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ABSTRACT 
 

BENJAMIN MCMILLEN GOERGER: The Effect of Anterior Cruciate Ligament Injury 
and Reconstruction on Lower Extremity Biomechanics, Coordination, and Variability 

(Under the direction of Darin A. Padua) 
 
      Individuals that suffer an ACL injury, and undergo reconstructive surgery are at an 

increased risk for the development of osteoarthritis and a secondary ACL injury. 

However, there is no information other than case studies, that has documented the effect 

of ACL injury on lower extremity biomechanics and coordination, and few studies have 

assessed asymmetry in these measures relative to noninjured individuals. The purpose of 

this study was to determine if lower extremity biomechanics and coordination are altered 

by ACL injury. A second purpose was to determine if differences in bilateral asymmetry 

in lower extremity biomechanics, coordination, and variability for those with ACL injury 

are greater than those with no injury. Following ACL injury, we observed an increase in 

knee valgus (F(2,66) = 3.957, p = 0.024) and hip adduction (F(2,66) = 3.773, p = 0.028) at 

Initial Ground Contact for both the injured and noninjured limb, as well as a decrease in 

peak knee varus (F(2, 66) = 5.198, p = 0.008). An increase in peak knee valgus was also 

observed in the noninjured limb (F(2,66) = 3.768, p = 0.028). This was associated with a 

decrease in peak knee extension moment (F(2,66) = 4.509, p = 0.015), peak hip flexion 

moment (F(2,66) = 3.847, p = 0.026), and peak anterior tibial shear force  (F(2,66) = 4.530, p 

= 0.014) for the injured limb. In addition, we observed an alteration in coordination of 

hip and knee transverse plane motion for the injured limb following ACL injury (F(2,65) = 

4.398, p = 0.016). The only differences we observed for asymmetry was for those with
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 ACLR to have greater asymmetry for peak internal knee flexion moment (ZKS = 1.42, p 

= 0.035) and peak vertical ground reaction force (ZKS = 1.45, p = 0.031). We did not 

observe any significant difference in asymmetry of lower extremity coordination or 

variability between groups. Our findings provide evidence for how ACL injury and 

ACLR may increase an individual’s risk for a second ACL injury and the development of 

osteoarthritis. 
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CHAPTER ONE 

INTRODUCTION 

 

      Injury to the anterior cruciate ligament (ACL) can be a devastating injury that 

requires a significant amount of time and effort to allow for recovery and return to one’s 

respective level of activity or sport. Anterior cruciate ligament reconstruction (ACLR) is 

often performed to restore mechanical stability to the knee and facilitate return to 

participation in physical activity and sport. The true number of ACL injuries that occur 

each year in the United States is unknown, but recent projections have estimated a 67.8% 

increase in the number of ACLRs performed over a ten year period.1 For the most part, 

ACLR does meet the goals of restoring mechanical stability allowing persons to continue 

participation in physical activity.2,3  

      Returning to participation in a sport or high demand physical activity is a short-term 

goal. Reconstructive surgery and rehabilitation are often conducted with the goal of 

returning function to the injured limb. The marker for adequate function is returning the 

limb to how it functioned before injury, but this may be a flawed benchmark as this may 

reestablish factors that predisposed the person to injury in the first place. These 

sentiments are reflected in the literature, as those with a previous ACL injury have an 

increased incidence of subsequent knee injury4, and particularly an increased risk for  
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a second ACL injury, regardless of the initial leg injured.5-7 Those with a previous ACL 

injury reportedly have a four fold5 to ten fold 7 increased risk for injury compared to 

those with no previous ACL injury. The risk for reinjury is independent of the type of 

graft used for ACLR, and nonspecific to the previously injured knee.8 In fact, returning to 

high demand sports or activities, the goal of ACLR, is associated with risk for injury of 

the contralateral uninjured ACL.8 Faude et al6 postulated factors that predispose those 

with ACL injury to subsequent injury may be person specific and not knee specific. 

Whether the increased risk for reinjury is the product of ACL injury and reconstruction, 

or residual biomechanical risk factors that caused the initial injury is unknown. 

      Significant research has been devoted to understanding the factors that cause initial 

injury to the ACL. Cadaveric studies have demonstrated that the ACL is loaded when an 

anterior force is applied to the proximal tibia.9 Additional factors such as frontal plane 

loading10,11, transverse plane loading11, weight bearing12,13, and a combination of these 

factors can also increase the ACL strain.14-17 Going a step further, analyses of actual ACL 

injuries captured on video, it appears that a majority of these injuries occur during a 

landing from a jump18-20 and during a planting, cutting maneuver.20 The position at the 

time of injury has also been described as landing with less plantar flexion21, with the foot 

placed outside the knee creating a valgus alignment while the knee is extended20, and 

having greater hip flexion.21 Descriptions of ACL loading and the mechanism of injury 

provide limited information, as they describe how the ACL can be injured, but they do 

not necessarily provide information as to what places a person at greater risk for suffering 

injury. In addition, these descriptions are relevant to describing a first injury, not 

necessarily a subsequent injury after reconstruction, rehabilitation, and return to activity. 
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      There is, however, limited information on the prospective risk factors for non-contact 

ACL injury. Hewett et al22 demonstrated in a prospective analysis of adolescent female 

athletes that those that went on to suffer a non-contact ACL injury displayed greater knee 

valgus angle, lower maximum peak knee flexion angle, greater external knee valgus 

moment, greater peak vertical ground reaction force, and greater external hip flexion 

moment.22 While the information is limited in scope, because of the population studied 

and a relatively low number of injuries, it does identify biomechanical risk factors that 

may be important for non-contact ACL injury. One finding of particular use for 

understanding risk factors for subsequent ACL injury, is that the athletes that went on to 

suffer injury displayed bilateral differences in external knee valgus moment.22 

      Other bilateral differences in lower extremity biomechanics have been identified in 

persons after ACLR.23-31 The presence of asymmetries in movement and loading are 

thought to be the result of injury to the ACL, but because they have also been identified 

as a prospective risk factor for initial injury, it may indicate the risk factors for initial 

injury are not being adequately addressed in rehabilitation. Further evidence of this 

problem was provided by Paterno et al23, when they observed that asymmetrical loading 

of the lower extremities during a double leg jump landing, particularly bilateral 

differences in sagittal plane knee moments, was predictive of a second ACL injury. Other 

biomechanical variables that were predictive of injury included transverse plane moment 

impulse of the noninjured leg, and frontal plane knee displacement of the injured limb.23 

Asymmetrical movement and loading of the lower extremity may be important factors for 

understanding the increased risk for injury for those with ACLR. The importance of 

asymmetry is still unclear though, as no evidence has been provided to indicate that 
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magnitude of asymmetry for those with ACLR is any greater than those observed in 

healthy noninjured persons. Only this type of information can provide an indication of 

risk factors that are not being adequately addressed during reconstruction and 

rehabilitation. 

      As informative as biomechanical analyses are, they only provide a limited view on 

the changes in movement after ACL injury and ACLR. Recent work has been done to 

characterize the coordination and variability of movement within the lower extremity in 

those with ACLR.32-35 Coordination and variability have been researched under the 

notion that quantifying these measures may provide an assessment of an individual’s risk 

for injury. Persons with ACLR, when compared to those without injury, have 

demonstrated increased variability33,34, as well as altered coordination between the shank 

and thigh.32,35 There is, however, a lack of prospective data to indicate if these differences 

are inherent to the individual and were present prior to injury, or if they are the result 

from ACL injury and reconstruction. Again, research that incorporates repeated measures 

taken prior to ACL injury and after subsequent ACLR is needed to confirm the role that 

this type of information has in understanding risk for the initial and subsequent ACL 

injuries. 

      Because those with ACLR have an increased risk for suffering a subsequent ACL 

injury as compared to those with no injury, they are a unique population for study to add 

to the current understanding of ACL injury risk factors. It is possible that ACLR alters 

lower extremity biomechanics in such a way that increases their risk for reinjury, or that 

biomechanical factors that placed them at risk for the first injury are still present and 

compounded in the presences of ACLR. Unfortunately, this cannot be confirmed based 
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on the current information that is available for this population. The same is true for 

measures of lower extremity coordination and variability, which is thought to influence 

the risk for injury, but has not been used prospectively to identify risk factors for injury. 

The only way to determine if the above postulation is correct is to conduct research that 

incorporates repeated assessment that includes measures prior to the initial ACL injury 

and after the subsequent ACLR. In addition, bilateral differences in lower extremity 

biomechanics, coordination, and variability have been documented in those with ACLR, 

but there is little evidence to determine if these differences are greater than those with no 

previous ACL injury. Therefore, the purpose of this study is to determine if lower 

extremity biomechanics and coordination obtained prior to ACL injury change following 

ACL injury and subsequent ACLR. A second purpose is to determine if between limb 

differences in lower extremity biomechanics, coordination, and variability are different as 

compared to individuals with no history of ACL injury. 

 

1.1 Research Questions 

Research Question 1: Are lower extremity biomechanics during a double leg jump 

landing changed following ACL injury and subsequent ACLR? 

 

Research Question 1a: Are lower extremity biomechanics of the injured limb 

changed following ACL injury and subsequent ACLR? 

 

Research Question 1b: Are lower extremity biomechanics of the noninjured limb 

changed following ACL injury and subsequent ACLR? 
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Research Question 2: Is lower extremity joint coordination during a double leg jump 

landing changed following ACL injury and subsequent ACLR? 

 

Research Question 2a: Is lower extremity joint coordination of the injured limb 

changed following ACL injury and subsequent ACLR? 

 

Research Question 2b: Is lower extremity joint coordination of the noninjured 

limb changed following ACL injury and subsequent ACLR?  

 

Research Question 3: Is the magnitude of between limb differences in lower extremity 

biomechanics during a double leg jump landing different for persons with ACLR as 

compared to those with no history of ACL injury at Follow-Up? 

 

Research Question 4: Is the magnitude of between limb differences in lower extremity 

joint coordination and variability during a double leg jump landing different for persons 

with ACLR as compared to those with no history of ACL injury at Follow-Up? 

 

1.2 Research Hypotheses 

Research Hypothesis 1a: There will be no change in lower extremity biomechanics of the 

injured limb during a double leg jump landing from Baseline to Follow-Up for both the 

ACLR  and Control Groups. 
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Research Hypothesis 1b: There will be no change in lower extremity biomechanics of the 

noninjured limb during a double leg jump landing from Baseline to Follow-Up for both 

the ACLR and Control groups. 

Research Hypothesis 2a: There will be no change in lower extremity joint coordination 

of the injured limb during a double leg jump landing from Baseline to Follow-Up for 

both the ACLR and Control groups.  

Research Hypothesis 2b: There will be no change in lower extremity joint coordination 

of the noninjured limb during a double leg jump landing from Baseline to Follow-Up for 

both the ACLR and Control groups. 

Research Hypothesis 3: The ACLR Group will demonstrate greater differences in 

between limb lower extremity biomechanics at Follow-Up as compared to the Control 

Group. 

Research Hypothesis 4: The ACLR Group will demonstrate greater differences in 

between limb lower extremity joint coordination and variability at Follow-Up as 

compared to the Control Group. 

 

1.3 Operational Definitions 

ACL Injury: Disruption of the anterior cruciate ligament injury as confirmed by 

examination of medical records. 

ACLR: Any surgery performed to replace the injured anterior cruciate ligament for 

the purpose of restoring stability to the knee. 

Dominant Limb: The response given by a participant when asked, “Which leg would 

you use to kick a ball for maximal distance?”. 
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Injured Limb: For the ACLR Group, the limb in which an ACL injury occurred. For 

the Control Group, the limb that was tested during initial testing for the JUMP ACL 

study. 

Noninjured Limb: For the ACLR Group, the limb in which an ACL injury did not 

occur. For the Control Group, the limb that was not tested during initial testing for the 

JUMP ACL study. 

Joint Coordination: The relationship in angular position between two joints, 

quantified by determining the average coupling angle across the phase of interest 

during the double leg jump landing task as measured using vector coding. 

Joint Coordination Variability: The between trials variability of joint coordination 

during the double leg jump landing task as measured using vector coding. 

Baseline: Testing that occurred during the JUMP ACL study, and resulted in 

collection of biomechanical data on the participant’s dominant leg at the time of their 

enrollment in their respective service academy. 

Follow-Up: Testing that occurred in the Spring of 2011 in which lower extremity 

biomechanical data were collected on those identified for the purposes of this study 

that were enrolled in the JUMP ACL study. 

Double Leg Jump Landing: A task in which the participant stands atop a 30cm box, 

located a distance equal to half their body height from the front of a force plate, 

jumps down, landing on both feet and immediately jumping for maximum height. 

Preparatory Phase: The 100 milliseconds before Initial Ground Contact, during a 

double leg jump landing. 
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Initial Ground Contact: The first time point at which the vertical ground reaction 

force exceeds 10 N during a double leg jump landing. 

Landing Phase: A time period during a double leg jump landing defined as the point 

from Initial Ground Contact to the time point at which the maximum knee flexion 

angle is reached. 

Anterior Knee Laxity: The anterior displacement of the tibia, measured in millimeters, 

under a 30lb force using a knee arthrometer.  

 

1.4 Assumptions & Limitations 

• All participants will perform tasks with their best effort. 

• The type of graft or reconstructive procedure performed for the Injured Group 

will not be considered for this study. 

• Concomitant injury associated with ACL injury will not be considered for this 

study. 

• The amount of time since ACLR will not be considered for this study. 

• Rehabilitation programs after ACLR are similar across service academies and 

time for those in the Injured Group. 

• The results of this study may be limited to those that are young and physically 

active. 

• The Control Group is representative of the cohort at the time of Follow-Up. 
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1.5 Delimitations 

• All participants were enrolled in the JUMP ACL study and had complete 

biomechanical data collected at baseline testing. 

• All participants were still enrolled in their respective service academy and the 

JUMP ACL study. 

• All participants were participating in physical activity. 

• All participants were members of the 2007 or 2008 JUMP ACL cohort.  

 

1.6 Independent Variables 

Time: 

• Baseline: Testing performed for the JUMP ACL study in the Summers of 2007 

and 2008 upon each participant’s entry in to the respective service academy. 

• Follow-Up: Testing conducted in the Spring of 2011. 

Group: 

• ACLR Group: Participants that had suffered one ACL injury and undergone 

subsequent ACLR since Baseline, had no prior history of ACL injury at Baseline, 

and had complete biomechanical data from Baseline. 

• Control Group: Participants that have no history of ACL injury, and had complete 

biomechanical data from Baseline. 

 

1.7 Dependent Variables 

Kinematics: Sagittal, frontal, and transvers plane peak angles of the knee and hip 
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Kinetics: Sagittal, frontal, and transverse plane moments of the knee and hip; anterior 

tibial shear force; vertical ground reaction force 

Joint Coordination and Variability: Knee sagittal plane - Hip sagittal plane; Knee frontal 

plane – Hip frontal plane; Knee transverse plane – Hip transverse plane; Knee frontal 

plane – Hip transverse plane; Knee transverse plane – Hip frontal plane  

 

1.8 Significance 

      Information about the changes that occur after ACL injury and ACLR is important for 

developing better methods during rehabilitation to reduce a person’s risk for reinjury and 

secondary complications. The evidence to date has been limited to isolated observation of 

movement patterns prior to injury, or following injury. This study may provide more 

insight into risk factors for subsequent ACL injury, particularly whether there are 

inherent characteristics within a person that place them at risk for initial injury that are 

not being addressed with rehabilitation and are keeping them at risk as they return to 

physical activity. 



CHAPTER TWO 

REVIEW OF THE LITERATURE 

 

      The purpose of this study is to examine the effect of ACL injury and ACLR on a 

sample of young, physically active persons. This review of the available literature will 

indicate what additional information this study will provide to the current literature 

regarding the biomechanics and coordination of those with ACLR. 

 

2.1 ACL Injury as a Risk Factor for Subsequent ACL Injury and Knee OA 

      It is important to study and understand the effect of ACL injury on lower extremity 

biomechanics because persons that have previously suffered an ACL injury are more 

likely to suffer subsequent knee injury.4 Specifically, those with a previous ACL injury 

are at a greater risk for suffering a subsequent ACL injury.5-7 The risk ranges between a 

four5 and ten fold7 increased risk for reinjury in those that report previous ACL injury. 

What is interesting, though, is that the risk for subsequent injury is not limited to the 

reconstructed leg.8 Salmon et al8 reported that only the time to reinjury was different 

between those that suffered a second injury in their reconstructed or healthy limb, with 

the reconstructed limb being more likely to be injured in the first twelve months after
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returning to sport activity. In addition, suffering an initial ACL injury by a contact 

mechanism of injury was a significant predictor for reinjury of the reconstructed limb.8 

This is despite no difference in median graft diameter, or any difference in the presence 

of articular cartilage or meniscal damage at the time of reconstruction.8 Graft type does 

not seem to influence the risk of reinjury either, as time to injury was not different 

between those that had a BPTB or HS autograft used for the initial reconstruction.8 Injury 

to the healthy or uninjured ACL was predicted by a return to sports or activities that were 

classified as strenuous or moderate in demand after initial injury and reconstruction.8 The 

lack of any difference in risk for subsequent ACL injury between limbs may be the result 

of these factors being person specific rather than limb specific, as was suggested by 

Faude et al6 after they noted that when treating limbs as individual cases, the risk for 

reinjury was no longer associated with that of previous ACL injury.  

      The goal of ACLR is to provide mechanical stability to the knee and allow for return 

to a person’s previous level of physical activity or sport. Reconstructive surgery has been 

shown to accomplish these goals, allowing persons to continue participating in sports and 

recreational activity.2,3 It also helps to protect against subsequent injuries to the menisci 

and articular cartilage that would require additional surgery.2,36 As noted previously 

though, ACLR and returning to sport may increase the risk for reinjury. With ACLR, 

however, there is also a high incidence of knee OA and degenerative changes of the 

articular cartilage.2,37-39 Even within subjects, the incidence of OA is significantly higher 

38, and there is less subchondral bone area40 in the reconstructed knee as compared to the 

contralateral healthy knee. The presence of degenerative changes and severity of knee 

OA after ACLR appears to be highly influenced by concomitant meniscal injury41-43, 
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and/or articular cartilage injury.2,37 Graft type used and the amount of anterior-posterior 

laxity that remains after reconstructive surgery does not determine the severity of knee 

OA in those with ACLR.37,38,41 Salmon et al43 did note, however, poorer radiographic 

findings for those with a loss of knee extension or greater laxity during a lachman test.43 

      There are contrasting findings for mensical involvement.2,39 Jarvela et al39 found that 

the presence of accompanying injuries, which included meniscal injuries, to an ACL 

injury only increased the number of subsequent surgical procedures performed on the 

knee, and did not affect radiologic findings of articular cartilage degradation. Similar 

findings were noted by Lebel et al2, indicating no difference in the rate of OA for those 

with meniscal involvement. They did find however, that delaying ACLR with the 

presence of a meniscal injury for more than one year was associated with an increased 

incidence of degenerative changes at the medial knee.2 The contradictory findings give 

some indication that degenerative changes are influenced by the integrity of the 

meniscus, but they may also be influenced by other extraneous factors, such as how a 

person moves and loads the knee after ACLR.  

      For long term outcomes, ACLR may still be better than conservative treatment 

though, as Mihelic et al3 found that severity of knee OA was greater for those who 

received conservative treatment relative to those who had surgical reconstruction. 

Therefore, an interaction between providing mechanical stability and properly using and 

loading the knee may be best to manage the sequela of reinjury and joint degeneration 

following initial ACL injury and ACLR. 
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Summary of ACL Injury as a Risk Factor for Subsequent ACL Injury and Knee OA 

      To summarize the findings of the risk for subsequent injury, those with previous ACL 

injury are at a greater risk for subsequent ACL injury, the risk for reinjury is not knee 

dependent, nor graft dependent. Risk factors for subsequent injury are return to sport 

within 12 months for reinjury of the reconstructed knee, and return to participating in 

more demanding sports or activities. These findings suggest that it may be important to 

examine bilateral lower extremity biomechanics within those with ACLR and compared 

to those with no history of ACL injury, as risk factors may be person dependent and not 

limb dependent. Also, these findings suggest that risk factors for ACL injury are not 

being corrected with surgical intervention or rehabilitation. Therefore, understanding the 

lower extremity biomechanics before and after initial ACL injury and reconstruction may 

help identify factors that increase the risk for subsequent injury. 

      The true number of ACL injuries that occur in the United States is unknown, 

however, the number of surgeries to reconstruct the ACL has been estimated to have 

grown by 67.8% in 10 years.1 This means that there is a growing population of persons 

with ACLR that are going to be at greater risk for recurrent ACL injury and knee OA 

which, in the long term, could put a financial burden on the health care system. Besides 

the financial costs associated with these injuries, there are also expected to be declines in 

physical capacity, which may limit one’s ability to engage in physical activity to prevent 

disease and reduce quality of life.  
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2.2 Factors Contributing to the Loading of the ACL 

      Injury to the ACL, as with any tissue, occurs when the loads placed on it exceed the 

mechanical properties of the tissue. Excessive loading of the ACL, therefore, can increase 

the risk of injury. Alignment of the tibia relative to the femur, and forces, whether 

internally generated by soft tissue or externally applied by interaction with the 

environment, can influence the loading of the ACL during dynamic activity. A review of 

known factors that load the ACL may help identify factors that are important for 

understanding why those with ACLR are at an increased risk for subsequent ACL injury, 

this is with the assumption that ACLR is performed with a proper technique to replicate 

the in situ behavior of the native ACL. The purpose of this section of the literature review 

is to identify factors that increase loading placed on the ACL, are associated with non-

contact ACL injury, and are predictive of non-contact ACL injury.  

 

ACL Loading 

      Butler et al9 demonstrated that the ACL is the primary restraint to anterior tibial 

displacement. This contribution is present regardless of knee flexion angle, as it provided 

approximately 87% of the restraint at 30° of knee flexion, and approximately 85% at 90° 

of knee flexion.9 In addition, the ACL is able to withstand a significant amount of loading 

before rupture, approximately 2,100 Newtons of force in young cadaveric specimens.44  

      An anterior direct force placed on the tibia is able to load the ACL at all angles of 

knee flexion.15 The extent of loading though, is sensitive to the angle of knee flexion.45 

The ACL undergoes greater strain and loading at lower degrees of knee flexion, 

particularly 30° of knee flexion or less.14,15,45,46 The majority of these findings have been 
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demonstrated using cadaveric models, but Beynnon et al46 were able to measure strain of 

the anteromedial bundle of the ACL in vivo. Strain was significantly greater during a 

Lachman test at 30° of knee flexion as compared to an anterior drawer at 90° of knee 

flexion.46 These findings indicate that the amount of knee flexion can affect the strain of 

the ACL or the load placed on it; with lower knee flexion angles being more likely to 

increase loading of the ACL. It can be inferred that the combination of an anterior 

directed force and lower knee flexion angle might place greater load on the ACL and 

increase the likelihood of injury during dynamic tasks. 

      The ACL is not sensitive to the conditions of the sagittal plane alone. Fukuda et al10 

noted a relationship between knee flexion angle and in situ force in the ACL when an 

external valgus torque was applied. In accordance with the finding associated with an 

anteriorly directed force, they noted that in situ force was particularly high at knee 

flexion angles closer to full extension.10 A similar pattern has been found with the 

application of an external varus torque increasing ACL tension through the knee flexion 

range of motion.11 Again, the greatest strain was noted at knee flexion angles between 0° 

and 30° of knee flexion.11 Miyasaka et al11 noted, in agreement with Fukuda et al10, a 

significant increase in ACL strain with the application of an external valgus torque, they 

did note that this increase was relatively small. In contrast to both of these studies, Berns 

et al14 found that neither isolated varus nor valgus torque had any effect on straining the 

ACL in cadaveric models. The differences between the findings of these studies may be 

explained by a relatively large amount of time between studies, and advancement in 

techniques in assessing cadaveric models that may make it easier to find changes in ACL 

loading from frontal plane torques. Therefore, it is likely that external frontal plane 
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torques that are applied to the tibia increase strain on the ACL, particularly at low knee 

flexion angles as the more recent studies have demonstrated. 

      There is a limited amount of research that has examined the effect of isolated axial 

torque on loading of the ACL. Miyasaka et al11 demonstrated that the application of an 

internal rotational torque increased loading of the ACL at knee flexion angles between 0° 

and 45° of knee flexion. Loading of the ACL with the application of an external 

rotational torque was relatively small though.11 These findings indicate that internal 

rotation of the tibia relative to the femur increase loading of the ACL. Again, this loading 

appears to be limited to relatively low knee flexion angles, when the knee is closer to an 

extended position. 

      Understanding the effects of isolated external loading, as have been described up to 

now, may not be a proper analog to in vivo conditions during dynamic tasks that occur 

during sport or exercise participation. Representations of multiplane loading and muscle 

forces are more appropriate for identifying how the ACL is loaded during dynamic 

activity. The evidence for the effects of multiplane loading on ACL strain are less 

consistent than the findings for isolated, uniplanar loading. Berns et al14 originally found 

that the addition of an external valgus torque to an anterior directed force on the tibia 

significantly increased ACL strain as compared to the anterior force alone. The addition 

of an axial torque, internal rotation and external rotation, though had no significant effect 

on ACL strain.14 This is particularly interesting because the same authors found that 

isolated transerve or frontal plane loading significantly increased ACL strain.14 These 

findings are in opposition to those of Markolf et al15, noting the combination of an 

anterior tibial force and internal rotation torque near full extension was one of the key 
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loading combination for high ACL forces. They also found that anterior tibial force with 

a valgus moment also produced high ACL forces, as well as the application of valgus 

moment to a knee already loaded with internal rotation torque also significantly increased 

ACL strain.15 Kanamori et al16 had complimentary results, in which a simulated pivot 

shift, valgus torque with internal rotational torque, produced greater anterior tibial 

translation near full knee extension as compared to the application of internal rotational 

torque alone. Internal rotational torque and valgus moment appear to primarily load the 

anteromedial bundle of the ACL as compared to the posterolateral bundle, although 

elevated forces are still present in both.47 Durselen et al17 though, found that combined 

varus and internal rotation torque strained the ACL between 20° and 40° of knee flexion. 

There was no significant effect for the combination of valgus and external rotational 

torque.17 These findings seem to indicate that axial loading of the knee may have more of 

an effect on ACL loading than frontal plane loading. This is what Markolf et al15 

concluded, citing that the risk of ACL injury from the addition of valgus moment in 

combination with internal rotational torque was no different than the risk of injury from 

internal rotational torque alone. 

      Simulated muscle forces acting at the knee can have a significant effect on the 

loading of the ACL.17,46,48-50 Beynnon and colleagues46 were able to measure ACL strain 

in vivo during isometric quadriceps contractions. They found that an isometric quadriceps 

contraction significantly increased strain on the ACL at 30° of knee flexion when 

compared to the strain observed at 90°.46 This relationship also occurs for in vitro 

cadaveric models as well.17,49,50 Not only does isolated quadriceps contraction increase 

strain in the ACL, but DeMorat et al48 demonstrated that high quadriceps loading has the 
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potential to injure the ACL under circumstances that simulate a non-contact ACL injury. 

In addition, Li et al50 observed that a simulated isolated quadriceps muscle force 

produced tibial internal rotation at lower levels of knee flexion (0°-30°) in a cadaveric 

model. Hamstrings muscle force, acting as the antagonistic muscle to the quadriceps 

muscle force, is able to counteract loading of the ACL.49,50 Draganich and Vahey49 first 

demonstrated this in 1990 using a cadaveric model. They found that simulated a 

hamstrings muscle force at lower knee flexion angles was able to significantly reduce the 

strain placed on the ACL by an isolated quadriceps muscle force.49 Li et al50 found 

complimentary findings nine years later, noting the addition of a hamstrings muscle force 

reduced the in situ forces of the ACL at 15°, 30°, and 60° of knee flexion. 

      These findings discussed so far have demonstrated ACL loading in non-weight 

bearing, but to understand factors that load the ACL to determine risk for injury it would 

be best to incorporate the component of weight bearing in the analysis. Weight bearing 

alone increases the strain on the ACL when measured in vivo.13 In fact, Cerulli et al12 

reported in a single subject case report, that in vivo ACL strain was greatest at the point 

of initial contact with the ground during a single leg landing when the knee was relatively 

extended. In the sagittal plane, the effect of knee flexion angle on the in situ forces of the 

ACL are similar to those seen in non-weight bearing, with forces peaking at 15° of knee 

flexion.51 There appears, however, to be no difference in the effect of an anterior shear 

force on ACL strain between weight bearing and non-weight bearing,13 suggesting that 

weight bearing does not change the loading characteristics of the ACL in the sagittal 

plane.  
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      In the frontal plane, Fleming et al13 that frontal plane loading of the knee with a varus 

and valgus torque was significantly higher when weight bearing was simulated as 

compared to a non-weight bearing condition. The authors noted, however, that loading of 

the ACL did not differ with the application of a varus or valgus torque in weight bearing, 

concluding that the ACL is not a primary restraint to frontal plane loading in weight 

bearing.13 The differences were likely the result of weight bearing alone.13 When 

Withrow et al52 simulated a jump landing with impulsive loading, they found the addition 

of a valgus moment increased in vitro ACL strain. These results may be more informative 

as they are representative of a more dynamic condition that may more accurately simulate 

in vivo loading of the ACL. 

      In contrast to the findings reported in non-weight bearing, internal rotational torque of 

the tibia does not appear to load the ACL in weight bearing.13,51,53 Fleming et al13 found 

that the strain of the ACL in the presence of internal rotational torque did not change 

between non-weight bearing and weight bearing. They did, though, find that there was a 

significant increase in ACL strain with weight bearing when an external rotational torque 

was applied. Similar findings are reported by Lo et al51 and Wunschel et al53. Lo et al51 

concluded that the ACL plays a limited role in resisting axial rotation during weight 

bearing after noting that internal rotational torque did not change the in situ forces of the 

ACL. Wunschel et al53 came to a similar conclusion after finding that the transection of 

the ACL had no effect on tibial rotation during weight bearing knee flexion. A similar 

finding is described during a simulated pivot landing by Oh et al54, in which ACL 

transection resulted in a small increase in tibial internal rotation. The increase in internal 

tibial rotation was significant after ACL transection, but the authors noted that the 
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relative increase was so small that it was not meaningful given the rather large increase in 

anterior tibial translation.54 This is an important note as the cadaveric model used was 

placed under large muscle loads that would be expected with a pivot landing, and as seen 

with the non-weight bearing models, muscle forces can affect loading of the ACL. 

