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!!!!! !
ABSTRACT 

!
Eric Francisco: Cortical Diagnostics: Measuring Brain Health through Somatosensation 

(Under the direction of Mark A Tommerdahl) !
 Overall the past several years, a number of unique quantitative tactile based sensory 

testing methods were designed with the intent of obtaining objective metrics that would be 

sensitive to alterations in cortical information processing.  The design of these tasks was based 

on information obtained from neurophysiological studies of the nonhuman primate (NHP) 

cerebral sensory cortical response to a variety of modes of natural skin stimulation, and these 

NHP studies typically exhibit characteristics of cortical modularity, or cortical-cortical dynamics 

that occur between adjacent and near-adjacent assemblies of cortical neurons.  The initial goal 

of these studies was to demonstrate cortical correlates of perception by comparing 

observations of stimulus evoked activity in primary somatosensory cortex of non-human 

primates, and a secondary goal was to demonstrate that these measures of sensory perception 

were altered in a predictable fashion with neurological insult.  To date, observations consistent 

with systemic cortical alterations have been made in individuals with neurotrauma (concussion/

TBI, stroke), neurodevelopmental disorders (Autism, ADHD, Tourette’s, OCD) and chronic pain 

(migraine, fibromyalgia, VVS, TMJD, carpal tunnel syndrome).  One unifying theme of these 

findings is the role that cortical modularity plays in sensory information processing and that 

when cortical modularity is disrupted, significant quantifiable deficits in sensory information 

processing can be detected. 
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!!!!!!
INTRODUCTION 

!
 A large number of neurological disorders (developmental, degenerative, or trauma 

induced) are difficult to diagnose or assess, thus limiting treatment efficacy and overall 

understanding.  Existing solutions and products attempting to fill this gap are costly, extremely 

slow, often invasive, and in many cases fail to definitively (and quantitatively) diagnose or 

assess treatment. The somatosensory system is ideally suited for the design of a CNS diagnostic 

system.  First, the organization of the system is such that adjacent skin regions project to 

adjacent cortical regions (i.e., it is somatotopic).  Second, ambient environmental noise in the 

system can be easily controlled (i.e., it is less likely that a patient will be exposed to distracting 

tactile input than auditory or visual input).  Third, the somatosensory system is the only 

sensory system that is highly integrated with the pain system, and this is often an important 

aspect of a patient’s diagnosis. The diagnostic system our lab has developed delivers a battery 

of somatosensory-based tests that are conducted rapidly, much like an eye exam with verbal 

feedback.  Neuro-adaptation, functional connectivity (e.g., cortical synchronization), and feed-

forward inhibition are just a few of the cortical mechanisms that can be quantified using 

somatosensory testing protocols.  Many of these protocols leverage tactile illusions which act as 

confounds on top of a basic somatosensory test, allowing each subject to serve as his or her 

own control. Design and validation of the perceptual metrics is accomplished via correlative 

studies that compare non-invasive observations of human sensory percepts with non-human 

primate neurophysiological studies.  

 The majority of sensory testing in the last few decades has been performed using less 

than ideal machinery and most testing designs rely heavily on a classical understanding of 

psychophyics.   My previous colleagues have devoted much of their work to outlining general 
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information on how the cortex responds to tactile stimuli, through electrode/OIS studies on 

animals; simple somatosensory testing that correlate well with the data provided from their 

imaging studies; and development/improvement of the portable vibrotactile stimulator used in 

the majority of our experiments.  The goal of this dissertation is to show how somatosensory 

testing can be improved through novel testing methods that are targeted at providing new 

diagnostic information about how the cortex functions, in the typically developing and those 

with neurological deficits.   

 The first 2 chapters of this dissertation show the foundations of current somatosensory 

testing.  The first chapter outlines the design and improvement of the vibrotactile stimulator 

we use to deliver vibrations to our subjects fingertips.  This device is constantly evolving into a 

more portable, more user friendly, and more powerful diagnostic device.  The technological 

advancements outlined in the first chapter allowed the new novel testing paradigms, seen in 

chapters 3, 4, &5, to be designed and executed.  The second chapter explores amplitude 

discrimination and its compliance to Weber’s Law in the tactile modality.  This paper showcases 

a rather simple method of measuring a subjects discriminative capacity to different intensity 

stimuli and how data obtained from subjects correlate with classic psychophysical principles 

(Weber’s Law) and animal data acquired under similar testing conditions.  

!!

!2



!!!!!!
CHAPTER 1: CM4: A FOUR-POINT VCA BASED VIBROTACTILE STIMULATOR  1!

Overview 

 Current methods for applying multi-site vibratory stimuli to the skin typically involve the          

use of multiple, individual vibrotactile stimulators. Limitations of such an arrangement include 

difficulty with both positioning the stimuli as well as ensuring that stimuli are delivered in a 

synchronized and deliberate manner. Previously, we reported a two-site tactile stimulator that 

was developed in order to solve these problems (Tannan et al., 2007a). Due to both the success 

of that novel stimulator and the limitations that were inherent in that device, we designed and 

fabricated a four-site stimulator that provides a number of advantages over the previous 

version. First, the device can stimulate four independent skin sites and is primarily designed for 

stimulating the digit tips. Second, the positioning of the probe tips has been re-designed to 

provide better ergonomic hand placement. Third, the device is much more portable than the 

previously reported stimulator. Fourth, the stimulator head has a much smaller footprint on the 

table or surface where it resides. To demonstrate the capacity of the device for delivering tactile 

stimulation at four independent sites, a finger agnosia protocol, in the presence and absence of 

conditioning stimuli, was conducted on seventeen healthy control subjects. The study 

demonstrated that with increasing amplitudes of vibrotactile conditioning stimuli concurrent 

with the agnosia test, inaccuracies of digit identification increased, particularly at digits D3 and 

D4. The results are consistent with prior studies (Tommerdahl et al. 2007) that implicated 

synchronization of adjacent and near-adjacent cortical ensembles with conditioning stimuli in 

impacting TOJ performance. 
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Introduction 

 For the past several years, our research group has been working towards the development          

of a portable tactile stimulator that could effectively be used to study changes in sensory 

information processing in clinical and clinical research venues across a diverse spectrum of 

neurological disorders. Thus far, we have gone through several iterations in the development of 

this stimulator. The first prototype of the device (Tannan et al., 2005a) was used to 

demonstrate changes in spatial acuity with repetitive stimulation. A subsequent report 

described that this change did not occur with individuals with autism, strongly suggesting a 

lower-than-normal inhibitory response (Tommerdahl et al., 2007a). A second iteration of the 

device (Tannan et al., 2007a) was much more portable as well as more robust and reliable in its 

ability to deliver well-controlled vibrotactile stimuli to the skin. The device proved extremely 

useful, and a number of studies were conducted with it that demonstrated the ability to reliably 

and reproducibly obtain metrics of neuroadaptation (Tannan et al., 2007b), temporal order 

judgment (TOJ) and the impact of synchronized conditioning stimuli on TOJ (Tommerdahl et 

al., 2007b), the absence of the impact of those same conditioning stimuli on TOJ in individuals 

with autism (Tommerdahl et al., 2008), the relationship between spatial acuity and amplitude 

discrimination (Zhang et al., 2008), a method for the study of tactile-thermal interactions 

(Zhang, 2009), a reliable means for measuring amplitude discriminative capacity and a robust 

near-linear relationship between duration of repetitive conditioning stimuli and the impact of 

that conditioning on amplitude discriminative capacity (Tannan et al., 2007b), the below-normal 

adaptation metrics in autism (Tommerdahl et al., 2007), the impact of NMDA receptor block on 

adaption metrics (Folger et al., 2008), a demonstration of Weber’s law (Francisco et al., 2008; 

Holden et al., 2011) and a robust relationship with neurophysiological data (Francisco et al., 

2008), and differences in timing perception in Parkinson’s Disease (Nelson et al., 2011). More 

recently, we have developed a newer, more portable and ergonomic model of the device, which 

is much more suited for a clinical or clinical research environment, and is capable of delivering 

vibrotactile stimuli to four fingers: the index (D2), middle (D3), ring (D4), and little (D5) fingers. 
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The utility of this device has been recently reported in a paper that reported phenotypic 

differences within a spectrum of patients with vulvodynia (Zhang et al., 2011), and in a paper 

that describes its utility for describing phenotypic differences within the autism spectrum via 

modulating vibrotactile stimuli (i.e., sinusoidal stimuli that dynamically change in amplitude), 

but the device itself, as well as a demonstration of its capability to deliver four-digit protocols, 

has not been fully described, which is the purpose of this report. In a subsequent paper, a 

magnet-compatible version of this device will be reported. 

Methods 

Hardware 

 The Cortical Metrics (CM-4; see Figure 1.1) stimulator was developed in our laboratories          

for use in series of experiments such as those described in this report. The system was 

designed using state-of-the-art rapid manufacturing technology to allow multiple identical 

systems to be built and used in different locations. Also, the use of rapid manufacturing 

permitted very rapid design evolution, thereby potentiating the production of special fixtures 

and changes to geometry as needed for special applications. The device consists of two 

separate parts: the main body and a detachable head unit. The flat plates of all exterior housing 

and other components of approximately planar geometry are direct manufactured using laser-

machined 6 mm acrylic sheet, cut on a 120 Watt CO2 laser engraving system, model number 

X660 (Universal Laser Systems, Scottsdale, AZ). The more complex housing and internal 

mechanism components are direct manufactured from ABS plus, by fusion deposition modeling 

(FDM) on a StrataSys Dimension bst 1200es (StrataSys, Inc., Eden Prairie, MN). The cylindrical 

trays forming the disks of the head unit are CNC machined from 1" thick Acetal (Delrin) plate. 

All housing and mechanism components and assemblies were solid modeled prior to 

fabrication using SolidWorks solid modeling software (SolidWorks Corporation, Concord, MA).  

 The internal mechanism of the head unit is comprised of identical cylindrical disks placed          

sideways and four abreast (130 mm in diameter, 11 mm in depth) between two plastic 

supports. Each disk can be independently rotated to adjust for differing finger lengths for each 

!5



test subject. A voice coil actuator (VCA) and an optical position sensor are mounted in each 

disk. Each VCA is attached to a plastic probe (5 mm diameter) which slightly protrudes through 

a hole (7 mm diameter) in the side of the cylinder. The amount of protrusion for each probe is 

independently adjustable as are the positions of the holes to accommodate the length of the 

subject’s fingers. The VCAs drive the plastic stimulator probe tips according to prescribed 

sinusoidal waveforms. The moving components of the stimulator tips are directly 

manufactured from Polycarbonate (PC) by 3-D FDM as a single compliant mechanism 

component integrating a mounting flange, a thin-beam four-bar linkage, a magnet coil bobbin, 

an optical displacement sensor vane, and the extension to the mechanical stimulator tip. The 

compliant four-bar linkage mechanism allows the coil, optical position sensor vane, and tip to 

be displaced vertically along a straight line for a distance of ±1 mm. The 4-bar compliant 

mechanism also provides a very low hysteresis linear restoring force to center each tip 

vertically when no current is applied to the VCA coil. The VCA coil is 400 turns of 34 AWG 

magnet wire (approximately 30 Ohms total resistance), wrapped in a rectangular bobbin 

permanently solvent bonded into the four-bar mechanism. The entire four-bar mechanism is 5.3 

mm in thickness, and is positioned such that the VCA coils sit directly between two opposed 

rectangular N42 rare-earth-element magnets (catalog number BCC2, K & J Magnetics, Jamison, 

PA) similar to those found in computer hard drives. The resulting VCA motors generate 

extremely linear force outputs as a function of drive current with very low hysteresis due to the 

“frictionless” nature of the single-piece bearing-less four-bar compliant mechanism. The 

position of the vibrating tips is detected by non-contacting optical displacement sensors, one 

for each tip, similar in configuration to ones we have previously employed in precision optical 

force transducers (Dennis and Kosnik, 2002). When the tips are not being driven, the optical 

position sensors can act as a highly sensitive contact or force sensor. By employing the optical 

position sensor, the tips can be driven to contact the skin, and the contact force of each tip can 

be adjusted independently due to the fact that the spring constant of each VCA four-bar linkage 

mechanism is identical.  
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Figure 1.1: Four Site Vibrotactile Stimulator  
Each of the four probe tips is positioned by rotating the four independently positioned drums to maximize contact 
between finger pads and the stimulator tips. During an experimental session, subjects were seated comfortably in a 
chair with their arm resting on the arm rest attached to the head unit of the device. Digits D2 through D5 were then 
positioned for vibrotactile stimulation. !
 The custom electronics were designed using free CAD software from ExpressPCB 

(www.expresspcb.com). The printed circuit boards were manufactured using the resulting CAD 

files, also by ExpressPCB. The hybrid circuit includes signal amplifiers for the position sensors, 

an analog controller to allow either “force” or “position” control of each VCA motor and tip, a 

tunable analog PID controller for position control of each tip, and a bipolar push-pull high-

current op-amp output stage to drive each VCA motor. This hybrid circuit is interfaced via four 

parallel pin connectors (2 banks of 50 pins for digital signals and 2 banks of 34 pins for analog 

signals) to an internal NI-USB-6259 data acquisition (DAQ) board. The DAQ board then 

interfaces via a USB connection to any standard PC running Microsoft Windows XP or later. 

Software  

 A custom line-of-business application was developed for the Microsoft .Net platform          

using the C# programming language and Windows Presentation Foundation (WPF) framework to 
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control the stimulator and administer the data collection protocols. The interface was designed 

to be intuitive, extensible, and aesthetically pleasing. The software needed to be extensible to 

facilitate the development of future protocols for a device as flexible as the CM-4. The core 

extensibility was achieved by using a “plugin” architecture with a shell application whose 

function is to discover, load and execute small plugins. The shell exposes a software contract 

(an inheritable C# class) that is consumed and extended by each plugin. Each task described in 

this paper represents one such plugin. Most traditional neuropsychological protocols using the 

standard X-alternative forced-choice (X-AFC) tracking method (Cornsweet, 1962) can be created 

with only a couple dozen lines of C# code. While most plugins interact directly with the CM-4 

stimulator, this is not a requirement of the plugin contract. Plugins can, for example, be 

designed to collect arbitrary subject information pertinent to the given study (e.g., participant 

demographics, relevant medical history, various surveys, etc.). The net effect is not only a 

significant reduction in the amount of clinical paperwork that needs to be completed by each 

participant, but also a marked reduction in data-entry time for clinicians. All data collected by 

the application are stored in an encrypted (128-bit RC4) SQLite database in a user-specified 

location. Each database can be shared with multiple instances of the shell application, providing 

a mechanism for seamless networking of CM-4 stations (Holden, et al. 2011). The software is 

also capable of storing, as well as creating and customizing, all relevant initialization 

information for each plugin, such that a given battery of protocols can be administered 

repeatedly and in a consistent manner, while maintaining flexibility for future projects. The 

batteries allow for greater reuse of each plugin, resulting in shorter development times a more 

efficient workflow throughout an experiment. 

Protocols 

 In order to demonstrate exemplary use of the CM-4, a finger agnosia test, in the presence          

and absence of conditioning stimuli, was performed. The finger agnosia test was designed to 

assess the capacity of subjects to recognize and identify stimulated digits, an assessment 
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similar to tactile finger recognition or localization tests (Boll, 1974; Reitan and Wolfson, 1993) 

utilized in current neuropsychological diagnostics. 

Subjects  

 Seventeen healthy subjects (8 males and 9 females), ranging from 22 to 57 (39.1±2.9)          

years of age, were recruited for the study. None of the subjects reported any 

neuropsychological impairment and all were naïve to both the study design and issue under 

investigation. The study was performed in accordance with the Declaration of Helsinki, all 

subjects gave their informed consent, and the experimental procedures were reviewed and 

approved in advance by an institutional review board. 

Experimental Procedure 

 During an experimental session, the subjects were seated comfortably in a chair with the          

right arm resting on the device. Because the lengths of fingers typically vary among subjects, 

the positions of the probe tips were individually adjusted to ensure that they contacted the 

glabrous, padded tips of the fingers of each subject. These loci were chosen in order to allow 

the convenience of access and comfort of participants as well as for the wealth of 

neurophysiologic information that exists for the corresponding somatotopic regions of cortex 

in primates (Chen et al., 2003, 2007, 2009; Francisco et al., 2008; Friedman et al., 2008; LaMotte 

and Mountcastle, 1975; Mountcastle, 1969; Tommerdahl et al., 1993, 1998, 2002, 2005, 2006, 

2010). As depicted in Figure 1.1, probe tip positioning was accomplished by loosening a set 

screw and rotating each of the drums independently to conform to the natural hand shape of 

each subject. After proper positioning, if the probe tips still failed to make proper contact with 

the digits, the tips themselves were either raised or lowered. Once adjusted, the probe tips were 

locked in place prior to initiation of the battery so that they would remain immobile during 

testing. At the start of each run, the four tips were driven towards the tips of the fingers in 

order to ensure good contact with the skin. 

 During the assessment, the device delivered constant-amplitude sinusoidal skin          

displacements (vibrations) via flat Delrin probes (5-10 mm in diameter) positioned to make 
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contact with the tips of the index (D2), middle (D3), ring (D4), and little (D5) fingers of the right 

hand. The independent probe tips were computer-controlled and capable of delivering a wide 

range of vibrotactile stimulation of varying frequencies (Hz) and amplitudes (μm). Stimulus 

parameters were specified by test algorithms that were based on specific protocols as well as 

subject responses during those protocols. 

 Subjects viewed a computer monitor that provided continuous visual cueing during the          

experimental session. Specifically, an onscreen light panel indicated to the participant when 

stimuli were being delivered and when subjects were to respond. Training trials were not 

included prior to testing, and the subjects were not given performance feedback or knowledge 

of the results during data acquisition. The sensory testing session was conducted by 

application of low frequency (25 Hz) vibration to selected fingers. Each battery of testing lasted 

between 15 and 20 minutes depending on the protocols being run and on subject performance. 

Each individual protocol typically lasted 2 to 3 minutes. 

Finger Agnosia Protocol 

 Finger agnosia tests are typically utilized to diagnose the ability of subjects to recognize          

and identify stimulated digits (Boll, 1974; Reitan and Wolfson, 1993). In order to assess the 

ability of the subject to discriminate one digit from another, a four-alternative forced-choice (4-

AFC) protocol was implemented. Figure 1.2 represents a timeline for the finger agnosia 

protocols evaluated. The device delivered a short pulse or tap (300 μm, 25 Hz, 40 ms) to one of 

the four digits in a pseudo-random order on a trial-by-trial basis, and subjects were queried as 

to which digit was stimulated (Figure 1.2).  The simple test was used in order to determine 

baseline values for each subject. A more complex agnosia test was subsequently administered 

in which test stimuli were delivered to the skin as a tap as in the previous test (300 μm, 25 Hz, 

40 ms), but in the presence of conditioning stimuli at variable amplitudes. In each case, a 25 

Hz, 500 ms conditioning stimulus was delivered to all four digits at one of four amplitudes: 30, 

40, 50, and 100 μm. The conditioning stimulus was delivered 500 ms prior to, and 500 ms 

following, the tap of the test digit (Figure 1.2). For all finger agnosia tasks, subjects indicated 
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which finger was perceived to have received the large amplitude tap by choosing the respective 

digit on an image of the dorsal side of a hand presented on a computer monitor. Test stimuli 

sites were pseudo-randomized on a trial-by-trial basis. The subjects were assessed on their 

accuracy over a total of 16 trials (4 trials for each digit as the test stimulus). 

Analysis 

 For the finger agnosia protocols, accuracy percentages were calculated by analyzing the          

ratio of correct to total responses of the subjects. Percent accuracies were trial-independent 

and reflected accuracies across all 16 trials. The 100 μm conditioning condition was chosen for 

further analysis because of the significantly lower percent accuracy compared to the simple 

agnosia task. Percent inaccuracies were quantified for the 100 μm conditioning stimulus by 

calculating the frequency at which digits were incorrectly chosen. Results were calculated in 

this manner in order to compare percent inaccuracies with difference limens (DLs), where lower 

value might suggest higher accuracies and increased discriminative capabilities. The data were 

analyzed for significance by calculating p-values across mean inaccuracy metrics for each digit. 

Histograms were plotted in order to visualize the differences among each of the digits with 

respect to standard error of the means. Statistical t-tests were used to evaluate the difference of 

the performance of each subject under different conditions. A probability value of less than 

0.05 was considered statistically significant. 

Auditory Cue Analysis 

 To ensure that the stimulator did not produce any audible clues during the agnosia task,          

an auditory output analysis was conducted using a standard USB microphone and the open 

source software suite Audacity. The microphone was placed on a table 31 cm from the 

stimulator head unit. Four one-second recordings were created with each condition consisting 

of an initial 250 ms period of silence followed by a single-channel 300 μm 25 Hz sinusoidal 

vibration lasting 500 ms and ending with another 250 ms period of silence. Audacity provides a 

contrast analysis tool in compliance with the Web Content Accessibility Guidelines (WCAG 2.0), 
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Success Criteria 1.4.7. This tool was used to calculate the RMS amplitude in decibels (dB) during 

each vibration and period of silence.   

 

!
Figure 1.2: Schematics of Finger Agnosia Protocols  
The simple finger agnosia assessment (top panel) consisted of a 4AFC protocol where a short test (T) pulse (300 μm, 25 
Hz, 40 ms) was delivered to one of the four digits followed by a subject response interval (RI).  The finger agnosia test 
was also conducted in the presence of conditioning stimuli of amplitudes 30, 40, 50, or 100 μm (bottom panel). The 
conditioning stimulus was delivered 500 ms prior to, and 500 ms following, the tap of the test digit. For all finger 
agnosia tasks, subjects indicated which finger was perceived to have received the large amplitude tap by choosing the 
respective digit on an image of the dorsal side of a hand presented on a computer monitor. Test stimuli sites were 
pseudo-randomized on a trial-by-trial basis. !
Results 

 This study employed a finger agnosia protocol, in the presence and absence of          

conditioning stimulation, on healthy subjects in order to demonstrate the capacity of the device 

for delivering well-controlled vibrotactile stimuli at four independent sites. The auditory cue 

analysis found no indication of any auditory cues produced being produced by the stimulator 

during a vibration. The peak amplitude for any channel during a vibration was -42.64 dB 
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(silence is considered to be in the range of -30 dB for humans).  The average RMS amplitude 

(during all vibrations) was -58.90±0.11 dB. The average RMS amplitude during the periods of 

silence was -58.83±0.10 dB. Comparing each condition’s vibration to the immediately preceding 

silence yielded an average difference in RMS amplitude of 0.05±0.13 dB. The finger agnosia task 

was evaluated in order to quantify the ability of subjects to recognize and identify stimulated 

digits in the absence and in the presence of conditioning stimuli at different amplitudes. This 

task included seventeen healthy subjects (8 males and 9 females) ranging from 22 to 57 

(39.1±2.9) years of age. As shown in Figure 1.3, the average percent accuracy in the absence of 

conditioning stimuli was 98.2±0.9% (n=17), and accuracy across subjects decreased with 

increasing amplitude of conditioning stimuli. Conditioning amplitudes of 30 and 40 μm 

resulted in percent accuracies of 93.7±3.0% and 94.9±4.2%, respectively, and were not 

statistically significant compared to subject performance in the absence of conditioning stimuli. 

The effect of conditioning on the finger agnosia task became statistically significant at 

conditioning amplitudes greater than 50 μm: 89.0±4.2% at 50 μm (p<0.06) and 60.0±7.6% at 100 

μm (p<0.01). Because the conditioning stimuli at 100 μm resulted in the most significant 

percentage of incorrect responses compared to the simple finger agnosia protocol, the 

frequency of inaccurate responses for each digit was quantified (Figure 1.4). The results 

suggested that subjects, on average, made the largest number of inaccurate responses when the 

correct answer should have been D3 and D4 (percent inaccuracies of 60.0±10.0% and 

55.0±14.6%, respectively). Subjects were relatively better at identifying stimulation of D2 

(inaccuracy of 15.0±10.0% significantly better than that for D3, p<0.01) and better at identifying 

D5, though not statistically significantly more. 

!!!
!!
!
!
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Figure 1.3: Impact of Conditioning on Finger Agnosia Task 
The average percent accuracy in absence of conditioning stimuli was 98.2±0.9% (n=17). In the presence of 30, 40, 50, 
and 100 μm conditioning stimuli, the percent accuracies gradually decreased with increased amplitude of conditioning 
stimuli: 93.7±3.0% at 30 μm (n=17), 94.9±4.2% at 40 μm (n=16), 89.0±4.2% at 50 μm (n=17, p<0.06), and 60.0±7.6% at 100 
μm(n=5, p<0.01). !
Discussion 

 The delivery of sinusoidal displacements to a single skin site via mechanical transducer          

has been used extensively for the study of flutter vibration in both psychophysical and 

neurophysiological settings for a number of decades. Exemplary uses of such a device are 

described in Goble and Hollins, 1993; Juliano et al., 1989; LaMotte and Mountcastle, 1975; 

Mountcastle et a., 1969; Tannan et al., 2006; Tommerdahl et al., 1993, 1998, 2002; and Vierck 

and Jones, 1970. Typically, stimuli that can be delivered through mechanical transducers – 

vertical displacement stimulators such as the one originally described by Chubbuck (1966) – 

were used for studies of somatosensation and are very well equipped to deliver sinusoidal 
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stimuli at a frequency range (1 to 250 Hz) with amplitudes of sufficient size (between 0 and 

1000 μm) to activate a broad range of mechanoreceptors. However, in order to stimulate more 

than one skin site — either during the course of human psychophysical testing or animal 

experimentation — it is necessary to position a second vertical displacement stimulator over 

the second skin site. Our previous device (described in Tannan et al. 2007a) was designed to 

address this issue by allowing dual site stimulation with automated two-dimensional probe 

positioning. Although the device reported by Tannan and colleagues was successfully utilized 

in a number of studies (Tannan et al., 2005b, 2006, 2007b, 2008; Tommerdahl et al., 2007a, 

2007b, 2008), it was cumbersome and not ideal for clinical and clinical research venues. 

Figure 1.4: Percent Inaccuracy on Finger Agnosia with 100 μm Conditioning Stimuli  
Digits D3 and D4 showed the highest percent inaccuracies of 60.0±10.0% and 55.0±14.6%, respectively. There was a 
statistically significant observation in accurately recognizing and identifying stimulation of D2 at 15.0±10.0% versus D3 
at 30.0±20.0% (p<0.01) and slight discrimination difference between D2 and D4 (p<0.08) in the presence of the 100 μm 
conditioning stimuli. The other the digit combinations showed no statistical significance in discrimination capability. !!
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The  CM-4, described in this report, has the capacity to quickly and easily adjust to fit to most 

adult, and many juvenile, hand sizes and can deliver vibrotactile stimuli to the tips of four 

digits. The ability to simultaneously deliver vibrotactile stimuli to a number of digits allows for 

a great deal of protocol diversity.  

 In this report, we described a relatively simple four-site finger agnosia protocol to          

demonstrate the potential utility of the device. The principle finding in the results of this study 

is that there is an increase in inaccuracies with increases in the amplitude of concurrent 

conditioning stimulation delivered during the agnosia task, and the ability to perform the task 

accurately in the presence of that conditioning stimulation is diminished more in digits D3 and 

D4 than in digits D2 and D5. The decrease in accuracy with increasing amplitudes of 

synchronized sinusoidal stimulation is consistent with prior reports of increasing inaccuracies 

in temporal order judgment (TOJ) in the presence of synchronized and periodic conditioning 

stimuli. In a study by Tommerdahl and colleagues (Tommerdahl et al., 2007), it was 

demonstrated that TOJ results obtained from a number of pairs of stimulus sites — unilateral 

as well as bilateral — were comparable. However, in the presence of a 25 Hz conditioning 

sinusoidal stimulus which was delivered both before, concurrently and after the TOJ task, there 

was a significant increase in the TOJ measured when the two stimuli were located unilaterally 

on digits D2 and D3. In the presence of the same 25 Hz conditioning stimulus, the TOJ obtained 

when the two stimuli were delivered bilaterally was not impacted. This led to the speculation 

that the impact that the conditioning stimuli — which only had an impact if they were 

sinusoidal, periodic and synchronous — had on TOJ measures was due to the synchronization 

of adjacent cortical ensembles in somatosensory cortex, and that the synchronization of these 

cortical ensembles could have been responsible for the degradation in temporal order 

judgment. The conditioning stimuli in this study were also synchronized, periodic and 

simultaneous, and if the degradation in test performance was due to synchronization of 

adjacent cortical ensembles similar to what was speculated in the TOJ report, then inaccuracies 

due to this synchronization would be lower on the digits on the perimeter of the cortical 
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ensemble (i.e., D2 and D5), and the results reflect this prediction. Future studies will consider 

whether or not subjects with neurological disorders are not impacted by conditioning stimuli, 

as was found to be the case in subsequent TOJ studies (e.g., TOJ metrics of subjects with 

autism were not impacted significantly by conditioning stimuli; Tommerdahl et al., 2008). 

 The degree of inaccuracies in the different digits with increasing conditioning stimulation          

is also consistent with motor studies of digit interdependencies. In studying the autonomy of 

finger movements, intended motion in one finger often results in simultaneous movement, or 

enslavement, of other digits. More specifically, D3 and D4 show the most enslavement, or 

interdependency, of adjacent digits while D2 is characterized by the greatest independence 

(Häger-Ross and Schieber, 2000). In observing motor-related cortical potentials (MRCPs), the 

autonomous nature of D2 was shown to be significantly high while D4 showed the most 

dependency on other digits (Slobounov et al., 2002). In Figure 1.4, D2 demonstrates the lowest 

inaccuracies in the presence of conditioning stimulation while D3 and D4 exhibit the most; 

thus, in both the motor and sensory based studies, D2 demonstrates the most independence.  

 The role of neural communication between adjacent and non-adjacent cortical regions          

plays an important role in understanding the relationship between neurophysiological 

mechanisms and sensory percept. The development of new, more versatile devices and 

methodologies, such as presented in this report, could contribute to bridging decades of 

neuroscientific research with human perceptual clinical and clinical research studies. One long 

term goal of our research is to develop sensory based instrumentation and methodologies for 

the diagnosis and assessment of treatment efficacies for a broad range of neurological 

disorders, and building this aforementioned bridge could provide new insights into 

fundamental information processing mechanisms as well as generating perceptual metrics that 

are more sensitive to alterations in central information processing capacity.  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CHAPTER 2: VIBROTACTILE AMPLITUDE DISCRIMINATION CAPACITY  

PARALLELS MAGNITUDE CHANGES IN SOMATOSENSORY CORTEX AND  
FOLLOWS WEBER’S LAW  2!

Overview 

 In this study, we investigated the changes in perceptual metrics of amplitude 

discrimination that were observed in 10 healthy human subjects with increasing intensities of 

stimulation.  The ability to perceive differences in vibrotactile amplitude changed 

systematically with increasing stimulus magnitude (i.e., followed Weber’s Law) in a near linear 

fashion (R2 = 0.9977), and the linear fit determined by the amplitude discrimination task 

predicted the subjects’ detection thresholds.   Additionally, the perceptual metrics correlated 

well with observations from a previously reported study in which measures of SI cortical 

activity in nonhuman primates (squirrel monkeys) evoked by different amplitudes of 

vibrotactile stimulation were obtained (Simons et al. 2005). Stimuli were delivered 

simultaneously to two different skin sites (D2 and D3), enabling a method for the relatively 

rapid acquisition of the data.  Stability and robustness of the measure, its rapid acquisition, and 

its apparent relationship with responses previously observed in SI cortex, led to the conclusion 

that deviations from the baseline values observed in the obtained perceptual metric could 

provide a useful indicator of cerebral cortical health.   

Introduction 

 One of the fundamental questions often addressed in neuroscience is how two sensory 

stimuli are differentiated.  Detection and integration of the differences in physical attributes of 

our environment is, undoubtedly, just one way in which we coordinate the processes that 
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govern how we react and respond to external stimuli. Weber initiated a discussion on how 

sensory stimuli are integrated into central information processing in his 1834 study of 

perceived intensity. In his experiments, he measured the difference limen (DL) of blindfolded 

subjects by giving them two weights of equal magnitudes (standard weight) to hold in each 

hand. He then proceeded to add slightly heavier weights (test weight) to one hand. The subject 

was asked to compare the weights in both hands and determine which was larger. Weber found 

that it was more difficult for the subject to determine that there was a difference in the weights 

when the standard weight was larger; in other words, the size of the DL was proportional to the 

stimulus strength and increased linearly as the initial stimulus strength increased (Goldstein 

2007).   Based on Weber’s experiments, physicist Gustav Theodor Fechner developed the Weber-

Fechner Law: where ΔS is the DL corresponding to the reference stimulus S, and K is a constant 

called Weber’s Fraction.  Research has shown that Weber’s Fraction is usually constant for a 

range of stimulus intensities and can be applied to most senses, including weight, brightness, 

and sound frequency (Hanna et al. 1986; Gescheider et al. 1990; Stillman et al. 1993; Gescheider 

et al. 1996b; Gescheider et al. 1997; Scholtyssek et al. 2008). 

 A number of intensity related studies have been conducted in our laboratory.   Most 

recently, we made the observation that the magnitude of the evoked optical intrinsic signal 

(OIS) varies in a near linear fashion in SI cortex of squirrel monkeys with the amplitude of a 25 

Hz vibrotactile stimulus (Simons et al. 2005). One of the more interesting facets of that study 

was that while the magnitude of the centrally activated SI cortical region increased significantly 

with increasing amplitude, the spatial extent of the responding cortical territory did not 

(Simons et al. 2005).  Rather, the extent of the inhibitory surround became more prominent 

with increasing stimulus amplitude.  A similar study demonstrated that this center surround 

relationship was duration- as well as amplitude dependent (Simons et al. 2007).  Although this 

does not, in concept, seem to be a surprising revelation, it could be considered antithetical to 

previous hypotheses proposed about the SI cortical response to different intensities of skin 

stimulation – specifically, that increasing vibrotactile amplitudes would lead to an increasing 
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spatial extent of the response in SI (Johnson 1974).   Simons et al. with their subsequent 

stimulus duration dependent study, demonstrated and discussed how the two views are 

compatible (Simons et al. 2007).  To summarize, brief stimuli (500 ms or less) evoke a much 

more spatially extensive response than longer duration stimuli, and longer duration stimuli 

(greater than 500 ms) more actively engage pericolumnar lateral interactions that lead to a 

more prominent inhibitory surround.  Previous ideas about intensity perception, which were 

based on the increased recruitment of peripheral afferents, obviously did not incorporate the 

inhibitory surround and thus led to alternative ideas about the characterization of SI cortical 

response to increasing stimulus intensity. Nevertheless, the near linear relationship between the 

magnitudes of the evoked SI cortical response to supra-threshold vibrotactile stimulus 

amplitudes led us to posit the question as to whether or not we would observe a parallel metric 

perceptually. In other words, would increasing the vibrotactile amplitude of two comparison 

stimuli lead to a proportional increase in the DL (i.e., would Weber’s Law be followed)? 

 Additional intensity related, but perceptually based, studies have also been conducted in 

our laboratory (Tannan et al. 2007b; Tannan et al. 2008; Zhang et al. 2008).  The development of 

novel stimulus devices that can simultaneously deliver two well controlled vibrotactile stimuli 

(both in terms of amplitude and frequency) has made a number of studies much more 

pragmatic (Tannan et al. 2007b; Tommerdahl et al. 2007a; Tommerdahl et al. 2007b; Tannan et 

al. 2008; Tommerdahl et al. 2008a; Tommerdahl et al. 2008b).  For example, simultaneous 

delivery of two vibrotactile stimuli to different locations allows for direct comparison between 

the two stimuli, and problems originating from comparison of two stimuli at the same location, 

such as adaptive effects by the first stimulus delivered, are automatically eliminated.  The 

decrease in overall protocol duration (to approximately 1.5 min per standard) has made it 

possible to complete the multiple amplitude discrimination runs necessary for a study, such as 

the one described in this  report, in a single 10-20 min session.  In this report, the two-site 

amplitude discrimination protocol was executed with a number of different standard 

amplitudes in order to evaluate how subjects’ discrimination ability changes with increasing 
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intensity.  Additionally, this data was compared with previously reported changes in SI cortical 

activity obtained from squirrel monkey in order to ascertain the relationship of primary 

sensory cortex to perceptual capacity. 

Methods 

 Ten subjects (22-31 years in age) were studied who were naïve both to the study design 

and issue under investigation.  The subjects consisted of 7 males and 3 females, all right-hand 

dominant.  The study was performed in accordance with the Declaration of Helsinki, all 

subjects gave their written informed consent, and procedures were reviewed and approved in 

advance by an institutional review board. 

 A two-alternative forced-choice (2AFC) tracking protocol was used to evaluate the 

amplitude discriminative capacity of each subject (see Figure 1.2) in a manner used in a number 

of previous studies that have examined dual-site simultaneous vibrotactile discriminative 

capacity (Tannan et al. 2005; Tannan et al. 2006; Tannan et al. 2007a; Tannan et al. 2007b; 

Tommerdahl et al. 2007a; Zhang et al. 2008).  The subject was seated with the right arm resting 

comfortably on a dual-site portable vibrotactile stimulator (CM-1; for full description, see: 

(Tannan et al. 2007a)). Two probe tips (5 mm diameter) were positioned on the glabrous pads of 

digits 2 and 3 of the right hand.  Digits 2 and 3 were chosen as test sites for both convenience 

of access (thus maximizing the test’s potential in clinical applications) and because of the 

wealth of neurophysiological information that exists for that somatotopic region of cortex in 

primates. Visual cueing was provided with a computer monitor during the experimental run. 

Specifically, an on-screen light panel was used to indicate to the subject when the stimulus was 

on and when the subject was to respond.  The subject was not given performance feedback or 

knowledge of the results during the data acquisition until all sessions were completed.  At the 

start of each run, the two probe tips were driven towards the skin until each tip registered a 

force of 0.1 g, as determined by a closed-loop algorithm in the CM-1 stimulator feedback 

system.  The tips were then further indented into the skin by 500 μm to insure good contact 

with the skin.  An audiometer was used to ensure that no auditory cues were emitted from the 
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stimulator during delivery of the range of stimuli used in this study.  All vibrotactile stimuli 

used in this study were delivered at the frequency of 25 Hz flutter. 

