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ABSTRACT

CATHERINE E. WELSH. COMPUTATIONAL TOOLS TO AID THE DESIGN AND
DEVELOPMENT OF A GENETIC REFERENCE POPULATION.

(Under the direction of Leonard McMillan.)

Model organisms are important tools used in biological and medical research. A key com-

ponent of a genetics model organism is a known and reproducible genome. In the early 1900s,

geneticists developed methods for fixing genomes by inbreeding. First generation genetic models

used inbreeding to create disease models from animals with spontaneous or stimulated mutations.

Recently, geneticists have begun to develop a second generation of models which better

represent the human population in terms of diversity. One such model is the Collaborative Cross

(CC), which is a mouse model derived from 8 founders. I have been involved in developing the

CC since its early stages. In particular, I am interested in speeding up the inbreeding process,

since it currently takes an average of thirty-six generations to achieve complete fixation.

To speed up the inbreeding process, I developed a simulator that replicates the breeding pro-

cess and tested various breeding strategies before applying them to a CC. To apply the simulation

techniques to live mice, a fast, low-cost way to monitor their genomes at each generation was

needed. As a result, two genotyping arrays were designed, a first generation array with 7,851

markers called MUGA and a second generation array called MegaMUGA with 77,800 markers.

Both arrays were designed specifically to be maximally informative for the CC population. Us-

ing these genotyping arrays, one can determine from which of the eight CC founders each part

of a developing mouse lines genome is inherited. I refer to these as haplotype reconstructions,

and they are used as the input into my simulations as well as various other monitoring tools. To

determine the accuracy of these haplotype reconstructions, I used DNA sequencing data for three

samples which were also genotyped, and compared the haplotype reconstructions from the DNA
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sequencing data to solutions from the genotyping array data.
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CHAPTER1: INTRODUCTION

The rediscovery of Gregor Mendel’s Laws of Inheritance in 1900 launched a new wave of

genetic studies. In particular, scientists wished to verify Mendel’s laws in organisms other than

plants since it was unknown if the laws would hold true for animals[40]. The mouse was chosen

for these particular studies as it is ideally suited for genetic analysis since it has a relatively short

generation time (about 10 weeks from birth to giving birth), it breeds easily in captivity and mice

are easily housed in small cages[53]. An additional benefit is that due to mouse fanciers in the

1800s, numerous variants of mice had been derived which had visible phenotypes. A system-

atic analysis of inheritance and genetic variation in mice as well as other mammals ensued[53].

These early studies utilized selective breeding to verify recessive and dominant trait inheritance

patterns. They also brought to light the existence of more than two alleles at a locus, recessive

lethal alleles, and interactions among unlinked genes[53].

Shortly afterward, scientists realized the need to have inbred reproducible genetically ho-

mogeneous lines of mice, and these lines were soon developed. Inbred strains are easily repro-

ducible and they are useful disease models[22]. In fact, the majority of inbred strains, from the

most recent back to the first strain, were developed for use in cancer research, to prove or dis-

prove the existence of genetic factors influencing the incidence of cancer and the independence

of inheritance of different types of cancers[22]. By selection during inbreeding, various types of

malignancies in predictable frequencies were established in several genotypes. As inbred strains

became available and information about them began appearing in scientific literature, investi-

gators recognized that these animals could contribute greatly to medical research. It became

possible to use biological material in experiments with confidence as the only variables were

those the investigator chose to include in the experimental design[22].



1.1 Selective Breeding

Quantitative genetics deals with the inheritance of complex traits that are controlled by

many loci, each with relatively small effects, and by environmental influences such as diet and

exercise[22]. In order to study quantitative genetics, selective breeding, which refers to the sys-

tematic breeding of animals in order to choose certain qualities in them, is often used. Breeders

will select for quantitative phenotypes such as body weight, growth rate, feed efficiency, feed

intake, body composition and litter size. By selecting for these traits, scientists can then see how

far artificial selection can change a trait and how many generations are needed to reach a limit,

if a limit can be reached[53]. During the selection process targeted traits are chosen intention-

ally, however, without specific controls, other traits may also be selected inadvertently, such as

fertility and docility.

As technology advanced, it was possible to select for particular genotypes or genes. Through

selection for quantitative traits, a number of mutations and variants were formed. In the analysis

of these mutants, it is often not possible to distinguish between subtle effects due to the mutation

itself and effects due to other genes within the background of the mutant strain. To make this

distinction, it is essential to be able to compare animals in which differences in the genetic

background have been eliminated as a variable in the experiment. This is accomplished through

the placement of the mutation into a genome of another mouse strain. To do this, genotyping of

the area surrounding the gene is done at each level of breeding and offspring with the gene of

interest are selected for further breeding[53].

1.2 Isogenics

Inbreeding is the mating of related individuals, and leads to the creation of animals that are

homozygous (same allele) at each locus, meaning both copies of each chromosome are identical

to one another. The fastest way to create inbred strains is the continued mating of close relatives.

In plants inbred strains can be achieved through a process of self-pollination, generally referred
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to as selfing. However, in laboratory animals, inbred strains are either achieved through a series

of backcrossing, mating offspring back to their parent (or genetic equivalent), or through sibling

matings. In mice, to create a new inbred strain from two outbred strains, repeated brother-sister

matings are made for several generations to achieve fixation. A classic rule-of-thumb is that at

least 20 generations are necessary to reach homozygosity for nearly all genetic loci[22]. These

inbred strains are said to be isogenic because all individuals are genetically identical.

Since isogenic animals have fixed genomes, they are easily reproducible. Mating together

two isogenic animals will always produce another isogenic animal, which enables reproducible

studies and the integration of data over both time and space. The only way an inbred strain can

change genetically is as a result of new mutations, which are relatively rare. Another advantage

of inbred strains is that many can serve as disease models due to their lack of buffering alleles,

which makes them susceptible to cancer, diabetes, obesity and other diseases. Therefore, inbred

strains can be studied as models of these conditions.

1.3 Combining Inbreeding and Selection

Combinations of inbreeding (fixing the genome) and selection systems (selecting for a par-

ticular gene or trait) give geneticists a wide variety of methods for controlling the inherited

characteristics of research animals. One particular breeding scheme variation is called a con-

genic strain, in which two inbred strains are bred together and then offspring of this mating are

backcrossed to one of the original inbred strains (called the recipient strain). Typically offspring

are selected based on the presence of a particular phenotype or genotype from the other inbred

strain (donor strain), and backcrossed to the recipient strain for about 5-10 generations to achieve

an inbred strain. A more specialized type of congenic strain is called a consomic, in which an

entire chromosome is retained from the donor strain. Early on most inbred strains and congenics

were selected based on the presence of particular phenotypes. However, as technology advanced,

genotyping became useful in developing congenics and consomics to check for the existence of
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the donor strain DNA in the specified regions. This genotyping was done on a small scale, usually

with a few loci chosen at points of interest.

Through advances in technology, it now costs about the same amount to get full-genome

genotypes as the small scale genotyping used to cost. Full-genome genotyping allows us to have

better control over the final inbred strains. In congenics, this means less donor strain in the

genomic regions outside the chromosomal fragment of interest. By utilizing full-genome geno-

types, marker-assisted or speed congenics were created, which only require about 5 generations

of backcrossing. This is achieved by selecting offspring at each generation that not only retain

the desired chromosomal fragment, but that also have a minimal amount of background genetic

information from the donor strain in the other genomic regions. In the creation of new inbred

strains, genotyping allows us to more closely track the amount of residual heterozygosity (loci

that are still segregating).

1.4 Thesis Statement

Through monitoring of genome-wide genotypes over multiple generations, one can engineer

user-specified genomic structures. This can be made more efficient, in terms of the number of

generations, with accurate computational models. These computational models will lead to new

breeding techniques, better breeder selection, and techniques for monitoring genomic structure.

To demonstrate the validity of my thesis statement I conducted a number of experiments and

designed tools to enable the results of those experiments to be conducted on a live mouse popu-

lation. The first experiment involved the design of a simulator to accurately model the breeding

process of a mouse, the model organism of choice for these experiments. After validating the

recombination model of the simulator, I ran a series of tests to determine the best breeding strate-

gies to create user-specified genomic structures as described in Chapter 3 of this thesis. These

accurate computational models created new breeding techniques as well as better techniques for
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breeder selection in the end-goal of creating a panel of inbred strains. To utilize these computa-

tional models on a live mouse population, techniques for monitoring the genomic structure of the

population were developed, as described in Chapters 4 and 5 of this thesis. Chapter 6 discusses

the process of validating the results from Chapters 4 and 5.

1.5 Organization

The rest of this thesis is organized as follows:

• Chapter 2 presents biological background such as the basics of genetics and a description

of the breeding population used throughout the studies in this thesis.

• Chapter 3 presents a computational simulation model used to study various breeding

schemes and examine techniques for speeding up the process of inbreeding through the

use of marker-assisted techniques.

• Chapter 4 presents the design and development of low-cost, low-density genotyping ar-

rays for monitoring the genomes of a breeding population and includes analysis of the

performance of these arrays.

• Chapter 5 presents the application of our theoretical results from Chapters 3-4.

• Chapter 6 presents a method for determining the underlying genomic structure of a breed-

ing population using high-throughput sequencing data and compares those results to sim-

ilar results obtained through the use of the genotyping platforms discussed in Chapter 4

and the results discusssed in Chapter 5.

• Chapter 7 concludes with the major results of this thesis and discusses problem areas for

future research.
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CHAPTER2: BACKGROUND

2.1 Genomic Data

A gene is a molecular unit of heredity of a living organism. Genes hold the information to

build and maintain an organism and pass its traits to its offspring. All organisms have genes cor-

responding to various biological traits, some of which are instantly visible, such as eye color and

coat colors, and some of which are not, such as blood type, increased risk for specific diseases,

or the thousands of basic biochemical processes that comprise life.

An organism’s genome is comprised of the complete set of all its genes as well as the

intergenic regions. Generally members of a species have a common set of genes and every

cell within the organism carries the same genome. Each gene is a segment of deoxyribonucleic

acid (DNA) and the genes are joined together to make up a set of very long DNA molecules

called chromosomes. In diploid organisms like humans and mouse, there are two copies of each

chromosome. One copy is inherited from each parent.

DNA is comprised of a sequence of nucleotides and the four primary DNA bases found in

nucleotides are Adenine(A), Cytosine(C), Guanine(G), and Thymine(T). Each base binds with

another specific base (T with A and C with G). A DNA molecule is comprised of a primary

sequence and a “complementary” copy that allows it to self replicate, as each acts like a template

for the other sequence.

Among humans, 99% of our DNA is identical. Individuals vary because although they all

have the same set of genes, they have subtle sequence variants or alleles. An allele is a specific

version of a gene, meaning the actual DNA sequence that forms a particular gene. Genetic

variations are known as polymorphisms. The most common DNA variant is a substitution in a

single base or a single nucleotide polymorphism (SNP).



Figure 2.1: Depiction of a SNP. This image shows a subset of DNA from three different organ-
isms. While the majority of base pairs for these three organisms are identical, at the denoted SNP
there are three possible combinations of G/A alleles.

2.1.1 SNPs

A SNP is a DNA sequence variation occurring when a single nucleotide differs between

two sequences, resulting from a substitution of one nucleotide for another. For example, two

sequenced DNA fragments from different individuals, AAGCCTA and AAGCTTA, contain a

difference in a single nucleotide. In this case we say that there are two alleles. Almost all

common SNPs have only two alleles or are biallelic. Figure 2.1 is depicting a SNP, and shows

a subset of the DNA from three different organisms. While the majority of base pairs for these

three organisms are identical, at the denoted SNP there are three possible combinations of G/A

alleles. To determine the allele at a SNP location for a particular sample, genotyping needs to be

done. In genome-wide studies, often a DNA microarray is used for this purpose.

2.1.2 Microarrays

A microarray is a collection of DNA sequence probes attached to a solid surface and is

typically used to capture a complementary DNA sequence. When exposed to extracted DNA

from lysed cells it is referred to as a genotyping array or a SNP array and is used to probe

multiple regions of a genome at the same time. Some of the research described in this thesis

relies heavily on the use of SNP arrays, and I describe in Chapter 4 the design techniques used
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to build two genome-wide SNP arrays. In a popular model organism like the mouse, designing

an array consists of selecting a subset of known and reliable SNPs at specified genomic locations

that segregate between strains of interest.

A number of companies including Affymetrix and Illumina offer the ability to design custom

arrays. While both companies use slightly different technologies, the basic idea is the same. The

customer selects known SNPs and reports the surrounding DNA sequence for that SNP. Since

a complementary strand of DNA will be created for each of the chosen SNP locations, it is

important that the area surrounding the SNP has a unique DNA sequence. A complementary

strand of DNA is then designed for each of the SNPs and placed on the microarray. A sample’s

DNA is then washed over the plate and the complementary DNA strands will hybridize or “stick”

to the sample DNA in the correct locations. Fluorescently labeled target sequences that bind to a

probe sequence generate a signal and the total strength of the signal depends upon the amount of

target sample binding to the probes present on that spot. Microarrays use relative quantitation in

which the intensity of a feature is compared to the intensity of the same feature under a different

condition, and the identity of the feature is known by its position. This intensity ratio is then

normalized and used to determine the genotype (A, T, C, or G) for a particular SNP location.

2.1.3 High-throughput sequencing

An alternative way to procur genome-wide genotypes is to use high-throughput sequencing

(HTS). While microarray genotyping samples every strain at the same loci, DNA sequencing

constructs a genomic sequence based on random fragments of DNA that get spliced together.

High-throughput sequencing speeds up this process by parallelizing the sequencing process and

producing a large number of sequences at once. Categorizing genetic differences in HTS data

requires a database of known sequence variants, while microarray-based genotyping is based on

a set of reliable variants that were selected previously as part of the array design.
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Before a sample is sequenced, its DNA is replicated and cleaved into small pieces (about 50-

1000 base pairs). Each of these DNA pieces is then run through the sequencer and the nucleotides

are determined. Once the nucleotide sequences are determined, it is necessary to assemble the

short reads in their correct order to determine the whole genome DNA sequence. This can be

done using de novo alignment (meaning the DNA sequence is not previously known) or the reads

can be aligned to a known reference genome. The coverage level of the HTS data is determined

by the number of times the DNA was replicated before being sequenced. The coverage refers to

the average number of reads that should pileup at each genomic position. Areas of the genome

that are highly repetitive often have very high pileups. Since HTS samples the genome randomly,

occasionally no reads will align to particular areas of the genome making it difficult to resolve

the genotypes for certain regions. However, once HTS data has been properly aligned, it can

be used to ascertain genotypes, determine recombination event locations, and accurately infer

ancestry as I show in Chapter 6.

2.2 Recombination and Breeding

Genetic recombination is an important process that occurs during reproduction and can

produce new combinations of alleles. Most recombination occurs naturally either during meiosis

(sexual reproduction) or mitosis (asexual reproduction). During meiosis, genetic recombination

involves the pairing of homologous chromosomes (the set of one maternal chromosome and one

paternal chromosome that match up with each other). These homologous chromosomes have the

same set of genes in the same locations or loci. These loci provide points along the chromosome

which enable a pair of chromosomes to align correctly with each other before separating during

meiosis. Meiosis creates genetic diversity through two processes, the independent segregation

of chromosomes or recombination. Recombination occurs when either the pairs of homologous

chromosomes randomly segregate into two different daughter cells or by cross-over events where

homologous chromosomes exchange lengths of their genetic material. While recombinations
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can also occur during mitosis, this process does not create new allele combinations except by

mutation. Moreover, recombinations during mitosis do not impact future generations (i.e. the

germ line).

The main impact of meiosis is the creation of genetic diversity by allowing offspring to

inherit different allele combinations from their parents. Organized breeding schemes are utilized

in biological experiments to create desired allele combinations in offspring. Often the desired

result are isogenics or inbred strains, which can be replicated indefinitely as both parents will

have identical copies of all chromosomes (except for X and Y). When a panel of such animals

are derived from the same founder strains, this is referred to as a genetic reference population.

2.2.1 Genetic Reference Populations

Genetic reference populations (GRPs) are defined as sets of individuals with fixed and

known genomes that can be replicated indefinitely. Typically they consist of dozens to hundreds

of inbred lines derived from a set of common ancestors (founders). GRPs have been developed

for many organisms, including yeast, plants, flies, and mammals [4, 18, 11, 3, 31, 19]. GRPs

are popular for the study of complex traits and biological systems in both medical and life sci-

ence applications because genotyping is required only once (described as the “genotype once,

phenotype many times” paradigm); replicate individuals can be produced with the same geno-

type allowing for optimal case/control and gene-by-environment designs, and custom analysis

tools[59, 13, 29]. GRPs are also attractive because the phenotypic, genetic, and genomic data

associated with each line can be integrated across labs, experiments, and time.

Most mouse GRPs are collections of inbred lines derived from pairs of inbred strains. In

mice, these include panels of chromosome substitutions strains (i.e., consomics), recombinant

inbred lines (RIL), and subcongenics [4, 56, 28, 21, 39]. Alternative GRPs include panels

of extant inbred lines with complex population structures and nonuniform genetic relationships

among the lines, such as the Laboratory Strain Diversity Panel derived from the Mouse Phenome
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Project [41] and combinations of diversity panels and pairwise panels [6]. Key parameters that

determine the usefulness of GRPs for the analysis of complex traits are the number of lines; the

density, distribution, and functional significance of the genetic variation present in the GRP; the

number and distribution of unique recombination sites; the presence of population structure; and

the level of inbreeding and genetic drift.

2.2.2 Collaborative Cross

An example of a mouse GRP is the Collaborative Cross (CC)[17]. The CC is a multi-

parental recombinant inbred panel derived from a set of eight genetically diverse inbred labora-

tory mouse strains. The set of founders consists of five classical inbred strains (A/J, C57BL/6J,

129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ) and three wild-derived inbred strains which were se-

lected to represent three Mus musculus subspecies(CAST/EiJ, PWK/PhJ, WSB/EiJ). They were

chosen to capture a high level of genetic diversity, representing on average 90% of known genetic

variation in laboratory stocks across all 1-Mb intervals[49].

