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Abstract: In this paper we discuss the Brauer group of a field and its connections with cohomology
groups. Definitions involving central simple algebras lead to a discussion of splitting fields, which
are the important step in the connection of the Brauer group with cohomology groups. Finally, once
the connection between the Brauer group and cohomology groups is established, specific examples
of cocycles associated to central simple algebras are calculated

1. Central Simple Algebras and Splitting Fields

Elements of the Brauer group are equivalence classes of central simple algebras. As such, it is im-
portant to have an understanding of these algebras to understand the Brauer group. This section
aims to lay the foundation for the rest of our discussion; this foundation starts with the definition
of a CSA.

Definitions 1.1: Fix some field k.

1. An algebra over k is a ring A along with an embedding ψ : k ↪→ A, where 1 in k maps to 1 in
A. This embedding induces a scalar product that allows A to have a vector space structure
over k. The image ψ(k) is often denoted k · 1, or simply k. We require ψ(k) to commute with
every element of the algebra, so that the “left scalar product” and the “right scalar product”
will be the same.

2. The center of an algebra A is the set Z(A) = {z ∈ A : az = za ∀a ∈ A}. If this set is the
subspace k · 1, A is said to be central.

3. A (two-sided) ideal of an algebra is a (two-sided) ideal of the algebra viewed as a ring. Note
that (x ·1)i = x · i ∈ I for every x ∈ k, so it has the addition stipulation of being closed under
scalar multiplication. If the only ideals of A are {0} and A, A is said to be simple.

4. An algebra is a central simple algebra if it is both central and simple. Central simple algebras
are often referred to as CSAs, an abbreviation we will use often.

In addition to these definitions, it is useful to know when an algebra is finite-dimensional. An
algebra is finite-dimensional when it is finite-dimensional as a vector space over k. All algebras will
be assumed to be finite-dimensional unless stated otherwise.

Examples 1.2: Common examples of CSAs include:

1. Mn(k) is a CSA over k for all n > 0. The matrix ring is equipped with a scalar product
operation that multiplies each entry by an element of k.

2. Central division algebras, including k itself, are CSAs over k as well.

3. The quaternion algebra
(
a,b
k

)
, generated by i and j with i2 = a, j2 = b, ij = −ji is a central

simple algebra over k. In fact, it is either a division algebra or it is isomorphic to M2(k). A
discussion of these algebras and their properties is found in [Lam].
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4. Cyclic algebras over k are also CSAs over k. They are constructed as follows: Let K|k be a
cyclic extension of degree m, and fix σ a generator of the galois group Gal(K|k). Then choose
some b ∈ k. The cyclic algebra A is generated by K and a particular element y, subject to
the relations ym = b and λy = yσ(λ) for every λ ∈ K.

Cyclic algebras are in fact a generalization of quaternion algebras. We can view the quaternion

algebra
(
a,b
k

)
as a cyclic algebra generated by K = k(

√
b) and i, with i playing the role of y. This

follows because the generator (and only non-identity element) of Gal(k(
√
b)|k) is the automorphism

g : x+ y
√
b 7→ x− y

√
b.

Tensor products involving CSAs are of particular importance. The following lemma, in two
parts, will prove useful for two separate but important statements: lemma 1.4 and proposition 1.6.
It relates the tensor product to the properties of central simple algebras.

Lemma 1.3: Let k be a field. The symbol ⊗ always means tensor over k.

1. Let A and B both be algebras over k. Then Z(A⊗B) = Z(A)⊗ Z(B).

2. Let A be a CSA over k, and let B be a simple k-algebra. Then A⊗B is simple.

Proof:

1. The inclusion ⊃ is obvious, leaving ⊂ as a nontrivial part of the proof. We first do the case
of pure tensors. Let a ⊗ b ∈ Z(A ⊗ B) with a, b 6= 0. Since it commutes with every element
of A⊗B, it in particular commutes with every element of the form a′ ⊗ 1, so:

(a′ ⊗ 1)(a⊗ b)− (a⊗ b)(a′ ⊗ 1) = (a′a− aa′)⊗ b = 0

And since b 6= 0, this requires a′a − aa′ to be 0, which means a commutes with a′ for all a′,
so a ∈ Z(A). By a similar argument, b ∈ Z(B).
This leads to the general case. Let z =

∑r
i=1 ai ⊗ bi ∈ Z(A ⊗ B), and choose an expansion

for z such that r is minimal. In particular, this means the ai are linearly independent, and
similarly for the bi. Then pick a′ ∈ A and consider:

(a′ ⊗ 1)z − z(a′ ⊗ 1) =

r∑
i=1

(a′ai − aia′)⊗ bi = 0

Then for each j, this means:∑
i 6=j

(a′ai − aia′)⊗ bi = (aja
′ − a′aj)⊗ bj

But the left hand side is in A⊗span(bi)i 6=j and the right hand side is in A⊗span(bj), and since
the bi’s are linearly independent, these sets only intersect at 0. That means (aja

′−a′aj)⊗bj =
0 for each j, which means each aj is in Z(A). Again, a similar argument shows each bj is in
Z(B), so we must have z ∈ Z(A)⊗ Z(B), as desired.

2. To show that A ⊗ B is simple, we take some nonzero ideal I ⊂ A ⊗ B and show it is all of
A⊗B, by “forcing” 1 to be an element of it as well. Let z ∈ I, where z is represented as the
following sum:

r∑
i=1

ai ⊗ bi
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and we can choose z such that r is minimal. Now, since A is simple, the ideal generated by
a1 in A is all of A – this means that there is an equation ca1d = 1 for some pair c, d ∈ A.
Similarly, we have c′b1d

′ = 1 for some pair c′, d′ ∈ B. Then we set z′ = (c⊗ c′)z(d⊗ d′), and
we know that z′ ∈ I, and

z′ = 1⊗ 1 +
r∑
i=2

a′i ⊗ b′i

where a′i = caid and b′i = c′bid
′. Then fix some a0 ∈ A, and note

(a0 ⊗ 1)z′ − z′(a0 ⊗ 1) =

r∑
i=2

(a0a
′
i − a′ia0)⊗ bi ∈ I

Since r was minimal for an element of I, this element must be 0. Next fix b0 ∈ B, noting:

(1⊗ b0)z′ − z′(1⊗ b0) =
r∑
i=2

ai ⊗ (b0b
′
i − b′b0)

Similarly, this must be zero. This means z′ commutes with every tensor of the form (a ⊗ 1)
and of the form (1 ⊗ b). It further commutes with every product of elements of that form,
and sums of those elements. This means it commutes with all of A⊗B. Then z′ ∈ Z(A⊗B),
which is equal to Z(A)⊗Z(B) by part 1. Then since Z(A) is just the one-dimensional space
k · 1, we must have r = 1, so z′ was just 1⊗ 1 to begin with. So every nonzero ideal contains
1⊗ 1, and is thus all of A⊗B, so A⊗B is simple.

