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ABSTRACT 

Nalyn Siripong: Examining the Role of Network Structure in HIV Transmission among 

People who Inject Drugs in the Philippines: A Tale of Two Cities  

(Under the direction of Brian W. Pence)  

 

While HIV growth has slowed globally, new HIV epidemics among people who 

inject drugs (PWID) continue to emerge [1-4]. These epidemics are marked by periods of 

unusually rapid growth, where HIV increases from virtually 0% to 20-50% within 3-6 years 

[5-6]. In concentrated epidemics, HIV epidemics among PWID could precipitate larger-scale 

heterosexual epidemics [7-10], which further underscores the urgent need to find effective 

ways to reach and deliver prevention services to PWID.  

We studied the emergence of HIV among PWID in two cities in the Philippines. The 

epidemic began in Cebu City, where HIV prevalence grew from 0.6% in 2009 to 50% in 

2010 [11]. Expanded surveillance in neighboring Mandaue City found more limited spread of 

infection, with HIV prevalence reaching only 3.5% in 2011[12], rising to 38% in 2013 [13]. 

We used exponential random graph models (ERGMs) to simulate network structures and 

assess whether differences in network structure could explain variation in HIV prevalence 

patterns in the two cities. We further analyzed genetic sequencing data to consider the extent 

of overlap or linkage between networks.  

Simulated networks showed distinct differences between the two cities. We found 

smaller network components in Mandaue than in Cebu (1082 v 2980), which may explain the 

limited spread of HIV there. We also found that Cebu networks exhibited higher degree (21.5 
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v 10.8), lower clustering (0.29 v 0.39), and shorter average paths (3.3 v 3.8), all of which 

would facilitate rapid spread of infection across the network. A phylogenetic tree showed 

high bootstrap support for a large cluster of HIV infections (N = 172), predominantly from 

PWID from Cebu and Mandaue (85%), which suggests that HIV infection in the two cities 

arose from a common source infection.  

This work suggests that the emergence of a rapidly growing epidemic among PWID 

in Cebu City spread to Mandaue City, but network structures initially prevented growth of 

infection. The fragmented network in Mandaue initially prevented penetration of infection 

into the connected portion of the network. Future work applying transmission modeling to 

these networks may offer important insights to the role of networks on HIV in these 

populations. 
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CHAPTER 1: SPECIFIC AIMS  

Over 11% of the 14 million people who inject drugs (PWID) worldwide are infected 

with HIV [14]. Most HIV epidemics in injection drug using populations are marked by rapid 

spread of infection, with prevalence rates in some communities rising from 0% to 50% in less 

than a year [6]. Given the high disease burden and susceptibility to rapid epidemic outbreaks, 

understanding HIV transmission dynamics among injection drug using populations is 

critically important.  

Injection epidemics are characterized by an initial rapid increase in HIV incidence 

followed by a plateau at some steady-state HIV prevalence. Transmission may be interrupted 

or facilitated through injecting behaviors like needle sharing and injecting frequency, which 

are the focus of most prevention efforts among injecting drug users. Yet network structure, or 

an injection drug user’s choice of injecting partners, may also strongly influences the spread 

of infection. Limitations in data and analytic methods have precluded use of network 

information to target and design more effective prevention interventions.  

Two distinct HIV outbreaks among injecting drug users in two neighboring 

communities in the Philippines offer a unique opportunity to disentangle the contributions of 

individual behaviors and network structure on transmission dynamics. In Cebu City, HIV 

prevalence among people who inject drugs rapidly expanded from 0% in 2007 and 0.6% in 

late 2009 to 50% in 2010 and 53% in 2011 [11]. In neighboring Mandaue City, HIV 

prevalence among people who inject drugs (PWID) was only 3.5% in 2011 and grew to 38% 
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in 2013 [11-13]. PWID in both cities exhibited risky injecting behaviors, with a majority of 

people sharing drugs and injecting equipment in both cities. Identifying differences in the 

network structures between the cities may explain the differences in observed HIV spread in 

these two cities.    

We hypothesize that the networks of PWID in Cebu City and Mandaue have different 

network structures, which explains the differences in HIV prevalence in the two cities. 

 

Our specific aims are:  

Aim 1: Compare network structure in Cebu City and Mandaue to identify important 

differences that correlate with differences in HIV prevalence.  

Surveillance data were collected on a network of injecting drug users using 

respondent-driven sampling (RDS) recruitment methods. We will use the network-related 

information collected in this survey to map the injecting drug user networks in the two cities. 

We will compare network structures using statistics on component size, homophily, social 

distance, and clustering. To do this, we will simulate a network from an exponential random 

graph model (ERGM) aligned with initial network parameters, using three primary network 

measures: degree, homophily and clustering.  

Aim 2: Examine phylogenetic clustering of HIV infections detected in Cebu City and 

Mandaue. 

We will examine phylogenetic relationships between HIV nucleotide sequences 

collected from infections detected in surveillance to identify important transmission clusters 

and describe how they are connected between the two cities.  We hypothesize that this 

phylogenetic analysis will identify all PWID infections as a single large cluster that is 

phylogenetically distinct from MSM or other risk groups; but when we examine these 
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phylogenetic trees at a finer level of detail, we may find that most of the transmission is 

happening within each city, as opposed to across the two city boundaries.  

A better understanding of how an individual’s behaviors and the underlying network 

structure interact to promote or prevent HIV transmission will enable the design of more 

targeted HIV prevention programs for injecting drug users that are more effective and 

efficient at slowing epidemic growth and expansion. 
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CHAPTER 2: BACKGROUND AND SIGNIFICANCE 

Epidemiology of HIV among people who inject drugs  

Among the estimated 12-14 million people who inject drugs (PWID) worldwide, 1.6 

million (11%) are infected with HIV [14]. HIV infection presents a serious disease burden 

among PWID populations, with HIV prevalence exceeding 40% in countries across 

Southeast Asia, including Thailand and Indonesia [15-17]. In these concentrated epidemic 

settings, HIV epidemics among IDUs precipitate larger-scale heterosexual epidemics [7-10], 

which further underscores the urgent need to find effective ways to reach and deliver 

prevention services to injecting drug users.  

A striking and unique feature of PWID epidemics is the rapid HIV growth, from 

virtually 0% prevalence to a steady-state level of 20-50% HIV prevalence within 3-6 years. 

This transition has been characterized by an initial period of very high HIV incidence, with 

rates reaching 12.5 cases per 100 person-years [10]. As an increasing number of injecting 

drug users became infected, the pool of uninfected and susceptible PWID remaining is 

depleted. As the pool of susceptible PWID decreases, the incidence rate fall to rates as low as 

2.4 cases per 100 person years [18] and settle at a rate equal to the turnover rate in the 

injecting drug user population. In rare cases, adoption of safer injecting practices among new 

injectors can stop spread and reduce overall prevalence [19].   

What makes a particular environment ripe for an HIV epidemic? And what puts a 

particular individual at risk of infection? It is well recognized that differences in HIV 

prevalence often arise from different environments or behaviors [20]. Rapid spread of HIV 
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infection has been documented in many PWID populations [21], but other communities 

maintain low or undetectable HIV levels, despite persistent needle sharing [22,23]. We 

explore whether network structures may offer an explanation for unusual or unexpected 

patterns of HIV transmission in communities of people who inject drugs.   

This dissertation explores the influence of network structures on transmission 

dynamics, using surveillance data from PWID in two neighboring cities in the Philippines: 

Cebu and Mandaue. In Cebu City, HIV prevalence among people who inject drugs rapidly 

expanded from 0% in 2007 and 0.6% in late 2009 to 50% in 2010 and 53% in 2013 [11]. In 

Mandaue, early signs suggested limited spread of infection, as HIV prevalence had reached 

only 3.5% in 2011 [12]. HIV prevalence grew in Mandaue, but the spread of infection was 

slower and its reach was limited, with just 38% HIV prevalence in 2013 [13]. PWID in both 

cities exhibited high-risk behaviors, with a majority of people sharing drugs and injecting 

equipment. Thus, identifying differences in the network structures between the cities and 

assessing the impacts of network structure on transmission of infection may offer insights to 

understanding factors that impact the patterns of disease spread in these two cities.  

Aim 1: Importance of networks for disease transmission 

Two minimal conditions are necessary for HIV transmission to occur as a result of 

injecting drug use: (1) one PWID must be infected with replicating virus; and (2) the HIV-

infected PWID must use injecting equipment (cookers, needles, or drugs) before sharing it 

with his uninfected partner. Network structures can play an important role in creating these 

two conditions, as laid out in Figure 1. In this review, we first discuss how changes in 

network structures may influence disease transmission based on mathematical models and 

simulations of sexual and social networks. We then consider past work on how PWID 
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networks influence decisions to share injecting equipment and ultimately how they may 

influence disease risk.   

 

Figure 1. Conceptual diagram describing how networks impact risk of HIV infection.   

Understanding the disease dynamics from network theory and modeling  

Networks may alter perceived risk of infection in at-risk populations. For example, a 

person with a single sex partner appears to be at low risk, but may still be connected to a 

larger sexual network [24]. Similarly, an individual with multiple concurrent partners would 

typically appear high-risk, but actual risk of infection may be low if each of his or her 

partners was monogamous. In the absence of empirical data on networks among individuals 

at risk for HIV, modeling and simulation studies have offered a better understanding of how 

network structures may affect contact patterns and disease transmission.  

Early simulations approximated network structure by modeling differential mixing 

patterns among people with different contact rates [25,26], following on work identifying the 

role of core groups in the transmission of sexually transmitted infections [27]. These studies 

show that homogenous mixing by activity group (i.e., people with many sex partners choose 

partners who also have many sex partners) would yield faster epidemic spread, but that in the 

long run, infection would remain more contained than under heterogeneous mixing 

conditions. However, these models still assume random selection of sexual partners within 
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each group – an assumption that does not typically hold in most empirical sexual or social 

networks.  

Further adaptation of ordinary differential equations (ODE) approximate network 

effects through two parameters: degree and clustering [28]. Degree is simply the average 

number of connections a person has. Clustering refers to how frequently closed triangles are 

observed when three people are connected to each other on the network. Although largely 

hypothetical, these simulations show how network structures could impact transmission 

dynamics. Epidemics were less likely to take hold in networks with low degree or high 

clustering, as both of these measures reduced the effective contact rate. The impacts of 

clustering were amplified in networks with low degree.   

Although increasing average degree was found to be important for promoting disease 

spread, degree distribution can vary widely even while holding average degree constant. 

Several types of degree distribution and their implications for transmission modeling have 

been reviewed [29]. In latticed networks, individuals are equally spaced across the network 

and each person is connected to his or her nearest neighbors, resulting in a relatively constant 

degree distribution. This network is highly clustered, and risk of disease would be strongly 

associated with distance from the initial infection. So-called “small-world” networks have 

degree distributions similar to lattice networks, but their clustered structure is slightly 

modified so that a few random long-range ties are formed, which creates opportunities for 

infection to quickly jump and spread across a network in a less rigid manner [29-31]. 

Some empirical evidence may show that the degree distributions that describe social 

networks among people have greater variability than the lattice and small-world networks 

describe above. Data on sexual and social contacts suggested that these networks may 
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approximate scale-free degree distributions [32-34]. One feature of scale-free networks is 

that most people have very few (one or two) connections so that the bulk of the distribution is 

at the low end of the distribution, and only one or two people are in the tail of the 

distribution, connected to hundreds of others. These high-degree individuals could be 

considered analogous to the super-spreaders or core groups in epidemics [29,35], and 

simulations of transmission over scale-free networks often result in epidemics where 

infection is concentrated around those people with the highest degree [35,36]. 

Scale-free networks may not be the only relevant degree distribution for 

understanding transmission of infection. Some argue that this may not be the best distribution 

to describe these empirical networks [37,38]. Moreover, knowing the degree distribution 

does not necessarily give us sufficient information to predict how infection would be 

transmitted over a network. Holding degree distribution constant, other network 

characteristics can vary considerably, with important consequences for disease dynamics. 

Increases in clustering, for example, can reduce the growth of the epidemic by creating small 

inter-connected groups that are only weakly connected to other parts of the network [39]. 

Average path length on different networks has also explained observed variation in disease 

dynamics, even after accounting for degree distribution and clustering [40]. 

Several studies have collected information to explicitly identify ties among 

individuals on the networks, which further our understanding of how network structures may 

alter disease dynamics. Adolescents in schools to follow particular “rules” for forming 

romantic relationships, which result in a sexual network with many connections but limited 

pathways for infection to spread and consequently highly susceptible to random breaks in the 

transmission chain [41].  Over time, sexual networks can exhibit greater cohesion through 
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increased clustering, which would make the network more robust to sustained transmission 

of infection [42].  

Recognizing the wide variation possible even within a constrained set of network 

parameters (e.g., degree distribution), much work on modeling of disease transmission over 

networks has adopted a two-part approach, which both estimates the network formation 

process and simulates transmission of infection over that network. Several studies simulating 

transmission over sexual networks observed in empirical data found that these networks were 

susceptible to breaks in transmission [41,43]. Larger networks simulated from casual contact 

or traffic patterns suggested that more densely connected networks were not subject to the 

same vulnerabilities [33]. Simulations based on empirical data on social networks estimate 

the range of potential network realizations for a given set of network characteristics, as well 

as their consequences for transmission dynamics [44,45].   

Pairwise-formation models approximated transmission over agent-based models by 

considering each tie in the network as a separate observation. While some of these models 

can reproduce disease dynamics consistent with the agent-based models, they do not record 

the disease and contact history of individuals on the network [29,46]. These models can 

incorporate some of the effects of network structures on transmission [47], but they do not 

reconstruct the complete network, and thus may not be able to identify the roles of larger 

structures (i.e., those made up of four or more nodes).  

Simulation modeling has offered important insights in how network characteristics 

may translate into increased or decreased risk for different individuals. Analysis of empirical 

social and sexual networks, combined with the simulation work, helps us understand which 
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combination of network characteristics has the greatest influence on disease transmission 

dynamics.   

Networks among people who inject drugs (PWID)  

Network studies of PWID consider both the effects of local networks on drug use 

practices and the impacts of network structures on an individual’s exposure to infection. 

Local networks consider an individual’s direct social ties and shared bonds or trust can 

influence his or her risk behaviors. When networks were described more comprehensively, 

large structures, such as bi-components (cycles), could be identified and their impacts 

assessed by estimating whether membership to these structures was associated with higher 

disease prevalence. 

Many network studies considered ego-networks, which refer to a central individual, 

or ego, and all the people directly tied to him or her, also called alters. Such analyses 

typically used logistic regression to assess how the number and type of ties a person has will 

impact his or her injecting practices. An injecting drug user who had more fellow PWID as 

friends in his or her network (i.e., a larger network size) also reported more frequent sharing 

of drugs and needles [48,49]. The types and strength of ties on a network could also influence 

the subsequent adoption of injecting behaviors. Injection sharing often occurs in strong social 

ties, such as family members, sexual partners, or very close friends [50,51]. In addition, 

cessation of sharing was often most difficult within those pairs with those the strongest social 

bonds [52]. New injectors often shared equipment with the person who introduced them into 

drug use [53,54], and the presence of older PWID in one’s network could lead to initiation 

into other risky practices, such as visiting shooting galleries [53,55].  
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Networks also reinforced social norms that could influence and disseminate injecting 

practices. HIV-negative PWID shared more frequently with people who they perceived to be 

HIV-negative [56-58] and in some cases, PWID who knew their own HIV-positive status 

might refuse to distribute or share their needles with known HIV-negative friends [59]. Such 

“informed altruism” could prevent spread of infection; but in more recent years, this practice 

was not maintained [56].  

