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ABSTRACT 

Tianji Cai: To Weight or To Adjust: An empirical Study of the Design-based and 

Model-based Approaches 

(Under the direction of Guang Guo) 

 

When a sampling design is correlated to the dependent variable, then the 

distribution of the sampled units is different from that obtained from a simple random 

sampling design. Then the sampling design is informative, in the sense that if the 

design variables were not included in the analysis model, even conditional on the 

covariates, the estimated model parameters can be biased. 

Questions have been asked about how survey data are modeled when sampling 

designs are informative. Two fundamental methodologies, design-based and 

model-based, have been proposed to address this issue. A model-based 

method--so-called sample distribution method, has been proposed by Krieger and 

Pfeffermann (1992; 1997) to extract the model of the sample data as a function of the 

model holding in the population and the sampling design. Once the model holding in 

the sample data is derived, the standard model-based analysis techniques can be 

applied to estimate the unknown population parameters. The core topic of this 

dissertation is to assess various modeling strategies and estimators of regression 

coefficients and their variance—both design-based and model-based, in particular, the 

sample distribution method, under the informative sampling design, and to develop a 
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modeling strategy for analysts who are facing this design-based or model-based 

dilemma.  

The dissertation is comprised of three research papers that provide 1) an 

evaluation of the design-based and model-based estimators under a single-stage 

informative sampling design; 2) an assessment of design-based and model-based 

estimators under an informative two-stage clustering sampling design; 3) a joint 

treatment of informative sampling and unit dropouts in longitudinal studies.  

When a single-stage sampling design is informative, the model-based naïve 

method—either ordinary least square or maximum likelihood, produces biased results. 

The design-based method reduces the amount of biases for some parameters (e.g. 

intercept) but increases variances, which may lead to too conservative conclusions. 

The sample distribution method produces better estimates in the term of having 

smaller biases and variances than the naïve and design-based methods. 

Under an informative two-stage clustering sampling design, ignoring the sampling 

effect, the model-based naïve method produces biased results. Under some specific 

assumptions, , the sample distribution method produces better estimators in terms of 

smaller biases and higher coverage rates compared to the naïve method and the 

design-based multilevel pseudo likelihood method. Although many previous studies 

have shown that multilevel pseudo likelihood method is preferred to compensate for 

the sampling design, this study shows that a rather simpler method—the sample 

distribution method can be used to address the design effect.  

In a specific statistical setting, the relative performance of the design-based and 

the model-based methods for compensating the informative sampling design and 

dropout has been investigated. The simulation results indicate that both the 

model-based and the design-based approaches generally work well in the missing at 
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random and missing not at random settings. Moreover, the sample distribution method 

combined with the Diggle and Kenward model has advantages of correcting the 

design effect and the nonignorable dropout.
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CHAPTER 1 

INTRODUCTION 

Classical statistical models assume that any data being analyzed are from simple 

random samples. Unfortunately, in most studies, this is not the case. In fact, using 

sample random sampling in large-scale surveys is rare. Usually, sampling techniques 

such as unequal probability selection, stratification, and/or clustering are implemented 

to save money and time.  

Questions have been asked (see e.g. Skinner et al 1989) about how survey data 

are modeled when sampling designs introduce dependencies and generate 

non-representative samples compared to the population. Two fundamental 

methodologies, design-based and model-based, have been proposed (see e.g. 

Lehtonen, R. and E. Pahkinen, 2004) for use with survey data. The key difference 

between these two methodologies is the source of variability. For the design-based 

method, the population from which the sample is selected is considered fixed; the 

variability of estimated parameters is from the difference in the samples. Therefore, if 

a census were taken, there would be no variability for the parameters are of interest. 

On the other hand, for the model-based method, the variability of parameters is from 

the stochastic mechanism that generates the data and the sampling design. If a census 

were taken, the variability of parameters of interest would still exist. Another key 

difference is the target of inference. The design-based method treats the target of 

inference as a fixed finite population. The inference is done over estimates from all 

possible samples about finite population quantities, and the sampling information is 

included. The model-based method requires the specification of a model that 
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generates an outcome variable; the model is used to predict non-sampled values, and 

finite population quantities. The model is used in order to draw inferences on the 

superpopulation, which is more general than the finite population from which the 

sample is drawn. The model includes sampling information only when it is 

non-ignorable or part of the mechanism that generates data.  

Little (2004) mentioned that there is a so-called “inferential schizophrenia” when 

researchers have to choose the most appropriate approach or when two approaches 

give different answers for scientific questions. Many studies have tried to address this 

issue (e.g., Asparouhov 2006). However, it is still unclear which approach is 

appropriate under given circumstances since the performance of an approach depends 

on actual survey design and data features (Asparouhov, 2006). The core topic of my 

PhD dissertation is to assess various modeling strategies and estimators of regression 

coefficients and their variance—both design-based and model-based under the 

informative sampling design, and to develop a modeling strategy for analysts who are 

facing this design-based or model-based dilemma.  

The standard model-based analysis of survey data often ignores the complex 

nature of the sampling design, such as unequal probability selection, stratification, 

clustering, and nonrandom dropout. Although it is possible to incorporate all the 

design variables in the analysis model, it becomes impracticable since either the 

number of the design variables in a survey is large, or the design variables are not of 

interest. However, when the sampling design is correlated to the dependent variable, 

then the distribution of the sampled units is different from that obtained from a simple 

random sampling design. Then the sampling design is informative, in the sense that if 

the design variables were not included in the analysis model, even conditional on the 

covariates, the estimated model parameters can be biased. If the sampling design is 
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not correlated to the response variable, excluding the design variables will not lead to 

biased estimates.  

Krieger and Pfeffermann (1992; 1997) proposed a so-called sample distribution 

method to extract the model of the sample data as a function of the model holding in 

the population and the sampling design. Once the model holding in the sample data is 

derived, the standard model-based analysis techniques can be applied to estimate the 

unknown population parameters.  

In Chapter 2, I introduce the design-based and model-based estimators, 

particularly the sample distribution estimator, and discuss the relative performance of 

design-based and model-based approaches under single-stage sampling designs.  

The performance of design-based and model-based approaches under a 

multistage informative sampling design is further investigated in Chapter 3. Both the 

design-based and the model-based, in particular, the sample distribution estimators are 

derived under two typical multistage sampling designs. The first one is a cross 

sectional 2-stage design and the other one is a longitudinal design. According to the 

designs, two statistical models are estimated: cross-sectional multilevel linear model, 

and longitudinal model with first order autoregressive structure.  

Chapter 4 extends the methods developed in Chapter 3 to missing data or the 

dropout problem. Comparison is conducted between the design-based model using 

weights and the model-based methods.  

Chapter 5 is an empirical application. Using Add Health data as example, a 

model from a published paper is reexamined under various modeling strategies. Both 

design-based and model-based results are presented and discussed. 



CHAPTER 2 

GENERALIZED LINEAR MODEL UNDER A SINGLE-STAGE 

INFORMATIVE SAMPLING DESIGN 

2.1. Introduction 

In survey data analysis, weights are generated to reflect unequal sample 

probabilities of inclusion and to compensate for nonignorable nonresponse and frame 

undercoverage. However, the role of weights in regression is a subject of controversy. 

It has been well documented that if the parameter of interest is a finite population 

quantity such as mean, sum, ratio etc., then sampling weights must be used to correct 

deign effect to make inference. However, the role of sampling weights in regression 

has been debated extensively in the literature (e.g. Brewer and Mellor, 1973; Little, 

1993; Pfeffermann, 1993).  

Section 2 contains a general introduction of design-based and model-based 

approaches. Section 3 defines both the design-based and model-based estimators that 

are used in this study, and outlines several measures of the informativeness of a 

sampling design. Section 4 presents a simulation study. The last section summarizes 

the simulation results with discussions.  

 

2.2. Background 

Nearly all quantitative research in social science involves analysis of survey data 

which were collected using probability-based, rather than simple random design. 

Increasingly, questions have been asked about how survey data should be modeled 

when sampling designs introduce dependencies and generate non-representative 
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samples compared to the population. Two approaches—model-based and 

design-based, have been proposed and implemented to analyze survey data. 

2.2.1 Model-based approach 

The model-based approach assumes that a model generates the data. If the 

theoretical model is true, then the sample design should have no effect as long as the 

probability of selection is not related to the dependent variable. Thereby, the use of 

weights is not necessary since they inflate the variance estimates if the proposed 

model between the response and the covariates is correct. Using weights also 

complicates the interpretation of the results (Hoem, 1989; Fienberg, 1989; Mislevy 

and Sheehan, 1989; Pfeffermann, 1996). Pfeffermann (1996) showed the simplest 

example to estimate the mean of a population. Suppose a sample S with n units was 

selected, each of them was chosen independently with probability πi from a normally 

distributed population with mean μ and variance σ2. The model-based estimator for 

population mean μ is  

/m iY Y n= ∑  

with variance 2( | ) /mVar Y S nσ= ; while the design-based weighted estimator is 

/d i i iY Yω ω=∑ ∑  

where 1/i iω π= with variance 2 2 2( | ) [ /( ) ]d i iVar Y S σ ω ω= ∑ ∑ , 

which is greater than 2( | ) /mVar Y S nσ=  unless ωi is a constant.  

In addition, since weights under very few circumstances were simple inversed 

probabilities of inclusion, sampling weights are generated to adjust for nonresponse, 

frame uncoverage, missing data, and poststratification (Korn and Graubard, 1999). 

Many of these adjustments impose assumptions which may or may not be appropriate 

for the model.  
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Sometimes weights can be used to check if there are any misspecifications of the 

model. Korn and Graubard (1995) illustrated that when the model was misspecified, 

weighted and unweighted results could be very different. If the model is correct, 

weighted analysis should provide similar results to the unweighted analysis (Lohr and 

Liu, 1994). Several tests have been developed to checkk if sampling weights could be 

omitted (DuMouchel and Duncan, 1983; Fuller, 1984; Nordberg, 1989).  

When the probability of inclusion is related to the dependent variable, excluding 

the sampling information in the model may lead to biased estimates (Korn and 

Graubard, 1995). Suppose Y is an outcome variable, Z is a set of design variables, and 

X is a set of independent variables. In general, if Y depends on both X and Z, to 

estimate the effects of X on Y, one also needs to estimate the relationship between X 

and Z. Otherwise, the estimated effect of X on Y could be biased (Graubard and Korn, 

2002). When the probability of inclusion is independent of the dependent variable, 

and the design variables that determine the probability of inclusion have been 

included in the model, the standard inference procedures apply. It should be noted that 

including all interactions may lead to unstable estimates (Cook and Gelman, 2006). 

One may only include some of the design variables or allow parameters to vary 

according to the combination of design variables (Gelman, 2007).  

2.2.2 Design-based approach 

For the design-based approach, weights are needed to account for sample design 

for estimating finite population quantities as well as the regression coefficients. 

Weights could also be used to reduce the effect of informative sampling. Weighted 

estimates are more robust than unweighted ones when some independent variables are 

left out of the model.  
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Some researchers argue that weights can add robustness to the model by reducing 

dependence on model assumptions (Kalton, 1989; Thomas and Cyr, 2002; Patterson 

et al., 2002; Vermunt and Magidson, 2007; DuMouchel and Duncan, 1983; 

Pfeffermann and Holmes, 1985). For example, if the proposed regression model does 

not hold, or the assumptions of the model are not approximately satisfied, the 

inference and predicted values are not correct (Kish and Frankel, 1974). However, the 

weighted estimates still have meaningful interpretation (so-called design consistency) 

and are the best approximations of the model parameters under a given distance 

function (Pfeffermann, 1993). The weighted estimators work better, on average, than 

unweighted ones in predicting unobserved population values when some independent 

variables have been omitted (Pfeffermann, 1996). It should be noted that the inference 

based on weighted estimation is limited to populations that are similarly structured as 

the population where the samples are drawn (Kalton, 1983). The inference also 

assumes asymptotic normality, which may not be true when the sample size is small. 

However, the benefits of weighted estimators do not come without a price. As 

illustrated above, the design-based variance is greater than the model-based variance, 

which means that the inference drawn may be more conservative than it should be.  

In addition to the question of whether weights should be used, another issue that 

researchers have widely discussed is how weights should be incorporated into 

analyses. Many estimators have been proposed in the literature (see Pfeffermann, 

1993; 1996 for a good review). In this chapter, I only focus on two popular ones. The 

first one is design-based, based on Pseudo-likelihood approach. The other is 

model-based, derived from weighted distributions so called the sample distribution 

estimators (Pfeffermann et al., 2006).  
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2.3. Parameter estimation 

To access the effect of sampling design on the estimation of the unknown 

regression coefficents, this study evaluates two types of estimators that are popular in 

the literature.  

2.3.1 Design-based estimator 

For the traditional design-based estimator, the sample data is weighted in inverse 

proportion to sample inclusion probabilities when the population regression function 

is fitted.  

Define the population log likelihood function 

 
1

( | ) log ( ,  )
N

i
i

l Y f yθ θ
=

= ∑ ,  

for the population density function (pdf) ( , )f y θ , where θ is the vector of parameters. 

The pseudo-likelihood estimator can be solved by maximizing the weighted sample 

likelihood 

1

( | ) log ( ,  )
n

S i i
i

l Y f yθ ω θ
=

= ∑ ,  

where 1/i iω π= which is the individual probability of inclusion, and i=1 to n. 

Variance can be obtained by three ways:  

1. The Taylor series linearization estimator (Woodruff 1971). This estimator is 

derived from linear approximation. It is computationally efficient and has become a 

gold standard of variance estimation. The estimator is as follows,  

-1 -1ˆ ˆ( ) ( ) ( - ) ( )i i i i
i s

V B X WX V w x y x B X WX
∈

⎡ ⎤
⎢ ⎥
⎣ ⎦

= ′ ′ ′ ′∑ . 

Suppose we fit a linear model with only one covariate,  

0 1Y x eβ β= + +  
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If we ignore finite population correction, the Taylor series linearization estimator 

would be 

2
2

2 2
0 1

1

( )

ˆ ˆ( ) ( )
ˆ ˆ( )

( 1)
i s

i i i
i s

i

n x x y B B x
V B

n x x
∈

∈

⎡ ⎤
⎢ ⎥⎣ ⎦

− − −
=

− −∑

∑
 

which is different from the model-based estimator as below even when simple random 

sample was drawn. 

1

0 1
2

2
ˆ

ˆ ˆ( )
ˆ( )

( 2) ( )
i i

i s

i
i s

y x
V

n x x
β

β β
∈

∈

−−
=

− −

∑
∑

 (Lohr, 1999) 

2. Balanced repeated replication estimator (BRR) (Kish and Frankel, 1974). It 

estimates variance via resampling techniques. The most common form of this 

estimator is, suppose the number of strata is large and with two PSUs in each stratum, 

a replicated sample is chosen by deleting one PSU per stratum and doubling the 

original weight of the remaining PSU. The deletion is assigned according to a 

corresponding Hadamard matrix. The variance of the estimator is obtained by 

1 2

1

ˆ ˆ ˆ ˆ( ) ( )
R

r
r

V B R B B−

=
= −∑  

where R is the total number of replicates; B̂ is the full sample estimator; ˆ
rB is the 

estimated B̂ for r-th replicate. A modified BRR estimator is available when one or 

more replicate estimators are undefined, while the full sample estimator is defined. 