 

Summary of ACL Loading 

      The ACL appears to be most sensitive to loading from an anteriorly directed force on 

the tibia. Although an anterior force applied throughout the range of knee flexion loads 

the ACL, loading is greatest when the knee is in a relatively extended position. These 

conditions are not sensitive to weight bearing, indicating they are consistent factors for 

loading of the ACL. Externally applied valgus torque and internal rotational torque load 

the ACL in a non-weight bearing condition. These trends are not as consistent when 

weight bearing is included in the cadaveric model, and in fact, for axial loading it 

reverses with external rotational torque loading the ACL in weight bearing. Regardless, 

the key factors for ACL loading appear to be an anteriorly directed force that can be 

produced by the quadriceps, with the knee in a relatively extended position, with external 

moments applied in the frontal and/or transverse plane. Therefore, it would be inferred 

that a person who demonstrated these lower extremity patterns while performing dynamic 

tasks would place greater load on their ACL and have a greater risk for injury.  

      The techniques used for assessing ACL loading are limited by the lack of kinematic 

and kinetic factors acting at the thigh and hip. Cadaveric models provide much of the 

evidence, but understanding movements associated with ACL injury may be more 
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informative. Inclusion of such factors may improve our understanding of risk for ACL 

injury.   

 

2.3 Observed Mechanism of Non-Contact ACL Injury 

      Another mean by which to assess what movement patterns load the ACL and place a 

person at greater risk for injury, is to examine the kinematics of individuals while 

suffering a non-contact ACL injury. The most common mechanism of injuries observed 

involve landing from a jump18-20 or a plant-cut maneuver.20 At the ankle, those that have 

injured their ACL have been described as landing with less plantar flexion at initial 

contact with the ground and maintaining this position during the time of injury as 

compared to selected controls.21 In addition, Olsen et al20 described those injuring their 

ACL as having the foot firmly fixed to the floor and placed outside of their knee during a 

plant-cut or foot firmly fixed to the floor and externally rotated during one-legged 

landing in female handball players.  

      At the knee, Olsen et al20 described female handball players as having the knee in 

extension with valgus alignment tibial rotation during injuries that occurred both during 

plant-cut and one-legged landings. Those with ACL injury have similar amounts of knee 

flexion as those who do not suffer injury during similar movements.21,55 Within those 

who suffered ACL injury, females had greater knee flexion as compared to males at a 

point shortly after initial contact with the ground.19 When examining frontal plane knee 

kinematics, Boden et al21 found no difference in knee valgus angle at the point of initial 

foot contact between those who did and did not suffer an ACL injury. They did note, 

however, that those who injured their ACL moved into more knee valgus after initial 
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contact.21 Of those who suffer ACL injury, Hewett et al55 found that females had more 

knee valgus than males who injured their ACL, and went through more knee valgus as 

compared to females who did not injure their ACL. This is similar to the findings of 

Krosshaugh et al19, who noted that females went through more knee valgus as compared 

to males even though there were no differences at the time of initial contact with the 

ground. 

      Description of the position of the hip and thigh during ACL injury is limited. Those 

suffering ACL injury have been described as having grater hip flexion as compared to a 

sample of controls but demonstrating no difference in hip abduction.21 More information 

regarding the description of hip motion is provided by Krosshaug et al19, as in their 

description of ACL injury they noted that females displayed a “valgus collapse” 

mechanism more often than males. What they describe as “valgus collapse” consists of 

hip internal rotation, knee valgus, and external rotation of the tibia.19  

 

Summary of Observed Mechanism of Non-Contact ACL Injury 

      Of the limited number of non-contact ACL injuries that have been captured on 

videotape and analyzed, an attempt, though limited, at describing lower extremity 

movement patterns associated with the injury can be developed. Injuries appear to occur 

during tasks that involve landing from a jump and planting the foot and cutting or 

changing direction. Unfortunately the majority of research related to the identification of 

movement patterns associated with ACL injury has been directed at identifying 

differences between genders during injury. It is unfortunate because the rationale follows 

that the motion patterns that females display are associated with ACL injury and 



 25 

disregard the fact that both males and females injure their ACL by non-contact means. A 

complete picture of ACL injury, therefore, may not be developed.  

      At the ankle, those who injure their ACL land with less plantar flexion of the ankle, 

and with the ankle placed outside of the knee with the shank rotated. The knee tends to be 

in an extended position, though the amount of knee flexion may be no different than 

those who do not suffer an ACL injury. The amount of frontal plane motion at the knee 

also appears to be important, and may have some gender implications in those who injure 

their ACL. This emphasis has been placed on positioning of the hip, but it appears that 

the amount of hip flexion and internal rotation may be important factors for the non-

contact mechanism of ACL injury. Again, what is missing from this body of literature is 

a full description of hip kinematics that are associated with ACL injury. Not only may 

factors related to the hip influence risk for initial ACL injury but may also add to the 

understanding of why those with ACLR have an increased risk for subsequent ACL 

injury.  

      These findings agree relatively well with factors identified in vivo and in vitro to load 

the ACL. However, obtaining accurate quantitative data of lower extremity kinematics 

from videotape data is hampered by technical limitations that may skew the findings 

because of the inability to confirm that motions occurred within the plane of view. The 

time of ACL injury is also not known with these videotape descriptions. This is 

particularly important as Meyer et al56 recently noted that the motions observed 

immediately after ACL rupture are not representative of the relative motions that induce 

strain in the ACL. In a cadaveric study, the authors found that frontal and transverse 

plane motion of the tibia changed immediately after ACL injury induced by internal tibial 
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torsion and tibiofemoral compression.56 This evidence indicates that descriptions of ACL 

injury from videotape analysis may not actually describe factors that load the ACL but 

may describe the kinematics that result from tibiofemoral compression following ACL 

injury.   

 

2.4 Prospective Risk Factors for ACL Injury 

      Describing the loading of the ACL and mechanisms by which non-contact ACL 

injury occur may not be helpful in understanding what places those with ACLR at greater 

risk for subsequent injury and knee OA. These factors describe the mechanism, by which 

the ACL is injured, but they have not been demonstrated in those with ACLR and they do 

not describe risk factors for injury. Identification of risk factors can begin by analyzing 

how those with ACLR differ from a matched healthy population and a longitudinal 

analysis of how ACL injury and ACLR change biomechanics.  

      For initial ACL injury there is preliminary evidence that specific biomechanical 

factors place individuals at an increased risk for ACL injury.22 Hewett et al22 found that 

young female athletes who went on to suffer a non-contact ACL injury displayed greater 

knee valgus (at initial contact and peak values), less maximum knee flexion, greater peak 

external knee valgus moment, greater peak vertical ground reaction force, and greater 

peak external hip flexion moment during a double leg drop vertical jump. In addition, a 

logistic regression analysis indicated that peak knee external valgus moment and knee 

valgus angles were predictive of non-contact ACL injury.22 These results may be 

considered preliminary because the authors captured a limited number of injuries in a 

very specific population. In addition, the methodology and statistical analyses performed 
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may have influenced some results as kinetic measures were not normalized to body mass 

or height, and the control group consisted of pooling the data from both limbs of those 

that did not suffer injury which likely reduced the within subjects variance and made the 

statistical analysis of between group comparisons more powerful.  

      One factor that is often over looked in this study however, is the presence of between 

limb differences in those that went on to suffer an ACL injury and the lack of such a 

difference in the healthy controls. Specifically, the injured group had a significant 

bilateral difference in external knee valgus moment prior to ACL injury.22 This is of 

important note because bilateral differences are commonly observed in persons after 

ACLR, and this finding provides some evidence that such differences may not result 

solely from ACLR, but may be present before initial injury.  

      Bilateral differences in lower extremity biomechanics, as described by Paterno et al23, 

were predictive of subsequent ACL injury in those with ACLR. Differences in internal 

knee extension moment between the two limbs, with the uninvolved limb demonstrating 

less internal knee extension moment as compared to the involved limb, during a double 

leg drop vertical jump was predictive of a second ACL injury.23 Other factors that were 

predictive of a second injury included having less internal hip external rotation moment 

in the uninvolved limb, having greater frontal plane knee motion in the involved limb, 

and having deficits in single leg postural stability of the involved limb as compared to 

those who did not experience subsequent injury.23 These results, again, are preliminary as 

a relatively small young sample was used for this analysis, and these results may only be 

applicable to the specific population this sample represents.  
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Summary of Prospective Risk Factors for ACL Injury 

       These findings indicate that predictors for initial non-contact ACL injury are similar 

to the predictors of a subsequent non-contact ACL injury after ACLR. The findings do 

not agree completely, which may be the result of assessing different populations, but it 

appears that the biomechanics of the hip and biomechanics of the knee in the frontal and 

sagittal planes influence the risk for non-contact ACL injury. In addition, there is 

preliminary evidence that bilateral asymmetries related to these factors may also be 

important for understanding the risk for ACL injury as they have been found in separate 

studies to be present before initial ACL injury and before a second ACL injury. It is 

unknown though if biomechanics change after ACL injury and ACLR. Therefore, it is not 

possible to determine if what makes a person more susceptible to a second ACL injury 

after ACLR is a product of the loss of the native ACL and surgical technique, or is the 

result of underlying neuromuscular factors that are not being adequately addressed with 

rehabilitation and conditioning. 

 

2.5 Biomechanical Characteristics of ACLR 

      Persons that undergo anterior cruciate ligament reconstruction surgery after ACL 

injury display differences in kinematics and kinetics, both as compared to healthy 

individuals with no injury and contralateral differences between the reconstructed and 

noninjured leg.24-31,57-61 These differences are consistent across a variety of tasks as well. 

Often those with ACLR demonstrate differences despite completion of a formalized 

rehabilitation program, and return to a level of physical activity or sport. The consistency 

in differences and their presence across multiple tasks indicate that persons with ACLR 
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use their reconstructed limb differently, which may be what places them at a greater risk 

of subsequent injury or abnormal joint loading that predisposes them to knee OA. 

 

Kinematic Characteristics of ACLR 

      As would be expected, an ACLR knee displays kinematic differences when compared 

to its contralateral healthy knee and healthy individuals with no history of ACL injury. 

During gait, persons with ACLR demonstrate differences in sagittal plane kinematics as 

compared to noninjured persons.61 Webster et al61 examined gait patterns in those with 

ACLR and compared those who had a bone patellar tendon bone (BPTB) autograft, a 4-

strand hamstring tendon (HS) autograft, and healthy individuals with no lower extremity 

abnormalities. As a group, those with ACLR demonstrated similar sagittal plane hip and 

ankle kinematics as the noninjured group.61 Those with a BPTB autograft, however, 

displayed less peak knee flexion during midstance when compared to the healthy 

controls. This difference in knee flexion was not present in the ACLR members with a 

HS autograft.61 The kinematic patterns observed in the ACLR knee, though, may be 

dependent on the nature of the movement performed. During a relatively low demand 

double leg squat, Salem et al24 noted only differences in the amount of ankle dorsiflexion 

between the reconstructed and healthy leg. When performing a double leg weighted 

squat, persons with ACLR had less dorsiflexion in the reconstructed limb, but displayed 

similar sagittal plane motion at the hip and knee.24 This analysis was limited to the 

sagittal plane only though. 

      Differences observed in the ACLR knee appear to be greater when the physical 

demand of the movement is greater or the limbs are required to act independently. 
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Individuals with ACLR that have been cleared by a physician to return to light sport 

activity demonstrate significant differences in frontal and transverse plane motion of the 

ACLR knee as compared to the noninjured knee during downhill running.25 Tashman et 

al25 utilized dynamic radiographic stereophotogrammetric analysis (RSA) to assess 

between limb differences in tibiofermoral kinematics. They found that the ACLR knee 

was significantly more externally rotated and adducted as compared to the noninjured 

knee, but found no differences in knee flexion.25 The authors noted that the absolute 

differences in frontal and transverse plane were small, but when considered relative to the 

total motion in these planes at the tibiofemoral joint they are very large differences.25 

      Using the same RSA technique, Deneweth et al26 assessed tibiofemoral joint 

kinematics during a single-legged hop landing. The participants in this study were 

relatively similar to those Tashman et al25 analyzed; graft type used for ACLR was not 

restricted, and all participants had returned to light physical activity. When the single-

legged hop landing was performed with the ACLR knee, individuals demonstrated less 

knee flexion at initial contact with the ground, as well as less internal rotation, and less 

lateral displacement of the tibia relative to the femur.26 Significantly less maximum knee 

flexion and less maximum internal rotation during the landing phase of the task was also 

noted in the ACLR knee.26 The ACLR knee also demonstrated greater maximum anterior 

tibial displacement relative to the femur. This work suggests that when using the ACLR 

knee to land from a jump, individuals land and stay more extended and with more tibial 

external rotation. These studies are also beneficial, as they assessed all three planes of 

motion, not just the sagittal plane. Incorporation of movement from the other planes gives 

a more complete indication of kinematic differences associated with ACLR. 
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      These findings are consistent with other studies that have examined kinematics of 

ACLR knees during single-leg landing.27,60 Orishimo et al27 assessed between limb 

differences in persons with ACLR during takeoff and landing from a single-leg hop test. 

When the participants performed the single-leg hop with the ACLR knee, they displayed 

significantly less sagittal plane motion at the hip, knee and ankle during takeoff and 

landing.27 Not only did the participants move differently when landing, but also used less 

sagittal plane motion to perform the hop. All the participants were classified clinically as 

having a normal single-leg hop test, where the distance they could hop with the ACLR 

leg was within 85% of the noninjured leg.27 This may indicate that whether an individual 

can perform a task with their ACLR knee isn’t important, but it is how they perform it. 

Graft type was not considered by Orishimo et al27, but Webster et al60 found that between 

limb differences in knee flexion during single leg hop tests was present for those with 

BPTB autograft but not those with a HS autograft. The differences in knee flexion of the 

BPTB group were consistent for both a horizontal single-leg hop test and vertical 

horizontal single-leg hop test.60  

      In contrast to these findings, Vairo et al28 found that when persons landed on their 

ACLR leg they landed in a more flexed position and achieved more sagittal plane motion 

as compared to the noninjured leg and a group of healthy matched controls. When 

landing on the ACLR leg, they landed with greater hip flexion at initial contact with the 

ground, and had greater hip and knee flexion at the moment of peak vertical ground 

reaction force (vGRF) as compared to when they landed on the noninjured leg. When 

compared to healthy uninjured matched controls, they had greater hip flexion at initial 
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ground contact, and greater hip flexion, knee flexion, and ankle dorsiflexion at the 

moment of peak vGRF.28  

      Ortiz et al59 found that females with a longer time period, an average of 

approximately 7 years, after ACLR had no between limb differences in peak hip and knee 

kinematics during a single-leg drop jump and single-leg hop task. The lack of differences 

were consistent in all three planes of motion.59 In addition, the peak hip and knee 

kineamtics of those with ACLR were similar to healthy noninjured individuals. Nyland et 

al58 also examined single-leg landing adaptations in a group of individuals with ACLR 

that were farther removed from the time of their injury, 2-11 years. They found that when 

individuals performed a repetitive single-leg counter movement jump, there was no 

difference in how persons moved their leg when performing the task on the reconstructed 

and noninjured leg.58 They found, in particular, that the peak flexion angles of the hip, 

knee, and ankle, as well as the mean knee flexion velocity at each joint were not different 

between legs.58 Gender did not appear to influence how the reconstructed limb was used 

either.58 While in contradiction to the previous studies, these studies appear to indicate 

that sagittal plane kinematics during single-leg movements are not consistent across 

groups of individuals with ACLR. In addition, the differences are not present in 

individuals who are farther removed from the time of injury and ACLR.58,59 

      The evidence of bilateral differences in sagittal plane kinematics in persons with 

ACLR appears relatively equal for and against. These studies though are conducted with 

single-leg movements and limit the analyses to sagittal plane motion. To understand how 

ACLR impacts more realistic activities it may be best to assess the individual to use both 
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limbs as between limb kinematics may not be present in the sagittal plane during double 

leg tasks.24 

      In a comparison of differences in sagittal plane biomechanics between those with 

ACLR and healthy noninjured matched controls, Decker et al29 found that those with 

ACLR landed with the hip and ankle more extended initially, but went through greater 

sagittal plane motion and velocity at the ankle during landing. Interestingly, participants 

in both group were matched for how softly they landed, and even with this factor 

accounted for, those with ACLR tended to land in a more extended position.29 Again, 

analysis was limited to sagittal plane motion.  

 

Summary of Kinematic Characteristics of ACLR 

      The literature is not conclusive, but it appears that persons with ACLR display 

bilateral differences in kinematics. They are also kinematicallly different from persons 

who have never suffered an ACL injury. The literature demonstrates a consistent use of 

averaged values at specific time points. This approach limits the interpretation of 

movement differences as dynamic motion is reduced to a single number. 

      The lack of extensive research outside of the sagittal plane is a major limitation of the 

current research devoted to the kinematics after ACLR. Other planes of motion need to 

be assessed, particularly since recent evidence indicates that frontal plane motion of the 

knee is predictive of secondary injury in persons with ACLR.23 Paterno et al23 tested and 

prospectively followed a cohort of athletes who had completed rehabilitation and 

returned to their prior level of activity. They found that persons that later suffered an 

additional ACLR injury had increased frontal plane motion of the reconstructed knee 



 34 

during the landing phase of a double leg drop vertical jump as compared to those with 

ACLR who did not suffer an additional ACL injury. To better understand the effect of 

ACLR on risk factors for additional ACL injury and knee osteoarthritis, motion in the 

frontal and transverse plane at the knee and hip should be analyzed.  

 

Kinetic Characteristics of ACLR 

      Not only do those with ACLR display differences in how they, both bilaterally and as 

compared to noninjured persons, but they also display some differences in the kinetics 

experienced during dynamic tasks. The kinetic differences between noninjured and 

persons with ACLR are more evident, though with more demanding tasks.57  

      Bush-Joseph et al57 compared sagittal plane moments of the knee across low and high 

demand tasks between a group with ACLR and a group of noninjured participants. The 

authors noted that the kinetic profiles of the two groups were very low demand tasks such 

as walking and stair-climbing. The ALCR group demonstrated a slight decrease in 

external knee flexion moment during gait, when the effect of walking speed was 

introduced as a covariate.57 These findings are somewhat similar to those of Webster et 

al61 who noted minimal differences in sagittal plane kinetics when comparing ACLRs 

based on graft type to healthy noninjured persons; only those with a HS autograft showed 

reduced external knee extension moment during the terminal stance of gait.  The more 

demanding tasks of jogging and jog-cut demonstrated more distinguishable group 

differences, as those with ACLR had significantly less peak external knee flexion 

moment than the noninjured group.57 While these findings are again limited to the sagittal 



 35 

plane, they warrant the use of more demanding tasks to characterize the kinetic 

differences of those with ACLR. 

      Other authors have also noted differences in the kinetic profiles of those with ACLR. 

During single-leg movements there appears to be trend towards individuals trying to 

protect the reconstructed knee by minimizing the forces acting on the limb, reducing the 

internal moments produced at the knee, and increasing the internal moments produced at 

the hip and ankle.27,28,31,58-60 Ernst et al31 found that the reconstructed limb of those with 

ACLR had less internal knee extension moment as compared to the noninjured limb 

during a single-leg vertical jump. This was due to less internal extension moment of the 

reconstructed limb and not greater internal extension moment in the noninjured limb, as 

the noninjured limb did not differ in the magnitude of internal knee extension moment as 

compared to a healthy noninjured group.31 In addition, when the authors summated the 

extension moment of the entire reconstructed limb, it was significantly less than that of 

both the contralateral limb and the noninjured healthy group.31 These differences in 

internal knee extension moment were also found by Ortiz et al59, who noted lower values 

in the reconstructed knees as compared to the noninjured limb during a single-leg vertical 

hop task. These findings weren’t consistent within the sample across tasks, because there 

were no bilateral differences between limbs during a single-leg drop jump for internal 

knee extension moment.59   

      Both Nyland et al58 and Vairo et al28 found that when landing on a single-leg, those 

with ACLR produced significantly less peak vGRF when using the reconstructed limb as 

compared to the noninjured limb. However, Vairo et al28 also noted that there was no 

bilateral difference in internal hip extension moment or summated extension moment for 



 36 

the ACLR group.  These findings are in conflict with those of Orishimo et al27 who found 

that there was no bilateral difference in peak vGRF during single-leg landing or takeoff. 

However, they also found no bilateral difference for internal extension moment at either 

the hip, knee, or ankle during landing.27 During takeoff, however, the noninjured knee did 

produce greater internal knee extension moment as compared to the reconstructed knee.27 

Another interesting finding was the lack of a significant difference in anterior tibial shear 

force experienced by the reconstructed knee, as this force is believed to represent loading 

of the ACL.27 

      Graft type used for reconstructed was not directly compared in these studies, but the 

findings of Webster et al60 provide some evidence that the kinetic profiles of persons with 

ACLR may be in some respects influenced by graft type. They found that when 

comparing persons with BPTB autograft to those with HS autograft, the BPTB group had 

bilateral differences in external knee flexion moments and peak vGRF, with higher peak 

vGRF and lower external knee flexiom moment occurring when landing on the 

reconstructed leg.60 This was despite the lack of bilateral differences in summated 

external flexion moment.60 The HS autograft demonstrated no bilateral differences in 

external knee flexion moment, peak vGRF, or summated external flexion moment.60 

       These differences in kinetics seem to be present when persons with ACLR perform 

double-leg tasks as well. In contrast to the other findings of decreased internal knee 

extension moment in the reconstructed leg, Salem et al24 noted greater internal knee 

extension moment in the reconstructed limb during a weighted parallel squat. Also noted 

was a greater ratio in regards to the peak internal hip extension moment relative to that of 

the knee, which they explained as those with ACLR using more hip extension rather than 
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knee extension moment in the reconstructed limb to complete the squat.24 These bilateral 

differences were present despite no difference in peak vGRF.24 

      During a double-leg drop vertical jump, Paterno et al30 observed similar bilateral 

differences in young female athletes with ACLR as was noted during single-leg tasks. 

There was significantly more peak vGRF with the noninjured limb during landing, which 

was also greater when compared to a group of healthy participants that had never suffered 

an ACL injury.30 The bilateral differences in peak vGRF were also present during the 

takeoff phase of the task.30 The authors took into account the rate at which the vGRF was 

applied to the body, and noted that the noninjured limb had a greater loading rate as 

compared to the reconstructed limb and healthy noninjured controls.30 These findings 

suggest that this sample of female athletes with ACLR unevenly loaded their lower 

extremities when landing from a jump; placing greater force on the noninjured leg and 

loading it at a greater rate than the reconstructed leg.30 In this case the compensation was 

to place greater load on the noninjured leg, as the vGRFs of the reconstructed leg were no 

different than those of the healthy noninjured controls. 

      Similar patterns were found by Decker et al29 when they compared those with ACLR 

to a control group. As mentioned previously, the authors matched for whether subjects 

performed a soft or stiff landing.29 Despite this they noted that the ACLR group had 

significantly lower peak internal hip extension and knee extension moments during 

landing.29 While there was no difference between groups for peak vGRF, the ACLR 

group did reduce the loading rate of the peak vGRF as compared to the healthy control 

group.  
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      With the presence of some inconsistencies in the literature there appears to be a trend 

in the research available indicating that kinetic bilateral differences exist in those with 

ACLR. The major deficit of the research thus far, is its limitation to analyzing sagittal 

plane kinetics and not exploring kinetic differences in the frontal or transverse plane. This 

deficit in the research is highlighted by the recent evidence provided by Paterno et al23 

that transverse plane kinetics at the hip are predictive of secondary injury in those with 

ACLR. Those who went on to suffer a second ACL injury after initial ACLR and return 

to pre-injury physical activity/sport level had less hip external rotation moment in the 

noninjured leg during landing.23 Bilateral differences in internal knee extension moment 

were also predictive of subsequent injury, with the reconstructed limb producing 

significantly greater moment than the uninvolved being associated with injury.23 The 

differences in internal hip external rotation moment was the variable that was most 

predictive of secondary injury.23 This provides evidence for exploring bilateral difference 

of kinetics at the hip and knee, as well as all planes of motion to better understand why 

those with ACLR may be at increased risk for subsequent injury. 

 

Summary of Kinetic Characteristics of ACLR 

      The research overall indicates some general trends in the kinetic profiles of those with 

ACLR: unloading or protecting of the reconstructed knee and placing greater load on the 

other joints of the lower extremity. As noted, it may be more effective to assess the 

kinetic variables in all three planes of motion, both the hip and the knee, under relatively 

demanding tasks.  
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Summary of Biomechanical Characteristics of ACLR 

      A lack in understanding of the biomechanical profile of those with ACLR before 

ACL injury and reconstruction makes it difficult to determine if the differences 

previously mentioned are inherent to the individual and important to understanding their 

risk for future injury, or simply a residual effect of the reconstruction itself that has not 

adequately been addressed during rehabilitation. The ability to compare individuals pre-

injury and post-injury would provide better understanding of the deficits not being 

adequately addressed in rehabilitation, which may be placing those with ACLR at greater 

risk for subsequent injury. 

 

2.6 Coordination and Variability Characteristics of ACLR 

      The limits of using traditional biomechanical measures to describe the movements of 

those with ACLR have been overcome by the use of some of techniques from Dynamical 

Systems Theory. These techniques include measures of coordination and non-linear 

measures that can describe the characteristics of an entire time-series rather than discrete 

point estimates.62  

      Measures of coordination and variability of human motion have been mainly limited 

to the lower extremity. These measures have been used to describe the movements of 

those with ACL deficiency63-66 and ACLR.32-35 The variability, stability, and coordination 

of sagittal plane motion of the thigh, shank, and foot has been characterized by examining 

differences in values of Approximate Entropy (ApEn), Lyapunov’s Exponent (LyE), and 

continuous relative phase dynamics. 



 40 

      After ACL injury, bilateral differences in sagittal plane variability occur in those that 

do not undergo ACLR and remain ACL deficient (ACLD). 63,65,66 This difference in 

variability is consistent in the presence of small perturbations such as changes in walking 

speed65 and rather novel constraints such as walking backwards.66 Stergiou et al65 first 

characterized the bilateral differences of the dynamic stability of sagittal plane motion of 

the thigh and shank of persons with ACLD. The authors used the LyE of the knee 

flexion-extension time series to characterize the local stability, defined as the sensitivity 

of the knee to small perturbations, of both knees during walking at different speeds.65 The 

ACLD knee demonstrated a larger LyE value, indicating less local stability, as compared 

to the contralateral noninjured knee. The difference was consistent regardless of walking 

speed.65 The authors concluded based on their results that the ACLD knee is less 

sensitive to perturbations. This indicates that the ACLD knee is more locally unstable, 

and that the lack of differences across walking speed may indicate that those with ACLD 

alter their movement patterns to maintain what local stability they do have.65 One of the 

interesting factors of the sample of subjects used for this study was the length of time 

between their injury and the date of testing. The sample mean for the time between injury 

and testing was 33.5 months, indicating that the bilateral differences were resistant to 

time. This is contrary to what is observed in traditional biomechanical measures, where 

studies using ACLR tended to note less bilateral differences in those who were farther 

removed from the time of their injury and reconstruction. 

      Georgoulis et al63 found similar bilateral differences in variability in a group of 

persons with ACLD that were on average 19.9 months removed from the time of their 

injury when tested. The authors used a different nonlinear measure to characterize 
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variability in the knee flexion-extension time series during gait across different walking 

speeds, ApEn.63 The sample of participants had significantly different amounts of 

variability between knees; the ACLD knee demonstrated more regular, less variable 

movement in the sagittal plane as indicated by a lower ApEn value. Again, there was no 

limb by speed interaction, although ApEn values did increase as walking speed 

increased.63 The lower ApEn values of the ACLD knee were interpreted as more regular, 

predictable motion in the sagittal plane and a decreased ability to adjust to unpredictable 

perturbations during walking. 

      The fact that ACL injury can alter movement patterns in the noninjured contralateral 

knee, prompted Moraiti et al64 to examine stride-to-stride differences in variability of the 

knee flexion-extension time series in those who were ACLD and healthy noninjured 

persons. As with the sample studied by Stergiou and colleagues65, this group of persons 

with ACLD were on average 33.5 months past their date of injury when tested. The 

authors also used the LyE to characterize the sensitivity of the system to the initial 

conditions of the internal and external environment.64 The healthy noninjured group had 

significantly greater LyE values as compared to the involved limb of the ACLD group.65 

The authors interpreted their findings as the ACLD knee being less sensitive to initial 

conditions, decreased variability in the knee flexion-extension time series, and overall, 

less complexity in their motion.64 This may indicate that those with an ACLD knee may 

constrain the movement of their shank and thigh, but this decreasing the complexity of 

their motion, making them less able to appropriately handle natural perturbations during 

walking.64  
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       The evidence of these studies indicates that under a very familiar task such as 

walking, the ACLD knee demonstrates differences in variability in the sagittal plane as 

compared to their bilateral noninjured knee, and those with no history of ACL injury. 

Zampeli et al66 though found that these patterns were consistent when persons with 

ACLD performed a relatively novel task, backwards walking. Again, they used the LyE 

value of stride-to-stride variability in the knee flexion-extension time series to perform a 

within subjects comparison of those persons with ACLD and between subjects 

comparison of those with no history of ACL injury.66 Unlike the previous studies, this 

sample of persons with ACLD was tested at a time close to the date of their injury, a 

mean of 8.1 months. Their findings were in agreement with the previous works; the 

ACLD knee exhibited a higher value for LyE as compared to the noninjured contralateral 

knee, but a lower value than the healthy noninjured control group.66 The ACLD was 

again shown to be less variable and less complex in the knee flexion-extension time 

series as compared to those with no ACL injury, but to be more variable and complex 

than the contralateral noninjured knee. As may be assumed, the differences in the 

contralateral limb of the ACLD group may represent an attempt by this population to 

maintain some level of symmetry between the two limbs during walking.66 

      A logical extension of this research is to determine if those with ACLR exhibit 

differences in variability as well, as reconstruction is performed to return mechanical 

stability and normal motion to the knee. Moraiti et al33 assessed the stride-to-stride 

variability of those with a BPTB and HS autograft. The authors wanted to determine the 

functional outcome 2 years after reconstructive surgery. The ApEn of the knee flexion-

extension time series during walking was compared to a group of healthy individuals who 
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had never suffered an ACL injury. There was no difference in clinical measures or 

activity levels between those with BPTB and HS autograft. In addition, there was no 

difference in stride-to-stride variability between the two graft types. However, those with 

ACLR, regardless of graft type, demonstrated significantly greater variability, indicated 

by a larger ApEn value, as compared to the healthy noninjured control group.33 The 

authors explained their findings as ACLD results in a decrease in variability, but 

reconstructive surgery may provide individuals with the comfort to add accessory motion 

to their movement patterns.33 

      Moraiti and colleagues essentially repeated their previous study in 2010, but 

examined stride-to-stride variability using LyE value.34 Again, they compared those with 

BPTB autograft, HS autograft, and a healthy noninjured control group. This study, 

however, also included bilateral comparisons for those with ACLR. They confirmed the 

lack of difference in stride-to-stride variability of the knee flexion-extension time series 

between the two types of grafts. They also confirmed that those with ACLR, regardless of 

graft type, had significantly greater variability, as indicated by a larger LyE value. 

