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Abstract

MICHAEL R.R. GOOD: Quantized Scalar Fields Under the Influence of Moving
Mirrors and Anisotropic Curved Spacetime.

(Under the direction of Charles R. Evans and Paul R. Anderson.)

This thesis develops three main topics. First, the moving mirror model is exam-

ined where particle and energy creation occur for a minimally coupled, quantized

massless scalar field. New exactly solvable trajectories are introduced such that the

Bogolubov transformation coefficients are found and energy flux is calculated. The

integrated solutions are verified on the past and future hypersurfaces using a split-

mode technique. The time-dependent acceleration responsible for thermal radiation

is revealed.

The second main part involves calculations of spectral time evolution analysis of

those trajectory solutions which are asymptotically inertial and unitary by construc-

tion. Quanta summing, energy flux integration and energy packet summations are

compared and verified.

The third main piece involves renormalization counterterms for the field fluc-

tuations and energy density terms in curved spacetime using a quantized scalar

field with arbitrary mass and general curvature coupling. Adiabatic regularization

is used to generate the counterterms for 〈φ2〉 and the energy density in a general

Bianchi Type I anisotropic spacetime. The results are verified in both the isotropic

and conformal coupling limits.
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Chapter 1

Introduction

It took nearly 22 years after Casimir [1] first ushered in his celebrated effect before

a dynamic version was conceived by Moore [2]. Hawking’s seminal paper [3] moti-

vated the coming realization that the dynamical Casimir effect (DCE) was intimately

related to the physics of black hole radiation. Independent of Moore’s work, DeWitt

noticed that accelerated neutral conductors radiate particles[4]. As a follow up to

DeWitt and Moore’s program, Davies and Fulling[5][6] found that essential features

of quantum field theory in curved spacetime can be explored using a specific exam-

ple of the DCE, without the complication of curved geometry. Thus the first ‘moving

mirror’ trajectory was created and used to uncover the interesting aspects of black

hole formation and evaporation.

The moving mirror model [5],[6] describes the disturbance of a field by an accel-

erated boundary which results in the appearance of energy and particles. The mir-

ror model is closely and fundamentally related to black hole evaporation because

both effects are the result of the amplification of quantum field fluctuations. In the

black hole case this is due to strongly time dependent gravitational fields while in

the mirror case this is due to strongly time dependent accelerations. Acceleration



radiation without a boundary-the Unruh effect[7], has a strong and intimate rele-

vance to these phenomena. As the mirror model matured [8] [9] [10] [11] [12], it

became apparent that accelerating boundaries could be used to understand entropy

production [13],[14], the relationship between particles and energy[15], and thermo-

dynamical paradoxes [16] [17] [18], among other topics. The DCE’s kinship to the

celebrated and experimentally well-confirmed Casimir effect is understood within

the framework of quantum field theory in curved spacetime (see the textbooks:

[4][19][20][21][22][23]). The DCE has the exciting potential to be measured,[24] [25],

while there have been serious proposals that it has already been seen [26]. At the

time of this writing, researchers are claiming to have measured the DCE via a super-

conducting circuit in which a superconducting quantum interference device (SQUID)

effectively acts as a moving mirror [27].

The importance of vacuum polarization and particle creation in the presence of

moving boundaries exemplified by the DCE is highlighted by the attention it has re-

ceived on numerous fronts [28]. Notably, moving mirrors are used because they are

a simple way to understand the gravitational field. In flat spacetime the mirror plays

a role similar to a time-dependent background geometry, distorting field modes like

in the gravitational case. This close kinship has been used to understand the nature

of the black hole evaporation calculation by offering a simpler framework in which

to proceed.

1.1 Davies-Fulling Effect

The simplest theoretical manifestation of the DCE is that of the moving mirror model

in (1+1) dimensional flat spacetime. This was first investigated by Moore in 1970 [2]

and later by DeWitt in 1975 [4]. However, Davies and Fulling were the first to show
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that with the right trajectory a Planck spectrum in analogy with the Planck spec-

trum that Hawking found for black hole evaporation can be obtained. The problem

Davies and Fulling [5][6] laid out was the creation of particles and energy in a two

dimensional quantum theory of a massless scalar field influenced by the motion of

a perfectly reflecting boundary. This model is technically simple and sheds light on

the evaporation process of black holes. Davies and Fulling sought to untangle the lo-

cal, operational association of particles and the formal, global-dependent definition

of particles. One of their goals was to understand and extract an intuitive notion of

particles, and in addition, investigate carefully the connection between particles and

energy in quantum field theory.

Their two major papers are widely credited for the discovery of the moving

mirror-black hole connection[5][6]. Most of the calculational framework for the mov-

ing mirror model resides here and among the major advances of these papers were

the well-known solutions for the stress energy tensor of the quantum field, the quan-

tum field two point function, and the basic conclusion that moving mirrors may

produce energy and particles. They were the first to conclude that late time asymp-

totic behavior (t → ∞) involving infinite acceleration for a boundary trajectory, i.e.

α → ∞, (z → −t − Ae−2κt + B) results in black body radiation in two dimensions

with T = κ/2π.

There are a number of deficiencies of the Davies-Fulling model and trajectory,

despite its pioneering and significant results. The original calculations ignore in-

tegral boundary terms and make use of questionable approximations. Fulling [29]

points out that the hard-to-justify calculations proved to be ‘embarrassing’ but that

the basic conclusions are not changed. Calogeracos [30] [31] [32] has helped to point

out much of the calculational issues involving the Bogolubov coefficients in the orig-

inal Davies-Fulling calculation. While Walker [15] and Grove [33] have followed up
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with detailed treatments intended to correct, polish and expand on the original cal-

culations involving the energy-particle connection, creation and detection. Walker

suggests that the simple formula for summing quanta to find total energy will not

be valid if the trajectory has an asymptote. Grove contends that particle flux is coin-

cident with energy flux in the moving mirror model.

I also revisit the Davies-Fulling trajectory in order to compute correctly the beta

coefficients for the original Davies-Fulling trajectory in Section 3.3.3. This form is a

specific realization of the original late time form and I have confirmed the late-time

trajectory approaches thermal character in the high frequency limit.

One limitation of the Davies-Fulling trajectory, by its very construction, is that

it is a late-time trajectory. Without an early-time form, one cannot compute particle

or energy creation during this interesting region of motion. I have addressed this

limitation of the Davies-Fulling trajectory through the creation of three distinct ‘all-

time’ trajectories. These new trajectories have motions which are exactly known for

early times. These static-start future-horizon mirrors are discussed in Section 3.5

and, in addition, contain new and interesting physical content not associated with

the original Davies-Fullling mirror. For instance, one trajectory has an extended

pulse of positive energy flux during a phase of its motion, (subsection 3.5.2). I have

also solved for the Bogolubov transformation coefficients using no approximations.

Another weakness in the calculations done by Davies and Fulling is that the Bo-

golubov transformation coefficients were computed by only integrating over part of

I+1. Walker and Davies state that asymptotically null trajectories are associated with

“... a crop of problems to do with the completeness of the field modes on I+...” [34].

1I+ is future null infinity with fixed t − x, or v → +∞. I− is past null infinity with fixed t + x or
u → −∞.
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Carlitz and Willey[11] have pointed out a correct way to deal with the complete-

ness, orthogonality and normalization conditions for the modes of a trajectory that

emits a constant energy flux for all times. I have addressed the issue of modes in

the Davies-Fulling model and trajectory motion by use of the correct set of modes to

avoid completeness problems on I+ in conjunction with the three static-start future

horizon mirrors.

Walker and Davies have claimed that the ultimately unphysical character of asymp-

totically null trajectories in their model [34] is motivation for finding asymptotically

inertial trajectories. Calogeracos points out that his results [31] offer a guide to what

can be realistically expected in the case where a mirror does not have its velocity

forever increasing (a spliced trajectory was used to stop the acceleration). There are

several advantages to and motivations for considering asymptotically inertial trajec-

tories, which we will spell out in detail.

In an effort to avoid the inherently unphysical nature of asymptotically null tra-

jectories of the Davies-Fulling model, I have utilized the advantages of asymptoti-

cally inertial trajectories in two, exactly solvable, unspliced (no artificial joining of

distinct trajectories), relativistic mirror motions in Chapter 3. These mirror trajecto-

ries are also introduced in order to investigate the dynamical nature of the onset of

particle and energy creation. In particular we emphasize that there is finite energy

production with these trajectories. These trajectories have made it possible to obtain

time dependent spectra using wavepacket localization of the Bogolubov coefficients

as discussed in Section 1.4.
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1.2 Walker-Davies and Carlitz-Willey Trajectories

A trajectory which has received little attention, but nevertheless is of significant in-

terest was presented by Walker and Davies in 1982.[34] They consider a mirror trajec-

tory that is asymptotically inertial (static in fact) in the far past and future. The main

results are a finite, exactly-known total energy, and finite particle creation count, 〈N〉

(which is not exactly known). This is the first and only asymptotically inertial mirror

trajectory that we know of in the literature. We distinguish the static future motion

of the mirror by calling mirrors of this type, Future Asymptotically Static Trajecto-

ries, (FAST). It is also the first and only finite energy result from a non-spliced mirror

trajectory. With this FAST mirror, Walker and Davies avoid late time approximations

and problems with completeness of the field modes on the future null surface.

There are a few disadvantages, however, in using the Walker-Davies trajectory.

The trajectory function z(t), which is important for calculating the acceleration and

the ray-tracing function, is unknown. The transcendental inversion necessary to find

this form is hard to obtain analytically. This complexity makes it difficult to compute

energy flux or total energy in the standard way.

If one looks at Figure 2 of [34], one notices there is a period in which the mirror

emits a negative flux of energy. This raises the interesting question of whether or

not the total energy emitted by this mirror as computed by integrating over the en-

ergy flux emitted is the same as the total energy by summing the energies of all the

particles created. I have confirmed that this is true, as was originally formulated in

general by Walker [15]. The Walker-Davies Bogolubov transformation coefficients

are consistent with the total energy result, which is confirmed by explicitly perform-

ing the summation of particle energies. This is done by verifying the consistency of

the beta coefficients and total energy of the solution in Walker-Davies through the

use of numerically summing quanta. Confirmation of the original Walker-Davies
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Bogolubov coefficients and total energy are given in Chapter 3, Section 3.4.

I have introduced two new trajectories that are also asymptotically inertial and

instead of asymptotically static like the Walker-Davies mirror, have asymptotically

constant velocities. One mirror reaches an arbitrary constant velocity (between zero

and the speed of light) and the other asymptotically approaches the speed of light.

Called COnstant-velocity ASymptotic Trajectories (COAST mirrors), these new so-

lutions, as opposed to the FAST Walker-Davies solution, are expressed as functions

of z(t) rather than t(z) and consequently, a closed form for the proper acceleration

is given. A form for one of the trajectory’s ray-tracing function has been found that

allows energy flux to be calculated.

Carlitz and Willey’s 1987 seminal paper [11] computes particle creation for a mir-

ror trajectory that emits a constant energy flux. The result is a thermal spectrum for

all times. Their solution is important because they compute the Bogolubov trans-

formation coefficients exactly and analytically. They use a combination of null co-

ordinate integrals and a left-right construction for the past null integration surface.

Their result, which most mimics an eternal black hole that thermally evaporates for

all times at a fixed temperature, does not utilize any late time approximations. They

went further and studied stimulated emission, stress-energy tensor correlations, and

the density matrix.

The biggest shortcoming in the Carlitz-Willey paper is that there is no expression

for the trajectory itself. Despite finding the Bogolubov transformation coefficients,

no analytic is given for finding the proper acceleration of the trajectory. It would be

useful to understand analytically the time-dependence of the Carlitz-Willey trajec-

tory. I have solved for the explicit form of their trajectory and the time-dependent

proper acceleration that results in a constant energy flux. I also have provided the
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transcendental inversion necessary to obtain the ray-tracing function from the tra-

jectory function.

The Carlitz-Willey trajectory has constant particle emission or energy flux. I have

expanded on their model by the introduction of mirror trajectories, which are in

some ways similar, but for which the early-time particle production rate is dynamic.

In addition Carlitz and Willey solved for the eternal Planck spectrum using the den-

sity matrix formulation. I add to their valuable contribution by using a method of

particle localization which removes occupation number divergences. I have found

that spectrum is Planckian. This is discussed in Chapter 4.

1.3 Asymptotically Inertial Mirrors

Although the advantages of asymptotically inertial trajectories were foreseen, ([35],

[32], [13]) no examples besides the Walker-Davies mirror exist. Wilczek has qualita-

tively considered the class of mirror trajectories depicted in Figure 3.1 and Section

3.4, where the mirrors eventually stop accelerating. He noted that as all rays even-

tually intersect the mirror, and get reflected to I+, a pure state is obtained on I+.

The mirror can emit radiation that can look thermal for an arbitrarily long time.

When the mirror stops accelerating there is no longer any radiation emitted and

the transition to zero acceleration can be done smoothly, so that only a small burst

accompanies it. The burst can have a magnitude that is essentially independent of

the length of the interval over which thermal radiation has occurred. He emphasizes

that this burst (which is negative energy flux emission) is the price paid for quantum

purity.[35]
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Calogerocos in 2001 [32] makes the clear distinction between type (1) (asymp-

totically inertial) trajectories where the mirror ends its acceleration and type (2) (di-

verging acceleration) mirrors where acceleration reaches an infinite singularity in

the future. There are two subsets of type (1) mirrors, COnstant-velocity ASymp-

totic Trajectories (COAST mirrors), and asymptotically zero velocity trajectories, Fu-

ture Asymptotically Static Mirrors (FAST mirrors). COAST mirrors end their mo-

tion with a constant, coasting velocity, ξ, while FAST mirrors come to a complete

stop. Calogeracos has also pointed out the many advantages in considering asymp-

totically inertial trajectories, type (1) mirrors: First, acceleration continuing for an

infinite time leads to serious problems (mathematical singularities, infinite energy

that has to be imparted to the mirror, etc). Second, the mirrors rest frame eventually

(after acceleration stops) becomes an inertial frame and the standard description in

terms of IN and OUT states is possible. A freedom to choose either the lab frame or

the mirrors rest frame to describe emitted photons is possible. Third, one can make

unambiguous statements pertaining to particle production at times t → ±∞ when

the acceleration vanishes.[32]

COAST mirrors, as a subset of type (1) trajectories, model black hole evapora-

tion which does not ‘finalize’. Although particle production eventually stops, and

positive frequencies at late times are indeed reflected into positive frequencies at

early times, the frequencies of the modes are highly redshifted. Thus, as pointed out

by Wilczek [35], at late times a left over remnant will exist that delays particles for a

long time and saps their energy, causing these highly redshifted late time modes. For

FAST mirrors, (asymptotically static), particles emitted at late times, which intersect

the mirror during its second period of rest, behave as if passing through the origin

of empty space in the analogue black hole problem. Thus FAST mirror trajectories

provide a model for a black hole that completely evaporates.[35] Both the COAST
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and FAST mirror constructions incorporate pure initial states that evolve into a pure

final states.

Asymptotically inertial mirrors echo a backreaction-type effect. In black hole

evaporation, the total energy radiated is given by integrating the luminosity over

the entire radiation time. The importance of backreaction effects of radiated black

hole energy on the background geometry is justified by the necessity to have a finite

integrated energy emitted per unit time (luminosity ∼ erg/s). Ignore backreaction

and the black hole will emit forever giving a divergent total energy result. This

situation is in contradiction with the finite amount of energy contained inside the

black hole. Therefore, the primary consequence of backreaction should be to provide

a finite result for the total radiated energy. Modification of the exponential trajectory

in the moving mirror model to obtain an asymptotically inertial motion in the past

and future has some similarities with black hole radiation backreaction. Unitary by

construction, because all the incident waves from I−R are reflected to I+R , this class

of trajectories has 〈Tuu〉 → 0 in the asymptotic past and future. It is known that

an interesting feature of this class of mirrors is that their emitted flux is not always

positive [23].

I have introduced the first asymptotic constant velocity trajectories for which

the Bogolubov transformation coefficients have been computed analytically and ex-

actly. These trajectories are smooth, continuous and therefore no δ-function pulses

are emitted. These COAST mirrors (two of them) are discussed in Section 3.4. I have

computed the COAST mirror’s energies, their Bogolubov coefficients and other rev-

elant quantities. I find that for an extended part of their trajectories, negative energy

flux is emitted. These COAST mirror radiate a total positive finite amount of energy.

I present time evolved spectral analyses of the radiation emitted by the mirrors fol-

lowing these trajectories in Chapter 4.
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1.4 Wavepacket Quantization

Wavepackets were used by Hawking in his original calculation of black hole radi-

ation [3]. Wave packetization for the moving mirror model was used to compute

a finite spectrum in [36]. The localization procedure utilized there has a ‘double’

packetization approach on both mode frequencies, in and out. The meaning of

these mode frequencies is clarified in Chapter 2. Avoiding the infinite expression

for the total number of particles obtained by the standard monochromatic modes,

the wavepacket quantization technique was applied to the originally [5] calculated

Davies-Fulling Bogolubov coefficients. Regardless of the fact that these beta Bogol-

ubov coefficients were obtained with obscure approximations[29], the divergences

are eliminated using wavepackets. As a method for localizing the global Bogolubov

coefficients or localizing the modes, wave packetization has been fruitful for obtain-

ing finite results [23].

However, there are shortcomings in the approaches so far for wavepacket lo-

calization to the moving mirror model. Wavepackets were applied to the those

transformation coefficients which utilized obscure approximations in the case of the

late-time Davies-Fulling trajectory [5]. There has been no association of wavepack-

ets with a localized energy production. This is important for confirming the parti-

cle/energy connection. So far the use of wavepackets has been strictly limited in its

application to the Davies-Fulling late-time form. Wavepackets have not been (nu-

merically or analytically) utilized to localize energy or particles at early times in the

moving mirror model. There has been no effort to confirm total energy production

from a moving mirror using localization of particles, as well as no effort to confirm

the Planck spectrum for the constant flux trajectory.

I apply wave packet localization introduced in Section 4.1 to the COAST mirrors
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introduced in Chapter 3 to time evolve their spectra. I apply wavepackets to the cor-

rect transformation coefficients in the asymptotically inertial mirror cases and I use

wavepackets to confirm total energy production. I extend the concept of wavepack-

ets to an energy packet. I have found a relationship between applying packetization

to either modes or Bogolubov transformation coefficients. The first derivation of the

Planck spectrum using wavepackets for the constant flux mirror (Carlitz and Willey

trajectory) is given. This work is discussed in Chapter 4.

1.5 Adiabatic Regularization in Bianchi Type I

Quantum effects may be of practical importance to cosmology in the context of a

hypothetical anisotropic early stage of the universe. It has been shown that particle

production can dissipate anisotropy [37] [38] [39] [40] [41] [42]. One way to compute

the dissipation of anisotropy due to particle production is to solve the semiclassical

backreaction equations. This requires the use of a renormalized energy-momentum

tensor.

There are a number of different schemes to regularize and renormalize the for-

mally divergent stress tensor and other quantities that involve squares or higher

powers of fields or their derivatives evaluated at a single point of spacetime. There

is dimensional regularization, zeta-function regularization, point-splitting regular-

ization and adiabatic regularization [19]. In this thesis we employ zeta-function reg-

ularization for the static Casimir effect in Chapter 2 and adiabatic regularization in

Chapter 5. Adiabatic regularization is arguably one of the the most efficient methods

for calculating the finite expectation values of quadratic field quantities, rather than

just the form of the divergences. It involves a mode-by-mode subtraction technique

and is useful for numerical calculations.
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Adiabatic regularization was first introduced by Parker [43] in an attempt to un-

derstand particle number expectation values, it was then later generalized and ap-

plied to the stress tensor in several other papers: Fulling-Parker (1974) [44], Fulling-

Parker-Hu (1974)[45], Parker-Fulling (1974)[46]. Birrell [47] and Anderson-Parker

[48] showed that adiabatic regularization gives the same results as point-splitting in

homogeneous and isotropic spacetimes.

The basic approach to stress tensor renormalization involves expectation values

of Tµν which are calculated from formally divergent mode sums. An adiabatic vac-

uum state, |0A〉, is defined using a WKB approximation. This characterizes the high

frequency behavior of the quantum field and since the divergences in the original

mode sum come from the high-frequency modes, they are the same divergences in

〈0A|Tµν |0A〉. The original mode sum can be renormalized by subtracting it from the

quantity 〈0A|Tµν |0A〉 calculated to adiabatic order four. Applying this subtraction to

the integrand of the original mode sum leaves finite integrals. The result determines

the renormalized expectation value and is conserved. Fulling-Parker-Hu (FPH) [45]

calculated the energy-momentum tensor for a conformally coupled scalar field in an

arbitrary Bianchi Type I anisotropic metric. They used adiabatic regularization to

find the divergent counterterms for the energy density.

I have computed the renormalization counterterms for the field fluctuations, 〈φ2〉,

in an arbitrary Bianchi Type I anisotropic spacetime. In the isotropic limit I have

checked my results by comparing with those of Ref. [49]. In addition, this calcula-

tion has been done with arbitrary mass and general coupling. I have computed an

analytical approximation for 〈φ2〉 in a limited class of anisotropic metrics. This calcu-

lation is verified in the isotropic limit in accordance with [49]. I have also computed

the renormalization counterterms for the energy density of a scalar field with gen-

eral coupling and arbitrary mass. I have checked in the limit of conformal coupling
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that my results agree with those of FPH. I have also checked that for general cou-

pling, my expressions agree with Bunch in the isotropic limit [50]. These calculations

are presented in Chapter 5.
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Chapter 2

Elements of Quantum Field Theory

2.1 Background: Quantum Field Theory

2.1.1 Massless Scalar Field in (1+1) Dimensional Flat Spacetime

In order to offer the relevant background for our subsequent discussion of the mov-

ing mirror model and cosmological particle creation, this section presents some ba-

sics of quantum field theory. Particular emphasis is on the normalization conven-

tions and (1+1) dimensions. This treatment does not include the imposition of the

mirror or curved space, but nevertheless remains relevant for future reference. Those

readers who are adequately familiar with quantum field theory in Minkowski space

will still gain utility from the explicit and simplified treatment of the formulas rele-

vant for the free, massless, real, scalar field in (1+1) dimensions.

The simplest, non-trivial quantum field theory that can be constructed is that of

a massless scalar field with Lagrangian

L =
1

2
(∂µψ)

2 =
1

2
ηµν∂µψ∂νψ , (2.1)



where ηµν is the Minkowski metric,

ηµν =




1 0

0 −1


 , (2.2)

in (1+1) dimensions. After varying the action, S =
∫
Ld2x, and setting δS = 0, the

field equation is derived from the Euler-Lagrange equations,

∂µ
∂L

∂(∂µψ)
=
∂L
∂ψ

, (2.3)

and is shown to be in this case

�ψ = ∂2t ψ − ∂2xψ = 0 . (2.4)

This is the massless Klein-Gordon field equation in (1+1) dimensions. Varying the

action with respect to the metric, gives the energy-momentum-stress tensor (stress

tensor)

Tµν = (∂µψ)(∂νψ)−
1

2
ηµνη

λδ(∂λψ)(∂δψ) . (2.5)

Explicitly, one gets for the energy density, Ttt = 1
2
[(∂tψ)

2 + (∂xψ)
2], and the other

components of the energy-momentum tensor

Tµν =
1

2




(∂tψ)
2 + (∂xψ)

2 ∂tψ∂xψ + ∂xψ∂tψ

∂tψ∂xψ + ∂xψ∂tψ (∂tψ)
2 + (∂xψ)

2


 . (2.6)

When the field is expanded in terms of the field modes, φω,

ψ =

∫ ∞

−∞
dk [akφω + a†kφ

∗
ω] , (2.7)
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where a and a† are annihilation and creation operators, respectively. The modes are

orthogonal and normalized according to the (1+1) dimensional scalar product

(φ1, φ2) = −i
∫

t

dx [φ1∂tφ
∗
2 − φ∗

2∂tφ1] ≡ i

∫ ∞

−∞
dx φ∗

2

↔
∂ t φ1 = δ(ω1 − ω2) , (2.8)

where we have introduced the
↔
∂ notation for simplicity. Here t denotes a spacelike

hypersurface of simultaneity at instant t. For more on the constant t hypersuface,

see Parker 2009 [20]. The hypersurface is a Cauchy surface. A Cauchy surface is

any subset of spacetime which is intersected by every non-spacelike, causal curve,

exactly once. Quantization proceeds in the canonical way by treating the field as an

operator and imposing equal time commutation relations,

[ψ(t, x), ψ(t, x′)] = [π(t, x), π(t, x′)] = 0 , [ψ(t, x), ψ(t, x′)] = iδ(x− x′) , (2.9)

with π ≡ ∂L
∂(∂tψ)

= ∂tψ. The expansion of the field in terms of modes allows us to

express the commutation relations as,

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 , [ak, a

†
k′ ] = δ(k − k′) . (2.10)

Flat Spacetime Without A Mirror

In flat spacetime with no boundaries (see Fig 2.1), the right moving modes (+k) take

the form of positive and negative frequency solutions, respectively,

φω =
1√
4πω

e−iω(t−x), φ∗
ω =

1√
4πω

eiω(t−x) . (2.11)
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Figure 2.1: Penrose diagram in flat space without a mirror. The arrows indicate left
and right moving field modes.

The left moving modes (−k) with positive and negative frequencies are

φω =
1√
4πω

e−iω(t+x) , φ∗
ω =

1√
4πω

eiω(t+x) . (2.12)

For spacetimes of dimension n, the normalization factor is generalized to [2ω(2π)n−1]−1/2[19].

The terms, ‘positive’ and ‘negative’ above, refer to the fact that applying the operator

Ê → i∂t, gives a positive eigenvalue,

i∂tφω = ωφω , ω > 0 , (2.13)

for the ‘positive’ frequency φω mode, and a negative eigenvalue

i∂tφ
∗
ω = −ωφ∗

ω , ω > 0 , (2.14)
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for the ‘negative’ frequency φ∗
ω mode. Notice that ω ≥ 0 always. Note also that the

dispersion relation, ω = |~k| (E = |~p|), holds because the quanta are massless. As

can be verified, the modes are normalized according to the scalar product, Equation

(2.8).

Null Coordinates

It is often helpful to work in null coordinates, u = t − x, v = t + x where the line

element becomes ds2 = dudv. Then the metric, from ds2 = ηµνdx
µdxν , is

ηµν =
1

2




0 1

1 0


 . (2.15)

The Klein-Gordon field equation then takes the form

∂u∂vψ = 0 . (2.16)

The scalar product is used to normalize the modes. If we choose a right moving set

of solutions, φω ∝ e−iωu, and integrate over the hypersurface taken to be the Cauchy

surface I− = I−
L

⋃ I−
R , then the functions are normalized

i

∫ ∞

−∞
du φ∗

ω′

↔
∂ u φω = δ(ω − ω′) , (2.17)

where the integration is done along I−
L and the integration along I−

R gives no con-

tribution. For left moving modes, φω ∝ e−iωv, the set of mode functions are also

normalized on I−

i

∫ ∞

−∞
dv φ∗

ω′

↔
∂ v φω = δ(ω − ω′) , (2.18)
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where the integration is done along I−
R with no contribution along I−

L . If we instead

chose a future Cauchy surface to perform normalization, I+ = I+
L

⋃
I+
R , then the

right movers are integrated along I+
L , over u, with no contribution from the I+

R side,

(integration over v). The left movers are integrated over I+
R , over v and have no

contribution from the I+
L side (integration over u). See Fig. 2.1.