See Rao and Shao (1999) for more information.  

3. Jackknife repeated replication estimator (e.g. Wolter, 1985). This method is 

similar to the BRR in that a small and different portion of the total sample for each 

stratum or cluster is deleted to generate replicates. For example, delete-1 jackknife 

means that one PSU at time is deleted. Then the observation weights are adjusted 
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within the stratum where the PSU is deleted. This process is repeated for each stratum 

independently. The variance estimator is obtained by 

2

1

1ˆ ˆ ˆ ˆ( ) ( )
R

r
r

rr

mV B B B
m=

−= −∑  

where rm is the number of PSUs for r-th replicate; R is the total number replicates.  

It has been well-documented that the standard error obtained from resampling 

variance estimators might be higher than the error from linearization estimators(e.g. 

Korn and Graubard (1999)). If the model is correctly specified in a simple random 

sample, one would arrive at a more conservative conclusion with the design-based 

approach. Although some researchers argue that the design-based approach protects 

against model misspecification, few of them illustrate the conditions where this 

conclusion may apply. The properties of design-based estimators are based on 

asymptotic conditions. The performance of design-based estimators is still unknown 

when the sample size is not large.  

2.3.2 Sample distribution estimators 

The second estimator discussed focused on in this study is based on the sample 

distribution approach. The sample distribution approach combines the knowledge of 

the method that is used to select the sample and population model by applying Bayes’ 

theorem, to obtain the inference for the parameters of interest. For example, denote 

the population distribution of response variable Y as ( )pf y , and let I be the indicator 

of whether a population member is selected into the sample or not. Then the sample 

distribution of Y ( )sf y  can be written as  

( ) ( ) ( )
( )

Pr 1 ,
Pr 1

p
s

I Y y X x f y
f y

I X x
= = =

=
= =
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We can see that if the indicator variable I is independent of the response variable 

Y, then the sample distribution is equivalent to the population distribution.  

Krieger and Pfeffermann (1992; 1997) proposed a method to extract the model of 

the sample data as a function of the model holding in the population and the sampling 

design. Denote the model hold in the sample as ( | )s i if y x which could be obtained 

via Bayes theorem as  

Pr( 1| , ) ( | )
( | ) ( | , 1)

Pr( 1| )
i i i p i i

s i i i i i
i i

I y x f y x
f y x f y x I

I x
= ×

= = =
=

 

where Ii is the sample indicator for ith subject. In general, the probability of inclusion 

Pr( 1| , )i iI Y Zπ = =  is not the same as Pr( 1| , )i i iI y x= . However, Pfeffermann et al 

(1998) showed that  

Pr( 1| , ) Pr( 1| , , ) ( | , ) ( | , )i i i i i i i p i i i i p i i iI y x I y x f y x d E y xπ π π π= = = =∫  

Then it yields 

( | , ) ( | )
( | )

( | )
p i i i p i i

s i i
p i i

E y x f y x
f y x

E x
π

π
×

= . 

If we can specify ( | , )p i i iE y xπ  and ( | )p i iE xπ , the model holding in the 

sample could be specified, but the form of the expectations under the population is 

often unknown. Pfeffermann, and Sverchkov (1999) showed that those expectations 

can be identified and estimated from the sample data. Denote 1
=i

i

w
π

as the sampling 

weights for the ith individual. The following relationships hold, 

( | )( | )
( | )

s i i i
p i i

s i i

E w y xE y x
E w x

=  

1( | , )
( | , )p i i i

s i i i

E y x
E w y x

π =  
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1( | )
( | )p i i

s i i

E x
E w x

π =  

Therefore,  

( | ) ( | )
( | )

( | , )
s i i p i i

s i i
s i i i

E w x f y x
f y x

E w y x
×

=  

and 

( | , ) ( | )( | )
( | )

s i i i s i i
p i i

s i i

E w y x f y xf y x
E w x

×
=  

Although the exact form of ( | , )p i i iE y xπ usually is unknown, under some 

regularity conditions, it may be approximated by low order polynomials in terms 

of iy and ix , or by exponentials via the Taylor series approximation. For example, 

under polynomials approximation, suppose ( )1, ...,i i imx x=x  is the vector of 

independent variables, we have,  

( )
0

( | , )
J

j
p i i i j i i

j
E y x A y hπ

=

≈ +∑ x  

where ( )
1 1

pKm
k

i kp ip
p k

h B x
= =

=∑∑x , jA , and kpB  are unknown parameters which can be 

estimated from the sample. Following this model, the sample distribution can be 

written as  

( )( ) ( ) ( )

( )( ) ( )

0
1

0
1

( | ) ( | )
( | )

J
j j

j p i i i p i i
j

s i i J
j

j i
j

A E f y A h f y
f y

A E A h

=

=

⎡ ⎤+ + ×⎣ ⎦
≈

⎡ ⎤+ +⎣ ⎦

∑

∑

x x x
x

x
 

where ( ) ( )|j j
p i iE E Y= x , and ( )

( )

( | )
( | )

j
i p i ij

p i i j

y f y
f y

E
=

x
x .  

While under exponentials approximation, we have,  
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( )
0

( | , ) exp
J

j
p i i i j i i

j
E y x A y hπ

=

⎛ ⎞
≈ +⎜ ⎟

⎝ ⎠
∑ x  

The corresponding sample distribution can be written as  

( )

( )
1

1

exp ( | )
( | )

exp

J
j

j i p i i
j

s i i J
j

p j i i
j

A y f y
f y

E A y

=

=

⎛ ⎞
×⎜ ⎟

⎝ ⎠=
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

x
x

x
 

Argued by Skinner (1994) and Pfeffermann etc (1998), the exponentials 

approximation is appealing in the common situation where the sampling is carried out 

in several stages.  

Krieger and Pfeffermann (1997) proposed a two-stage method to estimate the 

population parameters and those parameters that index the sample distribution such as 

jA , and kpB . In the first step, the sample distribution coefficients can be estimated 

from the observed probabilities iπ , applying either polynomials or exponentials 

approximations. For example,  

Firstly, regress iw against ,i iy x to obtain an estimate of ( | , )s i i iE w y x . Then 

obtain ( | )p i iE π x  by integrating ( | , )s i i iE w y x  as follows, 

( ) ( )1( | ) ( | , )
( | , )p i i p i i i p i i i p i i i

s i i i

E E y f y dy f y dy
E w y

π π= =∫ ∫x x x x
x

 

and compute 1( | )
( | )s i i

p i i

E w
E π

=x
x

. In the second step, the population parameters 

can be estimated by any standard method via substituting the estimated sample 

parameters.  

Pfeffermann and Sverchkov (2003) considered two estimating equations for the 

sample distribution approach. The first one is directly derived from the sample 

distribution ( | )s i if y x . The first estimating equation is defined as 
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( ) ( )
1

log ( | )

( | , ) ( | )
log

( | )

log ( | , ) log ( | ) log ( | )

0 log ( | ) log ( | )

s i i
s s i

s

p i i i p i i
s i

s p i i

s p i i i p i i p i i i
s

s p i i s i i i
s

f y
W E

E y f y
E

E

E E y y E

E y E w

β
β

π
β π

π π
β β β

β β

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

⎛ ⎞⎛ ⎞×∂
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

⎛ ⎞∂ ∂ ∂
= + −⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= + + =⎜ ⎟∂ ∂⎝ ⎠

∑

∑

∑

∑

x
x

x x
x

x

x x x x

x x x 0

 

( )1

( | , ) ( | )ˆ log 0
( | )

p i i i p i i
s i

s p i i

E y f y
W

E
π

β
β π

⎛ ⎞⎛ ⎞×∂
= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
∑

x x
x

x
 

The first estimator is defined as the solution of ( )1sW β . 

For example, suppose the response variable iy under study is normally 

distributed in population with mean ix β′ , and variance 2
eσ .  

( )2   ~ 0,i i eiy e e Nβ σ= +′ix  

Under informative sampling, the sample inclusion probabilities have conditional 

expectation  

( )( )0 1( | , ) expp i i i i iE y x A A y hπ ≈ + + x .  

Then the sample distribution of response variable iy is  

( )( ) ( )

( )( ) ( )

( )

2

22

2

22

22
1

22

0 1

0 1

1
22

( | )
1

22

1
22

exp exp

exp exp

exp

i

ee
s i i

i
i

ee

i e

ee

i i

i i

y

f y
y

dy

y A

A A y h

A A y h

σπσ

σπσ

σ

σπσ

β

β

β

⎛ ⎞−
⎜ ⎟× −
⎜ ⎟
⎝ ⎠=
⎛ ⎞−
⎜ ⎟× −
⎜ ⎟
⎝ ⎠

⎛ ⎞− −⎜ ⎟= −
⎜ ⎟
⎝ ⎠

′
+ +

′
+ +

′

∫

i

i

i

x

xx

x
x

x

 

Thus the linear model of iy  on ′x in the sample is the same as the linear model in 

the population except the intercept is shifted by a constant 2
1 eAσ .  
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If the sample inclusion probabilities have conditional expectation 

( )( )2
0 1 2( | , ) expp i i i i i iE y x A A y A y hπ ≈ + + + x ,  

the linear model of iy  on ′x in the sample is different from the one that holds in the 

population by shifting the mean with a constant 2
1 eAσ , and new variance 

2

2
21 2

e

eA
σ

σ−
.  

( )( ) ( )

( )( ) ( )

( )

2

22

2

22

22
1

22

22
22

2
0 1 2

2
0 1 2

1
22

( | )
1

22

1

22 1 21 2

exp exp

exp exp

exp

i

ee
s i i

i
i

ee

i e

ee

ee

i i i

i i i

y

f y
y

dy

y A

AA

A A y A y h

A A y A y h

σπσ

σπσ

σ

σσπ σσ

β

β

β

⎛ ⎞−
⎜ ⎟+ × −
⎜ ⎟
⎝ ⎠=
⎛ ⎞−
⎜ ⎟+ × −
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− −⎜ ⎟= −⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−− ⎝ ⎠⎝ ⎠⎝ ⎠

′
+ +

′
+ +

′

∫

i

i

i

x

x
x

xx

x

 

The solution of the sample likelihood function for the unknown parameters β yields 

the first sample distribution estimator ( )1sW β .  

It has been showed that ( | )( | )
( | )

s i i i
p i i

s i i

E w y xE y x
E w x

= , thus, the second estimating 

equation can be constructed as follows,  

( ) ( )

( )

( )

( )

2

log ( | )

log ( | )1
( | )

log ( | )
( | )

log ( | )
0

p i i
p i

N

s i i
s i i

s s i i

s i ii
s i

s s i i

s i i
s i i

s

f y
W E

f y
E w

E w

f ywE
E w

f y
E q

β
β

β

β

β

⎛ ⎞∂
⎜ ⎟=
⎜ ⎟∂⎝ ⎠

⎛ ⎞⎛ ⎞∂
= ⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= =⎜ ⎟∂⎝ ⎠

∑

∑

∑

∑

x
x

x
x

x

x
x

x

x
x

 

where 
( | )

i
i

s i i

wq
E w

=
x

.  
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( ) ( )
2

log ( | )ˆ 0s i i
s i i

s

f y
W qβ

β
⎛ ⎞∂

= =⎜ ⎟∂⎝ ⎠
∑

x
x  

Solving ( )2
ˆ

sW β yields the second estimator.  

For the first estimator, a variance estimator can be obtained from the inverse of 

the information matrix evaluated at the estimator.  

( ) ( )
1

1

1
ˆ1̂var

e
e s

W
E

β β

β
β

β

−

=

⎡ ⎤⎛ ⎞∂
= −⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

 

While the variance of the second estimator can be estimated as  

( ) ( ) ( ) ( )
2 2 2

21 1
2 2

ˆ ˆ ˆ2

log ( | )ˆvar
e e e

s i i
e i

s

W f y W
q

β β β β β β

β β
β

β β β

− −

= = =

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∑

x

Another plausible way to estimate variance is via bootstrapping, which in principle 

accounts for all the sources of variation, such as estimation of coefficients that index 

the sample distribution, and the form of ( | , )p i i iE yπ x .  

( )
( )2

1

ˆ
ˆvar

B
b
e

b
boot e B

β β
β =

−
=
∑

 

where 1

ˆ
B

b
e

b

B

β
β ==

∑
 

2.3.3 Test for the informativeness. 

The informativeness of sampling design is not directly measurable, though 

several measures have been suggested by the literature. One idea is to compare the 

design-based estimate to the unweighted estimate. If the comparison leads to 

significantly different results, then the design-based one is recommended. For 

example, Dumouchel and Duncan (1983) proposed a test for the ignorability of the 

design. A test statistic λ which follows an F distribution with p and (n-2p) degrees of 

freedom equals to 
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1ˆ ˆ ˆ ˆ−
′= ⎡ ⎤⎣ ⎦λ D V(D) D  

where D̂ is the vector of differences between the estimators obtained by unweighted 

and weighted approaches, ˆ ˆˆ = u wD β -β , ˆ ˆV(D) is an estimator of variance covariance 

matrix of D̂ ; p is the number of parameters, and n is the total number of observations. 

Pfeffermann (1993) constructed a test statistic that could be used to determine 

whether the sampling design is informative.  

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ~ (p)
−

′= − − −⎡ ⎤⎣ ⎦w u w u w uI V Vθ θ θ θ θ θ χ  

where ŵθ and ûθ are the parameter estimates of the weighted and unweighted analysis, 

and ˆˆ ( )wV θ and ˆˆ ( )uV θ are the estimated variances of those parameters. The test statistic 

follows a χ distribution with degrees of freedom p which equals to dimension of θ.  

Another test constructed by Asparouhov (2004; 2006) follows a t distribution 

instead of a χ distribution.   

ˆ| |
( ) u

u

I Y
μ μ

υ

−
=  

where μ is the population mean of response variable Y, ˆ
uμ is the unweighted estimate 

of μ, and  uυ is the unweighted estimate of variance of Y. Since the population 

parameter μ is unknown, this measure could be approximated by  

ˆ ˆ| |
( ) u

u

wI Y
μ μ

υ

−
=  

where ˆwμ  is the weighted estimate of μ.  