  

Figure 2.1: Schematic of the Protocol Used for Amplitude Discrimination 
Two 25 Hz vibrotactile stimuli, the standard (S) and test (T), were delivered at the same time for 0.5 sec.  A 5 sec delay 
(excluding subject response interval (RI)) was imposed before onset of the next trial.  The subject was queried as to 
which stimulus felt more intense. !
 Amplitude discrimination was tracked for nine conditions of standard stimulus 

amplitude, each condition tracked in a separate experimental run: 50, 100, 200, 300, 400, 500, 

600, 700 and 800 μm.  During an experimental run, a vibrotactile test stimulus was delivered 

simultaneously with a vibrotactile standard stimulus (the standard amplitude remained 

constant throughout the run).  The loci of the test and standard stimuli were randomly selected 

on a trial-by-trial basis.  Stimulus duration was 0.5 sec, followed by subject response (subject 

was queried to select the skin site that received the most intense stimulus) and a 5 sec delay 

before onset of the next trial.  The test stimulus amplitude was always greater than that of the 

standard stimulus. 

 Each experimental run consisted of 20 trials total.  In the initial 10 trials, the amplitude 

of the test stimulus was modified based on the subject’s response to the preceding trial — 

accomplished using a 1-up/1-down algorithm.  This approach was selected because it enabled 

rapid determination (“tracking”) of each subject’s minimally detectable difference in the 
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amplitudes of two-site skin flutter stimulation (Tannan et al. 2007a).  The difference between 

the amplitudes of the test and standard stimuli delivered on each of these initial 10 trials was 

adjusted on the basis of the subject’s response in the preceding trial (the discrepancy in 

amplitude was decreased if the subject response in the preceding trial was correct; it was 

increased if the response was incorrect). After the initial 10 trials were completed, test stimulus 

amplitude was modified using a 2-up/1-down algorithm — in these trials two correct/one 

incorrect subject response(s) resulted in a decrement/increment, respectively, in the amplitude 

difference between the test and standard stimuli.  The subjects’ DLs were calculated by 

averaging the amplitude of the test stimulus in the last five trials of each run and comparing 

this to the standard used in each test. The step size for each condition was 5% of the standard 

amplitude.  This value was chosen in order to maximize resolution of the method as well as to 

standardize the relative step size for each run. A series of training trials, each consisting of a 

pair of stimuli differing in amplitude by 100 μm (200 μm vs. 100 μm), were conducted prior to 

the first run.  These amplitudes were chosen to provide only minimal challenge to the subjects 

performing the discrimination task during training.  The subject was provided with feedback 

only during training trials and was allowed to continue on to the first run after answering 

correctly 5 times in a row.  Each subject participated in a single experimental session that 

consisted of nine separate runs of different standard amplitude conditions (randomized in 

order).  A single session, including actual testing time and short breaks between each run, took 

30-45 min.  A modified 2AFC protocol was also used to evaluate the detection threshold of each 

subject.  For this procedure, amplitude discrimination was performed for 60 trials using a 3-

up/1-down algorithm, due to the lower signal-to-noise ratio at this low-amplitude testing level.  

In this condition, the standard amplitude was held constant at 0 μm, thereby testing the ability 

of the subject to simply detect the presence of the 25 Hz stimulus. 

Results 

 A two alternative forced-choice (2AFC) tracking protocol was used to determine 

subjects’ capacities to discriminate between the amplitudes of two simultaneously delivered 
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vibrotactile stimuli and to directly compare subjects’ discriminative capacities under different 

conditions of standard amplitude (protocol previously described in (Tannan et al. 2007b; 

Tannan et al. 2008; Zhang et al. 2008); also see Methods).  To summarize, a tracking protocol 

was employed in which two stimuli were delivered simultaneously in one trial.  The subject was 

queried as to which stimulus was more intense, and the difference between the two subsequent 

stimuli of the next trial was increased or decreased based on subject response. The difference 

limen (DL) for each subject was determined by averaging the tracking values obtained from the 

last five trials of each experimental run. 

 

Figure 2.2: Averaged Difference Limen Values at Various Standard Amplitudes 
The plotted linear regression has a correlation coefficient of 0.99771, and the y-intercept (predicted detection 
threshold) is approximately 9.25 μm.Two 25 Hz vibrotactile stimuli, the standard (S) and test (T), were delivered at the 
same time for 0.5 sec.  A 5 sec delay (excluding subject response interval (RI)) was imposed before onset of the next 
trial.  The subject was queried as to which stimulus felt more intense. !
 Across-subject DLs for each of the standard values are summarized in Figure 2.2.  

Subject performance was highly consistent, and the results demonstrated that subjects 

performed much better, on an absolute scale, when the standard stimulus was smaller (e.g., 
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compare the DL obtained with a 50 μm standard (14.8 ± 1.26 μm) to the DL obtained with an 

800 μm standard (101.6 ± 1.72 μm)).  A linear least-squares fit was applied to the data, and an 

R2 value of ~0.998 was obtained for the linear regression, demonstrating a remarkably strong 

correlation between DL and standard amplitude and thereby verifying the application of 

Weber’s Law for this particular task.  Extrapolation of the linear fit (shown in Figure 2.2) to the 

y-intercept yields the prediction that the detection threshold — or in other words, the ability to 

correctly discriminate between a vibrotactile test stimulus and a 0 μm “standard” stimulus — 

should be ~9.25 μm.  Under the condition of 0 μm standard stimulus amplitude, a modified 

amplitude discrimination protocol was used (which required a much larger number of trials — 

see Methods) and detection thresholds were directly obtained and averaged across all subjects.  

Subjects were consistently able to detect stimuli at amplitudes of 9.21 ± 1.76 μm, and an 

independent two subject t-test verifies that there is not a statistically significant difference 

between the actual average detection threshold and the predicted measure derived from the 

linear fit to the amplitude discrimination DLs obtained with this protocol (t = 0.029, D.F. = 15, p 

= 0.977). 

Figure 2.3: Difference Limens Plotted as Percent Difference !
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 In order to ascertain whether or not ΔS / S was constant (i.e., whether or not the Weber-

Fechner Law held true) DLs, averaged across all subjects, were re-plotted as a percent of the 

corresponding standard amplitude from which they were obtained (see Figure 2.3).  The data 

suggest that DLs are proportionally higher at lower amplitudes (i.e., standard amplitude < 300 

μm), then level off for higher standard amplitudes (≥ 300 μm) at a percent difference of 

approximately 13%.  Thus, the non-linearity of this data demonstrates a deviation from the 

Weber-Fechner law in the region tested below 300 μm, suggesting that the Weber-Fechner Law 

holds true only for the amplitude discrimination tasks with the relatively higher standards.     

Figure 2.4: Correlating Data with Optical Imaging 
Panel A.  Correlation between the DLs, obtained from this study, and the maximal change in absorbance in SI, 
previously reported (Simons et al. 2005).  As the standard amplitude increases, both DL and SI response increase in a 
linearly proportional manner (R2 = 0.9971).   
Panel B.  Correlation between the DLs and the spatial extent of SI activation.  As the standard amplitude was increased, 
no correlation was observed (R2 = 0.4542). !
 In a previous study that investigated the SI response to different amplitudes of 

vibrotactile stimulation (at the same frequency as this study) utilizing the technique of optical 

intrinsic signal (OIS) imaging in nonhuman primates, we found that an increase in the 

amplitude of the stimulus corresponded with the increase in absorbance evoked within the 

region of SI cortex that receives its input from the stimulated skin field (Simons et al. 2005; 

Simons et al. 2007). The relationship between the maximal change in absorbance and stimulus 
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amplitude was characterized by a near-linear function within the range of amplitudes studied 

(50-400 μm). Measurement of the spatial extent of the activated SI region, on the other hand, 

showed that higher amplitudes of stimulation did not produce a more extensive region of SI 

activation. Instead, as the amplitude was increased, average peak absorbance within an ~2 mm 

diameter SI region increased with the amplitude of stimulation, and the region of surrounding 

cortex underwent a prominent decrease (frequently to levels well below background) in 

absorbance.  In order to directly compare the two principle findings of that study — the 

relationship of absorbance evoked by different amplitudes of stimulation and the apparent lack 

of correspondence of the spatial extent with amplitude of stimulation — we directly compared 

the DLs obtained from the results of this report with those two entities.  The results from those 

comparisons are shown in Figure 2.4 and demonstrate that there is a very strong correlation 

(R2 = 0.9971) between the DLs obtained at each standard amplitude and the neural activity 

evoked at each amplitude.  On the other hand, a much weaker (not significant) correlation was 

observed between the spatial extent of the cortical response and the DLs obtained at the same 

amplitudes (R2 = 0.4542). 

Discussion 

 In this study, a dual-site vibrotactile amplitude discrimination protocol was used to 

determine the difference limen (DL) for a number of standard amplitudes.  The DLs were found 

to increase in a near-linear fashion with an increase in standard amplitude, thus adhering to 

Weber’s Law for the stimulus range employed in this study (50-800 μm).  Extrapolation of the 

linear least squares fit of the data (DL vs. standard amplitude) yielded a prediction — at the y 

intercept — of the detection threshold.  An independent method of threshold observation 

demonstrated that the same group of subjects had a detection threshold very close to the one 

predicted (9.21 ± 1.76 μm detected vs. 9.25 μm predicted), and both values are consistent with 

those reported by other investigations (Gescheider et al. 1996b; Gescheider et al. 1997; Hollins 

and Sigurdsson 1998; Gescheider et al. 2004).  Previously reported relationships of SI cortical 

activity (in squirrel monkey) evoked by different stimulus amplitudes were proportional to 
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changes observed in the perceptual metrics obtained in this study with different standard 

amplitudes. 

 One of Ken Johnson’s principle contributions to the field of somatosensory 

neurophysiology was his emphasis on the description of linearity between subjective 

experience and the underlying neural activity on which it is based. In essence, he concluded 

that “all the available evidence points to linearity as the basic law of psychophysics” (Johnson 

et al. 2002). The results of this paper fully support his statement, as not only was there a 

linearity demonstrated in the perceptual metrics, but the perceptual metrics obtained in this 

study co-vary with the SI cortical response (from non-human primates) in a fashion that 

strongly suggests that the magnitude of the neural activity evoked in SI could be essential to 

the neural code of intensity discrimination.  Although SI is considered primary sensory cortex, 

it has, nevertheless, been observed to reflect other aspects of perception exceedingly well.  

Chen and colleagues observed evoked SI activity between the somatotopic representations of 

two digit tips when the two digits were simultaneously stimulated — an apparent parallel to the 

perceptual illusory effects generated by the same dual site stimulus (Chen et al. 2003). 

A number of other somatosensory studies suggest that the increase in stimulus intensity could 

be proportional to an increase in the evoked SI cortical activity. Most closely related to our SI 

cortical study — briefly summarized in the results section — was a study by Chen and 

colleagues who used the optical intrinsic signal (OIS) to demonstrate that a proportionally 

greater (larger magnitude) response is evoked in SI of squirrel monkeys as the amplitude (as 

measured by force) of a skin stimulus is increased (Chen et al. 2003).  Several studies examined 

the global SI response using noninvasive imaging techniques in humans such as fMRI 

(functional Magnetic Resonance Imaging) (Arthurs et al. 2000; Backes et al. 2000; Nelson et al. 

2004) and MEG (MagnetoEncephaloGraphy) (Iguchi et al. 2002; Torquati et al. 2002). In general, 

results from these noninvasive studies indicated that increases in stimulus intensity are 

accompanied by increases in the intensity of the evoked signal as well as increases in the 

activated volume of SI cortex. As a result, these studies predicted that amplitude might be 
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coded not only by the average firing rates of individual SI neurons, but also by the total 

aggregate of responding neurons. These population based studies seemed to confirm prior 

predictions of the SI neuronal population response based on reconstructions from afferent 

recordings (Werner and Mountcastle 1965; Johnson 1974; Connor et al. 1990; Whitsel et al. 

2000; Guclu and Bolanowski 2002) and single unit cortical recordings (Mountcastle et al. 1963; 

Simons 1978). 

 Could the neural code for intensity be as simple as the above-described relationship 

suggests? One aspect that has not been addressed in this study is the effect that stimulus 

duration could potentially have on the results.  A longer stimulus duration would result in both 

improvements perceptually, such as those that occur with adapting stimulation (Goble and 

Hollins 1993; Goble and Hollins 1994; Gescheider et al. 1996b; Gescheider et al. 1999; Tannan 

et al. 2007b) as well as changes in the SI cortical response.  One of the most notable changes in 

SI cortical response with increasing vibrotactile stimulus duration is the increased funneling 

that leads to the development of a surround (Llinas and Sugimori 1980; Tommerdahl et al. 

2002; Chiu et al. 2005; Simons et al. 2005). The surround appears to spatially constrain the 

responding cortical region (Simons et al. 2007), and within the spatially constrained area of 

evoked cortical activity, spatially non-homogenous patterns of response develop which are 

amplitude dependent (Chiu et al. 2005; Tommerdahl et al. 2005a).   Such stimulus dependent 

patterns have been observed in other cortical studies as well (Bruno et al. 2003) that strongly 

suggest that minicolumnar patterns of response play a role in cortical information processing 

(Tommerdahl et al. 1987; McCasland and Woolsey 1988; Tommerdahl et al. 1993; Favorov and 

Kelly 1996; Chiu et al. 2005; Tommerdahl et al. 2005a). 

 There could be potential clinical implications from this study.  Since the results suggest 

a strong correlation with SI cortical activity and the capacity for amplitude discrimination at 

multiple amplitudes, we would predict that a systemic cortical alteration, in which cortical 

activity deviates from the norm, would change a subject’s capacity for amplitude 

discrimination.  For example, the function determined by the relationship between the DL vs 
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standard amplitude (such as plotted in Figure 2.2) could be impacted significantly in a 

neurologically compromised individual, and this function could be determined relatively 

rapidly by deriving it from 2 or 3 DLs obtained from larger amplitude (>300 μm) standards.  

 Based on the data plotted in Figure 2.3, it appears that subjects are much more accurate 

at higher standards, most likely due to the higher signal-to-noise ratio (with “noise” determined 

by the baseline values of neural activity that are correlated with sub-threshold perceptual 

values).  If this is, in fact, the case, then the data presented in Figure 2.3 would present a fairly 

strong argument against obtaining and interpreting threshold and/or near-threshold measures, 

as accuracy clearly decreases with the magnitude of the stimuli.  In other words, accurate 

threshold detection measures necessitate much longer protocols (in the case of this study, 3 

times as long) than does deriving amplitude discrimination capacity at multiple supra-threshold 

standards.  Additionally, the multiple DLs obtained from studies such as this one can be used 

to determine a functional relationship; threshold detection, on the other hand, yields only one 

measure, and it is difficult to derive a systemic function from a single point.  Although 

numerous studies have successfully shown differences in thresholds for different 

neurologically compromised subject populations (Gescheider et al. 1996a; Goble et al. 1996; 

Hollins et al. 1996; Kosek et al. 1996; Rocheron et al. 2002; Guclu et al. 2007; Ofek and Defrin 

2007; Wiacek et al. 2007; Alary et al. 2008), relatively fewer studies have emphasized the 

amplitude discriminative capacities of those subject populations (Gescheider et al. 1996a; 

Hollins et al. 1996; Rocheron et al. 2002; Wiacek et al. 2007), most likely due to the difficulty of 

implementing such a study in a clinical or clinical research setting. The increased efficiency and 

performance that is associated with dual-site simultaneous delivery of tactile stimuli makes it 

much more feasible to rapidly perform amplitude discrimination studies of the type described 

in this report (Tannan et al. 2007a) and potentially implement in a clinical setting. Moreover, a 

growing number of similar studies are demonstrating significant cerebral cortical differences 

between a number of different subject populations (Tommerdahl et al. 2007a; Folger et al. 

2008; Tannan et al. 2008; Tommerdahl et al. 2008a). Related to the issue of resolution is that an 
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exponential growth of brain imaging (fMRI, EEG, MEG) studies have yet to reveal significant 

differences that parallel those observed in studies which obtain perceptual metrics such as 

those in this report. Furthermore, it is highly unlikely that such brain imaging studies will be 

capable of detecting differences in the responses evoked by stimuli which vary in intensity by 

as little as 10-20%. Given the cost — both in time and in monetary expense — it may serve 

diagnosticians well to take a closer look at the perceptual measures that strongly reflect 

cortical activity and are sensitive to systemic cortical alterations.   

 Although some strong correlations were observed in this study, there are questions that 

observations of this study raise that remain to be resolved.  One of the most prominent 

questions stems from the observation that the weaker stimuli studied (50, 100, 200 μm) had 

proportionally larger DLs than the stronger stimuli.  At the stronger stimulus conditions, the 

DLs maintained a fairly constant value in proportion to the standard stimulus.  While our 

current interpretation of this is that it could simply be a signal-to-noise issue, we cannot rule 

out other stimulus-dependent mechanisms.  For example, the studies of Chen and colleagues 

(Chen et al. 2003) would suggest that stimuli delivered to adjacent digit tips, particularly when 

the stimuli are near equal in strength, would result in mutual inhibition of the cortical 

responses evoked by the two stimuli.  In this scenario, the DLs observed in the weaker standard 

stimulus range would be more significantly impacted.  Decreases in the evoked SI cortical 

response have been observed in a number of stimulus conditions (Tommerdahl et al. 2005b; 

Tommerdahl et al. 2006), and the impact of such stimuli on perceptual metrics such as those 

reported in this study are currently being explored. 

!
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!!!!!!
NOVEL STIMULUS PARADIGMS 

 Traditional tactile sensory testing has relied heavily on delivery of single-site stimuli to 

the skin and querying test subjects on various qualities of those stimuli.  While these methods 

are effective in making measures that characterize the peripheral nervous system, they lack in 

quantitatively assessing centrally mediated disorders of the nervous system.  Additionally, the 

models from which the developments of such peripherally based protocols originate are based 

more on historical precedence of prior techniques than on a characterization of the central 

nervous system.  This section describes the development of not only novel methods for 

delivering multi-site tactile stimuli, but a novel approach for sensory testing based on models 

derived from measures of neural population response yielded from in-vivo and in-vitro animal 

experimentation. 

 In chapter 3, the impact of a constantly changing (ramping) stimulus is explored.  The 

testing was performed not as a “method of limits” threshold test, which has been explored 

exhaustively in the literature, but instead as an amplitude matching task where one stimulus 

maintains constant stimulus and the other is ramped to meet it.  The method was extensively 

examined; the parameters of testing included 3 amplitudes and .9 different rates of 

modulation.  The method was found to show drastic differences both between and within a 

small group of subjects diagnosed with autism (This is explored in great detail in chapter 6). 

 In chapter 4, a duration discrimination task is task is introduced to explore tactile 

temporal discrimination and its adherence to Weber’s law. Previous optical imaging studies in 

non-human primates demonstrated that increasing the duration of a vibrotactile stimulus 

resulted in a consistently longer and more well defined evoked SI cortical response.  

Additionally, and perhaps more interestingly, increasing the amplitude of a vibrotactile 

stimulus not only evoked a larger magnitude optical intrinsic signal, but the return to baseline 
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of the evoked response was much longer duration for larger amplitude stimuli.  This led to the  

hypothesis that the magnitude of a vibrotactile stimulus could influence the perception of its 

duration.  Results confirm this, and also show that the opposite is true; Vibrotactile duration 

can influence the perception of amplitude.  The data from animal studies lead us to believe that  

this phenomenon is mostly controlled by glia, and could also robust quantification of glia 

status in subjects with neuroinflammatory conditions. 

 In chapter 5, the effects of non-noxious thermal stimulation on tactile discriminative 

processing capacity were evaluated. It was determined that the subject‘s performances in the 

tests that involve both temporal and spatial summation of sensory information are significantly 

impacted by elevation of skin temperature, and these perceptual changes might reflect a shift 

in the balance of cortical excitation and inhibition caused by non-noxious thermal stimulation. 

This metric could provide a means for assessing central sensitization in patient populations 

that have dysfunctional mechanisms for mediating pain-touch interactions without the delivery 

of painful stimuli.  Notably, this chapter includes a dynamic tracking of adaptation task, which 

uses 2 modulating stimuli to affectively measure amplitude discriminative capacity and the 

effects of adaptation in an extremely short and robust manner. 

!
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!!!!!!
CHAPTER 3: RATE DEPENDENCY OF VIBROTACTILE STIMULUS MODULATION  3!

Introduction 

 Prolonged pre-exposure to sensory stimulation modifies discriminative capacity and 

alters the ability of both peripheral and CNS neurons to process sensory information. Primary 

sensory cortical mechanisms undergo transient, but significant alterations in response to even 

a brief exposure to adequate sensory stimulation. For example, both visual and somatosensory 

cortical pyramidal neurons undergo prominent use-dependent modifications of their receptive 

fields and response properties. Such modifications attain full development within a few tens of 

milliseconds of stimulus onset, and disappear within seconds after stimulus termination (visual 

cortical neurons: (Bredfeldt and Ringach, 2002; Celebrini et al., 1993; Das and Gilbert, 1995; 

DeAngelis et al., 1995; Dinse and Kruger, 1990; Pack and Born, 2001; Pettet and Gilbert, 1992; 

Ringach et al., 1997; Shevelev et al., 1998; Shevelev et al., 1992; Sugase et al., 1999); rat 

somatosensory cortical neurons (Khatri et al., 2004; Khatri and Simons, 2007), for review of 

short-term primary somatosensory cortical neuron dynamics see (Kohn, 2007; Kohn and 

Whitsel, 2002)). 

 Previously, we reported on the capacity of 20 healthy adult subjects for detecting 

differences in the amplitude of two simultaneously delivered 25 Hz vibrotactile stimuli in both 

the absence and presence of prior exposure to different conditions of adapting stimulation 

(Tannan et al., 2007b) with the use of a novel portable dual skin site stimulator (Tannan et al., 

2007a). Results obtained from that study demonstrated that increasing durations of adapting 

stimulation at one of the two skin sites, in the range of 0.2 to 2.0 s, led to a systematic and 

progressive decrease in each subject's ability to discriminate between the two different 
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amplitudes. Delivery of adapting stimuli to both of the sites of skin stimulation prior to 

simultaneous delivery of the test and standard stimuli, however, led to an improvement in 

amplitude discrimination performance—a finding which was consistent with prior published 

psychophysical studies that demonstrate improvements in discriminatory capacity with much 

longer durations of adaptation (Goble and Hollins, 1993, 1994). The conclusion of that study 

was that the perceptual effects of vibrotactile adaptation could be attributed to adaptation-

induced alterations of SI response. 

 Prior reports that proposed that vibrotactile adaptation is amplitude specific (Goble and 

Hollins, 1993) led us to consider that continuously changing the amplitude of a vibrotactile 

stimulus could modify the impact that adaptation would have on a perceptual task. We 

hypothesized that increasing rates of amplitude change, or stimulus modulation, would lead to 

a decreased impact of adaptation on the observed percept. In other words, if a stimulus 

presented to the skin is constantly changing, then the resulting adaptation will be effectively 

reduced. In this report, we describe an amplitude discrimination task in which two stimuli are 

presented simultaneously to the skin—one stimulus is held constant, and the other stimulus is 

dynamically increased from a null value up to a level that the subject perceives the two stimuli 

to be identical. The observations obtained indicate that the rate of the stimulus change had a 

significant impact on the degree to which sensory percepts were altered by adaptation. In this 

report, we define adaptation, or short-term cortical plasticity, as the changes that occur in 

sensory perception within a relatively short time frame (between 0.2 and 5 s of repetitive 

sensory stimulation). 

 Additionally, it was concluded that such measures that are sensitive to changing 

conditions of adaptation could prove useful for the study of subject populations that have 

systemic alterations of the cerebral cortex that compromise factors/mechanisms which 

contribute to the process of adaptation to a short duration repetitive stimulus. Subsequent 

reports demonstrated that subjects with autism did, in fact demonstrate a reduced impact of 

adaptation (Tannan et al., 2008). If the task is dependent on a subject's ability to adapt, then we 
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would predict that adaptation-compromised subjects would have difficulty with this task. To 

test this idea, we conducted a study with 12 autism individuals, previously reported to have 

below-normative autism metrics (Tannan et al., 2008). The results of this study lead to the 

speculation that there are subgroups within the autism spectrum that can be identified by 

differences in sensory information processing. 

Results 

 Sensory tests were administered to measure how effectively subjects could match a 

constant amplitude vibrotactile stationary stimulus with a non-stationary stimulus whose 

amplitude was constantly increased. In order to evaluate if there was an amplitude dependency 

on a subject's ability to perform the matching task, three standard stimuli of 200, 300, and 400 

μm were used as standard stimuli. The standard stimuli—which were 25 Hz sinusoidal stimuli 

whose amplitudes were held constant (i.e., they were “stationary”) were delivered 

simultaneously with the non-stationary test stimuli whose amplitudes were increased at a 

constant rate. On each trial, the test stimulus was initiated at an initial value of 5 μm and 

incremented at multiple modulation rates (1.25, 5, 10, 15, 20, 25, 30 and 35 μm/s). The 

amplitude of the standard stimulus and the rate of the modulation were varied on a trial-by-

trial basis in order to evaluate the rate dependency of stimulus modulation and to reduce 

potential training effects. The subject was instructed to indicate when the two stimuli were 

perceived to be the same. The end of each trial was indicated when the subject responded that 

the two stimuli were perceived to be identical, and the difference limen (DL) was computed to 

be the difference between the amplitude of the standard stimulus and the amplitude of the test 

stimulus at the end of the trial. 

!
!
!
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Figure 3.1: Summary of Average Difference Limens 
Note the systematic increase in DL with increasing standard amplitude (as predicted by Weber’s Law) and the 
systematic decrease in DL with increasing rate of stimulus amplitude modulation (not predicted by Weber’s Law). !
 Fig. 3.1 summarizes the results in terms of DL obtained at different standards and 

modulation rates, and it demonstrates that markedly increased DL's are obtained when the rate 

is slowed and/or when the standard is larger. Large DLs on this task indicate the subject 

responded well before the two stimuli were delivered at equal amplitudes; smaller DLs indicate 

that the subjects perceived the stimuli to be the same when the stimuli were much closer in 

amplitude. Note that DLs are uniformly larger with each successively larger standard, and a 

systematic increase in DL can be observed with decreases in rate as well. Decreasing the 
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modulation rate appears to have very similar effects on the results obtained with each of the 

standard amplitudes. If this is the case, then examination of the relative change in DL should 

indicate a similar rate dependent trend for each standard amplitude. 

Figure 3.2: Linearity of Averaged Difference Limens 
The 3 tested standards demonstrate remarkably similar weber fractions for each of the rates of amplitude modulation 
tested.  It is clear that a change in amplitude modulation rate affects the subjects’ measured Weber fractions similarly 
across all three tested standards.  !
 Fig. 3.2 demonstrates such an observation. In Fig. 3.2, the Weber's Fraction (DL 

normalized by the amplitude of the standard stimulus) is plotted against the modulation rate, 

and the graph shows that regardless of the standard used the Weber's Fraction changes in the 

same relation to the modulation rate. The differences in the linear regression lines for the three 

standard stimulus amplitudes are not statistically significant (for 200 μm vs. 300 μm standards 

p = 0.17; for 200 μm vs. 400 μm standards p = 0.13; for 300 μm vs. 400 μm standards p = 0.95; 

statistics calculated using a t-test for significance of the difference between regression 
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coefficients in Batson, 1956). Similarity of the data obtained from the three standards in terms 

of the Weber's Fraction justifies combining the results from all 3 standard amplitudes. 

 

Figure 3.3: Correlation of Amplitude Modulation Rate to Weber Fraction 
The results from all standards illustrated in Fig 3.2 have been averaged. Note correlation coefficient (R2= 0.9763) 
indicates the method to be fairly robust. !
 Averaging the Weber's Fractions obtained from the 3 standards results in the 

demonstration of a linear relationship between modulation rate and Weber's Fraction. Fig. 3.3 is 

a plot of the Weber's Fraction averaged across all 3 standards, and the data is linear (R2 = 0.98). 

Weber's Law predicts a flat line (at 10-15% of the standard; Francisco et al., 2008) but this data 

shows that as the modulation rate of the stimuli is increased the measured Weber's Fraction 

experiences a systematic decrease. 

!
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Figure 3.4: Impact of Pre-Conditioning on the Matching Task  
Results from delivering a 5 second conditioning stimulus on a subset of the amplitude modulation rates demonstrates 
minimal impact on performance by the pre-conditioning. !
 At first glance, it appears that the data simply suggests that slower modulation rates 

impacted the results simply due to longer stimulus durations. In other words, this led to the 

question of whether the results were in fact rate dependent or simply duration dependent. In 

order to obtain additional insight into the rate vs. duration dependency of the DL, the protocol 

was modified by delivering 5s of conditioning stimulation at the standard test site prior to the 

onset of each trial. The results obtained are plotted in Fig. 3.4 as the relationship between the 

Weber's Fraction and the rate. Though there are some subtle differences, it is clear that the 

additional 5 s of conditioning stimulation at the standard stimulus site had very little impact 

on the results (the two distributions are fitted by the regression lines that have the probability 

of being the same at p = 0.35, calculated using Batson, 1956).  Utilizing a reduced version of the 

above-described method (one standard, multiple rates), we conducted a pilot study on 12 

subjects with autism (Fig. 3.5). 
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Figure 3.5: Comparison of Data Obtained from Controls vs. Individuals with Autism 
Panel A. Note that at lower rates of stimulus amplitude modulation, all 3 groups behave approximately the same 
way.  As the amplitude modulation rate is increased, a clear distinction between two groups within the autism sample 
emerges. 
Panel B. Individual data points from autism sample at the highest modulation rate displayed in Panel A.  Note the 
clustering of the data points. !
 Interestingly the results from the autism spectrum were bimodal at the higher rates of 

stimulus modulation. Fig. 3.5A demonstrates that while half of the subjects with autism 

performed very similarly to that of controls, the other half performed significantly different at 

the higher rates—in fact, waited to respond well beyond the point where the stimuli were 

actually matched. The regression line of the Autism A group differs significantly from the 

regression lines of the Autism B and Control groups (p<0.001), whereas the differences in the 

regression lines of the Autism B and Control groups are not statistically significant (p = 0.90) 

(Batson, 1956). Note that in Fig. 3.5B, the plot of individual data points of the autism subjects 

taking this test shows that there was a clear separation in performance at the 35 μm/s 

modulation rate. The negative DLs measured in this test indicate that the subject responded 

beyond the matching point of the two stimuli rather than before. Of note is that there was no 

difference in simple reaction time in these two groups—both of which was comparable to that 
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of controls (219.9 ms for Group Autism A, 220.0 ms for Group Autism B, 200 ms for age-

matched controls). 

Discussion 

 A vibrotactile amplitude matching task was performed in which a stationary, or non-

changing, stimulus was compared to a non-stationary stimulus whose amplitude was increased 

at a fixed rate, and perceptual metrics were obtained at the different rates of stimulus 

modulation. In the study of 50 control subjects, DLs increased with increasing amplitude in a 

manner consistent with Weber's Law. Increasing the rate of stimulus modulation, on the other 

hand, decreased the Weber's Fraction in a manner that appears to be inconsistent with Weber's 

Law; in other words, increasing the modulation rate has the same effect on the DL as decreasing 

the standard stimulus intensity. While the increase in DLs that parallels the increase with the 

standard amplitude is expected (based on Weber's Law—see Francisco et al., 2008 for 

discussion), the decrease in DL with increasing rate is counterintuitive. At first glance, one 

would reason that increasing the rate of the increase in stimulus intensity would result in a 

more difficult matching task. However, when the process of adaptation is taken into 

consideration, the results can more easily be explained. First, the standard stimulus does not 

change, and perceptually, this means that it undergoes a significant gain reduction (i.e., is 

perceived to be weaker). The stimuli associated with the slower rate of growth are also adapting 

—the stimulus is not changing fast enough to not undergo the same gain change—and both 

stimuli undergo significant signal to noise ratio reductions, resulting in a larger DL. The test 

stimuli being delivered at a higher rate are not undergoing the same change in perceptual gain

—they are probably not reduced in perceived intensity to the same degree—and a decrease in 

signal to noise ratio does not impact the DL as much (which is very similar to the DL that is 

obtained with a simple amplitude discrimination task, such as the ones described in Tannan et 

al., 2007a, 2007b, 2008; Zhang et al., 2009; Francisco et al., 2008). 

 Thus, less adaptation might actually lead to better performance at this task. At first 

glance, this may seem contrary to reports that demonstrated that adaptation improves a 
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subject's ability to discriminate between two vibrotactile stimuli differing only in amplitude 

(Goble and Hollins, 1994; Tannan et al., 2007b). However, while it is true that contrast 

enhancements are made with conditioning stimuli, it is also true that significant gain 

adjustments are made, and the reductions in perceived intensity that resulted from slower 

modulation rates clearly played a significant impact in the ability of the subjects to 

discriminate between the two stimuli. The effects of delivering an adapting stimulus on the 

perception of subsequent test stimuli—particularly the reduction in sensation—has been 

characterized in some detail (Craig, 1974; Delemos and Hollins, 1996; Gescheider et al., 1995; 

Goble and Hollins, 1993; Laskin and Spencer, 1979; Tommerdahl et al., 2005b; Verrillo and 

Gescheider, 1977). Many psychophysical studies have reported that the presentation of an 

adapting stimulus causes an increase in the detection threshold, and thus a reduction in the 

perceived intensity, of a subsequent stimulus (for review see Verrillo, 1985; Gescheider et al., 

1995; Goble and Hollins, 1993; Verrillo and Gescheider, 1977). More specifically, Gescheider et 

al. showed that the threshold shift which occurred after the presentation of an adapting 

stimulus increased systematically with adapting stimulus duration (Gescheider et al., 1995). 

Thus, at first glance, it would appear that the rate dependency of the increase in DL could 

simply be a function of duration, which is obviously increased with slower modulation rates. 

 Although the principle finding of this report is that modulation rate does have a 

significant impact on neuroadaptation and subsequently the DL, it appeared that independent 

of rate, there was a duration dependency of stimulation on the DL that was consistent with 

prior reports. In other words, changing the stimulus modulation rate changes the exposure of 

the skin site to the duration of the stimulus. As the stimulus duration was increased as a 

consequence of slower modulation rates, DLs became larger. Based on previous studies in 

which we examined the duration dependency of stimuli (Simons et al., 2007; Tannan et al., 

2007b), we were inclined to suspect that duration played a role in the degradation of DLs. 

However, the finding that a 5-second conditioning stimulus had virtually no effect on the 

results leads the authors to the conclusion that the DLs obtained in this study were primarily 
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rate and amplitude dependent. We do find this somewhat surprising, as it was our anticipation 

that such a conditioning stimulus at the site of the standard would have the impact of reducing 

the percept of the standard. We propose two possible reasons for this outcome. First, the entire 

duration of the shortest trial (at the rate of 35 μm/s) is approximately 5 s, with or without the 

conditioning stimulus. Thus, one possibility is that the reduction in gain that occurs with 

repetitive stimulation is effectively the same after 5 or 10s of stimulation. Although this may 

seem surprising when considering the significant changes in gain reduction that occur between 

0.2 and 2.0 s of conditioning stimulation (Tannan et al., 2007b), it is consistent with 

observations that have been made in optical imaging studies of squirrel monkeys that show 

very little difference in the magnitude of the response after 5 vs. 10 s (Tommerdahl et al., 2002) 

although the contrast within and surrounding the responding cortical field is significantly 

enhanced (Chiu, 2006; Simons et al., 2007; Tommerdahl et al., 2002). A second, and perhaps 

more interesting speculation is that the combined percept of the two stimuli is impacted most 

significantly by the modulation rate of one of the two stimuli that are simultaneously delivered 

to adjacent digit tips. Since the overall percept of the simultaneously delivered stimuli is 

changing, then the impact of adaptation at a single stimulus site may be relatively reduced. A 

corollary to this second speculation is that the faster a stimulus is changing, the less adaptation

—or gain reduction—that is taking place at that stimulus site. If as others have proposed 

vibrotactile adaptation is amplitude specific (Goble and Hollins, 1993), then continuously 

changing the amplitude of the stimulus would have the impact of continuously delivering a 

“new” or “novel” stimulus, and thus, with less adaptation at the higher rates of modulation, a 

smaller DL would be expected. 

 We hypothesized that subjects with autism—previously demonstrated to have lower 

than normal adaptation metrics (Tannan et al., 2008)—would perform better at this task than 

the control population. Our reasoning for this was quite simple: In the control condition, it 

appears that more adaptation (which we postulated to occur at slower rates of modulation) is 

detrimental to performance. Less adaptation—such as what is observed at higher rates of 
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modulation—results in better performance. If individuals with autism adapt poorly, then it 

stood to reason that they would outperform the control population on this task. The results 

with the autism group suggested that, for a significant subset of the group, this could be the 

case for one of the rates tested (10μm/s). At lower modulation rates, all subjects appeared to 

perform approximately the same, yet at higher modulation rates, there was a significant 

distinction in performance that characterized a difference between two groups of autism 

subjects. One working hypothesis regarding this is that adaptation is very sensitive to the 

duration that a stimulus is “apparently stationary”. If the stimulus is modulated above a certain 

rate, then it becomes more difficult to adapt to, and a perceptual test which modulates 

stimulus amplitude at the higher rates used in this study could be a very sensitive means for 

assessing how well an individual adapts. The individuals with autism consisted of two groups: 

those whose performance was similar to that of controls, and those who performance was 

strikingly different. Additionally, this group of autism individuals appeared to outperform the 

control group at one of the modulation rates (10 μm/s). In other words, when the stimulus 

amplitude was modulated at this rate, this group of autism subjects was very good at matching 

the two stimuli. This interesting finding is being more thoroughly investigated with a larger 

autism cohort (n > 50) and will be reported in the near future. 

