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Abstract
MUSTAFA KEMAL TURAL.: Topics in Basis Reduction and Integerdgramming
(Under the direction of Gabor Pataki)

A basis reduction algorithm computes a reduced basis oftiadatonsisting of short and nearly
orthogonal vectors. The best known basis reduction methatlié to Lenstra, Lenstra and Lovasz
(LLL): their algorithm has been extensively used in crypamy, experimental mathematics and integer
programming. Lenstra used the LLL basis reduction algoritb show that the integer programming
problem can be solved in polynomial time when the number oaistes is fixed.

In this thesis, we study some topics in basis reduction atehén programming. We make the
following contributions.

We unify the fundamental inequalities in an LLL reduced basihich express the shortness and
near orthogonality of the basis.

We analyze two recent integer programming reformulati@hneues which also rely on basis re-
duction. The reformulation methods are easy to describey @re also successful in practice in solving
several classes of hard integer programs.

First, we analyze the reformulation techniques on boundegbéack problems. The only analyses
so far are for knapsack problems with a constraint vectoinigea certain decomposable structure. Here
we do not assume any a priori structure on the constrainbrect

We then analyze the reformulation techniques on boundegentprograms. We show that if the
coefficients of the constraint matrix are drawn from a sudfitlly large interval, then branch and bound
creates at most one node at each level if applied to the refated instances.

On the practical side, we give some numerical values as tddrge the numbers should be to make
sure that foB0 and99 percent of the reformulated instances, the number of sbbgres that need to be
enumerated by branch and bound is at most one at each lewse TVhlues turned out to be surprisingly
small when the problem size is moderate.

We also analyze the solvability of the “majority” of the lowembsity subset sum problems using the

method of branch and bound when the coefficients are chosendiarge interval.
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CHAPTER 1

Introduction

Algorithms based on geometry of numbers have been an ealsgaiti of the integer programming
(IP) landscape starting with the work of H. W. Lenstts][ Typically, these algorithms reduce an IP
feasibility problem to a provably small number of smallemdnsional ones and have strong theoretical
properties. For instance, the algorithmsi,[36, 39 have polynomial running time in fixed dimension;
the algorithm of 4] has linear running time in dimension two. One essential loa@reating the
subproblems is a “thin” branching direction, i.e., an imggrow-)vectorec with the difference between

the maximum and the minimum efc over the underlying polyhedron being provably small. Basis

reduction in lattices — in the Lenstra, Lenstra and Lovad4 | [ 35], or Korkine and Zolotarev (KZ)
[27, 30] sense — is usually a key ingredient in the search for a thiecton. For implementations and
computational results, we refer to(], 18, 41].

A simple and experimentally very successful reformulat®ehnique for integer programming was
proposed by Aardal, Hurkens and A. K. Lenstra ififor equality constrained IP problems; see also
[1]. For several classes of hard equality constrained intpgagramming problems — e.g.11] — the
reformulation turned out to be much easier to solve by comialesolvers than the original problem.

In [31] an experimentally just as effective reformulation metheas introduced, which leaves the
number of the variables the same and is applicable to bottuality or equality constrained problems.

These reformulation methods are very easy to describe (@ssef to say Lenstra’s and Kannan'’s
methods), but seem difficult to analyze. The only analysedarknapsack problems, with the weight
vector having a given “decomposable” structure. Sge{].

These reformulation methods also rely on basis reductiofagis reduction algorithm computes

a reduced basis of a lattice consisting of “short” and “nearthogonal” vectors. There are different



notions of reducedness. In this thesis, we will use LLL, Kdgd &KZ reduced bases. An LLL reduced
basis of a lattice can be computed in polynomial time fororal lattices. The first vector of an LLL
reduced basis of a lattice is an approximation of a nonzero shortest vectof.inn an LLL reduced
basis, as shown ir3f], the norm of the first vector is bounded by a function of thenmaf a nonzero
shortest vector of. and also by a function of the determinantfof The product of the norms of the
basis vectors is also bounded by a function of the determiofah. We call these three inequalities
“the fundamental inequalities of an LLL reduced basis”. KZ,[30] and RKZ [37] reduced bases have
stronger reducedness properties, but are only computalgelynomial time when the dimension
of the lattice is fixed. Sectiof.2 provides some details about basis reduction and differeinbms of
reducedness.

This thesis studies some topics in geometry of numbers aedédn programming. It makes the

following contributions:

(1) It generalizes the fundamental inequalities for an Letuced basis.

(2) It provides an analysis of the IP reformulation techeigjfor knapsack problems without assum-

ing any a priori structure on the constraint vector.

(3) It resolves the question of the solvability of an overlmiiag majority of the subset sum (fea-
sibility) problems (all but a vanishing proportion of theoptems as n increases) in polynomial
time using the method of branch and bound. We will assumettieatoefficients of the subset
sum problems are chosen from a sufficiently large intervahigigers. In more detail, we have
the following results. We show that an overwhelming majodat the subset sum problems are
hard for ordinary branch and bound. On the other hand, amtvaming majority of the subset
sum problems are easy for generalized branch and bound.oMaref we reformulate the subset
sum problem using the rangespa¢é][or the nullspace] reformulation, then an overwhelming
majority of the reformulated problems become easy for @girboranch and bound. Here the
word “easy” means the problem is solved in polynomial timé ahmost one branch and bound
node is created at each level of the branch and bound tree iprtitess of solving it. A “hard”

problem, however, can be solved only by creating an exp@lentmber of nodes.

(4) It shows that for general bounded integer programs,efdhefficients are chosen from a suffi-



ciently large interval, then for almost all such instandes humber of subproblems that need to
be enumerated by branch and bound is at most one at each el branch and bound tree

(when applied to reformulated instances).

(5) On the practical side, it provides numerical valued/bfvhich ensure that at leagd and99 per-
cent of the reformulated (binary) instances (with coeffitsechosen fror{1, ..., M}) solve in

at mostn subproblems. These numbers are surprisingly small for nabelsize binary problems.

(6) It computationally confirms the somewhat counter-intaifinding: the reformulations of random

integer programs tend to get easier, as the coefficientaetarger.

The rest of the thesis is organized as follows. In Chapteve give notation, definitions and basic
results that will be used throughout the proposal. Here,ntreduce a modified version of Lenstra’s
algorithm which potentially uses a smaller number of rongdand basis reduction steps.

In Chapter3, we unify and generalize the fundamental inequalities foklal reduced basis.

In Chapter4, we analyze two integer programming reformulations of thagsack problem, namely
the rangespace and the nullspace reformulations. We fiost #fat in a knapsack problem, branching
on an integral vector which is “near parallel” to the conisir&ector creates a small number of branch
and bound nodes. A transference result proves an upper bmuilde integer width along the last
variable in the reformulated problems. This upper boundbes1 when the density is sufficiently
small, i.e., when the Euclidean norm of the constraint vestsufficiently large.

In Chapters, we show that for a low density subset sum problem, there @yapmial time com-
putable certificate of infeasibility for almost all integgght hand sidess. Using a transference result,
we prove that for almost all right hand sides, the integettiwédong the last variable in the rangespace
reformulation of a low density subset sum problem is zero.

In Chapter6, we show that the classical branch and bound algorithm igrisimgly efficient on
reformulations of bounded integer programs. We show thanahe coefficients of the constraint
matrix are chosen from a large interval, then branch and dbaueates at most one branch and bound
node at each level of the branch and bound tree if applieddomelated instances. Our computational
study confirms our theoretical finding that the reformulasiof random integer programs become easier,

as the coefficients grow.



In Chapter7, we modify a result of Chvatal and show that an overwhelnmivggority of the subset
sum (feasibility) problems are hard for ordinary branch badnd if the coefficients are chosen from a

sufficiently large interval of integers.



CHAPTER 2

Notation, Definitions and Basic Results

2.1 Basics

Let (.,.) be the Euclidean scalar product Bft, i.e., for anyz,y € R™

m
<IL', y> - Z TilYi,
i=1

wherez; andy; are theith components af andy, respectively. We usg. || or || . ||z for the Euclidean

norm, i.e. for anyr € R™

lz]|=llz[la= V/(z,z).

Two other norms will be important for our purposes: thenorm and the,, norm

m
lelli= " lail
i=1

oo = max .

When we want to talk about thg or /., norms of a vector, we explicitly say so. When we just say
“norm of z”, we mean the Euclidean norm of

It is known that for allx € R™, the following relations hold:
[zl < llzlly < vm =], (2.1.1)

[2lloe < [l < Vm |2l (2.1.2)



2]l < 2l < m [|2 oo - (2.1.3)

For anyx,y € R™, we have the Cauchy-Schwarz Inequality:

[z, <llzlllyll - (2.1.4)

Equality holds if and only: andy are linearly dependent.

For a matrixB, B;; is the entry at the intersection éh row andjth column of B. We let BT
denote the transpose &f. For an invertible matrix3, B~' denotes the inverse @ and BT denotes
the transpose of the inverse Bf

For anm-by-m matrix B = [by,...,by,], det(B) represents the determinant Bf B is called

nonsingular ifdet(B) # 0, otherwise it is singular. We have Hadamard'’s Inequality

|det(B)] < [T Il - (2.1.5)
i=1
Equality holds if and only if either both sides are zero orviketorsby, . . ., b,, are orthogonal.
For matrices (and vectors) and B with appropriate dimensions, we writel; B) for ; and
B

we write (A, B) for (A B).

2.2 Lattices and Basis Reduction

A lattice iInR™ is a set of the form

L =L(B) = {Bx|zeZ"}, (2.2.6)

whereB is a real matrix withm rows andn independent columns, calledbasisof L. A lattice has
infinitely many different bases when> 2. Any basisB of a lattice L has the same number of columns,
called thedimensiorof L. A square, integral matri&’ is unimodularif det(U) = £1. Itis well known
that B; and B, are bases of the same lattice if and onli = B;U for some unimodulat’.

An elementary column operation performed on a maltiis either

(1) exchanging two columns,



(2) multiplying a column by-1, or
(3) adding an integral multiple of a column to another column

Multiplying a matrix B from the right by a unimodulat/ is equivalent to performing a sequence of
elementary column operations éh

The determinant of. is

det L = (det(BTB))'/2, (2.2.7)
whereB = [by,...,b,] is a basis ofL; it is easy to see thatet L is well-defined. From Hadamard’s
Inequality, it follows that

det L < T Ilbill -

i=1
The determinant of a lattice is thedimensional volume of the paralelepiped defined by anysbafsi
the lattice (see Figure.l).

A lattice L in R™ is full dimensional if dimension of. is equal tom. Equivalently, C R™ is full

dimensional if and only if the smallest subspacéRéf containingL is R™.

Example 1. Let A = L(B;) where

3 2
B =
2 2

Lattice A consists of all integral vectors € Z? such thatz, is even. The green area defined by the
columns ofB; is equal todet A which is2.

Lattice A is also generated by the columns of

1 5
BZ = )
0 2
sinceBy, = B1U, where
1 3
U =
-1 -2

is a unimodular matrix. The pink area defined by the column8.ak also equal t@.

Note that in Examplé, A has an orthogonal basis. But not all lattices have an orthadaasis.
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Figure 2.1: A Lattice ifR?.

Example 2. LetI" = L(B3) where

The latticeI” does not have any orthogonal basis. Note that hvthnd I" are full dimensional

lattices.

Suppose thaB hasn independent columns

B =1[b,...,by), (2.2.8)
andbj, ..., by form the Gram-Schmidt orthogonalizationtaf . . . , b, thatisb; = b}, and
i—1
bi = b} + > pigh} with g = b5/ |77 (i=2,...,n;j <i—1). (2.2.9)
7j=1



A

Figure 2.2: A Lattice with no Orthogonal Basis.

In terms of the Gram-Schmidt vectors,
det L(B) = [] II5;1l - (2.2.10)
j=1

Each latticeL contains a nonzero shortest vector. betL) denote the norm of a nonzero shortest

vector inL. Minkowski’s convex body theorem implies that
(L) < v/n(det L)/, (2.2.11)

wheren is the dimension of.. See for instance’[7].

Turning back to our previous examples, we hayéA) = 1 and\; (T') = /5.

Finding a short, nonzero vector in a lattice is a fundamealgbrithmic problem with many uses
in cryptography, optimization, and number theory. For sysvwe refer to 0], [26], [47], and 7).
More generally, one may want to find a reduced basis congisfishort and nearly orthogonal vectors.

Several different definitions of reduced basis have beegesigd.



2.2.1 LLL Reduced Bases

The LLL basis reduction algorithm3f] was introduced in 1982 by Lenstra, Lenstra and Lovasz,
and has since been used in numerous applications in congnatiatnathematics and computer science
starting with factoring polynomials with rational coefaits and solving the integer linear programming
problem in polynomial time in fixed dimensions. It computagduced basis of a lattice in polynomial
time (for rational lattices). For simplicity, we use Scheij's definition from [17].

We call B = [by,...,b,] anLLL reduced basis ofL(B), if

il < 1/2 (i=2,...,n;5=1,...,i—1), and (2.2.12)

10512 < 2065 1? ((=1,...,n—1). (2.2.13)
From .2.13 it immediately follows that
105 1 < 2777|5511 (1<i<j<n). (2.2.14)

As shown by Lenstra, Lenstra and Lovasz, in an LLL reducesisha = [b4, ..., b,] of a lattice
L = 1L(B), the norm of the first vector is bounded by a function of themof a nonzero shortest vector

of L and also by a function of the determinantiofnamely

]| < 207D/ (det L)V, (2.2.15)
o] < 20=D/2|d| for anyd e L\ {0}. (2.2.16)

For an LLL-reduced basi® = [by, ..., b,] of a lattice L, they also show that
ool - lball < 27D/ det L. (2.2.17)

It is natural to ask, whether the three beautiful inequedit.2.19, (2.2.19, and @.2.17% which
we call as the fundamental inequalities can be generalire@hapter3, we prove several inequalities

generalizing and unifying the fundamental inequalitieann_LL reduced basis.

10



2.2.2 KZ Reduced Bases

Korkine-Zolotarev (KZ) reduced bases, which were desdriime[30] by Korkine and Zolotarev,
and by Kannan inZ7], have stronger reducedness properties than LLL reduceesba~or instance,
the first vector in a KZ reduced basis is a shortest vectorefdtiice. However, KZ reduced bases are
computable in polynomial time only whenis fixed.