However, the use of those statistics is limited. For example, it can only be applied 

to the point estimation. It does not apply to the actual question of whether the 

population model is equal to the sample model. Pfeffermann and Sverchkov (1999) 
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proposed a test that directly addresses this question. Denote the residual term 

associated with unit i in population as,  

( | )i i p i iy E yε = − x  

It is plausible to test the hypotheses of the form ( ) ( ),  =1,2...k k
p i s iE E kε ε= . Since 

( )( )
( )

k
k s i i

p i
s i

E wE
E w

εε = , 

then an equivalent set of hypotheses is 

( )0 :  corr , 0,  =1,2...k
k i iH w kε =  

The test statistic is  

( )

1log
11 ,   =1,2...

2

k

k

boot

r
r

FTS k k
SD

⎛ ⎞+
⎜ ⎟−⎝ ⎠=  

where kr  is the empirical correlation ( )ˆcorr ,k
k i ir wε= , and bootSD  is the bootstrap 

standard deviation of 11 log
2 1

k

k

r
r

⎛ ⎞+
⎜ ⎟−⎝ ⎠

. The test statistic has an asymptotic normal 

distribution with mean zero. Another test which follows the similar idea is to simply 

regress iw against ˆk
iε and test if the coefficient equals to zero using a t test as follows.  

( ) ( )

ˆ   k=1,2, or 3
ˆ

t=  ~t 1
ˆ

k
i i iw

se

ε α η
α
α

= +
 

 

2.4. A Simulation study 

In this section, the relative performance of design-based and sample distribution 

estimators is assessed by a simulation study. To test the effect of the informativess of 
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a sampling design, a sample is selected from both the informative and non informative 

designs. Both linear and non-linear regression models are considered.  

2.4.1 Simulation design 

The true model is generated according to given population parameters such as 

regression coefficients, and population variance. Outcomes of non-informative 

sampling designs are a function of simulated variables, which are independent of 

design variables; outcomes of informative models are both simulated independent 

variables and design variables. For each linear or non-linear outcome, there are three 

predicators including continuous and categorical ones.  

For each simulation, one design-based estimator using Pseudo Maximum 

Likelihood (PML) is estimated. For the sample distribution approach, two estimators 

are estimated according to estimation equation 1 and 2 mentioned above, respectively.  

In this study, the informativeness of sampling designs is tested by the t test 

proposed by Pfeffermann and Sverchkov (1999). All simulation designs are generated 

using SAS 9.2. For the design-based estimator, PML is estimated using SAS survey 

procedures; the sample distribution estimators are estimated by SAS PROC NLP. The 

standard model-based (naïve ordinary least square) estimator is used as the reference. 

Table 2.1 summarizes all simulation designs. 

For each of the following two super population models (2.1), and (2.2) with three 

covariates, five hundred finite populations are generated, each of size 1,000,000  

1 2 310 1 2 .5i i i i iY x x x e= + + + +                                    (2.1) 

( ) ( )1 2 31 logit 1 1 2 .5i i i i iP Y x x x e= = + + + +                         (2.2) 

Where ( )~ 0,  16ie N  for 1,..., 1,000,000i = . To see the two superpopualtion models in 

the context of a sociological study, the first model can be considered as a regression 
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model for individual incomes, and the second model is a model to predict if a person’s 

income is high or low. Explanatory variable 1x  follows a Bernoulli distribution with 

mean .5 (e.g. gender). 2x  is from a normal distribution ( )0,10N  (e.g. centered years 

of schooling). 3x  follows a uniform distribution ( )15,35U  (e.g. centered age).  

A sample of size 3,000 is drawn from each finite population using a single-stage 

probability proportional to size systemic (PPS SYS) sampling design. The selection 

probability is related to a size variable z. To incorporate the informativeness of the 

sampling design, three designs are defined as follows. 

3* )exp(6 .5 .25i ii iy xz u+= + +                                       (2.3) 

2
3. )exp( 2 .25 005 .5i i ii iy yz x u−= − + + +                                (2.4) 

3 )exp(6 .25 ii ixz u= + +                                            (2.5) 

where ( )~ 0,1iu N . The sampling designs using (2.3) and (2.4) as its size variable is 

informative, while the one using (2.5) is non informative since the size variable is not 

related to the response variable. Totally 3,000 samples are selected according to two 

super population models. To compute the estimators based on the sample distribution 

approach, a two-step estimation is used. Firstly, the unknown parameters in 

( | , )p i i iE y xπ  are estimated using the following relationship.  

1( | , )
( | , )p i i i

s i i i

E y x
E w y x

π =  

Then the estimated coefficients are substituted into the sample likelihood function to 

estimate the population parameters.  

To make all estimators comparable, only bootstrapping variance estimates which 

are based on 500 bootstrapping replicates are reported for all estimated parameters.  

2.4.2 Analysis 



 21

All simulation designs are implemented using SAS 9.2. Each of designs is 

replicated by 500 times. The quality of estimates is evaluated by using the empirical 

relative bias, the empirical mean square error, and coverage rates. The relative bias is 

defined as follows, 

( ) ( )
500

1

1 1RBias
500

⎛ ⎞
θ = θ −θ⎜ ⎟θ ⎝ ⎠

∑ i
ˆ ˆ  

The relative mean square error is calculated using the following formula,  

( ) ( )
500 2

1

1 1RMSE
500

⎛ ⎞
θ = θ −θ⎜ ⎟θ ⎝ ⎠

∑ i
ˆ ˆ  

The coverage rate is calculated as the proportion of true parameter that falls within the 

95% confidence region for each of replicated samples. The Confidence region for 

estimated θ is constructed by using 5th and 95th bootstrapping quintiles. 

 

2.5. Results and discussion 

In the following the results of simulation are reported. The parameters of interest 

are regression coefficients and population variance (for the linear model).  

2.5.1 Summary of simulation results 

Table 2.2-2.4 contain the empirical relative biases and the empirical mean square 

error obtained under the exponential sampling (Equation. (2.3)), the exponential 

sampling with quadratic term (Equation. (2.4)), and non-informative sampling 

(Equation. (2.5)) for each parameter, respectively. Table 2.5-2.6 contain the 

equivalent information for logistic model. Table 2.7 summaries the results of test of 

informativeness.  

The main findings from Tables 2.2-2.7 are as follows, 

(1). Under exponential sampling with 1st order correlation with the response variable, 

the OLS estimator of intercept is biased. W1s method reduces this bias 
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substantially. This reflects the effect of informative sampling, as mentioned in 

Section 2 — the mean of the sample distribution is different from the mean of the 

population distribution by a constant. The W2s estimator of intercept is also 

biased. Among all estimators, W1s estimator has the lowest relative biases and 

MSE in most cases. When the inclusion probabilities are related to the 1st order of 

response, the PML estimator has better coverage rates for all parameters except 

the population variance. Actually, the coverage rate for population variance 

estimated by PML is the worst among all estimators—the coverage rate is .490. In 

contrast, two sample distribution estimators have much better coverage rates for 

population variance; for example, the coverage rate is .750, and .846 for W1s, and 

W2s, respectively. In summary under exponential sampling with 1st order 

correlation with the response, the W1s estimator produces the least biased and 

most efficient estimates.  

(2). Under exponential sampling with 2nd order correlation with the response variable, 

all estimates are biased for all estimators except W1s. The W1s estimator is 

almost unbiased for all parameters. This confirms the analytical result discussed in 

Section 3.2. The W1s estimator also has the lowest MSE. To summarize, the W1s 

estimator is best in terms of accuracy and efficiency.  

(3). When the sampling design is non-informative, all estimators are unbiased. Among 

all estimators, PML estimator has the highest RMSE in most of cases. OLS 

estimator has the highest coverage rate and lowest RMSE in most of cases. This 

confirms the literature that when the sampling design is non informative, OLS 

estimator is the best.  

(4). The t test for the informativeness performs well for the liner model. Under the 

two informative sampling designs, the test rejects non hypothesis 96% , and 84% 
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times at 95% confidence level, respectively. When the sampling design is non 

informative, the test only rejects 1.8% of non hypotheses at 95% confidence level. 

However, the test does not work well for the nonlinear case. Both deviance 

residual and Person residual are used to conduct the t test. The test using the 

deviance residual works well for the informative sampling design—it reports 66% 

of significant results. But it also rejects 28.2% of non hypotheses for the 

noninformative sampling design. The test is over sensitive to the informativeness. 

The test using Pearson residual is under sensitive to the informativeness — it only 

rejects 13.8% of non hypotheses when the sampling design is informative, but 

rejects 5.6% of non informative sampling design.  

2.5.2 Test the sensitivity of the specification of conditional expectation 

For the sample distribution estimator, a two-stage estimation is used to solve the 

unknown population parameters. Those parameters that index the sample distribution 

such as jA , and kpB  are estimated at the first stage. Then the estimated sample 

distribution parameters are substituted into the likelihood function which is solved at 

the second stage. Since the sample is selected using the inclusion probabilities that 

have an exponential form such as Equation (2.3) to (2.5), therefore, an exponential 

approximation is assumed at the first stage. However, before those sample distribution 

parameters being estimated, researcher needs to determine whether the quadratic term 

of the response variable should be kept. If the quadratic term needs to be kept, the 

second order correlation is assumed. If not, the first order correlation is assumed. To 

investigate the sensitivity of choosing the first order or the second order correlation, a 

separate study is conducted. The true inclusion probabilities are proportional to the 

second order correlation with the response variable in exponential form. Firstly, 

unknown parameters in ( | , )p i i iE y xπ  are estimated using the quadratic form  
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( )2
0 1 2 3 3( | , ) exps i i i i i iE y x a a y a y a xπ = + + +  

Secondly, a t test is conducted for the quadratic term by regressing iw against 

2
îε  to see if the coefficient equals to zero, where 2

îε  is the squared ordinary least 

square residual term by regressing independent variables against response variable. If 

so, the quadratic term will be dropped. The estimated coefficients are then substituted 

to the estimation of population parameters. If the coefficient is not zero, the quadratic 

term need to be kept and substituted in the later estimation. The results are reported in 

Table 2.8.  

84% of tests reported significant quadratic term, which indicates that the test 

serves well to detect the correct form of correlation. Compared to the results reported 

in Table 4, it can be seen that for the estimator W1s, the relative biases and MSE are 

higher, and the coverage rates become slightly worse. This is because 16% of times 

the form of conditional expectation is not correctly specified. But the difference 

between Table 2.4 and 2.8 is not dramatic – it is still acceptable. This suggests that it 

is plausible to determine the form of conditional expectation based on the test result.  

2.5.3 Conclusion 

In this chapter three methods are discussed for estimating the parameters of the 

superpopulation when the sampling design is informative. The naïve method—either 

ordinary least square or maximum likelihood, produces biased results. The 

design-based method reduces the amount of biases for some parameters (e.g. intercept) 

but increases variances, which may lead to too conservative conclusions. The sample 

distribution method, in particular W1s, produces better estimates in the term of having 

smaller biases and variances than the naïve and design-based methods. But one needs 

some analytical and programming skill to implement, for example, the form of sample 
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likelihood needs to be specified in PROC NLP. The estimator W2s is in a relatively 

simpler form, but it does not outperform than the design based estimator.  

  



CHAPTER 3 

MULTILEVEL MODELS UNDER A TWO-STAGE INFORMATIVE SAMPLING 

DESIGN 

3.1. Introduction  

One feature of the survey data is clustering. Under a two-stage sampling design, 

the population elements are grouped into clusters according to characteristics such as 

city blocks, schools, and hospitals. Before elements are selected, a subset of clusters 

called primary sampling units (PSUs) is selected first. Then elements are drawn from 

each of selected PSUs. It has been well documented that the cluster sampling provides 

less precision than other sampling methods such as the simple random sampling or the 

stratified sampling (Kish, 1965). However, the cost of the cluster sampling usually is 

lower than the other methods since it does not require a complete list of elements in 

the population which can be difficult, costly, or even impossible to construct. One 

characteristic of the cluster data is that elements within each of selected PSUs may be 

correlated. When the cluster data is modeled, such correlation has to be considered. 

The purpose of this chapter is to estimate the regression coefficients and their 

variance of the superpopulation model under a two-stage sampling design. Section 2.1 

and 2.2 introduce the design-based and the model-based approaches to estimate the 

parameters of interest. In order to compare these two approaches, Section 2.3 defines 

the corresponding point and variance estimators for each of approaches. Section 3 

outlines a simulation study. The final section summarizes the simulation results and 

discusses the findings
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3.2. Background  

Both the design-based and the model-based approaches have been proposed in 

the literature to model the clustering effect. The model-based approach estimates 

either a population-averaged model that adjusts the standard error of the parameters, 

or a random effect model which incorporates the cluster-specified random effects. The 

design-based approach estimates the population likelihood function from the sample 

likelihood function, and then solves the estimated population likelihood function for 

the unknown parameters. The variance for each of the estimated parameters is 

obtained by Taylor linearization or resampling techniques which use formulas 

specialized for the sampling design. 

3.2.1 Model-based approach 

Robust Standard Error 

For the model-based approach, various ways of incorporating the clustering effect 

have been proposed in the literature. When the individuals within a cluster are 

correlated, the robust standard error has been routinely used to reduce the bias that is 

caused by the correlation. Eicker (1967) and Huber (1967) first introduced the robust 

standard error which is also called as the sandwich estimator. White (1980), Liang 

and Zeger (1986), and many others (Arellano,1987; Royall, 1986; Lin and Wei, 1989, 

to name a few) explicated and extended this estimator to a more general context. 

Since the variances of the estimated parameters equal to  

ˆvar( ) var( )′ ′ ′= -1 -1β (X X) X Y | X X(X X)  , 

where β̂  is the vector of the estimated regression coefficients. If the individuals 

within a cluster are correlated, the variance of Y conditional on Xs is not a diagonal 

matrix. Then the off-diagonal elements need to be estimated. Because there is no 
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reason to assume that individuals in different clusters are correlated, the covariance in 

different clusters can be simply set to zero. The sandwich estimator is defined as  

ˆ ˆˆvar( ) ′ ′ ′ ′= -1 -1β (X X) X εε X(X X)  

with ˆˆ′εε as the estimated variance of Y conditional on Xs. Liang and Zeger (1986) 

derived a similar sandwich estimator under the generalized estimating equations.  

Multilevel Model 

Another way to incorporate the clustering effect is to add random effects. Laird 

and Ware (1982) outlined a general linear form of a mixed model (multilevel model).  

i i i i iY = X β + Z b + e   

where iZ denotes n random-effect design matrix for the ith cluster, and ib is the 

cluster-specified random effect. Introducing a cluster-specified random effect not only 

controls the correlation within clusters, but also corrects the denominator degrees of 

freedom for the number of clusters. 