This lemma gives the following as an immediate corollary:

Corollary 1.4: If A and B are central simple algebras over k, then so is A⊗B.

This leads to our definition of the Brauer group.

Definition 1.5: The Brauer group of a field k, Br(k), is the group whose underlying set is the set
of all CSAs over k with the equivalence relation A ∼ B if and only if Mm(A) ∼= Mn(B) for some
choice of m and n. The equivalence class containing A is denoted [A]. The operation on the group
is [A] · [B] = [A⊗B].

What is defined above is certainly at least a monoid, and it will become a group if every element
[A] ∈ Br(k) has an inverse. Each element does, of course, have an inverse, with [A]−1 = [Aop], the
class of its opposite algebra. we will not prove this here, as proofs are found both in [Lam] and in
[GS].

The following statements lead to a final theorem on splitting fields which will be useful in our
cohomological study of Br(k).

Proposition 1.6: Let A be an algebra over k, and let K|k be a finite field extension. Then A is
central simple over k if and only if A⊗K is central simple over K.
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Proof: For the backward implication, note that if I is an ideal in A, I ⊗K is an ideal in A⊗K,
so if A is not simple, A ⊗ K is not simple. Also note that Z(A) ⊗ K is the center of A ⊗ K by
part 1 of lemma 1.3, so if Z(A) is not just k, Z(A ⊗ K) will not just be k ⊗ K, which is the
embedding of K in A⊗K. Thus if A is not central simple over k, A⊗K is not central simple over
K. For the forward implication, Let A be a central simple algebra. Note again that Z(A ⊗K) is
Z(A)⊗K, so since A is central, Z(A⊗K) = K. By part 2 of lemma 1.3, since A is central simple
and K is simple, A⊗K is simple. Then if A is central simple over k, A⊗K is central simple over K.

Theorem 1.7: Wedderburn’s Theorem. Every CSA over k is isomorphic to Mn(D) for some inte-
ger n > 0 and some central division algebra D over k. The isomorphism class of D and the integer
n are both uniquely determined.

The proof of this theorem is given in the entire section 2.1 of [GS], and since it is so involved, it
is not reproduced here. In particular, this means that every element of Br(k) can be represented
by a unique central division algebra over k.

Lemma 1.8: If k is algebraically closed, then any CSA over k is isomorphic to Mn(k) for some
choice of n.

Proof: By 1.7, it is sufficient to show that k is the only central division algebra over k. Assume
D is a division algebra over k, and take d ∈ D. Since D has finite dimension over k, the elements
1, d, d2, . . . are linearly dependent over k. This means d satisfies some minimal polynomial f ∈ k[x],
which is irreducible over k. But since k is algebraically closed, the only irreducible polynomials are
degree 1, which means d ∈ k. Thus D ⊂ k, so D = k, and k is the only (central) division algebra
over k.

In 1.8, the implicit assumption that every algebra is finite dimensional is integral to the proof.
This lemma and proposition 1.6 together form the basis for the proof of the next theorem, which
is very important in the next section. The theorem will be followed by the definition of Br(K|k),
a particular subgroup of Br(k).

Theorem 1.9: Let k be a field, and A an algebra over k. Then A is a CSA if and only if there
exists an integer n > 0 and a finite extension K|k such that A⊗K ∼= Mn(K).

Proof: The reverse implication follows from 1.6, since Mn(K) is central simple over K. Now for
the forward direction, first fix k an algebraic closure of k. By 1.8, A⊗ k ∼= Mn(k) for some choice
of n. k|k may not be a finite extension, but we show that we can find one.
For any finite field extension K|k, the inclusion map K ↪→ k defines an inclusion A⊗K ↪→ A⊗ k,
and the union of these algebras A ⊗ K gives A ⊗ k since k is an algebraic extension of k. Then
the elements corresponding to the eij in Mn(k) each have to be in one of the finite field extensions.
For each pair i, j, let Ki,j be a field extension for which A ⊗Ki,j contains eij under the inclusion
maps mentioned above, and let K∗ be the compositum of all these fields, K∗ = K1,1K1,2 . . .Kn,n.
Then since each Ki,j was finite, this K∗ will be finite as well, and A⊗K∗ contains each ei,j , so it
is isomorphic to Mn(K∗), proving the theorem.
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The theorem states that every CSA has a ”splitting field” among its finite extensions. There
is further discussion in [GS] that implies that at least one of these finite splitting fields is Galois.
Splitting fields are useful because of the following fact: (A ⊗K) ⊗ (B ⊗K) ∼= (A ⊗ B) ⊗K, so if
K splits A and B, then it splits A⊗B. This leads to a definition of a kind of a ”bonus” Brauer group.

Definition 1.10: Let k be a field and K a Galois extension. The Brauer group of k relative to K
is the subgroup of Br(k) generated by those CSAs split by K. It is denoted Br(K|k).

Finally, since the k-dimension of any CSA A over k is the same as the K-dimension of A⊗K
over K, we have that the dimension of a CSA over a field is always a square. We call the integer√
dimk(A) the degree of A, and it is also the n in 1.9.

2. Galois Cohomology

This section begins with the definition of cohomology groups for a general projective resolution,
and then defines the standard resolution, before using that to associate the elements of Br(k) and
Br(K|k) to the elements of two of these groups. No calculations are done on these groups until
the following section – this section simply sets the foundation for those that come after.

Definitions 2.1: Let G be a group.

1. A G-module is an abelian group A equipped with a G-action G × A → A, (σ, a) 7→ σa,
satisfying σ(τa) = (στ)a. Equivalently, it is a module over the group ring Z[G].

2. A projective G-module is a G-module P such that, for every surjective map of G-modules
α : A→ B, the natural map Hom(P,A)→ Hom(P,B) given by λ 7→ α ◦λ is surjective. Free
modules are always projective.

3. Given any G-module A, a projective resolution of A is an exact sequence

· · · → P3
d3−→ P2

d2−→ P1
d1−→ P0

d0−→ A→ 0

With Pi projective for each i.

4. A chain complex M∗ is a sequence of G-modules

M0
c0−→M1

c1−→M2
c2−→ . . .

Where ci ◦ ci−1 = 0 for all i. That is, Im(ci−1) ⊂ Ker(ci) – if the sets are equal, the chain is
exact.

