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Abstract
MUSTAFA KEMAL TURAL: Topics in Basis Reduction and Integer Programming

(Under the direction of Gábor Pataki)

A basis reduction algorithm computes a reduced basis of a lattice consisting of short and nearly

orthogonal vectors. The best known basis reduction method is due to Lenstra, Lenstra and Lovász

(LLL): their algorithm has been extensively used in cryptography, experimental mathematics and integer

programming. Lenstra used the LLL basis reduction algorithm to show that the integer programming

problem can be solved in polynomial time when the number of variables is fixed.

In this thesis, we study some topics in basis reduction and integer programming. We make the

following contributions.

We unify the fundamental inequalities in an LLL reduced basis, which express the shortness and

near orthogonality of the basis.

We analyze two recent integer programming reformulation techniques which also rely on basis re-

duction. The reformulation methods are easy to describe. They are also successful in practice in solving

several classes of hard integer programs.

First, we analyze the reformulation techniques on bounded knapsack problems. The only analyses

so far are for knapsack problems with a constraint vector having a certain decomposable structure. Here

we do not assume any a priori structure on the constraint vector.

We then analyze the reformulation techniques on bounded integer programs. We show that if the

coefficients of the constraint matrix are drawn from a sufficiently large interval, then branch and bound

creates at most one node at each level if applied to the reformulated instances.

On the practical side, we give some numerical values as to howlarge the numbers should be to make

sure that for90 and99 percent of the reformulated instances, the number of subproblems that need to be

enumerated by branch and bound is at most one at each level. These values turned out to be surprisingly

small when the problem size is moderate.

We also analyze the solvability of the “majority” of the low density subset sum problems using the

method of branch and bound when the coefficients are chosen from a large interval.
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CHAPTER 1

Introduction

Algorithms based on geometry of numbers have been an essential part of the integer programming

(IP) landscape starting with the work of H. W. Lenstra [36]. Typically, these algorithms reduce an IP

feasibility problem to a provably small number of smaller dimensional ones and have strong theoretical

properties. For instance, the algorithms of [27, 36, 39] have polynomial running time in fixed dimension;

the algorithm of [14] has linear running time in dimension two. One essential tool in creating the

subproblems is a “thin” branching direction, i.e., an integral (row-)vectorc with the difference between

the maximum and the minimum ofcx over the underlying polyhedron being provably small. Basis

reduction in lattices – in the Lenstra, Lenstra and Lovász (LLL) [ 35], or Korkine and Zolotarev (KZ)

[27, 30] sense – is usually a key ingredient in the search for a thin direction. For implementations and

computational results, we refer to [10, 18, 41].

A simple and experimentally very successful reformulationtechnique for integer programming was

proposed by Aardal, Hurkens and A. K. Lenstra in [2] for equality constrained IP problems; see also

[1]. For several classes of hard equality constrained integerprogramming problems – e.g., [11] – the

reformulation turned out to be much easier to solve by commercial solvers than the original problem.

In [31] an experimentally just as effective reformulation methodwas introduced, which leaves the

number of the variables the same and is applicable to both inequality or equality constrained problems.

These reformulation methods are very easy to describe (as opposed to say Lenstra’s and Kannan’s

methods), but seem difficult to analyze. The only analyses are for knapsack problems, with the weight

vector having a given “decomposable” structure. See [3, 31].

These reformulation methods also rely on basis reduction. Abasis reduction algorithm computes

a reduced basis of a lattice consisting of “short” and “nearly orthogonal” vectors. There are different



notions of reducedness. In this thesis, we will use LLL, KZ, and RKZ reduced bases. An LLL reduced

basis of a lattice can be computed in polynomial time for rational lattices. The first vector of an LLL

reduced basis of a latticeL is an approximation of a nonzero shortest vector inL. In an LLL reduced

basis, as shown in [35], the norm of the first vector is bounded by a function of the norm of a nonzero

shortest vector ofL and also by a function of the determinant ofL. The product of the norms of the

basis vectors is also bounded by a function of the determinant of L. We call these three inequalities

“the fundamental inequalities of an LLL reduced basis”. KZ [27, 30] and RKZ [32] reduced bases have

stronger reducedness properties, but are only computable in polynomial time when the dimensionn

of the lattice is fixed. Section2.2 provides some details about basis reduction and different notions of

reducedness.

This thesis studies some topics in geometry of numbers and integer programming. It makes the

following contributions:

(1) It generalizes the fundamental inequalities for an LLL reduced basis.

(2) It provides an analysis of the IP reformulation techniques for knapsack problems without assum-

ing any a priori structure on the constraint vector.

(3) It resolves the question of the solvability of an overwhelming majority of the subset sum (fea-

sibility) problems (all but a vanishing proportion of the problems as n increases) in polynomial

time using the method of branch and bound. We will assume thatthe coefficients of the subset

sum problems are chosen from a sufficiently large interval ofintegers. In more detail, we have

the following results. We show that an overwhelming majority of the subset sum problems are

hard for ordinary branch and bound. On the other hand, an overwhelming majority of the subset

sum problems are easy for generalized branch and bound. Moreover, if we reformulate the subset

sum problem using the rangespace [31] or the nullspace [2] reformulation, then an overwhelming

majority of the reformulated problems become easy for ordinary branch and bound. Here the

word “easy” means the problem is solved in polynomial time and at most one branch and bound

node is created at each level of the branch and bound tree in the process of solving it. A “hard”

problem, however, can be solved only by creating an exponential number of nodes.

(4) It shows that for general bounded integer programs, if the coefficients are chosen from a suffi-
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ciently large interval, then for almost all such instances the number of subproblems that need to

be enumerated by branch and bound is at most one at each level of the branch and bound tree

(when applied to reformulated instances).

(5) On the practical side, it provides numerical values ofM which ensure that at least90 and99 per-

cent of the reformulated (binary) instances (with coefficients chosen from{1, . . . ,M}) solve in

at mostn subproblems. These numbers are surprisingly small for moderate-size binary problems.

(6) It computationally confirms the somewhat counter-intuitive finding: the reformulations of random

integer programs tend to get easier, as the coefficients become larger.

The rest of the thesis is organized as follows. In Chapter2, we give notation, definitions and basic

results that will be used throughout the proposal. Here, we introduce a modified version of Lenstra’s

algorithm which potentially uses a smaller number of rounding and basis reduction steps.

In Chapter3, we unify and generalize the fundamental inequalities for an LLL reduced basis.

In Chapter4, we analyze two integer programming reformulations of the knapsack problem, namely

the rangespace and the nullspace reformulations. We first show that in a knapsack problem, branching

on an integral vector which is “near parallel” to the constraint vector creates a small number of branch

and bound nodes. A transference result proves an upper boundon the integer width along the last

variable in the reformulated problems. This upper bound becomes1 when the density is sufficiently

small, i.e., when the Euclidean norm of the constraint vector is sufficiently large.

In Chapter5, we show that for a low density subset sum problem, there is a polynomial time com-

putable certificate of infeasibility for almost all integerright hand sidesβ. Using a transference result,

we prove that for almost all right hand sides, the integer width along the last variable in the rangespace

reformulation of a low density subset sum problem is zero.

In Chapter6, we show that the classical branch and bound algorithm is surprisingly efficient on

reformulations of bounded integer programs. We show that when the coefficients of the constraint

matrix are chosen from a large interval, then branch and bound creates at most one branch and bound

node at each level of the branch and bound tree if applied to reformulated instances. Our computational

study confirms our theoretical finding that the reformulations of random integer programs become easier,

as the coefficients grow.

3



In Chapter7, we modify a result of Chvátal and show that an overwhelmingmajority of the subset

sum (feasibility) problems are hard for ordinary branch andbound if the coefficients are chosen from a

sufficiently large interval of integers.
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CHAPTER 2

Notation, Definitions and Basic Results

2.1 Basics

Let 〈., .〉 be the Euclidean scalar product onRm, i.e., for anyx, y ∈ Rm

〈x, y〉 =
m

∑

i=1

xiyi,

wherexi andyi are theith components ofx andy, respectively. We use‖ .‖ or ‖ .‖2 for the Euclidean

norm, i.e. for anyx ∈ Rm

‖x‖=‖x‖2=
√

〈x, x〉.

Two other norms will be important for our purposes: theℓ1 norm and theℓ∞ norm

‖x‖1=
m

∑

i=1

|xi|

‖x‖∞= max
i

|xi|.

When we want to talk about theℓ1 or ℓ∞ norms of a vector, we explicitly say so. When we just say

“norm of x”, we mean the Euclidean norm ofx.

It is known that for allx ∈ Rm, the following relations hold:

‖x‖ ≤ ‖x‖1 ≤
√

m ‖x‖, (2.1.1)

‖x‖∞ ≤ ‖x‖ ≤
√

m ‖x‖∞, (2.1.2)



‖x‖∞ ≤ ‖x‖1 ≤ m ‖x‖∞ . (2.1.3)

For anyx, y ∈ Rm, we have the Cauchy-Schwarz Inequality:

|〈x, y〉| ≤ ‖x‖‖y‖ . (2.1.4)

Equality holds if and onlyx andy are linearly dependent.

For a matrixB, Bij is the entry at the intersection ofith row andjth column ofB. We let BT

denote the transpose ofB. For an invertible matrixB, B−1 denotes the inverse ofB andB-T denotes

the transpose of the inverse ofB.

For anm-by-m matrix B = [b1, . . . , bm], det(B) represents the determinant ofB. B is called

nonsingular ifdet(B) 6= 0, otherwise it is singular. We have Hadamard’s Inequality

|det(B)| ≤
m
∏

i=1

‖bi ‖ . (2.1.5)

Equality holds if and only if either both sides are zero or thevectorsb1, . . . , bm are orthogonal.

For matrices (and vectors)A andB with appropriate dimensions, we write(A;B) for







A

B






; and

we write(A,B) for (A B).

2.2 Lattices and Basis Reduction

A lattice in Rm is a set of the form

L = L(B) = {Bx |x ∈ Zn }, (2.2.6)

whereB is a real matrix withm rows andn independent columns, called abasisof L. A lattice has

infinitely many different bases whenn ≥ 2. Any basisB of a latticeL has the same number of columns,

called thedimensionof L. A square, integral matrixU is unimodularif det(U) = ±1. It is well known

thatB1 andB2 are bases of the same lattice if and only ifB2 = B1U for some unimodularU .

An elementary column operation performed on a matrixB is either

(1) exchanging two columns,
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(2) multiplying a column by−1, or

(3) adding an integral multiple of a column to another column.

Multiplying a matrix B from the right by a unimodularU is equivalent to performing a sequence of

elementary column operations onB.

The determinant ofL is

detL = (det(BT B))1/2, (2.2.7)

whereB = [b1, . . . , bn] is a basis ofL; it is easy to see thatdetL is well-defined. From Hadamard’s

Inequality, it follows that

detL ≤
n

∏

i=1

‖bi ‖ .

The determinant of a lattice is then-dimensional volume of the paralelepiped defined by any basis of

the lattice (see Figure2.1).

A lattice L in Rm is full dimensional if dimension ofL is equal tom. EquivalentlyL ⊆ Rm is full

dimensional if and only if the smallest subspace ofRm containingL is Rm.

Example 1. LetΛ = L(B1) where

B1 =







3 2

2 2






.

LatticeΛ consists of all integral vectorsx ∈ Z2 such thatx2 is even. The green area defined by the

columns ofB1 is equal todetΛ which is2.

LatticeΛ is also generated by the columns of

B2 =







1 5

0 2






,

sinceB2 = B1U , where

U =







1 3

−1 −2







is a unimodular matrix. The pink area defined by the columns ofB2 is also equal to2.

Note that in Example1, Λ has an orthogonal basis. But not all lattices have an orthogonal basis.
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Figure 2.1: A Lattice inR2.

Example 2. LetΓ = L(B2) where

B2 =







1 3

3 2






.

The latticeΓ does not have any orthogonal basis. Note that bothΛ and Γ are full dimensional

lattices.

Suppose thatB hasn independent columns

B = [b1, . . . , bn], (2.2.8)

andb∗1, . . . , b
∗
n form the Gram-Schmidt orthogonalization ofb1, . . . , bn, that isb1 = b∗1, and

bi = b∗i +

i−1
∑

j=1

µijb
∗
j with µij = bT

i b∗j/ ‖b∗j ‖2 (i = 2, . . . , n; j ≤ i − 1). (2.2.9)
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Figure 2.2: A Lattice with no Orthogonal Basis.

In terms of the Gram-Schmidt vectors,

det L(B) =

n
∏

j=1

‖b∗j ‖ . (2.2.10)

Each latticeL contains a nonzero shortest vector. Letλ1(L) denote the norm of a nonzero shortest

vector inL. Minkowski’s convex body theorem implies that

λ1(L) ≤
√

n(det L)1/n, (2.2.11)

wheren is the dimension ofL. See for instance [27].

Turning back to our previous examples, we haveλ1(Λ) = 1 andλ1(Γ) =
√

5.

Finding a short, nonzero vector in a lattice is a fundamentalalgorithmic problem with many uses

in cryptography, optimization, and number theory. For surveys we refer to [20], [26], [47], and [42].

More generally, one may want to find a reduced basis consisting of short and nearly orthogonal vectors.

Several different definitions of reduced basis have been suggested.

9



2.2.1 LLL Reduced Bases

The LLL basis reduction algorithm [35] was introduced in 1982 by Lenstra, Lenstra and Lovász;

and has since been used in numerous applications in computational mathematics and computer science

starting with factoring polynomials with rational coefficients and solving the integer linear programming

problem in polynomial time in fixed dimensions. It computes areduced basis of a lattice in polynomial

time (for rational lattices). For simplicity, we use Schrijver’s definition from [47].

We callB = [b1, . . . , bn] anLLL reduced basis ofL(B), if

|µij | ≤ 1/2 (i = 2, . . . , n; j = 1, . . . , i − 1), and (2.2.12)

‖b∗i ‖2 ≤ 2 ‖b∗i+1 ‖2 (i = 1, . . . , n − 1). (2.2.13)

From (2.2.13) it immediately follows that

‖b∗i ‖2 ≤ 2j−i ‖b∗j ‖2 (1 ≤ i ≤ j ≤ n). (2.2.14)

As shown by Lenstra, Lenstra and Lovász, in an LLL reduced basis B = [b1, . . . , bn] of a lattice

L = L(B), the norm of the first vector is bounded by a function of the norm of a nonzero shortest vector

of L and also by a function of the determinant ofL, namely

‖b1 ‖ ≤ 2(n−1)/4(detL)1/n, (2.2.15)

‖b1 ‖ ≤ 2(n−1)/2 ‖d‖ for any d ∈ L \ {0}. (2.2.16)

For an LLL-reduced basisB = [b1, . . . , bn] of a latticeL, they also show that

‖b1 ‖ · · · ‖bn ‖ ≤ 2n(n−1)/4 det L. (2.2.17)

It is natural to ask, whether the three beautiful inequalities (2.2.15), (2.2.16), and (2.2.17) which

we call as the fundamental inequalities can be generalized.In Chapter3, we prove several inequalities

generalizing and unifying the fundamental inequalities inan LLL reduced basis.

10



2.2.2 KZ Reduced Bases

Korkine-Zolotarev (KZ) reduced bases, which were described in [30] by Korkine and Zolotarev,

and by Kannan in [27], have stronger reducedness properties than LLL reduced bases. For instance,

the first vector in a KZ reduced basis is a shortest vector of the lattice. However, KZ reduced bases are

computable in polynomial time only whenn is fixed.

Given anm-by-n matrix D = [d1, . . . , dn] with rankr, span(D) (or span{d1, . . . , dn}) is defined

as

span(D) = {Dx |x ∈ Rn}. (2.2.18)

span(D) is anr-dimensional subspace ofRm.

Let L = L(B) whereB = [b1, . . . , bn] with n independent columns and forj < i let bi(j) be the

projection ofbi orthogonal tospan {b1, b2, . . . , bj}. Note thatbi(i − 1) = b∗i . Let

L(j) = L([bj+1(j), . . . , bn(j)])

be the projection ofL orthogonal tospan {b1, b2, . . . , bj}. For convenience we definebi(0) = bi and

L(0) = L.