The composition of PWID networks plays an important role in network structure and 

separation. A strong preference for assortative mixing, or homophily, could result in 

disconnected groups of people, which might limit transmission of disease across a network. 

Such preferences often arise from ethnic or racial differences [60,61], but could have 

consequences for injecting norms adopted among network members [60]. The network 

consequences of different homophily patterns might partially explain variation in disease 

prevalence across different groups [62]. 

Network structure refers to the topology and shape of the network, which defines 

exposure potential. While network structures could arise in part from dyadic properties like 

homophily, they also could consider how a network structure of three or more connected 

people will impact individuals located within or adjacent to that structure. Very few studies 

collect network data to describe a network’s structural properties; in the following review, we 

describe the major findings from studies that collected broader network data among the 

PWID population.  
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Use of PWID network structures to estimate impacts on HIV infection  

Colorado Springs  

One of the oldest and most widely studied HIV risk networks is the Colorado Springs 

study, in which researchers collected network data on people at high risk of HIV infection 

(female sex workers and people who inject drugs, and sexual partners of both groups) and 

their sex and injecting partners. HIV prevalence among respondents was just 5%, which the 

authors suggest could be a consequence of limited connectivity in the risk networks [63,64]. 

Out of the 19 HIV-positive individuals in the sample, only five were part of the connected 

sexual network component, and four were on the largest connected injecting network 

component [64]. Most infected individuals were located in isolated groups, which offered 

little opportunity for transmission. Furthermore, spread of infection might have been limited 

due to the fragility of the network and low cohesion properties [42,43]. Analysis of follow-up 

data on the networks of these participants showed that while summary network structures 

remained stable over time, significant turnover among the individuals who made up those 

structures could have altered the potential for disease spread over time [65].   

New York City  

Networks were also studied to understand HIV transmission among PWID in New 

York City, where HIV seroprevalence reached 40% to 60% [21,66]. PWID were asked to 

provide extensive demographic information about sexual or injecting partners, which was 

used to draw the network ties between individuals. One study looked specifically at the 2-

core network structure, which describes a subset of the network in which each person is 

connected to two others on the same network. To classify potential exposure to risk, PWID 

were classified in one of five groups: (1) members of the largest 2-core (cyclic) structure; (2) 
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people on the periphery of the 2-core; (3) members of smaller connected components; (4) 

people who were named by only 1 other person on the network; and (5) people who were 

completely disconnected from the network. Disease prevalence was highest in the largest 

connected 2-core (57% HIV and 84% HBV), compared to the other categories, which ranged 

from 32% to 39% for HIV and 68% to 74% for HBV [66]. The strength of this association 

remained even after adjusting for effects of the local network, such as composition and size 

of a person’s injecting network [62]. However, the potential for network structures to keep 

infection contained in pockets or subcomponents of the network, did not explain why the 

disease prevalence had remained stable in the community for several years [67].   

Winnipeg, Manitoba  

From 2003-2004, studies of partial network structures among PWID in Winnipeg, 

Manitoba were used to estimate the potential association between local network structures on 

disease prevalence. Individual behaviors proved quite important in this population, where 

disease prevalence (HIV, HBV and HCV) were strongly correlated with injecting with a used 

syringe and injecting at shooting galleries [68], but network analyses revealed additional 

important insights. PWID reported low network degree, with an average of about 3 network 

members, which could explain the relatively low 8% HIV prevalence [52]. In addition, 

PWID were more likely to share injections with family members or sexual partners than with 

their friends [52], suggesting that PWID were selective about their sharing partners. This 

selectivity may have prevented the introduction and widespread transmission of HIV 

infection in this community.  

In 2009, a study of PWID Winnipeg [69] collected demographic information about up 

to 10 alters in the network, which allowed the authors to draw a more complete picture of the 
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network in this population. This work showed a sparsely connected network, consistent with 

the earlier study. However, the reach of this network expanded significantly when ties were 

imputed among PWID who frequented the same locations [69]. The largest connected 

component, after accounting for shared geographic space, connected just under half of the 

600 PWID in the population. Prevalence of disease in those components was higher than the 

overall population, and mean path length was quite short (mean distance of 3.6), which 

suggested an environment that could facilitate rapid disease transmission. Low degree 

networks previously reported in this population may underestimate the true risk network 

since they do not account for potential risk exposures arising from visiting shooting galleries 

or other common geographic locations to shoot up.  

Appalachia, Kentucky  

A study in rural Appalachia used RDS to recruit PWID and asked participants to 

name and describe up to 6 injecting network members, who could be matched to provide a 

picture of a large part of the network in this PWID population. Individual and network 

characteristics were measured to assess their associations with Hepatitis C, which infected 

over half (55%) of the population. Individual injecting practices – such as choice of drug and 

reported needle sharing – were strongly associated with Hepatitis C prevalence. Even after 

adjusting for these behavioral variables, measures of network centrality were still associated 

with increased HCV seroprevalence and HCV RNA status [70,71], suggesting that network 

connectivity played an important role in transmission, above and beyond individual injecting 

behaviors and practices.  
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Aim 2: Phylogenetic analysis of HIV infections in Cebu and Mandaue  

Phylogenetic methods attempt to describe the genetic diversity of a population by 

comparing differences in the location and frequency of individual nucleotide bases that arise 

from random base substitution on the genome. Unlike most pathogens, whose evolution 

cannot be observed over any period of time less than years or decades, HIV evolves on a 

time-scale that allows us to apply phylogenetic methods to distinguish between different 

potential transmission sources [72-74] and identify clusters of transmission among people 

who share an infection strain [72].   

Sequencing data, which are the main data used for phylogenetic analysis, can be 

combined with epidemiological data on timing of infection or surrounding social networks to 

further substantiate conclusions about transmission patterns. Phylogenetic patterns of 

hepatitis C infections in Melbourne, Australia were found to follow the reported injecting 

networks in the community [75,76]. Identification of transmission clusters in RDS surveys 

confirmed necessary assumptions of random referral in RDS chains [77,78]. Analyses using 

timing and geographic locations of detected infections were used to trace the sources of two 

separate HIV strains in China, identifying and isolating separate points of introduction [79]. 

In PWID populations, phylogenetic methods have been used to describe potential 

routes of the HIV spread. Genetic subtyping and other phylogenetic methods were used to 

trace the spread of HIV infection among drug users to follow drug trafficking routes [79-81]. 

When new outbreaks emerged, phylogenetic analysis was used to trace their origins to shared 

risk behaviors [82-84] or geographic location [79-81,85-88]. The emergence of HIV among 

PWID in Latvia and other parts of Eastern Europe was traced back to ongoing epidemics 

among PWID in neighboring Russia and Ukraine [85,86]. Epidemics among PWID in 

Taiwan were linked to HIV infections among PWID in mainland China [87]. In Thailand, 
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such analysis was used to identify a new recombinant (CRF15_01B) and to trace it back to 

people exposed to two HIV epidemics – one among PWID and a second primarily among 

heterosexuals [88].  

Phylogenetic methods have also been used to link or isolate different outbreaks of 

HIV among PWID. When a spike in HIV infections among young PWID was observed in 

Thailand, phylogenetic methods were used to determine that this new epidemic was distinct 

from and unrelated to a community older, chronically infected PWID [89,90]. Analysis of a 

recent HIV outbreak among PWID in Greece identified five circulating HIV subtypes [4], 

suggesting introduction of infection through at least five independent transmission events and 

possibly five different communities of PWID that contributed to the ensuing epidemic. In 

Western Europe, phylogenetic analysis was used to differentiate between epidemics 

occurring in different regions of Europe by looking at specific mutations in a single HIV 

subtype [91]. In Australia, two different clusters of Hepatitis C infection were identified, and 

further analysis suggested injecting networks formed around shared ethnicities [61]. New 

HIV infections among PWID in Stockholm and Helsinki shared the same HIV subtype, but 

phylogenetic analysis found two separate sub-clusters of infection that correlated with their 

geographic locations, suggesting that an single transmission event introduced HIV infection 

into the PWID population in Stockholm, initiating the HIV outbreak in this community [92].  

The work presented here has shown that the use of phylogenetic and network analysis 

are appropriate to address our aims. Phylogenetic analysis can and should be suitable to 

determine whether new HIV infections in Mandaue were linked to the ongoing HIV outbreak 

in Cebu. Several network characteristics have important implications for the connectivity and 

subsequent spread of infection. This work would build upon the prior research and offer new 
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insights to understanding the local contexts that describe the HIV prevalence patterns 

observed among PWID in the Philippines.  

Significance  

Injecting drug use is a dangerous practice with serious public health consequences, 

especially the heightened risk of HIV infection through shared use of injecting equipment. 

Because transmission is efficient and IDUs tend to inject quite frequently, the introduction of 

a single HIV infection has been typically followed by rapid spread, with HIV prevalence 

jumping from 0% to 50% in as little as 6 months [6]. However, in some communities, the 

spread of HIV remained limited, despite highly prevalent risky injecting behaviors [20,23]. 

Understanding the network structure that describes the dynamics of HIV transmission could 

help elucidate how rapidly and to what extent HIV would spread across a network.  

Studies of social networks among injecting drug users are challenging because of 

difficulties in collecting complete data; our study proposes the application of newer methods 

that overcome this difficulty by simulating network structure from partial data. In this 

dissertation, we used sampled data to reconstruct the potential underlying network and assess 

what role network structures may have played on the disease dynamics in two cities in the 

Philippines. We leveraged recent advancements in estimation and simulation of networks and 

the type of network data collected to fit the data as closely as possible. By incorporating 

network and behavioral data into phylogenetic analysis, we could provide more context and 

strengthen the interpretability of our results. Triangulation of these methods to describe 

development of the HIV epidemic could reinforce reliability and robustness of the results. 
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Innovation  

We capitalize on the unique opportunity to identify key differences in network 

structures that may have explained differences in HIV transmission dynamics between two 

adjacent cities. The innovation of this study was in the synthesis of several forms of data 

collected from the same two networks. Using data from the ongoing Integrated HIV 

Behavioral and Serological Survey (IHBSS), we employed different types of data and 

methods to describe the network structures and to reconstruct the HIV epidemics among 

IDUs in two cities (Cebu City and Mandaue) in Greater Metro Cebu. As this surveillance 

continues, we could evaluate the validity of our approach by replicating the analysis in these 

IDU populations over time. 

This was one of the first studies to reconstruct a complete network from respondent-

driven sampling data. Analysis of the network and future work on transmission simulations 

could provide unique information to target, design and deliver prevention interventions to 

minimize the impact of the HIV epidemic. 
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CHAPTER 3: METHODS  

To investigate the potential role of network structures on HIV growth in Cebu and 

Mandaue cities, we reconstructed and compared network structures and traced the sources of 

HIV infection in these two populations. This work comprised two parts. First, we simulated 

the social networks among PWID in each city and assessed whether differences in network 

structures were consistent with differences in the HIV prevalence patterns observed (Aim 1). 

Second, we compared the genetic and spatial distribution of observed infections based on 

sequencing data (Aim 2). By reconstructing each PWID network, we hoped to better 

understand the importance and potential impacts of network structure in facilitating the 

spread and growth of this infectious disease in this population. 

Study Population  

This study considered networks among people who inject drugs (PWID) in Cebu and 

Mandaue City in the Philippines. While injecting drug use was not high at the national level, 

it has been common practice in the greater Metro Cebu, which includes five major cities: 

Cebu, Mandaue, Lapu-Lapu, Talisay, and Toledo. Most PWID in Metro Cebu inject Nubain 

(nalbuphine hydrochloride), a narcotic analgesic often prescribed in medical care settings for 

expectant mothers during labor. Pooling money to purchase drugs was a common practice 

that facilitates drug-sharing routes. Shooting galleries have been noted as another possible 

nexus of transmission, as injectors who attended galleries to rent needles were often unaware 

of the potential disease risk.  
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Our data were drawn from the 2013 IHBSS surveillance round, which was conducted 

in Cebu City and Mandaue City in the Spring and Summer of 2013. The survey employed 

respondent-driven sampling (RDS) methods to recruit PWID in both cities. RDS is a 

modified snowball sampling method that can generate unbiased estimates from the 

population of interest starting from a small, purposive and possibly biased subset of the 

population. Because the RDS sample need not be initiated from a representative subset of the 

population, this sampling strategy has often been employed when the sampling frame is 

unknown, as is the case among people at high HIV risk.  

Sampling methods: a brief description of RDS  

RDS begins with a small group of “seed” participants who are asked to recruit 2-3 

friends from their network. These friends are subsequently asked to recruit 2-3 more friends, 

and the process is continued until the target sample size is reached. Each wave of recruitment 

is treated as a single iteration on a Markov chain, such that after a sufficient number of 

waves, the prevalence of sample characteristics should approach an equilibrium state that 

approximates the true population prevalence [93,94]. Here, we provide an example of how 

the method might work in two categories of age group, to illustrate the process.  

Let us assume that the true population is split in to two categories: group A and group 

B, with two-thirds of the true population in group A and the remaining one-third in group B. 

People in group A also have 75% of their friends also in group A. Among members of group 

B, half of their friends are in group A and the remaining half is in group B.  

Starting with four seeds who are all from A, and we ask them to each recruit 2 other 

people from their network. Given the network compositions described above, and assuming 

that people select randomly from the relevant universe of network friends, the four seeds 



21 

 

would nominate six more members of group A (75% of the 8 total recruits) and two members 

of group B (25% of 8). In the next wave of recruitment, those six A’s would recruit nine 

more A’s (0.75*12) and three B’s, while the two B’s would recruit a total of two A’s and two 

B’s (each B recruits half A’s and half B’s). If we exclude the seed wave (which is convention 

in RDS), our revised estimate of the prevalence of group B in the population after two waves 

of recruitment is 30%. By the seventh wave, our estimated prevalence of B matches the true 

prevalence to three significant figures (Table 1). While this example started with a seed 

population composed of only people in group A, we would have reached the estimates of 

comparable accuracy and efficiency if we had started with only people in group B (Figure 2).   

Table 1. Over several waves of infection, characteristics in an RDS sample will approach the true 

population characteristics.   

Wave Number 

 Wave 0 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 
A 4 6 11 22 44 88 176 352 
B 0 2 5 11 22 44 88 176  
4 8 16 33 66 132 264 528 

Running proportion (excluding wave 0) 

A -- 0.750 0.708 0.684 0.675 0.671 0.669 0.668 
B -- 0.250 0.292 0.316 0.325 0.329 0.331 0.332 

 

 

Figure 2. RDS samples will approach true population estimates, whether our seeds are all in group A 

(left) or group B (right).   
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This method is subject to a number of assumptions:  

(1) The network is completely connected (i.e., we can start from any person and reach 

any other person on the network within a finite number of steps);   

(2) Seeds do not have to be representative of the population, but they should be 

independently sampled;   

(3) We have non-branching recruitment chains;   

(4) All ties are reciprocated: this means if X recruited his friend Y, Y would also name X 

as a friend in the same network;   

(5) Degree is accurately reported;   

(6) Random referral: people randomly recruit friends in their network (everyone in a 

person’s network has an equal probability of being recruited);  

(7) Samples go through sufficient number of waves to reach equilibrium; and   

(8) Sampling with replacement.   