Given anm-by-n matrix D = [dy, ..., d,] with rankr, span(D) (or span{dy,...,d,}) is defined
as

span(D) = {Dx |x € R"}. (2.2.18)

span(D) is anr-dimensional subspace Bf".
Let L = L(B) whereB = [by,...,b,] with n independent columns and fpr< i let b;(j) be the

projection ofb; orthogonal taspan {b1, bo, ..., b;}. Note thatb;(i — 1) = b}. Let

L) = L([bj41(5),-- - bn(4)])

be the projection of. orthogonal taspan {b1,b2,...,b;}. For convenience we defirig(0) = b; and
L(0) = L.
We say that a basiB = [by, ..., b,] is a KZ reduced basis d@f(B) if

@) |l <1/2 (=2,...,n;5=1,...,i—1),and
(2) b;(i — 1) is a shortest nonzero vector bfi — 1) (i =1,...,n).

Note that if B = [by, ..., b,] is a KZ reduced basis, thén is a shortest nonzero vectorlif{ B).
For a KZ reduced basiB = [by, ..., b,] of alatticeL = IL(B), from the definition of a KZ reduced

basis and4.2.1)), it follows that
105 1< /n =G+ 1] ] o5 M/ 7+, (2.2.19)
=7

foranyj € {1,...,n}. In particular, forj = 1 (2.2.19 becomes

b1 ]|< v/n(det L)/™, (2.2.20)

11



It was also showndZ] that

167 1> .(Al(L) (2.2.21)
1

I+logi)/2

holds fori =1, ..., n.
Schnorr in }4] proposed several hierarchies of bases between LLL and HiZcedd ones: the semi
block 2k bases among them are polynomial time computable vidisriixed; and both the “quality” of

the basis, and the complexity of the reduction algorithmmeases withk.

2.2.3 Hermite Normal Form

An integralm-by-n matrix with full row rank (i.e., with rankn) is in Hermite Normal Form (HNF)
if it has the form[B, 0], where B is a lower triangular, nonnegative matrix with each diagardry
being the unique maximum in its row, ands the matrix of all zeroes with appropriate size. Note that
B is a nonsingular matrix. Any integral matrig with full row rank can be brought into HNF by a
series of elementary column operatiofi§][and this can be done in polynomial time as shownZi#.[
In other words, there exists a polynomial time computablenodular matrixU such thatAU = [B, 0]
is in HNF. It is known that the HNF ofl is unique and we writéINF(A) = [B,0].

Letgcd(A) be the greatest common divisor of theby-m subdeterminants of. Note thatged(A)

is invariant under elementary column operations. Theegfae have that

ged(4) = [ [ B, (2.2.22)
=1
whereHNF(A) = [B,0].
Example 3. Let
1 27
A =
3 4 1

12



The 2-by-2 subdeterminants dfare —2, —20, and—26. Thereforegcd(A) = 2. We have

100
HNF(4) =A[1 -1 —10| =
1 2 0

2.2.4 Null, Orthogonal, Dual and Complete Lattices

For an integraln by n matrix A, m < n, the null lattice ofA is denoted byN(A) and is defined as

N(A) = {z € Z"|Az = 0} (2.2.23)

For an integral latticd., its orthogonal latticeis defined as
Lt ={yeZ"|y's=0vVz e L}

Note thatN(A) is the same ak(AT)*.

For a latticeL, the dual latticel.* is

L* ={yespan L|(z,y) € Zforallz € L}, (2.2.24)

wherespan L is span(B) whereB is a basis ofL. It is known thatdet(L*) = (det(L)) ™.
Let B = [by,...,b,] be abasis of the latticE. Itis easy to see thdd = [dy,...,d,] = B(B'B)~!
is a basis ofL*. We call B* = [d,,...,d;] the dual basis (or the reciprocal basis)®{note that the
columns of D are reordered). One can check thatis the dual basis oB* as well. If L is full
dimensional, then ordering the columns®f from highest index to smallest gives the dual basigof
Let B* be the dual basis aB. And letd}™, ..., b" andbfé, e ,b# be the Gram-Schmidt orthogo-

nalizations of columns oB* and B, respectively. Then, it is easy to check that

165 1= 1/ |67 0 | - (2.2.25)

13



A lattice L C Z" is calledcompleteif
L = (span L) N Z".

Each basid” of a complete latticd, can be completed to a unimodular matrix, i.e., there existataix
W such thafV, W] is unimodular. Another useful characterization of complettices is thal.(V) is
complete if and only itINF(VT) = [I,0]. For a proof see/3).

If a € Z", L(a") is complete if and only ifgcd(ay, as,...,a,) = 1 where gcd is the greatest
common divisor. The following result relates the determisaof N(A) andIL(AT) where A is an

integral matrix.

Proposition 1. Let A be an integral full row rankn-by-n matrix. Then

det N(A) = det L(AT)/ ged(A). (2.2.26)

Proof of Proposition 1 Let V' be a basis foepan(AT) N Z" andL(V) = span(AT) N Z", which is
anm dimensional complete lattice. We have thit = VM for an invertible matrix)\/. Therefore
MTA=VT. SincelL(V) is complete HNF(V'T) = [I, 0], which implies thalINF (M T A) = [I,0] as
well. Since gcd is invariant under elementary column op@natgcd(MTA) = 1 = det(M ) ged(A).
This implies thatdet(M) = ged(A).

Now, we can writelet L(AT) = [det((VM)T(VM))] 1/2

= det(M) det L (V). To finish the proof,
we need to show thalet L(V') = det N(A).

SinceLL(V') is complete,VV can be completed to a unimodular matrix, €ayi.e., there exists a
matrix W such thaty = [V, W] is unimodular. Let/~! = [Y; Z], where the dimensions &f and
Z are the same as the dimensionslof and W7, respectively. The rows of are a basis oN(A)
and the projections of the columns Bf orthogonal taspan(Z ") are a basis of.(V)*. Furthermore
det(U~1) = (detL(V)*)(det N(A)) = 1, which implies thatdet L(V)* = 1/(det N(A)) and there-
foredet L(V') = det N(A) completing the proof. O

The following corollary of Propositiod, has been used in some cryptographic applications. See for

instance {3].

Corollary 1. detN(A) < det L(AT) with equality holding if and only if.(AT) is complete.

14



The following lemma summarizes some basic results in &theory that we will use later on; for a

complete proof, see for instancé(].

Lemma 1. For anm by n integral matrix A with independent rows antl = IL(AT), the following are

equivalent

(1) L is complete.

(2) Thegcd of the determinants of th@ by m submatrices ofd is 1.
(3) HNF(A) = [I,0].

(4) There exists a matrik” such thatV'; A] is unimodular.

(5) det L+ = det L.

(6) There is a unimodular matriX such that

ZAT = T

O(n—m)xm
Furthermore, ifZ is as in part §), then the last. — m rows of Z are a basis of.*.

2.2.5 RKZ Reduced Bases

Hermite’s constant’; is defined as
C; = sup {(Al(L))2 / (det L)*/* | Lis a lattice of rank} . (2.2.27)
Its values are known exactly only for< 8 and: = 24. It is known that {:(]
C; <1+i/4. (2.2.28)

Sharper asymptotic bounds are known. In our analysis, fioplgity we will use2.2.28 and for small

values ofi the Blichfeldt's upper bound/]:

. 2/i
o < 2r <Z J; 4) , (2.2.29)
™
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whereI'(.) is the gamma function.

A reciprocal Korkhine-Zolotarev (RKZ) basis is the dualdjprocal) basis of a KZ reduced basis.
Let B = [by,...,b,] be an RKZ reduced basis éfand let[b], ..., b} ] be the Gram-Schmidt orthogo-
nalization of its columns. It can be shown that the Gram-Sdhrrectors of an RKZ reduced basis of
a lattice are not too short. Combinig2.20and2.2.25we get a lower bound on the norm of the last

Gram-Schmidt vector in terms of the determinant of thedatti

1/n
167, 1> Lt;) : (2.2.30)
n
It was shown in $7] that
165 1= MéL) (2.2.31)

holds fori =1, ..., n.

2.3 Integer Programming and Branch and Bound

Given a polyhedrond), an integer programming (IP) feasibility problem is thelgem of finding an
integral vector inQ. In this thesis, we only consider feasibility problems. ©tve an IP optimization
problem, one needs to solve a sequence of feasibility prublesing binary search.

Branch and bound, which we will abbreviate as B&B, was firatli®d by Land and Doig in3/]
and is a classical method for IP feasibility (and optimiaatimore generally). It starts witf as the
sole subproblem. In a general step, one chooses a subpr@Blean integral vector, and creates new
subproblems)’ N {z|cx = ~}, wherev ranges over all possible integer values thatan take. This
is repeated until all subproblems are found to be empty, dntagral point is found in one of them.
Usually the vectorg are chosen to be the standard unit vectgré.e., we branch on the variablg).
In this case, at each level of the B&B tree, one variable isdfix€his is calledordinary B&B. In a
generalized B&Balgorithm, the vectors are allowed to be any integral vectors.

For a polyhedrorf) and an integral vectar, the width and the integer width @} alongc are

width(c,Q) = max{cz|z €@} —min{cx|z € @}, and

iwidth(c, Q) = [max{cx|r € Q}| — [min{czx|z € Q}]+ 1.
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The integer width is the number of nodes generated by bramtfaund when branching on the hyper-
planecz; in particular,iwidth(e;, Q) is the number of nodes generated when branching; ot is easy
to show that

iwidth(c, Q) < |width(c, Q)] + 1. (2.3.32)

If the integer width along any integral vector is zero, ti@ras no integral points. Given an integer
program labeled byP), andc an integral vector, we also writeidth(c, (P)), andiwidth(c, (P)) for
the width and the integer width of the LP relaxationBf) alongc, respectively. Here, the LP relaxation
of (P) is the underlying polyhedron describing the probl@ém).

Given a latticeL with basisB = [by,...,b,] and a polyhedror, the problem of determining
whetherQ contains a lattice point of is a generalization of the IP feasibility problem. Lgt. .., b}

be the Gram-Schmidt orthogonalizationtef. .. , b,,. A lattice pointz € L N @ is of the form
z =" \bj, (2.3.33)

where)\; are integers. Assume th@tis contained in a sphere of radius Then),, can take at most

(2r/ ||b; ||) + 1 different integer values. Similarly, having fixed, 1, ..., \,; A; can take at most
2r/ |67 || +1 (2.3.34)

different integer values. Note that here the vectgrdo not need to be integral vectors! This enumer-
ation process is similar to branch and bound. In this enutoargrocess, the total number of nodes

created on the level df, (i.e., on the ¢ — i 4 1)st level) is at most
H (2r/ |05 ] +1) (2.3.35)

The IP feasibility problem is NP-complet€&][ In 1983, H. W. Lenstraj6] devised a polynomial
time algorithm for the IP feasibility problem in a fixed numlmé variables. Assume that the problem
is described by the polyhedrap. His algorithm, after some preprocessing steps, using thebasis
reduction algorithm, either finds an integral pointgh or finds a branching direction along which the

polyhedron is thin, so that at moél(2"2) nodes are created, which is a constant wheis fixed.
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The algorithm is repeated for each subproblem created amtihtegral point is found in any of the
subproblems, which implies the integer feasibility(@f or all the subproblems become the empty set,
in which case the problem is integer infeasible. The uppentmn the number of B&B nodes created
per level was later improved 1©(2") [5, 39).

Kannan P 7] introduced a variant of Lenstra’s algorithm which usesklebasis reduction algorithm
instead. He showed that at thith (1 < i < n) level of the branch and bound tree, there are at most
(271)52‘/2 nodes (where the value d@fis determined by the algorithm), which implies a polynomial
number of node® (n°/?) per level O (n°/?) is not an upper bound on the number of nodes created for
each subproblem at each level!). Note that his basis remuetigorithm does not run in polynomial
time for varyingn, but runs in polynomial time only whemis fixed.

In Section2.3.1, we will briefly describe the algorithms of Lenstra and Kamnia Section2.3.2we
will introduce two experimentally very successful refofation techniques for IP feasibility problem,
namely the rangespace reformulation introduced3ifi for general IP feasibility problems and the
nullspace reformulation introduced by Aardal, Hurkens AnH. Lenstra in ] for equality constrained

IP feasibility problems; see also][

2.3.1 The Algorithms of Lenstra and Kannan for Integer Programming

In this section, we will briefly describe Lenstra’s (a modifieersion) and Kannan'’s algorithms for
integer programming. This exposition is mainly based onn€ar's survey on Algorithmic Geometry
of Numbers Pg].

Given an IP feasibility problem described by the polyhedépnthese algorithms find an integral
point in @ if there is any or prove tha® does not contain any integral point. Both algorithms run in
polynomial time for fixedn.

We start with making? a full dimensional polytope iR if it is not already; for the details see
[3€]. Lovasz in [3g] developed an algorithm to transform a polytope into a “eoti’ one. He showed
that there exists an invertible linear transformatiosuch thats; C P C S, for two concentric spheres
S1 andSy whereP = ¢Q andry/r; < (n + 1)y/n with r; being the radius of);.

Therefore the problem of finding an integral point¢his equivalent to the problem of finding a
point of the latticel. = ¢Z™ in P. LetB = [by, ..., b,] be areduced basis &f(in Lenstra’s algorithm,

we assume thaB is LLL reduced; on the other hand in Kannan’s algorithm, wsuase thatB is KZ
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reduced). Letp~'B = [¢~'by,...,¢ b, and letD = (¢7'B) T = [dy, ..., d,]. Both¢~'B andD
are bases df" (i.e., they are unimodular), sinde is a basis of the dual lattice &f(¢—' B) = Z".

Let j be the index such that’ || > b; || for i € {1,...,n}. Itis easy to show that if
rz Vi (03] /2, (2.3.36)

then P contains a point of., say/ which means thap~'¢ is an integral point irQ.
We modify Lenstra’s algorithm, using ideas from¢]. Below are the main steps of both of the

algorithms. We assume that we start with a polytgpe

Algorithms
(1) Start with a polytopé&).
(2) Make it full dimensional and let be the dimension of the full dimensional polytoQe

(3) Round@: find an invertible linear transformatiop such thatP = ¢@ is rounded. (Find- and

ro as well).