Searle et al. (1992) provided a detailed derivation of the maximum likelihood 

estimator. For example, a likelihood function for a linear mixed model 

i i i i iY = X β + Z b + e  is defined as  

( )( )
( )

e 1
2 2

11
2

2( | ,
exp ( )

,σ )
2 | |

−′−
Y X Z, =

Y - Xβ V Y - Xβ
β, D

V
NL

π
 

where 2var( ) eV Y ZDZ Iσ′= = + , D denotes the covariance matrix for the random 

effect vector bi, and 2
eσ is the variance of the error vector ei. Then the log likelihood 

function can be written as   

( )2 11 1 1
2 2 2log ( | , ,σ ) log(2 ) log | | ( )−= ′− − −Y X Z, =β, D V Y - Xβ V Y - Xβl L Nε π  
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The maximum likelihood estimator for the unknown parameters can be obtained 

by taking the partial derivate of the function with respect to each of the unknown 

parameters, setting the resulting score function to zero, and solving for the unknown 

parameters. 

It is not clear that under which circumstances researchers should choose the 

robust standard error or the mixed model to account for the clustering effect. One 

possible factor to be considered is the number of clusters. If the number of clusters is 

small, the robust standard error might be a good choice; while if the data is seriously 

unbalanced, the mixed model is superior. Actually, the clustered robust standard error 

is also available for the mixed model. The only difference between the robust standard 

error and the clustered robust standard error is the constant for the finite population 

correction. Another possible factor is the scientific question that the researcher is 

interested in. If one is not interested in the cluster-specified random effect, then the 

robust standard error might be preferred.  

Sample Distribution Method 

The sample distribution approach has been extended to a two-stage sampling 

design. Pfeffermann, Moura, and Silva (2006) proposed a multi-level sample 

distribution approach for a two-stage informative sampling design. Firstly, a two-level 

model that holds in the sample data was extracted as a function of the assumed 

population model and the two stages of sample selection probabilities, Then the 

unknown population parameters were estimated using Bayesian methods.  

Consider a two-level model for a response variable Y that holds in the population 

as follows 

( )( )
( )( )

' 2

' 2

 ~ 0, ,  j=1,...,N

 ~ 0, ,  i=1,...,M

ij i ij ij ij e i

i i i i u

y x N

z N

μ β ε ε σ

μ γ η η σ

= + +

= +
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Let ( )2, ,i i eθ μ β σ′=  and ( )2, uλ γ σ′=  be two vectors that contain the level-1 and the 

e level-2 unknown parameters of the population model, respectively. The model that 

holds in the sample can be written as 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

| 1
1

| 1

2
2

2

, , , ,
, ,

, ,

, , , ,
, ,

, ,

i

p j i ij ij i p ij ij i
s ij ij i

p j i ij i

p i i i p i i
s i i

p i i

E y x f y x
f y x

E x

E z f z
f z

E z

π θ ψ θ
θ ψ

π θ ψ

π μ λ ψ μ λ
μ λ ψ

π λ ψ

=

=

 

where i indicates the ith cluster in the sample, and 1ψ , and 2ψ  are additional 

possible unknown parameters, e.g. thresholds of a latent variable related to those 

expectations.  

The joint sample density function can be written as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2
1 2 1 2

2 2
1 2

, , , , , , , , , , , , , ,
i

i

i e u ij i s ij ij i e s i i u
i s j s

e u

f x z f y x f z

p p p p p p

μ β σ ψ λ ψ σ μ β σ ψ μ λ ψ σ

β σ σ λ ψ ψ

∈ ∈

⎡ ⎤
′ ′= ⎢ ⎥

⎣ ⎦
′×

∏ ∏

which can be maximized by Markov Chain Monte Carlo (MCMC) algorithm. 

Eideh and Nathan (2009) applied the same idea but used a different method to 

estimate the two-level model that holded in the sample data. Following Krieger and 

Pfeffermann (1992; 1997), the conditional sample distribution of the random effect iμ  

is 

( | , ) ( | )
( | )

( | )
p i i i p i i

s i i
p i i

E f
f

E
π μ μ

μ
π
×

=
z z

z
z

 

where iz is the vector of predictors for random effect iμ , ( | )p i if μ z is the 

population distribution of the random effect iμ  conditional on iz . Similarly, the 

conditional sample distribution of ijy  given ,i ijμ x is 

|

|

( | , , ) ( | , )
( | , )

( | , )
p j i i ij ij p ij i ij

s ij i ij
p j i i ij

E y f y
f y

E
π μ μ

μ
π μ

×
=

x x
x

x
.  
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And the marginal distribution of vector iy is given by 

( ) ( )
1

im

s i s ij i
j

f f y dμ
=

= ∏∫y  

Thus the full sample likelihood function can be written as  

( )
1

m

s s i
i

f f
=

=∏ y  

which can be maximized by any standard procedures.  

3.2.2 Design-based approach 

For the design-based approach, the robust standard error technique has also been 

derived to account for the clustering effect (for example Kish and Frankel (1974), 

Fuller (1975), and Binder (1983) to name a few). There is a slight numerical 

difference between the model-based and the design-based robust standard errors, 

which is caused by a constant multiplier.  

Multi-stage weighting is another option for the design-based approach. 

Traditionally, the sampling weight is a single level variable; however, it becomes 

more and more common that survey data is collected by multistage sampling designs. 

For instance, Add Health study collects data in two stages: in the 1st stage a stratified 

random sample of 80 high schools and 52 middle schools was drawn with unequal 

probabilities of selection, and then a sample of individuals was drawn from each 

selected school (Harris, 2008). Single level weights may not carry adequate 

information to correct for higher level unequal probabilities of inclusion (Pfeffermann, 

et al., 1998, 24). To incorporate the multiple stage sampling design, multilevel 

weights that account for each sampling stages have been proposed.  

Single level weights usually are defined as 1/i iω π= where πi is the individual 

probability of inclusion. When a multi-stage sampling strategy is used, the single level 
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weights are the product of weights of each of stages. For example, the probability of 

the jth observation in the ith cluster being selected equals to the probability of the ith 

cluster being selected multiplied by the conditional probability of the jth observation 

being selected conditional on the ith cluster being selected. The weight for the 

observation j in cluster i is defined as 

|

1
=ij

i j i

w
π π

 , 

the weight for the ith cluster is,  

1
=i

i

w
π

, 

and the conditional weight for the jth observation in cluster i is 

|
|

1
=j i

j i

w
π

 

where iπ  denotes the probability of the ith cluster being selected and |j iπ  denotes 

the conditional probability of the jth observation being selected given the ith cluster 

being selected. Similarly, one can define higher order weights. For instance, ijkw is 

the weight that the kth observation in cluster j and in stratum i is selected. 

However, the way that sampling weights are incorporated in a multilevel model is 

not straightforward. As mentioned earlier, the pseudo maximum likelihood estimator 

can be solved by maximizing the weighted sample likelihood function. For the mixed 

model, two common used estimating approaches are summarized as follows, and they 

are different in the way that how the multilevel weights are inserted to replicate the 

sampled elements.  

Multilevel Pseudo Maximum Likelihood 



 33

Rabe-Hesketh and Skrondal (2006) and Aspraouhov (2006) proposed a method 

called Multilevel Pseudo Maximum Likelihood (MPML) which directly derives the 

population likelihood function by weighting the sample likelihood function 

( ) ( )1 2 1 2( , ) , , ,
i

j i

w
w

s ij ij i i i i
i j

L f y dθ θ μ θ φ μ θ μ
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∏ ∏∫ x z  

where 1θ  and 2θ  are finite population parameters for the fixed effects, while iμ is 

the cluster-specific random effect. It can be maximized by many techniques. As a 

general estimator, MPML can be extended to a generalized multilevel model. The 

weighted likelihood function can be maximized via many algorithms such as 

EM-algorithm, the Quasi-Newton algorithm, and the Fisher scoring algorithm. Stata 

(GLLAMM) and Mplus have implemented this estimator. 

Probability Weighted Iterative Generalized Least Square 

Instead of weighting the sample likelihood function, Pfeffermann et al. (1998) 

proposed an approach called Probability Weighted Iterative Generalized Least Square 

(PWIGLS) wherein the weights are incorporated into the process of solving the 

likelihood function for the unknown parameters.  

For a linear mixed model, the variance covariance matrix of the response 

variable Y is a block diagonal matrix by cluster, and the solution of the population 

likelihood function can be written as a sum across clusters. Suppose there are Q 

random effects in total. The solution can be written as the sum of population statistics 

as follows 

( ) ( )1

1
1 1

ˆ

i i i i i i
i i

−

−
− −

=

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑

T -1 T -1

T T

β X V X X V Y

X V X X V X
 

and  
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( )( ) ( ) ( )( )( )( )
( ) ( ) ( )( )
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where 

( ) ( ) ( ) ( )( )1 1 1 2 2 1 .... Q Qvec vec vec vec= +T T T TM Z Z Z Z Z Z Z Z I  and 

( ) ( ) ( ) ( )( )1 1 1 2 2 1 ....i i i i i i i Qi Qi ivec vec vec vec= +T T T TM Z Z Z Z Z Z Z Z I  

Therefore the estimated population likelihood from the sample data should be a 

function of the weighted linear statistics. At each step of iteration, PWIGLS replaces 

the population quantities by the weighted sample statistics.  

For the discrete response, the response has to be transformed by using a Taylor 

series-based linearization such as Marginal Quasi-likelihood, or Penalized 

Quasi-likelihood into a continuous one, and then PWIGLS can be utilized. This 

method has been implemented in commercial packages such as, LISREL, and 

MLwiN.  

3.2.3 Estimators 

In order to compare these two approaches, in this chapter, only two estimators for 

the unknown population parameters, such as fixed regression coefficients, their 

variance, and variance of the random effect, are studied. The first one is the sample 

distribution estimator which is model-based. The other one is the multilevel pseudo 

likelihood estimator which is design-based. 

Sample Distribution Estimator 

Eideh and Nathan (2009) applied the idea of extracting the model of the sample 

data as a function of the model holding in the population and the sampling design to 

multilevel models. Consider the same two-level population model as above. Similar 

as in Chapter 2, the cluster level and individual level probabilities of inclusion can be 
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approximated by low order polynomials or by exponentials via the Taylor series 

approximation in terms of iz , iμ , and ijy .  

( )
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( | , ) exp
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p i i i i r i

r
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⎛ ⎞
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where ( ).g and ( ).k  are known functions. For example, under the first order 

exponential approximation, the cluster level probabilities of inclusion can be written 

as 

( ) ( )1( | , ) expp i i i i iE g bπ μ μ≈z z . 

Thus the sample distribution of random effect iμ  can be derived as  
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If the individual level probabilities of inclusion can also be approximated by the first 

order exponential, the conditional sample distribution of individual elements can be 

written as  

( ) ( ) ( )| 1, , , expp j i ij ij i ij i ijE y k d yπ μ μ≈x x  
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And then the marginal sample distribution of cluster i, ( )1,..., ii i imy y=y  is given 

by  

( ) ( ) ( )
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( ) ( )( )
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Thus the full sample likelihood function can be written as  

( )
1

m

s s i
i

f f
=

=∏ y  

It can be maximized by standard procedures.  

Since the informativeness parameters 1b  and 1d  are both unknown, they need 

to be estimated first in order to estimate the superpopulation parameters β , 2
μσ  and 

2
eσ . A two-stage estimation procedure is proposed by Eideh (2008). Similar as in 

Chapter 2, the first step is to estimate 1b  and 1d by regressing ( )log− iw  and 

( )|log− j iw  against iμ  and ijy , respectively. One problem is that iμ  is not 

observed though it can be measured by, for example, 
1

1 im

i ij
ji

y ym =
= ∑ which is the 

cluster mean. However, substituting iμ  by iy  is not an ideal solution, since for iμ , 

iy  is a measure with error.  

i i iy hμ= + ,  

where ih  is a random variable with variance 
2
h

im
σ .  
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Assuming 2
hσ  is known, Fuller (1987, p105) proposed a way to estimate 1b . For 

simplicity’s sake, in this study, iy  is used as a measure of iμ , thus an OLS 

estimator of 1b can be easily obtained by using standard procedures, such as SAS 

PROC REG. The second step is to substitute those estimates to the full sample 

likelihood function, and solve it for the unknown parameters β , 2
μσ  and 2

eσ .  

Design-based estimator 

The design-based estimator considered here is based on the work of 

Rabe-Hesketh and Skrondal (2006) and Aspraouhov (2006).  

Suppose we have a population with a hierarchical structure in which level-1 

(individual) elements are clustered in level-2 (cluster) units. The population likelihood 

function of a general multilevel model with the response variable ijY  and two levels 

predictors ijX  and iZ  can be written as 

( ) ( )1 2 1 2( , ) , , ,ij ij i i i i
i j

L f Y b b dbθ θ θ φ θ
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∏ ∏∫ X Z  

where 1θ and 2θ  are parameters for the fixed effect, while ib is the cluster-specific 

random effect. Let the density function of ijY be ( )1, ,ij ij if Y b θX and the density 

function of ib be 

( )2,i ibφ θZ .  

Rabe-Hesketh and Skrondal (2006) and Aspraouhov (2006) proposed a method 

called Multilevel Pseudo Maximum Likelihood (MPML) which directly estimates the 

population likelihood function by weighting the sample likelihood function,  

( ) ( )1 2 1 2( , ) , , ,
i

j i

w
w

s ij ij i i i i
i j

L f y b b dbθ θ θ φ θ
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= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∏ ∏∫ x z  
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It can be maximized by many techniques. 

Variance estimators 

The inverse of Fisher information matrix is used to estimate the variance of the 

sample distribution estimator. Holding 1b  and 1d as fixed, the variance of estimates 

of superpopulation parameters ( )2 2ˆ ˆ,  ˆ ˆ ,  eμσ σ=θ β  is given by,  

( ) ( ) ( )1
1

2
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ˆ 1ˆvar I
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= = −
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where ( )L θ is the likelihood function of θ .  

An alternative to Fisher information matrix is to estimate the variance via 

bootstrapping as shown in Chapter 2. Mentioned by Pfeffermann, and Sverchkov 

(2004), the bootstrapping variance accounts for two sources of variations: one is due 

to estimate 1b , and 1d , and the other one is caused by estimating the unknown 

superpopulation parameters. The bootstrapping variance is not used here for 

computational consideration.  

The variance of the design-based estimator is estimated by Taylor linearization,   
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3.3. Simulation Study 

To assess the performance of estimators under various sampling designs, a 

simulation study is carried out. There are totally four designs divided by the 
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informativeness of each design at the sampling stages. Table 3.1 summarizes all 

simulation designs.  

Firstly, the true model is generated according to following population model. 

1 2 34 1 2 .5ij ij ij ij i ijY x x x eμ= + + + + +  

where ( )~ 0,3i Nμ  and ( )~ 0,9ije N .  

 Secondly, a sample with 300 clusters, each of which has 10 individuals, is 

selected by a two-stage sampling design using PPS systemic method. The first stage 

probability of inclusion is proportional to a size variable z which is defined as below 

( )exp 4 .5*i iz μ= +                                              (3.1) 

( )1exp 4 .5*i iz z= +                                              (3.2) 

where ( )~ 0,3i Nμ  is the random effect for the ith cluster; ( )1 ~ 0,1z N is an exogenous 

variable. The second stage probability of inclusion within each of the selected clusters 

is proportional to the size variable ijz  defined as below. 