5. Given a chain complex M∗ as above, the group H i(M∗) is defined to be the quotient
Ker(ci)/Im(ci−1). If M∗ is exact, these are trivial for all i.

Now we can connect definitions 3 and 4 above. Given a projective resolution P∗ of some
G-module X and another G-module A, there is an associated chain complex M∗ with Mi =
HomG(Pi, A), and ci : f 7→ f ◦di+1. This is a complex since (ci+1◦ci)(f) = f ◦di−1◦di = f ◦0 = 0 is
trivial. We can write this chain complex as HomG(P∗, A). The next definition uses this connection.
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Definiton 2.2: Fix some projective resolution P∗ of Z as a trivial G-module. (That is, Z as an
abelian group with g · n = n for all n ∈ Z and all g ∈ G.) Then the ith cohomology group of G
with values in A is H i(HomG(P∗, A)), as defined above. It is denoted H i(G,A). These groups also
have the following nice properties:

1. H0(G,A) = AG is the set of elements of A fixed by G.

2. Any G-homomorphism A→ B induces a natural map H i(G,A)→ H i(G,B) for all i.

3. Given a short exact sequence of G-modules 0 → A → B → C → 0, we have a long exact
sequence

· · · → H i−1(G,C)→ H i(G,A)→ H i(G,B)→ H i(G,C)→ H i+1(G,A)→ . . .

starting with H0(G,A).

Remark: It can be shown, using the properties of projective modules, that the groups H i(G,A)
are well-defined. That is, that you get the same group regardless of the choice of resolution. This
is discussed in [GS] in section 3.1. The properties 1-3 are also discussed in that section.

Now, since the choice of resolution P∗ does not change the groups, we can choose a specific
resolution, and study cohomology groups induced this way. The resolution most often used is the
standard resolution.

Definition 2.3: These definitions culminate in the definition of the standard resolution.

1. Define the map sij : Z[Gi+1]→ Z[Gi] so that

sij(g0, g1, . . . , gi) = (g0, . . . , gj−1, gj+1, . . . , gi)

2. Now define the map di : Z[Gi+1]→ Z[Gi] in terms of the sij :

di =

i∑
j=0

(−1)jsij

3. Finally, the standard resolution is the resolution

. . .
d2−→ Z[G2]

d1−→ Z[G]
d0−→ Z→ 0

where the di are as above.

It’s easy to check that di+1 ◦ di = 0 for all i, which shows that Im(di+1) ⊂ Ker(di). However
to show that the standard resolution is exact, we need further that Ker(di) = Im(di+1), which is
stronger. To show this, fix g ∈ G define functions hi : Z[Gi+1] → Z[Gi+2] so that hi(g0, . . . , gi) =
(g, g0, . . . , gi).

di+1 ◦ hi + hi−1 ◦ di = IdZ[Gi+1]

Now take some element x ∈ Z[Gi+1] which is in the kernel of di. Then:

x = IdZ[Gi+1](x) = (di+1 ◦ hi + hi−1 ◦ di)(x) = (di+1 ◦ hi)(x) + (hi−1 ◦ di)(x) = di+1(h
i(x)) + 0
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Which shows that x ∈ Im(di+1), so Ker(di) = Im(di+1) for all i. Thus the standard resolution is
in fact a resolution.

Using the standard resolution, we can calculate the cohomology groups explicitly, and find
properties of the elements. First, we define objects closely related to the elements of H i(G,A), and
then we explore their properties from there.

Definitions 2.4:

1. An i-cochain is a G-homomorphism from Z[Gi+1] to A, i.e., an element of HomG(Pi, A).

2. An i-cocycle is an element of Ker(di).

3. An i-coboundary is an element of Im(di−1). Thus i-coboundaries are i-cocycles.

These are groups, with the group of coboundaries a (normal) subgroup of the group of cocycles.
The group H i(G,A) is given as the factor group of the cocycles modulo coboundaries.

The next section covers what are called ”inhomogeneous cochains” in [GS], which recovers the
cocycle relation that will be generalized to the non-commutative case. The relation follows from
a specific choice of basis for the elements of Z[Gi+1], and calculation of the differentials in the
standard resolution on them. The relation for 1-cocycles is:

aστ = aσσ(aτ )

Definition 2.5: Let (A,+) be a G-module. In Z[Gi+1], consider the basis elements

[σ1, . . . , σi] = (1, σ1, σ1σ2, . . . , σ1 . . . σi)

as a free Z[G]-module. Note that when we apply di to each of these, we get the following:

di([σ1, . . . , σi]) = σ1[σ2, . . . , σi] +
i∑

j=1

(−1)j [σ1, . . . , σjσj+1, . . . , σi] + (−1)i+1[σ1, . . . , σi−1]

Since the set of these form a basis for Z[Gi+1], we can identify the i-cochains with maps [σ1, . . . , σi] 7→
aσ1,...,σi , and the induced map HomG(Z[Gi], A)→ HomG(Z[Gi+1], A) is given by:

d∗i : aσ1,...,σi−1 7→ σ1aσ2,...,σi +

i∑
j=1

(−1)jaσ1,...,σjσj+1,...,σi + (−1)i+1aσ1,...,σi−1

These functions are called inhomogeneous cochains.

Remarks: This relation holds for arbitrary i in the case where A is commutative, but for this paper
the most important dimensions are i = 2 in the commutative case and i = 1 in the noncommutative
case. For each dimension, the relation above gives the following for cocycles and coboundaries:

i = 2, A commutative: in the next sections, this case will be written multiplicatively, so we do
this now as well. 2-cocycles are functions aσ,τ satisfying:

σ1(aσ2,σ3) · a−1σ1σ2,σ3 · aσ1,σ2σ3 · a
−1
σ1,σ2 = 1
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with coboundaries satisfying
aσ1,σ2 = σ1(bσ2) · b−1σ1σ2 · bσ1

for some 1-cochain (not necessarily cocycle) bσ.
i = 1, A not neccesarily commutative: this case is requires a little bit of fudging to get a nice

relation in the noncommutative case. What the relation above actually says is this: a 1-cocycle
with values in A is a 1-cochain aσ satisfying:

σ(aτ ) · a−1στ · aσ = 1

and after multiplying on the left by aσ, on the right by a−1σ , and finally on the right again by aσ,τ ,
we recover the cocycle relation from before:

aστ = aσ · σ(aτ )

Now for the coboundaries we take a different approach from the case where A is commutative.
Rather than defining the subgroup of coboundaries and taking the quotient group of cocycles
modulo coboundaries, we define an equivalence relation on our set of cocycles that leaves the
coboundaries equivalent to the identity. Our equivalence relation is as follows: If aσ and bσ are two
cocycles, we say aσ ∼ bσ if and only if there is some element c ∈ A such that c−1aσσ(c) = bσ for
all σ ∈ G.