Besides confirming their previous findings, they also noted that the contralateral 

noninjured knee of the ACLR group was significantly more variable than the 

reconstructed knee. Thus, it appears that not only does ACLR reconstruction increase 

sagittal plane variability about the knee, but it also creates increased variability in the 

contralateral noninjured knee. The authors attributed this finding to those with ACLR 

trying to maintain some symmetry in the amount of variability between the two limbs. 

      Identifying differences in the variability of movement may not adequately describe 

the movement patterns that are associated with ACLR. Kurz et al32 attempted to better 
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describe the motion after ACLR by using relative phase dynamics to assess the 

coordination of shank and thigh movement while walking and jogging. This technique 

provides information about the degree to which two segments are in-phase (move in the 

same direction) or out-of-phase (move in the opposite direction). Shank-thigh and foot-

shank coordination in the sagittal plane was assessed during walking and jogging at a 

self-selected speed. The mean absolute relative phase (MARP) value was calculated to 

provide a quantitative comparison. Participants with ACLR were tested on average 3.4 

years after the date of surgery, and were compared to a group of gender and age matched 

control participants. Significant differences in the MARP values for the foot-shank and 

shank-thigh were present during walking. During the stance phase, the foot-shank motion 

was more in-phase for the ACLR group, while shank-thigh motion in the sagittal plane 

was more out-of-phase when compared to that of the healthy noninjured matched 

controls. Running only produced differences in the coordination between the foot-shank, 

with the ACLR group demonstrating greater in-phase motion during the stance phase of 

running. These findings, in addition to the previously mentioned, indicate that not only do 

those with ACLR have different amounts of variability in the sagittal plane time series, 

but they also coordinate the movement differently between the foot and shank, and shank 

and thigh. 

      Similar differences in relative phase dynamics of the knee and ankle were found by 

van Uden et al35 in a small sample of persons with ACLR, approximately one year out 

from surgery, during a continuous single leg hop task. Those with ACLR did not display 

bilateral differences in movement coordination, but the reconstructed limb was found to 

be more in-phase as compared to a healthy noninjured control group. In addition, there 
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was no difference between the coordination of the healthy control group, and the 

noninjured limb of the ACLR group. Additional analyses were performed to calculate the 

standard deviation of the relative phase, which is equivalent to the deviation phase (DP), 

to determine the variability or stability of movement coordination of each limb. Again, 

the reconstructed limb of the ACLR group had a significantly higher DP value as 

compared to the healthy controls, and was also higher than the noninjured limb of the 

ACLR group.35 This suggests that those with ACLR have different movement 

coordination, and the coordination is less stable than those with no ACL injury. 

 

Summary of Coordination and Variability Characteristics of ACLR 

      The research related to movement coordination and variability of the ACLD 

population indicates that they have bilateral differences in the variability of the knee 

flexion-extension time series during gait, and that they differ from those that have never 

suffered an ACL injury as well.  In general, the ACLD knee has less complexity in the 

organization of movement in the sagittal plane. This may cause them to be less able to 

adapt to unexpected perturbations or changes that occur in the internal or external 

environment during walking. These differences are present during both relatively long 

and short periods of time after injury, suggesting that these differences are resistant to 

change over time, though no longitudinal studies have been performed. These differences 

also appear to be present despite ACLR.  

      Assessment of the coordination of the lower extremity segments about the knee has 

not been as extensively analyzed as measures of variability. These assessments though 

can provide a more detailed analysis of movement, but also an indication of the stability 
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of the coordination, as demonstrated by van Uden et al35. These techniques may also be 

more appropriate to used in more dynamic tasks, other than gait.   

      One limitation of the available literature is the lack of analyses assessing coordination 

outside of the sagittal plane. Kurz et al32 addressed this as a limitation to their study, 

indicating that the associated noise in marker motion associated with the other planes 

prevented them from performing these analyses in multiple planes. Still these planes are 

worthy of assessing as they may help identify additional information about the movement 

patterns of persons with ACLR. However, these analyses have a major advantage over 

traditional biomechanical measures because they provide more detailed information 

about motion and its sensitivity to changing conditions. A more thorough interpretation 

can then be generated about the differences in how those with ACLR perform a task, 

rather than inferring differences from a point estimate. 

      The previous studies that have examined variability associated with ACLD and 

ACLR are limited in the amount of information they provide with regards to movement 

by the analyses used. As the majority of these studies have quantified lower extremity 

variability with the measures of ApEn and LyE, they are only able to describe the 

magnitude of the variability associated with these measures. While variability is 

important to understanding the potential for further injury in this population, the addition 

of how movement is coordinated in this population would provide greater detail and the 

potential to understand what interventions might be effective in augmenting injury risk. 

Only Kurz et al32 and van Uden35 have quantified both coordination and variability in this 

population by measuring Continuous Relative Phase (CRP). However, there are other 
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ways to measure both coordination and variability that may be more appropriate for 

understanding how ACLR changes intra-limb and inter-limb coordination and variability. 

 

2.7 Coordination and Variability Methodology Review 

      The two most common techniques for assessing coordination and variability in 

biomechanical data appear to be Continuous Relative Phase (CRP) and Vector Coding. 

Both techniques are continuous techniques that allow for the measurement of 

coordination and variability over an entire time period of interest, providing both spatial 

and temporal information.67  

 

Continuous Relative Phase 

      Continuous Relative Phase measures the relative phase, or difference in phase angle, 

of two segments oscillating about a joint at each point across a time period of interest 

during movement.62,68,69 To obtain the phase angle of a segment, a phase-plane is created 

by plotting the angular position of a joint relative to its first derivative, angular velocity, 

for the given movement cycle of interest.68The Cartesian coordinates of the movement 

trace are then converted to Polar coordinates, in which the position of each data point can 

be redefined based on the length of a radius from the origin and an angle relative to the 

right-horizontal.62,69 The angular portion of the Polar coordinates represents the phase 

angle of that given data point.62,69 This relationship can be expressed mathematically as: 

θ! = tan!!
y!
x!

 

where θ! represents the phase angle for a particular segement at time point i, and y!, x! 

represent the Cartesian coordinates for the segments angular velocity and angular 
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position, respectively, at time point i .62,69 To obtain the relative phase angle, the phase 

angle of the proximal segment is subtracted from the distal segment (1)62, or the phase 

angle of the distal segment is subtracted from the proximal segment (2)69. 

 

(1) Φ!"#$%&'"  !"#$%  !"#$% = θ!"#$%&  !"#$"%& − θ!"#$%&'(  !"#$"%& 

(2) Φ!"#$%&'"  !"#$%  !"#$% = θ!"#$%&'(  !"#$"%& − θ!"#$%&  !"#$"%& 

 

The relative phase angle is then calculated for each point for the time of interest during 

the movement to obtain CRP. Plotting the resulting CRP provides a description of how 

the movement is coordinated. However, the CRP has to be quantified in some manner to 

allow for objective comparison between groups. The mean absolute relative phase 

(MARP) has been previously used for this purpose and can indicate the relationship 

between two segments, whether their movement is generally out-of-phase or in-phase.62 

Kurz and Stergiou62 provided the calculation of MARP as: 

MARP =
Φ!"#$%&'"  !"#$%  !"#$%

N

!

!!!

 

where N represents the number of data points in the time period of the movement cycle of 

interest.  

      Defining the variability of coordination parameters between two segments may 

provide additional information as to the risk for orthopaedic injury.68 Quantifying the 

variability of coordination between two segments, defined as the deviation phase (DP), 

indicates how stable the coordinative patterns are.62 Kurz and Stergiou62 defined the 

calculation of DP as: 
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DP =
SD!!

!!!

N  

where N represents the number of data points in the time period of the movement cycle of 

interest, and SD represents the standard deviation of the ensemble at point i. 

      As a measure, CRP analyses provide a way to quantify the coordination and stability 

of movement between two interacting segments.62,68 Because it provides information 

related to angular position and its first derivative, angular velocity, it may give an 

indication of how the neuromuscular control of movement is organized.62 

      A number of studies have previously used this measure to examine coordination of 

the lower extremity, mostly during gait.70-74 In addition, all of theses studies used healthy 

participants in their studies.70-74 The focus of these studies has been to examine how 

different conditions change coordination and variability within the lower extremity.70,73,74 

Li et al70 examined CRP during walking and running, in a small sample of healthy male 

participants. The effect of having to clear obstacles during gait has been examined as 

well.73,74 These studies have indicated that changes in the external environment have an 

effect on lower extremity coordination,73,74 as well as changing the performance 

constraints of the task can have an effect as well.70 However, these studies do not provide 

evidence that coordination and the stability of that coordination is associated with lower 

extremity injury. Heiderscheit et al71 did examine differences in coordination and 

variability of lower extremity coordination between those with high and low quadriceps 

angle (Q-angle).  The authors found that there was no difference in lower extremity 

coordination variability related to Q-angle during running.71 Again, these results are 

limited because it was a healthy sample of participants. These findings do though, give an 

indication that variability coordination of the lower extremity may not be dependent on 
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structure of the lower extremity, but may provide instead an indication of how movement 

is coordinated by the neuromuscular system. 

  

Review of Technical Aspects of Data Collection: Continuous Relative Phase  

      Studies that have previously used CRP as a measure of coordination and variability 

for biomechanical analysis have consisted of relatively small sample sizes, ranging from 

6 to 40 participants.70-74 An important characteristic of these studies, as well, is that all 

participants used have been healthy, free of any orthopaedic injury.70-74 A greater number 

of trials have been performed than is done with more traditional biomechanical studies, 

when employing these techniques, 570,72 or 10 trials.71,73-75 The studies that have used 10 

trials for analysis have listed variability of the coordination as a primary interest of the 

study.71,73-75CRP appears to have been performed exclusively with tasks that have 

included analysis of gait, walking or running.70-75 Coordination and variability analyses 

have included examination of the interaction of the foot and shank71-75, and shank and 

thigh70-75 in various combinations of plane orientation. These data have been collected 

with sampling frequencies that are typically used for biomechanical analyses (120-240 

Hz) but have been limited to video based systems.70-75 During data processing, low pass 

filters have been used to filter the kinematic data, with cutoff frequencies of 8-20 Hz.70-74     

 

Limitations of Continuous Relative Phase  

Sinusoidal Pattern of Movement  

      The motion of interest has to be sinusoidal in nature in order to properly employ CRP 

as a measure of coordination.67,69,76 In addition, a matching frequency between the two 
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segments is required as well.67 When analyzing motion in the sagittal plane this may not 

be an issue during such activities as gait and jumping. Analyzing motion in the other 

planes, or inter-plane comparisons between segments, may be inappropriate using this 

measure. These technical issues of applying CRP to various motions may be addressed by 

normalizing the phase-plane curves, but there is no consistency.69 

 

Normalization of Phase-Plane Trajectory 

      There is some contention in the literature as to proper normalization with regards to 

CRP. While some authors have argued that there is no need for normalization of the 

phase-plane data during calculation of CRP due to the processes of the calculation 

itself77, it is generally accepted that normalization must be performed to obtain proper 

interpretation of these measures.67,69,78 However, Peters et al78 contended that 

normalization procedures are not necessary if the movement of interest fulfilled the first 

assumption of sinusoidal motion. 

      Normalization procedures have the effect of placing the phase-plane at the center of 

the graph about the origin, accounting for differences in the magnitude of motion each 

segment experiences during the time of interest, and resulting in a more circular phase 

plane.67,69,78 Although there is no consensus on appropriate normalization69, Hamill et al67 

described the effect of two common normalization techniques; normalization based on a 

unit circle, and normalization based on a maximum velocity. Within those techniques 

normalization was also based on the maximum value per separate trial or based on the 

maximum value over several trials.67 They observed that normalization will have an 

effect on the resulting description of coordination and variability as assessed using CRP, 
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but left the selection of appropriate normalization parameters up to the investigator to 

decide based on their question of interest.67 

 

Determining the Range of the Phase Angles 

       For CRP to accurately describe relative motion between two segments, a range for 

the possibility of relative phase values is established. Wheat and Glazier69 describe the 

debate as to the appropriateness of specific ranges. As they note, based on the 

calculations provided earlier, the calculation of the phase angle of a segment will produce 

values ranging between ±90°.69 This range of values may not capture the nature of the 

interaction between two segments and may need manipulating. The authors note that 

previous biomechanical studies performed by Hamill et al67 have manipulated the input 

values for the phase angle calculation to achieve a range between 0° and 180°.69The 

calculation of the phase angle remains the same for all data points where the value of y if 

y is greater than zero, but if the value of y is less than zero the formula is reformatted 

as:  y = 180+    tan!! !
!

  .67 Hamill et al67 manipulated the calculation in this manner to 

avoid redundancy in the values produced when a range of 0° and 360° is used. However, 

there is some controversy as to whether important information is lost with respect to the 

variability of a system when the range of values is not set to include a full 360° of 

possible values.69 The benefit of limiting the range of value to only 180° is the ability to 

use linear statistics to evaluate differences and calculate descriptive statistics.69 The 

benefits of using a range of 360° can be used with the implementation of circular 

statistics.69  
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Vector Coding 

      Where CRP uses phase-plane plots to describe coordination between two segments, 

angle-angle plots are used for vector coding, a separate continuous technique to quantify 

the coordination between two segments.69 The technique is based on angle-angle plots of 

two joints of interest, and unlike CRP does not require normalization of the of the data 

plots.67,69 Sparrow et al79 described procedures to determine the similarities of these plots 

to allow for comparison across time, populations, or conditions. Since, Tepavac and 

Field-Fote80, Hamill et al67, and Heiderscheit et al81 presented variations of their 

methods.69 The equations presented by Heiderscheit et al81 appear to be more commonly 

used for biomechanical studies.72,82,83 This technique uses the following equation to 

determine the angle created by the vector connecting two adjacent points on the angle-

angle plot relative to the right horizontal, 

 

θ! = tan!!
y!!! − y!
x!!! − x!

 

 

where i represents the succession of data points in the time of interest.81 As Wheat and 

Glazier69 noted in their assessment of techniques of vector coding, this technique is 

limited to only provide a description of the orientation of the vectors along the angle-

angle plot. They noted that the equations presented by Tepavac and Field-Fote80 allowed 

for this assessment as well as the assessment of the length of the vector between data 

points and the overall shape of the plot. While this additional information may be useful, 

the overall coordination between two segments seems to be captured in the assessment of 

the coupling angle. 
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      The range of values for the coupling angle can be 0°-360°.67 Although, the range of 

values has been more limited, 0°-90°, in studies that have examined coupling during 

specific time intervals of a movement.72,82,83 The value of the coupling angle provides an 

indication of the magnitude of the relative motion between the two joints.67 Specifically, 

a value of 0°, 90°, 180°, or 270° indicates that only one of the segments is moving 

relative to the other; 0° and 180° indicate movement of the proximal segment, 90° and 

270° indicate the distal segment is moving.67 Values that fall between these, indicate a 

combination of movement is occurring in both the proximal and distal segment. Hamill et 

al67 went on to state that the amount of relative motion is equal when the coupling angle 

equals values of 45°, 135°, 225°, and 315°, this movement is in the same direction when 

the coupling angle equals 45° or 225°, and in the opposite direction when the coupling 

angle equals 135° and 315°.  

 

Review of Technical Aspects of Data Collection: Vector Coding  

      Vector coding has been previously used to assess coordination and variability of the 

lower extremity.72,81-83 The tasks examined have included walking75, running72,81,83, and 

unanticipated cutting82. However, the majority of assessments have been performed on 

healthy participants72,82,83. Heiderscheit et al81 used a pathologic sample when they 

examined the variability of joint coordination in a group of females with unilateral 

patellofemoral pain as compared to those without. While Ferber et al83 did conduct a 

comparison of runners who had been fitted with orthotics due to injury to healthy 

runners, both groups were injury free at the time of data analysis.  
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      A review of the methods used for these particular studies provides general guidelines 

for how to appropriately capture kinematic data that can be used for this type of analysis. 

A relatively moderate sample size has been for these analyses, and has ranged from 16 

participants to 40 participants.72,81-83 During testing, multiple trials of the movement of 

interest have been used for data analysis. The number of trials used ranges from 5 to 15, 

with 5 trials being most commonly used.72,75,81-83 Kinematic data have been sampled at 

120 Hz72,83 and 240 Hz75,81,82, although the preference of kinematic sampling appears to 

be at the discretion of the researcher rather than based on any empirical evidence. These 

kinematic data are generally filtered using a low pass zero lag filter with a relatively low 

cutoff frequency, 8-9 Hz.72,81-83 The kinematic data is usually interpolated to 101 data 

points that coincide with the time point of interest72,81-83, such as manipulating the data so 

that the stance period of gait is consistent across trials and subjects, allowing for 

consistent comparisons.  

 

Limitations of Vector Coding 

      Because there is the possibility that values of the coupling angle will range from 0°-

360° and these values indicate direction, the use of circular statistics may be necessary to 

determine the descriptive statistics.67 This is a minor limitation, as previous researchers 

have employed and described such methods.67,81 The use of circular statistics may not be 

necessary though, as indicated by previous authors who have assessed specific time 

periods during a movement, and have demonstrated a range of coupling values from 0°-

90°.72,82,83 
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      The examination of specific time points, or segmenting a movement into particular 

sections may be necessary to minimize the error in calculation of the coupling angle 

when there is minimal displacement of either joint.81 Heiderscheit et al81 commented that 

when there is minimal joint displacement the coupling angle can become more sensitive 

to small changes in joint position and increase variability in the calculation. This situation 

may arise, in particular, when a joint is changing the relative direction it is moving. 

Therefore, it may be necessary to segment a movement in to multiple sections to allow 

for a more accurate assessment of coordination. 

 

Summary of Coordination and Variability Methodology Review 

      The question becomes is one technique, CRP or vector coding, better than the other. 

To answer this, Miller et al75 performed a direct comparison of the two techniques to 

assess variability in kinematic data. What the authors noted, was essentially a trade off 

between the two techniques; vector coding being more sensitive to biologic variability, 

CRP more sensitive to variability derived from theoretical data; CRP being a more 

conservative measure, but vector coding having greater clinical implication as it is 

derived from kinematic data that is not normalized or altered.75 The authors suggested 

that any decision for the use of one technique be based on goals of the research.75 

      Ultimately, both techniques provide unique information about lower extremity 

coordination, but the benefits of measures obtained using vector coding outweigh those 

of CRP. Joint coordination characterized by vector coding, in particular, is relatively easy 

to compute and interpret, has more clinical relevance, and is more sensitive to actual 

biological motion. The methodological limitations of CRP that were previously described 
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(normalization, required sinusoidal motion, determining range of phase angles) detract 

from the use of CRP as a measure of coordination, and are not offset by the ability to 

include the time dependent component of velocity in reference to measuring coordination 

relative to the information gained by using vector coding.   

 

2.8 Summary of the Literature Review 

      The purpose of this study is to examine the effect of ACL injury and ACLR on a 

sample of young, physically active persons. This study will expand the information 

regarding risk factors for subsequent ACL injury and the development of knee OA by 

analyzing hip and knee biomechanics in all three planes of motion. Measures of 

coordination and variability of the thigh and shank will also be included. This study will 

be unique with regards to previous studies examining those with ACLR, in that 

information collected prior to the initial injury will be included.   

 



CHAPTER THREE 

METHODOLOGY 

 

3.1 Experimental Design 

      This study employed a repeated measures, case-cohort research design. The purposes 

of this study were to (1) determine if lower extremity biomechanics at Baseline are 

changed by ACL injury and subsequent ACLR, for both the injured and noninjured limbs 

(2) determine if lower extremity joint coordination at Baseline is changed by ACL injury 

and subsequent ACLR, for both the injured and noninjured limbs, (3) determine if there 

are differences in the magnitude of between limb differences in lower extremity 

biomechanics at Follow-Up for those with ACLR and those with no history of ACL 

injury, and (4) determine if there are differences in the magnitude of between limb 

differences in lower extremity joint coordination and variability at Follow-Up for those 

with ACLR and those with no history of ACL injury. Participants were recruited from a 

larger on-going study being conducted at the United States service academies (Joint 

Undertaking to Monitor and Prevent ACL injury; JUMP ACL). Participants who 

completed biomechanical testing for the JUMP ACL study, suffered one ACL injury 

since enrollment in the service academies, had underwent reconstructive surgery, 

returned to full participation, and still enrolled in the service academies, were recruited 

for this study along with a sample of healthy matched controls. The primary independent 

variables for this study were injury status (ACLR Group, Control Group) and time 
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(Baseline, Follow-Up). 

3.2 Participants 

      Participants were recruited from the JUMP ACL study at the three major service 

academies of the United States (United States Air Force Academy, United States Naval 

Academy, United States Military Academy). Selection of participants was limited to 

those that had complete biomechanical data at the time of baseline testing for the JUMP 

ACL study, were still enrolled at their respective service academy, and were still enrolled 

in the JUMP ACL study. Forty-five participants were identified as having suffered an 

ACL injury since Baseline testing during the summer of their enrollment in an academy. 

Matched controls were also identified at each academy based on the matching factors of 

gender, service academy, and year of enrollment in the service academy. A list of 

matched controls was generated with a 3:1 ratio of those with ACL injury, and given a 

randomly assigned priority number for recruitment. Participants were recruited by means 

of email, and personal contact on site. Following initial testing for Follow-Up, 4 

additional participants who had suffered an ACL injury from the 2009 cohort enrolled in 

the study, and completed testing. A total of 88 participants were enrolled and completed 

testing for this study; 38 with an ACL injury since Baseline and 50 matched control 

participants.  

 

3.3 Instrumentation 

Marx Activity Scale 

      The Marx activity scale was developed to allow for a quick assessment of a patients 

level of activity without being specific to sport participation as with the Tegner scale.84 It 
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does not assess the ability of a person to engage in these specific activities, but assesses 

what they are actually doing. The scale was derived out of review of the limitations of 

other activity scales commonly used in orthopaedics, and from information provided by 

patients and sports medicine practioners.84 Its’ measures are correlated with other well-

established surveys used to measure activity level in patients with knee injuries.84 

Because the scale quantifies specific activities and not just participation in particular 

sports that are believed to have higher rates of these types of movements, the authors 

suggest that it may be a better assessment of activity.84 This scale has previously been 

used to assess long-term outcomes of those with ACLR.85,86  

 

Knee Injury and Osteoarthritis Outcome Score 

      The Knee Injury and Osteoarthritis Outcome Score (KOOS) is a self-administered 

questionnaire for patients to indicate their perception of the functioning of their injured 

knee.87,88 The KOOS captures information on five dimensions; pain, symptoms, activities 

of daily life function, sport and recreation function, and knee-related quality of life.87 

Each dimension provides a series of questions in which the patient is asked to rate their 

response on a 5 point likert scale.87 Calculating a KOOS score consists of scoring the 

responses so they are transformed to a 100 point scale; with a lower score value 

indicating the patient has a perception of more severe knee problems and a higher score 

indicating the opposite.87 
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Three-Dimensional Motion Capture System 

      A three-dimensional electromagnetic motion tracking system (Ascension 

Technologies, Inc., Burlington, VT) was used to collect bilateral kinematic data. The 

system was integrated with the Motion Monitor Software (Innovative Sports Training, 

Inc., Chicago, IL) and consisted of a short-range electromagnetic transmitter and eight 

tethered receivers. All kinematic data were sampled at 144 Hz, consistent with the 

previous methods of the JUMP ACL study.  

 

Force Plates 

      A non-conductive force plate was used (Bertec Corporation, Columbus, OH) to 

collect all kinetic data. To be consistent with the previous methods of the JUMP ACL 

study, all kinetic data were sampled at 1,440 Hz.  

 

Knee Arthrometer 

      A KT-1000 knee arthrometer (MEDmetric Corp, San Diego, CA) was used to assess 

anterior knee laxity bilaterally. Measures were recorded at a 30lbs force level.  

 

3.4 Procedures 

      Upon arrival for testing each participant read and signed an informed consent form 

from each of the respective academies. Participants also filled out a questionnaire 

regarding their physical activity and sport participation during their enrollment at the 

academies. The questionnaire also included the Marx Activity scale, and the KOOS. 
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(Appendix A) This information was included in data analysis, but instead used as a 

description of the participant samples. 

      Information regarding the leg that was injured and the dominant leg, determined by 

asking the participant which leg they would use to kick a ball for maximal distance, was 

recorded as well. Following completion, participants performed two testing procedures: 

double leg jump landing, and an assessment of anterior knee laxity. The order of testing 

was standardized, so that the double-leg jump landing was performed first and the 

assessment of anterior knee laxity assessed second. Measures were performed bilaterally, 

and the order of testing for leg was counter-balanced by alternating whether measures 

were performed first on the right or left leg, regardless of leg dominance. Anterior knee 

laxity measures were included as a description of the samples and were not included in 

any statistical analyses for the purposes of this study. 

 

Double Leg Jump Landing 

      Electromagnetic receivers were fixed to the inner shank and outer thigh of both legs, 

and the sacrum using double sided tape. A prewrap dressing and athletic tape were 

applied over the sensors on the thigh and shank, and an elastic belt was placed over the 

sacral sensor to minimize sensor movement during testing to minimize motion artifact. 

After the receivers were placed, each participant was asked to stand within the range of 

the electromagnetic transmitter in a neutral position with their feet shoulder width apart 

and arms by their side. The points of the medial and lateral femoral epicondyle, medial 

and lateral malleoli, and the anterior superior iliac spine (ASIS) were palpated and 
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digitized bilaterally using a calibrated stylus. The primary investigator performed all 

digitization and gave final approval of the digitized model for all participants. 

      After successful digitization, the procedures of the double leg jump landing were 

explained to each participant. Consistent with procedures performed in the JUMP ACL 

study, participants performed a double leg jump landing. Participants were required to 

stand atop a box with a height of 30cm, located a distance equal to half their body height 

from the edge of the force plate (Figure 1). They jumped forward from the box landing 

with their test leg completely on the force plate, and immediately jumped vertically for 

maximum height. A trial was considered successful if the participant landed with the foot 

of the test leg completely on the force plate, with the non-test leg making no contact with 

the force plate during the initial landing, and the participant not pausing in between the 

initial landing and vertical jump. The primary investigator determined if each trial was 

successfully performed for all participants, and was also responsible for determining if 

the data captured for each trial was accurate and free of error. 

      Each participant successfully completed five trials per leg. Because the equipment 

used in this study was limited to the use of one force plate, a total of ten successful trials 

were recorded to permit bilateral analyses.  

 

Anterior Knee Laxity Assessment 

      The KT-1000, as described previously, was used to assess anterior knee laxity 

bilaterally. Participants were positioned in a supine position with an adjustable bolster 

placed underneath their distal thigh, just proximal to the knee joint line. The bolster was 

adjusted to achieve a knee flexion angle between 20° and 30°. A foot support was placed 
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underneath their heels to ensure that legs stayed in a fixed position during testing. The 

KT-1000 device was aligned with the knee joint line and secured to the shank using two 

Velcro straps. A small compressible piece of foam padding was placed between the lower 

shank and the device to ensure comfort of the participant. The device was adjusted 

accordingly to ensure that resulting displacement of the tibia would be in the sagittal 

plane of the knee, the point of resistance was over the participant’s patella, and the height 

of the pull arm was adjusted so that the arthrometer measured zero millimeters of 

displacement at rest. The participant was instructed to relax during the procedures. An 

anterior force was applied on the tibia, while a stabilizing force was placed on the patella. 

The force was increased until the audio tone indicating a force of 30lbs was being applied 

was heard. The anterior tibial displacement was recorded to the closest half-millimeter.      

      Three successful trials were completed on each leg. To be considered a successful 

trial, the 30lb tone had to be achieved, the displacement of the arthrometer had to be in 

the sagittal plane, and the dial of the arthrometer had to return to a position of 0±0.5 mm 

at rest to ensure the participant was relaxed during the assessment.89 Additional trials 

were performed if the investigator subjectively felt that the participant was not relaxed 

during the trial. These procedures have a high intrarater reliability (ICC(3,1) = 0.969, SEM 

= 0.32 mm). 

 

3.5 Data Capture, Processing and Reduction 

      Prior to each data collection session, a global axis system was established along with 

integration of the force plates according to the manufacturer’s guidelines using the 

Motion Monitor software. The axes of the global axis system were defined using a right-
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hand convention, with the positive x-axis corresponding with the forward direction of the 

double leg jump movement, the positive y-axis defined by a vector located with a 

positive 90° rotation about the z-axis relative to the x-axis, and the positive z-axis defined 

by a vector located with a positive 90° rotation about the x-axis from the position of the 

y-axis. 

      Segments of the shank, thigh, and pelvis were defined within the data collection 

software. The shank segments were defined by the segment endpoints of the ankle joint 

center and knee joint center, and a third non-collinear point of the shank electromagnetic 

receiver. The thigh segments were defined by the segment endpoints of the knee joint 

cent and hip joint center, and a third non-collinear point of the thigh electromagnetic 

receiver. The thigh joint center was estimated within the software using the Bell 

method.90 The pelvis segment was defined based on the of the right and left ASIS, and 

the third non-collinear point of the sacrum electromagnetic receiver. 

