the southeastern U.S. Models that include either soil 

(SC) or topography (TC) in addition to climate perform comparably to the full TSC model 

(Table A5), in most cases explaining only 0-11% less variance that the full models. 

 

 

Figure 3.6. Random forest model strength (r2) for explaining variation in environmental 

stress. Variance explained for 𝑆∗ with (a) the full TSC model and (b) the climate-only C 

model. Variance explained for 𝑆𝑟 with (c) the full TSC model and (d) the climate-only C 

model. 

 

 By comparison to the 𝑆∗ models, the ecoregion-level RF models of 𝑆𝑟 generally 

explain far less variance (Figure 3.6 c-d; Table A6). This can likely be explained by high 

within-ecoregion variability in mean 𝑆∗ among tree-ring sites, whereas this spatial variability 

is not represented by 𝑆𝑟, in which all sites have the same mean stress value. Given that all of 

the variance in 𝑆𝑟 is temporal (rather than spatial) in nature, the TC, SC, and TSC models do 

not perform substantially better than the C model.  
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Discussion 

The global tree-ring network, which now contains ring-width measurements from 

more than 3,000 sites [St. George, 2014], represents a largely untapped yet promising 

resource for carbon cycle research [Babst et al., 2014]. The tree-ring environmental stress 

index developed in this study, defined as the ratio of actual to optimal growth, has the 

potential to provide global coverage of a key component of primary production models that 

has historically been difficult to quantify and that contributes substantial error to carbon 

uptake estimates [Song et al., 2013; Cai et al., 2014; Zhang et al., 2015]. This index depends 

on accurate estimation of optimal growth rate, which in turn requires accurate estimates of 

annual stem diameter and knowledge of basic species traits and growth forms. While ring-

width based estimates of stem diameter are systematically underestimated, these errors get 

proportionally smaller as trees grow larger. Among the six intensively-sampled ponderosa 

pine sites, both ∆𝐷𝑜𝑝𝑡
∗  and 𝑆∗ are robust to bias in diameter estimates once trees attain DBH 

greater than 30 cm. Given that DBH is rarely measured or reported for most tree-ring sites, 

the fact that biased annual diameter estimates do not substantially contribute to error in this 

stress index is an encouraging sign for future applications. 

The optimal growth model (Eqn. 1) requires five species-specific parameters that are 

difficult to obtain with equal reliability for all species [Shugart, 1984]. While DBH and 

height can be easily measured for individual trees, 𝐷𝑚𝑎𝑥 and 𝐻𝑚𝑎𝑥 for a given species cannot 

be directly observed but must be inferred based on available measurements of individuals. 

The remaining parameters (𝐺, 𝑏2, and 𝑏3), which account for species-specific growth rates 

and tree forms, are estimated as functions of 𝐷𝑚𝑎𝑥, 𝐻𝑚𝑎𝑥, and the maximum age of the 

species. Any errors in 𝐷𝑚𝑎𝑥 and 𝐻𝑚𝑎𝑥 would therefore also propagate to the remaining 

parameters. Here, I attempted to minimize the uncertainty in these parameters by obtaining 

them predominantly from a single source [Hardin et al., 2001], supplemented with 
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information from the forest gap model literature [Shugart, 1984; Urban et al., 1993]. Future 

work could test the sensitivity of ∆𝐷𝑜𝑝𝑡
∗  and 𝑆∗ to these parameters or explore alternative 

methods of parameterization, such as empirical optimization approaches. 

The tree-ring environmental stress index captured a significant amount of variance in 

continent-wide primary production. Even for distances up to 100 km between the tree-ring 

sites and flux towers, the correlation between 𝑆∗ and annual GPP remained positive and 

statistically significant at a 99% level. While there may be local factors that contribute to 

differences between the tree-ring sites and the flux tower sites, this result suggests that tree-

ring data can provide valuable information on environmental stresses over large areas that 

could be assimilated into primary production models, including remotely sensed models 

based on the light-use efficiency paradigm. 

While the global tree-ring database offers significant potential for informing carbon 

cycle models, including the environmental stress component of light-use efficiency models, 

there are several challenges and limitations of tree-ring data with respect to ecosystem carbon 

uptake that must be addressed and overcome. First, primary production of a given ecosystem 

results from growth of all individual plants, including both woody and herbaceous species, 

but tree ring networks only measure growth of a limited subset of woody plant species, 

usually long-lived and widespread species like pines, oaks, and firs. Any index of 

environmental stress based on tree-ring data must therefore assume that tree-ring 

chronologies developed from one woody plant species are reasonably representative of the 

environmental stresses experienced by all plants in the surrounding region. While this may 

not be strictly true, previous studies have shown that the normalized difference vegetation 

index over grasslands is significantly and positively correlated with nearby tree-ring width 

chronologies [Liang et al., 2005, 2009], suggesting this may be a reasonable approximation. 

Likewise, ring width chronologies developed from a single tree species can capture 
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significant variance in normalized difference vegetation index over relatively large regions 

[Beck et al., 2013; Bunn et al., 2013], demonstrating that chronologies from one tree species 

may be reasonably representative of primary production over entire landscapes. 

A second potential limitation is that the ITRDB contains sites with a wide range of 

sample designs, which differ by site and investigator but which are not typically reported in 

the site metadata. Since one of the primary applications of dendrochronology is for 

paleoclimate reconstructions, investigators often target old trees that are predominantly 

limited by climatic factors. The most common sample design therefore involves selecting 

large, dominant trees growing in physiographically-stressful landscape positions (e.g., steep, 

south-facing rocky slopes) and that show minimal signs of damage from lightning, fires, or 

forest pests and pathogens [Cherubini et al., 1998; Nehrbass-Ahles et al., 2014]. While other 

sample designs are also used [Nehrbass-Ahles et al., 2014 and references therein], many of 

the sites in the ITRDB are likely biased towards old trees with relatively low growth rates 

that may not be representative of the entire stand or region. This is particularly problematic 

for studies using tree-ring data to directly calculate primary productivity or long-term growth 

trends [Cherubini et al., 1998; Brienen et al., 2012; Bowman et al., 2013; Nehrbass-Ahles et 

al., 2014], while inferences regarding the environmental drivers of growth are relatively 

robust to choice of sample design [Nehrbass-Ahles et al., 2014]. Formally testing the impact 

of sample design on the tree-ring environmental stress index remains a priority for future 

research. Further work is also necessary to determine if species other than ponderosa pine are 

robust to uncertainties in ring-width based estimates of 𝐷∗. 

Beyond the potential relevance of a tree-ring environmental stress index for potential 

assimilation into existing primary production models, my results illustrate two key findings 

regarding environmental stresses in the conterminous U.S. First, I demonstrate the 

importance of pre-growing season climate for forest growth and productivity. In particular, 
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ecosystems of the western U.S. rely on water that is delivered prior to the growing season, 

including during the previous growing season (which likely reflects carryover of 

carbohydrates from one year to the next [Kagawa et al., 2006; Offermann et al., 2011]) and 

during winter prior to the start of the growing season. In contrast, many primary production 

models assume instantaneous responses of stomata to current soil moisture or vapor pressure 

deficit but do not include physically-meaningful lags between the hydroclimatic system and 

ecosystem carbon uptake, except insofar as these lags are implicitly represented in the 

vegetation index used to estimate the fraction of photosynthetically active radiation absorbed 

by the canopy. In snow-dominated hydroclimates, such as the western U.S., incorporation of 

functions that capture lags between water delivery and carbon uptake could improve the 

representation of environmental stress in these models. 

A second key finding is my demonstration of the importance of both topographic and 

edaphic conditions for determining spatial gradients in mean environmental stress. The model 

experiments show that climate gradients alone cannot capture spatial variation of 

environmental stress, except in ecoregions that are strongly limited by climate, such as the 

driest regions of the western U.S. Including either topographic or soil variables in addition to 

climate variables can substantially improve model performance. These variables are not 

typically included in the current generation of light-use efficiency models, partly due to 

challenges in accurately representing soil properties at a fine resolution on a continental scale. 

Updating the present generation of environmental stress models to include physically-

meaningful lags between climate and ecosystem carbon uptake and to represent site factors 

that influence stress would therefore likely improve primary production estimates. 
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CHAPTER 4: SHIFTING PACIFIC STORM TRACKS AS STRESSORS TO 

ECOSYSTEMS OF WESTERN NORTH AMERICA 

 

Introduction 

In much of western North America (hereafter, “the West”), water is a scarce resource 

for both natural [Chapter 3; Vicente-Serrano et al., 2013, 2014] and social [Mekonnen and 

Hoekstra, 2016] systems. In these dry regions, variation of precipitation and evaporative 

demand drive many ecosystem processes, including vegetation phenology [Tang et al., 2015] 

and primary production [Nemani et al., 2003; Berner and Law, 2015; Barnes et al., 2016], as 

well as the size and severity of wildfires [Littell et al., 2009; Williams et al., 2015]. Overlain 

on the natural internal variability of the Western hydroclimate are anthropogenic 

perturbations to the climate system, which are likely to have significant impacts on the 

structure and function of terrestrial ecosystems, including on the ability of terrestrial 

vegetation to remain a large sink for anthropogenic CO2 emissions [Settele et al., 2014]. 