Now, after one more definition, we will finally get to the results of this section.

Definition 2.6: Let K|k be a field extension, and let A and B be two algebras over k. A and B
are said to be K|k-twisted forms if A⊗K ∼= B ⊗K.

Theorem 2.7: Let A be an algebra, let G = Gal(K|k), and define the action of G on Aut(A) to
be such that σ(φ) = σφσ−1. Then the set ofK|k-twisted forms of A is isomorphic toH1(G,Aut(A)).

Proof: We sketch the proof. We first associate to each twisted form a cocycle. to associate a
cocycle to B, we first fix an isomophism φ : A ⊗K → B ⊗K. Then let the cocycle bσ associated
to B to be the map σ 7→ φ−1σ(φ). We check:

bσσ(bτ ) = (φ−1σφσ−1)(σφ−1τφτ−1σ−1) = φ−1στ(φ) = bστ

so it is indeed a cocycle.
Now, to show that the class of the cocycle associated to B is unchanged by the choice of the
isomorphism φ, we take another isomorphism ψ : A⊗K → B ⊗K. Note that

(ψ−1φ)−1ψ−1σ(ψ)σ(ψ−1φ) = φ−1σ(φ)

so the class of the cocycles for B in H1(G,A) is unchanged by the choice of isomorphism A⊗K →
B ⊗K.

Now by 1.9, we have that the set of K|k-twisted forms of Mn(k) is exactly the set of CSAs
over k split by K with degree n. We call this set CSAn(K|k), and since Aut(Mn(K)) ∼= PGLn(K)
(by the Skolem-Noether theorem), we have now identified CSAn(K|k) with the cohomology group
H1(Gal(K|k), PGLn(K)). We want to go forward and identify the entire group Br(K|k) with some
cohomology group, rather than just those of a certain degree. To do this, we define PGL∞(K)

8



with each of these as a subgroup as follows: given two integers m and n, define the map im,n :
PGLm(K)→ PGLmn(K) to be the map that takes some m×m matrix M to themn×mn block ma-
trix with n copies of M along the diagonal. We define PGL∞(K) to be the limit of PGL1·2·3·····n(K)
as n → ∞, such that PGLm(K) is realized as a subgroup by the inclusion im,1·2·····n for every m.
This way we can have Br(K|k) ∼= H1(Gal(K|k), PGL∞(K)).

Theorem 2.8: H1(G,GLn(K)) ∼= {0}.

Proof: The proof here uses a more general form of theorem 2.7. In fact, the twisted forms of
an algebra are not the only time when that theorem holds – for this proof we use the fact that
it holds for vector spaces. The set Aut(V ) is also the set GL(V ), which is GLn(K) for a vector
space V of dimension n over a field K. Thus the theorem tells us that the set of twisted forms
of V is isomorphic to H1(G,GLn(K)). But the determining factor of the isomorphism class of a
vector space is only the dimension, and the dimension of V ⊗K and of V are the same, so this set
is trivial. ThenH1(G,GLn(K)) ∼= {0} for allK and n. The same argument also works forGL∞(K).

The next theorem will only be stated; it is described both in proposition 2.7.1 and in proposition
4.4.1 in [GS]. It will serve a central purpose in the proof of theorem 2.10.

Theorem 2.9: Let G be a group and 1→ A→ B → C → 1 be an exact sequence of G-modules,
such that A is commutative and contained in the center of B. (B and C need not be commutative.)
Then there is an exact sequence:

1→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)
∂−→ H2(G,A)

The map labeled ∂ above is very important. We describe it here, as it is used in the calculations
of nearly every proposition from here on. Given a 1-cocycle cσ : G → C, we construct a 2-cocycle
aσ,τ : G2 → A using the following process. For each element cσ ∈ C, lift it to an element bσ ∈ B.
Then to each pair of elements σ, τ in G2, associate the element b∗σ,τ = bσσ(bτ )b−1στ ∈ B. Since cσ
was a cocycle, the projection of this element to C gives the identity in C. Then by the exactness
of the sequence, there must be some element aσ,τ that maps to b∗σ,τ . The map taking (σ, τ) to this
aσ,τ is the image of cσ under ∂.

The final proposition for this section takes us back to the Brauer group by associating it to some
cohomology groups. It uses 2.7 as a starting point, associatingBr(K|k) toH1(Gal(K|k), PGL∞(K)),
and then uses 2.8 and 2.9 to show that it is also isomorphic to H2(Gal(K|k),K×), which is easier
to deal with.

Theorem 2.10: The groups Br(K|k), H1(Gal(K|k), PGL∞(K)), and H2(Gal(K|k),K×) are all
isomorphic.

Proof: The first two groups are isomorphic because of 2.7 and the remarks following it (regarding
inclusion maps of PGLn(K) into PGLmn(K)). For the second two groups, consider the exact
sequence

1→ K× → GL∞(K)→ PGL∞(K)→ 1

and applying 2.9 to it, we get the smaller exact sequence

H1(G,GL∞(K))→ H1(G,PGL∞(K))
∂−→ H2(G,K×)
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and since the first group is trivial by 2.8, the map ∂ is injective. Then the surjectivity of this map
is all that is in doubt.
To show surjectivity of the map H1(G,PGL∞(K)) → H2(G,K×), we show something stronger:
that the natural map H1(G,PGLn(K))→ H2(G,K×) is surjective, where n is the order of G. This
is stronger because every natural map H1(G,PGLmn(K)) → H2(G,K×) will then be surjective,
which implies the result for PGL∞(K).
First consider K ⊗K as a vector space, which is isomorphic to Kn. There is an injective homo-
morphism from the group (K ⊗K)× to GLn(K) where an invertible element x ∈ (K ⊗K)× maps
to multiplication by x. This creates a commutative diagram:

1 // K× //

id
��

(K ⊗K)× //

��

(K ⊗K)×/K×

��

// 1

1 // K× // GLn(K) // PGLn(K) // 1

The properties of cohomology groups give us this next diagram, which is commutative because the
previous one is.