 There is considerable evidence that individuals with autism lack sufficient inhibition for 

normative cortical information processing (for discussion, see Tannan et al., 2008; Tommerdahl 

et al., 2006, 2008). Yet, why would the two groups in the autism spectrum perform 

differentially? One possible explanation is that it is widely recognized that a large number of 

factors contribute to the differential phenotypes observed in the autism spectrum, and these 

factors undoubtedly lead to variations in the impact that autism has on an individual's central 

information processing capacity. The sensory perceptual metric presented in this study could 

be sensitive to subtle differences in the decreased inhibition that could be attributed to the 

differences that exist between cortical minicolumns in autism and neurotypical populations. 

The inhibitory processes between minicolumns are a necessary component for the moment-to-
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moment changes that normally occur in cerebral cortex with repetitive stimulation (Chiu, 2006; 

Favorov and Kelly, 1994a, 1994b; Kohn et al., 2000; Tommerdahl et al., 1993, 2005a), and 

Casanova et al. (2002) have developed a large body of evidence that demonstrates that the 

cerebral cortex of autism subjects is significantly modified at the minicolumnar level. Casanova 

also suggests that this aberrant minicolumnar structure results in the disruption of the 

inhibitory architecture (Casanova et al., 2003) that is required for normal function in local 

neural circuitry. In other words, disruption of functional connectivity at the local minicolumnar 

level could be responsible for or strongly correlated with the dysfunctional connectivity that 

leads to a degradation of the normal response to repetitive stimulation in which cortical 

ensembles decrease in response with increasing repetition. A subtle, but significant, change in 

an individual's functional connectivity at the minicolumnar level could contribute enormously 

to the types of differences in sensory information processing that were observed between these 

two groups within the autism sample. Understanding the differences in cortical information 

processing within the autism subject population, with methods such as the one described in 

this report, may prove to be effective in understanding the heterogeneity currently recognized 

to be prevalent in autism, and this will be more fully described in a subsequent study. 

Conclusions 

 To our knowledge, this is the first demonstration of assessment of rate dependency of 

the amplitude modulation of a tactile stimulus, and several points of significance have emerged 

from the findings of this study. First, the methodology demonstrated that Weber's Law was 

adhered to when the standard amplitude was varied within the range studied. Interestingly, 

increasing the amplitude modulation rate gave the appearance of not following Weber's Law, as 

increases in the stimulus modulation rate led to decreases in the DL. However, consideration of 

the impact of adaptation on the stimulus percept explains this discrepancy. Second, the 

findings demonstrated that neuroadaptation is a relatively rapid process, and increasing the 

rate at which stimuli are changed alters the impact that adaptation has on perception. Third, 

the method appears sensitive to detecting CNS processing differences within the autism 
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population in that a subset of that group performs radically differently at higher stimulus 

modulation rates. 

Experimental procedures 

 Fifty healthy control (typically developing; TD) subjects between the ages of 20 and 

39participated in this study. They were naïve both to the study design and issue under 

investigation. The group consisted of32 males and 18 females; 40 who were right-hand 

dominant and 10 left-hand dominant. The study was performed in accordance with the 

Declaration of Helsinki, all subjects gave their written informed consent, and the experimental 

procedures were reviewed and approved in advance by an institutional review board. 

 Experimental sessions were conducted with the subjects seated comfortably in a chair 

with the right arm resting on an armrest attached to a portable four-site vibrotactile stimulator 

positioned on a table in front of the subject. Vibrotactile stimulation was conducted via 5mm 

circular probes that come in contact with subject's digit 2 (index finger) and digit 3 (middle 

finger). Glabrous pads of digit 2 (D2) and digit 3 (D3) were chosen as the test sites for two 

reasons: (1) to allow the convenience of access and comfort of the subject, and (2) because of 

the wealth of neurophysiological information that exists for the corresponding somatotopic 

regions of cortex in primates. The independent probe tips are computer con-trolled and capable 

of delivery of a wide range of vibrotactile stimulation of varying frequencies (measured in 

Hertz) and amplitudes (measured in micrometers, μm). A baseline indentation of 500 μm was 

used to ensure that the probe was in contact with the skin for the entire duration of the 

stimulation. 

 Participants viewed a computer monitor, which provided continuous visual cueing 

during the experimental session. Specifically, an on-screen light panel indicated to the subject 

when the stimuli were on and when the subject was to respond. Practice trials were performed 

before each test which allowed the subject to become familiar with the tests. The subject was 

not given performance feedback or knowledge of the results during data acquisition. The 
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sensory testing session was conducted by application of low frequency (25 Hz) vibration to the 

right hand's index and middle finger(s). 

 

Figure 3.6: Amplitude Matching Protocol. 
The “standard” stimulus (25 Hz vibrotactile stimulus at constant amplitude) was delivered randomly to either D2 or D3 
on a trial-by-trial basis.  On the alternate digit (D3 or D2), a 25 Hz “test” stimulus was delivered with initial amplitude 
of 5 microns.  The amplitude of the test stimulus was increased at a constant rate, which was varied from trial to trial, 
until the subject responded. Stimulation was terminated when the subject responded by switch box that the two 
stimuli were perceived to be the same, and a 10 sec delay intervened between stimulus response and onset of the next 
trial. !
 The protocol reported in this study was designed in order to rapidly and effectively 

measure a subject's ability to match the intensity of two stimuli when one stimulus was held at 

a fixed sinusoidal amplitude, and the amplitude of a second sinusoidal stimulus was ramped 

(i.e., increased from an initial minimal value) to approach it. The “standard” stimulus (25 Hz 

vibrotactile stimulus at constant amplitude) was delivered randomly to either D2 or D3 on a 

trial-by-trial basis. On the adjacent digit, a 25 Hz “test” stimulus was delivered with initial 

amplitude of 5 μm. The amplitude of the test stimulus was increased at a constant rate (which 

was varied from trial to trial) until the subject responded. Subjects were instructed by on-screen 

directions to click a switch box using their left hand when they perceived that the two stimuli 

were of equal strength or intensity, i.e., when they felt the stimuli “matched” (see Fig. 3.6). Both 

rate and standard amplitude were varied independently and interleaved on a trial-by-trial basis 

using a 10-second inter-trial interval. Each subject was tested with stimulus modulation rates of 

1.25, 2.5, 5, 10, 15, 20, 25, 30, and 35 μm/s at standards of 200, 300, and 400 μm. At the end of 

each trial, the duration of the stimuli and the amplitude difference between the test and 

standard (difference limen) at the moment the subject responded was recorded. Stimuli were 
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delivered until the subject responded, and thus, the duration of the test was variable since it 

was subject response dependent. 

 A second abbreviated “conditioning” protocol was used to measure the effect of a 

conditioning stimulus on the subject's ability to match the intensity of the stimulus. A 5-second 

conditioning stimulus was delivered to the standard stimulus site before onset of the standard 

or test stimulus. The protocol— as described in the previous paragraph—occurred normally 

after the delivery of the 5-second conditioning stimulus; the subject responded when the two 

stimuli felt identical and the difference limen and duration of each trial were measured and 

recorded. For this protocol, the duration was measured from the end of the conditioning 

stimulus until the subject's response. The test stimulus began immediately after the 

conditioning stimulus without an inter-stimulus interval. In other words, there was no break in 

stimulation. Rates of 10, 15, 20, 25, 30, and 35 μm/s were tested for only the 300-μm standard, 

and the conditioning stimulus was delivered as a 25 Hz vibrotactile stimulus at constant 

amplitude of 300 μm. Only rates of 10, 15, 20, 25, 30, and 35 were used because the average 

duration of these tests were 6–12 s and were predicted to most likely to be heavily impacted by 

a 5-second conditioning stimulus. The longer trials were not performed to avoid subject fatigue. 

 Using the first described protocol (without conditioning), data was collected from 12 

subjects with autism spectrum disorder (ASD). Diagnoses for all 12 subjects with ASD were 

made using both the Autism Diagnostic Interview (ADI-R; LeCouteur et al., 2003) and the 

Autism Diagnostic Observation Schedule (ADOS-G; Lord et al., 1999) by a trained administrator. 

Autism subjects were recruited from the University of North Carolina Neurodevelopmental 

Disorders Research Center Subject Registry. All twelve individuals had average to above average 

intelligence (WASI Full Scale IQs ranged from 83 to 130) according to the Wechsler Abbreviated 

Scale of Intelligence (WASI; Wechsler, 1999). Participants were screened for co-morbid 

psychiatric diagnoses, peripheral injury, and other conditions that would affect 

somatosensation. The subjects gave informed consent and were paid $25/h for their time. All 

procedures were reviewed and approved in advance by an institutional review board.  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!!!!!!
CHAPTER 4: TACTILE DISCRIMINATION OF DURATION & AMPLITUDE  !

Overview 

 There have been numerous studies on time perception.  However, very few of these have 

involved the use of tactile stimuli to assess a subject’s capacity for duration discrimination.  

Previous optical imaging studies in non-human primates demonstrated that increasing the 

duration of a vibrotactile stimulus resulted in a consistently longer and more well defined evoked 

SI cortical response.  Additionally, and perhaps more interestingly, increasing the amplitude of a 

vibrotactile stimulus not only evoked a larger magnitude optical intrinsic signal, but the return to 

baseline of the evoked response was much longer duration for larger amplitude stimuli.  This led 

the authors to hypothesize that the magnitude of a vibrotactile stimulus could influence the 

perception of its duration.  In order to test this hypothesis, subjects were asked to compare two 

sets of vibrotactile stimuli.  When vibrotactile stimuli differed only in duration, subjects typically 

had a difference limen (DL) of approximately 13%, and this followed Weber’s Law for standards 

between 500 and 1500 msec, as increasing the value of the standard yielded a proportional 

increase in DL.  However, the percept of duration was impacted by variations in amplitude of the 

vibrotactile stimuli. Specifically, increasing the amplitude of the standard stimulus had the effect 

of increasing the DL, while increasing the amplitude of the test stimulus had the effect of 

decreasing the DL.  Since this effect paralleled what was predicted from the optical imaging 

findings in somatosensory cortex of non-human primates, the authors interpreted the findings to 

suggest that primary sensory cortex could play a significant role in timing perception in the 500 

to 1500 msec range.  Data from this study combined with previous neurophysiological studies, 

suggests that perception of duration/amplitude in this test might be controlled largely by neuron-

glial interactions. 
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Introduction 

 Over the past several years, we have been designing sensory perceptual tests that were 

designed on the basis of neurophysiological observations — observed both from experiments 

that were conducted in our lab as well as published findings of others.  For example, numerous 

studies have reported on the effects of repetitive vibrotactile stimulation on the SI evoked 

cortical response (Cannestra et al. 1998; J. Chiu 2006; J. S. Chiu et al. 2005; Stephen B. Simons 

et al. 2005; S. B. Simons et al. 2007) and from the findings reported in those studies, we 

predicted that sensory perceptual metrics could be impacted — by either improvement or 

degradation — with specific parametric changes in stimulus conditions.  These perceptual 

findings, which proved to be robust in healthy controls (Francisco et al. 2011; Francisco et al. 

2008; V. Tannan, Dennis, and Tommerdahl 2005; V. Tannan, Simons, et al. 2007; M Tommerdahl 

et al. 2007; Zhang, Francisco, et al. 2011), have demonstrated sensitivity to a number of 

neurological conditions (Folger et al. 2008; Francisco et al. 2011; Richard H. Nguyen et al. 2013; 

R. H. Nguyen et al. 2013; Vinay Tannan et al. 2008; M Tommerdahl et al. 2007; Zhang, Zolnoun, 

et al. 2011).  In other words, when a subject is neurologically compromised, the mechanisms 

involved in these biologically based metrics partially fail, and the neurologically compromised 

individual demonstrates metrics that significantly deviate from normative values.    

 In vivo observations have revealed details about how sensory information is processed 

in the cortex, specifically that a relationship exists between time dependency of repetitive 

stimulation and the magnitude of stimulation.  Using optical intrinsic signal (OIS) imaging, 

observations were made of the SI evoked response to changes in stimulus intensity (J. Chiu 

2006; Stephen B. Simons et al. 2005) and changes in stimulus duration (J. Chiu 2006; S. B. 

Simons et al. 2007).  In these studies, it was demonstrated that although absorbance values 

increased with increasing intensity, a center surround pattern was established and a 

relationship between the contrast of the evoked SI cortical response with increases in stimulus 

intensity (S. B. Simons et al. 2007; Mark Tommerdahl, Favorov, and Whitsel 2010).  The time 

course of the OIS response for longer duration stimuli systematically increased with stimulus 
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duration, but perhaps more interestingly, this same time course of the OIS response also 

increased with increasing stimulus intensity.  Figure 4.1 summarizes the OIS findings from 

these studies.   

Figure 4.1: OIS Pictorialization. !
 Note that with an increase in stimulus intensity, there is not only an increase in the 

magnitude of the evoked response, but in the duration of the response.  As a result of these 

observations, we postulated that an increase in stimulus intensity could lead to an increase in 

the percept of stimulus duration.  To test this idea, the duration discrimination capacity of 20 

healthy subjects was obtained, and the stimulus paradigm was altered to determine if stimulus 

intensity would have an effect on this percept.  Additionally, a pilot study was conducted to 

determine if the same impact of stimulus intensity on duration discrimination would be 

present in concussed individuals. 

 One of the fundamental questions often addressed in neuroscience is how two sensory 

stimuli are differentiated.  The Weber function relates the difference limen (DL) in 
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discrimination tasks to the intensity of the standard stimulus.  This ratio, known as the Weber 

fraction, should remain constant across any standard if the sensory percept being tested obeys 

Weber’s Law.  Research has shown that Weber’s Fraction is usually constant for a range of 

stimulus intensities and can be applied to most senses, including weight, brightness, smell, 

frequency, contrast, velocity and sound pitch (G. A. Gescheider et al. 1990; G. A. Gescheider et 

al. 1996; G A Gescheider et al. 1997; Hanna, Gierke, and Green 1986; Scholtyssek, Kelber, and 

Dehnhardt 2008; Stillman et al. 1993; Whittle 1986; Snowden and Braddick 1991; Cornsweet 

and Pinsker 1965; Stone and Bosley 1965; Harris 2005).  Weber’s Law has been thoroughly 

explored in tests relying on timing perception in the auditory and visual modalities, but there 

remains some debate about Weber’s Law adherence in the temporal field.  Many studies have 

found significantly different weber’s fractions when comparing tests in the sub-second domain 

to tests in the macro-second domain.  (0.2 & 2 sec (Lavoie and Grondin 2004), 0.2 & 1 sec 

(Grondin 2010), 0.5 & 3 sec (Güçlü, Sevinc, and Canbeyli 2011))  From theses results many have 

concluded that Weber’s Law does not apply with longer duration perceptual tasks (Getty 1975; 

Bizo et al. 2006) or in timing perception whatsoever (Abel 2005; Allan, Kristofferson, and Wiens 

1971; Allan and Kristofferson 1974; Blakely 1933; Creelman 2005; Kristofferson and Allan 

1973; Rousseau and Kristofferson 1973; Stott 1933; Grondin, Ouellet, and Roussel 2001).  In 

contrast, the majority of testing finds that duration discrimination does comply with Weber’s 

Law within a specific range (approx. 500 ms — ~2 sec sources ((McGill and Goldberg 1968; 

Lapid, Ulrich, and Rammsayer 2008; T. H. Rammsayer and Lima 1991; T. H. Rammsayer 2010b; 

T. Rammsayer and Ulrich 2012; T. H. Rammsayer 2014; Ehrlé and Samson 2005; Halpern and 

Darwin 1982).  The functional relationship between DL and time has been explored extensively 

in the auditory and visual domains, but very few studies exist on duration discrimination in the 

tactile domain. This study is designed to investigate tactile duration discrimination in the sub-

second to plus-second (500 to 1500 msec) range.     

!
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Results 

Figure 4.2: Adherence to Weber’s Law 
Averaged difference limen values of the twenty subjects at various standard durations (with s.e. bars). The plotted 
linear regression has a correlation coefficient of 0.99191. !
Duration discrimination follows Weber’s law. 

 Difference limens (DLs) obtained for duration discrimination tasks in which the 

standard stimulus ranged in values between 500 and 1500 msec are summarized in Figure 4.2. 

The results demonstrated that subjects performed significantly better on the duration 

discrimination task for shorter standard durations than for longer standard durations. In 

particular, the DLs increased from 72.8±6.3 ms, 96.9±19.1 ms, 123.8±24.2 ms, 193.8±21.0 ms 

for the duration discrimination tasks with increasing standard durations of 500 ms, 750 ms, 

1000 ms, and 1500 ms, respectively. A linear least-squares fit was applied to the data, and an 

R2 value of 0.992 was obtained for the linear regression (see Figure 4.2). The high correlation 

coefficient demonstrated a strong relationship between DL and the duration of the standard 
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stimulus, thereby verifying the application of Weber’s law for this particular discrimination task 

in the range of 500 to 1500 msec.  The average measured Weber’s Fraction within the tested  

range was 13.1% ± 0.009. 

Impact of an amplitude confound on duration discrimination 

 The impact of amplitude on the percept of stimulus duration was assessed by 

introducing an amplitude confound into the duration discrimination task. Figure 4.3 illustrates 

that increasing the amplitude of the standard duration stimulus significantly degraded 

performance on the duration discrimination task. Duration discrimination difference limen 

values for each subject were normalized to unity for the 300 μm condition while thresholds for 

all other conditions were normalized to within subject performance on the task. The impact of 

the magnitude of the stimuli on duration was thus quantified, and was statistically significant, 

with respect to the 300 μm baseline condition: 1.54±0.17 at 350 μm and 2.43±0.26 at 400 μm 

(Pvalue < 0.005) 

Figure 4.3: Effect of Amplitude Confound on Duration Discrimination 
The measured difference limens for the duration discrimination protocol are shown normalized on a subject-by-subject 
basis to the 300 um condition (both test and standard are at an amplitude of 300 um).   
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Impact of the location of the amplitude confound 

 Figure 4.3 outlines the impact of changing stimulus amplitude on the standard when 

performing a duration discrimination task.  Figure 4.4 extends on this finding by instead 

increasing the amplitude of the test stimulus to an amplitude of 400 μm.  The findings suggest 

that an increase in amplitude on the test site improves the subjects’ ability to perform duration 

discrimination, appreciably driving down their DL’s.   The impact is not as overwhelming (or as 

statistically significant) as the previous trial with the amplitude confound on the standard.  The 

difference between the two amplitude confounds are in Figure 4.4, along side a “normal” trial 

with the confound completely removed (where the amplitudes of both test and standard are 

300 μm).  

!
Figure 4.4: Impact of the location of the Amplitude Confound 
The measured difference limens for the Duration Discrimination protocol are compared to two different amplitude 
confounds.  In the Test 400 condition, a 400 micron stimulus was used fro the test (longer) stimulus, and for the Std 
400 condition, the 400 micron stimulus was used for the standard (shorter) stimulus.  
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Amplitude confound impact on concussed individuals 

 Although healthy controls performed significantly worse on the duration discrimination 

task in the presence of the amplitude confound (increased standard stimulus amplitude), 

concussed individuals did not appear to have a significant difference in DL with the presence of 

the amplitude confound on the task (see Figure 4.5). Although controls demonstrated an 

approximate 60% increase when the amplitude confound was applied, concussed individuals 

had a non-significant increase in DL of approximately 3%. Thus, performance of the duration 

pvalue 0.0085 discrimination task in the presence of the amplitude confound appears to have  

improved when individuals became concussed. (the impact of the amplitude confound was 

diminished) 

Figure 4.5: The Impact of the Amplitude Confound on Concussed ]Individuals 
The measured difference limens for the duration discrimination protocol of control subjects from Figure 4.3 are 
compared to pilot data obtained from nineteen concussed subjects.  Only the 400 um Amplitude confound was used 
for this pilot study  !
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Figure 4.6: Effect of Duration Confound on Amplitude Discrimination. 
The measured difference limens for the Amplitude Discrimination protocol are compared to two different duration 
confounds.  In the test longer condition, the test was either +100 ms or +250 ms longer than the standard.  The 
standard was 500 ms in these conditions.  In the standard longer condition, the standard was either +100 ms or +250 
ms longer than than the test.  The duration of the test stimulus was 500 msec for these conditions.  !
Stimulus duration impacts amplitude discriminative capacity 

 A standard amplitude discrimination task, performed with sequential vibrations 500 ms 

in length, measured the average difference limen for these subjects to be 39.8±3.4 um for a 200 

μm standard.  This finding is inline with previously published amplitude discrimination values 

(Francisco 2008).  Figure 4.6 shows that when the duration of the standard stimuli was 

increased from 500 ms, DLs were 51.6±9.2 μm and 58.4±5.9 μm for 600 ms and 750 ms test 

stimuli conditions, respectively. Alternatively, the DLs were 30.7±3.6 um and 26.7±4.9 um when 

the same durations were applied to the test stimuli. These results suggest that subjects 

perform better on the amplitude discrimination task when the higher amplitude test stimuli are 

longer in duration.  Amplitude discriminability appears to be impacted proportionally by the 

length of the duration confound. The 750 ms duration confound created statistically significant 
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differences, compared to the confound-less condition, when applied to either the test and the 

standard site (P = ***).  The 600 ms condition impacted the subjects amplitude discrimination 

in a pattern similar to that obtained from the 750 ms trial, but with slightly less significance. 

Discussion 

 In this study, a dual-site vibrotactile duration discrimination protocol was used to 

determine the difference limen (DL) for a number of standard durations.  The DLs were found 

to increase in a linear fashion with an increase in standard duration, thus adhering to Weber’s 

Law for the stimulus range employed in this study (500-1500 ms). Previous studies have 

demonstrated that amplitude discrimination capacity, obtained in a similar fashion, also 

followed Weber’s Law. In this study, the Weber Fraction (as a percentage) was 13.1 ± 0.9% for 

durations ranging from 500 msec to 1500 msec, and this is consistent with what was previously 

reported for both tactile amplitude discrimination capacity (Francisco et al. 2008) ~ 13%) and 

for a number of reports studying auditory and visual duration discrimination (Grondin, Ouellet, 

and Roussel 2001) ~ 13-14%, (Lavoie and Grondin 2004) for 2 sec (T. H. Rammsayer 2014), (T. 

Rammsayer and Altenmüller 2006), (Henry 1948) ~14%), These results suggest that the Weber-

Fechner Law holds true not only for the amplitude discrimination task but also with the 

duration discrimination task with relatively high standard durations.  An important finding of 

our results was that duration discrimination within the somatosensory system is approximately 

equivalent to that reported for the auditory system, and similar results have been previously 

published for interval discrimination (Nagarajan et al. 1998).  The collection of these results 

suggests that discrimination of temporal information across these two sensory systems may 

operate through a single central timing mechanism. 

  A number of studies conducted using auditory stimuli have reported inconsistent 

Weber-Fechner fractions when measuring sub-second vs macro-second epochs (Lavoie and 

Grondin 2004; Grondin 2010; Güçlü, Sevinc, and Canbeyli 2011) or extremely long duration 

stimuli (>10 sec, Bizo 2006).  The general conclusion in these papers is that this is a violation of 

the scalar property of time and that weber’s law does not hold in the temporal field.  Given the 
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results from this study and a number of recent studies (Lapid, Ulrich, and Rammsayer 2008; T. 

H. Rammsayer and Lima 1991; T. H. Rammsayer 2010b; T. Rammsayer and Ulrich 2012; T. H. 

Rammsayer 2014; T. H. Rammsayer 2010a), it is more likely that the sub-second standards 

chosen by these studies are too small to observe the properties of Weber’s Law.  A majority of 

studies (across the sensory modalities) on Weber’s Law that test a large range of standards, 

including those on timing, show increasing Weber-Fechner fractions for extremely low 

standards.  In most cases, the observed Weber function decreases initially as it increases from a 

standard of zero and attains an asymptotic value for longer standard intervals.   This is a 

common trait of almost all Weber’s Law testing.  Recent studies by Lapid and Rammsayer have 

also outlined the subtle differences that different testing paradigms and presentation of the 

stimulus can cause in subjects’ performance and Nagarajan has shown that training/learning 

can have a significant impact on subjects abilities to detect stimulus intervals. These small 

confounds that unsurprisingly vary from study to study could explain much of the 

discontinuity of Weber fractions reported in the literature.  

 While the adherence to Weber’s law for duration discrimination with tactile stimuli in 

this range of 500 to 1500 msec is a new finding, we view the observations of duration 

discrimination obtained with the amplitude confound as being much more significant.  These 

observations demonstrate that when the stimulus is greater in intensity, it is perceived to be 

longer in duration, and it appears to be in parallel with the stimulus evoked responses observed 

in primary somatosensory cortex.  Our previous optical imaging studies with non-human 

primates (Stephen B. Simons et al. 2005; S. B. Simons et al. 2007) demonstrated that larger 

intensity stimuli have a longer time course to return to baseline.  The optical imaging signal 

(OIS) evoked in those studies was in the near infrared range (830nm), and signals in that range 

correlate with extracellular K+ and cell swelling (Grinvald et al. 1991) but could also be a good 

indicator of glial status.  Lee et al. demonstrated that when astrocyte metabolism was inhibited 

with fluoroacetate in a sensorimotor cortical slice preparation, the optical signal was 

diminished although stimulus evoked activity could still be detected neurophysiologically via 
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evoked potential. In other words, the neural response was still viable in the absence of the glial 

response, and the glial response was strongly tied to the OIS that demonstrates a longer return 

to baseline activity with a more intense stimulus. This separation of neural and glial activity led 

the authors to hypothesize that a neuroinflammatory response could involve aberrant glial 

response to stimulation.  If the glial response is aberrant, then the amplitude confound would 

be predicted to have less of an impact on a task such as duration discrimination. Obviously, 

this logic depends on neuron-glial interactions or integration playing a significant role in 

sensory percept.  If such integration plays a role in sensory percept, then it stands to reason 

that a neuroinflammatory process could have an impact on the process. 

 In the case for the concussed individuals that participated in this study, timing 

perception (or duration discrimination) was not significantly altered.  However, what was 

altered was the impact that an amplitude or intensity confound had on their performance of a 

duration discrimination task. If neuroinflammation, however elusive or ubiquitous that process, 

plays a role in post-concussive status, then it could be a contributing factor in the alteration of 

the sensory percept.  Thus, an increase in neuroinflammation may result in a decrease in 

neuron-glial integration which could subsequently diminish the sensory illusion we 

documented in controls, the perception of longer duration when faced with larger amplitude 

stimuli.  Problems in timing perception have been identified in subjects with schizophrenia 

(Clausen 1950; Densen 1977; Connor et al. 1990; Lhamon and Goldstone 1956; Wahl and Sieg 

1980; Weinstein, Goldstone, and Boardman 1958), autism (Mark Tommerdahl et al. 2008; 

Kwakye et al. 2011), TBI (G. Mioni, Mattalia, and Stablum 2013; Giovanna Mioni, Stablum, and 

Cantagallo 2013; Schmitter-Edgecombe and Rueda 2008), Parkinson’s (Artieda et al. 1992; Sagar 

et al. 1988; Vriezen and Moscovitch 1990), and chronic pain (R. H. Nguyen et al. 2013; Zhang, 

Zolnoun, et al. 2011); these same conditions have also been linked to impaired glial interaction 

(Schizophrenia: (Bernstein, Steiner, and Bogerts 2009; Rothermundt et al. 2004) Autism: (Vargas 

et al. 2005; Pardo, Vargas, and Zimmerman 2005) TBI: (Giovanni et al. 2005; Mondello et al. 

2012) Parkinson’s: (Ec et al. 1998; Hirsch et al. 2003; Teismann et al. 2003)) Chronic Pain: 
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(Gosselin et al. 2010; Milligan and Watkins 2009)).  The amplitude confound measure was 

shown in the pilot concussion study to be helpful in delineating subjects with mTBI from 

healthy controls, and could be used in future research to describe and measure subjects with 

other conditions marked by neuroinflammation.   

 As you can see in Figure 4.6, increased durations on the standard stimulus typically 

impaired performance on the amplitude discrimination task while increasing the duration of 

the stimuli which was higher in amplitude (the test) resulted in an increased discriminative 

capacity.  These observations from the amplitude discrimination task demonstrate that when 

the stimulus is longer in duration, it is actually perceived to be stronger in intensity.  However, 

the fact that prolonged stimulation leads to a reduction in the response of neurons to 

subsequent stimuli at both the peripheral and central levels of neural processing is well 

documented (Bensmaia et al., 2005, Chung et al., 2002 and O'Mara et al., 1988). Leung et al. 

(2005) demonstrated changes in the firing rate in the periphery at much longer stimulus 

durations and showed that extended suprathreshold vibratory stimulation applied to the skin 

results in a desensitization of cutaneous mechanoreceptive afferents. Based on this 

information, increasing the duration of the standard stimulus would have been expected to 

lower it’s perceived amplitude, but in our testing,  increasing the duration of higher amplitude 

stimuli resulted in lower DLs and better performance on the task.  The data obtained from this 

study appears to be in agreement with the stimulus evoked responses observed in primary 

somatosensory cortex.  Observations of in vivo optical imaging experiments demonstrate that 

the OIS is sensitive to different durations of stimulation — the signal lasts longer when the 

stimulus is longer (Simons 2007).  This actually mimics the response observed on duration 

perception when the amplitude of the stimulus is increased (Simons 2005).  In this particular 

case, the neural mechanisms responsible for adaptation may contribute very little to amplitude 

discrimination capability.   

 Changes in firing rate of peripheral afferents neither account for, nor predict, the 

impact of the confounds used in this study, suggesting that some other mechanism is 
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responsible for the illusory condition.  There is increasing evidence that a correlation exists 

between the signals measured using OIS and changes in the volume of the extracellular fluid 

compartment attributable to glial swelling (Grinvald et al., 1991, 1994, 1999; Holthoff and 

Witte, 1996; Kohn et al., 2000).  An increase in either duration or amplitude results in similar 

increases in absorbance measured by optical imaging, which seems to suggest that the impact 

of an amplitude or duration confound may be controlled by glial-neuronal interactions.  If glial 

interactions are responsible for both the increases in OIS and thus the observed impacts of 

these confounds, it stands that subjects with glial disruptions, such as those with 

neuroinflammation, would not be impacted as severely by the confound.   

Experimental Procedure 

 Twenty healthy subjects of different ages (18-54 years) who were naïve to the study 

design and issue under investigation were studied. A survey about medication and medical 

history was filled out by each subject before experimental tests to exclude subjects with a 

history of neurological impairment. The study was performed in accordance with Declaration of 

Helsinki, all subjects gave their written informed consent, and the experimental procedures 

were reviewed and approved in advance by an institutional review board.  

During an experimental session, the subject was seated comfortably in a chair with his/her left 

arm resting on an armrest attached to the head unit of a portable four-site vibrotactile 

stimulator (Fig.6; CM5, Cortical Metrics, LLC; for full description of the functionally equivalent 

CM4, see (Holden et al. 2012)). Vibrotactile stimulation was conducted via 5 mm diameter 

probes that come in contact with subject’s digit 2 (index finger) and digit 3 (middle finger) of 

the left hand. The independent probe tips were computer-controlled and capable of delivering 

of a wide range of vibrotactile stimulation of varying frequencies (measured in Hertz) and 

amplitudes (measured in micrometers, µm). Glabrous pads of digit 2 (D2) and digit 3 (D3) were 

chosen as the test sites for two reasons: (1) to allow the convenience of access and comfort of 

the subject, and (2) because of the wealth of neurophysiological information that exists for the 

corresponding somatotopic regions of cortex in primates. The subject’s right hand was used to 
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indicate responses on a two-button computer mouse. During each test, the subject was 

instructed to indicate which finger (index/middle) perceived the longer stimulus by pressing a 

corresponding button on the mouse. 

 Visual cueing was provided with a computer monitor during the experimental runs. 

Specifically, an on-screen light panel indicated when the subject was to respond. An audiometer 

was used to make sure that no auditory cues were emitted from the stimulator during delivery 

of the stimuli. Practice trials were performed before each test, which allowed the subjects to 

become familiar with the test, and correct responses on 3 consecutive training trials were 

required before commencing with the data acquisition portion test. The subject was not given 

performance feedback or knowledge of the results during data acquisition. 

Figure 4.7: Schematics of the Duration Discrimination Protocol 
During each trial of the duration discrimination task, two 25 Hz vibrotactile stimuli — the standard and test – were 
delivered sequentially to either D2 or D3. Subject was instructed to choose the stimulus that was perceptually longer 
with a response box in the response interval following the two stimuli intervals.  !
Duration discrimination 

 A two-alternative forced-choice (2AFC) tracking protocol was used to evaluate the 

duration discriminative capacity of each subject in a manner similar that used in a number of 

previous studies that have examined dual-site vibrotactile amplitude discriminative capacity (V. 

Tannan, Dennis, and Tommerdahl 2005; V. Tannan, Simons, et al. 2007; V. Tannan, Dennis, et 

al. 2007; Vinay Tannan, Whitsel, and Tommerdahl 2006; M Tommerdahl et al. 2007; Zhang et al. 

2008).  At the start of each run, the two probe tips were driven towards the skin until each tip 

registered a force of 0.1 g, as determined by a closed-loop algorithm in the CM-5 stimulator 
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feedback system. The tips were then further indented into the skin by 500 μm to ensure good 

contact with the skin. All vibrotactile stimuli used in this study were delivered at the frequency 

of 40 Hz flutter.   

 Duration discrimination was tracked for four conditions of standard stimulus duration, 

each condition tracked in a separate experimental run: 500, 750, 1000, and 1500. During an 

experimental run, a vibrotactile test stimulus was delivered sequentially either 500 ms before 

or after a vibrotactile standard stimulus (the standard stimulus duration remained constant 

throughout the run).  The order (standard followed by test or test followed by standard) and 

loci of the stimulus was randomly selected on a trial-by-trial basis.  Stimulus amplitude was 300 

microns.  The subject was queried to select the skin site that received the longer duration 

stimulus and a 5 s delay interval followed before onset of the next trial. The test stimulus 

duration began 250 ms longer than that of the standard stimulus and was increased or 

decreased by a 25 ms step size according to a 1-up/1-down algorithm for the first 10 trials. 

Correct responses resulted in the decreasing the duration of the stimulus while incorrect 

responses increased the duration of the stimulus. After the initial 10 trials, the duration was 

varied using a 2-up/1-down algorithm. The rationale for implementing these algorithms was to 

initially expedite determination of vibrotactile discriminative range and then account for 

response bias; this method has been extensively reported (Vinay Tannan, Whitsel, and 

Tommerdahl 2006; V. Tannan, Dennis, et al. 2007; V. Tannan, Simons, et al. 2007; M 

Tommerdahl et al. 2007; Mark Tommerdahl et al. 2007; Mark Tommerdahl et al. 2008; Francisco 

et al. 2008; Zhang et al. 2008; Zhang et al. 2009; Zhang, Zolnoun, et al. 2011; Zhang, Francisco, 

et al. 2011) 

Duration discrimination with an amplitude confound 

 The duration discriminative capacity for each subject was tested again at the 500 msec 

standard using 2 different amplitude confounds (see Fig 4.4).  In each of the conditions, the 

stimulus amplitude of the test stimulus was either 300, 350 or 400 microns, while the 

amplitude of the standard stimulus always remained at 300 microns. Each of the test 

!65



amplitudes (300, 350, 400) were tested completely independently using three separate 20 trial 

2AFC protocols randomly interleaved in a 60 trial testing session. Thus, the duration 

discriminative capacity of each subject was tested with a 300, 350, and 400 micron test 

stimulus, while the amplitude of the standard stimulus always remained at 300 microns.  The 

350 and 400 micron test amplitudes were chosen to maximize the impact of the amplitude 

confound on the subjects discriminative capacity while reducing the perceivable amplitude 

difference between the two stimuli (350 vs. 300 microns is typically below a subject’s amplitude 

discriminative capacity).   

Figure 4.8: Schematics of the Amplitude Confound applied to Duration Discrimination 
The logistics of this protocol are identical to the duration discrimination task explained earlier; two 25 Hz vibrotactile 
stimuli — the standard and test — were delivered sequentially to either D2 or D3 and the subject was instructed to 
choose the stimulus that was perceptually longer. The amplitudes of the test and the standard were varied to 
amplitudes of 300, 350, and 400 microns, while the other stimulus remained at an amplitude of 300 microns. Panel A 
shows the intensity confound on the standard stimulus, and Panel B shows the confound on the test. !
  

 This previously described duration discrimination task was modified to ascertain the 

impact of an amplitude confound on the test stimulus.  A similar 60 trial test was designed 

with three separate 20 trial 2AFC protocols randomly interleaved but with three new 

conditions: one with a 400 micron amplitude confound located on the test stimulus, one with a 

400 micron amplitude confound on the standard, and one with no confound located on either 

test or standard.  All tests in this trial were simple duration discrimination tasks just like the 

previous test; a standard of 500 ms was used and the test stimulus started at a duration of 750 

ms, tracking down with the same 25 ms step size.  The subject was asked which stimulus was 

longer, and the subject was kept naïve to the change in amplitude. 
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Amplitude discrimination with a duration confound 

 Amplitude discriminative capacity is defined as the minimal difference in amplitudes of 

two mechanical sinusoidal vibratory stimuli for which an individual can successfully identify 

the stimulus of larger magnitude.  Discrimination capacity was assessed using a 2AFC tracking 

protocol that has been described and implemented in a number of previous studies.  For all 

trials of amplitude discrimination, the device delivered sequential stimuli (initial stimulus 

parameters: 400 mm test, 200 mm standard, 40 Hz, 20 mm step size, 500 ms ISI) to D2 and D3.  

As seen in the previous methods, a 60 trial test was delivered with three separate 20 trial 2AFC 

protocols randomly interleaved designed to test three different sets of parameters.  One 20 trial 

set was a classic amplitude discrimination test in which both test and standard were delivered 

for equal durations of 500 ms, one set increased the duration of the standard to 600 ms (test 

remained at 500 ms), and one increased the test to 600 ms (standard remained at 500 ms).  The 

magnitude of the test stimulus was always greater than that of the standard stimulus, but the 

loci of the stimuli were randomly varied on a trial-by-trial basis. Subjects were questioned as to 

which of the two digits received the higher magnitude stimulus, and were kept naïve to the 

changes in durations.  The same procedure was then repeated on each subject with an increase 

in the duration confound from 600 ms to 750 ms. 