Beyond the direct effects of temperature on physiological processes and biochemical 

reactions of vegetation, higher temperatures have a nonlinear effect on vapor pressure deficit, 

leading to likely increases in drought frequency and severity due to increased evaporative 

demand as climate warming continues [Cook et al., 2014]. Temperature increases have 

already had detectable impacts on wildfire [Westerling et al., 2006; Dennison et al., 2014] 

and vegetation phenology [Zhang et al., 2007b; Körner and Basler, 2010], and further 

increases in evaporative demand are likely to have significant negative consequences for 

ecosystems of the West [Williams et al., 2013; Restaino et al., 2016]. 
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While increases in temperature and evaporative demand are highly likely over the 21st 

century, changes in the supply-side of the water balance are far less certain and will depend 

on both global and regional factors [Collins et al., 2013; Kirtman et al., 2013]. In the West in 

particular, much of the annual precipitation arrives during the cool season via extratropical 

cyclones, which are preferentially generated and steered within westerly storm tracks [Chang 

et al., 2002; Shaw et al., 2016]. Midlatitude Pacific storm tracks are therefore one of the 

primary water delivery mechanisms to this region and an important feature of Western 

hydroclimate [Wise, 2010a]. The latitudinal positions, intensities, and trajectories of Pacific 

storm tracks vary on interannual [Archer and Caldeira, 2008] to millennial [Oster et al., 

2015] timescales, and this variation is largely responsible for hydroclimatic variability in the 

West.  

The average latitudinal positions of Pacific storm tracks are expected to shift under a 

warming climate [Yin, 2005; Salathé, 2006; Lorenz and DeWeaver, 2007; Shaw et al., 2016]. 

On average, climate models project midlatitude storm tracks to migrate towards the poles 

[Kirtman et al., 2013; Mbengue and Schneider, 2013], though the direction and magnitude of 

future storm track shifts remain highly uncertain due to the competing influences of climate 

change on the diverse atmospheric processes that affect storm tracks [Shaw et al., 2016]. 

Since storm tracks are such a critical component of water delivery to the West, any sustained 

shift in Pacific storm track position or intensity over the 21st century will likely alter the 

hydroclimate of the region. Given the importance of these storm tracks for water delivery to 

this region, where both social and natural systems are limited by water availability, it is 

critical to understand how shifting storm tracks have affected water resources and ecosystems 

in the recent past. In this chapter, I examine the sensitivity of both hydrological and 

ecological systems in the West (defined in this study as the region from 30°N to 70°N 

latitude and 100°W to 145°W longitude) to variation of the annual mean Pacific storm track 
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position and intensity during the October to March cool season. This research is driven by 

two main questions: 1) how have the hydroclimate and water resources of the West 

responded to historical Pacific storm track variability, and 2) how have storm track-induced 

changes in water supply affected primary production, phenology, and fire regimes in the 

West? 

 

Materials and Methods 

Estimation of the historical Pacific storm track  

I estimated the position of the historic annual cool-season Pacific storm track based 

on the maximum variance of daily mean October – March meridional wind velocity (v-wind) 

at 300 hPa, following application of a first-difference filter [Quadrelli and Wallace, 2002; 

McAfee and Russell, 2008; Wise, 2010a] (Figure 4.1). Using gridded v-wind from the North 

American Regional Reanalysis (NARR) for the period 1979-2014 [Mesinger et al., 2006], I 

derived cool-season storm track estimates for the study period 1980-2014. Due to data 

availability for other climate and ecological datasets used in this study, not all subsequent 

analyses cover this full study period. The v-wind variance was resampled from the native 32 

km horizontal resolution to a 0.5 degree grid using a nearest neighbor resampling method, 

from which I obtained the latitude of maximum cool-season v-wind variance and smoothed 

the resulting storm track using a robust loess curve 10% the length of the domain to reduce 

noise (Figure 4.1). For subsequent analyses, I defined cool-season Pacific storm track 

position as the mean latitude of maximum v-wind variance in the region from 130°W to 

115°W (Figure 4.1). I also obtained a 2°×2° gridded cool-season (Oct-Mar) 500 hPa 

geopotential height climatology for the period 1981-2010 from the 20th Century Reanalysis 

project [Compo et al., 2011] for visual comparison to the estimated storm track trajectories. 
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Figure 4.1. Delineation of the cool-season storm track in an example year (1988). The storm 

track was estimated as the latitude of maximum cool-season (October – March) 300 hPa 

meridional wind variance (blue circles), smoothed with a robust loess filter (blue line). Storm 

track position over western North America was defined as the mean latitude of the smoothed 

storm track between 130°W and 115°W (highlighted in black). 

 

In addition to the seasonal analysis of storm track position, I also conducted analyses 

on monthly storm track position and on cool-season storm track intensity. First, using the 

methods described above, I estimated the mean storm track position for each individual 

month within the cool season (October through March) and examined how sub-seasonal 

storm track variability affects water delivery to the West. Second, following Chang and Fu 

[2002], I estimated annual mean cool-season storm track intensity as the mean maximum 

cool-season v-wind variance in the region from 130°W to 115°W.  

 

Hydrological variables and analyses 

For assessing impacts of storm track position on moisture supply, I obtained the 

0.5°×0.5° gridded cool-season (October – March) Standardized Precipitation-

Evapotranspiration Index (SPEI) for the period 1980-2013 [Vicente-Serrano et al., 2010a, 

2010b], which accounts for both the supply (precipitation) and demand (potential 



62 

evapotranspiration) aspects of the water balance. For comparison, I also calculated the 

Standardized Precipitation Index (SPI) [McKee et al., 1993], which only includes the supply 

side of the water balance, from 0.5°×0.5° gridded Climate Research Unit TS3.22 monthly 

precipitation [Harris et al., 2014]. I assessed the impacts of shifting Pacific storm tracks on 

these hydrological variables using the Pearson correlation coefficient. 

 I obtained 1 April SWE records for the period 1980-2013 from the Snow Telemetry 

(SNOTEL) and Snow Course networks through the USDA Natural Resources Conservation 

Service National Water and Climate Center. The SNOTEL network provides automated, 

daily measurements of SWE by converting the weight of snowpack on snow pillows to its 

equivalent depth in liquid form. Snow Course data is recorded manually once per month, but 

it is typically measured on or near the first of the month [USDA Natural Resources 

Conservation Service, 2016]. Only SNOTEL and Snow Course sites with at least 20 years of 

non-zero April SWE measurements were used for subsequent analyses. I also obtained water 

year (October – September) mean daily streamflow from the USDA National Water and 

Climate Center for all U.S. Geological Survey stream gauges that fall within the study area 

and that include at least 20 years of measurements between 1980-2013. 

 

Ecological variables and analyses 

I assessed the impacts of shifting Pacific storm track positions on ecosystem processes 

in the West using remotely sensed estimates of land surface phenology and wildfire area, as 

well as tree-ring widths as a proxy for forest growth and net primary production. I derived 

land surface phenology estimates from the fortnightly, 8 km resolution 3rd generation Global 

Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index 

(NDVI) for the period 1982-2012 [Pinzon and Tucker, 2014]. The NDVI, which is based on 

the difference between near infrared and red reflectance from the land surface, is sensitive to 
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vegetation health, abundance, and photosynthetic capacity. I removed poor quality 

observations (based on quality flags provided with the GIMMS data) and spatially aggregated 

the 8 km NDVI to the level of whole ecoregions by taking the mean value within each of the 

Environmental Protection Agency’s Level III ecoregions (Figure 4.2) [Omernik, 1987]. This 

spatial aggregation was performed in order to minimize the effect of noise in the pixel-level 

NDVI time series, to reduce computation time, and to simplify the presentation and 

interpretation of results [e.g., White et al., 2009].  

To reduce noise in the ecoregion-level NDVI time-series, I applied outlier and 

modified best index slope extraction filters [Hwang et al., 2011a, 2011b; Dannenberg et al., 

2015], discarded any ecoregion-level NDVI time-series without significant power at annual 

frequencies using a wavelet filter [Torrence and Compo, 1998], and smoothed the annual 

NDVI time-series using a difference logistic function [Fisher et al., 2006; Hwang et al., 

2011a, 2011b; Dannenberg et al., 2015]: 

�̂�(𝑡) = 𝑐 × (
1

1+𝑒𝑎+𝑏𝑡
−

1

1+𝑒𝑎
′+𝑏′𝑡

) + 𝑑, (1) 

Where �̂�(𝑡) is the smoothed NDVI for time t, a and b (a’ and b’) are fitting parameters for 

the leaf onset (leaf senescence) phases of the growing season, c is the amplitude of the annual 

smoothed NDVI time-series, and d is the annual minimum of the smoothed NDVI time-series 

(Figure 4.2, Figure 4.3). The start and end of the “green season” were defined as the day of 

year when the annual smoothed NDVI crossed a local half-amplitude threshold during the 

leaf onset and leaf senescence phases of the growing season, respectively, while the total 

length of the green season was defined as the difference (in days) between the start and end 

of the green season (Figure 4.3). Annual peak NDVI (NDVImax) was defined as the maximum 

of the smoothed NDVI time-series for each year (Figure 4.3).  
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Figure 4.2. Raw and smoothed NDVI time series for six example Level III EPA ecoregions. 

Fortnightly, ecoregion-aggregated 3rd generation Global Inventory Modeling and Mapping 

Studies normalized difference vegetation index (NDVI; gray circles), with annual difference 

logistic curves (black lines) for 1982-2012. 
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Figure 4.3. Calculation of land surface phenology metrics. Annual, ecoregion-aggregated 

NDVI (circles) was smoothed and interpolated from fortnightly to daily temporal resolution 

using a difference logistic function (black line). The start and end of the “green season” 

(shown as a gray box) were defined as the points where the smoothed NDVI crossed the half-

amplitude threshold of the smoothed NDVI in the green-up and senescence phases of the 

growing season, respectively. The length of the green season was defined as the number of 

days from the start to the end of the green season. Peak NDVI (dashed line) was defined as 

the maximum of the difference logistic function. 