H1(G, (K ⊗K)×/K×)
α //

��

H2(G,K×)

id
��

// H2(G, (K ⊗K)×)

H1(G,PGLn(K))
δ // H2(G,K×)

The top row of that diagram is exact, because it comes from the long exact cohomology sequence.
The last group in the top row is trivial by Shapiro’s lemma (since (K ⊗ K)× ∼= K× ⊗Z Z[G] ∼=
Hom(Z[G],K×), where the last isomorphism is found by choosing a basis for Z[G] over Z), which
means that the morphism α is surjective. By commutativity of the diagram, this shows that δ
is surjective, which is what we were trying to prove. Thus the natural map H1(G,PGLn(K)) →
H2(G,K×) is surjective, so the natural map H1(G,PGL∞(K))→ H2(G,K×) is surjective. Along
with the injectivity established earlier, this shows that it is an isomorphism, so that all three groups
in the proposition are isomorphic.

3. Calculations of Cocycles in Br(K|k)

In this section We calculate the 2-cocycles associated to quaternion and cyclic algebras over a
field for certain splitting fields.

Proposition 3.1: Let A =
(
a,b
k

)
, and let K = k(

√
b) be a splitting field for A. Further let

Gal(K|k) = {e, g} where g is the non-identity element. Then the class [A] in Br(K|k) is given by
aσ,τ :

aσ,τ =

{
1, σ = e or τ = e

a, σ = τ = g

Proof: (Note: in this proof and others to come, there is a particular abuse of notation where the
elements of PGLm(K) and the elements of GLm(K) are not distinguished. This does not cause
any problems, especially as most of the calculations themselves occur in GLm(K).) To find the
2-cocycle associated to A, we first have to find the 1-cocycle associated to A. To find that, we first
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have to define an isomorphism φ : A⊗K →Mn(K). We use this one:

φ : w + ix+ yj + zk 7→ w

(
1 0
0 1

)
+ x

(
0 a
1 0

)
+ y

(√
b 0

0 −
√
b

)
+ z

(
0 −a

√
b√

b 0

)
where w, x, y, z are all in K. We then find φ−1g(φ) on each basis element:

(φ−1gφg−1)(1) = 1, (φ−1gφg−1)(i) = i,

(φ−1gφg−1)(j) = −j, (φ−1gφg−1)(k) = −k

The initial idea then is to conjugate by i in A, which would be given by φ(i) in PGL2(K), as the
automorphism group of M2(K). We can check:(

0 1
a−1 0

)(
1 0
0 1

)(
0 a
1 0

)
=

(
1 0
0 1

)
(

0 1
a−1 0

)(
0 a
1 0

)(
0 a
1 0

)
=

(
0 a
1 0

)
(

0 1
a−1 0

)(√
b 0

0 −
√
b

)(
0 a
1 0

)
=

(
−
√
b 0

0
√
b

)
(

0 1
a−1 0

)(
0 −a

√
b√

b 0

)(
0 a
1 0

)
=

(
0 a

√
b

−
√
b 0

)
which is exactly what we wanted. Using the class of I2 will obviously work for e, since φ−1e(φ)

fixes everything. The cocycle is then determined, with ce = I2, cg = φ(i) =: M . The transfer to
the 2-cocycle is then this: Take a lifting bσ from cσ to GL2(K). The one we use is to write them
the same (here the abuse of notation noted above comes in handy), and then we set aσ,τ to be the
element of K that maps to bσσ(bτ )b−1στ . This gives:

σ τ bσσ(bτ )b−1στ ← aσ, τ

e e I2I2I
−1
2 = I2 ← 1

e g I2MM−1 = I2 ← 1
g e MI2M

−1 = I2 ← 1

g g MMI−12 = M2 ← a

since M2 =

(
a 0
0 a

)
. This proves the proposition.

This may seem a little odd, since it seems to forget completely about b. The next proposition
does this again, and after we will try to explain why this happens.

Proposition 3.2: Let K|k be a cyclic extension of degree m with galois group G = 〈g〉, and let
A be the cyclic algebra over k generated by K and y with ym = a. The 2-cocycle associated to [A]
in Br(K|k) is given by aσ,τ :

agp,gq =

{
1, p+ q < m

a, p+ q ≥ m

11



Proof: as above, we first have to go through the 1-cocycle, which requires a specific isomorphism.
K is generated by some β, along with g(β), g2(β), ... which leads us to this isomorphism φ :
A⊗K →Mn(K) as follows:

φ(y ⊗ 1) =


0 . . . 0 a
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 , φ(β ⊗ 1) =


β 0 . . . 0
0 gm−1(β) . . . 0
...

...
. . .

...
0 0 . . . g(β)


Again, a simple check reveals that φ(y)−1φ(β)φ(y) = φ(g(β)), which is the only relation we have
to check. (The rest follow easily from the fact that g is an automorphism.) This also shows where
we’re going with the 1-cocycle, but first a quick remark about the natural action of G on A⊗K.

We say that A includes the elements of K, but it would be more appropriate to say that A
contains a commutative subalgebra isomorphic to K. As such, the natural action of G on A ⊗K
fixes elements in A⊗ k. This means g(β ⊗ 1) = β ⊗ 1, while g(1⊗ β) = 1⊗ g(β).

The 1-cocycle cσ is easily extrapolated from the value of cg, since G is cyclic. Note:

φ−1(g(φ(g−1(β ⊗ 1)))) = g(β)⊗ 1

This means that the value of cg should be φ(y), and cgp = φ(y)p. After lifting cσ to bσ, we get

bgpg
p(bgq)b−1

gp+q = φ(y)p+q · b−1
gp+q

If p + q is less than m, then bgp+q is just φ(y)−p−q, but if p + q is m or more we have bgp+q =
φ(y)−p−q+m. These two cases, along with the fact that φ(y)m = aI give us our 2-cocycle aσ,τ as
described above:

agp,gq =

{
1, p+ q < m

a, p+ q ≥ m

Remarks:

1. Proposition 3.2 reduces to proposition 3.1 in the case m = 2, since we can take K = k(
√
b),

β =
√
b, g(β) = −β = −

√
b and y = i. This is what we expect, since quaternion algebras are

cyclic.

2. When the author first found these cocycles, he thought he had done something wrong. He
first did it for the quaternion algebras, and this process seems to ”forget” about b, because
the only constant present in the cocycle is a. In the more general construction, we seem to
lose β. However, we have to think about what group we are working in: in each case, the fact
that we are working in Br(K|k) for various extensions K implicitly assumes that our algebra

is split by K. In the quaternion algebra case, it means that our algebra is
(
x,b
k

)
for some x,

and the cocycle just gives us a particular value for x. The next two propositions give cocycles
for a quaternion algebra over different splitting fields, and transitions us into the next section.