(4) Find a reduced basiB = [b1,...,b,] of L = ¢Z™ and letb;,... b} be the Gram-Schmidt

orthogonalization 0b+, ..., b,.
(5) Letj be index such thato? || >|v; || foralli € {1,...,n}.
(6) If i > /n b} /2, thenP contains a lattice point of. STOP(Q is integer feasible.

(7) Otherwise, using the basl3 = [dy,...,d,] of Z", apply backward B&Bfor n — j + 1 levels
(i.e., branch oni,z, ... ,d;x in the original space in this order). Then for each nonempty s
problem created if its dimension(gi.e., if its a single integer point), STOR, is integer feasible;

otherwise go to stef.

(8) If the algorithm never stops and all subproblems becdraemmpty set, the is integer infeasi-

ble.

Note that at each level of the branch and bound tree, the diorenf the subproblems is reduced at

least byl. Therefore the algorithm terminates in at modevels.
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Any integer pointy € @ N Z" is of the form>="_, (X;(¢™'b;)), where); are integers, and any
pointz € ( is of the same form wherg; are reals. Note that;z = A;, therefore fixing the value of
d;x to an integer is the same as fixing the value\ pfo the same integer.

In the original algorithm of Lenstra and in the follow-up gap 5, 18, 38], B&B is applied for one
level, and all the steps are repeated for each subproblatedré.e., the underlying polytope is rounded
and basis reduction is used to find a new thin direction. Inveusion, these steps are repeated for the
subproblems at the: — j + 1)st level. Therefore, the total time spent on rounding andsbrasluction
might be reduced. In1[g] which is the only implementation of Lenstra’s algorithmfag it was stated

that basis reduction is the bottleneck of the Lenstra'sritlyn (i.e., most of the execution time was

used by basis reduction).

Number of B&B Nodes in Lenstra’s Algorithm

Note that, from 2.2.14, for any/ € {j,...,n} we have

H H

If at step6, r1 < v/n || b7 || /2, then we have the following sequence of bounds on the nunfber o

d;x. Here the first expression follows frorf.8.39.

B&B nodes created after branching dpw, . . . , d;
ﬁ<273 ) ﬁ( n—l—l* nr1+1>
7 ozl Pk 167 |

“((n+ Dn by |
I (™ 1)
- ﬁ ((n+ 2tz 4 1)

< H ((n + 1)n2(£_j+1)/2)

l=j

. n—j+1
< [+ nain-s2/4] o

where the first inequality follows from the fact thatis not too large compared tq, the second from
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|07 || being large and the third fron2(3.37.

Therefore, we get a factor of
(n + 1)n2r=i+2)/4 (2.3.38)

B&B nodes per level in the B&B tree. We will not go into the ditaf the proof that this algorithm
runs in polynomial time for fixeah.

Note that whenyj is large, i.e., close ta, the upper bound in2(3.39 is small, therefore small
number of B&B nodes are created per level. On the other hahdnyvis smaller, the algorithm uses

rounding and basis reduction less frequently than in the wath a larger;.

Number of B&B Nodes in Kannan’s Algorithm

Assuming that < /n || ] || /2, the total number of B&B nodes created after branching on

dnx,...,d;x is bounded above by

g<u2b?u ) < I ()

=
n (Do b
I ()
l

<1 (10s e 55)

l=j

<.

195 |
157 |

< ((n+1Dn+1)"" J+1H

< [\/m((n + 1)n + 1)}71_]'+1 :

where the last inequality follows fron2(2.19. Therefore, there is a factor of

nP+n+1)/n—j+1 (2.3.39)

B&B nodes per level. This improves the upper bound on the raunolb B&B nodes created in the

algorithm of Lenstra.

In the next section, we describe two IP reformulation teghes which are used to improve the
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performance of B&B. These reformulations also use basigatamh, but only once to preprocess the
problem. Although, they do not result in polynomial time@ithms in fixed dimension in the worst

case, they are very efficient in practice.

2.3.2 Two Integer Programming Reformulation Techniques

A simple and experimentally very successful techniqueritgger programming based on LLL re-
duction was proposed by Aardal, Hurkens and A. K. Lenstra]ifof equality constrained IP problems.

Consider the problem
Ar = b

0< 2 <w (IP-EQ)
r € 7",
whereA is an integral matrix withn independent rows.
The full-dimensional reformulation proposed itj [s
—xp < VA <ov—ux

(IP-EQ-N)
A€ zv™

HereV andzx; satisfy

{VAIA€Z" ™} = N(A), o € Z", Az, = b,

the columns ofl” are reduced in the LLL-sense (one can also use other redases,bsuch as KZ or
RKZ). For several classes of hard equality constrained éBlpms — cf. [ 1] — the reformulation turned
out to be much easier to solve by commercial solvers thanriganal problem.

In [31] an even simpler and experimentally just as effective rafdation method was introduced.

It replaces
V< Az <b
(IP)
x €L
with
bV < (AU <b
S @y < (IP-R)

yez,
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whereU is a unimodular matrix that makes the columns4df reduced (in the LLL-, KZ-, or RKZ-
sense). It applies the same way, even if some of the ineigsailit the IP feasibility problem are actually
equalities. In 1] the authors also introduced a simplified method to compuetamulation which is
essentially equivalent toR-EQ-N).

We call (P-R) therangespace reformulatioaf (IP); and (P-EQ-N) the nullspace reformulatiomf

(IP-EQ.

1 | ‘
o q
x >

0 1 2 3 4 5 6 38 39 40 41 42 43 44

Figure 2.3: LP Relaxations of the Problem in Examphlnd its Rangespace Reformulation

Example 4. Consider the following infeasible IP problem.

186 < 33z 437z < 197
0<  a1,29, <6 (2.3.40)

r1,xo € 7.

Its LP relaxation is depicted on the first picture in Figute3. Branching onz; creates6 branch and
bound nodes; = 0,...,5fori = 1,2. Onthe other hand, branching an + x5 proves the infeasibility
of the problem at the root node; since the minimum and themaxi ofz; + x5 over the LP relaxation
of 2.3.40are 5.027 and 5.970, respectively.

When the rangespace reformulation is applied®t8.40using LLL reduction, we get the following
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problem:
186 < 4y + 5y9 <197

0< —y1+8y2 <6

(2.3.41)
0< y1—Ty2 <6
Y1,Y2 € 2.
Here

33 37 4 5

-1 8
A=[1 o], U= , AU=1-1 8

1 -7
0 1 1 -7

The LP relaxation of the reformulated probleiy8.41is depicted in the second picture in Figuze3.
The second picture clearly shows that branchingggnmmmediately proves the infeasibility of the
problem. The minimum and the maximunygfver the LP relaxation o?.3.41are again5.027 and

5.970, respectively.

Let uiy, ..., ui, be the rows o/ 1. It can be shown that branching gp, ...,y in this order in
(IP-R) is equivalent to branching owi,z, ... ,ui;z in this order in (P) (i.e., the two B&B trees are
isomorphic).

In Example4, we have

therefore branching om, in 2.3.41is equivalent to branching amy, + 22 in 2.3.40Q
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CHAPTER 3

Unifying LLL Inequalities

Several concepts of reducedness of a lattice basis are kndote most widely used one is LLL
reducedness (for details, see Sectidgh 1), developed in the seminal papéi] of Lenstra, Lenstra and
Lovasz. The quality of an LLL basis is expressed by threelfummental inequalities2(2.19-(2.2.17.
Surveys and textbook treatments of lattice basis reduconbe found in40], [2€], [47], and [42].

Improvements of the running time of the LLL algorithm weregagi, see for example Schnors.

It is natural to ask, whether the three beautiful inequeditp.2.19-(2.2.17% can be unified and
generalized: for instance, whether the product of the naritise first few basis vectors can be bounded
in terms ofdet L, or if the norm of the first basis vector can be bounded by otheairpeters of..

In this chapter we find unifying inequalities.

3.1 Generalizations of the Fundamental Inequalities in LLL Reduced
Bases
Our Theoremd and2 generalize inequalitie2(2.19 through @.2.179.

Theorem 1. Letby,...,b, € R™ be an LLL-reduced basis of the lattide anddy,...,d; arbitrary

linearly independent vectors ih. Then

b1 < 20=R/2HGE=D/A(Qet L(dy, . . ., di))"*, (3.1.1)
detL(by,...,by) < 2FO=R/24etL(dy, ..., ds), (3.1.2)
det L(by,...,by) < 2FO=F/4(det L)/, (3.1.3)

o] - [|bg] < 2FC=R/24kE=1/1 qet L(dy, . .., dy), (3.1.4)



oull - o]l < 280D/ (det L)/, (3.1.5)

In the most general setting, we prove:

Theorem 2. Letby,...,b, € R™ be an LLL-reduced basis of the lattide 1 < k < j < n, and

di,...,d; arbitrary linearly independent vectors ib. Then
detL(by,...,by) < 2K(=0)/2HRG-R)/4(det L(dy, ..., d;))*/7, (3.1.6)
byl - [|b ]l < 28M=D/2HRG=D/A(det L(dy, ..., d;))*/. (3.1.7)

By settingk andj to eitherl or n, from (3.1.6 we can recover the first two LLL inequalities, and
from (3.1.7) we can recover all three.

The main tool is Lemma&.1.8 which may be of independent interest. Foe 1 we can recover
fromitLemma (5.3.11) in(] (proven as part of Proposition (1.11) i#d]]). First, note thatiby, ..., b,

are linearly independent vectors, then
detL(by,...,b,) = detL(by,...,b,_1) ||V, (3.1.8)

whereb’ is the projection ob,, on the orthogonal complement of the linear spah;of. ., b, _1.
Lemma 2. Letd;, ..., d; be linearly independent vectors from the lattieeandbj, . . ., b;, the Gram

Schmidt orthogonalization of an arbitary basis. Then

detL(dy,...,dg) > min {05 1 1165 11} - (3.1.9)

T I<ii<<ig<n

Proof of Lemma 2

We need the following

Claim There are elementary column operations performed,on ., d;, that yieldd,, ..., d; with
t;
di =Y Ngjbjfori=1,...k (3.1.10)
j=1
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where);; € Z, \; 4, # 0, and

tp > tp—1 >+ >11. (3.1.11)

Proof of Claim Let us write

BV = [di,...,d], (3.1.12)

with V' an integral matrix. Analogously to how the Hermite Normakroof an integral matrix is

computed, we can do elementary column operation® om obtain}” with

tp = max{i\@ik;&O} > tp_q = max{i]@i,k_l 750} > ... > 1= max{i]@il 750}

(3.1.13)
Performing the same elementary column operationg;on . , d;, yield dy, . . ., d;, which satisfy
BV = [di,...,ds], (3.1.14)
so they satisfy.1.10.
End of proof of Claim
Obviously
det L(Jl,...,dk) = det ]L(dl,...,dk). (3.1.15)
Substituting from 2.2.9 for b; we can rewrite§.1.10 as
di =) Mbifori=1,... .k (3.1.16)
j=1
where the\}; are now reals, buk}, = \;;, nonzero integers.
For alli we have
span{dy,...,di—1 } C span{bj,..., b},  }. (3.1.17)

Therefore

IProj {d [ {dr.....dis Y-} > [ Proj {di | {05, b5, }*}II= [ Meesb, = 157, (31.18)
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holds, with the second inequality coming frot11.11). HereProj {d; |{d1,...,d;_1 }* } is the pro-

jection ofd; orthogonal tospan{dy, . ..,d;_1}. So applying 8.1.8 repeatedly we get

det L(Jl,...,dk) > det]L(ch,...,CZk_l) ”b;fkk ”
(3.1.19)

Y

167, 1163, 11 - - 1o 1T,

which together with$.1.15 completes the proof. O

3.2 Proofs of Theorem 1 and Theorem 2

The plan of the proof is as follows: we first prove 1.1) through 8.1.3 in Theorem 1. Then we
prove Theorem 2. Finally3(1.4) follows as a special case &.(.7) with j = k; and @.1.5 as a special

case of 8.1.7) with j = n.

Proof of (3.1.1) and (3.1.2 Lemmaz2 implies

det L(di,....di) > 65 b5 1 - 115, | (3.2.20)
for somet, ..., t; € {1,...,n} distinct indices. Clearly
t1 4+t <kn—k(k—1)/2 (3.2.21)

holds. Applying first 2.2.14, then 3.2.21) yields

(det L(dr,...,dg))? > |b7]? 20710 o ||py )2 20—t
= [|og || 2kt (3.2.22)

v

H by H2k 2k(k+1)/2—kn,
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which is equivalent to3.1.1). Similarly,

(det L(dy,...,dg))% > ||b]|2 2070 ||b5 |2 2312 . |65 ||? 20k—t)
= o] ... || bp | 20 R —(tattte) (3.2.23)
S Y 14/
which is equivalent to3.1.2).
U

Proof of (3.1.3 The proof is by induction. Let us writ®;, = (detL(by,...,b;))%. Fork =n —1,

multiplying the inequalities

lor < 2" o5 |1? (i=1,...,n—1) (3.2.24)
gives
Dpy < 20D(fr 2t (3.2.25)
_ gn(n-1)/2 <%>n_17 (3.2.26)
and after simplifying, we get
Dy < 20=D/2(pyi=t/n, (3.2.27)
Suppose that3(1.3 is true fork < n — 1; we will prove it for k — 1. Sincebs, ..., b, forms an

LLL-reduced basis of(by, ..., b;) we can replace by k in (3.2.27 to get

Dy

IN

2(k=1)/2(py)k=1)/k, (3.2.28)
By the induction hypothesis,

D, < 2F=R/2(p yk/n (3.2.29)
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from which we obtain

(Dk)(k—l)/k < 2(k—1)(n—k)/2(Dn)(k—l)/n.

Using the upper bound ofD;,)*~1/* from (3.2.30 in (3.2.29 yields

Dy, < 2(k—1)/22(k—1)(n—k)/2(Dn)(k—l)/k

= kD12 ) (k=1)/n

Y

as required.