The CC lines were generated via a funnel breeding scheme that combined the eight founder

genomes in three intercross generations prior to repeated generations of inbreeding through sib-

ling mating (Figure 2.2).The eight founder strains capture a much greater level of genetic di-

versity than existing RIL panels or other extant mouse GRPs, and the genetic variants are more

uniformly distributed across the genome than in other GRPs [49, 30, 63, 65]. As seen in Figure

2.2, the eight CC founders have been assigned letters A-H as well as a color. These letter and

color codes are used consistently throughout all publications about the CC, including this thesis,

and are shown in Table 2.1.

In 2008, there were 650 CC lines in production, with over 200 of the lines past seven gener-

ations of inbreeding[14]. However, the extinction rate in early generations of the CC population

was greater than 50% [14], possibly because of the presence of incompatible combinations of

alleles originating in different subspecies, and as a result, as of 2012, there existed 350 unique
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Figure 2.2: Collaborative Cross breeding scheme. Each independent CC strain begins with a
funnel breeding stage that mixes eight founders, which are crossed for two generations, G1 and
G2. The lines are then inbred for at least 20 generations to obtain recombinant inbred lines. CC
lines are regularly genotyped after their 6th generation of inbreeding to monitor their residual
heterozygosity, detect breeding errors, and to accelerate the inbreeding of selected lines.

CC lines[17]. Of those 350, about 70 of these lines are currently considered completed and are

available for distribution. As reported[17], there is little long-range linkage disequilibrium in the

CC population and the recombinations are independent.

2.2.3 Diversity Outbred

Another recently developed mouse population is the Diversity Outbred (DO)[55]. Unlike

the CC, the DO is not an inbred population, but instead crosses are randomized between non-

related individuals to create an outbred population. Animals from CC lines at early stages of

inbreeding were used to establish the DO population, which is maintained by a randomized

outbreeding strategy (see Figure 2.3). The founders of the DO, 144 partially inbred CC lines

taken from the CC breeding colony at Oak Ridge National Laboratory[14], were at generations

ranging from F4 to F12 of inbreeding. This allowed for the capture of recombination events that
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CC Founder Letter Color
A/J A Yellow

C57BL/6J B Black
129S1/SvImJ C Pink
NOD/ShiLtJ D Dark Blue
NZO/HlLtJ E Light Blue
CAST/EiJ F Green
PWK/PhJ G Red
WSB/EiJ H Purple

Table 2.1: Letter and color codes for CC Founders.

occurred in the early generations of CC breeding to effectively jump-start recombination density

in the DO population.

Since the DO and CC populations are derived from a common set of eight founder strains,

they both capture, in theory, the same set of alleles. However, while each CC inbred strain

represents a fixed and reproducible genotype, each DO animal is a unique individual with one

of an effectively limitless combination of the segregating alleles. This makes the DO an ideal

resource for high-resolution genetic mapping.

2.3 Related Work

Recombinant inbred lines (RILs), first developed in 1971 [56, 4], have long been an impor-

tant resource for genetics. Typically, RILs are derived by crossing two inbred strains followed

by repeated generations of selfing or sibling mating to produce an inbred line whose genome is

a mosaic of its parental lines. More recently, panels of multiway RILs have been developed that

combine the genomes of multiple founder lines via an initial mixing stage followed by succes-

sive generations of inbreeding. Examples include mouse [57, 16, 14, 17], maize [11], Drosophila

melanogaster [27], and Arabidopsis thaliana [44, 31, 26]. For all species, inbreeding via either

selfing or sibling mating is the primary process used for fixing the genetic background. RILs

derived by sibling matings from two parental backgrounds require multiple generations to fix

their genome as homozygous, and the number of generations depends on the diploid number. In
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Figure 2.3: Diversity Outbred (DO) breeding explanation[55].

mice, this requires, on average, a minimum of 20 generations [22] and assuming an average of

four generations per year, it takes a minimum of 5 years to create a new RIL. Moreover, a large

fraction of the started RILs fail, presumably as the result of genetic incompatibilities affecting

survival and reproduction [53].

Many recent efforts to generate RILs have focused on multiway crosses where more than

two parental lines are initially mixed before inbreeding. In 2005, Broman [8] ran simulations

to determine the average number of generations required for two-way and eight-way RILs to

reach 99% fixation and complete fixation. He also tracked the number of segments generated

through recombination in inbred lines and used it as a comparison between the genetic diversity

of two-way and eight-way sib-mating RILs.

Marker-assisted breeding techniques have been used to fix a selected haplotype interval

against a fixed background in congenic strains [37]. In mouse, marker-assisted speed congenics
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have demonstrated a reduction in the number of generations of backcrossing from 10 genera-

tions to five. This reduction was achieved by selecting the progeny with the lowest residual het-

erozygous fraction to cross back to the background strain. These selection criteria have evolved

overtime, as technology has allowed for more rapid and specific genotyping [23].

By monitoring genome-wide genotypes over multiple generations, one can engineer user-

specified genomic structures. I will show in Chapter 3 how this can be made more efficient, in

terms of the number of generations, with accurate computational models, by using a simulator to

test different breeding strategies as well as different breeder selection metrics.
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CHAPTER3: MARKER-ASSISTED INBREEDING THEORETICAL ANALYSIS

Broman [8] showed through simulation that eight-way RILs take on average 26.7 genera-

tions of sib-mating to reach 99% fixation, and 38.9 generations, on average, to reach complete

fixation. Although a major source of genetic variation in a RIL is derived from the choice of

founder strains, I focus on the additional genetic variations introduced by mixing of allele com-

binations via recombinations between founder genomes. This is the primary source of genetic

variation between RILs. Therefore, the number of distinct founder segments, defined as the re-

gions between recombination breakpoints on the RIL chromosomes, can be used as a measure of

genetic diversity. From now on, I refer to these distinct founder segments simply as segments.

Recombinations in early generations increase diversity, but eventually diversity peaks and

the process of inbreeding leads to a loss of segments. To verify this, I simulated 100,000 eight-

way RILs and tracked the number of segments in each line at every generation until the simulated

lines reached complete fixation. In an eight-way cross, the peak in diversity is reached at the

seventh generation of inbreeding on average and before 10 generations of inbreeding for 75% of

line starts (Figure 3.1). Therefore, I will consider 10 generations of inbreeding as past the point

of peak diversity. If inbreeding acceleration is started before this peak is reached, the resulting

inbred lines are likely to see a reduction in the number of segments. Therefore, unless otherwise

specified, I use traditional methods for constructing RILs in the first 10 generations, after which

I apply various methods for accelerating the inbreeding process.

Just as marker-assisted techniques have been used to improve mapping resolution in self-

pollinated species [7] and have been adapted for consomics [1], I adapt them for multiparental

RILs. Rather than attempt to fix one specific genomic region or one complete chromosome, my

goal is to achieve complete fixation of the genome in fewer generations than random sib-matings,



Figure 3.1: The average number of founder segments in eight-way RILs at various generations
of inbreeding. This figure is based on 100,000 simulations, and the number of segments was
tracked until they reached complete fixation. The average peak in the number of segments occurs
at generation 7 and before generation 10 for 75% of all lines. Therefore, I consider generation
10 to be past the point of peak diversity.

without substantially impacting the overall genetic architecture of the inbred lines.

In this chapter, I address accelerating the inbreeding process of RIL creation by using a

combination of alternative breeding strategies and marker-assisted inbreeding (MAI) techniques.

3.1 Approach

I developed a simulator that represents a genome as a collection of intervals whose bound-

aries can be resolved at the resolution of a base pair rather than a string of alleles as is common

in many breeding simulators [8, 58]. The interval representation has the advantage of implicitly

representing every base pair in the genome while explicitly tracking every recombination. This

approach provides a conservative estimate of homozygosity because it treats every founder se-

quence as a separate genotype without taking into account regions of sequence identity among

founders. Moreover, my interval model can be trivially converted to a string of alleles represen-

tation if given the founder sequences or markers from any platform.
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Figure 3.2: The number of generations to complete fixation (A) and the number of resulting
founder segments (B) in two-way and eight-way RILs. On average, two-way RILs take 35.92
generations to reach complete fixation and have 91.95 segments. Eight-way RILs take 38.21 gen-
erations and have 145.12 segments on average. These figures are based on 100,000 simulations
and are consistent with previous simulations [8].

Despite the differences in the underlying representation, my simulator produces results

nearly indistinguishable from those presented by Broman [8]. Figure 3.2 shows the distribution

of the number of generations to complete fixation and number of segments for both the two-way

and eight-way sib-mating RILs based on the simulation of 100,000 RILs. For a randomized

eight-way RIL my simulations show that it takes an average of 38.21 ± 7.1 (SD) generations of

sib-matings to reach complete fixation. The genomes of the resultant inbred lines have an aver-

age of 145.1 ± 12.48 segments in their mosaic structure. Furthermore, 25.72 ± 3.16 generations

of sib-mating on average are needed to reach 99% fixation. These baseline metrics are used for

comparison against my accelerated inbreeding simulations. My analysis is based on an initial

funnel-breeding scheme like that used in the eight-way Collaborative Cross (CC) [16, 17], where

the mixing of eight inbred lines occurs in three initial crossing stages, followed by successive

generations of sib-matings until the line becomes fully inbred.

I introduce a notion of joint heterozygosity (JH) to express four possible states between the

homologous alleles of a potential breeding pair. Figure 3.3 shows two homologous chromosomes
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Figure 3.3: This image shows all possible JH states between a potential mating-pair and illus-
trates my notion of a genomic segment. DD stands for different-different and occurs in three
variations. DD4 occurs when both breeders are heterozygous and do not share any founder alle-
les among them. DD3 occurs when both breeders are heterozygous and share one founder allele,
whereas DD2 refers to both breeders being heterozygous for the same two founder alleles. DS
stands for different-same and occurs in two variations. DS3 occurs when the heterozygous gene
shares no founder alleles with the homozygous allele of its mate. DS2 refers to when the het-
erozygous gene shares one founder allele with its mate. Ss is opposite same, where the male is
homozygous for one founder allele and the female is homozygous for another allele. The final
state, SS (same-same), is achieved when both male and female are homozygous for the same
founder allele. All JH segments are depicted with a chromosome fraction of 0.15, except for Ss,
with 0.10.
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from each parent of a potential breeding pair and depicts all possible JH states. The inbred state is

achieved when both male and female samples are homozygous for the same founder state. I call

this state same-same (SS). Another possible state involves a breeding pair that is heterozygous

with alleles from two founders while the mate is homozygous. I call this different-same (DS).

This state occurs in two forms, DS2 when the heterozygous gene shares a founder allele with the

homozygous allele of its mate, and DS3, when the heterozygous gene shares no founder alleles

with its mate. The third state is opposite-same (Ss), where the male is homozygous for one

founder and the female is homozygous for another. The final state is different-different (DD),

where both male and female are heterozygous. This state comes in three variations, involving,

two, three, and four founders, respectively. The two-founder state, calledDD2, occurs when both

male and female are heterozygous between the same founder alleles. DD3 refers to when both

male and female are heterozygous but share one common founder allele. DD4 occurs when the

male and female are heterozygous and do not share any founder alleles. Figure 3.4 shows a state

diagram with these four states and their forms depicting all possible transitions between them in

a single generation. The directed edge weights represent the probability of transitioning between

JH states. A similar transition matrix, which uses thirteen states instead of my seven, has also

been derived by Broman [9]. It is a simple matter to extend our JH model to two generations

by finding every path of length two within the graph and inserting an edge with weight equal

to the product of the two edges along its path. The weights of edges from a common source

to a common destination, but passing through different intermediate states, can be added and

combined into a single edge. This approach can be extended to n generations, and as n increases

all of the heaviest edges eventually lead to the inbred (SS) state. For analytical expressions for

extending our JH model for n generations, see [9, 17].

In early generations the CC lines include genomic intervals in JH states involving three or

more founders (DD3, DD4, DS3), but in later generations these intervals eventually transition

to states with two or less founders (DD2, DS2, SS, and Ss; Figure 3.5). To determine this trend,
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Figure 3.4: A state diagram showing the transitions between all JH states in a single generation.
The directed edges are labeled with the transition probability. The grayed-out nodes represent
transient states; once a segment moves away from these three states, there are no returning edges.
Transient states tend to go away after a few generations and are rarely seen past the point of peak
diversity (as shown in Figure 3.5). CC lines begin inbreeding in one of the states, DD4, DD3,,
and DD2. The desired inbred state for all intervals is SS. DS2 is the most likely to become SS.
DD2 is the next most likely state to become fixed. It takes at least two generations to transit from
Ss to SS, as there is no direct path between these two states.

I simulated 100,000 eight-way crosses and tracked the JH states between breeder pairs at each

generation, as shown in Figure 3.5. By generation 10 (after the point of peak diversity), all

segments have contributions from two or fewer founders. DD4, DD3, and DS3 are transient

states (see Figure 3.4), meaning that once this group of three states is left, there are no returning

edges. In two-way RILs, the three transient states do not occur because there are at most two

founders present. When selfing, the model further reduces to only two JH states, DD2 and SS.

The transition probabilities to reach the inbred state are incorporated into my metric for selecting

the best mating pair at each generation, which is discussed later in this section.

Using the notion of JH state, I split the genome into intervals according to state and track

the genomic fraction of each type. I combine these fractions to arrive at several useful measures.

Adding the genomic fraction of all regions in the same-same state (SS) gives the fixed genomic

fraction (FGF). I call the complement of this, or 1-FGF, the mating pair’s combined heterozygous

fraction (CHF). FGF and CHF can be used to assess how inbred a line is, such that FGF = 1 refers
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Figure 3.5: A histogram of segments colored according to their JH state as a function of genera-
tion. In early generations, most segments have contributions from three or more founders, but by
generation 10 (after the point of peak diversity), segments have contributions from two or fewer
founders. This plot was created by tracking the JH states between breeder pairs and finding the
average contribution of each state over 100,000 simulations.
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to fully inbred.

I choose the “best” breeding pair, by considering a weighted genomic mix of the JH types of

all candidate mating pairs. The best pair is selected as the maximum of a weighted combination

of transition probabilities for all JH segments of a given mating pair considering all chromo-

somes. For each distinct JH segment of a chromosome the probability that it will become inbred

in the next generation (i.e., the weight of the edge from the current JH state to the SS state) is

multiplied by the chromosome fraction of the segment, and the sum is accumulated over all seg-

ments on the chromosome. This calculation results in a chromosome score ranging from 0, when

the entire chromosome is Ss, DD3, DD4, or DS3, to 1 when the entire chromosome is SS. This

approximation ignores the relative ordering of segments, and, therefore, does not consider link-

age. The individual chromosome scores are then multiplied together, modeling their independent

segregation, to arrive at the total pair score. Therefore, I assign a score for a given mating pair

as:

Score(n,m) =
N∏
i=1

∑
JHSeqn,m∈Chri

p(JHSeqn,m → SS)
‖JHSeqn,m‖
‖Chri‖

(3.1)

This score is an approximation of the actual likelihood that the entire genome will become

inbred in the next generation. I refer to this score as the weighted state metric (WSM). JHSeqn,m

represents a JH segment on the specified chromosome i induced by the pairing n,m, and the best

pair is the maximum of this score over all possible pairs n,m. In self-pollinated species, my score

simplifies to a scaled version of the FGF because the only relevant states are DD2 and SS, which

has been described previously [7].

3.2 Experiments and Results

I explored two marker-assisted breeding schemes. The first of these is MAI, which modifies

the breeding scheme only after the point of peak diversity is reached. Once the peak is reached,

the WSM discussed previously is applied to choose the best breeding pairs. The second is a
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marker-assisted advanced intercross, which modifies the breeding scheme to choose sib-pairs to

increase segments until either a specified generation or a desired number of segments is reached;

it then reverts to choosing sib-pairs to accelerate inbreeding. Through simulations, I track the

average number of generations to fully inbred and to 99% inbred as well as the average number

of segments present in the inbred lines to compare the different breeding schemes.

The simulator is written in Python and runs on a Dell Studio XPS with 8GB RAM, with

dual-threaded quad-core processors. It takes approximately 5.5 hours to complete 100,000 sim-

ulations of eight-way RILs.

For the purposes of this analysis, the eight-way CC funnel breeding scheme was used, but

my simulator also supports the input of any breeding scheme using pedigree files. It has also

been used to simulate two-way RILs, F2 crosses, and outbred populations.

To test my MAI methods, I used the developing CC [17] and a low-density genotyping plat-

form I codesigned, referred to as the Mouse Universal Genotyping Array (MUGA)(see Chapter

4). The SNPs on MUGA are uniformly distributed with an average spacing of 325 Kb and a

standard deviation of 191 Kb. In an eight-way cross, the genotypes at multiple markers (at a

minimum three) are needed to distinguish among the founders. The founder assignments and re-

combination breakpoints are inferred from the genotypes using a hidden Markov model similar

to the ones described by Mott et al. [38], Zhang et al. [47], and Liu et al. [36]. Because multiple

markers are needed to distinguish each founder, the effective founder-ascertainment resolution

of MUGA is approximately 1 Mb.

3.2.1 Nonmarker-assisted breeding schemes

In simulation, I tested a number of modified breeding schemes in an attempt to acceler-

ate the inbreeding process. These nonmarker-assisted breeding schemes minimally impact the

traditional RIL generation process and require no genotyping. I considered several variations

of backcrosses. The use of backcrosses was motivated by two main ideas. The first was the
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analysis of Broman [8], which identified a substantial advantage for selfing when compared to

sib-mating. Selfing in two-way plant RILs takes on average 10.5 generations to reach complete

fixation, which is a substantial reduction from the 35 generations needed for two-way sib-mating.

Since offspring are exactly 50% related to their parents, but only on average 50% related to their

siblings, when selecting breeders at random, a backcross guarantees a level of similarity that

sib-matings cannnot. A second motivation for using backcrosses is that loss of fertility in the

creation of RILs is a major issue. Valuable time can be lost when unproductive sib-matings are

set up. Therefore, backcrossing allows the use of known-fertile samples and has been a useful

fallback for preserving lines.