We say that a basisB = [b1, . . . , bn] is a KZ reduced basis ofL(B) if

(1) |µij | ≤ 1/2 (i = 2, . . . , n; j = 1, . . . , i − 1), and

(2) bi(i − 1) is a shortest nonzero vector ofL(i − 1) (i = 1, . . . , n).

Note that ifB = [b1, . . . , bn] is a KZ reduced basis, thenb1 is a shortest nonzero vector inL(B).

For a KZ reduced basisB = [b1, . . . , bn] of a latticeL = L(B), from the definition of a KZ reduced

basis and (2.2.11), it follows that

‖b∗j ‖≤
√

n − j + 1
n

∏

i=j

‖b∗i ‖1/(n−j+1), (2.2.19)

for anyj ∈ {1, . . . , n}. In particular, forj = 1 (2.2.19) becomes

‖b1 ‖≤
√

n(det L)1/n. (2.2.20)

11



It was also shown [32] that

‖b∗i ‖≥
λ1(L)

i(1+log i)/2
(2.2.21)

holds fori = 1, . . . , n.

Schnorr in [44] proposed several hierarchies of bases between LLL and KZ reduced ones: the semi

block 2k bases among them are polynomial time computable whenk is fixed; and both the “quality” of

the basis, and the complexity of the reduction algorithm increases withk.

2.2.3 Hermite Normal Form

An integralm-by-n matrix with full row rank (i.e., with rankm) is in Hermite Normal Form (HNF)

if it has the form[B, 0], whereB is a lower triangular, nonnegative matrix with each diagonal entry

being the unique maximum in its row, and0 is the matrix of all zeroes with appropriate size. Note that

B is a nonsingular matrix. Any integral matrixA with full row rank can be brought into HNF by a

series of elementary column operations [23] and this can be done in polynomial time as shown in [28].

In other words, there exists a polynomial time computable unimodular matrixU such thatAU = [B, 0]

is in HNF. It is known that the HNF ofA is unique and we writeHNF(A) = [B, 0].

Let gcd(A) be the greatest common divisor of them-by-m subdeterminants ofA. Note thatgcd(A)

is invariant under elementary column operations. Therefore, we have that

gcd(A) =

m
∏

i=1

Bii, (2.2.22)

whereHNF(A) = [B, 0].

Example 3. Let

A =







1 2 7

3 4 1






.
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The 2-by-2 subdeterminants ofA are−2, −20, and−26. Thereforegcd(A) = 2. We have

HNF(A) = A













−1 2 13

1 −1 −10

0 0 1













=







1 0 0

1 2 0






.

2.2.4 Null, Orthogonal, Dual and Complete Lattices

For an integralm by n matrixA, m ≤ n, the null lattice ofA is denoted byN(A) and is defined as

N(A) = {x ∈ Zn|Ax = 0} . (2.2.23)

For an integral latticeL, its orthogonal latticeis defined as

L⊥ = { y ∈ Zn | yTx = 0 ∀x ∈ L }.

Note thatN(A) is the same asL(AT )⊥.

For a latticeL, the dual latticeL∗ is

L∗ = {y ∈ span L | 〈x, y〉 ∈ Z for all x ∈ L} , (2.2.24)

wherespan L is span(B) whereB is a basis ofL. It is known thatdet(L∗) = (det(L))−1.

LetB = [b1, . . . , bn] be a basis of the latticeL. It is easy to see thatD = [d1, . . . , dn] = B(BTB)−1

is a basis ofL∗. We callB∗ = [dn, . . . , d1] the dual basis (or the reciprocal basis) ofB (note that the

columns ofD are reordered). One can check thatB is the dual basis ofB∗ as well. If L is full

dimensional, then ordering the columns ofB-T from highest index to smallest gives the dual basis ofB.

Let B∗ be the dual basis ofB. And let b∗∗1 , . . . , b∗∗n andb#
1 , . . . , b#

n be the Gram-Schmidt orthogo-

nalizations of columns ofB∗ andB, respectively. Then, it is easy to check that

‖b∗∗i ‖= 1/ ‖b#
n−i+1 ‖ . (2.2.25)
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A latticeL ⊆ Zn is calledcomplete, if

L = (span L) ∩ Zn.

Each basisV of a complete latticeL can be completed to a unimodular matrix, i.e., there exists amatrix

W such that[V,W ] is unimodular. Another useful characterization of complete lattices is thatL(V ) is

complete if and only ifHNF(V T) = [I, 0]. For a proof see [43].

If a ∈ Zn, L(aT) is complete if and only ifgcd(a1, a2, . . . , an) = 1 where gcd is the greatest

common divisor. The following result relates the determinants of N(A) and L(AT) whereA is an

integral matrix.

Proposition 1. LetA be an integral full row rankm-by-n matrix. Then

det N(A) = det L(AT)/ gcd(A). (2.2.26)

Proof of Proposition 1 Let V be a basis forspan(AT) ∩ Zn andL(V ) = span(AT) ∩ Zn, which is

an m dimensional complete lattice. We have thatAT = V M for an invertible matrixM . Therefore

M -TA = V T. SinceL(V ) is complete,HNF(V T) = [I, 0], which implies thatHNF(M -TA) = [I, 0] as

well. Since gcd is invariant under elementary column operations,gcd(M -TA) = 1 = det(M -T) gcd(A).

This implies thatdet(M) = gcd(A).

Now, we can writedet L(AT) =
[

det((V M)T(V M))
]1/2

= det(M) det L(V ). To finish the proof,

we need to show thatdet L(V ) = det N(A).

SinceL(V ) is complete,V can be completed to a unimodular matrix, sayU , i.e., there exists a

matrix W such thatU = [V,W ] is unimodular. LetU−1 = [Y ;Z], where the dimensions ofY and

Z are the same as the dimensions ofV T andW T, respectively. The rows ofZ are a basis ofN(A)

and the projections of the columns ofY T orthogonal tospan(ZT) are a basis ofL(V )∗. Furthermore

det(U−1) = (det L(V )∗)(det N(A)) = 1, which implies thatdet L(V )∗ = 1/(det N(A)) and there-

foredet L(V ) = det N(A) completing the proof.

The following corollary of Proposition1, has been used in some cryptographic applications. See for

instance [43].

Corollary 1. det N(A) ≤ det L(AT) with equality holding if and only ifL(AT) is complete.
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The following lemma summarizes some basic results in lattice theory that we will use later on; for a

complete proof, see for instance [40].

Lemma 1. For an m by n integral matrixA with independent rows andL = L(AT), the following are

equivalent

(1) L is complete.

(2) Thegcd of the determinants of them bym submatrices ofA is 1.

(3) HNF(A) = [I, 0].

(4) There exists a matrixV such that[V ;A] is unimodular.

(5) det L⊥ = detL.

(6) There is a unimodular matrixZ such that

ZAT =







Im

0(n−m)×m






.

Furthermore, ifZ is as in part (6), then the lastn − m rows ofZ are a basis ofL⊥.

2.2.5 RKZ Reduced Bases

Hermite’s constantCi is defined as

Ci = sup
{

(λ1(L))2 / (detL)2/i |L is a lattice of rank i
}

. (2.2.27)

Its values are known exactly only fori ≤ 8 andi = 24. It is known that [40]

Ci ≤ 1 + i/4. (2.2.28)

Sharper asymptotic bounds are known. In our analysis, for simplicity we will use2.2.28, and for small

values ofi the Blichfeldt’s upper bound [7]:

Ci ≤
2

π
Γ

(

i + 4

2

)2/i

, (2.2.29)
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whereΓ(.) is the gamma function.

A reciprocal Korkhine-Zolotarev (RKZ) basis is the dual (reciprocal) basis of a KZ reduced basis.

Let B = [b1, . . . , bn] be an RKZ reduced basis ofL and let[b∗1, . . . , b
∗
n] be the Gram-Schmidt orthogo-

nalization of its columns. It can be shown that the Gram-Schmidt vectors of an RKZ reduced basis of

a lattice are not too short. Combining2.2.20and2.2.25we get a lower bound on the norm of the last

Gram-Schmidt vector in terms of the determinant of the lattice:

‖b∗n ‖≥
(det L)1/n

√
n

. (2.2.30)

It was shown in [32] that

‖b∗i ‖≥
λ1(L)

Ci
(2.2.31)

holds fori = 1, . . . , n.

2.3 Integer Programming and Branch and Bound

Given a polyhedronQ, an integer programming (IP) feasibility problem is the problem of finding an

integral vector inQ. In this thesis, we only consider feasibility problems. To solve an IP optimization

problem, one needs to solve a sequence of feasibility problems using binary search.

Branch and bound, which we will abbreviate as B&B, was first studied by Land and Doig in [34]

and is a classical method for IP feasibility (and optimization, more generally). It starts withQ as the

sole subproblem. In a general step, one chooses a subproblemQ′, an integral vectorc, and creates new

subproblemsQ′ ∩ {x|cx = γ}, whereγ ranges over all possible integer values thatcx can take. This

is repeated until all subproblems are found to be empty, or anintegral point is found in one of them.

Usually the vectorsc are chosen to be the standard unit vectorsei (i.e., we branch on the variablexi).

In this case, at each level of the B&B tree, one variable is fixed. This is calledordinary B&B. In a

generalized B&Balgorithm, the vectorsc are allowed to be any integral vectors.

For a polyhedronQ and an integral vectorc, the width and the integer width ofQ alongc are

width(c,Q) = max { cx |x ∈ Q } − min { cx |x ∈ Q }, and

iwidth(c,Q) = ⌊max { cx |x ∈ Q }⌋ − ⌈min { cx |x ∈ Q }⌉ + 1.
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The integer width is the number of nodes generated by branch and bound when branching on the hyper-

planecx; in particular,iwidth(ei, Q) is the number of nodes generated when branching onxi. It is easy

to show that

iwidth(c,Q) ≤ ⌊width(c,Q)⌋ + 1. (2.3.32)

If the integer width along any integral vector is zero, thenQ has no integral points. Given an integer

program labeled by(P), andc an integral vector, we also writewidth(c, (P)), andiwidth(c, (P)) for

the width and the integer width of the LP relaxation of(P) alongc, respectively. Here, the LP relaxation

of (P) is the underlying polyhedron describing the problem(P).

Given a latticeL with basisB = [b1, . . . , bn] and a polyhedronQ, the problem of determining

whetherQ contains a lattice point ofL is a generalization of the IP feasibility problem. Letb∗1, . . . , b
∗
n

be the Gram-Schmidt orthogonalization ofb1, . . . , bn. A lattice pointx ∈ L ∩ Q is of the form

x =

n
∑

j=1

λjbj , (2.3.33)

whereλj are integers. Assume thatQ is contained in a sphere of radiusr. Thenλn can take at most

(2r/ ‖b∗n ‖) + 1 different integer values. Similarly, having fixedλi+1, . . . , λn; λi can take at most

2r/ ‖b∗i ‖ +1 (2.3.34)

different integer values. Note that here the vectorsbi do not need to be integral vectors! This enumer-

ation process is similar to branch and bound. In this enumeration process, the total number of nodes

created on the level ofbi (i.e., on the (n − i + 1)st level) is at most

n
∏

j=i

(

2r/ ‖b∗j ‖ +1
)

. (2.3.35)

The IP feasibility problem is NP-complete [9]. In 1983, H. W. Lenstra [36] devised a polynomial

time algorithm for the IP feasibility problem in a fixed number of variables. Assume that the problem

is described by the polyhedronQ. His algorithm, after some preprocessing steps, using the LLL basis

reduction algorithm, either finds an integral point inQ, or finds a branching direction along which the

polyhedron is thin, so that at mostO(2n2

) nodes are created, which is a constant whenn is fixed.
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The algorithm is repeated for each subproblem created untilan integral point is found in any of the

subproblems, which implies the integer feasibility ofQ, or all the subproblems become the empty set,

in which case the problem is integer infeasible. The upper bound on the number of B&B nodes created

per level was later improved toO(2n) [5, 38].

Kannan [27] introduced a variant of Lenstra’s algorithm which uses theKZ basis reduction algorithm

instead. He showed that at theith (1 ≤ i ≤ n) level of the branch and bound tree, there are at most

(2n)5i/2 nodes (where the value ofi is determined by the algorithm), which implies a polynomial

number of nodesO(n5/2) per level (O(n5/2) is not an upper bound on the number of nodes created for

each subproblem at each level!). Note that his basis reduction algorithm does not run in polynomial

time for varyingn, but runs in polynomial time only whenn is fixed.

In Section2.3.1, we will briefly describe the algorithms of Lenstra and Kannan. In Section2.3.2we

will introduce two experimentally very successful reformulation techniques for IP feasibility problem,

namely the rangespace reformulation introduced in [31] for general IP feasibility problems and the

nullspace reformulation introduced by Aardal, Hurkens andA. K. Lenstra in [2] for equality constrained

IP feasibility problems; see also [1].

2.3.1 The Algorithms of Lenstra and Kannan for Integer Programming

In this section, we will briefly describe Lenstra’s (a modified version) and Kannan’s algorithms for

integer programming. This exposition is mainly based on Kannan’s survey on Algorithmic Geometry

of Numbers [26].

Given an IP feasibility problem described by the polyhedronQ, these algorithms find an integral

point in Q if there is any or prove thatQ does not contain any integral point. Both algorithms run in

polynomial time for fixedn.

We start with makingQ a full dimensional polytope inRn if it is not already; for the details see

[36]. Lovász in [38] developed an algorithm to transform a polytope into a “rounded” one. He showed

that there exists an invertible linear transformationφ such thatS1 ⊆ P ⊆ S2 for two concentric spheres

S1 andS2 whereP = φQ andr2/r1 ≤ (n + 1)
√

n with ri being the radius ofSi.

Therefore the problem of finding an integral point inQ is equivalent to the problem of finding a

point of the latticeL = φZn in P . LetB = [b1, . . . , bn] be a reduced basis ofL (in Lenstra’s algorithm,

we assume thatB is LLL reduced; on the other hand in Kannan’s algorithm, we assume thatB is KZ
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reduced). Letφ−1B = [φ−1b1, . . . , φ
−1bn] and letD =

(

φ−1B
)

-T = [d1, . . . , dn]. Bothφ−1B andD

are bases ofZn (i.e., they are unimodular), sinceD is a basis of the dual lattice ofL(φ−1B) = Zn.

Let j be the index such that‖b∗j ‖≥‖b∗i ‖ for i ∈ {1, . . . , n}. It is easy to show that if

r1 ≥
√

n ‖b∗j ‖ /2, (2.3.36)

thenP contains a point ofL, sayℓ which means thatφ−1ℓ is an integral point inQ.

We modify Lenstra’s algorithm, using ideas from [26]. Below are the main steps of both of the

algorithms. We assume that we start with a polytopeQ.

Algorithms

(1) Start with a polytopeQ.

(2) Make it full dimensional and letn be the dimension of the full dimensional polytopeQ.

(3) RoundQ: find an invertible linear transformationφ such thatP = φQ is rounded. (Findr1 and

r2 as well).

(4) Find a reduced basisB = [b1, . . . , bn] of L = φZn and letb∗1, . . . , b
∗
n be the Gram-Schmidt

orthogonalization ofb1, . . . , bn.

(5) Let j be index such that‖b∗j ‖≥‖b∗i ‖ for all i ∈ {1, . . . , n}.

(6) If r1 ≥ √
n ‖b∗j ‖ /2, thenP contains a lattice point ofL. STOP,Q is integer feasible.

(7) Otherwise, using the basisD = [d1, . . . , dn] of Zn, applybackward B&Bfor n − j + 1 levels

(i.e., branch ondnx, . . . , djx in the original space in this order). Then for each nonempty sub-

problem created if its dimension is0 (i.e., if its a single integer point), STOP,Q is integer feasible;

otherwise go to step1.

(8) If the algorithm never stops and all subproblems become the empty set, thenQ is integer infeasi-

ble.

Note that at each level of the branch and bound tree, the dimension of the subproblems is reduced at

least by1. Therefore the algorithm terminates in at mostn levels.
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Any integer pointy ∈ Q ∩ Zn is of the form
∑n

j=1

(

λj(φ
−1bj)

)

, whereλj are integers, and any

point x ∈ Q is of the same form whereλj are reals. Note thatdjx = λj, therefore fixing the value of

djx to an integer is the same as fixing the value ofλj to the same integer.