If all these assumptions hold, RDS can generate unbiased estimates of population 

characteristics from a non-probability-based sample of seeds. We relaxed assumptions 3 and 

8 by using the successive sampling estimator [95], and several other assumptions could be 

verified in the data. Several additional diagnostic tests were also conducted to assess whether 

sampling chains reached equilibrium [96].   

Most RDS studies are designed to estimate HIV prevalence or population size and 

ignore the inherent network properties captured by this method. Since RDS uses the peer 

network to identify recruits and asks about network size, these data can be used to describe 

the social networks of these populations.  
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RDS implementation  

The 2013 IHBSS round for PWID in Cebu and Mandaue used RDS to recruit PWID 

in both cities. Seven seeds were identified in each of the two cities to initiate recruitment 

chains. Peer educators, who were part of the previous Global Fund HIV prevention programs, 

identified PWID from a range of age groups and geographic areas within each city as 

“seeds.” The RDS recruitment system was described to the seeds before the start of data 

collection, and they were encouraged to bring or inform people they would choose as recruits 

to go to the study site, to expedite the recruitment process.  

A person who presented a coupon was eligible if they had not previously participated 

in the survey and also fulfilled three other eligibility criteria: (1) they had to be over 15 years 

old; (2) living in Cebu province; and (3) reported injecting a drug that was not prescribed to 

them in the last six months.  

All eligible participants completed an interview about demographic and behavioral 

characteristics. This was followed by a blood draw to test for syphilis, Hepatitis C (HCV) 

and HIV. Participants received 200 Philippine Pesos (PHP, equivalent to just under US$5) as 

a transportation allowance and were given two coupons, which they were asked to give to 

friends who were willing to participate in the survey. To further promote recruitment, people 

were offered a secondary incentive if they were able to successfully recruit new people in the 

survey. They were offered 50 PHP (just over $1) per successful recruit, with a maximum of 2 

recruits per person.  

When recruiters came to the study site to collect their secondary incentives, a very brief, 

secondary interview was administered, which asked about three areas:  
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(1) How many people (if any) refused the coupon, which revealed how much of his 

network was saturated (i.e., people who refused because they had already 

participated, people who refused because they were not interested).  

(2) Reciprocation and characterizing his tie with his recruit; in the primary interview, we 

asked the participant to describe his relationship with his recruiter, so in this interview 

we asked the question of the recruiter himself, to confirm whether the descriptions of 

the ties are reciprocated.   

(3) Potential social links between his recruiter and his recruit. Because of the anonymous 

nature of RDS, each person explicitly knows (at most) 3 people in the study: the 

person who recruited him, and the two people he recruited into the study. But we can 

ask this person about the ties between his recruiter and recruits, which allows us to 

identify up to 2 additional ties on the network.   

Recruitment took place from May 27 to June 20, 2013 in Cebu and May 29 to July 8, 

2013 in Mandaue. The target sample sizes of 450 from Cebu and 300 from Mandaue were 

determined based on the estimated population size and availability of funds to conduct the 

survey. Seven seed PWID from Cebu City recruited 450 other PWID into the survey, for a 

total of 457 people. Another seven seeds from Mandaue recruited 303 other eligible friends, 

for a total of 310 PWID in this survey. 

 



25 

 

Aim 1 Analytic Methods  

Estimating population characteristics  

To estimate population characteristics, we weighted estimates based on their degree. 

In its most general form, the RDS-corrected estimate of a population mean of some 

characteristic 𝑓 would be:  

𝜇̂𝑓 = ∑
𝑓(𝑋𝑖)

𝑑𝑖

𝑛

𝑖=1

∑
1

𝑑𝑖

𝑛

𝑖=1

⁄  

where 𝑑𝑖 refers to each person’s degree, and degree is proportional to one’s probability of 

being sampled. This is analogous to a Thompson-Horwitz estimator, used in typical in survey 

sampling. A number of adjustments or revisions have been added to estimate unbiased RDS-

estimates under relaxed assumptions [95,97,98]. We employed one of the most recent of 

these methods: the successive sampling estimator [95], which did not require assumptions 

about non-branching chains and sampling with replacement. This method would proceed 

through an iterative process to converge on unbiased population-level estimates.   

RDS Homophily  

In this analysis, population homophily was expressed as the proportion of extra, or 

additional, within-group ties, compared to what would be expected if mixing occurred at 

random, holding degree across groups constant. To illustrate this concept, let us again 

consider the two groups considered earlier, where group A was 67% of the true population 

and the remaining 33% was of group B. Let us assume that group A has an average degree of 

6 and group B has an average degree of 12. Given the estimated proportions of people in 

each group and assuming a network size of 1000, we would expect the number of in-group 

and out-group ties under random mixing assumptions to follow those given in Table 2.   
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Table 2. Homophily is calculated based on the expected ties under random mixing (left) 

compared to observed mixing (right).  

 A B Total   A B Total 

A 2,670 2,666 5,336  A 3,286 2,050 5,336 
B 2,666 2,662 5,328  B 2,050 3,278 5,328 

 5,336 5,328 10,664   5,336 5,328 10,664 

         
Homophily = (3286 + 3278) / (2670 + 2662) = 1.23 

 

Homophily was calculated as the ratio of the empirical number of in-group ties, 

compared to the expected number of in-group ties, holding the degree of the two groups 

constant. In this case, the number of same-group ties (A to A and B to B) was 23% higher 

than what we expected at random and homophily would be calculated as 1.23. The measure 

of homophily was centered on 1 (completely random mixing) and represent the proportion of 

in-group ties more (homophily > 1) or less (homophily < 1) than expected at random.  

To estimate homophily from the RDS sample, we used the RDS-weighted degree for 

each of the groups, to reconstruct a table of in-group and out-group ties expected with 

random mixing. We then estimated the number of in-group and out-group ties in our 

population, based on recruitment patterns, weighted by individuals in the network. In this 

analysis, we considered homophily on variables of where and how people inject.  

Measuring the ego-network configuration distribution  

The ego-network configuration was used to fit the clustering network parameter in 

our network. Ego-networks included data on a central person (ego) and all the people directly 

connected to him (alters) and all the ties among them. The ego-network configurations 

considered ties among the alters in the ego-network, excluding their ties with the ego.  

In our RDS data, each person in the recruitment chain was also the center of an ego-

network of 3 other people: his recruiter (i.e., the person who gave him the RDS coupon) and 
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his recruits (i.e., the people to whom he gave RDS coupons). We could not directly ask 

whether the recruiter (person X) knew his recruit’s recruits (Y and Z). However, the central 

ego (U) knew that all three of these people were in the survey, and so U can provide 

information on whether these alter-alter ties (between X, Y, and Z) exist.  

Data on the recruiter-recruit ties (X to Y, X to Z) were collected at the follow-up 

interview, when individuals returned to receive their secondary incentive. The survey did not 

explicitly ask if the two recruits knew each other; so data on the Y to Z tie was imputed 

based on the proportion of dyads that had ties in each city. This meant only three of the four 

possible ego-network configurations could be observed (first three figures in Figure 3) and 

the fourth could occur if an additional tie was imputed. We then weighted these 

configurations using RDS-weights for each ego in the network.  

 

Figure 3. Ego-network configurations observed from RDS data collected in our survey.  

 

Simulating networks  

To estimate the underlying networks in these two cities, we used a method that 

estimates parameters for an exponential random graph model (ERGM) by simulating 

networks and adjusting model parameters that were consistent with the observed networks in 

our two cities, as demonstrated by Smith [99] and Merli [100]. The method used ERGMs in 

an iterative process that started from an initial guess of model parameters, which were 
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subsequently adjusted until model fit could not be further improved. The parameters of 

interest in our model included mixing parameters, which aligned with the homophily in the 

population; and clustering ties, which we fit to the observed ego-network configurations in 

our empirical data.  

Exponential random graph models  

Exponential random graph models (ERGMs) are statistical models that estimate how 

network properties, such as homophily and transitivity, impact the formation of ties on a 

network. They follow the form:  

Pr(𝑋 = 𝑥) =
exp{𝜃′𝑧(𝑥)}

𝜅(𝜃)
 

 

where X is a realization of the network structures, 𝑧(𝑥) refer to the network statistics 

(homophily, clustering, etc.), and 𝜅(𝜃) is a normalizing constant, so that probabilities sum to 

1 [101-104]. In all but the simplest of cases, the normalizing constant expressed in this 

equation is too computationally complex to calculate. We avoid estimating this constant by 

estimating the conditional probability of a single tie, holding the rest of the network constant. 

Note that if we compare the odds of the presence of a tie vs. the absence of a tie, conditional 

on the rest of the network, our estimation equation simplifies to:  

𝑝(𝑋𝑖𝑗 = 1|𝑋𝑖𝑗
𝑐 )

𝑝(𝑋𝑖𝑗 = 0|𝑋𝑖𝑗
𝑐 )

= exp{𝜃′[𝑧(𝑥𝑖𝑗
+) − 𝑧(𝑥𝑖𝑗

−)]} 

The coefficients actually represent the effects of a unit change in network statistics on 

the odds of a tie in the network. If 𝜃′ on a same-group mixing parameter (e.g., A-A mixing) 

was positive in sign, we would expect to see that two people of group A were tied more 

frequently than expected at random. These models have been used in sociology to estimate 



29 

 

associations that describe how adolescents choose friends based on a combination of age, 

gender and race [102]. It has also been used to simulate networks when partial network data 

were available [99,105].    

Fitting the ERGM formula  

We seeded these models with two forms of data: (1) an initial network with the joint 

distribution of characteristics, including degree, of the population; and (2) an initial set of 

mixing parameters, drawn from the data on observed ties.  

Set initial parameters: the initial network  

Before we could estimate the network structures, we first estimated characteristics 

and properties of individuals in the network. We used the RDS weights to estimate the joint 

distribution of demographic and behavioral characteristics in the populations in each city, 

and applied this to the estimated PWID population sizes in each (3000 PWID in Cebu, 1500 

PWID in Mandaue). The characteristics of interest included: age, categorized into three 

groups; age at first injection drug use; visits to shooting galleries and tambayan (private 

injecting parties); frequency of injection, drug of choice, and source for needles and syringes.  

To apply degree (number of ties) of individuals in the network, we drew degree from 

a smoothed log-normal degree distribution, for our 3000 and 1500 PWID populations, 

respectively. These draws were then matched to individuals with appropriate characteristics, 

so that the characteristics by degree rank and average degree across groups were consistent 

with the RDS-weighted results. Once all characteristics were assigned to the two populations, 

we used an algorithm that creates ties with people on the network, based on an assigned 

degree [106].  
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Initial homophily  

Next, we provided ERGM mixing parameters of homophily. In the ERGM formula, 

these mixing parameters could be interpreted as “the odds that two people of the same group 

are tied.” We could estimate an analogous logistic regression parameter if we considered the 

unit of analysis to be a dyad (that is, any pair of two individuals) and the outcome of interest 

was the presence or absence of a tie. If we collected data on all the observed ties (recruitment 

ties in the RDS survey) and the homophily among them, compared to a random sample of 

observed non-ties (a random sample of dyads from the RDS survey), then the resulting 

logistic regression would estimate the odds of a tie, given the possible characteristics of 

dyads (A-A, B-B or A-B, for example). The resulting coefficient estimate values were then 

applied as an initial starting point for the analogous coefficients for mixing, in the ERGM 

equation.   

Initial clustering (GWESP)  

Clustering measured the potential of two people having a mutual friend, thus creating 

a closed triangle on the network. In an ERGM, the clustering parameter could be interpreted 

as the odds of a tie between two people with the same mutual friend. Unlike measures of 

homophily, clustering could be estimated in a dyadic logistic regression model, because it is 

dependent on the presence or absence of other ties on the network, which was the “outcome” 

of our logistic regression model for homophily. The dependent structure of the clustering 

coefficient made it quite difficult to estimate because of its vulnerability to model 

degeneracy, a consequence of the fact that the closure of one triangle could create many more 

open triangles. Instead, we parameterized the clustering coefficient by using the 

geometrically-weighted edge-wise shared partner index (GWESP), expressed as:  
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𝐺𝑊𝐸𝑆𝑃 = 𝑒𝛼 ∑{1 − (1 − 𝑒−𝛼)𝑖}𝑝𝑖

𝑛−2

𝑖=1

 

where 𝛼 set the rate of decay for each additional partner and 𝑝𝑖 was the number of connected 

dyads who had individual 𝑖 in common. We initially set our GWESP parameter to 1, and 

allowed the fitting process to estimate the correct value.   

Network estimation process  

Using mixing parameters set according to observed homophily and starting the 

clustering (GWESP) parameter, we then sampled coefficient values within a range (+/- 1) of 

our original starting point, and then simulated 200 networks for each set of sampled 

parameter coefficients. To reduce the sample space of possible networks, we constrained our 

fits to only those networks with the same degree distribution as the initial random network.  

Based on these simulated networks, we extracted the networks that most closely 

match the ego-network distribution, based on the chi-square statistic. We then reassessed 

homophily coefficients on those by comparing ties in empirical data (cases) to ties on the 

simulated networks (controls) to estimate the difference between simulated and observed 

homophily. These estimates were then used to adjust the corresponding ERGM coefficients 

to account for this difference. Using these updated ERGM coefficients, we simulated a 

second set of networks while varying the clustering parameter. We then compared the ego-

network distributions on this new set of simulated networks to the empirical distribution, to 

identify the best-fitting clustering parameter. Updating ERGM parameter for clustering may 

have changed homophily effects, so these parameters were reassessed and fitted. This process 

was repeated until we arrived at ERGM formula with the best-fitting ego-network 

distribution. This best-fitting formula was then used to simulate 50 networks in each city.   
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Using this set of 50 networks, we compared network properties, such as homophily 

statistics, with RDS estimates, to check that the networks we simulated were consistent with 

the observed data. Consistent networks did not guarantee that our model fully described the 

true underlying network, but they offered one plausible version of the networks we observed. 

We then analyzed the properties and characteristics of these simulated networks, in an effort 

to identify potentially important individuals on the network using centrality measures.  

Network Analysis  

We analyzed simulated networks to describe the global network characteristics and to 

identify potentially important individuals within the networks. We looked at several 

characteristics relating to the connected components and centrality on the networks, as 

described below.  

Network components  

A network component captures all individuals who can reach each other through a 

finite number of steps or ties [107,108]. Three components are depicted in Figure 4. 

Component A is the largest connected component and includes the largest proportion of 

people in the overall network of 12 individuals. Assuming ties do not change over time, the 

largest connected component of a network defines the true maximum reachability of a single 

infection across the network. For each city’s set of networks (Cebu and Mandaue), we 

estimated the number of components, their average size, and the size of the largest connected 

component on each network.   
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Figure 4. Three components make up this network of 12 people; component A is the largest 

connected component, including 58% (7 out of 12 individuals) of the network.  