Proposition 3.3: Let A =
(
a,b
k

)
, and let K = k(

√
a,
√
b) be a splitting field for A. We write the

elements of the Galois group G = Gal(K|k) as {e, ga, gb, gab}, where e is the identity on K and
ga fixes k(

√
a) while sending

√
b and

√
ab to their negatives. gb and gab are defined similarly. A
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2-cocycle associated to A in Br(K|k) is given in the following table, where σ is given by the column
and τ is given by the row.

τ\σ e ga gb gab
e 1 1 1 1
ga 1 a −1 −a
gb 1 1 b b
gab 1 a −b −ab

Proof: Again, we first have to fix an isomorphism φ : A ⊗ K → M2(K). Since i ⊗ 1 and j ⊗ 1
generate A⊗K as a K-algebra, we just specify their images:

φ(i⊗ 1) =

(
0
√
a√

a 0

)
, φ(j ⊗ 1) =

(√
b 0

0 −
√
b

)
Now we find the 1-cocycle cσ : G→ PGL2(K).

ce = I, cga = φ(i⊗ 1), cgb = φ(j ⊗ 1), cgab = φ(k ⊗ 1)

We use I, Ma, Mb, and Mab as shorthand for each of these respectively. For each, we compute
bσσ(bτ )b−1στ for the lifting bσ:

σ τ bσσ(bτ )b−1στ ← aσ,τ
e e Ie(I)I−1 = I ← 1
e ga Ie(Ma)M

−1
a = I ← 1

e gb Ie(Mb)M
−1
b = I ← 1

e gab Ie(Mab)M
−1
ab = I ← 1

ga e Maga(I)M−1a = I ← 1
ga ga Maga(Ma)I

−1 = aI ← a

ga gb Maga(Mb)M
−1
ab = −I ← −1

ga gab Maga(Mab)M
−1
b = −aI ← −a

gb e Mbgb(I)M−1b = I ← 1

gb ga Mbgb(Ma)M
−1
ab = I ← 1

gb gb Mbgb(Mb)I
−1 = bI ← b

gb gab Mbgb(Mab)M
−1
a = bI ← b

gab e Mabgab(I)M−1ab = I ← 1

gab ga Mabgab(Ma)M
−1
b = aI ← a

gab gb Mabgab(Mb)M
−1
a = −bI ← −b

gab gab Mabgab(Mab)I
−1 = −abI ← −ab

Many of these calculations follow from the fact that Mab = MaMb = −MbMa. This fits with the
table we started with, so we’re done.

Proposition 3.4: Let A, K, and G be as above. Another cocycle associated to A in Br(K|k) is
given by this table:

τ\σ e ga gb gab
e 1 1 1 1
ga 1 a 1 a
gb 1 1 1 1
gab 1 a 1 a
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Proof: Here we fix a new isomorphism, but we ”forget” that
√
a is an option. Define φ : A⊗K →

M2(K):

φ(i⊗ 1) =

(
0 a
1 0

)
, φ(j ⊗ 1) =

(√
b 0

0 −
√
b

)
This is exactly the same isomorphism we used for K = k(

√
b). As such, we will get a similar

1-cocycle:
ce = cgb = I, cga = cgab = φ(i⊗ 1)

Again we use M as shorthand for φ(i⊗ 1). Recreating the calculations from the last proof:

σ τ bσσ(bτ )b−1στ ← aσ,τ
e e Ie(I)I−1 = I ← 1
e ga Ie(M)M−1 = I ← 1
e gb Ie(I)I−1 = I ← 1
e gab Ie(M)M−1 = I ← 1
ga e Mga(I)M−1 = I ← 1
ga ga Mga(M)I−1 = aI ← a
ga gb Mga(I)M−1 = I ← 1
ga gab Mga(M)I−1 = aI ← a
gb e Igb(I)I−1 = I ← 1
gb ga Igb(M)M−1 = I ← 1
gb gb Igb(I)I−1 = I ← 1
gb gab Igb(M)M−1 = I ← 1
gab e Mgab(I)M−1 = I ← 1
gab ga Mgab(M)I−1 = aI ← a
gab gb Mgab(I)M−1 = I ← 1
gab gab Mgab(M)I−1 = aI ← a

which again agrees with our stated table.

Remark: The tables created above have a curious property. When you cover up certain rows and

columns in the table for
(
a,b
k

)
in Br(k(

√
a,
√
b)|k), you get cocycles for the same algebra in the

smaller Brauer group Br(k(
√
b)|k). For example, only looking at the rows and columns associated

to e and ga gives the table

τ\σ e ga
e 1 1
ga 1 a

while looking at the rows and columns for e and gab gives the table

τ\σ e gab
e 1 1
gab 1 −ab

The first is the table for
(
a,b
k

)
in the smaller group, while the second is the table for

(
−ab,b
k

)
as we

constructed above. These two algebras are in fact isomorphic, since we can use k and j in the place
of i and j in the first one and get the presentation as the second. This property lead me to believe
that we can make natural maps from the group Br(K|k) to the group Br(L|k) whenever L|K|k
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is a tower of Galois field extensions, ”inflating” the table in Br(K|k) to a larger one in Br(L|k).
The next section talks about these maps, which exist for more arbitrary cohomology groups, called
inflation maps.

4. Maps between Br(K|k) and Br(L|k)

The property of the above table leads us to believe that, when we have a tower of extensions
L|K|k, we should have a map between Br(K|k) and Br(L|k). This map is, in fact, a map that
exists more generally between cohomology groups: inflation maps. Before we define these maps,
we first have to show that they apply.

Proposition 4.1 Let L|K|k be a tower of Galois extensions. The groups Gal(L|k), Gal(L|K), and
Gal(K|k) fit into the following short exact sequence:

1→ Gal(L|K)→ Gal(L|k)→ Gal(K|k)→ 1

Proof: This first requires that Gal(L|K) be a normal subgroup of Gal(L|k).Gal(L|k) is the group
of automorphisms of L that fix every element of k, and Gal(L|K) is the subgroup of automorphisms
that further fix evey element of K. So to show that Gal(L|K)/Gal(L|k), we take an automorphism
h ∈ Gal(L|K) and conjugate by any automorphism g ∈ Gal(L|k). Then we look at the function
ghg−1 restricted to K. On K, h is the identity map, so the function ghg−1|K is the function
g|Kg−1|K = IdK , so ghg−1 also fixes all of K, and is in Gal(L|K). This shows Gal(L|K) is a
normal subgroup of Gal(L|k).
Note that this requires the fact that g maps K to K. But this must be true since L|K|k is a tower
of Galois extensions, so K is the splitting field of some separable polynomial p ∈ k[x]. On L, the
isomorphism g must send roots of p to other roots of p. Since all these roots are in K, g fixes K.
Now that we know Ga(L|K) / Gal(L|k), we have to find the quotient Gal(L|k)/Gal(L|K). We
want to show that this is Gal(K|k). We create an isomorphism between the two by mapping the
equivalence class [g] of some automorphism g ∈ Gal(L|k) to the function gK , which is g with its
domain restricted to K. This is well defined on the equivalence class since composing with ele-
ments of Gal(L|K) is like composing with IdK . Its kernel is Gal(L|K) (and thus trivial) since, if
gK(x) = hK(x) for all x, we have that gh−1(x) = x for all x ∈ K, so their difference in Gal(L|k)
is an element of Gal(L|K). The image is all of Gal(K|k) since each element of Gal(K|k) can be
extended to an element of Gal(L|k). Thus we have constructed an isomorphism between the two
sets.