Proof of Theorem 2 From 3.1.3 and @.1.2 we have

det]L(bl, ooy be)

IN

detL(by,...,b;) < 20=9D2detL(dy,...,d;).
Raising B.2.39 to the power ofc/j gives
(det L(by, ..., b)) < 2k(=0)/2det(L(dy, ..., d;)*7,

and plugging 8.2.33 into (3.2.33 proves 8.1.6.

It is shown in 35] that
lo: |2 < 2071 ||bF||? for i=1,...,n.
Multiplying these inequalities for = 1,. .., k yields
b1 - |br]] < 2D/ detL(by, ..., by),

and using 8.2.37 with (3.1.6 yields 3.1.7).
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3.3 Discussion

The kth successive minimum aof. is the smallest real number such that there arg linearly
independent vectors ih with length bounded by. It is denoted by\;(L). With the same setup as for
(2.2.19-(2.2.17) it is shown in 5] that

o] < 2" 'M\(L)fori=1,...,n. (3.3.38)

For KZ and block KZ bases similar results were shownsif] pnd [46], respectively.

The successive minimum resul& $.39 give a more global view of the lattice and the reduced basis,
than @.2.15 through @.2.17%. Our Theoren? is similar in this respect, but it seems to be independent
of (3.3.39. Of course, multiplying the latter for= 1, ...,k gives an upper bound dfb; || --- || bk ||,
but in different terms.

The quantitieslet L(b1, ..., b;) and||b1 || ... || by || are also connected by

det L(by,...,br) = |b1] ... ||bk] sinfy...sin6y, (3.3.39)

wheref; is the angle ob; with the subspace spannedfyy. .., b;_;. In [5] Babai showed that the sine
of the angle ofanybasis vector with the subspace spanned by the other basiss/@tad-dimensional

lattice is at leasty/2/3)?. One could combine the lower bounds «in §; with the upper bounds on
detL(by,...,b;) to find an upper bound ofb; || ... || b || . However, the result would be weaker

than 3.1.4 and 3.1.5.
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CHAPTER 4

Branching on a Near Parallel Integral Vector in a Knapsack

Problem

The knapsack problem is one of the most studied problemsritbtw@torial optimization and has
many real life applications. In this chapter, we show tha knapsack feasibility problem an integral
vectorp which is near parallel to the constraint vectogives a branching direction with small integer
width. This result is used to analyze the rangespace andullspace reformulations of the knapsack
problem. We prove an upper bound on the integer width alordast variable in the reformulated
problems, which becomeswhen the density is sufficiently small, i.e., whgn || is sufficiently large
(for a formal definition of the density of a knapsack probleme Sectiorb.2). The proof ingredients
may be of independent interest. We extract, from the tranmsftion matrices, an integral vector which
is near parallel to the constraint vectar The near parallel vector is a good branching direction @ th
original problem and a transference result shows that steviiable is a good branching direction in

the reformulations.

4.1 Reformulations of the Knapsack Problem

The reformulation methods explained in Secti®i3.2 are very easy to describe (as opposed to
say Lenstra’s or Kannan's method), but seem difficult to yaeal The only analyses are for knapsack
problems, with the weight vector having a given “decompteSadtructure, i.e.q = A\p + r, with p, r,

and) integral, and\ large with respect tp| and| | —see B, 31].



The goal of this chapter is to analyze these reformulationthe knapsack feasibility problem

B <axr < [

0 <z< w (KP)

x €7,

whereaq is a positive, integral row vectofj; andg. are integers, without assuming any structure on
the constraint vectoa priori. We will assume only thdf a || is large — in fact, a key point will be that
the large nornimpliesa decomposable structure, and this structure is autortiatidescovered” by the
reformulations.

The rangespace reformulation &fF) is

fr < aly < B
0 <Uy< w (KP-R)

yez,

a
whereU is a unimodular matrix that makes the columns|of | U reduced in the LLL-sense (we do
I

not analyze it with KZ reduction). The nullspace reformigiatis

—r3< VA <v—upg (KP-N)
A€ ™,

wherezg € Z", axg = 3, {VA|X € Z""™} = N(a) and the columns of" are reduced in the
LLL-sense.

Throughtout the chapter, we will assuhe< 5, < (B < av, and that the gcd of the components
of ais 1. For arational vectos we denote byound(b) the vector obtained by rounding the components

of b.

For ann-vectora, we will write

flay = 24/ |lall™,

(4.1.1)
ola) = 20/ |laf /0D
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4.2 Main Results

In this section, we will review the main results of the chaptfve some examples, explanations,
and some proofs that show their connection.

The main purpose of this section is an analysis of the ref@tiom methods. This is done in
Theorem3, which proves an upper bound on the number of B&B nodes, whanching on the last
variable in the reformulations.

Theorems4 and 5 show that an integral vectgr, which is “near parallel” taz can be extracted
from the transformation matrices of the reformulations.e Hotion of near parallelness that we use is
stronger than just requiringin(a, p) to be small. The relationship of the two parallelness cotscep
clarified in Propositior2.

Theorem6 proves an upper bound awidth(p, (KP)), wherep is an integral vector. A novelty of
the bound is that it does not depend@nandj,, only on their difference. We show through examples
that this bound is quite useful whenis a near parallel vector found according to Theorérasd5.

In the end, a transference result between branching directin the original, and reformulated

problems completes the proof of Theor8m

Theorem 3. Supposeé|a|| > 2(*/2+1)7_ Then
(1) iwidth(en, (KP-R) < [ f(a)2 [v] +(82 — B1))] + 1.
(2) iwidth(en—1, (KP-N)) < [2g(a) [|v]]] + 1.

Givena andp integral vectors, we will need the notion of their near datakéss. The obvious thing

would be to require thdtsin(a, p)| is small. Instead, we will write a decomposition

a=Ap+r withAeQ, reQ” rlp, (DECOMP)

and ask for|| || /A to be small. The following proposition clarifies the conmeatof the two near

parallelness concepts and shows two useful consequentes lafter one.

Proposition 2. Suppose that,p € Z™, andr and X are defined to satishECOMBP). Assume w.l.0.g.
A > 0. Then

(1) sin(a,p) <|r|/A
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(2) ForanyM there exists, p with ||a||[> M such that the inequality inlj is strict.

(3) Denote by, anda; theith component g anda. If ||| /A < 1, andp; # 0, then the signs of
p; anda; agree. Also, if|r|| /A < 1/2, then|a;/\] = p;.

Proof Statement) follows from

sin(ap) = lrl/llal<lrl/ I1wl< 7l /A (4.2.2)

where in the last inequality we used the integralitypof

To see P), consider the family of, andp vectors

a = <m2+1, m2>7
(4.2.3)

p = <m+1, m)

with m an integer. Letting\ andr be defined as in the statement of the proposition, a straigtreid

computation (or experimentation) shows thatras— oo

sin(a,p) — 0,

e /A — 1/V2.
StatementJ) is straightforward from
al//\ = pi+TZ'/>\. (4-2-4)

O
The next two theorems show how the near parallel vectors edound from the transformation

matrices of the reformulations.

Theorem 4. Supposé| a | > 2(*/2+1" | etU be a unimodular matrix such that the columns of

35



are LLL-reduced ang the last row oft/ 1. Definer and \ to satisfy DECOMP), and assume w.l.0.g.
A > 0.
Then

@ lpll @+ e[ <llal| £(a);
(2 A>1/f(a);
@) lIrll /A <2f(a).
O

Theorem 5. Supposé| a || > 2("/2*1n_ etV be a matrix whose columns are an LLL-reduced basis
of N(a), b an integral column vector withb = 1, andp the (n — 1)st row of (V,b) 1. Definer and A
to satisfy PECOMBP), and assume w.l.o.g\ > 0.

Thenr # 0, and

@ lpllirli<lal gla);
@) lIrll /A < 2g(a).

U
It is important to note that is integral, but\ andr» may not be. Also, the measure of parallelness
to a, i.e., the upper bound dpr || /X is quite similar for thep vectors found in Theorem¥and>5, but
their length can be quite different. Whém || is large, thep vector in Theoremt is guaranteed to be
much shorter tham by A > 1/f(a). On the other hand, the vector from Theoren® may be much

longerthana : the upper bound ofip ||| 7 || does not guarantee any bound [pp||, sincer can be

fractional.

The following example illustrates this:

Example 5. Consider the vector

a = <3488, 451, 1231, 6415, 2191)- (4.2.5)
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We compute@,, r1, A; according to Theorem:

= (62, 8, 22, 114, 39>,
r = — - )
1 0.2582, 0.9688, 6.5858, 2.0554, 2.9021> (4.2.6)
A1 = 56.2539,
”7“1 ” /)\1 = 0.1342.
We also computeph, r2, A2 according to Theorer; note || ps ||>] a||:
p2 = 12204, 1578, 4307, 22445, 7666)
T = — i —
2 0.0165, 0.0071, 0.0194, 0.0105, 0.0140> (4.2.7)
Ay = 0.2858
||T‘2H //\2 = 0.1110.
]

Theoremb6 below gives an upper bound on the number of B&B nodes wherchiiag on a hyper-

plane in KP).

Theorem 6. Suppose that = Ap + r, withp > 0. Then

iwidth(p, (KP)) < {”T‘w”” + 52;51J +1. (4.2.8)

This bound is quite strong for near parallel vectors conghétem Theoremsl and5. For instance,
leta, p1, r1,A\1 be asin Examplé. If 5, = (5 in a knapsack problem with weight vectoand each
x; IS bounded betweet and3, then Theoren® implies that the integer width is at most one. At the
other extreme, it also implies that the integer width is astome, if eachr; is bounded betweehand
1, andg, — 81 < 39. However, this bound does not seem as useful, whisra “simple” vector, say a
unit vector. Note that the assumption that 0 is only to simplify the proofs.

We now complete the proof of Theoreinbased on a simple transference result between branching

directions, taken from{1].

Proof of Theorem 3
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Let us denote by), Qr, and@  the feasible sets of the LP relaxations &/, of (KP-R), and of
(KP-N), respectively.
First, letU andp be the transformation matrix, and the near parallel vectonfTheoremi. It was

shown in B1] thatiwidth(p, Q) = iwidth(pU, Qr). ButpU = +e,, SO

iwidth(p, Q) = iwidth(e,, QR). (4.2.9)

On the other hand,
iwidth(p, Q)

IN

Irlllel , B2 =6
el 22

Lf(@)2 [[o]l +(B2 = 1)) +1

(4.2.10)

IN

with the first inequality coming from Theorefand the second from using the boundsign and
||| /A from Theoremd. Combining ¢.2.9 and @.2.10 yields (L) in Theorems3.
Now let V' andp be the transformation matrix, and the near parallel vectonfTheorenb. It was

shown in B1] thatiwidth(p, Q) = iwidth(pV, Qn). ButpV = +e,_1, SO

iwidth(e,_1,Qn) = iwidth(p, Q). (4.2.11)
On the other hand,
iwidth(p,Q) < HT”HUHJJFI
A (4.2.12)
< lg(@)2]v])] +1.

with the first inequality coming from Theorefand the second from using the bound|pn|| /A in

Theoremb. Combining ¢.2.110) and @.2.12 yields @) in Theorem3.

4.3 Near Parallel Vectors: Intuition and Proofs of Theorems4 and 5

Proof of Theorem4 First note that the lower bound d || implies

f(a) <V3/2. (4.3.13)
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a
Let L, be the lattice generated by the fifstolumns of U, and

I
0 Ut
7 =
1 —a
Clearly, Z is unimodular and
aU 1,
Z = . (4.3.14)

U 01><n

So Lemmal implies thatL, is complete and the last+ 1 — £ rows of Z generateLj. The last row of

Zis (1, —a) and the next-to-last i), p), so we get

detL, = detLl: = (||a|?® +1)Y?,

(4.3.15)
det Ly = det L, =|lp|| (1+ [|7)"/2.
(3.1.3 of Theoreml implies
det L,,; < 20=D/4(det L,)'=1/". (4.3.16)
Substituting into 4.3.19 from (4.3.19 gives
Ipll I+ 752 < 207 DA Tal? +1)'-1n
< on/4 ”aul—l/n (4.3.17)

lall f(a),

with the second inequality coming the lower boundjer]|. This shows ).
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Proof of (2) From (1) we directly obtain

fla? llall® —NIrl* o f@?lal® = lplP]r]?
[ p]? - [ p]2
1 (4.3.18)
f(a)? ||al]?
fa)? [|al*’

v

where in the first inequality we uséig || > 1. Now note

IplI*< f(a)? llal?,

i.e., the the denominator of the first expressiondir8(19 is not larger than the denominator of the last

expression. So if we replagda)? by 1 in the numeratorof both, the inequality will remain valid. The

result is
lal* =l 1
4.3.19
P 2 @ (4319
which is the square of the required inequality.
Proof of (3) We have , i
IITLI < el Hrzll
A [Ap|
_ PP
lall> = 7]
2 2
< @ lal
lal® =1~
(4.3.20)
. @l

lall* —f(a)? [la|?

f(a)?
1— f(a)?

< 4f(a)?,

where the last inequality comes from 8.13 and the others are straightforward.
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Proof of Theorem5 The lower bound offf || implies

g(a) < V3/2. (4.3.21)

Let L, be the lattice generated by the fifstolumns ofl/. We have

v,p)y"lv = : (4.3.22)

So Lemmal implies thatZ, is complete and the last—¢ rows of (V, b) ! generate. /. Itis elementary
to see that the last row @, b)~! is a and by definition the next-to-last row js and these rows are

independent, so # 0. Also,

detL,_; = detL: , =|al,
(4.3.23)
det Lo = detLy_, =|plll7]l.
(3.1.3 of Theoreml with n — 1 in place ofn andn — 2 in place ofk implies
det L,y < 20=2/4(det L,_,)}~/ (=1, (4.3.24)
Substituting into 4.3.29 from (4.3.23 gives
rll < 9m=2)/4 || 4|1-1/(n-1)
el < lal 325

= llal g(a),
as required.

Proof of (2) Itis enough to note that in proof o8) in Theorem4 we only used the inequalityp ||?||
r[?< f(a)? ||a|?® . So the exact same argument works here as well wi) instead off(a), and

invoking (4.3.2]) as well.
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4.4 Branching on a Near Parallel Vector: Proof of Theorem6

This proof is somewhat technical, so we state and prove saireniediate claims, to improve

readability. Let us fixa, p, 81, (52, andv. For a row-vectorw and an integef we write

max(w,f) = max{wz|pr </l 0<z<w
(. twelp ) (4.4.26)
min(w,?) = min{wz|pr >, 0<z<v}.