 

Geodesic path length and average distance  

Within the largest component, we measured the geodesic, or the minimum number of 

steps it takes for each person to reach every other person on the network [107,108]. 

Geodesics were measured for every pair of individuals on the same component, so that for a 

component of size n, we estimated n * (n-1) / 2 paths. People who were not on the same 

component were an infinite number of steps away, so their geodesic could not be computed. 

We calculated the average distance, or the average of all geodesics, on the largest component 

in each of the two cities.  

Network centrality  

Network features such as membership to a 2-cores [67] or occupation of particular 

positions in the network may increase or reduce risk of infection for different people. To 

identify some of these positions, we estimated four common measures of centrality: degree, 

eigenvector, closeness, and betweenness centrality [107-109].  
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Degree: The most basic measure of how much a network influences a person is how 

many ties a person has, which is called their degree. A person with high degree centrality is 

well connected and thus has a higher potential for exposure to infection. Increasing degree is 

therefore highly correlated with higher risk of infection. Similarly, people with higher degree 

(more connections) can reach a large number of people within a few steps and are also at 

high risk for onward transmission.  

Eigenvector: Degree does not always fully capture centrality. A person with low 

degree can be connected to one or more persons with very high degree, so that their low 

degree does not necessarily reflect their reach or connectedness along the network. 

Eigenvector centrality captures these higher-order effects of being one or more steps away 

from very high degree individuals along the network. It is measured as:  

𝐶𝐸(𝑛𝑖) =
1

𝜆
∑ 𝑎𝑘,𝑖𝑛𝑖

𝑘

 

where  𝑎𝑘,𝑖 is the adjacency matrix of which nodes are tied; and 𝜆 is a constant.  

Closeness: This measure reflects reachability and relative distance between people on 

the network. A person with high closeness centrality can reach a large number of others in a 

small number of steps. For an individual person on the network, closeness is measured as the 

average of the inverse-distance he is from every other person on the network:  

𝐶𝑐(𝑛𝑖) = [∑ 𝑑(𝑛𝑖, 𝑛𝑗)

𝑔

𝑗=1

]

−1

 

where the function d is the distance function, measuring the shortest path between nodes ni 

and nj. Individuals with the highest closeness centrality can quickly reach the largest number 

of people within just a few steps.   



35 

 

Betweenness: Individuals with high betweenness centrality lie on many of the 

shortest paths connecting other people in the network. The measure is a count of the total 

number of shortest paths an individual lies on.   

𝐶𝐵(𝑛𝑖) = ∑ 𝑔𝑗𝑘(𝑛𝑖)/

𝑗<𝑘

𝑔𝑗𝑘 

where 𝑔𝑗𝑘 is the number of shortest paths between j and k, and 𝑔𝑗𝑘(𝑛𝑖) is the number of 

shortest paths between j and k that go between node ni. Individuals with high betweenness 

centrality may be gatekeepers or important bridges between these individuals. However, if 

there are many paths to between the two individuals, then high betweenness (lying on many 

of the shortest paths between others) may be of less importance.  

Centrality measures tend to be highly correlated, but poor correlation between 

centrality measures may signal unusual or important structures and particularly unusual 

individuals on the network. For example, individuals with high betweenness but low degree 

centrality indicate people who may serve as important bridges between small or large groups 

of people.  

Clustering coefficient  

To measure clustering on the network, we use the clustering coefficient, which is a 

measure of the number of observed triangles on the network as a proportion of the number of 

possible triangles:  

𝜙 =
3 x number of triangles on the network

number of connected triples of vertices
 

We consider here at the effects of clustering on component A from Figure 4 as an 

example. In this component, there are 10 connected triples and one triangle, for a clustering 

coefficient of 3/10 = 0.3. The clustering coefficient does not scale in a formulaic or 
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predictable manner with the addition of a tie that will close the triangle, as the closure of one 

triangle may create a number of new potential triads that were not previously present on the 

network. In Figure 5, we can add one additional tie to the original component A in two 

different ways that could result in different measures of the clustering coefficient.   

 

 

Figure 5. Adding one tie to a network changes the clustering coefficient, but in unpredictable ways.   

Clustering can have two consequences for network structure. When clustering is very 

low, increased clustering can create greater network cohesion, which creates more available 

paths for infection to travel. Low network cohesion could make the spread of infection may 

more susceptible to random breaks in transmission that might occur with diseases with low 

per-contact transmission probabilities [41]. Therefore, some degree of clustering might be 

needed to ensure the network is sufficiently connected to sustain spread of infection. Beyond 

a certain level of cohesion, however, added clustering results in the addition of paths that 

may be redundant because the people they connect are likely to already be infected through 

other pathways.  
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We then considered whether differences in these network characteristics aligned with 

our expectations, based on the observed differences in the timing and HIV prevalence 

patterns in each city.   

Aim 1 Limitations  

This work employs methods that remain quite new in the area of network estimation 

and simulation. It may provide potential insights to network structure, but our results are 

limited in the data we have. Three major limitations were:  

(1) Reliability of RDS data: Although respondent-driven sampling is employed widely, there 

remains some controversy over whether estimates or RDS-weights and uncertainty are 

accurate [110]. The demographic composition of network simulations, then, were only as 

reliable as our RDS estimates. Given the difficulty in recruiting this population, however, 

it was the best available data in this population.   

(2) Truncated ego-network distribution: Fitting of the clustering parameter was based on our 

ego-network distribution. Given the format of our data, our model fit was compared to 

the distribution of only four possible ego-network configurations, which meant that there 

could have been a wide range of possible parameters that matched this distribution, and 

thus we could not guarantee that our coefficient estimates were the singular best solution.   

(3) Fitting process was limited: The network estimation process was not comprehensive, as 

the space for parameter estimation was intractably large. We constrained the degree 

distribution to limit one dimension of the parameter space, but a large number of other 

network configurations were possible.  
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Aim 2 Analytic methods  

The use of phylogenetic analysis is particularly useful in the study of viral evolution 

because of the high mutation rate that is unique to viruses. Unlike most organisms in the 

world, HIV does not have the DNA polymerase and its reverse transcriptase makes multiple 

base substitutions in every copy of genetic material [111]. We can analyze the genetic 

material of viruses to identify different generations of the virus to reconstruct a sort of 

genetic ‘family tree’.   

Building the consensus sequences 

Each successfully sequenced sample had a large set of 50,000 to 100,000 ‘clean’ 

reads. To generate the phylogenetic tree, we first had to reduce each set of data to a single 

consensus sequence that reported the majority nucleotide base (A, C, T, or G) present at each 

position in the sequence (Table 3). In positions with no clear majority (or a plurality), a 

placeholder (X) was used to indicate that a base was reported but no clear majority was 

observed in the data. In the alignment, these were treated as deletions, or missing data. The 

Center for AIDS Research lab at the University of Hawaii at Manoa used in-house software, 

Intergroomer (http://courge.ics.hawaii.edu/inte/groomer/), to generate consensus sequences 

from the data.  

Table 3. Building a consensus sequence usually means taking the majority base present at each site.   

DATA 

         

1 A A A C T G A G G 

2 A A A C T G T G G 

3 A A G C T C A G G 

4 A A A C T C T G G 

5 A A G C T G A G A 

CONSENSUS  A A A C T G A G G 

 

http://courge.ics.hawaii.edu/inte/groomer/
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To properly construct the phylogenetic tree, we first added 286 reference sequences, 

which we obtained by searching GenBank for all HIV sequences from the Philippines and the 

10 closest matches with our sequence data. These data were combined into a single 

alignment file.  

Sequence alignment  

The consensus sequences were aligned with the HXB2-LAV K03455 reference 

genome using MUSCLE [112,113]. The alignment process was needed to account for errors 

in the replication process that could result in random insertion or deletion of a base. If we had 

not properly account for these insertions and deletions, we would overestimate the degree of 

genetic diversity because some sequences would have been incorrectly shifted by one or two 

positions (Figure 6). To correct for this, the MUSCLE algorithm iterated through a number of 

steps to arrive at the best alignment.  

 

Figure 6. Insertion of blank spaces can be necessary to align sequences with each other.   

The MUSCLE algorithm followed several steps to properly align sequences. First, 

genetic distance was measured and a basic phylogenetic tree was constructed to cluster 

sequences based on the data provided, assuming no inserted or deleted positions. Next, 

sequences were aligned within each cluster, making appropriate insertions as needed for an 
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initial alignment (MSA1). Using these sequences (with the new insertions), genetic distances 

were recalculated and another tree was generated, resulting in a second alignment dataset 

(MSA2). This new alignment (MSA2) was assessed by splitting the new tree into two 

subtrees. The two subtrees are aligned separately and then rejoined, inserting gaps where 

needed. The two alignments were scored based on the number and size of gaps added in each 

sequence; if the score improved, the new alignment was again reassessed. Otherwise, the old 

alignment was used. Alignments were further confirmed by visual inspection, to ensure that 

none of the results arose from an unexpected artifact of the data [112,113].  

Phylogenetic tree construction  

Once our sequences were aligned, we used RAxML to find the best fitting maximum-

likelihood phylogenetic tree [114]. The maximum-likelihood method fitted a model of 

evolution and tree topology to the sequence data to estimate the best-fitting tree. Specifically, 

we maximized the likelihood function such that the tree 𝜏 and evolutionary model M 

generated the highest probability of the data, which consisted of base substitutions occurring 

at site 𝑗 for sequences of length 𝑙 across all sequences in the alignment (𝐷).  

𝐿(𝜏, 𝑀, 𝜌|𝐷) = ∏ Pr[𝐷𝑗 , 𝜏, 𝑀, 𝜌𝑗 = 1]

𝑙

𝑗=1

 

We assumed a generalized time-reversible (GTR) evolutionary model, in which 

nucleotide substitution rates were defined using the Q matrix:  

 A C G T 

   𝑄

= (

−𝜇(𝑎𝜋𝐶 + 𝑏𝜋𝐺 + 𝑐𝜋𝑇) 𝑎𝜇𝜋𝐶 𝑏𝜇𝜋𝐺 𝑐𝜇𝜋𝑇

𝑎𝜇𝜋𝐴 −𝜇(𝑎𝜋𝐴 + 𝑑𝜋𝐺 + 𝑒𝜋𝑇) 𝑑𝜇𝜋𝐺 𝑒𝜇𝜋𝑇

𝑏𝜇𝜋𝐴 𝑑𝜇𝜋𝐶 −𝜇(𝑏𝜋𝐴 + 𝑑𝜋𝐶 + 𝑒𝜋𝑇) 𝑓𝜇𝜋𝑇

𝑐𝜇𝜋𝐴 𝑒𝜇𝜋𝐶 𝑓𝜇𝜋𝐺 −𝜇(𝑐𝜋𝐴 + 𝑒𝜋𝐶 + 𝑓𝜋𝐺)

) 
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In the above matrix, πs represents the observed frequency proportion of base s and 

thus sum to 1. The letters a-f are multipliers of the rate of substitution (μ) for each base. We 

can see the “reversible” aspect of the model in that the rates of change between the different 

bases are equal, as evidenced by the fact that the letters are symmetric across the diagonal of 

this matrix. For example, the substitution rate in of A for C (shown in the first column of the 

second row) is equal to the substitution rate of C for A (second column, first row).    

These methods simultaneously estimated the phylogenetic tree and the model 

parameters listed above, so they invoked heuristics that allowed us to fit each sequence in the 

tree so that the tree and model best described the pattern of nucleotide substitutions that we 

observed. If we had added each sequence in a step-wise manner, we would guarantee 

reaching a local maximum of the likelihood function. Therefore, we exchanged random 

branches to rearrange the tree and refitted the model to improve robustness of the model. 

To assess branch support or the reliability of our tree branching patterns, we 

conducted bootstrapping, in which columns (specific sites) of all the sequences were selected 

with replacement and then used to construct phylogenetic trees using the maximum-

likelihood process described above. This sampling and estimation process was repeated 

multiple times. We presented a consensus tree with bootstrap values that represented the 

proportion of these bootstrapped samples in which each specific branch was observed.  

RAxML employed randomized stepwise addition parsimony trees as the starting point 

for fitting the model, and then randomly rearranged portions of the tree to search for better 

model fit [114]. We assumed a generalized time-reversible model, which estimated all 

evolution parameters from our data [58]. We ran 20 maximum likelihood searches plus 1000 

bootstrap replicates.  
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No well-defined thresholds exist to determine or identify transmission clusters. Prior 

work had used somewhat arbitrary values for minimum genetic distance and high bootstrap 

support [115,116]. Although genetic distance may have been confounded by time as infection 

continues to evolve within given individuals, this was unlikely in our data, given the very 

recent emergence of the epidemic in Cebu. In our analysis, we wanted to assess whether we 

can observe any separation was evident between HIV infections from PWID in Cebu and 

those in Mandaue.  

Aim 2 Limitations  

One challenge in the analysis was the low success rate of viral amplification, which 

resulted in a smaller sample size. Blood and plasma were collected in the Philippines and 

then separated for HIV, HCV and Syphilis testing before being shipped to the sequencing 

laboratory at the Hawaii Center for HIV/AIDS (HCFA). In some samples, most of the virus 

may have degraded, precluding any possibility of amplification or sequencing. Although the 

amplification success rate of 22% was quite low, there was no indications that degradation 

was differential with respect to city.  

Since the data were collected primarily for public health purposes and not research, 

the sequencing data were targeted to look in-depth along those regions of the genome that 

carry clinically important mutations. As a result, the relatively short length of the consensus 

sequences may not have been sufficient phylogenetic signal to detect underlying differences 

between two or more different patient sequences.  

Another limitation was that our data are missing information about treatment and 

duration of infection. Antiretroviral treatment exhibits selective pressures on the virus, so that 

people on treatment would have greater genetic variation, as the virus would attempt to evade 
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the effects of treatment [111]. While treatment status would be a serious concern in most 

phylogenetic studies, hospital records (as reported at the central level) indicated that no more 

than 30 PWID had initiated ART at the time of the 2013 surveillance, so convergent 

evolution was not expected to be a significant concern in this population. 
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CHAPTER 4: IDENTIFYING NETWORK STRUCTURES THAT IMPACT HIV 

TRANSMISSION DISEASE DYNAMICS IN THE PHILIPPINES  

Introduction  

While the global HIV response has slowed the epidemic in most of the world, an 

estimated 2 million new HIV infections occur every year [117]. In the Philippines, only 3500 

cases were reported in the first 25 years since the first case was reported in 1984 [118,119]. 

Since 2008, however, the HIV epidemic has grown at a rapid pace, with the number of 

reported HIV and AIDS cases increasing by 20-40% each year and over 80% of the 32,000 

HIV and AIDS cases reported since 1984 occurring within the last 5 years [119]. In a world 

where HIV is largely on the decline, the HIV epidemic is just beginning to take hold in the 

Philippines.  