)exp(6 .2 ijij yz = −                                                (3.3) 

3 )exp(6 .2 ijij xz = −                                                (3.4) 

where ijy  and 3ijx  are values of the response variable y  and the predictor 3x  of 

the jth individual in the ith cluster. The sampling design using Equation (3.1) or (3.3) 

as its size variable is informative, while the one using Equation (3.2) or (3.4) is 

noninformative since the size variable is not related to the response variable. The 

combination of using those four size variables to select samples gives us four 

simulation designs: one is informative at both stages; two are informative only at one 

stage; and the last one is noninformative at both stages.  

All simulation designs are generated using SAS 9.2. Each of simulation designs 

is repeated 500 times. All estimators are programmed in SAS using PROC IML, 
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except MPML which is conduced by GLLAMM in STATA. The nonlinear 

optimization of a likelihood function for the sample distribution estimator is carried 

out by the Newton-Raphson ridge method, and the corresponding Hessian matrix is 

calculated by finite differences method using CALL NLPFDD in PROC IML.  

 

3.4. Results and Discussion 

Table 3.2 to 3.5 report the empirical relative bias, the empirical mean square error, 

and the coverage rates for each of the superpopulation parameters from the 

simulation.  

The main findings for each of the tables are as follows,  

(1) When both sampling stages are informative, the naïve method and the multilevel 

pseudo likelihood method produce biased estimates, while the sample distribution 

estimates are almost unbiased. The estimated intercept and variances from the 

naïve method and the multilevel pseudo likelihood method are biased. The sample 

distribution method reduces the biases substantially, although the estimated 

intercept is still biased, which is caused by using iy  as a measure of iμ . The 

superior performance of the sample distribution method confirms the analytical 

results presented in Section 2. Except for the intercept and the variances, other 

estimated coefficients are unbiased with close-to-zero relative bias, small mean 

square errors, and high coverage rates for the naïve method and the sample 

distribution method. Fixed effects are close to unbiased for the multilevel pseudo 

likelihood method, but with higher mean square errors and lower coverage rates.  

(2) When the sampling design is informative at the first stage (cluster level), some of 

the estimated parameters obtained from the naïve method and the multilevel 

pseudo likelihood method are biased. The naïve estimates for the intercept are 
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biased. The sample distribution method improves the estimation of the intercept 

dramatically, but the amount of biases is still not close to zero. Except the 

intercept, all the other coefficients are almost unbiased for both the naïve method 

and the sample distribution method. The multilevel pseudo likelihood method 

produces unbiased estimates for some fixed effects, but fails for the 

cluster-specified random effect and the intercept.  

(3) When the sampling design is informative at the second stage, the naïve method 

yields the best estimates, although the estimated intercept is biased. The sample 

distribution method increases the biases instead of reducing it. This may be caused 

by the small negative informativeness parameter 1d  -- the average estimated 

1d is -0.03. Same as the previous design, the multilevel pseudo likelihood method 

does not performance well for the intercept and variance, but produces unbiased 

estimates for some fixed effects under this sampling design.  

(4) When neither of sampling stages is informative, the naïve and the sample 

distribution methods yield the same estimates. The multilevel pseudo likelihood 

method still does not work well for the variance of the random effect, but other 

parameters are unbiased.  

 

3.5. Conclusion 

In this chapter, both design-based and model-based multilevel models under a 

two-stage sampling design are evaluated under some specific assumptions by a 

simulation study. Ignoring the informative sampling design, the naïve method 

produces biased results. Under a two-stage exponential sampling design, the sample 

distribution method produces better estimators in terms of smaller biases and higher 

coverage rates compared to the naïve method and the multilevel pseudo likelihood 
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method. Many previous studies have shown that multilevel pseudo likelihood method 

is preferred to compensate for the sampling design. However, this study shows that a 

rather simpler method—the sample distribution method can be used to address the 

design effect. It needs to be noticed that the numerical behavior of the multilevel 

pseudo likelihood under the informative sampling design can be problematic. About 

2% of estimations did not converge after 16,000 iterations for the informative designs. 

There are some limitations with respect to the analysis and simulation design that 

may affect the accuracy of the results. For example, a rather simple form of the 

sampling design is assumed. For the simplicity’s sake, the probabilities of inclusion 

are also assumed to have a specific exponential form. The sample-distribution method 

is at a bit of advantages, since the approximation of the conditional expectation of the 

probabilities of inclusion for the sample distribution estimator is specified correctly 

according to the true model. The effect of misspecification of the approximation is not 

discussed in this study. All of these limit the generability of this study.  

 



CHAPTER 4 

JOINT TREATMENT OF INFORMATIVE SAMPLING AND UNIT DROPOUTS 

IN LONGITUDINAL STUDIES 

4.1 Introduction 

Missing data is a common problem in social science research. For example, in a 

longitudinal survey, respondents may refuse to participate in the first wave of data 

collection or drop out in subsequent waves due to moving. Additionally, respondents 

may not answer all of the questions asked in the study questionnaire. The first type of 

missing data is called unit droupout, while the second type of missing data is called 

item nonresponse. It is well known that restricting analysis to complete cases (those 

with no missing values) may produce biased and, less efficient estimates (e.g. Little 

and Rubin (1987)). In addition to complete case analysis, many methods have been 

proposed to compensate for missing information, based on some assumption of the 

missing mechanism. 

In this paper, only monotone unit dropout is discussed. In other words, if 

respondents drop out, then they can not be included in subsequent waves. Section 2 

contains a introduction of basic assumptions of missing patterns. Section 3.1 and 3.2 

introduce three popular methods to compensate dropout in longitudinal studies. 

Section 3.3 considers a joint treatment of informative sampling and dropout. Section 4 

outlines a simulation study. The final section summarizes the simulation results and 

discusses the findings. 
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4.2 Missing data mechanism 

In the literature of missing data analysis, researchers usually follow some 

assumptions of the distribution of missingness. These assumptions may not be 

appropriate since the mechanism behind missingness is somewhat unknown. For 

mathematical convenience, missingness is treated as a probabilistic phenomenon 

(Rubin, 1976). Consider a longitudinal survey where the interest is to study the 

relationship between a set of independent variables Xs and a response variable Y. 

Assume that some of the respondents drop out after the first wave. Suppose R is an 

indicator variable which takes the value of 1 if the respondent drops out, or 0 

otherwise. The missing mechanism can be then expressed as a conditional probability 

of the distribution of R given Xs and Y.  

( )Pr R | X ,Y  

where R=1 or 0.  

There are three basic missing patterns. If the unit dropout does not depend on Xs 

and Y, then this situation is called Missing Complete at Random (MCAR), which 

implies  

( )1Pr R | X ,Y c= = ,  

where c is a constant. Complete data analysis follows this assumption, where the 

complete data set is a random subset of original data. Excluding the respondents with 

missing values does not harm the representativeness of the original data set. In 

practice, not many examples satisfy this assumption (Little, 1992).  

If the unit dropout only depends on Xs or Y from previous waves of but not on 

current Y, the situation is called Missing at Random (MAR). Compared to MCAR, it 

is a relatively weaker assumption. We assume the distribution of R only depends on X, 

as  
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( ) ( )1Pr R | X ,Y f X= =  

Most statistical procedures require MAR. However, in general, there are no easy ways 

to test whether MAR holds in a data set without follow-up studies for unit dropout. In 

empirical researches, the appropriate form of ( )f X  may not be found due to the 

lack of information. For instance, some variables contributing to R are not observed in 

the study. It has been shown that MAR is still a reasonable assumption (Rubin, Stern 

and Vehovar, 1995).  

The third missing data mechanism is called Missing Not at Random (MNAR) if 

the distribution of R depends on both Xs and the current value of Y.  

( ) ( )1Pr R | X ,Y f X ,Y= =  

For example, suppose that there is a longitudinal study of the relationship between 

Social economic status and delinquent behavior. If respondents who have low SES or 

high delinquency are more likely to drop out than those who have high SES or low 

delinquency, then the missing data is MNAR. When MNAR is present, one could 

specify ( )1Pr R | X ,Y= , along with ( )Pr X ,Y  (Heckman 1976). Another option is 

to specify the model as a mixture of two parts: one for ( )1Pr X ,Y | R =  and another 

for ( )0Pr X ,Y | R =  (Rubin, 1974; 1977; Little, 1993). A similar limitation is that 

one may not have enough information to build ( )1Pr R | X ,Y= , or even have no 

information on ( )0Pr X ,Y | R =  if neither X or Y is observed. No model proposed 

for R cannot be easily verified. 

 

4.3 Missing data in longitudinal studies 
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Both design-based and model-based methods have been proposed to handle 

missing data. For design-based approaches, weights are generated and assigned to 

complete cases to resemble a finite population based on sampling information and 

available data. For model-based approaches, missing values can be imputed by one 

(single imputation) or more than one (multiple imputation) set of plausible values. 

Then a standard procedure is applied to the imputed data which is treated as complete 

data. Missing patterns can also be modeled for example, the Diggle and Kenward 

model (1994), using some distribution assumptions about dropouts. 

4.3.1 Design-based approach 

Cross-sectional and Panel weighting 

There are several ways to construct weights to compensate for unit dropout in a 

longitudinal study (Holt, Elliot, 1991), weighting classes and the post-stratification 

are two common methods. The weighting class method partitions the sample into 

“weighting classes” (cells), according to some predefined variables. Then the final 

weight for each of individuals within each cell is calculated as the base weight (e.g. 

the reciprocal of the probability of inclusion) multiplied by the reciprocal of the 

response rate in that class. The post-stratification calibrates the weights to an external 

set of population counts (e.g. from a recent census). 

These methods do not take into account longitudinal designs, where a 

repeatedly-observed individual has the same weight across waves. Biemer and Christ 

(2007; 2008) proposed alternative methods to allow the adjustment for the 

wave-specific dropout. The wave-specific weights equal to the wave-specific dropout 

adjustment multiplied by the base weights.  

The nonresponse adjustment to the weight for entry into the study at wave t is 

given by 
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1
it

it i|
λ =

π π
 

where it i|π π is the conditional probability for the ith individual response at wave t 

given the inclusion probability iπ for the ith individual. Then the wave-specific, 

cross-sectional weight for the ith observation at wave t is, 

1 1
it it i

it i i

w w
|

= λ = ×
π π π

 

where iw is the base weight.  

The wave-specific, cross-sectional weights can be converted to panel weights for 

repeated measures by assuming the dropout at wave t is independent of dropout at 

wave t+1 conditional on the model generating the nonresponse probabilities. The 

panel weight for the ith individual at wave t is given by 

( )1 2 1

1 1 1 1 1
it

i i i i i it i ii t

w ...
| | | |−

= × × × × ×
π π π π π π π π π

 

It is not necessary for the individual to be observed consecutively, and any 

combinations of wave data can be used to construct panel weights (Christ, 2008).  

The cross-sectional and panel weights can be used under MNAR as long as the 

probability distribution of the dropout process being modeled.  

4.3.2 Model-based approaches 

Single and Multiple imputation 

Weighting is effective in terms of removing the dropout bias, but it ignores 

partial information from subjects with incomplete data (Raghunathan, 2004). Besides 

weighting, an alternative approach is to impute the missing values in the data set. This 

approach has the advantage that after imputation standard statistical procedures can be 

used on the imputed data, and global-adjustment formulas exist to adjust estimated 

points and standard deviations for multiply imputed data (Rubin and Schenker, 1991; 
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Rubin, 1996). The Knowledge of the missing data mechanism can be easily 

incorporated to produce imputed values. Many imputation methods have been 

developed, such as the hot deck and the mean substitution. Most of these methods can 

be categorized into a multiple regression framework (Kalton, and Kasprzyk, 1986).  

Let X be the variable of which some of observations are missing across waves, 

and Z be the set of observed auxiliary variables that are used as predictors of missing 

values of X. The imputed value of X can be represented by the following regression 

equation, 

mi miˆ ˆx z e= β+  

where mix̂ is the imputed value for ith individual with missing value on X ; z is 

the vector of auxiliary variables; β is the regression coefficient vector; miê  is the 

error term for ith individual which is, for example, normally distributed with mean 0, 

variance 2σ . This is called single imputation.  

The single imputation fails to reflect the uncertainty of the imputed values, since 

the imputed values are from a guess rather than observed true values. Therefore, the 

single imputation underestimates the variation of the target parameters. A 

straightforward justification for the model above is to impute multiple times with a 

different miê at each time, where all miê are from the same distribution such as 

( )20 ˆN ,σ . This is called multiple imputation which has been implemented in many 

commercial packages. After imputation, standard statistical procedures can be applied 

to the imputed data sets. Since more than one value has been imputed in multiple 

imputation, the point estimates and their standard errors need to be adjusted to obtain 

a single estimate. Rubin (1987) derived a global formula for combining the results 

from multiple analyses. Suppose M data sets have been imputed, which means each 
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missing value has been imputed M times, let le be the lth estimate and ls be its 

standard error, then the multiple imputation estimate is the average,  

1

1 M

MI l
l

e e
M =

= ∑  , 

where l=1,…, M. and its the standard error is  

1
MI M M

Ms b
M
+

= μ +  , 

where  

2

1

1 M

M l
l
s

M =

μ = ∑ and  

( )2

1

1
1

M

M l MI
l

b e e
M =

= −
− ∑  . 

This method is reasonable if the sample size is large (Rubin, 1987). It has been 

commonly used in item dropout but is not recommended for data with more than 50 

percent missing information (Rubin, 2003). It should be noticed that the purpose of 

imputation is to obtain valid inferences. Therefore, though imputation is a way to 

recover missing data, the imputed values should not be viewed as individual values. 

Though multiple imputation might be reasonable, it does not take into account the 

uncertainty of the parameters of the predictors for missing values (Rubin, 1987). A 

more thoughtful method mentioned by Rubin (1987), and Little, and Rubin (2002) is 

the Bayesian approach, where the missing values are drawn from the posterior 

predictive distribution of the missing observations, conditional on the observed data.  

Diggle and Kenward model 

Imputation may give unbiased marginal distributions, but may also distort the 

association between variables (Brick, and Kalton, 1996). Since maximum likelihood 

has been widely accepted as a general method to estimate the unknown parameters, 
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one can actually model the missing pattern based on the available sample information 

without imputing any missing values.  