The important point here is that, if we take G = Gal(L|k) and H = Gal(L|K), the factor group
G/H is isomorphic to Gal(K|k). This is important, as we will see when we define inflation maps:

Definition/Proposition 4.2: Inflation maps. This definition requires a few things:

1. If A is a G-module and H is a normal subgroup of G, then AH , the set of elements of A fixed
by H, is a G/H module.

2. Let H / G. There exist natural maps inf : H i(G/H,AH)→ H i(G,A) for all i.

Proof: Each will be proven separately.

1. We just have to show that AH is stable under the action of G. To see this, take g ∈ G, h ∈ H,
and a ∈ AH , and consider

h(g(a)) = g(g−1hg)(a) = g(a)
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which shows that g(a) is fixed by h for every g ∈ G, h ∈ H, and a ∈ AH .

2. We now construct the maps, by setting up the construction of the cohomology groups in
2.2. Let P∗ be a projective resolution of Z as a trivial G-module, and let Q∗ be a projective
resolution of Z as a trivial G/H-module. Using the projection G → G/H, we can also view
each Qi as a G-module. This gives us natural maps αi so that the diagram

. . . → P2
p2−→ P1

p1−→ P0
p0−→ Z → 0

↓ α2 ↓ α1 ↓ α0 ↓ IdZ
. . . → Q2

q2−→ Q1
q1−→ Q0

q0−→ Z → 0

commutes. Each αi induces a map HomG(Qi, A
H) → HomG(Pi, A

H), which preserves the
images and kernels of the boundary maps induced by the pi and qi. Further, sinceH fixes every
element of AH , HomG/H(Qi, A

H) = HomG(Qi, A
H), which means these induce nice maps

HomG/H(Qi, A
H) → HomG(Pi, A

H). They then induce maps H i(G/H,AH) → H i(G,AH),

which, after composing with the inclusion map AH → A, gives us the required maps

inf : H i(G/H,AH)→ H i(G,A)

for all i.

To see why these inflation maps are useful, we invoke the first proposition in this section. If
L|K|k is a tower of galois extensions, we have Gal(K|k) ∼= Gal(L|k)/Gal(L|K). Now if we take
L× as our A, we have K× as our AH , and we get a natural map for i = 2 in particular:

inf : H2(Gal(K|k),K×)→ H2(Gal(L|k), L×)

which is in fact a map Br(K|k) → Br(L|k), whose construction is the point of this section. To

finish, we try to recover the cocycle for
(
a,b
k

)
we found in 3.3 from the one we found in 3.1.

Construction 4.3: Take k a field, K = k(
√
b), and L = k(

√
a,
√
b). The Galois groups G =

Gal(L|k) and G/H = Gal(K|k) (where H = Gal(L|K)) will be denoted as in the previous section,
with G/H = {e, g} and G = {e, ga, gb, gab}. The projection map G→ G/H takes e and gb to e and

takes ga and gab to g. Then take the cocycle aσ,τ for
(
a,b
k

)
in Br(K|k) as described in 3.1. We
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construct a cocycle a′σ,τ for that algebra in Br(L|k):

σ τ a′σ,τ
e e ae,e = 1
e ga ae,g = 1
e gb ae,e = 1
e gab ae,g = 1
ga e ag,e = 1
ga ga ag,g = a
ga gb ag,e = 1
ga gab ag,g = a
gb e ae,e = 1
gb ga ae,g = 1
gb gb ae,e = 1
gb gab ae,g = 1
gab e ag,e = 1
gab ga ag,g = a
gab gb ag,e = 1
gab gab ag,g = a

which fits into the table we constructed in 3.4:

τ\σ e ga gb gab
e 1 1 1 1
ga 1 a 1 a
gb 1 1 1 1
gab 1 a 1 a

Remark: Finally, we mention that Br(k) itself is identified with Br(ksep|k) for some separa-
ble closure ksep of k. This means that if we let G be the Galois group Gal(ksep|k), we have
Br(k) ∼= H2(G, k×sep). Further, since ksep is a Galois extension of k, if we have a specific presenta-
tion of G, we can use inflation maps as above to find cocycles for algebras in Br(k) once we have
a cocycle in Br(K|k).

5. Cocycles for tensor products

In this section we calculate the cocycles associated to certain tensor products of quaternion
algebras and cyclic algebras. First, we find a presentation of the tensor products of two quaternion
algebras split by the same quadratic extension, and use that to find what we expect the cocycle to
be. Then we calculate the cocycle in that case, and finally in the case of two cyclic algebras.

First, however, we require the Kronecker product of matrices, to create an isomorphism from
Mm(K)⊗Mn(K) to Mmn(K). This isomorphism is very simple; if {ei,j} is a basis for Mm(K) and
{e′k,l} is a basis or Mn(K), and {fp,q} is a basis for Mmn(K), then we map ei,j ⊗ ek,l to fi+mk,j+ml.
Then if A = (aij) is an m ×m matrix and B = (bkl) is an n × n matrix, then the isomorphism
maps:

A⊗B 7→

b11A . . . b1nA
...

. . .
...

bn1A . . . bnnA
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which is a block matrix where each m × m block is a scalar multiple of A. This allows us to
extend our isomorphisms we obtained in the third section to isomorphisms of tensor products of
such algebras.