The first breeding scheme examined was alternating backcrosses in successive generations,

father-daughter in one generation followed by mother-son in the next (Figure 3.6A). This scheme

has many practical advantages in that it leverages known-fertile samples. Furthermore, this strat-

egy also serves as a useful fallback for preserving lines. I simulated this approach starting after

the point of peak diversity, with a backcross between a father and daughter followed by a back-

cross between a mother and son in the next generation (each breeder is used in two successive

generations, alternating dam and sire). This process was repeated for each subsequent generation

until complete fixation was achieved. Alternating backcrosses achieves a reduction in the num-

ber of generations to complete fixation with an average number of generations of 33.45 ± 5.88

(Figure 3.7). This represents a reduction of nearly five generations over randomized mating and

a substantial reduction in variance. It decreases the number of segments in the resulting inbred

lines to 141.21, a loss of about four segments on average. The alternating backcross also reduces

the number of generations to 99% fixation to 23.45 ± 3.11, a reduction of two generations.

There are several practical limitations to the alternating backcrossing approach. For in-

stance, female fertility often spans a limited window that might not allow for mother-son back-

crossing. Therefore, I also explored, through simulation, a modified breeding scheme involving

only father-daughter backcrosses. Starting after the point of peak diversity, a father-daughter
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Figure 3.6: This figure shows the pedigree diagrams for the alternating backcrosses: father-
daughter backcross with the mother-son backcross (A) and the father-daughter with the random
sib-mating (B).
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Figure 3.7: A comparison of five breeder selection alternatives for generating an eight-way RIL,
showing the number of generations to reach complete fixation (A) and the total number of seg-
ments (B) found in the final inbred lines. Random sib-pair mating is used as my baseline. The
alternating backcross swaps between father-daughter and mother-son matings in successive gen-
erations. The father-daughter scheme alternates between father-daughter and random sibling
matings in successive generations. MAI uses my weighted state metric to choose between 16
breeding pairs after the point of peak diversity. The selected advanced intercross modifies early
stages of the breeding scheme to choose sib-pairs that maximize diversity, and then at a pre-
established generation (10), it reverted to choosing sib-pairs to accelerate the inbreeding process.
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backcross is followed in the next generation by a random sib-mating. This breeding scheme

(Figure 3.6B) is repeated for each subsequent generation until complete fixation is achieved. The

father-daughter backcross takes 37.06 ± 7.55 generations to reach complete fixation, and the in-

bred lines contain on average 142.39 ± 12.24 segments (Figure 3.7). This breeding scheme also

takes 24.70 ± 3.54 generations to 99% fixation. Although the benefits of father-daughter mating

are modest relative to random sib-mating, in practice they are compensated for by a reduction in

generation time resulting from a mature and known fertile sire.

3.2.2 Marker-assisted inbreeding

The steadily decreasing cost of full-genome genotyping combined with the advantages of

considering each sample’s individual full genetic makeup motivated the decision to also explore

MAI techniques. The ability to compare potential breeding pairs based on full-genome genotypes

allows one to choose breeding pairs with the greatest likelihood of producing inbred offspring.

The Ss (opposite same) is the least-preferred state in a breeding pair because it has no chance of

becoming inbred in the next generation, as shown in Figure 3.4. In contrast, of the noninbred

states, DS2 has the greatest probability of becoming fixed in the next generation, and DD2 is

the next most likely. For all MAI techniques, random sib-matings were simulated until the point

of peak diversity was passed. This was followed by subsequent generations of selecting the best

breeding pair, until the line reached complete fixation.

Using the WSM, I selected the best pair from sib-pairs, parent-child backcrosses, or a

combination of both. To see what other pair relationships were worth considering, I simulated

100,000 lines such that random sib-matings were used for 15 generations, at which time three

mating pairs were generated, producing two male and two female offspring each. The best breed-

ing pair was then chosen by comparing every female to every male (both parents and offspring).

The pair with the lowest combined heterozygous fraction (CHF) was selected. Sib-pairs were

selected 63% of the time, whereas backcrosses were chosen 23% of the time. Cousin-pairs
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(offspring from different mating pairs of the same generation) were the next most likely, being

selected 6.9%. The remaining 7.1% included mating combinations such as aunt-nephew, uncle-

niece, or grandparent-grandchild. I concluded that non-sib, non-backcross matings should be

used sparingly, except in the case of preserving a line.

Because sib-pairs were most often the best option, I limited subsequent simulations to se-

lecting the best sib-pair and report those statistics in Figure 3.7 and Table 1. For the MAI sib-

pairs breeding scheme, random sib-matings were simulated until the point of peak diversity was

reached. After this point, four female and four male offspring were simulated (4-4), all pairs

were considered, and the best pair was chosen as the breeders. This process was continued until

the line reached complete fixation. My model is based on generation number and may require

multiple litters to achieve the four females and four males assumed in simulation.

A potential shortcoming of my model is that I report the time to inbred as a function of gen-

erations, not the number of litters or calendar time required to produce enough viable offspring.

However, I did perform additional simulations assuming smaller litter sizes (two females, two

males), and unbalanced sex-ratio (eight total offspring with one to seven females), and compared

all three sets of assumptions (4-4, 2-2, 8) to the greedy approach of setting up breeders as soon as

any sibling mating pairs are available(Figure 3.8). Each of these forms of MAI was able to con-

siderably reduce the number of generations to achieve inbred status regardless of sex balance or

litter size. Moreover, waiting for a sufficiently large breeder-candidate set always outperformed

the greedy approach of setting up matings as soon as any pair was available. These tests were

done by simulating each of the above breeding schemes 100,000 times and plotting the results

in terms of number of generations to complete fixation as well as the number of intervals in the

final inbred lines.

Using this MAI breeding scheme, it was found that 99% fixation can be reached in an

average of 16.44 ± 1.00 generations, whereas complete fixation can be reached in 22.10 ± 4.41

generations on average. These inbred lines have an average of 138.83 ± 11.83 segments. Figure
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Figure 3.8: Compares the number of generations in takes to achieve complete fixation for 5
breeding schemes that make different assumptions about the available pool of breeders. The
standard random sib-mating is provided for comparison. MAI Sib-Pairs assumes a pool of 8
breeders with 4 of each sex and takes an average of 22.10 ± 4.41 generations to reach complete
fixation. The MAI Sib-Pairs assumes a pool of 4 (2 each sex) takes an average of 25.05 ±
3.89 generations to reach complete fixation. The MAI Sib-Pairs Unbalanced Sex-Ratio assumes
8 offspring with varying sex-ratios at each generation. These sex-ratios range from 1 female
and 7 males to 7 females and 1 male. This breeding scheme requires an average of 22.63 ±
4.25 generations to reach complete fixation. Finally, the Greedy Sib-Pairs (Marker Assisted ≥
(1f+1m)) breeding scheme creates small litters of 1-3 offspring and sets up the best breeder pair
as soon as at least 1 female and 1 male offspring exist. The Greedy Sib-Pairs breeding selection
depicts the natural inclination to set up breeders as soon as possible; however, our simulations
indicate that it does not reduce the number of generations required to reach complete fixation as
much as waiting until 8 offspring are available for comparison. In fact, it requires an average
of 28.97 ± 4.46 generations to reach complete fixation. The overall impact of each breeding
scheme on the genetic diversity is negligible.
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Figure 3.9: CHF as a function of number of generations. This plot shows that MAI reduces the
CHF among breeding pairs much faster than random sib-matings. We can see the effect as soon
as the breeding scheme is modified (at the point of peak diversity).

3.9 shows that MAI reduces the CHF among mating pairs much faster than random sib-matings.

As soon as the breeding scheme is altered at the point of peak diversity, the effect is apparent.

3.2.3 Selected advanced intercrosses

Although MAI achieves a substantial reduction in the number of generations required to fix

a RIL, it does so with an average loss of approximately seven segments per line. This result is

unfortunate because the number of segments determines the resolution of a RIL panel for quan-

titative trait mapping [2]. Therefore, I attempted to overcome this loss by using marker-assisted

techniques in the first 10 generations of inbreeding to select mating pairs most apt to increase the

number of recombination segments. I refer to these lines as selected advanced intercrosses [20]

in that they attempt to increase the number of segments on every chromosome by maximizing

diversity until a designated generation is reached. This is similar to work done in self-pollinating

populations to maximize mapping resolution [7]. After the designated generation, the same MAI
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techniques as discussed previously are used to select the breeding-pairs until the line is fixed. I

found that it took on average 23.5 ± 3.82 generations to become inbred. At the point of peak

diversity, the lines had an average of 196.1 ± 15.44 segments, compared with 167 segments

in randomized sib-pair matings. The average number of segments in the final inbred animals

was 155.6 ± 12.53. On the basis of my analysis, if genotyping is done at every generation, the

lines will become inbred in approximately the same number of generations as the MAI breeding

strategy but will have approximately 17 more segments per animal. This could lead to increased

mapping resolution in the final population.

3.2.4 Low-resolution sampling

In my MAI analysis, I assumed that one is able to accurately assign genomic regions to

founders at single base-pair resolution. In reality, genotyping platforms have a limited resolution

with which they can ascertain a founder’s genomic sequence. This limited resolution creates two

main obstacles to the use of MAI methods: the possibility that small recombination intervals

might escape detection, and the imprecision with which the cross-over points of recombination

can be detected. The impact of both of these limitations can, however, be modeled in a simula-

tion.

I modeled this reduced resolution by sampling the JH state at 1-Mb intervals. I ran 100,000

simulations of breeding using the MAI breeding strategy discussed earlier, but modified the

WSM to consider the JH state only at sample points. Furthermore, I declared lines inbred on the

basis of the 1-Mb sampling (when all sample points were SS). I then inspected each declared

“inbred” mouse to see if, at a base-pair resolution, all intervals were truly fixed, and found them

to be actually inbred only 38.3% of the time. On average I missed three nonfixed segments per

line, and these segments were on average 327 ± 234 Kb. Figure 3.10 shows a histogram of

the sizes of the missed segments, where all segments are less than 1Mb and most of the missed

segments are <500Kb. I also found that the lines were considered inbred approximately 2.5
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Figure 3.10: Histogram of size of segments missed when conducting low resolution sampling.

generations earlier than MAI with complete observability. This finding implies that the inability

to detect small recombinants might require additional inbreeding generations to attain the desired

level of fixation.

3.3 Conclusion

Through simulations, I have developed several alternatives to random sib-matings to dramat-

ically accelerate the creation of RILs by as much as 16 generations. These include the judicious

use of parental backcrossing and the selection of mating pairs based on genotypes from genome-

wide SNPs. Both of these techniques, when applied after the point of peak diversity is reached,

result in a negligible reduction in the number of segments. I also propose an advanced intercross

variant in which MAI is applied during the early generations to increase the number of haplotype

segments for better mapping resolution.
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In simulation I also have the luxury of assuming uniform litter sizes and equal sex ratios,

but in reality the fecundity of a RIL and the sex-balance of litters are complicating issues. As

lines become more inbred, fertility generally decreases [53]. One way to address this is to use

backcrosses as discussed previously. However fertility issues might override the choice of “best

breeding pair”. To address this problem I calculate backups that, when used, may extend the

number of generations required to achieve fixation.

Taking fertility into account and prioritizing for the preservation of the lines, how do I select

the final breeders? WSM optimizes for becoming inbred in one generation, but it might be more

advantageous in the early MAI generations to select for animals whose probability to become

inbred in two or more generations is maximized. However, in simulations, the two-generation

metric generally chooses the same breeding pairs as the single-generation model, leading to

the same number of generations to achieve fixation. Once lines reach small levels of residual

heterozygosity, it might also be advantageous to maintain multiple breeding pairs selected to

produce compatible offspring, which are more like sib-pairs than cousin-pairs. This provides

more pair options, as well as a chance to compensate for uneven sex ratios or small litter sizes.

Although it seems best to choose the optimal breeding pairs early on, finding good pairs near

the end-game (in order to fix the last 1%-2% of the genome) is a harder problem. The last few

heterozygous regions can take several generations to fix if compatible breeding pairs do not exist.

Trying to fix the last 1%-2% of the genome is difficult since it may take 1-2 generations for each

residual heterozygous region to become fixed. It is unlikely that two compatible breeders will

exist that are able to produce offspring in which each of the remaining regions is fixed.

The simulation software used in this analysis is available for download from

http://sourceforge.net/p/breedingsim/. It has been adapted for many uses other than marker as-

sisted inbreeding such as estimating the significance of measured statistics in the developing

CC [17].

In the next chapter I will further discuss the genotyping microarrays used in the experimental
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side of this work, MUGA and MegaMUGA. I will discuss their design principles as well as their

performance metrics.
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CHAPTER4: DESIGNING MICRO-ARRAYS FOR MAXIMUM INFORMATIVENESS

Genotyping arrays have long been used to characterize the underlying DNA within partic-

ular regions of interest in model organisms. More recently, it has become cost-effective to use

full-genome genotyping arrays, rather than targeted arrays. These microarrays have the benefit

of only needing to be designed once, but can be used for many experiments. When designed

properly, these genotyping arrays can be used to distinguish between most population diversity

within each area of the genome. However, to make these arrays useful in most experiments they

need to be cost-effective and widely-available as well as informative. To be cost-effective, these

arrays can only contain a set amount of SNPs based on the cost of the technology at the time of

design.

The laboratory mouse is a popular model organism in biomedical research that complements

the strengths of many human studies. As a result, a number of these arrays have been designed

for use with mouse[64, 14, 52, 34]. However these arrays have either too few markers to be infor-

mative genome-wide [14, 52], too many markers to be cost-effective for large experiments[64] or

are not widely available [34]. In each case, one of the crucial components for an ideal genotyping

platform was missing.

Existing mouse strains exhibit evidence of a population structure which makes them less

than ideal.[65] The Collaborative Cross (CC)[17], described in Chapter 2, is an ongoing effort to

create a more genetically diverse panel of inbred mouse strains to provide a more useful model for

mapping complex genetic traits. In the later generations of inbreeding of the Collaborative Cross,

the CC progeny are genotyped to select breeders with the least residual heterozygosity. This

genotyping requires an efficient and low-cost platform for determining residual heterozygosity

genome wide, as well as the CC founder origin of fixed regions of the genome.



In response to this need for a genotyping platform to use with the CC, two cost-effective,

maximally informative, widely available full-genome genotyping arrays were designed. At the

time of the original design in 2010, it was determined that cost effective meant a price point of

$100/sample, which allowed for the selection of 9,000 SNPs. Two years later when the second

generation genotyping array was designed, it was determined that for the same cost, 80,000

SNPs could now be chosen. The first generation genotyping array is called the Mouse Universal

Genotyping Array (MUGA) and the second generation array is called MegaMUGA, as it has 10x

more SNPs on it than MUGA. Both custom arrays were developed using the Illumina iSelect

platform for the Infinium system. In this chapter, I describe the design criteria for each of these

two genotyping arrays, as well as the number of samples genotyped on each and the performance

of the arrays on these samples.

4.1 MUGA

MUGA was designed to optimize the identification of founder contribution and detection

of residual heterozygosity among CC strains at any stage of inbreeding. In particular, probe se-

quences were chosen to efficiently discriminate between the eight CC founders and their resulting

heterozygous combinations. A typical technique for designing informative genotyping arrays is

to choose a series of singleton SNPs where only one founder has the minor allele and all other

founders have the majority allele. This allows a researcher to quickly determine if an area of

the genome was inherited from the founder with the minor allele. You can imagine a series of

eight of these singleton SNPs allowing a researcher to determine exactly which CC founder an

area of the genome was inherited from. However, if SNPs are selected to instead maximize the

entropy on a per SNP basis, the same level of informativeness can be achieved with only three

consecutive SNPs (still assuming eight founders). To maximize the per SNP entropy, a biallelic

model is assumed for each SNP and SNPs are chosen to maximize the minor allele frequency,

which in an eight-way cross amounts to four strains with minority allele and four strains with

the majority. Each SNP was then encoded in binary such that the first strain was always 0 and
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all other strains were either a 0 or a 1 depending if they were the same allele as the first strain

(0) or not (1). Since there are eight founder strains, there is always a binary string or SNP di-

versity pattern (SDP) of exactly eight characters per SNP. This creates
(
7
4

)
or thirty-five unique

SDPs (since the first strain is always a 0). In order to divide groups of SNPs into eight unique

patterns, at least three SNPs are required. The eight unique haplotypes are then 000, 001, 010,

011, 100, 101, 110, and 111. Sets of three SDPs that create eight unique haplotypes are referred

to as compatible triples, and there exist 5040 compatible triples. For any two SDPs that create

exactly four equal groups of haplotypes (00,01,10,11), there exist eight unique SDPs that will

divide the pair into exactly eight unique haplotypes. This can be shown by noting that the first

two SDPs must break into four unique haplotypes, with exactly two of each type of haplotype.

Since all binary codes begin with a 0 in this case, the other three binary codes (01, 10, 11) can be

divided up in 2 different ways each, creating 23 unique SDPs that will create compatible triples

with the given beginning two SDPs. By linking together compatible triples, such that the last two

SDPs of the previous triple match the first two SDPs of the next triple, one can achieve maximum

informativeness in any window of three SNPs genome wide. Figure 4.1 depicts a subset of the

compatible triples graph. You can see from this image that the indegree and outdegree of any

node in the compatible triples graph is eight.

4.1.1 Database of Available Probes

In order to select maximally informative SNPs in the pattern described above, a large

database of SNPs is required. For mouse, there exists a database of 8.27 million SNPs for eigh-

teen common inbred mouse strains that is available from the Wellcome Trust/Sanger Institute[24].

This set of SNPs was further enhanced by using the whole genome sequences of fourteen inbred

mouse strains, including the eight CC founder inbred strains. This was done as part of the Mouse

Genome Project from the Wellcome Trust/Sanger Institute [30, 63]. For MUGA, the array design

was based on an early release of this sequencing data from the Wellcome Trust/Sanger Institute
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Figure 4.1: Subset of all compatible triples and the chaining of compatible triples. One can get
to a compatible triple in one of eight ways, and one can choose the next SNP in the sequence
from one of eight SDPs.

in September 2009, and the array verification and subsequent analysis were based on the final

sequencing data published in September 2011.