People who inject drugs (PWID) are a highly affected population in the HIV 

epidemic in the Philippines, making up less than 1% of the total population but over 10% of 

reported HIV and AIDS cases in the country [119,120]. HIV epidemics among PWID can 

grow rapidly and without warning, with HIV prevalence rising from virtually 0% to 50% in 

as little as 6 months in India [6] and incidence rates rapidly reaching 12.5 cases per 100 

person-years in Thailand [10]. Moreover, it is often difficult to predict when an epidemic will 

emerge. In the Philippines, widespread needle-sharing behaviors among PWID were noted as 

early as 2000, but from 1984 to 2009 only 9 reported HIV cases were transmitted through 

shared needle injection [118,119], with no warning of the rapid rise in HIV that followed.   
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Most new HIV infections among PWID in the Philippines occurred in Cebu, the 

country’s second largest metropolis. In 2009, HIV surveillance in the metropolis center of 

Cebu City captured the emergence of an outbreak among people who inject drugs (PWID), 

where HIV prevalence rose from 0.6% to 53% in the course of one year [11]. Expanded 

surveillance in neighboring Mandaue City suggested that infection spread more slowly and 

reached a smaller proportion of the population, even though PWID in both communities 

exhibited risky injecting practices that would suggest environments ripe for rapid HIV 

transmission. We investigate whether the network structures that connect PWID within these 

two cities may explain some of the variation in transmission dynamics observed in the two 

communities.  

Methods  

Study population  

In 2009, routine surveillance in Cebu City, the Philippines, captured the emergence of 

an HIV outbreak among PWID. Though only 3 HIV infections were among sampled PWID, 

surveillance captured a number of additional HIV infections among female sex workers that 

were also linked to injecting drug use, leading to concerns of an outbreak of HIV among 

PWID in Cebu. A rapid assessment in 2010 confirmed that HIV was expanding among 

PWID in this community, with over 50% of PWID infected with HIV. The following round 

of HIV surveillance in 2011 expanded to the neighboring Mandaue City, part of the greater 

Cebu Metropolis Region. While HIV prevalence in Cebu City remained high (53%), HIV 

had not yet spread significantly in Mandaue. Using network-related questions implemented 

in the 2013 round of surveillance, we sought to estimate the network structures in Cebu and 



46 

 

Mandaue cities, and explore whether differences in these structures are associated with 

differences in the transmission dynamics of HIV in the two cities.  

Network parameters of interest  

Network structures and characteristics can influence the potential spread of disease in 

several important ways. We describe both network-level and individual-level characteristics 

to assess their potential effects on transmission dynamics. At the network level, we identify 

all network components. A network component is the set of people who can reach each other 

through network ties. If disease can only be transmitted through these ties, the component 

defines the potential number of people who could be infected by the introduction of disease 

on the network or the boundary of infection spread. The size of the largest connected 

component should help us determine the maximum final size of an epidemic on a network. 

We measure what proportion of the network is captured in the largest component to define 

the potential reach, or maximum prevalence of infection. We also estimate average distance, 

which summarizes the shortest paths (geodesics) between every pair of PWID on the 

component. Shorter average distance will accelerate the speed of spread, because we could 

reach more of the network component in a fewer number of steps. Density of the network is 

the ties observed on the network, expressed as a proportion of all possible ties. This measure 

may also impact the connectivity as increasing network density may provide the opportunity 

shorten paths on the network. We finally measure a clustering coefficient, which is a measure 

of the proportion of closed triangles on the network. In general, we would expect increases in 

clustering to create redundant paths on the network and slow transmission [28,39,40].   

At the individual level, we compared several measures of centrality, which may 

identify people who may be important to the reach and connectivity of the network. Degree is 
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a measure of the number of direct ties or contacts an individual has on the network. Higher 

average degree on a network should increase the probability of an epidemic occurring [28]. 

Eigenvector centrality combines higher-order effects of degree (i.e., being connected to 

someone of high degree will increase eigenvector centrality) and has been associated with 

risk of infection among PWID [70]. Closeness measures the inverse-path length between an 

individual and all others on the connected component. Betweenness counts the number of 

times an individual lies on the shortest path between two other individuals on the network. 

These centrality measures may identify important individuals or groups of individuals who 

may influence transmission dynamics across the network.  

Data collection methods  

PWID were recruited using respondent-driven sampling (RDS), where participants 

were asked to recruit their friends whom they knew to fulfill the eligibility criteria. A small 

group of “seed” PWIDs was selected by local health office staff to participate in the survey. 

After completing survey and providing blood for HIV, HCV and syphilis testing, they were 

asked to recruit two of their friends whom they knew to inject drugs. These friends made up 

the first “wave” of recruitment and were asked to recruit up to two more friends who also 

injected drugs. This recruitment pattern continued until reaching the target sample sizes of 

450 participants in Cebu and 300 participants in Mandaue. Each PWID was provided 200 

Philippine Pesos (US$5) for participating in the survey and 50 pesos (US$1.25) for each 

eligible person they recruited. When people returned to redeem the recruitment incentives, a 

brief secondary questionnaire was administered to identify ties between the participant’s 

recruiter (the person who gave him his coupon) and his recruits (the people he recruited into 

the survey).  
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Statistical analysis and network simulation 

Using methods proposed by Smith in 2012 [99] and previously applied to RDS data 

[100], we estimated coefficient parameters for an exponential random graph model (ERGM), 

a conditional regression model that relates network characteristics, such as mixing and 

clustering, with the presence or absence of a network tie  [101,103,104]. 

Our network simulation started from a random network with node characteristics that 

matched our RDS-weighted population. This random network was combined with an initial 

set of coefficients for a defined ERGM. A series of new networks were simulated from these 

coefficients, and their results were adjusted to more closely match the empirical network 

characteristics of mixing and clustering, as estimated from our RDS-weighted data. The 

process could be described in four parts. First, we estimated characteristics of individuals on 

the network and overall network characteristics (mixing and clustering) from the RDS data. 

Next, we set up the initial ERGM parameters and simulated the networks. Third, we 

iteratively adjusted ERGM coefficients and simulate new networks until our coefficient 

estimates closely resembled the empirical data. We then simulated a number of networks 

from our final set of coefficients. All analyses were conducted in R statistical software [121], 

using the RDS [122], igraph [123], and statnet suite [124,125] of packages. We discuss each 

step in further detail here.  

Estimates from RDS data 

Different RDS data were used at different points in our network simulation process. 

We estimated the joint distribution of characteristics of individuals in the PWID population 

to populate our initial network. We used RDS weights to calculate the distribution of 

important demographic and behavioral characteristics in the PWID population in each city. 
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The main characteristics of interest in this analysis were: current age; age of first injection 

drug use; injecting frequency; injecting in shooting galleries or tambayan (small, private 

gatherings among PWID); acquiring needles and syringes from the local city health office; 

and reported degree (the number of other PWID each person knows).  

We also estimated homophily, a measure of assortative mixing on the network, to 

identify important mixing characteristics for our model. We explored the homophily 

parameters for several characteristics including age, age at first injection, injecting frequency, 

choice of location to inject (shooting gallery, “tambayan”), and getting needle and syringes 

through the city health office. We selected only those characteristics that showed significant 

homophily (i.e., values > 1.1 in at least one category). Population characteristics and 

homophily were calculated using the successive-sampling estimator [95], which was the 

default method in the RDS R-package, although estimates using the “Volz-Heckathorn RDS-

II” estimator [97] did not differ from Gile estimator results, which was the default used in R. 

Finally, clustering, as measured in terms of the RDS-weighted ego-network 

configuration distribution, was used to calibrate the ERGM coefficient parameters [99]. The 

ego-network was defined as a person (ego) and the people directly connected to him (alters). 

The ego-network configuration considered patterns of ties between alters. We treated each 

PWID as an ego with up to three alters: the person who recruited him and his two recruits. 

Our secondary questionnaire asked about ties between the person’s recruiter and his recruits, 

but it did not directly observe ties between the two recruits, accounting for only 2 out of the 3 

ties. In the absence of this information, we assumed that the probability of triad closure was 

the same rate as explicitly observed on the network, which was 0.87 in Cebu and 0.95 in 
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Mandaue. The configurations of individuals who recruited only one other PWID were treated 

as missing data and were excluded from the ego-network distributions.  

Setting up the initial ERGM 

Using the RDS-weighted joint distribution of characteristics and degree in each city, 

we generated random networks the size of the estimated PWID populations in each of our 

two cities: 3000 in Cebu and 1500 in Mandaue [120]. Each network also had a distribution of 

demographic and behavioral characteristics that mirrored the distributions found in our RDS-

weighted samples from both cities. Using this random network and each node’s reported 

degree, we randomly assigned ties between all nodes so that the degree distribution 

approximated a smoothed distribution around the observed in our data.   

We then set initial values for coefficients on each parameter in the ERGM. Clustering 

parameters were initially set at reasonable arbitrary values, since they were later updated 

through subsequent model fits. Initial mixing parameters were estimated using a case-control 

approach, where cases were observed ties and controls were non-ties from an RDS-weighted 

sample. Both the ERGM and logistic regression models were used to estimate the odds of a 

tie, for different combinations of characteristics, but the ERGM generated those estimates 

conditional on the characteristics that defined the rest of the network. Thus, the ERGM could 

be configured to account for overall network properties, such as the degree distribution and 

triadic clustering.  

The initial ‘random’ network we had constructed to this point had randomly assigned 

ties, but ensured that the degree distribution and demographic and behavioral characteristics 

were consistent with our RDS sample, and an ERGM formula with initial coefficient 

parameter values but had randomly assigned ties. We then simulated networks, using a 
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rewiring algorithm that rearranged a small number of ties between people on the network 

until the network realization was consistent with the initial ERGM coefficients. To reduce the 

sampling space and avoid model degeneracy, we constrained our network models to only 

those networks with the same degree distribution as the initial ‘random’ network.   

Adjusting ERGM coefficients  

The new networks simulated would have clustering and mixing that resemble the 

RDS-weighted data. However, our original mixing coefficients assumed a dyad-independent 

model – that is, each pair was independent of every other pair. The inclusion of a non-zero 

triadic clustering term in the ERGM indicated that the network was not dyad-independent. 

Therefore, we updated the homophily coefficients using logistic regression where ‘cases’ 

were observed ties from the RDS data and ‘controls’ were randomly sampled non-ties from 

the simulated network. With the specified model and updated homophily coefficients, we 

then simulated a new set of networks, starting from the last available network.  

The ego-network configuration distributions were then compared to the empirical 

distribution, and the clustering parameter was tuned to more closely match the empirical ego-

network configuration distribution. Changing the clustering parameter altered the homophily 

coefficients, so homophily was again updated before a new set of networks was simulated. 

This iterative process continued to minimize the difference between the ego-network 

distributions in the model networks and the empirical data, as measured by a chi-square 

statistic. For each city, we used the best fitting parameter estimates to simulate a minimum of 

30 networks consistent with the ego-network configuration distribution in the observed data, 

based on the chi-square statistic. We then estimated summary parameters on each of these 

networks, including number of components and component size and average distance 
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between nodes. We also looked for nodes that were indicated as important in terms of one of 

three centrality measures: degree, betweeness, closeness [107-109]. 

Results  

Recruitment and enrollment were conducted from May 25 to July 10, 2013 at the 

Cebu and Mandaue City Health Offices. Seven seed PWIDs were selected from each city, 

covering a range of demographic characteristics and geographies. Each city reached its 

respective target recruitment, reaching a total of 450 PWID respondents in Cebu and 303 in 

Mandaue. One seed from each city failed to recruit any friends into the survey. These two 

individuals were removed from the analysis. Two chains from each city recruited 70% of the 

survey respondents. Recruitment was slightly faster and more efficient in Cebu, while the 

survey in Mandaue had the longest recruitment chain, completing over 20 waves of 

recruitment.  

Most demographic characteristics were similar across the two cities (Table 1). The 

average age of PWID was around 30 years in both cities, and most PWID did not attend or 

complete high school. Injecting behaviors in both cities were quite risky, though PWID in 

Cebu injected more frequently than PWID in Mandaue. A higher proportion of Cebu PWID 

visited shooting galleries, although both groups reported shooting galleries at greater than 

75%. Cebu PWID also reported larger networks of PWID, though this could indicate a 

friendship network and may not directly correlate with the injecting network.  

Strong homophily by age and injecting frequency was observed across both cities. In 

Cebu, ties within the youngest age group (15 to 24 years) occurred almost 50% more 

frequently than what would be expected at random (1.49). In both cities, ties within the oldest 

PWID (35 years and older) occurred almost one-third more frequently than expectation 
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(Table 5). In both cities, PWID who injected less than once a day had a strong preference for 

peers who injected at the same frequency. In Mandaue, PWID who injected more than three 

times per day had some heterophily or preference outside of their own group, but this may be 

an artifact of the small size of this group, which made up just 3% of the network.  Finally, 

PWID in Cebu also had preferences for assortative mixing by utilization of needle exchange 

services at the city health office. 

The simulated networks had the degree and homophily across most of the 

characteristics of interest consistent with the RDS data (Error! Reference source not f

ound.). Characteristics and categories of age included in the model had homophily consistent 

with that observed in RDS data and were clearly different from the random network. 

Homophily by injecting group was more moderate than RDS estimates, but showed greater 

homophily than the initial random networks. Characteristics that showed no homophily in the 

RDS sample (e.g., first age of injecting drug use) also showed no homophily in our 

simulations, suggesting that the networks we had simulated were consistent with the 

networks that produced our RDS samples.  

We did observe several notable differences between the network structure estimates 

in the two cities (Table 8). In Mandaue, simulation results suggested one large component 

connecting 65-80% of the estimated 1500 PWID, and hundreds of smaller, disconnected 

groups. In Cebu, over 98% of individuals on the simulated networks were connected to the 

largest connected component, and most simulations had fewer than 10 small, isolated 

components. The differences in component size suggested that the epidemic in Cebu had the 

potential to reach a larger proportion of the PWID population than in Mandaue, which was 

consistent with the higher HIV prevalence observed in Cebu. Furthermore, within the largest 
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components of each city, it was easy for PWID to reach each other, but PWID were more 

closely connected in Cebu, which had an average path length of 3.3 compared to 3.8 in 

Mandaue. The shorter paths in Cebu meant that infection can reach more people in a fewer 

number of steps, which could explain why we observed more rapid growth in HIV 

prevalence in Cebu than in Mandaue.   

Discussion 

In this paper, we simulated networks from RDS data to compare PWID network 

structures between Cebu and Mandaue, two cities in the Philippines, and to assess whether 

differences in those network structures could explain observed differences in the timing and 

spread of HIV infection in the two cities. Our results suggest that differences in connectivity 

among our simulated networks were consistent with the differences in HIV prevalence 

patterns observed in Cebu and Mandaue. In Cebu, PWID frequently visited shooting galleries 

to rent needles and inject drugs, which might explain why most individuals in this city’s 

simulated networks were part of the largest connected component. In contrast, the largest 

connected component encompassed just 65-80% of the PWID population in Mandaue, with 

other PWID clustered in small groups of 10 or fewer PWID.  

These findings are consistent with local observations, in which PWID in Cebu are 

known to frequent shooting galleries and those in Mandaue tend to inject in “tambayan” 

(private parties) with close friends they know. These small clusters prevent spread of 

infection and may explain why the introduction of HIV in Mandaue led to slower spread and 

resulted in lower HIV prevalence than in Cebu. Initially, PWID in Mandaue who were 

infected may have been part of these smaller isolated components, limiting the spread of 

HIV, and the observed rise in HIV prevalence might have occurred only after infection was 
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introduced into one or multiple PWID who were connected to the largest network component 

in this community.  