In the original algorithm of Lenstra and in the follow-up papers [5, 18, 38], B&B is applied for one

level, and all the steps are repeated for each subproblem created, i.e., the underlying polytope is rounded

and basis reduction is used to find a new thin direction. In ourversion, these steps are repeated for the

subproblems at the(n − j + 1)st level. Therefore, the total time spent on rounding and basis reduction

might be reduced. In [18] which is the only implementation of Lenstra’s algorithm sofar, it was stated

that basis reduction is the bottleneck of the Lenstra’s algorithm (i.e., most of the execution time was

used by basis reduction).

Number of B&B Nodes in Lenstra’s Algorithm

Note that, from (2.2.14), for anyℓ ∈ {j, . . . , n} we have

‖b∗ℓ ‖≥
‖b∗j ‖

2(ℓ−j)/2
. (2.3.37)

If at step6, r1 ≤ √
n ‖ b∗j ‖ /2, then we have the following sequence of bounds on the number of

B&B nodes created after branching ondnx, . . . , djx. Here the first expression follows from (2.3.35).

n
∏

ℓ=j

(

2r2

‖b∗ℓ ‖
+ 1

)

≤
n

∏

ℓ=j

(

2(n + 1)
√

nr1

‖b∗ℓ ‖
+ 1

)

≤
n

∏

ℓ=j

(

(n + 1)n ‖b∗j ‖
‖b∗ℓ ‖

+ 1

)

≤
n

∏

ℓ=j

(

(n + 1)n2(ℓ−j)/2 + 1
)

≤
n

∏

ℓ=j

(

(n + 1)n2(ℓ−j+1)/2
)

≤
[

(n + 1)n2(n−j+2)/4
]n−j+1

,

where the first inequality follows from the fact thatr2 is not too large compared tor1, the second from
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‖b∗j ‖ being large and the third from (2.3.37).

Therefore, we get a factor of

(n + 1)n2(n−j+2)/4 (2.3.38)

B&B nodes per level in the B&B tree. We will not go into the details of the proof that this algorithm

runs in polynomial time for fixedn.

Note that whenj is large, i.e., close ton, the upper bound in (2.3.38) is small, therefore small

number of B&B nodes are created per level. On the other hand, whenj is smaller, the algorithm uses

rounding and basis reduction less frequently than in the case with a largerj.

Number of B&B Nodes in Kannan’s Algorithm

Assuming thatr1 ≤ √
n ‖ b∗j ‖ /2, the total number of B&B nodes created after branching on

dnx, . . . , djx is bounded above by

n
∏

i=j

(

2r2

‖b∗i ‖
+ 1

)

≤
n

∏

ℓ=j

(

2(n + 1)
√

nr1

‖b∗ℓ ‖
+ 1

)

≤
n

∏

ℓ=j

(

(n + 1)n ‖b∗j ‖
‖b∗ℓ ‖

+ 1

)

≤
n

∏

ℓ=j

(

((n + 1)n + 1)
‖b∗j ‖
‖b∗ℓ ‖

)

≤ ((n + 1)n + 1)n−j+1
n

∏

ℓ=j

‖b∗j ‖
‖b∗ℓ ‖

≤
[

√

n − j + 1 ((n + 1)n + 1)
]n−j+1

,

where the last inequality follows from (2.2.19). Therefore, there is a factor of

(n2 + n + 1)
√

n − j + 1 (2.3.39)

B&B nodes per level. This improves the upper bound on the number of B&B nodes created in the

algorithm of Lenstra.

In the next section, we describe two IP reformulation techniques which are used to improve the
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performance of B&B. These reformulations also use basis reduction, but only once to preprocess the

problem. Although, they do not result in polynomial time algorithms in fixed dimension in the worst

case, they are very efficient in practice.

2.3.2 Two Integer Programming Reformulation Techniques

A simple and experimentally very successful technique for integer programming based on LLL re-

duction was proposed by Aardal, Hurkens and A. K. Lenstra in [2] for equality constrained IP problems.

Consider the problem

Ax = b

0 ≤ x ≤ v

x ∈ Zn,

(IP-EQ)

whereA is an integral matrix withm independent rows.

The full-dimensional reformulation proposed in [2] is

−xb ≤ V λ ≤ v − xb

λ ∈ Zn−m.
(IP-EQ-N)

HereV andxb satisfy

{V λ |λ ∈ Zn−m } = N(A), xb ∈ Zn, Axb = b,

the columns ofV are reduced in the LLL-sense (one can also use other reduced bases, such as KZ or

RKZ). For several classes of hard equality constrained IP problems – cf. [11] – the reformulation turned

out to be much easier to solve by commercial solvers than the original problem.

In [31] an even simpler and experimentally just as effective reformulation method was introduced.

It replaces

b′ ≤ Ax ≤ b

x ∈ Zn
(IP)

with

b′ ≤ (AU)y ≤ b

y ∈ Zn,
(IP-R)
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whereU is a unimodular matrix that makes the columns ofAU reduced (in the LLL-, KZ-, or RKZ-

sense). It applies the same way, even if some of the inequalities in the IP feasibility problem are actually

equalities. In [31] the authors also introduced a simplified method to compute areformulation which is

essentially equivalent to (IP-EQ-N).

We call (IP-R) therangespace reformulationof (IP); and (IP-EQ-N) thenullspace reformulationof

(IP-EQ).
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Figure 2.3: LP Relaxations of the Problem in Example4 and its Rangespace Reformulation

Example 4. Consider the following infeasible IP problem.

186 ≤ 33x1 + 37x2 ≤ 197

0 ≤ x1, x2, ≤ 6

x1, x2 ∈ Z.

(2.3.40)

Its LP relaxation is depicted on the first picture in Figure2.3. Branching onxi creates6 branch and

bound nodesxi = 0, . . . , 5 for i = 1, 2. On the other hand, branching onx1+x2 proves the infeasibility

of the problem at the root node; since the minimum and the maximum ofx1 + x2 over the LP relaxation

of 2.3.40are5.027 and5.970, respectively.

When the rangespace reformulation is applied to2.3.40using LLL reduction, we get the following
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problem:

186 ≤ 4y1 + 5y2 ≤ 197

0 ≤ −y1 + 8y2 ≤ 6

0 ≤ y1 − 7y2 ≤ 6

y1, y2 ∈ Z.

(2.3.41)

Here

A =













33 37

1 0

0 1













, U =







−1 8

1 −7






, AU =













4 5

−1 8

1 −7













.

The LP relaxation of the reformulated problem2.3.41is depicted in the second picture in Figure2.3.

The second picture clearly shows that branching ony2 immmediately proves the infeasibility of the

problem. The minimum and the maximum ofy2 over the LP relaxation of2.3.41are again5.027 and

5.970, respectively.

Let ui1, . . . , uin be the rows ofU−1. It can be shown that branching onyn, . . . , y1 in this order in

(IP-R) is equivalent to branching onuinx, . . . , ui1x in this order in (IP) (i.e., the two B&B trees are

isomorphic).

In Example4, we have

U−1 =







7 8

1 1






,

therefore branching ony2 in 2.3.41is equivalent to branching onx1 + x2 in 2.3.40.
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CHAPTER 3

Unifying LLL Inequalities

Several concepts of reducedness of a lattice basis are known. The most widely used one is LLL

reducedness (for details, see Section2.2.1), developed in the seminal paper [35] of Lenstra, Lenstra and

Lovász. The quality of an LLL basis is expressed by three fundamental inequalities, (2.2.15)-(2.2.17).

Surveys and textbook treatments of lattice basis reductioncan be found in [20], [26], [47], and [42].

Improvements of the running time of the LLL algorithm were given, see for example Schnorr [45].

It is natural to ask, whether the three beautiful inequalities (2.2.15)-(2.2.17) can be unified and

generalized: for instance, whether the product of the normsof the first few basis vectors can be bounded

in terms ofdetL, or if the norm of the first basis vector can be bounded by other parameters ofL.

In this chapter we find unifying inequalities.

3.1 Generalizations of the Fundamental Inequalities in LLL Reduced

Bases

Our Theorems1 and2 generalize inequalities (2.2.15) through (2.2.17).

Theorem 1. Let b1, . . . , bn ∈ Rm be an LLL-reduced basis of the latticeL, andd1, . . . , dk arbitrary

linearly independent vectors inL. Then

‖b1 ‖ ≤ 2(n−k)/2+(k−1)/4(det L(d1, . . . , dk))1/k, (3.1.1)

det L(b1, . . . , bk) ≤ 2k(n−k)/2 det L(d1, . . . , dk), (3.1.2)

det L(b1, . . . , bk) ≤ 2k(n−k)/4(detL)k/n, (3.1.3)

‖b1 ‖ · · · ‖bk ‖ ≤ 2k(n−k)/2+k(k−1)/4 det L(d1, . . . , dk), (3.1.4)



‖b1 ‖ · · · ‖bk ‖ ≤ 2k(n−1)/4(det L)k/n. (3.1.5)

In the most general setting, we prove:

Theorem 2. Let b1, . . . , bn ∈ Rm be an LLL-reduced basis of the latticeL, 1 ≤ k ≤ j ≤ n, and

d1, . . . , dj arbitrary linearly independent vectors inL. Then

det L(b1, . . . , bk) ≤ 2k(n−j)/2+k(j−k)/4(det L(d1, . . . , dj))
k/j , (3.1.6)

‖b1 ‖ · · · ‖bk ‖ ≤ 2k(n−j)/2+k(j−1)/4(det L(d1, . . . , dj))
k/j . (3.1.7)

By settingk andj to either1 or n, from (3.1.6) we can recover the first two LLL inequalities, and

from (3.1.7) we can recover all three.

The main tool is Lemma3.1.8, which may be of independent interest. Fork = 1 we can recover

from it Lemma (5.3.11) in [20] (proven as part of Proposition (1.11) in [35]). First, note that ifb1, . . . , bn

are linearly independent vectors, then

det L(b1, . . . , bn) = det L(b1, . . . , bn−1) ‖b′ ‖, (3.1.8)

whereb′ is the projection ofbn on the orthogonal complement of the linear span ofb1, . . . , bn−1.

Lemma 2. Let d1, . . . , dk be linearly independent vectors from the latticeL, andb∗1, . . . , b
∗
n the Gram

Schmidt orthogonalization of an arbitary basis. Then

det L(d1, . . . , dk) ≥ min
1≤i1<···<ik≤n

{

‖b∗i1 ‖ . . . ‖b∗ik ‖
}

. (3.1.9)

Proof of Lemma 2

We need the following

Claim There are elementary column operations performed ond1, . . . , dk that yieldd̄1, . . . , d̄k with

d̄i =

ti
∑

j=1

λijbj for i = 1, . . . , k, (3.1.10)
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whereλij ∈ Z, λi,ti 6= 0, and

tk > tk−1 > · · · > t1. (3.1.11)

Proof of Claim Let us write

BV = [d1, . . . , dk], (3.1.12)

with V an integral matrix. Analogously to how the Hermite Normal Form of an integral matrix is

computed, we can do elementary column operations onV to obtainV̄ with

tk := max { i | v̄ik 6= 0 } > tk−1 := max { i | v̄i,k−1 6= 0 } > . . . > t1 := max { i | v̄i1 6= 0 }.

(3.1.13)

Performing the same elementary column operations ond1, . . . , dk yield d̄1, . . . , d̄k which satisfy

BV̄ = [d̄1, . . . , d̄k], (3.1.14)

so they satisfy (3.1.10).

End of proof of Claim

Obviously

det L(d̄1, . . . , d̄k) = det L(d1, . . . , dk). (3.1.15)

Substituting from (2.2.9) for bi we can rewrite (3.1.10) as

d̄i =

ti
∑

j=1

λ∗
ijb

∗
j for i = 1, . . . , k, (3.1.16)

where theλ∗
ij are now reals, butλ∗

i,ti
= λi,ti nonzero integers.

For all i we have

span { d̄1, . . . , d̄i−1 } ⊆ span{ b∗1, . . . , b
∗
ti−1

}. (3.1.17)

Therefore

‖Proj { d̄i | { d̄1, . . . , d̄i−1 }⊥ }‖≥‖Proj { d̄i | { b∗1, . . . , b
∗
ti−1

}⊥ }‖≥‖λi,tib
∗
ti ‖≥‖b∗ti ‖ (3.1.18)

27



holds, with the second inequality coming from (3.1.11). HereProj { d̄i | { d̄1, . . . , d̄i−1 }⊥ } is the pro-

jection of d̄i orthogonal tospan{d̄1, . . . , d̄i−1}. So applying (3.1.8) repeatedly we get

det L(d̄1, . . . , d̄k) ≥ det L(d̄1, . . . , d̄k−1) ‖b∗tk ‖

. . .

≥ ‖b∗t1 ‖‖b∗t2 ‖ . . . ‖b∗tk ‖,

(3.1.19)

which together with (3.1.15) completes the proof.

3.2 Proofs of Theorem 1 and Theorem 2

The plan of the proof is as follows: we first prove (3.1.1) through (3.1.3) in Theorem 1. Then we

prove Theorem 2. Finally, (3.1.4) follows as a special case of (3.1.7) with j = k; and (3.1.5) as a special

case of (3.1.7) with j = n.

Proof of (3.1.1) and (3.1.2) Lemma2 implies

det L(d1, . . . , dk) ≥ ‖b∗t1 ‖‖b∗t2 ‖ . . . ‖b∗tk ‖ (3.2.20)

for somet1, . . . , tk ∈ {1, . . . , n} distinct indices. Clearly

t1 + · · · + tk ≤ kn − k(k − 1)/2 (3.2.21)

holds. Applying first (2.2.14), then (3.2.21) yields

(det L(d1, . . . , dk))
2 ≥ ‖b∗1 ‖2 2(1−t1) . . . ‖b∗1 ‖2 2(1−tk)

= ‖b∗1 ‖2k 2k−(t1+···+tk)

≥ ‖b1 ‖2k 2k(k+1)/2−kn,

(3.2.22)
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which is equivalent to (3.1.1). Similarly,

(det L(d1, . . . , dk))
2 ≥ ‖b∗1 ‖2 2(1−t1) ‖b∗2 ‖2 2(2−t2) . . . ‖b∗k ‖2 2(k−tk)

= ‖b∗1 ‖2 . . . ‖b∗k ‖2 2(1+···+k)−(t1+···+tk)

≥ ‖b∗1 ‖2 . . . ‖b∗k ‖2 2k(k−n),

(3.2.23)

which is equivalent to (3.1.2).

Proof of (3.1.3) The proof is by induction. Let us writeDk = (det L(b1, . . . , bk))
2. Fork = n − 1,

multiplying the inequalities

‖b∗i ‖2 ≤ 2n−i ‖b∗n ‖2 ( i = 1, . . . , n − 1) (3.2.24)

gives

Dn−1 ≤ 2n(n−1)/2(‖b∗n ‖2)n−1 (3.2.25)

= 2n(n−1)/2

(

Dn

Dn−1

)n−1

, (3.2.26)

and after simplifying, we get

Dn−1 ≤ 2(n−1)/2(Dn)1−1/n. (3.2.27)

Suppose that (3.1.3) is true fork ≤ n − 1; we will prove it for k − 1. Sinceb1, . . . , bk forms an

LLL-reduced basis ofL(b1, . . . , bk) we can replacen by k in (3.2.27) to get

Dk−1 ≤ 2(k−1)/2(Dk)
(k−1)/k. (3.2.28)

By the induction hypothesis,

Dk ≤ 2k(n−k)/2(Dn)k/n, (3.2.29)
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from which we obtain

(Dk)
(k−1)/k ≤ 2(k−1)(n−k)/2(Dn)(k−1)/n. (3.2.30)

Using the upper bound on(Dk)
(k−1)/k from (3.2.30) in (3.2.28) yields

Dk−1 ≤ 2(k−1)/22(k−1)(n−k)/2(Dn)(k−1)/k (3.2.31)

= 2(k−1)(n−(k−1))/2(Dn)(k−1)/n, (3.2.32)

as required.