4.1.2 Design

In practice, despite having 8.27 million SNPs to choose from, it was not possible to evenly

cover the entire genome using only compatible triples. There are a number of areas of the genome

with few or no segregating SNPs among the eight founders, and also a number of areas of se-

quence identity among founders, which creates areas of ambiguity between particular founder

strains. Therefore, when designing MUGA, at times SNPs were chosen with minor allele fre-

quencies of 3/5 as well as the 4/4 SNPs. However, the goal of maximizing the information

content remained intact and the greedy algorithm utilized attempted to differentiate among the

eight founders in as few SNPs as possible. The segregation pattern of each chosen SNP was also

required to be different than its immediate neighbors, so that in the ideal case, three continuous

SNPs can differentiate between each of the eight CC founders.

In addition to SNP selection based on SDP, we also applied additional filters. Since the

Illumina Infinium technology uses 50-bp probes, any SNPs with known variants within 50 bps
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on either side of a variant were filtered out to remove potential off-target effects. The genetic

sequence of each CC founder was obtained from the Wellcome Trust/Sanger Institute, and at the

time of array creation, none of the selected SNPs had other known variants within 50 bps. A

final SNP filter was conducted to remove all markers that segregate between C/G and A/T alleles

since the Illumina Infinium genotyping array technology requires the construction of two beads

to correctly differentiate between these allele combinations, rather than one bead as needed for

all other allele combinations. This means that a single SNP would cost two beads, so that less

locations in the genome could be genotyped overall.

As the total mouse genome is about 2.7 billion base pairs long and 9,000 total SNPs were

allotted for the design, the final filtered set of SNPs was then binned into 300Kb bins. A SNP

was selected from each non-empty bin so that it maximized the number of founders that could

be differentiated when combined with previously selected SNPs. Using the selection technique

described, 9,000 SNPs were selected and run through the Illumina scoring software. All SNPs

that received low quality scores from Illumina were replaced with another SNP from the same

bin with the same SDP. The final score file was submitted to Illumina by GeneSeek.

Of the original 9,000 SNPs selected, 7,851 were converted and placed on the Illumina In-

finium platform (see Figure 4.2). The SNP markers have an average spacing of 325Kb (SD

191Kb); the distribution of the gaps between consecutive SNPs is shown in Figure 4.3. In geno-

typing array design, it is fairly typical that some of the SNPs will not be included on the final

array for various reasons. Illumina guarantees a success rate of converting SNPs in the design

file to beads in the final array of at least 80%. Therefore, the conversion rate of 87% on MUGA

was acceptable.

When MUGA was designed, the 8.27 million SNP database had not yet been annotated

by Sanger with quality scores for the SNPs, and it is believed that some of the SNPs chosen

originally were low quality. Also, as previously mentioned, SNPs with no off-target variants

within 50 bps were chosen, however, when intensity-based clusters of each SNP were examined,
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it was observed that many SNPs had unexpected intensity clusters outside the traditional AA,

BB, or AB clusters. Many of these additional clusters are believed to be caused by previously

unannotated SNPs within the probe sequence and with the most recently published SNPs from

the Sanger Institute[30, 63], this hypothesis was confirmed. The final distribution of included

SNPs can be seen in blue in Figure 4.2.

4.1.3 Samples Run on MUGA

Due to the CC founders’ genetic diversity and MUGA’s maximally informative design,

MUGA’s utility extends beyond CC animals. To date, 8,265 samples have been genotyped on

MUGA, including a large number of mice from the Collaborative Cross (CC), the Diversity Out-

bred population (DO)[55], mice from the Mutant Mouse Regional Resource Centers (MMRRC),

and wild mice. MUGA’s design allows for accurate ancestry inference of not only mice from

developing CC lines but also mice with non-CC ancestors, such as those from the MMRRC

repository. MUGA and its accompanying multiallelic genotyping algorithm provide a versatile

and low-cost genotyping platform for laboratory mice from the CC population and beyond.

Included in the 8,265 samples genotyped on MUGA were eight copies of each CC founder,

at least two copies of all viable F1 crosses between the CC founders, and 1,833 CC samples

genotyped at various stages of inbreeding. There were also about 1,100 DO mice as well as

some F2 crosses of inbred strains, congenics, consomics and wild mice. Performance tests were

done on MUGA using a panel of controls to ensure that it was producing quality genotype calls.

4.1.4 Performance on MUGA

The first performance test conducted on MUGA was to compare the results from biological

replicates to ensure that MUGA was producing consistent genotype calls on a per SNP basis.

Table 4.1 shows the results of these comparisons for thirteen pairs of biological replicates. The

first seven pairs in this table are inbred animals for which one would expect to have a low number

41



Figure 4.2: Distribution of the original 9,000 SNPs on MUGA in terms of location on chromo-
somes. Blue depicts the SNPs that ended up on the final MUGA array, while red shows SNPs
that did not make it onto the final array. From this plot it can be seen that SNPs were lost fairly
uniformly throughout the genome and there are no clusters of missing SNPs, showing that over-
all, the principles for selection of the SNPs should hold true with about 4-5 SNPs being necessary
to completely differentiate among the 8 founder strains.
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Figure 4.3: Distribution of the final 7,541 MUGA SNPs in terms of location on chromosomes
(left plot) and spacing between SNPs (right plot).
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Sample 1 Sample 2 N=N H=H A=A # Discordant Calls
A/Jm111 A/J 127 91 7595 41
C57BL/6J C57BL/6J 30 87 7612 125

129S1/SvImJm212 129S1/SvImJ 145 75 7581 53
NZO/HlLtJ NZO/HlLtJm51 162 80 7572 40

CAST/EiJm42 CAST/EiJ 282 93 7398 81
PWK/PhJ-F11 PWK/PhJm175-C08 291 95 7368 100
WSB/EiJ-H06 WSB/EiJ-F09 168 85 7555 46

WSBxPWKf003 WSBxPWKm001 108 2737 4841 168
NODxPWKm004 NODxPWKm003 112 3438 4286 18
CASTxWSBf015 CASTxWSBm001 107 2678 4888 181
CASTxAJm005 CASTxAJm005 90 3426 4306 32
AJxPWKm006 AJxPWKf001 90 3430 4081 253
129xPWK037m 129xPWK 040F 85 3333 4124 312

Table 4.1: Comparison of biological replicate samples run on MUGA, where N=N depicts the
number of times both samples had an N call at the same SNP, H=H depicts number of times both
samples had an H call at the same SNP, A=A depicts the number of times the pair of samples
had the same allele call (A, T, C, or G) at a particular SNP, and # of Discordant Calls depicts the
total number of SNPs for which the two samples received different genotype calls.

of heterozygous calls and very high concordance between the two samples. The remaining sam-

ples in the table are F1s (first generation cross between two inbreds). One would expect these

samples to have a high number of heterozygous calls but still have high concordance between

the samples. Over the entire table, there is 98.6% concordance among biological replicates, and

if one only considers inbred concordance where the genotype call is an A, T, C, or G and that

both samples tested had the same call, there is 95.8% concordance.

The next performance test performed on MUGA was testing how consistent F1 genotype

calls were with the founder calls. Overall, it was found that the F1 genotype was 91.9% concor-

dant with their founder parentals. Statistics were also collected on individual SNPs and any SNP

that was found to be underperforming (getting N for all samples) was flagged in the database.

Once it was established that MUGA performed well on various types of samples (inbreds,

F1s, non-CC mice), the next step was to measure the information content of MUGA on a per SNP

basis and to compare the overall information content of MUGA with other previously designed
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Array # SNPs Avg. Entropy Avg. bits per SNP
MUGA 7851 0.75555 0.31077
Sanger 13457 0.80189 0.18622
MDA 550000 0.56828 0.081011

Table 4.2: Entropy scores for micro-array comparison. The Avg. Entropy column represents the
average entropy per SNP, while the inverse of the Avg. bits per SNP shows the average number
of SNPs it took to differentiate among all eight founders.

genotyping arrays. Based on the founder genotypes of the eight CC founders, it was determined

that when strictly using genotype calls, 1,426 of the 7,851 SNPs on MUGA have an entropy score

of 0 (no information content in terms of founder assignment). However, by using the intensities

of the probes rather than the genotype calls, this entropy score can be much improved[25].

By clustering biological replicates of the eight CC founders and their F1 crosses, one can

ascertain which founders and F1s fall into the same clusters and which founders and F1s create

their own clusters. One expects to see three distinct clusters for each SNP; one for the majority

allele, A, one for minority allele, B, and one cluster representing a heterozygous call of AB.

It is also expected that all eight CC founders will fall into one of the two inbred clusters. In

reality, when this experiment was done, it was found that the eight CC founders segregated into a

single cluster for 1,104 markers (no information content). The eight CC founders segregated into

two homozygous clusters with a reference allele cluster, an alternate allele cluster and a single

heterozygous cluster with F1 samples for 5,500 markers, as expected. However, the remaining

1,200 markers exhibit three or more clusters among the eight inbred founder. It is this last group

of markers that allows for more entropy on a per SNP basis. Figure 4.4 depicts intensity plots

of four markers, colored by genotype calls obtained from Illuminas GenomeStudio. Figure 4.4a

shows a typical biallelic marker with two homozygous clusters and one heterozygous cluster,

while Figure 4.4b shows a non-hybridizing marker with arbitrary H calls. Figures 4.4c shows

a multiallelic SNP with several heterozygous clusters, one of which is uniformly called N, and

Figure 4.4d shows a multiallelic SNP with one heterozygous cluster alternately called both N

and H due to batch effects in the calling algorithm. Both (c) and (d) represent SNPs with higher
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entropy scores than the typical biallelic SNP shown in (a), since if genotypes alone were used in

(c), then there are only three possible calls (A, G, or H, since N calls are ignored)), but if intensity

clusters are utilized, then five calls are possible[25].

In comparing entropy scores of genotyping arrays, only the genotype calls of the founder

mice were used so that each array had the same possible information. The genotype information

for the eight CC founders was obtained for the Sanger array [52] with 13,457 SNPs on it, as

well as the Mouse Diversity Array(MDA)[64] with about 550,000 SNPs. Table 4.2 shows the

calculated entropy scores for each of these arrays as well as MUGA. The Avg. Entropy column

represents the average entropy per SNP, while Avg. bits per SNP shows the average number of

SNPs it took to differentiate among all eight founders. To calculate this value, I divided three

(the minimum number of SNPs with which it is possible to differentiate among all eight foundes)

by the actual number of SNPs it took to create eight unique haplotypes. This number was then

averaged over all sliding windows of the genome and shown in Table 4.2.

In terms of the average entropy per SNP, the Sanger array does slightly better than MUGA

and MDA with an average entropy of 0.80. MUGA isn’t far behind at 0.76, and MDA does

fairly well, with an average entropy per SNP of 0.57. Overall, MUGA has the best average

effective entropy of the three arrays at 0.31, meaning that it takes the fewest consecutive SNPs

to differentiate among the eight founders. By taking the inverse of the average effective entropy,

you can see that it takes an average of 9.67 SNPs to differentiate among the eight founders

on MUGA, but about 16 SNPs to do so on Sanger, and 37 consecutive SNPs to differentiate

among all eight founders on MDA. This analysis was conducted genome-wide and results can

be skewed by the beginning and ends of chromosomes, as well as areas of sequence identity

between founders.
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Figure 4.4: Intensity plots of four markers, colored by genotype calls obtained from Illuminas
GenomeStudio. Each point represents a single MUGA sample with its reference probe intensity
on the x-axis and its alternate probe intensity on the y-axis. H calls are colored magenta, N
calls are colored black, and the four nucleotides A, C, G, and T are colored green, cyan, red,
and blue, respectively. (a) A typical biallelic marker with two homozygous clusters and one
heterozygous cluster. (b) A non-hybridizing marker with arbitrary H calls. (c) A multiallelic
SNP with several heterozygous clusters, one of which is uniformly called N. (d) A multiallelic
SNP with one heterozygous cluster alternately called both N and H due to batch effects in the
calling algorithm.[25].
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4.2 MegaMUGA

A second generation genotyping microarray, MegaMUGA, is also built on the Illumina

Infinium platform and was designed to expand the number of markers and versatility of the suc-

cessful Mouse Universal Genotyping Array (MUGA). It extends MUGA from 7.8K to 77.8K

markers, and includes all MUGA markers as a subset. There are three types of probes on Mega-

MUGA. In addition to traditional SNP probes, a second probe type for tracking known structural

variants (insertions, deletions and duplications) has been introduced. A third probe type was

designed to detect the presence of sequences present only in genetically engineered mice (GEM)

(Cre, Luciferase, etc). MegaMUGA was designed to not only optimize the identification of

founder contribution and detection of residual heterozygosity among CC strains at any stage of

inbreeding, it was also designed to correctly identify the founder pairs present in areas of residual

heterozygosity.

The vast majority of MegaMUGA probes ascertain traditional biallelic SNPs. SNPs were

selected to be distributed across the entire genome including the mitochondria and the Y chro-

mosome with an average spacing of 33 Kb. For the autosomes, these probes were distributed as

evenly as possible based on a new linkage map[35] for the mouse with a slight excess of probes in

the telomeric regions to facilitate detection of recombination events in these regions. SNPs were

selected to be informative in most mouse populations (including wild mice and multiple Mus

species) with a special emphasis for markers that are informative in the CC and DO populations.

4.2.1 Design

In the selection of the 80,000 markers to be placed on MegaMUGA, a number of different

criteria were considered. The majority of the SNPs, about 65,000, were chosen since they were

maximally informative for the CC/DO mice, while 14,000 were chosen to work well with wild

mouse strains (domesticus, musculus, castaneous), 750 were chosen to identify Mus spretus

species, 150 were chosen to differentiate between C57BL/6J and C57BL/6N, 102 were selected
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for GEM, 58 were selected for a chromosome evolution project, and 14 were selected for an

X-inactivation mapping experiment [12]. To work well with the Illumina Infinium technology,

these SNPs were all selected to not have any off-target variations within 50 base pair on at least

one side. Also, the 49-mer either immediately preceding or following the SNPs must be unique

and not occur elsewhere in the genome. All SNPs were also selected to include as few markers

as possible that segregate beteween C/G or A/T alleles. This was done since as described in the

MUGA section above, the technology used in Illumina genotyping arrays requires two beads to

be developed to correctly differentiate between the aforementioned allele combinations. This

means that a single SNP would cost two beads, so that less locations in the genome could be

genotyped overall. In some regions of the genome, there were no alternative SNPs. Therefore,

the final design of the array includes about 200 of these two-bead allele combination SNPs.

Of the 65,000 CC/DO SNPs, about 60,000 SNPs were selected to be uniformly distributed

by recombination events over all autosomes and Chromosome X. About 20 invariants in the PAR

region were included, as well as 45 SNPs on Chromosome Y, and 31 SNPs on the mitochrondria.

The remaining SNPs were distributed in and beyond the last interval of each chromosome to

obtain better resolution in a known high recombination area. Unlike in MUGA, the bin sizes for

selecting SNPs are not uniform by genomic distance. Instead, the bin sizes were determined by

using a mouse recombination map[35] so that the genome is binned into intervals with like-sized

number of recombinations. To obtain this information, a series of plots were made, as shown

in Figure 4.5, and it was determined that in order to choose 60,000 SNPs this way, 2.75 SNPs

should be chosen per recombination (using only recombinations that were less than 25% of the

length of the chromosome). The midpoints of the recombinations were used to determine the

final bins to be used for SNP selection.

In choosing the CC/DO SNPs, SNPs that were maximally informative between not only the

eight CC founders, but also the twenty-eight F1 combinations were desired. This enables the

user to better determine founder pairs in regions of residual heterozygosity. To achieve this goal,
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within each bin, SNPs with the same strain diversity pattern (SDP) were binned together. We

looked at each chromosome in 5-bin sliding windows and used a dynamic programming algo-

rithm to find one SDP in each interval that maximized the number of founder/F1 combinations

that could be distinguised. The sliding window size was set to five since five SNPs is the fewest

number that could potentially differentiate among all thirty-six founder and F1 combinations.

Since all possible paths in the solution can increase exponentially, the possible solutions were

pruned at each step. Occasionally a bin did not contain one of the eight candidate SDPs, which

created a penalty for this path. Once the number of penalities along a particular path exceeded

some threshold above the current best path, it was pruned. While this greedy pruning metric

may not have produced the optimal path, it was able to produce a reasonable path in a short time

period. As previously mentioned, the telomeres of chromosomes are very recombination rich,

so therefore an additional 500 SNPs were selected at the ends of each chromosome in and be-

yond the last interval found for each chromosome. These SNPs were selected in the same sliding

window fashion as described above.

The final array has 77,808 unique SNPs on it. Of the originally selected 79,797 SNPs, 98%

were converted and present in the final design. This is an extremely high rate of conversion. The

final distribution of SNPs on MegaMUGA can be seen in Figure 4.6. It is obvious from this

figure that SNPs are evenly distributed over the entire genome in all areas where variants exist.

Any white regions in this figure illustrate regions of the genome where there are known gaps. To

drill down on the SNP distribution further, a colleague created Figure 4.7 that breaks down the

final distribution of SNPs by type for which they were originally chosen. The purple represents

the CC/DO SNPs, the blue represents SNPs chosen to differentiate the wild-derived strains, and

the red dots depict SNPs chosen to differeniate between strains of C57BL/6 mice.
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Figure 4.5: Recombination events on a chromosome basis. Plot A shows the recombinations
events ordered by the midpoint of each recombination, the start and end points of each event is
plotted. The x-coordinate equals the genomic position, and the y-coordinate shows the number
of the event. In Plot B, since there are a number of large intervals in the data set, I removed
them and replotted all intervals that are less than 25% of the length of the chromosome. I also
colored the intervals such that the colors correspond to the founders for the proximal and distal
ends of the intervals. For plot C, I show a smoothed out linear fit curve using 50 line segments to
describe the recombination distribution, and in plot D, using a fixed bin size of 500Kb, I show the
distribution of number of SNPs that we want (red) to see on MegaMuga as well as the distribution
of the SNPs we have available (blue), and the SDPs (green) of those available SNPs. In order to
plot these on a similar scale, I had to first divide the total SNPs we have per bin by 10.
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Figure 4.6: Distribution of the final 77,808 MegaMUGA SNPs in terms of location on chromo-
somes.
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Figure 4.7: Break down of the final distribution of SNPs by type for which they were originally
chosen. The purple represents the CC/DO SNPs, the blue represents SNPs chosen to differentiate
the wild-derived mouse strains, and the red dots depict SNPs chosen to differeniate between
strains of C57BL/6 mice. (Credit to Chen-Ping Fu for the image)
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4.2.2 Samples Run on MegaMUGA

In total, more than 6,600 samples have been genotyped on MegaMUGA. Of these samples,

eight copies of each CC founder were genotyped, as well as all viable F1 crosses betweeen the

CC founders. There were also 462 CC samples genotyped at various stages of inbreeding, as well

as a number of DO mice, F2 crosses of inbred strains, congenics, consomics, and wild mice.