 

I calculated phenology anomalies for each ecoregion during years with extreme 

northerly storm tracks (upper latitude quartile) and extreme southerly storm tracks (lower 

latitude quartile), as well as during years with extremely strong storm tracks (upper intensity 

quartile) and extremely weak storm tracks (lower intensity quartile). I assessed statistical 

significance of these anomalies using a permutation resampling method [Wise, 2010b], in 

which the mean and variance of the observed phenology within each ecoregion was used to 

randomly generate 10,000 possible realizations for each of the extreme storm track quartiles. 

I consider observed anomalies statistically significant if they exceed the magnitude of the 5th 

or 95th percentile of the randomly permuted anomalies. 

To assess the sensitivity of forest growth to Pacific storm track position and intensity, 

I obtained tree-ring widths from 431 sites across the West from the International Tree-Ring 

Data Bank [Grissino-Mayer and Fritts, 1997], plus seven additional ponderosa pine 
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chronologies from Washington State (see Chapter 2). Each site included measurements for at 

least the 20-year period from 1980-1999. I detrended each ring width series in the dplR 

program [Bunn, 2008] using a cubic smoothing spline two-thirds the length of the total series 

with a 50% frequency response [Cook and Peters, 1981]. Detrended ring widths were 

averaged using Tukey’s biweight robust mean to obtain site-level growth indices, and the 

relationship between these indices and Pacific storm track position and intensity was assessed 

using Pearson’s correlation coefficient. Since I conducted a large number of local 

significance tests (n = 438), there is a high probability of type I errors (i.e., false positive 

tests). I therefore compared the observed p-value distribution to the uniform distribution that 

would be expected if the null hypothesis were true for all sites and conducted a “field 

significance” test that accounts for the false discovery rate [Wilks, 2006]. I also assessed the 

overall response of western U.S. forest growth to storm track variability using an unweighted 

mean of all U.S. tree-ring chronologies located west of 100°W, after first normalizing each 

tree-ring series to a mean of zero and unit variance. 

 Fire is a natural feature of ecosystems in the West, particularly in the dry forests and 

shrublands of the western U.S. While many factors play a role in the ignition and spread of 

fire, including antecedent climate, fuel abundance, ignition sources, topographic relief, and 

land management [Bowman et al., 2009; Littell et al., 2009], moisture balance is particularly 

important for determining the spread and intensity of fire [Williams et al., 2015]. I assessed 

the role of cool-season storm tracks on Western wildfire using annual burn area estimates 

from the U.S. Forest Service Monitoring Trends in Burn Severity program, which maps fire 

boundaries and burn severities for the conterminous U.S. based on near and middle infrared 

reflectance from Landsat imagery [Eidenshink et al., 2007]. I focused on the northwestern 

U.S. (defined here as the region from 41°N to 49°N and west of 100°W) due to its 

hydrological responsiveness to cool-season storm tracks (see Results) and the prevalence of 
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fires throughout the region. After excluding all prescribed fires and any fires mapped with 

low confidence [Dennison et al., 2014], I derived the annual area burned by moderate and 

high severity wildfires and the annual average moderate and high severity burn area per fire. I 

assessed the relationship between storm track position and wildfire using the Theil-Sen slope 

estimate [Wilcox, 2005; Dennison et al., 2014], a nonparametric regression technique that is 

robust to outliers. I contextualized the observed response of the burn area to storm track 

variability by randomly permuting the wildfire time series 10,000 times, recalculating the 

Theil-Sen slope for each permuted time series, and comparing the observed slope to the 

distribution of slopes from the 10,000 random realizations [Dennison et al., 2014]. 

 

Results 

Historical variation of cool-season Pacific storm tracks  

From 1980-2014, cool-season Pacific storm tracks entered western North America 

between approximately 41°N to 53°N (Figure 4.4), with the median storm track positioned at 

45.3°N. The distribution of storm track positions during this period approximates a normal 

distribution (Lilliefors test of normality; P = 0.09) with a small, but not statistically 

significant (P = 0.31), increase in storm track position of +0.05°N yr-1 over the study period. 

However, the time period examined in this study is relatively short due to the temporal 

limitations of the NARR dataset. While this dataset is suitable for examining recent storm 

track variability, any robust assessment of long-term storm track trends would require a 

longer dataset. 
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Figure 4.4. Storm track trajectories from 1980-2014. (a) Annual cool-season storm track 

trajectories, based on 300 hPa meridional wind variance from the North American Regional 

Reanalysis, are shown as light green lines, with the mean storm track shown in dark green. 

The 1981-2010, 500 hPa geopotential height climatology (in meters) from the 20 th Century 

Reanalysis is shown as dark gray contours. (b) Time series and (c) histogram of mean cool-

season Pacific storm track position for the region 130°W to 115°W. 

 

Hydrological responses to shifting Pacific storm tracks 

Cool-season moisture supply in the West exhibits opposite responses to variation in 

the latitudinal position of the Pacific storm track on either side of the 50°N parallel (Figure 

4.5a). North of 50°N, the SPEI tends to be positively correlated with storm track latitude 

(except in the eastern Northwest Territories and western Nunavut territory), with a 
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particularly strong response throughout the Yukon Territory and northwestern British 

Columbia as well as in northeastern Alberta. However, in the northwestern U.S., the SPEI is 

negatively correlated with storm track latitude, particularly in the states of Washington, 

Oregon, Idaho, and northern California but also in eastern Montana, Wyoming, and the 

Dakotas. Correlations between storm track position and the SPEI in the southwestern U.S. are 

generally positive but not statistically significant. North-shifted storm tracks therefore result 

in greater water delivery to western Canada, but reduced moisture supply throughout the 

northwestern U.S.  

 

Figure 4.5. Relationship between Pacific storm track position and drought and snow pack. 

Pearson’s correlation coefficient, R, between cool-season storm track position and (a) the 

October-March standardized precipitation-evapotranspiration index (SPEI) and (b) April 

snow water equivalent (SWE). SPEI Grid cells with significant correlations (P < 0.05) to 

cool-season storm track position are shown with black dots. SWE stations with significant 

correlations to cool-season storm track position are highlighted with black edges. SNOTEL 

sites are shown as circles, and Snow Course sites are shown as triangles.  

 

The association between cool-season Pacific storm track position and the SPEI is 

driven almost entirely by the precipitation side of the water balance, as demonstrated by the 

nearly identical correlation patterns of the SPEI (Figure 4.5a) and the SPI (Figure A17) to 

storm track position. Additionally, visual assessment of correlation patterns between the SPEI 
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and monthly storm track positions suggest that cool-season moisture supply in the West is 

more responsive to storm track position in late autumn (October and November) and early 

spring (March) than in midwinter months (Figure A18), though January storm tracks are 

negatively correlated with the SPEI throughout much of the northwestern U.S. This finding is 

consistent with observations that eddy amplitude of the Pacific storm track exhibits a 

midwinter minimum [Nakamura, 1992; Chang et al., 2002; Chang, 2003; Penny et al., 2013]. 

The increased water delivery to northwestern Canada and reduced water delivery to 

the northwestern U.S. associated with poleward shifts of cool-season storm tracks translate to 

significant spring snowpack anomalies throughout montane regions of western North 

America (Figure 4.5b). In the mountains of the Yukon Territories and northwestern British 

Columbia, April SWE is positively correlated with storm track latitude, reflecting greater 

cool-season water delivery to this region when the storm track is displaced poleward. By 

contrast, April SWE is negatively correlated with storm track latitude throughout many of the 

mountain ranges of the western U.S., including the Sierra Nevadas, the Cascades, and parts of 

the central Rockies. Even more than the SPEI, the April SWE correlation patterns are largely 

driven by storm track position during the shoulder months of October, November, and March 

(Figure A19), though correlations between April SWE and February storm track actually 

exhibit opposite patterns from the overall cool-season response (i.e., positive correlations 

between February storm track position and April SWE in the northwestern U.S.; Figure 

A19e). Water resources in the western U.S. are dependent on mountain snowpack as a natural 

reservoir that is gradually released during spring and summer [Stewart et al., 2005]. Given 

that streamflow in this region is largely generated from snowmelt [Pederson et al., 2011; 

Littell et al., 2016], water year streamflow is also negatively correlated with Pacific storm 

track position throughout the northwestern U.S., particularly in the states of Oregon, southern 

Idaho, and northern California (Figure A20). 
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 Correlations between water variables and cool-season Pacific storm track intensity 

exhibit very different spatial patterns than they did with storm track position (Figure A21). 

While the moisture supply of the U.S. Southwest was not strongly correlated to Pacific storm 

track position, it is negatively and significantly correlated with Pacific storm track intensity 

(Figure A21a). North of the 40°N parallel, very few SPEI grid cells are significantly 

correlated with storm track intensity, with the exception of small regions of western 

Washington, Vancouver Island, and southeastern Alaska (Figure A21a). This suggests that 

while the cool-season hydroclimate of the Pacific Northwest is largely responsive to storm 

track position, the Southwest is most responsive to storm track intensity. However, April 

SWE is positively and significantly correlated with storm track intensity throughout the U.S. 

Pacific Northwest (Figure A21b). Since the overall precipitation response to storm track 

intensity is relatively small in this region (Figure A21a), there may be an interaction between 

storm track intensity and cool-season temperature that affects how much cool-season 

precipitation is delivered as snow and how much remains in the snowpack in April. 