      Local coordinate systems were established based on a right-hand convention and 

coincided with the orientation of the global axis system such that, the positive x-axis 

corresponded with the anterior direction, the positive y-axis as the medial direction for 

the right leg and lateral direction for the left leg, and the positive z-axis as the superior 

direction. Cardan angles using an Euler sequence were used to calculate joint angles for 

the knee and hip using the Motion Monitor software. The Euler sequence for both knee 

and hip angle was defined by a first rotation about the y-axis, a second rotation about the 

x-axis, and a third rotation about the z-axis. The first rotation about the y-axis 

corresponded with sagittal plane motion of the knee (+ flexion / - extension) and hip (+ 

extension / - flexion). The second rotation about the x-axis corresponded with frontal 
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plane motion of the knee (+ varus / - valgus) and hip (+ adduction / - abduction). The 

third rotation about the z-axis corresponded with transverse plane motion of the knee (+ 

internal rotation / - external rotation) and hip (+ internal rotation / - external rotation). 

The sign conventions to define the direction of anatomical motion for the first rotation 

about the y-axis were consistent for the left leg, but the inverse for the second and third 

rotations. This factor was corrected in the data reduction process to make all sign 

conventions indicative of the relative motions listed previously. 

      Moments for the knee and hip were calculated within the Motion Monitor software 

using a standard inverse dynamics approach. These moments were calculated as internal 

moments and are representative of the moment produced within the body to resist the 

external moments generated on the body by interaction with the environment. Moments 

in each plane of motion were calculated for the knee and hip, as well as the proximal 

anterior tibial shear force. The proximal anterior tibial shear force was defined as the 

resultant force acting on the shank segment calculated at the point of the knee. 

      Prior to exportation of the data, the data were filtered within the Motion Monitor 

software using a Butterworth filter with a cutoff frequency of 14.5 Hz. The data were 

filtered prior to exportation to ensure no introduction of a time shift in the data between 

the kinematic and kinetic data. All data were exported at the sampling rate of 1440 Hz, 

consistent with that of the sampling frequency of the kinetic data, and the highest 

sampling frequency of the data collected. This required up-sampling of the kinematic 

data that was performed during exportation by the Motion Monitor software. 
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Definition and Calculation of Dependent Variables 

      The vertical ground reaction force was used to define the stance phase for the double 

leg jump landing. The point at which the vertical ground reaction force first exceeded 

10N was defined as Initial Ground Contact, and the subsequent point at which the vertical 

ground reaction force value fell below 10N was used to define toe-off. The time period 

between Initial Ground Contact and toe-off was defined as the stance phase of the double 

leg jump landing. The time from Initial Ground Contact until peak knee flexion was 

defined as the Landing Phase of the double leg jump landing. The time period of the 100 

milliseconds preceding Initial Ground Contact was defined at the Preparatory Phase. 

Dependent variables were calculated relative to these time points of interest. 

 

Kinematic Variables 

      The assessment of kinematic values was performed for the initial trials collected for 

the original JUMP ACL study (Baseline), and from the follow up data collection (Follow-

Up) for all repeated measures analyses. Values for the kinematic variables were 

determined for the following phases of the double leg jump landing: Preparatory Phase, 

Initial Ground Contact, and Landing Phase. Kinematic values for all three planes of knee 

joint motion and hip joint motion were determined for the Preparatory Phase and Initial 

Ground Contact. These values were averaged across trials. Maximum and minimum 

values for all three planes of knee joint motion and hip joint motion were determined for 

the Landing Phase and averaged across trials. 
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Kinetic Variables 

      The assessment of kinetic values was performed for the initial trials collected at 

Baseline, and from the Follow-Up data collection for all repeated measures analyses. 

Values for the kinetic variables were determined for the following phases of the double 

leg jump landing: Initial Ground Contact, and Landing Phase. Values for the moments of 

the knee and hip for all three planes of motion, as well as anterior tibial shear force were 

recorded at the point of Initial Ground Contact and averaged across trials. The maximum 

and minimum values during the Landing Phase for the knee and hip, for all three planes 

of motion, as well as the maximum anterior tibial shear and vertical ground reaction force 

was determined, recorded, and averaged across trials. 

      All moments were reported as internal moments and normalized by the product of the 

participant’s body weight (N) and body height (m). Vertical ground reaction force was 

normalized to the participant’s body weight.  

 

Joint Coordination and Variability 

     Joint coordination was determined using a vector coding method as described by 

Heiderscheit et al81 and Ferber et al83 as an alteration to the technique proposed by 

Sparrow et al.79 Angle-angle plots were constructed for each joint coupling of interest 

during the Landing Phase of the double leg jump landing (Figure 2). The coupling angle 

for each point was calculated as: 

θ! = abs{tan!!
y!!! − y!
x!!! − x!

] 

The resulting values were converted from radians to degrees, a mean value was 

calculated for each trial, and a between trials mean was calculated to represent a joint 
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coordination value. Variability of joint coordination was calculated as the average 

between trial standard deviation.82 The joint coordination pairs that were investigated 

included: Hip Sagittal Plane – Knee Sagittal Plane, Hip Frontal Plane – Knee Frontal 

Plane, Hip Transverse Plane – Knee Transverse Plane, Hip Frontal Plane – Knee 

Transverse Plane, and Hip Transverse Plane – Knee Frontal Plane. 

 All data reduction was conducted using customized MATLAB software programs 

(Mathworks, Natick, MA, v7.10). 

 

3.6 Statistical Analysis 

       An a priori alpha level of 0.05 was set to determine statistical significance for all 

statistical analyses. All statistical analyses were performed using IBM SPSS Statistics 

(IBM Corp., Armonk, NY, v.19.0) software package. Prior to the completion of all 

statistical analyses, each dependent variable was assessed for statistical outliers and to 

ensure normal distribution.  

 

Research Question 1: Are lower extremity biomechanics during a double leg jump 

landing at Baseline changed following ACL injury and subsequent ACLR? 

 

Statistical Procedure Research Question 1a & 1b: A 3x2 (group, time) mixed model 

analysis of covariance (ANCOVA) to adjust for the influence of differences in 

proportions of gender between groups was performed for each dependent variable. 

Tukey’s post hoc analysis was performed for all significant interactions and group main 

effects. 
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Research Question 2: Is lower extremity joint coordination during a double leg jump 

landing at Baseline changed following ACL injury and subsequent ACLR? 

 

Statistical Procedure Research Question 2a & 2b: A 3x2 (group, time) mixed model 

analysis of covariance (ANCOVA) to adjust for the influence of differences in 

proportions of gender between groups was performed for each dependent variable. 

Tukey’s post hoc analysis was performed for all significant interactions and group main 

effects. 

 

Research Question 3: Is the magnitude of between limb differences in lower extremity 

biomechanics during a double leg jump landing at Follow-Up, different in persons with 

ACLR as compared to those with no history of ACL injury at Follow-Up? 

 

Statistical Procedure Research Question 3: The absolute value of a difference score was 

calculated between the right and left leg for each dependent variable. Between group 

differences (ACLR v. Control) were determined using two-sample Kolmogorov-Smirnov 

tests. 

 

Research Question 4: Is the magnitude of between limb differences in lower extremity 

joint coordination and variability during a double leg jump landing at Follow-Up 

different at in persons with ACLR as compared to those with no history of ACL injury at 

Follow-Up? 
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Statistical Procedure Research Question 4: The absolute value of a difference score was 

calculated between the right and left leg for each dependent variable. Between group 

differences (ACLR v. Control) were determined using two-sample Kolmogorov-Smirnov 

tests.



CHAPTER FOUR 

SUMMARY OF RESULTS 

 

4.1 Introduction 

      The purpose of this chapter is to provide a summary of the results for this project, and 

will be addressed according to each research question. A more detailed presentation of 

the results for Research Question 1, 2, and 3 is provided in manuscripts attached to this 

document as appendices. Manuscript 1 (Appendix B) will address Research Question 1, 

Manuscript 2 (Appendix C) will address Research Question 2, and Manuscript 3 

(Appendix D) will address Research Question 3. This chapter will provide a more 

detailed presentation of results concerning Research Question 4 as well as information 

from Research Question 1 and 3 regarding kinematic analyses during the Preparatory 

Phase that were not included in the respective manuscripts. In addition, the discussion 

and interpretation for the results not addressed in a manuscript will be provided in the 

next chapter. 

4.2 Overview of Study and Participant Demographics 

      Eighty-eight participants were enrolled in this study for further biomechanical testing 

at Follow-Up. Thirty-eight of the participants had suffered an ACL injury, undergone 

reconstructive surgery, and returned to physical activity during their enrollment in the 

JUMP ACL study. Of this group, 6 were identified as reporting a prior ACL injury at the 
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time of Baseline testing and 3 had suffered multiple ACL injuries since Baseline. 

Because of a low number of participants that suffered injury to the leg on which 

biomechanical data at Baseline was captured, 2 participants that indicated a prior ACL 

injury to Baseline testing were retained in the analyses for Research Question 1 and 2 as 

biomechanical data was recorded for their noninjured limb at Baseline, and they later 

suffered injury to that same limb. Fifty participants were enrolled as healthy matched 

controls, of which, 5 did not complete biomechanical testing at Baseline, 5 did not 

complete biomechanical testing at Follow-Up, and 1 reported an ACL injury prior to 

Baseline testing. 

      Because of the nature of each research question, participant inclusion and 

demographics were not the same across all analyses. Detailed information regarding 

participant inclusion criteria and demographics are provided in each manuscript. Overall 

there were a total of 70 participants (31 ACLR, 39 Controls) available to address 

Research Questions 1 and 2, and 72 (28 ACLR, 44 Controls) available to address 

Research Questions 3 and 4.   

4.3 Results 

4.3.1 Results Research Question 1 

      The purpose of this analysis was to determine the effect of ACL injury and 

subsequent ACLR on lower extremity biomechanics. Kinematics at the Preparatory 

Phase, Initial Ground Contact, and Landing Phase were compared within groups across 

time and between groups. Kinetic variables were compared at Initial Ground Contact and 

Landing Phase. Group demographics and descriptions are provided in Tables 4-6, and 

summary of descriptive statistics and statistical outcomes in Tables 7-17. Ensemble plots 
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for each dependent variable during the Landing Phase are presented for each group in 

Figures 3-44. 

      Preparatory Phase: Comparison of kinematics at Preparatory Phase are not included 

in any of the accompanying manuscripts, and will be presented in detail here. No 

significant interactions for time and group were observed for any kinematic variables 

during the Preparatory Phase: knee sagittal plane angle (F(2,66) = 0.933, p = 0.399), knee 

frontal plane angle (F(2,66) = 0.179, p = 0.837), knee transverse plane angle (F(2,66) = 

0.027, p = 0.973), hip sagittal plane angle (F(2,66) =1.989, p = 0.145), hip frontal plane 

angle (F(2,66) = 2.122, p = 0.128), and hip transverse plane angle (F(2,66) = 0.006, p = 

0.994). No significant group main effects were observed either at the Preparatory Phase: 

knee sagittal plane angle (F(2,66) = 0.284, p = 0.754), knee frontal plane angle (F(2,66) = 

0.300, p = 0.742), knee transverse plane angle (F(2,66) = 0.594, p = 0.555), hip sagittal 

plane angle (F(2,66) = 1.316, p = 0.275), hip frontal plane angle (F(2,66) = 1.405, p = 0.253), 

and hip transverse plane angle (F(2,66) = 0.145, p = 0.865). A significant time main effect 

was observed for hip frontal plane angle (F(1,66) = 4.521, p = 0.037) during the 

Preparatory Phase, indicating an increase in hip adduction over time regardless of group. 

No other significant time main effects were observed: knee sagittal plane angle (F(1,66) = 

0.930, p = 0.338), knee frontal plane angle (F(1,66) = 0.021, p = 0.884), knee transverse 

plane angle (F(1,66) = 0.341, p = 0.561), hip sagittal plane angle (F(1,66) = 0.051, p = 0.822), 

and hip transverse plane angle (F(1,66) = 0.360, p = 0.550). 

      A detailed description of statistical comparison of biomechanical variables at Initial 

Ground Contact and Landing Phase are presented in Manuscript one. A summary of the 

significant findings from these analyses will be presented here.  
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      Initial Ground Contact: A significant interaction for time and group was observed for 

knee frontal plane (F(2,66) = 3.957, p = 0.024) and hip frontal plane (F(2,66) = 3.773, p = 

0.028) angles at Initial Ground Contact. Following post hoc analysis, we observed no 

significant difference among groups at Baseline or Follow-Up for knee frontal plane 

angle. However, both the ACLR–Injured Limb and ACLR-Noninjured Limb groups had 

a significant increase in knee valgus angle at Initial Ground Contact compared to 

Baseline. A similar pattern of change was observed for the hip frontal plane angle, as 

there was no difference among groups at Baseline, but both the ACLR-Injured Limb and 

ACLR-Noninjured Limb groups significantly increased hip adduction at Initial Ground 

Contact from Baseline to Follow-Up. At Follow-Up, both ACLR groups displayed 

significantly greater hip adduction compared to the Control group. No significant 

interactions were observed for any other kinematic variable at Initial Ground Contact. No 

significant group main effects were observed either, though a significant time effect was 

present for transverse plane hip angle (F(1,66) = 4.731, p = 0.033), with an increase in hip 

external rotation across time regardless of group.  

      A significant interaction for time and group was observed for transverse plane knee 

moment (F(2,66) = 3.373, p = 0.040), sagittal plane hip moment (F(2,66) = 4.266, p =0.018), 

and transverse plane hip moment (F(2,66) = 3.226, p = 0.046) at Initial Ground Contact. 

Post hoc analyses indicated no difference among groups across time for transverse plane 

knee moment. In addition, groups were not different at Baseline for sagittal or transverse 

plane hip moment. For sagittal plane hip moment, we observed an increase in hip 

extension moment at Initial Ground Contact over time for the Control group. At Follow-

Up the ACLR-Injured Limb group demonstrated a hip flexion moment and the ACLR-
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Noninjured Limb demonstrated a hip extension moment that was significantly between 

the two groups. For the transverse plane hip moment interaction, both the ACLR-Injured 

Limb and Control groups had a significant decrease for hip internal rotation moment 

across time. The associated changes resulted in both being significantly less than the 

ACLR-Noninjured Limb group at Follow-Up. No other significant interactions were 

observed for kinetic measures at Initial Ground Contact. 

      A significant group main effect was observed for frontal plane hip moment (F(1,66) = 

3.178, p = 0.048) with the ACLR-Noninjured Limb group having significantly higher 

internal hip adduction moment than the Control group regardless of time. Time main 

effects for frontal plane knee moment (F(1,66) = 16.802, p < 0.001), frontal plane hip 

moment (F(1,66) = 11.684, p = 0.001), and vertical ground reaction force (F(1,66) = 6.401, p 

= 0.014) were observed, with each variable decreasing across time regardless of group. 

No other significant group or time main effects were observed. 

      Landing Phase: During the Landing Phase of the double leg jump landing we 

observed significant interactions for peak knee varus angle (F(2, 66) = 5.198, p = 0.008), 

peak knee valgus angle (F(2,66) = 3.768, p = 0.028), and peak knee internal rotation angle 

(F(2,66) = 4.204, p = 0.019). There was no difference among groups for any of these 

variables at Baseline. Both the ACLR-Injured Limb and ACLR-Noninjured Limb groups 

had a significant decrease in peak knee varus angle from Baseline to Follow-Up, with no 

difference among groups at Follow-Up. The ACLR-Noninjured Limb group also 

demonstrated a significant increase in peak knee valgus angle over time. A similar 

increase was observed for the ACLR-Injured Limb group as well, but it was not 

significant, and there was no difference among groups at Follow-Up. In addition, the 
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Control group demonstrated a significant increase in peak knee internal rotation angle. 

This change resulted in greater peak knee internal rotation for the Control group as 

compared to the ACLR-Noninjured Limb group at Follow-Up. No other significant 

interactions for peak kinematic variables during the Landing Phase were observed.  

      Time main effects indicated an increase in peak knee flexion (F(1,66) = 25.168, p < 

0.001), increase in peak hip flexion (F(1,66) = 25.326, p <0.001), decrease in peak hip 

internal rotation (F(1,66) = 5.263, p = 0.025), and increase in peak hip external rotation 

(F(1,66) = 3.986, p = 0.050) from Baseline to Follow-Up regardless of group. No group 

main effects were observed. 

      For peak kinetic variables, significant interactions for peak knee extension moment 

(F(2,66) = 4.509, p = 0.015), peak hip flexion moment (F(2,66) = 3.847, p = 0.026) and peak 

anterior tibial shear force (F(2,66) = 4.530, p = 0.014) were observed during the Landing 

Phase. These interaction effects were the result of changes for the ACLR-Injured Limb 

group only, as there was no difference among groups at Baseline for these variables, but 

the ACLR-Injured Limb group demonstrated a significant decrease in peak knee 

extension moment, peak hip flexion moment, and peak anterior tibial shear force. This 

change resulted in the ACLR-Injured Limb group demonstrating lower peak values for 

each variable as compared to the ACLR-Noninjured Limb group at Follow-Up. No other 

significant interactions were present for peak kinetic variables during the Landing Phase. 

      Group main effects included peak knee flexion moment (F(1,66) = 3.508, p = 0.036) 

and peak knee valgus moment (F(1,66) = 3.501, p = 0.036), but post hoc analysis did not 

indicate significant group differences. Time main effects for peak knee valgus moment 

(F(1,66) = 25.659, p < 0.001), peak hip abduction moment (F(1,66) = 5.723, p = 0.020), and 
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peak hip external rotation moment (F(1,66) = 6.804, p = 0.011) were observed, with an 

associated decrease in each variable from Baseline to Follow-Up regardless of group. 

4.3.2 Results Research Question 2 

      The purpose of this analysis was to determine the effect of ACL injury and 

subsequent ACLR on lower extremity joint coordination. Joint coordination, quantified as 

the mean coupling angle, was calculated to characterize relative motion between the hip 

and knee in the sagittal plane, hip and knee in the frontal plane, hip and knee in the 

transverse plane, hip in the frontal plane and knee in the transverse plane, and hip in the 

transverse plane and knee in the frontal plane. Measures were analyzed during the 

Landing Phase, and compared within groups across time and between groups. Group 

demographics and descriptions are provided in Tables 18-20, and summary of descriptive 

statistics and statistical outcomes in Tables 21 & 22. 

      Our main finding for this analysis was a significant interaction for Hip Transverse 

Plane – Knee Transverse Plane (F(2,65) = 4.398, p = 0.016) coupling angle. We observed 

no differences among the groups at Baseline. However, only the ACLR-Injured Limb 

group had a significant decrease in Hip Transverse Plane – Knee Transverse Plane 

coordination over time, indicating more equal knee rotation relative to hip rotation during 

the Landing Phase. At Follow-Up, the mean coupling angle for the ACLR-Injured Limb 

group was significantly less than the Control. We observed no other significant 

interactions for this analysis, though a time main effect for Hip Frontal Plane – Knee 

Transverse Plane (F(1,65) = 4.789, p = 0.032) was observed. The relative change over time 

indicated a shift towards more hip frontal plane motion relative to knee transverse plane 
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motion at Follow-Up as compared to Baseline. No other time main effects were observed, 

and no group main effects were observed. 

 

4.3.3 Results Research Question 3 

      The purpose of this analysis was to quantify and compare between limb asymmetry in 

biomechanics during a double leg jump landing. Asymmetry was quantified as the 

absolute value of the difference between values for the right and left leg of each variable 

of interest. Measures were analyzed during Preparatory Phase, Initial Ground Contact, 

and Landing Phase. Group demographics and descriptions are provided in Tables 23 & 

24, and summary of descriptive statistics and statistical outcomes in Tables 25-27. 

      Preparatory Phase: We observed no difference between groups in the amount of 

bilateral asymmetry for knee sagittal plane angle (ZKS = 0.815, p = 0.519), knee frontal 

plane angle (ZKS = 0.630, p = 0.822), or knee transverse plane angle (ZKS = 0.494, p 

=0.968). No difference in hip sagittal plane angle (ZKS = 0.593, p = 0.873), hip frontal 

plane angle (ZKS = 0.704, p = 0.704), or hip transverse plane angle (ZKS = 0.655, p = 

0.785) was observed either.  

      Initial Ground Contact: We observed no difference in asymmetry between groups for 

any kinematic or kinetic variables at Initial Ground Contact. 

      Landing Phase: No between group differences for asymmetry in peak hip and knee 

kinematics were observed during the Landing Phase. We did observe greater asymmetry 

in peak knee flexion moment for the ACLR group as compared to the Control group 

during the Landing Phase (ZKS = 1.42, p = 0.035), as well as greater asymmetry in peak 

vertical ground reaction force (ZKS = 1.45, p = 0.031). Follow up analysis indicated that 
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increased asymmetries for the ACLR group were the result of greater knee flexion 

moment for the injured limb (0.058 ± 0.032 Nm/BWxBH) as compared to the noninjured 

limb (0.053 ± 0.031 Nm/BWxBH), but greater peak vertical ground reaction force for the 

noninjured limb (2.97 ± 0.069 N/BW) as compared to the injured limb (2.55 ± 0.80 

N/BW). No other differences in asymmetry of the peak kinetic variables during the 

Landing Phase were observed. 

4.3.4 Results Research Question 4 

      The purpose of this analysis was to quantify and compare between limb asymmetry in 

joint coordination and variability during a double leg jump landing. Demographics and 

anthropometrics for the two groups are provided in Tables 28-29. We were unable to 

collect a date of surgery for three members of the ACLR group, and graft information for 

9. The ACLR group was on average 1.88 ± 0.66 years post-surgery. Eight participants 

had a bone-patella tendon-bone autograft, 10 had a hamstrings autograft, and one an 

Achilles tendon allograft. Asymmetry in joint coordination was quantified as the absolute 

difference in mean coupling angle between the right and left limb for each variable of 

interest. This method was also used to quantify asymmetry for the between trials standard 

deviation used to represent joint coordination variability. All measures were analyzed 

during the Landing Phase of the double leg jump landing. Descriptive statistics for each 

variable of interest are presented in Tables 30 & 31. 

        We did not observe any between group differences in asymmetry of joint 

coordination between the hip and knee: Hip Sagittal Plane – Knee Sagittal Plane (ZKS 

= 0.778, p = 0.580), Hip Frontal Plane – Knee Frontal Plane (ZKS = 0.482, p = 0.974), 

Hip Transverse Plane – Knee Transverse Plane (ZKS = 0.497, p = 0.966), Hip Frontal 
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Plane – Knee Transverse Plane (ZKS = 0.435, p = 0.991), and Hip Transverse Plane – 

Knee Frontal Plane (ZKS = 0.728, p = 0.664). No between group difference was observed 

for asymmetry in joint coordination variability either: Hip Sagittal Plane – Knee Sagittal 

Plane (ZKS = 0.632, p = 0.819), Hip Frontal Plane – Knee Frontal Plane (ZKS = 0.566, p = 

0.905), Hip Transverse Plane – Knee Transverse Plane (ZKS = 0.705, p = 0.703), Hip 

Frontal Plane – Knee Transverse Plane (ZKS = 0.882, p = 0.417), and Hip Transverse 

Plane – Knee Frontal Plane (ZKS = 0.724, p = 0.670). 



CHAPTER FIVE 

DISCUSSION OF RESULTS 

 

5.1 Introduction 

      Results not discussed in the manuscripts will be discussed in this chapter. This 

includes analysis of kinematics during the Preparatory Phase for Research Question 1, 

kinematic asymmetry during the Preparatory Phase for Research Question 3, and analysis 

of bilateral asymmetry in joint coordination and variability for Research Question 4. 

5.2 Preparatory Phase Kinematics  

      Previous research has indicated that lower extremity biomechanics at Initial Ground 

Contact are predictive of an initial ACL injury for healthy individuals22 and secondary 

ACL injury for those with ACLR.91 There is also preliminary evidence that peak ACL 

strain may occur prior to contact with the ground when landing from a jump.92 For these 

reasons, how an individual prepares to land from a jump may influence their risk for ACL 

injury. In addition, between limb differences in preparation for landing may be important, 

as asymmetry in sagittal plane knee loading at initial contact is predictive of a second 

ACL injury for those with ACLR. 91 We examined the effect of ACL injury and ACLR 

on kinematics during the Preparatory Phase, and analyzed between asymmetry in 

kinematics during the Preparatory Phase.
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      Our observations indicate that ACL injury and subsequent ACLR have no effect on 

kinematics prior to landing. The only significant change we observed was an increase in 

hip adduction over time for all groups. It is likely that this change was the result of a 

factor other than ACL injury, such as engaging in physical activity at the service 

academies. In addition, we observed no significant difference in asymmetry of bilateral 

kinematics prior to landing for those with ACLR as compared to healthy control 

participants. Therefore, it appears that ACL injury did not affect how our participants 

prepared to land during the double leg jump landing, and did not induce asymmetry in 

landing preparation. 

      Few studies have previously examined kinematics prior to Initial Ground Contact93,94, 

and we are unaware of any studies that have been conducted using individuals with 

ACLR. Taylor et al94 examined the preparation phase of a jump landing in their study to 

characterize ACL length and strain during a dynamic task. This analysis observed that 

ACL strain may be greatest at 55 miliseconds prior to Initial Ground Contact.94 Their 

analysis was limited to this purpose only though and provide little help in reference to 

interpreting our results. Chappell et al93 examined gender differences in preparatory 

lower extremity kinematics and electromyography during a stop-jump task. They 

observed females to have decreased knee and hip flexion as compared to males when 

preparing for the landing phase of the stop-jump.93 Other differences included, decreased 

hip abduction, decreased hip external rotation, and increased knee internal rotation for 

females.93 These kinematic differences were accompanied by a reported increased 

quadriceps electromyography amplitude for the female participants as well.93These 
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findings are not directly applicable to our findings, but a gender comparison was 

performed as females are thought to represent an at risk population for ACL injury, much 

like those with ACLR. 

      The only study to examine any variables related to preparation for landing in those 

with ACLR was performed by Vairo et al28 in which they examined differences in 

preparatory muscle activation for a sample of participants with ipsilateral semitendinosus 

and gracilis autografts. They examined the preparatory muscle activation at a time point 

of 128 miliseconds prior to Initial Ground Contact, very similar to our definition of the 

Preparatory Phase (100 miliseconds prior to Initial Ground Contact). In this analysis, they 

observed an increase in quadriceps and hamstrings co-contraction as compared to healthy 

matched controls prior to landing.28 They also observed between limb differences for 

those with ACLR, in which they observed decreased gastrocnemius activation of the 

injured limb as compare to the noninjured limb.28 The authors, unfortunately, did not 

examine kinematics prior to landing, as such information would have benefitted the 

interpretation of our current results. They did examine sagittal plane angles of the hip, 

knee, and ankle at the point of Initial Ground Contact and observed both between limb 

and between group differences for hip flexion at this time point.28 They noted increased 

hip flexion for the injured limb as compared to the noninjured limb, and as compared to 

the healthy matched control.28 This may not mean that preparatory kinematics were 

altered though, as we observed differences in frontal plane knee and hip kinematics at 

Initial Ground Contact with no difference in these measures at Preparatory Phase. Also, 

we observed no greater between limb asymmetry at both Preparatory Phase and Initial 

Ground Contact.  
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      One limitation of the analysis of kinematics at Preparatory Phase for this study was 

the use of an electromagnetic tracking system to collect biomechanical data. Chappell et 

al93 employed a video based system to collect kinematic data during their analysis of the 

Preparatory Phase for a stop-jump task. These systems generally have a larger capture 

volume than the system we utilized. As such, our ability to assess kinematics at 100 

miliseconds prior to Initial Ground Contact may have been hampered as some 

participants may not have been fully in the capture volume of the transmitter for this 

system because of subject variability in height and resultant distance they were required 

to jump from for the double leg jump landing. This analysis, however, was not identified 

as a primary analysis for this study, and we felt that it was more important to maintain 

consistency between the Baseline and Follow-Up testing sessions to allow for proper 

comparison of biomechanics during landing than it was to capture better data for this 

analysis. Future research may address this limitation by altering the double leg jump 

landing task or assessing a time point closer to Initial Ground Contact. 

5.3 Research Question 4  

      Using a vector coding technique to quantify joint coordination as the mean coupling 

angle between the two joints of interest, we observed no group differences for asymmetry 

during the Landing Phase of the double leg jump landing. We also observed no 

differences between groups for bilateral asymmetry in movement variability. These 

findings suggest that for our sample of participants with ACLR, the relative difference 

between movement coordination of the knee and hip in the injured and noninjured limb, 

is no different than the between limb difference for our sample of healthy matched 

control participants. These results were unexpected, as it is generally believed that 
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orthopedic injury can induce alterations in movement coordination and variability, and 

our findings are in contrast with previous observations of between group and between 

limb differences for those with ACLR.32,33,35,95 

      For movement coordination, Kurz et al32 observed altered coordination about the knee 

and ankle during gait for those with ACLR. The authors noted that the relative difference 

in movement coordination at the knee were not present during running, and only 

coordination at the ankle was significantly different than a group of healthy controls.32 

The authors do acknowledge that the lack of difference may have been the result of a 

relatively low sample size relative to the amount of variability present for the 

coordination measure during running.32 It may though provide some evidence that 

differences in coordination may be somewhat dependent on the nature of the task. Van 

Uden et al35 observed altered coordination of the knee and ankle in the sagittal plane 

during the more physically demanding task of single leg hopping.  Their observation of 

altered coordination was accompanied by increased variability for the injured limb of 

those with ACLR as compared to healthy controls as well. Like our findings they 

observed no between limb difference in coordination for either the ACLR or healthy 

control group, but did note increased variability of the injured limb as compared to the 

noninjured limb for those with ACLR.35  

      Increased variability of for knee flexion-extension of the reconstructed limb of those 

with ACLR has also been previously reported by Moraiti et al33 using measures of 

approximate entropy. They also, found no differences between autograft type, bone-

patella tendon-bone or semitendinosus-gracilis.33 In a follow-up analysis to describe 

variability of the noninjured limb, they observed even greater variability for the 
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noninjured limb as compared to the injured in their sample of individuals with ACLR. It 

should be noted that the task the participants were required to complete was walking on a 

motorized treadmill, and it can be assumed required much less physical effort of the 

participant than the double leg jump landing we used. 