The dependence om on v and on the sense of the constraint (i€.,or >) is not shown by this
notation; however, we always uge < ¢ with “max” andpz > ¢ with “min”, and p andv are fixed.
Note that as: is a row-vector an@ a column-vectorgu is their inner product, and the meaningpafis

similar.

Claim 1. Suppose that; and/, are integers in{0, ..., pv}. Then

min(a, l2) — max(a,l1) > —|[|r]|/||v]| +A(l2 — £1). (4.4.27)

Proof The decomposition af shows

max(a,?;) < max(r,f1)+ My, and (4.4.28)
min(a,f2) > min(r,ly) + Ms.
So we get the following chain of inequalities, with ensuixglanation:
min(a, f2) — max(a, 1) > min(r,ly) — max(r,f1) + A\(la — £1)
> rxg—rxy + ANly —{) (4.4.29)

= 7“(1‘2 — 1’1) + )\(62 — 51)
= Irllfloll +A(l2 — 61).

v

Herez, andz; are the solutions that attain the maximum and the minimumiir(r, /) andmax(r, £1),
respectively. The last inequality follows from the facttttize ith component o, — x; is at most; in
absolute value and the Cauchy-Schwartz inequality.

End of proof of Claim 1
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Next, let us note

min(a, k) < max(a,k) for k € {0,...,pv}. (4.4.30)

Indeed, ¢.4.30 holds, since the feasible sets of the optimization probletefiningmin(a, k) and
max(a, k) contain{z |pr =k, 0<x <wv}.
The nonnegativity op and ofa imply min(a,0) = 0 and max(a, pe) = av. The proof of the following

claim is trivial, hence omitted.

Claim 2. Suppose that; and/; are integers in{0,...,pv} with ¢/, + 1 < /5 and

max(a,l1) < /1 < o < min(a, l3). (4.4.31)

Then forallz with3; < ax <[5, 0 <z <w

1 < px < lo (4.4.32)

holds.

We assume for simplicity

max(a,0) < B < (2 < min(a, pe); (4.4.33)

the cases when this fails to hold are easy to handle separh@dl/; be the largest and, the smallest
integer such that

max(a,f1) < 1 < [z < min(a, f2). (4.4.34)

From @.4.3Q ¢5 > ¢ + 1 follows and Claim?2 yields

iwidth(p, (SUB)) < fy — {1 — 1. (4.4.35)

By the choices of; and/, we have

f1 < max(a, ¢, + 1) and 3y > min(a, o — 1), (4.4.36)
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hence Clainll leads to

fo — 1 > min(a,lp — 1) — max(a,l; + 1)

(4.4.37)
> —|lrlllvll +A(l — &6 —2),
that is
by —11—2 < ﬁz_ﬁl—l-HTHHUH. (4.4.38)
A A
Comparing ¢.4.39 and ¢.4.39 completes the proof.
]

4.5 Successive Approximation

Theorems? and5 approximates by a single vector. It is natural to ask: if one rowf !, or of
(V,b)~! is a good approximation af, can we construct a better approximation frem, . .., k rows?

The answer is yes and we outline the corresponding resutie/joend their proofs, which are slight
modifications of the proofs of Theorerdsand5. As of now, we don’'t know how to use the general
results for a better analysis of the reformulations thantwghalready given in Theorei®

So we mainly state the successive approximation resulthéinteresting geometric intuition they

give. Let us define
flak) = 20D/ g Fn,

glak) = 2MIERA g |0/

(4.5.39)

The successive version of Theordrs given below:

Theorem 7. Leta € Z™ be a row-vector, with a ||> 2"/ a unimodular matrix such that the

columns of

a

U
I

are LLL-reduced and, the (integral) submatrix of/ ~! consisting of the last rows. Furthermore, let

a(k) be the projection of onto the subspace spanned by the rows,ofr = a — a(k) and

Ao = a(k)|| / det(PPL)2.
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Then
(1) (det(PPO)2 (1 [|r )2 <|lall f(a, k);
(2 A = 1/f(a, k);
(3) [sin(a, a(k))| <[[7 ]| /Ax < 2f(a, k).

Proof sketch We will use the notation of Theoreth In its proof we simply changet(3.19 (we copy

the first expression fatet L,, for easy reference) to

det L, = detLl: = (||a|?®+1)Y?,

(4.5.40)
det L, = detL} , = (det(P,P)Y2(14 || |*)"?,
and ¢.3.19to
det L, < 2F0=R/4(det L) —F/m. (4.5.41)
Then substituting into4.5.41) from (4.5.4Q gives
(det(PeBD)Y2(14 |12 < 20 =R /a2 +1)1k/n
< 2k(n=R)+1/4 /| g ||k (4.5.42)

= llall f(a, k),

with the second inequality coming the lower bound|jom||. This shows {) and the rest of the proof
follows verbatim the proof of Theorerh O

Theoremb also has a successive variant, which is

Theorem 8. Supposé| a || > 2"/t LetV be a matrix whose columns are an LLL-reduced basis
of N(a), b an integral column vector withb = 1, £ < n—1 an integer, and®;, the (integral) submatrix

of (V,b)~! consisting of the next-to-lagt rows.

Furthermore, letz(k) be the projection of onto the subspace spanned by the rowBofr = a — a(k)

and

Ae =|la(k)| / det(PPE)Y2.

Thenr # 0 and
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(1) (det(PLBINY? [IrlI<llal gla, k);

(2) [sin(a, a(k))| <[[7] /X < 2g(a, k).

Proof sketch We will use the notation of Theoret We need to replacel(3.23 with

deth_l = detL,J;_l :H(IH,
(4.5.43)
det Ln_1_, = detL: . = (det(PPT)V2|r| .
Theorem2 implies
det Ly_1_p < 2Fm=1=R)/4(det L,_y)1—k/(n=1), (4.5.44)
Plugging the expressions fdet L,,_1; anddet L,,_1_; from (4.5.43 into (4.5.449) gives
det(P.PTVWY2 (|- < 9k=1=k)/4 || 4 |[1=F/(n=1)
(det(Bp By, )= Ir |l < ol (4.5.45)

= g(a, k) |al,

proving (1). The rest of the proof is an almost verbatim copy of the amoading proof in Theorem

5. O

4.6 Discussion

Computing a near parallel vector can be done in other wayse#ls Whe relevance of Theoremnds
and5 is not just finding near parallel vectors: it is finding a nearghlel p, which corresponds to a unit
vector in the rangespace and nullspace reformulations,l#fading to the analysis of Theoréin

Finding an integral vector, which is near parallel to an oihegral or rational one has other ap-
plications as well. Inf4] Huyer and Neumaier studied several notions of near pémalis, presented
numerical algorithms, and applications to verifying thadieility of a linear system of inequalities.

Theoremst and5 approximates by a single vector, last row df—!. In Chapters, we will show
that branching on multiple rows in succession (i.e., ontdastof U1, ..., first row of U~ 1!) is also
beneficial in solving the majority of the randomly generatadpsack problems.

In the next chapter, we show that for a low density subset suilgm, there is a polynomial time

computable certificate of infeasibility for almost @llinteger right hand sides. This implies that for
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almost all right hand sides, the integer width along thevas@ble in the rangespace reformulation of

a low density subset sum problem is zero.
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CHAPTER 5

Branching Proofs of Infeasibility in Low Density Subset Sum

Problems

5.1 Introduction

In this chapter, we prove that the subset sum problem

ar = f
xz € {0,1}"

(SUB)

has a polynomial time computable certificate of infeagipilor all « with density at most /(2n) and
for almost all integer right hand sidés The certificate is branching on a hyperplane.

The proof has two ingredients. We first prove that a “shortee that is near parallel ta is a
suitable branching direction, regardless of the densityenTwe show that for a low densitysuch a
short and near parallel vector can be computed using didipleaapproximation, via a methodology
introduced by Frank and Tardos ing). We also show that the last row &f~!, the inverse of the
transformation matrix, in the rangespace reformulatiamalao be used to prove the same result, which
implies that the infeasibility of almost all low density sgh sum problems can be proved by branching

on the last variable after the problem is reformulated uiiegangespace reformulation.

5.2 Literature Review

The subset sum probleny{/ B) is one of the original NP-complete problems introduced layK

[29]. A patrticular reason for its importance is its applicalilin cryptography. With: being a public



key andx the message, one can transit= ax instead ofz. An eavesdropper would need to find
x from the intercepteds and the publica, i.e., solve fU B), while a legitimate receiver can use a
suitable private key to decode the message. In cryptograpplications, instances with low density are

of interest, with the density of € Z™ defined as

n

~ logy [lalle”

d(a) (5.2.1)

A line of research started in the seminal paper of LagariasQ@allyzko [33], focused on solving
such instances. IiB[] the authors proved that the solution t&((3) can be found for all but at most
a fraction of1/2" of all a vectors withd(a) < ¢/n and assuming that the solution exists. Heis a
constant approximately equal 4. Frieze in [L6] gave a simplified algorithm to prove their result.

From now on we will say that a statement is true for almostlalents of a se¥, if it is true for at
least a fraction ol — 1/2" of them, with the value of. always clear from the context.

Furst and Kannan inl[/] pursued an approach that looked at both feasible and ibfedsstances.
In [17] they showed that for some constant 0, if M > 278" then for almostalk € {1,..., M }"
and all 3 the problem §U B) has a polynomial size proof of feasibility or infeasilyjlitTheir second
result shows that for some constaht- 0, if M > 2d"2, then for almost alb € {1,..., M }" and all
0 the problem §U B) can besolvedin polynomial time.

All the above proofs construct a candidate solutionstd’ (3) as a “short” vector in a certain lattice.
Finding a vector whose length is off by a factor of at ni8t 1)/2 from the shortest one is done utilizing
the LLL basis reduction method.

Assuming the availability of dattice oracle which finds the shortest vector in a lattice, Lagarias
and Odlyzko in 3] show a similar result under the weaker assumptiom) < 0.6463. The current
best result on finding the solution of almost all solvablesslsum problems using a lattice oracle is
by Coster et al. 17]: they require onlyd(a) < 0.9408. It is an open question to prove the infeasibility
of almost all subset sum problems with density upper bourxed constant, without assuming the

avalilibility of an oracle. For more references, we referltg] and [47].
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5.3 Main Results

In this section we look at the structure of low density sulsseh problems from a complementary,
or dual viewpoint. WithP a polyhedron and an integral vector, it is clear th&t has no integral point

if vz is nonintegral for alle € P. We will examine such proofs of infeasibility ob(V B). Let
G(a,v) = {pBeZ|vxgZforall zwithar =035,0<x <e}, (5.3.2)

wheree denotes a column vector of all ones. We will say that for tgatrhand sideg in G(a,v) the
infeasibility of (SUB) is proven by branching onxz. The reason for this terminology is that letting
P={zlax=06,0<z<e}, fisinG(a,v) iff both the maximum and the minimum ofc over P
are between two consecutive integers.

We shall writeZ'; , andZ’; , for the set of nonnegative and positive integralectors, respectively.
We will throughout assume > 10, and that the components @&re relatively prime. We only consider

nontrivial right hand sides ofYU B), i.e., right hand sides frofi0, 1,. .., ||a]1 }.

Ouir first main result is:

Theorem 9. Supposel(a) < 1/(2n). Then we can compute in polynomial time an integral veetor
such that for almost all right hand sides the infeasibilif( 68U B) is proven by branching onz.

Also,G(a,v) can be covered by the disjoint union of at m2&t” intervals, each of length at least
2m,

U

Note that Theorem further narrows the range of hard instances from the worluo$ttand Kannan
in[17].

There are at mos1” right hand sides for whichqU B) is feasible, so most right hand sides lead
to an infeasible instance, whetta) is small. However, in principle, it may be difficult forove the
infeasibility of many infeasible instances. Fortunatéfys is not the case, as shown by the following

corollary.

Corollary 2. Leta andwv be as in Theorer. Then for almost all right hand sides for whicRI( B) is

infeasible, its infeasibility is proven by branching on.
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U
There is an interesting duality and parallel between thaltesn low density subset sum inZ
, 33] and Theoren®. The proofs in 12, 17, 33] work by constructing a candidate solution, while
ours works by branching, i.e., by a dual method. At the same,tthey all rely on basis reduction. In
our proof we findv by a method of Frank and Tardos i, which uses the simultaneous diophantine
approximation method of Lenstra, Lenstra and Lovast, which in turn, also uses basis reduction.
Theorem9 will follow from combining TheoremslO and 11 below. TheoremlO proves that a
“large” fraction of righ hand sides inS{U B) have their infeasibility proven by branching en, if
v is relatively short and near parallel &0 Theoreml1 will show that such a can be found using

diophantine approximation, whefia) < 1/(2n).

Theorem 10. Letv € Z%}, A e R, r e R®withA > 1, || [j; /A < 1, and
a=Av+r.

Then the infeasibility of all but at most a fraction of

21l +1)

; (5.3.3)

right hand sides is proven by branching omn.
In addition, G(a,v) can be covered by the disjoint union of at mpst||; intervals, each of length

at leastA— || ||1.

Theorem 11. Supposel(a) < 1/(2n). Then we can compute in polynomial time Z7, A € Q, r €

Q" witha = Av 4+ r, and
(1) vl < 22
@) 7l /A <1727

(3) A >2nt2,
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5.4 Proofs

Proof of Theorem 10 Let us fixa andv. Sincea andv are nonnegative, andis a column vector of all
ones, it holds that

la|l1= acand ||v]|1= ve,

and we will use the latter notation for brevity.

Recall that for a row-vectow and an integef we write

max(w,?) = max{wz|ve <l 0<z<e}, (5.4.4)

min(w,?) = min{wz|ve > 0<z<e}.

The dependence an and on the sense of the constraint (i€.,0r >) is not shown by this notation;

however, we always user < ¢ with “max” andvx > ¢ with “min”, and v is fixed.