Simple expressions for the modes in null coordinates will prove useful for com-

puting transformation coefficients between different modes. The positive and nega-

tive frequency modes take the simple right moving forms,

φω =
1√
4πω

e−iωu , φ∗
ω =

1√
4πω

eiωu , (2.19)

and one may also choose the left moving forms

φω =
1√
4πω

e−iωv , φ∗
ω =

1√
4πω

eiωv . (2.20)

In addition, the stress tensor components in null coordinates become

Tµν =




(∂uφω)
2 1

2
∂uφω∂vφw

1
2
∂uφω∂vφw (∂vφω)

2


 . (2.21)

2.1.2 Transformation Coefficients

The first set of modes,

ψ =

∫ ∞

−∞
dk [akφω + a†kφ

∗
ω] , (2.22)

is not the only way to decompose the field. Consider a second set of modes which

are complete and are also used to expand the field,

ψ =

∫ ∞

−∞
dk′ [bk′χω′ + b†k′χ

∗
ω′ ] . (2.23)
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A new vacuum state and a new Fock space are defined through this second set. The

two sets of modes are clearly distinguished by φω and χω′ and will sometimes only

be distinguished by ω or ω′ in the literature (and we will often follow suit). They can

be expanded in terms of each other

φω =

∫ ∞

0

dω′ [α∗
ω′ωχω′ − βω′ωχ

∗
ω′ ] , and (2.24)

χω′ =

∫ ∞

0

dω [αω′ωφω + βω′ωφ
∗
ω] , (2.25)

where normalization must be done to the transformation coefficients.

These transformations are called Bogolubov transformations and the coefficients,

αω′ω and βω′ω are the Bogolubov coefficients which are defined up to an arbitrary

phase factor (unit complex number). We can use whatever definition we like, as in

the end, the number, energy, entropy or any observable will be invariant of the defi-

nition after the modulus of the coefficient is squared. The transformation coefficients

are evaluated as

αω′ω = i

∫ ∞

−∞
dv χ∗

ω′

↔
∂ v φω , (2.26)

βω′ω = i

∫ ∞

−∞
dv χ∗

ω′

↔
∂ v φ

∗
ω . (2.27)

These expressions are for left-moving modes, where the Cauchy surface has been

chosen to be the null past surface. For more on the convention for the Bogolubov

coefficients used by Carlitz and Willey, see [11].

The physical meaning of the Bogolubov coefficients reveals itself by the fact that

as long as β 6= 0, the Fock spaces based on the two choices of modes are different.

In particular, the vacuum state for the φω modes, |0φω〉, is not annihilated by bω′ ,

bω′ |0φω〉 = βω′ω|1φω〉 6= 0 and the expectation value of the number operator, Nω =
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a†ωaω, in the vacuum state of the χω′ modes is non-zero,

〈0χω′
|Nω|0χω′

〉 =
∫ ∞

0

dω′|βω′ω|2 6= 0 . (2.28)

In this case, the vacuum of the χω′ modes contains
∫
dω′|βω′ω|2 particles in the φω

mode.

Different Bogolubov Coefficient Definitions

Birrell and Davies [19] use a different but equivalent definition for the Bogolubov

coefficients. They use

αω′ω = (χω′ , φω) = i

∫ ∞

−∞
dv φ∗

ω

↔
∂ v χω′ , (2.29)

βω′ω = −(χω′ , φ∗
ω) = −i

∫ ∞

−∞
dv φω

↔
∂ v χω′ . (2.30)

The difference only leads to a factor of −i which should not cause confusion. The

difference in definitions is an irrelevant phase factor. Switching from the Birrell and

Davies to Carlitz and Willey definitions is done by, α → α∗ and β → −β∗. We have

found the Carlitz-Willey convention to be more convenient.

2.1.3 The Model

The moving mirror model in (1+1) dimensions consists of a perfectly reflecting bound-

ary in Minkowski space where the massless scalar field φ, described by

(∂2t − ∂2x)φ = 0 , (2.31)
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and is required to vanish at the mirror,

φ|z = 0 . (2.32)

The mirror is assumed to follow some timelike trajectory, x = z(t). There are two

ways of expressing the mode solutions for the field.1

φinω =
i√
4πω

[e−iωv − e−iωp(u)] , or (2.33)

φoutω =
i√
4πω

[e−iωf(v) − e−iωu] . (2.34)

This field behavior results from satisfying both the field equation, Equation (2.31),

and the boundary condition, Equation (2.32). Here

p(u) = 2tu − u , u = tu − z(tu) , (2.35)

f(v) = 2tv − v , v = tv + z(tv) . (2.36)

The procedure for calculating interesting observables, like the energy or particle

number, starts with the choice of an appropriate trajectory, z(t). The definition u =

tu − z(tu) is used to find u(t), inverted to find t(u), and plugged into p(u) = 2tu − u

to find p(u). A similar procedure works for f(v) where one uses v = tv + z(tv)

to find v(t), inverted to find t(v), and plugged into f(v) = 2tv − v to find f(v).

One can also use p−1(u) = f(v). A key feature of these procedures relies on the

ability to solve for the relevant, and often transcendental, function inversions. This

transcendental inversion requirement has made it difficult to find exactly solvable

1If the mirror has a future asymptotically null trajectory to v = vmax then for v > vmax the modes
that do not hit the mirror will have a different form. See for example Carlitz-Willey[11].
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mirror trajectories. The function p(u), commonly called the ray tracing function[51],

characterizes the mirror trajectory and is incorporated in the modes, the two-point

function, the energy flux, and the correlation functions.

Particles via Beta Bogolubov Coefficients

Null Coordinate Beta Integrals

The Bogoliubov beta coefficient integrals are2

βω′ω = i

∫ ∞

−∞
dv φin∗ω′

↔
∂v φ

out∗
ω , (2.37)

βω′ω = i

∫ ∞

−∞
du φin∗ω′

↔
∂u φ

out∗
ω . (2.38)

Using null coordinates while avoiding partial integration, we substitute the modes,

Eqn. (2.33) and Eqn. (2.34), into the above integrals to obtain

βω′ω = (4π
√
ωω′)−1

∫ ∞

−∞
dv eiω

′veiωf(v) (ω′ − ωf ′(v)) , (2.39)

βω′ω = (4π
√
ωω′)−1

∫ ∞

−∞
du eiωueiω

′p(u) (ω′p′(u)− ω) . (2.40)

These integrals are used to solve for the ‘beta’ Bogolubov coefficients. The coeffi-

cients may be computed on both the past and future null surfaces, respectively. Note

that the integrals are taken along their respective surface, simplifying the input of

2These formulas are valid for ‘physical’ mirrors which do not have asymptotically null trajectories.
Those trajectories which start static but proceed with acceleration for infinite time will require an
additional integral for the future surface of the form

∫∞

vmax

dv.
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the modes Eqn’s (2.33) and (2.34). In the presence of a horizon3 the same form of

the field modes will not be integrated over the entire future surface. Carlitz-Willey

utilizes a ‘work-around’ for complete Cauchy surface integration and normaliza-

tion by incorporating a new form for the field modes which are well defined for the

modes that reflect and do not reflect due to horizons. For more on the past and fu-

ture Cauchy surfaces see Fabbri [23] and for the remedy procedure see Carlitz and

Willey [11]. The alpha Bogolubov coefficient may be obtained by a similar pair of

integrals by simply switching the sign on ω. The particle occupation number per

mode ω and ω′ are respectively found by

〈Nω〉 =
∫ ∞

0

|βω′ω|2dω′ , (2.41)

and

〈Nω′〉 =
∫ ∞

0

|βω′ω|2dω . (2.42)

The first equation is the occupation number for the quantity that is often called the

‘out’ particles for the ‘in’ vacuum state. Of course, it is a particle count per mode ω.

The expectation value for the global quantity of total particles created is the double

integral

〈N〉 =
∫ ∞

0

∫ ∞

0

|βω′ω|2dω′dω . (2.43)

This quantity is dimensionless. If acceleration continues forever, the total number

diverges, usually because the particle occupation number, Eqn. (2.41), diverges.

3A horizon in the moving mirror model is a null asymptote made by a diverging acceleration
mirror motion. If a mirror approaches the speed of light, the field modes traveling to the left will
eventually be unable to reflect off of the mirror. As the acceleration diverges, the last null ray that
will be able to reflect off of the mirror forms what is refered to as a horizon.

25



Total Energy from Summing Quanta

If the acceleration does not continue forever, then one may find the total energy

produced by summing the quanta [15],

E =

∫ ∞

0

ω〈Nω〉dω . (2.44)

Energy via Stress Tensor

Energy Flux from p(u), z(tu), or α̇(tu)

The energy flux produced by the mirror is [5]

〈Tuu〉 =
1

24π

[
3

2

(
p′′

p′

)2

− p′′′

p′

]
, (2.45)

where the prime indicates derivative with respect to u. This is a renormalized result

that comes from a point-splitting calculation. In general it is not zero. It is also called

the Schwarzian derivative of p(u). While acceleration is responsible for particle cre-

ation, it is the change in acceleration (jerk) that is responsible for energy production.

The Davies-Fulling stress tensor Eqn. (2.45) masks this fact because it is in terms

of the ray tracing function, p(u). This p(u) is in turn a function of retarded time,

u = t − x. The ray tracing function can be found from the trajectory of the mirror if

one is able to perform the relevant function inversion. It is useful to have the stress

tensor in terms of the trajectory, z(tu). One may determine flux without the need to

do transcendental inversions, which are often not possible analytically, (i.e. if one

has only z(tu) but not p(u), one can still solve for flux). The solution is [5],

〈Tuu〉 =
...
z (ż2 − 1)− 3żz̈2

12π(ż − 1)4(ż + 1)2

∣∣∣∣
t=tu

. (2.46)
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Here the dots refer to coordinate time derivatives and they are to be evaluated at

tu. We have defined z ≡ z(tu). Equation (2.46) is equivalent to (2.45) evaluated at

the surface of the mirror. That is, using p(u) where u = tu − z(tu) in (2.45) yields

the same flux evaluated where x = z(tu). Equation (2.46) is derived by utilizing the

appropriate derivative function inversions of p(u).

The time derivative of coordinate acceleration (the triple dot,
...
z ) suggests that

energy production may be dependent on the relativistic jerk (the time derivative of

the proper acceleration, α = γ3z̈). Indeed, Eqn. (2.46) can be reformulated in terms

of only the time derivative of proper acceleration (what is referred to as ‘relativistic

jerk’) and the velocity of the trajectory.

〈Tuu〉 = − α̇

12πγ(1− v)2
, (2.47)

where, v = ż, γ = (1 − v2)−1/2, and α = γ3z̈. It looks as if, despite the creation of

particles being dependent on acceleration, the creation of energy is dependent on the

jerk. This expression (2.47) allows one to compute the flux without even knowing

either the trajectory function or the ray tracing function. All that is required is to

have a form for the velocity and the jerk. Notice the negative sign out front. A

mirror that jerks away from you gives off energy, while a mirror that jerks towards

you gives off negative energy. Schematically,

• Mirror Jerks Left → Positive Flux

• Mirror Jerks Right → Negative Flux

with respect to the right side of the mirror.
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Total Energy from Energy Flux

To find the expectation value of the total energy produced, one can use Eqn. (2.45),

E =

∫ ∞

z(t)

〈T 00〉 dx =

∫ umax

umin

〈Tuu〉 du . (2.48)

While using (2.46), we integrate over u using du→ (1− v) dtu to get

E =

∫ ∞

−∞

...
z (ż2 − 1)− 3żz̈2

12π(1− ż)3(ż + 1)2
dtu , (2.49)

and equivalently, using (2.47)

E = − 1

12π

∫ ∞

−∞

α̇

γ(1− v)
dtu . (2.50)

We may integrate (2.45) by parts to isolate the surface term,

E = − 1

24π

p′′

p′

∣∣∣∣
∞

−∞
+

1

48π

∫ ∞

−∞
du

(
p′′

p′

)2

. (2.51)

Rewriting the boundary term in (2.51) using, z(tu) =
1
2
(p(u)− u) gives

− α

12π

√
1 + ż

1− ż

∣∣∣∣∣

tu=+∞

tu=−∞

. (2.52)

If this boundary term vanishes, as in the case of a mirror without a horizon (as

pointed out by Walker [15]), whose α → 0 as tu → ±∞, then we may utilize in-

tegration by parts and write the total energy simply as

E =
1

48π

∫ ∞

−∞

(
p′′

p′

)2

du , (2.53)
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or, equivalently

E =
1

12π

∫ ∞

−∞

z̈2

(1 + ż)2(1− ż)3
dtu . (2.54)

Notice that this form masks the jerk dependence.

2.1.4 Stress Tensor Components with a Moving Mirror

For background reference, we will need the various stress tensor components in 1+1

dimensions with a moving mirror. For the original stress tensor result see Eqn. (2.7),

Davies and Fulling [6],

〈Tuu〉 = (12π)−1(p′)1/2[(p′)−1/2]′′ ≡ FDF , (2.55)

where 〈Tvv〉 = 〈Tuv〉 = 〈Tvu〉 = 0. Here p ≡ p(u) is the ray tracing formula of

the mirror, which is related to the trajectory as previously addressed. The previous

Davies and Fulling result [5], Eqn. (3.11) and Eqn. (3.7) are, using our definition

above,

〈T00〉 = −〈T01〉 = FDF , 〈T00〉 = 〈T11〉 , 〈T10〉 = 〈T01〉 . (2.56)

In order to find the stress tensor in the t − x basis, we use 〈Tuu〉 = 1
4
〈T vv〉, 〈Tvv〉 =

1
4
〈T uu〉, 〈Tuv〉 = 1

4
〈T vu〉, and 〈Tvu〉 = 1

4
〈T uv〉, which gives

〈T vv〉 = 4FDF , (2.57)

and 〈T uu〉 = 〈T vu〉 = 〈T uv〉 = 0. While, in addition, using

〈T uu〉 = 〈T tt〉 − 2〈T tx〉+ 〈T xx〉 , 〈T vv〉 = 〈T tt〉+ 2〈T tx〉+ 〈T xx〉 , (2.58)
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〈T uv〉 = 〈T tt〉 − 〈T xx〉 = 〈T vu〉 , (2.59)

which gives

〈T tt〉 = 〈T xx〉 , 〈T tt〉 = 〈T tx〉 , 〈T tt〉 = FDF . (2.60)

So we have, in the t− x basis




〈T 00〉 〈T 01〉

〈T 10〉 〈T 11〉


 =




〈T tt〉 〈T tx〉

〈T xt〉 〈T xx〉


 =



FDF FDF

FDF FDF


 . (2.61)

2.1.5 Correlation Functions for Energy Flux with a Moving Mirror

The mode functions for the moving mirror are all that is needed to compute the cor-

relation functions for the stress-energy tensor. The stress-energy tensor correlation

function is of interest because it reveals more about the flux than just what the stress

tensor alone can. The energy fluxes emitted by a moving mirror can be positive and

negative, but they are only average values. There are fluctuations around this av-

erage value. The quantum state is not an eigenstate of the stress tensor operator so

fluctuations are expected.

The correlation function for the stress tensor is

Cµν,µ′ν′ = 〈Tµν(y)Tµ′ν′(y′)〉 − 〈Tµν(y)〉〈Tµ′ν′(y′)〉 , (2.62)

where the spacetime points are indicated by y = (u, v) and y′ = (u′, v′). The correla-

tion functions between two right-moving rays, two left-moving rays, and right and
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left moving rays are:

CRR(u, u
′) = 〈Tuu(u)Tuu(u′)〉 − 〈Tuu(u)〉〈Tuu(u′)〉 , (2.63)

CLL(v, v
′) = 〈Tvv(v)Tvv(v′)〉 − 〈Tvv(v)〉〈Tvv(v′)〉 , (2.64)

CRL(v, u
′) = 〈Tvv(v)Tuu(u′)〉 − 〈Tvv(v)〉〈Tuu(u′)〉 , (2.65)

One can re-express these as: (See the use of Wick’s Theorem in Ford and Roman

2004)

CRR(u, u
′) = 2[∂u∂u′D(y, y′)]2 (2.66)

CLL(v, v
′) = 2[∂v∂v′D(y, y′)]2 (2.67)

CRL(v, u
′) = 2[∂u′∂vD(y, y′)]2 (2.68)

where

D(y, y′) = 〈φ(y)φ(y′)〉 , (2.69)

is the scalar field two point function. Using the well-known Davies-Fulling two

point function for the region to the right of the mirror in the 1+1 dimensional case

(Birrell and Davies [19]), (dropping the iǫ terms)

D(y, y′) = − 1

4π
ln

[p(u)− p(u′)][v − v′]

[v − p(u′][p(u)− v′]
, (2.70)

one can express the energy flux correlation functions as

CRR(u, u
′) =

[p′(u′)p′(u)]2

8π2[p(u′)− p(u)]4
, (2.71)

CLL(v, v
′) =

1

8π2[v′ − v]4
, (2.72)

31



CRL(v, u
′) =

[p′(u′)]2

8π2[p(u′)− v]4
, (2.73)

where p′(u) = dp(u)/du and p′(u′) = dp(u′)/du′. We will deal more with particular

forms of p(u) later. The above expressions deal only with correlations of distinct

rays, so the iǫ terms have been dropped from the Davies-Fulling two point function.

These expressions simplify, as would be expected, in vacuum or with a static mirror

present. For a static mirror we have the condition, v = p(u) = u, and the limits:

CRR(u, u
′) = Cvac⊕static(u, u

′) =
1

8π2[u′ − u]4
, (2.74)

CLL(v, v
′) = Cvac⊕static(v, v

′) =
1

8π2[v′ − v]4
, (2.75)

CRL(v, u
′) = Cstatic(v, u

′) =
1

8π2[u′ − v]4
. (2.76)

In vacuum CRL(v, u
′) = 0 because there can only be correlations with left and right

moving fluxes with a mirror present. The correlation limits for CRR and CLL hold

for either vacuum or a static mirror, hence the xor, ⊕, in the subscript. The ratios

R1 =
CRR(u, u

′)

Cvac⊕static(u, u′)
, (2.77)

R2 =
CRL(v, u

′)

Cstatic(v, u′)
, (2.78)

can tell us about enhancement and suppression of correlations. For R > 1 one inter-

prets enhancement, for R < 1 there is suppression.
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2.2 The Scalar Product and Normalization

2.2.1 Torus Waves: Discrete Normalization

This section outlines discrete box normalization of the modes. Using right-moving

waves, and the scalar product, normalization is straightforward in 2D Minkowski

spacetime. The scalar field inner product for (1+1) dimensions is

(φ1, φ2) = −i
∫

t

(φ1∂tφ
∗
2 − [∂tφ1]φ

∗
2)dx , (2.79)

where t signifies a spacelike hyperplane of simultaneity at instant t.

The uk modes are restricted to the interior of a spacelike (n − 1)-torus of side L.

They will have periodic boundary conditions. We will show, that

(uk, uk′) = δkk′ . (2.80)

The waves, without their normalization constants are uk ∝ eikx−iωt and uk′ ∝ eik
′x−iω′t.

To normalize, one uses, (uk, uk′) = −i
∫
t
dx (uk∂tu

∗
k′−[∂tuk]u

∗
k′). After taking the time

partials, this becomes

(uk, uk′) = −i
∫

t

dx eikx−iωt[iω′]e−ik
′x−iω′t − [−iω]eikx−iωte−ik′x+iω′t . (2.81)

After simplifying, one gets

(uk, uk′) = [ω′ + ω]

∫

t

dx e−i(k
′−k)xe−i(ω−ω

′)tdx . (2.82)
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This is evaluated on the convenient hypersurface t = 0,

(uk, uk′) = [ω′ + ω]

∫ ∞

−∞
dx e−i(k

′−k)x . (2.83)

For discretely integrable ‘box’ waves, the integral is defined as V δkk′ , i.e.

∫ ∞

−∞
dx e−i(k

′−k)x ≡ V δkk′ . (2.84)

Since our space is one dimensional, the normalization gives

(uk, uk′) = [ω′ + ω]Lδkk′ . (2.85)

It is now clear that the normalization factor must be (2Lω)−1/2. Therefore the modes

are,

uk =
1√
2Lω

eikx−iωt , uk′ =
1√
2Lω′

eik
′x−iω′t . (2.86)

This gives the properly normalized result:

(uk, uk′) =
ω′ + ω

2L
√
ωω′

Lδkk′ . (2.87)

Recall ω ≡
√
k2 +m2 and that we are working with a massless field so that ω = |k|).

Therefore

(uk, uk′) = δkk′ , (2.88)

If it were assumed that the modes Eqn. (2.86) were actually distinct solutions, then

the Bogolubov transformation mechanism would give

αkk′ = δkk′ . (2.89)
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These ‘torus waves’ satisfy the Bogolubov identities, which are αkk′ = (uk, uk′)δkk′

and βkk′ = −(uk, u
∗
k′) = 0. To calculate βkk′ it is the same procedure as above, but one

must notice the double complex conjugate due to the scalar product.

2.2.2 Right Moving Waves: Continuous Normalization

This section will derive the Dirac delta function result for scalar product normal-

ization of 2D Minkowski continuous right-moving plane waves. Using the scalar

field inner product for (1+1) dimensions, (φ1, φ2) = −i
∫
t
(φ1∂tφ

∗
2 − [∂tφ1]φ

∗
2)dx and

choosing

uk = (4πω)−1/2eiω(x−t) , (2.90)

and allowing

N ≡ (4πω)−1/2 , N ′ ≡ (4πω′)−1/2 , (2.91)

we then obtain

(uω, uω′) = −i
∫

t

Neiω(x−t)∂tN
′e−iω

′(x−t) −N ′e−iω
′(x−t)∂tNe

iω(x−t)dx . (2.92)

Pulling out the constants and take the partial time derivatives gives

(uω, uω′) = −iNN ′
∫

t

eiω(x−t)(iω′)e−iω
′(x−t) − e−iω

′(x−t)(−iω)eiω(x−t)dx . (2.93)

After grouping terms, and simplifying, the result is
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(uω, uω′) = NN ′
∫

t

(ω′ + ω)e−i(ω
′−ω)(x−t)dx . (2.94)

The delta function result is found by evaluate the above expression on the conve-

nient hypersurface t = 0, make the substitution x = 2πs and plug back in N and

N ′,

(uω, uω′) = (4π)−1(ωω′)−1/2(ω′ + ω)

∫ ∞

−∞
2πe−i2π(ω

′−ω)sds . (2.95)

This yields the Dirac delta function

(uω, uω′) =
1

2
(ωω′)−1/2(ω′ + ω)δ(ω′ − ω) . (2.96)

The delta function will be zero if ω 6= ω′, so the only nonzero answer is that when

ω = ω′, in which case, the term out front is simply 1. Thus, the plane waves are

properly normalized

(uω, uω′) = δ(ω′ − ω) . (2.97)

The plane waves also satisfy the Bogolubov identities, since αωω′ = (uω, uω′) and in

our case αωω′ = δ(ω′−ω). For the calculation of βωω′ , we recall that βωω′ = −(uω, u
∗
ω′).

This is the same procedure as above, where attention is given to the double complex

conjugate in the scalar product

−(uω, u
∗
ω′) = (−)(−i)NN ′

∫

t

eiω(x−t)∂te
iω′(x−t) − [∂te

iω(x−t)]eiω
′(x−t)dx . (2.98)

Taking the time partials gives
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−(uω, u
∗
ω′) = (−)(−i)NN ′

∫

t

eiω(x−t)(−iω′)eiω
′(x−t) − (−iω)eiω(x−t)eiω′(x−t)dx . (2.99)

Grouping terms and canceling i’s, gives

−(uω, uω′) = NN ′
∫

t

(ω′ − ω)ei(ω
′+ω)(x−t)dx . (2.100)

Evaluating on the convenient hypersurface t = 0, and noting that as ω, ω′ ≥ 0 then

as,

−(uω, uω′) =
1

2

ω′ − ω√
ωω′

δ(ω′ + ω) , (2.101)

the result is βωω′ = 0. With β and α as derived, the Bogolubov identities will be sat-

isfied. These waves have only the right moving pieces in them. They satisfy the null

and unit identities. Therefore the Bogolubov condition holds for the continuously

normalized right moving plane waves.

2.2.3 Right and Left Moving Waves Combined in Flat Space

Plane waves with right and left moving pieces may be normalized to the Dirac delta

function. Note that the inner product is defined for all space. Starting with the scalar

field inner product, (φ1, φ2) = −i
∫
t
(φ1∂tφ

∗
2 − [∂tφ1]φ

∗
2)dx and using the integral

∫ ∞

−∞
sinωx sinω′xdx = πδ(ω′ − ω) , (2.102)

the positive frequency mode with right and left moving pieces is

uω ∝ sinωxe−iωt . (2.103)
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This form satisfies the field equation. Solving for α gives

α = (uω, uω′) = −i
∫

t

dx uω∂tu
∗
ω′ − [∂tuω]u

∗
ω′ . (2.104)

Plugging in the modes, one obtains

α = −i
∫ ∞

−∞
sinωx sinω′x[e−iωt(iω′)eiω

′t − [−iωe−iωt]eiω′t]dx . (2.105)

Evaluating on t = 0 one finds

α = −i
∫ ∞

−∞
dx sinωx sinω′x[iω′ + iω] . (2.106)

Using the integral result above, we get

α = [ω′ + ω]πδ(ω − ω′) . (2.107)

Therefore, the normalization factor needs to be

N ≡ 1√
2πω

. (2.108)

Using this normalization, the α is αωω′ = δ(ω − ω′). For β the procedure follows

βωω′ = −i
∫

t

dx uω∂tuω′ − [∂tuω]uω′ (2.109)

= −i
∫ ∞

−∞
dx sinωx sinω′x[e−iωt(−iω′)e−iω

′t − (−iω)e−iωte−iω′t]

= −i
∫ ∞

−∞
dx sinωx sinω′x[−iω′ + iω]

= [ω − ω′]πδ(ω′ − ω) .

38



The result is βωω′ = 0. The Bogolubov identities hold trivially. The crucial aspect as-

sociated with this example is the integration over all space. When there is a bound-

ary, such as a static mirror at x = 0, there will naturally be left and right moving

pieces of the mode solutions but the normalization will be over only a limited spa-

tial region, i.e. to the right of the mirror. This renders a different normalization

coefficient while the procedure of fixing it remains the same.