4.2.3 Performance on MegaMUGA

As with MUGA, similar performance tests were run to ensure the quality of the SNP geno-

typing calls. The first performance test was to compare the results from biological replicates to

ensure that MegaMUGA was producing similar genotype calls on a per SNP basis. Table 4.3

shows the results of these comparisons for fifteen pairs of biological replicates. The first eight

pairs in this table are inbred animals for which one would expect a low number of heterozygous

calls and very high concordance between the two replicate samples. The remaining samples in

the table are F1s (first generation cross between two inbreds). One would expect these samples to

have a high number of heterozygous calls but still have high concordance between the replicate

samples. Over the entire table, there is 98.9% concordance among biological replicates, and if

one only considers inbred concordance where the genotype call is an A, T, C, or G (where A=A)

and both samples have the same call, there is 96.2% concordance. The consistency of the F1

genotype calls with the founder calls was also tested. Overall, it was found that the F1 genotype

was 95.2% concordant with their founder parentals. Statistics were also collected on individual

SNPs and any SNP that was found to be underperforming (getting N for all samples) was flagged

in the database.

4.3 Conclusion

As more genetic reference populations (GRPs) are created, there is a need for low-cost

methods for ascertaining the underlying genomic structure of these populations. By using a
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Sample 1 Sample 2 N=N H=H A=A # Discordant
129S1/SvImJm1314 129S1/SvImJm35370 2194 237 75149 228

A/Jm0111 A/Jm0417 2196 242 75197 173
C57BL/6Jm1957 C57BL/6Jm36826 2109 246 75273 180
CAST/EiJm0042 CAST/EiJm0538 2807 208 74395 398

NOD/ShiLtJm0150 NOD/ShiLtJm1214 2212 214 75176 206
NZO/HILtJm0051 NZO/HILtJm0591 2217 225 75029 337
PWK/PhJm0175 PWK/PhJm1090 2749 191 74456 412
WSB/EiJm0993 WSB/EiJm1345 2303 208 73968 1329

(129S1xB6)F1f15916 (129S1xB6)F1m15914 2045 23889 51071 803
(129S1xPWK)F1f040 (129S1xPWK)F1m037 2105 37458 36567 1678
(A/JxNOD)F1f15432 (A/JxNOD)F1m15427 2076 19784 55200 748

(A/JxPWK/PhJ)F1f001 (A/JxPWK/PhJ)F1m006 2124 38214 35732 1738
(CAST/EiJxPWK/PhJ)F10123 (CAST/EiJxPWK/PhJ)F1f0163 2360 23094 51247 1107

(NOD/ShiLtJxWSB/EiJ)F1f0141 (NOD/ShiLtJxWSB/EiJ)F1m0143 2097 32130 42255 1326
(WSB/EiJxPWK/PhJ)F1f0284 (WSB/EiJxPWK/PhJ)F1m0276 2132 32807 41144 1725

Table 4.3: Comparison of biological replicate samples run on MegaMUGA, where N=N depicts
the number of times both samples had an N call at the same SNP, H=H depicts number of times
both samples had an H call at the same SNP, A=A depicts the number of times the pair of samples
had the same allele call (A, T, C, or G) at a particular SNP, and # of Discordant depicts the total
number of SNPs for which the two samples received different genotype calls.
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large database of available probes and making careful design decisions, low-density full-genome

genotyping arrays can be designed that gain insight into the underlying structure of these large

populations. Maximizing the entropy on a per SNP basis allows the array to be maximally

informative genome-wide and give the most population information in the fewest number of

SNPs. Since mouse populations are a popular model organism, a number of arrays have been

designed for use in mouse. However, none of these arrays had the necessary characteristics

needed for use with the Collaborative Cross. To work well for the CC experiment, an array

needed to be cost-effective, highly informative and widely available as this population is being

widely distributed. Therefore, to meet this need, two cost-effective, maximally informative,

widely available full-genome genotyping arrays were designed.

This chapter described the design of two highly informative genotyping arrays for use with

the CC lines as well as other mouse strains. Both arrays attempt to maximize the information

content over a pre-determined number of SNPs. However, MUGA was designed to determine

the amount of residual heterozygosity genome-wide as well as correctly distinguish between

the eight CC founders in all homozygous regions of the genome, while MegaMUGA was de-

signed to not only correctly infer the CC founder ancestry within homozygous regions, but also

within heterozygous regions of the genome. In MUGA, the bin sizes for selecting SNPs was uni-

form by genomic distance, but in MegaMUGA, the bin sizes were determined by using a mouse

recombination map[35] so that the genome is binned into intervals with like-sized number of

recombinations. Both arrays had numerous samples genotyped on them and performance tests

conducted to ensure the accuracy of their genotyping calls. In the next chapter, I will discuss

the type of analysis that can be done by combining the theoretical aspects of marker-assisted

inbreeding as described in Chapter 3 with the genotyping arrays described in this chapter.
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CHAPTER5: MAI IN PRACTICE

This chapter is about using the theory explained in Chapter 3 and the genotyping platforms

introduced in Chapter 4 to apply the MAI theory to real mice. All tools were written primarily

to analyze the Collaborative Cross (CC) mice as described in Chapter 2. However, all mice that

are genotyped on one of the two platforms discussed in Chapter 4 (MUGA or MegaMUGA) can

easily be analyzed with these tools as well. To apply MAI techniques to real mice, I needed

to first obtain haplotype reconstructions of the mice based on the genotyping platforms. These

haplotype reconstructions are then used to perform line quality control analysis, choose breeders,

and simulate matings of our live mice. For lines that met certain thresholds as described in this

chapter, I then merged together haplotype reconstructions of multiple samples within the same

line to predict the final genotypes of these lines. This information is available publically since

the CC lines are now available for distribution.

5.1 Analysis Tools

All analysis tools are available on the UNC Systems Genetics website, although most tools

do require a login to use since not all samples genotyped on MUGA and MegaMUGA are pub-

lically available. All tools are written using a Python web framework tool and will work on any

sample run using either of the genotyping platforms described in Chapter 4.

5.1.1 Haplotype Reconstructions

The genome of an individual from an admixed population is a mosaic of segments inherited

from its ancestors. Mapping populations, in particular, are often derived from a set of inbred



founders where the genome of each individual is a mixture of founder haplotype segments. An-

cestry inference on such an admixed individual refers to the problem of partitioning the indi-

vidual’s genome into haplotype blocks labeled with the contributing ancestor, with or without

a given pedigree. A haplotype reconstruction refers to the most likely representation of this

ancestry mosaic. More specifically, when speaking about the CC or DO mice, a haplotype re-

construction refers to assigning the most likely of the eight founders to each area of the genome.

As you can see in Figure 5.1, eight colors are used to represent the eight founder strains and the

images are colored according to which of the eight founders each part of a developing mouse

lines genome is most likely inherited. Each founder is assigned a color and these colors are used

consistently throughout all analysis done on the CC or DO mice. Figure 5.1 is depicting the

mouse genome and shows that mice have 19 autosomes, mitochondria, and since this sample is a

male, there is one copy of Chromosome X and one copy of Chromosome Y. If this sample were

female, one would see two copies of X and no Y.

There are numerous methods for inferring ancestor mosaics when given the genotypes of

an individual and a set of ancestral haplotypes. Such methods generally rely on bialleic SNP

genotype calls obtained from genotype calling algorithms that classify each marker as belonging

to one of four states (reference allele, alternate allele, heterozygous, or no call) based on probe

hybridization intensity signals. In humans, mapping ancestry is an essential step in admixture

mapping, and methods such as HAPMIX [46], HAPAA [54], and LAMP [51] use HMM-based

methods to infer the most likely ancestral blocks for each individual. However, most of these

methods accept genotypes from calling algorithms as ground truth and seldom discuss the ar-

tifact of calling errors, although LAMP does attempt to improve accuracy by analyzing sliding

windows and taking a majority vote. Algorithms for inferring ancestry in model organisms with

known ancestors have also been proposed, such as HAPPY [38], a package for QTL mapping

designed for outbred crosses. Methods for ancestry inference in recombinant inbred strains in-

clude two designed for the Collaborative Cross [36, 48]. GAIN [36], which was designed with
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the CC in mind, is an HMM-based algorithm that uses knowledge of the pedigree to efficiently

infer ancestry probabilities. One assumption of GAIN and other existing methods is the use of

high density genotypes. SNPs from high density arrays are often heavily filtered based on non-

performing markers or questionable genotype calls. However, studies using low density arrays

do not have the luxury of filtering out a significant percentage of SNPs and keeping only reliable

genotype calls. Therefore, Fu et al. [25] developed a method for inferring ancestry without first

converting the probe intensity data into genotype calls. This method works by minimizing the

intensity difference between a target individual and one or more of its ancestors. By using the

probe intensities directly, rather than first converting the intensities into genotype calls, there is

less information loss and therefore less errors produced from incorrect genotype calls[25].

Since the haplotype reconstructions used in this work were derived mainly from low-density

genotyping arrays (MUGA and MegaMUGA), the majority of the haplotype reconstructions

were computed using the last method by Fu et al. However, any of the above mentioned methods

could be used to create the haplotype reconstructions that were used as input for the tools in this

chapter.

5.1.2 Line Quality Control

For MUGA samples, I ran standard quality controls on all lines before the genotypes were

used for any other analysis. For all samples run on MegaMUGA, it is highly recommended

that individual scientists run the following quality control tools for their samples before using

the other analysis tools. There are a number of different types of errors that may have occurred

including incorrect labeling of the samples when genotyped, insufficient DNA present at time

of genotyping, or breeding errors resulting in either an under/over-abundance of one or more

founders DNA within a sample or a high number of shared recombinations between samples in

different CC lines. During the earlier stages of the CC breeding, 458 CC samples were genotyped

using MUGA and the following quality control tools were run on those samples. Therefore,
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Figure 5.1: Haplotype reconstruction of a CC mouse sample.
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Figure 5.2: Quality Control Report screenshot.

breeding errors have been ruled out and lines have been culled if any of these errors were found.

As a result, the statistics table and shared recombination tools are less likely to find breeding

errors within the extant CC lines and more likely to be used to determine characteristics about

any mouse genotyped on one of our genotyping platforms.

Quality Control (QC) Report

The first quality control tool that should be run on all samples simply counts the number

of no calls, heterozygous calls, and Y chromosome good calls. While all other tools in this

chapter assume that haplotype reconstructions have already been computed, this tool uses the

genotype calls that come directly from the Illumina calling software. This test should be run on

all samples to determine if any errors occurred during the genotyping process. A good quality

sample should have fewer than 2000 “no call” genotypes, but samples with fewer than 4000 might

still be usable depending on the genetic makeup of the sample. For example, mice derived from

classical laboratory mouse strains should have fewer “no calls” than a wild caught specimen.

Figure 5.2 shows a screenshot of some inbred and F1 samples run through the QC Report.

An inbred sample should have fewer than 1000 heterozygous genotypes. Remember, that

these calls probably do not really represent heterozygosity in an inbred sample, but are most
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likely due to one of our multiallelic markers, which are not called correctly by Illumina’s soft-

ware. F1 crosses should have from 10,000 to 40,000 Het calls depending on the genetic diversity

between the parentals. A male sample is indicated by 30 or more good calls on Y, whereas

female samples generally have fewer than 10. If a sample does not meet the above criteria,

the sample labels should be rechecked, as well as the sample quality metrics from the Illumina

calling software.

Once a sample has passed the metrics from the QC Report, a haplotype reconstruction is

generated as described above. This haplotype reconstruction is then used as the basis for all

further analysis about the line.

Shared Recombinations

A recombination refers to an area of the genome at which a recombination event must have

occurred. When looking at a haplotype reconstruction, a recombination occurs wherever a color

change is shown and can be described by its genomic location as well as the two founder colors

that flank it. Shared recombination events are defined as those involving the same two strains

in the same proximal-to-distal orientation at the same chromosome position. I determined the

number of shared recombination events in the autosomes between all pairwise combinations

of 458 genotyped CC samples. Events that are fixed in a strain were counted only once. As

expected, most pairs of lines do not share any recombination events (mean 0.0653 ± 0.7552) but

a subset of pairs had a significantly higher rate of shared events as shown in Figure 5.3. All known

related lines have at least three shared events, while not a single pair of independent lines with

three shared recombination events exists, and only 5% of 47,278 pairwise combinations between

independent lines have one or two shared events (Figure 5.3). Using the shared recombination

tool, I identified 99 related CC samples defining 46 sets of related lines. This left 405 indepedent

CC lines.
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Figure 5.3: Distribution of shared recombination events before and after identifying related sam-
ples.

The shared recombination tool allows the user to select a set of samples run on either geno-

typing array and it outputs a table with every pairwise combination of the samples. Because it

computes all pairs, this tool slows down expontentially as more samples are selected. Therefore,

it is recommended that the user choose a small number of samples. The data in the table repre-

sents the total number of recombinations and line segments for each sample, as well as the total

number of shared recombinations for each pair. Each line of the table is a pair of samples.

Statistics Table

For CC and DO lines, the expectation is that all eight founders should be represented in

each line and that the percent contribution from each founder should be approximately equal.

Particularly in early stages of the CC breeding, lines that did not have evidence of all eight
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founders had been subject to some breeding error and were therefore no longer standard CC

lines. Among the 405 independent lines, only 330 have alleles from each of the eight founder

strains present in the autosomes. Based on the simulation of 7 million CC lines, I estimate that

0.05% will have <1% of any given founder. The rate of CC lines missing one or more founders

was significantly higher than the results of the simulation, and I eliminated any line with more

than one founder missing.

The statistics table tool is also useful in determining if a CC or DO sample has an over-

representation of one or more founders. An over-representation of a particular founder may

have biological significance, and could lead to some interesting results when broken down by

chromosomal regions. The statistics table tool allows the user to select a set of samples that

have been previously genotyped and it outputs a table of data that includes the sample name,

the percent contribution of each of the eight founders (columns A-H), the percentage of residual

heterozygosity found within that sample, the number of founders present, and any founders that

are missing or over-represented. A founder is considered to be missing if there is less than 0.32%

contribution from that founder and a founder is considered to be over-represented if there is more

than 24.68% contribution. These numbers represent two standard deviations away from the mean

value expected based on simulations.

Using the results of the statistics table, overall statistics were collected for the CC pop-

ulation, using 350 CC lines that were determined to be unique and independent[17]. It was

found that the eight founder strains alleles were similarly represented when averaged across

the genome of the CC lines, and their contribution varied between 11.02% for CAST/EiJ and

13.52% for 129S1/SvImJ (Table 5.1). Genome-wide statistics of founder contribution were also

collected and it was found that there is little population structure among the extant CC lines,

with few exceptions. In particular, there is a region of Chromosome 2 with a high contribution

from WSB/EiJ, as well as overrepresentation of NZO/HlLtJ on chr 5 and overrepresentation of
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A/J C57BL/6J 129S1/SvImJ NOD/ShiLtJ NZO/HlLtJ CAST/EiJ PWK/PhJ WSB/EiJ
12.38% 13.26% 13.52% 12.68% 12.98% 11.02% 11.13% 13.04%

Table 5.1: Genome-wide CC founder contribution.

WSB/EiJ and 129S1/SvImJ on chr 7. There is also underrepresentation of CAST/EiJ on Chro-

mosome X[17].

5.1.3 Breeder Selection

In the original design of the CC, sibling mating pairs were chosen at random at each gen-

eration by a software package so as not to add any population structure or accidently select for

particular phenotypes. In order to incorporate the MAI techniques discussed in Chapter 3, I

needed to create similar tools that allowed the mouse technicians to choose more compatible

breeding pairs without affecting the overall structure of the inbred lines. Using the tools de-

scribed below allows the user to make informed decisions both about which breeding pair/pairs

to choose as well as the probability that a proposed breeding pair will generate an inbred pup.

These tools use the same metrics and simulator as the experiments discussed in Chapter 3.

Choose Breeders

The choose breeders tool allows the user to select a set of samples and it does a pairwise

comparison of the samples. If the user chooses to “Compare All Pairs”, then all pairs, regardless

of sample sex, are compared. If the user does not check the box, then all females are paired with

all males, but are not compared with other females and males are not compared to other males.

The initial comparison yields a table containing two metrics for each pair (see Figure 5.4). The

first metric tells the user the total residual heterozygosity within the two samples. This residual

heterozygosity metric uses the notion of joint heterozygosity I introduced in Chapter 3, meaning

that it calculates the total genomic distance in which either one sample is not fixed, both samples

are not fixed, or the samples differ from one another within particular regions of the genome
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Figure 5.4: Comparison table created by Choose Breeders tool. The first metric is the total
residual heterozygosity between the sample pair, and the second metric shows the multiplied
probability of becoming inbred in 1 generation.

and divides that distance by the total genomic distance of a mouse. The second metric shows

the multiplied probability of becoming inbred in 1 generation, otherwise known as the weighted

state metric (WSM) that I also introduced in Chapter 3. Ideally a pair will minimize the first

metric and maximize the second metric. These metrics are both shown as a hyperlink for each

pair. When the user clicks on a hyperlink, they are shown an image of the combined haplotype

reconstruction images from both samples, as shown in Figure 5.5. Sample 1 is shown as the top

50%of each chromosome and Sample 2 is the bottom half. This image gives the user a visual of

which regions of the genome might be fixed in the next generation and which regions cannot be

fixed in one generation of inbreeding. Between the image and the metrics, a user can make an

informed decision about which breeding pair would be the best based on all possible breeding

pairs shown.