Claim 3. We have

min(a, k) < max(a,k) for k € {0,...,ve}, (5.4.5)
max(a, k) —min(a, k) < ||rf]y for k€ {0,...,ve}, and (5.4.6)
min(a, k + 1) —max(a,k) > —| 7|1 +A>0for k € {0,...,ve — 1}. (5.4.7)

Proof The feasible sets of the optimization problems definingy(a, k) and max(a, k) contain
{z|ve =k, 0<z<e}, sop.4.9 follows.
The decomposition af shows that for alf; and/, integers for which the expressions below are defined,

max(a,f1) < max(r,¢1)+ M1, and
(@ 4) (nf)+ b (5.4.8)

min(a,f2) > min(r,ly) + Mg,

hold. Therefore

min(a, o) — max(a,f;) > min(r,ly) — max(r,l1) + A(ly — {1)

= lIrllh +A(l2 — £1).

(5.4.9)

\%
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follows, and 6.4.9 with /5 = ¢1 = k implies 6.4.9, and withés = k + 1, 1 = k yields 6.4.7).

Hence

min(a,0) < max(a,0) < min(a,1) < max(a,1) < --- < min(a,ve) < max(a,ve).  (5.4.10)

We will call the intervals

[min(a,0), max(a,0)],..., [min(a, ve), max(a, ve)]

bad and the intervals

Go = (max(a,0),min(a, 1)),...,Gpe—1 := (max(a,ve — 1), min(a, ve))

good

The nonnegativity ob and ofa imply min(a,0) = 0 and max(a,ve) = ae, so the bad and good
intervals partition0, ae|: the pattern is bad, good, ..., good, bad. Some of the bad/aiéemay have
zero length, but by5.4.7) none of the good ones do.

Next we show that the good intervals contain exactly thetitigimd sides for which the infeasibility

of (SU B) is proven by branching on.

Claim 4.

G(a,v) = UGN Z. (5.4.11)

Proof By definition 3 € G(a,v) iff for some ¢ integer with0 < ¢ < ve — 1 and for allz with

0<z<e axr=p

C<vr</l+1 (5.4.12)

holds. We show that for thié
max(a,f) < @ and (5.4.13)
min(a,l+1) > f. (5.4.14)

53



First, assume to the contrary that4.13 is false, i.e., there exists, with

ar1 > B, vr1 <f,0<z <e. (5.4.15)

Sincel > 0, denoting byz- the all-zero vector, it holds that

axre < B, vy <L, 0<1xy <e. (5.4.16)

Looking at 6.4.19 and £.4.19 it is clear that a convex combination of andx,, sayz satisfies

ax=0,vx <0, 0<zT<e, (5.4.17)

which contradicts%.4.13. Showing 6.4.19) is analogous.
End of proof of Claim 4

To summarize, Claimd implies thatG(a,v) is covered by the disjoint union afe intervals. By
(5.4.7) their length is lower bounded by— |||, .

Let us denote by the number of integers in bad intervals andgohe number of integers in good
intervals, i.e.g = |G(a,v)|. Using 6.4.9 and 6.4.7), and the fact that there are good intervals and

ve + 1 bad ones, we get
g = ve(A—|rl —1),

(5.4.18)
b < (ve+1)(||r]1 +1),
SO
g ve A—(|[r[1 +1)
= 5.4.19
b — we+1 | rlh+1 ( )
LA=(lI7 ]l +1)
> 22U +1) 5.4.20
SR Ty s (5.4.20)
A
> (5.4.21)
2([r [l +1)
and from here
b 1
- = - 5.4.22
g+b 1+g/b ( )

54



2l +1). (5.4.23)

follows. O

Proof of Theorem 11

We will use a methodology due to Frank and Tardos introdungdX]. Here the authors employ
simultaneous diophantine approximation to decomposetamvgith large norm into the weighted sum
of smaller norm vectors. We will only need one vector thatrapjmnatesa and the parameters will be
somewhat differently chosen in the diophantine approxionat

We will rely on the following result of Lenstra, Lenstra andiasz from B5:

Theorem 12. Given a positive integelV anda € Q™, we can compute in polynomial tinmec 7, q €

Z., , such that

1
lga — v < N and (5.4.24)
g < ontth/Anm, (5.4.25)
O
We will use Theoreni2 with
. a
lalloo’
then set
A= —HGHOO, r=a-—\v.

We have the following estimates with ensuing explanation:

[vlli < nv]e< ng < n2n AN, (5.4.26)

—”TAHI < n”:”"" < = (5.4.27)
||aHoo 22n2—n(n+1)/4

A2 e 2 N (5.4.28)

Here 6.4.26 follows from using 6.4.29, since|| g ||.o= ¢ andwv is integral. The second inequality

in (5.4.27 is actually equivalent to5(4.29; and 6.4.2§ comes from the definition ok and 6.4.25.
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Hence (1), (2), and (3) in Theorehi are satisfied when

nonn+1)/4 nmn < 22n2’ (5.4.29)
n
L (5.4.30)
22n2—n(n+1)/4
S (5.4.31)

But (5.4.29 through 6.4.31) are equivalent to

and such an intege¥ exists, whem > 10. O

Proof of Corollary 2 LetI(a) be the set of right hand sides for whichi(( B) is infeasible. Theorem

9 states
G(a,v)| 1
— > 11— —. 5.4.33
”CLHl +1 — AL ( )
Sincel(a) C{0,...,|all1 }, Theorem9implies
G(a, )] 1
>1——; 5.4.34
I(a) ~— on’ ( )
and sinc&&(a,v) C I(a), (5.4.39 means the desired conclusion. O

5.5 Discussion

Looking at the decomposition in Theorednit is easy to see that, branching pnlast row of the
inverse of the transformation matrix in the rangespacermafitation, proves the infeasibility of almost
all subset sum problems whé || is large enough in the same way. | will briefly mention the hssu
here without going into the details.

Let (SUB-R denote the rangespace reformulation of/(3).

Theorem 13. Supposer € Z", || a||> 2!5"°, and letp be the last row of/~! in the rangespace

reformulation. Then
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(1) iwidth(p, (SUB)) <1 forall g €{1,...,> a;}.

(2) iwidth(p, (SUB)) =0 foralmostallg € {1,...,> a;}.

Theorem 14. Suppose. € Z", | a|| > 25", Then
(1) iwidth(e,, (SUB-R <1 forall S e {1,...,3 a;}.

(2) iwidth(ey, (SUB-R =0 foralmostallg € {1,...,>  a;}.
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CHAPTER 6

Basis Reduction and the Complexity of Branch and Bound

The classical branch and bound algorithm for the integesitiday problem

. . 61 A w1
Findx €e QNZ", with Q = { x| < x < (6.0.2)

62 I w2

has exponential worst case complexity. We prove that it ipr&ingly efficient on reformulations of
(6.0.1), in which the columns of the constraint matrix are “shostfid “near orthogonal”, i.e., a reduced
basis of the generated lattice.

The analysis builds on Furst and Kannan’s work on the sulbsetsoblem and also uses an upper
bound on the size of the branch and bound tree based on Lsrastedysis of his integer programming
algorithm.

We show that when the entries dfare from{1, ..., M} for a large enougtd/, branch and bound
solves almost all reformulated instances at the root notkeaplore practical aspects of this result. We
compute numerical values aff which guarantee th&0 and99 percent of the reformulated problems
solve at the root: these turn out to be surprisingly smallmihe problem size is moderate.

A computational study also confirms that the reformulatiohsandom integer programs become

easier, as the coefficients grow.

6.1 Introduction and Main Results

The Integer Programming (IP) feasibility problem asks wket polyhedrotd) contains an integral
point. Branch and bound (B&B) is a classical solution methai@ will briefly introduce ordinary B&B.

It starts with@) as the sole subproblem (node) (leyek 0). In a general step, one chooses a variable



x;, and for each subproble’ at levelj, the new subproblem@’ N {x|z; = ~} are created, wherg
ranges over all possible integer valuescaf Now all the subproblems are at the+ 1)st level of the
B&B tree. We repeat this until all subproblems are shown te@iogty or we find an integral point in
one of them.

B&B enhanced by cutting planes is the workhorse method fiagier programming implemented
in most commercial software. However, instances3n4f 8, 21, 25, 31] show that it is theoretically
inefficient: it can take an exponential number of subprolsiémprove the infeasibility of simple knap-
sack problems. Chvatal i] proves that this is true for the majority of knapsack praiden a certain
natural family. While B&B is inefficient in the worst case, @aégjols et al. in [9] developed useful
computational tools to give an early estimate on the size®B&B tree in practice.

Since IP feasibility is NP-complete, one can ask for polyiaity of a solution method only in fixed
dimension. All algorithms that achieve such complexity i@h advanced techniques. The algorithms of
Lenstra B6] and KannanZ?7] (see Sectior2.3.]) first round the polyhedron (i.e., apply a transformation
to make it have a spherical appearance), then use basidicedtereduce the problem to a provably
small number of smaller dimensional subproblems. On th@relllems the algorithms are applied
recursively, e.g., rounding is done again. Generalizedsbasduction, proposed by Lovasz and Scarf
in [39] avoids rounding, but needs to solve a sequence of lineayrgnus to create the subproblems.
In fixed dimension one can evaountthe number of feasible solutions in polynomial time: see the
papers of Barvinok], and Dyer and Kannan.[]. We refer to [LO, 37] for successful implementations
of these theoretically efficient methods and to Haus et2l] fpr a finite augmentation type algorithm
using basis reduction.

As explained in Sectiof.3.2 there is a simpler way to use basis reduction in integerrarogiing:
preprocessing6(0.]) to create an instance with short and near orthogonal caumihe constraint
matrix, then simply feeding the resulting instance to and®es. We describe two such methods that
were proposed recently. We assume thasg an integral matrix withn rows andn columns, and they;
and/; are integral vectors.

The rangespace reformulation @t Q.1) is

. . 61 A w1
Findy € Qr NZ", with Qr = ¢ y| < Uy < , (6.1.2)

U 1 w2
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whereU is a unimodular matrix computed to make the columns of thetramt matrix a reduced basis
of the generated lattice.

The nullspace reformulation is applicable, when= /¢;. Itis

Findy e Qn NZ"™™, with Qn = {y ‘ by —x9g < By < wsy — xo}, (6.1.3)

wherexy € Z™ satisfiesAxzy = ¢; and the columns oB are a reduced basis of the null lattice 4f
N(A) ={zeZ"| Az =0}.

We analyze the use of LLL, KZ and RKZ reduced bases in the maitations (for more details,
see Section®.2.1, 2.2.2and 2.2.5. When Qg is computed using RKZ reduction, we call it the
RKZ-rangespace reformulation &, similarly we talk about an RKZ-nullspace, LLL-rangespddel -

nullspace, KZ-rangespace and KZ-nullspace reformulation

Example 6. The polyhedron

121 < 20x1 + 18x9 + 3723 < 125
(6.1.4)

0 < x1,T2,T3 <7
is shown on the first picture of Figufel It defines an infeasible and relatively difficult integeadéoil-
ity problem for B&B, as branching on either, x5 or x3 yields at least subproblems; and infeasibility
can be proved only in the third level of the B&B tree. It is isting to see how the various algorithms
described above would work on the instaicé.4 Lenstra’s and Kannan’s algorithms would first trans-
form this polyhedron to make it more spherical; generalizasis reduction would solve a sequence of
linear programs to find the directian + x2 + 223 along which the polyhedron is thin.

The LLL-rangespace reformulation is

121 < —x1 —2x9 + 623 < 125
0< —x1—a9—Tx <7
o (6.1.5)
0< —x14+x0+423 <7
0 < 1 + 2z3 <7

shown on the second picture of Figutd: now branching onys proves integer infeasibility.
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Figure 6.1: LP Relaxations of the Problem in Examphknd its LLL-Rangespace Reformulation

Branching onx; + z2 + 2x3 (which is the last row of the inverse of the transformatiortnrgin
the original problem is equivalent to branchingnin the reformulated problem.

The reformulation methods are very successful in practi@lving several classes of hard integer
programs. Notably, the original formulations of the masketre problems of Cornuéjols and Dawande
in [11] are notoriously difficult for commercial solvers, whileetmullspace reformulations are much
easier to solve as shown by Aardal et. al.lih [

However, they seem difficult to analyze in general. The onigiysis that exists so far is for knap-
sack problems with a constraint vector of the farre= Ap + r, with p andr integral vectors, and an
integer, large compared {p || and|| ||. Aardal and Lenstra in3 4] proved a lower bound on the norm
of the last vector in the nullspace reformulation, and asighat branching on such a long vector creates
a small number of B&B nodes. Krishnamoorthy and Patakii] pointed out a gap in this proof, and
showed that branching on the constraimtin Q (which creates a small number of subproblems) &s
large) is equivalent to branching on the last variabl®@mandQ .

A result one may hope for is proving polynomiality of B&B oretheformulations of@.0.1) when
the dimension is fixed. While this seems difficult, we give ffediént and perhaps even more surprising
complexity analysis. Itis in the spirit of Furst and Kanrsawork in [L7] on subset sum problems and
builds on their results to bound the fraction of integral meat for which the shortest vector of two
corresponding lattices is short. We also use an upper bouititecsize of the B&B tree, which is based

on Lenstra’s analysis of his integer programming algorithmi36]. We introduce necessary notation
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and state our results, then give a detailed comparison wigh [

Backward B&B is B&B branching on the variables in reverse order startiiity the one of highest
index. For a positive intege¥/ we denote by, , (M) the set of matrices with. rows and. columns,
and the entries drawn frof, ..., M}. Remember that for am by n integral matrixA with full row
rank, we writeged(A) for the greatest common divisor of the by m subdeterminants ofl. If B&B
generates at most one node at each level of the B&B tree, wéhahyt solves an integer feasibility
problem at the root node.

The main results of the paper follow.

Theorem 15. Let0 < € < 1.

@) If
(29n Il (wiswz) — (13 L2) || +1)"/™
el/m

M >

, (6.1.6)

then for all but at most a fraction of A € G, ,,(M ) backward B&B solves the RKZ-rangespace

reformulation of() at the root node.

(2) If
(29n—m |wy — €a]| +1)/™

M > v

, (6.1.7)

then for all but at most a fractiom of A € G, ,,(M) backward B&B solves the RKZ-nullspace

reformulation of() at the root node.