 

Ecosystem responses to shifting Pacific storm tracks 

The response of land surface NDVImax to cool-season Pacific storm track position 

follows similar spatial patterns as the SPEI. When the storm track is positioned anomalously 

to the north, western Canadian ecosystems tend to be greener than average, significantly so in 

several ecoregions (the North Cascades, Canadian Rockies, Mid-Boreal Uplands and Peace-

Wabaska Lowlands, and Coppermine River and Tazin Lake Uplands), while ecosystems of 

the western U.S. tend to be browner than average (Figure 4.6a). When the storm track is 

positioned abnormally far south, however, NDVImax is browner than average throughout most 

of western Canada and significantly greener than average in much of the western U.S. (Figure 

4.6b), likely due to increases in vegetation health and abundance following increased cool-
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season water delivery to this region. Other land surface phenology metrics besides peak 

greenness show weak or inconsistent relationships to storm track position, including start 

(Figure A22), end (Figure A23), and total length (Figure A24) of the “green season.” 

Generally speaking, NDVImax in the West is less sensitive to storm track intensity than it is to 

storm track position (Figure A25). In particular, relatively few ecoregions exhibit significant 

NDVImax anomalies when storm track intensity is stronger than normal (Figure A25a). 

However, several ecoregions of western Canada and the Cascades do tend to be significantly 

browner than average when storm track intensity is anomalously low (Figure A25b). 

 

Figure 4.6. Relationship between Pacific storm track position and NDVImax. Standardized 

NDVImax anomalies in years between 1982-2012 with storm track positions in (a) the 

northernmost 25th percentile and (b) the southernmost 25th percentile. Ecoregions with 

significant anomalies are outlined in black.  

 

Forest growth in the dry regions of the western U.S. is largely dependent on water 

availability [Nemani et al., 2003; Boisvenue and Running, 2006], including precipitation 

stored as snowpack during the cool-season [St. George and Ault, 2014]. Though other 

environmental factors affect growth, particularly evaporative demand during summer months 

[Williams et al., 2013; Restaino et al., 2016], most tree-ring widths in the West are negatively 

correlated with cool-season storm track position (Figure 4.7a), particularly for sites located 
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south of 49°N that receive less precipitation when the storm track is displaced north (Figure 

4.7b). While some tree-ring series would be expected to exhibit significant correlations to 

storm track position due to type I errors associated with conducting a large number of 

hypothesis tests, the distribution of P-values from the local tests is smaller than expected if 

the null hypothesis were true for all sites (Figure 4.7c). A field significance test that accounts 

for the false discovery rate [Wilks, 2006] also suggests that there is a significant influence of 

cool-season storm track position on forest growth in the western U.S. (P < 0.1). A simple 

composite index of all tree-ring widths in the western U.S. further shows that forests in this 

region experience greater stress in years with north-shifted storm tracks (Pearson’s R = 

−0.35; P = 0.04; Figure 4.7d). By contrast, the relationship between tree-ring width and storm 

track intensity is relatively weak throughout the West and is not statistically significant in 

either the field significance test nor in the composite index (Figure A26). 

 

Figure 4.7. Relationship between Pacific storm track position and forest growth. (a) 

Pearson’s correlation coefficient, R, between tree-ring widths and cool-season Pacific storm 

track position. Significant correlations (P < 0.05) are highlighted with black edges. (b) 

Distribution of R-values for tree-ring sites south of 49°N (brown bars) and north of 49°N 

(green bars). (c) Distribution of P-values from local significance tests (gray bars; n=438). The 

expected number of sites with P-values falling within each 0.1 increment range is shown as a 

black line, with dashed lines showing the 5th and 95th percentiles based on the binomial 

distribution. (d) Correlation between storm track position (black line) and a mean growth 

index for all sites south of 49°N (dark brown line), with the 20th to 80th percentile range 

shown in light brown. Note that the left y-axis is inverted. 
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Moisture delivery via cool-season Pacific storm tracks likely plays a role in the size 

and severity of wildfires in the northwestern U.S. (Figure 4.8), a region characterized by 

relatively frequent and extensive wildfire and by a negative hydrological response to north-

shifted storm tracks (Figure 4.5, Figures A17-A20). During the period 1984-2014, an average 

of more than 2,600 km2 per year of the northwestern U.S. was burned by moderate to high 

severity wildfire following extreme north-shifted cool-season storm tracks (Figure 4.8a). By 

contrast, in years with extreme southerly storm tracks, only an average of about 1,100 km2 

per year was burned by moderate to high severity wildfire. The total area burned by moderate 

and high severity fires in the northwestern U.S. increased by approximately 80 km2 for every 

1° poleward shift of the storm track (Figure 4.8b). Likewise, the average size of each fire 

increased by about 0.6 km2 per 1° poleward shift of the cool-season Pacific storm track 

(Figure 4.8d). Random permutations of the fire time series show that for total moderate to 

high severity burn area, only 21% of the randomly permuted slopes are more extreme than 

the observed slope (Figure 4.8c), while only 7% of the randomly permuted slopes are more 

extreme than the observed slope for the moderate and high severity burn area per fire (Figure 

4.8e).  
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Figure 4.8. Relationship between Pacific storm track position and fire area. (a) Fire extents 

during years between 1984-2014 with storm track positions in the northernmost 25 th 

percentile (brown) and the southernmost 25th percentile (green). The mean storm tracks 

during these extremes are shown as brown and green lines. Scatterplots of cool-season Pacific 

storm track position versus total annual moderate and high severity burn area (b) and average 

moderate and high severity burn area per fire (d), with the Theil-Sen regression line. 

Distribution of Theil-Sen slopes from 10,000 random permutations of the total annual 

moderate and high severity burn area time series (c) and the average moderate and high 

severity burn area per fire time series (e), with observed slopes shown as vertical lines. 
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Discussion 

Over the next century, changes on both the supply and demand sides of the water 

balance are likely to occur. While there are relatively large intermodel disagreements on the 

direction and magnitude of 21st century precipitation change [Collins et al., 2013], increased 

temperatures and vapor pressure deficits (VPD) are robust features of climate model 

projections [Williams et al., 2013; Cook et al., 2014]. Increased temperatures are likely to 

reduce snowpack and lead to a more rain-dominated hydroclimate in the West [Barnett et al., 

2008]. Evaporative demand is also expected to increase in response to higher temperatures 

and VPD, leading to more frequent and severe droughts even in the absence of changes in the 

supply side of the water balance [Cook et al., 2014]. The expected increases in the demand 

side of the water balance over the 21st century will likely pose significant threats to the 

ecosystems of the West, since forest growth responds negatively to increases in VPD 

[Williams et al., 2013; Restaino et al., 2016] while wildfire size and severity respond 

positively to increases in VPD [Williams et al., 2015].  

Given the expected warming-induced increases in evaporative demand, it is crucial to 

better understand the drivers of moisture supply into the West and to characterize ecosystem 

responses to hydroclimatic change. Persistent changes in the position of cool-season Pacific 

storm tracks have the potential either to amplify or alleviate the hydrological and ecological 

consequences of increased evaporative demand, depending on the direction and magnitude of 

the shift. My results demonstrate the high sensitivity of water resources and ecosystem 

processes in the West to shifting Pacific storm tracks in the historical record. Cool-season 

water supply and snowpack both responded positively to north-shifted storm tracks 

throughout eastern Alaska and western Canada but negatively in the northwestern U.S. These 

hydroclimatic responses to storm track variability also translated to significant impacts on 

ecosystem processes, with enhanced greenness of Canadian ecosystems following 
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anomalously north-shifted storm tracks, but enhanced greenness in the western U.S. 

following anomalously south-shifted storm tracks. Reductions in water supply during years 

with north-shifted storm tracks negatively affected the ecosystems of the western U.S., which 

experience reduced forest growth and increased risk of moderate to high severity wildfires.  

Based on these results, a persistent shift of cool-season storm tracks would likely have 

strong impacts on hydrological and ecological processes in the West. In general, midlatitude 

storm tracks are projected to shift towards the poles [Kirtman et al., 2013; Mbengue and 

Schneider, 2013], though the exact direction and magnitude of this shift remain uncertain due 

to the “opposing influences” of climate change on the position of westerly storm tracks [Shaw 

et al., 2016]. If the mean position of Pacific storm tracks does indeed shift northward, my 

results suggest that this would likely result in greater water delivery during the cool season in 

much of Canada and Alaska. On the other hand, in the western U.S., where human and 

natural systems depend on limited water resources, these results show that a persistent 

poleward shift of cool-season Pacific storm tracks would likely reduce cool-season moisture 

delivery. This could further exacerbate the water deficit expected due to increases in 

evaporative demand and pose additional stresses on the hydrology and ecology of this region, 

including decreases in ecosystem productivity and increases in wildfire area resulting from 

lower fuel moisture following dry winters. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

 

Vegetation provides many of the key resources on which humanity depends, including 

mitigation of climate change through uptake of anthropogenic CO2 emissions. The vegetation 

processes that provide these resources—including plant primary production and phenology—

can be limited by unfavorable environmental conditions, such as non-optimal climate 

conditions and topographic and soil characteristics that limit the ability of plants to obtain 

belowground resources. In this dissertation, I used tree rings and remote sensing to examine 

how these environmental limitations to plant growth vary spatially and temporally in North 

American ecosystems. 

 In chapter 2, I examined how the seasonality of temperature and precipitation affect 

the growth of ponderosa pine using sub-annual tree-ring metrics from a small network of sites 

in the U.S. Pacific Northwest. In chapter 3, I developed a new “environmental stress” index 

from tree-ring data and used this index to model how unfavorable climatic, topographic, and 

edaphic conditions affect tree growth across the conterminous U.S., particularly within the 

context of improving the way that environmental stresses are represented in remotely sensed 

light-use efficiency models. Finally, in chapter 4, I used historical climate data, tree rings, 

and remote sensing to examine how variability of the Pacific storm track, an important 

atmospheric circulation feature, affects hydrological and ecological systems in western North 

America. 