Pilot Concussion Study  

 Data was collected from 19 college students who sustained a concussion (17 male, 2 

female, mean age - 20.1 years, SD - 1.2 years), of which all were sports-related concussions (12 

played football, 3 basketball, 3 soccer, and 1 lacrosse).  All athletes were diagnosed with mTBI 

in the form of a concussion by a certified athletic trainer and the team physician with the help 

of the Sport Concussion Assessment Tool 2 (SCAT-2), had no prior history of concussion or any 

other diagnosed medical conditions.  The subjects were tested using an abbreviated version of 

the “duration discrimination with an amplitude confound” procedure described above. For the 

concussion subjects, the standard stimulus was always held at 300 microns, and two separate 

20 trial 2AFC protocols were randomly interleaved in a 40 trial sequence: one condition had an 
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identically intense test stimulus (300 microns) and one with the amplitude of the test stimulus 

raised to 400 microns.  Individual scores post-concussion were compared to the previously 

obtained control values.  All diagnostic assessments were obtained 1-2 days post-concussion.   

and subjects’ responses during those protocols.  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!!!!!!
CHAPTER 5: THE IMPACT OF NON-NOXIOUS HEAT ON TACTILE  

INFORMATION PROCESSING  4!
Overview 

 A significant number of studies that evaluated tactile-pain interactions employed heat 

to evoke nociceptive responses. However, relatively few studies have examined the effects of 

non-noxious thermal stimulation on tactile discriminative capacity. In this study, the impact 

that non-noxious heat had on three features of tactile information processing capacity were 

evaluated: vibrotactile threshold, amplitude discriminative capacity and adaptation. It was 

found that warming the skin made a significant improvement on a subject’s ability to detect a 

vibrotactile stimulus, and although the subjects’ capacities for discriminating between two 

amplitudes of vibrotactile stimulation did not change with skin heating, the impact that 

adapting or conditioning stimulation normally had on amplitude discrimination capacity was 

significantly attenuated  by the change in temperature. These results suggested that although 

the improvements in tactile sensitivity that were observed could have been a result of enhanced 

peripheral activity, the changes in measures that reflect a decrease in the sensitization to 

repetitive stimulation are most likely centrally mediated.  The authors speculate that these 

centrally mediated changes could be a reflection of a change in the balance of cortical 

excitation and inhibition. 

Introduction 

 Studies of human somatosensory perceptual capabilities not only have demonstrated 

that clear and strong interactions occur between temperature and touch, but have provided 

evidence suggesting that the responsible neural interaction occurs at a relatively early stage of 
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the somatosensory projection pathways. As examples, (1)  noxious thermal stimulation applied 

within the same dermatome (but not at a more remote skin site) elevates the threshold for 

detection of cutaneous vibrotactile stimulation regardless of which mechanoreceptive channel 

is activated by the mechanical stimulus (Apkarian et al., 1994; Bolanowski et al., 2000, 2001), (2) 

experimental inflammatory pain and the pain that results from topical capsaicin application 

impairs tactile discriminative abilities in normal subjects (Kauppila et al., 1998), (3) patients 

with persistent musculoskeletal pain exhibit an elevated threshold for detection of cutaneous 

flutter stimulation as well as impaired ability to discriminate vibrotactile stimulus frequency 

(Hollins et al., 1996; Hollins and Sigurdsson, 1998), and (4) cutaneous vibration (especially at 

frequencies >100 Hz) significantly suppresses both clinical and experimental pain (Pertovaara, 

1979; Ekblom and Hansson, 1982, 1985; Lundeberg, 1984a-e; Lundeberg et al., 1984; Pantaleo et 

al., 1986; Sherer et al., 1986). Additionally, neurophysiological observations from non-human 

primates have provided evidence for interactions between the responses evoked in SI cortex to 

both noxious skin heating and skin flutter stimulation (Tommerdahl et al., 1996, 1998) — 

interactions fully consistent with the published human psychophysical demonstrations of 

prominent interactions between the sensory experiences of touch and heat-evoked pain.  

 However, although there have been numerous studies that evaluated tactile-pain 

interactions that utilized heat to evoke nociceptive response, relatively fewer studies have 

examined the effects of non-noxious thermal stimulation on touch. Tracing back to 1846, E.H. 

Weber (Weber, 1846) noted that a cold coin (-4 to -7 °C) resting on the forehead feels heavier 

than a warm coin (38 to 39 °C), implying an effect of non-noxious temperature on the touch 

modality. Since then, a number of studies have reported that changes of tactile sensitivity (ex. 

tactile spatial acuity, punctuate pressure sensitivity, and vibrotactile sensitivity) take place with 

warming and cooling of the skin (Green, 1977; Green et al., 1979; Stevens et al., 1977; 

Bolanowski and Verrillo, 1982; Verrillo and Bolanowski, 1986; Gescheider et al., 1997). For 

example, Green (Green et al., 1979) examined the effect of skin temperature on the perception 

of roughness. The results demonstrated that warming above normal skin temperature either 
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enhances the perception of roughness for smooth surfaces or leaves it unchanged for rough 

surfaces.  However, Stevens and colleagues (Steven et al., 1977) found that a small but possibly 

insignificant loss of sensitivity for detection of punctuate pressure appeared at skin 

temperatures of 40°C and 43°C.  Other observations on the impact of elevated skin temperature 

on vibrotactile sensitivity also appear to be inconsistent. Weitz (Weitz, 1941) and Green (Green 

et al., 1977) reported that warming the skin a few degrees above normal (36 - 37 °C) resulted in 

an increase of sensitivity to high-frequency vibration (>80 Hz). However, Verrillo et al. (Verrillo 

and Bolanowski, 1986) reported no changes of the sensitivity on the forearm and thenar 

eminence as the skin temperature was increased from 30° to 40°C, while Bolanowski showed 

only a slightly elevated threshold on detecting 25 Hz vibrotactile stimulation (Bolanowski and 

Verrillo, 1982).  

 The goal of this study was to examine the impact that non-noxious heat has on three 

features of tactile information processing capacity: vibrotactile threshold detection, amplitude 

discriminative capacity and adaptation. It was found that warming the skin made a significant 

improvement on threshold detection, and although the subjects’ capacities for discriminating 

between two amplitudes of vibrotactile stimulation did not change with skin heating, the 

impact that adapting or conditioning stimulation normally has on amplitude discrimination was 

significantly attenuated by the change in temperature. 

Results 

 In order to assess the impact that non-noxious heat has on tactile information 

processing capacity, comparisons of subject performance were obtained for different 

conditions of thermal stimulation. Protocols were employed to assess the impact of non-

noxious thermal stimulation on subjects’ capacities for vibrotactile detection (at room 

temperature, 40.5°C, and 43°C), amplitude discrimination (at room temperature and 43°C), and 

the effect of vibrotactile adaptation on tactile discrimination capacity (at room temperature and 

43°C).  

!
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Figure 5.1: Vibrotactile Detection Thresholds under Three  Temperatures 
(A) The group-averaged detection threshold at 40.5 °C was lower than the value obtained at the room temperature 
condition (p = 0.18). At 43 °C, the detection threshold was significantly lower than that at the room temperature (p = 
0.047). (B) Detection thresholds normalized on a subject-by-subject basis to the room temperature condition. The plot 
confirms that the subjects' performance was significantly and consistently improved over that at room temperature. !
Vibrotactile thresholds decrease with increasing temperature 

 A Two-Alternative Forced Choice (2AFC) protocol was used to determine a subject’s 

vibrotactile detection threshold (stimuli delivered at a frequency of 25 Hz to one of two 

stimulus sites and subject reports the site of stimulus detection; previously reported in 

Francisco et al., 2008; also see description in Methods) for each of the three temperatures. In 

Fig. 5.1, Panel A summarizes the group-averaged detection thresholds obtained under the three 

thermal conditions. Specifically, at room temperature the group-averaged vibrotactile detection 

threshold on finger tip was 7.28 ± 0.84um (mean±SE), which is consistent with the detection 

thresholds (~7um) reported by Mountcastle and colleagues  (Mountcastle et al., 1972). While 

temperature was increased, subjects were consistently able to detect stimuli at amplitudes of  

5.98 ± 0.57um (40.5°C) and 4.83 ± 0.93um (43°C).  Note that detection thresholds decrease with 

increasing temperature. Thus, concurrent non-noxious thermal stimulation results in an 

improvement of vibrotactile sensitivity. Specifically, at 40.5°C, the data suggest an improvement 

in sensitivity (or a decrease in detection threshold) when compared to the room temperature 

condition, although this difference was not statistically significant (p = 0.18). However, the  

improved sensitivity that was suggested with increased temperature in the 40.5°C condition was 
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much more pronounced for the 43°C condition, at which the detection threshold was 

significantly lower than that at the room temperature condition (p = 0.047). In order to 

determine if this trend was consistent within subjects, the data were normalized to the room 

temp condition, shown in Fig. 5.1 Panel B. The normalized plot confirms that subjects’ 

detection thresholds were reduced as the thermal stimulation was increased, and strongly 

suggests improved detection performance with increasing temperature in the non-noxious 

thermal temperature range. Specifically, performance was improved over that at room 

temperature by ~21% at 40.5°C, and by ~42% at 43°C.  

Figure 5.2: Difference Limens Obtained with Two Amplitude Discrimination Protocols  
In the absence of conditioning stimuli, increasing skin temperature had little impact on a subject's vibrotactile 
amplitude discrimination capacity. However, when the test stimulus was preceded by conditioning stimuli (1 sec in 
duration), amplitude discrimination capacity was significantly impaired, as in prior studies (Tannan et al., 2007b, 2008), 
under both temperature conditions (p<0.01 at room temperature; p = 0.032 at 43 °C). However, the impairment was 
significantly reduced when the temperature was increased from room temperature to 43 °C (p=0.043) 
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Impact of temperature on a subject’s amplitude discriminative capacity 

 A second 2AFC tracking protocol was employed to determine subjects’ capacities to 

discriminate between the amplitudes of two simultaneously delivered vibrotactile stimuli with 

or without a preceding conditioning stimulus delivered to one of the stimulus sites (protocols 

previously reported in Tannan et al., 2005; Tannan et al., 2006; Tannan et al., 2007a; Tannan et 

al., 2007b; Tannan et al., 2008; Tommerdahl et al., 2007a; Zhang et al., 2008; Francisco et al., 

2008; Folger et al., 2008; also see Methods). Fig. 5.2 summarizes the averaged across-subject 

performance for the results obtained with the two amplitude discrimination protocols (with or 

without single-site adaptation) at room temperature and at 43°C. The results demonstrate that, 

in the absence of pre-exposure to a conditioning stimulus, subjects were able to discriminate 

between a 100 µm and a 123 µm stimulus (DL = 23 µm) equally well under both temperature 

conditions (as shown on the left hand side of Fig. 5.2).  Previous reports have shown that, in 

normal healthy control conditions, amplitude discrimination capacity is significantly impacted 

with the delivery of a conditioning stimulus to one of the two stimulus sites prior to the 

amplitude discrimination task (Tannan et al., 2007b, Tannan et al., 2008; Folger et al., 2008).  In 

this study, the observed subjects’ performance is in a manner consistent with previous studies. 

Specifically, subjects’ capacities for amplitude discrimination was significantly impaired with 

pre-exposure to a conditioning stimulus under both temperature conditions (p < 0.01 at room 

temperature; p = 0.032 at 43°C). One interpretation of this impairment is that a 1 sec 

conditioning stimulus reduces the perceived intensity of the subsequent test stimulus to the 

extent that a stimulus with amplitude of approximately 160 µm (at room temperature) / 140 

µm (at 43°C) was perceived nearly the same in intensity as the 100 µm stimulus. Note that the 

average post-adaptation DL at room temperature increased to about 160% above the value 

obtained with the non-adaptation protocol, yet the averaged post-adaptation DL at 43°C was 

only about 73% above the non-adaptation values. Thus, the temperature increase resulted in a 

significant reduction in the impairment of subjects’ amplitude discrimination capacity due to 

adaptation (p = 0.043) (as shown in Fig. 5.2 on right side). In summary, as temperature was 
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increased, the impact of the conditioning stimulus was lessened, and subjects subsequently 

performed better at the post-adaptation amplitude discrimination task relative to their 

performance at room temperature.  

Figure 5.3: Effects of Temperature on Dual-Site Conditioning.  
At room temperature, increasing the duration of the conditioning stimulation led to an improvement of performance 
(i.e., reduced DL). However, this improvement in amplitude discrimination capacity was significantly impacted at 43 °C. 
Specifically, the results obtained at room temperature were significantly different at 43 °C with 2 and 3 sec of 
conditioning stimulation (2 sec adaptation: p = 0.024; 3 sec adaptation: p<0.01). !
Impact of temperature on dual-site conditioning  

 To further investigate the effects of thermal non-noxious stimulation on adaptation, a 

2AFC dynamic amplitude discrimination protocol (see Methods) was employed which is able to 

effectively compare the degree to which a subject adapts to simultaneously delivered dual-site 

vibrotactile stimuli at different durations of conditioning stimulation. Four conditions of initial 

constant stimulus duration were employed, in separate experimental trials: 0, 1.5, 2 and 3 sec. 

After the initial constant stimulus period, subjects performed an amplitude discrimination task 
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on stimuli which diverged in amplitude at the rate of 25 µm/s (i.e., one stimulus amplitude 

became larger and one became smaller; see Methods for description).  Fig. 5.3 summarizes the 

averaged across-subject performance with dual-site adaptation at the four different durations 

of conditioning stimulation at room temperature and 43°C.   The results show that, at room 

temperature, increasing the duration of the conditioning stimuli delivered to both sites of skin 

stimulation led to an improvement of a subject’s capacity to detect the difference in amplitude 

between the two stimuli. For example, after pre-exposure to 1.5s, 2s or 3 s conditioning 

stimulus, subjects were, on average, able to attain a DL (182um, 139um, or 82 µm) that was 

~75%, ~57%, or ~34%of the DL (242 µm) obtained without adaptation (under all the conditions p 

< 0.01). However, when the skin was heated to 43°C, the improvement in amplitude 

discrimination previously observed with increasing conditioning stimulus durations was 

significantly attenuated. Specifically, after pre-exposure to 1.5s, 2s or 3s conditioning stimulus, 

subjects were able to attain a DL (203um, 193um, or 184um) that was ~85%, ~81%, or ~77% of 

the DL (238um) obtained without adaptation. Note, at the 2 s and 3 s conditioning stimulation 

durations, the improvement in amplitude discrimination obtained at room temperature (57% 

and 34%) were significantly different from the 43°C condition (81% and 77%): 2 s adaptation: p = 

0.024; 3 s adaptation:  p < 0.01.  

Summary and general discussion 

 In the present study, we investigated the effects of non-noxious heat on subjects’ tactile 

information processing capacities. The results strongly suggest that concurrent non-noxious 

thermal stimulation (43°C) enhances some aspects of vibrotactile sensitivity (e.g., detection 

threshold). It was also found that although the same increase in temperature had no effect on 

the subjects’ performance on vibrotactile amplitude discriminative capacity, the non-noxious 

heat significantly reduced the impact that pre-exposure to vibrotactile stimuli (i.e., a 

conditioning stimulus) had on amplitude discriminative capacity.    

 In this study, the effect of temperature (within the non-noxious temperature range) on 

the threshold for detection of cutaneous vibrotactile stimulation was studied. The data 

!76



demonstrated a significant improvement in vibrotactile sensitivity (i.e., a decrease in detection 

threshold) as the temperature of the forearm rest was increased from room temperature to 

43°C. Since the 19th century, the effects of skin temperature on tactile sensitivity have been 

examined across a wide spectrum of temperatures, both noxious and non-noxious. Although a 

number of studies have demonstrated that noxious skin heating results in a robust elevation of 

the vibrotactile threshold (Apkarian et al., 1994; Bolanowski et al., 2000, 2001), results of the 

impact of non-noxious skin heating on vibrotactile sensitivity have been much less consistent 

(Green et al., 1979; Bolanowski and Verrillo, 1982; Verrillo and Bolanowski, 1986; Bolanowski, 

1988; Gescheider et al., 1997). A number of possible factors may influence the impact of 

temperature on threshold detection and account for the diverse results found in previous 

studies. For example, many studies differed in the region of the body stimulated. In the present 

study, subjects’ finger tips were stimulated with 25 Hz vibrotactile stimulation, and a 

significant decrease in threshold was found as the temperature was increased from room 

temperature to 43°C. However, in a number of previous studies in which subjects’ forearm and 

thenar eminence were utilized as stimulus sites, conflicting results were reported. For example, 

Bolanowski and Verrillo investigated vibrotactile threshold-frequency characteristics at 

different skin temperatures and found that increasing thenar eminence temperature from 25°C 

to 43°C slightly elevated subjects’ vibrotactile threshold at low frequency (<100 Hz). However in 

another study, the same authors reported that there was no change in threshold on the forearm 

as the temperature was increased from 30°C to 40°C. Additionally, Stevens found that warming 

had little or no effect on touch magnitude perception on the forehead but it did result in a 

significant effect on the perceived intensity of the stimulus on the forearm (Stevens and Green, 

1978). In addition to different stimulus sites, the inconsistent results previously observed could 

also be partially due to the fact that skin temperature was controlled in different manners in 

the aforementioned studies. For example, in a number of studies (Bolanowski and Verrillo, 

1982; Verrillo and Bolanowski, 1986; Bolanowski et al., 1988) skin surface temperature of only 

the surround of the stimulus contactor was controlled, and thus, only the temperature of a 
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small skin area receiving the mechanical stimulation was controlled. In the present study, the 

temperature of subjects’ distal forearm was elevated and as a result, a much larger skin area 

experienced an elevated temperature than that observed in any of the prior studies. As it is well 

known that spatial summation plays a significant role in temperature sense (Stevens et al., 

1974; Stevens and Marks, 1971), the area of skin that is warmed could obviously play a 

significant role in the results. 

 The impact of warming on the adaptation paradigms studied in this report has not been 

previously reported.  In fact,  to the authors’ knowledge, there have been no studies to date that 

have assessed the impact of changing temperature –either in the noxious or non-noxious range 

— on the impact of changes in perception that normally result from repetitive vibrotactile 

stimulation. There have been a number of reports on the sensitivity of adaptation on a number 

of aspects of somatosensory perception.  Several studies reported that when the conditioning 

stimulus is increased in duration or amplitude, the perceived intensity evoked by subsequent 

test stimuli is reduced (Gescheider et al., 1979; Hollins et al., 1990; Verrillo et al., 1977).  More 

recently, Tannan et al. demonstrated that increasing the stimulus duration at one of two 

stimulus sites prior to simultaneous delivery of two stimuli systematically impacted subjects’ 

amplitude discrimination capacities (Tannan et al., 2007).  The results from that study 

demonstrated an increase in stimulus duration is proportional to a decrease in perceived 

intensity, thus yielding a measure of how much a subject adapts to different durations of 

vibrotactile stimuli in the range of 0.2-5 seconds, and these measures are paralleled in animal 

studies in which observations of central and peripheral responses to repetitive mechanical 

stimulation were obtained.  Neurophysiological  studies  have  demonstrated  that  the  effects  

of  reduced intensity due to adapting stimulation are possibly attributable  to a reduction  in 

the responsivity of central neurons or in synaptic processes associated with the central neurons 

after prolonged or repetitive stimulation. More specifically, O’Mara and colleagues (O’Mara et 

al., 1988) found that extended exposure to a vibratory stimulus produced substantial 

reductions in the responsivity of neurons in the cuneate nucleus, but not in the peripheral 
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afferents. Lee and Whitsel (Lee et al., 1992) reported that repetitive brushing stimuli frequently 

lead individual SI neurons and neuron groups to modify their response to the repetitive 

afferent drive. Additionally, Lee and Whitsel (Lee et al., 1992) found that the majority (~58%) of 

the SI neurons sampled showed a decreased  response  to  repetitive  stimulation  (3-5 Hz)  of  

their  receptive  fields. In that report, it was proposed that the glutamate-mediated excitatory 

effects on NMDAR are to a large extent responsible for the appreciable capacities of cortical 

neurons to modify their physiological properties with repetitive sensory experience.   

 In current study, the Amplitude Discrimination with Single-site Adaptation Protocol and 

the Dynamic Tracking with Dual-site Adaptation Protocol measured two distinct effects of 

adaptation. At room temperature, during Amplitude Discrimination test, a 1 sec conditioning 

stimulus delivered to one of the stimulus sites reduces the perceived intensity of the 

subsequent test stimulus and significantly impaired the subjects’ capacities for amplitude 

discrimination. However, in the Dynamic Tracking test, different durations of conditioning 

stimulation (1.5s, 2s, or 3s) delivered to both sites of skin stimulation led to significant 

improvement of a subject’s capacity to detect the difference in amplitude between the two 

stimuli. In terms of the difference in the magnitude of influence of non-noxious heat on the 

impact of the conditioning stimulus in the two tasks, the effect of Single-site Adaptation on 

Amplitude Discrimination appears to be more sensitive to temperature change when compared 

to  the effect of Dual-site Adaptation on Dynamic Tracking. The noticeable difference in the 

difference limen between two tasks could be explained with a couple of possibilities. 1) Two 

standard stimulus amplitudes (100um vs. 300um) were used. According to Weber’s Law, the 

subjects’ capability to discriminate differences in vibrotactile amplitude changes systematically 

with increasing stimulus magnitude. 2) Several studies have reported that the psychophysical 

measurement methods had a significant influence on vibrotactile thresholds (Maeda and 

Griffin, 1995; Morioka and Griffin, 2002). For example, Morioka and colleagues found that with 

intermittent stimulation the vibrotactile thresholds tended to be lower than with continuous 

stimulation. Therefore, during Dynamic Tracking test the continuous stimulation with 
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ascending amplitude might result in the higher difference limen than which recorded in the 

Amplitude Discrimination test with intermittent stimulation. 

 One of the more interesting questions that this study poses is for what reason is the 

impact of adaptation significantly reduced in the presence of warmth?  Mechanistically, it is 

most likely a change in the balance of excitation and inhibition that is prevalent among cortical 

neurons.  The changes that occur with warmth are reminiscent of the changes in tactile 

sensibilities that are observed in autism:  subjects with autism typically have increased 

sensitivity to a number of stimulus modalities (Kanner, 1943; O’Riordan and Passetti, 2006), are 

not significantly different from controls in amplitude discriminative capacity (Tannan et al., 

2008), but show a reduced response to repetitive stimulation – or less of an adaptive response 

(Tommerdahl et al., 2007a; Tannan et al., 2008).  In the case of autism, the hyper-excitability 

has been speculated to be the result of inhibitory deficient circuitry, possibly linked to genetic 

disparity in GAD (Glutamic acid decarboxylase) which is responsible for normal conversion of 

glutamate to GABA (Gamma-aminobutyric acid). In the case of this study, could warmth simply 

be making either peripheral and/or central neurons more hypersensitive to flutter vibration? A 

series of studies (Green, 1977; Bolanowski and Verrillo, 1982; Verrillo and Bolanowski, 1986) 

demonstrated that the pacinian corpuscle (PC) channel is strongly affected by skin temperature.  

Since the PC channel is predominantly sensitive to high-frequency (>80 Hz) vibrotactile 

stimulation, its characteristic change with temperature is not inconsistent with the findings of 

this report, as the observations in this study were obtained with delivery of low frequency (25 

Hz) vibrotactile stimuli. In similar fashion, the touch gate is activated by the presence of 

thermally induced pain that increases tactile thresholds (Apkarian et al. 1994), yet in the 

current experiment, non-noxious thermal stimulation was employed. Thus, the observation that 

warming the skin within the non-noxious range made an improvement on the threshold of 

stimulus detection could be accounted for by different mechanisms than are involved in pain-

touch interactions. Within the non-noxious range of thermal stimulation, Kenton and colleagues 

observed that SA cutaneous mechanoreceptors were more responsive in the presence of heat 
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(Kenton et al., 1975, 1976).  This, in effect, would explain a reduction in threshold, but would 

not explain a reduction in influence of conditioning or adapting stimuli, particularly in the time 

course that was studied (1-5 secs).  Rather, the hyper-excitability produced in the presence of 

warmth could very well be offsetting the balance in excitation and inhibition that is normally 

present cortically. It should also be noted that a change in balance of excitation and inhibition 

via hypo-excitability, such as that observed with administration of an NMDA receptor blocker, 

also leads to a similar reduced adaptation effect (Folger et al. 2008).  If it is the case that 

balance of excitation and inhibition is critical for normal adaptive responses, then one 

prediction that could come from this study is that subjects with less than optimal excitatory/

inhibitory balance could actually perform better at the adaptation task in the presence of heat 

than without. This interesting possibility is currently under investigation, and it is anticipated 

that metrics, such as those presented in this report, could provide a means for assessing 

patient populations that have dysfunctional mechanisms for mediating pain-touch interactions 

without the delivery of painful stimuli, if the current assumption that some of the CNS 

mechanisms that mediate tactile-thermal and tactile-pain interactions are shared holds true in 

future studies. 

 In summary, elevation of skin temperature can lead to decreased vibrotactile detection 

thresholds, a primary measure of tactile sensitivity. Metrics of derived or secondary percepts — 

such as amplitude discriminative capacity, show little or no effect. Tertiary measures — such as 

those involved in both temporal and spatial summation — are impacted significantly by 

elevation in temperature. Although the improvements in tactile sensitivity could be a result of 

enhanced peripheral activity, the changes in measures that reflect a decrease in the 

sensitization to repetitive stimulation are most likely centrally mediated.  These centrally 

mediated changes reflect a change in the balance of excitation to inhibition via either an 

increase in excitation, a decrease in inhibition or a combination of both. 
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Experimental Procedures 

 Ten subjects participated in this study (21-28 years in age). They were naïve both to the 

study design and issue under investigation. The subject group consisted of 4 males and 6 

females, all right-hand dominant. The study was performed in accordance with the Declaration 

of Helsinki, all subjects gave their written informed consent, and the experimental procedures 

were reviewed and approved in advance by an institutional review board.  

 Four separate protocols were employed to measure the effects of non-noxious thermal 

stimulation on vibrotactile detection, amplitude discrimination, and the impact of vibrotactile 

adaptation on tactile discrimination capacity. During an experimental session, the subject was 

seated comfortably in a chair with the right arm resting on an acrylic hand-arm rest attached to 

a portable dual-site vibrotactile stimulator (CM-1; for full technical description see: (Tannan et 

al., 2007a); for exemplary use of the device, see Tommerdahl et al., 2007, 2008; Zhang et al., 

2008; Francisco et al., 2008; Tannan et al., 2007b; Folger et al., 2008). Two holes (10 mm 

diameter each, spaced 35 mm apart) were positioned on the hand-arm rest to allow the 

stimulator tips to make contact with digits 2 and 3 of the subject’s right hand (right panel in 

Fig. 5.4).  A temperature-controlled metal hand plate was fabricated to attach on the front top 

end of  the acrylic hand-arm rest for this study. This metal hand plate was composed of 2.5 

mm thick aluminum sheet (alloy 6061-T6), cut to a rectangular shape 150 x 300 mm in size.  

The sheet was bent to the same shape as the original hand-arm rest, and two 10 mm holes were 

positioned for D2 and D3 stimulation (Fig. 4).  Two 15 Watt flexible heater pads with a 

thermocouple between them were embedded in the temperature controlled plate.  A fuzzy-

logic P-I-D auto-tuning temperature controller (McMaster-Carr #7981K82) was used to externally 

monitor and control the temperature.  The auto-tuning controller automatically optimizes the 

P, I and D control gains to tune the system to achieve the fastest possible response with 

minimum temperature overshoot.  The desired temperature set point was entered prior to each 

experimental run and held constant for the duration of the run.  
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Figure 5.4: Vibrotactile Stimulator with Temperature-Controlled Plate 
Two holes (10 mm diameter each spaced 35 mm apart) were positioned to allow the stimulator tips to make contact 
with subject's digits. During an experimental session, the subject was seated comfortably in a chair with the right arm 
resting on the metal hand plate. Index and middle finger were positioned for D2 and D3 stimulation. !
 

 During each test, two probe tips (5 mm diameter) were positioned on the glabrous pads 

of digits 2 and 3 of the right hand. D2 and D3 were chosen as the test sites for two reasons: 1) 

to allow the convenience of access and comfort for the subject, thus maximizing the test’s 

potential in clinical applications, and 2) because of the wealth of neurophysiological 

information that exists for the corresponding somatotopic regions of cortex in primates. Visual 

cueing was provided with a computer monitor during the experimental runs. Specifically, an on-

screen light panel indicated to the subject when the stimulus was on and when the subject was 

to respond. The subject was not given performance feedback or knowledge of the results 

during data acquisition until all sessions were completed. At the start of each run, the two 

probe tips were driven towards the skin until each tip registered a force of 0.1 g, as determined 

by a closed-loop algorithm in the CM-1 stimulator feedback system.  The tips were then further 

indented into the skin by 500 μm to ensure good contact with the skin.  All sinusoidal vertical 

skin displacements were delivered by the CM-1 stimulator. An audiometer was used to make 

certain that no auditory cues were emitted from the stimulator during delivery of the range of 

stimuli used in this study. Practice trials allowed the subject to familiarize with the tests, and 

correct responses on 5 consecutive trials were required before commencing with each test. 

During the experimental session, the room temperature was controlled around 25 °C. The 

subject completed all four tests (described below) first at room temperature, then after 10 

minutes break, they repeated all four tests under  the condition with increased hand rest 
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temperature: 40.5 °C or 43 °C. In each condition, the order of the four tasks was randomized 

across all of the subjects.  

Figure 5.5: Schematics of the Protocols Used in this Study 
(A) Vibrotactile detection threshold: In each trial, a 25 Hz vibrotactile test stimulus was delivered to either D2 or D3 for 
0.5 sec, followed by a subject response interval (RI). A correct response resulted in a reduction in the amplitude of the 
stimulus in the next trial (initiated 5 sec after subject response). (B) Dynamic tracking: Two identical 25 Hz vibrotactile 
stimuli were delivered simultaneously for a fixed interval (0, 1.5, 2, or 3 sec). After the initial constant stimulus period, 
the amplitude of the two stimuli were dynamically increased/decreased, in steps of 25 μm/sec. Stimulation was 
terminated with subject response and a 5 sec delay intervened between stimulus response and onset of the next trial. 
(C) Amplitude discrimination. Left panel: Amplitude discrimination task without pre-exposure to conditioning 
stimulation. Two 25 Hz vibrotactile stimuli, the standard (S) and test (T), were delivered simultaneously for 0.5 sec. 
Subject response precedes a 5 sec delay before onset of the next trial. Right panel: Amplitude discrimination task with 
pre-exposure to conditioning stimulation. In this protocol, a conditioning stimulus at one of the two stimulus sites 
precedes the simultaneous delivery of the standard and test stimuli. !
Detection Threshold 

 In order to measure the subject’s vibrotactile detection threshold, a 20-trial Two-

Alternative Forced Choice (2AFC) tracking protocol was employed (for recent description with 

this experimental setup, see Francisco et. al., 2008).  Fig. 5.5a shows the schematic of the 

protocol. During each trial of the experimental run, a 25 Hz vibrotactile test stimulus was 
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delivered to either D2 or D3 (the stimulus location was randomly selected on a trial-by-trial 

basis). Stimulus duration was 0.5 sec, followed by subject response (subject was queried to 

select the skin site that received the stimulus) and a 5 sec delay before onset of the next trial. 

At the beginning of the experimental run, the test stimulus amplitude was 15 μm (all 

vibrotactile stimulus amplitudes reported in this study are peak-to-peak). In the initial 10 trials, 

the test amplitude was modified based on the subject’s response in the preceding trial, 

accomplished using a 1-up/1-down algorithm (the amplitude was decreased if the subject’s 

response in the preceding trial was correct; it was increased if the response was incorrect). 

After the initial 10 trials were completed, the test amplitude was modified using a 2-up/1-down 

algorithm — in the remaining 10 trials two correct/one incorrect subject response(s) resulted in 

a decrement/increment, respectively, in the amplitude of the stimulus. This approach was 

selected because it enabled rapid determination (“tracking”) of each subject’s minimally 

detectable amplitude of vibrotactile stimulation (Tannan et al., 2007a; Zhang et al., 2008; Folger 

et al., 2008; Francisco et al., 2008). The step size was held constant at 1 μm throughout the 

experimental run. 

Amplitude Discrimination 

 Each subject’s amplitude discrimination capacity was observed using a 2AFC tracking 

protocol that has been described and implemented in a number of previous studies (Tannan et 

al., 2005; Tannan et al., 2006; Tannan et al., 2007a; Tannan et al., 2007b; Tommerdahl et al., 

2007a; Zhang et al., 2008; Francisco et al., 2008). During the 20-trial experimental run, a 

vibrotactile test stimulus (25 Hz, amplitude between 105-200 μm) was delivered to one digit 

pad at the same time that a standard stimulus (25 Hz, amplitude fixed at 100 μm) was applied 

to the other digit pad (Fig. 5.5c left panel). The loci of the test and standard stimuli were 

randomly selected on a trial-by-trial basis. At the beginning of the experimental run, the test 

amplitude was 200 μm and the standard amplitude was 100 μm. The difference between the 

amplitudes of the test and standard stimuli was adjusted on the basis of the subject’s response 

in the preceding trial, such that the difference was decreased/increased after a correct/
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incorrect response, respectively. The same tracking algorithm as that described for the tactile 

detection threshold protocol was employed, and the step size was held constant at 10 μm 

throughout the experimental run. 

Amplitude Discrimination with Adaptation 

 In order to measure the gain effects that conditioning stimuli have on subsequent 

stimuli, the previously described amplitude discrimination protocol was modified such that 

delivery of the test and standard stimuli was preceded by a single conditioning stimulus to one 

of the two stimulus sites (Fig. 5.5c right panel).  The result of such a protocol modification is 

that the amplitude discrimination difference limen (DL) is typically significantly elevated 

(Tannan et al., 2007b, 2008;  Zhang et al., 2008; Folger et al., 2008). Specifically, a 25 Hz 200 μm 

conditioning stimulus was delivered 1 sec prior to the presentation of the test and standard 

stimuli. When the conditioning stimulus is delivered to the same site as the test stimulus, the 

effect of reducing the perceived intensity in this condition can be quantified by comparison of 

the DLs obtained in the adapted vs. non-adapted conditions  (Tannan et al., 2007b, 2008;  Zhang 

et al., 2008; Folger et al., 2008).  The duration of the conditioning stimulus was 1 sec, which was 

followed by a 1 sec delay before onset of the simultaneous delivery of the test and standard 

stimuli. The amplitude discrimination tracking algorithm used in the previously described 

protocol was used to track the subject’s ability to determine the most intense stimulus (i.e., the 

subject’s DL was determined). 

Dynamic Tracking of Adaptation 

 A novel protocol termed “dynamic tracking” was implemented to further characterize 

the effects of adaptation on amplitude discrimination (Fig. 5.5b). At the start of each 

experimental run, two vibrotactile stimuli (25 Hz; initially identical in amplitude at 300 μm) 

were delivered simultaneously to D2 and D3.  Four conditions of initial constant stimulus 

duration (n sec) were employed, in separate experimental runs: 0, 1.5, 2 and 3 sec. After the 

initial constant stimulus period, the amplitudes of both stimuli were dynamically altered such 

that the amplitude of one stimulus was increased and the amplitude of the other stimulus was 
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decreased, in steps of 25 μm/sec.  The subject was instructed to indicate the location at which 

the most intense stimulus was delivered as soon as the two stimuli felt distinctly different in 

intensity. For each experimental run, the difference limen (DL) was measured as the actual 

difference between the two test amplitudes at the time of subject response (m sec). 

D’Agostino-Pearson test (α = 0.05) was performed to test whether the data points under each 

condition were sampled from a Gaussian distribution. Repeated measures analysis of variance 

(ANOVA) was used to evaluate the difference of the subject’s performance under different 

conditions. Data are presented as means and standard errors (SE). A probability of less than 

0.05 was considered statistically significant.  

!
!
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!!!!!!
APPLICATIONS !

 Because of the close correlation between perception and healthy brain status, sensory 

assessment could be considered as an efficient approach to evaluate sensory function. 

However, traditional sensory testing methods mainly employ single-site stimulation which is 

not ideal for the study of cortical-cortical interactions. Additionally, these tests that rely on 

threshold testing or tests of sensitivity predominantly measure functions of the peripheral 

nervous system, and the small signal to noise ratio of near-threshold stimulation normally —

induces large inter-subject variability. Although this intra-cortical communication involves 

numerous mechanisms, the tests that we developed appear specifically sensitive to the status 

of mechanisms currently believed by many to play major roles in the disorders of sensory 

cortical information processing in a number of neurological disorders — i.e., neurotransmission 

mediated by the inhibitory neurotransmitter gamma aminobutyric acid (GABA) and by N-

methyl-d-aspartate (NMDA) receptors, and interactions/interdependencies between neurons and 

glial cells. 

 Findings on multiple subject populations have led to novel insights about the perceptual 

changes that occur with systemic alterations of cerebral cortical function, and provided useful 

information of the underlying mechanisms for the development and maintenance of different 

neurological diseases.  A glimpse of this is seen in the preliminary data from subjects with 

autism in chapter 3 and the pilot concussion study in chapter 4.  The next three chapters 

include studies completed with the sole goal of exploring sensory percept differences between 

populations with neurological disorders and the typically developing. 

 Chapter 6 is a grand overview of the autism research performed by our research group 

over the last decade.  This chapter describes recently developed hypothesis driven methods for 

quantifying metrics of sensory perception based on the neurophysiological principles of 
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cortical modularity.  Dynamically changing stimuli revealed surprising heterogeneity in the 

subset of patients with autism, possibly elucidating large neurological differences between 

those diagnosed as being on the autism spectrum.  These novel sensory discrimination tests 

may provide (a) an effective means for biobehavioral assessment of deficits specific to autism 

and (b) efficient and sensitive measures of change following treatment. The methods could 

prove to be a useful and efficient way to detect specific neural deficits and monitor the efficacy 

of pharmacological and/or behavioral treatments in autism.  

 In chapter 7, altered central sensitization in subgroups of women with vulvodynia was 

studied. The results suggest that chronicity of vulvar pain leads to changes in the effect of 

adaptation on tactile perception, which reflect an altered central sensitization linked to 

dysfunction in CNS inhibitory pathways. It was proposed that vulvodynia syndromes are likely 

to be triggered by peripheral factors in the skin or underlying musculature, and with time and 

chronicity, varying degrees of central dysregulation may develop. 