]

Herev; = max{C1,...,C;}, whereC; is the Hermite’s constant. It is known that< 1 + i/4.

The proofs also show that wheéd obeys the above bounds, th€rhas at most one element for all
but at most a fraction of of A € G, , (M).

When a statement is true for all, but at most a fraction &f* of the elements of a s&t, we say
that it is true foralmost allelements. So far, all polynomial time algorithms solvingnast all subset
sum instances required & which is exponential im, see for instancels, 17, 33]. We note that when
n/m is fixed and the problems are binary, the magnitudé/fofequired for the RKZ-rangespace and
RKZ-nullspace reformulations to solve almost all instantea polynomial im. To see this, we let

e = 1/2™ and observe that the lower bound bhis a polynomial inn whenn/m is fixed.
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Theorem 16. Let0 < € < 1.

1) If
(2 D/2 | (wi;wa) — (La;69) || +1)F/™

M > T :

(6.1.8)

then for all but at most a fraction of A € G, ,,(M ) backward B&B solves the LLL-rangespace

reformulation of() at the root node.

@) If
(2= D2 | (wy — £p) || +1)™/™

M > =y ,

(6.1.9)

then for all but at most a fractioa of A € G, (M) backward B&B solves the LLL-nullspace

reformulation of() at the root node.

Theorem 17. Let0 < € < 1.

(1) If
(2n(1+logn)/2 H (w1§ ’LU2) . (51; 52) H _|_1)1+n/m
el/m ’

M >

(6.1.10)

then for all but at most a fractioa of A € G, (M) backward B&B solves the KZ-rangespace

reformulation of() at the root node.

@) If
(2(n — m)Hosn=m)/2 | (g — £) || +1)"/m

M > 7 :

(6.1.11)

then for all but at most a fractiom of A € G,,,,(M) backward B&B solves the KZ-nullspace

reformulation of() at the root node.

U
Furst and Kannan, based on Lagarias’ and Odlyzke®3 &nd Frieze’s 16] work show that the
subset sum problem is solvable in polynomial time for alnatisteight vectors i 1,..., M }™ and all
right hand sides, whefy is sufficiently large and a reduced basis of the orthogoittitdsof the weight
vector is available. The lower bound at is 2¢*1°¢™  when the basis is RKZ reduced, ai’fiﬂlz, when

itis LLL reduced. Here: andd are positive constants.
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Our Theoremd5, 16 and17 generalize the solvability results from subset sum problembounded
integer programs; also, we prove them via branch and boumdlgarithm considered inefficient from
the theoretical point of view.

A practitioner of integer programming may ask for the valti@lweoremsl5, 16 and andL7. Propo-
sition 3 and Theoremd4.8 and 19, and a computational study put these results into a mordiqgahc
perspective. PropositiocBishows that whem: andn are not too large, already fairly small valuesidf
guarantee that the RKZ nullspace reformulation (which hassmallest bound of/) of the majority

of binary integer programs get solved at the root node.

Proposition 3. Suppose thain, n are chosen according to Tabke1, and M is as shown in the third

column.

n | m | Mfor90% | M for 99 %
20 | 10 100 125
30 | 10 3491 4394
30 | 20 31 35
40 | 20 229 257
40 | 30 21 23
50 | 20 1846 2071
50 | 30 93 100
50 | 40 18 19
60 | 30 410 443
60 | 40 59 62
60 | 50 16 17
70 | 30 1880 2030
70 | 40 193 205
70 | 50 45 47
70 | 60 15 15

Table 6.1: Values of\/ to make sure that the RKZ-nullspace reformulationdof(e = 0.1) or 99
(e = 0.01) % of the instances of typé5(1.12 solve at the root node

Then for at leasb0% of A € G,, (M), and all b right hand sides, backward B&B solves the

RKZ-nullspace reformulation of

Ax = b
(6.1.12)

xz € {0,1}"

at the root node. The same is true f&¥% of A € G, ,(M), if M is as shown in the fourth column.

O
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Note that2"~" is the best upper bound one can give on the number of nodes B&Bris run
on the original formulationq.1.19; also, randomly generated IPs with for example- m = 30 are
nontrivial even for commercial solvers.

Theoremsl8 and 19 gives another indication why the reformulations are reddyi easy. One can
observe thatlet(AAT) is astronomically large even for moderate values/bfif A € Gy, (M) is a
random matrix. While we cannot give a tight upper bound orsikbe of the B&B tree in terms of this
determinant, we are able to bound the width of the reforrmanatalong the last unit vector for any

(i.e., not just almost all).

Theorem 18. If Qg and@Q n are computed using RKZ reduction, then

. V|| (wiswe) — (415 £2) ||
width(e,, Qr) < dct(AAT + D)@ (6.1.13)

Also, if A has independent rows, then

ged(A)yvn —m ||we — Lo

width(ep—_m, Qn) < St AATTIED (6.1.14)
U
Theorem 19. If Qr andQ  are computed using RKZ reduction, then
Also, if A has independent rows, then
width(ep_m, Qn) < ged(A)207m I Jlwp — o] (6.1.16)
det(AAT)1/(2n)
U

These two theorems generalize the width results we have apteid.
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6.2 Computational Study

According to Theoremd5, 16 and 17, random integer programs with coefficients drawn from
{1,..., M} should get easier, a&/ grows. Our computational study confirms this somewhat coun-
terintuitive hypothesis on the family of marketshare peols of Cornuéjols and Dawande inl]. The
original formulations are notoriously difficult for comnuo#al solvers, while the nullspace reformula-
tions are much easier to solve as shown by Aardal et ai.]in [

We generated twelvé-by-30, and twelve5-by-40 matrices with entries drawn froril, ..., M}
with M = 100, 1000 and10000 (this is72 matrices overall), sét = | Ae/2]|, wheree is the vector of
all ones and constructed the instances of typ#.(9. Tables6.2and6.3 show the average number of
nodes created to solve the twelve instances generated &omatass.

The detailed tables can be found at the end of the chaptelesiald, 6.5and6.6 show the number
of nodes that the commercial IP solver CPLEX 9.0 took to stieeoriginal (non-reformulated), the
rangespace reformulation and the nullspace reformulatidnby-30 marketshare problems.

Tables6.7, 6.8 and6.9 show the number of nodes that the commercial IP solver CPLBXd®k to
solve the rangespace reformulation and the nullspacemefation of5-by-40 marketshare problems.
None of the originab-by-40 instances we generated was solved in under an hour by CPLEX/\%
used a Sun Ultrasparc desktop computer running the Solarigérating system with processor speed
410 MHz.

Since RKZ reformulation is not implemented in any softwdrattwe know of, we used the KZ
reduction routine from the NTL library/f].

In Section6.3we introduce further necessary notation, and give the pybtife main results.

M Original | Rangespace Nullspace
100 1,050, 406.25 1503.58 545.75
1000 | 1,136,736.17 235.08 81.92
10000 | 1,235,433.42 61.08 20.33

Table 6.2: Average number of B&B nodes to solvby-30 marketshare problems
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M Rangespaceé Nullspace
100 86,858.08 | 17,531.92
1000 5,850.75 | 1,254.42
10000 858.33 200.83

Table 6.3: Average number of B&B nodes to sob#by-40 marketshare problems
6.3 Further Notation and Proofs

Remember that the Euclidean norm of a shortest nonzeroneciois denoted by\; (L), andC}
is Hermite’s constant.

We define

vi = max {Cq,...,C;}. (6.3.17)

A matrix A defines two lattices that we are interested in:
Lr(A) =L(A;1), Ly(A) = {x € Z"|Ax = 0}, (6.3.18)

where we recall thatA; I) is the matrix obtained by stacking on top ofI. HereLy(A) is the same

as the null lattice ofd.

If b1,...,b, are an RKZ reduced basis of the lattitavith Gram-Schmidt orthogonalization

1,..., b}, then recall that

107 1> M\(L)/C;. (6.3.19)

holds. If they are an LLL-reduced basis, then
167 [|> Ax(L) /20072, (6.3.20)
If they are a KZ-reduced basis, then
15 [|> Ay (L) /i1 Hos /2, (6.3.21)

Lemma3 is based on the ideas of Lenstra %] used in the analysis of his integer programming

algorithm.
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Lemma 3. Let P be a polyhedron
P={yeR"|{<By<w}, (6.3.22)

and b7, ...,b; the Gram-Schmidt orthogonalization of the columnsBof When backward B&B is

applied toP, the number of nodes on the levelgfs at most

5)- (5 ) s

Proof First we show

width(e,, P) <[lw — €] / [|o7] - (6.3.24)

Let z,; andx,» denote the maximum and the minimum :of over P. Writing B for the matrix
composed of the first— 1 columns ofB, andb, for the last column, it holds that thereds, z, € R !

such thatBxy + b,x,1 andBzs + b,z,.2 are inP. So

Jw—£€|| > [ (Bxy + byay1) — (Bag + brar2) |=|| B(xy — 22) + br(21 — 212) ||

> o5 || |zr1 — 22| = by || width(e,, P)

holds, and so doe$(3.29.
After branching one,,...,e;11, each subproblem is defined by a matrix formed of the first
columns ofB, and bound vector§ andw’, which are translates @fandw by the same vector. Hence

the above proof implies that the width aloagin each of these subproblems is at most
lw =€ /1071l (6.3.25)

and this completes the proof. O
Our Lemma4 uses ideas from Furst and Kannan’s Lemma 11ir,[with inequality ©.3.27) also

being a direct generalization.

Lemma 4. For a positive integek, leter andey be the fraction oA € G, ,,(M) with A\ (Lr(A)) <
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k,and )\ (Ly(A)) < k, respectively. Then

(2k + 1)mtm
< 6.3.26
€R > Mm ) ( )
and
2k + 1)

< 6.3.27
v S e (6.3.27)

Proof We first prove 6.3.27). Forwv, a fixed nonzero vector ii”, consider the equation
Av = 0. (6.3.28)

There are at mosd/™("~1) matrices inG,, (M) that satisfy €.3.29: if the components ofi — 1
columns ofA are fixed, then the components of the column correspondiagnanzero entry of are
determined from@.3.2§. The number of vectors in Z™ with || v ||< k is at most(2k + 1)", and the
number of matrices i6,, ,,(M) is M™". Therefore

_ 2k + D= (2 4 1)

EN = an = Mm

For (6.3.29, note that(vy; v) € Z™*" is a nonzero vector iz (A), iff vo # 0, and
Avy = vy. (6.3.29)

An argument like the one in the proof d8.3.27% shows that for fixedwv,; ve) € Z™T™ with ve # 0,
there are at most/™("~1) matrices iNG,,,, (M) that satisfy 6.3.29. The number of vectors i

with norm at most is at most(2k + 1)"*™, so
(2k + 1)n+mMm(n—1) (2]€ + 1)n+m

€R = Mmn = Mm

O

Proof of Theorems 15,16 and 17 Let b],...,b; be the Gram-Schmidt orthogonalization of the

columns of(A; I)U. Lemma3 implies that the number of nodes generated by backward B&Hiexh
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to Qr is at most one, if

167 1> [] (w1;w2) — (£r; £2) | (6.3.30)

fori =1,...,n. Since the columns df4; I)U form an RKZ reduced basis @fz(A), (6.3.19 implies

167 [[= A(Lr(A))/C (6.3.31)
so (6.3.30 holds, when
AM(Lr(A)) > Ci [[(wi;wa) — (€ 62) | (6.3.32)
does fori = 1,...,n, which is implied by
M(LRr(A)) >y [[(wisw2) = (brsb2) || - (6.3.33)

By Lemma4 (6.3.33 is true for all, but at most a fraction ef; of A € Gy, ,(M) if

(1290 || (w13 ws) — (£1565) || +1])mtm)/m
efm

M > (6.3.34)

U
The proof of part?) of Theoreml5is along the same lines: ndyy, ..., b _,, is the Gram-Schmidt
orthogonalization of the columns @&, which is an RKZ reduced basis @fy(A). Lemma3, and the
reducedness aB implies that the number of nodes generated by backward B&iiepto Q) is at
most one, if

AM(LN(A)) > Ynom we — L2, (6.3.35)
and by Lemmat (6.3.39 is true for all, but at most a fraction efy of A € G,,, (M) if

[ 29n—m [|wz — Lol +1])"/™

1/m
Y

M>(

(6.3.36)

O
The proof of Theorem 6is an almost verbatim copy, now using the estimét8.¢( to lower bound

||bf ||. The proof of Theorem 7 uses the estimat® 3.21) to lower bound)| b} ||
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Proof of Proposition 3 Let N(n, k) denote the number of integral points in thelimensional ball of
radiusk. In the previous proofs we usédk + 1)" as an upper bound fa¥ (n, k). The proof of Part
(2) of Theoreml5 actually implies that when

(N (1, [yn—m [[w2 = Lo ||V

1/m ’
Y

M >

(6.3.37)

then for all, but at most a fraction efy of A € G,,, ,(M) backward B&B solves the nullspace refor-
mulation of 6.1.12 at the root node.

We use Blichfeldt’s upper boundT

. 2/i
o < 2r (Z + 4) , (6.3.38)

s 2

to boundy,,_,, in (6.3.3%, dynamic programming to exactly find the values\ofn, k), and the values
ey = 0.1, andey = 0.01 to obtain Table5.1.
We note that in generaV (n, k) is hard to compute, or find good upper bounds for; however for

small values ot andk a simple dynamic programming algorithm finds the exact vgluiekly.