Proof of Theorem 2 From (3.1.3) and (3.1.2) we have

det L(b1, . . . , bk) ≤ 2k(j−k)/4(det L(b1, . . . , bj))
k/j , (3.2.33)

det L(b1, . . . , bj) ≤ 2j(n−j)/2 det L(d1, . . . , dj). (3.2.34)

Raising (3.2.34) to the power ofk/j gives

(det L(b1, . . . , bj))
k/j ≤ 2k(n−j)/2 det(L(d1, . . . , dj))

k/j , (3.2.35)

and plugging (3.2.35) into (3.2.33) proves (3.1.6).

It is shown in [35] that

‖bi ‖2 ≤ 2i−1 ‖b∗i ‖2 for i = 1, . . . , n. (3.2.36)

Multiplying these inequalities fori = 1, . . . , k yields

‖b1 ‖ · · · ‖bk ‖ ≤ 2k(n−1)/4 det L(b1, . . . , bk), (3.2.37)

and using (3.2.37) with (3.1.6) yields (3.1.7).
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3.3 Discussion

The kth successive minimum ofL is the smallest real numbert, such that there arek linearly

independent vectors inL with length bounded byt. It is denoted byλk(L). With the same setup as for

(2.2.15)-(2.2.17) it is shown in [35] that

‖bi ‖ ≤ 2n−1λi(L) for i = 1, . . . , n. (3.3.38)

For KZ and block KZ bases similar results were shown in [32] and [46], respectively.

The successive minimum results (3.3.38) give a more global view of the lattice and the reduced basis,

than (2.2.15) through (2.2.17). Our Theorem2 is similar in this respect, but it seems to be independent

of (3.3.38). Of course, multiplying the latter fori = 1, . . . , k gives an upper bound on‖b1 ‖ · · · ‖bk ‖,

but in different terms.

The quantitiesdet L(b1, . . . , bk) and‖b1 ‖ . . . ‖bk ‖ are also connected by

det L(b1, . . . , bk) = ‖b1 ‖ . . . ‖bk ‖ sin θ2 . . . sin θk, (3.3.39)

whereθi is the angle ofbi with the subspace spanned byb1, . . . , bi−1. In [5] Babai showed that the sine

of the angle ofanybasis vector with the subspace spanned by the other basis vectors in ad-dimensional

lattice is at least(
√

2/3)d. One could combine the lower bounds onsin θi with the upper bounds on

det L(b1, . . . , bk) to find an upper bound on‖ b1 ‖ . . . ‖ bk ‖ . However, the result would be weaker

than (3.1.4) and (3.1.5).
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CHAPTER 4

Branching on a Near Parallel Integral Vector in a Knapsack

Problem

The knapsack problem is one of the most studied problems in combinatorial optimization and has

many real life applications. In this chapter, we show that ina knapsack feasibility problem an integral

vectorp which is near parallel to the constraint vectora gives a branching direction with small integer

width. This result is used to analyze the rangespace and the nullspace reformulations of the knapsack

problem. We prove an upper bound on the integer width along the last variable in the reformulated

problems, which becomes1 when the density is sufficiently small, i.e., when‖ a ‖ is sufficiently large

(for a formal definition of the density of a knapsack problem,see Section5.2). The proof ingredients

may be of independent interest. We extract, from the transformation matrices, an integral vector which

is near parallel to the constraint vectora. The near parallel vector is a good branching direction in the

original problem and a transference result shows that the last variable is a good branching direction in

the reformulations.

4.1 Reformulations of the Knapsack Problem

The reformulation methods explained in Section2.3.2 are very easy to describe (as opposed to

say Lenstra’s or Kannan’s method), but seem difficult to analyze. The only analyses are for knapsack

problems, with the weight vector having a given “decomposable” structure, i.e.,a = λp + r, with p, r,

andλ integral, andλ large with respect to‖p‖ and‖r‖ – see [3, 31].



The goal of this chapter is to analyze these reformulations on the knapsack feasibility problem

β1 ≤ ax ≤ β2

0 ≤ x ≤ v

x ∈ Zn,

(KP)

wherea is a positive, integral row vector,β1 andβ2 are integers, without assuming any structure on

the constraint vectora priori. We will assume only that‖ a ‖ is large – in fact, a key point will be that

the large normimpliesa decomposable structure, and this structure is automatically “discovered” by the

reformulations.

The rangespace reformulation of (KP) is

β1 ≤ aUy ≤ β2

0 ≤ Uy ≤ v

y ∈ Zn,

(KP-R)

whereU is a unimodular matrix that makes the columns of







a

I






U reduced in the LLL-sense (we do

not analyze it with KZ reduction). The nullspace reformulation is

−xβ ≤ V λ ≤ v − xβ

λ ∈ Zn−m,
(KP-N)

wherexβ ∈ Zn, axβ = β, {V λ |λ ∈ Zn−m } = N(a) and the columns ofV are reduced in the

LLL-sense.

Throughtout the chapter, we will assume0 ≤ β1 ≤ β2 ≤ av, and that the gcd of the components

of a is1. For a rational vectorb we denote byround(b) the vector obtained by rounding the components

of b.

For ann-vectora, we will write

f(a) = 2n/4/ ‖a‖1/n,

g(a) = 2(n−2)/4/ ‖a‖1/(n−1) .
(4.1.1)
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4.2 Main Results

In this section, we will review the main results of the chapter, give some examples, explanations,

and some proofs that show their connection.

The main purpose of this section is an analysis of the reformulation methods. This is done in

Theorem3, which proves an upper bound on the number of B&B nodes, when branching on the last

variable in the reformulations.

Theorems4 and5 show that an integral vectorp, which is “near parallel” toa can be extracted

from the transformation matrices of the reformulations. The notion of near parallelness that we use is

stronger than just requiringsin(a, p) to be small. The relationship of the two parallelness concepts is

clarified in Proposition2.

Theorem6 proves an upper bound oniwidth(p, (KP)), wherep is an integral vector. A novelty of

the bound is that it does not depend onβ1 andβ2, only on their difference. We show through examples

that this bound is quite useful whenp is a near parallel vector found according to Theorems4 and5.

In the end, a transference result between branching directions in the original, and reformulated

problems completes the proof of Theorem3.

Theorem 3. Suppose‖a‖≥ 2(n/2+1)n. Then

(1) iwidth(en, (KP-R)) ≤ ⌊ f(a)(2 ‖v‖ +(β2 − β1))⌋ + 1.

(2) iwidth(en−1, (KP-N)) ≤ ⌊2g(a) ‖v‖⌋ + 1.

Givena andp integral vectors, we will need the notion of their near parallelness. The obvious thing

would be to require that| sin(a, p)| is small. Instead, we will write a decomposition

a = λp + r, with λ ∈ Q, r ∈ Qn, r⊥p, (DECOMP)

and ask for‖ r ‖ /λ to be small. The following proposition clarifies the connection of the two near

parallelness concepts and shows two useful consequences ofthe latter one.

Proposition 2. Suppose thata, p ∈ Zn, andr andλ are defined to satisfy (DECOMP). Assume w.l.o.g.

λ > 0. Then

(1) sin(a, p) ≤‖r‖/λ.
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(2) For anyM there existsa, p with ‖a‖≥ M such that the inequality in (1) is strict.

(3) Denote bypi andai theith component ofp anda. If ‖r‖ /λ < 1, andpi 6= 0, then the signs of

pi andai agree. Also, if‖r‖/λ < 1/2, then⌊ai/λ⌉ = pi.

Proof Statement (1) follows from

sin(a, p) = ‖r‖ / ‖a‖≤‖r‖ / ‖λp‖≤‖r‖ /λ, (4.2.2)

where in the last inequality we used the integrality ofp.

To see (2), consider the family ofa andp vectors

a =

(

m2 + 1, m2

)

,

p =

(

m + 1, m

) (4.2.3)

with m an integer. Lettingλ andr be defined as in the statement of the proposition, a straightforward

computation (or experimentation) shows that asm → ∞

sin(a, p) → 0,

‖r‖ /λ → 1/
√

2.

Statement (3) is straightforward from

ai/λ = pi + ri/λ. (4.2.4)

The next two theorems show how the near parallel vectors can be found from the transformation

matrices of the reformulations.

Theorem 4. Suppose‖a‖≥ 2(n/2+1)n. LetU be a unimodular matrix such that the columns of







a

I






U
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are LLL-reduced andp the last row ofU−1. Definer andλ to satisfy (DECOMP), and assume w.l.o.g.

λ > 0.

Then

(1) ‖p‖ (1+ ‖r‖2)1/2 ≤‖a‖ f(a);

(2) λ ≥ 1/f(a);

(3) ‖r‖ /λ ≤ 2f(a).

Theorem 5. Suppose‖ a ‖≥ 2(n/2+1)n. Let V be a matrix whose columns are an LLL-reduced basis

of N(a), b an integral column vector withab = 1, andp the(n − 1)st row of (V, b)−1. Definer andλ

to satisfy (DECOMP), and assume w.l.o.g.λ > 0.

Thenr 6= 0, and

(1) ‖p‖‖r‖≤‖a‖ g(a);

(2) ‖r‖ /λ ≤ 2g(a).

It is important to note thatp is integral, butλ andr may not be. Also, the measure of parallelness

to a, i.e., the upper bound on‖r ‖ /λ is quite similar for thep vectors found in Theorems4 and5, but

their length can be quite different. When‖ a ‖ is large, thep vector in Theorem4 is guaranteed to be

much shorter thana by λ ≥ 1/f(a). On the other hand, thep vector from Theorem5 may be much

longer thana : the upper bound on‖ p ‖‖ r ‖ does not guarantee any bound on‖ p ‖, sincer can be

fractional.

The following example illustrates this:

Example 5. Consider the vector

a =

(

3488, 451, 1231, 6415, 2191

)

. (4.2.5)
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We computedp1, r1, λ1 according to Theorem4:

p1 =

(

62, 8, 22, 114, 39

)

,

r1 =

(

0.2582, 0.9688, −6.5858, 2.0554, −2.9021

)

,

λ1 = 56.2539,

‖r1 ‖ /λ1 = 0.1342.

(4.2.6)

We also computedp2, r2, λ2 according to Theorem5; note‖p2 ‖>‖a‖:

p2 =

(

12204, 1578, 4307, 22445, 7666

)

r2 =

(

−0.0165, −0.0071, 0.0194, 0.0105, −0.0140

)

λ2 = 0.2858

‖r2 ‖ /λ2 = 0.1110.

(4.2.7)

Theorem6 below gives an upper bound on the number of B&B nodes when branching on a hyper-

plane in (KP).

Theorem 6. Suppose thata = λp + r, with p ≥ 0. Then

iwidth(p, (KP)) ≤
⌊‖r‖‖v‖

λ
+

β2 − β1

λ

⌋

+ 1. (4.2.8)

This bound is quite strong for near parallel vectors computed from Theorems4 and5. For instance,

let a, p1, r1, λ1 be as in Example5. If β1 = β2 in a knapsack problem with weight vectora and each

xi is bounded between0 and3, then Theorem6 implies that the integer width is at most one. At the

other extreme, it also implies that the integer width is at most one, if eachxi is bounded between0 and

1, andβ2 − β1 ≤ 39. However, this bound does not seem as useful, whenp is a “simple” vector, say a

unit vector. Note that the assumption thatp ≥ 0 is only to simplify the proofs.

We now complete the proof of Theorem3, based on a simple transference result between branching

directions, taken from [31].

Proof of Theorem 3
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Let us denote byQ, QR, andQN the feasible sets of the LP relaxations of (KP), of (KP-R), and of

(KP-N), respectively.

First, letU andp be the transformation matrix, and the near parallel vector from Theorem4. It was

shown in [31] that iwidth(p,Q) = iwidth(pU,QR). But pU = ±en, so

iwidth(p,Q) = iwidth(en, QR). (4.2.9)

On the other hand,

iwidth(p,Q) ≤
⌊‖r‖‖v‖

λ
+

β2 − β1

λ

⌋

+ 1

≤ ⌊ f(a)(2 ‖v‖ +(β2 − β1))⌋ + 1

(4.2.10)

with the first inequality coming from Theorem6 and the second from using the bounds on1/λ and

‖r‖ /λ from Theorem4. Combining (4.2.9) and (4.2.10) yields (1) in Theorem3.

Now letV andp be the transformation matrix, and the near parallel vector from Theorem5. It was

shown in [31] that iwidth(p,Q) = iwidth(pV,QN ). But pV = ±en−1, so

iwidth(en−1, QN ) = iwidth(p,Q). (4.2.11)

On the other hand,

iwidth(p,Q) ≤
⌊‖r‖‖v‖

λ

⌋

+ 1

≤ ⌊ g(a)(2 ‖v‖)⌋ + 1.

(4.2.12)

with the first inequality coming from Theorem6 and the second from using the bound on‖ r ‖ /λ in

Theorem5. Combining (4.2.11) and (4.2.12) yields (2) in Theorem3.

4.3 Near Parallel Vectors: Intuition and Proofs of Theorems4 and 5

Proof of Theorem 4 First note that the lower bound on‖a‖ implies

f(a) ≤
√

3/2. (4.3.13)
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Let Lℓ be the lattice generated by the firstℓ columns of







a

I






U, and

Z =







0 U−1

1 −a






.

Clearly,Z is unimodular and

Z







aU

U






=







In

01×n






. (4.3.14)

So Lemma1 implies thatLℓ is complete and the lastn + 1 − ℓ rows ofZ generateL⊥
ℓ . The last row of

Z is (1,−a) and the next-to-last is(0, p), so we get

det Ln = det L⊥
n = (‖a‖2 +1)1/2,

det Ln−1 = det L⊥
n−1 = ‖p‖ (1+ ‖r‖2)1/2.

(4.3.15)

(3.1.3) of Theorem1 implies

det Ln−1 ≤ 2(n−1)/4(det Ln)1−1/n. (4.3.16)

Substituting into (4.3.16) from (4.3.15) gives

‖p‖ (1+ ‖r‖2)1/2 ≤ 2(n−1)/4(
√

‖a‖2 +1)1−1/n

≤ 2n/4 ‖a‖1−1/n

= ‖a‖ f(a),

(4.3.17)

with the second inequality coming the lower bound on‖a‖. This shows (1).
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Proof of (2) From (1) we directly obtain

f(a)2 ‖a‖2 − ‖r‖2

‖p‖2
≥ f(a)2 ‖a‖2 − ‖p‖2‖r‖2

‖p‖2

≥ 1

=
f(a)2 ‖a‖2

f(a)2 ‖a‖2
,

(4.3.18)

where in the first inequality we used‖p‖≥ 1. Now note

‖p‖2≤ f(a)2 ‖a‖2,

i.e., the the denominator of the first expression in (4.3.18) is not larger than the denominator of the last

expression. So if we replacef(a)2 by 1 in thenumeratorof both, the inequality will remain valid. The

result is
‖a‖2 − ‖r‖2

‖p‖2
≥ 1

f(a)2
, (4.3.19)

which is the square of the required inequality.

Proof of (3) We have
‖r‖2

λ2
≤ ‖p‖2‖r‖2

‖λp‖2

=
‖p‖2‖r‖2

‖a‖2 − ‖r‖2

≤ f(a)2 ‖a‖2

‖a‖2 − ‖r‖2

≤ f(a)2 ‖a‖2

‖a‖2 −f(a)2 ‖a‖2

=
f(a)2

1 − f(a)2

≤ 4f(a)2,

(4.3.20)

where the last inequality comes from (4.3.13) and the others are straightforward.
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Proof of Theorem 5 The lower bound on‖a‖ implies

g(a) ≤
√

3/2. (4.3.21)

Let Lℓ be the lattice generated by the firstℓ columns ofV. We have

(V, b)−1V =







In−1

0






. (4.3.22)

So Lemma1 implies thatLℓ is complete and the lastn−ℓ rows of(V, b)−1 generateL⊥
ℓ . It is elementary

to see that the last row of(V, b)−1 is a and by definition the next-to-last row isp, and these rows are

independent, sor 6= 0. Also,

detLn−1 = det L⊥
n−1 = ‖a‖,

detLn−2 = det L⊥
n−2 = ‖p‖‖r‖ .