Other network statistics in the two cities could explain why the PWID network would 

promote the more rapid spread of HIV infection in Cebu than in Mandaue. Average path 

length was decidedly shorter in Cebu than in Mandaue, despite the fact that Cebu has almost 

three times the number of PWID. One would expect that a larger network size would make it 

more difficult for any two people to reach each other. The unexpected shorter path length in 

Cebu may be a consequence of the differences in degree, as network density on the 

connected component in Cebu (0.007) was higher than in Mandaue (0.006). Mandaue also 

exhibited higher clustering than Cebu.  Higher clustering creates redundant paths on the 

network, and may slow the spread of infection across the network [44].  

Our simulations revealed several network differences that could explain the 

differences in observed prevalence patterns in the two cities, but we were unable to isolate 

individuals or subgroups who were particularly important to maintaining connectivity or 

short path lengths on each network. Such results may have been a consequence of the 

relatively high density of these networks. While reported degree was still within the range of 

PWID social networks [65,126], it exceeded the levels reported in drug sharing and injecting 

networks in recent studies [55,56,127].   

A number of limitations should be considered when assessing our results and 

conclusions. First, while the networks here closely matched the degree distributions and 

homophily observed on our true network, the ego-networks collected data on only 3 alters 

and only 4 possible configurations. These data were still used to estimate the clustering 

parameters in our model. Future studies that employ respondent driven sampling could 
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incorporate questions about each respondent’s ego-network to describe networks and 

consider their potential impacts on the spread of infection. Second, our data were based on 

social networks and assumed that PWID share drugs or needles with all of their social ties. 

While this may have overstated the true state of drug and needle-sharing, the drug and 

injection networks would be a subset of those simulated. Additional knowledge of the direct 

risk network may offer a better estimate of how rapidly and broadly infection would spread 

in this community.  

PWID remain a vulnerable population in the global HIV epidemic. After 30 years of 

the global HIV epidemic, new outbreaks of HIV among PWID continue to emerge 

throughout the world [1-4,128,129]. In the work presented here, we made use of routine 

surveillance data to identify differences in network connectivity that may explain observed 

differences in disease dynamics in PWID populations. We identified that differences in the 

size of the largest connected component and average path lengths could result in differences 

in timing and speed of HIV spread. Future work would consider fitting a transmission model 

to evaluate how introducing infection along different parts of the network might have 

impacted the speed and extent of infection in the population, and how to identify individuals 

on the network who may be important for preventing widespread infection. These models 

might also be used to simulate the impacts of cutting off or slowing spread of infection 

through prevention or treatment programs. A better understanding of the interplay between 

network structures and disease dynamics could play an important role in identifying effective 

intervention and thus strengthen our progress towards reducing the spread of HIV.  
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Figures and Tables  

 

Table 4. Demographic and behavioral characteristics of the sample, weighted using Gile’s 

successive sampling estimator [95]. 

  Cebu  Mandaue  

   %  95% CL   %  95% CL  
Age group        

 15 to 24  24  (22 - 34)   42  (29 - 54)   

 25 to 34  32  (25 - 39)   27  (18 - 36)   

 35 and older   40  (33 - 47)   32  (23 - 41)   

         
Frequency of Injecting        

 < 1x per day   47  (39 - 54)   64  (53 - 74)   

 1-2 x per day   20  (15 - 25)   28  (17 - 38)   

 2-3 x per day  19  (14 - 24)   5  (2 - 9)   

 >3 x per day  14  (10 - 19)   3  (1 - 6)   

         
Age at first injection drug use       

 Under 18   34  (27 - 41)   36  (24 - 49)   

 18 to 25  40  (33 - 47)   46  (35 - 58)   

 Over 25  26  (19 - 33)   2  (9 - 25)   

         
Places to inject1        
 Shooting galleries  84  (78 - 89)   84  (78 - 90)   

 Tambayan  24  (17 - 30)   20  (13 - 26)   

        

Sources for needles2        

 City Health Office  16  (12 - 21)   4  (0 - 8)   

 Pharmacy   24  (17 - 30)   24  (13 - 34)   

 Other PWID  16  (11 - 22)   27  (17 - 38)    
Shooting gallery 

 
43 (36 - 50) 

 
44 (33 - 56) 

 

 

  

                                                 
1 Participants were asked about injecting at each location separately, so percentages to not sum to 100%  

2 Participants were asked to name all places they accessed needles, so percentages may not sum to 100% 
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Table 5. Homophily of characteristics of interest.  

  Cebu Mandaue 

Age group    

 15 to 24  1.487 1.177 

 25 to 34  1.167 1.007 

 35 and older   1.321 1.304 

     
Frequency of Injecting    

 < 1x per day   1.262 1.157 

 1-2 x per day  1.083 0.983 

 2-3 x per day  0.980 1.380 

 >3 x per day  1.072 0.823 

     
Age at first injection drug use  

 Under 18   0.990 0.967 

 18 to 25  0.996 0.958 

 Over 25  1.142 0.977 

     
Places to inject3    

 Shooting galleries  1.077 1.124 

 Tambayan  0.999 1.259 

     
Sources for needles4     

 City Health Office  1.372 1.012 

 Pharmacy   1.025 1.061 

 Other PWID  0.884 1.121 

 Shooting gallery  1.124 0.968 

                                                 

3 Participants were asked about injecting at each location separately  

4 Participants were asked to name all places they accessed needles 
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Table 6 (a/b). Comparison of RDS-weighted characteristics and random network characteristics in Cebu (a) and Mandaue (b).  

Cebu  Proportions  Degree 

  

RDS-

weighted 

Random 

network  RDS-weighted 

Random 

network 

Final network 

solution 

  % (95% CL) %  Mean (95% CL) Mean  Mean (95% CL) 

Age group        

 15 to 24  24 (22 - 34)  28  20.0 (15-25) 20.0 21.58 (21.08-22.07) 

 25 to 34  32 (25 - 39)  32  21.0 (15-27)** 20.7 20.68 (20.23-21.12) 

 35 and older   40 (33 - 47)  40  21.4 (16-27) 21.5 21.76 (21.33-22.18) 

         
Frequency of Injecting       

 < 1x per day   47 (39 - 54)  47  20 (18-23) ** 20.2 20.55 (20.30-20.79) 

 1-2 x per day  20 (15 - 25)  20  21 (15-28) 21.3 21.92 (21.10-22.73) 

 2-3 x per day 19 (14 - 24)  19  21 (15-28) 21.1 23.09 (22.25-23.93) 

 >3 x per day  14 (10 - 19)  14  22 (13-30) 21.8 20.96 (20.27-21.66) 

         
Age at first injection drug 

use       

 Under 18   34 (27 - 41)  34  22 (16-27) 21.4 22.25 (22.00-22.49) 

 18 to 25  40 (33 - 47)  40  23 (19-28) 23.2 22.76 (22.40-23.11) 

 Over 25  26 (19 - 33)  26  17 (11-22) 16.4 18.03 (17.52-18.55) 

         
Places to inject        

 Shooting galleries 84 (78 - 89)  84  21 (18-25) 21.4 21.71 (21.64-21.78) 

 Tambayan  24 (17 - 30)  24  21 (18-25) 19.4 20.98 (20.74-21.23) 

         
Sources for needles        

 City Health Office 16 (12 - 21)  16  25 (17-24) 24.4 30.23 (29.33-31.12) 

 Pharmacy   24 (17 - 30)  24  23 (16-29) 22.9 20.92 (20.52-21.32) 

 Other PWID  16 (11 - 22)  16  19 (14-24)**  18.8 18.74 (18.21-19.26) 

 Shooting gallery 43 (36 - 50)  43  22 (18-26) 19.1 19.34 (18.94-19.74) 
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Mandaue  Proportions  Degree 

   RDS-weighted 

Random 

network  RDS-weighted 

Random 

network 

Final network 

solution 

  % (95% CL) %  Degree (95% CL)   
Age group        

 15 to 24  42 (29 - 54)  42  7  (4-9) 6.92 6.77 (6.63-6.90) 

 25 to 34  27 (18 - 36)  27  10 (7-13) 9.65 10.33 (10.02-10.64) 

 35 and older   32 (23 - 41)  32  9 (6 -13) 9.21 8.84 (8.67-9.01) 

         
Frequency of Injecting        

 < 1x per day   64 (53 - 74)  64  7 (5-10) 7.46 7.35 (7.27-7.43) 

 1-2 x per day   28 (17 - 38)  28  9 (6-12) 8.85 9.22 (9.14-9.30) 

 >2 x per day  9 (5 - 13) 9  14 (6-22) 13.6 13.22 (12.61-13.83) 

         
Age at first injection drug use      

 Under 18   36 (24 - 49)  36  8 (6-11) 8.30 8 (7.94-8.40) 

 18 to 25  46 (35 - 58)  46  9 (6-12) 9.13 9 (8.75-9.08) 

 Over 25  2 (9 - 25)  17  7 (4-9) 6.54 7 (7.09-7.66) 

         
Places to inject        

 Shooting galleries 84 (78 - 90)  84  8 (6-10) 7.75 7.50 (7.43-7.56) 

 Tambayan  20 (13 - 26)  20  13 (8-18) 12.7 13.50 (13.23-13.76) 

         
Sources for needles        

 City Health Office 4 (0 - 8)  4  9 (5-12)**  8.7 7.30 (6.69-7.91) 

 Pharmacy   24 (13 - 34)  24  9 (5-12) 8.8 8.81 (8.64-8.98) 

 Other PWID  27 (17 - 38)  27  9 (5-12) 8.5 9.28 (9.03-9.52) 

 Shooting gallery 44 (33 - 56)  44  8 (5-11) 8.7 7.60 (7.47-7.73) 

        

                                                 

** Confidence limits could not be estimated using RDS methods; numbers presented use weighted survey methods and are narrower than RDS 

estimates 
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Table 7. Comparison of homophily from RDS, random network and the final solution shows homophily from our solutions are 

somewhat close to empirical estimates.  
 

    Cebu    Mandaue  

   RDS Random Final solution  RDS Random Final solution 

Homophily    mean (range)     
          

Age group         

 15 to 24  1.487 1.012 1.19 (1.15-1.24)  1.177 1.022 1.15 (1.12-1.18) 

 25 to 34  1.167 1.008 1.13 (1.12-1.15)  1.007 0.992 1.02 (1.01-1.04) 

 35 and older   1.321 1.004 1.25 (1.23-1.28)  1.304 1.012 1.29 (1.25-1.35) 
          

Frequency of Injecting††         

 < 1x per day   1.262 0.996 1.04 (1.03-1.05)  1.157 1.016 1.07 (1.05-1.09) 

 1-2 x per day   1.083 1.002 1.10 (1.09-1.12)  0.983 1.015 1.01 (0.99-1.03) 

 2-3 x per day  0.980 0.999 1.00 (0.99-1.01)  1.167 1.006 1.08 (1.06-1.09) 

 >3 x per day  1.072 0.993 1.03 (1.02-1.05)  -- -- -- 
          

Age at first injection drug use        

 Under 18   0.990 1.000 1.03 (1.02-1.04)  0.967 1.014 1.01 (1.01-1.03) 

 18 to 25  0.996 1.003 1.01 (1.00-1.02)  0.958 1.005 1.00 (0.99-1.01) 

 Over 25  1.142 0.995 1.04 (1.03-1.05)  0.977 1.000 1.03 (1.02-1.05) 
          

Places to inject         

 Shooting galleries  1.077 0.997 1.00 (1.00-1.01)  1.124 0.988 1.08 (1.06-1.10) 

 Tambayan  0.999 0.996 1.01 (0.99-1.02)  1.259 0.986 1.13 (1.11-1.15) 
          

Sources for needles          

 City Health Office  1.372 1.007 1.04 (1.03-1.07)  1.012 1.005 1.04 (1.02-1.05) 

 Pharmacy   1.025 0.993 1.00 (0.99-1.01)  1.061 0.994 1.02 (1.00-1.04) 

 Other PWID  0.884 0.993 1.01 (1.00-1.01)  1.121 1.004 1.04 (1.03-1.05) 

 Shooting gallery  1.124 0.995 1.01 (0.99-1.02)  0.968 1.001 1.04 (1.02-1.06) 
          

                                                 

†† The higher two categories of injection frequency were collapsed in Mandaue network estimates and simulations due to small cell sizes  
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Table 8. Summary network statistics of simulations in Cebu and Mandaue.  

Network Statistics  Mandaue Cebu 

  Mean (range) Mean (range) 

Number of components   132 (127-138) 6 (2-13) 

Largest component (size)  1082 (1069-1100) 2981 (2955-2995) 

Density   0.00559 0.00712 

Average path length  3.774 (3.689-3.972) 3.302 (3.268-3.349) 

No. triangles   13,480 (13,297-13,596) 129,814 (127,214-133,438) 

Clustering Coefficient   0.386 (0.381-0.389) 0.293 (0.287-0.301) 

    
Centrality (Individual statistics)  
Degree  10.8 (10.7-10.9) 21.5 (21.4-21.6) 

Eigenvector  0.020 (0.019-0.020) 0.011 (0.011-0.012) 

Betweenness (information)  2998.1900 (2872-3257) 78.2711 (3257-0) 

Closeness  0.270 (0.260-0.276) 0.308 (0.304-0.311) 

    
Centralization (network statistics)   
Degree   0.069 (0.068, 0.070) 0.085 (0.084, 0.085) 

Eigenvector  0.177 (0.165, 0.203) 0.158 (0.143, 0.172) 

Betweenness  0.075 (0.068, 0.091) 0.055 (0.048, 0.062) 

Closeness  0.110 (0.102-0.115)  0.132 (0.123-0.138)  
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CHAPTER 5: A PHYLOGENETIC ANALYSIS OF EMERGING EPIDEMICS AMONG 

PEOPLE WHO INJECT DRUGS IN THE PHILIPPINES  

Introduction  

People who inject drugs (PWID) remain central to the global HIV epidemic. 

Although they comprise just 0.26% of the world’s population [14], they disproportionately 

account for one-third of new HIV infections outside of sub-Saharan Africa [130]. HIV 

epidemics among PWID can reach very high proportions, in some cases infecting over one-

third of the population at risk [12,128,131,132]. Furthermore, HIV epidemics among PWID 

expand rapidly. HIV prevalence may increase from virtually 0% to 50% within less than one 

year [6], and new epidemics continue to emerge among PWID [1,128,129]. Behavioral 

surveys can be used to identify settings where outbreaks may occur, but they cannot predict 

the timing and onset of an epidemic. This unpredictable nature and the potentially severe 

consequences of these HIV epidemics, PWID should be a top priority for HIV prevention 

and care.  

In this work, we used phylogenetic analysis to investigate the emergence of HIV 

among PWID located in two cities in the Philippines. In Cebu City, active surveillance 

documented a rapid rise in HIV prevalence among PWID -- from less than 1% in 2009 to 

53% in 2010 [11,12]. This was followed two years later by a similar rise in HIV prevalence 

among PWID in the neighboring city of Mandaue, where prevalence grew from 3.6% in 2011 

to 38% in 2013 [11-13]. Phylogenetic trees of HIV sequences, collected through surveillance 

in the initial stages of the epidemic in Cebu City showed that 90% of infections among 

PWID arose from a common source [133,134]; however, during the same period, only 11 
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HIV infections were detected among injecting drug users in Mandaue [12], and their 

sequences could not be amplified for further phylogenetic analysis.  