 In chapter 8, the cortical-cortical interactions in the healthy aging population are 

presented. The subject‘s performance in a set of sensory-based discrimination tests 

demonstrated that although age-related degradations was shown during peripheral–mediated 

testing, effects of adaptation (cortical plasticity) was maintained in normal aging and 

compensates for both anatomical and physiological losses that have been shown to naturally 

occur with age. The major target of this study is to establish baseline data to enable the 

launching of a more prospective longitudinal study for the diagnostic screening of the early 

detection of Alzheimer‘s disease. 

!
!
!
!
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CHAPTER 6: THE ROLE OF CORTICAL MODULARITY IN TACTILE  
INFORMATION PROCESSING: AN APPROACH TO MEASURING  

INFORMATION PROCESSING DEFICITS IN AUTISM  5!
Background 

 Autism is a pervasive developmental disorder that is manifested in a number of 

neurological alterations. Although there is a large spectrum of behavioral excesses that includes 

a diverse number of traits, such as repetitive behaviors and/or sensory hyper-responsiveness, 

many of the neurological problems could be attributed to underlying anatomical and 

physiological fundamentals that demonstrate significant diversity within this spectrum and 

make the phenotypic description of the disorder distinctly different from that exhibited by 

normal physiology. Characterization of neurological features — such as cortical modularity — 

could lead to a better understanding of the neurophysiological fundamentals of autism. 

Recently, we have been developing sensory-based diagnostic protocols based on 

neurophysiological principles that have been elucidated in animal studies conducted both in 

our laboratories and those of others. One question that we have pursued in our animal studies 

has been the fundamental role(s) of the cortical minicolumn and macrocolumn in tactile 

information processing. We have developed experimental models for determining cortical 

correlates of perception that relate cortical activity patterns in somatosensory cortex (at high 

resolution in squirrel monkey studies) to measures of human perception. The minicolumnar 

and macrocolumnar organization of the cerebral cortex is dynamic and interactive, and the 

patterns of activity that are generated with stimulus-driven activity in SI cortex have been 

shown to be modular in nature. This determination of modularity is derived from a self-
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organizing process that takes place via dynamic interactions between minicolumns and 

columns in the cortex both during and after development. If developmental processes 

malfunction, then cortical organization suffers at a number of scales. Findings by Casanova and 

colleagues have elegantly demonstrated in post-mortem histological experiments that 

minicolumn organization in autism is severely compromised, as there are approximately 30% 

more minicolumns in the same cortical space as is normally found (Casanova, 2002). The 

increase in minicolumn density, and particularly the decrease in neuropil between the 

minicolumns (because they are now much more densely packed), led us to make a number of 

predictions about alterations in perceptual metrics that would occur in individuals with autism. 

In this paper, the neurophysiological basis of three such perceptual metrics (previously 

reported) is discussed. 

Cortical modularity and spatial localization 

 In 1978, Mountcastle hypothesized that the smallest functional unit of neocortical 

organization, the “minicolumn”, is a radial cord of cells about 30-50 μm in diameter, and that 

sensory stimuli activate local groupings of minicolumns (called “macrocolumns”) (Mountcastle, 

1978). This hypothesis subsequently received support from multiple lines of experimental 

evidence and led to its substantial elaboration. Structurally, minicolumns are attributable to the 

radially-oriented cords of neuronal cell bodies that are evident in Nissl-stained sections of the 

cerebral cortex and it is probable that they are related to ontogenetic columns (Rakic, 1988) and 

to the radially-oriented modules defined by the clustering of the apical dendrites of pyramidal 

neurons (Peters, 1993). Among the various elements of neocortical microarchitecture, spiny-

stellate cells and double-bouquet cells (Jones, 1975, 1981; Lund, 1984) are most directly relevant 

to Mountcastle’s concept of the minicolumn. Spiny- stellates are excitatory intrinsic cells that 

are especially prominent in layer 4 of primary sensory cortex. They are the major recipients of 

thalamocortical connections and, in turn, they distribute afferent input radially to cells in other 

layers. Double-bouquet cells are GABAergic cells whose somas and dendritic trees are confined 

to the superficial layers, and because the double-bouquet cells are more likely to inhibit cells in 
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adjacent minicolumns rather than in their own, they offer a mechanism by which a minicolumn 

can inhibit its immediate neighbors. 

 Some insights into the role of the minicolumn in sensory information processing have 

been revealed through neurophysiological experimentation. Receptive field mapping studies by 

Favorov and colleagues (Favorov, 1990) determined that there are abrupt shifts between 

receptive field centers as stimuli shift from one skin site to another. In other words, Favorov’s 

receptive field work predicted that a perceptible but subtle shift of stimulus position would not 

necessarily engage a different pattern of macrocolumnar activity. Rather, the pattern of 

minicolumnar activity within a macrocolumn would be different with a shift in stimulus 

position up to a point. At the point at which the stimulus position crosses a boundary, the 

stimulus will engage a new macrocolumn and an entirely different minicolumnar pattern of 

response will be evoked by the stimulus. Figure 6.1 summarizes minicolumnar RF organization 

in the somatosensory cortex. Note that as an electrode penetration moves tangentially across a 

field of cortical macrocolumns (note locations of penetrations 1-30), the receptive field center 

(indicated on the digit tips to the right of the cortical field) moves a significant distance only 

after crossing a macrocolumnar border. While within the macrocolumn, the receptive field 

centers remain relatively closely spaced. It is also of note that the receptive field properties are 

constrained within the radial dimension; that is, if the electrode is moved along the radial 

dimension (note the penetrations denoted a-g), the receptive field center does not shift and 

receptive field properties will be very similar. As the description above is over-simplified, it 

should be noted that there is a great diversity of receptive field properties between neighboring 

minicolumns, and a stimulus that effectively activates one minicolumn will often be ineffective 

at activating that minicolumn’s nearest neighbor (Favorov, 1988, 1994) 

!!!!!!
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Figure 6.1: Summary of Minicolumnar RF Organization in SI Somatosensory Cortex  
Left: Drawing of cross-section of Nissl-stained cortical tissue showing darkly-stained cell bodies organized in radially 
oriented cords, interpreted as minicolumns. Filled circles labeled a–g—sequence of neurons located within a single 
minicolumn; 1–30—sequence of neurons located in series of adjacent minicolumns.  
Right: Sequences of RF centers (connected dots) mapped by neuron sequences a–g and 1–30. Note that RF centers for SI 
neurons that occupy the same minicolumn stay close together, whereas the RF centers for pairs of neurons located in 
neighboring minicolumns shift back and forth over large distances, and occupy totally non-overlapping skin regions 
when the pair of neurons occupies different SI macrocolumns. !
 The findings and predictions by Favorov et al were later confirmed with additional data 

that was obtained via optical intrinsic signal imaging (for description of technique, see 

(Tommerdahl, 2002)). In this study, responses evoked by vibrotactile stimuli delivered to 

different positions on the skin (which differed by only the width of the 2mm probe tip) showed 

a subtle variation within the macrocolumnar pattern within a range of stimulus positions 

(analyzed with the methods described in Chiu, 2005), but the global pattern did not shift until a 

new group of minicolumns (or macrocolumns) was stimulated. Figure 6.2 summarizes the 

results of one such imaging experiment in which the macrocolumnar pattern of cortical 

response does not significantly alter with a small shift in stimulus position until a border is 

crossed. Additional features of these minicolumnar patterns of activity that have been 

characterized are that they are stimulus magnitude- and duration-dependent (Chiu, 2005, 2006; 

Tommerdahl, 2005).  For example, increasing the stimulus duration leads to more distinct and 

well-defined minicolumnar patterns of cortical activity. Additionally, the spectrum of the 

spatial profile of this activity evoked by the active minicolumns robustly and significantly shifts 
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ties will be very similar. As the description above is over-simplified, it should be noted that
there is a great diversity of receptive field properties between neighboring minicolumns, and
a stimulus that effectively activates one minicolumn will often be ineffective at activating that
minicolumn’s nearest neighbor [9-10]

Figure 1. Summary of minicolumnar RF organization in SI somatosensory cortex. Left: Drawing of cross-section of
Nissl-stained cortical tissue showing darkly-stained cell bodies organized in radially oriented cords, interpreted as min
icolumns. Filled circles labeled a–g—sequence of neurons located within a single minicolumn; 1–30—sequence of
neurons located in series of adjacent minicolumns. Right: Sequences of RF centers (connected dots) mapped by neu
ron sequences a–g and 1–30. Note that RF centers for SI neurons that occupy the same minicolumn stay close togeth
er, whereas the RF centers for pairs of neurons located in neighboring minicolumns shift back and forth over large
distances, and occupy totally non-overlapping skin regions when the pair of neurons occupies different SI macrocol
umns. Based on [8-10].

The findings and predictions by Favorov et al were later confirmed with additional data that
was obtained via optical intrinsic signal imaging (for description of technique, see [11]). In this
study, responses evoked by vibrotactile stimuli delivered to different positions on the skin
(which differed by only the width of the 2mm probe tip) showed a subtle variation within the
macrocolumnar pattern within a range of stimulus positions (analyzed with the methods
described in [12]), but the global pattern did not shift until a new group of minicolumns (or
macrocolumns) was stimulated. Figure 2 summarizes the results of one such imaging experi
ment in which the macrocolumnar pattern of cortical response does not significantly alter with
a small shift in stimulus position until a border is crossed. Additional features of these
minicolumnar patterns of activity that have been characterized are that they are stimulus
magnitude- and duration-dependent [12-14]. For example, increasing the stimulus duration
leads to more distinct and well-defined minicolumnar patterns of cortical activity. Addition
ally, the spectrum of the spatial profile of this activity evoked by the active minicolumns
robustly and significantly shifts to lower frequencies, and the spectral shifts that have been
observed are consistent with the concept of increased GABA mediated lateral inhibition
between minicolumns [12]. Perceptually, these changes in minicolumnar activity patterns with
stimulus duration could parallel the increases in sensory perception that have been observed
with longer stimulus durations [15].
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to lower frequencies, and the spectral shifts that have been observed are consistent with the 

concept of increased GABA mediated lateral inhibition between minicolumns (Chiu, 2005). 

Perceptually, these changes in minicolumnar activity patterns with stimulus duration could 

parallel the increases in sensory perception that have been observed with longer stimulus 

durations (Tommerdahl, 2010). 

Figure 6.2: Summary of OIS Evoked Responses in SI cortex 
Difference in stimulus position was equal to probe diameter (2 mm). Note the abrupt shift between the responses 
evoked from the stimulus placed at the first three positions vs. that of the fourth. Modified from Tommerdahl, 2002. 

 

 Casanova and colleagues have demonstrated that there is a substantial increase in 

minicolumn density in the parietal cortex of individuals with autism (Casanova 2002, 2003). 

This increase in minicolumn density results in a disproportionately large number of 

minicolumns becoming packed into the same cortical space and also results in a decrease in the 

neuropil between minicolumns. Thus, although there are now a higher density of minicolumns, 

there is less room for the GABA mediated lateral inhibitory connections between the 

minicolumns that are necessary for shaping the within-macrocolumn response that has been 

observed with repetitive stimulus duration (Chiu, 2005, 2006; Tommerdahl, 1987, 1993, 2005; 

Mccasland, 1988; Kohn, 2000). This alteration in basic cortical microarchitecture would then 

predict- ably contribute to an individual’s sensory perception in a couple of ways. First, the 

increase in minicolumn density should afford an individual with autism an advantage in some 

sensory tasks, such as spatial localization, in which the percept would be improved. However, 
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Figure 2. Summary of optical intrinsic signal evoked responses in SI cortex from four adjacent stimulus positions. Dif
ference in stimulus position was equal to probe diameter (2 mm). Note the abrupt shift between the responses
evoked from the stimulus placed at the first three positions vs. that of the fourth. Modified from [13].

Casanova and colleagues have demonstrated that there is a substantial increase in minicolumn
density in the parietal cortex of individuals with autism [1,16]. This increase in minicolumn
density results in a disproportionately large number of minicolumns becoming packed into
the same cortical space and also results in a decrease in the neuropil between minicolumns.
Thus, although there are now a higher density of minicolumns, there is less room for the GABA
mediated lateral inhibitory connections between the minicolumns that are necessary for
shaping the within-macrocolumn response that has been observed with repetitive stimulus
duration [12-14, 17-20]. This alteration in basic cortical microarchitecture would then predict
ably contribute to an individual’s sensory perception in a couple of ways. First, the increase
in minicolumn density should afford an individual with autism an advantage in some sensory
tasks, such as spatial localization, in which the percept would be improved. However, below
baseline GABA mediated lateral inhibition between minicolumns would mean that increasing
the duration of a stimulus would not increase the resolution or distinction of the within
macrocolumn pattern of minicolumnar activity to the same degree, and thus, perception would
not be improved. With this hypothesis of the minicolumn’s role in spatial localization in mind,
we designed an experiment to evaluate the differences between the spatial localization ability
of neurotypical controls and subjects with autism [21]. In the study, a subject’s ability to
distinguish between two points on the skin (on the hand dorsum) was determined with two
different stimulus durations – 500 msec and 5 sec (full description of the method in [21, 22]).
Results from that study are summarized in Figure 3. Although individuals with autism
outperformed controls in the shorter stimulus duration task, they did not demonstrate the
nearly two-fold improvement that the controls did when the stimulus duration was extended.
Thus, in the case of spatial localization, it appears that alterations in sensory percept could be
accounted for by the changes that have been observed in cortical minicolumn architecture.
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below baseline GABA mediated lateral inhibition between minicolumns would mean that 

increasing the duration of a stimulus would not increase the resolution or distinction of the 

within macrocolumn pattern of minicolumnar activity to the same degree, and thus, perception 

would not be improved. With this hypothesis of the minicolumn’s role in spatial localization in 

mind, we designed an experiment to evaluate the differences between the spatial localization 

ability of neurotypical controls and subjects with autism (Tommerdahl, 2007).  In the study, a 

subject’s ability to distinguish between two points on the skin (on the hand dorsum) was 

determined with two different stimulus durations – 500 msec and 5 sec (full description of the 

method in (Tannan, 2006; Tommerdahl, 2007)). Results from that study are summarized in 

Figure 6.3. Although individuals with autism outperformed controls in the shorter stimulus 

duration task, they did not demonstrate the nearly two-fold improvement that the controls did 

when the stimulus duration was extended. Thus, in the case of spatial localization, it appears 

that alterations in sensory percept could be accounted for by the changes that have been 

observed in cortical minicolumn architecture. 

Figure 6.3: Spatial Localization of Adapting Stimulus Duration in Autism 
Data displayed from the control subjects contrasts markedly from the data obtained from observations of subjects with 
autism. Note that subjects with autism, although they clearly outperformed the controls in the 0.5 sec adapting 
condition, did not improve with the 5.0 sec adapting condition. !
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Figure 3. Spatial localization under two conditions of adapting stimulus duration for adults with autism versus neuro
typical controls. Data displayed from the control subjects (previously reported [22]) contrasts markedly from the data
obtained from observations of subjects with autism. Note that subjects with autism, although they clearly outper
formed the controls in the 0.5 sec adapting condition, did not improve with the 5.0 sec adapting condition. Modified
from [21]

The difference that was observed in short vs. long stimulus duration in the above-described
spatial localization experiment led us to examine more directly the relationship between our
previous adaptation animal studies and the role that adaptation – or conditioning stimulation
– plays in sensory information processing in autism. It has been well established that condi
tioning stimulation – or prolonged pre-exposure to sensory stimulation – significantly
modifies discriminative capacity and alters the ability of both peripheral and CNS neurons to
process sensory information. Less widely appreciated is the fact that primary sensory cortical
mechanisms undergo transient and significant alterations in response to repetitive sensory
stimulation. Investigation of the dynamic cortical responses evoked by repetitive stimulation
has been an ongoing line of research in our laboratory. One of the focal points has been the
spatio-temporal patterns of response in the somatosensory cortex evoked by skin stimulation
and how these patterns influence the cortical response to subsequent stimuli. For example, the
observations of a number of studies have demonstrated that the spatially distributed pattern
of activity evoked in SI cortex by cutaneous flutter stimulation exhibits a prominent time-
dependency [11, 23, 24]. Specifically, changing the stimulus duration from 500 msec to 5 sec
(such as was done in the spatial localization task described above) would result in two
distinctly different patterns of response in SI cortex. Figure 4 compares the profiles of two SI
cortical responses evoked by vibrotactile stimuli that differed only in duration (Note that the
profile is a radial histogram of OIS images generated by plotting the cortical activity evoked
by the stimulus as a function of the distance from the center of the region in SI that is maximally
activated by the stimulus; [23, 24]). With the 500 msec stimulus, the entire response profile is
above-background. However, with the longer duration 5 sec stimulus, a suppressive or
inhibitory region surrounds the maximally activated region. This region of inhibitory influence
– which persists for several seconds – would interfere with the SI response to a stimulus applied
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!
Figure 6.4: Radial Histograms of SI cortical Activity Across Subjects 
Cortical activity is measured in terms of light absorbance (increased light absorbance can be correlated to increased 
cortical activity). Data from the center of the plot corresponds to the maximally responding SI cortical territory to the 5 
sec stimulus condition. Note that at the 0.5 sec stimulus duration, there is no below-background activity. !
 

 The difference that was observed in short vs. long stimulus duration in the above-

described spatial localization experiment led us to examine more directly the relationship 

between our previous adaptation animal studies and the role that adaptation — or conditioning 

stimulation — plays in sensory information processing in autism. It has been well established 

that conditioning stimulation — or prolonged pre-exposure to sensory stimulation — 
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concurrently or subsequently to skin regions in near proximity represented by neurons in that
region of SI. Thus, in the case of the above-described spatial localization task, longer stimulus
durations would be expected to improve performance. Since the presence of a center-surround
in stimulus evoked cortical activity is commonly recognized as a function of GABA mediated
pericolumnar lateral inhibition [25, 26], and a number of researchers have described GABA
deficiency as being consistent with autism [27-31], we concluded that the lack of improvement
with increasing stimulus duration in autism subjects in the spatial localization task could be
due to a deficiency in GABA mediated neurotransmission.

Figure 4. Radial histograms of SI cortical activity averaged across subjects (squirrel monkeys, n = 5). Cortical activity is
measured in terms of light absorbance (increased light absorbance can be correlated to increased cortical activity, for
review, see [11]). Data from the center of the plot corresponds to the maximally responding SI cortical territory to the
5 sec stimulus condition. Note that at the 0.5 sec stimulus duration, there is no below-background activity. Modified
from [23].
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significantly modifies discriminative capacity and alters the ability of both peripheral and CNS 

neurons to process sensory information. Less widely appreciated is the fact that primary 

sensory cortical mechanisms undergo transient and significant alterations in response to 

repetitive sensory stimulation. Investigation of the dynamic cortical responses evoked by 

repetitive stimulation has been an ongoing line of research in our laboratory. One of the focal 

points has been the spatiotemporal patterns of response in the somatosensory cortex evoked 

by skin stimulation and how these patterns influence the cortical response to subsequent 

stimuli. For example, the observations of a number of studies have demonstrated that the 

spatially distributed pattern of activity evoked in SI cortex by cutaneous flutter stimulation 

exhibits a prominent time-dependency (Tommerdahl, 2002; Simons, 2005; Simons, 2007). 

Specifically, changing the stimulus duration from 500 msec to 5 sec (such as was done in the 

spatial localization task described above) would result in two distinctly different patterns of 

response in SI cortex. Figure 6.4 compares the profiles of two SI cortical responses evoked by 

vibrotactile stimuli that differed only in duration (Note that the profile is a radial histogram of 

OIS images generated by plotting the cortical activity evoked by the stimulus as a function of 

the distance from the center of the region in SI that is maximally activated by the stimulus; 

(Simons, 2005, 2007)). With the 500 msec stimulus, the entire response profile is above-

background. However, with the longer duration 5 sec stimulus, a suppressive or inhibitory 

region surrounds the maximally activated region. This region of inhibitory influence — which 

persists for several seconds — would interfere with the SI response to a stimulus applied 

concurrently or subsequently to skin regions in near proximity represented by neurons in that 

region of SI. Thus, in the case of the above-described spatial localization task, longer stimulus 

durations would be expected to improve performance. Since the presence of a center-surround 

in stimulus evoked cortical activity is commonly recognized as a function of GABA mediated 

pericolumnar lateral inhibition (Juilano, 1989; Kohn, 2000), and a number of researchers have 

described GABA deficiency as being consistent with autism (Hussman, 2001; Blatt, 2005; 

Casanova, 2003; Belmonte, 2004; Chao, 2010), we concluded that the lack of improvement with 
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increasing stimulus duration in autism subjects in the spatial localization task could be due to 

a deficiency in GABA mediated neurotransmission. 

 The improvements that are normally observed with extended stimulus durations could 

be attributed to stimulus-evoked inhibition that surrounds areas of excitation. Single unit 

studies and imaging studies using voltage-sensitive dyes likewise have shown that excitation in 

the responding neuronal population is accompanied by the development of a surrounding field 

of inhibition (Brumberg, 1996; Derdikman, 2003; Foeller, 2005; Wirth, 2004). Similarly, imaging 

studies that have used the OIS have shown that prolonged stimulation of a discrete skin site 

not only is associated with increased absorbance within the SI region representing the 

stimulated skin site, but also with decreases in absorbance in surrounding regions (Simons, 

2005; Moore, 1999; Tommerdahl, 1996, 1999). Regions of decreased absorbance (increased 

reflectance) such as that described in Figure 6.4 are widely believed to be indicative of 

decreases in neuronal spike discharge activity (Grinvald, 1985, 1991; Whitsel, 2003), possibly 

resulting from stimulus-evoked inhibition at these locations. Thus, there is a great deal of 

evidence that the suppressed or below-background activity observed suggests that stimulus-

evoked inhibition is responsible for the improvements in performance that are normally 

observed with repetitive stimulation. However, it appears that in the case of autism, there is 

sufficient evidence to speculate that the normal center-surround relationship in cortical 

patterns of activity does not fully develop. 

Cortical modularity and adaptation 

 In addition to changes in spatial contrast, as described above, repetitive stimulation also 

results in temporally defined changes of cortical activity, the most prominent of which is a 

reduction in cortical response with extended stimulus duration. At the single cell level, both 

visual and somatosensory cortical pyramidal neurons undergo prominent use-dependent 

modifications of their receptive fields and response properties with repetitive stimulation. 

These modifications can attain full development within a few tens of milliseconds of stimulus 

onset, and can disappear within seconds after the stimulus ends (visual cortical neurons: 
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(Bredfeldt and Ringach, 2002; Celebrini et al., 1993; Das and Gilbert, 1995; DeAngelis et al., 

1995; Dinse and Kruger, 1990; Pack and Born, 2001; Pettet and Gilbert, 1992; Ringach et al., 

1997; Shevelev et al., 1998; Shevelev et al., 1992; Sugase et al., 1999; Kohn, 2007) alternatively 

— for review of short term cortical neuron dynamics in visual cortex, see (Kohn, 2007; Smith, 

2008); for review of short-term primary somatosensory cortical neuron dynamics see (Kohn & 

Whitsel 2002; Tommerdahl, 2010). 

 Optical imaging studies have also characterized the short-term dynamics of the 

population-level response of squirrel monkey contralateral primary somatosensory (SI) cortex 

using different amplitudes and durations of vibrotactile stimulation (Tommerdahl et al, 1996, 

2002; Chiu et al., 2005; Simons et al., 2005, 2007). The results of these optical intrinsic signal 

(OIS) imaging studies demonstrated a strong correlation between the amplitude of 25 Hz 

vibrotactile (flutter) skin stimulation and the response magnitude evoked in SI. In addition to 

the systematic changes in the spatial pattern of response in SI that correlated with increases in 

the amplitude and the duration of the stimulus, increasing the stimulus duration led to 

differences not only in the peak magnitude of the evoked cortical response, but also in the 

relative rates of rise and decay of the magnitude of the evoked intrinsic signal. These 

differences in the rates of rise and decay could impact the refractory period following a 

stimulus during which the magnitude of the response to a subsequent stimulus is diminished 

(Cannestra et al, 1998). 

 In order to assess the impact that adaptation has on perception, experiments were 

designed to directly measure the change in amplitude discrimination capacity that occurs with 

prior stimulus exposure (or prior conditioning stimuli). The studies demonstrated that a 

subject’s ability to discriminate between two simultaneously delivered vibrotactile stimuli — 

differing only in amplitude and location — was very robust and repeatable across a large 

number of (healthy) subjects but was very sensitive to varying conditions of pre-exposure to 

sensory stimuli (Tannan, 2007). Changing the duration of the conditioning stimulus delivered to 

one of the two sites before the amplitude discrimination task significantly altered a subject’s 
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ability to determine the actual difference between the two stimuli. One significant finding of 

that study was that specific durations of conditioning stimuli altered the subject’s amplitude 

discriminative capacity in a predictive and quantifiable fashion (see Figure 6.5).  The test and 

standard stimuli were preceded by an adapting stimulus at the site of the test stimulus (ranging 

from 0.2 to 2 sec in duration). Note that single site adapting stimulation leads to a progressive 

and systematic decrease in performance with increasing adaptor duration (Tannan, 2007). 

Figure 6.5: Comparison of Amplitude Difference Thresholds to Adaptation 
The test and standard stimuli were preceded by an adapting stimulus at the site of the test stimulus (ranging from 0.2 
to 2 sec in duration). Note that single site adapting stimulation leads to a progressive and systematic decrease in 
performance with increasing adaptor duration . !
 This finding indicated that the method could be viewed as a reliable indicator of the 

influence of adapting stimuli on cortical response, as changes in peripheral response are not 

mediated at these short stimulus durations (for discussion, see (Tannan, 2007)). 

 Conditioning stimuli did not have as pronounced an impact on the amplitude 

discriminative capability of subjects with autism as it did with the control group (Rinehart, 

2006). In Figure 6.6, results obtained using identical methods from subjects with autism and 
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stimulus exposure (or prior conditioning stimuli). The studies demonstrated that a subject’s
ability to discriminate between two simultaneously delivered vibrotactile stimuli – differing
only in amplitude and location – was very robust and repeatable across a large number of
(healthy) subjects but was very sensitive to varying conditions of pre-exposure to sensory
stimuli [58]. Changing the duration of the conditioning stimulus delivered to one of the two
sites before the amplitude discrimination task significantly altered a subject’s ability to
determine the actual difference between the two stimuli. One significant finding of that study
was that specific durations of conditioning stimuli altered the subject’s amplitude discrimi
native capacity in a predictive and quantifiable fashion (see Figure 5).

Figure 5. Comparison of amplitude difference threshold (with s.e. bars) to different conditions of adaptation. The test
and standard stimuli were preceded by an adapting stimulus at the site of the test stimulus (ranging from 0.2 to 2 sec
in duration). Note that single site adapting stimulation leads to a progressive and systematic decrease in performance
with increasing adaptor duration [58].

This finding indicated that the method could be viewed as a reliable indicator of the influence
of adapting stimuli on cortical response, as changes in peripheral response are not mediated
at these short stimulus durations (for discussion, see [58]).

Conditioning stimuli did not have as pronounced an impact on the amplitude discriminative
capability of subjects with autism as it did with the control group [60]. In Figure 6, results
obtained using identical methods from subjects with autism and controls are compared. Note
that adaptation (i.e., a 1 sec conditioning stimulus at one stimulus site prior to the amplitude
discrimination task) resulted in the control subjects performing significantly worse than they
did in the absence of adaptation. However, in the case of the autism subjects, the impact of
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controls are compared. Note that adaptation (i.e., a 1 sec conditioning stimulus at one stimulus 

site prior to the amplitude discrimination task) resulted in the control subjects performing 

significantly worse than they did in the absence of adaptation. However, in the case of the 

autism subjects, the impact of prior history of stimulation was not as significant, and the 

amplitude discrimination metric was not impacted to the same degree as it was in the controls. 

Thus, the ineffectiveness of a conditioning stimulus in this study repeated the findings of the 

spatial localization studies, in that adapting stimuli had little or diminished effect — positive or 

negative — on the sensory discriminative performance of individuals with autism. 

Figure 6.6: Comparison of Difference Limens Normalized to the Unadapted Condition 
Note that for both the control and the autism group, 1 sec adaptation resulted in an elevated difference limen (* 
ANOVA; p < 0.01). The control group showed a greater impairment with adaptation (~45%) than the autism group (~5%). !
 Note that for both the control and the autism group, 1 sec adaptation resulted in an 

elevated difference limen (* ANOVA; p < 0.01). The control group showed a greater impairment 

with adaptation (~45%) than the autism group (~5%) (Tannan, 2008). 
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prior history of stimulation was not as significant, and the amplitude discrimination metric
was not impacted to the same degree as it was in the controls. Thus, the ineffectiveness of a
conditioning stimulus in this study repeated the findings of the spatial localization studies, in
that adapting stimuli had little or diminished effect – positive or negative – on the sensory
discriminative performance of individuals with autism.

Figure 6. Comparison of difference limen (with s.e. bars) normalized to the unadapted condition. Note that for both
the control and the autism group, 1 sec adaptation resulted in an elevated difference limen (* ANOVA; p < 0.01). The
control group showed a greater impairment with adaptation (~45%) than the autism group (~5%) [59].

4. Cortical modularity and synchronization

There are a number of autism studies that have described Parkinsonian-like motor character
istics and/or postural control problems, which could be attributed to deficits of the basal
ganglia portion of the frontostriatal system [60, 61]. These deficits in sensorimotor control could
be derived, in part, from the role that the frontostriatal system plays in an individual’s timing
perception as well as the coordination that is required between cortical regions during
sensorimotor tasks. Timing perception, which can be measured with some relatively simple
temporal discriminative measures (such as TOJ: temporal order judgment and TDT: temporal
discriminative threshold) – is most often accounted for by the frontostriatal system largely as
a result of these measures being sensitive to lesions to the supplementary motor area (SMA),
posterior parietal cortex, and basal ganglia [62, 63]. Also because of the fact that above-average
TOJ thresholds occur in subjects with known damage to these same cortical areas (dyslexia
[64], dystonia [65-67] and Parkinson’s disease [68]). Most recently, it was found that individuals
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Cortical modularity and synchronization 

 There are a number of autism studies that have described Parkinsonian-like motor 

characteristics and/or postural control problems, which could be attributed to deficits of the 

basal ganglia portion of the frontostriatal system (Rinehart, 2006; Takarae, 2007). These deficits 

in sensorimotor control could be derived, in part, from the role that the frontostriatal system 

plays in an individual’s timing perception as well as the coordination that is required between 

cortical regions during sensorimotor tasks. Timing perception, which can be measured with 

some relatively simple temporal discriminative measures (such as TOJ: temporal order 

judgment and TDT: temporal discriminative threshold) — is most often accounted for by the 

frontostriatal system largely as a result of these measures being sensitive to lesions to the 

supplementary motor area (SMA), posterior parietal cortex, and basal ganglia (Lacruz, 1991; 

Pastor, 2004). Also because of the fact that above-average TOJ thresholds occur in subjects with 

known damage to these same cortical areas (dyslexia (Laasonen et al., 2000), dystonia (Sanger et 

al., 2001; Tinazzi et al., 2002; Tinazzi et al., 1999), and Parkinson’s disease (Artieda et al., 

1992)). Most recently, it was found that individuals with autism also have below-average timing 

perception capacity (Tommerdahl et al, 2008). This timing deficit could be accounted for by 

differences in a number of structures, particularly in the frontostriatal system, that have been 

implicated in autism (e.g., basal ganglia  (Haist et al., 2005; Herbert et al., 2003; Hollander et al., 

2005; Langen et al., 2007; Rojas et al., 2006; Sears et al., 1999; Voelbel et al., 2006) ; caudate 

nucleus (Langen et al., 2007); thalamus (Hardan et al., 2006; Hardan et al., 2008), and impaired 

white matter connectivity in the frontal lobe (Lee et al., 2007)). 

 In addition to the role that the frontostriatal system may have in the perceptual timing 

deficits of autism, the role of synchronization (or lack of synchronization) in autism has gained 

a certain degree of prominent attention. Uhlhaas and Singer (Uhlhaas & Singer, 2006) recently 

reviewed the experimental evidence that suggests that functional connectivity is reduced in 

autism, primarily based on fMRI studies (Castelli,2002; Just, 2007; Koshino, 2005;Villalobos, 

2005; Kana, 2006; Cherkassky, 2006) that examine the coordinated activity between different 
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areas of the cerebral cortex. A few studies, using MEG and EEG, have found gamma oscillations, 

which are considered to be important in the process of coordinating cortical activity, to be 

below normal in subjects with autism (Brown, 2005; Wilson, 2007). From the perspective of 

cortical modularity at both the minicolumnar and macrocolumnar scales, synchronization at 

the local cortical level should also be impacted. Casanova and colleagues have suggested that 

the aberrant minicolumnar structure that they have found in autism could result in the 

disruption of the inhibitory architecture (Casanova et al., 2003) that is required for normal 

function in local neural circuitry. Disruption of functional connectivity at the local 

minicolumnar level could be responsible for, or strongly correlated with, the dysfunctional 

connectivity that has been observed across large-scale cortical areas. 

 There is a rapidly growing appreciation in neurobiological research of the important 

contributions to sensorimotor function of coordinated across-neuron patterns of spike 

discharge activity within the neocortical areas activated by sensory stimuli (for comprehensive 

review see Whittington, 2000). In particular, stimulus-induced, time-dependent (dynamic) 

across-neuron synchronization of action potential discharge and the associated oscillatory 

modulation of spike firing are common and prominent properties of neocortical networks 

devoted to the processing of sensory information. The tendency of sensory neocortical 

networks to generate synchronized oscillations in response to stimulation has raised the 

possibility that synchronization may play a prominent role in some aspects of sensory 

perception. We examined whether or not synchronization could impact the topography of 

temporal perception (Tommerdahl, 2007). The goal of the study was to elucidate the impact of 

stimulus-driven synchronization on adjacent cortical ensembles and the spatio-temporal 

integration of information that results from those ensembles being temporally linked or bound 

by a common synchronizing input. More specifically, we demonstrated that temporal order 

judgment (TOJ – a measure obtained from determining the minimal inter-stimulus interval 

necessary for a subject to detect the temporal order of two sequentially delivered peripheral 

stimuli) and temporal discrimination threshold (TDT) in neurotypical subjects were significantly 
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impacted when two synchronized (but low amplitude) vibrotactile stimuli were delivered 

concurrently to the dual test stimulus sites. The conclusion of that study was that the stimulus-

driven linkage between topographically adjacent sites resulted in an increase in TOJ threshold 

and TDT (or worse performance), most likely because these cortically adjacent or near-adjacent 

regions were being driven with a simultaneous and identical sinusoidal pair of tactile stimuli 

which contributed to a loss in spatio-temporal contrast (Tommerdahl, 2007). 

 A subsequent question that was then addressed was whether or not individuals with 

autism experience a decrease in timing perception (as measured by TOJ and TDT) if the same 

concurrent synchronizing stimuli were delivered during the TOJ/TDT tests. If neurologically 

compromised individuals — such as those with autism — have distinct systemic cortical 

deficits, and these deficits extend to local neuronal circuitry connectivity, then the abnormal 

functional connectivity between adjacent and/or near adjacent cortical ensembles would 

hypothetically decrease the effect that stimulus-driven synchronization has on the TOJ or TDT 

task (i.e., performance on the task would not degrade). Comparisons of the control vs. autism 

results (previously reported in Tommerdahl, 2007, 2008) are shown in Figure 6.7. Note that 

with concurrent stimulation, individuals with autism do not suffer the same decrease in 

sensory discriminative performance that controls do. In other words, the functional linkage in 

controls that becomes rapidly established, due to local synchronization effects, appears to 

perceptually bind the two stimulus sites (in this case, digits two and three) to an extent that it 

becomes more difficult to identify the temporal order between the two sites. Thus, as in the 

case of adaptive responses, it appears that there is a loss of an ability to integrate both spatial 

and temporal information in autism. 
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Figure 6.7: TDT and TOJ Performance Metrics  with/without 25 Hz Conditioning 
The 25 Hz conditioning stimulus significantly impaired TDT by ~240% (p < 0.01) and TOJ by ~360% (p < 0.01) for the 
control group, whereas the autism group showed no significant change for either measure. !
 What could account for the reduction in TOJ performance in Typically Developing (TD) 

controls?  Functional connectivity between neighboring cortical regions normally leads to a 

reduction in TOJ performance in healthy controls with the introduction of the synchronized 

conditioning stimuli, and this is predicted by recordings from in vivo animal studies. Consider 

the results displayed in Figure 6.8. Extracellular recordings were obtained from SI cortical 

regions corresponding to D2 and D3 in the squirrel monkey. When a vibrotactile pulse was 

delivered to D2, a significant above background response was evoked at D2 (top left quadrant) 

but not at the D3 representation (top right quadrant). However, when sub-threshold 

synchronized sinusoidal stimuli were delivered to both digits prior to the pulse (bottom half of 

Figure 6.8), the pulse at D2 evokes a response at both the D2 and D3 representations (note 

absence of evoked activity before zero msec during sub-threshold stimulation). 
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A subsequent question that was then addressed was whether or not individuals with autism
experience a decrease in timing perception (as measured by TOJ and TDT) if the same
concurrent synchronizing stimuli were delivered during the TOJ/TDT tests. If neurologically
compromised individuals – such as those with autism – have distinct systemic cortical deficits,
and these deficits extend to local neuronal circuitry connectivity, then the abnormal functional
connectivity between adjacent and/or near adjacent cortical ensembles would hypothetically
decrease the effect that stimulus-driven synchronization has on the TOJ or TDT task (i.e.,
performance on the task would not degrade). Comparisons of the control vs. autism results
(previously reported in [69, 90]) are shown in Figure 7. Note that with concurrent stimulation,
individuals with autism do not suffer the same decrease in sensory discriminative performance
that controls do. In other words, the functional linkage in controls that becomes rapidly
established, due to local synchronization effects, appears to perceptually bind the two stimulus
sites (in this case, digits two and three) to an extent that it becomes more difficult to identify
the temporal order between the two sites. Thus, as in the case of adaptive responses, it appears
that there is a loss of an ability to integrate both spatial and temporal information in autism.