Assume the vector of outcomes ( )1 2 ...i iti iY Y Y=Y  is of interest. Let 

iD denote the variable  which indicates the occasion at which dropout occurs. If 

1iD > , then iY  is split into the ( )1iD −  dimensional observed part o
iY  and the 

( )1it D− +  dimensional missing part m
iY , where t is the total number of follow ups for 

a balanced longitudinal design. The contribution of the ith individual to the likelihood 

function, based on the observed part ( ),o
i idy , is proportional to the marginal density 

function,  

( ) ( ) ( ) ( ), , , , , ,o m m
i i i i i i i i if d f d d f f d dθ ψ θ ψ θ ψ ψ= =∫ ∫y y y y y y  

where ( ), ,i if d θ ψy  is the model for iY  with the unknown parameters θ , and 

( ),i if d ψy  is the model for the dropout process with unknown parameters ψ .  

Suppose iD j= , for a monotone unit dropout case which means, all subsequent 

waves after the jth wave are all missing, the dropout model is given by 

( ) ( )
( )
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ψ
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−

=
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∏
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⎪
⎪⎪
⎨
⎪
⎪ ⎡ ⎤⎪ ⎢ ⎥⎪ ⎣ ⎦⎩
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where ( )1 2 ; 1, ,...,ij i i i jh y y y −= is the observed history of the ith individual right before 

dropout time j. when =2j , an individual is only observed at the first wave. When 

= 1j t +  there is no dropout. If the dropout happens after the second wave, and before 

the last follow-up, 3,...,j t= , the dropout model is a product of two components: the 
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first part is corresponding to the probability of the dropout happening at wave j, and 

the second part is the joint probability of no dropout happened occurring before wave 

j.  

For continuous outcomes, Diggle and Kenward (1994) proposed a logistic model 

for the dropout process. For example, assume the dropout process only depends on the 

previous and current values of the response variable, a Diggle and Kenward model 

can be written as   

( ) ( ) 0 1 , 1 2logit , logit , , i j iji i i ij ij y yP D j P D j h y ψ ψ ψψ ψ −
⎛ ⎞⎛ ⎞ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= = = =y  

It can be shown that to model a MCAR pattern, one just needs to set 1ψ  and 2ψ  to 

zero. If only 2ψ  is set to zero, the assumed missing pattern is MAR. If neither 1ψ  

or 2ψ is set to zero, MNAR is assumed. It has been illustrated that it is not 

appropriate to use the likelihood ratio tests for the individual coefficient 1ψ  or 2ψ as 

formal tests for testing the null hypothesis of MAR against the alternative of MNAR 

(see the discussions from Laird, Little, and Rubin to the original paper by Diggle and 

Kenward (1994)). Verbeke and Molenberghs (2000) applied the Diggle and Kenward 

model to longitudinal cases by combining a linear mixed model with a logistic 

dropout process.  

Both design-based and model-based methods work well in terms of reducing 

biasness if MAR is satisfied (e.g. Horton, and Lipsitz, (2001) ). The probability 

distribution of dropout needs to be specified, which can be difficult due to the limited 

information that researchers have, if one wants to model the MNAR pattern. There is 

no uniform way to handle missing data. Some studies suggest that multiple imputation 

should be used when it is feasible (e.g. Horton, and Kleinman, 2007), while others 
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suggest that using which method used depends on the type of analytical model (e.g. 

Ibrahim, etc. 2005). 

4.3.3. Joint treatment of informative sampling design and dropout 

The Most of the longitudinal data available to social scientists is survey data, 

which means both informative design effects and dropout may be present. A great 

deal of pioneering researches has been done in this area. For example, Eideh and 

Nathan (2006, and 2009) proposed an approach that extended Krieger and 

Pfeffermann’s method (1997) to longitudinal data, and combined it with a Diggle and 

Kenward model.  

Let ( )1 2 ...i iti iY Y Y=Y be a vector of outcomes and ( )p if θY denote the 

population distribution of iY . Thus the sample distribution of iY is given by  

( ) ( )
( ) ( )p i

s p
p i

i
i i

E

E
f f

π
θ θ

π
=

Y
Y Y  

where ( ) ( ) ( ) 1... ...p tip pi i i dY dYE E f θπ π= ∫ ∫ Y Y . 

If we assume the sampling process only happens at the first wave, the probabilities of 

the sample inclusion only depend on 1Y .  

( ) ( )
( ) ( ) ( )1

1
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i

i

i
ik

i

t
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Yf f f

π
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π
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=
×= ∏Y  

Shown by Eideh and Nathan (2009), under the exponential inclusion probability 

model, the sample distribution of iY  follows the same distribution of population iY  

with the mean shifted by a constant. For example, if iY follows a multivariate normal 

distribution in population, the sample distribution of iY still is multivariate normal, 

but its mean differs from the mean of the population distribution, whereas the 

variance remains the same.  
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( ) ( )~, ,i ip i MVNf ′β V X β VY  

( ) ( )0 0 11, ~, ,i i is i va MVN af +′β V X β VY  

where 0a is a constant, and 11v  is the first element on the diagonal of iV .  

For an individual who drops out after the second wave but before the last 

follow-up, under an informative sampling design, the joint likelihood contribution of 

iy is given by, 
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∏y x  and 

( ) ( ) ( ), , , , , pi i ij ij i ij ij ij ijP D j d j h y P d j h y f y dyψ ψ θ== ≥ =∫  

The first term refers to the sample distribution of the observed measurements. The 

second term is a joint probability of dropout before the actual dropout happens. The 

last term is the model for the actual dropout. Since the dropout model includes the 

unobserved current value of the response variable, the unobserved value needs to be 

integrated out given the population distribution of the response variable.  

In order to estimate the unknown parameters θ  and ψ , a two-stage estimation 

can be applied. Firstly, 0a is estimated by regressing ( )1log w−  against 1iy , where 1w  

is the reciprocal of the probability of inclusion for the first wave. At the second step, 

the estimated 0a  is substituted into the joint likelihood function. Solving the 

resulting likelihood function gives the estimates. 

 

4.4 Simulation study 
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It is still largely unknown which method presented above is superior when both 

informative sampling and nonignorable missing data are present. A simulation study 

is conducted to address this question. Three methods are evaluated: panel weighting, 

multiple imputation and the sample distribution method with the Diggle and Kenward 

dropout process. These three methods are investigated under MCAR, MAR, and 

MNAR.  

Firstly, a superpopulation with 100,000 individuals and 5 waves is generated 

according to the following mixed model 

i i i ib= + +iY X β Z ε   

with covariance structure ( ) 2 2var t t ti i d σ τ= = + +Y V J I H  

where β is a vector of fixed effect, d  is the variance of random effect ib , 2σ is the 

variance of error terms, and 2τ is the variance of autoregressive errors. tJ is a 

t t× matrix with all elements equal to 1, tI  is a t t×  identity matrix, and tH  is a 

t t× matrix with  an autoregressive error structure. The error terms across time are 

correlated to the first order autoregressive structure with a correlation coefficient .8.  

 Secondly, a sample with 300 individuals is selected by a PPS systemic method. 

The probabilities of inclusion are proportional to a size variable z which is defined as 

below 

( )1exp 6 .2*i iz y= −  

A logistic dropout model is used to determine when dropouts happen. 

 ( ) 0 1 , 1 2logit , , ,i i ij ij iji jP D j D j h y y yψ ψ ψ ψ−
⎛ ⎞
⎜ ⎟
⎝ ⎠

= ≥ = + +  

A MCAR design is obtained by setting 1 2 0ψ ψ= = . if 2ψ is set to 0, the dropout 

process no longer depends on the current measurement of response variable, which 



 55

implies a MAR. Setting neither 1ψ or 2ψ  results to a MNAR design. Table 4.1 

summarizes all simulation designs.  

All simulation designs are generated using SAS 9.2. Each of simulation designs 

is repeated 500 times. Multiple imputation is accomplished by SAS PROC MI using 

Expectation Maximization (EM) algorithm with 20 imputations. Each of imputed data 

sets is analyzed by PROC MIXED, and the final result is obtained by combining all of 

results using PROC MIANALYZE. Multilevel pseudo likelihood is conducted using 

GLLAMM in STATA, and the sample distribution estimator is programmed in SAS 

using PROC IML. The nonlinear optimization of the likelihood function of the sample 

distribution estimator is carried out by the Newton-Raphson ridge method, and the 

corresponding Hessian matrix is calculated by the finite differences method using 

CALL NLPFDD in PROC IML. The empirical Relative Bias (RB), Mean Square 

Error (MSE), and coverage rates are used to compare the quality of the estimates. 

 

4.5 Results and discussion  

In the following the results of simulation are reported. The parameters of interest 

are regression coefficients and population variance for the linear model. The empirical 

relative bias, MSE and coverage rates are reported in Table 4.2 to 4.4. 

Key findings for each of the tables are as follows, 

(1) If the missing pattern is MCAR, both the design-based and the model-based 

methods performance well. Multiple imputation and the naïve method give very 

accurate estimates. Except the intercept, all other parameters are very close to the 

true value, although the coverage rate for β2 is poor, which is due to slightly 

positive biases. Multilevel pseudo likelihood produces accurate estimates for the 

fixed effect. However, the estimated covariance for the random effect is biased. 
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This is due to that the underlying error structure is not correctly specified. The 

coverage rates are also low. Consistent with the findings in Chapter 3, when the 

sampling design is informative, ignoring the sampling design leads to biased 

estimates. Since the sampling design is correlated to the response variable in an 

exponential form, the estimated intercept is biased for the naïve method. This is 

improved by the sample distribution method. The relative bias is reduced 

substantially from more than 60% to 13%. The coverage rate is improved as well.   

(2) Under MAR, some of estimates obtained from the model-based methods and the 

design-based method are biased. Neither the naïve method nor multiple 

imputation gives good estimate for the intercept, but the estimates of all other 

parameters are close to the true values. The multilevel pseudo likelihood method 

does not work well on covariance parameters, for example the estimated variance 

for the random effect is biased. The sample distribution method reduces the 

relative biases and coverage rate of the intercept.  

(3) Since multiple imputation and the naïve method assume MAR, one should expect 

their estimates under MNAR should be worse than those obtained under MAR or 

MCAR condition. However, this is not observed in Table 4. A possible 

explanation is that the dropout mechanism used in the simulation only depends on 

the response variable. The sample distribution method combined with the Diggle 

and Kenward model improves the estimates of intercept and covariance 

parameters. Although the multilevel pseudo likelihood method does not work well 

for either the intercept or the variance of the random effect, it produces accurate 

estimates for all other parameters.  

To summarize, model-based methods perform better compared to the 

design-based ones in the context of this simulation study. Multiple imputation and the 



 57

naïve method produce accurate estimates for all parameters except for the intercept. 

The sample distribution method reduces the bias of the estimated intercept 

dramatically. The multilevel pseudo likelihood method works well under the most of 

circumstances, except for the intercept and covariance parameters. It produces biased 

estimate for the intercept, and less stable estimates for covariance parameters the in 

terms of MSE.  

 

4.6 Conclusion 

In this study, the relative performance of the design-based and the model-based 

methods for compensating the informative sampling design and dropout has been 

investigated in a specific statistical setting. The simulation results indicate that both 

the model-based and the design-based approaches generally work well in the MAR 

and MNAR settings. In particular, the sample distribution method combined with the 

Diggle and Kenward model has advantages of correcting the design effect and the 

nonignorable dropout. The numerical convergence might be an issue for the 

multilevel pseudo likelihood method. In present study, about 2% of estimation did not 

converge after 16,000 iterations.  

The study has some limitations though. For instance, a rather simple form of 

informative sampling design is chosen. This leads to the design effect only affecting 

the intercept. Also, there are no covariates in the dropout model, but they can be 

easily added in future studies. For example, the dropout can also depend on auxiliary 

variables or other model covariates. One only needs to change the likelihood function 

for the logistic model. 



CHAPTER 5 

AN EMPIRICAL EXAMPLE—ADD HEALTH DATA 

5.1 Introduction 

The National Longitudinal Study of Adolescent Health (Add Health) is a 

longitudinal study of a nationally representative sample of adolescents in grades 7-12 

in the United States during the 1994-1995 school year (Harris, Florey, Tabor, 

Bearman, Jones, and Udry 2003). It provides a rich set of information on respondents’ 

social, economic, psychological and physical well-being with contextual data on the 

family, neighborhood, community, school, friendships, peer groups, and romantic 

relationships. In this chapter, Add Health data is used to test the performance of the 

methods discussed in Chapter 2-4, and the conclusions from the previous simulation 

studies are further examined. The analysis strategies used here can be easily adjusted 

for and applied to other real analysis. In addition, the results reached here may be of 

interest to researchers who work with Add Health data.  

The remainder of the paper is organized as follows. Section 2 introduces the 

study design of Add Health and the dropout issue. Section 3 outlines the design-based 

and model-based modeling strategies for the analysis. Section 4 presents the results of 

the fitted model. The last section summarizes the findings.  

 

5.2 Design and data of Add Health study 

Design 

From the primary sampling frame collected by Quality Education Data, Inc., 80 

high schools were drawn by systematic sampling methods and implicit stratification,
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which ensured that those selected were representative of US schools with respect to 

region of country, urbanicity, size, type, and ethnicity. More than 70 percent of the 

sampled high schools participated. Those who declined to participate were replaced 

by schools within the same stratum. Each of participating high schools also 

indentified its feeder schools—schools that have a 7th grade and sent at least five 

graduates to that high school. One feeder school was selected with a probability 

proportional to the number of students it contributed to the high school. There were a 

total of 132 schools in the core study. All students who were listed on a school roster 

were eligible for being selected selection into the core in-home sample and were 

stratified by grade and gender. About 17 students were randomly chosen from each 

stratum and approximately 200 from each of the 80 pairs of schools (school and its 

feeder school). In summary, 12,105 adolescents were interviewed in the core sample. 

Add Health also oversampled the minority populations such as African Americans 

from highly-educated families, Chinese, Cuban, Puerto Rican, the disabled, and twins.  

The Add Health study was designed as a cluster sample in which the clusters 

were sampled with unequal probabilities. Chart 5.1 shows the basic sampling strategy 

of Add Health study. The total sample size of Wave 1 was 20,745, which included the 

core sample, saturation samples, the disabled sample, and the ethnic sample. The 

probability of inclusion varies across samples.  

Non-response 
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Non-response occurred at each stage of the sampling. For instance, 52 out of the 

80 initially selected schools agreed to cooperate. In four cases, researchers failed to 

recruit a feeder school to take part in the study.  

It has been reported that the Add Health follow-up nonresponse was associated 

with many factors that had influence on four types of recruitment outcomes: 

contactability, unwillingness, inability, and participation Those factors include: the 

degree of urbanization, neighborhood safety for the local social environment, 

household measures (e.g. size, income, the number of years at the current address, the 

type of residential structure, residents’ ages and the social inter-relationships), 

parental characteristics (e.g., the education level, employment status, involvement in 

relevant organizations), respondent’s characteristics (e.g., age, race, gender, religion, 

school experience, and substance use), and the experience from prior waves (e.g. 

bored, embarrassed) (Kalsbeek, Yang and Agans, 2002).  