Simulate Matings

Much like the choose breeders tool, the simulate matings tool allows the user to select a

set of samples for pairwise analysis. However, instead of showing you the combined haplotype

reconstructions of the two parents, it instead runs the simulation software utilized in the Chapter 3

experiments to simulate 10,000 offspring (5,000 female and 5,000 male) from that breeding pair.

It then creates a plot of the distribution of the residual heterozygosity of simulated offspring, as

shown in Figure 5.6. It also shows the combined residual heterozygosity of the breeding pair as

a red line on the plot as a point of comparison. If the residual heterozygosity of the breeders is
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Figure 5.5: Combined haplotype reconstruction images of proposed breeders as created by the
Choose Breeders tool.
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greater than 50% though, it is not shown since the image would need to be skewed to fit both lines

on the plot. If more than 2 samples are selected, the pairwise combination of all females with all

males are simulated and plots for each potential breeding pair are shown. It is recommended that

the user select small numbers of samples when running this tool.

Both the simulate matings and the choose breeders tools can be used to make informed

decisions about which breeding pairs to select as well as to understand the level of residual

heterozygosity that will most likely be present in the next generation of a line.

5.1.4 Compute Union

Once a CC line reaches a certain level of residual heterozygosity, it is considered a dis-

tributable line and made publically available for other scientists to order online. A key step

in determining whether a line has reached distributable or completed status is the identifica-

tion of obligate ancestors in the line of all extant mice or subsets of extant mice with limited

heterozygosity (Figure 5.7). Genotypes from MUGA or MegaMUGA are used for haplotype

reconstruction as described previously[17]. The haplotype reconstructions of the obligate an-

cestors are jointly considered to determine the maximum heterozygosity of a distributable line

(Figure 5.7b). Calculating the joint heterozygosity involves two steps: establishing recombina-

tion breakpoints and determining segregating regions within and between the obligate ancestors

(Figure 5.8). Recombination breakpoints are estimated by the midpoint of any ambiguous region

found by the haplotype reconstruction (these tend to be no longer than 2-3 SNPs). Ambiguous

heterozygous regions within an ancestor begin and end at the closest heterozygous genotype call.

Ambiguous heterozygous regions between ancestors begin and end at the nearest informative

genotype. When genotype calls are consistently inconsistent with the intensity-based founder

assignment[17], I assume that this is a feature of the line’s haplotype and treat the region as

fixed. I then compute the genomic length of all segregating regions divided by the full genomic

length to determine the maximum residual heterozygosity within a line. If lines have reached the
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Figure 5.6: Simulate Matings tool output. Residual heterozygosity fraction of 10,000 simulated
offspring of a given set of breeders (blue line) compared with the combined residual heterozy-
gosity of the breeding pair (red line).
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required thresholds, I generate a special haplotype file for the entire distributable line indicating

regions fixed for a specific CC founder and regions that are still segregating and between which

CC founders they are segregating (Fig 5.7c). All computations are based on Mb distances of

the NCBI m37 version of the mouse assembly. The haplotype assignments for each line can be

visualized (as shown in Fig 5.7c) or downloaded as text files (as shown in Figures 5.8 and 5.9)

from the UNC Systems Genetics Core web site (Figure 5.9).

The genomes of the Collaborative Cross lines are available at http://csbio.unc.edu/CCstatus/.

The menu bar offers links to the CC resource (“CC Mice”) and specific pages for information on

“Available Lines”, “Ordering”, and the “CC Viewer”.

5.2 Conclusion

To implement the MAI techniques described in Chapter 3 on live mice a number of tools

were needed. The first of these tools is a way to receive relatively cheap ( $100/sample) genotype

information about the mice. These genotypes needed to be genome-wide and be able to capture

the vast majority of the residual heterozygosity within a sample. This led to the development

of first MUGA and then MegaMUGA, as described in Chapter 4. Once there was a fast, cost

efficient way to learn about the underlying genomes of the mice in the CC, it was then possible

to build a series of tools on top of these genotyping platforms to facilitate the implementation of

the MAI techniques. Since quality control is very important with any experiment, the first few

tools focus on making sure that samples are labeled correctly, that the array data is good for each

sample, and that the underlying genome of each sample is reasonable for the type of mice that are

being bred. In order to efficiently analyze the mice, it is necessary to first compute a haplotype

reconstruction of each sample. This creates a uniform data structure that can be used in all further

analysis; the haplotype reconstruction data is more efficient to analyze as it describes the data in

terms of founder segments rather than needing to go back to the probe level for each analysis.

This means that instead of using 7,851 different data points for MUGA, and 77,808 data points
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Figure 5.7: a Partial view of the pedigree of the OR3252 CC line. Mice are represented using
standard symbols for human pedigrees. Mice that are present multiple times (because they partic-
ipate in multiple matings) are linked by blue curved lines. Colors represent different generations
of inbreeding. Mice shown at the top of the pedigree with arrowheads are the obligate ancestors
of this line used to determine whether it passes the threshold for distribution (most recent obli-
gate ancestors). b Genome of obligate ancestors based on MUGA genotypes. We use standard
colors and a single-letter code to represent the contribution of the eight CC parental strains [17]
to the genome of the two most recent obligate ancestors. Briefly, A/J, A, yellow; C57BL/6J, B,
gray; 129S1/SvImJ, C, pink; NOD/ShiLtJ, D, dark blue; NZO/H1LtJ, E, light blue; CAST/EiJ,
F, green; PWK/PhJ, G, red; and WSB/EiJ, H, purple. The two autosomes and the corresponding
complement of X chromosomes for each mouse are drawn to illustrate the regions that are fixed
(all four autosomes or three X chromosomes have the same haplotype) or segregating (shown in
boxes). c The genome of the OR3252 line. The figure represents fixed regions as single lines and
segregating regions as double lines of the appropriate colors.
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Figure 5.8: Residual heterozygosity in distributable lines. The figure shows two chromosomes
from line OR3252 (shown in Figure 5.7) to illustrate the identification of segregating regions in
distributable lines. The figure follows the conventions detailed in Figure 5.7, with the top part
of each subheading representing the contribution of the eight CC parental strains to the genome
of the two most recent obligate ancestors and the midsection and lower sections representing
the haplotypes of the line as provided in the CC website as figure or as text, respectively. a
Chromosome 12 illustrates two segregating regions in which one of the most recent ancestors
is homozygous while the other is segregating. The figure also illustrates that in some cases the
most recent obligate ancestors may appear to have slightly different boundaries between parental
contributions. We suggest that investigators rely on the haplotype reconstruction provided in the
text file rather than on visual inspection of most recent ancestors. We expect these discrepancies
to be resolved in the near future with use of MegaMUGA. b Chromosome 1 illustrates a segre-
gating region in which each of the most recent ancestors’ parents was homozygous for a different
parental allele.
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Figure 5.9: The UNC Systems Genetics Core web site. Screenshots of the main pages associated
with the distribution of CC lines are shown. The “Available Lines” tab is highlighted on the left
side of the web site as well as inserts of the pages associated with information on the number,
genome, and characteristics of the available CC lines. Links from the menu take you to the
ordering page and the CC viewer.
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for MegaMUGA, only about 80-120 genomic segments needed to be analyzed and compared.

Once haplotype reconstructions are computed for the samples a user can choose breeders

from all genotyped samples within a line, simulate matings to determine an approximate level

of residual heterozygosity after another generation of inbreeding, compute the union of a set of

samples to determine maximum residual heterozygosity in a line, as well as learn more about the

underlying genomic structure of each sample. These tools allow mouse technicians to utilize the

MAI techniques within the lab with the flexibility necessary to ensure that the selected breeders

are still viable and will create the results that the experiment hoped to achieve.

This chapter described the tools necessary to implement MAI techniques on real mice. As

one might notice, despite the haplotype reconstructions being an integral piece of this framework,

this input does not need to come from any particular algorithm or even from genotyping data.

Haplotype reconstructions simply need to assign the most likely founder call to each genomic

region. As high-throughput sequencing technology becomes more cost efficient, it is plausable

that it may become more cost efficient to sequence the CC mice rather than genotype them.

Therefore, in Chapter 6 I describe a technique for using high-throughput sequencing data to

derive haplotype reconstructions.
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CHAPTER6: HIGH-THROUGHPUT SEQUENCING DATA

High-Throughput Sequencing (HTS) of short reads is rapidly becoming cost competitive

with full-genome genotyping using microarrays. A key difference between HTS and microarray

genotyping is that microarrays sample specific genomic locations, whereas HTS samples the

genome randomly. Categorizing genetic differences in HTS data requires a database of known

sequence variants, while microarray-based genotyping is based on a set of reliable variants that

were selected previously as part of the array’s design. A common application of full-genome

genotyping is to determine the ancestral origin of genomic segments arising from recombination.

In this chapter, I contrast the resolution and accuracy of determining recombination boundaries

using genotyping microarrays with HTS. In addition, I consider the impacts of sequence coverage

and genetic diversity on localizing recombination boundaries.

As discussed in previous chapters, the genomes of the Collaborative Cross (CC)[17] have

been monitored throughout its development. This is being done to ascertain the level of heterozy-

gosity in various developing RILs as well as to decrease the number of generations of inbreeding

required to achieve fully inbred animals[60]. Two different genotyping arrays have been used to

monitor the CC genomes, which were designed specifically to be informative for the CC[64, 17].

As discussed in Chapter 5, for each of these genotyping platforms, algorithms have been de-

signed to assign founders and estimate recombination breakpoints[36, 25]. Versions of these

founder assignment algorithms have been demonstrated to work on a number of different mouse

resources, including the Diversity Outcross (DO) [55] and other outbred populations.

Recently others have considered using HTS technologies to determine ancestral origins[45]

and have also used sparse sequence data for this same analysis[50]. Sequencing data from four

pooled samples were used to establish that the genetic variants and haplotypes of commercial



outbred mouse stocks are largely shared with common laboratory strains[62]. I perform a sim-

ilar analysis with eight-founder CC RILs, which leverages high-throughput sequencing data for

three samples from nearly inbred CC lines (OR867m532, OR1237m224, and OR3067m352) that

have also been previously genotyped on two genotyping platforms (MUGA and MegaMUGA as

described in Chapter 4).

Beissinger et al.[5] addresses determining the necessary read coverage needed to genotype-

by-sequencing in order to perform Quantitative Trait Loci (QTL) mapping. In this chapter, I

perform a similar determination of the read coverage necessary to map recombination break-

points and compare this resolution to that obtained using the genotyping arrays described in

Chapter 4. I do this analysis using the same three CC lines mentioned previously and sampling

the reads to simulate various coverage levels. This chapter validates the accuracy of the hap-

lotype reconstructions described in Chapter 5 and describes a technique for creating haplotype

reconstructions using high-throughput sequencing data.

6.1 Sequence Data

Whole-genome sequencing for three extant CC lines was completed by the Washington Uni-

versity School of Medicine Genome Sequencing and Analysis Center using Illumina sequencing

technology with 30x haploid coverage. DNA was extracted from the spleen of a single male

sample from each of the three extant CC strains. The resulting 100 base pair paired-end se-

quence fragments were aligned to a CC-specific consensus reference genome using Bowtie (v

2.0.5)[33, 32]. The consensus genome was created by inserting the majority allele of the eight CC

founders at all known variant positions into the NCBI37/mm9 mouse genome[15]. The genetic

variants were provided by the Wellcome Trust/Sanger Institute’s Mouse Genome’s Project[30]. I

applied my techniques to these three extant lines since MUGA and MegaMUGA genotypes and

sequencing data existed for all three samples.
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6.2 HMM Algorithm

A Hidden Markov Model (HMM) algorithm is used to determine the founder mosaic for

the three sequenced animals. Since CC animals have eight founders and each loci can be het-

erozygous or homozygous, my HMM has thirty-six possible states (eight inbred and twenty-eight

founder-pair combinations). To help alleviate some of the noise inherent in sequencing data, I

binned the genome into uniform sized genomic windows, so that each bin would contain suffi-

cient evidence to discriminate between thirty-six possibilities using primarily biallelic variants.

I then used a standard Viterbi algorithm to solve for the most likely founder mosaic represented

in the HMM as described below.

6.2.1 Variants

A database of 65 million variants in 17 laboratory mouse strains has recently been produced

by the Wellcome Trust/Sanger Institute[30]. They included the eight Collaborative Cross founder

strains. Of these 65M SNPs, 31M high-confidence SNPs are informative among the eight CC

founders. The majority allele at each of these 31M SNPs was used to construct the consensus

genome used for alignment. I further filtered these down to a subset 29M SNPs such that there

are no unknown genotypes among all eight founders, eliminating any need for imputation.

6.2.2 Emission Probabilities

The aligned reads were then examined at each of these 29M SNP positions and binned using

uniform-sized non-overlapping bins. The bin size is a user specified parameter which should be

set based on the amount of genetic diversity between the founders. Unless otherwise specified, it

was set to 1000bp in this chapter. Within each bin, emission probabilities are computed for each

of the twenty-eight heterozygous founder-pair combinations and the eight inbred founders by

counting the number of variants consistent with each of the thirty-six possible states, as shown

in Figure 6.1. Counts for each of the thirty-six states were converted to a likelihood score based
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on the number of reads supporting each genotype call, and subsequently adjusted to compensate

for the likelihood of the same counts occurring by chance as modeled by a binomial distribution.

A noise model of 1 sequencing error per 100 sequenced bases was assumed, so that the binomial

distribution of a homozygous call is 0.99, while the assumed split for a heterozygous call is

0.495. Three possible probabilities (homozygous for each allele and heterozygous) are calculated

at each SNP based on the number of reads that supports each allele, and applied appropriately

to each bin. The probabilities of all SNPs in a bin were combined, and then the values are

normalized so that the sum of all probabilities in the thirty-six states sum to 1. When there are

no SNPs or no reads present in a bin, the emission probabilities are assumed to be equal for all

thirty-six states.

I also reweighted the informativeness of each bin based on the average number of reads and

the total number of SNPs within each bin modeled as a Poisson distributed random variable, as

shown in the formulas below, where Ravg is the average number of reads in all bins, Rstd is the

standard deviation of reads in all bins, and hR is the number of reads in the current bin. Similarly,

Navg is the average number of SNPs per bin, Nstd is the standard deviation, and hN is the current

bin count of SNPs.

α1 = e
− (hR−Ravg)

2

Rstd (6.1)

α2 = e
− (hN−Navg)

2

Nstd (6.2)

α = min(α1, α2) (6.3)

Ps′ = Ps ∗ α +
1

36
∗ (1− α) (6.4)

This was done so that bins with a large number of reads (typical of highly repetitive regions

of the genome) and bins with a small number of SNPs would not overly influence the solution.

Parameters Ravg, Rdev, Nave and Ndev are based on the reads and SNPs per bin for each given
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Figure 6.1: Calculating the emission probabilites for the HMM is done by first binning the
genome into uniform-sized non-overlapping bins, and was set to 1000bp in this experiment.
Within each bin, emission probabilities are computed for each of the twenty-eight heterozygous
founder-pair combinations and the eight inbred founders by counting the number of variants
consistent with each of the thirty-six possible states. Counts for each of the thirty-six states were
converted to a likelihood score based on the number of reads supporting each genotype call, and
subsequently adjusted to compensate for the likelihood of the same counts occurring by chance
as modeled by a binomial distribution.
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data set.

6.2.3 Transition Probabilities

The transition probabilities for the HMM are estimated based on observed recombinations

seen in previous MUGA haplotype reconstructions for 350 unique, emerging CC lines[61]. There

are four classes of transitions that can occur between states, as shown in Figure 6.3. The most

likely class of transition is that the state remains the same between two adjacent bins. This

is because over a genome of about 2,470 Mb, I observed an average of 100 recombinations

among the 350 genotyped CC samples when founders were assigned using the intensity-based

algorithm described by Fu et al[25]. A similar number of recombinations were found using the

Liu et al[36] algorithm as reported by Fu et al[25]. Another class of transitions occurs when a

recombination on one chromosome generates a heterozygous state, or when a recombination on a

single chromosome causes a transition from one heterozygous state to another. The homozygous

to heterozygous transitions appear in two versions: either the homozygous founder is included

in the heterozygous state (more likely) or the transition from a homozygous to a heterozygous

state involves simultaneous transitions on both chromosomes. The heterozygous to heterozygous

states have two variants as well, such that either 1 or 0 of the founders remain the same between

the two states.

To determine the transition probabilities, I used the observed recombinations from 350 inde-

pendent CC lines with varying levels of residual heterozygosity ranging from 0.21% to 66.96%,

with an average residual heterozygosity of 25.38% [17]. Based on these observed recombina-

tions, I calculated the expected transition probabilities at a specified bin size. I assumed that

100 bins on average should contain a transition, and the rest should maintain the same state be-

tween consecutive bins. Therefore, the probability of remaining the same is (total bins - 100) /

total bins. Of the 100 transitions, I observed that 41.85% of them are between a homozygous
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Figure 6.2: Transition probabilities for the HMM. Based on observed recombinations from 350
independent CC lines, I calculated the expected transition probabilities at a specified bin size. I
assumed that 100 bins on average should contain a transition, and the rest should maintain the
same state between consecutive bins. Therefore, the probability of remaining the same is (total
bins - 100) / total bins (purple self loops). Of the 100 transitions, I observed that 41.85% of them
are between a homozygous state and a heterozygous state that contained the homozygous states
founder (green), 37.14% were between two different homozygous states (black), 17.92% were
between heterozygous states that share a founder(blue), and the remaining 2.89% was between a
homozygous state and a heterozygous state (red) with no shared founder.

state and a heterozygous state that contained the homozygous state’s founder, 37.14% were be-

tween two different homozygous states, 17.92% were between heterozygous states that share a

founder, and the remaining 2.89% was between a homozygous state and a heterozygous state

with no shared founder (Figure 6.2).