Figure 7. TDT and TOJ performance metrics obtained in the presence and absence of 25 Hz conditioning stimulation.
The 25 Hz conditioning stimulus significantly impaired TDT by ~240% (p < 0.01) and TOJ by ~360% (p < 0.01) for the
control group, whereas the autism group showed no significant change for either measure [69].

What could account for the reduction in TOJ performance in Typically Developing (TD)
controls? Functional connectivity between neighboring cortical regions normally leads to a
reduction in TOJ performance in healthy controls with the introduction of the synchronized
conditioning stimuli, and this is predicted by recordings from in vivo animal studies. Consider
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Figure 6.8: Extracellular Recordings Obtained from SI in the Squirrel Monkey 
When a vibrotactile pulse was delivered, a significant above background response was evoked at D2 but not at the D3 
representation. When sub-threshold synchronized sinusoidal stimuli were delivered to both digits prior to the pulse, 
the pulse at D2 evokes a response at both the D2 and D3 representations. !
 From this type of data, we hypothesized that this response was the result of functional 

connectivity between adjacent and/or near adjacent cortical ensembles. In other words, the 

conditioning stimuli delivered prior to the TOJ task engaged the cortical ensembles in the D2 

and D3 cortical representations to be in concert, and delivery of a simple stimulus to one digit 

(D2) resulted in a near simultaneous response at the representation of another digit (D3). Thus, 

it would be predicted that delivery of synchronized conditioning stimuli would impact the 

topography of temporal perception (Tommerdahl, 2007). However, individuals with autism do 

not suffer the same decrease in sensory discriminative performance that neurotypical controls 

do. In other words, the functional linkage that becomes rapidly established in TD individuals to 

local synchronization effects. appears to perceptually bind the two stimulus sites does not 

occur in autism (Tommerdahl, 2008). Thus, an extrapolation of this is that, utilizing measures 

impacted by stimulus driven synchronization, there is significant hypo-connectivity in autism at 

the level of local cortical ensembles. 
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the results displayed in Figure 8. Extracellular recordings were obtained from SI cortical
regions corresponding to D2 and D3 in the squirrel monkey. When a vibrotactile pulse was
delivered to D2, a significant above background response was evoked at D2 (top left quadrant)
but not at the D3 representation (top right quadrant). However, when sub-threshold synchron
ized sinusoidal stimuli were delivered to both digits prior to the pulse (bottom half of Figure
8), the pulse at D2 evokes a response at both the D2 and D3 representations (note absence of
evoked activity before zero msec during subthreshold stimulation).

Figure 8. Extracellular recordings obtained from SI cortical regions corresponding to D2 and D3 in the squirrel mon
key. When a vibrotactile pulse was delivered, a significant above background response was evoked at D2 but not at
the D3 representation. When sub-threshold synchronized sinusoidal stimuli were delivered to both digits prior to the
pulse, the pulse at D2 evokes a response at both the D2 and D3 representations.

From this type of data, we hypothesized that this response was the result of functional
connectivity between adjacent and/or near adjacent cortical ensembles. In other words, the
conditioning stimuli delivered prior to the TOJ task engaged the cortical ensembles in the D2
and D3 cortical representations to be in concert, and delivery of a simple stimulus to one digit
(D2) resulted in a near simultaneous response at the representation of another digit (D3). Thus,
it would be predicted that delivery of synchronized conditioning stimuli would impact the
topography of temporal perception [90]. However, individuals with autism do not suffer the
same decrease in sensory discriminative performance that neurotypical controls do. In other
words, the functional linkage that becomes rapidly established in TD individuals to local
synchronization effects. appears to perceptually bind the two stimulus sites does not occur in
autism [69]. Thus, an extrapolation of this is that, utilizing measures impacted by stimulus
driven synchronization, there is significant hypo-connectivity in autism at the level of local
cortical ensembles.
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Figure 6.9: Visual Representation of Feed Forward Inhibition !
Interim Summary 

 In the previous 3 sections, we described sensory-based diagnostic protocols that were 

based on neurophysiological principles that have been elucidated in animal studies. In the 

following sections, we describe additional protocols based on hypotheses that have not yet 

been tested in in vivo animal models, and it is anticipated that these protocols will add further 

insight into differences in fundamental mechanisms of information processing between TD and 

Autism Spectrum Disorder (ASD) individuals. 

The role of sub-threshold stimulus-evoked inhibition 

 A major well-documented feature of cortical functional organization is the presence of 

prominent feed-forward inhibition in the input layer 4 (see Figure 6.9). Local layer 4 inhibitory 

cells receive direct thalamocortical input and in turn suppress responses of neighboring layer 4 

excitatory cells to their thalamocortical drive, thereby sharpening their RF properties (Douglas, 

1995; Miller, 2001; Bruno, 2002; Alonso, 2005; Sun, 2006; Cruikshank, 2007). These inhibitory 

cells are more responsive to weak (near-threshold) afferent drive than are the excitatory layer 4 

cells and thus they raise the threshold at which excitatory layer 4 cells begin to respond to 
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Figure 9. Visual representation of feed forward inhibition

Interim Summary: In the previous 3 sections, we described sensory-based diagnostic protocols
that were based on neurophysiological principles that have been elucidated in animal studies.
In the following sections, we describe additional protocols based on hypotheses that have not
yet been tested in in vivo animal models, and it is anticipated that these protocols will add
further insight into differences in fundamental mechanisms of information processing between
TD and Autism Spectrum Disorder (ASD) individuals.

5. The role of sub-threshold stimulus-evoked inhibition: feed-forward
inhibition and the role of within-column connectivity

A major well-documented feature of cortical functional organization is the presence of
prominent feed-forward inhibition in the input layer 4 (see Figure 9). Local layer 4 inhibitory
cells receive direct thalamocortical input and in turn suppress responses of neighboring layer
4 excitatory cells to their thalamocortical drive, thereby sharpening their RF properties [91-96].
These inhibitory cells are more responsive to weak (near-threshold) afferent drive than are the
excitatory layer 4 cells and thus they raise the threshold at which excitatory layer 4 cells begin
to respond to peripheral stimuli. Sensory testing of stimulus detection threshold is particularly
well-suited for probing feed-forward inhibition, considering that stimuli just below the
detection threshold will be too weak to vigorously engage other layer 4 mechanisms besides
thalamocortical excitation and feed-forward inhibition (such as lateral excitation, recurrent or
feedback inhibition, or activity-driven adaptation).

Tactile thresholds were collected in two distinct manners. The “static thresholds were meas
ured using a 20-trial Two Alternative Forced Choice (2AFC) Tracking protocol. During each
trial a 25 Hz vibrotactile test stimulus (lasts 500 ms) was delivered to either D2 or D3; the
stimulus location was randomly selected on a trial-by-trial basis. Following each vibrotactile
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peripheral stimuli. Sensory testing of stimulus detection threshold is particularly well-suited for 

probing feed-forward inhibition, considering that stimuli just below the detection threshold will 

be too weak to vigorously engage other layer 4 mechanisms besides thalamocortical excitation 

and feed-forward inhibition (such as lateral excitation, recurrent or feedback inhibition, or 

activity-driven adaptation). 

Figure 6.10: Static Thresholds vs. Dynamic Thresholds using a Ramping Stimulus. !
 Tactile thresholds were collected in two distinct manners. The “static thresholds were 

measured using a 20-trial Two Alternative Forced Choice (2AFC) Tracking protocol. During each 

trial a 25 Hz vibrotactile test stimulus (lasts 500 ms) was delivered to either D2 or D3; the 

stimulus location was randomly selected on a trial-by-trial basis. Following each vibrotactile 

stimulus, the subject was prompted to select the skin site (D2 vs. D3) that perceived the 

stimulation. After a 5sec delay — based on subject response — the stimulation was repeated 

until the completion of the 20 trials. The stimulus amplitude was started at 15μm and was 

modified based on the subject’s response in the preceding trial. During the “dynamic” 

threshold detection, a 25 Hz vibrotactile stimulus was delivered to either D2 or D3 (the 
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stimulus, the subject was prompted to select the skin site (D2 vs. D3) that perceived the
stimulation. After a 5sec delay – based on subject response – the stimulation was repeated until
the completion of the 20 trials. The stimulus amplitude was started at 15µm and was modified
based on the subject’s response in the preceding trial. During the “dynamic” threshold
detection, a 25 Hz vibrotactile stimulus was delivered to either D2 or D3 (the stimulus location
was randomly selected on a trial-by-trial basis). The amplitude of the stimulus was initiated
from zero and increased in steps of 2 µm/s. The subject was instructed to indicate the skin site
that received the stimulus as soon as the vibration was detected. Multiple trials were conducted
with a random delay between trials and the results from those trials were averaged for each
subject. For a complete experimental explanation, see [97-99].

Figure 10. Static Thresholds collected using a 2AFC Protocol are compared to Dynamic Thresholds using a ramping
amplitude protocol.

In our comparative study of typically developing vs. autism individuals, we found that
subjects with autism exhibit significantly greater diversity in their detection thresholds on
fingertips than control subjects, with two groups emerging (designated as Group A and Group
B). Based on cluster analysis of several measures, the data that we have obtained thus far
strongly suggests two distinct clusters within the spectrum. Group B autism individuals have
dynamic thresholds lower than controls (thus suggesting reduced feed-forward inhibition)
and group A autism individuals have dynamic thresholds higher than controls (thus suggest
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stimulus location was randomly selected on a trial-by-trial basis). The amplitude of the stimulus 

was initiated from zero and increased in steps of 2 μm/s. The subject was instructed to indicate 

the skin site that received the stimulus as soon as the vibration was detected. Multiple trials 

were conducted with a random delay between trials and the results from those trials were 

averaged for each subject. For a complete experimental explanation, see (Zhang, 2011a, 2011b; 

Francisco, 2008) 

 In our comparative study of typically developing vs. autism individuals, we found that 

subjects with autism exhibit significantly greater diversity in their detection thresholds on 

fingertips than control subjects, with two groups emerging (designated as Group A and Group 

B). Based on cluster analysis of several measures, the data that we have obtained thus far 

strongly suggests two distinct clusters within the spectrum. Group B autism individuals have 

dynamic thresholds lower than controls (thus suggesting reduced feed-forward inhibition) and 

group A autism individuals have dynamic thresholds higher than controls (thus suggesting 

enhanced feed-forward inhibition). Inhibitory neurogliaform cells in layer 4 use both GABAA 

and GABAB receptor-mediated inhibitory synaptic transmission (Tamas, 2003); in other 

inhibitory cell classes, GABAB receptors are located in the presynaptic membrane and used for 

autocontrol). GABAB-mediated inhibition develops and lasts much longer than GABAA- 

mediated inhibition. We believe we detect the GABAB component of feed-forward inhibition in 

our new “dynamic:” variant of the basic (“static”) detection threshold test, in which we deliver 

vibrotactile stimuli of gradually increasing amplitude (starting at zero and growing at a rate of 

2 μm/s) until the subject detects the vibration. Interestingly, this time-extended mode of 

stimulus delivery prominently elevates the detection threshold (compare “static” and “dynamic” 

plots in Figure 6.10), presumably by fully activating slow GABAB inhibition in addition to fast 

GABAA inhibition. Again we find that autism subjects exhibit greater diversity on this test than 

controls: group A autism individuals have static thresholds below controls, but dynamic 

thresholds above controls (suggesting reduced GABAA inhibition, but elevated GABAB 
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inhibition), while group B autism have the opposite relations. Thus, if alteration of GABAa vs. 

GABAb inhibition influences the impact of sub-threshold mediated activation, then the two 

aforementioned autism populations should, if treated pharmacologically, respond differently to 

a GABAb agonist, such as baclofen. If this is the case, then a simple measure such as that 

described above could predict whether or not this particular treatment would be effective. 

 

Figure 6.11: Difference Limens for Various Rates of Amplitude Modulation 
Left Panel: Comparison of data obtained from typically developing controls vs. individuals with autism. Note that at 
lower rates of stimulus amplitude modulation, all 3 groups behave approximately the same way. As the amplitude 
modulation rate is increased, the responses of one of the autism groups diverge distinctly from the responses of the 
other subjects. Note that the negative Weber fraction indicates that the subject responded beyond the matching point 
of the two stimuli rather than before.  
Right Panel: Comparison of individual data points from the highest modulation rate displayed in Panel A. Note the 
clustering of the data points within each of the groups of subjects. !
Temporal integration: Rate dependent modulation of vibrotactile stimuli 

 The difference that we observed with static vs. dynamic thresholds encouraged us to 

explore the impact that changing the rate of amplitude modulation would have on sensory 

percept performance at supra-threshold levels. In the dynamic threshold task, an amplitude 

modulation rate of 2 μm/s was used to deliver a sub-threshold stimulus. Delivering higher rates 

of amplitude modulation at above threshold values yields very different results. In the data 
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presented below, a subject’s ability to match two stimuli was assessed at nine different rates of 

amplitude modulation (one stimulus was held at steady state values, the other was increased 

until it was perceived as a match; (Francisco, 2008)). At the lowest rates, subjects performed 

comparably to the dynamic threshold task (Autism group A performed worse than controls and 

Autism B, though not significantly). With an increasing rate of modulation, from 1.25 to 10 μm/

s, the Autism A group demonstrated a decreasing Difference Limen (DL). As the rate increased 

above 15 μm/second, this group began performing significantly worse in that the test stimuli 

was increased well beyond the value of the standard stimulus (resulting in the “negative” DL). It 

appears that this group was unable to temporally integrate information from the stimuli, and 

future in vivo studies will examine the role that different neurotransmitter systems play in such 

temporal integration. 

Generating an individual CNS profile from multiple measures 

 A battery of protocols yields multiple parameters that can be used to build a CNS profile 

of a subject. Since each of the tests are influenced by some mechanisms more than others (e.g., 

adaptation will influence the evoked cortical response during conditioning prior to a TOJ task, 

but synchronization of cortical ensembles appears to have the predominant outcome on that 

task), combining the results from multiple tasks — with each task characterized as an 

independent vector of performance for some aspect of CNS information processing — would 

predictably yield a unique individual CNS profile. To fully appreciate the differences between 

subject populations, we utilized a modern mathematical approach for multi-variable analysis. 

Quantitative performance of each subject on the battery of N sensory tests was treated as 

localizing a subject in an N-dimensional “cortical metrics” space (i.e., an abstract space in which 

each coordinate axis corresponds to one of the battery’s sensory tests). Principal Component 

Analysis (PCA) was then used to graphically display the test-performance data collected in the 

different subject populations. Figure 6.12, for example, was generated using PCA on 8 metrics, 

and it clearly separates individuals with autism (orange) from TD controls (blue) with a 99% 

confidence level that the two populations are different (using a t-squared Hotelling test). Our 
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long term goal with this work is to develop metrics that have the requisite sensitivity to reflect 

the impact that treatments or interventions have. It is anticipated that successful treatments 

would result in a shift of the autism values towards the more tightly clustered control values. 

Figure 6.12: Principal Component Analysis 
PCA Analysis was used to examine the performance of two populations on 8 different metrics. The analysis clearly 
separates individuals with autism (orange) from TD controls (blue). (99% confidence using a t-squared Ho- telling test) !
Conclusions 

 Adults with autism exhibit inhibitory deficits that are often manifested in behavioral 

modifications such as repetitive behaviors and/or sensory hyper-responsiveness. If such 

behaviors are the result of a generalized deficiency in inhibitory neurotransmission, then it 

stands to reason that deficits involving localized cortical-cortical interactions — such as in 

sensory discrimination tasks — could be detected and quantified. This chapter describes 

recently developed hypothesis driven methods for quantifying metrics of sensory perception 
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based on the neurophysiological principles of cortical modularity. These novel sensory 

discrimination tests may provide (a) an effective means for biobehavioral assessment of deficits 

specific to autism and (b) efficient and sensitive measures of change following treatment. The 

methods could prove to be a useful and efficient way to detect specific neural deficits and 

monitor the efficacy of pharmacological and/or behavioral treatments in autism. 

!
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!!!!!!
CHAPTER 7: ALTERED CENTRAL SENSITIZATION IN WOMEN WITH VULVODYNIA  6!

Overview 

 Altered central sensitization has been linked to dysfunction in CNS inhibitory pathways 

(e.g., GABAergic), and metrics of sensory adaptation, a centrally mediated process that is 

sensitive to this dysfunction, could potentially be used to identify women at risk of treatment 

failure using conventional approaches.  Twelve women with vulvodynia and twenty age-

matched controls participated in this study, which was conducted by sensory testing of the 

right hand’s index and middle fingers. The following sensory precepts were assessed: 1) 

vibrotactile detection threshold; 2) amplitude discrimination capacity (defined as the ability to 

detect differences in intensity of simultaneously delivered stimuli to two fingers); and 3) a 

metric of adaptation (determined by the impact that applying conditioning stimuli have on 

amplitude discriminative capacity).  Participants did not differ on key demographic variables, 

vibrotactile detection threshold, and amplitude discrimination capacity. However, we found 

significant differences from controls in adaptation metrics in one subgroup of vulvodynia 

patients. Compared to healthy controls and women with a shorter history of pain (n=5; duration 

(yr) = 3.4 ± 1.3), those with a longer history (n=7; duration (yr) = 9.3 ±1.4)) were found to be less 

likely to have adaptation metrics similar to control values.  Chronic pain is thought to lead to 

altered central sensitization, and adaptation is a centrally mediated process that is sensitive to 

this condition. This report suggests that similar alterations exist in a subgroup of vulvodynia 

patients. 
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Zhang Z, Zolnoun DA, Francisco EM, Holden JK, Dennis RG, Tommerdahl M (2011) Altered Central 
Sensitization in Subgroups of Women With Vulvodynia. Clin J Pain. 2011 May 17



Introduction 

 Vulvodynia is a heterogeneous family of idiopathic pain disorders affecting upward of 

16% of reproductive age women in the US (Danby and Margesson 2010). It is characterized by 

both provoked and unprovoked pain in and surrounding vulvar skin, mucosa and underlying 

musculature. Clinically, vulvodynia is classified into subgroups based on anatomical location 

(vulvar mucosa vs. hairy/non-hairy epithelium) and temporal characteristics as provoked vs. 

unprovoked. While a given patient may experience both provoked and unprovoked pain, the 

most common complaint is that of provoked pain on contact, precipitated by tampon use or 

intercourse. Unlike unprovoked pain — where the clinical examination is non-specific — the 

majority of women with provoked pain have localized tenderness in vulvar mucosa (a.k.a. 

vestibule) (Harlow, Wise, and Stewart 2001). Additionally, women with provoked vulvodynia 

tend to be younger, and in most instances unaware of their condition until coital debut or the 

first attempt at using a tampon.  

 While both peripheral and central abnormalities have been implicated in vulvodynia, the 

extent to which peripheral vs. central factors contribute to the pain state in an individual 

patient remains unknown. A substantial portion of women with vulvodynia show 

hypersensitivity at extra-genital sites (e.g., arms and feet); this non-specific hypersensitivity has 

conventionally been attributed to changes in ‘central sensitization’ caused by the chronic pain 

state. To date, clinical signs and symptoms associated with central dysregulation in subgroups 

of women with vulvodynia remains unknown. Thus, understanding of the mechanistic (central 

vs. peripheral) implication of clinical signs and symptoms in vulvodynia is a necessary first step 

towards individualized, symptom based treatment approach.  

 Current literature (Danby and Margesson 2010; Giesecke et al. 2004; Gunter 2007) 

suggests that symptoms of vulvodynia are likely to be triggered by peripheral factors in the 

skin and/or underlying musculature. With time (and chronicity), varying degrees of central 

dysregulation may develop. In this setting, patients may experience superimposed unprovoked 

(spontaneous) pain in otherwise unaffected tissue. Thus, investigating clinical correlates of 
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central involvement in vulvodynia (e.g., how sensory information processing is altered) may 

provide us with a unique opportunity to investigate the mechanisms of clinically similar 

disorders (e.g. localized pain at the vulvar vestibule vs. generalized vulvar pain). Once the 

fundamental mechanisms of the centrally vs. peripherally mediated vulvar pain is understood, 

this knowledge will enable the development of robust research and clinical tools that could 

improve diagnosis and lead to informed therapeutic options. 

 In this study, we investigated sensory information processing in subgroups of patients 

with vulvodynia and healthy controls. The quantitative sensory testing methodology utilized in 

this study has been demonstrated to be sensitive to systemic cortical alteration (Folger et al. 

2008; Tannan et al. 2008; Tommerdahl, Tannan, Cascio, et al. 2007), and in pilot studies, has 

been shown to return to normative values with treatment (Tommerdahl; personal 

communication, 2010). In this study, we hypothesized that women who had experienced a 

longer time course with pain and/or had unprovoked symptoms are more likely to have 

measures consistent with altered central sensitization when compared to healthy control 

subjects or those subjects who had experienced a shorter duration of provoked pain. 

Materials and Methods 

 In this study, a convenience sample of twelve women with vulvodynia and twenty 

healthy controls without gynecological pain were recruited from the University of North 

Carolina, Pelvic Pain Clinic and the surrounding community, respectively. The groups did not 

differ in basic demographic characteristics. All the participants were naïve both to the study 

design and issue under investigation. The study was performed in accordance with the 

Declaration of Helsinki, all subjects gave their written informed consent, and the experimental 

procedures were reviewed and approved in advance by an institutional review board. 

 Experimental sessions were conducted with the subjects seated comfortably in a chair 

with the right arm resting on an arm rest attached to the head unit of a portable four-site 

vibrotactile stimulator (Fig. 7.1; CM4; Cortical Metrics, LLC). Vibrotactile stimulation was 

conducted via 5 mm probes that come in contact with subject’s digit 2 (index finger) and digit 3 
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(middle finger).  Glabrous pads of digit 2 (D2) and digit 3 (D3) were chosen as the test sites for 

two reasons: (1) to allow the convenience of access and comfort of the subject, and (2) because 

of the wealth of neurophysiological information that exists for the corresponding somatotopic 

regions of cortex in primates. The independent probe tips are computer controlled and capable 

of delivery of a wide range of vibrotactile stimulation of varying frequencies (measured in 

Hertz) and amplitudes (measured in micrometers, µm).  Stimulus parameters are specified by 

test algorithms that are based on specific protocols and subjects’ responses during those 

protocols. 

  

Figure 7.1: Images of the Multi-Site Vibrotactile Stimulator.  
Stimulators are positioned by rotating each of the 4 independently positioned drums to maximize contact between 
fingers and the stimulator tips. During an experimental session, the subject was seated comfortably in a chair with the 
right arm resting on the arm rest attached to the head unit of the stimulator. Index and middle finger were positioned 
for D2 and D3 stimulation. !
 Participants viewed a computer monitor which provided continuous visual cueing 

during the experimental session. Specifically, an on-screen light panel indicated to the subject 

when the stimulus was on and when the subject was to respond. Practice trials were performed 

before each test which allowed the subject to become familiar with the tests, and correct 

responses on 5 consecutive training trials were required before commencing with each test. The 

subject was not given performance feedback or knowledge of the results during data 

acquisition. 
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!
Figure 7.2: Schematics of the Protocols Used in this Study.  
Panel A: Vibrotactile detection threshold protocols. Left panel: 2 Alternative Forced Choice (2AFC) tracking protocol: In 
each trial, a 25 Hz vibrotactile test stimulus was delivered to either D2 or D3 for 0.5 second, followed by a patient 
response interval (RI). Participant was prompted to select the skin site that perceived the stimulus. A 5-second inter-
trial interval (ITI) intervened between stimulus response and onset of the next trial. Right panel: Dynamic tracking 
protocol: A delay period (variable n = 0, 1.5, 2, or 3 s) without any stimulation was applied. After the initial delay, a 25 
Hz vibrotactile stimulus was delivered to either D2 or D3. The amplitude of the stimulus was initiated from zero and 
increased in steps of 2 mm/s. The stimulation was terminated with participant response to the perceived stimulus 
(variable m = subject response time).  
Panel B: Amplitude discrimination protocols. Left panel: Amplitude discrimination at baseline: Two 25 Hz vibrotactile 
stimuli, the standard (S) and test (T), were delivered simultaneously for 0.5 seconds. Participant was asked to choose 
the stimulus that was perceptually larger. Right panel: Amplitude discrimination task with preexposure to conditioning 
stimulation. A 25 Hz conditioning stimulus (C) was delivered 1 second before the presentation of the test and standard 
stimuli.  
Panel C: Dynamic tracking with adaptation protocol: Two identical 25 Hz vibrotactile stimuli (conditioning stimuli) were 
delivered simultaneously for a fixed interval (variable n = 0, 1.5, 2, or 3 s). After the initial constant stimulus period, the 
amplitude of the 2 stimuli were dynamically increased/decreased, in steps of 25 mm/s. Stimulation was terminated 
with patient response to the location at which the most intense stimulus was delivered (variable m = subject response 
time) 
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the 20-trial experimental run, a vibrotactile test stimulus
(25Hz, amplitude between 105 and 200 mm) was delivered
to one digit pad at the same time that a standard stimulus
(25Hz, amplitude fixed at 100mm) was applied to the other
digit pad. The loci of the test and standard stimuli were
randomly selected on a trial-by-trial basis. At the beginning
of the experimental run, the test amplitude was 200 mm and
the standard amplitude was 100mm. The difference between
the amplitudes of the test and standard stimuli was adjusted
on the basis of the participant’s response in the preceding
trial, such that the difference was decreased/increased after
a correct/incorrect response, respectively. The same track-
ing algorithm as that described for the tactile detection
threshold protocol (2AFC tracking protocol) was used to
track the participant’s ability to determine the most intense
stimulus between the test and standard stimuli [ie, the

patient’s difference limen (DL) was determined]. The step
size was held constant at 10 mm throughout the experi-
mental run.

Amplitude Discrimination With Single-site
Adaptation

To measure the effects that conditioning stimuli have
on subsequent test stimuli, the earlier described amplitude
discrimination protocol was modified. As shown in Figure
2B right panel, a 25Hz 200mm conditioning stimulus was
delivered 1 second before the presentation of the test and
standard stimuli. When the conditioning stimulus is
delivered to the same site as the test stimulus, the gain
effect of adaptation (reducing the perceived intensity) can
be quantified by comparison of the amplitude discrimina-
tion DL obtained in the adapted versus nonadapted

FIGURE 2. Schematics of the protocols used in this study. A, Vibrotactile detection threshold protocols. Left panel: 2 Alternative Forced
Choice (2AFC) tracking protocol: In each trial, a 25 Hz vibrotactle test stimulus was delivered to either D2 or D3 for 0.5 second, followed
by a patient response interval (RI). Participant was prompted to select the skin site that perceived the stimulus. A 5-second inter-trial
interval (ITI) intervened between stimulus response and onset of the next trial. Right panel: Dynamic tracking protocol: A delay period
(variable n = 0, 1.5, 2, or 3 s) without any stimulation was applied. After the initial delay, a 25 Hz vibrotactile stimulus was delivered to
either D2 or D3. The amplitude of the stimulus was initiated from zero and increased in steps of 2 mm/s. The stimulation was terminated
with participant response to the perceived stimulus (variable m = subject response time). B, Amplitude discrimination protocols. Left
panel: Amplitude discrimination at baseline: Two 25 Hz vibrotactile stimuli, the standard (S) and test (T), were delivered simultaneously
for 0.5 seconds. Participant was asked to choose the stimulus that was perceptually larger. Right panel: Amplitude discrimination task
with preexposure to conditioning stimulation. A 25 Hz conditioning stimulus (C) was delivered 1 second before the presentation of the
test and standard stimuli. C, Dynamic tracking with adaptation protocol: Two identical 25 Hz vibrotactile stimuli (conditioning stimuli)
were delivered simultaneously for a fixed interval (variable n = 0, 1.5, 2, or 3 s). After the initial constant stimulus period, the amplitude
of the 2 stimuli were dynamically increased/decreased, in steps of 25 mm/s. Stimulation was terminated with patient response to the
location at which the most intense stimulus was delivered (variable m = subject response time).
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 The sensory testing session was conducted by application of low frequency (25 Hz) 

vibration to right hand’s index and middle finger(s). The protocols-from start to finish  lasted 

approximately 30 minutes and consisted of the following 5 modules: (1) static detection 

threshold; (2) dynamic detection threshold; (3) amplitude discrimination between two 

concurrent and stationary stimuli; (4) the impact of single-site adaptation on amplitude 

discrimination capacity; and (5) dynamic amplitude discrimination. Exemplary use, technical 

description and neurobiological basis of individual modules have previously been described in 

detail (Folger et al. 2008; Francisco et al. 2008; Tannan et al. 2008; Tannan, Simons, et al. 2007; 

Tommerdahl, Tannan, Cascio, et al. 2007; Zhang et al. 2009). An overview of the procedures and 

the previously published normative findings is provided below. 

Static detection threshold 

 Each participant’s vibrotactile detection threshold was measured using a 20-trial Two 

Alternative Forced Choice (2AFC) tracking protocol (for recent description with this experiment 

setup, see previous studies (Francisco et al. 2008; Tannan, Dennis, and Tommerdahl 2005; 

Tannan, Dennis, and Tommerdahl 2005; Tannan, Whitsel, and Tommerdahl 2006; Zhang et al. 

2009). The left panel of Fig. 7.2a shows the schematic of the protocol. During each trial a 25 Hz 

vibrotactile test stimulus was delivered to either D2 or D3; the stimulus location was randomly 

selected on a trial-by-trial basis in order to minimize subject’s inattention and distraction. 

Following each vibrotactile stimulus, the subject was prompted to select the skin site (index 

(D2) vs. middle (D3) finger) that was perceptually larger. After a 5 sec delay — based on subject 

response — the stimulation was repeated until the completion of the 20 trials. The stimulus 

amplitude was started at 15 μm and was modified based on the subject’s response in the 

preceding trial. A 1-up/1-down algorithm was used for the purposes of amplitude modification 

in the first 10 trials. For example, the stimulus amplitude was decreased by 1 µm if the 

subject’s response in the preceding trial was correct. However, it was increased by the same 

amount if the response was incorrect. After the initial 10 trials, the amplitude was varied using 

a 2-up/1-down algorithm (two correct/one incorrect subject response(s) resulted in a 
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decrement/increment, respectively, in the amplitude of the stimulus). The rationale for using 

1up/1down algorithm in the first 10 trials was to expedite determination of subject’s 

vibrotactile discriminative range without affecting the results, and this approach has been 

previously reported (Tannan, Dennis, et al. 2007; Tannan et al. 2008; Zhang et al. 2009; Zhang 

et al. 2008; Folger et al. 2008; Francisco et al. 2008; Tannan, Simons, et al. 2007).  

Dynamic detection threshold 

 At the beginning of each trial (as shown in Fig. 7.2a, right panel), a delay period which 

includes no stimulation was applied. Four conditions of delay (n sec) were employed, in 

separate trials: 0, 1.5, 2, and 3 sec. After the initial delay, a 25 Hz vibrotactile stimulus was 

delivered to either D2 or D3 (the stimulus location was randomly selected on a trial-by-trial 

basis). The amplitude of the stimulus was initiated from zero and increased in steps of 2 µm/

sec. The subject was instructed to indicate the skin site that received the stimulus as soon as 

the vibration was detected. The subject’s detection threshold was calculated as the average of 

the stimulus amplitude at the time of subject response (msec). 

Amplitude discrimination at baseline 

 Each subject’s amplitude discrimination capacity was assessed using a 2AFC tracking 

protocol that has been described and implemented in a number of previous studies (Tannan, 

Dennis, et al. 2007; Tannan et al. 2008; Zhang et al. 2009; Zhang et al. 2008; Folger et al. 2008; 

Francisco et al. 2008; Tannan, Simons, et al. 2007). As shown in Fig. 7.2b left panel, during the 

20-trial experimental run, a vibrotactile test stimulus (25 Hz, amplitude between 105 and 200 

µm) was delivered to one digit pad at the same time that a standard stimulus (25 Hz, amplitude 

fixed at 100 µm) was applied to the other digit pad. The loci of the test and standard stimuli 

were randomly selected on a trial-by-trial basis. At the beginning of the experimental run, the 

test amplitude was 200 µm and the standard amplitude was 100 µm. The difference between 

the amplitudes of the test and standard stimuli was adjusted on the basis of the subject’s 

response in the preceding trial, such that the difference was decreased/increased after a 

correct/incorrect response, respectively. The same tracking algorithm as that described for the 
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tactile detection threshold protocol (2AFC tracking protocol) was employed to track the 

subject’s ability to determine the most intense stimulus between the test and standard stimuli 

(i.e., the subject’s difference limen (DL) was determined). The step size was held constant at 10 

µm throughout the experimental run.  

Amplitude discrimination with single-site adaptation 

 In order to measure the effects that conditioning stimuli have on subsequent test 

stimuli, the previously described amplitude discrimination protocol was modified. As shown in 

Fig. 7.2b right panel, a 25 Hz 200 µm conditioning stimulus was delivered 1 sec prior to the 

presentation of the test and standard stimuli. When the conditioning stimulus is delivered to 

the same site as the test stimulus, the gain effect of adaptation (reducing the perceived 

intensity) can be quantified by comparison of the amplitude discrimination DL obtained in the 

adapted vs. non-adapted conditions (Tannan et al. 2007, 2008; Zhang et al. 2009). The 

amplitude discrimination tracking algorithm used in the previously described protocol was 

employed. 

Dynamic amplitude discrimination 

 To further characterize the effects of adaptation on amplitude discrimination, a 

dynamic tracking protocol was implemented (for recent description with this experimental 

setup, see previous study (Zhang et al. 2009). At the start of each run (shown in Fig. 7.2c), two 

vibrotactile stimuli (25 Hz; initially identical in amplitude at 300 µm) were delivered 

simultaneously to D2 and D3. Four conditions of initial constant stimulus duration (n sec) were 

employed in separate experimental trials: 0, 1.5, 2, and 3 sec. After the initial constant or 

stationary stimulus period, the amplitudes of both stimuli were dynamically altered such that 

the amplitude of one stimulus was increased and the amplitude of the other stimulus was 

decreased at the rate of 25 µm/sec. The subject was instructed to indicate the location at which 

the most intense stimulus was delivered as soon as the two stimuli felt distinctly different in 

intensity. For each trial, the DL was recorded as the actual difference between the two test 
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amplitudes at the time of subject response (m sec). Averaged DLs were obtained for the four 

different durations of conditioning stimuli that preceded each trial. 

Analysis 

 Repeated-measures analysis of variance (ANOVA) was used to evaluate the difference of the      

subject’s performance under different conditions. Data are presented as means and standard 

errors (SE). A probability of less than 0.05 was considered statistically significant.  

Results 

 The present study compared women with vulvodynia and matched healthy controls in a 

series of sensory perceptual measures that assessed: (1) vibrotactile detection threshold on the 

fingertip; (2) amplitude discrimination capacity; and (3) the impact of conditioning stimuli on 

amplitude discrimination capacity. The results show that patients with vulvodynia deviated 

very little from that of healthy controls in most of the sensory measures obtained in the 

absence of conditioning stimuli — such as threshold detection and amplitude discriminative 

capacity, although the patients with vulvodynia demonstrated a tendency to have lower tactile 

thresholds on the fingertips than controls. Most importantly, the measures of the effects of 

conditioning stimuli on amplitude discrimination revealed that the patients’ data clustered into 

two distinct sub-groups (which will be referred to as Group A and Group B). Group B data was 

very similar to that obtained from healthy control subjects, and Group A demonstrated a 

significantly reduced impact of adaptation on the sensory percept. While the average ages and 

demographics of the two sub-groups were not significantly different, there was a significant 

difference in the duration that the two sub-groups of patients had pain: Group A (n=7) subjects 

had suffered from vulvodynia for a long duration (average duration: 9.3 ± 1.4 years; average 

age: 35.7 ± 3.2 years); and Group B (n=5) subjects had suffered from vulvodynia for a relatively 

shorter duration (average duration: 3.4 ±1.3 years; average age: 34.6 ± 4.3 years).  

Detection Thresholds 

 Figure 7.3 summarizes the group-averaged detection thresholds. As shown in the left 

panel of Fig. 7.3, the group-averaged static thresholds observed were 12.37±1.34 µm for 
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controls, 9.77±2.23 µm for patients in Group A, and 10.32±1.85 µm for patients in Group B. The 

data suggest an elevated sensitivity for patients with vulvodynia compared to controls, 

although this difference was not statistically significant (Group A vs. controls: p=0.35; Group B 

vs. controls: p=0.51). This finding is consistent with data reported by Pukall (Pukall et al. 2002) 

which showed that women suffering from vulvodynia had a lower tactile threshold than 

controls at sites distant to the genitalia area. 

Figure 7.3: Summary of Group-Averaged Vibrotactile Detection Thresholds 
No significant difference was observed on the static thresholds between any patients group and controls. The group-
averaged dynamic thresholds of patients with vulvodynia did not significantly differ from that of controls, while data 
from patients in Group B show a trend for lower dynamic threshold than controls.	
!
 Since several studies have reported that psychophysical measurement methods had a 

significant influence on vibrotactile thresholds (Maeda and Griffin 1995; Morioka and Griffin 

2002), in current study, the subject’s vibrotactile threshold was also measured by a dynamic 

tracking protocol. The group-averaged dynamic thresholds are shown in the right panel of Fig. 

7.3. There was no significant difference between the controls and two vulvodynia patients 
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groups, although data from patients in Group B showed a lower (though not statistically 

significant) dynamic threshold than controls.  