 

5.3 Analysis strategies  

To compare the relative performance of the design-based and the model-based 

approaches in addressing the statistical implications of the sample design and dropout, 

two cross-sectional and one longitudinal models are estimated. The cross-sectional 

models only use the first wave data; while the longitudinal model uses three waves 

data. For each of models, both the design-based and model-based methods are used. 

For design-based approaches, weights are included into a model, and the adjustment 

according to sampling design features is implemented. For the model-based approach, 
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the naïve method with the robust standard error, the sample distribution method and 

multiple imputation (for the longitudinal model) are implemented. Table 5.1 

summarizes the modeling strategies for each of models. 

5.3.1 Design-based approaches 

To compensate for the design effect of Add Health, a complex weighting process 

has been implemented to generate grand sample weights. Each of the in-home 

samples was weighted in four main steps. First, a preliminary school weight (which 

was the reciprocal of the school’s probability of inclusion) was calculated to 

compensate for the unequal probability of inclusion of schools. Second, this weight 

(W1) was adjusted for school ineligibility and nonresponse among eligible schools. In 

addition, the adjusted school weight (W2) was adjusted again to match population 

totals according to post stratification. Third, an initial individual-level conditional 

within-school weight (W3) was calculated to compensate for differences in individual 

selection probabilities across schools and across grades and genders within a school. 

The final weight (W4) was generated to adjust for both school-level and 

individual-level nonresponse (Tourangeau, and Shin, 1999).  

As mentioned by many researchers (e.g. Pfeffermann, et al., 1998, 24), 

single-level weights may not carry adequate information to correct for the higher level 

unequal probabilities of inclusion. To incorporate the multiple stage sampling design, 

multilevel weights are needed.  

For the Add Health study, the level 2 school weights (W2) were constructed to 

compensate for school-level unequal selection probabilities and nonresponse. Level 1 
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individual weights have to be calculated using the final weights (W4) divided by 

school weights (W2) (Chantala, Blanchette and Suchindran, 2006).  

Longitudinal weights were also created using the sample response rate to 

compensate for dropouts. For example, the Wave II weight was calculated as Wave I 

weight over the response rate for that sample in Wave II, if the sample to be used for 

longitudinal analysis consists of the Wave II respondents.  

5.3.2 Model-based approaches 

Sample distribution estimators 

For the single-level cross-sectional model, a test for the informativeness is 

conducted to determine the appropriate form of the conditional expectation under an 

exponential approximation. Firstly, unknown parameters in ( | )p i iE yπ  are estimated 

using the quadratic form  

( )2
0 1 2( | , ) exps i i i i iE y x a a y a yπ = + +  

Then, a t test is conducted for the quadratic term by regressing iw against 2
îε  to 

check if the coefficient equals to zero, where 2
îε  is the squared ordinary least square 

residual term from regressing independent variables against the response variable. If 

so, the quadratic term will be dropped. 

For the multilevel cross-sectional model, a first order exponential approximation 

is used for both levels. Similar as in Chapter 3, iy (school mean) is used as a measure 

of iμ . Then the estimated 1b and 1d  are substituted to the full sample likelihood 

function, and solving the likelihood function gives the estimates for the unknown 

parameters.  
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For the longitudinal model, since the sampling process only happened at the first 

wave, the probabilities of the sample inclusion only depend on 1Y . Under the 

exponential inclusion probability model, the sample distribution of iY  follows the 

same distribution of population iY  with the mean shifted by a constant.  

( ) ( )~, ,i ip i MVNf ′β V X β VY  

( ) ( )0 0 11, ~, ,i i is i va MVN af +′β V X β VY  

where 0a is a constant, and 11v  is the first element on the diagonal of iV .  

To model the missing patterns, a Diggle and Kenward model is proposed for all 

three missing patterns. To simplify the analysis, the dropout process is assumed to be 

dependent only on the response variable.  

Naïve method  

For comparative purpose, a naïve method is also used. For the single-level 

cross-sectional model, OLS is used, and robust standard errors are estimated to 

compensate for the clustering effect. For the multilevel cross-sectional model, a 

school-specified random effect model is estimated, and the cluster robust standard 

errors are also reported.  

For the longitudinal model, an individual-specified random effect is estimated. 

To address the unit dropout issue and the correlation among repeated measures across 

waves, a separate longitudinal model with AR(1) structure is estimated. Then multiple 

imputation with 20 replicates using EM algorithm is implemented to compensate the 

unit dropout. 

 



 64

5.4 Results and discussion  

The response variable in this study is the adolescent delinquency behaviors. In 

accordance with the literature on adolescent delinquency (Hagan and Foster 2003; 

Hannon 2003; Haynie 2001; 2003), a delinquency scale containing 12 standard items 

is developed. These items include: stealing amounts larger or smaller than $50, 

breaking and entering, drug selling, serious physical fighting that resulted in injuries 

needing medical treatment, use of weapons to get something from someone, 

involvement of physical fighting between groups, shooting or stabbing someone, 

deliberately damaging property, and pulling a knife or gun on someone. For the 

cross-sectional model, Wave I delinquency score is the response variable. For the 

longitudinal model, the response is a vector that contains measurements of 

delinquency score across waves.  

The predictors are categorized into two groups. The first group consists of the 

structural and demographic variables, such as age at baseline and race (White, 

Hispanic, Black, and Other). The second group consists of the family and school 

process variables. These include living with two biological parents (0-1), parental 

unemployment (dummy where 1 indicates whether one or both parents were 

unemployed at baseline, education level of the adult interviewed at baseline (less than 

high school, high school, at least some college), daily family meals (dummy 

indicating whether at least one of the respondent’s parents was in the room with he/she 

while he/she ate his/her evening meal at least six of the past seven days, and repeating a 

grade (0-1). 
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Table 5.2 presents basic statistics of the variables in this study. For simplicity’s 

sake, all predictors in this study are from Wave I, which means only missing response 

values need to be imputed.  

Table 5.3 reports the regression results of cross-sectional models. For the single 

level cross-sectional models, different modeling strategies do not lead to much 

discrepancy. For example, all estimates from the pseudo likelihood method, the 

sample distribution method and the naïve OLS are in the same direction. Except the 

intercept and the variance, all estimates are very close. Since the sample distribution 

method uses a second order exponential approximation for the conditional 

probabilities of the sampling inclusion, both the intercept and the variance are 

different from the OLS estimates.  

For the design-based cross-sectional multilevel model, both the school level and 

the individual level weights are used to compensate for the unequal selection 

probabilities at both school level and individual level. The sample distribution method 

uses the school mean as a measure of iμ , then the estimated 1b  and 1d  are 

substituted to the full sample likelihood function. Consistent to the results in Chapter 

3, the only difference between the estimates from the sample distribution method and 

those from the naïve multilevel model is the intercept. The estimated standard errors 

are also slightly different, but do not lead to different inferences. Most of the 

estimated coefficients from the weighted multilevel model are apart from those 

estimated by either the sample distribution method or the naïve multilevel model. This 

is due to the effects of the school level sampling weights. The model-based methods 
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produce very close estimates in both the single level and the multilevel models. The 

design-based estimates are not consistent across models.  

Table 5.4 summarizes all the design-based and the model-based estimates for the 

longitudinal models. The weighted multilevel model uses the school level and the 

individual level weights to adjust for the sampling design and dropouts. Suggested by 

the Add Health researchers, the grand panel weight (GSWGT3) should be used if the 

analysis involves respondents who were interviewed at all three waves. No weighting 

suggestions are given for analysis that involves all available respondents at all three 

waves. However, using the grand panel weight (GSWGT3) as the individual level 

weights leads to numerical problems in this study-- GLLAMM in STATA did not 

converge after 24 hours iterations.  

As an alternative, a panel weight is used for this study. For the individuals in wave 

1, the grand weight (GSWGT1) is used, while for those in the later waves, the panel 

weights that only compensate for dropouts are used. For example, the panel weight for 

the second wave is defined as the grand weight for the second wave over the grand 

weight for the first wave.  

The first two columns in Table 4 present the results from the weighted and the 

naïve multilevel models. Since neither of these two models considers the repeated 

measure of individuals, they are comparable in terms of the model specification. It 

can be seen that none of estimated coefficients is very close, but most of them are in 

the same direction. In addition, the inferences based on those estimates are the same.  



 67

To take into account the correlation among repeated measures and the dropout 

process, two model-based approaches are implemented: one is the sample distribution 

method with the Diggle and Kenward model, and the other one is multiple imputation. 

The sample distribution method does not give any estimates that are consistent to 

other methods, no matter which missing pattern is assumed. In fact, the estimation is 

sensitive to the initial values for MNAR. As mentioned by Molenberghs and etc 

(2007), the Diggle and Kenward model involves a computationally intensive 

numerical integration. When it is combined with the sample likelihood function, the 

likelihood surface tends to be rather flat. Therefore, the estimation process is 

relatively easy to achieve a local maximum. As presented here, the sample 

distribution method with the Diggle and Kenward model does not work well. In a 

word, the sample distribution method combined with a logistic dropout is not easy to 

use in the real data analysis.  

The results from multiple imputation are consistent to those obtained from the 

naïve and the weighted method. This indicates that the multiple imputation might not 

be a bad choice for this type of analysis.  

 

5.5 Conclusion 

In this chapter, the design-based and the model-based methods to compensate for 

the sampling design and the dropout are implemented using Add Health study as an 

example. The results from both the design-based and the model-based methods are 

discussed. Although guidelines for how to pick up the correct weights have been 
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given by Add Health researchers, researchers should be aware of the effect of the 

sampling weights on the model estimation.  

Previous chapters have discussed the theory and practice of the sample 

distribution method. In this chapter, the sample distribution method is implemented in 

the real data analysis along with the test of the informativeness. In fact, the correlation 

between the response variable and the sampling design is not strong in this analysis. 

Based on the evidences in Chapter 2-4, the estimates from the sample distribution 

method or the naïve method should be trusted for the cross-sectional models.  

The sample distribution method combined with the Diggle and Kenward model has 

been showed to have some advantages of correcting for the design effect and 

nonignorable dropout in Chapter 4, However, it does not work well in this analysis. 

For the longitudinal models, either multilevel weighted method or multiple imputation 

can be used, since the estimates obtained from these two methods are close and the 

inferences are the same. 
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APPENDIX 

 

Table 2.1 Simulation Design 

Design  1 2 3 4 

Informative √ √  
Informativeness 

Non informative √ √ 

Design-based: PML √ √ √ √ 

Sample Dist: W1s √ √ √ √ 

Sample Dist: W2s √ √ √ √ 
Estimators 

Naïve: OLS/ML √ √ √ √ 

Linear model √ √  
Model type 

Non-linear model √ √ 
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Table 2.2 Relative Biases and Mean Square Errors (MSE) of Linear Model: 

Exponential Sampling with 1st Order Correlation.  

Estimator Parameter Relative bias(MSE) Coverage

β0 -0.424(0.252) 0.000 

β1 -0.009(0.146) 0.890 

β2 -0.021(0.023) 0.430 

β3 0.016(0.015) 0.826 

OLS 

σ2 -0.041(0.399) 0.518 

β0 -0.049(0.871) 0.718 

β1 -0.053(0.707) 0.872 

β2 -0.044(0.118) 0.646 

β3 0.041(0.06) 0.776 

PML 

σ2 -0.135(1.718) 0.490 

β0 -0.036(0.271) 0.610 

β1 -0.009(0.146) 0.890 

β2 -0.021(0.023) 0.430 

β3 0.016(0.015) 0.826 

W1s 

σ2 -0.013(0.051) 0.750 

β0 -0.341(0.29) 0.000 

β1 -0.001(0.177) 0.918 

β2 -0.008(0.030) 0.860 

β3 0.067(0.017) 0.368 

W2s 

σ2 -0.014(0.505) 0.846 
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Table 2.3 Relative Biases and Mean Square Errors (MSE) of Linear Model: 

Exponential Sampling with 2nd Order Correlation. 

Estimator Parameter Relative bias(MSE) Coverage

β0 0.206(0.656) 0.088 

β1 -0.150(0.136) 0.702 

β2 -0.137(0.025) 0.000 

β3 -0.137(0.036) 0.384 

OLS 

σ2 -0.140(0.355) 0.000 

β0 0.106(1.988) 0.774 

β1 -0.026(0.849) 0.886 

β2 -0.028(0.134) 0.816 

β3 -0.129(0.123) 0.772 

PML 

σ2 -0.195(2.350) 0.552 

β0 -0.094(1.458) 0.860 

β1 0.020(0.501) 0.898 

β2 0.004(0.097) 0.774 

β3 0.009(0.133) 0.902 

W1s 

σ2 -0.021(1.49) 0.832 

β0 0.188(1.131) 0.770 

β1 -0.108(0.441) 0.910 

β2 -0.121(0.081) 0.106 

β3 -0.131(0.116) 0.856 

W2s 

σ2 -0.143(1.144) 0.390 
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Table 2.4 Relative Biases and Mean Square Errors (MSE) of Linear Model: 

Non-informative Sampling. 

Estimator Parameter Relative bias(MSE) Coverage

β0 -0.003(0.338) 0.902 

β1 0.003(0.146) 0.900 

β2 0.000(0.023) 0.908 

β3 0.003(0.020) 0.902 

OLS 

σ2 -0.003(0.412) 0.870 

β0 0.000(0.595) 0.856 

β1 0.000(0.379) 0.868 

β2 0.001(0.059) 0.872 

β3 -0.002(0.04) 0.880 

PLM 

σ2 -0.028(1.015) 0.796 

β0 -0.042(0.339) 0.674 

β1 0.005(0.146) 0.900 

β2 0.002(0.023) 0.902 

β3 0.005(0.020) 0.890 

W1s 

σ2 0.002(0.013)) 0.874 

β0 -0.003(0.34) 0.908 

β1 0.003(0.147) 0.896 

β2 0.000(0.023) 0.908 

β3 0.003(0.02) 0.888 

W2s 

σ2 -0.003(0.415) 0.870 
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Table 2.5. Relative Biases and Mean Square Errors (MSE) of Logistic Model: 

Exponential Sampling with 1st Order Correlation 

Estimator Parameter Relative bias(MSE) Coverage

β0 -0.243(0.439) 0.832 

β1 0.037(0.250) 0.914 

β2 0.026(0.140) 0.882 
OLS 

β3 0.028(0.042) 0.89 

β0 0.026(0.738) 0.856 

β1 0.153(0.583) 0.858 

β2 0.139(0.318) 0.73 
PLM 

β3 0.150(0.091) 0.728 

β0 0.003(0.434) 0.888 

β1 0.028(0.246) 0.926 

β2 0.017(0.125) 0.89 
W1s 

β3 0.019(0.040) 0.898 

β0 -0.224(0.440) 0.844 

β1 0.039(0.251) 0.924 

β2 0.027(0.140) 0.884 
W2s 

β3 0.032(0.043) 0.888 
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Table 2.6 Relative Biases and Mean Square Errors (MSE) of Logistic Model: 

Non-informative Sampling. 