 The findings from this research regarding environmental limitations to vegetation 

activity make three primary contributions within the fields of physical geography and 

biogeoscience: 
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(1)  Improving tree-ring-based reconstructions of past climate. Tree rings are 

effective proxies for past climate only when they are limited by their local environment. In 

other words, dendroclimatic reconstructions are only possible for climatic variables that are 

actually limiting to growth. In chapter 2 of this dissertation, I examined the seasonality of 

climatic limitations to tree growth in the U.S. Pacific Northwest, which contributes towards 

ongoing efforts to improve tree-ring reconstructions of past precipitation and drought, many 

of which contain significant seasonal biases [St. George et al., 2010; Steinman et al., 2012]. 

For example, in the Pacific Northwest, tree-ring widths tend to be most sensitive to summer 

precipitation, resulting in drought reconstructions that underrepresent the contribution of 

cool-season precipitation to the overall water balance of the region [Steinman et al., 2012]. In 

this research, I showed that the seasonal precipitation signals embedded in ponderosa pine 

tree rings vary substantially among different sites and tree-ring metrics. It is therefore 

possible to develop seasonally-resolved precipitation and drought reconstructions through 

careful site selection procedures and by measuring sub-annual ring widths in addition to the 

traditional total ring width. 

 (2)  Improving the representation of “environmental stress” in remotely sensed 

primary production models. My dissertation research also lays a framework for improving 

the way that “environmental stress” is represented in remotely sensed light-use efficiency 

models of primary production. At present, these models typically assume instantaneous 

responses of plants to simple meteorological variables like temperature and vapor pressure 

deficit. However, many studies have shown that these environmental stress functions struggle 

to simulate water stress [e.g., Zhang et al., 2015], leading to significant error in primary 

production estimates [Cai et al., 2014]. In chapter 3, I demonstrated that tree growth 

throughout much of the western U.S. depends on water delivery across multiple seasons and 

that topographic and soil characteristics are significant spatial constraints on ecosystem 
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productivity. Accounting for these climate lags and for land surface characteristics in light-

use efficiency models may improve primary production estimates. In particular, directly 

combining information from tree rings (e.g., the tree-ring “environmental stress” index 

developed in chapter 3) with remotely sensed imagery could represent a promising approach 

for improving the way that environmental limitations to growth are represented in these 

models. 

 (3)  Understanding impacts of climate change on terrestrial ecosystems. This 

dissertation offers new insights into how vegetated ecosystems of North America will 

respond to a changing climate, particularly regarding three likely outcomes of future 

warming: (1) changes in the phase and seasonality of precipitation, (2) long-term shifts of 

synoptic-scale circulation features like midlatitude storm tracks, and (3) increases in VPD 

and evaporative demand due to higher temperatures. I demonstrated that vegetation activity 

in North America, particularly in the drier western regions, are quite sensitive to precipitation 

delivered during the cool season. Likely shifts from snow to rain [Kapnick and Hall, 2012; 

Pierce and Cayan, 2013] and changes in the seasonality and variability of precipitation [Mote 

and Salathé, 2010; Rupp et al., 2016] could therefore pose significant threats to many of the 

ecosystems that rely on snowpack as a source of water availability. Furthermore, much of this 

water is delivered to North America via Pacific storm tracks. Current climate model 

projections suggest that these storm tracks will likely migrate towards the poles during the 

21st century [Mbengue and Schneider, 2013], though there is still considerable uncertainty 

surrounding the exact direction and magnitude of this shift [Shaw et al., 2016]. In chapter 4, I 

demonstrated that the latitudinal position of these storm tracks is an important driver of 

hydrological and ecological systems throughout much of western North America. Given the 

sensitivity of these systems to storm track position, any long-term shift of the storm track will 

likely have substantial consequences for both water resources and ecosystem services 
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throughout the region. Finally, on the other side of the water balance, I showed in chapter 3 

that tree growth throughout the United States is negatively correlated with the vapor pressure 

deficit of the atmosphere. Since saturation vapor pressure is an exponential function of 

temperature [Campbell and Norman, 1998], higher temperatures will likely lead to higher 

vapor pressure deficits and therefore to more severe droughts [Cook et al., 2014] and to 

greater stress on ecosystems [Williams et al., 2013; Restaino et al., 2016]. 

 In summary, this dissertation examines connections among the biosphere, atmosphere, 

hydrosphere, and lithosphere, with a specific emphasis on understanding the environmental 

drivers of vegetation activity in North American ecosystems. In this research, I show that 

ecosystem primary productivity, as measured by tree rings and remote sensing, is 

significantly influenced by the seasonality of climate, particularly by the seasonality of 

moisture supply. Westerly Pacific storm tracks are largely responsible for delivery of 

moisture to western North America, and my work shows that northerly shifts of these storm 

tracks tend to reduce both cool-season water supply and subsequent primary production in 

much of the northwestern U.S. Using a set of machine learning model experiments based on a 

continent-wide network of tree-ring data, I also demonstrate that models of tree growth that 

incorporate topographic and soil characteristics substantially outperform those based solely 

on climate. Taken together, these findings provide a framework for improving the models 

used to reconstruct past climate from tree-ring data and to monitor primary production with 

remote sensing, while also providing additional insight into the potential influences of a 

warming climate on the biosphere.
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APPENDIX 1: SUPPLEMENTAL FIGURES 

 

Figure A1. Mean monthly temperature (solid line) and precipitation (dotted line) for the 

period 1981-2010 in the upper CRB. Grey shading shows the range of mean monthly 

minimum and maximum temperatures.   
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Figure A2. Biplot of factor loadings for the first two principal components for each metric.  
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Figure A3. Relationship between mean elevation of trees included in each site chronology 

and PC2 loadings. 
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Figure A4. Scree plot of PC eigenvalues for each tree-ring metric. 
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Figure A5. Seasonal correlations between precipitation (P; upper panel of each subplot) and 

maximum temperature (Tmax; lower panel of each subplot) and PC1 of residual chronologies 

of (a) TRW, (b) EW, (c) LWadj, and (d) BI. Figures exported from Seascorr. 
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Figure A6. Seasonal correlations between precipitation (P; upper panel of each subplot) and 

maximum temperature (Tmax; lower panel of each subplot) and PC2 of residual chronologies 

of (a) TRW, (b) EW, (c) LWadj, and (d) BI. Figures exported from Seascorr. 
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Figure A7. Seasonal correlations between precipitation (P; upper panel of each subplot) and 

maximum temperature (Tmax; lower panel of each subplot) and PC1 of standard chronologies 

of (a) TRW, (b) EW, (c) LWadj, and (d) BI. Figures exported from Seascorr. 

 



89 

 

Figure A8. Seasonal correlations between precipitation (P; upper panel of each subplot) and 

maximum temperature (Tmax; lower panel of each subplot) and PC2 of standard chronologies 

of (a) TRW, (b) EW, (c) LWadj, and (d) BI. Figures exported from Seascorr. 
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Figure A9. Six ponderosa pine tree-ring sites in the Pacific Northwest, where in situ DBH 

measurements are available. 
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Figure A10. Potential outcomes from increment cores. (a) The ideal case where the 

increment core includes the pith of the tree. (b) Off-center increment core that does not 

include the inner portion of the tree. (c) Increment core of tree with heartwood rot.  
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Figure A11. Number of tree-ring sites and site-years within each ecoregion. 
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Figure A12. Comparison of in situ measured DBH to ring-width-based estimates of DBH for 

276 increment cores from six sites in the Pacific Northwest.  
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Figure A13. Bias in ∆𝐷𝑜𝑝𝑡

∗  (relative to ∆𝐷𝑜𝑝𝑡) for 10 cm diameter classes at six ponderosa 

pine sites in the Pacific Northwest. Some outliers for 𝐷∗ = [0,10] lie outside the plot bounds. 
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Figure A14. Bias in 𝑆∗ (relative to 𝑆) for 10 cm diameter classes at six ponderosa pine sites 

in the Pacific Northwest. Some outliers for 𝐷∗ = [0,10] lie outside the plot bounds. 
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Figure A15. Spearman’s rank correlation coefficient (ρ) between 𝑆𝑟 and seasonal minimum 

(TMIN) and maximum (TMAX) temperatures. Only ecoregions with significant correlations 

(p<0.05) are shown. 
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Figure A16. Spearman’s rank correlation coefficient (ρ) between 𝑆𝑟 and seasonal vapor 

pressure deficit (VPD) and water balance (WB). Only ecoregions with significant correlations 

(p<0.05) are shown. 
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Figure A17. Relationship between Pacific storm track position and precipitation. Pearson’s 

correlation coefficient, R, between cool-season Pacific storm track position and the October-

March standardized precipitation index (SPI). Grid cells with significant correlations (P < 

0.05) to cool-season storm track position are shown with black dots.  
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Figure A18. Relationship between monthly Pacific storm track position and drought. 

Pearson’s correlation coefficient, R, between the October-March standardized precipitation-

evapotranspiration index (SPEI) and Pacific storm track position during (a) October, (b) 

November, (c) December, (d) January, (e) February, and (f) March. SPEI Grid cells with 

significant correlations (P < 0.05) to cool-season storm track position are shown with black 

dots. 
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Figure A19. Relationship between monthly Pacific storm track position and snowpack. 

Pearson’s correlation coefficient, R, between April snow water equivalent (SWE) and Pacific 

storm track position during (a) October, (b) November, (c) December, (d) January, (e) 

February, and (f) March. SWE stations with significant correlations to cool-season storm 

track position are highlighted with black edges. SNOTEL sites are shown as circles, and 

Snow Course sites are shown as triangles. 
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Figure A20. Relationship between Pacific storm track position and streamflow. Pearson’s 

correlation coefficient, R, between cool-season storm track position and mean daily stream 

discharge over the water year from a USGS gauge network. Gauges with significant 

correlations (P < 0.05) to cool-season storm track position are highlighted with black edges. 
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Figure A21. Relationship between Pacific storm track intensity and drought and snowpack. 