          

Figure 7.4: Comparison of Weber‘s Fraction with/without Conditioning 
In the absence of conditioning stimulus, no significant difference was observed between the performance of controls 
and sub-groups of vulvodynia patients. Pre-exposure to a single-site conditioning stimulation causes a significant 
degradation of performance in the controls and the patients in Group B. However, patients in Group A performed 
equally well under both adapted and un-adapted conditions. !
 While amplitude discrimination capacity was not significantly different between the         

controls and patients with vulvodynia, the impact of conditioning stimuli on performance 

during this task revealed that the vulvodynia subjects were clustered into two distinct sub-

groups. Figure 7.4 summarizes the group-averaged performance during amplitude 

discrimination tests for the controls and two sub-groups of patients with vulvodynia. Weber’s 

fractions (WF) were determined by normalizing each subject’s DL to the amplitude of standard 
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stimulus (100 µm). As shown in the left panel of Fig. 7.4, during which amplitude 

discrimination was measured in the absence of conditioning stimulus, there was no significant 

difference in performance between the controls and groups of vulvodynia patients. Specifically, 

control subjects were able to discriminate the difference between the test and standard stimuli 

that is 24.4% of the standard amplitude (WF = 0.244), and the patients in Group A and Group B 

were able to discriminate respectively 33.5% (WF = 0.335) and 31.6% (WF = 0.316) of the 

standard amplitude. However, pre-exposure to a single-site conditioning stimulus dramatically 

changed the subjects’ performance (shown in Fig. 7.4, right panel).  While the WF of controls 

and patients in Group B is significantly elevated in the adapted condition compared to the un-

adapted condition, patients in Group A performed equally well under both adapted and un-

adapted conditions. Previous reports have demonstrated that single-site adaptation impairs 

control subject’s amplitude discrimination capacity (Tannan, Dennis, et al. 2007; Tannan et al. 

2008; Zhang et al. 2009; Zhang et al. 2008; Folger et al. 2008; Francisco et al. 2008; Tannan, 

Simons, et al. 2007). One interpretation of the impairment observed in current study is that a 1 

sec conditioning stimulus reduces the perceived intensity of the subsequent test stimulus to 

the extent that a test stimulus with amplitude of approximately 162% (controls)/171% (Group B) 

of the standard amplitude was perceived nearly the same in intensity as the standard stimulus. 

Comparing to the significant degradation of performance of the controls (p < 0.01) and the 

patients in Group B (p = 0.017) due to adaptation, no change was observed in the patients in 

Group A (p = 0.52). Moreover, under the adapted condition the group-averaged performance is 

significantly different between controls and patients in Group A (p = 0.036). Therefore, 

conditioning stimulation significantly impaired the performance of the controls and the 

patients in Group B, but has no effects on the patients in Group A.  
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Figure 7.5: Percentage Change with Adaptation on Amplitude Discrimination 
The WF obtained under the condition with adaptation was normalized to the unadapted condition on a subject-by-
subject basis. Adaptation impaired the subject‘s amplitude discrimination capacity by nearly 30% for both the controls 
and the patients in Group B, while much less effect of adaption (3%) was observed in the patients in Group A. !
 In order to determine whether the differential effects of adaptation observed between 

groups were consistent within subjects, each subject’s WF obtained under the adapted 

condition was normalized to the un-adapted condition. As shown in Fig. 7.5, The 1 sec 

conditioning stimulus significantly impaired amplitude discrimination capacity by nearly 30% 

for both the controls and the patients in Group B, while there was much less of an effect (3%) of 

adaptation observed in the patients in Group A (p < 0.01). 
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Figure 7.6: Comparison of the Group-Performance on Dynamic Tracking 
Data obtained at the four different durations of dual-site conditioning stimulation (0, 1.5, 2 and 3 sec) for the controls 
and two sub-groups of patients with vulvodynia. Increasing the duration of the conditioning stimuli led to an 
improvement of performance. As the data obtained from patients in Group B deviated very little from that of controls, 
DLs obtained from patients in Group A were significantly higher compared to controls and showed only little effect 
with adaptation. !
Dynamic Tracking with Adaptation 

 A dynamic amplitude discrimination protocol was employed which is able to effectively 

compare the degree to which a subject adapts to simultaneously delivered dual-site vibrotactile 

stimuli at different durations of conditioning stimulation. Fig. 7.6 summarizes the group-

averaged performance with dual-site adaptation at the four different durations of conditioning 

stimulation (0, 1.5, 2, and 3 sec) for the controls and two sub-groups of patients with 

vulvodynia. The results show that increasing the duration of the conditioning stimuli delivered 

to both sites of skin led to an improvement of a subject’s capacity to detect the difference in 

amplitude between the two stimuli. For example, after pre-exposure to 1.5 sec, 2 sec, or 3 sec 
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conditioning stimulus, control subjects were, on average, able to attain a DL (156 µm, 141 µm, 

94 µm) that was ~73%, ~66%, or ~42% of the DL (208 µm) obtained without adaptation. 

Compared to controls, two sub-groups of patients with vulvodynia have distinct performance 

differences. Specifically, the DLs were significantly higher in patients of Group A compared to 

controls (0 sec adaptation: p < 0.01; 1.5 sec adaptation: p = 0.01; 2 sec adaptation: p < 0.01; 3 

sec adaptation: p = 0.06), but there was no significant difference between patients of Group B 

and controls in the DLs obtained under all the conditions. In summary, data obtained from 

patients in Group A showed little effect with conditioning stimulation while the data obtained 

from patients in Group B deviated very little from that of controls. 

Discussion 

 In this study, sensory perceptual measures were obtained on 12 patients diagnosed with 

vulvodynia and 20 healthy control subjects. Five tests were performed to assess: (1) detection 

threshold on the fingertips; (2) amplitude discrimination capacity; (3) the effects of adaptation 

on tactile discrimination capacity. The results suggest that women with vulvodynia have — 

although not statistically significantly — lower tactile thresholds on the fingertips than do 

control subjects. Furthermore, as amplitude discrimination capacity was not significantly 

different between the controls and patients with vulvodynia, the impact of single site 

conditioning (or adaptation) on performance of the dual-site task demonstrated a remarkable 

difference. Specifically, the observations of the conditioned sensory measures revealed that the 

patients with vulvodynia were clustered into two distinct sub-groups. Group B had data that 

was very similar to that obtained from healthy control subjects, while Group A demonstrated a 

significantly reduced impact of adaptation on the sensory percept. The primary difference 

between the compositions of the two sub-groups is the duration or longevity of pain of the 

patients in each sub-group. Group B was composed of patients that reported pain for an 

average of 3.4 ±1.3 years, while Group A was composed of patients who reported pain for an 

average duration of 9.3 ± 1.4 years.  
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 The reduction of the adaptation metric in patients with vulvodynia studied in this paper 

has not been previously reported. There have been few studies to date that have assessed the 

changes in perception that normally result from repetitive vibrotactile stimulation on the 

population of chronic pain patients, though Hollins and colleagues did report decreased effects 

of adaptation in subjects with tempomandibular disorders (Hollins et al. 1996). 

Neurophysiological studies have demonstrated that repetitive stimulation results in temporal 

changes of cortical activity, the most prominent of which is a reduction in cortical response 

with extended stimulus duration. At the single cell level, both visual and somatosensory cortical 

pyramidal neurons undergo prominent use-dependent modifications of their receptive fields 

and response properties with repetitive stimulation. These modifications can attain full 

development within a few tens of milliseconds of stimulus onset, and can disappear within 

seconds after the stimulus ends (visual cortical neurons (Bredfeldt and Ringach 2002; Celebrini 

et al. 1993; Das and Gilbert 1995; DeAngelis et al. 1995; Dinse and Kruger 1990; Pack and Born 

2001; Pettet and Gilbert 1992; Ringach, Hawken, and Shapley 1997; Shevelev et al. 1998; 

Shevelev, Volgushev, and Sharaev 1992; Sugase et al. 1999); alternatively, for review of short-

term cortical neuron dynamics in visual cortex (Kohn 2007); for review of short-term primary 

somatosensory cortical neuron dynamics (Tommerdahl et al. 1998; Tommerdahl, Favorov, and 

Whitsel 2005; Tommerdahl, Simons, et al. 2005; Tommerdahl, Whitsel, et al. 1996)). Optical 

imaging studies have also characterized the short-term dynamics of the population-level 

response of squirrel monkey contralateral primary somatosensory (SI) cortex using different 

amplitudes and durations of vibrotactile stimulation (Simons et al. 2007; Simons et al. 2005; 

Chiu et al. 2005). Guided by the scientific work mentioned above, our research group has 

designed a series of tactile sensory diagnostics which effectively assess the impact that 

adaptation has on perception (Folger et al. 2008; Francisco et al. 2008; Tannan, Simons, et al. 

2007; Tommerdahl, Tannan, Cascio, et al. 2007; Zhang et al. 2009; Zhang et al. 2008). For 

example, the protocols employed in the current study directly measure the change in amplitude 

discrimination capacity that occurs with prior conditioning stimuli. Previous studies using this 
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measure demonstrated that a subject’s ability to discriminate between two simultaneously 

delivered vibrotactile stimuli – differing only in amplitude and location – was very robust and 

repeatable across a large number of healthy subjects, but it was also very sensitive to varying 

conditions of conditioning stimuli. For instance, changing the duration of the conditioning 

stimulus delivered to one of the two sites before the amplitude discrimination task significantly 

altered a subject’s ability to determine the actual difference between the two stimuli in a 

predictive and quantifiable fashion. As a result, these methods could be viewed as a reliable 

indicator of the influence of adapting stimuli on central nervous system response, as changes 

in the peripheral response are not significantly changed at these short stimulus durations. 

Centrally mediated adaptation is dependent on several factors (e.g., GABAergic and NMDA 

receptor mediated neurotransmission, neuron-glial interactions) which play significant roles in 

the way in which cortical information processing capacities of a number of clinically identified 

subject populations are impacted by their respective disorder. For example, conditioning 

stimuli do not have as pronounced an impact on the amplitude discriminative capacity of 

subjects with autism as it does with typically developing subjects (for discussion of GABA-

deficiencies in autism, see (Francisco et al. 2008; Tannan, Simons, et al. 2007; Tommerdahl, 

Tannan, Cascio, et al. 2007; Tommerdahl et al. 2008; Tommerdahl, Tannan, Zachek, et al. 2007). 

Additionally, subjects administered a relatively small dose of an NMDA receptor antagonist (60 

mg of dextromethorphan) also demonstrated a degraded adaptation metric (Folger et al. 2008).  

 Two aspects of the adaptation process were measured in this study. The first, the gain 

effects of adaptation, was derived from the amplitude discrimination task in which a 

conditioning stimulus was delivered on one of the two test sites. The effect of that conditioning 

stimulus was on the gain of the conditioned site — that site was now perceived to be much 

smaller and thus, a reduction in gain was manifested, and subsequently, subjects (normally) 

become worse at the task. The second facet of adaptation that was measured was a contrast 

effect, in which contrast between two stimuli improve after conditioning stimuli have been 

delivered to both of the test sites, and the subjects (normally) perform better after conditioning 
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than they do without. In this study, the data obtained from the vulvodynia subjects clustered 

into two distinct sub-groups consistently with both of these aspects of adaptation. The patients 

in Group B performed very similar as healthy controls did, and the performance of the patients 

in Group A showed a significantly reduced impact of conditioning stimulation on the sensory 

percept. However, other sensory measures obtained in the absence of conditioning stimuli — 

such as threshold detection and amplitude discriminative capacity — demonstrated no 

statistically significant difference between the two sub-groups. The primary difference between 

the compositions of the two sub-groups of note is the duration that patients of the sub-groups 

have had pain, while average age of the two sub-groups was not significantly different. 

Considering the metrics of adaptation (measuring the effects of conditioning stimulation on 

sensory perception) could be a reliable indicator of systemic alterations on central nervous 

function, it is speculated that the performance difference between the two sub-groups of 

patients with vulvodynia observed in the current study might reflect the level of dysregulation 

of their central nervous system due to chronic vulvar pain. 

 The involvement of both peripheral and central mechanisms in the development and 

maintenance of vulvodynia has been supported by a series of studies (Giesecke et al. 2004; 

Pukall et al. 2002; Bergeron et al. 2001; Marinoff and Turner 1991; Bohm-Starke et al. 2001; 

Pukall et al. 2005; Gordon et al. 2003; Zolnoun et al. 2006). For example, it has been found that 

patients with vulvodynia have increased sensitivity to sensory stimulation at both genital 

regions and sites distant to it (Bohm-Starke et al. 2001; Giesecke et al. 2004; Pukall et al. 2002). 

This suggests that not only peripheral sensitization but also a generalized central abnormality 

is involved in vulvodynia and could be similar to that observed in patients with other pain 

syndromes, implying a widespread disturbance in the CNS (Pukall et al. 2005). The observation 

of increased tactile sensitivity of the skin area distant to the vulvar region — including the 

static thresholds of all vulvodynia subjects in this report — is consistent with altered central 

sensitization that develops with chronic pain. 
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 All subjects, including controls, demonstrated a dynamic threshold that was higher than 

their static threshold. This noticeable difference in the threshold between the two tasks is 

consistent with previous reports (Morioka and Griffin 2002; Zhang et al. 2009). Although this 

could possibly be explained by the influence that psychophysical measurement methods have 

on tactile detection (Maeda and Griffin 1995; Morioka and Griffin 2002), we believe an alternate 

explanation is much more plausible. Mechanistically, this phenomenon could be the result of 

feed-forward inhibition that is generated by the initial sub-threshold stimulus that occurs when 

the threshold test is ramped from zero to the detectable level (Tommerdahl, Favorov, and 

Whitsel 2010). The significance of this is that this type of feed-forward inhibition takes place in 

somatosensory cortical input layer 4 (Favorov and Kursun 2011), in which local layer 4 

inhibitory cells receive direct thalamocortical input and in turn suppress responses of 

neighboring layer 4 excitatory cells to their thalamocortical drive, thereby sharpening their RF 

properties (Douglas et al. 1995; Miller, Pinto, and Simons 2001; Bruno and Simons 2002; Alonso 

and Swadlow 2005; Sun, Huguenard, and Prince 2006; Cruikshank, Lewis, and Connors 2007). 

These inhibitory cells are more responsive to weak (near-threshold) afferent drive than are the 

excitatory layer 4 cells, and thus, sub-threshold or weak stimulus inputs will have the effect of 

raising the threshold at which excitatory layer 4 cells begin to respond to peripheral stimuli. 

Thus, though not statistically significant, the observation of the difference between the Group A 

and B patients in their dynamic thresholds is that the difference between the ratio of the 

respective dynamic and static thresholds are clearly evident, and suggestive of below normal 

feed-forward inhibition.  If this alteration is, as we believe, sensitive to the time dependency of 

the GABAb receptor, then the measure itself might be an indicator that GABAb efficiency has 

been compromised in some individuals. 

 Our data on vulvodynia patients is consistent with existing constructs in the pain 

literature and supports the notion that the relative contribution of peripheral and central 

factors differ in subgroups of women with vulvodynia, and that clinical signs and symptoms 

alone are insufficient in identifying the underlying mechanism of pain as peripheral, central or 
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a combination of both. A wide range of therapies for vulvodynia have been proposed that 

include topical therapies, pharmacologic regimens, physical therapy, surgery, and cognitive 

behavioral therapy (Goldstein, Marinoff, and Haefner 2005). However, outcomes with these 

therapies vary widely. For example, as a commonly reported therapy for localized vestivular 

dysesthesia, vestibulectomy is most effective for a specific subset of patients, specifically 

women under 30 years old who have localized vulvar pain and provoked pain (Traas et al. 2006; 

Bornstein et al. 1997). These findings suggest that it’s possible that this type of pain represents 

a localized nociceptor mechanism, while unprovoked and generalized pain could have a 

different mechanism. Our data suggest that women suffering vulvar pain for long duration or 

with unprovoked pain have more CNS involvement or dysregulation. The CNS involvement 

occur de novo (e.g., genetic polymorphism) or secondary to an intractable pain state; the latter 

is the likely mechanism by which women with provoked vulvodynia transition into unprovoked 

and/or chronic pain state. It is well documented that an intractable peripheral process can lead 

to neuroplastic changes (via central sensitization) at all levels of the CNS and “generalization of 

pain” (Traas et al. 2006; Bornstein et al. 1997). 

 The findings in this study are consistent with the idea that chronic pain, caused by 

vulvodynia, alters central sensitization that leads to changes in sensory information processing. 

These changes are manifested in lower sensory thresholds (or higher sensitivity) in sites 

without provoked pain — because of a change in the balance between excitation and inhibition 

(or glutamatergic and gabaergic neurotransmission). Lower thresholds are consistent with this 

imbalance; decreasing inhibition will result in less suppression of cortical activity. In other 

words, a simple stimulus on the skin will generate more cortical activity if altered central 

sensitization has resulted in decreased inhibition or increased excitation. However, threshold 

testing has not been considered as an efficient method in measuring altered central 

sensitization due to large inter-individual variability. And in order to show these small 

differences, group differences of repeated measurements are normally necessary. Alternatively, 

using a measure – such as an adaptation metric – in which the patient provides their own 
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individual baseline (i.e., the adaptation metric is derived on how amplitude discriminative 

capacity is impacted by conditioning) — could prove to be a more effective indicator of altered 

central sensitization that can be obtained reliably and efficiently (protocols employed in the 

current study can be obtained within 2-3 minutes). Sensory based measures of altered central 

sensitization appear to differentiate chronicity within subgroups of vulvodynia, and future 

studies will continue to investigate the changes in sensitization that appear to occur with the 

time course of the history of vulvodynia.  

!134



!!!!!!
CHAPTER 8: SOMATOSENSORY INFORMATION PROCESSING IN  

THE AGING POPULATION  7!
Overview 

 While it is well known that skin physiology — and consequently sensitivity to peripheral 

stimuli — degrades with age, what is less appreciated is that centrally mediated mechanisms 

allow for maintenance of the same degree of functionality in processing these peripheral inputs 

and interacting with the external environment. In order to demonstrate this concept, we 

obtained observations of processing speed, sensitivity (thresholds), discriminative capacity and 

adaptation metrics on subjects ranging in age from 18 to 70. The results indicate that although 

reaction speed and sensory thresholds change with age, discriminative capacity and adaptation 

metrics do not. The significance of these findings is that similar metrics of adaptation have 

been demonstrated to change significantly when the central nervous system (CNS) is 

compromised. Such compromise has been demonstrated in subject populations with autism, 

chronic pain, acute NMDA receptor block, concussion, and with tactile-thermal interactions. If 

the metric of adaptation parallels cortical plasticity, the results of the current study suggest 

that the CNS in the aging population is still capable of plastic changes, and this cortical 

plasticity could be the mechanism that compensates for the degradations that are known to 

naturally occur with age. Thus, these quantitative measures — since they can be obtained 

efficiently and objectively, and appear to deviate from normative values significantly with 

systemic cortical alterations — could be useful indicators of cerebral cortical health. 
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Introduction 

 There have been a number of significant findings related to both the anatomical and 

physiological degradation that occurs with normal aging. For example, structural and functional 

neuroimaging studies have consistently shown evidence of age-related reduction of cerebral 

cortical volume (Driscoll et al., 2009; Fjell et al., 2009; Raz et al., 2005; Resnick et al., 2003) and 

changes of white matter integrity in healthy older adults (Bartzokis et al., 2003; Gunning-Dixon 

and Raz, 2000; Gunning-Dixon et al., 2009). However, a number of researchers have noted that 

cognitive performance is relatively stable with normal aging (Morse, 1993; Van Petten et al., 

2004; Wilson et al., 2002), although some metrics of sensory performance (e.g., thresholds) 

degrade (Gescheider et al., 1994; Lin et al., 2005; Verrillo, 1982; Verrillo et al., 2002). Dinse 

made the observation that restoration of function in the aging population is attainable due to 

the emergence of new processing strategies, and he attributed this to brain plasticity being 

operational in the aging population (Dinse, 2006). In a recent review, Greenwood put forth a 

hypothesis that with aging, although there is significant evidence of both anatomical and 

physiological decline, there is no, or even negative, correlation with cognitive performance. 

Greenwood largely attributes the undefined compensatory mechanism that allows for 

maintenance of cortical information processing capacity to cortical plasticity (Greenwood, 2007; 

Greenwood and Parasuraman, 2010).   

 Recently, we have developed unique sensory based measures that quantify particular 

aspects of a subject’s central information processing capacity (Folger et al., 2008; Francisco et 

al., 2008; Tannan et al., 2005a; 2005b; 2006; 2007a; 2007b; 2008; Tommerdahl et al., 2007a; 

2007b; 2008; Zhang et al., 2008; 2009; 2011). One particular focus of these studies has been on 

obtaining measures of centrally mediated adaptation — a process that is a fundamental 

component of cortical plasticity and operates on multiple time scales (for review, see (Kohn, 

2007)). If cortical plasticity is the mechanism by which cortical information processing capacity 

is maintained, and if adaptation does, in fact, parallel cortical plasticity, then we would predict 

that metrics of adaptation would remain constant with normal aging.  In terms of adaptation, in 

!136



this study, we are most concerned with changes that occur in response to short duration (0.2-1 

sec) repetitive stimulation.  

 The metrics that we collected across the age spectrum could be broadly defined in one 

of two categories: those that are peripherally biased and those that are predominantly centrally 

mediated. We predicted that the measures that are predominantly peripherally mediated would 

be most sensitive to the impact of aging while measures that are predominantly centrally 

mediated would be less impacted. The results demonstrate that the peripherally mediated 

measures, such as threshold detection, were — as previously reported by others — significantly 

impacted with increasing age. This is not surprising, as most of these measures are primarily 

related to skin physiology, and it is well established that sensory thresholds do increase with 

age. Centrally mediated measures, such as those that rely mechanistically on cortical 

information processing properties such as lateral inhibition and/or adaptation, however, did 

not change with age. We viewed this as being consistent with the idea that others (e.g., Dinse, 

2006; Greenwood, 2007) have put forth that cortical plasticity is maintained in normal aging 

and compensates for both anatomical and physiological losses that have been shown to 

naturally occur with age.  

Material and Methods 

 In this study, 120 healthy subjects from a wide age spectrum (18-70 years) were 

recruited from the students and employees of the University of North Carolina at Chapel Hill. 

The subjects were divided into six age groups, 20 subjects in each group. A survey about 

medication and medical history was filled out by each subject before experimental tests to 

exclude subjects with a history of neurological impairment. All the subjects were naïve both to 

the study design and issue under investigation. The study was performed in accordance with 

Declaration of Helsinki, all subjects gave their written informed consent, and the experimental 

procedures were reviewed and approved in advance by an institutional review board.  

 During an experimental session, the subject was seated comfortably in a chair with right 

arm resting on an arm rest attached to the head unit of a portable four-site vibrotactile 

!137



stimulator (Fig.1; CM4, Cortical Metrics, LLC). Vibrotactile stimulation was conducted via 5 mm 

diameter probes that come in contact with subject’s digit 2 (index finger) and digit 3 (middle 

finger) of the right hand. The independent probe tips are computer controlled and capable of 

delivery of a wide range of vibrotactile stimulation of varying frequencies (measured in Hertz) 

and amplitudes (measured in micrometers, µm). Glabrous pads of digit 2 (D2) and digit 3 (D3) 

were chosen as the test sites for two reasons: (1) to allow the convenience of access and 

comfort of the subject, and (2) because of the wealth of neurophysiological information that 

exists for the corresponding somatotopic regions of cortex in primates. The subject’s left hand 

was holding a two-button response device. During each test, the subject was instructed to press 

the left/right button when the correct stimulus was perceived on the index/middle finger, 

respectively.   

Figure 8.1: Images of the Multi-Site Vibrotactile Stimulator 
Stimulators are positioned by rotating each of the 4 independently positioned drums to maximize contact between 
fingers and the stimulator tips. During an experimental session, the subject was seated comfortably in a chair with the 
right arm resting on the arm rest attached to the head unit of the stimulator. Index and middle finger were positioned 
for D2 and D3 stimulation.	
!
 Visual cueing was provided with a computer monitor during the experimental runs. 

Specifically, an on-screen light panel indicated to the subject when the stimulus was on and 
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when the subject was to respond. An audiometer was used to make sure that no auditory cues 

were emitted from the stimulator during delivery of the stimuli. Practice trials were performed 

before each test which allowed the subjects to become familiar with the test, and correct 

response on 5 consecutive training trials were required before commencing with each test. The 

subject was not given performance feedback or knowledge of the results during data 

acquisition. Stimulus parameters are specified by test algorithms based on specific protocols 

and subjects’ responses during those protocols. 

 In the current study, a series of metrics were employed to assess each subject’s tactile 

information processing capacity. The total experiment — from start to finish — lasted 

approximately 30 minutes and consisted of the following 6 metrics: (1) simple reaction time 

(RT); (2) choice RT; (3) static detection threshold; (4) dynamic detection threshold; (5) amplitude 

discrimination between two concurrent stimuli; (6) amplitude discrimination after pre-exposure 

to a conditioning stimulus to one of the stimulus sites (single site adaptation). Exemplary use, 

technical description, and neurobiological basis of individual metrics have previously been 

described in detail (Folger et al., 2008; Francisco et al., 2008; Tannan et al., 2007a; 2007b; 2008; 

Tommerdahl et al., 2007a; Zhang et al., 2009). An overview of the procedures is provided below.  

Reaction Times 

 Simple RT was measured for 14 times during an experimental run for each subject. The 

left panel of Fig. 8.2a shows the schematic of the protocol. During each trial a single tap 

(amplitude in 300 µm) was delivered to D2. The subject was instructed to press a response 

button as soon as the tap was felt. After subject’s response, a delay between 2 sec and 7 sec 

was placed before the onset of the next trial. For each trial, the RT was recorded as the time 

interval between stimulation tap and subject’s response. In total, fourteen simple RTs were 

obtained for each subject. During the course of data analysis, the 2 largest and 2 minimum RT 

values were excluded in order to eliminate the effects of anticipation and inattention. As a 

result, a subject’s simple RT was calculated as the average of 10 RTs recorded.  
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 Choice RT was measured using a 14-trial Two Alternative Forced Choice (2AFC) protocol. 

The right panel of Fig. 8.2a shows the schematic of the protocol. During each trial a single tap 

(amplitude in 300 µm) was delivered to either D2 or D3; the stimulus location was randomly 

selected on a trial-by-trial basis in order to minimize subject’s inattention and distraction. The 

subject was instructed to select the skin site (D2 or D3) that received the tap as fast as possible 

by pressing the left or right button on the response box. The response accuracy was recorded 

for each trial. After excluding the 2 largest and 2 minimum values, the average response time of 

trials with correct response was considered as a subject’s choice RT. The average performance 

accuracy of all the subjects is 95%. 

Static detection threshold 

 Each subject’s vibrotactile detection threshold was measured using a 20-trial 2AFC 

tracking protocol (for recent description with this experiment setup, see previous studies Zhang 

et al. 2009). The left panel of Fig. 8.2b displays the schematic of the protocol. During each trial 

a 25 Hz vibrotactile test stimulus (lasts 500ms) was delivered to either D2 or D3; the stimulus 

location was randomly selected on a trial-by-trial basis. Following each vibrotactile stimulus, the 

subject was prompted to select the skin site (D2 vs. D3) that perceived the stimulation. After a 

5 sec delay — based on subject response — the stimulation was repeated until the completion 

of the 20 trials. The stimulus amplitude was started at 15 μm and was modified based on the 

subject’s response in the preceding trial. During the initial 10 trials, a 1-up/1-down algorithm 

was used for the purposes of amplitude modification. For example, the stimulus amplitude was 

decreased by 1 µm if the subject’s response in the preceding trial was correct. However, it was 

increased by 1 µm if the response was incorrect. After the initial 10 trials, the amplitude was 

varied using a 2-up/1-down algorithm (two correct/one incorrect subject response(s) resulted in 

a decrement/increment, respectively, in the amplitude of the stimulus). The rationale for using 

1up/1down algorithm in the first 10 trials was to expedite determination of subject’s 

vibrotactile discriminative range without affecting the results, and this approach has been 
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previously reported (Folger et al., 2008; Francisco et al., 2008; Tannan et al., 2006; 2007a; 

2007b; 2008; Tommerdahl et al., 2007a; 2007b; 2008; Zhang et al., 2008; 2009; 2011). 

Dynamic detection threshold 

 At the beginning of each trial (as shown in Fig. 8.2b, right panel), a delay period (D) 

which includes no stimulation was applied. Four conditions of delay (n sec) were employed, in 

separate trials: 0, 1.5, 2, and 3 sec. After the initial delay, a 25 Hz vibrotactile stimulus was 

delivered to either D2 or D3 (the stimulus location was randomly selected on a trial-by-trial 

basis). The amplitude of the stimulus was initiated from zero and increased in steps of 2 µm/

sec. The subject was instructed to indicate the skin site that received the stimulus as soon as 

the vibration was detected. The stimulus amplitude at the time of subject’s response was 

recorded, and only the value with accurate response was used to calculate the subject’s average 

dynamic detection threshold.   

Amplitude discrimination at baseline 

 Each subject’s amplitude discrimination capacity was assessed using a 2AFC tracking 

protocol that has been described and implemented in a number of previous studies (Folger et 

al., 2008; Francisco et al., 2008; Tannan et al., 2007a; 2007b; 2008; Tommerdahl et al., 2007a; 

Zhang et al., 2008; 2009; 2011). As shown in Fig. 8.2c left panel, during the 20-trial 

experimental run, a vibrotactile test stimulus (T) (25 Hz, amplitude between 105 and 200 µm) 

was delivered to one digit pad at the same time that a standard stimulus (S) (25 Hz, amplitude 

fixed at 100 µm) was applied to the other digit pad. The loci of the test and standard stimuli 

were randomly selected on a trial-by-trial basis. At the beginning of the experimental run, the 

test amplitude was 200 µm and the standard amplitude was 100 µm. The difference between 

the amplitudes of the test and standard stimuli was adjusted on the basis of the subject’s 

response in the preceding trial, such that the difference was decreased/increased after a 

correct/incorrect response, respectively. The step size was held constant at 10 µm throughout 

the experimental run. The same tracking algorithm as that described for the tactile detection 

threshold protocol was employed to track the subject’s ability to determine the most intense 

!141



stimulus between the test and standard stimuli (i.e., the subject’s difference limen (DL) was 

determined).  

 

Figure 8.2: Schematics of the Protocols Used in this Study	
!
Adaptation metric 

 Amplitude discrimination with single-site adaptation. In order to measure the effects 

that conditioning stimuli have on subsequent test stimuli, the previously described amplitude 
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discrimination protocol was modified such that delivery of the test and standard stimuli was 

preceded by a single conditioning stimulus to one of the two stimulus sites (as shown in Fig. 

8.2c, right panel). Specifically, a 25 Hz 200 µm conditioning stimulus (C) was delivered 1 sec 

prior to the presentation of the test and standard stimuli (S/T). The duration of the 

conditioning stimulus was 1 sec, which was followed by a 1 sec delay before onset of the 

simultaneous delivery of the test and standard stimuli. The result of such a protocol 

modification is that the amplitude discrimination difference limen (DL) is typically significantly 

elevated after pre-exposure to a single-site conditioning stimulation (Folger et al., 2008; Tannan 

et al., 2007b; 2008; Zhang et al., 2009; 2011). When the conditioning stimulus is delivered to the 

same site as the test stimulus, the gain effect of adaptation (reducing the perceived intensity) 

can be quantified by comparison of the DL obtained in the adapted vs. non-adapted conditions 

(amplitude discrimination at baseline). The tracking algorithm used in the previously described 

protocol was employed. 

Analysis 

 One way analysis of variance (ANOVA) and two-sample t-test were used to evaluate the 

difference of the subject’s performance across different groups. Data are presented as means 

and standard errors (SE). A probability of less than 0.05 was considered statistically significant. 

Results 

 In the current study, a series of sensory perceptual measures was performed on healthy 

control subjects of different ages (ranging from 18 to 70 years) that assessed: (1) reaction time; 

(2) vibrotactile detection threshold; (3) amplitude discrimination capacity; and (4) the impact of 

adaptation on amplitude discrimination capacity. The results indicate that although RT and 

sensory thresholds increased as a function of age, the subject’s discriminative capacity and the 

effects of adaptation on performance remained constant across all the age groups tested. 

!
!
!
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Figure 8.3: Summary of the Group-Averaged RTs for Six Age Groups 
Significant differences in mean simple and choice RT were observed between the subject under 25 years and the 
subjects older than 60 years.	
!
 Reaction time increases with age. Fig. 8.3 summarizes the group-averaged RT of six age 

groups. Both choice and simple RTs progressively increase with advancing age. One way 

ANOVA was performed to compare the mean RT across six age groups, and there is evidence 

that there are significant differences in the means across groups (p < 0.001 for both simple and 

choice RT). Two-sample t-test was employed to compare the mean RT of the subjects under 25 

years vs. the mean RT of the subject older than 60 years. There is a significant difference in the 

mean simple RTs (182 ms vs. 302 ms) and mean choice RTs (362 ms vs. 498 ms) with p < 0.001. 

The data suggests an age-related decrement in response speed. Note that for all the age groups, 

choice RT is always higher than simple RT. The difference between choice RT and simple RT 

might reflect the duration that it takes for a subject to identify a stimulus location. In Fig. 8.4, 

!144



the group-averaged RT values are plotted against age. Strong linear relationship (positive 

correlation) between RTs and age were observed, with R2=0.99 for simple RT and R2=0.95 for 

choice RT.  

Figure 8.4: Summary of Group-Averaged RTs Plotted Against Mean Age 
Strong liner relationship (positive correlation) between RTs and age were observed, with R2=0.99 for simple RT and 
R2=0.95 for choice RT.	
!
 In the current study, subjects performed each RT test for 14 times. In order to calculate 

the index of intra-individual variability, the standard deviation (SD) of repeated RT measures 

was normalized to the mean RT for each subject individually. The group-averaged index of 

intra-individual variability (%) on RT performance was calculated and plotted in Fig. 8.5. One 

way ANOVA was performed. It was found that there are evidence of significant differences in 

the means of intra-individual variability for simple RT performance (p < 0.001) across six age 
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groups, while no significant differences are found for choice RT performance (p = 0.11) across 

groups. Looking at the intra-individual variability for simple RT by itself, there is no significant 

differences in the means across age groups younger than 50 years (p = 0.4). However, two-

sample t-test shows significant difference between mean of 40-49 years age group and mean of 

50-59 years age group (p < 0.05). The data demonstrates that the group-averaged intra-

individual variability remains relatively constant for the subjects younger than 50 years old, 

while the older subjects (>50 years) have significant higher intra-individual variability.  

Figure 8.5:  Variability in Reaction Times Across Six Age Groups 
Looking at means of intra-individual variability for simple RT, there is no significant difference in the mean across 
groups that are younger than 50 years (p = 0.4). However, significant difference was found between mean of 40-49 years 
group and means of 50+ groups (p < 0.05). No significant difference was found for choice RT performance across 
groups (p = 0.11).	
!
!
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Figure 8.6: Summary of Group-Averaged Vibrotactile Detection Thresholds 
Both static and dynamic detection threshold progressively rises with aging. All subjects demonstrated a dynamic 
threshold that was higher than their static threshold.	
!
Vibrotactile detection threshold increases with age 

 The group-averaged detection thresholds were obtained with two different methods: a 

static testing paradigm and a dynamic testing paradigm. As shown in Fig. 8.6, the group 

averaged static threshold gradually increases with advancing age. Specifically, the averaged 

static threshold for the subjects who are older than 60 years is 13.95 µm which is about 8 µm 

larger than that of the subjects under 25 years old (5.42 µm). Since several studies have 

reported that psychophysical measurement methods had a significant influence on vibrotactile 

threshold (Maeda and Griffin, 1994; Morioka and Griffin, 2002), the threshold was also 

measured by a dynamic tracking protocol, in which a continuously increasing stimulus was 

delivered. Following the same trend as observed with static testing paradigm, the group 
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averaged dynamic threshold progressively rises with aging. In general, the data suggest an 

elevated tactile sensitivity for older subjects.  

 It is noteworthy that all subjects demonstrated a dynamic threshold that was higher 

than their static threshold. This noticeable difference in the threshold between the two tasks is 

consistent with previous reports (Morioka and Griffin, 2002; Zhang et al., 2009; 2011). One of 

the explanations could be linked to the fact that dynamic threshold is reaction time dependent, 

while static threshold is independent of reaction time. If this is simply the case, the difference 

between dynamic and static threshold should be equal to the product of choice RT and the 

speed of amplitude increment (2 µm/sec) during dynamic threshold measurement. Based on 

this assumption, we calculated the predicted dynamic thresholds using following equation: 

Predicted dynamic threshold = Observed static threshold + Choice RT * 2µm/sec 

Figure 8.7: Comparison of the Predicted and Observed Dynamic Thresholds 
The predicted values are always significantly smaller than the observed thresholds.	
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Fig. 8.7 compares the predicted and observed dynamic thresholds, and the predicted values are 

always significantly smaller than the observed thresholds, strongly suggesting that the 

difference between the two measures is not simply due to reaction time. Figure 8.8 is a direct 

comparison between the two threshold metrics for each age group (actually a ratio of dynamic/

static), and it emphasizes not only that the dynamic threshold is always greater than the static 

threshold, but that this ratio decreases with age. There is a significant difference between the 

youngest age group and the oldest age group (p < 0.05).  

Figure 8.8: Ratio of Dynamic vs. Static Thresholds 
Summary of ratio of dynamic vs. static detection threshold across six age groups. Not only the dynamic threshold is 
always greater than the static threshold, but the dynamic vs. static ratio decreases with age. There is a significant 
difference between the youngest age group and the oldest age group(p < 0.5). 
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Figure 8.9: Differences in Amplitude Discrimination Across Ages 
There is no significant difference in means across six age groups for both metric of amplitude discriminative capacity 
(p = 0.85) as well as adaptation metric (p = 0.98). !
 Amplitude discrimination capacity and the effects of adaptation were not altered with 

increases in age. Fig. 8.8 summarizes the group-averaged amplitude discrimination 

performance obtained during amplitude discrimination task with or without pre-exposure to a 

conditioning stimulus (adaptation). The data demonstrate that, in the absence of single site 

adaptation, subjects were able to discriminate between a 100 µm and nearly 125 µm stimulus 

equally well for all the age groups. On the other hand, the delivery of a conditioning stimulus to 

one of the two stimulus sites prior to the amplitude discrimination task significantly impacted 

the subject’s amplitude discrimination capacity, and the effects of adaptation maintained well 

across all the age groups. This observed impairment of amplitude discrimination capability due 

to adaptation is consistent with the results of previous studies (Folger et al., 2008; Tannan et 

!150



al., 2007b; 2008; Zhang et al., 2009). One interpretation of this impairment is that a 1 sec 

conditioning stimulus reduces the perceived intensity of the subsequent test stimulus to the 

extent that a stimulus with amplitude of approximately 170 µm (compared to 125 µm without 

adaptation) was perceived as nearly the same in intensity as the 100 µm stimulus. One way 

ANOVA proves that there is no difference in means across six age groups for the amplitude 

discrimination task with adaptation (p = 0.98) or without adaptation (p = 0.85). To summarize 

the finding across the age spectrum, there is no significant difference in amplitude 

discrimination performance between subjects of different age groups in discriminative capacity 

with or without the presence of single-site conditioning stimuli.  In other words, both the metric 

of amplitude discriminative capacity as well as the adaptation metric (the degree to which 

amplitude discriminative capacity changed with the conditioning stimulus) were maintained 

with increases in age. 