2.2.4 Flat Spacetime Limit of the Curved Spacetime Scalar Product

With a general spacelike hypersurface σ with future-directed unit normal nµ and

hypersurface element dσ, the curved spacetime scalar product is, see Parker and

Toms [20], Equation (2.49),

(f1, f2) = i

∫

σ

dσ|g|1/2nνf ∗
1

↔
∂ν f2 . (2.110)

We look at the general surface,

t− ǫx = constant , (2.111)

and we see

ǫ→ 0 t = constant

ǫ→ 1 u = constant

ǫ→ −1 v = constant





(2.112)

where

u = t− x

v = t+ x





. (2.113)
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The two-dimensional Minkowski space metric, with signature consistent with Birrell

and Davies[19], ds2 = dt2 − dx2 is written

ds2 =

(
dt2

dx2
− 1

)
dx2 = (ǫ2 − 1)dx2 , (2.114)

so that |g|1/2 =
√
ǫ2 − 1 The unit normal will be a constant times the gradient of the

surface

n̂ =
~n

||~n|| =
1√−gµνnµnν

~∇S(x, t) , (2.115)

where S(x, t) = t− ǫx, is the surface. Further simplifying gives

n̂ =
1√

−g00(1)2 − g11ǫ2
(1,−ǫ) = 1√

ǫ2 − 1
(1,−ǫ) . (2.116)

It is easy to see that

nµ∂µ = gµνnν∂µ

= 1√
ǫ2−1

(∂t + ǫ∂x) .
(2.117)

Writing ∂t + ǫ∂x = (1− ǫ)∂u + (1 + ǫ)∂v because, using a test function, f ,

∂xf =
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
= −∂f

∂u
+
∂f

∂v
, (2.118)

we obtain ∂x = ∂v − ∂u. Similarly for the partial with respect to time,

∂tf =
∂f

∂u

∂u

∂t
+
∂f

∂v

∂v

∂t
=
∂f

∂u
+
∂f

∂v
, (2.119)

one obtains ∂t = ∂u + ∂v. Substituting into the scalar product

(f1, f2) = i

∫

σ

dσ
√
ǫ2 − 1

1√
ǫ2 − 1

f ∗
1

[
(1− ǫ)

↔
∂u +(1 + ǫ)

↔
∂v

]
f2 . (2.120)
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Clearly,

(f1, f2) = i

∫

σ

dσf ∗
1

[
(1− ǫ)

↔
∂u +(1 + ǫ)

↔
∂v

]
f2 . (2.121)

The spacelike hypersurface differential dσ is expressed in terms of v or u by taking a

limit for ǫ. As t − ǫx = c and v = t + x, we have v = c + (ǫ + 1)x. For u constant we

take the limit ǫ→ 1 and obtain

1

2
dv = dx . (2.122)

Thus, for the constant u surface, we may integrate over I−R or I+L , if we take the limit

as ǫ→ 1,

(f1, f2) = lim
ǫ→1

i

∫

σ

dσf ∗
1

(
(1− ǫ)

↔
∂u +(1 + ǫ)

↔
∂v

)
f2 . (2.123)

This gives

(f1, f2)|v = i

∫ ∞

−∞
dv f ∗

1

↔
∂v f2 . (2.124)

For the constant v surface, we may integrate over I−L or I+R if we take the limit as

ǫ→ −1, and as u = t− x we have

u = c+ (ǫ− 1)x , (2.125)

and for v constant we take the ǫ→ −1 limit

−1

2
du = dx , (2.126)

and we get

(f1, f2) = lim
ǫ→−1

i

∫

σ

dσf ∗
1

(
(1− ǫ)

↔
∂u +(1 + ǫ)

↔
∂v

)
f2 , (2.127)

which is

41



(f1, f2)|u = −i
∫ −∞

+∞
du f ∗

1

↔
∂u f2 . (2.128)

However, for full integration over either the future or past Cauchy surface, one must

take into account both surfaces, the left and right pieces. That is for the past, I−L
⋃
I−R

or for the future, I+L
⋃
I+R . Including the limits of integration for following either the

past or future Cauchy surface, the result is

(f1, f2) = (f1, f2)|u + (f1, f2)|v = −i
∫ −∞

∞
du f ∗

1

↔
∂u f2 + i

∫ ∞

−∞
dv f ∗

1

↔
∂v f2 , (2.129)

which further simplified to its final form gives

(f1, f2) = i

∫ ∞

−∞
du f ∗

1

↔
∂u f2 + i

∫ ∞

−∞
dv f ∗

1

↔
∂v f2 . (2.130)

Typically, however, when one is working with exclusively right-moving modes or

left-moving modes, only one of the integrals of Eqn. (2.130) will show up. For in-

stance, with left-moving plane wave modes one will have no contribution from the

u integral.

2.3 Static Casimir Effect

The Casimir effect [1] is the result of a force between two boundaries not ascribed to

the electromagnetic force, the gravitational force, or the exchange of any particles. It

is a disturbed vacuum force, in a very real sense. It is called the zero-point energy

force and is due to the resonance of the field which is present in the space between

two boundaries. It is a force due to quantization, similar to the Pauli exclusion ‘force’

that keeps negative electrons from collapsing into the positive nucleus.
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As fields contribute to the energy of the vacuum, whether they be scalar fields,

the electromagnetic field or any other fields, a disturbance of the vacuum occurs by

introducing boundary conditions. Experimental observation and prediction of the

Casimir effect is possible by adding up the energies of the standing waves between

the two objects and renormalizing. Measuring the finite energy shift confirms the

effect.

2.3.1 (1+1) dimensional massless scalar field Casimir effect

In this calculation I derive the Casimir force as quickly as possible, in the simplest

case possible. The standing waves are:

ψn(x, t) = e−iωnt sin(knx) . (2.131)

There is no need to worry about y or z as we only have one spatial dimension. The

calculation will not involve the electromagnetic field so there is no need to worry

about polarization. The wave vector kn is kn = nπ
a

where a is the distance between

the two objects. We have via ω = kc, ωn = nπc
a

. The vacuum energy of all the standing

waves is the sum of the excitation modes:

E =
~

2

∞∑

n=1

ωn . (2.132)

This is divergent as there is no cut off value for the highest energy waves. There

is now an infinity to deal with. In real life though, nothing can stop ultra high fre-

quency waves from leaking out. So we need to account for this vital piece of physics.

This is done by introducing a factor to remove the high energy waves that will leak
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out. This is called regularizing. We make this sum finite by introducing a regula-

tor, manipulate the sum, then follow it up by taking a limit that will remove the

regulator.

E =
~

2

∞∑

n

nπc

a
=

~πc

2a

∞∑

n

1

n−1
(2.133)

Invoke the Riemann zeta function regulator of −1. This is called renormalization by

zeta function regularization. Here

ξ(s) =
∞∑

n=1

1

ns
(2.134)

is the Riemann zeta function and in our case, ξ(−1) = − 1
12

. So our regularization is

considered complete. Our sum is now

E =
~πc

2a

(
− 1

12

)
= −~πc

24a
. (2.135)

The force between the two objects is found by F = −∂aE, that is

F = −∂a
(
−~πc

24a

)
= − ~πc

24a2
. (2.136)

This is the Casimir effect. Note that the effect is attractive as indicated by the nega-

tive sign and that ~ reveals the quantum nature of this force.

2.3.2 (1+1) dimensional canonical Casimir effect

For the massless, scalar field Casimir effect in (1+1) dimensions (this example can be

checked with the result in Zee [52]), the field will be forced to obey two boundary

conditions:
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ψ(0, t) = ψ(a, t) = 0 . (2.137)

The general scalar field wave equation is, restated as c 6= 1,

1

c2
∂2t ψ(x, t)− ∂2xψ(x, t) = 0 , (2.138)

where the field is massless, m = 0. The solutions are

ψ±
n (x, t) =

(
c

aωn

)1/2

e±iωnt sin knx (2.139)

ωn = ckn, kn =
πn

a
, n = 1, 2, ... (2.140)

To proceed with canonical quantization, one expands the field, applies the usual

commutation relations and defines a vacuum state:

ψ(x, t) =
∑

n

[ψ(−)
n (x, t)an + ψ(+)

n (x, t)a+n ] , (2.141)

[an, a
+
n′ ] = δn

′

n , [an, an′ ] = [a+n , a
+
n′ ] = 0 , (2.142)

an|0〉 = 0 . (2.143)

The operator of the energy density is

T00 =
~c

2

(
1

c2
[∂tψ]

2 + [∂xψ]
2

)
. (2.144)

Using the above, one obtains
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〈0|T00|0〉 =
~

2a

∞∑

n=1

ωn . (2.145)

The total vacuum energy will be

E0(a) =

∫ a

0

〈0|T00|0〉dx =
~

2

∞∑

n=1

ωn . (2.146)

Finally, we are at the standard starting point. Regularizing this infinite result is

done by the damping term e−δωn . We will apply the limit δ → 0 to remove the

regularization. This gives:

E0(a, δ) =
~cπ

2a

∞∑

n=1

ne−δcπn/a . (2.147)

You can solve this by

E0(a, δ) = −~

2

∂

∂δ

∞∑

n=1

e−δπnc/a , (2.148)

E0(a, δ) = −~

2

∂

∂δ

e−δπc/a

1− e−δπc/a
=

~πc

2a

eδπc/a

(eδπc/a − 1)2
, (2.149)

E0(a, δ) =
~πc

2a

1

(eδπc/2a − e−δπc/2a)2
=

~πc

8a
sinh−2 δπc

2a
. (2.150)

In limit of small δ, the following is true:

sinh x = x+
x3

3!
+
x5

5!
+ ... , (2.151)

sinh2 x = x2 +
x4

3
+ ... , (2.152)

sinh−2 x ≈ x−2

1 + x2/3
≈ x−2(1− x2/3) , (2.153)
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E0(a, δ) =
~πc

8a
sinh−2 δπc

2a
=

~a

2πcδ2
− ~πc

24a
+O(δ2) . (2.154)

Compare the field and boundary set up with the unbounded interval:

ψ±
k (x, t) =

( c

4πω

)1/2
e±i(ωt−kx) ω = ck −∞ < k <∞ , (2.155)

ψ(x, t) =

∫ ∞

−∞

dk

2π
[ψ

(−)
k (x, t)ak + ψ

(+)
k (x, t)a+k ] , (2.156)

[ak, a
+
k′ ] = δ(k − k′), [ak, ak′ ] = [a+k , a

+
k′ ] = 0 , (2.157)

ak|0M〉 = 0 〈0M |T00|0M〉 = ~

2π

∫ ∞

0

ωdk . (2.158)

The total vacuum energy is E0M(−∞,∞) = ~

2π

∫∞
0
ωdkL and the interval of interest

is E0M(a) = E0M(−∞,∞) a
L
= ~a

2π

∫∞
0
ωdk. Regularizing gives

E0M(a) =
~a

2π
c

∫ ∞

0

ke−δckdk =
~a

2πcδ2
, (2.159)

The renormalized energy is therefore

Eren
0 (a) = lim

δ→0
[E0(a, δ)− E0M(a, δ)] = −~πc

24a
, (2.160)

F = −∂E(a)
∂a

= − ~πc

24a2
. (2.161)

This is the same result as given by the renormalization by zeta function regulariza-

tion, but here we have been more rigorous by subtracting the energies to obtain the

difference.
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2.3.3 (3+1) dimensional massless scalar field Casimir effect

Consider the next step up in complexity, a massless neutral scalar field in four-

dimensional Minkowski spacetime. Vanishing boundary conditions exist on plates

located at z = 0 and z = a. The standing waves have the form

φn(x, y, z, t) = e−iωnteikxx+ikyy sin(kzz) , (2.162)

kz =
nπ

a
ωn = c

√
k2x + k2y +

n2π2

a2
. (2.163)

The vacuum energy is the sum of the excitation modes:

E

A
=

∫ ∞

−∞

dkxdky
(2π)2

∞∑

n=1

~ωn
2

, (2.164)

The negative values of n are not included because they do not correspond to lin-

early independent mode functions. The renormalization proceeds along the route of

introducing a regulator for this divergent sum. Apply |ω|−s, the zeta function regu-

lator. The idea again is that we regulate, manipulate the sum, take the limit so the

regulator will be removed. The summation

E

A
=

~

8π2

∫ ∞

−∞
dkxdky

∞∑

n=1

ωn , (2.165)

becomes

E

A
=

~

8π2

∫ ∞

−∞
dkxdky

∞∑

n=1

ωn|ωn|−s , (2.166)

after applying the regulator. This application is justified in the end by applying the

limit s → 0 after we manipulate this infinite sum. Converting to polar coordinates

will simplify the double integral, so introduce q2 = k2x + k2y :
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E

A
=

~c1−s

8π2

∞∑

n=1

∫ ∞

0

2πqdq

∣∣∣∣q2 +
π2n2

a2

∣∣∣∣
(1−s)/2

. (2.167)

The 2π comes from integration over φ, and the q in front is the Jacobian. The c out

front will not be affected by manipulation of the sum, so simplifying,

E

A
=

~c

4π

∞∑

n=1

∫ ∞

0

qdq

∣∣∣∣q2 +
π2n2

a2

∣∣∣∣
(1−s)/2

, (2.168)

and using u2 = q2 + π2n2/a2, where udu = qdq the integral becomes

E

A
=

~c

4π

∞∑

n=1

∫ ∞

πn/a

u2−sdu . (2.169)

Then finally we find

E

A
= −~c

4π

∞∑

n=1

π3−sn3−s

(3− s)a3−s
. (2.170)

The infinite vacuum energy of the quantized field in Minkowski space was sub-

tracted. We did this because we are looking for the shift of the disturbed vacuum.

Ignoring the s for the constants as they are unaffected:

E

A
= − ~cπ2

4(3− s)a3

∞∑

n=1

1

ns−3
. (2.171)

The sum may be taken to be the Riemann zeta function. Let us use the ξ(−3). Taking

the limit as s→ 0 and using ξ(−3) = 1/120,

lim
s→0

E

A
= −~cπ2

12a3
ξ(−3)

E

A
= − ~cπ2

1440a3
. (2.172)

The force per area between the plates is then F/A = −∂a(E/A):
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F

A
= − ~cπ2

480a4
. (2.173)

This is the force per unit area in the z direction on the plate at z = a for the massless

scalar field with vanishing boundary conditions.

2.3.4 (3+1) dimensional electromagnetic field Casimir effect

This calculation is identical to the (3+1) dimensional scalar case above except for the

inclusion of a polarization factor of 2. This example was first calculated by Casimir

[1]. The standing waves are

ψn(x, y, z, t) = e−iωnteikxx+ikyy sin(kzz) . (2.174)

The plates are in the x-y plane. Polarization and magnetic components are ignored

and kz =
nπ
a

and ωn = c
√
k2x + k2y +

n2π2

a2
. Summing over all possible modes to get the

vacuum energy per unit area yields

E

A
= 2 ·

∫ ∞

−∞

dkxdky
(2π)2

∞∑

n=1

~ωn
2

, (2.175)

where the factor of 2 is for the two possible polarizations of the wave. It can be seen

already that this integral will diverge. Introducing a regulator, particularly, the zeta

function regulator |ω|−s will make our result physically meaningful.4 So therefore:

E

A
=

~

4π2

∫ ∞

−∞
dkxdky

∞∑

n=1

ωn , (2.176)

4The zeta function regulator is not very useful in numerical calculations, but great for theoretical

calculations. The Gaussian regulator e−t
2|ωn|

2

is better suited for numerical calculations because of
its superior convergence properties but harder to use in theoretical calculations.
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becomes

E

A
=

~

4π2

∫ ∞

−∞
dkxdky

∞∑

n=1

ωn|ωn|−s , (2.177)

and we will take the limit and set the complex number s = 0 after we manipulate

this infinite sum. Convert to polar coordinates to get rid of the double integral:

E

A
=

~c1−s

4π2

∞∑

n=1

∫ ∞

0

2πqdq

∣∣∣∣q2 +
π2n2

a2

∣∣∣∣
(1−s)/2

. (2.178)

Here q2 = k2x + k2y , the 2π comes from integration over φ, and the q in front is the

Jacobian. Simplifying,

E

A
=

~c1−s

2π

∞∑

n=1

∫ ∞

0

qdq

∣∣∣∣q2 +
π2n2

a2

∣∣∣∣
(1−s)/2

, (2.179)

and making u2 = q2 + π2n2/a2, where udu = qdq the integral is evaluated as

E

A
=

~c1−s

2π

∞∑

n=1

∫ ∞

πn/a

u2−sdu . (2.180)

This is

E

A
= −~c1−s

2π

∞∑

n=1

π3−sn3−s

(3− s)a3−s
. (2.181)

The infinite vacuum energy of the quantized electromagnetic field in free Minkowski

space was subtracted (i.e. we are looking for the shift of the disturbed vacuum).

E

A
= − ~c1−sπ2−s

2(3− s)a3−s

∞∑

n=1

1

ns−3
. (2.182)

The sum may be taken to be the Riemann zeta function. It can be shown that the

use of the ξ(−3) is equivalent to the renormalization of the vacuum energy of our
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situation under consideration. For different and more complicated geometric con-

figurations additional renormalization is generally needed. Taking the limit as s→ 0

and using ξ(−3) = 1/120,

lim
s→0

E

A
= −~cπ2

6a3
ξ(−3) , (2.183)

E

A
= − ~cπ2

720a3
. (2.184)

The force per area between the plates is then F/A = −∂a(E/A):

F

A
= − ~cπ2

240a4
. (2.185)

This is the well-known Casimir effect. This force, though small, has been measured

and proves that the renormalized vacuum energy exists. It also shows that quantum

field theory in curved spacetime gives physical predications and may be useful for

extracting other fundamental results. It is one of a few macroscopic quantum effects,

added to list of the more well-studied effects of superfluidity, superconductivity and

the quantum Hall effect.

2.4 Acceleration in Special Relativity

Efforts to understand acceleration have led to a better understanding of gravita-

tion. This has happened through equivalence principle in the formulation of general

relativity. Since the creation of particles from quantum fluctuation amplification de-

pends on acceleration, we dedicate a section to the fundamentals of acceleration in

flat spacetime. This acceleration, and the surface gravity of a black hole are phe-

nomena that are intimately tied together. A deep understanding of acceleration may
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therefore be worthwhile to understanding more on quantum aspects of gravitation.

We therefore embark on a study of the foundations of acceleration, restricting our-

selves to flat-spacetime, where the dynamics take on the most simple mathematical

framework. The moving mirror model is formulated in flat-spacetime as well. Ac-

celeration is undertreated in basic texts on special relativity. There is even a common

non-expert misconception that special relativity cannot adequately deal with accel-

eration. It developed during the construction of special relativity (SR), as SR indeed,

was originally only applied to non-accelerated reference systems. In 1907, in ‘On the

relativity principle and the conclusions drawn from it’ Einstein asked, “Is it conceiv-

able that the principle of relativity applies to systems that are accelerated relative to

each other?” But, after maturing, we now understand that special relativity is far

more powerful and capable, and that the answer to Einstein’s question is ‘yes’. It is

made clear in any reasonably advanced textbook that SR has been developed pre-

cisely to handle accelerated observers and accelerated motion. SR is routinely used

to predict the physics of very large accelerations, such as bound neutrons in the nu-

cleus or high-energy particle scattering events. SR is capable of handling more than

just acceleration. For instance, if one uses the ideas of the equivalence principle and

the local nature of physics, SR can be used to calculate the influences of any gravi-

tational field. [53] (of course for all practical purposes you would be using general

relativity at this point)

As stated above, these sections only consider flat spacetime, without mirrors,

and there will be no quantum ideas presented here or gravitational complications.

Important points of interest on how special relativity deals with acceleration are

exemplified in order to remove any Galilean intuitive bias in our understanding of

how acceleration works. For more depth look to Rindler[54]. This treatment draws
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heavily from Rindler’s pioneering work on acceleration in special relativity[55].

2.4.1 Four-Acceleration

The four-acceleration is

aµ =
d2xµ

dτ 2
=
duµ

dτ
, (2.186)

where uµ is the four-velocity

uµ =
dxµ

dτ
, (2.187)

and dτ is the element of proper time from the spacetime invariant

dτ 2 = dt2 − (dx2 + dy2 + dz2) , (2.188)

with c = 1. Four vectors must be used when working with spacetime. Four vec-

tors have superior utility than three vectors and relativistically valid relationships

are revealed by their employment. In particular, acceleration undergoes a drastic

relativistic revamping when examined as a four vector. From this metric, writing u

for the speed (with three-velocity, u = dxi/dt), we obtain

dτ 2

dt2
= 1− u2 ,

dt

dτ
=

1√
1− u2

≡ γ . (2.189)

Examining the relationship between the four-velocity uµ and the three-velocity

u = dxi/dt,

uµ =
dxµ

dτ
=
dt

dτ

dxµ

dt
= γ

dxµ

dt
= γ(1,u) . (2.190)
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The prime result is the relationship between the four-acceleration aµ and the three-

acceleration, a = d2xi/dt2.

aµ =
duµ

dτ
= γ

duµ

dt
= γ

d

dt
(γ, γu) = γ(γ̇, γ̇u+ γa) , (2.191)

where the dot refers to the derivative with respect to coordinate time, t. A world line

C(τ) with coordinates xµ(τ) has a tangent spacetime velocity vector uµ = dxµ/dτ and

so the coordinate basis components of the four acceleration are, using the chain rule

aµ =
duµ

dτ
=
∂uµ

∂xν
dxν

dτ
= uν∂νu

µ . (2.192)

2.4.2 Acceleration Measured in the Instantaneous Rest Frame

We come to understand the ‘proper’ or ‘felt’ acceleration by asking about the scalar

invariants uµu
µ and aµa

µ. The easiest way to evaluate these is to simply pick the

instantaneous rest frame, u = 0. Using the helpful relation γ̇ = γ3uu̇, we see that

aµ = (0,a), so we have for the scalars,

uµu
µ = (1, 0) · (1, 0) = 1 , (2.193)

aµa
µ = (0,a) · (0,−a) = −a · a ≡ −α2 , (2.194)

where α is the acceleration measured in the instantaneous rest frame. We call this

quantity, the proper acceleration[54], in keeping with the meaning of ‘one’s own’,

property. The acceleration as measured by an accelerometer carried along by the

observer can be called the felt-acceleration or, local-acceleration as well. Some authors

will address the four-velocity and the four-acceleration as the proper-velocity and

proper-acceleration. However, in general, a ‘proper’ measure of a quantity is that
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taken in the relevant instantaneous rest frame. There can be confusion with ‘proper’

terminology, as many authors address the ‘spatial components of the four-velocity’

(called celerity) as the proper-velocity as well. Note that in the instantaneous rest

frame (u = 0), aµ = 0 only if the magnitude of the three-acceleration in the rest frame

vanishes. The four-acceleration is not necessarily the acceleration which is measured

in the instantaneous rest frame of the traveler. Notice that the scalar invariant

uµ · aµ = (1, 0) · (0,−a) = 0 , (2.195)

shows the four-acceleration is always orthogonal to the four-velocity. The general

case of the scalar invariant of the four-acceleration is:

aµa
µ = γ2γ̇2 − γ2(γ̇u+ γa)2 , (2.196)

where we are no longer necessarily in the instantaneous rest frame of the traveler.

Using γ̇ = γ3uu̇, as well as u2 = u2 and u · u̇ = uu̇ we find

−aµaµ = γ2(γ̇2u2 + 2γγ̇uu̇+ γ2a2 − γ̇2) , (2.197)

which gives our the general formula for proper acceleration, using the invariant

α2 = −aµaµ,

α2 = γ6u2u̇2 + γ4a2 = γ6[a2 − (u× a)2] . (2.198)

Notice that for motion in a straight line, the rectilinear condition holds u̇2 = a2, (use

γ2 = 1 + γ2u2) and therefore

α = γ3a . (2.199)
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Notice that for motion with a constant speed u, i.e. u̇ = 0, we obtain

α = γ2a . (2.200)

That is, if that motion is in a circle of radius r, i.e. a = u2/r we’ll have α = γ2u2/r. In

a frame S we consider a particle moving in a straight line (rectilinearly) with velocity

u, proper acceleration α and proper time τ of the particle. With the rapidity φ of a

particle defined as a parametrized velocity, φ = tanh−1 u we ask, what is the proper

time derivative of this parametrized velocity? (i.e. dφ/dτ?) The answer is

dφ

dτ
=

d

dτ
tanh−1 u =

dt

dτ

d

dt
tanh−1 u = γ

1

1− u2
du

dt
= γ3a , (2.201)

where we have used d
dx

tanh−1 x = (1 − x2)−1 and dt/dτ = γ. Therefore we have

another way of arriving at the proper acceleration: α = dφ
dτ

.

Transforming Acceleration in One Dimension

To better understand the felt-acceleration, consider only one-dimensional motion of

a particle P and the velocity addition formula, along with the differentials of the

Lorentz transformation

dt′ = γ(dt− vdx) , u =
u′ + v

1 + u′v
. (2.202)

We are interested in the acceleration that is measured in P ’s instantaneous rest frame,

called α, the proper acceleration. The particle moves along the x-axis of an inertial

frame S with a varying velocity u. So, the particle is accelerating measured with

respect to the inertial frame S with an acceleration du/dt. If we let S ′ be the instanta-

neous rest frame of P at some moment in time t = t0, then we are looking for du′/dt′.
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At this moment of time, t0, u = v and u′ = 0. The idea is that u and u′ vary but

v remains constant. Since we want the acceleration measured in P ’s instantaneous

rest frame, α = du′/dt′, we can differentiate the velocity addition formula

du

dt
=
du′

dt
− u2

du′

dt
. (2.203)

Here I have set v = u and u′ = 0 after differentiation. Using the Lorentz transforma-

tion, dt
′

dt
= γ(1− uv) we have du

dt
= du′

dt′
(1− u2)3/2 therefore

α =
du′

dt′
= γ3

du

dt
= γ3a =

d

dt
(γu) . (2.204)

In a more general case, where S ′ is not just P ’s rest frame, but S ′ is any frame in

one dimensional motion relative to S, then the following relationship may be proven

in general (see Rindler[54] Equation 14.2 where he assumes standard configuration

for instance)

(1− u′2)−3/2du
′

dt′
= (1− u2)−3/2du

dt
. (2.205)

The interesting aspect of this is that this relationship, γ(u′)3du′/dt = γ(u)du/dt, is the

analogue of invariant general acceleration in Galilean relativity: du/dt = du′/dt′. The

felt-acceleration, α = γ3a with a = du/dt, and γ = γ(u) will therefore be a quantity

of interest. In particular, this quantity will reappear in moving mirror calculations.

General Transformations of Acceleration

For reference, we state the general transformation equations for acceleration. Us-

ing the instantaneous rest system, we have the simple expressions for the relations
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of accelerations: αx = γ3ax, αy = γ2ay and αz = γ2az. These are clear from Equa-

tion’s (2.200) and (2.199). However, the more general expressions, not involving the

instantaneous rest frame are derived starting from the general Lorentz transforma-

tions equations (see Einstein 1905).

a′x =
ax

γ3(1− uxv)3
, (2.206)

a′y =
ay

γ2(1− uxv)2
+

uyaxv

γ2(1− uxv)3
, (2.207)

a′z =
az

γ2(1− uxv)2
+

uzaxv

γ2(1− uxv)3
. (2.208)

2.4.3 Prototypical Example: Hyperbolic Trajectory

Looking briefly at the most common example used to understand proper accelera-

tion in special relativity, consider (1+1) spacetime, and suppose α0 is a constant (the

symbol is fortuitously chosen ahead of time). Let a particle undergo motion accord-

ing to, x2 = α−2
0 + t2 so that we take only the positive piece of

x = ±
√
α−2
0 + t2 . (2.209)

The acceleration ‘felt’ by the particle is the proper acceleration. The four-acceleration

has time dependent components in both space and time. Using the one dimensional

definition, Eqn. (2.199), α = γ3a = a
(1−v2)3/2 we obtain

v = ± t√
α−2
0 + t2

, (2.210)
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Figure 2.2: Hyperbolic Trajectory.

a = ± α−2
0

(α−2
0 + t2)3/2

, (2.211)

and

γ3 = α3
0(α

−2
0 + t2)3/2 , (2.212)

gives

α = ±α0 . (2.213)

Therefore the proper acceleration is constant for hyperbolic motion. Uniform accel-

eration motion corresponds to the absolute magnitude of the four-acceleration or

‘proper-acceleration’.

2.4.4 Special Example: Carlitz-Willey Trajectory

Now consider a trajectory that has an intimate relationship to black hole collapse.
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x = −t− κ−1W (e−2κt) , (2.214)

where W is the product log or Lambert W function and κ is a positive constant. The

product log is defined through z = W (z)eW (z) where z is any complex number. The

first and second derivatives are

dW

dz
=

W (z)

z(1 +W (z))
, (2.215)

d2W

dz2
= −W (z)2(2 +W (z))

z2(1 +W (z))3
. (2.216)

Note that it looks somewhat similar to the hyperbolic trajectory:

t

-x

Figure 2.3: Carlitz-Willey Trajectory

What is the acceleration felt by the particle in this case? Using

v = ẋ = −1 +
2W (e−2κt)

1 +W (e−2κt)
, (2.217)
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a = ẍ = − 4κW (e−2κt)

(1 +W (e−2κt))3
, (2.218)

one finds

α = γ3ẍ(t) =
−κ

2
√
W (e−2κt)

. (2.219)

Notice the dichotomy,

lim
t→∞

a = 0 lim
t→∞

α = −∞ (2.220)

lim
t→−∞

a = 0 lim
t→−∞

α = 0 (2.221)

For a moving mirror emitting constant energy flux, Carlitz and Willey have shown

that thermal radiation occurs for all times.[11] I have done the transcendental in-

version necessary to uncover the trajectory for this radiation and encountered α =

−κ
2
√
W (e−2κt)

as the proper acceleration necessary for Planckian character. This is treated

in detail in Chapter 3.
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Chapter 3

Moving Mirror Trajectories

3.1 Basic Categories

This chapter is concerned with moving mirror trajectories and associated physical

quantities. We will treat each mirror trajectory separately, generally categorized by

their common motions. The beta Bogolubov coefficient, Eqn. (2.40) is computed.