Pearson’s correlation coefficient, R, between cool-season storm track intensity and (a) the 

October-March standardized precipitation-evapotranspiration index (SPEI) and (b) April 

snow water equivalent (SWE). SPEI Grid cells with significant correlations (P < 0.05) to 

cool-season storm track intensity are shown with black dots. SWE stations with significant 

correlations to cool-season storm track intensity are highlighted with black edges. SNOTEL 

sites are shown as circles, and Snow Course sites are shown as triangles. 
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Figure A22. Relationship between Pacific storm track position and start of green season. 

Start of season (SOS) anomalies in years between 1982-2012 with storm track positions in 

(A) the northernmost 25th percentile and (B) the southernmost 25th percentile. Ecoregions 

with significant anomalies were determined using a random permutation resampling method 

(see Methods), and are outlined in black. The mean storm track for each extreme is shown as 

a dark gray line. 
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Figure A23. Relationship between Pacific storm track position and end of green season. End 

of season (EOS) anomalies in years between 1982-2012 with storm track positions in (A) the 

northernmost 25th percentile and (B) the southernmost 25th percentile. Ecoregions with 

significant anomalies were determined using a random permutation resampling method (see 

Methods), and are outlined in black. The mean storm track for each extreme is shown as a 

dark gray line. 
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Figure A24. Relationship between Pacific storm track position and length of green season. 

Length of season (LOS) anomalies in years between 1982-2012 with storm track positions in 

(A) the northernmost 25th percentile and (B) the southernmost 25th percentile. Ecoregions 

with significant anomalies were determined using a random permutation resampling method 

(see Methods), and are outlined in black. The mean storm track for each extreme is shown as 

a dark gray line. 
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Figure A25. Relationship between Pacific storm track intensity and NDVImax. Standardized 

NDVImax anomalies in years between 1982-2012 with storm track intensities in (a) the upper 

25th percentile and (b) the lower 25th percentile. Ecoregions with significant anomalies are 

outlined in black.  
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Figure A26. Relationship between Pacific storm track intensity and forest growth. (a) 

Pearson’s correlation coefficient, R, between tree-ring widths and cool-season Pacific storm 

track intensity. Significant correlations (P < 0.05) are highlighted with black edges. (b) 

Distribution of R-values for tree-ring sites south of 49°N (brown bars) and north of 49°N 

(green bars). (c) Distribution of P-values from local significance tests (gray bars; n=438). The 

expected number of sites with P-values falling within each 0.1 increment range is shown as a 

black line, with dashed lines showing the 5th and 95th percentiles based on the binomial 

distribution. (d) Correlation between storm track intensity (black line) and a mean growth 

index for all sites south of 49°N (dark brown line), with the 20th to 80th percentile range 

shown in light brown. Note that the left y-axis is inverted. 
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APPENDIX 2: SUPPLEMENTAL TABLES 

Table A1. Summary of tree-ring chronologies over 

the period 1913-2012. 

 

# of trees # of cores RBAReff EPS 

Site 1 

    TRW 23 42 0.286 0.897 

EW 16 24 0.278 0.856 

LWadj 15 22 0.223 0.806 

BI 10 15 0.280 0.794 

     Site 2 

    TRW 38 55 0.328 0.948 

EW 12 19 0.419 0.896 

LWadj 12 19 0.264 0.810 

BI 11 15 0.307 0.820 

     Site 3 

    TRW 40 62 0.437 0.968 

EW 14 24 0.428 0.913 

LWadj 14 24 0.306 0.860 

BI 9 16 0.380 0.846 

     Site 4 

    TRW 26 40 0.545 0.968 

EW 12 18 0.625 0.951 

LWadj 12 16 0.294 0.827 

BI 9 14 0.355 0.828 

     Site 5 

    TRW 29 50 0.495 0.965 

EW 13 23 0.457 0.915 

LWadj 12 20 0.374 0.877 

BI 6 12 0.441 0.825 

     Site 6 

    TRW 26 43 0.484 0.960 

EW 11 18 0.529 0.925 

LWadj 11 16 0.344 0.851 

BI 7 13 0.466 0.857 
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Table A2. Mean inter-series correlations between 

trees (RBARbt), within trees (RBARwt), and total 

(RBARtot); effective mean inter-series correlations 

(RBAReff); signal-to-noise ratio (SNR); and 

expressed population signal (EPS) for CooRecorder 

parameter sets over the period 1913-2012. 

Width Depth % Blue RBAReff EPS     
40 10 15 0.376 0.707 

    
40 10 30 0.373 0.704 

    
40 10 60 0.363 0.695 

    
40 10 90 0.347 0.680 

    
40 50 15 0.363 0.695 

    
40 50 30 0.362 0.694 

    
40 50 60 0.346 0.679 

    
40 50 90 0.331 0.664 

    
100 10 15 0.376 0.706 

    
100 10 30 0.380 0.710 

    
100 10 60 0.382 0.712 

    
100 10 90 0.376 0.706 

    
100 50 15 0.368 0.699 

    
100 50 30 0.367 0.699 

    
100 50 60 0.350 0.683 

    
100 50 90 0.333 0.667 

    
160 10 15 0.335 0.667 

    
160 10 30 0.345 0.678 

    
160 10 60 0.349 0.682 

    
160 10 90 0.344 0.677 

    
160 50 15 0.311 0.643 

    
160 50 30 0.318 0.651 

    
160 50 60 0.298 0.630 

    
160 50 90 0.285 0.615 

    
240 10 15 0.350 0.682 

    
240 10 30 0.349 0.682 

    
240 10 60 0.353 0.686 

    
240 10 90 0.341 0.674 

    
240 50 15 0.332 0.665 

    
240 50 30 0.333 0.667 

    
240 50 60 0.312 0.644 

    
240 50 90 0.290 0.620 

    
40 - - 0.358 

 
    

100 - - 0.367 

 
    

160 - - 0.323 

 
    

240 - - 0.333 

 
    

- 10 - 0.359 

 
    

- 50 - 0.331 
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- - 15 0.351 

 
    

- - 30 0.353 

 
    

- - 60 0.344 

 
    

- - 90 0.331   
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Table A3. Percent variance explained 

by PC1 and PC2 of each tree-ring 

metric. 

 

PC1 PC2 Total 

TRW 70.7 11.0 81.7 

EW 65.8 13.3 79.2 

LWadj 58.8 14.8 73.6 

BI 60.1 15.2 75.3 
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Table A4. Species present in ITRDB sites used in this study (with the number, n, of sites for each 
species), and parameters used in the optimal growth model: growth rate factor (G), maximum 
diameter (Dmax, in cm), maximum height (Hmax, in cm), and maximum age (AGEmax). 

Code Species Common Name n G Dmax Hmax AGEmax 

ABAM Abies amabilis Pacific Silver Fir 1 84.5 260 7190 725 

ABCO Abies concolor White Fir 6 106.3 270 7500 600 

ABLA Abies lasiocarpa Subalpine Fir 3 90.8 210 5270 500 

ABMA Abies magnifica Calif. Red Fir 7 130.7 300 7680 500 

CADE Calocedrus decurrens Calif. Incense Cedar 1 64.1 390 6980 933 

CYGL Carya glabra Pignut Hickory 1 131 120 4570 300a 

LALY Larix lyalli Subalpine Larch 6 34.5 210 3080 800 

LITU Liriodendron tulipifera Tulip-poplar 11 115.6 340 5330 400 

PCEN Picea engelmannii Engelman Spruce 23 68.1 240 6800 852 

PCRU Picea rubens Red Spruce 3 92.9 150 4630 430 

PIAL Pinus albicaulis Whitebark Pine 3 27.2 270 2620 880 

PIBA Pinus balfouriana Foxtail Pine 7 15.2 260 3600 2100 

PICO Pinus contorta Lodgepole Pine 6 66.2 210 4570 600 

PIEC Pinus echinata Shortleaf Pine 7 95.8 120 4450 400 

PIFL Pinus flexilis Limber Pine 8 14.1 230 2590 1670 

PIJE Pinus jeffreyi Jeffrey Pine 14 77.1 240 6310 700b 

PILA Pinus lambertiana Sugar Pine 7 89.4 350 7990 760 

PIPO Pinus ponderosa Ponderosa Pine 114 66.2 270 7800 1000 

PIRE Pinus resinosa Red Pine 4 88.8 150 3540 350 

PIST Pinus strobus Eastern White Pine 4 124 180 6710 460 

PITA Pinus taeda Loblolly Pine 1 122.8 210 4970 350a 

PSMA Pseudotsuga macrocarpa Bigcone Douglas-Fir 3 75.8 230 5270 600 

PSME Pseudotsuga menziesii Douglas-Fir 94 56.7 425b 8500b 1275 

QUAL Quercus alba White Oak 46 88.6 270 4570 450 

QUCO Quercus coccinea Scarlet Oak 2 69 150 3110 400 

QULO Quercus lobata Valley Oak 3 170.4 370 4880 250 

QULY Quercus lyrata Overcup Oak 3 84.4 210 3840 400 

QUMA Quercus macrocarpa Bur Oak 4 76.2 210 3810 440 

QUPR Quercus prinus Chestnut Oak 8 99.3 210 4570 400 

QURU Quercus rubra Red Oak 4 93.4 240 4270 400a 

QUST Quercus stellata Post Oak 21 70.8 150 3200 400 

QUVE Quercus velutina Black Oak 5 199 240 4570 200 

TSCA Tsuga canadensis Eastern Hemlock 22 82.9 210 5180 539 

TSME Tsuga mertensiana Mountain Hemlock 10 63.3 210 5910 800b 
a Shugart (1984) 

      b Urban et al. (1993) 
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Table A5. Variance explained (r2) by ecoregion RF models of absolute stress (based on out-of-bag 
observations) for the four model experiments. 