      It should also be noted that the authors used alternative methods to measure joint 

coordination than the ones we employed for this analysis. The above studies were 

conducted using measures of continuous relative phase32,35 to quantify coordination, and 

other nonlinear measure to quantify variability33,95. Because these methods require a 

continuous series of data, we were unable to use any of these methods as each jump 

landing was separated into a separate trial and therefore did not represent continuous 

motion on the participants’ part. The method we employed to quantify coordination and 

variability have been previously used though. Pollard et al82 used this method to compare 

joint coordination variability between healthy male and female subjects during an 

unanticipated cutting maneuver to provide a better understanding for the higher incidence 

of noncontact ACL injuries observed for female athletes.82 For this study they noted a 

decrease in variability of coordination between the hip and knee in all planes of motion 

for females.82 Relative differences in joint coordination variability using this technique 

have been observed in a patient population as well, as Heiderscheit et al81 observed 

differences in transverse plane coordination variability of the thigh and shank for 

participants with patella-femoral pain syndrome. Similar to our findings though, the 

authors found no between limb differences in variability for either group, though they did 

not compare asymmetry.  
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      Because of the limitations associated with how we chose to conduct this analysis we 

cannot directly compare the values we observed for each group to their findings, as we 

only compared the absolute difference between limbs, and did not examine raw values. In 

a previous analysis we did observe a significant alteration in joint coordination of the hip 

and knee in the transverse plane for the injured leg following ACL injury. This indicates 

that joint coordination is altered following ACL injury, and in combination with the 

findings of this analysis, suggest that this may induce alterations in the noninjured limb to 

minimize between limb differences and maintain symmetry. This notion was proposed by 

Moraiti et al95when they observed increased variability of the noninjured limb of those 

with ACLR. Therefore, alterations in coordination and variability induced by ACL injury 

may be transferred to the noninjured limb to minimize asymmetry. Assuming that 

movement coordination and variability affect risk for reinjury in those with ACLR, this 

may help to explain why the increased incidence of reinjury is not isolated to the injured 

limb.96 The limitations in our analysis do not allow us to detect or comment on any 

between group differences for these measures, and future studies should give 

consideration to this drawback. 
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Table 1. List of kinematic dependent variables 

 
PREPARATORY PHASE INITIAL GROUND 

CONTACT 
LANDING PHASE 

              

Knee Sagittal Plane Angle Knee Sagittal Plane Angle Knee Flexion 
Knee Frontal Plane Angle Knee Frontal Plane Angle Knee Extension 
Knee Transverse Plane Angle Knee Transverse Plane Angle Knee Varus 
Hip Sagittal Plane Angle Hip Sagittal Plane Angle Knee Valgus 
Hip Frontal Plane Angle Hip Frontal Plane Angle Knee Internal Rotation 
Hip Transverse Plane Angle Hip Transverse Plane Angle Knee External Rotation 

    Hip Extension 
    Hip Flexion 
    Hip Adduction 
    Hip Abduction 
    Hip Internal Rotation 
    Hip External Rotation 
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Table 2. List of kinetic dependent variables 
 

INITIAL GROUND CONTACT LANDING PHASE 

            
Knee Sagittal Plane Moment Knee Flexion Moment 
Knee Frontal Plane Moment Knee Extension Moment 
Knee Transverse Plane Moment Knee Varus Moment 
Hip Sagittal Plane Moment Knee Valgus Moment 
Hip Frontal Plane Moment Knee IR Moment 
Hip Transverse Plane Moment Knee ER Moment 
Anterior Tibial Shear Force Hip Extension Moment 
Vertical Ground Reaction Force Hip Flexion Moment 

  Hip Adduction Moment 
  Hip Abduction Moment 
  Hip IR Moment 
  Hip ER Moment 
	
  	
   Max Anterior Tibial Shear Force 
	
  	
   Max Vertical Ground Reaction Force 
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Table 3. List of joint coordination and variability dependent variables 
 

LANDING PHASE 

        
Knee Sagittal Plane - Hip Sagittal Plane 
Knee Frontal Plane - Hip Frontal Plane 
Knee Transverse Plane - Hip Transverse Plane 
Knee Frontal Plane - Hip Transverse Plane 
Knee Transverse Plane - Hip Frontal Plane 
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Table 4. Participant demographics and anthropometrics for Research Question #1. Units 
of measure are Age (years), Height (cm), and Mass (kg). Values represent means ± 
standard deviation. 
 

 
 Baseline Follow-Up 

n Age Height Mass Age Height Mass 

ACLR-
INJ 

12 
18.64 ± 0.50 174.10 ± 7.31 72.64 ± 9.48 21.42 ± 0.79 174.29 ± 7.56 76.25 ± 9.95 

(8 m, 4 f) 

ACLR-
NINJ 

19 
18.52 ± 0.58 170.06 ± 9.26 68.99 ± 10.93 21.47 ± 0.77 170.05 ± 9.13 72.87 ± 12.78 

(9 m, 10 f) 

Control 
39 

18.48 ± 0.46 172.56 ± 9.10 70.17 ± 12.96 20.98 ± 0.73 172.73 ± 8.99 73.11 ± 13.16 (20 m, 19 
f) 
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Table 5. Group chronological descriptive statistics for Research Question #1. (Mean ± 

SD, Days) 

 
Baseline to Follow-

Up 
Baseline to Injury Injury to Surgery Surgery to Follow-Up 

ACLR-Injured Limb 1,074.42 ± 197.28 367.73 ± 156.06 33.70 ± 20.29 666.90 ± 209.24 

ACLR-Noninjured Limb 1,247.68 ± 179.04 533.33 ± 267.97 40.39 ± 24.92 691.06 ± 243.01 

Control 1,077.59 ± 180.34 - - - 
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Table 6. Descriptive statistics for Research Question #1. Anterior knee laxity assessed using 
KT-1000, Marx Activity score, and KOOS for each group. Values represent mean ± standard 
deviation, and units of measure other than anterior laxity (mm) are scale dependent. 

 
   KOOS 

 Bilateral 
Difference 
Anterior 

Laxity (mm) 

Marx Activity 
Total Score Pain Symptom ADL Sport/Rec QOL 

ACLR-INJ   1.9 ± 1.1 13.92 ± 2.75 84.75 ± 9.97 71.50 ± 13.16 93.00 ± 7.20 80.42 ± 16.16 65.63 ± 20.90 
ALCR-NINJ 2.5 ± 1.8 11.21 ± 4.57 86.95 ± 11.62 73.42 ± 15.85 96.74 ± 5.05 78.42 ± 17.72 71.71 ± 22.57 
Control  1.1 ± 0.8 11.05 ± 3.03 96.26 ± 5.06 92.54 ± 8.71 98.82 ± 2.09 93.97 ± 10.27 90.87 ± 14.04 

*Laxity measures were not obtained for 3 members of the Control group, 1 member of the 
ACLR-Noninjured Limb group 
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Table 7. Descriptive statistics for knee and hip kinematics (°) at Initial Ground Contact for 
Research Question #1. Baseline (PRE) and Follow-Up (POST)  
 

 
  Control ACLR-Noninjured Limb ACLR-Injured Limb 

    Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Knee 
Sag 

PRE 19.81 ± 5.69 (17.99, 21.63) 17.90 ± 5.69 (15.29, 20.51) 18.82 ± 5.72 (15.52, 22.12) 

POST 18.02 ± 7.21 (15.72, 20.33) 16.69 ± 7.22 (13.38, 19.99) 16.28 ± 7.26 (12.10, 20.46) 

Knee 
Frt 

PRE 0.96 ± 6.50 (-1.12, 3.04) 1.33 ± 6.51 (-1.65, 4.31) 2.61 ± 6.54 (-1.16, 6.38) 

POST -0.49 ± 5.75 (-2.33, 1.35) -4.84 ± 5.76 (-7.48, -2.20) -4.22 ± 5.78 (-7.55, -0.89) 

Knee 
Trv 

PRE -2.56 ± 7.88 (-5.08, -0.04) -3.43 ± 7.89 (-7.05, 0.18) -0.80 ± 7.93 (-5.37, 3.77) 

POST -2.74 ± 7.30 (-5.07, -0.41) -4.75 ± 7.31 (-8.10, -1.40) -2.23 ± 7.35 (-6.46, 2.00) 

Hip 
Sag 

PRE -33.16 ± 9.01 (-36.04, -30.28) -26.33 ± 9.02 (-30.47, -22.20) -31.42 ± 9.07 (-36.64, -26.19) 

POST -29.95 ± 10.49 (-33.30, -26.60) -29.67 ± 10.51 (-34.48, -24.85) -30.07 ± 
10.56 (-36.16, -23.99) 

Hip 
Frt 

PRE -9.95 ± 6.60 (-12.06, -7.84) -9.00 ± 6.61 (-12.03, -5.98) -11.12 ± 6.64 (-14.95, -7.30) 

POST -6.81 ± 9.59 (-9.87, -3.74) 0.41 ± 9.61 (-3.99, 4.81) 0.02 ± 9.65 (-5.54, 5.59) 

Hip 
Trv 

PRE -1.85 ± 6.28 (-3.86, 0.16) -1.99 ± 6.29 (-4.87, 0.89) -2.12 ± 6.32 (-5.77, 1.52) 

POST -3.17 ± 6.40 (-5.22, -1.13) -4.13 ± 6.41 (-7.06, -1.19) -4.18 ± 6.44 (-7.89, -0.47) 

*Values for descriptive statistics are based on Gender entered as a covariate in the 
statistical model at a value of 0.53 
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Table 8.  Descriptive statistics for knee and hip moments (Nm/BHxBW) and kinetics 
(N/BW) at Initial Ground Contact for Research Question #1. Baseline (PRE) and Follow-Up 
(POST)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  CONTROL ACLR-Noninjured Limb ACLR-Injured Limb 

    Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Knee 
Sag  

 

PRE 0.00 ± 0.02 (-0.01, 0.01) 0.01 ± 0.02 (0.00, 0.03) 0.01 ± 0.02 (-0.00, 0.02) 

POST 0.03 ± 0.03 (0.02, 0.04) 0.04 ± 0.03 (0.02, 0.05) 0.01 ± 0.03 (-0.01, 0.03) 

Knee 
Frt  

 

PRE 0.02 ± 0.02 (0.01, 0.03) 0.03 ± 0.02 (0.02, 0.03) 0.02 ± 0.02 (0.01, 0.03) 

POST 0.01 ± 0.02 (0.00, 0.01) 0.01 ± 0.02 (0.01, 0.02) 0.00 ± 0.02 (-0.01, 0.01) 

Knee 
Trv  

 

PRE -0.01 ± 0.01 (-0.01, -0.00) -0.01 ± 0.01 (-0.01, -0.00) -0.01 ± 0.01 (-0.01, -0.00) 

POST -0.00 ± 0.01 (-0.01, 0.00) -0.01 ± 0.01 (-0.01, -0.00) -0.00 ± 0.01 (-0.01, 0.00) 

Hip 
Sag  

 

PRE -0.02 ± 0.07 (-0.04, 0.00) 0.03 ± 0.07 (0.00, 0.06) 0.03 ± 0.07 (-0.01, 0.07) 

POST 0.04 ± 0.08 (0.02, 0.07) 0.07 ± 0.08 (0.04, 0.11) -0.00 ± 0.08 (-0.05, 0.05) 

Hip 
Frt  

 

PRE 0.03 ± 0.05 (0.02, 0.05) 0.06 ± 0.05 (0.03, 0.080) 0.05 ± 0.05 (0.02, 0.08) 

POST 0.01 ± 0.05 (-0.00, 0.03) 0.04 ± 0.05 (0.02, 0.06) 0.02 ± 0.05 (-0.01, 0.04) 

Hip 
Trv  

 

PRE 0.02 ± 0.02 (0.01, 0.03) 0.02 ± 0.02 (0.01, 0.03) 0.02 ± 0.02 (0.01, 0.03) 

POST 0.00 ± 0.02 (-0.00, 0.01) 0.02 ± 0.02 (0.02, 0.03) 0.01 ± 0.02 (-0.00, 0.02) 

ATSF 
 

PRE -0.03 ± 0.17 (-0.08, 0.02) -0.12 ± 0.17 (-0.20, -0.05) -0.10 ± 0.17 (-0.20, -0.01) 

POST -0.16 ± 0.22 (-0.23, -0.09) -0.24 ± 0.22 (-0.34, -0.14) -0.06 ± 0.22 (-0.18, 0.07) 

VGRF 
 

PRE 0.12 ± 0.05 (0.10, 0.13) 0.11 ± 0.05 (0.09, 0.13) 0.12 ± 0.05 (0.09, 0.150) 

POST 0.09 ± 0.03 (0.08, 0.10) 0.08 ± 0.03 (0.06, 0.09) 0.09 ± 0.03 (0.08, 0.11) 

*Values for descriptive statistics are based on Gender entered as a covariate in the 
statistical model at a value of 0.53 
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Table 9. Descriptive statistics for peak knee and hip kinematics (°) at Landing Phase for  
Research Question #1. Baseline (PRE) and Follow-Up (POST) 
 

 
  CONTROL ACLR-Noninjured Limb ACLR-Injured Limb 

    Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Knee 
FLX 

PRE 84.26 ± 13.49 (79.95, 88.58) 78.51 ± 13.51 (72.32, 84.69) 79.65 ± 13.58 (71.82, 87.47) 

POST 92.58 ± 16.23 (87.39, 97.77) 90.86 ± 16.25 (83.41, 98.30) 85.55 ± 16.33 (76.14, 94.96) 

Knee 
EXT 

PRE 19.82 ± 5.66 (18.01, 21.63) 16.84 ± 5.67 (14.25, 19.43) 18.64 ± 5.69 (15.36, 21.92) 

POST 18.16 ± 7.20 (15.85, 20.46) 16.69 ± 7.21 (13.39, 20.00) 16.24 ± 7.25 (12.06, 20.42) 

Knee 
VRS 

PRE 6.69 ± 7.43 (4.32, 9.07) 9.27 ± 7.44 (5.86, 12.67) 7.48 ± 7.48 (3.17, 11.79) 

POST 6.21 ± 7.10 (3.94, 8.48) 0.55 ± 7.11 (-2.71, 3.81) 1.28 ± 7.14 (-2.84, 5.40) 

Knee 
VLG 

PRE -7.90 ± 8.18 (-10.52, -5.28) -5.26 ± 8.19 (-9.01, -1.51) -6.57 ± 8.23 (-11.32, -1.83) 

POST -6.97 ± 7.73 (-9.44, -4.50) -11.61 ± 7.74 (-15.16, -8.07) -11.70 ± 7.78 (-16.18, -7.22) 

Knee 
IR 

PRE 9.18 ± 8.66 (6.41, 11.95) 9.29 ± 8.67 (5.32, 13.26) 12.33 ± 8.72 (7.31, 17.35) 

POST 17.10 ± 8.23 (14.47, 19.73) 9.30 ± 8.24 (5.53, 13.07) 13.24 ± 8.28 (8.47, 18.01) 

Knee 
ER 

PRE -7.31 ± 8.84 (-10.14, -4.48) -9.28 ± 8.85 (-13.34, -5.23) -4.95 ± 8.90 (-10.08, 0.17) 

POST -4.21 ± 6.45 (-6.27, -2.15) -8.24 ± 6.45 (-11.19, -5.28) -4.61 ± 6.49 (-8.35, -0.87) 

Hip 
EXT 

PRE -33.12 ± 9.02 (-36.00, -30.23) -26.09 ± 9.03 (-30.22, -21.95) -31.10 ± 9.07 (-36.32, -25.87) 

POST -29.41 ± 10.42 (-32.74, -26.08) -29.61 ± 10.43 (-34.39, -24.83) -30.00 ± 10.48 (-36.04, -23.96) 

Hip 
FLX 

PRE -72.63 ± 18.71 (-78.61, -66.64) -63.46 ± 18.74 (-72.04, -54.88) -67.15 ± 18.83 (-78.00, -56.30) 

POST -79.14 ± 21.23 (-85.93, -72.36) -76.86 ± 21.26 (-86.60, -67.12) -73.80 ± 21.37 (-86.12, -61.48) 

Hip 
ADD 

PRE 1.49 ± 8.58 (-1.26, 4.23) 0.88 ± 8.59 (-3.06, 4.81) 0.49 ± 8.63 (-4.49, 5.47) 

POST -1.72 ± 8.14 (-4.32, 0.89) 4.18 ± 8.15 (0.44, 7.91) 4.24 ± 8.19 (-0.49, 8.96) 

Hip 
ABD 

PRE -13.11 ± 8.18 (-15.72, -10.49) -12.06 ± 8.19 (-15.81, -8.30) -14.10 ± 8.23 (-18.85, -9.36) 

POST -15.32 ± 8.74 (-18.11, -12.52) -9.96 ± 8.76 (-13.97, -5.95) -8.90 ± 8.80 (-13.97, -3.83) 

Hip IR PRE 6.89 ± 6.34 (4.87, 8.92) 8.86 ± 6.35 (5.95, 11.77) 6.31 ± 6.38 (2.64, 9.99) 

POST 7.19 ± 9.14 (4.27, 10.12) 2.93 ± 9.15 (-1.27, 7.12) 3.89 ± 9.20 (-1.41, 9.19) 

Hip ER 
  

PRE -6.01 ± 6.37 (-8.05, -3.98) -5.05 ± 6.38 (-7.97, -2.12) -6.84 ± 6.41 (-10.53, -3.14) 

POST -6.50 ± 7.19 (-8.80, -4.20) -10.69 ± 7.20 (-13.99, -7.40) -7.13 ± 7.24 (-11.30, -2.96) 

*Values for descriptive statistics are based on Gender entered as a covariate in the 
statistical model at a value of 0.53 
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Table 10. Descriptive statistics for knee moments (Nm/BHxBW) and kinetics (N/BW) at 
Landing Phase for Research Question #1. Baseline (PRE) and Follow-Up (POST)  
 

 
  CONTROL ACLR-Noninjured Limb ACLR-Injured Limb 

  Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Knee 
EXT 

 

PRE -0.206 ± 0.055 (-0.224, -0.189) -0.219 ± 0.055 (-0.245, -0.194 -0.234 ± 0.056 (-0.266, -0.202) 

POST -0.204 ± 0.043 (-0.217, -0.190) -0.214 ± 0.043 (-0.234, -0.194) -0.169 ± 0.044 (-0.194, -0.144) 

Knee 
FLX 

PRE 0.021 ± 0.043 (0.008, 0.035) 0.057 ± 0.043 (0.037, 0.077) 0.038 ± 0.044 (0.013, 0.063) 

POST 0.046 ± 0.034 (0.035, 0.057) 0.053 ± 0.034 (0.037, 0.069) 0.050 ± 0.034 (0.030, 0.070) 

Knee 
VLG 

 

PRE -0.064 ± 0.037 (-0.076, -0.052) -0.087 ± 0.037 (-0.104, -0.070) -0.074 ± 0.038 (-0.095, -0.052) 

POST -0.045 ± 0.027 (-0.053, -0.036) -0.055 ± 0.027 (-0.067, -0.042) -0.044 ± 0.027 (-0.060, -0.029) 

Knee 
VRS 

 

PRE 0.061 ± 0.026 (0.053, 0.069) 0.057 ± 0.026 (0.045, 0.069) 0.064 ± 0.026 (0.049, 0.079) 

POST 0.063 ± 0.027 (0.055, 0.072) 0.067 ± 0.027 (0.054, 0.079) 0.055 ± 0.027 (0.039, 0.070) 

Knee ER 
 

PRE -0.046 ± 0.023 (-0.053, -0.038) -0.040 ± 0.023 (-0.050, -0.029) -0.044 ± 0.024 (-0.058, -0.030) 

POST -0.056 ± 0.019 (-0.063, -0.050) -0.049 ± 0.019 (-0.058, -0.040) -0.037 ± 0.020 (-0.049, -0.026) 

Knee IR 
 

PRE 0.043 ± 0.022 (0.036, 0.050) 0.045 ± 0.022 (0.035, 0.055) 0.049 ± 0.022 (0.037, 0.062) 

POST 0.031 ± 0.021 (0.024, 0.038) 0.044 ± 0.021 (0.034, 0.053) 0.037 ± 0.021 (0.025, 0.049) 

ATSF 
 

PRE 1.070 ± 0.319 (0.968, 1.172) 1.192 ± 0.319 (1.046, 1.339) 1.247 ± 0.321 (1.062, 1.432) 

POST 1.134 ± 0.244 (1.056, 1.212) 1.185 ± 0.245 (1.073, 1.297) 0.923 ± 0.246 (0.781, 1.065) 

VGRF 
 

PRE 3.094 ± 1.016 (2.769, 3.418) 3.254 ± 1.017 (2.788, 3.720) 3.188 ± 1.022 (2.599, 3.777) 

POST 2.726 ± 0.761 (2.482, 2.969) 3.084 ± 0.762 (2.735, 3.433) 3.114 ± 0.765 (2.673, 3.555) 

 
*Values for descriptive statistics are based on Gender entered as a covariate in the statistical 
model at a value of 0.53 
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Table 11. Descriptive statistics for hip moments (Nm/BHxBW) at Landing Phase for 
Research Question #1. Baseline (PRE) and Follow-Up (POST)  
 

 
  CONTROL ACLR-Noninjured Limb ACLR-Injured Limb 

  Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Hip FLX 
 

PRE -0.214 ± 0.103 (-0.247, -0.181) -0.254 ± 0.103 (-0.301, -0.206) -0.256 ± 0.104 (-0.316, -0.196) 

POST -0.205 ± 0.067 (-0.227, -0.184) -0.216 ± 0.067 (-0.247, -0.185) -0.138 ± 0.068 (-0.177, -0.099) 

Hip EXT 
 

PRE 0.251 ± 0.127 (0.210, 0.292) 0.255 ± 0.128 (0.197, 0.314) 0.229 ± 0.128 (0.155, 0.303) 

POST 0.202 ± 0.091 (0.172, 0.231) 0.193 ± 0.091 (0.151, 0.235) 0.240 ± 0.092 (0.187, 0.293) 

Hip ABD 
 

PRE -0.131 ± 0.065 (-0.152, -0.111) -0.153 ± 0.065 (-0.183, -0.123) -0.171 ± 0.065 (-0.209, -0.134) 

POST -0.108 ± 0.068 (-0.130, -0.086) -0.141 ± 0.068 (-0.173, -0.110) -0.102 ± 0.068 (-0.142, -0.063) 

Hip ADD 
 

PRE 0.137 ± 0.067 (0.115, 0.158) 0.149 ± 0.068 (0.118, 0.180) 0.145 ± 0.068 (0.106, 0.184) 

POST 0.140 ± 0.054 (0.123, 0.157) 0.124 ± 0.054 (0.099, 0.149) 0.091 ± 0.054 (0.060, 0.122) 

Hip ER 
 

PRE -0.085 ± 0.052 (-0.101, -0.068) -0.095 ± 0.052 (-0.119, -0.071) -0.099 ± 0.053 (-0.129, -0.069) 

POST -0.052 ± 0.033 (-0.063, -0.042) -0.078 ± 0.033 (-0.093, -0.063) -0.055 ± 0.033 (-0.074, -0.036) 

Hip IR 
 

PRE 0.076 ± 0.029 (0.067, 0.086) 0.068 ± 0.029 (0.054, 0.081) 0.069 ± 0.029 (0.052, 0.086) 

POST 0.060 ± 0.031 (0.050, 0.069) 0.068 ± 0.031 (0.054, 0.082) 0.048 ± 0.031 (0.030, 0.065) 

 
*Values for descriptive statistics are based on Gender entered as a covariate in the statistical 
model at a value of 0.53 
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Table 12. Observed power and effect size (ηp
2) for analyses of knee and hip kinematics 

an Initial Ground Contact for Research Question #1. 
 

Variable Observed Power Effect Size (ηp
2) 

Knee Sagittal Plane Angle   
Time 0.051 0.000 
Group 0.173 0.022 
Time x Group 0.065 0.003 

Knee Frontal Plane Angle    
Time 0.959 0.176 
Group 0.233 0.032 
Time x Group 0.691 0.107 

Knee Transverse Plane Angle   
Time 0.062 0.002 
Group 0.168 0.022 
Time x Group 0.070 0.004 

Hip Sagittal Plane Angle   
Time 0.220 0.021 
Group 0.274 0.038 
Time x Group 0.403 0.058 

Hip Frontal Plane Angle   
Time 0.969 0.186 
Group 0.560 0.083 
Time x Group 0.669 0.103 

Hip Transverse Plane Angle   
Time 0.573 0.067 
Group 0.067 0.004 
Time x Group 0.063 0.003 
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Table 13. Observed power and effect size (ηp
2) for analyses of knee and hip moments 

and kinetics at Initial Ground Contact for Research Question #1. 
 

Variable Observed Power Effect Size (ηp
2) 

Knee Sagittal Plane Moment   
Time 0.297 0.031 
Group 0.580 0.086 
Time x Group 0.478 0.069 

Knee Frontal Plane Moment    
Time 0.981 0.203 
Group 0.309 0.041 
Time x Group 0.125 0.014 

Knee Transverse Plane Moment   
Time 0.426 0.042 
Group 0.127 0.015 
Time x Group 0.617 0.093 

Hip Sagittal Plane Moment   
Time 0.069 0.003 
Group 0.597 0.089 
Time x Group 0.726 0.114 

Hip Frontal Plane Moment   
Time 0.920 0.150 
Group 0.590 0.088 
Time x Group 0.130 0.015 

Hip Transverse Plane Moment   
Time 0.352 0.038 
Group 0.683 0.105 
Time x Group 0.596 0.089 

Vertical Ground Reaction Force   
Time 0.704 0.089 
Group 0.151 0.019 
Time x Group 0.086 0.007 

Anterior Tibial Shear Force   
Time 0.053 0.000 
Group 0.551 0.081 
Time x Group 0.401 0.057 
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Table 14. Observed power and effect size (ηp
2) for analyses of knee kinematics during 

Landing Phase for Research Question #1. 
 

Variable Observed Power Effect Size (ηp
2) 

Knee Flexion   
Time 0.999 0.276 
Group 0.234 0.032 
Time x Group 0.207 0.028 

Knee Extension   
Time 0.061 0.001 
Group 0.278 0.039 
Time x Group 0.104 0.010 

Knee Varus   
Time 0.940 0.162 
Group 0.203 0.027 
Time x Group 0.813 0.136 

Knee Valgus   
Time 0.651 0.079 
Group 0.117 0.013 
Time x Group 0.669 0.102 

Knee Internal Rotation   
Time 0.248 0.025 
Group 0.460 0.066 
Time x Group 0.719 0.113 

Knee External Rotation   
Time 0.136 0.011 
Group 0.484 0.070 
Time x Group 0.114 0.012 
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Table 15. Observed power and effect size (ηp
2) for analyses of hip kinematics during 

Landing Phase for Research Question #1. 
 

Variable Observed Power Effect Size (ηp
2) 

Hip Extension   
Time 0.232 0.023 
Group 0.258 0.036 
Time x Group 0.483 0.070 

Hip Flexion   
Time 0.999 0.277 
Group 0.184 0.024 
Time x Group 0.252 0.035 

Hip Adduction   
Time 0.075 0.003 
Group 0.336 0.048 
Time x Group 0.524 0.077 

Hip Abduction   
Time 0.077 0.004 
Group 0.407 0.058 
Time x Group 0.444 0.064 

Hip Internal Rotation   
Time 0.618 0.074 
Group 0.137 0.016 
Time x Group 0.497 0.072 

Hip External Rotation   
Time 0.503 0.057 
Group 0.158 0.020 
Time x Group 0.435 0.063 
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Table 16. Observed power and effect size (ηp
2) for analyses of knee moments and 

kinetics during Landing Phase for Research Question #1. 
 

Variable Observed Power Effect Size (ηp
2) 

Knee Flexion Moment   
Time 0.319 0.033 
Group 0.635 0.096 
Time x Group 0.400 0.057 

Knee Extension Moment   
Time 0.720 0.092 
Group 0.178 0.023 
Time x Group 0.751 0.120 

Knee Varus Moment   
Time 0.208 0.020 
Group 0.062 0.002 
Time x Group 0.264 0.037 

Knee Valgus Moment   
Time 0.999 0.280 
Group 0.634 0.096 
Time x Group 0.145 0.018 

Knee Internal Rotation Moment   
Time 0.326 0.034 
Group 0.383 0.055 
Time x Group 0.176 0.023 

Knee External Rotation Moment   
Time 0.238 0.024 
Group 0.484 0.070 
Time x Group 0.333 0.047 

Anterior Tibial Shear Force   
Time 0.406 0.044 
Group 0.280 0.039 
Time x Group 0.753 0.121 

Vertical Ground Reaction Force   
Time 0.289 0.030 
Group 0.202 0.027 
Time x Group 0.151 0.019 
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Table 17. Observed power and effect size (ηp
2) for analyses of hip moments during Landing 

Phase for Research Question #1. 
 

Variable Observed Power Effect Size (ηp
2) 

Hip Flexion Moment   
Time 0.609 0.072 
Group 0.311 0.044 
Time x Group 0.678 0.104 

Hip Extension Moment   
Time 0.057 0.001 
Group 0.059 0.002 
Time x Group 0.231 0.032 

Hip Abduction Moment   
Time 0.654 0.080 
Group 0.487 0.071 
Time x Group 0.285 0.040 

Hip Adduction Moment   
Time 0.149 0.013 
Group 0.232 0.032 
Time x Group 0.433 0.062 

Hip External Rotation Moment   
Time 0.729 0.093 
Group 0.454 0.066 
Time x Group 0.163 0.021 

Hip Internal Rotation Moment   
Time 0.239 0.024 
Group 0.205 0.028 
Time x Group 0.314 0.044 
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Table 18. Participant demographics and anthroopometrics for Research Question #2. Units 
of measure are Age (years), Height (cm), and Mass (kg). Values represent means ± standard 
deviation. 
 

 
 Baseline Follow-Up 

n Age Height Mass Age Height Mass 

ACLR-INJ 
12 

18.64 ± 0.50 174.10 ± 7.31 72.64 ± 9.48 21.42 ± 0.79 174.29 ± 7.56 76.25 ± 9.95 
(8 m, 4 f) 

ACLR-NINJ 
19 

18.52 ± 0.58 170.06 ± 9.26 68.99 ± 10.93 21.47 ± 0.77 170.05 ± 9.13 72.87 ± 12.78 
(9 m, 10 f) 

Control 
38 

18.47 ± 0.46 172.05 ± 8.65 69.16 ± 11.47 20.95 ± 0.73 172.16 ± 8.71 72.35 ± 12.37 
(19 m, 19 f) 
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Table 19. Group chronological descriptive statistics for Research Question #2. (Mean ± SD, 
Days) 

 Baseline to Follow-Up Baseline to Injury Injury to Surgery Surgery to Follow-Up 

ACLR-Injured Limb 1,074.42 ± 197.28 367.73 ± 156.06 33.70 ± 20.29 666.90 ± 209.24 

ACLR-Noninjured Limb 1,247.68 ± 179.04 533.33 ± 267.97 40.39 ± 24.92 691.06 ± 243.01 

Control 1,071.76 ± 179.00 - - - 
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Table 20. Descriptive statistics for Research Question #2. Bilateral difference of anterior 
knee laxity assessed using KT-1000, Marx Activity score, and KOOS for each group. Values 
represent mean ± standard deviation, and units of measure other than anterior laxity (mm) are 
scale dependent. 
 