(4.3.23)

(3.1.3) of Theorem1 with n − 1 in place ofn andn − 2 in place ofk implies

det Ln−2 ≤ 2(n−2)/4(detLn−1)
1−1/(n−1). (4.3.24)

Substituting into (4.3.24) from (4.3.23) gives

‖p‖‖r‖ ≤ 2(n−2)/4 ‖a‖1−1/(n−1)

= ‖a‖ g(a),
(4.3.25)

as required.

Proof of (2) It is enough to note that in proof of (3) in Theorem4 we only used the inequality‖p ‖2‖

r ‖2≤ f(a)2 ‖ a ‖2 . So the exact same argument works here as well withg(a) instead off(a), and

invoking (4.3.21) as well.
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4.4 Branching on a Near Parallel Vector: Proof of Theorem6

This proof is somewhat technical, so we state and prove some intermediate claims, to improve

readability. Let us fixa, p, β1, β2, andv. For a row-vectorw and an integerℓ we write

max(w, ℓ) = max {wx | px ≤ ℓ, 0 ≤ x ≤ v }

min(w, ℓ) = min {wx | px ≥ ℓ, 0 ≤ x ≤ v }.
(4.4.26)

The dependence onp, on v and on the sense of the constraint (i.e.,≤ or ≥ ) is not shown by this

notation; however, we always usepx ≤ ℓ with “max” andpx ≥ ℓ with “min”, and p andv are fixed.

Note that asa is a row-vector andv a column-vector,av is their inner product, and the meaning ofpv is

similar.

Claim 1. Suppose thatℓ1 andℓ2 are integers in{0, . . . , pv}. Then

min(a, ℓ2) − max(a, ℓ1) ≥ − ‖r‖‖v‖ +λ(ℓ2 − ℓ1). (4.4.27)

Proof The decomposition ofa shows

max(a, ℓ1) ≤ max(r, ℓ1) + λℓ1, and

min(a, ℓ2) ≥ min(r, ℓ2) + λℓ2.
(4.4.28)

So we get the following chain of inequalities, with ensuing explanation:

min(a, ℓ2) − max(a, ℓ1) ≥ min(r, ℓ2) − max(r, ℓ1) + λ(ℓ2 − ℓ1)

≥ rx2 − rx1 + λ(ℓ2 − ℓ1)

= r(x2 − x1) + λ(ℓ2 − ℓ1)

≥ − ‖r‖‖v‖ +λ(ℓ2 − ℓ1).

(4.4.29)

Herex2 andx1 are the solutions that attain the maximum and the minimum inmin(r, ℓ2) andmax(r, ℓ1),

respectively. The last inequality follows from the fact that theith component ofx2 − x1 is at mostvi in

absolute value and the Cauchy-Schwartz inequality.

End of proof of Claim 1
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Next, let us note

min(a, k) ≤ max(a, k) for k ∈ {0, . . . , pv}. (4.4.30)

Indeed, (4.4.30) holds, since the feasible sets of the optimization problems definingmin(a, k) and

max(a, k) contain{x | px = k, 0 ≤ x ≤ v }.

The nonnegativity ofp and ofa imply min(a, 0) = 0 andmax(a, pe) = av. The proof of the following

claim is trivial, hence omitted.

Claim 2. Suppose thatℓ1 andℓ2 are integers in{0, . . . , pv} with ℓ1 + 1 ≤ ℓ2 and

max(a, ℓ1) < β1 ≤ β2 < min(a, ℓ2). (4.4.31)

Then for allx with β1 ≤ ax ≤ β2, 0 ≤ x ≤ v

ℓ1 < px < ℓ2 (4.4.32)

holds.

We assume for simplicity

max(a, 0) < β1 ≤ β2 < min(a, pe); (4.4.33)

the cases when this fails to hold are easy to handle separately. Let ℓ1 be the largest andℓ2 the smallest

integer such that

max(a, ℓ1) < β1 ≤ β2 < min(a, ℓ2). (4.4.34)

From (4.4.30) ℓ2 ≥ ℓ1 + 1 follows and Claim2 yields

iwidth(p, (SUB)) ≤ ℓ2 − ℓ1 − 1. (4.4.35)

By the choices ofℓ1 andℓ2 we have

β1 ≤ max(a, ℓ1 + 1) andβ2 ≥ min(a, ℓ2 − 1), (4.4.36)
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hence Claim1 leads to

β2 − β1 ≥ min(a, ℓ2 − 1) − max(a, ℓ1 + 1)

≥ − ‖r‖‖v‖ +λ(ℓ2 − ℓ1 − 2),
(4.4.37)

that is

ℓ2 − ℓ1 − 2 ≤ β2 − β1

λ
+

‖r‖‖v‖
λ

. (4.4.38)

Comparing (4.4.35) and (4.4.38) completes the proof.

4.5 Successive Approximation

Theorems4 and5 approximatea by a single vector. It is natural to ask: if one row ofU−1, or of

(V, b)−1 is a good approximation ofa, can we construct a better approximation from2, 3, . . . , k rows?

The answer is yes and we outline the corresponding results below, and their proofs, which are slight

modifications of the proofs of Theorems4 and5. As of now, we don’t know how to use the general

results for a better analysis of the reformulations than what is already given in Theorem3.

So we mainly state the successive approximation results forthe interesting geometric intuition they

give. Let us define

f(a, k) = 2(k(n−k)+1)/4/ ‖a‖k/n,

g(a, k) = 2k(n−1−k)/4/ ‖a‖(k−1)/n .
(4.5.39)

The successive version of Theorem4 is given below:

Theorem 7. Let a ∈ Zn be a row-vector, with‖a‖≥ 2(n/2+1)n, U a unimodular matrix such that the

columns of






a

I






U

are LLL-reduced andPk the (integral) submatrix ofU−1 consisting of the lastk rows. Furthermore, let

a(k) be the projection ofa onto the subspace spanned by the rows ofPk, r = a − a(k) and

λk :=‖a(k)‖ /det(PkP
T
k )1/2.
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Then

(1) (det(PkP
T
k ))1/2(1+ ‖r‖2)1/2 ≤‖a‖ f(a, k);

(2) λk ≥ 1/f(a, k);

(3) | sin(a, a(k))| ≤‖r‖ /λk ≤ 2f(a, k).

Proof sketch We will use the notation of Theorem4. In its proof we simply change (4.3.15) (we copy

the first expression fordetLn for easy reference) to

detLn = detL⊥
n = (‖a‖2 +1)1/2,

det Ln−k = detL⊥
n−k = (det(PkP T

k ))1/2(1+ ‖r‖2)1/2,
(4.5.40)

and (4.3.16) to

det Ln−k ≤ 2k(n−k)/4(det Ln)1−k/n. (4.5.41)

Then substituting into (4.5.41) from (4.5.40) gives

(det(PkP T
k ))1/2(1+ ‖r‖2)1/2 ≤ 2(k(n−k))/4(

√

‖a‖2 +1)1−k/n

≤ 2(k(n−k)+1)/4/ ‖a‖k/n

= ‖a‖ f(a, k),

(4.5.42)

with the second inequality coming the lower bound on‖ a ‖. This shows (1) and the rest of the proof

follows verbatim the proof of Theorem4.

Theorem5 also has a successive variant, which is

Theorem 8. Suppose‖ a ‖≥ 2(n/2+1)n. Let V be a matrix whose columns are an LLL-reduced basis

of N(a), b an integral column vector withab = 1, k ≤ n−1 an integer, andPk the (integral) submatrix

of (V, b)−1 consisting of the next-to-lastk rows.

Furthermore, leta(k) be the projection ofa onto the subspace spanned by the rows ofPk, r = a−a(k)

and

λk :=‖a(k)‖ /det(PkP
T
k )1/2.

Thenr 6= 0 and
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(1) (det(PkP
T
k ))1/2 ‖r‖≤‖a‖ g(a, k);

(2) | sin(a, a(k))| ≤‖r‖ /λ ≤ 2g(a, k).

Proof sketch We will use the notation of Theorem5. We need to replace (4.3.23) with

detLn−1 = detL⊥
n−1 = ‖a‖,

det Ln−1−k = detL⊥
n−1−k = (det(PkP

T
k ))1/2 ‖r‖ .

(4.5.43)

Theorem2 implies

det Ln−1−k ≤ 2k(n−1−k)/4(detLn−1)
1−k/(n−1). (4.5.44)

Plugging the expressions fordet Ln−1 anddet Ln−1−k from (4.5.43) into (4.5.44) gives

(det(PkP
T
k ))1/2 ‖r‖ ≤ 2k(n−1−k)/4 ‖a‖1−k/(n−1)

= g(a, k) ‖a‖,
(4.5.45)

proving (1). The rest of the proof is an almost verbatim copy of the corresponding proof in Theorem

5.

4.6 Discussion

Computing a near parallel vector can be done in other ways as well. The relevance of Theorems4

and5 is not just finding near parallel vectors: it is finding a near parallelp, which corresponds to a unit

vector in the rangespace and nullspace reformulations, thus leading to the analysis of Theorem3.

Finding an integral vector, which is near parallel to an other integral or rational one has other ap-

plications as well. In [24] Huyer and Neumaier studied several notions of near parallelness, presented

numerical algorithms, and applications to verifying the feasibility of a linear system of inequalities.

Theorems4 and5 approximatea by a single vector, last row ofU−1. In Chapter6, we will show

that branching on multiple rows in succession (i.e., on lastrow of U−1, . . . , first row of U−1) is also

beneficial in solving the majority of the randomly generatedknapsack problems.

In the next chapter, we show that for a low density subset sum problem, there is a polynomial time

computable certificate of infeasibility for almost allβ integer right hand sides. This implies that for
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almost all right hand sides, the integer width along the lastvariable in the rangespace reformulation of

a low density subset sum problem is zero.
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CHAPTER 5

Branching Proofs of Infeasibility in Low Density Subset Sum

Problems

5.1 Introduction

In this chapter, we prove that the subset sum problem

ax = β

x ∈ {0, 1}n
(SUB)

has a polynomial time computable certificate of infeasibility for all a with density at most1/(2n) and

for almost all integer right hand sidesβ. The certificate is branching on a hyperplane.

The proof has two ingredients. We first prove that a “short” vector that is near parallel toa is a

suitable branching direction, regardless of the density. Then we show that for a low densitya such a

short and near parallel vector can be computed using diophantine approximation, via a methodology

introduced by Frank and Tardos in [15]. We also show that the last row ofU−1, the inverse of the

transformation matrix, in the rangespace reformulation can also be used to prove the same result, which

implies that the infeasibility of almost all low density subset sum problems can be proved by branching

on the last variable after the problem is reformulated usingthe rangespace reformulation.

5.2 Literature Review

The subset sum problem (SUB) is one of the original NP-complete problems introduced by Karp

[29]. A particular reason for its importance is its applicability in cryptography. Witha being a public



key andx the message, one can transmitβ = ax instead ofx. An eavesdropper would need to find

x from the interceptedβ and the publica, i.e., solve (SUB), while a legitimate receiver can use a

suitable private key to decode the message. In cryptographyapplications, instances with low density are

of interest, with the density ofa ∈ Zn defined as

d(a) =
n

log2 ‖a‖∞
. (5.2.1)

A line of research started in the seminal paper of Lagarias and Odlyzko [33], focused on solving

such instances. In [33] the authors proved that the solution to (SUB) can be found for all but at most

a fraction of1/2n of all a vectors withd(a) < c/n and assuming that the solution exists. Herec is a

constant approximately equal to4.8. Frieze in [16] gave a simplified algorithm to prove their result.

From now on we will say that a statement is true for almost all elements of a setS, if it is true for at

least a fraction of1 − 1/2n of them, with the value ofn always clear from the context.

Furst and Kannan in [17] pursued an approach that looked at both feasible and infeasible instances.

In [17] they showed that for some constantc > 0, if M ≥ 2cn log n, then for almost alla ∈ { 1, . . . ,M }n

and allβ the problem (SUB) has a polynomial size proof of feasibility or infeasibility. Their second

result shows that for some constantd > 0, if M ≥ 2dn2

, then for almost alla ∈ { 1, . . . ,M }n and all

β the problem (SUB) can besolvedin polynomial time.

All the above proofs construct a candidate solution to (SUB) as a “short” vector in a certain lattice.

Finding a vector whose length is off by a factor of at most2(n−1)/2 from the shortest one is done utilizing

the LLL basis reduction method.

Assuming the availability of alattice oracle, which finds the shortest vector in a lattice, Lagarias

and Odlyzko in [33] show a similar result under the weaker assumptiond(a) < 0.6463. The current

best result on finding the solution of almost all solvable subset sum problems using a lattice oracle is

by Coster et al. [12]: they require onlyd(a) < 0.9408. It is an open question to prove the infeasibility

of almost all subset sum problems with density upper boundedby a constant, without assuming the

availibility of an oracle. For more references, we refer to [12] and [42].
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5.3 Main Results

In this section we look at the structure of low density subsetsum problems from a complementary,

or dual viewpoint. WithP a polyhedron andv an integral vector, it is clear thatP has no integral point

if vx is nonintegral for allx ∈ P . We will examine such proofs of infeasibility of (SUB). Let

G(a, v) = {β ∈ Z | vx 6∈ Z for all x with ax = β, 0 ≤ x ≤ e }, (5.3.2)

wheree denotes a column vector of all ones. We will say that for the right hand sidesβ in G(a, v) the

infeasibility of (SUB) is proven by branching onvx. The reason for this terminology is that letting

P = {x | ax = β, 0 ≤ x ≤ e }, β is in G(a, v) iff both the maximum and the minimum ofvx overP

are between two consecutive integers.

We shall writeZn
+, andZn

++ for the set of nonnegative and positive integraln-vectors, respectively.

We will throughout assumen ≥ 10, and that the components ofa are relatively prime. We only consider

nontrivial right hand sides of (SUB), i.e., right hand sides from{ 0, 1, . . . , ‖a‖1 }.

Our first main result is:

Theorem 9. Supposed(a) ≤ 1/(2n). Then we can compute in polynomial time an integral vectorv,

such that for almost all right hand sides the infeasibility of (SUB) is proven by branching onvx.

Also,G(a, v) can be covered by the disjoint union of at most22n2

intervals, each of length at least

2n.

Note that Theorem9 further narrows the range of hard instances from the work of Furst and Kannan

in [17].

There are at most2n right hand sides for which (SUB) is feasible, so most right hand sides lead

to an infeasible instance, whend(a) is small. However, in principle, it may be difficult toprove the

infeasibility of many infeasible instances. Fortunately,this is not the case, as shown by the following

corollary.

Corollary 2. Leta andv be as in Theorem9. Then for almost all right hand sides for which (SUB) is

infeasible, its infeasibility is proven by branching onvx.
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There is an interesting duality and parallel between the results on low density subset sum in [12,

17, 33] and Theorem9. The proofs in [12, 17, 33] work by constructing a candidate solution, while

ours works by branching, i.e., by a dual method. At the same time, they all rely on basis reduction. In

our proof we findv by a method of Frank and Tardos in [15], which uses the simultaneous diophantine

approximation method of Lenstra, Lenstra and Lovász [35], which in turn, also uses basis reduction.

Theorem9 will follow from combining Theorems10 and 11 below. Theorem10 proves that a

“large” fraction of righ hand sides in (SUB) have their infeasibility proven by branching onvx, if

v is relatively short and near parallel toa. Theorem11 will show that such av can be found using

diophantine approximation, whend(a) ≤ 1/(2n).

Theorem 10. Let v ∈ Zn
+, λ ∈ R, r ∈ Rn with λ ≥ 1, ‖r‖1 /λ < 1, and

a = λv + r.

Then the infeasibility of all but at most a fraction of

2(‖r‖1 +1)

λ
(5.3.3)

right hand sides is proven by branching onvx.

In addition,G(a, v) can be covered by the disjoint union of at most‖ v ‖1 intervals, each of length

at leastλ− ‖r‖1.

Theorem 11. Supposed(a) ≤ 1/(2n). Then we can compute in polynomial timev ∈ Zn
+, λ ∈ Q, r ∈

Qn with a = λv + r, and

(1) ‖v‖1≤ 22n2

;

(2) ‖r‖1 /λ ≤ 1/2n+2;

(3) λ ≥ 2n+2.
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5.4 Proofs

Proof of Theorem10 Let us fixa andv. Sincea andv are nonnegative, ande is a column vector of all

ones, it holds that

‖a‖1= ae and ‖v‖1= ve,

and we will use the latter notation for brevity.