6.2.4 Viterbi Solution

I initially assume that all states were equally likely and set the priors to reflect that. The

Viterbi algorithm then proceeds to find the path maximizing the sum of log-likelihoods, thus

computing the most probable sequence of founder assignments. This process is repeated for

each chromosome independently.
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Figure 6.3: There are four classes of transitions that can occur between HMM states. The most
likely transition is to remain the same founder state between two adjacent bins. In inbred animals,
a shared recombination on both chromosomes generates the typical homozygous to homozygous
transition (A). Another class of transitions occurs when a recombination on one chromosome
transitions a homozygous state to heterozygous state (B), or causes a transition from one het-
erozygous state to another (C). Rare heterozygous to heterozygous transitions occur as a result
of recombinations on both chromosomes (D) and are usually due to a recombination hotspot.
Likewise, rare transitions from heterozygous to homozygous states can result from two aligned
but separate recombinations (E).
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6.3 Founder-pair Resolution

To separate the degree to which resolving recombination boundaries depends on sequencing

depth versus sequence similarity between the two sequences on either side of the recombination

event, I developed a pairwise sequence similarity map. Sequence similarity varies throughout the

genome and serves as a fundamental limit in my ability to resolve recombination boundaries. No

amount of additional read coverage can improve the localization of a recombination breakpoint

beyond the resolution determined by a sequence similarity map. To measure the accuracy of a

given recombination boundary estimate, it is necessary to factor in the extent to which genomic

variations exist near the region in question. A sequence similarity map provides such a gauge. It

can also be used to normalize accuracy measures of recombination breakpoint positions.

Sequence similarity maps were constructed between all twenty-eight founder pairs and are

available in Appendix A. Figure 6.4 shows visualizations of three of these sequence similarity

maps. These images depict the number of 1000bp bins that have at least one informative SNP

within each 100Kb bin. The sequence similarity map indicates where in the genome there are

few or no informative SNPs distinguishing a particular founder-pair. The frequency of informa-

tive SNPs in a genomic region places a fundamental limit on the resolution for which a recom-

bination breakpoint can be mapped using sequence information, regardless of read coverage.

The density of informative SNPs varies significantly between founder pairs from the CC. The

three wild-derived CC founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ), include many vari-

ants and result in very few regions of ambiguity (areas with few or no informative SNPs) when

they participate in a founder-pair. However, there is considerable sequence similarity among the

five classical CC founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/H1LtJ)

and therefore there are many regions of ambiguity in founder-pairs involving two classical CC

strains. Figure 6.4 depicts three sequence-similarity maps, one between two classical strains, a

second between a wild-derived strain and a classical strain and a third between two wild-derived

strains. Also shown is the distribution of distances between informative SNPs genome-wide for
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all twenty-eight founder-pairs, which peaks at 512 base pairs, thus justifying my choice of bin

size (i.e. most 1000 base pair bins are likely to include a informative SNP variant between most

founder pairs). The sequence similarity maps also depict regions of the genome where there are

few annotated variants due to lack of sequence complexity, such as the large gaps on chromo-

somes 7, 12, and X. In these regions I would also expect to be limited in capability to resolve

recombination breakpoints. These sequence similarity maps are used to assess the possible local-

ization accuracy of a specific recombination event as determined by experiments with variable

read coverage.

6.4 Breakpoint Mapping of HTS data

I considered the recombination breakpoint mapping accuracy attainable from the full 30x

coverage sequence data. Accuracy depends both on sampling density and the genetic diversity

between the founders surrounding each breakpoint. My HMM solution pools evidence within

regions of a user specified window size (1000 bases for 30X coverage) to infer the most likely

source of the genome within a window. HMM transitions, which are suggestive of a recombina-

tion breakpoint, occur between window boundaries.

6.4.1 Comparison with Refined Breakpoint Solution

The HMM solution at best determines a recombination boundary to the resolution of a

bin (typically 1Kb). In a post process, I utilize all informative SNPs between the most likely

two founders identified on each side of the recombination by the HMM solution to refine the

recombination breakpoints down to the distance between two consecutive informative SNPs.

This becomes more complicated in regions of high sequence similarity, leading to regions where

the resolution of the recombination boundary depends on the pair of founders on each side of the

event. However, in most cases, I was able to determine the two informative SNPs between which

the recombination occurs and these SNP positions are then used to bound the recombination
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Figure 6.4: Sequence similarity maps for three founder-pairs and histogram of spacing between
informative SNPs for all founder-pairs. The red, green, and blue subplots illustrate the percentage
of 1000 base pair bins within a 100 kilobase window for which there is at least 1 informative SNP
distinguishing the founder pair. Because CC founders fall into two categories, classical lab strains
and wild-derived lab strains, there are three possible categories of founder-pair combinations.
WW, shown in blue, occurs when both founders are wild-derived. These founder-pairs typically
have low sequence similarity and many informative variants as seen by the relative density of
the blue plot. LW, shown in green, occurs when one founder is wild-derived and the other
is a classical lab strain. These founder-pairs also typically have many informative SNPs, but
less than WW pairs. LL, shown in red, is an example where both founders are classical lab
strains. These combinations typically have significantly more sequence similarity. As shown in
the red plot there are many 1000 bp bins with no informative SNPs. Regions shown in white on
these three sequence similarity maps indicate areas of the genome that will be difficult to detect
recombinations between these founder-pairs. The stacked histogram plot shows the distance
between all informative SNPs genome wide. It is divided into the 3 founder-pair categories to
illustrate the larger distances between informative SNPS in red founder-pairs, as compared to the
distances between informative SNPs for the blue and green founder-pairs.
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event. Where these informative SNPs are far apart, areas of uncertainty are drawn and I assume

that the founders are Identical-By-State (IBS) within the determined interval.

I refined my HMM estimates by expanding the region surrounding each transition, and then

consider only the informative markers between the two founders identified on each side of the

breakpoint. Generally, there is a clear transition where every marker distal to a boundary marker

is consistent with one founder and every marker proximal to a second boundary marker is con-

sistent with the other founder. For most recombinations, I was able to find two consecutive

informative SNPs that were obviously on different sides of the recombination breakpoint. The

actual breakpoint is most likely to have occurred between these two SNPs. I then found the

distance between each of these flanking informative SNPs and the HMM solution at each recom-

bination for each of the three samples. Figure 6.5 depicts a histogram of these distances for each

recombination.

Next I analyzed the mapping accuracy of the HMM solution relative to the refined informative-

marker solution. For the three samples given, the HMM transition occurred at a median distance

of 527 base pairs from the midpoint of the surrounding informative markers, with the first quar-

tile falling 284 base pairs from the median, and the third quartile falling 899 base pairs from the

median. A summary histogram of the distance of my HMM solution from the refined solution is

shown in Figure 6.5. This histogram shows that the majority of the breakpoints were actually in

the bin that the HMM transitioned, but there were some instances where there were no informa-

tive SNPs and the breakpoint estimation could not be narrowed down to within 2Mb of the HMM

solution. In 61.8% of the recombinations, the HMM solution fell between the informative SNPs,

while 18.6% transitioned before the informative SNP pair and 19.5% transitioned after. Transi-

tions that occured before the informative SNP pair tended to occur within a median distance of

546 base pairs, while transitions that occurred after, were a median distance of 233 base pairs.

I estimated the precision of the recombination-breakpoint localization using the gap spacing
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Figure 6.5: Histogram of distance between HMM solution and refined recombination breakpoint.
The HMM solution can at best determine a recombination breakpoint to the resolution of a bin,
which in this case is 1Kb. In a post process, I further refine these breakpoints by searching
for informative SNPs within the region of the transitions and determining between which two
consecutive SNPs the breakpoint actually occurs. I calculate the distance between each of these
SNPs and the HMM solution and plot a histogram of the frequency at which each distance occurs.
The high peak at 1Kb and the large number of distances less than 1Kb indicate that the HMM
solution is typically within the range of the informative SNPS.
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Figure 6.6: Depiction of all informative SNPs between A/J and NOD/ShiLtJ on Chromosome 13
from 101.5Mb to 104.0Mb. Informative SNPs are shown in cyan and arrows are used to depict
the beginning and end of the ambiguous region between these two strains, since there are no
informative markers between 101.9Mb and 103.5Mb.

between the two informative markers of the refined solution. Over the 220 detected recombina-

tions, I was able to localize each to a median region of 1,022 bases with the first quartile falling

within 749 bases of the median, and the third quartile falling within 26,412bp of the median. The

closest that a recombination breakpoint was determined was 5bp between strains NZO/H1LtJ and

PWK/PhJ on Chromosome 1 around 29Mb in sample OR867m532. The poorest precision that

I could assign an observed breakpoint was to 1,623,010 bases between A/J and NOD/ShiLtJ

on Chromosome 13 between 101.9Mb and 103.5Mb. This poor mapping is consistent with the

sequence similarity map for A/J and NOD/ShiLtJ [65], as is shown in Figure 6.6, where all infor-

mative SNPs between A/J and NOD/ShiLtJ are shown in cyan and arrows depict the start and end

of this ambiguous region. A summary histogram of distance between recombination breakpoint

informative SNPs is shown in Figure 6.7.

Throughout the rest of the analysis I use the full-coverage HTS solution with refined break-

points as the standard with which to evaluate alternative genotyping approaches and lower-

coverage solutions.

6.4.2 Comparison to Genotype Solutions

Next I compared the recombination breakpoints determined from the whole-genome se-

quence data to the breakpoints estimated from the 7K MUGA and 77K MegaMUGA genotyping

platforms. Given the relatively low sampling density of microarray based genotyping when
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Figure 6.7: Histogram of distance between informative SNPS in the refined breakpoint solu-
tion. Starting from each HMM transition, I found the two consecutive SNPs informative for the
different founders on each side of the breakpoint as determined by maximum likelihood founder-
pair. The separation between these informative SNPs was used to compute the histogram shown.
I consider the true recombination breakpoint to have occurred somewhere between these two
SNPs. This indicates that the precision of recombination breakpoint mapping varies from a few
bases to over a megabase in dense read coverage.
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Number of Intervals Concordance with HTS
Sample HTS MUGA MegaMUGA MUGA MegaMUGA

OR867m532 117 108 117 95.56 98.12
OR1237m224 116 102 115 95.97 98.47
OR3067m352 112 102 112 96.76 98.93

Table 6.1: Comparison of HTS to Genotype Solutions, showing both the number of intervals
found using each algorithm as well as the concordance between the HTS solution and the geno-
typing solutions. The concordance is measured such that at every base pair in the genome, I find
the total number of base pairs where the genotyping solution is the same as the HTS solution
divided by the total number of base pairs genome wide.

compared to whole-genome sequencing, it is possible that some small genomic intervals (re-

gions between two recombination breakpoints attributable to a single founder) can be missed en-

tirely. The size of the minimum detectable genomic intervals was a design consideration for both

MUGA and MegaMUGA. MUGA was designed to detect haploid founder intervals larger than

1Mb on average, whereas MegaMUGA was designed to detect both homozygous haploid or het-

erozygous diploid intervals larger than 160Kb on average. For the three samples, OR867m532,

OR1237m224, and OR3067m352, MegaMUGA missed 1, 2, and 0 small genomic regions re-

spectively. On OR867m532, MegaMUGA missed a 106K heterozygous region on Chromosome

8 from 19.68Kb - 19.79Kb, while on OR1237m224, it missed a 102Kb heterozygous region on

Chromosome 8 from 19.68Kb-19.79Kb, and a 394Kb heterozygous region on Chromosome 11

from 97.50Kb-97.89Kb. On OR3067m352, there were no missing regions on the autosomes.

The two missing heterozygous regions on Chromosome 8 of OR867m532 and OR1237m224 are

in the same range, and examination of the sequence similarity maps shows that this region is

adjacent to an area of very few informative SNPs for all founder-pairs (see Figure 6.4). MUGA

solutions for the three samples tended to miss 7-11 intervals ranging in size from 102Kb - 3.1Mb.

A second aspect of recombination breakpoint accuracy is whether the two sequences on ei-

ther side of the recombination breakpoint are consistent with the HTS predictions. MegaMUGA

chose a different founder-pair in 2-3 intervals per sample and also had about 0-2 false positives
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(extra recombinations) per solution. The extra recombinations all occurred at the ends of chro-

mosomes however, which is most likely explained by the high number of extra SNPs placed

at the end of each chromosome on MegaMUGA. Since these extra intervals are very small, it

is possible that one or two SNPs created the false recombination. MUGA results had only 1

false positive total among the three samples and it occurred at the beginning of a chromosome.

MUGA also only chose a different founder-pair in two instances total for the three samples. On

both MegaMUGA and MUGA, the regions with different founder-pair calls were in areas of high

sequence identity between the HTS solution and the genotyping array solution.

The final aspect of comparison is the breakpoint accuracy, which applies only to genomic

intervals that are both detected and whose genomic intervals have founders consistent with the

whole-genome sequence solution on both sides. On average, MegaMUGA localized the recom-

bination breakpoint to within 161Kb-320Kb while MUGA’s breakpoints were within 820Kb-

870Kb. Based on the resolution of the genotyping arrays, one would expect MUGA to be able to

refine breakpoints to within 1Mb of the actual location and MegaMUGA to be within 160Kb on

average. MUGA performed slightly better than anticipated on average, while MegaMUGA is not

quite as good as expected at this point, but it is still 3 to 5 times more accurate than the MUGA

platform it replaced. A comparison of the founder solutions for each of the three CC samples is

shown in Figures 6.8, 6.9, 6.10 and Table 6.1. In Table 6.1, the concordance between the HTS

solution and the genotype solution is measured such that for every base pair in the genome, I find

the total number of base pairs where the genotyping solution is the same as the HTS solution

divided by the total number of base pairs genome wide. Where one solution is found to be inbred

and the other is heterozygous but includes the inbred solution, I consider this to be half right, and

count it accordingly.
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Figure 6.8: Comparison of HTS full coverage solutions with MUGA and MegaMUGA solutions
for OR867m532. The HTS solution is shown first, followed by the MUGA solutions and then
MegaMUGA solution and black boxes are drawn on the MUGA and MegaMUGA solutions to
depict differences between each and the HTS solution. For this sample, MUGA missed 8 re-
combinations, had 1 false positive, and chose a different founder 3 times. MegaMUGA missed 1
intervals (causing 2 missed recombinations), had 2 false positives (at the ends of chromosomes),
and chose a different founder once.
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Figure 6.9: Comparison of HTS full coverage solutions with MUGA and MegaMUGA solutions
for OR1237m224. The HTS solution is shown first, followed by the MUGA solutions and then
MegaMUGA solution and black boxes are drawn on the MUGA and MegaMUGA solutions
to depict differences between each and the HTS solution. For this sample, MUGA missed 11
recombinations, had 0 false positives, and chose a different founder twice. MegaMUGA missed
1 heterozygous intervals (causing 2 missed recombinations), had 2 false positives, and chose a
different founder twice.
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Figure 6.10: Comparison of HTS full coverage solutions with MUGA and MegaMUGA solu-
tions for OR3067m352. The HTS solution is shown first, followed by the MUGA solutions
and then MegaMUGA solution and black boxes are drawn on the MUGA and MegaMUGA so-
lutions to depict differences between each and the HTS solution. One difference is that both
MegaMUGA and MUGA mislabeled the pink founder (129S1/SvImJ) as yellow (A/J) on chro-
mosome 11. For this sample, MUGA missed 7 recombinations, had 0 false positives, and chose
a different founder three times. MegaMUGA missed 1 interval (on Chromosome X), had 0 false
positives, and chose a different founder twice.
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6.4.3 Read Coverage Analysis

The most significant variable influencing cost in HTS is the read coverage. In order to use

HTS as a cost-effective alternative to genotyping arrays in the future, one needs to determine the

necessary read coverage to compute haplotype reconstructions that are, at a minimum, equivalent

in resolution to algorithms based on a fixed marker set. The resolution of array-based methods is

a function of marker density, genetic state, and the informativeness of each marker. MUGA was

designed to be able to resolve recombinations to within 1Mb on average when the sample was

nearly inbred. MegaMUGA was designed to resolve recombinations to within 160Kb for samples

that are highly heterozygous. To determine the necessary read coverage, I sampled the reads at

various coverage levels, such that if I wanted 2x coverage, I used about 1/15th of the available

reads. In this way, I sampled the genome at 0.25x, 0.5x, 1x, 4x, and 16x. Since I randomly

decided which reads to keep, each experiment was run 10 times with a different random seed and

the resulting solutions are used in this analysis. For coverage levels of 1x and above, I used the

same size bins (1Kb) as the full coverage solution. However, in order to maintain a similar level

of evidence per bin at the lower coverage levels, I used 2Kb bins for the 0.5x coverage and 4Kb

bins for the 0.25x coverage.

I sampled the HTS reads at various coverage levels (16x, 4x, 1x, 0.5x, and 0.25x) to as-

certain the level of accuracy of the haplotype reconstructions and the recombination breakpoints

at each level. Since reads were chosen randomly, I repeated each coverage level 10 times. I

compared each of the 10 solutions to the full coverage solution to determine the number of times

recombinations were found, missed or when new recombinations not in the full coverage solution

were created (false positives). For all true recombinations, I calculated the average distance from

the recombination breakpoints of the low coverage solutions to the full coverage solution, and

also noted the maximum distance between the full coverage recombination location and the low

coverage solutions. A synopsis of these comparisons can be seen in Table 6.2. For comparison,

similar statistics for the genotyping solutions are also shown in Table 6.2. In addition, Figures
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Sample #Recombs #FP #Missing RecombsAvg. Distance to HTSMax. Distance to HTS
OR867m532 95 - - - -

16.0x 93 0 2 14471.51 824000
4.0x 93 0.2 2.2 19088.47 824000
1.0x 92.6 1.8 4.2 34485.99 869000
0.5x 79.6 9.6 25 46993.45 855000
0.25x 66 18 47 66466.53 998000
MUGA 86 1 8 820717.70 3832590

MegaMUGA 95 2 2 161699.68 1748837
OR1237m224 95 - - - -

16.0x 92.4 0.4 3 7623.21 558000
4.0x 92.6 0.8 3.2 14482.41 558000
1.0x 91.3 3.1 6.8 35263.74 815000
0.5x 78.5 12.1 28.6 49397.94 982000
0.25x 77.3 10.3 28 51197.37 993000
MUGA 81 0 11 827496.10 3204258

MegaMUGA 93 2 2 252832.99 2263917
OR3067m352 90 - - - -

16.0x 88 0.3 2.3 152.93 19000
4.0x 88.2 0.8 2.6 2765.18 753000
1.0x 87.6 4.1 6.5 26921.33 919000
0.5x 77.4 8.5 21.1 45009.11 933000
0.25x 76.6 9.9 23.3 48702.63 990000
MUGA 81 0 7 870420.44 3575568

MegaMUGA 90 0 2 320968.16 3562834

Table 6.2: Statistics for various coverage levels of sequencing and genotyping data for the three
CC samples. I show here the average number of recombinations found among the 10 runs at each
coverage level, as well as the average number of false positive recombinations (recombinations
found that did not occur in the full-coverage solution), and the average number of missing re-
combinations (recombinations that occurred in the full-coverage solution that were not present in
the lower coverage solution). I also show the average distance and the maximum distance from
the lower coverage solution to the full-coverage solution for the recombinations that was found.
For the genotyping solutions (MUGA and MegaMUGA), I include the actual statistics from the
single run done on each platform.