The observed emergence of HIV in these two cities allows us to examine potential 

injection sharing links between PWID in Mandaue and Cebu. If PWID in Mandaue were 

well-integrated with the Cebu injecting network, we would not expect a 2-3 year delay before 

the emergence of HIV in Mandaue. One possible explanation for the delay is that PWID in 

Mandaue are still connected Cebu injecting network, but they are connected to the periphery, 

so that infection is slower to reach them. Alternatively, the needle-sharing networks in Cebu 

and Mandaue are completely separated, and the Mandaue epidemic was a result of an 

external introduction of infection into Mandaue’s high-risk injecting network.  

To determine whether the emergence of HIV among PWID in Mandaue was 

connected to PWID in Cebu, we assessed the genetic clustering of HIV infections collected 

in active HIV surveillance in these two cities. We constructed a phylogenetic tree of the 

genetic sequences collected from PWID who participated in the 2013 HIV surveillance 

surveys in Cebu and Mandaue. We then used this tree to identify clusters of infection and to 

determine whether the Mandaue epidemic arose from the same source as the epidemic in 

Cebu.  

Methods  

Sampling and enrollment 

The data analyzed were a subset of the PWID surveys collected by the Integrated HIV 

Behavioral and Serological Surveillance (IHBSS) program in 2013. IHBSS surveys have 

been conducted every two years by the Philippines Department of Health to assess the HIV 

risk in the country for HIV strategic planning. They have surveyed several high-risk 
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populations in a number of cities across the country. Behavioral questionnaires were 

administered via face-to-face interviews to measure risk behaviors, and blood was drawn to 

evaluate for Hepatitis C (HCV), syphilis and HIV. All data were collected anonymously and 

surveys were not subject to institutional review as the work was part of ongoing surveillance. 

The analyses presented here were deemed exempt by the UNC IRB.  

In the 2013 IHBSS, recruitment of PWID was conducted using respondent-driven 

sampling (RDS), a strategy often employed to identify and recruit individuals when the 

sampling frame is not well defined. RDS is particularly useful for recruiting stigmatized 

populations, because participating members of the community are asked to recruit their peers 

directly, which may be more persuasive and protects the confidentiality and anonymity of 

those who refuse to participate. The RDS theory and method have been described previously 

[93,135]. In our surveys, an initial group of PWID (referred to as “seeds” in RDS 

terminology) were identified and asked to recruit 2-3 friends whom they knew to inject 

drugs. Successfully recruited PWID completed the survey and were subsequently asked to 

recruit 2-3 more of their friends who also inject drugs. This process was repeated with each 

subsequent round of recruits until the target sample sizes of 450 and 300 recruits were 

reached in Cebu and Mandaue, respectively.  

Next-generation HIV sequencing 

Blood samples were tested for HIV at the STD/AIDS Surveillance Cooperative 

Central Laboratory (SACCL), San Lazaro Hospital, Manila. Plasma RNA was extracted from 

all HIV-positive samples, using the QiAmp Viral RNA Isolation Kit (Qiagen, Germany) and 

shipped to the Hawaii Center for AIDS Research (HFCA) in Honolulu, Hawaii (USA). To 

minimize RNA degradation during transport, the samples were stabilized into lyophilized 
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form using GenTegra RNA Matrix (GenTegra, USA). Upon arrival at HCFA, the RNA was 

reconstituted in RNAse-free water according to manufacturer protocol and used as a template 

for amplicon generation. 

As the primary purpose of the HIV sequencing was to inform Ministry of Health 

treatment guidelines, the main target for replication was part of the p51 (Reverse 

Transcriptase) region of the pol gene (HXB2 2748-3216). Reverse Transcriptase-Polymerase 

Chain Reaction (RT-PCR) was conducted using a one-step RT PCR protocol, which 

synthesizes first-strand cDNA and subsequent PCR in a single reaction, using MyTaq™ 

One-Step RT-PCR Kit (Bioline, USA). Fusion primers that were designed to match the 454 

Roche sequencing system were gene-specific sequences appended with 454-template adapter 

sequences and a short sequence tag (or Multiple Identifier) to uniquely identify each 

amplicon.  

A 1.5 μL solution of the PCR reaction was run on a 48-lane E-Gel Agarose Gel 

Electrophoresis system (Life Technologies, USA) to visually inspect for the HIV pol 

amplicon band, which indicated amplification success. In samples where amplification was 

successful, the remaining PCR product was purified using Agencourt AMPure XP beads 

(Beckman Coulter, USA) and quantified using Quant-IT PicoGreen dsAssay kit (Life 

Technologies, USA), followed by subsequent normalization and pooling.  

Next-generation sequencing (NGS) was implemented using the GS Junior sequencing 

system (Roche 454 Life Sciences, USA). Emulsion-based clonal amplification PCR 

(emPCR) was performed to clonally replicate each sequence recovered in the RT-PCR 

process. Amplicons were individually sequenced from forward and reverse ends, to generate 

up to 200,000 reads per sample. Data cleaning was completed using Intergroomer 
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(http://courge.ics.hawaii.edu/inte/groomer/) and consensus sequences were determined from 

each sample, based on the majority nucleotide base at each site.  

Phylogenetic Analysis 

Phylogenetic trees were constructed using the consensus sequences from HIV 

samples in the 2013 IHBSS survey and reference sequences from three sources. The first two 

sets of reference sequences were taken from GenBank. We pulled any sequences in GenBank 

tagged as originating from the Philippines. In addition, we also retrieved the ten sequences 

most genetically similar to our 2013 sequences of interest, which was found using the HIV 

BLAST search tool 

(http://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.html). The third set 

of reference sequences consisted of all successfully amplified HIV sequences acquired from 

2013 IHBSS surveys of other cities and populations in the Philippines. These reference 

sequences were included to calibrate the degree of clustering in the sequences we observed. 

If our sequences of interest clustered with reference sequences, then we could not conclude 

that the HIV infections detected in Cebu and Mandaue in 2013 were any more closely related 

to each other than to other “random” sequences. In other words, such a result would suggest 

that the data did not exhibit any genetic similarity within our sequences of interest, beyond 

the similarity expected by random chance.  

All sequences were aligned to the HXB2-LAV K03455 reference genome using 

MUSCLE [112,113]. Using this alignment file, a maximum likelihood (ML) tree was 

constructed in RAxML [114] using a generalized time-reversible (GTR) gamma model of 

substitution with rate heterogeneity [58]. We conducted runs with 1,000 bootstrap samples. 

Transmission clusters were identified as clades with short branch length and high bootstrap 

http://courge.ics.hawaii.edu/inte/groomer/
http://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.html
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support (95%) [115]. We described the size and composition of transmission clusters that 

included PWID sequences from the 2013 IHBSS in Cebu or Mandaue, and assessed whether 

there was any apparent separation between sequences from Cebu and those from Mandaue. 

The consensus sequences from the 2013 were deposited in GenBank with accession 

numbers KX184117-KX184197. Other sequences used in the phylogenetic tree were 

accession numbers AB587097-AB587118, AB747376-AB747549, KF059718-KF059833, 

KJ868976-KJ868980.  

Statistical Analysis  

Characteristics of the HIV-infected populations were estimated for each city using 

RDS sequential-sampling weights [95]. Weights were first constructed for each city, using 

local population size estimates of 4500 PWID total, and subset by each city: 3000 in Cebu 

and 1500 in Mandaue. Demographic and behavioral characteristics were reported for only the 

subset of HIV-infected PWID, and stratified by city and amplification status. Statistical tests 

for differences were conducted using the Rao-Scott test for survey-weighted data [136]. All 

analyses were conducted using the ‘RDS’ package in R Software [121,122]. There is little 

consensus on the selection and use of RDS-weights for estimation [110,137-139]; we report 

weighted results for this work, but note that unweighted results did not show appreciable 

differences.  

Results  

Study population 

The IHBSS survey achieved the target sample sizes in both surveys, recruiting a total 

of 457 male PWID in Cebu and 310 male PWID in Mandaue, including the initial wave of 

seed PWID. We restricted our analyses to those PWID who tested HIV-positive, so that our 
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study population comprised 239 male PWID from Cebu and 131 from Mandaue. 

Surveillance staff identified and excluded 33 HIV-infected participants in Mandaue who had 

already participated in Cebu, using a unique identifier (using both parents’ initials, birth 

order, and date of birth) collected on the enrollment form. After removing duplicate samples, 

PCR amplification and sequencing was successful in 92 (27%) unique male PWID samples: 

68 from Cebu and 24 from Mandaue.  

Demographic and behavioral characteristics were similar in the amplified and non-

amplified populations and in the two cities (Table 9). Injectors in both cities were on average 

around 30 years of age, and had been injecting for 11 years. Most had completed some 

schooling, but only one-third had completed at least a high school education. All groups 

reported equally risky injecting practices. A majority of injectors reported sharing needles in 

the last 6 months, and over 60% reported injecting with a used needle. While injectors in 

Cebu reported more shooting gallery visits than those in Mandaue (7 vs 3), almost 80% in 

both cities reported injecting at a shooting gallery most of the time and over 80% had pooled 

funds with other drug users to purchase drugs.   

Phylogenetic Tree Analysis  

The BLAST search of geographically and genetically similar sequences generated a 

total of 286 unique reference sequences. These were combined with 92 sequences from male 

PWID in Cebu and Mandaue (68 from Cebu, 24 from Mandaue) and another 17 sequences 

from IHBSS surveys among other risk groups (6 from female PWID and 11 from MSM). A 

total of 395 sequences were included in the phylogenetic analysis.  

The resulting phylogenetic tree showed very high bootstrap support (97%) for a large 

subtype B cluster of 172 sequences, which included 99% (N= 92) of infections among the 
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male PWID infections and all 6 of the female PWID infections in Cebu and Mandaue in the 

2013 surveys (Figure 7). One sequence sampled from the 2013 MSM survey was also in this 

cluster, but the remaining 10 were scattered throughout the tree. The cluster was 

predominantly composed of sequences obtained from PWID (Table 10). The 2013 PWID 

sequences made up over half (52%) of the sequences in this cluster; and an additional 49 

sequences (28%) in the cluster were from prior surveillance surveys of PWID in Cebu or 

case reports from people reporting injecting drug use (shown in purple in Figure 7). Two 

sequences each were from prisoners and MSM; and three sequences were sampled from 

female sex workers (FSW). We were unable to verify the risk factors related to nineteen of 

the sequences from the cluster.  

Only one sequence from a male PWID in the 2013 survey fell outside the large 

cluster. That sequence clustered with CRF-01 AE subtype, which has been reported in a 

number of MSM infections in the Philippines [134]. The CRF01-AE infected PWID was 

older than average (40 years) and started injecting drug use at age 35.   

 

Discussion  

We have presented a phylogenetic analysis of the emergence of HIV in two distinct 

patterns across neighboring cities in the Philippines. We found high bootstrap support for a 

large subtype B cluster of predominantly PWID infections (84%), including almost all HIV 

infections among PWID in the recent 2013 IHBSS round. The high bootstrap support of a 

monophyletic clade of HIV sequences that included almost all our PWID samples suggests 

that new infections in Mandaue arose from overlapping needle-sharing networks of PWID in 
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the two cities. In contrast, MSM infections showed no genetic relatedness, as sequences were 

widely scattered throughout the tree, consistent with prior analyses [134]. 

We found low bootstrap support for branching patterns within the large cluster, which 

may indicate that sequences lacked the genetic diversity needed to draw any distinctions 

between them. The lack of a clear separation by city suggested that the new infections 

emerging in Mandaue were not a result of a single introduction, leading to spread across a 

risky injection-sharing network in Mandaue. Instead, it was more likely a result of repeated 

contact and needle sharing between PWID in Cebu and Mandaue. Such repeated exposures 

may be through direct contact or sharing with PWID in Cebu or through shooting galleries, 

which were associated with higher HIV infection [140,141]. In Mandaue, almost three-

quarters of PWID surveyed inject at a shooting gallery, and of those, 73% attended shooting 

galleries in Cebu.  

While we found an interesting connection between epidemics in Cebu and Mandaue, 

several limitations should be considered in interpreting these results. A large number of 

infections could not be successfully amplified. Amplification was performed on plasma 

RNA, which is highly sensitive to degradation by RNAse. The rapid temperature changes, 

combined with possible contamination from blood processing done in the field may have 

impacted the degree of degradation by the time sequencing was conducted. Poor 

amplification results in missing data, which may bias our results. In the extreme, if 

amplification succeeded only for PWID infections that fall within the cluster of interest, it 

may be possible that the data we were unable to collect represent a completely separate 

transmission cluster that we did not observe. Comparisons of measured demographic and 
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behavioral characteristics were quite similar across the two groups, supporting the hypothesis 

that missing sequences were likely similar to those that we observed.  

Moreover, even if the sequences were representative of our sample, the length of the 

sequences analyzed may have been insufficient to observe important and relevant mutations. 

Our reads were about 400 base pairs in length, which might not provide sufficient detail to 

discern sub-clusters. One way to extract greater detail would be to sequence a longer portion 

of the viral genome. However, given the very short time that elapsed between the onsets of 

HIV spread in these two groups, even whole genome sequencing could be insufficient to 

distinguish between differences that occur within the host versus those that occur across 

different hosts.  

Finally, our tree clusters could have be confounded by antiretroviral therapy (ART), 

which exerts selective pressures that could induce greater genetic distance between linked 

infections. Although the survey did not directly collect data on the treatment status of its 

participants, it was unlikely that this would bias our analysis as fewer than 30 PWID were on 

ART in the whole province at the time of surveillance in 2013 [National Philippine 

Surveillance System].  