Not all mirror trajectories treated here have had their beta transformation coeffi-

cients found, and not all mirror trajectories are capable of having their beta trans-

formation coefficients found analytically. Those few mirror trajectories whose betas

have not been found are relegated to the heterogeneous solutions section. It is of-

ten much easier to solve for the energy flux than beta transformation coefficients,

so computation of the energy flux is attempted for all the mirror trajectories. When

possible, the trajectories, z(t) are presented, along with their ray tracing functions,

p(u).

The sections are organized mostly by the type of moving mirror motion, starting

off with trivial mirrors in Section 3.2 which undergo no acceleration, and produce no

particles. These mirror trajectories serve as a useful introduction to the calculational

techniques. They are easy to solve for and useful to understand the non-trivial cases.



Section 3.3 involves the previously, well-studied, and well-known canonical moving

mirror trajectories. These have widely varying properties.

Section 3.4 includes those mirror trajectories which emit negative energy flux

during a phase of their motion. In each case, motion is asymptotically inertial in the

past and future, see Figure 3.1[23]. These asymptotically inertial mirror trajectories

can be ‘time-evolved’, i.e. their particle production can be localized to any point in

time during their motion. These trajectories do not have horizons or pathological

properties. For these trajectories the total energy emitted is finite. Trajectories in this

section are the COnstant-velocity ASymptotic Trajectories (COAST mirrors), subsec-

tions 3.4.2 and 3.4.3. They have not been studied before. Special emphasis should

be placed on the COAST mirrors, because these final coasting motion trajectories

have a spectra which can be time-evolved with an appropriate localization proce-

dure, determining particle production at any point in time. This is due to the lack

of an acceleration singularity. COAST mirrors are unitary by construction and emit

negative energy flux.

Figure 3.1: Penrose diagram describing a moving mirror trajectory which is inertial
in the asymptotic past and future.
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Trajectories that have never been studied before, which have horizons and start

statically, are introduced in Section 3.5. These avoid splicing, and have exactly

known beta transformation coefficients. They emit positive energy flux through-

out their motion, asymptotically approach an infinite proper acceleration and have

thermal character (Planck spectrum) in the high frequency limit. Each one has a

unique motion with strikingly different and interesting properties.

Heterogeneous trajectories are introduced in Section 3.6 that incorporates those

mirror trajectories whose betas cannot be obtained analytically. Section 3.6 also in-

cludes trajectories whose ray tracing functions may be transcendentally inverted,

but whose betas have not been computed. As well, I have included an arguably

physically irrelevant but mathematically important trajectory, in subsection 3.6.1,

which has tractable beta solutions and which inspired the technique and pursuit of

all of the other exactly solvable boundaries.

In Section 3.7, there are four tables that summarize the main results. Trajectories,

ray tracing functions, energy flux, accelerations, total energy and beta coefficients

are displayed in Tables 3.1, 3.2, 3.3, and 3.4.

3.2 Trivial Mirror Trajectories

The nonaccelerated trivial mirror trajectories presented in this chapter are treated

with detail in order to clarify the calculational procedures used in the later sections.

These mirror are not physically interesting with regards to the particle transforma-

tion calculation. These mirrors all have βω′ω = 0 transformation coefficients and

therefore none create particles. The ‘constant velocity’ mirror is treated efficiently

using null coordinates and together with the static mirror acts as a demonstration

of the superior utility of null coordinates when calculating in the moving mirror
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model. The ‘light speed’ boundary and the ‘constant velocity’ mirror are included

only for academic reference and completeness. For pedagogical analogy the static,

drifting, and light speed boundaries coincide respectfully to the final motions of the

asymptotically inertial mirrors of Walker-Davies (static), Darcx (drifting) and Proex

(light speed).

t

-x

Figure 3.2: Static, drift (v0 =
1
5
), and light speed mirrors.

3.2.1 Static Mirror Trajectory

The βω′ω = 0 result for the static mirror is arrived quickly by using null coordinates.

Although coupled to a massless scalar field in 1+1 dimensional flat spacetime, the

mirror trajectory analyzed with the Bogulobov mechanism provides no interesting

radiation. Null coordinates are used for both the mode functions and Bogolubov

transformations coefficients. Recall, v = t+ x, and u = t− x. The normalization can

be computed via

(uω, uω′) = i

∫ ∞

−∞
dv u∗ω′∂vuω − uω∂vu

∗
ω′ . (3.1)
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This integral is done over the past hypersurface, I−R . The right moving modes do

not extend behind the mirror and therefore there is only a contribution from the

left moving modes at the past surface. Using, uω = 1√
4πω

(e−iωv − e−iωu) and u∗ω′ =

1√
4πω′

(eiω
′v − eiω

′u), the inner product definition, (uω, uω′) = δ(ω − ω′) is satisfied.

Solving for βω,ω′ , using Equation (2.40) yields,

βω,ω′ =
ω′ − ω

4π
√
ωω′

∫ ∞

−∞
dv e−i(ω

′+ω)v =
2π(ω′ − ω)

4π
√
ωω′

δ(ω′ + ω) = 0 . (3.2)

As this confirms, the null coordinate approach is efficient for normalization and

transformation calculations.

3.2.2 Drifting Mirror Trajectory

This trivial case has a correspondence to the Darcx trajectory, which approaches con-

stant velocity. The beta transformation calculation for a constant speed mirror tra-

jectory gives zero particle production. An important aspect of the drifting mirror

calculations resides in the fact that null coordinates are overwhelmingly more effi-

cient than the usual spacetime coordinate approach. To derive the correct form for

the modes, the relativistic Doppler shift formula is needed. An observer will notice

a new frequency of light, ωo, when moving away from an emitter,

ωo =

√
1− v0
1 + v0

ω . (3.3)

It is obvious that ωo has the smaller magnitude frequency, with less energy, longer

redshifted wavelength. Consider the observer holding a mirror and reflecting that

redshifted light back to the emitting source. The emitter will now observe a second

redshift, with a frequency ω′.
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ω′ =

√
1− v0
1 + v0

ω0 =

√
1− v0
1 + v0

√
1− v0
1 + v0

ω . (3.4)

This relation is ω′ = ωD,

ω′ =
1− v0
1 + v0

ω , (3.5)

with D ≡ 1−v0
1+v0

.

Consider a massless quantized scalar field in the moving mirror model. The

mirror will have a non-accelerated trajectory, to the left, z(t) = x0 − v0t → z(tu) =

−v0tu, where x0 = 0, v0 is the constant speed of the mirror relative to our frame. This

gives z(tu) = −v0tu. Using Equation (2.35) one can derive p(u) = Du, and the IN

modes will have the properly normalized form;

uinω = (4πω)−1/2(e−iωv − e−iωuD) . (3.6)

The OUT modes have the form,

uoutω′ = (4πω′)−1/2(e−iω
′vD−1 − e−iω

′u) . (3.7)

Computing βω,ω′ gives four terms, two of which are identically zero, yielding

βω,ω′ =

∫ ∞

−∞
dv (−ω + ω′D−1)e−i(ω+ω

′D−1)v , (3.8)

= 2π(ω′D−1 − ω)δ(ω + ω′D−1) = 0 . (3.9)

Thus there is no particle creation. It is worth noting that obtaining this result using

the spacetime coordinate approach is a much longer and more tedious calculation.
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3.2.3 Light Speed Boundary

This boundary has a correspondence to the asymptotic future speed of the Proex tra-

jectory. A light speed boundary is included, only to demonstrate the extreme situa-

tion. The transformation mechanism continues to give consistent results. Choosing

p(u) = 0 gives a trajectory of z(tu) = −tu. Thus the boundary where the scalar field

vanishes is at a null surface. A solution to the wave equation is

uω = N(e−iωv − 1) , (3.10)

where N is a normalization factor to be determined. Using the scalar product,

(uω, uω′) = i

∫ ∞

−∞
dv u∗ω∂vuω′ − uω′∂vuω (3.11)

= NN ′(ω + ω′)

∫ ∞

−∞
dv ei(ω−ω

′)v (3.12)

= |N |24πωδ(ω − ω′) . (3.13)

The correct mode normalization is therefore N = 1/
√
4πω. One can show that there

is zero particle production for this boundary, as in the inertial static and drifting

cases.

3.3 Canonical Accelerated Mirrors

3.3.1 Carlitz-Willey Trajectory

This trajectory gives a thermal spectrum for all times and has a constant flux of

energy. By dealing with the past hypersurface using null coordinate integration and

through the introduction of left and right ‘split’ mode convention, Carlitz-Willey[11]

were able to exactly solve for the beta coefficients of this mirror. The convention
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utilizes different modes defined on both I+R and I+L . The left and right coefficient

formulation lies at the crux of their calculation and despite the call for more attention

[35], the construction has been little utilized. We have confirmed their solution on

the past surface and here we present a confirmation via the future surface which

must be the same.

t

-x

Figure 3.3: Carlitz-Willey Trajectory

Although the original paper[11] does not give the trajectory in the form of z(t), I

find that the defining trajectory is

z(t) = −t− 1

κ
W (e−2κt) . (3.14)

This trajectory utilizes the Lambert W function (the product log), as introduced in

Equation 2.214. The product log underlies the thermal radiation and constant energy

flux for the Carlitz-Willey mirror, as will be shown.

The proper acceleration, i.e. the acceleration in the instantaneous rest frame of
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the mirror, Equation 2.199, is

α(t) = − κ

2
√
W (e−2κt)

. (3.15)

It is important to emphasize that the proper acceleration is not constant. It is a com-

mon mistake to assume that accelerated mirrors that emit thermal radiation possess

a constant proper acceleration. This is likely due to the related prediction ( the Un-

ruh effect) that a uniformly accelerating observer will observe black-body radiation

where an inertial observer would observe none, in flat spacetime (or even curved

spacetime). This acceleration radiation as described by Unruh [10] is so closely re-

lated, that it is sometimes called the Fulling-Davies-Unruh effect. At constant uni-

form acceleration, Unruh radiation is thermal. To be clear, the moving mirror model

as a particular manifestation of the dynamical Casimir effect, is different. It is hard

to overstate that only the uniformly accelerated mirror has constant proper accel-

eration and for thermal radiation at all times, the moving mirror accelerates with

the time-dependent function indicated in Equation (3.15). Consider the features of

this trajectory. It initially approaches at the speed of light, limt→−∞ v = 1 and does

not intersect the origin. Its final limiting velocity is the speed of light to the left,

limt→∞ v = −1. The initial limiting proper acceleration is 0 yet the final limiting

proper acceleration is −∞. The asymptotic celerity, γv, is infinite. Notice the un-

usual features of the trajectory: It initially moves at the speed of light (asymptoti-

cally null) with a zero proper acceleration! It does not intersect the origin. The ray

tracing functions are

p(u) = − 1
κ
e−κu

f(v) = − 1
κ
ln(−κv) v < 0 .

(3.16)

Integration, using Equation (2.40) gives the result for the beta transformation coeffi-

cient in Table 3.4.
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The beta in Table 3.4 is the ‘Right’ bogolubov coefficient, in the Carlitz-Willey

construction, [11] as discussed in more detail when the coefficient is computed on

the future hypersurface. The ‘Right’ and ‘Left’ mode construction is more complex

than the conventional approach. The appendix in the original Carlitz and Willey

paper [11] is recommended for further elucidation of the process with the CW ‘split’

mode technique. Squaring the modulus yields

|βω′ω|2 =
1

2πκω′
1

e2πω/κ − 1
. (3.17)

The mirror has a constant flux for all times.

〈Tuu〉 =
κ2

48π
, (3.18)

which is calculated from Equation (2.45) using the ray tracing function for p(u). The

occupation number per mode ω, 〈Nω〉, the occupation number per mode ω′, 〈N ′
ω〉,

the total particle number 〈N〉 and the total energy, E are all divergent. This is be-

cause the flux is constant for all times and this is due to the mirror traveling with

an ever increasing acceleration. The CW mirror produces one-dimensional thermal

radiation at all times. Incidentally, a resistor is another example of a system which

has a one-dimensional thermal power density spectrum [56].

Particle Creation via Future Cauchy Surface

The computation of beta coefficients using the future surface is done by using the

Carlitz-Willey ‘split-mode’ convention. This is done by using the general mode

forms:

φω′ = e−iω
′v − e−iω

′p(u)





φRω = e−iωV (v)Θ(−v)− e−iωu

φLω = e−iωW (v)Θ(v) .
(3.19)
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Here

p(u) = −κ−1e−κu





V (v) = −κ−1 ln(−κv) v < 0

W (v) = +κ−1 ln(+κv) v > 0 .
(3.20)

Consider the calculation involving the only the right future surface. The I+R surface

is typically not used for calculating particle creation, particularly in the case of a mir-

ror. This is because, technically, I+R is not a proper Cauchy surface, the full surface

is actually I+L
⋃
I+R . The Carlitz-Willey ‘split’ mode construction allows us to deal

with this complication. The division of the future surface is broken into two dis-

tinct horizons, the left and right ones, where two distinct Bogolubov coefficients are

calculated. Here I present a new βRω′ω calculation as done on the future hypersurface.

βRω′ω = i

∫ ∞

−∞
du φ∗

ω′

↔
∂u φ

R∗
ω , (3.21)

where the integral is done on I+R . Here the modes assume the CW convention[11],

φω′ = e−iω
′p(u) , φRω = e−iωu , (3.22)

for the CW trajectory, p(u) = −κ−1e−κu, so we obtainφω′ = ei
ω′

κ
e−κu

, φRω = e−iωu,

φ∗
ω′ = e−i

ω′

κ
e−κu

, φR∗
ω = eiωu. Using these modes,

βRω′ω = i

∫ ∞

−∞
du e−i

ω′

κ
e−κu ↔

∂u e
iωu . (3.23)

Partial integration can be done because the modes vanish at infinite distances.

One finds

βRω′ω = −2ω

∫ ∞

−∞
du eiωu−i

ω′

κ
e−κu

, (3.24)
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using the substitution et = iω
′

κ
e−κu, where dt = −κdu gives

βRω′ω = −2ω

κ

∫ ∞

−∞
dte−i

ω
κ
(t−ln iω

′

κ
)−et = −2ω

κ
ei

ω
κ
ln iω

′

κ

∫ ∞

−∞
dt e−i

ω
κ
t−et . (3.25)

where we now use

Γ(z) =

∫ ∞

−∞
dtezt−e

t

Re[z] > 0 , (3.26)

to obtain for all times, (not just late times)

βRω′ω = −2ω

κ
e−

πω
2κ (

ω′

κ
)i

ω
κΓ(−iω

κ
) . (3.27)

3.3.2 Uniformly Accelerated Mirror Trajectory

A mirror accelerating uniformly emits quanta, but there is no radiation of energy.

Davis and Fulling first discovered this seemingly paradoxical effect, see [5]. A hy-

perbolic trajectory is:

z(t) = B −
√
B2 − t2 , (3.28)

where a plot is given in Figure 3.4.

Using a splice between the static mirror and hyperbolic mirror, Davies and Fulling

[5] found

βωω′ =
B

π
ei(ω

′−ω)BK1(2B
√
ωω′) , (3.29)

(see the Hyperbolic plus Static mirror in Section 3.6), whereK1 is the modified Bessel

function. This result was used with questionable assumptions, involving a static

mirror spliced to a hyperbolic mirror. We present the results for the hyperbolic tra-

jectory throughout all times.

Substituting p(u) into Eqn. (2.45) gives 〈Tuu〉 = 0. No paradox exists, despite a
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Figure 3.4: Hyperbolic, B = 1
2
.

detector absorbing quanta and making a transition to an excited state in the absence

of all field energy. A detector, as described by Walker[15] emits negative energy into

the field to compensate. This strange result is not without precedent in quantum

field theory. Similar situations are explored by Epstein, Glaser and Jaffe (1965)[57],

who construct many-particle states with negative or zero fluxes even in the absence

of mirrors or detectors.

Hyperbolic and Mobius Trajectories on Null Surfaces

Constant acceleration mirror trajectories have beta coefficients which can be solved

straightforwardly using null hypersurfaces for the Cauchy surface in the scalar prod-

uct. For two hyperbolic mirrors (Mobius trajectory), an arguably more natural man-

ifestation of hyperbolic motion, there is no appearance of particles or energy. This is

to be contrasted with the single hyperbolic mirror which has particle production, yet

〈Tuu〉 = 0. The Mobius expression is more simple and both ± branches are included.

In addition there is no transformation shift to intersect zero.
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Hyperbolic Mirror on Null Surface: Particles without Energy

The hyperbolic trajectory is zh(t) = B −
√
B2 + t2. The modes solutions used that

satisfy the boundary condition and wave equation are, using the CW normalization

convention:

φω′ = e−iω
′v − e−iω

′p(u)Θ(B + u) , φω = e−iωf(v)Θ(B − v)− e−iωu , (3.30)

while the beta coefficient is βω′ω = −iB
π
ei(ω−ω

′)K1(2B
√
ωω′). To solve for this beta

coefficient, the conversions (using u = t− z, v = t+ z) begin via

u(t) = −B + t+
√
B2 + t2

v(t) = B + t+
√
B2 + t2 .

(3.31)

Inversion gives

t(u) = u(2B+u)
2(B+u)

,

t(v) = v(2B−v)
2(B−v) .

(3.32)

In null coordinates, Eqn. (2.35), and the inverse, Eqn. (2.36), are

p(u) = Bu
B+u

u > −B ,

f(v) = Bv
B−v v < B .

(3.33)

For solving for the beta coefficient on the past hypersurface, the mode solutions are

therefore, φ∗
ω′ = eiω

′v, φ∗
ω = eiω

Bv
B−v and the integral

βω′ω =
1

4π
√
ωω′

∫ ∞

−∞
dv eiω

′veiω
Bv
B−v (ω′ − ω

B2

(B − v)2
)Θ(B − v) , (3.34)

is obtained. This is solved to give,
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βω′ω =
1

4π
√
ωω′

(
−4i

√
ωω′Bei(ω−ω

′)BK1(2B
√
ωω′)

)
, (3.35)

βω′ω = −iB
π
ei(ω−ω

′)BK1(2B
√
ωω′) . (3.36)

Solving for the beta by using the future surface results in the integral

βω′ω =
1

4π
√
ωω′

ei(ω−ω
′)B

∫ ∞

−∞
da eiωae−iω

′ B2

a (ω′B
2

a2
− ω)Θ(a) , (3.37)

which also gives Eqn. (3.36).

The energy flux is found by the expectation value of the stress-energy tensor, Eqn.

(2.45) where the total energy is found by Equ (2.48), E =
∫ umax

umin
〈Tuu〉 du. Here p(u) =

Bu
B+u

. Using Eqn. (2.45), one finds zero flux, 〈Tuu〉 = 0. Therefore, incorporating Eqn.

(3.36), the well known ‘particles without energy’ or ‘radiation without energy’ result

is confirmed. Obadia and Parentani study how to switch off the interaction of the

mirror-field coupling at large times. [58] They found that if the coupling is constant

they were able to obtain 〈Tuu〉 = 0.

Two Hyperbolic Mirrors: Acceleration without Particles

Two hyperbolic mirrors (Mobius mirror) produce no energy or particles[23]. This

double mirror trajectory is included in this constant acceleration section as the only

demonstration of a radiationless, yet accelerated trajectory. It is a trivial example of

preserving purity during the mode ‘evolution’ from I−R to I+R . Asymptotically iner-

tial mirrors in Section 3.4 are unitary like the Mobius mirror. There is no particle

production because the two constant acceleration mirrors cancel each other’s parti-

cle creation effect. Using the CW normalization, the modes solutions that satisfy the

boundary condition and wave equation are, Equ. (3.19). The Mobius trajectory has
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been studied before[59] from a conformal field theory point of view in an attempt to

illustrate the close relationship between the production of particles and energy. The

only new aspect presented here is the use of the past and future hypersurfaces to

derive the same results and confirm our technique. The trajectory is,

zmobius(t) = ±
√
B2 + t2 . (3.38)

t
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Figure 3.5: Mobius Trajectory: two hyperbolic mirrors, B = 1
2
.

The ray tracing formulae are solved by inverting u(t) and v(t):

u(t) = t±
√
B2 + t2 ,

v(t) = t±
√
B2 + t2 ,

(3.39)

with the result,

t(u) = u
2
− B2

2u
,

t(v) = v
2
− B2

2v
.
. (3.40)

In null coordinates,
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p(u) = −B2

u
u 6= 0 ,

f(v) = −B2

v
v 6= 0 .

(3.41)

The beta transformation coefficient integral is done using the past hypersurface by

βω′ω = i
∫∞
−∞ dv φ∗

ω′

↔
∂v φ

∗
ω such that the modes are, φ∗

ω′ = eiω
′v and φ∗

ω = eiω
−B2

v . The

resulting integral is

βω′ω =

∫ ∞

−∞
dv eiω

′veiω
−B2

v (ω′ − ω
B2

v2
) ≡

∫ ∞

−∞
dv I(B, v, ω, ω′) , (3.42)

which must be done avoiding the pole at v = 0. Split into two, we obtain

βω′ω =

∫ 0

−∞
dv I(B, v, ω, ω′)Θ(−v) +

∫ ∞

0

dv I(B, v, ω, ω′)Θ(v)

= 0 . (3.43)

For integration using the future hypersurface, this result is obtained by a similar

method which also gives zero. The energy flux, Eqn. (2.45) is found as was done

for the hyperbolic mirror, however in this case, p(u) = −B2

u
and the result is zero:

〈Tuu〉 = 0.

3.3.3 Davies-Fulling Mirror Trajectories

The most famous moving mirror trajectory is that of Davies and Fulling[5]. This

mirror accelerates with a time-dependent acceleration and becomes asymptotically

null. The original calculation utilizes obscure approximations and Fulling has re-

cently concluded [29] that although the end results still hold, the calculational ap-

proach used may have an error. The Davies-Fulling(DF) result was the first trajectory

used to provide an understanding of the appearance of a thermal spectrum. Here
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I present a ‘late time Davies-Fulling’ calculation which is done without obscure ap-

proximations. The defining characteristic of this DF mirror is the ‘broken’ and ‘glued

together’ static and accelerating pieces:

z(t) = −t− Ae−2κt + B t→ ∞ ,

z(t) = 0 t < 0 .
(3.44)

Without approximations, like high frequency or ignoring boundary terms from inte-

gration by parts, we compute the βω′ω’s for this mirror using the future surface, and

the form originally [5] given for p(u),

p(u) = B − Ae−κ(u+B) . (3.45)

I will use the specific values A = 2
κ

and B = ln 2
κ

so that A = eκB

κ
.
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Figure 3.6: Davies-Fulling Trajectory

Notice the static ‘glued’ piece affect on the initial character of the mirror. The

velocity is initially 0 while as t→ ∞ the velocity goes to −1. The proper acceleration

as t→ ∞ is −∞. The original ray tracing functions become
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p(u) = ln 2
κ

− 1
κ
e−κu u→ ∞ ,

f(v) = − 1
κ
ln( ln 2

2
− κv

2
)− ln 2

κ
v < ln 2

κ
.

(3.46)

Solving for the beta coefficient using the same null surfaces as for the Carlitz-Willey

mirror yields,

βω′ω = −2ω

κ
2

iω′

κ (
ω′

κ
)
iω
κ e−

πω
2κ Γ(−iω

κ
) +Q , (3.47)

where

Q ≡ 2
iω′

κ (
ω′

κ
)
iω
κ e−

πω
2κ (

ω

κ
Γ[−iω

κ
, i
ω′

κ
] + iΓ[1− i

ω

κ
, i
ω′

κ
]) . (3.48)

The thermal character appears in the high frequency limit, ω′ >> ω. The incomplete

gamma functions become negligible, and Q→ 0. Thus,

|βω′ω|2 ≈
1

2πκω′
1

e2πω/κ − 1
for ω′ >> ω . (3.49)

Consider another new calculation for the Davies-Fulling trajectory. This one is for

all times and it utilizes what we call the Hyperlog trajectory as shown in subsection

3.6.1. This new all-time DF solution is also a spliced trajectory. It contains the usual

static piece for t < 0 and an accelerating piece of the form ln(cosh(t)) (Hyperlog

form) for t > 0. This precise trajectory was originally suggested by Davies-Fulling

[5]. I use it to do a new calculation of βω′ω.

z(t) = − 1
κ
ln coshκt t > 0 ,

z(t) = 0 t < 0 .
(3.50)

The t > 0, ln cosh t form, is only the positive time part of what we call the ‘Hyper-

log’ trajectory, which is solvable in and of itself and extends over all times. We solve

this ’all-time’, spliced Davies-Fulling mirror using the future surface, and the form
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for p(u), p(u) = 1
κ
ln(2− e−κu). Solving for the beta coefficient yields,

βω′ω = i− 2i(2F1{1,−
iω′

κ
, 1− iω

κ
,−1}) , (3.51)

where 2F1 is a hypergeometric function.

3.4 Asymptotically Inertial Mirrors

3.4.1 Walker-Davies Mirror Trajectory

x

t

Figure 3.7: Walker-Davies Trajectory

The Walker-Davies (WD) trajectory [34] is expressed in time as a function of z:

t = −z ± A
√
e−2z/B − 1 . (3.52)

The WD trajectory is plotted in Figure 3.7. It has transformation coefficients

which are exactly solvable This is a non-spliced, no approximation trajectory that

has received little attention. Walker and Davies determined the particle creation due
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to this asymptotically inertial (static in fact) trajectory in both the far past and far

future. The main results are a finite, exactly-known total energy, and finite particle

creation count (which is not exactly known but whose finiteness is inferred from the

asymptotic behavior of the integrand). They found that the total energy produced

is:

E1 =
B2

48(A2 − B2)3/2
. (3.53)

We numerically confirm that this total energy can be is equal to the energy found by

adding quanta,

E2 =

∫ ∞

0

ω〈Nω〉dω =

∫ ∞

0

dw w

∫ ∞

0

dω′|βω′ω|2 . (3.54)

By summing energy associated with each particle (summing quanta) we have con-

firmed the modulus squared Bogolubov coefficient for A = 2, B = 1 as presented in

Eqn. (3.55). The total energy is E2 = 0.004009 or E2 = E1(A = 2, B = 1) = 1
144

√
3

to

within 10−6 relative error. This is the first and only (so-far-existing) trajectory that

is asymptotically static in both the far past and far future that has computed Bogol-

ubov coefficients. It is very difficult to find asymptotically inertial trajectories, much

less a transcendentally invertible asymptotically static trajectory.

We have used

|βω′ω|2 =
2AB

π2

(
ω′

ω′ + ω

)
sinh(πωB)|Kq(r)|2 , (3.55)

where q ≡ −1
2
+ iωB and r ≡ A(ω′ + ω). For the totality of the trajectory, the total

energy, E, the total number of particles, 〈N〉, and both the occupation numbers per

modes ω and ω′, 〈Nω〉 and 〈Nω′〉, are all finite.