O
Proof of Theorems18, and 19 If b7, ..., b} is an RKZ reduced basis of the lattiée then by (7]
1/r
[ o[> (det L)% ; (6.3.39)
\/77
if it is an LLL reduced basis, then multiplying the inequis
167 1< 20972 [yl (i =1,....7), (6.3.40)
and using| b7 || ... || b} ||= det L gives
oo (det L)U/7
07112 S (6.3.41)
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Using 6.3.39 and 6.3.47) with (6.3.29 and
det L(A) = det(AAT + 1)'/2 det Ly (A) = det(AAT)/?/ ged(A)

completes the proof, where the last equation follows froopBsition1.
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6.4 Detailed Computational Results

m=4 M =100 Original Rangespace| Nullspace
Instance| Feasible| Time B&B Time| B&B | Time | B&B
(in sec) Nodes ((in sec) Nodes |(in sec)| Nodes

1 No 283.97 1,054,683 2.22 | 1,285 1.24 691

2 No 309.38 1,133,723 3.10 | 1,750 1.19 598
3 No 143.86 454,841 2.75 | 1,578 1.18 650
4 No 260.55 853,396 2.25 | 1,307 1.09 591
5 No 461.50 1,545,838 2.90 | 1,536 1.06 573
6 No 253.66 915,263 3.00 | 1,514 0.99 481
7 No 250.95 961,809 3.76 | 1,987 1.14 644

8 No 332,91 1,177,425 2.63 | 1,461 1.12 597
9 No 270.021 1,023,709 2.97 | 1,636 1.23 709
10 Yes 139.12 493,628 1.40 728 0.01 0
11 No 325.41 1,273,732 2.62 | 1,462 0.87 461
12 No 439.65 1,716,828 3.52 | 1,799 1.01 554
Averages 289.25(1, 050, 406.25 2.76 [1503.58 1.01 (545.75

Table 6.4: Results for the randomly generatdaly 30 marketshare instances whéh = 100
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m=4 M = 1000 Original Rangespace| Nullspace
Instance| Feasible| Time B&B Time| B&B | Time | B&B
(in sec) Nodes |(in sec) Nodes|(in sec)| Nodes

1 No 403.49 1,555,724 0.29 116 0.26 98

2 No 214.16 776,562 0.74 315 0.21 83

3 No 380.93 1,530,221 0.58 232 0.24 84

4 No 216.43 795,414 0.56 227 | 0.27 | 100

5 No 359.52 1,197,797 0.52 235 0.13 40

6 No 406.98 1,539,789 0.52 188 0.13 54

7 No 309.960 1,083,217 0.77 309 0.29 88

8 No 290.95 1,125,457 0.52 221 0.28 96

9 No 222.30 824,831 0.65 261 0.26 | 110
10 No 322.83 1,226,286 0.52 202 0.21 69
11 No 303.99 1,050,540 0.75 302 0.17 63
12 No 286.12 934,996 0.57 213 0.28 98
Averages 309.81]1, 136, 736.17] 0.58 |235.08 0.23 |81.92

Table 6.5: Results for the randomly generatdua 30 marketshare instances whéh = 1000

m =4 M = 10000 Original Rangespace| Nullspace
Instance| Feasible| Time B&B Time| B&B | Time | B&B
(in sec) Nodes |(in sec) Nodes|(in sec)| Nodes

1 No 37497 1,317,740 0.20 52 0.09 24

2 No 335.90 1,268,528 0.17 58 0.08 18

3 No 336.27 1,212,268 0.21 52 0.09 16

4 No 459.64 1,578,143 0.15 44 0.10 22

9 No 316.60 1,227,520 0.26 84 0.10 24

6 No 329.39 1,294,314 0.10 22 0.08 16

7 No 338.52 1,314,576 0.24 68 0.09 21

8 No 288.91 1,038,989 0.22 64 0.09 20

9 No 385.84| 1,421,441 0.23 71 0.07 18
10 No 231.09 861,344 0.19 56 0.09 16
11 No 418.04 1,409,049 0.26 78 0.08 15
12 No 270.07 881,289 0.27 84 0.13 34
Averages 340.441,235,433.42| 0.21 | 61.08 0.09 |20.33

Table 6.6: Results for the randomly generatday 30 marketshare instances whé&h = 10000
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m=>5 M =100 Rangespace Nullspace
Instance| Feasible| Time B&B Time B&B
(in sec) Nodes | (in sec) Nodes
1 No 343.57 104, 536 66.32 22,952
2 No 253.49 80,733 51.08 16,821
3 No 472.31 135,423 60.13 18,730
4 Yes 110.37 36, 150 29.92 9,220
5 No 236.34 73,788 60.44 20, 503
6 No 301.88 95,048 54.32 19, 855
7 No 267.08 77,978 40.96 13,209
8 No 247.08 80, 369 62.57 20, 752
9 No 308.71 86,990 91.42 28,610
10 No 458.25 134,083 54.40 17,758
11 Yes 242.19 63,263 15.93 4,849
12 No 253.56 73,936 50.28 17,124
Averages 291.24 | 86,858.08 53.15 | 17,531.92

Table 6.7: Results for the randomly generaidaly 40 marketshare instances whéh = 100

m=>5 M = 1000 Rangespace Nullspace
Instance| Feasible| Time B&B Time B&B
(insec)| Nodes | (insec)| Nodes
1 No 22.67 4,993 4.09 1,177
2 No 21.84 5,138 3.66 982
3 No 29.99 6,947 3.24 879
4 No 33.03 7,360 3.83 991
5 No 20.74 4,715 4.29 1,115
6 No 34.15 7,794 5.67 1,536
7 No 28.42 6,455 4.75 1,384
8 No 22.41 5,183 3.26 914
9 No 23.58 5,399 5.96 1,637
10 No 21.99 4,830 4.41 1,186
11 No 27.26 6,443 6.69 1,577
12 No 21.61 4,952 5.58 1,675
Averages 25.64 | 5,850.75 4.62 | 1,254.42

Table 6.8: Results for the randomly generaiday 40 marketshare instances whéh = 1000
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m=>5 M = 10000 Rangespace Nullspace
Instance| Feasible | Time B&B Time B&B
(in sec)| Nodes| (in sec)| Nodes
1 No 3.81 868 1.14 283
2 No 4.61 1000 0.84 174
3 No 2.84 649 1.29 310
4 No 4.96 1052 0.58 126
5 No 2.59 581 1.01 228
6 No 2.46 578 0.63 142
7 No 5.14 1058 0.77 194
8 No 2.32 466 1.00 226
9 No 1.93 467 0.91 196
10 No 7.06 1380 0.75 170
11 No 5.45 1158 0.86 191
12 No 5.08 1043 0.67 170
Averages 4.02 | 858.33 0.87 | 200.83

Table 6.9: Results for the randomly generaiduay 40 marketshare instances whé&h = 10000
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CHAPTER 7

On the Hardness of Subset Sum Problems by Ordinary

Branch and Bound

7.1 Introduction and Main Result

Vasek Chvatal in{] identified a class of instances of the zero-one knapsachlgmmo which are
difficult to solve by a class of algorithms that was calledctnesive” (see §] for the details) which
use the combined powers of branch and bound, dynamic praogimgmand rudimentary divisibility
arguments.

Specifically, it was shown that the time required to solveziti®-one knapsack problem

max ax
st ax <p (7.1.1)
z € {0,1}"

where eacla; is chosen uniformly and independently at random from thegeits betweeh and10™/2,
andi = |>_)_, a;/2] is bounded from below by*/10 for the majority of the problems whenis large
enough.

The problem in 7.1.]) is the optimization version of the subset sum problem wiiwha set of
given positive integersq, as, .. . ,a, and a positive integef tries to find a subset of the indicdsc
{1,2,3,...,n} such that the suh_,_; a; is closest to, but not exceeding, The feasibility version of
the subset sum problem looks for a subset of the indices{1,2, 3, ... ,n} such that the suiy_,; a;

is equal tos. If there is such an index set, then the problem is feasilttesravise it is infeasible. Recall



the feasibility version of the subset sum problem

ar = (
z € {0,1}".

(SUB)

In this chapter, we show that an overwhelming majority ofshbset sum instances &f{( B) are
hard (i.e., requiring exponential amount of time in the sikthe input) for ordinary B&B. We show that
if the right-hand-side3 is chosen to ber 37, a;] for a constant such that) < r < 1, and eachu,
is chosen uniformly and independently at random from the{ k2, 3, ..., M} whereM := |10™/?],
then the time to solve almost all of the instances<f (3) using ordinary B&B is bounded from below
by o' e (wheree is a constant satisfying < ¢ < 1) whenn is large enough.

First, we state our theorem, and then prove it using some snm

Theorem 20. Fix r, e such tha) < r < 1and0 < e < 1. Letb = [r >, a;] and eachs; be chosen
uniformly and independently at random from the §&t2, 3, ..., M} whereM := |10"/2]. Then the
probability that the instance ofS(U B) generated requires the creation of at le@st ° B&B nodes
(when we branch on the individual variables in any order)he process of solvingS(J B) goes to one

asn goes to infinity.

The way the theorem is proven is similar to the proofs of Theur and Theoren? in [8]. We start
with fixing a constant such thal) < k£ < e < 1. We show that almost all of the coefficients satisfy

the following two properties when is large enough:

Pl Y icrai < =% Y2)_, a; whenever | < n'~e,

P2 There is no sef such thad ;. ;a; = |r > 7, a;].

Lemma 5. The probability that the coefficients satisfy P1 and P2 goes to oneagoes to infinity.

Proof of Lemma 5 It was shown in §] that P2 is satisfied by the coefficients with probability rggpito
one asn goes to infinity. In ], » was chosen to b&/2, but the proof works well for any such that
0<r<l.

Now, we shall show that P1 is satisfied almost surely. If Pidkted, then there exists an index set

I such thatl| < n'—€and

1 n
D> 5D a
j=1

el

78



Since eaclu; < M, we obtain
n
> a; < (Mn'=)nk = Mntthe (7.1.2)
j=1

To find an explicit upper bound for the probability that Plislated, we use the following identity

. <7>pi<1—p>"—i < e (7.1.3)
i>(p+t)n !
i integer

which is valid for0 < p < 1 andt > 0. (7.1.2 implies that at leastn — 2n'+*~<) of the coefficients
a; must be< M /2, for otherwised__, a; > (2n'tF=€)M /2 = Mn'*#=<. Using (7.1.3 with p =
|M/2|/M andt = 1/2 — 2n*~¢, we get

2 <7Z>pi(1_p)n_i - X (?)pi(l—p)”‘i

i>(1/2+t) i>n—2nitk—c
i integer 1 integer
n . . 2 k—e\2
< i1 —p)" Tt < e—2t n_ e—2n(1/2—2n )
S <>p (1-p)
i>(p+t)n
1 integer
which goes to zero as n goes to infinity. O

Proof of Theorem 20

Lemma 6. For positive coefficients; satisfying P1 and P2, # € |- Y7 a;, (1 — %) Y7, aj]

and if (SU B) is infeasible, then the ordinary B&B creates at lea&t “ B&B nodes.

Proof of Lemma 2 We shall show that none of the nodes in the B&B tree is prunedhfaasibility
unless more than'~¢ of the variables are fixed.

Assume that at most' —< of the variables are fixed ®or 1. Let I be the set of indices of the fixed
variables and be the set of indices of the unfixed variables. Since coeflisie; satisfy P1, we have
Yierai > (1— ) >_i—1 aj. By assigning fractional values tq i € T, we get a feasible solution to
the LP relaxation of §U B). O

Note that whem is large enough|r 2?21 a;] is guaranteed to lie in the above interval completing
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the proof of Theoren20.

7.2 Summary of the Solvability of Subset Sum Problems by Brach and

Bound

This result shows that an overwhelming majority of the stissen problems (all but a vanishing
proportion of the problems as n increases) are hard for argiB&B. On the other hand, our results
from Chapters show that by using a generalized B&B method which branchesoostraints, almost
all subset sum problems can be solved at the root node in guiigh time. The following is a summary
of the results on the solvability of the subset sum problesusguB&B. We fixr such tha) < r < 1.

We assume that the coefficients ¢ft(B) are chosen fror{1,..., M} for a large M, and letg =

r Z?:l aj].

(1) An overwhelming majority of the subset sum problems ta@as above are hard for ordinary

B&B (branching on variables).

(2) Almost all subset sum problems (all but at most a propordf 1/2™ of the problems as n in-
creases) created as above are easy (at most one B&B nodeaisedjréor generalized B&B

(branching on constraints).

(3) Almost all subset sum problems are easy for ordinary B&iBé problem is reformulated using

the rangespace or the nullspace reformulation.
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CHAPTER 8

Summary and Future Research

We considered the three fundamental inequalities of Lank&nstra and Lovasz, which express the
“shortness” and “near orthogonality” of an LLL reduced IsasiVe proved a common generalization:
even though the inequalities were prov&nhyears ago, this is the first unifying inequality that we are
aware of.

For a knapsack problem, we showed that branching on a “neallgdaintegral vector to the con-
straint vector creates a small number of branch and boundsnetlich becomets when the Euclidean
norm of the constraint vector is sufficiently large.

We showed that for a low density subset sum problem, the siifiity of “almost all” integer
right hand sides can be proven by branching on a “near plra#etor which can be found using
“Diophantine approximation” or “rangespace reformulatio

We considered the classical branch and bound algorithrmfegér programming, which is known
to have exponential worst case complexity. We proved thiatsurprisingly efficient on reformulated
integer programs; precisely when the entries of the constnaatrix are from{1,..., M} for a large
enoughM, branch and bound solves almost all reformulated instaat#se root node, and explored
practical aspects of this result.

We showed that even though “almost all” low density subset ptoblems are solvable in polyno-
mial time using (generalized) branch and bound, a “majonfithe low density subset sum problems
are “hard” for ordinary branch and bound.

Several future research directions can be followed basdldeoresults of this dissertation.

(1) Complexity of the Reformulation Methods

Even though the reformulation methods are very efficienthennhajority of the instances, their



(2)

(3)

complexities are not yet fully understood. It is an open tjaasf one can solve the reformulated

integer programming problem in polynomial time for a fixedmher of variables.

It would also be interesting to design a class of integer ianmg on which the performance of the

reformulations is provably bad.

Classes of Problems on which the Reformulations Work

Some classes of integer problems, such as marketsharem®bare turned into easy-to-solve
instances after they are reformulated. But there are ceclasses of problems for which the
reformulations do not seem to work well. It would be benefimaun a thorough computational
study on different problem classes and determine which beasfit most from the reformula-
tions. Another important question is: is there a certaitedon based on which one can decide

whether or not a problem will be made easy for branch and bafted the reformulation?

Successive Approximation

In Section4.5, we approximate the constraint vector of a knapsack prolidgra sequence of
integral vectors. Using the successive approximationaflow density subset sum problem, is it
possible to prove the infeasibility of a higher fraction bétright hand sides at the root node by

branch and bound?
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