 

Conclusions  

Using phylogenetic methods to describe the clustering patterns of HIV from two 

epidemics in the Philippines, we have shown that the two epidemics arose from a common 

source of infection, which suggested substantial needle sharing between drug users in both 

cities. Understanding the transmission dynamics of HIV infection among people injecting 

drugs is particularly important in the context of emerging epidemics. In light of the clustering 
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we observed, one should consider PWID in Cebu and Mandaue as a single connected 

population, with shared contact and exposure, instead of approaching each separately. This 

approach to the population may guide strategies for providing successful HIV prevention to 

people injecting drugs in both cities.  
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Figures and Tables  

Figure 7. Best maximum likelihood (ML) phylogenetic tree of all 395 sequences in the Philippines 

with 1,000 bootstrap replicates. Branches are colored by mode of transmission. The large 

cluster of 172 sequences has a bootstrap support of 97% and contains almost all sequences 

from PWID in Cebu and Mandaue.   
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Table 9. Comparison of behavioral characteristics, by PCR amplification status, in Cebu and Mandaue.  1 

  Cebu   Mandaue   Total   

  PCR- PCR+     PCR- PCR+     PCR- PCR+     

  N‡‡ (%) # (%) p   # (%) # (%) p   # (%) # (%) p   

Sample Size (N) 172 67     102 29     274 96     

Weighted Sample§§  1166 385     351 167     1300 536     

Mean age at enrollment (sd) 33 (0.9) 33 (1.5) 0.97   34 (1.3) 31 (1.8) 0.18   34 (0.8) 32 (1.3) 0.23   

Education         0.09           0.12           0.08   

No grade completed 275 (24) 59 (15)     60 (17) 6 (4)    263 (20) 46 (9)    

Elementary 377 (33) 202 (52)     211 (60) 105 (63)     603 (46) 315 (59)     

High School 484 (42) 104 (27)     71 (20) 50 30     401 (31) 154 (29)     

Vocational/College 24 (2) 20 (5)     9 (2) 5 (3)     31 (2) 21 (4)     

Injection Sharing Practices         0.07           0.09           0.02   

Shared last injection 315 (27) 87 (23)     129 (37) 25 (15)    409 (31) 97 (18)    

Shared but not last 

injection 560 (48) 121 (31)     80 (23) 30 (18)     469 (36) 126 (24)     

Never in the past 6 months 291 (25) 177 (46)     142 (41) 111 (67)     422 (32) 313 (58)     

Where do you usually inject drugs?         0.51           0.61           0.85   

At a shooting gallery  1046 (90) 322 (84)    269 (77) 131 (79)    1087 (84) 434 (81)    

In a "tambayan” 119 (10) 57 (15)     73 (21) 36 (21)     197 (15) 99 (18)     

Other  0 (0) 6 (2)     9 (2) 0 (0)     16 (1) 4 (1)     

Additional Injecting Practices                                    

Used Needle First 426 (37) 135 (35) 0.86   148 (42) 37 (22) 0.09   508 (39) 147 (27) 0.12   

Injected with a used needle  793 (68) 263 (68) 0.99   202 (58) 132 (79) 0.06   820 (63) 399 (75) 0.12   

Pool funds to buy drugs  1067 (92) 303 (79) 0.05   282 (81) 149 (89) 0.31   1119 (87) 454 (85) 0.77   

Age at injection drug use (sd) 23 (0.8) 21 (1.1) 0.33   21 (1.0) 22 (1.5) 0.59   22 (0.8) 22 (0.6) 0.95   

Frequency of drug use                                      

Injections in the last day  3 (0.2) 3 (0.3) 0.52   3 (0.2) 3 (0.4) 0.43   3 (0.2) 3 (0.1) 0.63   

Injections in the last week  15 (1.3) 14 (2.0) 0.69   9 (0.9) 8 (2.1) 0.69   9 (0.9) 12 (0.9) 0.36   

Shooting gallery visits  8 (0.7) 7 (1.1) 0.28   3 (0.4) 3 (0.8) 0.92   3 (0.4) 6 (0.5) 0.16   

                                                 2 

‡‡ All numbers are weighted sample sizes  

§§ All weights were constructed using sequential-sequencing RDS weights 
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Table 10. Composition of the main transmission cluster (N=172), by HIV exposure category. 

Exposure category 

 
2013 IHBSS Reference Total 

People who Inject Drugs (PWID) 
 

97 49 146 

Male  91 - - 

Female  6 - - 

Men who have Sex with Men (MSM) 
 

1 1 2 

Sex Worker (SW) 
 

0 3 3 

Prisoner  
 

0 2 2 

Unknown  
 

0 19 19 

Total  98 74 172 

  



 

77 

 

CHAPTER 6: DISCUSSION  

PWID make up less than 1% of the global population [14], yet they comprise almost 

one-third of new HIV infections outside of sub-Saharan Africa [130]. While spread of 

infection in heterosexual epidemics has slowed in most of the world, new HIV epidemics 

among PWID continue to emerge [2-4]. To address prevention for PWID populations, we 

have an extensive understanding of behavior change approaches to limit risk of infection 

given exposure to the virus; but we still know little about how to assess one’s risk of 

exposure – and more specifically, how network structures could determine one’s risk of have 

an HIV-infected injecting partner. In this dissertation, we consider network structures among 

PWID and their potential impacts on disease dynamics.   

This dissertation examined patterns in the emergence of HIV among PWID in two 

cities in the Philippines. In Cebu City, we observed a rapid rise in HIV prevalence, from 

0.6% in 2009 to over 50% in 2010 [11,12]. In Mandaue City, the growth in HIV was delayed 

and grew at a slower pace, with HIV prevalence initially documented at 3.5% in 2011 and 

growing to 38% in 2013 [11-13]. We used exponential random graph models to simulate the 

underlying social networks in each of the two cities and consider whether differences in 

network structures could explain the differences in the speed and extent of disease 

transmission in the two cities (Aim 1). We also generated a phylogenetic tree of all available 

HIV infections in the Philippines to assess the extent to which HIV infections among PWID 

in the two cities were linked (Aim 2).   
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Aim 1: Evaluating the potential impact of network structures among PWID on HIV 

transmission  

Summary of Findings  

In Aim 1, we simulated networks that had homophily and clustering characteristics 

that were consistent with what we observed in our RDS-weighted data. Several 

characteristics of the resulting networks could explain some of the differences in disease 

dynamics that we observed. First, networks suggested that PWID in Cebu were almost 

completely connected, with the largest connected component including 2981 (range: 2955, 

2995) of the 3000 PWID in this city. In network simulations for Mandaue, the largest 

connected component included only 1082 (range: 1069, 1100) of 1500 PWID. If spread of 

infection was limited to ties in our networks, then the largest connected components would 

delineate the reach of disease spread and the differences we observed could have explained 

why HIV prevalence reached higher levels in Cebu than Mandaue. This conclusion was 

consistent with other network studies, which found that the presence of HIV infection on 

disconnected parts of the network could explain the relatively low HIV prevalence in 

otherwise high-risk networks [64,142].  

Several other network parameters differed across the two cities. Average degree was 

considerably higher in the high HIV prevalence Cebu than Mandaue (21.5 v 10.8). These 

results were consistent with transmission model simulations, which found that the probability 

of an outbreak and rate of its spread would rise with increasing degree [28]. In addition, 

higher clustering was observed in Mandaue than in Cebu. At all levels, clustering increased 

the number of redundant pathways between to individuals by adding a direct connection 

between two people who were already connected through one or more mutual intermediate 

friends. At low levels of clustering, an additional redundant path could increase cohesion on 
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the network, promoting spread of infection by making the network less vulnerable to random 

individuals dropping out of the network or other random breaks in transmission. At higher 

levels, like those observed in Cebu and Mandaue, an increase in redundant pathways could 

slow disease transmission, even confining transmission into isolated and highly clustered 

sub-networks [39,40,44]. The combined effects of these differences in network 

characteristics were consistent with the observed faster spread of HIV in Cebu than in 

Mandaue.   

Public Health Significance  

Network structures may play an important role in disease transmission by creating 

separation between components that could prevent spread or by increased ties that could 

create more opportunities for acquisition and onward transmission. In this work, we used 

HIV surveillance data, which have been routinely collected, to simulate and estimate network 

properties among PWID in two cities. We found differences in four major network 

characteristics that may explain the variation in HIV prevalence patterns in the two cities. 

First, the sizes of the largest connected component were important to defining the reach of 

disease spread. Cebu had a much larger component that also connected over 95% of network 

members and therefore had a higher potential for overall disease transmission. Second, 

average path length was shorter in Cebu than Mandaue, which suggests that infection in 

Cebu could reach a larger number of individuals on the network in a fewer number of steps. 

Third, higher clustering in Mandaue could indicate the creation of highly clustered sub-

networks that provide areas that may constrain the spread of infection. Finally, higher 

average degree in Cebu could explain the more rapid spread and higher prevalence level by 

shortening average path length and broader higher connectivity on the network.  
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The most striking difference between the two cities was the number and size of 

connected components. The numerous small isolated components in Mandaue may have 

slowed the introduction of infection into the largest connected component, which could 

explain the delay in increased HIV infection there. Such findings may have limited 

implications for prevention. It would be challenging to design interventions that could or 

limit contain injection sharing practices to small groups to mimic the small, isolated network 

components that we observed in Mandaue. However, these findings did expand our 

understanding connectivity among these PWID populations. These methods could be used to 

identify and prioritize those populations with connectivity patterns similar to what we 

observed in Cebu, which would have the greatest potential for rapidly expanding outbreaks 

and the most urgent need for prevention efforts.    

While the methods used in this work were computationally intensive which may at 

present limit its applicability in non-research settings, our findings may suggest that several 

useful network properties could be easily measured directly in data without the need for 

complex computer simulations. For example, average degree is collected as a part of any 

respondent-driven sampling survey. Local clustering around an individual could be 

approximated through questions about his friends and their connections with each other [99]. 

If network-level characteristics can be identified through data collected on a sample of 

individuals, we may be able to use surveillance data to quickly assess and understand the 

epidemic potential of a community.   

Limitations  

The network reconstruction simulations had several limitations. Characteristics of 

people on the network were calculated using RDS weighted network estimates, which have 
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been often controversial and may not be unbiased [143]. The empirical ego-networks were 

incomplete, so as we fit the clustering parameters, we compared and adjusted the results 

according to a truncated distribution, which is incomplete and may allow for a wide range of 

sufficiently fitting models. Moreover, network simulations were based on reports of social 

ties, and thus do not necessarily define injection risk on the network. However, these social 

ties probably represent the broadest or widest network, and the qualitative differences in 

degree, path length and component size across the two cities would hold for the injecting 

network as well.  

Future Research  

A natural next step to this work would be to apply an agent-based transmission model 

to the network. If the transmission model could substantiate the observed differences in HIV 

prevalence in the two cities, we would have greater confidence in our constructed networks. 

Such a model would also allow us to directly assess how network structures or sub-structures 

impact disease transmission, by comparing how disease dynamics change as we alter the 

network environment surrounding the initial infected person. For example, we could 

demonstrate how multiple introductions of infection into the disconnected parts of the 

network would limit the spread of the epidemic, and could explain the slowed spread of 

infection in Mandaue. Our models may further investigate how the transmission dynamics 

might change if the initial infection was introduced on highly clustered network sub-

structures, or if targeted prevention programs were able to stop transmission among centrally 

located individuals on the network. Overall, refinement and improvement of the network 

simulation and epidemic models would provide a more robust tool for further investigation of 

the effects of changes in network structure on epidemic spread. 
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Aim 2: A phylogenetic analysis of emerging epidemics among people who inject drugs 

in the Philippines  

Summary of Findings  

In Aim 2, we conducted a phylogenetic analysis of the HIV infections detected in the 

two cities to assess whether the emergence of HIV in Mandaue was linked to the ongoing 

epidemic in Cebu. We constructed a phylogenetic tree using all the 2013 surveillance 

sequences, combined with a number of references sequences. The resulting phylogenetic tree 

showed high bootstrap support for a cluster of 172 sequences, which included 91 out of 92 

PWID sequences collected in the 2013 survey. These patterns were consistent with an 

infection pattern with significant overlap or crossover of infection between the two cities. It 

was unlikely that the new HIV infections observed in Mandaue were introduced from 

somewhere outside of Cebu. Given the limited sequence lengths of our analysis, we could not 

definitively say that the networks were not separate, either. Prior work had shown that 

phylogenetic methods can detect differences in epidemics occurring across space and time 

[4,89-92]. It is possible that our data – outbreaks separated by two years in two adjacent 

cities – were at or below the limit of detection to distinguish the two as separate clusters. 

However, given the short genetic distanced between sequences, it was most likely that the 

HIV infections in the two cities were closely linked and any differences in HIV prevalence 

patterns arose from the differences in network structures as observed in Aim 1.  

Public Health Significance 

Our findings confirmed that the emergence of new HIV among PWID in Mandaue 

was linked to the ongoing HIV epidemic circulating among PWID in Cebu. We were unable 

to further delineate smaller sub-clusters of transmission, which could suggest that HIV 

infections were being spread across both cities, from PWID in Cebu to those in Mandaue, 



 

83 

and back. This suggests that the networks among PWID in the two cities were also broadly 

connected to each other.  

Limitations  

There were several limitations to the work presented here. First, we did not know the 

treatment status of individuals sampled. Antiretroviral therapy could suppress viral 

replication and alter the mutation process, which would have two consequences for our 

analysis. Lower viral replication would mean that PWID on ART were more likely to be 

missing from our data set. Among those whose HIV sequences were successfully replicated, 

ART could add external evolutionary pressure that would have caused the sequence to 

deviate from the generalized time-reversible substitution model that was used to estimate our 

phylogenetic trees. However, while treatment data were not directly collected, we knew 

through hospital registrations that fewer than 30 PWID were on ART at the time of the 

survey, so it would be unlikely that we captured a large number of PWID on treatment.  

A second limitation was the number of sequences missing from this tree. Although all 

lab protocols were closely followed, we were unable to sequence over 70% of the samples in 

our data. Looking across a wide range of demographic and behavioral characteristics, we did 

not find any significant differences between PWID whose samples were successfully 

sequenced and those who were not; so we assume unobserved sequences were missing at 

random and did not impact the conclusions of this work.   

Finally, analysis of the phylogenetic data was conducted on shorter consensus 

sequences in a relatively conserved area. Longer reads might have captured greater genetic 

variation across individuals, which might allow us to distinguish whether there was any 

separation between infections occurring in Mandaue compared to those in Cebu. However, 
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the increased variability along other sections of the viral sequence may have resulted in 

multiple substitutions that could have confounded the construction and interpretation of the 

phylogenetic tree. Reconstruction of phylogenetic trees when transmission order was known 

found that the pol gene, including the region that was sequenced in this analysis, was the 

most reliable region for phylogenetic tree reconstruction [73]. Phylogenetic analysis of the 

full viral population within each individual, instead of a single consensus sequence per 

individual, may have identified further sub-clusters of infection, but methods for such 

analysis are still in their infancy.   

Future Research  

To further assess genetic similarity and linkages between the HIV infections detected 

in these two cities, we might consider analysis of the complete next-generation sequencing 

data, which would describe the full viral population in each HIV-infected individual. Future 

work should sequence recently detected HIV infections, particularly those in the greater 

Cebu Metropolis, to assess to what degree new infections are linked to the ongoing 

epidemics in Cebu. The emergence of different infections could indicate other networks or 

communities at risk of new outbreaks or infections.   

Conclusions  

HIV is a serious public health concern for people who inject drugs, as new epidemics 

emerge rapidly and without warning. While there are widely accepted individual behaviors 

that put people at risk of infection, a deeper understanding of network structures and how 

they may expose people to infection can help in identifying and prioritizing PWID 

communities and individuals at greatest risk. We studied the network structures and patterns 

of infection among PWID in Cebu and Mandaue to better understand why we observed 
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differences in the introduction and spread of HIV infection among PWID in these 

communities.  

Our results suggest that differences in the size and number of connected network 

components were correlated with the potential reach of infection in the two cities. We also 

found differences in patterns of clustering, path length, and degree, which may have helped 

to explain why we observed faster spread of infection in Cebu than in Mandaue. The 

phylogenetic results suggested that while the networks in each city exhibit different 

properties, the introduction of HIV into Mandaue was not through a single source. Instead, 

HIV infection probably crossed over from PWID in Cebu to several PWID in Mandaue 

through several independent transmission events. Thus, while small, fragmented network 

components may have offered some degree of protection from widespread infection, as long 

as PWID in Mandaue and other surrounding areas have contact with the high-prevalence 

network members (in Cebu), they will continue to be at risk of infection in the longer term.    
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