      
r2 

Ecoregion 
 

Sites n TSC TC SC C 

5.0 Northern Forests 
 

16 343 0.81 0.80 0.81 0.16 

 

5.2 Mixed Wood Shield 

 

7 104 0.52 0.50 0.54 0.06 

  
5.2.1 Northern Lakes and Forests 

 
7 104 0.53 0.50 0.54 0.04 

 
5.3 Atlantic Highlands 

 
9 239 0.81 0.81 0.80 0.25 

  

5.3.1 Northern Appalachians and Atlantic 
Maritime Highlands 7 217 0.81 0.81 0.80 0.26 

6.0 Northwestern Forested Mountains 
 

214 4875 0.69 0.65 0.66 0.36 

 
6.2 Western Cordillera 

 
214 4875 0.69 0.65 0.65 0.36 

  
6.2.3 Columbia Mountains/Northern Rockies 

 
6 199 0.72 0.71 0.71 0.53 

  
6.2.4 Canadian Rockies 

 
4 116 0.54 0.55 0.53 0.29 

  
6.2.5 North Cascades 

 
23 369 0.07 0.06 0.08 0.05 

  
6.2.7 Cascades 

 
11 159 0.56 0.57 0.55 0.53 

  
6.2.8 Eastern Cascades Slopes and Foothills 

 
14 317 0.65 0.65 0.54 0.23 

  
6.2.9 Blue Mountains 

 
10 204 0.74 0.75 0.73 0.71 

  

6.2.10 Middle Rockies 

 

20 602 0.78 0.77 0.78 0.45 

  
6.2.12 Sierra Nevada 

 
46 925 0.64 0.63 0.60 0.38 

  
6.2.13 Wasatch and Uinta Mountains 

 
7 228 0.91 0.89 0.87 0.59 

  
6.2.14 Southern Rockies 

 
64 1603 0.64 0.62 0.63 0.18 

  
6.2.15 Idaho Batholith 

 
5 107 0.64 0.63 0.63 0.50 

7.0 Marine West Coast Forest 
 

6 81 0.53 0.49 0.51 0.40 

 
7.1 Marine West Coast Forest 

 
6 81 0.53 0.48 0.51 0.39 

8.0 Eastern Temperate Forests 
 

97 1980 0.82 0.80 0.82 0.17 

 
8.1 Mixed Wood Plains 

 
13 298 0.83 0.82 0.81 0.27 

  

8.1.3 Northern Appalachian Plateau and 
Uplands 

 
4 107 0.86 0.86 0.86 0.41 

  
8.1.7 Northeastern Coastal Zone 

 
3 95 0.83 0.83 0.83 0.59 

 
8.3 Southeastern USA Plains 

 
22 478 0.83 0.82 0.83 0.63 

  
8.3.1 Northern Piedmont 

 
4 77 0.94 0.94 0.94 0.87 

  

8.3.3 Interior Plateau 

 

4 96 0.73 0.73 0.73 0.38 

  
8.3.4 Piedmont 

 
5 150 0.53 0.53 0.51 0.52 

  
8.3.8 East Central Texas Plains 

 
4 81 0.41 0.39 0.37 0.35 

 
8.4 Ozark, Ouachita-Appalachian Forests 

 
53 1084 0.81 0.80 0.80 0.01 

  
8.4.1 Ridge and Valley 

 
14 257 0.46 0.45 0.46 0.03 

  
8.4.4 Blue Ridge 

 
20 479 0.70 0.69 0.69 0.29 

  
8.4.5 Ozark Highlands 

 
12 261 0.95 0.94 0.95 0.39 

9.0 Great Plains 
 

42 805 0.58 0.52 0.56 0.13 

 
9.2 Temperate Prairies 

 
16 213 0.84 0.80 0.76 0.10 

  

9.2.3 Western Corn Belt Plains 

 

12 166 0.84 0.84 0.77 0.09 

 
9.3 West Central Semi-Arid Prairies 

 
4 88 0.71 0.71 0.67 0.55 

 
9.4 South Central Semi-Arid Prairies 

 
22 504 0.44 0.42 0.41 0.20 

  
9.4.1 High Plains 

 
6 128 0.12 0.11 0.10 0.05 

  
9.4.2 Central Great Plains 

 
5 105 0.55 0.48 0.53 0.18 

  
9.4.3 Southwestern Tablelands 

 
5 138 0.28 0.28 0.27 0.09 

  
9.4.5 Cross Timbers 

 
6 133 0.58 0.58 0.58 0.33 

10.0 North American Deserts 
 

23 554 0.78 0.76 0.78 0.71 

 
10.1 Cold Deserts 

 
19 481 0.84 0.81 0.83 0.73 
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10.1.4 Wyoming Basin 

 
5 136 0.87 0.86 0.86 0.81 

  
10.1.5 Central Basin and Range 

 
4 76 0.91 0.90 0.90 0.88 

  
10.1.6 Colorado Plateaus 

 
6 175 0.60 0.56 0.56 0.06 

  

10.1.7 Arizona/New Mexico Plateau 

 

3 83 0.48 0.45 0.49 0.43 

11.0 Mediterranean California 
 

12 277 0.64 0.64 0.64 0.48 

 
11.1 Mediterranean California 

 
12 277 0.64 0.63 0.64 0.48 

  

11.1.1 California Coastal Sage, Chaparral, and 
Oak Woodlands 8 196 0.63 0.62 0.63 0.48 

  

11.1.3 Southern and Baja California Pine-Oak 
Mountains 4 81 0.55 0.54 0.55 0.52 

12.0 Southern Semi-Arid Highlands 
 

21 393 0.50 0.50 0.47 0.26 

 
12.1 Western Sierra Madre Piedmont 

 
21 393 0.51 0.49 0.48 0.27 

  

12.1.1 Madrean Archipielago 

 

21 393 0.50 0.50 0.47 0.27 

13.0 Temperate Sierras 
 

27 443 0.66 0.64 0.62 0.43 

 
13.1 Upper Gila Mountains 

 
27 443 0.66 0.65 0.63 0.43 

    13.1.1 Arizona/New Mexico Mountains   27 443 0.66 0.65 0.63 0.43 
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Table A6. Variance explained (r2) by ecoregion RF models of relative stress (based on out-of-bag 
observations) for the four model experiments. 

      
r2 

Ecoregion 
 

Sites n TSC TC SC C 

5.0 Northern Forests 
 

56 1353 0.10 0.10 0.10 0.09 

 

5.2 Mixed Wood Shield 

 

19 399 0.11 0.11 0.10 0.07 

  
5.2.1 Northern Lakes and Forests 

 
19 399 0.11 0.11 0.10 0.07 

 
5.3 Atlantic Highlands 

 
37 954 0.09 0.09 0.09 0.08 

  

5.3.1 Northern Appalachians and Atlantic 
Maritime Highlands 31 867 0.08 0.08 0.08 0.08 

  
5.3.3 North Central Appalachians 

 
6 87 0.05 0.04 0.06 0.04 

6.0 Northwestern Forested Mountains 
 

457 10876 0.32 0.31 0.30 0.28 

 
6.2 Western Cordillera 

 
457 10876 0.32 0.31 0.30 0.28 

  
6.2.3 Columbia Mountains/Northern Rockies 

 
7 212 0.14 0.12 0.13 0.14 

  
6.2.4 Canadian Rockies 

 
6 183 0.01 0.01 0.01 0.00 

  
6.2.5 North Cascades 

 
53 1012 0.38 0.37 0.38 0.36 

  
6.2.7 Cascades 

 
43 872 0.37 0.38 0.38 0.37 

  
6.2.8 Eastern Cascades Slopes and Foothills 

 
32 699 0.27 0.26 0.26 0.25 

  

6.2.9 Blue Mountains 

 

21 495 0.42 0.42 0.41 0.42 

  
6.2.10 Middle Rockies 

 
58 1708 0.26 0.26 0.24 0.23 

  
6.2.11 Klamath Mountains 

 
10 199 0.39 0.35 0.39 0.34 

  
6.2.12 Sierra Nevada 

 
81 1794 0.34 0.33 0.34 0.32 

  
6.2.13 Wasatch and Uinta Mountains 

 
20 661 0.35 0.34 0.34 0.30 

  
6.2.14 Southern Rockies 

 
118 2860 0.37 0.35 0.34 0.31 

  
6.2.15 Idaho Batholith 

 
8 181 0.05 0.06 0.05 0.08 

7.0 Marine West Coast Forest 
 

14 255 0.29 0.28 0.28 0.27 

 
7.1 Marine West Coast Forest 

 
14 255 0.28 0.28 0.29 0.26 

  

7.1.7 Strait of Georgia/Puget Lowland 

 

5 87 0.19 0.18 0.18 0.21 

  
7.1.8 Coastal Range 

 
9 168 0.30 0.29 0.29 0.29 

8.0 Eastern Temperate Forests 
 

297 6837 0.23 0.23 0.23 0.21 

 
8.1 Mixed Wood Plains 

 
37 868 0.17 0.17 0.17 0.17 

  

8.1.1 Eastern Great Lakes and Hudson 
Lowlands 

 

4 139 0.14 0.16 0.16 0.18 

  