Recall that for a row-vectorw and an integerℓ we write

max(w, ℓ) = max {wx | vx ≤ ℓ, 0 ≤ x ≤ e },

min(w, ℓ) = min {wx | vx ≥ ℓ, 0 ≤ x ≤ e }.
(5.4.4)

The dependence onv and on the sense of the constraint (i.e.,≤ or ≥ ) is not shown by this notation;

however, we always usevx ≤ ℓ with “max” andvx ≥ ℓ with “min”, and v is fixed.

Claim 3. We have

min(a, k) ≤ max(a, k) for k ∈ {0, . . . , ve}, (5.4.5)

max(a, k) − min(a, k) ≤ ‖r‖1 for k ∈ {0, . . . , ve}, and (5.4.6)

min(a, k + 1) − max(a, k) ≥ − ‖r‖1 +λ > 0 for k ∈ {0, . . . , ve − 1}. (5.4.7)

Proof The feasible sets of the optimization problems definingmin(a, k) and max(a, k) contain

{x | vx = k, 0 ≤ x ≤ e }, so (5.4.5) follows.

The decomposition ofa shows that for allℓ1 andℓ2 integers for which the expressions below are defined,

max(a, ℓ1) ≤ max(r, ℓ1) + λℓ1, and

min(a, ℓ2) ≥ min(r, ℓ2) + λℓ2,
(5.4.8)

hold. Therefore

min(a, ℓ2) − max(a, ℓ1) ≥ min(r, ℓ2) − max(r, ℓ1) + λ(ℓ2 − ℓ1)

≥ − ‖r‖1 +λ(ℓ2 − ℓ1).
(5.4.9)
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follows, and (5.4.9) with ℓ2 = ℓ1 = k implies (5.4.6), and withℓ2 = k + 1, ℓ1 = k yields (5.4.7).

Hence

min(a, 0) ≤ max(a, 0) < min(a, 1) ≤ max(a, 1) < · · · < min(a, ve) ≤ max(a, ve). (5.4.10)

We will call the intervals

[min(a, 0),max(a, 0)], . . . , [min(a, ve),max(a, ve)]

bad, and the intervals

G0 := (max(a, 0),min(a, 1)), . . . , Gve−1 := (max(a, ve − 1),min(a, ve))

good.

The nonnegativity ofv and ofa imply min(a, 0) = 0 andmax(a, ve) = ae, so the bad and good

intervals partition[0, ae]: the pattern is bad, good, . . . , good, bad. Some of the bad intervals may have

zero length, but by (5.4.7) none of the good ones do.

Next we show that the good intervals contain exactly the right hand sides for which the infeasibility

of (SUB) is proven by branching onvx.

Claim 4.

G(a, v) = ∪ve−1
i=0 Gi ∩ Z. (5.4.11)

Proof By definition β ∈ G(a, v) iff for some ℓ integer with0 ≤ ℓ < ve − 1 and for allx with

0 ≤ x ≤ e, ax = β

ℓ < vx < ℓ + 1 (5.4.12)

holds. We show that for thisℓ

max(a, ℓ) < β and (5.4.13)

min(a, ℓ + 1) > β. (5.4.14)
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First, assume to the contrary that (5.4.13) is false, i.e., there existsx1 with

ax1 ≥ β, vx1 ≤ ℓ, 0 ≤ x1 ≤ e. (5.4.15)

Sinceℓ ≥ 0, denoting byx2 the all-zero vector, it holds that

ax2 ≤ β, vx2 ≤ ℓ, 0 ≤ x2 ≤ e. (5.4.16)

Looking at (5.4.15) and (5.4.16) it is clear that a convex combination ofx1 andx2, sayx̄ satisfies

ax̄ = β, vx̄ ≤ ℓ, 0 ≤ x̄ ≤ e, (5.4.17)

which contradicts (5.4.13). Showing (5.4.14) is analogous.

End of proof of Claim 4

To summarize, Claim4 implies thatG(a, v) is covered by the disjoint union ofve intervals. By

(5.4.7) their length is lower bounded byλ− ‖r‖1 .

Let us denote byb the number of integers in bad intervals and byg the number of integers in good

intervals, i.e.,g = |G(a, v)|. Using (5.4.6) and (5.4.7), and the fact that there areve good intervals and

ve + 1 bad ones, we get

g ≥ ve(λ− ‖r‖1 −1),

b ≤ (ve + 1)(‖r‖1 +1),
(5.4.18)

so

g

b
≥ ve

ve + 1

λ − (‖r‖1 +1)

‖r‖1 +1
(5.4.19)

≥ 1

2

λ − (‖r‖1 +1)

‖r‖1 +1
(5.4.20)

≥ λ

2(‖r‖1 +1)
− 1, (5.4.21)

and from here

b

g + b
=

1

1 + g/b
(5.4.22)
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≤ 2(‖r‖1 +1)

λ
. (5.4.23)

follows.

Proof of Theorem 11

We will use a methodology due to Frank and Tardos introduced in [15]. Here the authors employ

simultaneous diophantine approximation to decompose a vector with large norm into the weighted sum

of smaller norm vectors. We will only need one vector that approximatesa and the parameters will be

somewhat differently chosen in the diophantine approximation.

We will rely on the following result of Lenstra, Lenstra and Lovász from [35]:

Theorem 12. Given a positive integerN andα ∈ Qn, we can compute in polynomial timev ∈ Zn, q ∈

Z++ such that

‖qα − v‖∞ ≤ 1

N
and (5.4.24)

q ≤ 2n(n+1)/4Nn. (5.4.25)

We will use Theorem12with

α =
a

‖a‖∞
,

then set

λ =
‖a‖∞

q
, r = a − λv.

We have the following estimates with ensuing explanation:

‖v‖1 ≤ n ‖v‖∞ ≤ nq ≤ n2n(n+1)/4Nn, (5.4.26)

‖r‖1

λ
≤ n ‖r‖∞

λ
≤ n

N
, (5.4.27)

λ ≥ ‖a‖∞
2n(n+1)/4Nn

≥ 22n2−n(n+1)/4

Nn
. (5.4.28)

Here (5.4.26) follows from using (5.4.24), since‖ qα ‖∞= q andv is integral. The second inequality

in (5.4.27) is actually equivalent to (5.4.24); and (5.4.28) comes from the definition ofλ and (5.4.25).
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Hence (1), (2), and (3) in Theorem11 are satisfied when

n2n(n+1)/4Nn ≤ 22n2

, (5.4.29)

n

N
≤ 1

2n+2
, (5.4.30)

22n2−n(n+1)/4

Nn
≥ 2n+2. (5.4.31)

But (5.4.29) through (5.4.31) are equivalent to

n2n+2 ≤ N ≤ 22n−(n+1)/4−1−2/n, (5.4.32)

and such an integerN exists, whenn ≥ 10.

Proof of Corollary 2 Let I(a) be the set of right hand sides for which (SUB) is infeasible. Theorem

9 states
|G(a, v)|
‖a‖1 +1

≥ 1 − 1

2n
. (5.4.33)

SinceI(a) ⊆ { 0, . . . , ‖a‖1 }, Theorem9 implies

|G(a, v)|
I(a)

≥ 1 − 1

2n
; (5.4.34)

and sinceG(a, v) ⊆ I(a), (5.4.34) means the desired conclusion.

5.5 Discussion

Looking at the decomposition in Theorem4, it is easy to see that, branching onp, last row of the

inverse of the transformation matrix in the rangespace reformulation, proves the infeasibility of almost

all subset sum problems when‖ a ‖ is large enough in the same way. I will briefly mention the results

here without going into the details.

Let (SUB-R) denote the rangespace reformulation of (SUB).

Theorem 13. Supposea ∈ Zn, ‖ a ‖≥ 21.5n2

, and letp be the last row ofU−1 in the rangespace

reformulation. Then
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(1) iwidth(p, (SUB)) ≤ 1 for all β ∈ {1, . . . ,∑ ai}.

(2) iwidth(p, (SUB)) = 0 for almost allβ ∈ {1, . . . ,∑ ai}.

Theorem 14. Supposea ∈ Zn, ‖a‖≥ 21.5n2

. Then

(1) iwidth(en, (SUB-R) ≤ 1 for all β ∈ {1, . . . ,∑ ai}.

(2) iwidth(en, (SUB-R) = 0 for almost allβ ∈ {1, . . . ,∑ ai}.
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CHAPTER 6

Basis Reduction and the Complexity of Branch and Bound

The classical branch and bound algorithm for the integer feasibility problem

Findx ∈ Q ∩ Zn, with Q =











x |







ℓ1

ℓ2






≤







A

I






x ≤







w1

w2

















(6.0.1)

has exponential worst case complexity. We prove that it is surprisingly efficient on reformulations of

(6.0.1), in which the columns of the constraint matrix are “short”,and “near orthogonal”, i.e., a reduced

basis of the generated lattice.

The analysis builds on Furst and Kannan’s work on the subset sum problem and also uses an upper

bound on the size of the branch and bound tree based on Lenstra’s analysis of his integer programming

algorithm.

We show that when the entries ofA are from{1, . . . ,M} for a large enoughM , branch and bound

solves almost all reformulated instances at the root node, and explore practical aspects of this result. We

compute numerical values ofM which guarantee that90 and99 percent of the reformulated problems

solve at the root: these turn out to be surprisingly small when the problem size is moderate.

A computational study also confirms that the reformulationsof random integer programs become

easier, as the coefficients grow.

6.1 Introduction and Main Results

The Integer Programming (IP) feasibility problem asks whether a polyhedronQ contains an integral

point. Branch and bound (B&B) is a classical solution method. We will briefly introduce ordinary B&B.

It starts withQ as the sole subproblem (node) (levelj = 0). In a general step, one chooses a variable



xi, and for each subproblemQ′ at levelj, the new subproblemsQ′ ∩ {x|xi = γ} are created, whereγ

ranges over all possible integer values ofxi. Now all the subproblems are at the(j + 1)st level of the

B&B tree. We repeat this until all subproblems are shown to beempty or we find an integral point in

one of them.

B&B enhanced by cutting planes is the workhorse method for integer programming implemented

in most commercial software. However, instances in [3, 4, 8, 21, 25, 31] show that it is theoretically

inefficient: it can take an exponential number of subproblems to prove the infeasibility of simple knap-

sack problems. Chvátal in [8] proves that this is true for the majority of knapsack problems in a certain

natural family. While B&B is inefficient in the worst case, Cornuéjols et al. in [19] developed useful

computational tools to give an early estimate on the size of the B&B tree in practice.

Since IP feasibility is NP-complete, one can ask for polynomiality of a solution method only in fixed

dimension. All algorithms that achieve such complexity rely on advanced techniques. The algorithms of

Lenstra [36] and Kannan [27] (see Section2.3.1) first round the polyhedron (i.e., apply a transformation

to make it have a spherical appearance), then use basis reduction to reduce the problem to a provably

small number of smaller dimensional subproblems. On the subproblems the algorithms are applied

recursively, e.g., rounding is done again. Generalized basis reduction, proposed by Lovász and Scarf

in [39] avoids rounding, but needs to solve a sequence of linear programs to create the subproblems.

In fixed dimension one can evencount the number of feasible solutions in polynomial time: see the

papers of Barvinok [6], and Dyer and Kannan [13]. We refer to [10, 37] for successful implementations

of these theoretically efficient methods and to Haus et al. [22] for a finite augmentation type algorithm

using basis reduction.

As explained in Section2.3.2, there is a simpler way to use basis reduction in integer programming:

preprocessing (6.0.1) to create an instance with short and near orthogonal columns in the constraint

matrix, then simply feeding the resulting instance to an IP solver. We describe two such methods that

were proposed recently. We assume thatA is an integral matrix withm rows andn columns, and thewi

andℓi are integral vectors.

The rangespace reformulation of (6.0.1) is

Findy ∈ QR ∩ Zn, with QR =











y |







ℓ1

ℓ2






≤







A

I






Uy ≤







w1

w2

















, (6.1.2)
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whereU is a unimodular matrix computed to make the columns of the constraint matrix a reduced basis

of the generated lattice.

The nullspace reformulation is applicable, whenw1 = ℓ1. It is

Findy ∈ QN ∩ Zn−m, with QN = { y | ℓ2 − x0 ≤ By ≤ w2 − x0} , (6.1.3)

wherex0 ∈ Zn satisfiesAx0 = ℓ1 and the columns ofB are a reduced basis of the null lattice ofA,

N(A) = {x ∈ Zn |Ax = 0 }.

We analyze the use of LLL, KZ and RKZ reduced bases in the reformulations (for more details,

see Sections2.2.1, 2.2.2 and 2.2.5). When QR is computed using RKZ reduction, we call it the

RKZ-rangespace reformulation ofQ; similarly we talk about an RKZ-nullspace, LLL-rangespace, LLL-

nullspace, KZ-rangespace and KZ-nullspace reformulation.

Example 6. The polyhedron

121 ≤ 20x1 + 18x2 + 37x3 ≤ 125

0 ≤ x1, x2, x3 ≤ 7
(6.1.4)

is shown on the first picture of Figure6.1. It defines an infeasible and relatively difficult integer feasibil-

ity problem for B&B, as branching on eitherx1, x2 or x3 yields at least4 subproblems; and infeasibility

can be proved only in the third level of the B&B tree. It is interesting to see how the various algorithms

described above would work on the instance6.1.4. Lenstra’s and Kannan’s algorithms would first trans-

form this polyhedron to make it more spherical; generalizedbasis reduction would solve a sequence of

linear programs to find the directionx1 + x2 + 2x3 along which the polyhedron is thin.

The LLL-rangespace reformulation is

121 ≤ −x1 − 2x2 + 6x3 ≤ 125

0 ≤ −x1 − x2 − 7x3 ≤ 7

0 ≤ −x1 + x2 + 4x3 ≤ 7

0 ≤ x1 + 2x3 ≤ 7

(6.1.5)

shown on the second picture of Figure6.1: now branching ony3 proves integer infeasibility.
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Figure 6.1: LP Relaxations of the Problem in Example6 and its LLL-Rangespace Reformulation

Branching onx1 + x2 + 2x3 (which is the last row of the inverse of the transformation matrix) in

the original problem is equivalent to branching ony3 in the reformulated problem.

The reformulation methods are very successful in practice in solving several classes of hard integer

programs. Notably, the original formulations of the marketshare problems of Cornuéjols and Dawande

in [11] are notoriously difficult for commercial solvers, while the nullspace reformulations are much

easier to solve as shown by Aardal et. al. in [1].

However, they seem difficult to analyze in general. The only analysis that exists so far is for knap-

sack problems with a constraint vector of the forma = λp + r, with p andr integral vectors, andλ an

integer, large compared to‖p‖ and‖r‖. Aardal and Lenstra in [3, 4] proved a lower bound on the norm

of the last vector in the nullspace reformulation, and argued that branching on such a long vector creates

a small number of B&B nodes. Krishnamoorthy and Pataki in [31] pointed out a gap in this proof, and

showed that branching on the constraintpx in Q (which creates a small number of subproblems, asλ is

large) is equivalent to branching on the last variable inQR andQN .

A result one may hope for is proving polynomiality of B&B on the reformulations of (6.0.1) when

the dimension is fixed. While this seems difficult, we give a different and perhaps even more surprising

complexity analysis. It is in the spirit of Furst and Kannan’s work in [17] on subset sum problems and

builds on their results to bound the fraction of integral matrices for which the shortest vector of two

corresponding lattices is short. We also use an upper bound on the size of the B&B tree, which is based

on Lenstra’s analysis of his integer programming algorithmin [36]. We introduce necessary notation
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and state our results, then give a detailed comparison with [17].

Backward B&B is B&B branching on the variables in reverse order starting with the one of highest

index. For a positive integerM we denote byGm,n(M) the set of matrices withm rows andn columns,

and the entries drawn from{1, . . . ,M}. Remember that for anm by n integral matrixA with full row

rank, we writegcd(A) for the greatest common divisor of them by m subdeterminants ofA. If B&B

generates at most one node at each level of the B&B tree, we saythat it solves an integer feasibility

problem at the root node.