   KOOS 

 Bilateral 
Difference 
Anterior 
Laxity 
(mm) 

Marx 
Activity 

Total Score 
Pain Symptom ADL Sport/Rec QOL 

ACLR-INJ 1.9 ± 1.1 13.92 ± 2.75 84.75 ± 9.97 71.50 ± 13.16 93.00 ± 7.20 80.42 ± 16.16 65.63 ± 20.90 
ALCR-NINJ 2.5 ± 1.8 11.21 ± 4.57 86.95 ± 11.62 73.42 ± 15.85 96.74 ± 5.05 78.42 ± 17.72 71.71 ± 22.57 
Control 1.1 ± 0.8 10.92 ± 2.95 96.24 ± 5.12 92.63 ± 8.81 98.79 ± 2.11 93.95 ± 10.41 91.12 ± 14.14 

 
*Laxity measures were not obtained for 1 member of the ACLR-Noninjured Limb group 
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Table 21. Average coupling angle for Research Question #2. (Mean, SD, 95th Confidence 
Interval) Control, ACLR-Noninjured Limb Group, and ACLR-Injured Limb Group at 
Baseline (Pre) and Follow-Up (Post). P values represent time main effects, group main 
effects, and time x group interactions. 
 

 
 Control ACLR-Noninjured Limb ACLR-Injured Limb 

   Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Hip & Knee 
Sagittal Plane 

PRE 53.76 ± 6.75 (51.57, 55.95) 54.76 ± 6.75 (51.67, 57.85) 53.99 ± 6.79 (50.08, 57.91) 

POST 52.48 ± 8.90 (49.60, 55.36) 51.64 ± 8.90 (47.56, 55.71) 55.32 ± 8.96 (50.16, 60.49) 

Hip & Knee 
Frontal Plane 

PRE 43.23 ± 7.29 (40.86, 45.59) 43.42 ± 7.30 (40.07, 46.76) 44.31 ± 7.34 (40.07, 48.54) 

POST 42.26 ± 7.42 (39.86, 44.67) 41.29 ± 7.43 (37.89, 44.70) 44.52 ± 7.48 (40.21, 48.83) 

Hip & Knee 
Transverse 
Plane 

PRE 52.76 ± 6.91 (50.52, 55.00) 54.98 ± 6.91 (51.81, 58.14) 54.85 ± 6.96 (50.84, 58.86) 

POST 54.78 ± 6.59 (52.64, 56.92) 53.46 ± 6.60 (50.44, 56.48) 47.97 ± 6.64 (44.15, 51.80) 
Hip Frontal & 
Knee 
Transverse 
Plane 

PRE 49.15 ± 7.67 (46.67, 51.64) 52.58 ± 7.67 (49.06, 56.09) 51.66 ± 7.72 (47.21, 56.11) 

POST 49.63 ± 6.04 (47.67, 51.58) 49.05 ± 6.04 (46.29, 51.82) 45.42 ± 6.07 (41.92, 48.92) 

Hip 
Transverse & 
Knee Frontal 
Plane 

PRE 47.51 ± 6.57 (45.38, 49.64) 46.45 ± 6.58 (43.44, 49.47) 48.35 ± 6.62 (44.53, 52.16) 

POST 47.49 ± 8.05 (44.88, 50.10) 45.99 ± 8.06 (42.29, 49.68) 47.71 ± 8.11 (43.04, 52.38) 

 
*Values for descriptive statistics are based on Gender entered as a covariate in the statistical 
model at a value of 0.52 
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Table 22. Observed power and effect size (ηp

2) for analyses of mean coupling angle during 
Landing Phase for Research Question #2. 
 

Variable Observed Power Effect Size (ηp
2) 

Hip & Knee Sagittal Plane   
Time 0.366 0.040 
Group 0.091 0.008 
Time x Group 0.190 0.025 

Hip & Knee Frontal Plane   
Time 0.055 0.001 
Group 0.128 0.015 
Time x Group 0.087 0.008 

Hip & Knee Transverse Plane   
Time 0.514 0.059 
Group 0.272 0.038 
Time x Group 0.740 0.119 

Hip Frontal & Knee Transverse 
Plane 

  

Time 0.578 0.069 
Group 0.191 0.026 
Time x Group 0.513 0.076 

Hip Transverse & Knee Frontal 
Plane 

  

Time 0.050 0.000 
Group 0.125 0.015 
Time x Group 0.054 0.001 
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Table 23. Participant demographics and anthropometrics for Research Question #3. Units of 
measure are Age (years), Height (cm), and Mass (kg). Values represent means ± standard 
deviation. 

 
  

n Age Height Mass 

ACLR 
24 

21.58 ± 0.78  172.01 ± 8.85  74.69 ± 12.50 
(14 m, 10 f) 

Control 
39 

21.00 ± 0.77  172.25 ± 8.94  72.27 ± 13.72 
(20 m, 19 f) 
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Table 24. Descriptive statistics for Research Question #3. (Mean ± SD) ACLR and Control 
groups for bilateral difference in anterior knee laxity, Marx activity score, and KOOS scores. 
 

   KOOS 

 Bilateral 
Difference 
Anterior 

Laxity (mm) 

Marx 
Activity 

Total Score 
Pain Symptom ADL Sport/Rec QOL 

ACLR  2.4 ± 1.7 12.08 ± 4.43 87.15 ± 10.98 72.17 ± 14.71 96.20 ± 5.41 79.58 ± 18.17 69.53 ± 22.75 
Control  1.2 ± 1.0 10.87 ± 3.16 95.37 ± 6.29 92.49 ± 8.89 98.23 ± 3.19 92.44 ± 11.52 90.87 ± 14.04 
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Table 25. Asymmetry of kinematics (°) and moments (Nm/BHxBW) and kinetics (N/BW) 
for groups at Initial Ground Contact for Research Question #3. 
 

 ACLR CONTROL 
ZKS P value 

 Mean (SD) Median Mean (SD) Median 

Knee Sagittal 6.982  (4.439) 6.179 7.337   (5.505) 6.260 0.568 0.903 

Knee Frontal 8.484   (6.339) 6.350 7.970   (5.686) 6.348 0.432 0.993 

Knee Transverse 7.120   (4.818) 6.154 6.340   (5.211) 5.444 0.507 0.960 

Hip Sagittal 7.571   (4.189) 7.475 7.213   (5.464) 5.944 0.630 0.822 

Hip Frontal 11.271   (9.178) 8.129 13.047   (9.431) 12.793 0.690 0.725 

Hip Transverse 8.858   (6.502) 7.567 9.423   (7.653) 7.617 0.395 0.998 

Knee Sagittal Moment 0.025   (0.023) 0.021 0.026   (0.022) 0.020 0.432 0.992 

Knee Frontal Moment 0.021   (0.022) 0.016 0.023   (0.015) 0.021 0.939 0.341 

Knee Transverse Moment 0.011   (0.008) 0.008 0.010   (0.008) 0.008 1.075 0.198 

Hip Sagittal Moment 0.070   (0.048) 0.058 0.070   (0.058) 0.059 0.729 0.663 

Hip Frontal Moment 0.058   (0.047) 0.045 0.061   (0.041) 0.055 0.618 0.840 

Hip Transverse Moment 0.032  (0.027) 0.026 0.021   (0.015) 0.019 0.791 0.559 

Anterior Tibial Shear Force 0.109   (0.083) 0.080 0.114   (0.097) 0.094 0.704 0.704 

Vertical Ground Reaction Force 0.024   (0.028) 0.017 0.031   (0.028) 0.024 0.988 0.283 
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Table 26. Asymmetry of peak kinematics (°) during Landing Phase for Research Question 
#3. 
 

 ACLR CONTROL 
ZKS P value 

 Mean (SD) Median Mean (SD) Median 

Knee Flexion 8.836 (6.409) 7.181 9.857 (6.604) 9.193 0.704 0.704 

Knee Extension 6.982 (4.439) 6.179 7.337 (5.505) 6.260 0.568 0.903 

Knee Varus 8.643 (8.499) 6.876 9.974 (6.573) 8.477 1.129 0.075 

Knee Valgus 9.939 (9.767) 5.763 11.308 (7.983) 8.628 1.161 0.135 

Knee Internal Rotation 8.704 (5.643) 8.114 7.579 (4.739) 7.254 0.877 0.425 

Knee External Rotation 8.070 (5.009) 6.642 6.793 (5.152) 5.858 0.889 0.407 

Hip Extension 7.528 (4.172) 7.488 7.043 (5.593) 6.004 0.927 0.357 

Hip Flexion 8.621 (5.505) 8.668 8.971 (6.058) 8.400 0.519 0.951 

Hip Adduction 9.441 (8.723) 7.556 12.998 (9.481) 11.474 0.988 0.283 

Hip Abduction 9.052 (7.040 8.884 11.461 (7.867) 9.431 0.692 0.725 

Hip Internal Rotation 12.314 (8.073) 11.090 10.794 (8.393) 8.273 0.828 0.500 

Hip External Rotation 11.349 (8.470) 8.668 10.306 (8.551) 8.591 0.778 0.580 
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Table 27. Asymmetry of peak moment and kinetic variables (Nm/BHxBW) during Landing 
Phase for Research Question #3. 
 

 ACLR CONTROL 
ZKS P value 

 Mean (SD) Median Mean (SD) Median 

Knee Extension Mom 0.050 (0.041) 0.037 0.043 (0.026) 0.042 0.667 0.765 

Knee Flexion Mom 0.039 (0.029) 0.032 0.026 (0.030) 0.015 1.421 0.035 

Knee Valgus Mom 0.026 (0.021) 0.020 0.032 (0.019) 0.028 1.186 0.120 

Knee Varus Mom 0.033 (0.024) 0.027 0.036 (0.028) 0.032 0.507 0.960 

Knee ER Mom 0.025 (0.020) 0.019 0.023 (0.017) 0.020 0.469 0.980 

Knee IR Mom 0.020 (0.024) 0.012 0.017 (0.019) 0.013 0.692 0.725 

Hip Flexion Mom 0.084 (0.047) 0.072 0.065 (0.055) 0.050 1.137 0.151 

Hip Extension Mom 0.088 (0.078) 0.069 0.079 (0.086) 0.054 0.939 0.341 

Hip Abduction Mom 0.070 (0.059) 0.058 0.057 (0.050) 0.047 0.902 0.390 

Hip Adduction Mom 0.060 (0.054) 0.055 0.045 (0.037) 0.033 0.803 0.539 

Hip ER Mom 0.031 (0.027) 0.023 0.026 (0.024) 0.023 0.914 0.373 

Hip IR Mom 0.023 (0.019) 0.017 0.021 (0.022) 0.013 0.791 0.559 

Anterior Tibial Shear Force 0.190 (0.154) 0.156 0.170 (0.132) 0.148 0.605 0.857 

Posterior Tibial Shear Force 0.139 (0.095) 0.133 0.131 (0.125) 0.101 0.865 0.443 

Vertical Ground Reaction Force 0.682 (0.508) 0.554 0.465 (0.279) 0.388 1.445 0.031 
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Table 28. Participant demographics and anthropometrics for Research Question #4. Units of 
measure are Age (years), Height (cm), and Mass (kg). Values represent means ± standard 
deviation. 

 
  

n Age Height Mass 

ACLR 
28 

21.46 ± 0.79  172.49 ± 8.73  75.30 ± 11.77  
(17 m, 11 f) 

Control 
37 

21.03 ± 0.74  172.66 ± 9.69  73.06 ± 14.16  
(20 m, 17 f) 
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Table 29. Descriptive statistics for Research Question #4. Bilateral difference of anterior 
knee laxity assessed using KT-1000, Marx Activity score, and KOOS for each group. Values 
represent mean ± standard deviation, and units of measure other than anterior laxity (mm) are 
scale dependent. 

   KOOS 

 Bilateral 
Difference 
Anterior 

Laxity (mm) 

Marx 
Activity 

Total Score 
Pain Symptom ADL Sport/Rec QOL 

ACLR 2.4 ± 1.6 12.25 ± 4.21 86.57 ± 11.32 72.57 ± 14.65 95.68 ± 6.11 79.46 ± 17.71 69.87 ± 21.99 
Control  1.0 ± 0.7 10.84 ± 3.10 95.38 ± 6.38 92.65 ± 9.06 98.11 ± 3.23 92.70 ± 11.88 89.86 ± 15.33 

*Laxity measures were not obtained for 1 member of the ACLR group 
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Table 30. Asymmetry of mean coupling angles during Landing Phase for Research 
Question #4. (Mean (Standard Deviation), Median, Kolmogorov-Smirnov Z score (ZKS)) 
 

 ACLR CONTROL 
ZKS P value 

 Mean (SD) Median Mean (SD) Median 

Hip Sagittal - Knee Sagittal 2.371 (1.891) 1.860 1.961 (1.164) 1.767 0.778 0.580 
Hip Frontal  – Knee Frontal 9.031 (5.938) 7.454 8.649 (6.452) 6.542 0.482 0.974 
Hip Transverse – Knee Transverse 7.377 (6.828) 5.646 7.201 (5.237) 6.374 0.497 0.966 
Hip Frontal – Knee Transvers 6.095 (5.381) 3.598 7.015 (6.547) 5.024 0.435 0.991 
Hip Transverse – Knee Frontal 4.084 (3.368) 3.353 5.165 (4.988) 3.848 0.728 0.664 
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Table 31. Asymmetry of between trial variability during Landing Phase for Research 
Question #4. (Mean (Standard Deviation), Median, Kolmogorov-Smirnov Z score (ZKS)) 
 

 ACLR CONTROL 
ZKS P value 

 Mean (SD) Median Mean (SD) Median 

Hip Sagittal - Knee Sagittal 1.228 (1.023) 0.897 1.219 (0.874) 1.047 0.632 0.819 
Hip Frontal  – Knee Frontal 2.820 (2.006) 2.531 2.683 (1.674) 2.496 0.566 0.905 
Hip Transverse – Knee Transverse 2.362 (2.294) 1.726 2.333 (1.717) 2.177 0.705 0.703 
Hip Frontal – Knee Transverse 2.807 (2.444) 2.452 2.179 (1.727) 2.218 0.882 0.417 
Hip Transverse – Knee Frontal 3.058 (2.424) 2.667 2.229 (1.801) 1.918 0.724 0.670 
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Figure 1. Double leg jump landing. Participants were required to stand atop a box located 
a distance equal to one half of their body height from the front edge of the force plate, 
jump forward, land with their foot completely on the force plate, and then immediately 
make a vertical jump for maximum height. 
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Figure 2. Visual representation of the calculation of coupling angles. Determined using 
vector coding to characterize joint coordination.
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Figure 3. Ensemble average plot of sagittal plane knee angle at Baseline and Follow-Up 
during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 4. Ensemble average plot of sagittal plane knee angle at Baseline and Follow-Up 
during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 5. Ensemble average plot of sagittal plane knee angle at Baseline and Follow-Up 
during the Landing Phase for the Control Group. 
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Figure 6. Ensemble average plot of frontal plane knee angle at Baseline and Follow-Up 
during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 7. Ensemble average plot of frontal plane knee angle at Baseline and Follow-Up 
during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 8. Ensemble average plot of frontal plane knee angle at Baseline and Follow-Up 
during the Landing Phase for the Control Group. 
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Figure 9. Ensemble average plot of transverse plane knee angle at Baseline and Follow-
Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 10. Ensemble average plot of transverse plane knee angle at Baseline and Follow-
Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 11. Ensemble average plot of transverse plane knee angle at Baseline and Follow-
Up during the Landing Phase for the Control Group. 
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Figure 12. Ensemble average plot of sagittal plane hip angle at Baseline and Follow-Up 
during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 13. Ensemble average plot of sagittal plane hip angle at Baseline and Follow-Up 
during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 14. Ensemble average plot of sagittal plane hip angle at Baseline and Follow-Up 
during the Landing Phase for the Control Group. 
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Figure 15. Ensemble average plot of frontal plane hip angle at Baseline and Follow-Up 
during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 16. Ensemble average plot of frontal plane hip angle at Baseline and Follow-Up 
during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 17. Ensemble average plot of frontal plane hip angle at Baseline and Follow-Up 
during the Landing Phase for the Control Group. 
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Figure 18. Ensemble average plot of transverse plane hip angle at Baseline and Follow-
Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 19. Ensemble average plot of transverse plane hip angle at Baseline and Follow-
Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 20. Ensemble average plot of transverse plane hip angle at Baseline and Follow-
Up during the Landing Phase for the Control Group. 
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Figure 21. Ensemble average plot of sagittal plane knee moment at Baseline and Follow-
Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 22. Ensemble average plot of sagittal plane knee moment at Baseline and Follow-
Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 23. Ensemble average plot of sagittal plane knee moment at Baseline and Follow-
Up during the Landing Phase for the Control Group. 



 143 

 
 
Figure 24. Ensemble average plot of frontal plane knee moment at Baseline and Follow-
Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 25. Ensemble average plot of frontal plane knee moment at Baseline and Follow-
Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 26. Ensemble average plot of frontal plane knee moment at Baseline and Follow-
Up during the Landing Phase for the Control Group. 
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Figure 27. Ensemble average plot of transverse plane knee moment at Baseline and 
Follow-Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 28. Ensemble average plot of transverse plane knee moment at Baseline and 
Follow-Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 29. Ensemble average plot of transverse plane knee moment at Baseline and 
Follow-Up during the Landing Phase for the Control Group. 
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Figure 30. Ensemble average plot of sagittal plane hip moment at Baseline and Follow-
Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 31. Ensemble average plot of sagittal plane hip moment at Baseline and Follow-
Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 32. Ensemble average plot of sagittal plane hip moment at Baseline and Follow-
Up during the Landing Phase for the Control Group. 
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Figure 33. Ensemble average plot of frontal plane hip moment at Baseline and Follow-
Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 34. Ensemble average plot of frontal plane hip moment at Baseline and Follow-
Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 35. Ensemble average plot of frontal plane hip moment at Baseline and Follow-
Up during the Landing Phase for the Control Group. 
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Figure 36. Ensemble average plot of transverse plane hip moment at Baseline and 
Follow-Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 37. Ensemble average plot of transverse plane hip moment at Baseline and 
Follow-Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 38. Ensemble average plot of transverse plane hip moment at Baseline and 
Follow-Up during the Landing Phase for the Control Group. 
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Figure 39. Ensemble average plot of vertical ground reaction force (vGRF) at Baseline 
and Follow-Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 40. Ensemble average plot of vertical ground reaction force (vGRF) at Baseline 
and Follow-Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 41. Ensemble average plot of vertical ground reaction force (vGRF) at Baseline 
and Follow-Up during the Landing Phase for the Control Group. 
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Figure 42. Ensemble average plot of anterior tibial shear force (ATSF) at Baseline and 
Follow-Up during the Landing Phase for the ACLR-Injured Limb Group. 
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Figure 43. Ensemble average plot of anterior tibial shear force (ATSF) at Baseline and 
Follow-Up during the Landing Phase for the ACLR-Noninjured Limb Group. 
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Figure 44. Ensemble average plot of anterior tibial shear force (ATSF) at Baseline and 
Follow-Up during the Landing Phase for the Control Group. 
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APPENDIX A. SUBJECT QUESTIONAIRE 

 
 
 
 
 
 

!
ACLID:'__________________________' ' ' ' Date:______/_______/________'
'
!
Sport!Participation:'Please'list'the'sport'and'level'at'which'you'participated'in'
while'at'the'USAFA.'
' ' ' Sport! ! ! ! Level'(i.e.'varisty,'IM,'club,'etc.)'
'
First'Year:' _________________________' ______________________________________________'
'
Second'Year:' _________________________' ______________________________________________'
'
Third'Year:' _________________________' ______________________________________________'
'
Fourth'Year:' _________________________' ______________________________________________'
!
!
!
!
!
Activity:'Please'indicate'how'often'you'performed'each'activity'in'your'healiest'and'
most'active'state,'in!the!past!year.!
!

'
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APPENDIX B. MANUSCRIPT 1 

Lower Extremity Biomechanics Do Not Return to Pre-Injury Status Following 

Anterior Cruciate Ligament Injury: The JUMP ACL Study 

(British Medical Journal) 

ABSTRACT 

Background: Information as to how ACL injury and ACLR alter lower extremity 

biomechanics may help improve rehabilitation and return to physical activity guidelines 

to reduce the risk for secondary ACL injury. 

Aim: To determine the effect of ACL injury and subsequent ACLR on lower extremity 

biomechanics of the injured and noninjured limb. 

Methods: 70 participants (12 ACLR-Injured Limb, 19 ACLR-Noninjured Limb, 39 

Control) who were part of the JUMP ACL study were included in this analysis. Lower 

extremity biomechanics during a double-leg jump landing were analyzed at two time 

points (Baseline, Follow-Up) that coincided with times prior to and following ACL 

injury. Variables of interest included hip and knee kinematics in three planes of motion at 

Initial Ground Contact, and peak values for each during the Landing Phase. 

Results: Knee valgus angle and hip adduction angle at Initial Ground Contact increased 

for both ACLR groups. They also demonstrated a decrease in peak knee varus angle, and 

an increase in peak knee valgus and hip adduction during the Landing Phase. The ACLR-

Injured Limb group demonstrated a decrease in peak internal knee extension moment and 

peak anterior tibial shear force during the Landing Phase. 

Conclusion: Following ACL injury we observed an increase in medial displacement of 

the hip and knee during a double leg jump landing. This change in movement pattern may  
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be the result of quadriceps dysfunction of the injured limb and may increase their risk for 

noncontact ACL injury. 
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INTRODUCTION 

      Anterior cruciate ligament injury and subsequent reconstructive surgery (ACLR) is 

associated with a decrease in physical activity1,2 and the onset of osteoarthritis.3,4 They 

are also at an increased risk for a subsequent ACL injury as compared to individuals with 

no history of ACL injury.5-7 Previous reports put the risk for reinjury at a level ranging 

from a 5 to 15 fold increased risk in this population5-7 with the incidence rates ranging 

from 6-25%.7-10 While several factors may ultimately contribute to the increased risk for 

reinjury for those with ACLR; lower extremity biomechanics have been identified as 

prospective risk factors for reinjury.11   

      Differences in lower extremity biomechanics are altered for those with ACLR. These 

individuals display differences in the movement and loading of their limbs when 

compared to those who have never suffered an ACL injury.12-15 They also display 

bilateral differences between the injured and uninjured limb14-18, which is consistent with 

the observation that the risk for reinjury is nonspecific to the injured limb.19 This has led 

to the belief that following ACL injury, individuals adopt movement and loading patterns 

that predispose them to risk for reinjury, and that these altered patterns are present despite 

successful treatment and rehabilitation. 

      Unfortunately, there is limited evidence to support this assertion as no studies have 

captured data prior to and following ACL injury and subsequent ACLR. The evidence 

that is available is limited to individual case reports20,21, which are valuable for the 

information they provide, but lack an adequate number of observations to draw anything 

but tentative conclusions. The ability to observe what biomechanical factors are altered 

following ACL injury, for both the injured and noninjured limb, may provide valuable 
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information about how to improve rehabilitation and ensure a safer return to physical 

activity for these individuals. 

      Therefore, the purpose of this study was to determine if and how, lower extremity 

biomechanics change following ACL injury and subsequent ACLR. Because of 

previously observed bilateral differences in lower extremity biomechanics following 

ACL injury, this analysis will include examination of the effect of injury on the injured 

and noninjured limb. 

 

METHODS 

Participants 

      This study employed a repeated measures, case-cohort research design. All 

participants were recruited from the Joint Undertaking to Monitor and Prevent ACL 

Injury (JUMP ACL) Study, a multi-year, multi-site prospective study to identify risk 

factors for ACL Injury. Participants were enrolled at the United States service academies; 

United States Air Force Academy, United States Military Academy, and United States 

Naval Academy, and completed initial biomechanical testing (Baseline) for the JUMP 

ACL Study during the summer of their enrollment year. Each participant was 

prospectively followed during their career at the service academy for ACL injuries.  

      Participants identified for enrollment in this study (Follow-Up), was limited to those 

with complete Baseline biomechanical data from the 2007 and 2008 cohorts. ACL 

injured (Cases) were identified as having suffered an ACL injury during their enrollment 

in the study, had complete biomechanical data at Baseline, and were still currently 

enrolled in the JUMP ACL study and respective service academy. In addition, for each 
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Case, three Controls were identified for Follow-Up and were matched based on the sex, 

cohort year, and service academy of each Case. Based on these criteria, individuals were 

identified and assigned a random priority number to contact for enrollment in this 

Follow-Up analysis. To maximize enrollment for Cases, three from the 2009 cohort were 

identified and completed testing for this study. A schematic depicting enrollment for this 

study and the 2007 and 2008 cohorts is provided in Figure 1. 

      Thirty-eight Cases, and 50 Controls, were enrolled for Follow-Up testing. Of the 38 

Cases, 6 self-reported an ACL injury prior to Baseline data collection, and 3 suffered 

more than one ACL injury since Baseline. Of the 6 that had a prior ACL injury, two were 

retained in the data set as they had complete biomechanical data on the noninjured limb 

at baseline and later suffered an injury to that same limb. Of the Controls, 10 were unable 

to complete biomechanical testing at Follow-Up due to time constraints and 1 reported a 

prior ACL injury at Baseline testing. Therefore, 31 Cases and 39 Controls had adequate 

biomechanical data for both the Baseline and Follow Up testing to be included in this 

analysis. Baseline testing for the JUMP ACL study only captured unilateral lower 

extremity biomechanics and not all ACL injuries for the Cases occurred on the tested 

limb; 12 individuals injured the tested limb, 19 injured the non-tested limb. Therefore, the 

Cases (n=31) were further sub-divided into two separate groups; ACLR-Injured Limb 

(n=12) for the participants who injured the limb that biomechanical data were collected 

on and ACLR-Noninjured Limb (n=19) for participants who injured the limb that data 

were not collected on. This provided us with three groups for analysis, and allowed us to 

assess the affects of ACL injury on both the injured and noninjured limbs. 
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Procedures 

      Prior to biomechanical testing at Follow-Up each participant read and signed an 

informed consent and was asked to complete the Marx Activity Scale22, Knee Injury and 

Osteoarthritis Outcome Score (KOOS)23, and have anterior knee laxity assessed 

bilaterally.24 At Baseline and Follow-Up, each participant performed a double leg jump 

landing maneuver (Figure 2).25,26 For this task participants were required to stand atop a 

30cm jump box located a distance from the front edge of the force plate equal to half of 

their body height. They then jumped forward towards the force plate, landed, and 

immediately performed a maximum effort vertical jump. To be considered a successful 

trial the participant had to land with only the foot of the test leg making contact with the 

force plate, the foot of the test leg being completely on the force plate, and perform the 

task with no hesitation between the landing and jumping phase of the task.  

      Biomechanical data were collected during the task using an electomagentic tracking 

system (Ascension Technologies Inc., Burlington, VT) integrated with a non-conductive 

force plate (Bertec Co., Columbus, OH). Prior to data collection electromagnetic sensors 

were attached to the shank and thigh of the participant’s test limb, as well their pelvis. 

The position of the medial and lateral malleoli, medial and lateral femoral epicondyles, 

and the anterior superior iliac spines relative to the segment sensors was recorded using a 

movable sensor. The ankle joint center and knee joint centers were estimated as the 

midpoint between the malleoli and femoral epicondyles, respectively, and the hip joint 

center was estimated based on the location of the anterior superior iliac spines according 

to the Bell Method.27 A model of the shank, thigh, and pelvis was determined based on 
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these points, with the shank segment defined by the two endpoints of the ankle joint and 

knee joint centers and the shank sensor, the thigh segment defined by the two endpoints 

of the knee joint center and hip joint center and the thigh sensor, and the pelvis as the 

anterior superior iliac spines and the pelvis sensor. Local right-handed axis systems were 

embedded in each segment, and the orientation of each coincided with the global axis 

system. The global axis system was established and defined prior to data collection and 

coincided with the positive x-axis oriented with the direction the participant faced during 

the double leg jump landing, the positive z-axis defined as a vector oriented along the 

true vertical, and the y-axis defined as a vector located at a positive 90° rotation about the 

z-axis relative to the positive x-axis.25,26 

       

Data analysis 

       All kinematic data were collected at a sampling frequency of 144 Hz and kinetic data 

were sampled at a sampling frequency of 1,444 Hz. Kinematic data were filtered using a 

4th order Butterworth filter (14.5 Hz) and all biomechanical data were exported using the 

Motion Monitor Software (Innovative Sports Training, Inc., Chicago, IL). Prior to 

exportation, the kinematic data of the hip and knee joint in all three planes of motion was 

defined using an Euler sequence Y,X,Z; such that the first rotation was defined about the 

y-axis, second rotation about the x-axis, and third rotation about the z-axis. Internal joint 

moments in all three planes of motion at the hip and knee were calculated using inverse 

dynamics within the software. All moments were normalized to by the product of body 

height (m) and body weight (N), and reported here as normalized internal joint moments. 
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The vertical ground reaction force and anterior tibial shear force data were normalized to 

body weight (N), and reported as such. 

      Following data exportation, the data were reduced to calculate all dependent variables 

during the time points of interest using a customized MATLAB (Mathworks, Inc., 

Natick, MA) program. These variables included hip and knee biomechanics (kinematics 

and moments) in all three planes of motion, as well as the vertical ground reaction force 

and anterior tibial shear force. Values for each variable were recorded at the time of 

Initial Ground Contact, defined as the first time point at which the vertical ground 

reaction force exceeded 10 N, and peak values for each variable in each direction during 

the Landing Phase of the double leg jump landing, defined as the time from Initial 

Ground Contact to peak knee flexion was achieved. 

      Before statistical analyses were performed each variable was assessed for normality. 