Discussion 

 The present study evaluated the tactile information processing capacity of healthy 

human subjects across a wide age range (18 to 70 years). Six tests were performed to assess: (1) 

simple and choice RT; (2) vibrotactile detection thresholds; (3) amplitude discrimination 

capacity; (4) the effects of adaptation on amplitude discrimination capacity. While the results of 

peripherally mediated measures demonstrated significant increases in RT and detection 

threshold with age, the subjects’ performance on the centrally mediated measures did not 

change. Specifically, the amplitude discrimination capacity and the impact of adaptation on 

performance were maintained with age. If adaptation is a metric that parallels cortical 

plasticity, the results of the current study suggest that the CNS in the aging population is still 

capable of plastic changes, and this cortical plasticity could be the mechanism that 

compensates for the degradations that are known to naturally occur with age. 

 Among many cognitive skills, speed of information processing is considered to be 

especially prone to aging effects. Prior studies have shown a significant increase in reaction 

time between 20 year olds and 60 year olds (Fozard et al., 1994; Ratcliff et al., 2001), and this 
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compares favorably with the results obtained in this study. In the current study, the subject’s 

tactile information processing speed was assessed with two well established tasks: simple RT 

and choice RT tasks. We found that group-averaged RT was positively correlated with the 

average age for each group, with a correlation coefficient of 0.99 for simple RT and 0.95 for 

choice RT. Several studies have speculated the reasons for slowing reaction time with age, and 

factors other than simple speed of nerve transmission are most often cited.  For example, 

human white matter integrity has been found to significantly correlate with information 

processing speed (Deary et al., 2006; Madden et al., 2009; Penke et al., 2010; Vernooij et al., 

2009). Vernooij et al. (2009) conducted diffusion tensor imaging (DTI) scans and cognitive tasks 

in a sample of 860 older adults 61-92 years of age. It has been found that performance on tests 

that rely on processing speed degrades significantly with declining white matter integrity of the 

whole brain. Since many of these studies were performed on older healthy subjects without 

signs of mild cognitive impairment or dementia, the increase of RT might simply represent the 

effects of normal aging on basic cognitive function. In the context of the current study, we 

speculate that the increased mean RT could be the result of both decreased nerve transmission 

speed with age as well as the age-related decline in white matter integrity.    

 Increases in intra-individual variability on RT performance have been observed for older 

subjects compared with younger subjects. For example, it has been shown that inconsistency 

across trials on RT performance increases with age (Bunce et al., 2010; Gorus et al., 2008; 

Hultsch et al., 2000; 2002). In this report, we found that while the group-averaged intra-

individual variability remains relatively constant for the subjects younger than 50 years old, the 

older subjects (>50 years) have significant higher intra-individual variability. In other words, 

older subjects showed greater inconsistency than younger subjects in response speed. Several 

studies have demonstrated that performance variability has the potential to be a good indicator 

of neurological disturbance and may be a good marker of preclinical status of dementia. For 

example, Bunce et al. (2010) found greater frontal white matter lesions were associated with 

higher intra-individual variability in choice RT in middle-aged healthy adults. Hultsch et al. 

!152



(2000) also demonstrated that performance variability was greater in patients with mild 

dementia than in healthy elderly subjects. As a result, measures of intra-individual variability 

may be a plausible behavioral indicator of aging-induced central neurological disturbances and 

may be able to serve as a valuable early marker of neurodegenerative disease.  

 Tactile detection threshold (a measure which determines the minimum stimulus 

intensity that can be perceived), has been documented to increase (due to decreased sensitivity) 

with age (Gescheider et al., 1994; Kenshalo, 1986; Lin et al., 2005; Thornbury and Mistretta, 

1981; Verrillo, 1977, 1979, 1980). In the current study, the data is consistent with prior 

observations and shows degraded vibrotactile sensitivity (at 25 Hz) with increasing age. In order 

to determine if mechanisms involved in processing sub-threshold vs. threshold stimuli could be 

differentiated, tactile detection thresholds were collected using two different protocols. “Static” 

threshold is the minimum constant-amplitude stimulus detected, and “dynamic” threshold 

refers to the detection threshold measured with a stimulus that is increased from zero intensity 

to a detectable level (Zhang et al., 2009; 2011). It is noteworthy that all subjects demonstrated a 

dynamic threshold that was higher than their static threshold. This noticeable difference in the 

threshold between the two tasks is consistent with previous reports (Morioka and Griffin, 2002; 

Zhang et al., 2009; 2011). Since an argument could be made that the primary difference 

between the two measures is one of reaction time —  dynamic threshold is reaction time 

dependent, while static threshold is independent of reaction time — we directly compared the 

actual results vs. results predicted based on this reaction time difference. As demonstrated in 

Fig. 8.6 of Results, the difference between the observations obtained by the two methods could 

not be explained by reaction time alone. An alternative possibility — and one that the authors 

have recently proposed (Favorov and Kursun, 2011; Tommerdahl et al., 2010; Zhang et al., 

2011) — is that the difference between the two threshold metrics is impacted significantly by 

feed-forward inhibition that is generated by the initial sub-threshold stimulus that occurs when 

the dynamic threshold test is ramped from a null to a detectable level. Thus, the sub-threshold 
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stimulus delivered by the dynamic threshold test actually leads to the initial inhibition, or 

adaptation, that ultimately requires a larger stimulus to reach detectable levels.  

 One of the interesting findings of the current study is that although the subjects’ 

vibrotactile detection threshold went up with age, their amplitude discrimination capacity was 

maintained. Specifically, subjects in all age groups demonstrated a similar ability to 

differentiate two supra-threshold stimuli that are delivered simultaneously to the skin. It 

should be noted that this amplitude discrimination task was conducted at supra-threshold 

levels (approximately 10x normative thresholds), and all subjects had approximately the same 

amplitude discriminative capacity at the amplitudes used. Thus, while the decline of tactile 

sensitivity is considered to be influenced predominantly by peripheral factors, we speculate 

that the ability to discriminate between two supra-threshold stimuli is more influenced by 

centrally mediated factors and would be only moderately influenced by changes in the 

periphery. This hypothesis was derived, in part, from studies which demonstrated that 

localized increases in the magnitude of the SI cortical response (Friedman et al., 2008; Simons 

et al., 2005; 2007) paralleled the changes in the ability of human subjects to distinguish 

between different intensities of skin stimulation (i.e., amplitude discrimination; Francisco et al. 

2008).  

 To investigate potential changes in cortical plasticity with normal aging, the effect of 

single site adaptation on amplitude discrimination capacity was measured. Previous studies 

using this adaptation metric demonstrated that a conditioning stimulus delivered to one of the 

two sites before the amplitude discrimination task significantly altered a subject’s ability to 

determine the actual difference between the two stimuli (Tannan et al., 2007b; 2008) by 

introducing a confound. In other words, the conditioning stimulus makes the subsequent 

stimulus, at the conditioned site, feel weaker and consequently, amplitude discriminative 

capacity is reduced. Neurophysiological studies have demonstrated that the effects of reduced 

intensity due to adapting stimulation are possibly attributable to a reduction in the responsivity 

of central neurons after prolonged or repetitive stimulation (Lee and Whitsel, 1992; Lee et al, 
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1992). When the single site adaptation measure is examined across a number of subject 

populations with compromised CNS - as may be the case with a neurodevelopmental disorder: 

autism (Tannan et al., 2008), acute pharmacological block (Folger et al., 2008) or a chronic pain 

condition (Zhang et al., 2011) —  the adaptation metric is significantly diminished  from that of 

the control population. These findings suggest that the method could be viewed as a potential 

indicator or marker of systemic cortical alterations, as adaptation, at this short duration time 

scale, is impacted by a number of factors (for discussion, see (Folger et al., 2008; Francisco et 

al., 2008; Tannan et al., 2007b; 2008; Tommerdahl et al., 2007a; 2010; Zhang et al., 2009; 2011)).  

 Evidence from a wide range of studies has demonstrated that while there are aspects of 

anatomical and functional degradation with age, the CNS is still capable of plastic changes. For 

instance, in a series of studies, Dinse and colleagues reported that experimental or 

environmental stimulations could induce use-dependent plasticity in older animal as well as 

human subjects at both cortical and behavioral level (Dinse, 2005, 2006; Dinse et al., 2006; 

Hilbig et al., 2002; Kalisch et al., 2008; 2009; Kattenstroth et al., 2010; Li and Dinse, 2002). 

Specifically, it has been found that aged rats exposed to an enriched environment showed 

complete recovery from the age-related enlargement of RFs of the hindpaw in somatosensory 

cortex typically found in animals housed in standard conditions (Hilbig et al., 2002). At the 

behavioral level, repetitive sensory stimulation procedures resulted in improvement of tactile 

acuity in elderly individuals, a phenomenon based on synaptic plasticity (Dinse, 2005; Dinse et 

al., 2006). In this study, we found that the effects of adaptation remain relatively constant 

across healthy populations regardless of age. Since adaptation is an important feature of 

cortical information processing that apparently remains intact with normal aging, it could be an 

important feature to assess in the aging population. Deviations from normative values could be 

an early indicator of neurodegenerative disease; studies directly addressing this issue are 

currently ongoing and will be reported in the near future. 

!
!
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!!!!!!
FUTURE DIRECTIONS 

Protocols 

 The novel tests used throughout this dissertation are exponentially quicker and 

potentially provide more insight into overall brain health.  Through the use of confounds in 

chapter 4, we may have discovered a way to monitor glial status through a non-invasive tactile 

test that virtually anyone can perform.  The dynamically changing stimuli seen in chapters 3, 5, 

6,7, & 8, have given us insight into the role of feed forward inhibition and cortical plasticity in 

subjects with autism and VVS.  In all likelihood, it is possible to measure even more specific 

interactions taking place in SI with the right test or the right combination of tests.  

 The protocols which use dynamically changing stimuli generally provide the same 

diagnostic information in a fraction of the time that it takes to run a classic 20 trial 2AFC 

protocol.  These tests also give us the opportunity to provide conditioning or confounds, like 

“adaptation," without any real awareness to the subject.  The chapters provided in this 

dissertation do a lot to describe how these tests work in relation to amplitude discrimination, 

at near threshold and super threshold amplitudes; but all these tests are performed at 40 Hz.  

A study using different frequency of vibration should be performed at a variety of amplitudes 

and rates of modulation in order to ascertain the impact that frequency has on the test.  In 

preliminary testing, exponentially better performance was seen at higher frequencies (200 Hz) .  

Frequency confounds could also be used in this test to potential uncover a new protocol to test 

interactions between synchronization and spatial acuity. The tests with ramping stimuli 

generally were only ramped in one direction: in threshold testing the test stimulus began at 0 

microns and ramped until perception and in the matching task they began at 0 microns and 

increased until the subject perceives a match.  This potentially causes some bias to the 
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response and in studies of the “method of limits” generally the “limits” are studied in an 

ascending and descending fashion.  These tests should more than likely be repeated with test 

amplitudes much higher in amplitude and then ramped down until the subject responds.  This 

also creates a way to “mix-up” the tests quite easily but still get a robust measure of amplitude 

capacity, however, the impact of adaptation will be greater with the larger intensity stimuli.   

 A test of dynamically changing frequency would also be rather trivial to perform.  In 

these tests, a standard stimulus should be delivered at a constant amplitude and constant 

frequency, while the other is ramped from 0 Hz with the same amplitude as the standard 

stimulus.  The subject would respond when they felt the frequencies of the two stimuli match.  

The general outline of the study should look very similar to the one from chapter 3, the rate of 

frequency change should be varied as well as the standard frequency being used as a 

comparison.  It is unlikely that amplitude strength would have a significant impact on this 

study, but different amplitudes should be tested to completely explore the method.  Obviously 

the next step would be to apply amplitude confounds on the test or standard site and measure 

the impact on the subjects perception.   

 Our general goal for testing is to gather as much accurate information about a subjects 

brain health in as short a period as possible.  The ramping stimuli do a lot to reduce the time of 

the test, but it still can exhibit problems.  For instance, if extremely fast rates are being tested 

for extremely small amplitudes, the subject will commonly let the ramping stimulus increase to 

an amplitude higher than that of the standard amplitude, essentially creating a negative DL.  

This is usually explainable in terms of reaction time, but it is still not ideal for testing a 

subjects ability to match two stimuli.  A new approach could be to allow the subject to control 

the increasing or decreasing amplitude of the test stimulus.  Supplying the subject with control 

over the stimuli will reduce the common tendency for the subjects to respond prematurely, and 

most likely lengthen the test.  Some control for the duration of the test will have to be 

designed; it may be appropriate to limit this by number of reversals (number of times they 

switch between increasing/decreasing) and not a randomly assigned cut off point to the test.  
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The easiest way to implement this with the current stimulator design is to allow one mouse 

button to increase the amplitude of the test stimulus, and the other button to decrease it.  If the 

test stimulus is increased or decreased as a constantly changing stimulus, then the rates or 

amplitudes should be varied from trial to trial  A new type of input device could also be used, 

such as a dial or a switch could be used to increase/decrease the stimuli in a slightly more 

intuitive manner.  Regardless, the duration of the trial should be recorded, as well as the 

oscillation points the subject explores on the way to matching the stimuli. 

 The current version of the somatosensory stimulator can deliver 4 stimulation to 4 

independent sites, but currently almost every test only uses 2 sites of stimulation.  It seems 

that more efficient use of the 4 sites could provide faster testing.  If 3/4 different amplitudes 

are delivered to 3/4 different sites, and the subject can correctly rank the intensity of the 

stimuli, this essentially provides 3 points of 2AFC in one trial.  (That A<B<C<D, instead of A<B, 

B<C, and C<D delivered separately.)   

 Giving the subject the ability to rank their responses could provide similar gains in 

speed of testing.  If the subjects could specify the ease of the current trial or their confidence in 

answering the question, after providing a correct response, this might allow for a few trials to 

be skipped.  The skipping of trials would allow the subject to get to the more difficult trials 

sooner.  These trials are the ones that correctly identify a subjects DL, and are the ones with the 

most diagnostic information.    

Imaging 

 The data presented in a lot of these chapters is somewhat incomplete.  The dynamic 

tests out lined in chapters 3, 5, 6, 7, & 8 show heterogeneity within subjects with VVS and 

autism, but the underlying cortical mechanisms behind this heterogeneity is not understood.  

The first step to gaining understanding of these tests is to do electrode and optical imaging 

studies in the somatosensory cortex of nonhuman primates.  A simple electrode study with a 

ramping stimulus may be enough to completely understand the differences we are seeing.  For 

the dynamic test heavily explained in chapter 3, we originally believed that the majority of the 
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separation between the two points could be explained by adaptational differences, that the 

standard stimulus (which was always constant) was actually being “adapted” to a point that it 

felt approximately 25% of its real amplitude (giving a DL of 75% as seen in some of the tests) 

but this seems unlikely after viewing the results of the 5 sec conditioning stimulus trials.  The 

early estimates of congruency might be explained just by viewing a neurons response to a 

simple ramping stimulus, but if the mechanism behind the matching task is more related to 

synchronization than it might be necessary to have both the standard (not moving) stimulus 

and the test (ramping) stimulus simultaneously.  If no differences can be observed using 

electrode recordings, then OIS imaging may prove useful in analyzing the difference between 

estimation of a constantly modulating stimulus from a static one. 

 The duration and amplitude confounds explored in chapter 4 can be explained using OIS 

data obtained from evoked potentials measured by Whitsel in 2003 and OIS performed by  

Simons in 2005 and 2007, but piecing together our understanding of these confounds from 

testing done at multiple different times on different types of animals is not ideal.  It would be 

much more conclusive to have simultaneous electrode recordings and OIS imaging using 

parameters solely designed to elicit the difference seen with these confounds.  A study by Lee 

in 2005 (Lee et al., 2005), showed that using fluoroacetate could separate the response observed 

in OIS from the  firing of neurons, suggesting that OIS is not an accurate measure of neuron 

activation but possibly a measure of glial response.  Studies like this should be further explored 

in order to completely explain the role of neurons and glia in the perception of amplitude and 

duration.   

 The preliminary data obtained in chapter 4 in subjects with concussion shows 

promising results for measuring concussion using somatosensory testing, this could me made 

much stronger by use of animal studies.  Imaging and electrode recordings of animals with 

varying degrees of mTBI would elicit a better understanding of neuron-glial interactions in our 

tests but also potentially could reveal a better understanding of the neuroinflammatory 

response and how it impacts sensory perception.  

!159



Neuroinflammation 

 The concept of neuroinflammation is not as simple a topic as its name might imply.  

While at the base level “inflammation of the nervous system” does describe the general 

condition, it doesn't describe the major differences between neuroinflammation and 

inflammation in other parts of the body. The classical symptoms of inflammation are pain, 

heat, redness, and swelling; none of which are obviously present in neuroinflammation.  

Neuroinflammation refers to a complicated and not fully understood neurodegenerative 

condition used to describe the symptoms from patients with Alzheimer’s, Parkinson’s 

syndrome, Multiple Sclerosis, and those who suffer mild traumatic brain injury (mTBI).  

Neuroinflammation, like regular inflammation, is caused by the body’s immune response to 

harmful stimuli, but in the case of neuroinflammation, this response kicks off a chain of events 

that leads to a chronic auto-immune disorder that can result in debilitating neurocognitive 

deficits. The nervous system can become inflamed in response to a variety of signals, including 

infection, traumatic brain injury, toxic metabolites, or autoimmunity.  In the central nervous 

system, microglia are the principle immune cells that are activated in response to these cues. 

The CNS is typically an immunologically privileged site because peripheral immune cells are 

generally blocked by the blood brain barrier (BBB), a specialized structure composed of 

astrocytes and endothelial cells.  Under many of these conditions, the BBB becomes 

compromised and allows infiltration of peripheral immune cells into the central nervous 

system.  Once leukocytes migrate through the blood brain barrier, the effect can be toxic and 

promote widespread inflammation, perpetuating the body’s immune response.   

 In order to setup a study to find a gold standard measure for neuroinflammation, we 

must first understand how neuroinflammation affects brain chemistry, in order to better track 

its existence and progress.  There are two major changes that occur in the cortex in response to 

neuroinflammation that could be useful to use as biomarkers.  The first is glial cells.  Microglia, 

the main component of the CNS immune response, are responsible for the surveillance of the 

entire brain for signs of injury, to which they rapidly respond by migrating to the site, 
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confronting pathogens, and devouring damaged nerve-cell components to speed repair. 

Another item on the microglial resume is the “sculpting of neural circuits”: Microglia help 

prune away excessive or inappropriate brain-cell connections. Microglia actively survey their 

environment through, and change their cell morphology significantly in response to neural 

injury. Acute inflammation in the brain is typically characterized by rapid activation of 

microglia. During this period, there is no peripheral immune response. Over time, however, 

chronic inflammation causes the degradation of tissue and of the blood brain barrier. In 

response, microglia generate reactive oxygen species and release signals to recruit peripheral 

immune cells for an inflammatory response.  The activation of microglia can trigger activation 

of nearby astrocytes.  The activated astrocytes release various growth factors and undergo 

morphological changes, such as hindering axonal regeneration through formation of glial scar 

tissue.    

 A variety of proteins called cytokines play a large role in the brains inflammatory 

response.  Cytokines can play a pro-inflammatory or anti-inflammatory role, depending on the 

type or even the time course.  For example, TNF-α causes neurotoxicity at early stages of 

neuroinflammation, but contributes to tissue growth at later stages of inflammation.  In the 

aged brain alone, without any evident disease such as Alzheimer’s, there are chronically 

increased levels of pro-inflammatory cytokines and reduced levels of anti-inflammatory 

cytokines.  In the case of TBI, the release of cytokines may exacerbate the damage caused from 

the actual injury.  A pro-inflammatory cytokine Il-1β causes DNA fragmentation and apoptosis, 

and together with TNF-α may cause damage to the blood brain barrier and infiltration of 

leukocytes.  In TBI, the primary traumatic event results in delayed secondary injury due to the 

chemical and cellular changes made by the nervous system in response to the initial damage.  

Research demonstrates that neuroinflammation after TBI can have both harmful and favorable 

effects, and these likely vary in the acute and delayed phases after injury.  The hallmark of 

Alzheimer's disease is the presence of amyloid plaques in the brain; it’s possible that an 

increase in inflammatory cytokines inhibit the activated microglia from phagocytosing amyloid-
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beta, which could obviously lead to the formation of plaques over time (Ramesh et al. 2013; 

Lautner et al. 2011) . 

 There is obviously not a standard of measure for neuroinflammation currently in 

practice.  In a clinical setting, the only way to assess a patient with neuroinflammation is by 

monitoring the symptoms exhibited by the disease’s slow degenerative progression.  In the case 

of Alzheimer’s disease and TBI, the options for treatment are severely limited by the typically 

delayed diagnosis, much of the damage has been done before the disorder is recognized.  There 

is evidence that such cognitive deficits can be improved through immediate rehabilitation and 

pharmacological intervention post TBI, but the lack of diagnostic methods makes it difficult to 

utilize these therapies.  Much effort has been spent in research in identifying biomarkers for 

each of the disorders identified by neuroinflammation, and using experimental imaging 

techniques. A few researchers have had success identifying neuroinflammatory processes in the 

CNS; but none of this research has lead to a quantifiable measure of neuroinflammation that 

can be obtained in a clinical setting.   

 Most of the techniques to assess neuroinflammation being explored target two different 

biomarkers.  The first is activated microglia.  As described previously, it is believed that the 

activation of microglia, from a breakdown in the BBB or perhaps a different mechanism, causes 

a chain of events that cultivates widespread inflammation.  If the activation of these microglia 

could be identified and possibly quantified, this would perhaps provide a fantastic early 

measure for neuroinflammation.  Attempts to identify activated microglia are usually 

performed using complex imaging techniques; either Diffusion Tensor Imaging (DTI), MRI with 

special contrast agents (such as ultra-small particles of iron oxide or gadolinium chelates) 

(Wiart et al. 2007; Deddens et al., 2012), or Magnetic Resonance Spectroscopy (MRS).  When 

microglial cells are activated, they also over-express the 18-kDa translocator protein TSPO; 

radioactive PET ligands are being tested experimentally that bind to TSPO, but as yet an 

agreement on which one can be used reliably in clinical practice has not been reached. Thus far, 
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microglial activation markers have generally failed to provide high enough diagnostic accuracy 

to be clinically useful as diagnostic tools on their own (Andreozzi, 2012).  

 The second target for assessing inflammation in the nervous system is the prevalence of 

cytokines.  The real-time reverse transcription polymerase chain reaction (RT-PCR) is becoming 

widely used to quantify cytokines from cells, body fluids, tissues, or tissue biopsies.  RT-PCR 

can be used to target the expression of numerous specific proteins linked to 

neuroinflammation, most studies focus on cytokines (TNF-α, IL-1β, IL-6, IL-1ra, TGF-β, IL-15, IFN-

γ), chemokines (ccl5, cxcl1, cxcl2), and i-NOS measurements.  RT-PCR is more powerful and 

more reliable than standard immunoassays or bioassays because the half-life of cytokines can 

be very short (~ 10 min) and levels of cytokines can be very low in the tissues actually affected 

(Giulietti et al., 2001).  

 One of the cardinal signs of neuroinflammation, a breakdown in the BBB, has been 

successfully imaged using nuclear imaging performed using SPECT agents, such as 99mTcO4, 

99mTc-DTPA, and 201TI- and 67Ga-citrate, or PET agents, such as 68Ga-

ethylenediaminetetraacetic acid.  However, imaging BBB disruption isn't a true measurement of 

neuroinflammation, and more an indication of a downstream event. 

 A multi-parametric approach will have to be taken in order to discover a gold measure 

for neuroinflammation, some research seems to show little to no activated microglia in the 

brains of AD patients and focus more on the presence of amyloid-beta and specific cytokines.  

It could be that certain disorders affected by neuroinflammation are marked by increases in 

activated microglia and others by increases in pro-inflammatory cytokines; and in all likelihood 

these could be different in the early and late stages of each of the conditions.   

 Somatosensory testing can also be used to elucidate differences between populations 

with these neurodegenerative conditions.  Neuroinflammation seems to greatly affect the 

integrity of white matter, and improvement in function may depend most on how well 

functional neural networks adapt to the injury.  During previous imaging studies, researches 

have noted hyper-intensive increases in activated microglial in the somatosensory cortex; these 
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microglial and the impact they have on the white matter in the area should greatly impact 

subjects with neuroinflammation ability to perceive somatosensory stimuli.  Certain types of 

sensory tests will be particularly robust at delineating a subject with neuroinflammation from a 

healthy control.  These tests use illusory conditioning stimuli and the cortical phenomenon 

known as adaptation to greatly improve contrast in healthy controls with healthy white matter.  

The degradation that has occurred in the white matter of those suffering from 

neuroinflammation will suppress the impact of a conditioning stimulus.  The tests which will be 

extremely useful are amplitude discrimination with adaptation, a duration discrimination trial 

with an illusory amplitude confound, dynamic threshold, and TOJ with and without confound, 

and possibly bilateral testing. 

 Amplitude discrimination with a conditioning stimulus (adaptation) has already been 

shown to reliably separate autistic subjects from healthy controls.  Neuroinflammation and 

Autism are both identified by problems with white matter integrity, so it is likely that each will 

have trouble “adapting” in response to the conditioning stimulus delivered prior to the 

amplitude discrimination task.  The performance differences to this task between autistic 

subjects and healthy controls is usually explained by decreased GABA levels in the autistic 

subjects, it is unclear if neuroinflammation subjects also have decreased GABA levels, but it's a 

safe assumption that the differences in white matter will cause significant differences from 

healthy controls. 

 The duration discrimination task involves running a simple duration discrimination task 

with one of the stimuli at a significantly higher amplitude.  It is predicted from OIS imaging, 

that a significant increase in amplitude causes a significant increase in duration in the cortex to 

the stimuli.  This allows another illusory test, where a normal healthy subject perceives the 

stimuli as being longer than it really is because of the impact of the increased amplitude on the 

duration perception.  In subjects with compromised white matter (autistics), the impact of this 

test was compared to a duration discrimination task without any amplitude difference and very 
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little difference was seen (~10%); Healthy controls show an increase of almost 100%.  It is likely 

that subjects with neuroinflammation will perform similarly.         

 Most studies have seen striking amounts of activated microglia centered on the corpus 

callosum but very few studies have looked at functional connectivity in the neuro-inflammed 

brain.  A bilateral test could be useful to explore the impact that neuroinflammation has on 

functional connectivity, and determine the impact of neuroinflammation on the corpus 

callosum. 

 Somatosensory testing has many advantages over the imaging techniques being 

explored as measures for neuroinflammation now.  The first, and most obvious is resolution.  

Resolution is of particular importance when attempting to quantify and/or classify 

neuroinflammation.  Current imaging techniques claim they are able to detect activated 

microglia and other inflammatory cells, but there is a big difference between detecting the 

presence of certain types of cells and providing a metric of the current amount of 

neuroinflammation.  Measuring the extent of the disease is of particular importance, as drug 

therapies will likely change based on the current stage of neuroinflammation.  The current 

clinical measure for monitoring AD and TBI is basically measuring how far they have declined 

in cognitive function; once a biomarker is pinpointed, far more robust tests can be designed to 

target the actual mechanisms causing the decline.  Having an understanding of how far the 

disease has progressed will prove much more beneficial than monitoring how far the patient 

has regressed.  It is also extremely likely that the mechanisms at work in TBI, AD, etc are 

different from one another; making it unlikely one contrast agent and one method of imaging 

would be enough to quantify the amount or extent of neuroinflammation.  The other major 

benefit to somatosensory testing is cost.  Not only is the hardware exponentially cheaper than 

most imaging machines, it doesn't require an experienced technician to run it, and a radiologist 

is not required to diagnose the results. 

 For these reasons, it likely makes sense to run a multi-modal longitudinal study for each 

of the common neuroinflammation conditions.  Keeping the groups separate, we may learn 
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what neural mechanisms separate the different varieties of neuroinflammation (which is not 

completely understood for AD, TBI, or Parkinson’s).  Groups of early diagnosis AD, recent TBI, 

early onset Parkinson’s, and possibly subjects predisposed to mTBI injuries, such as athletes 

and military servicemen, should be recruited for participation in the study.  Subjects with an 

extended history of disease or injury should most likely be excluded from testing.  Advanced 

AD and Parkinson’s patients could have difficulty completing the somatosensory portion of the 

testing due to lack of comprehension, memory, hallucinations, etc., and those suffering from 

mTBI/TBI from an injury in the distant past may no longer show signs of neuroinflammation.  

An age-matched control group with no history of concussion or neurological disorders should 

be recruited in parallel to the neuroinflammation subjects to insure the statistical significance 

of the measurements made in the neuro-inflammed group. The longitudinal study should 

ideally continue for as long as possible, but realistically a sampling period across 1-2 years 

should be sufficient to track changes in most of the groups.  The goal for enrolling subjects 

pre-disposed to mTBI is that a baseline measurement could be recorded and the subjects 

departure from healthy controls could be much better understood.  Any subjects recruited in 

this study that did not experience a concussion during the testing should be excluded from 

analysis (or possibly included in the control group if they meet all the criteria).    

 The overall goal of the study would be to document microglia activation using either 

MRS or PET (neither has been shown to definitively distinguish any specifics about microglial 

activation but research continues to focus on these two types of imaging for 

neuroinflammation) and cytokine presence using RT-PCR and correlate those measurements 

with clinical observations, demographics, and the results of somatosensory testing.  The clinical 

observations will serve to monitor the subjects deterioration (or improvement) as their disease 

progresses, it is important to know which subjects are improving when analyzing data from the 

group as a whole; it may also help to give researchers a biological basis for the subjects clinical 

deteriorations/improvements.  The data should be analyzed with special attention to each 

subject’s affective disorder, although the goal here is to design a test for neuroinflammation, 
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these different conditions show a range of conditions and different symptoms across different 

time courses. It would be naive to think that each is measurable by exactly the same standard.  

The interactions between microglia and cytokines and their respective roles in 

neuroinflammation is not completely understood, it is likely that each contributes a different 

inflammatory effect and the combination and/or location of inflammation are responsible for 

the different types of neuroinflammation.  Hopefully a study with enough measured 

parameters will be able to correlate differences between these populations. 

Pain 

 Pain is an enigma. It differs from the five classical senses: vision, hearing, touch, taste, 

and smell, because it is both a discriminative sensation and a behavioral motivator. 

 Understanding the complicated interactions between pain and sensitization begins with 

comprehension of the “Gate Control Theory.”  Brought forth in 1965 by Ronald Melzack and 

Patrick Wall (Melzack and Wall 1965), the Gate Control Theory proposes that a “nerve gate” 

exists in the dorsal horn of the spinal cord, which opens and closes based on specific input and 

essentially decides if a nociceptive signal being sent from the periphery is allowed to continue 

through to the cortex.  Originally Melzack & Wall set out to explain why thoughts or emotions 

so easily impact the perception of pain, but they also found the physiological basis behind 

mechanoreceptor-induced analgesia.  Analgesia (decreased responsiveness to noxious 

stimulation) can be triggered by input from a vibrotactile stimulus applied near the location of 

the noxious stimulus.  You’re probably familiar with the concept; if you were to slam your hand 

in the door, you will instinctively rub or shake it after the injury.  You are activating your 

peripheral mechanoreceptors in an attempt to shut off the pain gate.  

 In 1994, Apkarian et al. (Apkarian, Stea, and Bolanowski 1994) showed that the opposite 

is true as well.  Not only is pain diminished by touch, but touch is also impaired by the 

introduction of pain.  Pain was introduced through contact heat and somatosensation was 

measured through vibrotactile detection thresholds and perceived magnitudes of supra 

threshold vibrations.  The thresholds were statistically higher when the noxious stimulus was 
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evoked and perception of magnitude was significantly reduced.  This became the foundation 

for “touch gating.” Research on touch gating has confirmed similar tactile desensitization when 

applying electrical shock, by intradermal capsacin injection (Geber et al. 2008), and by injection 

of hypertonic saline into a muscle (Stohler et al. 2001).  (Interestingly, research has shown that 

pain evoked by electrical shock is not reduced through local tactile stimulation (Watanabe 

1999), that basically gate control theory doesn’t apply to electrical stimulation.)  The 

mechanisms behind touch gating are not as simple as those controlled under Gate Control 

Theory, it is unlikely controlled by simple “gates” in the spinal cord because tactile primary 

afferents ascend all the way to the brainstem.  Ipsilateral heat-induced pain causes an elevation 

in tactile thresholds even when the noxious and non-noxious stimuli were not localized, and the 

effect seems to require that the painful stimulus only be within the somatosensory region 

defined in terms of dermatomal organization. Thus the effect is clearly related to somatotopic 

organization and is likely not peripherally mediated.  The ability of pain to capture attention 

suggests that touch gating may just be an example of distraction, but the fact that pain 

increases tactile thresholds but not auditory thresholds argues that touch gating is specific to 

the somatosensory cortex.  Most attempts to correlate pain intensity to the changes in tactile 

sensitivity have not been successful, meaning touch gating is not impacted by the habituation 

or perception of pain, and is likely not the result of distraction (Harper & Hollins 2012).  It 

seems more than likely that touch gating is a centrally mediated phenomenon. 

 The effect that acute pain has on sensory percept is much better understood than the 

impact of chronic pain.  This is partially due to the lack of understanding of chronic pain in 

general and also the variability seen with the chronic pain population; heterogeneity and 

diagnostic differences exist within even minor subsets of chronic pain.  The gate control theory 

is not able to explain several chronic pain conditions, and as a result the theory has evolved to 

include brain mechanisms that may underlie some kinds of chronic pain.  In the case of chronic 

pain, the pain the subjects are feeling is not a warning signal to give notice to physical injury or 

disease, the pain is the disease.  
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 Studies of touch gating on subjects with chronic pain seem to show very conflicting 

results between different populations of chronic pain subjects.  Hollins & Goble (1996) have 

shown increased thresholds in groups diagnosed with TMD both at baseline and when faced 

with a supra-threshold adaptation stimulus.  They were even able to find significant correlation 

between the thresholds and the subject’s perceived pain (higher thresholds for subjects with 

more muscle tenderness/higher perceived pain).  Seltzer & Seltzer (1992) have also shown that 

two-point discrimination is impaired for a diverse group of chronic pain patients. In 

fibromyalgia, studies have found significantly decreased detection thresholds for touch, 

pressure, and of course, pain (the trademark of the condition).  Patients with chronic 

cervicobrachialgia and persistent patellofemoral pain demonstrate systemic elevation of 

vibrotactile detection thresholds compared to healthy controls (Nebel et al. 2010). Similarly, 

provoking pain in patients with pathological pain (e.g., tennis elbow) increases tactile detection 

thresholds in the area of pain referral.  

 Similar studies in our lab have failed to show any statically significant detection 

threshold differences in subjects diagnosed with Vulvar vestibulitis syndrome (VVS) or 

migraines (Nguyen et al. 2013; Zhang et al. 2011).  However, other differences have been 

uncovered.  Similarly amplitude discrimination capacity was not significantly different between 

the controls and patients with vulvodynia, but the impact of single-site conditioning (or 

“adaptation”) on performance of the dual-site task showed a remarkable difference within a 

subset of VVS patients.  Those reporting pain for a longer duration of time were not 

significantly impacted by the adaptation stimulus while controls and those reporting pain for a 

relatively short period of time were impacted heavily.  Subjects suffering from migraines 

showed results similar to those of long-term VVS, a conditioning stimulus delivered before 

amplitude discrimination had little to no impact on the subjects ability to perform the task.  

Migraneurs were also shown to have trouble with perception of timing and synchronization 

with particularly substandard performance to a duration discrimination task and a temporal 

order judgment task.   
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 The heterogeneity and disparate differences within the chronic pain population is quite 

obvious after a review of the literature.  Some of the results compiled are in alignment with our 

understanding of acute pain and tactile sensitization, while others cannot be understood with 

as simple a hypothesis as gate control theory or touch-gating.  Goble and Hollins (1996) found 

that the subjects with more evoked pain (increased pain sensitivity) were also the subjects with 

higher thresholds (decreased tactile sensitivity).  Increased pain sensitivity and altered 

vibrotactile sensitivity are two indicators of an underlying disturbance of somatosensory 

processing.  It may be possible that the majority of chronic pain subjects suffer from increased 

periphery sensitivity while a generalized central abnormality is responsible for the unpredicted 

results.  Although the clinical presentations of these conditions differ, there is increasing 

recognition that systematic assessment of somatosensory perception in these disorders would 

greatly aid diagnosis and evaluation of treatment efficacy.     

 There is one fundamental difference in these studies that might be worthwhile to 

explore.  In the TMD studies by Goble & Hollins (1996), the subjects were stimulated on the jaw 

(locally to their pain) and higher than normal thresholds were observed, and it has been found 

that patients with vulvodynia have increased sensitivity to sensory stimulation at both genital 

regions and sites distant to it.  However, in the studies performed in our lab (on VVS and 

migraneurs) the subjects were stimulated on digits 2 and 3 (not local to pain).  In order to 

completely understand the periphery’s role in chronic pain, these subjects should be tested 

locally to their pain.   

 The tests which are targeted at centrally mediated mechanisms (amp disc rim with 

adapt, TOJ, duration discrimination) yielded meaningful results for all the chronic pain subjects 

regardless of stimulus location.  This shows the clear benefits of using these tests for 

quantification of chronic pain, as they will likely measure similarly whether local to chronic 

pain sites or not.  It’s likely that the relative contribution of peripheral and central factors differ 

in subgroups of chronic pain, and that clinical signs and symptoms alone are insufficient in 

identifying the underlying mechanism of pain as peripheral, central, or a combination of both.  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