This trajectory is also the first finite energy result from a non-spliced mirror tra-

jectory. As you can see it avoids late time approximations and problems with com-

pleteness of the field modes on the future null surface. This trajectory acts like a
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model for total evaporation of a black hole [35]. The drawbacks of this trajectory

involve the transcendentally irreversible form for the trajectory, the complexity of

the ray tracing formulas and the inability to so far exactly integrate the modulus of

the beta transformation coefficient to reveal the particle production count.

3.4.2 Darcx Mirror Trajectory

I have found a mirror trajectory that is asymptotically inertial in the past and future,

but not necessarily static in the future. One would still expect this trajectory to pro-

duce a finite amount of particles and a finite total energy. This trajectory has no u or

v asymptote as can be seen in Figure 3.8.

t

-x

Figure 3.8: An asymptotically drifting mirror, v(t→ ∞) = |v0| < 1.

The defining trajectory is,

z(t) = − ξ

κ
sinh−1(eκt) , (3.56)

where ξ is the limiting final speed with 0 < ξ < 1, and κ > ξ. This will be called

Darcx (‘D’ for drifting, ‘arc’ for archyperbolic sine, and ‘x’ for exponent). We exactly
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solve for the Bogolubov coefficients and the total energy.

The proper acceleration is

α(t) = − κξeκt

(1− ηe2κt)3/2
, (3.57)

where η ≡ ξ2−1. Notice the trajectory characteristics, where in the far past, t→ −∞

both v → 0 and α → 0. In the far future, as t → ∞, v → −ξ and α → 0. The limiting

celerity, γv is − ξ√
1−ξ2

. Using p(u) = tu + z(tu), we may rewrite βω′ω in terms of the

general z trajectory,

βω′ω =
1

4π
√
ωω′

∫ ∞

−∞
dtu e

i(ω+ω′)tuei(ω
′−ω)z ((ω′ − ω) + (ω′ + ω)ż) . (3.58)

With b+ ≡ bω + aω′, a+ ≡ aω + bω′ and ω+ ≡ 1
κ
(ω + ω′), where a ≡ 1

2κ
(1 + ξ) and

b ≡ 1
2κ
(1− ξ), we find

βω′ω =
−i
2iω+

1

4π
√
ωω′

ξ

κ2
2ω′ω

b+

Γ[iω+]Γ[ia+]

Γ[ib+]
. (3.59)

Squaring the modulus, we get

|βω′ω|2 =
ξ2

4πκ4
ω′ω

ω+a+b+

csch[πω+]csch[πa+]

csch[πb+]
. (3.60)

This is easy to numerically integrate, over ω′ to obtain the occupation number for

a mode with frequency ω. We have not been able to find a closed form expression

for Nω. We have found a closed form solution for the total energy. The flux from

Eqn. (2.47) is

〈Tuu〉 =
κ2

12π

ξχeκtu(2ηe2κtu + 1)

(χ+ ξeκtu)2(ηe2κtu − 1)2
, (3.61)

where, χ ≡
√
e2κt + 1. Again, η ≡ ξ2 − 1 and ξ is the final drifting speed obtained by
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the mirror, 0 < ξ < 1. After lengthy algebraic simplification, one finds that the total

energy created is obtained by using the integral of Equation (2.49), (2.50) or (2.54).

E =
κ

96π

(
3 + ξ2

2ξ2
ln

1 + ξ

1− ξ
− 3 + ξ(3 + 2ξ)

ξ(1 + ξ)

)
. (3.62)

As a simple check consider the trajectory where the final speed is half that of light,

ξ = 1
2
. The solution for the expectation value for total energy production is

E =
39 ln 3− 40

576π
κ = 1.57269× 10−3κ . (3.63)

We can confirm this by computing the energy using the beta Bogolubov coefficient

to sum up the energy of each particle, associating to each, a quanta of energy:

∫ ∞

0

dw w

∫ ∞

0

dω′|βω′ω|2 = 1.57269× 10−3κ . (3.64)

This shows consistency between the description in terms of particles and that in

terms of the energy flux. A plot of the energy flux for ξ = 1/2 is in Figure 3.10. Note

the interesting feature of negative energy flux in the vacuum. Negative energy flux

is a characteristic feature of QFT under external conditions. For the totality of the

Darcx mirror trajectory, E, 〈Nω〉,〈Nω′〉 and 〈N〉 are all finite.

3.4.3 Proex Mirror Trajectory

I have found a new mirror trajectory, with some very unusual features, called the

Proex trajectory ( ‘Pro’ for Product Log, ‘ex’ for exponent). Particle creation is calcu-

lated on the past and future null surfaces. This trajectory results in a finite occupa-

tion number for particles per mode ω and produces a finite, non-zero energy. Using

the CW normalization convention, the transformation coefficient is obtained. The
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Proex trajectory is

zPX(t) = −1

κ
W (eκt) . (3.65)

t

-x

Figure 3.9: Proex Trajectory.

The beta coefficient is

βω′ω = 2
ω′

κ
2−i

ω+ω′

κ (
ω

κ
)−i

ω+ω′

κ e−
π
2

ω+ω′

κ Γ(i
ω + ω′

κ
) . (3.66)

The Proex trajectory has no asymptote, yet, it approaches the speed of light. Both

its proper acceleration and acceleration go to zero in the far past and far future. It’s

proper velocity goes to −∞, while the velocity goes to −1. The ability to express

Eqn. (3.65) in different ways

zPX(t) = −1

κ
W (eκt) = −t+ 1

κ
lnW (eκt) =

1

κ
ln(e−κtW (eκt)) , (3.67)

is crucial for calculating the beta transformation coefficient. We now proceed to

solve for the relevant details to obtain the beta coefficient, Eqn. (3.66). To find the
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ray-tracing function conversions, we start by noting that

uPX(t) = t+ 1
κ
W (eκt) ,

vPX(t) =
1
κ
lnW (eκt) .

(3.68)

Inverted, this gives

tPX(u) = u− 1
2κ
W (2eκu) ∀u ,

tPX(v) =
1
κ
eκv + v ∀v .

(3.69)

In null coordinates, using p(u) = 2tu − u, and the inverse, f(v) = 2tv − v,

p(u) = u− 1
κ
W (2eκu) ∀u ,

f(v) = 2
κ
eκv + v ∀v .

(3.70)

With κ = 1, φ∗
ω′ = eiω

′v and φ∗
ω = eiω(2e

v+v) one finds by integrating over I−

βω′ω =

∫ ∞

−∞
dv eiω

′veiω(2e
v+v)(ω′ − ω(2ev + 1))

= 2ω′2−i(ω+ω
′)ω−i(ω+ω′)e−

π
2
(ω+ω′)Γ(iω + iω′) . (3.71)

Integration along I+ gives Eqn. (3.66) as well. Normalizing and squaring the answer,

one obtains

|βω′ω|2 =
ω′

2πωκ(ω + ω′)

1

e
2π
κ
(ω+ω′) − 1

. (3.72)

Note that for ω′ >> ω one obtains

|βω′ω|2 ∼
1

2πωκ

1

e2πω′/κ − 1
. (3.73)
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This is unusual because ω and ω′ have exchanged their normal places. Since the

acceleration is asymptotically zero and there is no horizon, we would not expect a

thermal result. I have not been able to exactly integrate Eqn. (3.72) with respect to

ω′. Integrating Eqn. (3.72) exactly, over ω′ would seemingly give results very close

to Polygamma functions. However, one may wish to use the following result as an

approximation:

〈Nω〉 ≈ − 1

4π2ω
ln(1− e

−2πω
κ ) . (3.74)

This appromixation graphically coincides fairly well with the numerical compu-

tation. Use of a correction factor (multiplying by 1
2
), has been useful for compar-

isons with a numerically calculated answer, obtained by using a specific value for

ω and numerically integrating over ω′. Integrating numerically, we find this is eas-

ily accomplished over ω′ for the occupation number for a specific mode ω. That is,

〈Nω〉 = finite.

The expectation value of the total number of created particles,

〈N〉 =
∫ ∞

0

dω

∫ ∞

0

dω′|βω′ω|2 , (3.75)

diverges. Solving for the flux via (2.45) yields

〈Tuu〉 =
κ2

48π

(2−W [2eκu])W [2eκu]

(1 +W [2eκu])4
. (3.76)

This is integrated to obtain

E =
κ

96π
. (3.77)
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We may also express the energy flux using (2.46) as

〈Tuu〉 =
κ2

12π

(1−W [eκtu ])W [eκtu ]

(1 + 2W [eκtu ])4
. (3.78)

Which appropriately integrated yields total energy E = κ/96π, as must be the case.

As a warning, integration with or without the required Jacobian will still yield E =

κ/96π (see the use of the Jacobian in Eqn. (2.49)). In contrast to the total particle

divergence, the total energy is numerically computed by adding the energy of each

quantum,

∫ ∞

0

ω〈Nω〉dω =

∫ ∞

0

dw w

∫ ∞

0

dω′|βω′ω|2 = 0.00331573κ ∼ κ

96π
, (3.79)

which confirms the stress tensor result (3.77) to 10−8 relative error. For the totality

of the trajectory, E and 〈Nω〉 are finite, while 〈Nω′〉 and 〈N〉 diverge. A physical

understanding of the difference in behavior of 〈Nω′〉 and 〈Nω〉 is needed.

Proex

Darcx

Willey-Carlitz

t

Energy Flux

Figure 3.10: Darcx and Proex Energy Flux. The final drifting speed of Darcx, in this
case, is half of light. (ξ = 1/2, κ = 1). The constant Willey-Carlitz flux is included for
a relative comparison.
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3.5 Static-Start Future-Horizon Mirrors

3.5.1 Arcx Mirror Trajectory

I have found a novel, exactly solvable mirror trajectory, called the Arcx trajectory

(‘Arc’ for inverse hyperbolic sine, and ‘x’ for exponent). Particle creation is con-

firmed by integrating over the past and future hypersurfaces to solve for βωω′ . This

trajectory is motivated by its static start and non-spliced nature. Unlike the Davies-

Fulling trajectory, this trajectory in exactly solvable. It too has thermal late time

emission and infinite acceleration, but does so without resorting to splicing the mo-

tion. This allows for a solution that is valid globally. There are numerous ways of

solving for the transformation coefficients. We present one method where verifica-

tion is done twice over, using the past and future surface. The Arcx trajectory is

zAX(t) = − 1
κ
sinh−1 eκt . (3.80)

This trajectory is at rest when t → −∞. To express the ray-tracing functions, the

t

-x

Figure 3.11: Arcx Trajectory.
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conversions (using u = t− z, v = t+ z) of

uAX(t) = t+ 1
κ
sinh−1 eκt

vAX(t) = t− 1
κ
sinh−1 eκt .

(3.81)

are inverted1

tAX(u) =
1
κ
ln
√

e2κu

1+2eκu
∀ u

tAX(v) =
1
κ
ln
√

e2κv

1−2eκv
v < − ln 2

κ
.

(3.82)

In null coordinates, using p(u) = 2tu − u, and the inverse, f(v) = 2tv − v,

p(u) = − 1
κ
ln(e−κu + 2) ∀ u

f(v) = − 1
κ
ln (e−κv − 2) v < − ln 2

κ
.

(3.83)

The modes used are φ∗
ω′ = eiω

′v and φ∗
ω = ei

ω
κ
ln (eκv−2)Θ(− ln 2

κ
− v). The integral over

the past null hypersurface is

βω′ω =

∫ ∞

−∞
dv eiω

′v(e−κv − 2)−iω/κ
(
ω′ − ω

1− 2eκv

)
Θ(− ln 2

κ
− v) . (3.84)

With a substitution, c = − ln 2
κ

− v we obtain

βω′ω = 2−
i
κ
(ω′+ω)

∫ ∞

−∞
dc e−iω

′c(eκc − 1)−
iω
κ

(
ω′ − ω

1− e−κc

)
Θ(c)

= −2ω

κ
2−

i
κ
(ω+ω′)Γ(−iωκ )Γ( iκ(ω + ω′))

Γ(iω
′

κ
)

. (3.85)

The future surface calculation gives the same result. Normalizing and squaring the

answer gives

|βω′ω|2 =
4ω2

κ2

∣∣∣∣
Γ(− iω

κ
)Γ( i

κ
(ω + ω′))

Γ( iω
κ
)

∣∣∣∣
2

. (3.86)

1Caveat: This form for tAX(v) is only true for v < − ln 2

κ
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This diverges when integrated over ω′ as expected for acceleration that continues for

all time. Note that for ω′ >> ω for the bracketed portion we obtain

|βω′ω|2 ∼
1

2πκω′
1

e2πω/κ − 1
. (3.87)

The Arcx trajectory provided the inspiration for the Darcx trajectory. Notice how

drastically different the solutions are and the approaches for solving them become,

simply because Darcx contains a drifting factor. It is hoped that one can obtain time

dependent spectra through the use of wavepackets for the Arcx mirror or solutions

similar to it, which closely mimics gravitational collapse, (as it starts static and pro-

ceeds to a horizon). So far this has been challenging because of the acceleration

singularity.

3.5.2 Logex Mirror Trajectory

I have found an exactly solvable mirror trajectory that emits a pulse of energy flux.

The trajectory, called the Logex trajectory (‘Log’- for natural log, ‘ex’ for exponent),

has computable beta coefficients. A characteristic trait that distinguishes it from

the Arcx trajectory is that the horizon is at v = 0. An extended pulse of positive

energy is emitted which is unusual. This behavior is unique among all known mirror

trajectories. The Logex trajectory is

zLG(t) = − 1
2κ

ln(e2κt + 1) . (3.88)

To express the Logex trajectory ray tracing functions, we use (u = t− z, v = t+ z)

uLG(t) =
1
2κ

ln(e4κt + e2κt) ,

vLG(t) = − 1
2κ

ln(e−2κt + 1) ,
(3.89)
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Figure 3.12: Logex and Arcx, respectively.

which yield2

tLG(u) =
1
2κ

ln(1
2
(
√
4e2κu + 1− 1)) ,

tLG(v) = − 1
2κ

ln(e−2κv − 1) v < 0 .
(3.90)

In null coordinates, using p(u) = 2tu − u, and the inverse, f(v) = 2tv − v,

p(u) = − 1
κ
csch−1(2e

2κu
2 ) ,

f(v) = − 1
κ
ln(−2sinh2κv

2
) v < 0 .

(3.91)

Using the derivatives for use in the integration p′(u) = 1√
4e2κt+1

, and f ′(v) = −coth(κv)

and the past surface modes

φ∗
ω′ = eiω

′v φ∗
ω = eiω(−

1
κ
ln(−2sinh(κv)))Θ(−v) , (3.92)

2Caveat: This form for tLG(v) is only true for v < 0
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and the future surface modes

φ∗
ω′ = eiω

′(− 1
κ
csch−1(2eκu)) φ∗

ω = eiωu , (3.93)

along with the integrals

βω′ω = −
∫ ∞

−∞
dv eiω

′veiωf(v) (ωf ′(v)− ω′) , (3.94)

βω′ω =

∫ ∞

−∞
du eiωueiω

′p(u) (ω′p′(u)− ω) , (3.95)

One finds

βω′ω = − 2ωω′

κ(ω′ − ω)
B

[
− iω
κ
,
i(ω + ω′)

2κ

]
. (3.96)

After normalization and complex conjugation,

|βω′ω|2 =
ωω′

4π2κ2(ω′ − ω)2

∣∣∣∣B(− iω
κ
,
i(ω + ω′)

2κ
)

∣∣∣∣
2

. (3.97)

A thermal character is displayed for high frequency,

|βω′ω|2 ≈
1

2πκω′
1

e2πω/κ − 1
for ω′ >> ω . (3.98)

Even though the Logex trajectory starts off asymptotically static, this mirror has a

v = 0 asymptote horizon, with never ending acceleration. A mirror following the

Logex trajectory produces an infinite total amount of particles and an infinite total

energy. The proper acceleration is,

α(t) = −κ2e
2κt(1 + e2κt)

(1 + 2e2κt)3/2
. (3.99)
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The Logex trajectory results in a horizon and an infinite redshift. The flux is similar

to Arcx,

〈Tuu〉 =
κ2

3π

(1 + e2κu)e2κu

(1 + 4e2κu)2
. (3.100)

It diverges when integrated over u, i.e. E = ∞. The flux expressed in tu from the

surface of the mirror takes the form

〈Tuu〉 =
κ2

3π

2e5κtu [1 + 2cosh(2κtu)]cosh(κtu)

(1 + 2e2κtu)4
. (3.101)

There is some indication that this ‘pulse’ of energy as seen in Figure 3.13, from the

energy flux expressions, manifests itself in time-dependent particle production evo-

lution. Recalling that quanta summing fails for Logex because of the singularity and

ultimately the infinite energy production, a localization procedure that could asso-

ciate the pulse of energy with a pulse of particle production would be of interest

for studying the spectral evolution in the presence of a horizon. The characteristic

extended energy pulse of Logex is shown in comparison to several other trajectories

in Figure 3.13.

3.5.3 Omex Mirror Trajectory

Like the other trajectories in this section, and in contrast to the Carlitz-Willey trajec-

tory which starts off asymptotically inertial, this trajectory starts off asymptotically

static. This exactly solvable trajectory which I have found is titled the Omex mirror

(‘Om’ for the Omega Constant, and ‘ex’ for the exponent inside the product log).

Like the Carlitz-Willey and Proex trajectories, it intersects t = 0 not at x = 0. The

t = 0 intersection is located at x = − Ω
2κ

, where the Omega constant satisfies ΩeΩ = 1,

that is, Ω ≈ 0.567....
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Davies-Fulling

Davies-Fulling

Logex

Willey-Carlitz

Arcx

Omex

t > 0

t < 0
t

Energy Flux

Figure 3.13: Energy flux of the three ‘static-start / horizon-finish’ mirrors along with
Davies-Fulling and Willey-Carlitz flux.

z(t) = −t− W (e−2κt)

2κ
. (3.102)

with proper acceleration given by

α(t) = −κ 2√
W (e−2κt)(2 +W (e−2κt))

. (3.103)

Note the static start and that the initial position is at x = ∞. The Carlitz-Willey

trajectory, in contrast, begins at x = −∞. To express the trajectory in terms of ray-

tracing functions, one can use

uOM(t) = 2t+ 1
2κ
W (e−2κt) ,

vOM(t) = − 1
2κ
W (e−2κt) .

(3.104)

After making the transcendental inversions, one finds:
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Figure 3.14: Omex Mirror Trajectory.

tOM(u) = u
2
− 1

2κ
W ( e

−κu

2
) ∀ u ,

tOM(v) = − 1
2κ

ln(−2κve−2kv) valid for v < 0 .
(3.105)

In null coordinates,

p(u) = − 1
κ
W ( e

−κu

2
) ,

f(v) = −v − 1
κ
ln(−e−2κv2κv) v < 0 .

(3.106)

The flux from (2.45),

〈Tuu〉 =
κ2

48π

(1 + 4W [ e
−κu

2
])

(1 +W [ e
−κu

2
])4

, (3.107)

diverges if integrated over all u. The flux in the frame of the mirror from (2.46) is

〈Tuu〉 =
κ2

3π

(1 + 2W [e−2κtu ])

(2 +W [e−2κtu ])4
. (3.108)

It also diverges when integrated over the entire trajectory, as must be the case. The

solution using the past surface is obtained from the integral
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βω′ω =

∫ 0

−∞
dv eiω

′veiωf(v)(ω′ − ωf ′(v)) , (3.109)

which is solved exactly. Using the more natural form of f(v), that is, f(v) = −v −
1
κ
ln(−2κv) gives

βω′ω =

∫ 0

−∞
dv eiω

′veiω(−v−
1
κ
ln(−2κv))(ω′ − ω(1− 1

κv
)) . (3.110)

The solution is found to be:

βω′ω =
2ω′ω

κ(ω + ω′)
(
ω + ω′

2κ
)iω/κe−πω/2κΓ[− iω

κ
] . (3.111)

After squaring with its complex conjugate

|βω′ω|2 =
ω′

2πκ(ω + ω′)2
1

e2πω/κ − 1
, (3.112)

which demonstrates thermal character in the large ω′ limit

|βω′ω|2 ∼
1

2πκω′
1

e2πω/κ − 1
for ω′ >> ω . (3.113)

One finds that 〈Nω〉 = ∞ and E = ∞.

3.6 Heterogeneous Solutions

The mirror trajectories presented so far have not exhausted all the possibilities. There

are many interesting trajectories which have not yet been studied which could pro-

vide insight into quantum effects in moving mirror spacetimes. For instance, one im-

portant trajectory for which the beta Bogolubov coefficients have not been computed

is the static-start, future-asymptotically-uniformly-accelerated trajectory which is
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not asymptotically inertial yet whose acceleration does not diverge. This section

serves as a springboard for those trajectories which may be interesting for further

study. I have also included the Hyperlog mirror trajectory which has two horizons.

There are three simple examples of spliced mirrors in subsection 3.6.2 which illus-

trate purely positive energy emission, purely negative energy emission and a hybrid

negative energy emission trajectory using only uniformly accelerated pieces. In sub-

section 3.6.3 I have given two examples of transcendentally invertible forms. One

class generalizes the initial static start property of the Proex trajectory to incorporate

motions that could start at at any speed, up to the starting speed of light. The other

class generalizes the Carlitz-Willey and Omex mirrors. Both class examples and the

three spliced mirrors have not had their beta Bogolubov coefficients computed. In

Subsection 3.6.4 I have made remarks on specific trajectories that one may wish to

explore and the effectiveness of the techniques developed so far. A treatment of the

hyperbolic tangent function as z(t), v(t) and α(t) is given.

3.6.1 Hyperlog Mirror Trajectory

In this section, I present the beta coefficient for a new trajectory, called the Hyperlog

trajectory, which is unspliced. The Hyperlog trajectory is exactly solvable, and like

the uniformly accelerated mirror, it has two horizons. Inspired by the suggestion

of Davies [5] that this trajectory would smoothly map to a static mirror for t < 0, it

seemed worthwhile to try to solve for the beta Bogolubov coefficients for this trajec-

tory exactly, without splicing, to see if it could be done. After recognizing that this

was possible, it was clear that more trajectories could have their coefficients solved

for, without pathological problems. The mode functions are:
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Figure 3.15: Hyperlog Trajectory.

φω′ = e−iω
′v − e−iω

′p(u)Θ(
ln 2

κ
+ u) φω = e−iωV (v)Θ(

ln 2

κ
− v)− e−iωu , (3.114)

and the trajectory is

zHL(t) = − 1
κ
ln coshκt . (3.115)

The beta Bogolubov coefficient is

βω′ω =
2ω′ω

κ(ω′ − ω)
2i

(ω′
−ω)
κ

Γ(−iω
κ
)Γ(iω

′

κ
)

Γ(iω
′

κ
− iω

κ
)
. (3.116)

To express the trajectory in terms of the ray-tracing functions, one uses

uHL(t) = t+ 1
κ
ln coshκt

vHL(t) = t− 1
κ
ln coshκt

, (3.117)
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and inverts to get3

tHL(u) =
1
κ
ln
√
2eκu − 1 u > − ln 2

κ
,

tHL(v) = − 1
κ
ln
√
2e−κv − 1 v < ln 2

κ
.

(3.118)

In null coordinates, using p(u) = 2tu − u, and the inverse, f(v) = 2tv − v,

p(u) = 1
κ
ln(2− e−κu) u > − ln 2

κ
,

f(v) = − 1
κ
ln (2− eκv) v < ln 2

κ
.

(3.119)

Normalizing beta in Eqn. (3.116) and squaring gives

|βω′ω|2 =
ωω′

4π2κ2(ω′ − ω)2

∣∣∣∣∣
Γ(−iω

κ
)Γ(iω

′

κ
)

Γ(iω
′

κ
− iω

κ
)

∣∣∣∣∣

2

. (3.120)

This diverges when integrated over ω′ as expected for acceleration that continues for

all time. Note that for ω′ >> ω we obtain

|βω′ω|2 ∼
1

2πκω′
1

e2πω/κ − 1
. (3.121)

The main difference between the proposal by Davies-Fulling for t > 0, and this

trajectory is that Eqn. (3.115) for z(t) is used for all time. It now has both a u and a v

asymptote, with an initially advancing infinite acceleration. Intersecting the origin,

it turns around and travels away, eventually obtaining infinite receding acceleration.

It produces an infinite number of particles and an infinite total energy. The proper

acceleration is

α(t) = −κe
κt + e−κt

2
, (3.122)

3Caveat: This form for tHL(u) is only true for u > − ln 2

κ
, (tHL → −∞), with a similar argument for

tHL(v)
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with limiting behavior such that the proper acceleration, α and celerity, γv, diverges

in the far past and future. The speed approaches the speed of light in the far past

and far future. The flux is

〈Tuu〉 =
κ2

12π

(−1 + eκu)eκu

(1− 2eκu)2
. (3.123)

Note the double horizon behavior in Figure 3.16. It is particularly useful to com-

pare the different time-dependent accelerations for different trajectories as is done

in Figure 3.16.

Hyperlog

Uniform

Willey-Carlitz

Darcx

Proex

t

Acceleration

Figure 3.16: Magnitudes of proper accelerations where κ = 1 except for Proex(κ =
3
√
3) and for Darcx (κ = 9/2) for visual clarity.

Even though the Hyperlog and the uniformly accelerated trajectories have dou-

ble horizons, Hyperlog’s strongly time-dependent acceleration results in a non-zero

energy flux.

3.6.2 Variform Spliced Mirrors

Two of these spliced mirrors trajectories have been studied by Walker [15] and all

three have probably been studied by others. They are included for completeness and
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to demonstrate some interesting effects, e.g., infinite particle production with finite

energy, and even pure negative energy production. These mirror trajectories have

a serious drawback: it is much more difficult to explicitly calculate the Bogolubov

transformation coefficients. We do not attempt this here. However, I have confirmed

that the beta transformation coefficients are non-zero in each case.

Hyperbolic plus Static

t

-x

Figure 3.17: Hyperbolic plus static trajectories.

The two distinct static and hyperbolic trajectories may be joined together in such

a way as to form

z(t) = κ−1 −
√
κ−2 + t2 t > 0 ,

z(t) = 0 t < 0
. (3.124)

The ray-tracing formula is

p(u) = Θ(u) u
1+κu

+ uΘ(−u) . (3.125)

The transformation coefficient, βωω′ is non-zero. Integrating 〈Tuu〉 gives the total
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energy production: E = κ
12π

.

Purely Negative Energy Mirror

t

-x

Figure 3.18: Purely Negative Energy Production.

It is a simple matter to splice together two distinct trajectories to obtain

z(t) = 0 t > 0

z(t) = κ−1 −
√
κ−2 + t2 t < 0

, (3.126)

with a ray tracing formula

p(u) = Θ(−u) u
1+κu

+ uΘ(u) . (3.127)

Total energy production is negative: E = − κ
12π

. This mirror has a brief jerk to the

right at t = 0 which is responsible for the negative flux pulse at the origin and total

negative energy.
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t

-x

Figure 3.19: Negative energy mirror: κ2 =
1
4
, κ1 = 1.