Z-scores for the skewness and kurtosis of each dependent variable was calculated, and 

variables with values greater than 1.96 were identified for further analysis to identify 

statistical outliers within the data. These procedures consisted of plotting the standardized 

residuals and generating box plots to identify outliers. When outliers were identified the 

statistical analysis to compare the specific variable was computed with and without the 

outliers included in the data set. If removal of the outliers did not create any change in the 

significance of the analysis, the data were retained in the final analysis. When removal 

resulted in a change in the significance of the analysis the data for the individual trials 

were further analyzed. This procedure consisted of analyzing the values for each specific 

trial, and if one or more values appeared out of normal range the biomechanical data were 

analyzed for data collection errors. Any trials that exhibited collection errors were 
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removed from the computed within-participant average, and was performed for all 

dependent variables, so as to retain as many participants and information as possible. 

This resulted in some participants having fewer than three trials used to calculate between 

trial average for the dependent variables in this analysis.   

       Statistical analyses were performed to determine changes in lower extremity 

biomechanics following ACL injury. These analyses consisted of 3x2 (Group:ACLR-

Injured Limb, ACLR-Noninjured Limb, Control x Time: Baseline, Follow-Up) mixed 

model analysis of covariance to adjust for sex, for each dependent variable. Post hoc 

analyses consisted of Tukey’s HSD, and were performed for any significant interaction 

effect. An alpha level of 0.05 was set a priori to determine statistical significance for all 

analyses. All statistical analyses were performed using IBM SPSS v19 (SPSS, Inc., an 

IBM company, Chicago, IL). 

 

RESULTS 

Participant Demographics 

      Participant demographics and anthropometrics for Baseline and Follow-Up testing 

sessions are summarized in Table 1. Group chronological data for testing sessions, ACL 

injury, and surgery are presented in Table 2. Graft type was not obtained for 5 members 

of the ACLR-Injured Limb group, and 6 of the ACLR-Noninjured Limb group. For the 

ACLR-Injured Limb group 3 had a bone-patella tendon-bone autograft and 4 had a 

hamstrings autograft. For the ACLR-Noninjured Limb group 5 had a bone-patella 

tendon-bone graft, 7 had a hamstring autograft, and one had an Achilles tendon allograft. 
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Descriptive statistics for anterior knee laxity, Marx Activity Scale, and KOOS are 

provided in Table 3. 

      The normality and outlier procedures identified 9 dependent variables changed in the 

significance of the analysis when outliers were removed. For the total 9 dependent 

variables, 27 participants were identified as contributing values considered as outliers. 

Nine participants had data collection errors in one or more of the three trials used to 

calculate within-participant averages. All had at least one trial with no errors, and all 

participants were retained for the final analysis. 

      All descriptive statistics for each dependent variable and each group are provided in 

Tables 4-8. 

Initial Ground Contact 

Kinematics 

      We observed a significant Time x Group interaction for frontal plane knee (F(2,66) = 

3.957, p = 0.024) and hip (F(2,66) = 3.773, p = 0.028) angles at Initial Ground Contact. 

Post hoc analysis indicated that there was no significant difference in knee angle in the 

frontal plane among the groups at Baseline or Follow-Up. Following ACL injury, both 

the ACLR–Injured Limb and ACLR-Noninjured Limb groups had a significant increase 

in knee valgus angle at Initial Ground Contact compared to Baseline.  However, there 

was no change in knee valgus angle for the Control group between Baseline and Follow-

Up.  

      For the frontal plane hip angle, post hoc analysis indicated a similar pattern of 

change. There was no difference among groups at Baseline, but both the ACLR-Injured 

Limb and ACLR-Noninjured Limb groups significantly increased hip adduction at Initial 
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Ground Contact from Baseline to Follow-Up. There was no difference in the hip 

adduction angle between the ACLR groups, but both ACLR groups displayed 

significantly greater hip adduction compared to the Control group at Follow-Up.  

      We observed no other significant interaction effects for kinematics at Initial Ground 

Contact: sagittal plane knee angle (F(2,66) = 0.104, p = 0.901), transverse plane knee angle 

(F(2,66) = 0.135, p = 0.874), sagittal plane hip angle (F(2,66) = 2.023, p = 0.140), and 

transverse plane hip angle (F(2,66) = 0.089, p = 0.915). A significant time effect was 

present for transverse plane hip angle (F(1,66) = 4.731, p = 0.033) indicating an increase in 

hip external rotation from Baseline to Follow-Up regardless of group.  

 

Kinetics 

      We observed a significant Time x Group interaction for transverse plane knee 

moment (F(2,66) = 3.373, p = 0.040), sagittal plane hip moment (F(2,66) = 4.266, p =0.018), 

and transverse plane hip moment (F(2,66) = 3.226, p = 0.046) at Initial Ground Contact. 

Post hoc analysis for transverse plane knee moment indicated no significant difference 

among or between the groups at Baseline or Follow-Up. However, significant differences 

were present for sagittal plane hip moment and transverse plane hip moment following 

post hoc analysis. There were no differences among groups for sagittal plane hip moment 

at Baseline, but the Control group demonstrated a significant increase in hip extension 

moment from Baseline to Follow-Up. Also, at Follow-Up the ACLR groups were 

significantly different with the ACLR-Injured Limb group demonstrating an internal hip 

flexion moment and the ACLR-Noninjured Limb group demonstrating an internal hip 

extension moment at Initial Ground Contact. At Baseline there were no significant 
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differences among groups for transverse plane hip moment, but both the ACLR-Injured 

Limb and Control groups had a significant decrease of internal hip internal rotation 

moment from Baseline to Follow-Up. At Follow-Up, both groups demonstrated 

significantly less internal hip internal rotation moment than the ACLR-Noninjured Limb 

group. 

      No other significant interaction effects were observed for kinetic variables at Initial 

Ground Contact: sagittal plane knee moment (F(2,66) = 2.458, p = 0.093), frontal plane 

knee moment (F(2,66) = 0.476, p =0.623), frontal plane hip moment (F(2,66) = 0.506, p = 

0.605), anterior tibial shear force (F(2,66) = 2.011, p = 0.142), and vertical ground reaction 

force (F(2,66) = 0.238, p = 0.789). A significant group main effect was observed for frontal 

plane hip moment (F(1,66) = 3.178, p = 0.048) with post hoc analysis indicating the 

ACLR-Noninjured Limb group had significantly higher internal hip adduction moment 

than the Control group regardless of time. There were no group differences between the 

ACLR groups or the ACLR-Injured Limb and Control groups. 

      Time main effects for frontal plane knee moment (F(1,66) = 16.802, p < 0.001), frontal 

plane hip moment (F(1,66) = 11.684, p = 0.001), and vertical ground reaction force (F(1,66) 

= 6.401, p = 0.014) were present. There was a decrease in internal knee varus moment, 

decrease in internal hip adduction moment, and decrease in vertical ground reaction force 

at Initial Ground Contact from Baseline to Follow-Up regardless of group. 
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Landing Phase 

Kinematics 

      Statistical analysis of the peak kinematic values indicated significant Time x Group 

interactions for peak knee varus angle (F(2, 66) = 5.198, p = 0.008), peak knee valgus angle 

(F(2,66) = 3.768, p = 0.028), and peak knee internal rotation angle (F(2,66) = 4.204, p = 

0.019). Post hoc analyses demonstrated no difference in peak knee varus angle among 

groups at Baseline or Follow-Up. However, both the ACLR-Injured Limb and ACLR-

Noninjured Limb groups demonstrated a significant decrease in peak knee varus angle 

over time. There were similar findings for peak knee valgus angle, as there was no 

difference among groups at Baseline or Follow-Up, but the ACLR-Noninjured Limb 

group demonstrated a significant increase in peak knee valgus angle from Baseline to 

Follow-Up. There was a similar increase in peak knee valgus angle for the ACLR-Injured 

Limb group but post hoc analysis indicated it was not significant. No group differences 

for peak knee internal rotation angle during the Landing Phase were observed at Baseline, 

however the Control group demonstrated a significant increase in peak knee internal 

rotation angle from Baseline to Follow-Up. Peak knee internal rotation angle was also 

greater than the ACLR-Noninjured Limb group at Follow-Up. No significant change in 

knee rotation angle was observed for the ACLR groups following ACL injury. 

      No other significant interactions were observed for peak kinematic variables during 

the Landing phase: knee flexion (F(2,66) = 0.944, p = 0.394), knee extension (F(2,66) = 

0.349, p = 0.706), knee external rotation (F(2,66) = 0.412,  p = 0.664), hip flexion (F(2,66) = 

1.190, p = 0.311), hip extension (F(2,66) = 2.488, p = 0.091), hip adduction (F(2,66) = 2.745, 

p = 0.072), hip abduction (F(2,66) = 2.256, p = 0.113), hip internal rotation (F(2,66) = 2.576, 
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p = 0.084), and hip external rotation (F(2,66) = 2.205, p = 0.118). Time main effects were 

observed for peak knee flexion (F(1,66) = 25.168, p < 0.001), hip flexion (F(1,66) = 25.326, 

p <0.001), hip internal rotation (F(1,66) = 5.263, p = 0.025), and hip external rotation 

(F(1,66) = 3.986, p = 0.050). There was an increase in peak knee flexion, increase in peak 

hip flexion, decrease in peak hip internal rotation, and increase in hip external rotation 

from Baseline to Follow-Up regardless of group. No group main effects were observed. 

 

Kinetics 

      Significant Time x Group interactions for peak knee extension moment (F(2,66) = 

4.509, p = 0.015), peak hip flexion moment (F(2,66) = 3.847, p = 0.026) and peak anterior 

tibial shear force (F(2,66) = 4.530, p = 0.014) during the Landing phase were observed. 

Post hoc analyses revealed that these interaction effects were the result of changes from 

Baseline to Follow-Up for the ACLR-Injured Limb group only. There was no significant 

difference among groups at Baseline for any of the variables, but the ACLR-Injured Limb 

group demonstrated a significant decrease in peak internal knee extension moment, peak 

internal hip flexion moment, and peak anterior tibial shear force from Baseline to Follow-

Up. This change resulted in the ACLR-Injured Limb group having lower values for each 

variable as compared to the ACLR-Noninjured Limb group at Follow-Up. 

      No other significant interactions were present for peak kinetic variables during the 

Landing Phase: knee flexion moment (F(2,66) = 2.003, p =0.143), knee valgus moment 

(F(2,66) = 0.595, p = 0.555), knee varus moment (F(2,66) = 1.255, p = 0.292), knee external 

rotation moment (F(2,66) = 1.632, p = 0.203), knee internal rotation moment (F(2,66) = 

0.769, p = 0.467), hip extension moment (F(2,66) = 1.076, p = 0.347), hip abduction 
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moment (F(2,66) = 1.371, p = 0.261), hip adduction moment (F(2,66) = 2.193, p = 0.120), hip 

external rotation moment (F(2,66) = 0.699, p = 0.501), hip internal rotation moment (F(2,66) 

= 1.527, p = 0.225), posterior tibial shear force (F(2,66) = 0.348, p = 0.708), and vertical 

ground reaction force (F(2,66) = 0.630, p = 0.536). Group main effects for peak knee 

flexion moment (F (1,66) = 3.508, p = 0.036) and peak knee valgus moment were found 

(F(1,66) = 3.501, p = 0.036), but post hoc analysis did not indicate significant group 

differences.  

      In addition, time main effects for peak knee valgus moment (F(1,66) = 25.659, p < 

0.001), peak hip abduction moment (F(1,66) = 5.723, p = 0.020), and peak hip external 

rotation moment (F(1,66) = 6.804, p = 0.011), indicating a significant decrease in each 

variable from Baseline to Follow-Up, regardless of group. 

DISCUSSION 

      The primary finding of this study was the observation that ACL injury and ACLR 

cause specific changes in movement and loading of both the injured and noninjured limb 

that may help to explain the increased risk for reinjury associated with this population. 

Specifically, we observed increased medial displacement of the knee and hip for both the 

ACLR-Injured Limb group and ACLR-Noninjured Limb group. These alterations were 

observed in relation to very little change in lower extremity biomechanics for the Control 

group. This may indicate that ACL injury changes what would otherwise be relatively 

stable lower extremity movement and loading patterns. An explanation for these results 

will be provided in the following paragraphs.  

      We observed a number of changes among the groups following ACL injury and 

subsequent ACLR. At Initial Ground Contact we observed a difference in sagittal plane 
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moment at the hip, with the ACLR groups being different at Follow-Up. This was the 

result of an increase in internal hip extension moment for the ACLR-Noninjured Limb 

group and a decrease in internal hip extension moment for the ACLR-Injured Limb 

group. However, we also observed an increase in internal hip extension moment for the 

Control group from Baseline and Follow-Up. Neither ACLR groups were significantly 

different from the Control group at Follow-Up for internal hip extension moment. We 

also observed a decrease in internal hip internal rotation moment for both the ACLR-

Injured Limb group and Control group, with no change for the ACLR-Noninjured Limb 

group. In addition, both demonstrated less internal hip internal rotation moment at Initial 

Ground Contact than the ACLR-Noninjured Limb group at Follow-Up. These findings 

may be supported in part by the previous observations of Decker et al13, as they noted 

decreased energy absorption at the hip as compared to the knee and ankle for the injured 

limb of those with ACLR. They did not observe such differences for their sample of 

healthy control subjects, but did not examine the noninjured limb of the ACLR group.13 

Our results compliment these findings, as we observed differences in loading at the hip 

for those with ACLR, in which the injured limb tended to be unloaded at Initial Ground 

Contact, but the noninjured limb maintained or increased loading. The significance of 

these findings should be interpreted with caution, as we made these observations at a 

point in the jump landing where there is minimal loading occurring on the lower 

extremity. 

      We also observed an increase in peak knee internal rotation angle for the Control 

group, but no change for either ACLR groups. This is of important note as knee internal 

rotation is thought to be altered following ACL injury and ACLR.17,28-31 In addition, 
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alterations in knee internal rotation have been proposed as a mechanism for the 

progression of knee osteoarthritis following ACLR.32 Our findings suggest that peak knee 

internal rotation was restored following ACLR, and only the Control group had a 

significant change. We though, only assessed peak values during a task that generally 

does not require as much transverse plane motion as other tasks previously described. 

Therefore, our task may not be indicative of more common tasks that are performed 

repeatedly throughout the course of a day such as walking and turning, which may more 

greatly contribute to articular cartilage loading and the progression of osteoarthritis. 

      We believe that the most important finding of this study is the increased medial 

displacement of the knee and hip for those with ACLR as this may provide evidence for 

the increased risk for ACL reinjury in this population. As noted previously we observed 

an increase in hip adduction and knee valgus at Initial Ground Contact for both the 

ACLR-Injured Limb group and ACLR-Noninjured Limb groups. We also observed a 

decrease in peak knee varus angle for both groups, and an increase in peak knee valgus 

angle for the ACLR-Noninjred Limb group. We did not observe a significant change for 

peak knee valgus for the ACLR-Injured Limb, but their magnitude of increase was very 

similar to the ACLR-Noninjured Limb group. This observation is in agreement with 

Delahunt et al33, as they observed greater hip adduction and decreased knee varus motion 

for a group of females with ACLR, as compared to a healthy control group. In addition, 

we believe that these alterations in movement may be explained by a continued 

avoidance of loading the reconstructed ACL, as the ACLR-Injured limb group 

demonstrated a significant decrease in anterior tibial shear force, even though they had 

returned to full activity and were on average more than 20 months months post surgery.  
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      An anteriorly directed force on the tibia primarily loads the ACL.34,35 As the anterior 

tibial shear force is meant to represent this force; we may interpret the observed decrease 

in this variable for the ACLR-Injured Limb group as a decrease in loading of the 

reconstructed ACL following injury. This effect was limited to the injured limb of those 

with ACL injury, as we observed no significant change in the ACLR-Noninjured Limb 

group or the Control group over time. Sell et al36 identified significant predictors of 

anterior tibial shear force during a double leg stop jump in a sample of healthy 

individuals. The variables included peak posterior ground reaction force, normalized 

external knee flexion/internal knee extension moment, knee flexion angle, quadriceps 

activation, and gender; increases in these variables as well as being female were 

associated with an increased anterior tibial shear force.36 These findings are important, as 

they can be used to better describe the factors responsible for the decrease in anterior 

tibial shear force associated with the ACLR-Injured limb group. 

      Of the variables identified by Sell et al36, the decrease in anterior tibial shear force we 

observed for the ACLR-Injured Limb group is likely the result of the decreased internal 

knee extension moment we observed for this group as well. We have come to this 

conclusion as we observed no significant difference among groups for peak knee flexion 

angle, and we attempted to control for gender differences in our statistical model. In 

addition, we performed a post hoc analysis of the peak posterior ground reaction force 

and found no difference among groups either (F(2,66) = 0.210, p = 0.811 ). Therefore, of 

the factors predictive of anterior tibial shear force, we can acknowledge that internal knee 

extension moment and quadriceps activation may have resulted in the alterations we 

observed.  
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      Decreased internal knee extension moment has been previously observed in those 

with ACLR.12,18,37,38 As internal knee extension moment is primarily generated by the 

quadriceps muscles to balance an external knee flexion moment during landing, this 

decrease may be an active strategy to reduce loading of the reconstructed ACL or the 

result of reduced capacity of the quadriceps muscles. Internal knee extension moment can 

be altered by landing strategy, as Blackburn and Padua39 demonstrated that landing with 

greater trunk flexion reduced internal knee extension moment in a sample of healthy 

individuals during a single leg drop landing. This was observed in conjunction with a 

decrease in quadriceps activity and peak vertical ground reaction force.39 We did not 

observe any difference among groups for peak vertical ground reaction force, and 

believe, based on the definition of our biomechanical model, any differences in trunk 

flexion would have been observed as an increase in peak hip flexion, which we did not 

observe. Therefore, we believe that the decrease in internal knee extension moment is not 

the result of this specific technique change, and is likely due to deficits in the capacity of 

the quadriceps. Berchuck et al40 first described an avoidance in the use of the quadriceps 

in a group of ACL deficient patients as an attempt minimize anterior loading of the knee. 

Deficits in the ability to activate the quadriceps has been previously observed for those 

with ACLR41 and quadriceps strength has been observed to be important for the 

restoration of normal biomechanics following ACLR.42 Because of the limitations of our 

data collection, we are unable to determine if our observations are the result of either of 

these. However, we did observe an accompanying decrease in peak internal hip flexion 

moment for the ACLR-Injured Limb group. The rectus femoris is a member of the 

quadriceps group that is responsible for both knee extension and hip flexion. It may be 
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reasonable to assume that decreased capacity of the quadriceps, including the rectus 

femoris, would produce the observed deficits in internal knee extension moment and hip 

flexion moment. 

      Whatever the cause for decreased internal knee extension moment, it has important 

implications that can help to explain our observed alterations in frontal plane knee 

kinematics for those with ACLR. The quadriceps and hamstrings muscle groups and their 

resultant knee extension and flexion moments have been demonstrated to be able to resist 

frontal plane loading of the knee.43-46 In particular, co-contraction between the quadriceps 

and hamstrings is able to resist varus and valgus moments acting at the knee, and frontal 

plane loading is decrease when these muscles generate greater knee extension and flexion 

moments.44,45 Given these findings in reference to our observations, a decrease in knee 

extension moment for the ACLR-Injured Limb group could compromise their ability to 

resist frontal plane loading at the knee. As we did not observe any alteration in frontal 

plane loading or peak vertical ground reaction force for this group, we can assume that 

the resultant change in frontal plane motion, decreased peak knee varus angle and a trend 

towards increased peak knee valgus angle, was the result of a compromised ability to 

resist frontal plane moments induced by a decrease in knee extension moment. The effect 

of quadriceps dysfunction on frontal plane motion has been previously observed in 

another population at risk for ACL injury.47 Palmieri-Smith et al47 observed a significant 

association between decreased preparatory activation of the quadriceps and an increased 

peak knee valgus angle in females during landing. We did not observe a significant 

increase in peak knee valgus angle for the ACLR-injured limb group, but our mean 

values following injury were greater than those reported by the authors.47 Though we did 
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not observe differences in knee extension moment at Initial Ground Contact, we believe 

this same mechanism may have been responsible for the increase in knee valgus angle at 

Initial Ground Contact as well. As we mentioned previously, the reported moments at 

Initial Ground Contact should be interpreted with caution as there is minimal loading 

acting on the lower extremity.  

      There was also an increase in hip adduction at Initial Ground Contact for the ACLR-

Injured Limb group. This alteration may be of importance as well, as it could represent an 

attempt to use frontal plane muscles to compensate for the decreased ability of the 

quadriceps to produce knee extension moment. Pollard et al48 made a similar conclusion 

when they observed increased peak knee valgus in a group of healthy females who landed 

with less knee and hip flexion. The less flexed group also demonstrated greater knee 

extension moment and greater knee adduction moment though.48 Our observed 

differences in frontal plane motion both at the hip and knee were present without changes 

in frontal plane moments, and we can only propose this a tentative theory. 

      One component of our results that is not encompassed in this explanation is the 

observed alterations in frontal plane kinematics for the ACLR-Noninjured limb group. It 

is possible that the increase in frontal plane motion at the knee and hip for the ACLR-

Noninjured Limb group is the result of an attempt to match motion between limbs. This 

notion is tempered by the fact that data collected for both ACLR groups consists of two 

separate groups of individuals; therefore, the observed movement patterns may be unique 

to each sample. However, the fact that the kinematic patterns of increased medial 

displacement of the hip and knee at Initial Ground Contact for both the ACLR-Injured 

Limb and ACLR-Noninjured Limb groups, as well as decreased peak knee varus suggests 
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some underlying cause that is driving similar changes in both groups. The ACLR groups 

did not differ in any kinematic variable, other than peak knee valgus angle, however our 

ability to observe changes in peak knee valgus angle in the ACLR-Injured Limb group 

was likely the result of being under powered as a post hoc analysis indicated we would 

have needed to include 14 more participants for the ACLR-Injured Limb group to be 

properly powered (0.80) to detect significant differences.  

      This concept of matching between limbs is supported by previous findings related to 

those with ACLR. In their analysis of variability between the shank and thigh during gait, 

Moraiti et al49 observed alterations in both the injured and noninjured limbs of a sample 

of persons with ACLR. The authors explained these bilateral alterations as an attempt to 

maintain symmetry in movement and variability between limbs for those with ACLR. To 

apply this explanation of our findings, if deficits in the ability to produce internal knee 

extension moment result in alterations in frontal plane motion of injured limb, then to 

maintain symmetry the noninjured limb may do the same despite a no deficit in 

quadriceps capacity of the noninjured limb. This attempt may be supported by our 

observation of a group main effect for internal hip adduction and internal rotation 

moment at Initial Ground Contact for the ACLR-Noninjured Limb group as increases in 

these internal moments would likely result in increased hip adduction and possibly knee 

valgus, as they are attempting to pull the femur in towards midline with the foot planted.  

      Ultimately, we believe that these findings have very important clinical implications. 

This is the first study, other than case reports20,21, that has described measures prior to 

and following ACL injury and subsequent ACLR. Most importantly we have observed 

that not all biomechanical factors return to normal following ACLR, and that alterations 
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in key parameters may increase the risk for subsequent ACL injury. Increased medial 

knee displacement of the knee has been previously identified as a prospective risk factor 

for noncontact ACL injury for both healthy individuals and individuals with ACLR.11,50 

This is important, as individuals who return to physical activity may be doing so with 

poor movement patterns that are placing them at risk for further injury. Our findings 

though, provide insight into how rehabilitation and intervention efforts could be 

improved to minimize reinjury risk. First, our findings indicate that rehabilitation efforts 

should not be focused solely on the injured limb, as the noninjured limb displays 

alterations in movement following injury. Because alterations occur in both limbs, it may 

not be appropriate to solely focus on symmetrical movement between limbs, but rather 

overall quality of motion for both limbs. Second, we believe that promoting efforts to 

regain proper loading of the injured limb after proper graft healing may help mitigate the 

development of movement patterns that may increase the risk for secondary injury. 

Future research will be needed to confirm this notion. Also, we believe that our findings 

provide strong evidence for the need of serial assessment of those at risk for ACL injury 

and those with ACLR. Many of the alterations we observed for the ACLR groups would 

not have been found if they were just compared to the Control group post-injury only. 

Our sample of participants with ACLR were often several months out from surgery, and 

had returned to full physical activity but still displayed altered movement patterns. These 

two factors highlight the need for serial testing prior to and following ACL injury and 

ACLR, and may indicate that those with ACLR need to engage in intermittent programs 

to address faulty movement patterns, as the retention of movement patterns is dependent 

on the duration of the intervention.51,52 Last, we believe that our findings support the 
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proposition that those with ACLR should be considered as an at risk population for ACL 

injury. We observed consistent alterations in movement and loading patterns, despite a 

relatively heterogenous sample related to surgical graft type, and gender. Therefore, it 

appears that once an individual suffers an ACL injury, this factor may trump any others 

thought to predispose these individuals to subsequent injury. 

      Our study is not without limitations. The limitations of our study design prevent us 

from definitive conclusion that the changes we observed for the ACLR groups occurred 

following ACL injury. There were periods of time both between Baseline and ACL 

injury, as well time between the return to physical activity and Follow-Up. There is a 

possibility that the changes we observed occurred prior to ACL injury. The lack of 

change in biomechanics of the Control group, however, strongly supports that the 

changes we observed with this study are the result of ACL injury and ACLR only. The 

consistency of our findings among a relatively heterogenous group of ACLRs also 

strengthens the evidence that these changes are due to injury. In addition, as the ability to 

collect repeated measures on individuals prior to and following injury is quite valuable 

and quite rare, we did not control for the mechanism of injury, type of surgery, or 

rehabilitation program. This was done intentionally in hopes of being able to include as 

many participants as possible without negatively affecting the internal validity of this 

study. The heterogeneity of our study though does increase the ability to apply our 

findings to larger populations.  

      Data collection methods also imposed some limitations for this current study. 

Because biomechanical data were limited to the knee and hip, we cannot comment on the 

potential for changes at the ankle and trunk that may help provide more detailed 
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information regarding our findings. In addition, the collection of unilateral biomechanical 

data of the original JUMP ACL study at Baseline prevented us from being able to capture 

data on the injured limb prior to injury for all participants. Therefore, the information we 

present for the injured and noninjured limb is from two separate groups. The conclusions 

we have drawn from this study are based on the assumption that the patterns observed for 

the injured and noninjured limb are representative of the population of those with ACLR. 

      To conclude, our observations indicate that following ACL injury, physically active 

individuals with ACLR demonstrate an increase in frontal plane displacement of the hip 

and knee during a double leg jump landing. This increase in medial displacement is 

present in both the injured and noninjured limb. In addition, we believe these movement 

patterns are the result of decreased knee extension moment of the injured limb. These 

alterations in movement have been previously identified as prospective risk factors for 

noncontact ACL injury and may help to explain why those with ACLR are at an 

increased risk for secondary ACL injury. 

 

What is already known about this topic 

• Those who suffer an ACL injury, undergo ACLR, and return to physical activity 

are at a increased risk for secondary ACL injury 

• The risk for reinjury is not dependent on the limb previously injured 

• Biomechanical differences of those with ACLR have been observed, and 

prospective risk factors for this population have been identified 

What this study adds 
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• This study provides for the first time, evidence of how lower extremity 

biomechanics change following ACL injury and ACLR in a sample of 

participants 

• Frontal plane displacement of the hip and knee increases following ACL injury in 

both the injured and noninjured limb. This is accompanied by a decrease in knee 

extension moment of the injured limb.  

• These motions have been previously identified as prospective risk factors for 

noncontact ACL injury, and provide initial evidence for why those with ACL 

injury are at an increased risk for secondary injury. 
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Table 1. Participant demographics and antrhopometrics. Units of measure are Age (years), 
Height (cm), and Mass (kg). Values represent means ± standard deviation. 
 

 
 Baseline Follow-Up 

n Age Height Mass Age Height Mass 

ACLR-
INJ 

12 
18.64 ± 0.50 174.10 ± 7.31 72.64 ± 9.48 21.42 ± 0.79 174.29 ± 7.56 76.25 ± 9.95 

(8 m, 4 f) 

ACLR-
NINJ 

19 
18.52 ± 0.58 170.06 ± 9.26 68.99 ± 10.93 21.47 ± 0.77 170.05 ± 9.13 72.87 ± 12.78 

(9 m, 10 f) 

Control 
39 

18.48 ± 0.46 172.56 ± 9.10 70.17 ± 12.96 20.98 ± 0.73 172.73 ± 8.99 73.11 ± 13.16 
(20 m, 19 f) 
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Table 2. Group chronological descriptives. Unit of measure is days and values presented 
represent group mean ±  standard deviation 
 

 
Baseline to Follow-

Up 
Baseline to Injury Injury to Surgery Surgery to Follow-Up 

ACLR-Injured Limb 1,074.42 ± 197.28 367.73 ± 156.06 33.70 ± 20.29 666.90 ± 209.24 

ACLR-Noninjured Limb 1,247.68 ± 179.04 533.33 ± 267.97 40.39 ± 24.92 691.06 ± 243.01 

Control 1,077.59 ± 180.34 - - - 
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Table 3. Descriptive statistics for bilateral difference of anterior knee laxity assessed using 
KT-1000, Marx Activity score, and KOOS for each group. Values represent mean ± standard 
deviation, and units of measure other than anterior laxity (mm) are scale dependent. 