8.1.3 Northern Appalachian Plateau and 
Uplands 

 
5 141 0.18 0.18 0.18 0.16 

  
8.1.4 North Central Hardwood Forests 

 
8 222 0.24 0.23 0.23 0.25 

  

8.1.7 Northeastern Coastal Zone 

 

4 112 0.14 0.12 0.15 0.13 

  
8.1.8 Maine/New Brunswick Plains and Hills 

 
9 166 0.05 0.03 0.03 0.03 

 
8.2 Central USA Plains 

 
8 105 0.37 0.37 0.35 0.32 

  
8.2.3 Central Corn Belt Plains 

 
7 90 0.35 0.34 0.31 0.28 

 
8.3 Southeastern USA Plains 

 
64 1441 0.35 0.35 0.35 0.34 

  
8.3.1 Northern Piedmont 

 
7 148 0.44 0.46 0.48 0.47 

  
8.3.2 Interior River Valleys and Hills 

 
9 163 0.24 0.25 0.24 0.21 

  
8.3.3 Interior Plateau 

 
5 131 0.51 0.52 0.52 0.54 

  
8.3.4 Piedmont 

 
11 292 0.50 0.49 0.49 0.48 

  

8.3.5 Southeastern Plains 

 

21 506 0.30 0.31 0.29 0.28 

  
8.3.7 South Central Plains 

 
5 76 0.13 0.13 0.11 0.13 

  
8.3.8 East Central Texas Plains 

 
6 125 0.59 0.56 0.57 0.59 

 
8.4 Ozark, Ouachita-Appalachian Forests 

 
162 3914 0.19 0.19 0.19 0.18 

  
8.4.1 Ridge and Valley 

 
34 805 0.09 0.10 0.09 0.08 



116 

  
8.4.2 Central Appalachians 

 
5 173 0.08 0.07 0.08 0.07 

  
8.4.3 Western Allegheny Plateau 

 
3 87 0.06 0.05 0.03 0.04 

  
8.4.4 Blue Ridge 

 
38 962 0.16 0.16 0.17 0.15 

  

8.4.5 Ozark Highlands 

 

53 1216 0.34 0.34 0.33 0.33 

  
8.4.6 Boston Mountains 

 
5 116 0.07 0.08 0.09 0.08 

  
8.4.7 Arkansas Valley 

 
4 122 0.52 0.56 0.55 0.56 

  
8.4.8 Ouachita Mountains 

 
15 337 0.23 0.23 0.23 0.24 

  
8.4.9 Southwestern Appalachians 

 
5 96 0.12 0.12 0.11 0.11 

 

8.5 Mississippi Alluvial and Southeast USA 
Coastal Plains 

 
26 509 0.21 0.22 0.20 0.21 

  
8.5.1 Middle Atlantic Coastal Plain 

 
7 127 0.15 0.15 0.16 0.19 

  
8.5.2 Mississippi Alluvial Plain 

 
9 137 0.20 0.20 0.18 0.20 

  
8.5.3 Southern Coastal Plain 

 
10 245 0.19 0.17 0.17 0.15 

9.0 Great Plains 
 

96 2367 0.33 0.33 0.32 0.30 

 
9.2 Temperate Prairies 

 
34 792 0.47 0.48 0.48 0.48 

  
9.2.2 Lake Manitoba and Lake Agassiz Plain 

 
11 395 0.55 0.55 0.55 0.55 

  

9.2.3 Western Corn Belt Plains 

 

12 166 0.58 0.59 0.59 0.60 

  
9.2.4 Central Irregular Plains 

 
8 169 0.26 0.27 0.25 0.32 

 
9.3 West Central Semi-Arid Prairies 

 
14 360 0.38 0.37 0.38 0.38 

  
9.3.3 Northwestern Great Plains 

 
12 305 0.36 0.35 0.36 0.36 

 
9.4 South Central Semi-Arid Prairies 

 
47 1176 0.27 0.27 0.26 0.24 

  
9.4.1 High Plains 

 
8 188 0.20 0.20 0.21 0.21 

  
9.4.2 Central Great Plains 

 
6 117 0.47 0.46 0.47 0.45 

  
9.4.3 Southwestern Tablelands 

 
15 380 0.22 0.23 0.23 0.22 

  
9.4.5 Cross Timbers 

 
13 340 0.47 0.48 0.48 0.47 

  

9.4.6 Edwards Plateau 

 

4 115 0.15 0.15 0.17 0.10 

10.0 North American Deserts 
 

88 2107 0.45 0.44 0.44 0.41 

 
10.1 Cold Deserts 

 
80 1969 0.48 0.47 0.47 0.43 

  
10.1.3 Northern Basin and Range 

 
13 309 0.60 0.61 0.61 0.60 

  
10.1.4 Wyoming Basin 

 
7 197 0.38 0.36 0.37 0.29 

  
10.1.5 Central Basin and Range 

 
31 606 0.29 0.28 0.29 0.25 

  
10.1.6 Colorado Plateaus 

 
24 733 0.53 0.53 0.51 0.47 

  
10.1.7 Arizona/New Mexico Plateau 

 
4 108 0.52 0.53 0.54 0.55 

 
10.2 Warm Deserts 

 
8 138 0.22 0.23 0.23 0.22 

  

10.2.4 Chihuahuan Desert 

 

6 113 0.24 0.27 0.26 0.25 

11.0 Mediterranean California 
 

62 1624 0.51 0.49 0.51 0.48 

 
11.1 Mediterranean California 

 
62 1624 0.51 0.49 0.50 0.49 

  

11.1.1 California Coastal Sage, Chaparral, and 

Oak Woodlands 37 1118 0.49 0.46 0.49 0.44 

  

11.1.3 Southern and Baja California Pine-Oak 
Mountains 23 438 0.59 0.58 0.59 0.59 

12.0 Southern Semi-Arid Highlands 
 

30 551 0.44 0.44 0.43 0.43 

 
12.1 Western Sierra Madre Piedmont 

 
30 551 0.43 0.43 0.43 0.43 

  

12.1.1 Madrean Archipielago 

 

30 551 0.44 0.43 0.43 0.43 

13.0 Temperate Sierras 
 

37 635 0.51 0.49 0.49 0.45 

 
13.1 Upper Gila Mountains 

 
37 635 0.51 0.48 0.50 0.45 

    13.1.1 Arizona/New Mexico Mountains   37 635 0.51 0.49 0.49 0.45 
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APPENDIX 3: SUPPLEMENTAL TEXT 

Text A1. In CooRecorder, BI was extracted from rectangular windows surrounding tree-ring 

latewood, and we adjusted the size of the windows (width, depth, and offset) as well as the 

percentage of latewood that was used for calculating BI (%blue) following Rydval et al. 

[2014]. We tested several parameter sets for a subset of cores and compared the effective 

mean inter-series correlations (RBAReff) from the different sets (Table A2). Variation of 

window width, depth, and %blue all had significant effects on series statistics, with an 

optimal width-offset-depth-%blue parameter set of 100-5-10-30. Raw BI from each core were 

inverted following Rydval et al. [2014] and Wilson et al. [2014] and then plotted to identify 

sharp transitions early in the BI series or other graphical forms that suggested the series is not 

suitable for further use. Each inverted BI series was detrended using linear and quadratic 

models (with no restrictions on the sign of the slope), and the Akaike information criterion 

[Akaike, 1974] was used to select the best fit between these two models. After checking the 

selected regression models for negative fitted values, we obtained standardized and detrended 

indices by dividing the fitted curves for each core into the inverted BI series. Site-level 

residual chronologies were then formed following the same procedure used for ring width 

series. All sites except site 1 (EPS=0.79) achieved EPS≥0.82 (Table A1).  

 

Text A2. The composite-plus-scale (CPS) tests performed in Tables 1 & 2 required six steps: 

1) Principal components analysis was performed separately for each tree-ring metric 

(TRW, EW, LWadj, and BI) with the six site-level chronologies as variables. 

2) PCs 1 & 2 of each metric were transformed to z-scores, resulting in a total of eight PC 

time-series (two each for four metrics). 

3) The Pearson correlation coefficient (R) was calculated between each z-scored PC 

time-series and the target climate variable (Pcool or Pwarm; rows 1-4 of the PC1 and 

PC2 columns in Tables 1 & 2). 
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4) For each target climate variable, 13 possible PC composites were formed (the 

COMBO column and rows 5-7 of the PC1 and PC2 columns in Tables 1 & 2) by 

taking a weighted average of different combinations of PC time-series, using R2 as the 

weight [McCarroll et al., 2003, 2011] and multiplying by the sign of the correlation 

coefficient so that each PC time series in the composite has a positive relationship 

with the target climate variable [Wilson et al., 2010]. 

5) For the COMBO composites, the weighted average (composite) of tree-ring PCs was 

scaled to match the mean and variance of the target climate variable. 

6) The effective correlation, variance-scaled R2
, and extreme value capture (EVC) 

statistics [McCarroll et al., 2011, 2015] were calculated between the scaled tree-ring 

composites (predicted) and the instrumental target climate (observed).  

For example, the EW+LWadj COMBO prediction of Pwarm (Table 2) was formed by 

performing a PCA on the six site-level EW chronologies and a separate PCA on the six site-

level LWadj chronologies. The first two PCs from each PCA (a total of four PC time-series) 

were transformed to z-scores, and then the four transformed PC time-series were composited 

with a weighted average, with the weights determined by the R2 between each PC and the 

observed Pwarm while retaining the sign of the correlation coefficient: 

 

COMPOSITE = 0.18*PC1(EW) − 0.08*PC2(EW) + 0.28*PC1(LWadj) − 0.06*PC2(LWadj) 

 

Pwarm was then predicted by scaling this composite to match the mean and variance of the 

observed Pwarm during the study period (1913-2012).  
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