The main results of the paper follow.

Theorem 15. Let0 < ǫ < 1.

(1) If

M >
(2γn ‖(w1;w2) − (ℓ1; ℓ2)‖ +1)1+n/m

ǫ1/m
, (6.1.6)

then for all but at most a fractionǫ of A ∈ Gm,n(M) backward B&B solves the RKZ-rangespace

reformulation ofQ at the root node.

(2) If

M >
(2γn−m ‖w2 − ℓ2 ‖ +1)n/m

ǫ1/m
, (6.1.7)

then for all but at most a fractionǫ of A ∈ Gm,n(M) backward B&B solves the RKZ-nullspace

reformulation ofQ at the root node.

Hereγi = max{C1, . . . , Ci}, whereCi is the Hermite’s constant. It is known thatγi ≤ 1 + i/4.

The proofs also show that whenM obeys the above bounds, thenQ has at most one element for all

but at most a fraction ofǫ of A ∈ Gm,n(M).

When a statement is true for all, but at most a fraction of1/2n of the elements of a setS, we say

that it is true foralmost allelements. So far, all polynomial time algorithms solving almost all subset

sum instances required anM which is exponential inn, see for instance [16, 17, 33]. We note that when

n/m is fixed and the problems are binary, the magnitude ofM required for the RKZ-rangespace and

RKZ-nullspace reformulations to solve almost all instances is a polynomial inn. To see this, we let

ǫ = 1/2n and observe that the lower bound onM is a polynomial inn whenn/m is fixed.
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Theorem 16. Let0 < ǫ < 1.

(1) If

M >
(2(n+1)/2 ‖(w1;w2) − (ℓ1; ℓ2)‖ +1)1+n/m

ǫ1/m
, (6.1.8)

then for all but at most a fractionǫ of A ∈ Gm,n(M) backward B&B solves the LLL-rangespace

reformulation ofQ at the root node.

(2) If

M >
(2(n−m+1)/2 ‖(w2 − ℓ2)‖ +1)n/m

ǫ1/m
, (6.1.9)

then for all but at most a fractionǫ of A ∈ Gm,n(M) backward B&B solves the LLL-nullspace

reformulation ofQ at the root node.

Theorem 17. Let0 < ǫ < 1.

(1) If

M >
(2n(1+log n)/2 ‖(w1;w2) − (ℓ1; ℓ2)‖ +1)1+n/m

ǫ1/m
, (6.1.10)

then for all but at most a fractionǫ of A ∈ Gm,n(M) backward B&B solves the KZ-rangespace

reformulation ofQ at the root node.

(2) If

M >
(2(n − m)(1+log(n−m))/2 ‖(w2 − ℓ2)‖ +1)n/m

ǫ1/m
, (6.1.11)

then for all but at most a fractionǫ of A ∈ Gm,n(M) backward B&B solves the KZ-nullspace

reformulation ofQ at the root node.

Furst and Kannan, based on Lagarias’ and Odlyzko’s [33] and Frieze’s [16] work show that the

subset sum problem is solvable in polynomial time for almostall weight vectors in{ 1, . . . ,M}n and all

right hand sides, whenM is sufficiently large and a reduced basis of the orthogonal lattice of the weight

vector is available. The lower bound onM is 2cn log n, when the basis is RKZ reduced, and2dn2

, when

it is LLL reduced. Herec andd are positive constants.
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Our Theorems15, 16and17generalize the solvability results from subset sum problems to bounded

integer programs; also, we prove them via branch and bound, an algorithm considered inefficient from

the theoretical point of view.

A practitioner of integer programming may ask for the value of Theorems15, 16and and17. Propo-

sition 3 and Theorems18 and 19, and a computational study put these results into a more practical

perspective. Proposition3 shows that whenm andn are not too large, already fairly small values ofM

guarantee that the RKZ nullspace reformulation (which has the smallest bound onM ) of the majority

of binary integer programs get solved at the root node.

Proposition 3. Suppose thatm,n are chosen according to Table6.1, andM is as shown in the third

column.

n m M for 90 % M for 99 %
20 10 100 125

30 10 3491 4394

30 20 31 35

40 20 229 257

40 30 21 23

50 20 1846 2071

50 30 93 100

50 40 18 19

60 30 410 443

60 40 59 62

60 50 16 17

70 30 1880 2030

70 40 193 205

70 50 45 47

70 60 15 15

Table 6.1: Values ofM to make sure that the RKZ-nullspace reformulation of90 (ǫ = 0.1) or 99
(ǫ = 0.01) % of the instances of type (6.1.12) solve at the root node

Then for at least90% of A ∈ Gm,n(M), and all b right hand sides, backward B&B solves the

RKZ-nullspace reformulation of

Ax = b

x ∈ {0, 1}n
(6.1.12)

at the root node. The same is true for99% of A ∈ Gm,n(M), if M is as shown in the fourth column.
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Note that2n−m is the best upper bound one can give on the number of nodes whenB&B is run

on the original formulation (6.1.12); also, randomly generated IPs with for examplen − m = 30 are

nontrivial even for commercial solvers.

Theorems18 and19 gives another indication why the reformulations are relatively easy. One can

observe thatdet(AAT ) is astronomically large even for moderate values ofM , if A ∈ Gm,n(M) is a

random matrix. While we cannot give a tight upper bound on thesize of the B&B tree in terms of this

determinant, we are able to bound the width of the reformulations along the last unit vector for anyA

(i.e., not just almost all).

Theorem 18. If QR andQN are computed using RKZ reduction, then

width(en, QR) ≤
√

n ‖(w1;w2) − (ℓ1; ℓ2)‖
det(AAT + I)1/(2n)

. (6.1.13)

Also, ifA has independent rows, then

width(en−m, QN ) ≤ gcd(A)
√

n − m ‖w2 − ℓ2 ‖
det(AAT )1/(2n)

. (6.1.14)

Theorem 19. If QR andQN are computed using RKZ reduction, then

width(en, QR) ≤ 2(n−1)/4 ‖(w1;w2) − (ℓ1; ℓ2)‖
det(AAT + I)1/(2n)

. (6.1.15)

Also, ifA has independent rows, then

width(en−m, QN ) ≤ gcd(A)2(n−m−1)/4 ‖w2 − ℓ2 ‖
det(AAT )1/(2n)

. (6.1.16)

These two theorems generalize the width results we have in Chapter4.
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6.2 Computational Study

According to Theorems15, 16 and 17, random integer programs with coefficients drawn from

{1, . . . ,M} should get easier, asM grows. Our computational study confirms this somewhat coun-

terintuitive hypothesis on the family of marketshare problems of Cornuéjols and Dawande in [11]. The

original formulations are notoriously difficult for commercial solvers, while the nullspace reformula-

tions are much easier to solve as shown by Aardal et al. in [1].

We generated twelve4-by-30, and twelve5-by-40 matrices with entries drawn from{1, . . . ,M}

with M = 100, 1000 and10000 (this is72 matrices overall), setb = ⌊Ae/2⌋, wheree is the vector of

all ones and constructed the instances of type (6.1.12). Tables6.2and6.3show the average number of

nodes created to solve the twelve instances generated from each class.

The detailed tables can be found at the end of the chapter. Tables6.4, 6.5and6.6show the number

of nodes that the commercial IP solver CPLEX 9.0 took to solvethe original (non-reformulated), the

rangespace reformulation and the nullspace reformulationof 4-by-30 marketshare problems.

Tables6.7, 6.8and6.9show the number of nodes that the commercial IP solver CPLEX 9.0 took to

solve the rangespace reformulation and the nullspace reformulation of5-by-40 marketshare problems.

None of the original5-by-40 instances we generated was solved in under an hour by CPLEX 9.0. We

used a Sun Ultrasparc desktop computer running the Solaris 10 operating system with processor speed

410 MHz.

Since RKZ reformulation is not implemented in any software that we know of, we used the KZ

reduction routine from the NTL library [48].

In Section6.3we introduce further necessary notation, and give the proofof the main results.

M Original Rangespace Nullspace
100 1, 050, 406.25 1503.58 545.75

1000 1, 136, 736.17 235.08 81.92

10000 1, 235, 433.42 61.08 20.33

Table 6.2: Average number of B&B nodes to solve4-by-30 marketshare problems
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M Rangespace Nullspace
100 86, 858.08 17, 531.92

1000 5, 850.75 1, 254.42

10000 858.33 200.83

Table 6.3: Average number of B&B nodes to solve5-by-40 marketshare problems

6.3 Further Notation and Proofs

Remember that the Euclidean norm of a shortest nonzero vector in L is denoted byλ1(L), andCj

is Hermite’s constant.

We define

γi = max {C1, . . . , Ci} . (6.3.17)

A matrix A defines two lattices that we are interested in:

LR(A) = L(A; I), LN (A) = {x ∈ Zn|Ax = 0} , (6.3.18)

where we recall that(A; I) is the matrix obtained by stackingA on top ofI. HereLN (A) is the same

as the null lattice ofA.

If b1, . . . , br are an RKZ reduced basis of the latticeL with Gram-Schmidt orthogonalization

b∗1, . . . , b
∗
r , then recall that

‖b∗i ‖≥ λ1(L)/Ci. (6.3.19)

holds. If they are an LLL-reduced basis, then

‖b∗i ‖≥ λ1(L)/2(i−1)/2 . (6.3.20)

If they are a KZ-reduced basis, then

‖b∗i ‖≥ λ1(L)/i(1+log i)/2. (6.3.21)

Lemma3 is based on the ideas of Lenstra in [36] used in the analysis of his integer programming

algorithm.
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Lemma 3. LetP be a polyhedron

P = {y ∈ Rr | ℓ ≤ By ≤ w} , (6.3.22)

and b∗1, . . . , b
∗
r the Gram-Schmidt orthogonalization of the columns ofB. When backward B&B is

applied toP , the number of nodes on the level ofyi is at most

(⌊‖w − ℓ‖
‖b∗i ‖

⌋

+ 1

)

. . .

(⌊‖w − ℓ‖
‖b∗r ‖

⌋

+ 1

)

. (6.3.23)

Proof First we show

width(er, P ) ≤‖w − ℓ‖ / ‖b∗r ‖ . (6.3.24)

Let xr,1 and xr,2 denote the maximum and the minimum ofxr over P . Writing B̄ for the matrix

composed of the firstr−1 columns ofB, andbr for the last column, it holds that there isx1, x2 ∈ Rr−1

such thatB̄x1 + brxr,1 andB̄x2 + brxr,2 are inP . So

‖w − ℓ‖ ≥‖(B̄x1 + brxr,1) − (B̄x2 + brxr,2)‖=‖B̄(x1 − x2) + br(xr,1 − xr,2)‖

≥‖b∗r ‖ |xr,1 − xr,2| = ‖b∗r ‖ width(er, P )

holds, and so does (6.3.24).

After branching oner, . . . , ei+1, each subproblem is defined by a matrix formed of the firsti

columns ofB, and bound vectorsℓi andwi, which are translates ofℓ andw by the same vector. Hence

the above proof implies that the width alongei in each of these subproblems is at most

‖w − ℓ‖ / ‖b∗i ‖, (6.3.25)

and this completes the proof.

Our Lemma4 uses ideas from Furst and Kannan’s Lemma 1 in [17], with inequality (6.3.27) also

being a direct generalization.

Lemma 4. For a positive integerk, let ǫR andǫN be the fraction ofA ∈ Gm,n(M) with λ1(LR(A)) ≤

68



k, andλ1(LN (A)) ≤ k, respectively. Then

ǫR ≤ (2k + 1)n+m

Mm
, (6.3.26)

and

ǫN ≤ (2k + 1)n

Mm
. (6.3.27)

Proof We first prove (6.3.27). Forv, a fixed nonzero vector inZn, consider the equation

Av = 0. (6.3.28)

There are at mostMm(n−1) matrices inGm,n(M) that satisfy (6.3.28): if the components ofn − 1

columns ofA are fixed, then the components of the column corresponding toa nonzero entry ofv are

determined from (6.3.28). The number of vectorsv in Zn with ‖ v ‖≤ k is at most(2k + 1)n, and the

number of matrices inGm,n(M) is Mmn. Therefore

ǫN ≤ (2k + 1)nMm(n−1)

Mmn
=

(2k + 1)n

Mm
.

For (6.3.26), note that(v1; v2) ∈ Zm+n is a nonzero vector inLR(A), iff v2 6= 0, and

Av2 = v1. (6.3.29)

An argument like the one in the proof of (6.3.27) shows that for fixed(v1; v2) ∈ Zm+n with v2 6= 0,

there are at mostMm(n−1) matrices inGm,n(M) that satisfy (6.3.29). The number of vectors inZn+m

with norm at mostk is at most(2k + 1)n+m, so

ǫR ≤ (2k + 1)n+mMm(n−1)

Mmn
=

(2k + 1)n+m

Mm
.

Proof of Theorems 15,16 and 17 Let b∗1, . . . , b
∗
n be the Gram-Schmidt orthogonalization of the

columns of(A; I)U . Lemma3 implies that the number of nodes generated by backward B&B applied
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to QR is at most one, if

‖b∗i ‖>‖(w1;w2) − (ℓ1; ℓ2)‖ (6.3.30)

for i = 1, . . . , n. Since the columns of(A; I)U form an RKZ reduced basis ofLR(A), (6.3.19) implies

‖b∗i ‖≥ λ1(LR(A))/Ci, (6.3.31)

so (6.3.30) holds, when

λ1(LR(A)) > Ci ‖(w1;w2) − (ℓ1; ℓ2)‖ (6.3.32)

does fori = 1, . . . , n, which is implied by

λ1(LR(A)) > γn ‖(w1;w2) − (ℓ1; ℓ2)‖ . (6.3.33)

By Lemma4 (6.3.33) is true for all, but at most a fraction ofǫR of A ∈ Gm,n(M) if

M >
(⌊2γn ‖(w1;w2) − (ℓ1; ℓ2)‖ +1⌋)(m+n)/m

ǫ
1/m
R

. (6.3.34)

The proof of part (2) of Theorem15is along the same lines: nowb∗1, . . . , b
∗
n−m is the Gram-Schmidt

orthogonalization of the columns ofB, which is an RKZ reduced basis ofLN (A). Lemma3, and the

reducedness ofB implies that the number of nodes generated by backward B&B applied toQN is at

most one, if

λ1(LN (A)) > γn−m ‖w2 − ℓ2 ‖, (6.3.35)

and by Lemma4 (6.3.35) is true for all, but at most a fraction ofǫN of A ∈ Gm,n(M) if

M >
(⌊2γn−m ‖w2 − ℓ2 ‖ +1⌋)n/m

ǫ
1/m
N

. (6.3.36)

The proof of Theorem16is an almost verbatim copy, now using the estimate (6.3.20) to lower bound

‖b∗i ‖. The proof of Theorem17uses the estimate (6.3.21) to lower bound‖b∗i ‖.

70



Proof of Proposition 3 Let N(n, k) denote the number of integral points in then-dimensional ball of

radiusk. In the previous proofs we used(2k + 1)n as an upper bound forN(n, k). The proof of Part

(2) of Theorem15 actually implies that when

M >
(N(n, ⌈γn−m ‖w2 − ℓ2 ‖⌉)1/m

ǫ
1/m
N

, (6.3.37)

then for all, but at most a fraction ofǫN of A ∈ Gm,n(M) backward B&B solves the nullspace refor-

mulation of (6.1.12) at the root node.

We use Blichfeldt’s upper bound [7]:

Ci ≤
2

π
Γ

(

i + 4

2

)2/i

, (6.3.38)

to boundγn−m in (6.3.37), dynamic programming to exactly find the values ofN(n, k), and the values

ǫN = 0.1, andǫN = 0.01 to obtain Table6.1.

We note that in generalN(n, k) is hard to compute, or find good upper bounds for; however for

small values ofn andk a simple dynamic programming algorithm finds the exact valuequickly.