Negative Energy Mirror

A generalization of the two examples above is possible by adding two distinct hy-

perbolic trajectories, where

z(t) = κ−1
2 −

√
κ−2
2 + t2 t > 0

z(t) = κ−1
1 −

√
κ−2
1 + t2 t < 0

. (3.128)

The ray tracing functions are:

p(u) = Θ(u)
u

1 + κ2u
+Θ(−u) u

1 + κ1u
u > − 1

κ1
, (3.129)

f(v) = Θ(v)
v

1− κ2v
+Θ(−v) v

1− κ1v
v <

1

κ2
. (3.130)

The energy production is, of course, E = κ2−κ1
12π

and only when κ1 > κ2, does the

characteristic feature of this mirror become evident, i.e. the total energy emission

is actually negative. The Walker-Davies, Darcx and Proex trajectories emit negative

energy but in contrast their total energy emission is positive.
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3.6.3 Generalized Transcendental Prototypes

Proex to Light Speed Generalization

As a generalization of the Proex trajectory, this mirror is asymptotically inertial in the

past and future, but may have an initial velocity. It produces particles and a finite

total energy. It has no u or v asymptote despite the fact that the mirror approaches

the speed of light. The defining trajectory is,

z(t) = (
1

A
− 1)t− 1

κ
W (

1

A
eκt/A) . (3.131)

Note that as A → ∞ the trajectory approaches the light speed mirror trajectory,

z(t) = −t. We expect and obtain zero particles and energy production in this case.

On the other hand, as A→ 1, this mirror approaches the Proex form. It is possible to

t

-x

Figure 3.20: Proex Generalization, A = 2.

solve for the ray-tracing formulas and they are:

p(u) = u
B
− 1

κ
W ( 2

B
e

κu
B ) ,

f(v) = 2
κ
eκv + Bv .

(3.132)
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The flux is

〈Tuu〉 =
κ2

48πB2

(2−W ( 2
B
e

κu
B ))W ( 2

B
e

κu
B )

(1 +W ( 2
B
e

κu
B ))4

. (3.133)

Integration of 〈Tuu〉 yields

E =
κ

96πB
, (3.134)

where B = 2A− 1 with A > 1/2.

Omex to Carlitz-Willey Generalization

t

-x

Figure 3.21: Carlitz-Willey, a generalization with A = 3/2 and Omex.

As a generalization of Carlitz-Willey and Omex mirrors, this class of mirrors has

trajectories of the form,

z(t) = −t− 1

Aκ
W (eκt) , (3.135)

Note that as A → 2 the trajectory approaches the Omex trajectory form, while as

A→ 1 the Carlitz-Willey trajectory is approached. The ray-tracing functions are
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p(u) = − 1
κ(A−1)

W ( (A−1)
A

e−κu) ,

f(v) = − 1
κ
ln(−Ae−Aκvκv)− v ,

(3.136)

with A > 1. The energy flux is

〈Tuu〉 =
κ2

48π

(1 + 4W (A−1
A
e−κu))

(1 + 4W (A−1
A
e−κu))4

. (3.137)

3.6.4 Hyperbolic Tangent Archetypes

An Asymptotically Static Mirror

Even in a situation that has nonzero particle production and whose beta coefficients

cannot be easily computed analytically, we may still compute the energy production.

As an illustration of the ease and utility of Equation (2.49) and (2.54) , consider the

specific trajectory

z(t) = −1

2
(tanh(t) + 1) , (3.138)

plotted in Figure 3.22. This starts off at z = 0 and ends at a new position, z = z0 =

−1. Using lengthy but straightforward expressions for the energy flux and the jerk,

integration is possible and one finds that the total energy emitted is

E =
1

864π

(
9π − 60 +

√
3 ln

[(
7− 4

√
3
)23

(
2−

√
3
)68

])
. (3.139)

An Asymptotically Drifting Mirror

Consider the case where we might not have an analytical expression for the trajec-

tory z(t), but the velocity is known analytically. We would like to know the energy

production from such a trajectory that moves with an analytically known v(t). For
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t

-x

Figure 3.22: An asymptotically static mirror or ‘shifted mirror’. As t → ∞, the
position, z(t) → z0.

consistency (and for the sake of the argument), consider the same form for the for-

mula used for z(t) for the Asymptotically Static Mirror, now used for the velocity

v(t) = −ξ
2
(tanh(t) + 1) . (3.140)

The trajectory shape is similar to Darcx’s asymptotic motion in the far future. As an

example of the utility of Equation (2.47), 〈Tuu〉 = − α̇
12πγ(1−v)2 which does not require

the form of the trajectory, we note that this mirror starts off at, t = −∞ with v = 0

and ends as t → ∞ with the final velocity, |v| = ξ < 1. Rather lengthy expressions

for the energy flux and the jerk still allow analytical integration of the total emitted

energy with the result

E =
(1 + ξ)2 tanh−1(ξ)− (1 + 2ξ)ξ

48πξ(1 + ξ)
. (3.141)
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t

Acceleration

Figure 3.23: An asymptotically uniform mirror with unknown, z(t) but known α(t)
permitting solutions for jerk and flux.

An Asymptotically Uniform Mirror

Consider an analytically unknown trajectory that has a proper acceleration function,

α(t) = −κ
2
(tanh(κt) + 1) , (3.142)

which starts inertial (α = 0), but as t → ∞, approaches a constant proper acceler-

ation, |α| = κ. This is not the same trajectory as the Davies-Fulling mirror because

this analytically unknown mirror trajectory reduces to a constant acceleration in the

far future. This trajectory constitutes a particularly difficult situation and elusive so-

lution. Not only are the beta Bogolubov transformation coefficients difficult to solve

for, but the energy is difficult to compute as well. Intuition tells us that the total

energy produced may be gleaned from looking at simply the jerk. The ‘Negative

Energy Mirror’ hints at the answer because the total energy in that case is simply the

total change in acceleration divided by 12π. The total energy produced is propor-

tional to the total jerk. For the above trajectory, we also have a total time integrated

jerk of κ. The trajectory gets its acceleration jerked all the way from 0 to κ and

by analogy, we would expect the total energy produced to be nearly equal to this
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change divided by 12π if the jerk happens over a brief enough interval. The answer

being positive because the jerk is away from us. Left jerking creates positive energy,

right jerking creates negative energy. The numerical analysis involves lengthy ex-

pressions and integration over the energy flux is not straightforward. The answer,

to approximately 5% relative error is

E =
κ

12π
. (3.143)

Of course, the asymptotic proper acceleration must be κ. Be reminded that the flux

does not depend on only the change of acceleration, it also depends on the veloc-

ity. The answer for the energy is not expected to be Eqn. (3.143), but the intuitive

choice of (3.143) becomes more accurate the more similar one can make an future-

uniformly-accelerating trajectory approach the case of ‘Hyperbolic plus Static’.

3.7 Trajectory Tables

This short summary section is concerned with non-comprehensive tables of several

mirrors solutions discussed in the previous subsections. The ray tracing functions

are included, p(u) ≡ 2τu − u, where τu is found through τu − z(τu) = u, and z(t)

is the trajectory of the mirror. Some of the mirror trajectories listed here have been

studied by other authors. The two asymptotically inertial mirrors Proex and Darcx,

and the three static-start horizon-finish mirrors: Arcx, Logex, Omex, were found by

the present author. The three most well known trajectories of the moving mirror

model are those by Davies-Fulling[6], Carlitz-Willey[11] and the uniformly acceler-

ated mirror[58]. All three accelerate until asymptotically null, forming a horizon and

modes which do not intersect the mirror. Special trajectory cases like the Mobius or

112



Hyperlog are referred to in the text and are not entirely novel, as they have been dis-

cussed or suggested by others [23], [31]. The exploratory generalized transcendental

solutions and the hyperbolic tangent archetypes are new. The trivial ‘constant veloc-

ity’ mirror has probably been analyzed before somewhere, however I have not seen

its treatment. The ‘light speed’ boundary is my invention. The constant velocity

mirror trajectory and light speed trajectory are included only for academic reference

and completeness. For pedagogical purposes the static, drifting, and light speed mir-

rors coincide analogously to the future motional states of the asymptotically inertial

mirrors: Walker-Davies, Darcx and Proex.

Table 3.1: Ray tracing functions and trajectories.

Mirror Ray Tracing Function Mirror Trajectory

Static p(u) = u z(t) = 0

Constant Velocity p(u) = 1−v0
1+v0

u ≡ Du z(t) = −v0t

Light Speed p(u) = 0 z(t) = −ct

Uniform Acc. p(u) = u
1+κu

z(t) = κ−1 −
√
κ−2 + t2

Carlitz-Willey p(u) = − 1
κ
e−κu z(t) = −t− κ−1W (e−2κt)

Walker-Davies N/A.4 t = −z(t)± A
√
e−2z(t)/B − 1

Darcx Unknown. z(t) = − ξ
κ
sinh−1(eκt)

Continued on Next Page. . .

4Eqs (10) and (11) of Walker and Davies 1982 [34] are not in the invertable form for p(u).
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Table 3.1 – Continued

Mirror Ray Tracing Function Mirror Trajectory

Proex p(u) = u− 1
κ
W (2eκu) z(t) = − 1

κ
W (eκt)

Arcx p(u) = − 1
κ
ln(e−κu + 2) z(t) = − 1

κ
sinh−1 eκt

Logex p(u) = − 1
κ
csch−1(2eκu) z(t) = − 1

2κ
ln(e2κt + 1)

Omex p(u) = − 1
κ
W ( e

−κu

2
) z(t) = −t− W (e−2κt)

2κ

Mobius p(u) = −κ−2u−1 z(t) = ±
√
κ−2 + t2

Hyperlog p(u) = 1
κ
ln(2− e−κu) z(t) = − 1

κ
ln coshκt

DF Late Times5 p(u) = B − Ae−κ(u+B)
z(t→ ∞) = −t− Ae−2κt + B

z(t < 0) = 0

DF All Times p(u) = 1
κ
ln(2− e−κu)

z(t > 0) = − 1
κ
ln coshκt

z(t < 0) = 0

In Table 3.1 we have organized the trajectories as they are sectioned in this chap-

ter. We have decided to keep the constant acceleration mirror listed as the first tra-

jectory after the the non-accelerated trajectories for logical simplicity.

5See Section 3.3.3 or Davies and Fulling [5]
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Table 3.2: Proper Accelerations and Energy Flux

Mirror Proper Acceleration Energy Flux as function of tu

Static α = 0 〈Tuu〉 = 0

Constant Velocity α = 0 〈Tuu〉 = 0

Light Speed α = 0 〈Tuu〉 = 0

Uniform Acc. α = −κ 〈Tuu〉 = 0

Carlitz-Willey α = −κ 1

2
√
W (e2κt)

〈Tuu〉 = κ2

48π

Darcx α = −κ ξeκt

(1−ηe2κt)3/2 〈Tuu〉 = κ2

12π
ξχeκtu (2ηe2κtu+1)

(χ+ξeκtu )2(ηe2κtu−1)2

Proex α = −κ W [eκt]

(1+2W [eκt])3/2
〈Tuu〉 = κ2

12π

(1−W [eκtu ])W [eκtu ]
(1+2W [eκtu ])4

Arcx α = −κeκt 〈Tuu〉 = κ2

12π
eκtu

√
1+e2κtu

(1+2eκtu(eκtu+
√
1+e2κtu))

Logex α = −κ2e2κt(1+e2κt)

(1+2e2κt)3/2
〈Tuu〉 = κ2

3π
2e5κtu [1+2cosh(2κtu)]cosh(κtu)

(1+2e2κtu )4

Omex α = −κ 2√
W [e−2κt](2+W [e−2κt])

〈Tuu〉 = κ2

3π

(1+2W [e−2κtu ])
(2+W [e−2κtu ])4

In Table 3.2 we have left out the Walker-Davies[34] mirror as the trajectory form is

not transcendentally invertible for uncovering the proper acceleration and we have
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not yet verified their flux, despite verifying their total energy with quanta summing.

The Davies-Fulling late-time mirror has also been left out as its form is not appro-

priate for early-time proper acceleration. The Davies-Fulling all-time mirror, the

Mobius and Hyperlog mirrors have also been left out as we deem their solutions no

more physically relevant than the uniform accelerated mirror due to either splicing

or double horizons.

Table 3.3: Energy Flux in u and Total Energy.

Mirror Energy Flux of u Total Energy

Static 〈Tuu〉 = 0 E = 0

Constant Velocity 〈Tuu〉 = 0 E = 0

Light Speed 〈Tuu〉 = 0 E = 0

Uniform Acc. 〈Tuu〉 = 0 E = 0

Willey-Carlitz 〈Tuu〉 = κ2

48π
E = ∞

Walker-Davies N/A.6 E = B2

48(A2−B2)3/2

Darcx Unknown. E = κ
96π

(
3+ξ2

2ξ2
ln 1+ξ

1−ξ −
3+ξ(3+2ξ)
ξ(1+ξ)

)

Proex 〈Tuu〉 = κ2

48π
(2−W [2eκu])W [2eκu]

(1+W [2eκu])4
E = κ

96π

Arcx 〈Tuu〉 = κ2

12π
(1+eκu)eκu

(1+2eκu)2
E = ∞

Continued on Next Page. . .

6Eqs (10) and (11) of Walker and Davies 1982 [34] are not in the invertable form for 〈Tuu(u)〉
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Table 3.3 – Continued

Mirror Energy Flux of u Total Energy

Logex 〈Tuu〉 = κ2

3π
(1+e2κu)e2κu

(1+4e2κu)2
E = ∞

Omex 〈Tuu〉 = κ2

48π

(1+4W [ e
−κu

2
])

(1+W [ e
−κu

2
])4

E = ∞

Hyperlog 〈Tuu〉 = κ2

12π
(−1+eκu)eκu

(1−2eκu)2
E = ∞

In Table 3.3 I have shown the standard mirror trajectories like Table 3.2, however

I have included Hyperlog to point out the similarity in form to Arcx, despite having

two horizons. A salient point from Table 3.3 is the general intractability of the energy

flux for asymptotically inertial mirrors. We have been unable to find a form for the

energy flux as a function of u from the Darcx trajectory because we do not have a

transcendental inversion for p(u). The relative simplicity of the Proex trajectory’s

total energy is notable.

Table 3.4: Beta Coefficients and Counts.

Mirror Beta: βω′ω Unintegrated Count: |βω′ω|2

Static βω′ω = 0 |βω′ω|2 = 0

Continued on Next Page. . .
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Table 3.4 – Continued

Mirror Beta: βω′ω Unintegrated Count: |βω′ω|2

Drifting βω′ω = 0 |βω′ω|2 = 0

Light βω′ω = 0 |βω′ω|2 = 0

Uniform − i
πκ
ei

ω′
−ω
κ K1(2

√
ωω′

κ
) | 1

πκ
K1(2

√
ωω′

κ
)|2

CW 1

4π
√
ωω′

[
−2ω

κ
e−πω/2κ(ω

′

κ
)iω/κΓ(− iω

κ
)
]

1
2πκω′

1
e2πω/κ−1

WD Lengthy Expression7 2AB
π2

ω′

ω′+ω
sinh(πωB)|Kq(r)|2

Darcx 1

4π
√
ωω′

−i
2iω+

ξ
κ2

2ω′ω
b+

Γ[iω+]Γ[ia+]
Γ[ib+]

ξ2

4πκ4
ω′ω

ω+a+b+

csch[πω+]csch[πa+]
csch[πb+]

Proex 1

4π
√
ωω′

2ω
′

κ
(2ω
κ
)−i

ω+ω′

κ e−
π
2

ω+ω′

κ Γ(iω+ω
′

κ
) ω′

2πωκ(ω+ω′)
1

e
2π
κ (ω+ω′)−1

Arcx 1

4π
√
ωω′

[
−2ω

κ
2−

i
κ
(ω+ω′)B

[
− iω

κ
, i(ω+ω

′)
κ

]]
ω

4π2κ2ω′

∣∣∣B(− iω
κ
, i(ω+ω

′)
κ

)
∣∣∣
2

Logex 1

4π
√
ωω′

[
− 2ωω′

κ(ω′−ω)B
[
− iω

κ
, i(ω+ω

′)
2κ

]]
ωω′

4π2κ2(ω′−ω)2

∣∣∣B(− iω
κ
, i(ω+ω

′)
2κ

)
∣∣∣
2

Omex 1

4π
√
ωω′

[
− 2ω′ω
κ(ω+ω′)

(ω+ω
′

2κ
)iω/κe−πω/2κΓ[− iω

κ
]
]

ω′

2πκ(ω+ω′)2
1

e2πω/κ−1

Hyperlog 1

4π
√
ωω′

[
− 2ω′ω
κ(ω′−ω)2

i
(ω′

−ω)
κ B

[
−iω

κ
, iω

′

κ

]]
ω′ω

4π2κ2(ω′−ω)2
∣∣B
[
−iω

κ
, iω

′

κ

]∣∣2

7See Subsection 3.4.1 or Walker and Davies [34]
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In Table 3.4 I have shown the standard mirror trajectories as in Table 3.2, however,

I have included the Hyperlog trajectory as it has some similarities in form to Arcx

and to the other COnstant-velocity ASymptotic Trajectories- COAST mirrors. Table

3.4 displays the common appearance of the Beta function B(a, b) (not to be confused

with the beta coefficient transformation function βω′ω).

119



Chapter 4

Dynamics of Spectra

4.1 Wavepackets

The average number of particles of a given frequency received at I+ is the expecta-

tion value

〈in|N out
ω |in〉 =

∫ ∞

0

dω′|βωω′ |2 (4.1)

where the quantum state of the matter field is in the natural vacuum, |in〉, at I−. For

mirrors which accelerate forever this quantity is infinite. The mean number of par-

ticles detected at I+ using Eqn. (4.1) is the mean number of particles in the definite

frequency mode ω. The uncertainty principle dictates that full certainty in frequency

means total uncertainty in time. Therefore, 〈in|N out
ω |in〉 represents the number of

particles emitted with a frequency ω at anytime. A localization procedure, incor-

porating wavepackets, will allow partial time and frequency resolution. Divergent

artifacts may be rendered finite with packetization, particularly, for the asymptotic

inertial trajectories and the CW mirror.

To utilize wavepackets as Hawking[3] and others [23][36] have done, the plane



wave, ψ(v, ω) = eiωv is ‘packetized’ by

ψjn(v) =
1√
ǫ

∫ (j+1)ǫ

jǫ

dωe2πiωn/ǫψ(v, ω) , (4.2)

where j ≥ 0 and n are both integer quantities. The wavepackets peak at the time

2πn/ǫ with a temporal width 2π/ǫ. Taking ǫ small makes the modes narrowly cen-

tered in frequency around ω ≈ ωj = (j + 1/2)ǫ.

Figure 4.1: A packetized plane wave, where the x-axis is v.

Figure 4.1 shows the real part of the wavepacket construction of ψ with n = 0,

j = 10, and ǫ = 0.8. Raising j increases the density of oscillations, while using n

other than n = 0 shifts the central peak to the left or right in v. Choosing ǫ smaller

broadens out the packets in time. Using wavepackets one can calculate

〈Njn〉 ≡
∫ ∞

0

|βjn,ω′ |2dω′ , (4.3)

with either packetized modes or packetized Bogolubov coefficients in order to ob-

tain a localized particle count. Equation (4.3) discretely samples the particles in fre-

quency and time. A wavepacket labeled by j and n represents an excitation with
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frequencies between ±ǫ/2 of ωj and confined to a pulse in time of width 2π/ǫ cen-

tered at 2πn/ǫ.

4.1.1 Equivalence of Packetization

Packetization of the Bogolubov coefficient with a negative sign on the exponent

yields the same result as first performing ‘positive’ packetization on the mode so-

lution and then solving for the now packetized Bogolubov coefficient. It does not

matter whether you use the negative sign or the positive sign for, say, the Bogolubov

coefficient as long as you use the other sign for the modes. Using βjn,ω′ ≡ P̂jn
+
βωω′

where

P̂jn
+ ≡ 1√

ǫ

∫ (j+1)ǫ

jǫ

dωe+2πiωn/ǫ , (4.4)

and

βωω′ ≡ 2i

∫
du

eiω
′p(u)

√
4πω′

∂uφ
∗
ω , (4.5)

where integration by parts has been done to get Eqn. (4.5), and limits are left off the

integration because this is a general expression for no specific mirror trajectory, only

those trajectories where integration by parts is applicable. One obtains

βjn,ω′ = P̂jn
+
(
2i

∫
du

eiω
′p(u)

√
4πω′

∂uφ
∗
ω

)
= 2i

∫
du

eiω
′p(u)

√
4πω′

∂uP̂jn
+
φ∗
ω . (4.6)

This is because [∂u, P̂jn
+
] = 0. Therefore P̂jn

+
φ∗
ω = (P̂jn

+∗
φω)

∗ = (P̂jn
−
φω)

∗. If instead

we packetize the mode first P̂jn
−
φω = 1√

ǫ

∫ (j+1)ǫ

jǫ
dωe−2πiωn/ǫφω, we get

βjn,ω′ = 2i

∫
du

eiω
′p(u)

√
4πω′

∂u(P̂jn
−
φω)

∗ = P̂jn
+
2i

∫
du

eiω
′p(u)

√
4πω′

∂uφ
∗
ω = P̂jn

+
βωω′ . (4.7)
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So therefore, first packetizing the mode will yield the packetized beta, P̂jn
−
φω −→

βjn,ω′ or one can wait and packetize beta instead, P̂jn
+
βωω′ −→ βjn,ω′ . The equiv-

alence, P̂jn
−
φω ⇔ P̂jn

+
βωω′ holds. Negative packetization on the mode yields the

same result as positive packetization on the beta. Packetization may be performed

on either the mode or the beta Bogolubov coefficient one must watch the sign con-

vention.

4.1.2 Carlitz-Willey Mirror Packets

In this section we summarize the packetization approach for a mirror following the

Carlitz-Willey trajectory. The Planck spectrum character is found for the Carlitz-

Willey mirror by wavepacket localization. This Planck distribution of thermal radi-

ation for bosons is shown by first calculating the integral

〈Nω1ω2〉 =
∫ ∞

0

dω′βω1ω′β∗
ω2ω′ . (4.8)

Inserting the properly normalized βωω′ from the Carlitz-Willey calculation, as in Ta-

ble 3.4 gives

〈Nω1ω2〉 =
ω1

4π2κ2
e−πω1/κ

∣∣∣∣Γ
(
iω1

κ

)∣∣∣∣
2

2πκδ(ω1 − ω2) =
1

e2πω1/κ − 1
δ(ω1 − ω2) , (4.9)

where a change of variables has been utilized for integration. Introducing wavepack-

ets for the Bogolubov coefficients

βjn,ω′ =
1√
ǫ

∫ (j+1)ǫ

jǫ

dωe2πiωn/ǫβωω′ , (4.10)
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one finds that the Planckian character carries over to the discrete spectrum,

〈Njn〉 =

∫ ∞

0

dω′|βjn,ω′ |2

=
κ

2πǫ
ln

(
e

2π(j+1)ǫ
κ − 1

e
2πjǫ
κ − 1

)
− 1 . (4.11)

It is important to note that there is no time dependence in this particle count (the n-

dependence drops out). To obtain Eqn. (4.11) from the integration, the mathematical

conditions e2πjǫ/κ ≤ 1, e2π(j+1)ǫ/κ ≤ 1 must hold. Equation (4.11) is relevant for early

times (and all times) where the n variable has canceled out, independent of how

small or large the frequency bins (size of ǫ) are. In the limit that the wavepackets are

sharply peaked around frequencies ωj = jǫ, ǫ is small and one finds

〈Njn〉 =
1

e2πωj/κ − 1
. (4.12)
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Figure 4.2: CARLITZ-WILLEY. Several spectra 〈Njn〉 with differing ǫ of (4.11), with
data points plotted at the center of the frequency bin, ωc = (j + 1/2)ǫ. The thick
black line is the Planckian approximation (4.12). κ = 1 throughout. A smaller ǫ value
results in a spectrum more closely aligned with the Planck’s spectrum. ǫ3 = 25−1,
ǫ2 = 50−1, ǫ1 = 100−1.
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4.1.3 Dependence on ‘n’

As we seek to develop an evolution of 〈Njn〉, it is useful to look closely at the time

dependence for packet localization. The CW mirror has no dependence on n as it

radiates thermally for all time. We remind the reader that the expression for the CW

mirror is

〈Njn〉 =
1

ǫ

∫ (j+1)ǫ

jǫ

dω
1

e
2πω
κ − 1

. (4.13)

The exact answer, as derived in Equation (4.11), is

〈Njn〉 =
κ

2πǫ
ln

(
e

2π(j+1)ǫ
κ − 1

e
2πjǫ
κ − 1

)
− 1 . (4.14)

The above expression is clearly not dependent on n. How does this come about

analytically? How did the n dependence vanish? The dependence on n is canceled

out due to the calculation of

〈Nω〉 =
∫ ∞

0

dω′βω1ω′β∗
ω2ω′ . (4.15)

For the CW mirror specifically, the above expression gives,

∫ ∞

0

dω′βω1ω′β∗
ω2ω′ =

1

e2πω1/κ − 1
δ(ω1 − ω2) . (4.16)

Only with this delta function do the packetization e2πωin/ǫ terms vanish, according

to

βjn,ω′ =
1√
ǫ

∫ (j+1)ǫ

jǫ

dωe2πiωn/ǫβωω′ , (4.17)
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〈Njn〉 =

∫ ∞

0

dω′|βjn,ω′ |2 (4.18)

=
1

ǫ

∫ (j+1)ǫ

jǫ

dω1e
2πiω1n/ǫ

∫ (j+1)ǫ

jǫ

dω2e
−2πiω2n/ǫ

∫ ∞

0

dω′βω1ω′β∗
ω2ω′ , (4.19)

which results in the 〈Njn〉 in Eqn. (4.13) and Eqn. (4.14) if you plug Eqn. (4.16)

into Eqn. (4.19). If we wish to numerically verify this, we must compute (4.16) with

sufficiently wide range of integration with respect to ω′ to nullify the packetization

term

e
2πin

ǫ
(ω1−ω2) . (4.20)

Let us contemplate how this problem manifests itself for the other mirror trajectories.

We know from Chapter 3 that the other mirror trajectories result in particles emitted

that are only thermal at high frequency, ω′ >> ω and therefore only at late times,

(large n) will a thermal character result. We expect n dependence for 〈Njn〉 at earlier

times. Proceeding along the same analytical route, we seek to solve Eqn. (4.15). For

any of the mirrors that have Beta functions as their solutions for the beta coefficients,

an integral of the form

∫ ∞

0

dω′ B(−iω1, i(ω1 + ω′))×B(iω2,−i(ω2 + ω′)) , (4.21)

results. This is a challenging integral. Only the Omex and Proex mirrors do not

involve Beta functions. We ignore Proex because packetization is shown later. The

Omex mirror results in an integral for (4.15) of the form

∫ ∞

0

dω′ ω′(ω1 + ω′)iω1−1(ω2 + ω′)−iω2−1 . (4.22)
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This integral diverges, but if its solution is in terms of a delta function, δ(ω1 − ω2),

this would negate ‘n’ dependence, like the CW mirror, which we know is not the

case. The indefinite form of Eqn. (4.22)

−i(ω1 + ω′)iω1(ω2 + ω′)−iω2

ω1 − ω2

, (4.23)

is however similar to the indefinite form of the CW mirror that results from Eqn.