Propostion 5.1: The cocycle for
(a,c
k

)
⊗
(
b,c
k

)
in Br(k(

√
c)|k) is given by:

τ\σ e g

e 1 1
g 1 ab

Proof: Let {1a, ia, ja, ka} be a basis for A =
(a,c
k

)
, and similarly {1b, ib, jb, kb} for B =

(
b,c
k

)
. We

define our isomorphism φ : (A ⊗ B) ⊗K → M4(K) on the generators ia ⊗ ib, ja ⊗ ib, ia ⊗ jb, and
ja ⊗ jb:

φ(ia ⊗ ib) =


0 0 0 ab
0 0 b 0
0 a 0 0
1 0 0 0

 , φ(ia ⊗ jb) =


0 a

√
c 0 0√

c 0 0 0
0 0 0 −a

√
c

0 0 −
√
c 0

 ,

φ(ja ⊗ ib) =


0 0 b

√
c 0

0 0 0 −b
√
c√

c 0 0 0
0 −

√
c 0 0

 , φ(ja ⊗ jb) =


c 0 0 0
0 −c 0 0
0 0 −c 0
0 0 0 c


The cocycle for e fixes every one of these, so as usual, it is associated to conjugation by the

identity I. On the other hand, the cocycle for g fixes ia ⊗ ib and ja ⊗ jb while taking ia ⊗ jb and
ja ⊗ ib to their negatives. At this point, this could be represented by either φ(ia ⊗ ib) or φ(ja ⊗ jb)
in PGL4(K), but the choice is made clear when you look at how it acts on 1a ⊗ ib and ia ⊗ 1b (by
fixing them) and on 1a ⊗ jb and ja ⊗ 1b (by taking them to their negatives). Here it is clear that
the 1-cocycle should be:

ce =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , cg =


0 0 0 ab
0 0 b 0
0 a 0 0
1 0 0 0


Now taking our usual convention of lifting cσ to bσ, (denoting bg = M) noting that b2g = M2 =

abI4, we can fill in our 2-cocycle aσ,τ : G2 → K× as follows:

σ τ bσσ(bτ )b−1στ ← aσ,τ
e e Ie(I)I−1 = I ← 1
e g Ie(M)M−1 = I ← 1
g e Me(I)M−1 = I ← 1
g g Mg(M)I−1 = M2 ← ab

which is exactly the table given in the statement.

The previous proposition shows that the class of
(a,c
k

)
⊗
(
b,c
k

)
should be the same as the class

of
(
ab,c
k

)
in Br(K|k) (and thus in Br(k) since Br(K|k) is a subgroup of that), so by looking at
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degrees we would guess:(a, c
k

)
⊗
(
b, c

k

)
∼=
(
ab, c

k

)
⊗M2(k) ∼= M2

((
ab, c

k

))
The next proposition is a direct proof of this statement, taken almost directly from [Lam].

Proposition 5.2: The isomorphism above holds.

Proof: We find a basis for the first algebra that acts like a standard basis for the second algebra,
which shows that the first isomorphism holds. The second isomorphism does not need to be proven.
First, let the bases of

(x,c
k

)
be as in the previous proposition. Then set:

1 = 1a ⊗ 1b, I = ia ⊗ ib, J = ja ⊗ 1b, K = ka ⊗ ib
1 = 1a ⊗ 1b, I

′ = 1a ⊗ ib, J ′ = ja ⊗ kb, K ′ = −b(ja ⊗ jb)

and let X be the span of {1, I, J,K} while Y is the span of {1, I ′, J ′,K ′}. Note:

I2 = i2a ⊗ i2b = ab1, J2 = j2a ⊗ 12b = c1, −JI = −jaia ⊗ ib = iaja ⊗ ib = IJ

so X is isomorphic to
(
ab,c
k

)
. Further:

I ′2 = 12a ⊗ i2b = b1, J ′2 = j2a ⊗ k2b = −bc21, −J ′I ′ = ja ⊗−kbib = ja ⊗ ibkb = I ′J ′

which means Y is isomorphic to
(
b,−bc2
k

)
. Now the quadratic form 〈b,−bc2〉 is isotropic (since

(c2, 1) is mapped to 0), so it is universal. In particular, it represents 1, and thus by Hilbert’s

Criterion this quaternion algebra is split, and isomorphic to M2(k). So X ⊗ Y ∼= M2

((
ab,c
k

))
.

Thus if A⊗B ∼= X ⊗Y , we’re done. This is true because the elements of X commute with the ele-
ments of Y , and because together they generate the whole space A⊗B. This proves the proposition.

Proposition 5.1 gave us insight into the isomorphism class of
(a,c
k

)
⊗
(
b,c
k

)
, and proposition 5.2

showed us that the insight was correct. The next proposition will give us a similar insight for cyclic
algebras.

Proposition 5.3: Let K|k be a cyclic field extension of degree n with galois group G = 〈g〉. Let
A = 〈K,x|xn = a, x−1λx = g(λ) ∀λ ∈ K〉 and B = 〈K, y|yn = b, y−1λy = g(λ)∀λ ∈ K〉 be cyclic
algebras over k. Then a cocycle for A⊗B in Br(K|k) is:

agp,gq =

{
1, p+ q < n

ab, p+ q ≥ n

Thus we have an isomorphism A ⊗ B ∼= Mn(C), where C = 〈K, z|zn = ab, z−1λz = g(λ)∀λ ∈ K〉
is a cyclic algebra over k.

Proof: Let K = k(t). As in the quaternion case, we start with an isomorphism φ from (A⊗B)⊗K
to Mn2(K). We use block matrices to do this. To make the notation easier, let T , Ma, and Mb be
defined as:
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T =


t 0 . . . 0
0 gn−1(t) . . . 0
...

...
. . .

...
0 0 . . . g(t)


Ma =

(
0 a

In−1 0

)

Mb =

(
0 b

In−1 0

)
Then for our isomorphism φ, we set:

φ((t⊗ 1)⊗ 1) =

 T . . . 0
...

. . .
...

0 . . . T



φ((1⊗ t)⊗ 1) =

 tIn . . . 0
...

. . .
...

0 . . . g(t)In



φ((x⊗ 1)⊗ 1) =

 Ma . . . 0
...

. . .
...

0 . . . Ma


φ((1⊗ y)⊗ 1) =

(
0 bIn

In2−n 0

)
which gives in particular:

φ((x⊗ y)⊗ 1) =


0 . . . 0 bMa

Ma . . . 0 0
...

. . .
...

...

0 . . . Ma 0

 ; φ((x⊗ y)⊗ 1)n = abIn2

The 1-cocycle is defined to be cσ : G→ PGLn2(K) with

cgl = φ((x⊗ y)⊗ 1)l

As usual, we lift to bσ, and set aσ,τ = bσσ(bτ )b−1σ,τ . This gives, as expected,

agp,gq =

{
1, p+ q < n

ab, p+ q ≥ n

Finally, this shows that A⊗B is in the same class as C = 〈K, z|zn = ab, z−1λz = g(λ) ∀λ ∈ K〉,
and by matching degrees this yields the isomorphism A⊗B ∼= Mn(C).
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