96



6.11, 6.12, and 6.13 show the 3 full-coverage solutions compared to one of their 4x and 0.25x

coverage solutions. At 4x coverage, most solutions were very similar to the 30x baseline and

were between 99.8% and 99.9% concordant with the full coverage solution. At 0.25x coverage

though, the solutions varied more dramatically depending on whether or not the randomly se-

lected reads fell over enough informative SNPs for a founder pair in a particular region. These

solutions ranged from 49.1% to 99.4% concordant with the full coverage solution. In Figures

6.11, 6.12, and 6.13 I have shown a 99.1% concordant 0.25x solution for sample OR867m532,

a 95.6% concordant 0.25x solution for sample OR1237m224, and a 76.8% concordant 0.25x

solution for OR3067m352. Note that the majority of the disconcordant solutions include a het-

erozygous state rather than the expected homozygous state chosen by the full coverage HMM.

Calls of heterozygous states with only a single observation tend to be 50% correct, in that they

always have one founder that matches the correct homozygous state solution. This issue could

be addressed in low coverage cases by considering the degree of inbreeding when establishing

the emission probabilities. I have shown that it is possible to accurately reconstruct founder

mosaics using HTS data at relatively low coverage levels. In order to maintain the ability to dis-

tinguish between homozygous and heterozygous founder-pair states, we found that 1x coverage

was sufficient. Below this level of coverage, the results were highly variable depending if reads

were available at the informative SNPs within the recombination breakpoint areas. Solutions

at 16x were very consistent, with the majority of the solutions choosing the exact same bins at

which to transition for 87.2% of found recombinations. As I lowered the coverage level, the 10

solutions at each coverage level became more inconsistent, as shown in Figure 6.14, although

they still maintained relatively concordant solutions with the full coverage HTS solution. As

shown in Table 6.2, less recombinations are found and of the recombinations found, the distance

from the HTS solution grows. The largest difference in coverage levels comes between 1x and

0.5x, where I start to lose informative SNPs since only about half of the SNPs will have reads,

and the bin size is also doubled in order to maintain a similar level of evidence.
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Figure 6.11: Comparison of HTS full coverage solutions for OR867m532 with 4x and 0.25x
coverage solutions. At 4x coverage, the solution is 99.9% concordant with the full coverage
solution. The 0.25x solutions shown here is 99.1% concordant with the full coverage solution.

Figure 6.12: Comparison of HTS full coverage solutions for OR1237m224 with 4x and 0.25x
coverage solutions. At 4x coverage, the solution is 99.8% concordant with the full coverage
solution. The 0.25x solutions shown here is 95.6% concordant with the full coverage solution.
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Figure 6.13: Comparison of HTS full coverage solutions for OR3067m352 with 4x and 0.25x
coverage solutions. At 4x coverage, the solution is 99.9% concordant with the full coverage
solution. At 0.25x coverage, the solution were more variable, depending on which reads were
selected. The 0.25x solutions shown here is only 76.8% concordant with the full coverage so-
lution. In the 0.25x solution shown, it can be seen that the majority of the disconcordance is
from a heterozygous state being selected rather than the correct homozygous state. In each of
these cases, the 0.25x solution is 50% correct, in that the heterozygous state selected includes
the correct homozygous founder.
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Figure 6.14: Histograms of the delta between the maximum position and minimum position
found at each recombination among the 10 runs at each coverage level. Coverage levels of 16x,
4x, 1x, and 0.25x are shown. One can see that at 16x coverage, almost all 10 solutions were
identical, while at 1x coverage, the solutions tended to be more divergent, although the majority
still found transitions within 1-4 bins of each other.
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6.5 Conclusion

By developing a method for computing founder mosaics from HTS data, users of the CC,

DO and other mouse populations will be able to easily transition from genotyping arrays to HTS.

This means that in the near future when HTS becomes price competitive with genotyping, the

current pipelines for marker-assisted inbreeding[60], detection of residual heterozygosity and

other tools for the CC lines[61] will be able to transition from using genotyping arrays to HTS.

I have shown that even at relatively low coverage levels of 1x, the founder mosaics are just as

reliable, if not more accurate than the current genotyping platform algorithms. This is caused by

the ability to see almost all informative SNPs for each founder-pair genome-wide, rather than a

pre-selected subset of SNPs.

The accuracy with which one can resolve recombination breakpoints in HTS data depends

on both the density of reads and the genetic diversity of the genomes on either side of the break-

point. I have attempted to address both of these factors by combining an HMM data driven

model with a refine process that is based entirely on the known genetic differences between a

given founder pair. In this setting the HMM is responsible for finding a rough estimate of the

breakpoint location, but more importantly it is responsible for identifying the founders on either

side of the breakpoint. I can then refine the location of the breakpoint using informative SNPs

down to the limits of the sequence diversity.

One of the limitations of my algorithm was that I was only able to refine the location of

the breakpoint to within the distance between consecutive informative SNPs. One of my early

design decisions was to filter out any SNP that had a no-call (N) genotype for any of the eight

founders. Therefore, it is possible that I could have further refined some regions using one of

these filtered SNPs if the SNP was informative (and not an N call) between the two founders on

either side of the breakpoint. Another drawback to my approach is that it relies heavily on the

sequence alignment process being done correctly. If the consensus genome to which the HTS

data was aligned was not accurate, it could affect the results of the algorithm.
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CHAPTER7: CONCLUSION AND FUTURE WORK

In this thesis, I have developed a breeding simulator suitable for evaluating various breed-

ing schemes. Through simulations, I was able to test breeding schemes and breeder metrics to

decrease the number of generations it takes to achieve inbred strains as well as engineer user-

specified mice more efficiently. I have also designed two full-genome genotyping platforms

and proven their effectiveness in tracking residual heterozygosity as well as achieving accurate

founder assignments in fixed genomic regions. These two components allow the results of these

genotyping platforms to act as input into the simulator as well as a number of other useful online

tools, so that live mice data can be utilized to make breeding decisions in a timely fashion. I

also explored the use of high-throughput sequencing (HTS) as an alternative to genotyping and

have developed tools to create accurate haplotype reconstructions from HTS data for when this

technology becomes more cost effective than microarrays.

In the following sections, I summarize my results and describe avenues for future investiga-

tion.

7.1 Theoretical Marker-Assisted Techniques

Through simulations, I developed several alternatives to random sib-matings to dramatically

accelerate the creation of RILs by as much as 16 generations. These include the judicious use

of parental backcrossing and the selection of mating pairs based on genotypes from genome-

wide SNPs. Both of these techniques, when applied after the point of peak diversity is reached,

result in a negligible reduction in the number of segments. I also propose an advanced intercross

variant in which MAI is applied during the early generations to increase the number of haplotype

segments for better mapping resolution.



7.1.1 Future Work

While the results of my simulations for standard two-way and eight-way RILs were compa-

rable to those of Broman [8], the recombination model of the simulator could still be improved.

My simulator currently uses a statistical model of recombination similar to that used by Broman,

but instead of using the typical centimorgan measurement for each chromosome, it represents

the length of each chromosome in base pairs and equates the randomly chosen recombination

locations to the base pair location in the genome. This allows the simulator to more easily accept

input from live mouse genotyping data, but it creates a bit of uncertainty since the exact centi-

morgan to base pair mapping is not known. Therefore, a better recombination model would be

to use the actual recombination map of the mouse. This would allow the simulator to be more

accurate in randomly determining recombination spots when simulating breedings and lead to

simulation results that are even more similar to what is seen in the live mouse populations.

7.2 Tools for Analysis of Live Mice

To implement the MAI techniques described in Chapter 3 on live mice a number of tools are

necessary. The first tool that was needed was an inexpensive platform for interrogating mouse

genotypes. Therefore, I codesigned MUGA, a 7,851 SNP genotyping array. This array was

used to genotype CC animals for about 2 years until it was possible to design a new array with

10x more SNPs for the same price. This new array is called MegaMUGA and contains 77,808

SNP markers genome-wide. Using either MUGA or MegaMUGA to learn about the underlying

genomes of the mice in the CC, I then built a series of tools on top of these genotyping plat-

forms to facilitate the implementation of the MAI techniques. These tools were built to ensure

quality control, do analysis of the CC mice, and select breeders throughout the inbreeding pro-

cess. Through the use of these tools, researchers and mouse room techs have been able to make

informed decisions regarding the CC population throughout the inbreeding process.
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7.2.1 Future Work

Since MegaMUGA was designed a few years ago, it is now possible to create a 3rd gener-

ation array that has about 10x more SNPs that MegaMUGA for the same price per sample. By

putting all working SNPs from MegaMUGA on the new array and filling in the additional mark-

ers with SNPs selected similarly to those on MegaMUGA, a 3rd generation genotyping array will

be even more powerful and informative in determining the underlying genomic structure of the

mouse samples. However, as with the development of MegaMUGA, all the tools that have previ-

ously been built to work specifically with MUGA or with MegaMUGA will need to be modified

to work with the new array. This will only affect tools that do not use haplotype reconstructions

as their underlying data structure though, since those tools will continue to work with the new

array seamlessly.

While most of the tools mentioned were built with particular goals in mind, future tools that

would be very helpful to have would be the ability to upload and import genotyping array results

online rather than needing to do this rather time intensive process offline. Another great tool

would allow for the automatic selection of lines that have reached the required homozygosity

thresholds to be considered “Available Lines”. These “Available Lines” are those lines that are

currently being distributed online to other labs for research purposes.

7.3 High-Throughput Sequencing Data

As most of the tools mentioned in this thesis rely heavily on the use of haplotype recon-

structions as input, it was essential to both verify the accuracy of those reconstructions as well

as determine a way to create haplotype reconstructions using HTS data rather than genotyping

array data. I was able to verify that the results from the genotyping array data were very accu-

rate with MUGA achieving about 95%-97% concordance with the full coverage HTS data and

MegaMUGA achieving 98%-99% concordance with the full coverage HTS data. The HTS data

used in this experiment was 30x coverage, meaning that each genomic coordinate is covered by
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an average of 30 reads.

Since all HTS data is genome-wide, the cost is not determined by the number of SNPs,

but rather by the coverage level. Therefore, I compared different coverage levels (16x, 4x, 1x,

0.5x, and 0.25x) and I determined that even at relatively low coverage levels of 1x, the haplotype

reconstructions produced are just as reliable, if not more accurate than the current genotyping

platform algorithms. This is caused by the ability to see almost all informative SNPs for each

founder-pair genome-wide, rather than a pre-selected subset of SNPs.

7.3.1 Future Work

High-throughput sequencing (HTS) data holds a wealth of information and its use has be-

come prevalent in many genome-wide studies. It has been suggested that HTS may enable us

to detect gene conversions and de novo mutations that were previously undetectable by genoty-

ing microarrays. Gene conversions appear as two nearby recombinations, as if they were a tiny

double recombination. Finding gene conversions is very difficult when pooling read data as they

tend to be very small (100bp-3000bp) and the rate at which they occur is currently unknown.

Using the full coverage HMM solutions, I plan to explore each bin for evidence of informative

SNPs for some founder pair similar to how I refine recombination breakpoints. The primary

difference being that when refining breakpoints the founder pair is given by the HMM solution.

In the case of gene conversion all combinations would have to be explored while controlling for

noise. I plan to take advantage of the observation that gene conversions tend to fall near recom-

binations, and in particular are found primarily in recombination hotspots. By looking at both

the recombination regions in the HTS solutions as well as those regions of the genome known to

be hotspots in mouse[42, 43, 10], I can test at what coverage level HTS allows for the discovery

of gene conversions among multi-parental crosses.

As I described in Chapter 6, I used HTS data from three of our CC animals to determine the

accuracy of founder calls in the haplotype reconstructions from microarray data. The sequencing
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data allows one to better see the exact recombination breakpoints as well as better determine

“blind” spots among our eight founders. Sequencing data is a great resource for finding hot

and cold spots of recombination, areas of IBD, and it allows us to utilize non-linear genomes as

not every strain has the exact same genomic length. Therefore, in the future, I plan to use this

sequencing data to build a better recombination model for my simulator.

Once I’ve improved the simulation model and proven its effectiveness using speed congenics

as an example, I will further test it by simulating more complex genomic engineering. One of

these more complex problems could include fixing multiple genes, possibly from more than one

founder strain, to varied backgrounds. Other problems will use the recombinant inbred cross

(RIX) mice that are developed from the CC inbred strains. These RIX mice will be developed to

model outbred human populations. This is done by selecting a random ordering of the CC inbreds

and mating them in a circular fashion, such that each resultant strain is the product of a 2-way

cross between different CC mice. Selecting panels of RIX to achieve certain gene combinations

or maximizing the diversity outside of a particular gene location are some examples of problems

scientists may want to solve to create the best strains for their experiments. Also choosing

the ordering of the CC inbreds for creating the RIX lines has some interesting computational

implications. As this panel will be used as a mapping population, the goal is to maximize the

mapping resolution of it by minimizing the number of shared recombination breakpoints among

the breeding pairs. This resource will create a number of interesting problems, many of which

can be solved using simulations.
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APPENDIXA: SEQUENCE SIMILARITY MAPS

These plots depict the sequence similarity between CC founder pairs. Each map shows the

percentage of 1000 base pair bins within a 100 kilobase window for which there is at least 1

informative SNP distinguishing the founder pair. Because CC founders fall into two categories,

classical lab strains and wild-derived lab strains, there are three possible categories of founder-

pair combinations. WW, shown in blue, occurs when both founders are wild-derived. These

founder-pairs typically have low sequence similarity and many informative variants as seen by

the relative density of the blue plot. LW, shown in green, occurs when one founder is wild-derived

and the other is a classical lab strain. These founder-pairs also typically have many informative

SNPs, but less than WW pairs. LL, shown in red, is an example where both founders are classical

lab strains. These combinations typically have significantly more sequence similarity. As can be

seen by the areas in dark gray, there are many 1000 bp bins with few to no informative SNPs.

Regions shown in dark gray on these sequence similarity maps indicate areas of the genome that

will be difficult to detect recombinations between these founder-pairs

As many different algorithms are used to create founder mosaics of the extant CC lines, it is

necessary to validate the results and determine if a particular region that is segregating between

two founders is an area where recombinations can be closely resolved. If your recombination of

choice falls into a dark gray area of the sequence similarity map between your founder-pair, you

should proceed with caution, as this area has very few segregating SNPs for your founder-pair of

choice.
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Figure A.1: Sequence similarity map for CC founders A (A/J) and B (C57BL/6J).

Figure A.2: Sequence similarity map for CC founders A (A/J) and C(129S1/SvImJ).
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Figure A.3: Sequence similarity map for CC founders A (A/J) and D (NOD/ShiLtJ).

Figure A.4: Sequence similarity map for CC founders A (A/J) and E (NZO/HlLtJ).
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Figure A.5: Sequence similarity map for CC founders A (A/J) and F (CAST/EiJ).

Figure A.6: Sequence similarity map for CC founders A (A/J) and G (PWK/PhJ).
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Figure A.7: Sequence similarity map for CC founders A (A/J) and H (WSB/EiJ).

Figure A.8: Sequence similarity map for CC founders B (C57BL/6J) and C (129S1/SvImJ).
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Figure A.9: Sequence similarity map for CC founders B (C57BL/6J) and D (NOD/ShiLtJ).

Figure A.10: Sequence similarity map for CC founders B (C57BL/6J) and E (NZO/HlLtJ).
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Figure A.11: Sequence similarity map for CC founders B (C57BL/6J) and F (CAST/EiJ).
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Figure A.12: Sequence similarity map for CC founders B (C57BL/6J) and G (PWK/PhJ).

Figure A.13: Sequence similarity map for CC founders B (C57BL/6J) and H (WSB/EiJ).
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Figure A.14: Sequence similarity map for CC founders C (129S1/SvImJ) and D (NOD/ShiLtJ).

Figure A.15: Sequence similarity map for CC founders C (129S1/SvImJ) and E (NZO/HlLtJ).
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Figure A.16: Sequence similarity map for CC founders C (129S1/SvImJ) and F (CAST/EiJ).

Figure A.17: Sequence similarity map for CC founders C (129S1/SvImJ) and G (PWK/PhJ).
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Figure A.18: Sequence similarity map for CC founders C (129S1/SvImJ) and H (WSB/EiJ).

Figure A.19: Sequence similarity map for CC founders D (NOD/ShiLtJ) and E (NZO/HlLtJ).
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Figure A.20: Sequence similarity map for CC founders D (NOD/ShiLtJ) and F (CAST/EiJ).

Figure A.21: Sequence similarity map for CC founders D (NOD/ShiLtJ) and G (PWK/PhJ).
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Figure A.22: Sequence similarity map for CC founders D (NOD/ShiLtJ) and H (WSB/EiJ).

Figure A.23: Sequence similarity map for CC founders E (NZO/HlLtJ) and F (CAST/EiJ).
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Figure A.24: Sequence similarity map for CC founders E (NZO/HlLtJ) and G (PWK/PhJ).

Figure A.25: Sequence similarity map for CC founders E (NZO/HlLtJ) and H (WSB/EiJ).
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Figure A.26: Sequence similarity map for CC founders F (CAST/EiJ) and G (PWK/PhJ).

Figure A.27: Sequence similarity map for CC founders F (CAST/EiJ) and H (WSB/EiJ).
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Figure A.28: Sequence similarity map for CC founders G (PWK/PhJ) and H (WSB/EiJ).
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