(4.15), ∫
dω′ ω′i(ω1−ω2)−1 =

−iω′i(ω1−ω2)

ω1 − ω2

. (4.24)

Placing the limits on Eqn. (4.24) gives the delta function

∫ ∞

0

dω′ ω′i(ω1−ω2)−1 = 2πδ(ω1 − ω2) . (4.25)

Therefore, we are left with a difficult analytical task if we wish to solve for the par-

ticle localization of a trajectory like the Omex mirror, the task of solving Eqn. (4.22),

which diverges (this is to be expected). If we wish to numerically solve for the parti-

cle localization of a trajectory like the Carlitz-Willey mirror we are faced with task of

computing Eqn. (4.16) with a sufficiently wide range of ω′ to cancel the packetization

term e
2πin

ǫ
(ω1−ω2). For other diverging acceleration mirrors (like Omex) this numeri-

cal computation should avoid any cancelation of n, because they have an early time

dependence of interest, i.e. they depend on n.
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4.2 Energy Packets

4.2.1 Quanta Energy Summation

In this section we investigate the conditions for the failure of summing quanta. One

might assume the total energy released by the mirror,

E =

∫ ∞

z(t)

〈T 00〉dx =

∫ umax

umin

〈Tuu〉 du , (4.26)

can be found by summing the energy of all quanta,

∫ umax

umin

〈Tuu〉 du =

∫ ∞

0

ω〈Nω〉dω =

∫ ∞

0

dw w

∫ ∞

0

dω′|βω′ω|2 . (4.27)

A derivation of this is given in Fabbri and Navarro-Salas where the two-point func-

tion is used [23]. This was originally shown by Walker, who also pointed out that

for mirrors with acceleration singularities, this is not always true [15]. The above

summing method is derived from the definition of 〈Tuu〉 assuming no horizons. As

a simple look at consistency, we can see how horizons allow particles to be created

with zero or even negative energy. The familiar Davies-Fulling result, Eqn. (2.45),

〈Tuu〉 =
1

24π

[
3

2

(
p′′

p′

)2

− p′′′

p′

]
, (4.28)

is derived from the definition of 〈Tuu〉 as well, but makes no assumptions regarding

horizons. We use it to see how the counting method might fail. We integrate Eqn.

(4.28) by parts to give

E = − 1

24π

p′′

p′

∣∣∣∣
∞

−∞
+

1

48π

∫ ∞

−∞
du

(
p′′

p′

)2

. (4.29)
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Rewriting the boundary term in (4.29) using, z(τu) =
1
2
(p(u)− u) gives

− α

12π

√
1 + ż

1− ż

∣∣∣∣∣

τu=+∞

τu=−∞

where α ≡ z̈

(1− ż2)3/2
. (4.30)

Here, α is the proper acceleration. Note that if α(τu → +∞) 6= 0 then we will have a

v asymptote for ż → −1. If there exists such a horizon, as first noticed by Walker [15],

this boundary term does not vanish and energy production may be zero or negative.

We will want to be careful using particle counting to find the energy, (i.e. (4.27) ), as

ultimately it is invalid if the mirror in question has a horizon. In particular, Proex

has ż → −1, yet α(τu → +∞) = 0. It has no u or v horizon. The above boundary

term vanishes. For the Proex mirror, both calculations give (to within machine error

for the summing method)

∫ ∞

0

ω〈Nω〉dω =

∫ umax

umin

〈Tuu〉 du =
κ

96π
. (4.31)

4.2.2 Summary of Energy Packet Summation

The energy in a packet is defined to be

Ejn = (j +
1

2
)ǫ

∫ ∞

0

dω′|βjnω′ |2 . (4.32)

The total energy will be found by

E =
∑

jn

Ejn . (4.33)

The total energy calculated is obtained by summing the many energy packets, par-

ticularly on the main n = 0 time window up to a high j. More energy packets can be

summed, for j = 0 up to a particular maximum or minimum value of ±n. A smaller ǫ
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gives a more accurate result and requires more energy packets to be summed. Those

packets which can be ignored should contribute only a negligible amount relative to

the n = 0 time window packets and the j = 0 alternate time window packets.

4.3 Spectral Dynamics Using Packets

4.3.1 Numerical Packetizing for Spectral Count

Using the wavepacket localization procedure in Section 4.1, we examine the time

evolution of the build up of particles from the asymptotically inertial mirrors. With

the packetized beta coefficients, we obtain the detected particles

〈Njn〉 =
∫ ∞

0

|βjn,ω′ |2dω′ . (4.34)

This is done numerically and represents the counts of a particle detector. This quan-

tity is plotted for a fixed n time window and a range of j’s on the x-axis. The spectral

graph shows an increase in the creation of particles and subsequent decrease as n is

changed. The asymptotically inertial trajectories, Walker-Davies,Darcx, and Proex

are analyzed. Figures 4.3, 4.4 and 4.5 show the particle counts for the spectral dy-

namics.

The procedure for localization of the particle creation in time throughout the tra-

jectory motion is a straightforward numerical integration (packetization) of the nor-

malized beta coefficient. Complex conjugation is then incorporated and numerical

integration over all ω′ is finally utilized.

130



0.5

1.0

Ωc
-100

0

100

tc

-15

-10

logIN j nM

Figure 4.3: WALKER-DAVIES. A spectral build up in time and subsequent spectral
diminishing for the Walker-Davies trajectory. ǫ = 0.1, B = 1, A = 2 throughout.
tc = 2πn/ǫ, ωc = (j + 1/2)ǫ.

4.3.2 Summing Packets to Find Total Energy

A consistency check of this localization method is in order. Consider the Darcx tra-

jectory with a final constant speed of ξ = 0.99. Using the stress tensor evaluation,

Eqn (3.62), we determine the total energy to be

E1 =
κ

96π

(
13267 ln 199

6534
− 26434

6567

)
= 0.0222901κ . (4.35)

The globally-calculated, nonlocalized βωω′ confirm this result as well. That is, we

can computing the energy by summing up the energy of each quantum using the

Bogolubov coefficients,

E2 =

∫ ∞

0

dw w

∫ ∞

0

dω′|βω′ω|2 = 0.0222901κ . (4.36)

The modulus squared used here is Eqn. (3.60). A third confirmation via the time

evolved packetization approach is possible. Using the localized betas one may nu-

merically obtain,
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Figure 4.4: DARCX. A spectral build up in time and subsequent spectral diminish-
ing for the Darcx trajectory. ǫ = 0.1 and κ = 1 throughout. tc = 2πn/ǫ, ωc = (j+1/2)ǫ.
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Figure 4.5: PROEX. A spectral build up in time and subsequent spectral diminishing
for the Proex trajectory. ǫ = 0.1 and κ = 1 throughout. tc = 2πn/ǫ, ωc = (j + 1/2)ǫ.

E3 =
∑

jn

Ejn = 0.022291κ . (4.37)

Here, we use energy packets, defined by

Ejn = (j +
1

2
)ǫ

∫ ∞

0

dω′|βjnω′ |2 . (4.38)

An ǫ = 1
1000

value was used, while summing continued until the last packet to be

summed was about 10−3 of the largest energy packet. A smaller ǫ gives a more

accurate result and requires more energy packets to be summed. The total energy
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calculated in this check has a relative error of about 10−4. The total value was ob-

tained by summing the first 1175 energy packets on the main n = 0 time window up

to j = 1175. As can be seen

E1 = E2 = E3 . (4.39)

We determined that the total energy of the Proex trajectory using the stress tensor in

Eqn. (3.77) is

E1 =
κ

96π
= 0.00331573κ . (4.40)

We also determined the total energy by summing the number of particles Eqn. (3.79)

and found it is the same,

E2 =
κ

96π
= 0.00331573κ . (4.41)

Localizing the particle creation via packetization numerically, we sum energy pack-

ets and obtain

E3 = 0.00331281κ . (4.42)

An ǫ = 1
20000

value was used, while summing continued until the last packet summed

was less than about 10−4 (about 12000 packets in this case) of the largest energy

packet. A smaller ǫ gives a more accurate result and requires more energy pack-

ets to be summed. The total energy calculated in this check has a relative error of

about 0.08 percent. The total value was obtained by summing the first 12000 energy

packets on the main n = 0 time window up to j = 12000.

This is confirmation that energy packets may accurately be used to calculate the

energy flux carried by the particles during the corresponding times detected. This
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confirms that the spectral packets are a successful way to partially time resolve the

particle creation during strongly time dependent accelerated mirror motions.

4.4 Particle Creation Aspects

4.4.1 Dynamic Spacetime Particle Creation

In an expanding spacetime particles are created. This example that follows is exactly

the calculation done in Section 3.4 of Birrell and Davies book [19]. The example pre-

sented here just fills in some of the details. This calculation was first carried out

out by Bernard and Duncan [60]. In this section we review the simplest model of

dynamic curved spacetime particle creation. This model is described here to ex-

emplify several points: First, the transformation coefficients are similar expressions

of gamma functions not unlike the new and simpler exactly solvable moving mir-

ror trajectories in Chapter 3. Second, the expansion function used in this example is

treated in Section 3.6 on heterogeneous mirror trajectories. Third, this example offers

a preface for particle creation in curved spacetime, particularly for the more com-

plex setting involving anisotropy treated in Chapter 5. Particles are created using

the Minkowskian IN and OUT regions. The Robertson-Walker spacetime element

for two dimensions is

ds2 = dt2 − a2(t)dx2 . (4.43)

This metric allows for spatial expansion via the scalar function a(t). A new time

coordinate, η, called conformal time because our new element will be conformally

flat, is defined by dη = dt/a and thus t =
∫ t
dt′ =

∫ η
a(η′)dη′. The line element is

therefore
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ds2 = C(η)(dη2 − dx2) , (4.44)

where C(η) = a2(η). We will use the particular function

C(η) ≡ A+ B tanh(ρη) , (4.45)

where A, B, ρ are constants. In the past and future we obtain Minkowskian space-

times because

C(η) → A±B η → ±∞ , (4.46)

as tanh(±∞) = ±1. This function is considered for the moving mirror model in

Section 3.6. Under these conditions, the formation of massive, minimally coupled

(ξ = 0) scalar particles occurs. In two dimensions minimal coupling and conformal

coupling are the same things. Conformal coupling is defined as ξ = n−2
4(n−1)

. As

C(η) is not a function of the spatial coordinate x, spatial translation invariance is a

symmetry, therefore separation of the variables in the modes is possible:

uk(η, x) = (2π)−1/2eikxχk(η) . (4.47)

The field in terms of the modes is

φ(x) =
∑

i

[aiui(η, x) + a†iu
∗
i (η, x)] . (4.48)

Using the metric (4.44), the modes (4.47) are placed into the wave equation

[�+m2]φ(x) = 0 , (4.49)

and solved. The ‘test’ state, |0〉, is useful for this task. The condition

135



(gµν∇µ∇ν +m2)e−ikxχi(η) = 0 , (4.50)

results, which resolves to an ordinary differential equation for χk(η),

d2ηχk(η) + (k2 + C(η)m2)χk(η) = 0 . (4.51)

This can be solved using hypergeometric functions. The normalized modes that

correspond to the positive frequency Minkowski space modes in the far past are:

uink = (4πωin)
−1/2eD(x,η)

2F1(a, b, c, z) → (4πωin)
−1/2eikx−iωinη , (4.52)

and in the far future

uoutk = (4πωout)
−1/2eD(x,η)

2F1(a, b, c
′, 1− z) → (4πωout)

−1/2eikx−iωoutη , (4.53)

where I have defined several symbols to make notation easier, ω2
in = k2+m2(A−B),

ω2
out = k2+m2(A+B), ω± = 1

2
(ωout±ωin),D(x, η) ≡ ikx−iω+η−(iω−/ρ) ln[2 cosh(ρη)],

and

a ≡ 1 + iω−/ρ , (4.54)

b ≡ iω−/ρ , (4.55)

c ≡ 1− iωin/ρ , (4.56)

c′ ≡ 1 + iωout/ρ , (4.57)

z ≡ 1

2
(1 + tanh ρη) , (4.58)

1− z =
1

2
(1− tanh ρη) . (4.59)
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It is now possible to see that the creation of particles must occur. Since uink and uoutk

are not equal, the β coefficient cannot be zero in

uinj =
∑

i

(αjiu
out
i + βjiu

out∗
i ) . (4.60)

The properties αkk′ = αkδkk′ , βkk′ = βkδ−kk′ allow the relation

uink = αku
out
k + βku

out∗
−k , (4.61)

to hold. The linear transformation properties of hypergeometric functions,

2F1(a, b, c, z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b, a+ b+ 1− c, 1− z) (4.62)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b2F1(c− a, c− b, 1 + c− a− b, 1− z)

and

2F1(a, b, c, z) = (1− z)c−a−b2F1(c− a, c− b, c, z) , (4.63)

allow the in-modes to be written in terms of the out-modes as,

uink (η, x) = αku
out
k (η, x) + βku

out∗
−k (η, x) . (4.64)

The coefficients are

αk =

(
ωout
ωin

) 1
2 Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (4.65)

βk =

(
ωout
ωin

) 1
2 Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
, (4.66)

using our defined abc’s Eqn. (4.54), etc. Squaring |βk|2, using |Γ(ix)|2 = π/x sinh(πx),

and Γ(1 + z) = zΓ(z), we find
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|βk|2 =
sinh2(πω−/ρ)

sinh(πωin/ρ) sinh(πωout/ρ)
. (4.67)

If the quantum field resides in the vacuum state, |0, in〉 defined by ai|0〉in = 0, then

in the remote past with a Minkowskian spacetime, inertial observers (detectors) will

observe (register) no particles, i.e. an empty physical vacuum state. Now, work-

ing in the Heisenberg picture, we see that in the far future, the spacetime is also

Minkowskian and the quantum field resides in the same state, |0, in〉. But here the

role of the physical vacuum is assumed not by |0, in〉 but by |0, out〉. Therefore, par-

ticle detectors will register the presence of quanta in the out-region. In the mode k,

the expected number of particles are given by Eqn. (4.67).

4.4.2 Statistics from Dynamics

The spin-statistics theorem can be derived from the use of quantum field theory un-

der the influence of external conditions. The external conditions may include either

curved spacetime or an accelerated boundary condition. The connection between

the spin-statistics theorem and field dynamics for curved spacetime was previously

discovered by Parker and Wang [61]. See Parker’s and Tom’s recent book [20] for

more detail on the case of curved spacetime. Also see Wald [62] and Sorkin [63].

I present a new derivation of the spin-statistics theorem from the dynamics of an

accelerated boundary in flat spacetime.

Moving Mirror Spin-Statistics Connection

The spin-statistics theorem can be derived from the use of an accelerated external

boundary condition in flat spacetime. The field equation ,(2.31), and mirror dynam-

ics, (2.32), dictate the relevant commutation relation. This is understood by the use
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of the Bogolubov transformation for one of the two sets of creation-anniliation oper-

ators. Utilizing the conserved scalar product for the modes, the Wronskian relation

for the Bogolubov coefficients holds. This Wronskian result is only a by-product of

the dynamics of the mirror and field equation. The possible commutation relations

are expressed in terms of the transformation coefficients. As long as βωω′ 6= 0, the

mirror and equation of motion for the spin-0 field demand the negative sign in the

possible commutation relations (from the Wronskian), implying particles at differ-

ent times will obey the same statistics only in the case of Bose-Einstein statistics. If

βωω′ = 0 this connection between dynamics and statistics disappears. An explicit

derivation of how an accelerated mirror allows one to derive the relationship be-

tween spin and statistics is provided using the Carlitz-Willey conventions.

Spin-0 Case

The spin-statistics theorem can be derived from the use of the mirror in flat space-

time. In flat spacetime, statistics can be derived from dynamics, if an external bound-

ary condition is present that gives a non-zero beta Bogolubov coefficient. The com-

mutation relations of the creation operators determine the statistics:

commuting → Bose-Einstein

anticommuting → Fermi-Dirac

For the spin-0 field, only Bose-Einstein statistics is consistent with the flat spacetime

dynamics that include an external boundary condition. Carlitz-Willey’s conventions

make this apparent. While the field motion is the Klein-Gordon equation �φ(u, v) =

0, we can write
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φ(u, v) =
1

4π

∫ ∞

0

dω

ω

[
aωφω(u, v) + a†ωφ

∗
ω(u, v)

]
, (4.68)

φ(u, v) =
1

4π

∑

I

∫ ∞

0

dω

ω

[
aIωφ

I
ω(u, v) + aI†ω φ

I∗
ω (u, v)

]
, (4.69)

where I = R,L and for reference

φω′ = e−iω
′v − e−iω

′p(u)





φRω = e−iωV (v)Θ(−v)− e−iωu

φLω = e−iωW (v)Θ(v)
, (4.70)

p(u) = −κ−1e−κu





V (v) = −κ−1 ln(−κv) v < 0

W (v) = +κ−1 ln(+κv) v > 0
. (4.71)

The field equation along with this mirror imply that the Bogoliubov coefficients αIω′ω

and βIω′ω relate the operators aω′ and a†ω′ to the operators aIω and aI†ω :

aω′ =
1

4π

∑

I

∫ ∞

0

dω

ω

(
αIω′ωa

I
ω + βIω′ωa

I†
ω

)
, (4.72)

aIω =
1

4π

∫ ∞

0

dω′

ω′

(
αI∗ω′ωaω′ − βIω′ωa

†
ω′

)
. (4.73)

Since we know the operators are related by a Bogolubov transformation, we may go

further and look at the conserved scalar products, (where J = L,R),

(φω, φω′) ≡ i

∫ ∞

−∞
dvφ∗

ω′

↔
∂v φω = 4πωδ(ω′ − ω) , (4.74)

i

∫ ∞

0

dvφI∗ω′

↔
∂v φ

J
ω + i

∫ ∞

−∞
duφI∗ω′

↔
∂u φ

J
ω = 4πωδ(ω′ − ω)δIJ . (4.75)

These imply
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1

4π

∑

I

∫ ∞

0

dω

ω

(
αIω′ωα

I∗
ω′′ω − βIω′ωβ

I∗
ω′′ω

)
= 4πω′δ(ω′′ − ω′) , (4.76)

1

4π

∑

I

∫ ∞

0

dω

ω

(
αIω′ωβ

I
ω′′ω − βIω′ωα

I
ω′′ω

)
= 0 , (4.77)

1

4π

∫ ∞

0

dω′

ω′
(
αI∗ω′ωα

J
ω′ω′′ − βIω′ωβ

J∗
ω′ω′′

)
= 4πωδ(ω − ω′′)δIJ (4.78)

1

4π

∫ ∞

0

dω′

ω′
(
αI∗ω′ωβ

J
ω′ω′′ − βIω′ωα

J∗
ωω′′

)
= 0 . (4.79)

These relations are derived consequences only of the field equation and the imposed

Carlitz-Willey mirror trajectory.

Now consider the possible commutations relations

[aω, a
†
ω′ ]± = 4πωδ(ω′ − ω) , (4.80)

[aω, aω′ ]± = [a†ω, a
†
ω′ ]± = 0 . (4.81)

Here the + sign corresponds to Fermi-Dirac statistics from the anticommutator, while

the − sign corresponds to Bose-Einstein statistics from the commutator. The possible

left-right operators in terms of the transformation coefficients are

[aIω, a
J†
ω′ ]± =

1

4π

∫ ∞

0

dω′

ω′
(
αI∗ω′ωα

J
ω′ω′ ± βIω′ωβ

J∗
ω′ω′

)
. (4.82)

The field equation result Eqn. (4.78) can be used to determine which of the possible

commutation relations are implied to be used in (4.82). This implies the relations
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using the − sign,

[aIω, a
J†
ω′ ]− = 4πωδ(ω − ω′)δIJ . (4.83)

Particles at different times will obey the same statistics only in the Bose-Einstein

case. The Bose-Einstein case is then consistent with the dynamics of the field and

mirror. In general, β is not zero so this result is a boundary condition in flat space-

time derivation of the relationship between spin and statistics.

Curved Spacetime Derivation of Spin-Statistics Connection

For completeness, I will derive the same connection between the dynamics and

statistics that exists in curved spacetime, as it does for the mirror in flat spacetime.

This calculation is in Parker and Toms [20]. The derivation here follows in essen-

tially the same way. Consider a spin-0 field. The curved spacetime scalar field is

described by the Lagrangian density

L =
1

2
|g|1/2(gµν∂µφ∂νφ−m2φ2 − ξRφ2) , (4.84)

where R ≡ gµνRµν is the scalar curvature of the spacetime and ξ is a dimensionless

coupling constant. The notation is the standard used in Birrell and Davies [19]

�φ+ (m2 + ξR)φ = 0 , (4.85)

The spatially flat isotropically changing metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) , (4.86)
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has a cosmological scale factor, a(t), that has an arbitrary time dependence. It will

asymptotically approaches constant values at early and late time values of cosmic

time t, i.e. proper time of a set of clocks on geodesic worldlines that remain at con-

stant values of the spatial coordinates (x, y, z). a(t) approaches a1 as t → −∞ and

a(t) approaches a2 as t→ +∞. The scalar curvature, R is

R = 6

[(
ȧ

a

)2

+
ä

a

]
, (4.87)

which means the field equation takes the form

a−3∂t(a
3∂tφ)− a−2

∑

i

∂2i φ+ (m2 + ξR)φ = 0 . (4.88)

The solutions take the form

φ =
∑

~k

[
A~kf~k(x) + A†

~k
f ∗
~k
(x)
]
, (4.89)

φ =
∑

~k

[
a~kg~k(x) + a†~kg

∗
~k
(x)
]
. (4.90)

The f and g reduce to positive frequency Minkowski spacetime solutions at early

times and late times, respectively,

f~k ∼
1√

V a312ω1k

ei(
~k·~x−ω1kt) early times , (4.91)

g~k ∼
1√

V a322ω2k

ei(
~k·~x−ω2kt) late times , (4.92)

where
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ω1k = [(k/a1)
2 +m2]1/2 , ω2k = [(k/a2)

2 +m2]1/2 . (4.93)

The late time asymptotic form of f is found from the field equation and takes the

form

f~k ∼
1√

V a322ω2k

ei
~k·~x[αke

−iω2kt + βke
iω2kt] (late times) . (4.94)

The Bogolubov transformation is used to relate the annihilation operator for late

times, a~k, to the annihilation operator at early times, A~k,

a~k = αkA~k + β∗
kA

†
−~k . (4.95)

The Bogolubov coefficients only depend on k = |~k| because only k2 enters into the

field equation. The scalar product, (f~k, f~k) = 1, is conserved and gives,

|αk|2 − |βk|2 = 1 . (4.96)

Again, this is a result of just the field equation dynamics. The possible early time

(IN vacuum) commutation relations are

[A~k, A
†
~k′
]± = δ~k,~k′ , (4.97)

[A~k, A~k′ ]± = [A†
~k
, A†

~k′
]± = 0 . (4.98)

The possible late time (OUT vacuum) commutation relations, expanded in terms of

the Bogolubov coefficients are

[a~k, a
†
~k′
]± = (|αk|2 ± |βk|2)δ~k,~k′ , (4.99)
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[a~k, a~k′ ]± = (αkβ
∗
k ± αkβ

∗
k)δ~k,−~k′ . (4.100)

For the particles at early times to obey the statistics of particles at late times, with

βk 6= 0, Bose-Einstein statistics must hold. As a(t) can vary arbitrarily between early

and late times and in the general case we have βk not equal to zero, only Bose-

Einstein statistics is consistent with the field equation dynamics of this spin-0 field.

Like the mirror case, this connection between dynamics and statistics vanishes if we

have βk = 0 as when a(t) is constant and spacetime is Minkowskian. Incidentally,

Pauli said in his 1940 spin-statistics paper, ’according to our opinion the connection

between spin and statistics is one of the most important applications of special rela-

tivity’. Using dynamics to explain the spin-statistics connection may be an important

facet of quantum field theory under the influence of external conditions.
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Chapter 5

Adiabatic Regularization in

Anisotropic Spacetimes

5.1 Anisotropic Background with Adiabatic Subtraction

Consider a quantized massive (m) neutral scalar field, φ(~x, t) with arbitrary coupling

ξ to the scalar curvature, R. The Lagrangian is

L =
1

2
(−g)1/2(gµν∂µφ∂νφ− ξRφ2 −m2φ2) , (5.1)

and the wave equation is

gµν∇µ∇νφ+ ξRφ+m2φ = 0 . (5.2)

A Bianchi Type I spacetime is an anisotropic homogeneous, spacetime with line

element of the form

ds2 = dt2 −
3∑

i=1

a2i (t)(dx
i)2 . (5.3)

The wave Equation (5.2) for the metric in Equation (5.3) is



∂20φ+ (∂0a
3/a3)∂0φ−

∑

i

a−2
i ∂2i φ+ (ξR +m2)φ = 0 , (5.4)

where a3 ≡ (−g)1/2 = a1a2a3.

The transition to quantum field theory is made by canonical quantization. The

usual canonical commutation relations hold for the field and the conjugate momen-

tum, π ≡ ∂L/∂(∂0φ) = a3∂0φ,

[φ(~x, t), φ(~x′, t)] = [π(~x, t), π(~x′, t)] = 0 , [φ(~x, t), π(~x′, t)] = iδ(~x− ~x′) . (5.5)

The field is expanded in terms of mode functions such that

φ =

∫
d3k(a~ku~k + a†~ku

∗
~k
) . (5.6)

Consider the new time variable η =
∫ t
a−1dt′ where uk = a−1χke

−~k·~x. The new time

variable is such that η satisfies dη = a−1dt so that ∂0 = a−1∂η. Differentiation with

respect to η is denoted by a prime or by ∂η. The quantity χk is a solution to the

equation

χ′′
k +

[
Ω2 + (ξ − 1/6)a2R +Q

]
χk = 0 , (5.7)

with

Q =
1

18

∑

i<j

(
a′i
ai

−
a′j
aj

)2

, (5.8)

R = 6a−2

(
Q+ 4

a′2

a2
+ 3

a′′

a

)
, (5.9)

Ω2 ≡ a2ω2 = a2
(∑ k2i

a2i
+m2

)
. (5.10)
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The a~k will satisfy canonical commutation relations, as long as χ
′∗
k χk − χ∗

kχ
′
k = i.

The unrenormalized conformal energy-momentum tensor, T ν
µ , has been given by

Parker [45], while Nacier and Mazzitelli have given it for arbitrary coupling[64]. The

expectation value of the energy density component of the generally coupled energy-

momentum tensor, T ν
µ , has been given by Parker [45], while Nacier and Mazzitelli

have given it for arbitrary coupling[64]. The expectation value of the energy density

component of the generally coupled energy-momentum tensor is

〈T η
η 〉 = 1

2a4(2π)3

∫
d3k

[
|χ′
k|2 + (Ω2 − 6ξQ)|χk|2 + Ξ

]
, (5.11)

where

Ξ ≡ (ξ − 1

6
)

[
−6

a′2

a2
|χk|2 + 6

a′

a

(
χ′
kχ

∗
k + χkχ

′∗
k

)]
. (5.12)

Equation (5.11) is infinite and must be renormalized by subtracting the divergent

terms. Adiabatic regularization is an efficient method and intuitively clear in phys-

ical interpretation. For a quantity such as 〈T η
η 〉, the subtraction is done mode by

mode, for each k in the integrands of relevant quantities like Eqn. (5.11). The terms

subtracted are leading terms in an asymptotic expansion of the integrands in pow-

ers of a large parameter that represents the “slowness” of the change of the metric.

Effectively, one expands in terms of derivatives of the metric. There are three lead-

ing terms that suffice for the minimal number of subtractions to make ρ0 converge

to zero in the adiabatic limit, i.e. to make 〈T η
η 〉 finite. The order of a quantity can

be determined by counting the number of derivatives with respect to η which it con-

tains. The terms necessary to renormalize 〈T η
η 〉 contain zero, two and four time

derivatives respectively.
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Now we will go into more detail on the subtraction process. Adiabatic regular-

ization calls for an approximate solution of Equation (5.7) of the positive-frequency

generalized WKB form:

χk(η) =
1√

2a(η)Wk(η)
exp[−i

∫ η

a(η′)Wk(η
′)dη′] . (5.13)

Following Parker, Fulling and Hu (FPH) [45], an appropriate positive function

Wk is given by the Chakraborty-method [65], which we use here as well. The basic

background method using conformal coupling involves letting a new variable Y ≡

Ω2 +Q. Later I will generalize to ξ 6= 1/6. The Chakraborty-method utilizes

Wk = a−1[Y (1 + ǫ2)(1 + ǫ4)]
1/2 , (5.14)

with

ǫ2 = −Y −3/4∂η(Y
−1/2∂ηY

1/4) , (5.15)

ǫ4 = −Y −1/2(1 + ǫ2)
−3/4∂η[Y (1 + ǫ2)]

−1/2∂η[(1 + ǫ2)
1/4] . (5.16)

Any functionWk which agrees with Eqn. (5.14) up to fourth order in time derivatives

of the metric is acceptable. We follow FPH and write

Wk = ω(1 + ǫ2 +QΩ−2 + ǫ4 + ǫ2QΩ
−2)1/2

= ω(1 + ǫ2 + ǫ4)
1/2 , (5.17)

where ω is defined in Eqn. (5.10), ǫ2 = ǫ2 +QΩ−2 and ǫ4 = ǫ4 + ǫ2QΩ
−2.