Proof of Theorems18, and 19 If b∗1, . . . , b
∗
r is an RKZ reduced basis of the latticeL, then by [32]

‖b∗r ‖≥
(detL)1/r

√
r

; (6.3.39)

if it is an LLL reduced basis, then multiplying the inequalities

‖b∗i ‖≤ 2(r−i)/2 ‖b∗r ‖ (i = 1, . . . , r), (6.3.40)

and using‖b∗1 ‖ . . . ‖b∗r ‖= det L gives

‖b∗r ‖≥
(detL)1/r

2(r−1)/4
. (6.3.41)
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Using (6.3.39) and (6.3.41) with (6.3.24) and

detLR(A) = det(AAT + I)1/2, det LN (A) = det(AAT )1/2/ gcd(A)

completes the proof, where the last equation follows from Proposition1.
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6.4 Detailed Computational Results

m = 4 M = 100 Original Rangespace Nullspace
Instance Feasible Time B&B Time B&B Time B&B

(in sec) Nodes (in sec) Nodes (in sec) Nodes

1 No 283.97 1, 054, 683 2.22 1, 285 1.24 691

2 No 309.38 1, 133, 723 3.10 1, 750 1.19 598

3 No 143.86 454, 841 2.75 1, 578 1.18 650

4 No 260.55 853, 396 2.25 1, 307 1.09 591

5 No 461.50 1, 545, 838 2.90 1, 536 1.06 573

6 No 253.66 915, 263 3.00 1, 514 0.99 481

7 No 250.95 961, 809 3.76 1, 987 1.14 644

8 No 332.91 1, 177, 425 2.63 1, 461 1.12 597

9 No 270.02 1, 023, 709 2.97 1, 636 1.23 709

10 Yes 139.12 493, 628 1.40 728 0.01 0

11 No 325.41 1, 273, 732 2.62 1, 462 0.87 461

12 No 439.65 1, 716, 828 3.52 1, 799 1.01 554

Averages 289.251, 050, 406.25 2.76 1503.58 1.01 545.75

Table 6.4: Results for the randomly generated4 by 30 marketshare instances whenM = 100
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m = 4 M = 1000 Original Rangespace Nullspace
Instance Feasible Time B&B Time B&B Time B&B

(in sec) Nodes (in sec) Nodes (in sec) Nodes

1 No 403.49 1, 555, 724 0.29 116 0.26 98

2 No 214.16 776, 562 0.74 315 0.21 83

3 No 380.93 1, 530, 221 0.58 232 0.24 84

4 No 216.43 795, 414 0.56 227 0.27 100

5 No 359.52 1, 197, 797 0.52 235 0.13 40

6 No 406.98 1, 539, 789 0.52 188 0.13 54

7 No 309.96 1, 083, 217 0.77 309 0.29 88

8 No 290.95 1, 125, 457 0.52 221 0.28 96

9 No 222.30 824, 831 0.65 261 0.26 110

10 No 322.83 1, 226, 286 0.52 202 0.21 69

11 No 303.99 1, 050, 540 0.75 302 0.17 63

12 No 286.12 934, 996 0.57 213 0.28 98

Averages 309.811, 136, 736.17 0.58 235.08 0.23 81.92

Table 6.5: Results for the randomly generated4 by 30 marketshare instances whenM = 1000

m = 4 M = 10000 Original Rangespace Nullspace
Instance Feasible Time B&B Time B&B Time B&B

(in sec) Nodes (in sec) Nodes (in sec) Nodes

1 No 374.97 1, 317, 740 0.20 52 0.09 24

2 No 335.90 1, 268, 528 0.17 58 0.08 18

3 No 336.27 1, 212, 268 0.21 52 0.09 16

4 No 459.64 1, 578, 143 0.15 44 0.10 22

5 No 316.60 1, 227, 520 0.26 84 0.10 24

6 No 329.39 1, 294, 314 0.10 22 0.08 16

7 No 338.52 1, 314, 576 0.24 68 0.09 21

8 No 288.91 1, 038, 989 0.22 64 0.09 20

9 No 385.84 1, 421, 441 0.23 71 0.07 18

10 No 231.09 861, 344 0.19 56 0.09 16

11 No 418.04 1, 409, 049 0.26 78 0.08 15

12 No 270.07 881, 289 0.27 84 0.13 34

Averages 340.441, 235, 433.42 0.21 61.08 0.09 20.33

Table 6.6: Results for the randomly generated4 by 30 marketshare instances whenM = 10000
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m = 5 M = 100 Rangespace Nullspace
Instance Feasible Time B&B Time B&B

(in sec) Nodes (in sec) Nodes

1 No 343.57 104, 536 66.32 22, 952

2 No 253.49 80, 733 51.08 16, 821

3 No 472.31 135, 423 60.13 18, 730

4 Yes 110.37 36, 150 29.92 9, 220

5 No 236.34 73, 788 60.44 20, 503

6 No 301.88 95, 048 54.32 19, 855

7 No 267.08 77, 978 40.96 13, 209

8 No 247.08 80, 369 62.57 20, 752

9 No 308.71 86, 990 91.42 28, 610

10 No 458.25 134, 083 54.40 17, 758

11 Yes 242.19 63, 263 15.93 4, 849

12 No 253.56 73, 936 50.28 17, 124

Averages 291.24 86, 858.08 53.15 17, 531.92

Table 6.7: Results for the randomly generated5 by 40 marketshare instances whenM = 100

m = 5 M = 1000 Rangespace Nullspace
Instance Feasible Time B&B Time B&B

(in sec) Nodes (in sec) Nodes

1 No 22.67 4, 993 4.09 1, 177

2 No 21.84 5, 138 3.66 982

3 No 29.99 6, 947 3.24 879

4 No 33.03 7, 360 3.83 991

5 No 20.74 4, 715 4.29 1, 115

6 No 34.15 7, 794 5.67 1, 536

7 No 28.42 6, 455 4.75 1, 384

8 No 22.41 5, 183 3.26 914

9 No 23.58 5, 399 5.96 1, 637

10 No 21.99 4, 830 4.41 1, 186

11 No 27.26 6, 443 6.69 1, 577

12 No 21.61 4, 952 5.58 1, 675

Averages 25.64 5, 850.75 4.62 1, 254.42

Table 6.8: Results for the randomly generated5 by 40 marketshare instances whenM = 1000
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m = 5 M = 10000 Rangespace Nullspace
Instance Feasible Time B&B Time B&B

(in sec) Nodes (in sec) Nodes

1 No 3.81 868 1.14 283

2 No 4.61 1000 0.84 174

3 No 2.84 649 1.29 310

4 No 4.96 1052 0.58 126

5 No 2.59 581 1.01 228

6 No 2.46 578 0.63 142

7 No 5.14 1058 0.77 194

8 No 2.32 466 1.00 226

9 No 1.93 467 0.91 196

10 No 7.06 1380 0.75 170

11 No 5.45 1158 0.86 191

12 No 5.08 1043 0.67 170

Averages 4.02 858.33 0.87 200.83

Table 6.9: Results for the randomly generated5 by 40 marketshare instances whenM = 10000
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CHAPTER 7

On the Hardness of Subset Sum Problems by Ordinary

Branch and Bound

7.1 Introduction and Main Result

Vasek Chvátal in [8] identified a class of instances of the zero-one knapsack problem which are

difficult to solve by a class of algorithms that was called “recursive” (see [8] for the details) which

use the combined powers of branch and bound, dynamic programming and rudimentary divisibility

arguments.

Specifically, it was shown that the time required to solve thezero-one knapsack problem

max ax

st ax ≤ β (7.1.1)

x ∈ {0, 1}n

where eachaj is chosen uniformly and independently at random from the integers between1 and10n/2,

andβ = ⌊∑n
j=1 aj/2⌋ is bounded from below by2n/10 for the majority of the problems whenn is large

enough.

The problem in (7.1.1) is the optimization version of the subset sum problem whichfor a set of

given positive integersa1, a2, . . . , an and a positive integerβ tries to find a subset of the indicesI ⊂

{1, 2, 3, . . . , n} such that the sum
∑

i∈I ai is closest to, but not exceeding,β. The feasibility version of

the subset sum problem looks for a subset of the indicesI ⊂ {1, 2, 3, . . . , n} such that the sum
∑

i∈I ai

is equal toβ. If there is such an index set, then the problem is feasible, otherwise it is infeasible. Recall



the feasibility version of the subset sum problem

ax = β

x ∈ {0, 1}n.
(SUB)

In this chapter, we show that an overwhelming majority of thesubset sum instances of (SUB) are

hard (i.e., requiring exponential amount of time in the sizeof the input) for ordinary B&B. We show that

if the right-hand-sideβ is chosen to be⌊r ∑n
j=1 aj⌋ for a constantr such that0 < r < 1, and eachaj

is chosen uniformly and independently at random from the set{1, 2, 3, . . . ,M} whereM := ⌊10n/2⌋,

then the time to solve almost all of the instances of (SUB) using ordinary B&B is bounded from below

by 2n1−ǫ

(whereǫ is a constant satisfying0 < ǫ < 1) whenn is large enough.

First, we state our theorem, and then prove it using some lemmas.

Theorem 20. Fix r, ǫ such that0 < r < 1 and0 < ǫ < 1. Letb = ⌊r ∑n
j=1 aj⌋ and eachaj be chosen

uniformly and independently at random from the set{1, 2, 3, . . . ,M} whereM := ⌊10n/2⌋. Then the

probability that the instance of (SUB) generated requires the creation of at least2n1−ǫ

B&B nodes

(when we branch on the individual variables in any order) in the process of solving (SUB) goes to one

asn goes to infinity.

The way the theorem is proven is similar to the proofs of Theorem1 and Theorem2 in [8]. We start

with fixing a constantk such that0 < k < ǫ < 1. We show that almost all of the coefficientsaj satisfy

the following two properties whenn is large enough:

P1
∑

i∈I ai ≤ 1
nk

∑n
j=1 aj whenever|I| ≤ n1−ǫ,

P2 There is no setI such that
∑

i∈I ai = ⌊r ∑n
j=1 aj⌋.

Lemma 5. The probability that the coefficientsaj satisfy P1 and P2 goes to one asn goes to infinity.

Proof of Lemma 5 It was shown in [8] that P2 is satisfied by the coefficients with probability going to

one asn goes to infinity. In [8], r was chosen to be1/2, but the proof works well for anyr such that

0 < r < 1.

Now, we shall show that P1 is satisfied almost surely. If P1 is violated, then there exists an index set

I such that|I| ≤ n1−ǫ and
∑

i∈I

ai >
1

nk

n
∑

j=1

aj .
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Since eachai ≤ M , we obtain

n
∑

j=1

aj < (Mn1−ǫ)nk = Mn1+k−ǫ. (7.1.2)

To find an explicit upper bound for the probability that P1 is violated, we use the following identity

∑

i≥(p+t)n
i integer

(

n

i

)

pi(1 − p)n−i < e−2t2n (7.1.3)

which is valid for0 < p < 1 andt ≥ 0. (7.1.2) implies that at least(n − 2n1+k−ǫ) of the coefficients

ai must be≤ M/2, for otherwise
∑n

j=1 aj ≥ (2n1+k−ǫ)M/2 = Mn1+k−ǫ. Using (7.1.3) with p =

⌊M/2⌋/M andt = 1/2 − 2nk−ǫ, we get

∑

i≥(1/2+t)n
i integer

(

n

i

)

pi(1 − p)n−i =
∑

i≥n−2n1+k−ǫ

i integer

(

n

i

)

pi(1 − p)n−i

≤
∑

i≥(p+t)n
i integer

(

n

i

)

pi(1 − p)n−i < e−2t2n = e−2n(1/2−2nk−ǫ)2

which goes to zero as n goes to infinity.

Proof of Theorem 20

Lemma 6. For positive coefficientsaj satisfying P1 and P2, ifb ∈
[

1
nk

∑n
j=1 aj,

(

1 − 1
nk

)
∑n

j=1 aj

]

and if (SUB) is infeasible, then the ordinary B&B creates at least2n1−ǫ

B&B nodes.

Proof of Lemma 2 We shall show that none of the nodes in the B&B tree is pruned byinfeasibility

unless more thann1−ǫ of the variables are fixed.

Assume that at mostn1−ǫ of the variables are fixed to0 or 1. Let I be the set of indices of the fixed

variables andI be the set of indices of the unfixed variables. Since coefficientsaj satisfy P1, we have
∑

i∈I ai >
(

1 − 1
nk

)
∑n

j=1 aj. By assigning fractional values toxi i ∈ I, we get a feasible solution to

the LP relaxation of (SUB).

Note that whenn is large enough,⌊r ∑n
j=1 aj⌋ is guaranteed to lie in the above interval completing

79



the proof of Theorem20.

7.2 Summary of the Solvability of Subset Sum Problems by Branch and

Bound

This result shows that an overwhelming majority of the subset sum problems (all but a vanishing

proportion of the problems as n increases) are hard for ordinary B&B. On the other hand, our results

from Chapter5 show that by using a generalized B&B method which branches onconstraints, almost

all subset sum problems can be solved at the root node in polynomial time. The following is a summary

of the results on the solvability of the subset sum problems using B&B. We fixr such that0 < r < 1.

We assume that the coefficients of (SUB) are chosen from{1, . . . ,M} for a largeM , and letβ =

⌊r ∑n
j=1 aj⌋.

(1) An overwhelming majority of the subset sum problems created as above are hard for ordinary

B&B (branching on variables).

(2) Almost all subset sum problems (all but at most a proportion of 1/2n of the problems as n in-

creases) created as above are easy (at most one B&B node is created) for generalized B&B

(branching on constraints).

(3) Almost all subset sum problems are easy for ordinary B&B if the problem is reformulated using

the rangespace or the nullspace reformulation.

80



CHAPTER 8

Summary and Future Research

We considered the three fundamental inequalities of Lenstra, Lenstra and Lovász, which express the

“shortness” and “near orthogonality” of an LLL reduced basis. We proved a common generalization:

even though the inequalities were proven27 years ago, this is the first unifying inequality that we are

aware of.

For a knapsack problem, we showed that branching on a “near parallel” integral vector to the con-

straint vector creates a small number of branch and bound nodes which becomes1 when the Euclidean

norm of the constraint vector is sufficiently large.

We showed that for a low density subset sum problem, the infeasibility of “almost all” integer

right hand sides can be proven by branching on a “near parallel” vector which can be found using

“Diophantine approximation” or “rangespace reformulation”.

We considered the classical branch and bound algorithm for integer programming, which is known

to have exponential worst case complexity. We proved that itis surprisingly efficient on reformulated

integer programs; precisely when the entries of the constraint matrix are from{1, . . . ,M} for a large

enoughM , branch and bound solves almost all reformulated instancesat the root node, and explored

practical aspects of this result.

We showed that even though “almost all” low density subset sum problems are solvable in polyno-

mial time using (generalized) branch and bound, a “majority” of the low density subset sum problems

are “hard” for ordinary branch and bound.

Several future research directions can be followed based onthe results of this dissertation.

(1) Complexity of the Reformulation Methods

Even though the reformulation methods are very efficient on the majority of the instances, their



complexities are not yet fully understood. It is an open question if one can solve the reformulated

integer programming problem in polynomial time for a fixed number of variables.

It would also be interesting to design a class of integer programs on which the performance of the

reformulations is provably bad.

(2) Classes of Problems on which the Reformulations Work

Some classes of integer problems, such as marketshare problems, are turned into easy-to-solve

instances after they are reformulated. But there are certain classes of problems for which the

reformulations do not seem to work well. It would be beneficial to run a thorough computational

study on different problem classes and determine which onesbenefit most from the reformula-

tions. Another important question is: is there a certain criterion based on which one can decide

whether or not a problem will be made easy for branch and boundafter the reformulation?

(3) Successive Approximation

In Section4.5, we approximate the constraint vector of a knapsack problemby a sequence of

integral vectors. Using the successive approximation, fora low density subset sum problem, is it

possible to prove the infeasibility of a higher fraction of the right hand sides at the root node by

branch and bound?
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[5] László Babai. On Lovász lattice reduction, and the nearest lattice point problem.Combinatorica,
6:1–13, 1986.

[6] Alexander I. Barvinok. A polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed.Mathematics of Operations Research, 19(4):769–779, 1994.

[7] Hans Frederik Blichfeldt. A new principle in the geometry of numbers, with some applications.
Transactions of the American Mathematical Society, 15(3):227–235, 1914.
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