Estimator Parameter Relative 
bias(MSE) Coverage

β0 0.045(0.468) 0.91 

β1 0.046(0.267) 0.884 

β2 0.030(0.150) 0.874 
OLS 

β3 0.025(0.045) 0.862 

β0 0.188(0.787) 0.858 

β1 0.176(0.610) 0.864 

β2 0.144(0.337) 0.728 
PLM 

β3 0.129(0.097) 0.796 

β0 0.037(0.463) 0.91 

β1 0.035(0.262) 0.886 

β2 0.02(0.131) 0.87 
W1s 

β3 0.015(0.042) 0.866 

β0 0.048(0.471) 0.91 

β1 0.047(0.269) 0.894 

β2 0.030(0.150) 0.876 
W2s 

β3 0.024(0.045) 0.864 
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Table 2.7. Test for the Informativeness 

Model Correlation with 
the response Residual N Proportion 

of rejection
1st order OLS 500 0.969 
2nd order OLS 500 0. 840 Linear  
Non-informative OLS 500 0.018 
1st order deviance 500 0.660 
1st order Pearson 500 0.138 
Non-informative deviance 500 0.282 

Logistic 

Non-informative Pearson 500 0.056 
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Table 2.8 Relative Biases and Mean Square Errors (MSE) of Linear Model:  

Estimator Parameter Relative bias(MSE) Coverage

β0 -0.054(0.754) 0.586 

β1 -0.029(0.155) 0.850 

β2 -0.015(0.030) 0.654 

β3 -0.014(0.041) 0.788 

W1s 

σ2 -0.018(0.464) 0.726 

β0 0.188(0.679) 0.158 

β1 -0.120(0.143) 0.780 

β2 -0.107(0.026) 0.000 

β3 -0.136(0.037) 0.428 

W2s 

σ2 -0.109(0.388) 0.010 
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Table 3.1 Simulation Design 

Design  1 2 3 4 

1st √ √   
Informativeness 

Sampling 

stage 2nd √  √  

Design-based :MPML √ √ √ √ 

Sample Distribution √ √ √ √ Methods 

ML with robust stderr √ √ √ √ 
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Table 3.2 Relative Biases, Mean Square Errors, and Coverage Rates of Three 

Estimation Methods for Design 1: Both Stages are Informative.  

Methods Parameter Relative bias(MSE) Coverage

β0 -0.399(0.280) 0.000 

β1 -0.016(0.150) 0.948 

β2 -0.012(0.026) 0.830 

β3 -0.007(0.015) 0.938 

σu
2 -0.160(0.348) 0.666 

Naïve 
Multilevel  

σe
2 -0.015(0.432) 0.918 

β0 -0.607(1.058) 0.151 

β1 -0.018(0.525) 0.896 

β2 0.035(0.093) 0.816 

β3 0.037(0.053) 0.888 

σu
2 -0.167(0.751) 0.495 

Weighted 
Multilevel  

σe
2 -0.055(1.432) 0.753 

β0 0.252(0.303) 0.282 

β1 -0.016(0.150) 0.992 

β2 -0.012(0.026) 0.952 

β3 -0.007(0.015) 0.988 

σu
2 -0.160(0.348) 0.878 

Sample 
Distribution  

σe
2 -0.015(0.432) 0.984 
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Table 3.3 Relative Biases, Mean Square Errors, and Coverage Rates of Three 

Estimation Methods for Design 3: 1st Stage is Informative.  

Methods Parameter Relative bias(MSE) Coverage

β0 0.373(0.637) 0.35 

β1 0.010(0.28) 0.922 

β2 0.000(0.045) 0.938 

β3 -0.006(0.032) 0.946 

σu
2 -0.034(0.879) 0.886 

Naïve 
Multilevel  

σe
2 -0.004(0.762) 0.956 

β0 0.284(0.878) 0.618 

β1 -0.011(0.387) 0.938 

β2 -0.002(0.064) 0.928 

β3 -0.002(0.044) 0.920 

σu
2 -0.101(0.651) 0.532 

Weighted 
Multilevel  

σe
2 -0.074(0.971) 0.658 

β0 0.146(0.744) 0.854 

β1 0.010(0.28) 0.936 

β2 0.000(0.045) 0.944 

β3 -0.006(0.032) 0.948 

σu
2 -0.034(0.879) 0.886 

Sample 
Distribution  

σe
2 -0.004(0.762) 0.956 
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Table 3.4 Relative Biases, Mean Square Errors, and Coverage Rates of Three 

Estimation Methods for Design 3: 2nd Stage is Informative.  

Methods Parameter Relative bias(MSE) Coverage

β0 0.373(0.637) 0.350 

β1 0.010(0.28) 0.922 

β2 0.000(0.045) 0.938 

β3 -0.006(0.032) 0.946 

σu
2 -0.034(0.879) 0.886 

Naïve 
Multilevel  

σe
2 -0.004(0.762) 0.956 

β0 -0.902(0.986) 0.016 

β1 0.057(0.512) 0.910 

β2 0.033(0.08) 0.788 

β3 0.044(0.048) 0.864 

σu
2 0.133(0.789) 0.784 

Weighted 
Multilevel  

σe
2 -0.044(1.411) 0.790 

β0 0.490(0.646) 0.148 

β1 0.010(0.28) 0.936 

β2 0.000(0.045) 0.944 

β3 -0.006(0.032) 0.948 

σu
2 -0.034(0.879) 0.886 

Sample 
Distribution  

σe
2 -0.004(0.762) 0.956 
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Table 3.5 Relative Biases, Mean Square Errors, and Coverage Rates of Three 

Estimation Methods for Design 4: Neither Stage is Informative.  

Methods Parameter Relative bias(MSE) Coverage

β0 -0.002(0.671) 0.926 

β1 0.004(0.266) 0.948 

β2 0.000(0.046) 0.940 

β3 0.001(0.034) 0.904 

σu
2 -0.058(0.865) 0.886 

Naïve 
Multilevel  

σe
2 -0.004(0.762) 0.956 

β0 0.006(0.741) 0.904 

β1 -0.006(0.291) 0.958 

β2 -0.002(0.051) 0.934 

β3 -0.002(0.036) 0.916 

σu
2 0.129(0.625) 0.780 

Weighted 
Multilevel  

σe
2 -0.075(0.84) 0.574 

β0 -0.002(0.671) 0.950 

β1 0.004(0.266) 0.960 

β2 0.000(0.046) 0.952 

β3 0.001(0.034) 0.934 

σu
2 -0.057(0.865) 0.886 

Sample 
Distribution 

σe
2 -0.004(0.776) 0.942 
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Table 4.1 Simulation design 

Design  1 2 3 
Informative 1st wave √ √ √ 
Design-based Method Panel weighting √ √ √ 

Naïve model  √ √ √ 

Multiple Imputation √ √ √ Model-based Method 

Sample distribution √ √ √ 

MCAR √   

MAR  √  Missing Mechanism 

MNAR    √ 
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Table 4.2 1st Stage Informative Sampling with MCAR Dropout 

Method Parameter Relative bias(MSE) Coverage

β0 -0.638(0.39) 0.000 

β1 0.062(0.213) 0.916 

β2 0.057(0.029) 0.030 
Fixed Effect 

β3 0.056(0.017) 0.608 

ρ -0.001(0.113) 0.942 

σ2 0.073(0.987) 0.880 

d 0.013(0.89) 0.940 

Multiple 
Imputation 

Covariance 

τ2 -0.020(0.428) 0.934 

β0 -0.639(0.387) 0.000 

β1 0.062(0.213) 0.908 

β2 0.057(0.029) 0.030 
Fixed Effect 

β3 0.056(0.017) 0.614 

ρ 0.002(0.115) 0.936 

σ2 0.037(1.036) 0.912 

d 0.066(0.94) 0.948 

Naïve 
Multilevel  

Covariance 

τ2 0.040(0.453) 0.936 

β0 -0.603(1.056) 0.150 

β1 -0.040(0.527) 0.908 

β2 0.035(0.09) 0.825 
Fixed Effect 

β3 0.035(0.054) 0.883 

σ2 -0.052(1.418) 0.753 

Weighted 
Multilevel  

Covariance 
d -0.160(0.798) 0.494 

β0 0.133(0.407) 0.756 

β1 0.062(0.213) 0.908 

β2 0.057(0.029) 0.030 
Fixed Effect 

β3 0.056(0.017) 0.614 

ρ 0.002(0.115) 0.970 

Sample 
Distribution 
Method with 

a Logistic 
Dropout 

Covariance 

σ2 0.037(1.036) 0.926 
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Method Parameter Relative bias(MSE) Coverage

d 0.147(0.94) 0.976 

τ2 -0.033(0.453) 0.920 

Dropout ψ0 -0.001(0.217) 0.970 

 



 85

Table 4.3 1st Stage Informative Sampling with MAR Dropout 
Method Parameter Relative bias(MSE) Coverage

β0 -0.664(0.403) 0.000 

β1 0.061(0.228) 0.913 

β2 0.059(0.031) 0.032 
Fixed Effect 

β3 0.058(0.019) 0.638 

ρ -0.008(0.119) 0.962 

σ2 0.156(1.031) 0.756 

d -0.094(0.878) 0.931 

Multiple 
Imputation 

Covariance 

τ2 -0.177(0.393) 0.782 

β0 -0.666(0.402) 0.000 

β1 0.061(0.226) 0.914 

β2 0.060(0.03) 0.026 
Fixed Effect 

β3 0.059(0.019) 0.616 

ρ 0.007(0.126) 0.908 

σ2 0.042(1.155) 0.890 

d 0.072(1.026) 0.924 

Naïve 
Multilevel  

Covariance 

τ2 0.013(0.47) 0.938 

β0 0.284(0.878) 0.618 

β1 -0.011(0.387) 0.938 

β2 -0.002(0.064) 0.928 
Fixed Effect 

β3 -0.002(0.044) 0.920 

σ2 -0.074(0.971) 0.658 

Weighted 
Multilevel  

Covariance 
d -0.101(0.651) 0.532 

β0 0.105(0.419) 0.842 

β1 0.061(0.226) 0.916 

β2 0.060(0.03) 0.028 
Fixed Effect 

β3 0.059(0.019) 0.616 

ρ 0.007(0.126) 0.974 

σ2 0.042(1.155) 0.916 

Sample 
Distribution 
Method with 

a Logistic 
Dropout 

Covariance 

d 0.154(1.026) 0.974 
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Method Parameter Relative bias(MSE) Coverage

τ2 -0.058(0.47) 0.894 

ψ0 0.007(0.600) 0.956 
Dropout 

ψ1 0.011(0.016) 0.952 
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Table 4.4 1st Stage Informative Sampling with MNAR Dropout 

Method Parameter Relative bias(MSE) Coverage

β0 -0.605(0.408) 0.000 

β1 0.053(0.223) 0.907 

β2 0.048(0.032) 0.121 
Fixed Effect 

β3 0.047(0.019) 0.740 

ρ -0.011(0.125) 0.960 

σ2 0.126(1.035) 0.802 

d -0.060(0.909) 0.915 

Multiple 
Imputation 

Covariance 

τ2 -0.189(0.390) 0.750 

β0 -0.610(0.406) 0.000 

β1 0.053(0.22) 0.912 

β2 0.049(0.031) 0.086 
Fixed Effect 

β3 0.048(0.019) 0.700 

ρ -0.002(0.13) 0.918 

σ2 0.021(1.162) 0.908 

d 0.103(1.059) 0.938 

Naïve 
Multilevel  

Covariance 

τ2 -0.020(0.462) 0.918 

β0 -0.902(0.986) 0.016 

β1 0.057(0.512) 0.910 

β2 0.033(0.080) 0.788 
Fixed Effect 

β3 0.044(0.048) 0.864 

σ2 -0.044(1.411) 0.790 

Weighted 
Multilevel  

Covariance 
d 0.133(0.789) 0.784 

β0 0.105(0.423) 0.852 

β1 0.063(0.220) 0.908 

β2 0.060(0.031) 0.026 
Fixed Effect 

β3 0.059(0.019) 0.604 

ρ 0.005(0.129) 0.974 

Sample 
Distribution 
Method with 

a Logistic 
Dropout 

Covariance 

σ2 0.036(1.13) 0.928 
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Method Parameter Relative bias(MSE) Coverage

d 0.152(1.025) 0.984 

τ2 -0.070(0.468) 0.884 

ψ0 -0.035(1.16) 0.926 

ψ1 -0.004(0.018) 0.944 Dropout 

ψ2 -0.070(0.023) 0.916 
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Table 5.1 List of Modeling strategies   

Model Design-based Model-based method 

 Weights used Sample distribution Naïve  

Cross-sectional 

Single level  

Cross sectional 

weights 

Exponential 

approximation 

 

Cross-sectional 

Multilevel  

2-level cross 

sectional weights

2-level exponential 

approximation 

robust 

standard 

error 

Longitudinal 

2-level 

longitudinal 

weights 

Diggle and 

Kenward dropout 

Multiple 

imputation 
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Table 5.2 Variable description, means, and standard deviations 

Variable name Description Mean SD 
Serious and violent delinquency   

Wave I Serious Delinquency Scale, Wave 1 1.681 3.097
Wave II Serious Delinquency Scale, Wave 2 1.296 2.759
Wave III Serious Delinquency Scale, Wave 3 0.763 1.846

Structural/Demographic    
Age/ethnicity     

Age age at time of interview at Wave I 15.413 1.731
Black race reported as black at Wave I 0.228 0.419
Hispanic race reported as Hispanic at Wave I 0.126 0.331
Asian race reported as Asian at Wave I 0.043 0.202

Family SES    
Parent jobless Parent Unemployed at Wave I 0.047 0.212

High school Parent has High School education only 
Wave I 

0.029 0.168

> High school Parent has education beyond high school 0.566 0.496
Family & School 
Process 

   

Daily family meals Eating meals with parent 6 days / week at 
Wave I 

0.482 0.500

2 biological parents Living with both parents at Wave I 0.523 0.499
Repeated a grade Having repeated grade by Wave I 0.210 0.407
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Figure 5.1 Add Health Sampling Design 
 

 
 

Sampling frame-QED 26,666 schools 

Feeder 

Sampling frame of adolescents and parents: 132 schools= 80 HS +52 Feeder 
(90,118 adolescent In-School Questionnaires; 17,700 Parent Questionnaires)

Puerto Rican 
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Chinese 406 

Cuban  
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High Educ 
Black 1,547

Core Sample 
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Disabled 
Sample 957

Saturation 
Samples 2,559 

Full Siblings 
2,500

Twins 1,534

Pairs 2,553

Unrelated 
pairs 1,314 

HSHS HS HS

Feeder Feeder Feeder Feeder 

Half Siblings 
848

Genetic Samples Ethnic Samples 

20,745 adolescent In-Home Interviews 
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