A generalized and improved method for computation with adiabatic regulariza-

tion is given by Anderson and Eaker [66] and Molina-Paris, Anderson and Ramsey

[49] (PAR). This technique involves an analytical approximation which is carried out
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by expanding renormalization counterterms in inverse powers of k keeping only

terms that are UV divergent. The resulting expressions are 〈φ2〉d and 〈Tµν〉d, and the

renormalized quantities are computed by subtracting and adding the UV divergent

terms, for example

〈φ2〉R ≡ 〈φ2〉n + 〈φ2〉an , (5.18)

〈φ2〉n ≡ 〈φ2〉u − 〈φ2〉d , (5.19)

〈φ2〉an ≡ 〈φ2〉d − 〈φ2〉ad . (5.20)

5.2 Fluctuations of a Scalar Field

In this section I derive the renormalization counterterms for 〈φ2〉 in anisotropic space-

time with an arbitrary mass. I will also derive an analytical approximation for 〈φ2〉.

5.2.1 〈φ2〉ad and Angular Integration of ǫ2(2)

The unrenormalized 〈φ2〉u is

〈φ2〉u =
1

(2π)3
1

a2

∫
d3k|χ|2 . (5.21)

In spherical coordinates, this becomes,

〈φ2〉u =
1

(2π)3
1

a2

∫ ∞

0

dkk2
∫
dΩ|χ|2 , (5.22)
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where

ki = kλi , (5.23)

∑
λ2i = 1 , (5.24)

λ1 = sin θ cosφ , (5.25)

λ2 = sin θ sinφ , (5.26)

λ3 = cos θ , (5.27)

such that ∫
dΩ ≡

∫ 2π

0

∫ π

0

sin θdθdφ . (5.28)

The adiabatic counterterms 〈φ2〉ad are calculated by using the field χ(η),

〈φ2〉ad =
1

(2π)3
1

a2

∫
d3k|χad|2 . (5.29)

We will drop the adiabatic subscripts on the χ field when there is no confusion on

when the WKB approximation is being used. Up to second adiabatic order we have,

|χad|2 ≈ (2Ω)−1(1− 1

2
ǫ2(2)) , (5.30)

which is found in FPH (2.42). The renormalization counterterms are calculated only

up to second adiabatic order. It is helpful to first have on hand, the angular integra-

tion of the second order terms. We utilize the notation by FPH [45]. We rely heavily

on the framework developed in FPH and will commonly refer to their equations.

We wish to integrate the angular pieces of ǫ2(2), where the second subscript indicates

adiabatic order. This is
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ǫ2(2) = −1

4
X−2X ′′ +

5

16
X−3(X ′)2 +X−1Q , (5.31)

where

X = a2ω2 ,

X ′ = 2a2[Dω2 +
1

2
∂ηω

2] ,

X ′′ = 2a2[(D′ + 2D2)ω2 + 2D∂ηω
2 +

1

2
∂2ηω

2] , (5.32)

with D ≡ a′/a. Angular integration using the FPH method gives

∫
dΩǫ2(2) =

1

a2

(
p4

ω6
L3 +

p2

ω4
L2 +

1

ω2
L1

)
, (5.33)

with

L3 = 5D2π + 4πQ ,

L2 = −6D2π + 2D′π − 8πQ ,

L1 = D2π − 2D′π + 4πQ . (5.34)

General coupling may be taken into account by using

Ωξ = a(ω2 + (ξ − 1/6)R)1/2 ≈ aω(1 +
(ξ − 1/6)R

2ω2
) , (5.35)

where ω2 =
∑ k2i

a2i
+ m2 = p2 + m2 and R = 6a−2(D′ + D2 + Q), and substituting

Ω → Ωξ. Here pi = ki/ai. R is second adiabatic order. Converting from k integration

to p integration as is done in FPH, we have
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〈φ2〉ad =
1

(2π)3
1

a2
a3
∫ ∞

0

dpp2
∫
dΩ|χad|2 . (5.36)

Substituting Eqn. (5.30) and Eqn. (5.35) into Eqn. (5.36) gives

〈φ2〉ad =
1

(2π)3
1

2

∫ ∞

0

dp p2
∫
dΩ (

1

w
− ǫ2(2)

2ω
− (ξ − 1/6)R

2ω3
) . (5.37)

After substitution of the angular terms as derived previously, and some simplifica-

tion, one finds

〈φ2〉ad =
1

4π2

∫ ∞

0

dp

[
p2

ω
− (ξ − 1/6)R

2

p2

ω3
− 1

8πa2

(
p6

ω7
L3 +

p4

ω5
L2 +

p2

ω3
L1

)]
. (5.38)

5.2.2 Isotropic Limit of Adiabatic Counterterms, 〈φ2〉ad

In the Robertson-Walker limit, there are several key simplifications. The limit Q→ 0

is taken. In order to check with PAR [49] it is also helpful to note that in the isotropic

limit, p → k
a
, dp → dk

a
and ω → ωk

a
, where ω2

k = k2 + a2m2 is the definition used

in PAR as opposed to FPH. It is important not to confuse the frequency notations.

Converting ω definitions (which is an isotropic limit) ω (FPH) to ωk (PAR) and after

making the above substitutions we find

〈φ2〉ad =
1

4π2a2

∫ ∞

0

dk k2
[
1

ωk
− (ξ − 1

6
)
a2R

2ωk
3 +

m2

4ωk
5 (a

′2 + aa′′)− 5a2a′2m4

8ωk
7

]
,

(5.39)

which is the form found in PAR, [49], for the 〈φ2〉ad in the isotropic limit.
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5.2.3 〈φ2〉an without Angular Integration

To calculate 〈φ2〉an we need 〈φ2〉d as in Eqn. (5.20). In terms of k, using Eqn. (5.29),

the counterterms are

〈φ2〉ad =
1

(2π)3
1

2

∫ ∞

0

dk k2
∫
dΩ (

1

w
− ǫ2(2)

2ω
− (ξ − 1/6)R

2ω3
)

=
1

16a3π3

∫
dΩ

∫ ∞

0

dk

(
k2

ω
+
k2

ω3
N1 +

k4

ω5
N2 +

k6

ω7
N3

)
, (5.40)

where

N1 ≡ −D2

8a2
+
D′

4a2
− Q

2a2
− (ξ − 1/6)R

2
,

N2 ≡ −DZZ
′

4a2
+
Z ′2

4a2
+
ZZ ′′

4a2
,

N3 ≡ −5Z2Z ′2

8a2
,

ω2 ≡ k2Z2 +m2 ,

Z2 ≡
∑ λ2i

a2i
. (5.41)

Expanding the integrand in inverse powers of k, and keeping only the divergent

terms gives

〈φ2〉d =
1

16a3π3

∫
dΩ

1

Z

[∫ ∞

0

dk k +

∫ ∞

ǫ

dk
N4

k

]
, (5.42)

where

N4 ≡ − D2

8a2Z2
+

D′

4a2Z2
− m2

2Z2
− Q

2a2Z2

− DZ ′

4a2Z3
− 5Z ′2

8a2Z4
+
Z ′2 + ZZ ′′

4a2Z4
− (ξ − 1/6)R

2Z2
. (5.43)

Here an introduction of a time independent cutoff, ǫ is used, following PAR. The

angular and radial parts separate allowing us to treat the integrals separately. Then
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using Eqn (5.20), Eqn. (5.40) and Eqn. (5.42), we obtain,

〈φ2〉an =
1

16a3π3

∫
dΩ

(
M2 +M1

[
1− ln

(
2Zǫ

m

)])
, (5.44)

with

M1 ≡ − D2

8a2Z3
+

D′

4a2Z3
− m2

2Z3
− Q

2a2Z3
− DZ ′

4a2Z4
− 3Z ′2

8a2Z5
+

Z ′′

4a2Z4
− (ξ − 1/6)R

2Z3
,

M2 ≡ m2

4Z3
− DZ ′

12a2Z4
− Z ′2

4a2Z5
+

Z ′′

12a2Z4
. (5.45)

Isotropic Limit in k

To check the consistency of Eqn (5.44), one may look at the isotropic limit of the fluc-

tuations. Using the isotropic limit forZ and its derivatives, one obtains the following

simplifications:

M1 = −1

2
a3(m2 + (ξ − 1/6)R) , (5.46)

M2 =
1

12
(3a3m2 − a′′) . (5.47)

After the angular integration, we are left with

〈φ2〉an =
1

16a3π3
[4π]

(
M2 +M1

[
1− ln

(
2ǫ

am

)])
. (5.48)

Defining s ≡ ln
[

2ǫ
am

]
, the isotropic limit of Eqn. (5.44) is

〈φ2〉an = − R

288π2
− (ξ − 1/6)R

8π2
(1− s)− m2

16π2
(1− 2s) , (5.49)

which is the equivalent to Equation (16a) of PAR.
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5.2.4 Evaluation of 〈φ2〉an for ax = ay

For arbitrary Bianchi Type I metrics the angular integrations in Eqn. (5.44) are ex-

tremely difficult to do. However, they are manageable for spacetimes with ax = ay.

One may perform angular integrations and still preserve anisotropy by setting ax =

ay. The full integration of Eqn. (5.44) in both θ and φ gives:

〈φ2〉an =
3

288π2a5

(
T1 + T2

(
ln
[

2ǫ
azm

])
+ T3 ln[G]

)

az(a2x − a2z)
5/2

, (5.50)

where

T1 = axaz
√
a2x − a2z

[
−2a4xa

′′

xaz + 3axa
′2
x a

3
z + 2a2xa

′′

xa
3
z − 2a4xa

′
xa

′
z

−4a′xa
4
za

′
z + a3xaza

′2
z + 2axa

3
za

′2
z + 2a3xa

2
za

′′

z − 2axa
4
za

′′
z

+
(
2a4xa

′
xaz − 2a2xa

′
xa

3
z − 2a3xa

2
za

′
z + 2axa

4
za

′
z

)
D

+
(
6a2a5xaz − 12a2a3xa

3
z + 6a2axa

5
z

)
m2
]
. (5.51)

T2 =
√
a2x − a2z

[
B2

(
−4a

′2
x a

2
z + 4axa

′′

xa
2
z + 4axa

′
xaza

′
z − 3a2xa

′2
z + 2a2xaza

′′

z

)

+3a2x(ax − az)
2a2z(ax + az)

2B1

+B2

(
−4axa

′
xa

2
z − 2a2xaza

′
z

)
D
]
. (5.52)

T3 = 4a5xa
′2
x a

2
z − 4a6xa

′′

xa
2
z − 10a3xa

′2
x a

4
z + 10a4xa

′′

xa
4
z + 3axa

′2
x a

6
z − 6a2xa

′′

xa
6
z

−4a6xa
′

xaza
′
z + 10a4xa

′

xa
3
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′
z + 3a7xa

′2
z − 6a5xa

2
za

′2
z − 2a7xaza

′′

z + 2a5xa
3
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′′

z

−ax
(
3a6xa

2
z − 6a4xa

4
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+
(
4a6xa

′

xa
2
z − 10a4xa

′

xa
4
z + 6a2xa

′

xa
6
z + 2a7xaza

′

z − 2a5xa
3
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′

z

)
D . (5.53)
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B1 = D2 − 2D′ + 4Q+ 4a2
[
m2 + (ξ − 1

6
)R

]
. (5.54)

B2 = (ax − az)
2(ax + az)

2 . (5.55)

G =
−a2z + ax(ax +

√
a2x − a2z)

az
√
a2x − a2z

. (5.56)

In the isotropic limit Eqn. (5.50) approaches Eqn. (5.49).

5.3 Energy Density of a Scalar Field

In this section I will calculate the renormalization counterterms for the energy den-

sity components of the stress tensor. This is done with general coupling to the scalar

curvature, first to second adiabatic order then to fourth adiabatic order. I verify the

result in the limit of conformal coupling and in the isotropic limit.

5.3.1 Adiabatic Regularization to Second Order

As an illustration of the calculation of the renormalization counterterms for the en-

ergy density to fourth order, we proceed by calculating up to second order first. The

energy density component of the stress tensor, for an arbitrary coupled scalar field

in a Bianchi Type I spacetime is given by (see Nacir-Mazzitelli 2007)[64]:

〈T η
η 〉 = 1

2a4(2π)3

∫
d3k

[
|χ′
k|2 + Ω2|χk|2 + Tc

]
, (5.57)

with

Tc =

[
−6ξ

(
a′2

a2
+Q

)
+
a′2

a2

]
|χk|2 + 6

a′

a

(
ξ − 1

6

)(
χ′
kχ

∗
k + χkχ

′∗
k

)
. (5.58)
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To second order, we will need (from FPH)

|χk|2 = (2aW )−1 ≈ (2Ω)−1

χ′
kχ

∗
k + χkχ

′∗
k = − W ′

k

2W 2
k

≈ − Ω′

2Ω2
, (5.59)

which is all that is required to obtain second adiabatic order. Substituting these

expressions into Eqn. (5.58) and keeping terms up to and including second order,

we find

Tc =

[
−6ξ

(
a′2

a2
+Q

)
+
a′2

a2

]
(2Ω)−1 − 6

a′

a

(
ξ − 1

6

)
Ω′

2Ω2
(5.60)

=

(
a′2

a3ω
− 6a′2ξ

a3ω
− 3Qξ

aω

)
+ ∂ηω

2

(
a′

4a2ω3
− 3a′ξ

2a2ω3

)
, (5.61)

having used Ω = aω, Eqn (5.10). The contribution of this term to the energy density

is

〈T η
η 〉c ≡

1

2a(2π)3

∫
d3p Tc , (5.62)

with d3k = a3d3p. Performing the angular integration, using the FPH method, gives

〈T η
η 〉c ≡ − 1

4π2a2

∫ ∞

0

dp p2
[
(ξ − 1

6
)

(
3

ω
(Q+D2) +

3D2m2

ω3

)
+
Q

2ω

]
, (5.63)

with mass, ω2 = p2 + m2. Combining these terms with the conformally coupled

terms gives the fully generally coupled energy density of second order:

ρ0(2) = −(96π2)−1m4

∫
ω−5p2dp G 0

0

−(160π2)−1

∫
ω−5p2(16p4 + 40m2p2 + 15m4)dpa−2Q (5.64)

− 1

4π2a2

∫ ∞

0

dp p2
[
(ξ − 1

6
)

(
3

ω
(Q+D2) +

3D2m2

ω3

)]
, (5.65)
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where G 0
0 = 3a−2(−D2 + Q). The original derivation of the conformally coupled

second order term was given by FPH [45], Equation (3.3).

5.3.2 Adiabatic Regularization to Fourth Order

This section contains the calculation of the fourth order piece of the energy density.

I will only discuss terms which vanish in the ξ → 1/6 limit because the other terms

have been computed by FPH. Care must be given to keep track of the |χ′
k|2 +Ω2|χk|2

pieces, which include terms proportional to (ξ − 1/6). The term Ω2|χk|2 up to fourth

order is

Ω2|χk|2
∣∣
c(4)

= a2w2

[(
ǫ2(2)
8aω3

− 1

4aω3

)
(ξ − 1/6)R +

3

16aω5
((ξ − 1/6)R)2

]
. (5.66)

The term |χ′
k|2 up to fourth order with just the (ξ − 1/6) terms is

|χ′
k|2
∣∣
c(4)

=

(
− a′2

16a3ω3
+

a

4ω
+
aǫ2(2)
8ω

− 3a′ω′

8a2ω4
− 5ω′2

16aω5

)
(ξ − 1/6)R

− a

16ω3
((ξ − 1/6)R)2 +

(
a′

8a2ω3
+

ω′

8aω4

)
(ξ − 1/6)R′ , (5.67)

with

R′ =
1

a2
(
−12D3 + 6D′′ − 12DQ+ 6Q′) . (5.68)
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Next, we substitute χk into the first piece of Tc, Eqn (5.58),
[
−6ξ

(
a′2

a2
+Q

)
+ a′2

a2

]
|χk|2.

The relevant terms up to fourth order are

[
Q

(
3D2

2a3ω3
+

3D′

2a3ω3
− 3

aω

)
+ ǫ2(2)

(
3D2

2aω
+

3Q

2aω

)
+

3Q2

2a3ω3
− 3D2
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)
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Q

(
18D2
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9D′
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)
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9D4

a3ω3
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9D2D′

a3ω3
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9Q2

a3ω3

]
(ξ − 1

6
)2 . (5.69)

It is also a tedious but straightforward matter to calculate the term

6
a′

a

(
ξ − 1

6

)(
χ′
kχ

∗
k + χkχ

′∗
k

)
, (5.70)

to fourth order for the (ξ − 1/6) terms only. Using the FPH angular integration

method and combining all pieces, the terms proportional to (ξ − 1/6) are

ρ0|c =(32π2a4)−1

∫ ∞

0

dp {

(ξ − 1/6) [ p8ω−9
(
−105D4 − 252D2Q+ 48DS

)

+ p6ω−7
(
210D4 − 60D2D′ + 519D2Q+ 12Q2 − 24DQ′ − 96DS

)

+ p4ω−5
(
−105D4 + 96D2D′ + 6D′2 − 12DD′)

+ p4ω−5
(
−330D2Q′ − 12D′Q− 48Q2 + 30DQ′ + 48DS

)

+ p4ω−3
(
24a2D2

)

+ p2ω−3
(
−36D2D′ − 6D′2 + 12DD′′ + 63D2Q+ 12D′Q+ 36Q2 − 6DQ′)

+ p2ω−1
(
−48a2D2 − 24a2Q

)
]

+(ξ − 1/6)2 [ p4ω−5
(
−216D4 − 216D2D′ − 216D2Q

)

+ p2ω−3
(
324D4 + 216D2D′ + 36D′2 − 72DD′′)

+ p2ω−3
(
+432D2Q+ 144D′Q+ 108Q2 − 72DQ′) ] } . (5.71)
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These are only the terms that vanish in the conformal limit. I have also computed

the terms, ρFPH0 , which do not vanish in the conformal limit to fourth order. I have

checked that they agree with those derived by FPH, but the result is too long to show

here. The energy density counterterms are

〈T η
η 〉ad = ρFPH0 + ρ0|c . (5.72)

5.3.3 Isotropic Limit of Fourth Order Energy Density Terms

In the isotropic limit it is clear that the quantities, Q,Q′, Q′′, U, S, S ′ → 0. Converting

to k-momentum via p→ k/a and making the correct frequency conversion ω → ωk/a

gives

ρiso0

∣∣
c
=

1

4π2a4

∫ ∞

0

dk k2
{

(5.73)

(ξ − 1/6)2
[
27a′2a′′m2

aωk
5 − 9

2ωk
3

(
2a′′′a′

a2
− a′′2

a2
− 4a′′a′2

a3

)]
(5.74)

+ (ξ − 1/6)
[105a2a′4m6

8ωk
9 − 15m4a4

8ωk
7

(
4a′′a′2

a3
+ 3

a′4

a4

)
(5.75)

+
3m2a2

4ωk
5

(
2a′′′a′

a2
− a′′2

a2
− a′4

a4

)
− 3

ωk

a′2

a2
− 3m2a′2

ωk
3

]}
. (5.76)

In the isotropic limit of the coupled terms, ρ0|c, this agrees with that of the Ander-

son and Parker [48] Eqn. (2.10a). I have confirmed that ρFPH0 and my expression for

the conformal energy density up to fourth order are in agreement. I have confirmed

that ρ0|c, give the Robertson-Walker energy density terms in the isotropic limit as

first presented by Bunch in [50].
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Chapter 6

Conclusions

In this thesis, quantum effects under the influence of external conditions have

been studied. These external conditions include moving mirror and curved space-

time with anisotropy. A focus on the tools within the quantum field theory in curved

spacetime framework has made it possible to scrutinize the basic nature of particle

and energy production for moving mirrors. The same tools have helped identify

the stress-energy-momentum tensor of the quantized field which acts as the source

of gravity in the anisotropic case. The main results in this thesis include: (1) two

analytically known COAST mirror trajectories, (2) particle localization in time and

frequency from the COAST mirror trajectories, (3) explicit Carlitz-Willey trajectory

and acceleration, (4) three exact diverging-acceleration mirror trajectories, (5) renor-

malization counterterms for 〈φ2〉 in an arbitrary Bianchi Type I anisotropic space-

time, (6) renormalization counterterms for energy density 〈T η
η 〉 and (7) an analytical

approximation for 〈φ2〉 for a limited class of Bianchi Type I spacetimes.

First, two COAST mirrors have been introduced, i.e. asymptotically inertial mov-

ing mirror trajectories which attain a constant, coasting velocity at late times (Darcx



and Proex). These un-spliced trajectories (COnstant-velocity ASymptotic Trajecto-

ries) avoid delta function spikes in energy production. Their Bogolubov transfor-

mation coefficients, energy flux, and total energy production have been exactly and

analytically computed. Particle production is computed numerically, by comput-

ing the occupation number in these non-trivial cases. These are the first coasting

moving mirror solutions to be introduced and studied. I have solved for other rele-

vant physical quantities associated with the motion of these trajectories. These non-

asymptotically static, yet still asymptotically inertial trajectories produce negative

energy flux.

Consider some characteristics of importance that these COAST mirror solutions

have: (1) COAST trajectories mimic a type of backreaction, as the total energy emit-

ted is finite. A principal consequence of back reaction effects of the radiated energy

on the background geometry of a black hole should be to provide a finite result

for the total radiated energy. (2) These COAST mirrors provide a model in which

particle production is similar in nature to that of a black hole that forms and then

evaporates. The possible end-phase of the evaporating black hole leaves a left-over

entity that red-shifts field modes. This object has no horizon and saps the evap-

orating particle energy, reducing particle production to zero. This left-over object

asymptotically delays the creation of particles indefinitely, and may be called a ‘black

hole remnant’ [35][67]. (3) By construction, the COAST mirror geometry allows all

incident waves from I−R to be reflected to I+R , preserving unitarity and preserving

information. (4) The emitted energy flux is not always positive. Both Darcx and

Proex exhibit extended periods of negative energy flux emission. (5) From the gen-

eral properties of COAST trajectories, it is known that there are correlations in the

stress-tensor of the quantum field larger than the vacuum ones in connection with

unitarity and negative fluxes [23]. Work is in progress to compute the correlations
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associated with Darcx and Proex.

Second, the spectrum of particle creation from these trajectories has been exam-

ined in a time evolved way by utilizing wavepackets. The total energy production is

confirmed in three ways: by calculating total energy production via the stress tensor

energy flux, by summing quanta, and by summing energy packets. The time anal-

ysis of the emitted spectrum is verified by the agreement of the total summation of

energy packets with the total energy produced. The time-evolution of the particle

spectra reveals an onset of particle creation that builds up to a maximum emission

and then settles down, ceasing to radiate in the far future.

The importance of being able to time evolve COAST mirror trajectories manifests

itself through the discovery that particle creation can be partially localized at all

times during motion, including early times. No late-time assumptions are made

and therefore no questionable approximations (i.e. disregarding boundary terms,

asymptotic trajectory forms or high frequency integral boundary limits) are needed.

As a possible extension for this program the time evolution may give insight into

the particle/energy connection during periods of negative energy flux.

I presented the ‘never-before-seen’ explicit forms of both the trajectory and the

acceleration of the Carlitz-Willey trajectory that results in a constant energy flux and

thermal emission for all times. I have used wavepackets to obtain time-resolved

spectra and found them to be Planckian. The Planck spectrum has been obtained for

the first time using this approach on the Carlitz-Willey trajectory, in contrast to the

Planck spectrum result from the density matrix or correlation calculations.

The importance of the results of the explicit Carlitz-Willey trajectory include: (1)
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The connection to the Unruh effect is further distinguished. As is shown, time-

dependent acceleration is responsible for the thermal dynamical Casimir effect. Com-

pare this to the time-independent acceleration of the thermal Unruh effect. (2) At-

tention is given to the mathematical relevance of the product log function for the

physically relevant constant energy flux and thermal emission due to the mirror’s

motion. (3) Transcendental inversions (necessary for the Carlitz-Willey Trajectory)

are analytically tractable for some ray-tracing functions relevant to the moving mir-

ror model.

I found three static-start future-horizon mirrors whose beta coefficients and en-

ergy flux can be computed exactly: Arcx, Logex, Omex. This is in contrast to the

Davies-Fulling trajectory which is solved only for late times and is spliced (non-

smooth joining or C1 joining with a resulting δ-function pulse in the energy flux).

These mirror trajectories have added a number of new refinements to the moving

mirror model (no splicing, no δ pulses, no late-time approximations). Each of the

three trajectories acts as a model in which the Bogoliubov transformation, which is

induced by the moving boundary, can be computed explicitly. These exactly solu-

ble trajectories with acceleration singularities (a proper acceleration that approaches

infinity in the far future that results in the Plankian spectrum) mimic the particle pro-

duction that occurs when a black hole forms from gravitational collapse but backre-

action effects are not taken into account.

There are several reasons why these trajectories with asymptotically diverging

acceleration are important: (1) They have potential for particle production to be lo-

calized with an appropriate packetization procedure. (2) They provide character-

istic exact, simple solutions for asymptotic thermal radiation in the moving mirror

model. (3) It may be possible to map to dilaton black hole spacetimes. Identifying

the center of collapse of the black hole as the location of the moving mirror, one may
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precisely formulate gravitational collapse in the mirror framework [67]. (4) They

avoid δ-function pulses in flux from joined trajectories or non-smooth splicing. (5)

These diverging acceleration mirrors have no vanishing flux (as in the hyperbolic

case) and (6) no approximations (obscure or otherwise) are needed for either the

transformation coefficients or the energy flux because these are not solely late-time

trajectories.

In curved spacetime, I have two main results. I found an analytical approxima-

tion for 〈φ2〉 for a scalar field with arbitrary mass and curvature coupling in Bianchi

Type I anisotropic spacetimes with ax = ay 6= az. I have calculated the renormaliza-

tion counter terms for the energy density in the case of arbitrary curvature coupling

ξ for an arbitrary Bianchi Type I spacetime. Previously, this had just been done for

ξ = 1/6. Extensions of this work could be (1) an analytic approximation for the en-

ergy density when ax = ay. (2) A numerical computation of the full renormalized

energy density in any specific Bianchi Type I spacetime is now possible. (3) Renor-

malization counterterms could be calculated for the pressure in various directions.

Then these quantities could be computed numerically, and one could solve the semi-

classical backreaction equations to investigate the dissipation of anisotropy due to

particle production[37] [39] [40] [41] [42].

Extensions for the moving mirror model include calculations of the energy emis-

sion correlation ratios as discussed briefly in subsection 2.1.5. These are straightfor-

ward calculations that could reveal interesting behavior of the energy emission that

the stress-energy-momentum tensor and particle count alone could not tell us. One

may also compute the production of entropy using correlations with the Wilczek

definition [35] or using the trajectories themselves with the Mukohyama-Israel defi-

nition [13]. Exact, trajectory-specific calculations of vacuum-excess (subsection 2.1.5)
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correlations during negative energy flux emission may reveal more about an en-

tropy interpretation. Possible divergences of energy correlations could point to a

breakdown of the semiclassical approximation. Mapping these COAST mirror tra-

jectories to dilaton black hole geometries could give insight into the effects of particle

production for these models.
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