 
   KOOS 

 Bilateral 
Difference 
Anterior 

Laxity (mm) 

Marx 
Activity 

Total Score 
Pain Symptom ADL Sport/Rec QOL 

ACLR-INJ   1.9 ± 1.1 13.92 ± 2.75 84.75 ± 9.97 71.50 ± 13.16 93.00 ± 7.20 80.42 ± 16.16 65.63 ± 20.90 
ALCR-NINJ 2.5 ± 1.8 11.21 ± 4.57 86.95 ± 11.62 73.42 ± 15.85 96.74 ± 5.05 78.42 ± 17.72 71.71 ± 22.57 
Control  1.1 ± 0.8 11.05 ± 3.03 96.26 ± 5.06 92.54 ± 8.71 98.82 ± 2.09 93.97 ± 10.27 90.87 ± 14.04 

*Laxity measures were not obtained for 3 members of the Control group, 1 member of the 
ACLR-Noninjured Limb group 
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Table 4. Descriptive statistics for knee and hip kinematics (°) at Initial Ground Contact for 
Baseline (PRE) and Follow-Up (POST) 
 

 
  Control ACLR-Noninjured Limb ACLR-Injured Limb 

    Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Knee 
Sag 

PRE 19.81 ± 5.69 (17.99, 21.63) 17.90 ± 5.69 (15.29, 20.51) 18.82 ± 5.72 (15.52, 22.12) 

POST 18.02 ± 7.21 (15.72, 20.33) 16.69 ± 7.22 (13.38, 19.99) 16.28 ± 7.26 (12.10, 20.46) 

Knee 
Frt 

PRE 0.96 ± 6.50 (-1.12, 3.04) 1.33 ± 6.51 (-1.65, 4.31) 2.61 ± 6.54 (-1.16, 6.38) 

POST -0.49 ± 5.75 (-2.33, 1.35) -4.84 ± 5.76 (-7.48, -2.20) -4.22 ± 5.78 (-7.55, -0.89) 

Knee 
Trv 

PRE -2.56 ± 7.88 (-5.08, -0.04) -3.43 ± 7.89 (-7.05, 0.18) -0.80 ± 7.93 (-5.37, 3.77) 

POST -2.74 ± 7.30 (-5.07, -0.41) -4.75 ± 7.31 (-8.10, -1.40) -2.23 ± 7.35 (-6.46, 2.00) 

Hip 
Sag 

PRE -33.16 ± 9.01 (-36.04, -30.28) -26.33 ± 9.02 (-30.47, -22.20) -31.42 ± 9.07 (-36.64, -26.19) 

POST -29.95 ± 10.49 (-33.30, -26.60) -29.67 ± 10.51 (-34.48, -24.85) -30.07 ± 10.56 (-36.16, -23.99) 

Hip 
Frt 

PRE -9.95 ± 6.60 (-12.06, -7.84) -9.00 ± 6.61 (-12.03, -5.98) -11.12 ± 6.64 (-14.95, -7.30) 

POST -6.81 ± 9.59 (-9.87, -3.74) 0.41 ± 9.61 (-3.99, 4.81) 0.02 ± 9.65 (-5.54, 5.59) 

Hip 
Trv 

PRE -1.85 ± 6.28 (-3.86, 0.16) -1.99 ± 6.29 (-4.87, 0.89) -2.12 ± 6.32 (-5.77, 1.52) 

POST -3.17 ± 6.40 (-5.22, -1.13) -4.13 ± 6.41 (-7.06, -1.19) -4.18 ± 6.44 (-7.89, -0.47) 

*Values for descriptive statistics are based on Gender entered as a covariate in the 
statistical model at a value of 0.53 
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Table 5.  Descriptive statistics for knee and hip moments (Nm/BHxBW) and kinetics (N/BW) 
at Initial Ground Contact for Baseline (PRE) and Follow-Up (POST) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  CONTROL ACLR-Noninjured Limb ACLR-Injured Limb 

    Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Knee 
Sag  

 

PRE 0.00 ± 0.02 (-0.01, 0.01) 0.01 ± 0.02 (0.00, 0.03) 0.01 ± 0.02 (-0.00, 0.02) 

POST 0.03 ± 0.03 (0.02, 0.04) 0.04 ± 0.03 (0.02, 0.05) 0.01 ± 0.03 (-0.01, 0.03) 

Knee 
Frt  

 

PRE 0.02 ± 0.02 (0.01, 0.03) 0.03 ± 0.02 (0.02, 0.03) 0.02 ± 0.02 (0.01, 0.03) 

POST 0.01 ± 0.02 (0.00, 0.01) 0.01 ± 0.02 (0.01, 0.02) 0.00 ± 0.02 (-0.01, 0.01) 

Knee 
Trv  

 

PRE -0.01 ± 0.01 (-0.01, -0.00) -0.01 ± 0.01 (-0.01, -0.00) -0.01 ± 0.01 (-0.01, -0.00) 

POST -0.00 ± 0.01 (-0.01, 0.00) -0.01 ± 0.01 (-0.01, -0.00) -0.00 ± 0.01 (-0.01, 0.00) 

Hip 
Sag  

 

PRE -0.02 ± 0.07 (-0.04, 0.00) 0.03 ± 0.07 (0.00, 0.06) 0.03 ± 0.07 (-0.01, 0.07) 

POST 0.04 ± 0.08 (0.02, 0.07) 0.07 ± 0.08 (0.04, 0.11) -0.00 ± 0.08 (-0.05, 0.05) 

Hip 
Frt  

 

PRE 0.03 ± 0.05 (0.02, 0.05) 0.06 ± 0.05 (0.03, 0.080) 0.05 ± 0.05 (0.02, 0.08) 

POST 0.01 ± 0.05 (-0.00, 0.03) 0.04 ± 0.05 (0.02, 0.06) 0.02 ± 0.05 (-0.01, 0.04) 

Hip 
Trv  

 

PRE 0.02 ± 0.02 (0.01, 0.03) 0.02 ± 0.02 (0.01, 0.03) 0.02 ± 0.02 (0.01, 0.03) 

POST 0.00 ± 0.02 (-0.00, 0.01) 0.02 ± 0.02 (0.02, 0.03) 0.01 ± 0.02 (-0.00, 0.02) 

ATSF 
 

PRE -0.03 ± 0.17 (-0.08, 0.02) -0.12 ± 0.17 (-0.20, -0.05) -0.10 ± 0.17 (-0.20, -0.01) 

POST -0.16 ± 0.22 (-0.23, -0.09) -0.24 ± 0.22 (-0.34, -0.14) -0.06 ± 0.22 (-0.18, 0.07) 

VGRF 
 

PRE 0.12 ± 0.05 (0.10, 0.13) 0.11 ± 0.05 (0.09, 0.13) 0.12 ± 0.05 (0.09, 0.150) 

POST 0.09 ± 0.03 (0.08, 0.10) 0.08 ± 0.03 (0.06, 0.09) 0.09 ± 0.03 (0.08, 0.11) 

*Values for descriptive statistics are based on Gender entered as a covariate in the 
statistical model at a value of 0.53 
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Table 6. Descriptive statistics for peak knee and hip kinematics (°) at Landing Phase for 
Baseline (PRE) and Follow-Up (POST) 
 

 
  CONTROL ACLR-Noninjured Limb ACLR-Injured Limb 

    Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Knee 
FLX 

PRE 84.26 ± 13.49 (79.95, 88.58) 78.51 ± 13.51 (72.32, 84.69) 79.65 ± 13.58 (71.82, 87.47) 

POST 92.58 ± 16.23 (87.39, 97.77) 90.86 ± 16.25 (83.41, 98.30) 85.55 ± 16.33 (76.14, 94.96) 

Knee 
EXT 

PRE 19.82 ± 5.66 (18.01, 21.63) 16.84 ± 5.67 (14.25, 19.43) 18.64 ± 5.69 (15.36, 21.92) 

POST 18.16 ± 7.20 (15.85, 20.46) 16.69 ± 7.21 (13.39, 20.00) 16.24 ± 7.25 (12.06, 20.42) 

Knee 
VRS 

PRE 6.69 ± 7.43 (4.32, 9.07) 9.27 ± 7.44 (5.86, 12.67) 7.48 ± 7.48 (3.17, 11.79) 

POST 6.21 ± 7.10 (3.94, 8.48) 0.55 ± 7.11 (-2.71, 3.81) 1.28 ± 7.14 (-2.84, 5.40) 

Knee 
VLG 

PRE -7.90 ± 8.18 (-10.52, -5.28) -5.26 ± 8.19 (-9.01, -1.51) -6.57 ± 8.23 (-11.32, -1.83) 

POST -6.97 ± 7.73 (-9.44, -4.50) -11.61 ± 7.74 (-15.16, -8.07) -11.70 ± 7.78 (-16.18, -7.22) 

Knee 
IR 

PRE 9.18 ± 8.66 (6.41, 11.95) 9.29 ± 8.67 (5.32, 13.26) 12.33 ± 8.72 (7.31, 17.35) 

POST 17.10 ± 8.23 (14.47, 19.73) 9.30 ± 8.24 (5.53, 13.07) 13.24 ± 8.28 (8.47, 18.01) 

Knee 
ER 

PRE -7.31 ± 8.84 (-10.14, -4.48) -9.28 ± 8.85 (-13.34, -5.23) -4.95 ± 8.90 (-10.08, 0.17) 

POST -4.21 ± 6.45 (-6.27, -2.15) -8.24 ± 6.45 (-11.19, -5.28) -4.61 ± 6.49 (-8.35, -0.87) 

Hip 
EXT 

PRE -33.12 ± 9.02 (-36.00, -30.23) -26.09 ± 9.03 (-30.22, -21.95) -31.10 ± 9.07 (-36.32, -25.87) 

POST -29.41 ± 10.42 (-32.74, -26.08) -29.61 ± 10.43 (-34.39, -24.83) -30.00 ± 10.48 (-36.04, -23.96) 

Hip 
FLX 

PRE -72.63 ± 18.71 (-78.61, -66.64) -63.46 ± 18.74 (-72.04, -54.88) -67.15 ± 18.83 (-78.00, -56.30) 

POST -79.14 ± 21.23 (-85.93, -72.36) -76.86 ± 21.26 (-86.60, -67.12) -73.80 ± 21.37 (-86.12, -61.48) 

Hip 
ADD 

PRE 1.49 ± 8.58 (-1.26, 4.23) 0.88 ± 8.59 (-3.06, 4.81) 0.49 ± 8.63 (-4.49, 5.47) 

POST -1.72 ± 8.14 (-4.32, 0.89) 4.18 ± 8.15 (0.44, 7.91) 4.24 ± 8.19 (-0.49, 8.96) 

Hip 
ABD 

PRE -13.11 ± 8.18 (-15.72, -10.49) -12.06 ± 8.19 (-15.81, -8.30) -14.10 ± 8.23 (-18.85, -9.36) 

POST -15.32 ± 8.74 (-18.11, -12.52) -9.96 ± 8.76 (-13.97, -5.95) -8.90 ± 8.80 (-13.97, -3.83) 

Hip IR PRE 6.89 ± 6.34 (4.87, 8.92) 8.86 ± 6.35 (5.95, 11.77) 6.31 ± 6.38 (2.64, 9.99) 

POST 7.19 ± 9.14 (4.27, 10.12) 2.93 ± 9.15 (-1.27, 7.12) 3.89 ± 9.20 (-1.41, 9.19) 

Hip ER 
  

PRE -6.01 ± 6.37 (-8.05, -3.98) -5.05 ± 6.38 (-7.97, -2.12) -6.84 ± 6.41 (-10.53, -3.14) 

POST -6.50 ± 7.19 (-8.80, -4.20) -10.69 ± 7.20 (-13.99, -7.40) -7.13 ± 7.24 (-11.30, -2.96) 

*Values for descriptive statistics are based on Gender entered as a covariate in the 
statistical model at a value of 0.53 
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Table 7. Descriptive statistics for knee moments (Nm/BHxBW) and kinetics (N/BW) at 
Landing  Phase (PRE) and Follow-Up (POST) 
 

 
  CONTROL ACLR-Noninjured Limb ACLR-Injured Limb 

  Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Knee EXT 
 

PRE -0.206 ± 0.055 (-0.224, -0.189) -0.219 ± 0.055 (-0.245, -0.194 -0.234 ± 0.056 (-0.266, -0.202) 

POST -0.204 ± 0.043 (-0.217, -0.190) -0.214 ± 0.043 (-0.234, -0.194) -0.169 ± 0.044 (-0.194, -0.144) 

Knee FLX 
PRE 0.021 ± 0.043 (0.008, 0.035) 0.057 ± 0.043 (0.037, 0.077) 0.038 ± 0.044 (0.013, 0.063) 

POST 0.046 ± 0.034 (0.035, 0.057) 0.053 ± 0.034 (0.037, 0.069) 0.050 ± 0.034 (0.030, 0.070) 

Knee 
VLG 

 

PRE -0.064 ± 0.037 (-0.076, -0.052) -0.087 ± 0.037 (-0.104, -0.070) -0.074 ± 0.038 (-0.095, -0.052) 

POST -0.045 ± 0.027 (-0.053, -0.036) -0.055 ± 0.027 (-0.067, -0.042) -0.044 ± 0.027 (-0.060, -0.029) 

Knee VRS 
 

PRE 0.061 ± 0.026 (0.053, 0.069) 0.057 ± 0.026 (0.045, 0.069) 0.064 ± 0.026 (0.049, 0.079) 

POST 0.063 ± 0.027 (0.055, 0.072) 0.067 ± 0.027 (0.054, 0.079) 0.055 ± 0.027 (0.039, 0.070) 

Knee ER 
 

PRE -0.046 ± 0.023 (-0.053, -0.038) -0.040 ± 0.023 (-0.050, -0.029) -0.044 ± 0.024 (-0.058, -0.030) 

POST -0.056 ± 0.019 (-0.063, -0.050) -0.049 ± 0.019 (-0.058, -0.040) -0.037 ± 0.020 (-0.049, -0.026) 

Knee IR 
 

PRE 0.043 ± 0.022 (0.036, 0.050) 0.045 ± 0.022 (0.035, 0.055) 0.049 ± 0.022 (0.037, 0.062) 

POST 0.031 ± 0.021 (0.024, 0.038) 0.044 ± 0.021 (0.034, 0.053) 0.037 ± 0.021 (0.025, 0.049) 

ATSF 
 

PRE 1.070 ± 0.319 (0.968, 1.172) 1.192 ± 0.319 (1.046, 1.339) 1.247 ± 0.321 (1.062, 1.432) 

POST 1.134 ± 0.244 (1.056, 1.212) 1.185 ± 0.245 (1.073, 1.297) 0.923 ± 0.246 (0.781, 1.065) 

VGRF 
 

PRE 3.094 ± 1.016 (2.769, 3.418) 3.254 ± 1.017 (2.788, 3.720) 3.188 ± 1.022 (2.599, 3.777) 

POST 2.726 ± 0.761 (2.482, 2.969) 3.084 ± 0.762 (2.735, 3.433) 3.114 ± 0.765 (2.673, 3.555) 

*Values for descriptive statistics are based on Gender entered as a covariate in the statistical 
model at a value of 0.53 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 202 

Table 8. Descriptive statistics for hip moments (Nm/BHxBW) at Landing  Phase (PRE) and 
Follow-Up (POST) 
 

 
  CONTROL ACLR-Noninjured Limb ACLR-Injured Limb 

  Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Hip 
Flexion 

 

PRE -0.214 ± 0.103 (-0.247, -0.181) -0.254 ± 0.103 (-0.301, -0.206) -0.256 ± 0.104 (-0.316, -0.196) 

POST -0.205 ± 0.067 (-0.227, -0.184) -0.216 ± 0.067 (-0.247, -0.185) -0.138 ± 0.068 (-0.177, -0.099) 

Hip 
Extension 

 

PRE 0.251 ± 0.127 (0.210, 0.292) 0.255 ± 0.128 (0.197, 0.314) 0.229 ± 0.128 (0.155, 0.303) 

POST 0.202 ± 0.091 (0.172, 0.231) 0.193 ± 0.091 (0.151, 0.235) 0.240 ± 0.092 (0.187, 0.293) 

Hip 
Abduction 

 

PRE -0.131 ± 0.065 (-0.152, -0.111) -0.153 ± 0.065 (-0.183, -0.123) -0.171 ± 0.065 (-0.209, -0.134) 

POST -0.108 ± 0.068 (-0.130, -0.086) -0.141 ± 0.068 (-0.173, -0.110) -0.102 ± 0.068 (-0.142, -0.063) 

Hip 
Adduction 

 

PRE 0.137 ± 0.067 (0.115, 0.158) 0.149 ± 0.068 (0.118, 0.180) 0.145 ± 0.068 (0.106, 0.184) 

POST 0.140 ± 0.054 (0.123, 0.157) 0.124 ± 0.054 (0.099, 0.149) 0.091 ± 0.054 (0.060, 0.122) 

Hip ER 
 

PRE -0.085 ± 0.052 (-0.101, -0.068) -0.095 ± 0.052 (-0.119, -0.071) -0.099 ± 0.053 (-0.129, -0.069) 

POST -0.052 ± 0.033 (-0.063, -0.042) -0.078 ± 0.033 (-0.093, -0.063) -0.055 ± 0.033 (-0.074, -0.036) 

Hip IR 
 

PRE 0.076 ± 0.029 (0.067, 0.086) 0.068 ± 0.029 (0.054, 0.081) 0.069 ± 0.029 (0.052, 0.086) 

POST 0.060 ± 0.031 (0.050, 0.069) 0.068 ± 0.031 (0.054, 0.082) 0.048 ± 0.031 (0.030, 0.065) 

*Values for descriptive statistics are based on Gender entered as a covariate in the statistical 
model at a value of 0.53 
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Figure 1. Description of Participant Enrollment from the JUMP ACL Cohorts of 2007 and 
2008 
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Figure 2. Double Leg Jump Landing. Participants were required to stand atop a box located a 
distance equal to one half of their body height from the front edge of the force plate, jump 
forward, land with their foot completely on the force plate, and then immediately make a 
vertical jump for maximum height. 
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APPENDIX C. MANUSCRIPT 2 

Coordination of the Hip and Knee During a Double Leg Jump Landing Are Altered 

By ACL Injury: The JUMP ACL Study 

(Clinical Biomechanics) 

Background: Those with ACLR are at an increased risk for secondary ACL injury and 

the development of osteoarthritis. Previous work has identified differences in lower 

extremity biomechanics and joint coordination in this population. The purpose of this 

study was to compare joint coordination prior to and following ACL injury to better 

understand the effect of ACL injury on lower extremity joint coordination. 

Methods: 69 participants (12 ACLR-Injured Limb, 19 ACLR-Noninjured Limb, 38 

Control) who were part of the JUMP ACL cohort were included in this analysis. Average 

coupling angle between the hip and knee in the sagittal, frontal, and transverse plane was 

calculated, as well as interaction in the frontal and transverse planes during a double-leg 

jump landing prior to (Baseline) and following ACL injury (Follow-Up).  

Findings:  We observed a significant change in the average coupling angle of the hip and 

knee in the transverse plane that indicated the ACLR-Injured Limb group had more equal 

relative motion between the two joints following ACL injury and ACLR. 

Interpretation: Based on the findings we observed, it appears that ACL injury and ACLR 

result in altered coordination of the hip and knee rotation, most likely associated with 

decreased independence of knee rotation. This is in agreement with previous research that 

has identified alteration in knee rotation of those with ACLR and may have implications 

for the progression of knee osteoarthritis. 
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INTRODUCTION 

      An increased incidence of secondary ACL injury has been reported for individuals 

with a previous history of ACL injury and subsequent reconstructive surgery (ACLR).1-3 

The incidence of injury for these individuals when they return to physical activity is 

between 6-25%.3-6 Their risk for reinjury is 5-15 times higher for ACL injury as 

compared to those who have no history of ACL injury1-3, and the risk for reinjury is not 

dependent on the previously injured limb.6 In addition to the risk of secondary ACL 

injury, an increased prevalence of knee osteoarthritis has also been previously observed 

for this population.7,8 The risk for reinjury and the potential sequelae of poor outcomes 

leading to the development of knee osteoarthritis highlights the need for a better 

understanding of how to improve care and treatment for these injuries.  

      Previous work has been conducted to identify the unique characteristics of those with 

ACLR and have identified differences when compared to healthy individuals9-12 as well 

as between limbs.11-16 Those with ACLR, in general demonstrate differences associated 

with decreased loading of the reconstructed knee. These studies provide useful 

information, but have isolated particular biomechanical variables for analysis. This 

isolation may provide a limited view, as movement between multiple joints in multiple 

planes has to be coordinated for successful execution of movement. Assessment of the 

relative coordination of movement between joints or segments may provide a more global 

view of how individuals with ACLR coordinate movement. 

      Work in the area of movement coordination and ACL injury has been previously 

conducted. This work has focused on individuals after ACLR17,18 or for individuals 

thought to be at an increased risk for injury (i.e. females).19 These studies are again 
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useful, but limited, as they have to be interpreted with the assumption that any differences 

that are present in those with ACLR are the result of ACL injury and ACLR. As such, the 

influence of ACL injury and subsequent ACLR on movement coordination is not truly 

known. Such analyses would provide better evidence for the coordination patterns that 

are the result of ACL injury itself, and not unique to the individual. Therefore, the 

purpose of this study was to address this limitation by comparing the coordination of the 

hip and knee during a double leg jump landing prior to and following ACL injury and 

subsequent ACLR.  

  

METHODS 

Participants 

      Participants for this study were recruited from the Joint Undertaking to Monitor and 

Prevent ACL Injury (JUMP ACL) Project. The JUMP ACL Project is a multi-year 

prospective study conducted with members of the United States’ service academies. The 

purpose of this project was to identify risk factors for noncontact ACL injury and 

included collection of lower extremity biomechanics, isometric strength, and posture, as 

well as detailed orthopaedic and physical activity information. Measures were collected 

on a sample of each incoming class between 2004 and 2009, and participants were 

followed during their enrollment at their respective service academy for ACL injury. 

      For the purposes of this study, we wanted to collect biomechanical measures on 

participants that had injured their ACL during enrollment in the JUMP ACL study, as 

well as a group of healthy matched control participants. Identification of participants for 

follow up testing was limited to those members of the 2007 and 2008 cohorts. Selection 
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was also limited to those that had complete biomechanical data from their initial 

enrollment in the study, and were currently enrolled in their respective service academy 

and the JUMP ACL project. In addition, healthy matched controls were identified based 

on the criteria of matching the Cases for cohort year, service academy, and sex. Details 

regarding the enrollment of participants can be found in Figure 1. 

Procedures 

      At the time of initial enrollment for the JUMP ACL project (Baseline) and during 

data collection for follow up analysis (Follow-Up), each participant read and signed an 

informed consent, had anthropometric information (height and mass) and demographic 

information recorded (age, sex). They were also asked at Follow-Up to complete the 

Marx Activity Scale20, Knee Injury and Osteoarthritis Outcome Score (KOOS)21, and 

have anterior knee laxity assessed bilaterally22, prior to performing a double leg jump 

landing (Figure 2) during which data for lower extremity biomechanics were collected. 

The task required participants to stand atop a 30 cm high box located a distance from the 

edge of a force plate equal to half their height, jump forward from the box, landing with 

the foot of their instrumented leg completely on the force plate, and upon landing 

immediately make a maximal effort vertical jump. Trials were excluded and repeated if 

participants didn’t land with the foot of the instrumented limb completely on the force 

plate, the foot of the other limb made contact with the force plate, or if the participant 

hesitated between the landing and vertical jump phases of the task. 

      Biomechanical data during the double leg jump landing was collected on the 

instrumented limb using an electromagnetic tracking system (Ascension Technologies 

Inc., Burlington, VT) integrated with a non-conductive force plate (Bertec Co., 
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Columbus, OH, USA). All biomechanical data collection was facilitated by the use of the 

Motion Monitor Software (Innovative Sports Training, Inc., Chicago, IL, USA). Prior to 

completion of the double leg jump landing, all participants were instrumented so that 

electromagnetic sensors were affixed to the shank and thigh of the test limb, and pelvis. 

The sensor for the shank was placed on the skin overlying the medial tibia, the thigh 

sensor on the mid portion of the lateral thigh and affixed with double sided tape and 

secured with overlying athletic tape. The pelvis sensor was affixed to the sacrum at the 

mid point between the posterior superior iliac spines with double sided tape and held in 

place with an elastic belt. Sensor placement and procedures were performed to minimize 

the introduction of motion artifact during the jump landing and were consistent between 

Baseline and Follow-Up testing sessions. 

      Following placement of the electromagnetic sensors, a model of the lower extremity 

was constructed through digitization of the medial and lateral malleoli, medial and lateral 

femoral epicondyles, and the anterior superior iliac spines using a moveable sensor. 

These landmarks were used to define the ankle joint center, knee joint center, and hip 

joint center respectively.23 Shank, thigh, and pelvis segments were defined based on the 

use of the joints as segment endpoints and the respective electromagnetic sensors. Local 

right-handed segment axis systems were embedded into each segment, the orientation of 

which coincided with the global axis system (positive z-axis coincided with the vertical 

direction, positive x-axis coincided with the anterior direction of the participant, and the 

positive y-axis was defined relative to the positive x-axis as a vector coinciding with a 

90° positive rotation about the z-axis). 
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      Kinematic and kinetic data were sampled at a frequency of 144 Hz and 1,444 Hz, 

respectively. All data acquisition procedures were consistent between Baseline and 

Follow-Up sessions. 

 

Data Reduction 

      Prior to data exportation, all trials of interest from Baseline and Follow-Up were 

visually inspected for data collection errors not detected at the time of collection to 

ensure the quality of the biomechanical model. Three trials from Baseline and Follow-Up 

data collection were selected for calculation of measures of interest. The measures of 

interest for this analysis included sagittal, frontal, and transverse plane motion at the hip 

and knee, as well as the vertical ground reaction force data. Hip kinematics were defined 

as the motion of the thigh segment relative to the pelvis, and knee kinematics as the 

shank segment relative to the thigh. An Euler sequence of Y, X, Z was used to define 

orientation of the relative segments and calculate hip and knee angles, such that a first 

rotation occurred about the y-axis, second rotation about the x-axis, and the third rotation 

about the z-axis. All kinematic data were filtered using a 4th order Butterworth filter (14.5 

Hz), and all data were exported using the Motion Monitor software. 

      For the purposes of this study we were interested in describing the change in the 

relative coordination of the movement of the hip and knee prior to and following ACL 

injury during a double leg jump landing task. We were interested in the time period of 

landing during the jump landing, defined as the time point from initial ground contact 

(vertical ground reaction force first exceeded 10N) to the time point of maximum knee 

flexion. Time series data for hip and knee angles in all three planes were extracted for 
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each trial during the landing phase. Each series of data was normalized to 101 data 

points.  

      Angle-angle plots were generated for each coordination interaction of interest: Hip 

Sagittal Plane – Knee Sagittal Plane, Hip Frontal Plane – Knee Frontal Plane, Hip 

Transverse Plane – Knee Transverse Plane, Hip Frontal Plane – Knee Transverse Plane, 

and Hip Transverse Plane – Knee frontal Plane. Plots were generated such that the 

horizontal axis corresponded with the relative motion of the proximal joint (hip) and the 

vertical axis as the relative motion of the distal joint (knee) (Figure 3). Joint coordination 

was defined based on quantification of the coupling angle between the hip and knee for 

each angle-angle plot based on techniques previously used by Heiderscheit et al24 and 

Ferber et al.25 This technique calculated an angle between the horizontal axis of the graph 

and a vector connecting two subsequent data points of the angle-angle plot. The absolute 

value of this angle was calculated so that the resulting coupling angles ranged from 0°-

90° to allow the use of standard parametric statistics rather than circular statistics.25 

Using our conventions, an average coupling angle value of 45° represents equal relative 

motion between the two joints, a value greater than 45° represents greater relative motion 

of the knee, and a value less than 45° represents greater relative motion of the hip. This 

procedure was completed for each subsequent data point of the angle-angle plot and the 

average of the values was calculated. This procedure was performed for each trial, and an 

average value was calculated for the three trials. All calculations were performed using a 

customized MATLAB program (Mathworks, Inc., Natick, MA). 
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Statistical Analyses 

      Prior to statistical analysis, each variable was assessed for normality to ensure proper 

use of parametric tests and to identify potential statistical outliers. This included the 

calculation of Z-scores for the skewness and kurtosis of each variable, and those with 

values with a value greater than 1.96 were identified for further analysis including 

plotting of standardized residuals and box plots to characterize normality and identify 

outliers. If statistical outliers were identified statistical procedures were conducted with 

and without values for the outliers included in the analysis. The potential outliers 

remained in the final data set if no change in statistical significance of main effects or 

interaction effects resulted. Results that were altered by removal were further analyzed 

for any potential errors in data collection or inaccuracy in the biomechanical model. To 

retain as many participants in the analysis as possible, any trials that demonstrated 

collection errors were removed such that some participants may have a mean value 

calculated from fewer than 3 trials.  

      To assess the effect of ACL injury on coordination of the hip and knee five 3x2 

(Group: ACLR-Injured Limb, ACLR-Noninjured Limb, Control; Time: Baseline, 

Follow-Up) mixed model analyses of covariance were performed. Because of the relative 

difference in proportions of males and females in each group, sex was entered as a 

covariate for each analysis. Post hoc analyses consisted of Tukey’s HSD and were 

implemented for any significant interaction effect or group main effect. An a priori alpha 

level of 0.05 was set for all analyses, and all statistical analyses were conducted using 

IBM SPSS v19 (SPSS, Inc., an IBM company, Chicago, IL). 
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RESULTS 

Data Outlier & Normality Check 

      Our procedures to identify outliers and check normality of the dependent variables to 

ensure proper application of parametric statistics identified two variables as potentially 

nonparametric, Hip Sagittal Plane – Knee Sagittal Plane at Follow-Up and Hip 

Transverse Plane – Knee Frontal Plane at Follow-Up. Potential statistical outliers were 

identified, and when the values for the respective participants were removed it did not 

change the interpretation of the findings for this analysis. Therefore, the participants and 

their representative three trial averages were retained in the analysis. One participant 

from the Control group was eliminated from data analysis because of excessive motion 

artifact at the time of initial ground contact for all three trials, leaving 38 participants for 

the Control Group. Demographics and anthropometrics for each group at Baseline and 

Follow-Up are summarized in Table 1 and Table 2. Graft type was not obtained for 5 

members of the ACLR-Injured Limb group, and 6 of the ACLR-Noninjured Limb group. 

For the ACLR-Injured Limb group 3 had a bone-patella tendon-bone autograft and 4 had 

a hamstrings autograft. For the ACLR-Noninjured Limb group 5 had a bone-patella 

tendon-bone graft, 7 had a hamstring autograft, and one had an Achilles tendon allograft. 

Descriptive statistics for anterior knee laxity, Marx Activity Score, and KOOS are 

provided in Table 3. 
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Lower Extremity Coordination 

      We observed a significant Time x Group interaction for Hip Transverse Plane – Knee 

Transverse Plane (F(2,65) = 4.398, p = 0.016) coupling angle. Post hoc analyses revealed 

there were no differences among the groups at the time of Baseline testing. However, the 

ACLR-Injured Limb group had a significant change in Hip Transverse Plane – Knee 

Transverse Plane coordination from Baseline to Follow-Up.  Specifically, there was a 

shift of less knee rotation relative to hip rotation (Baseline: 54.847 (50.837, 58.858); 

Follow-Up: 47.973 (44.147, 51.800)). The relative coordination of hip and knee motion 

in the transverse plane for the ACLR-Injured Limb group at Follow-Up was significantly 

different than the Control group (54.779 (52.644, 56.915)). After ACL injury, the ACLR-

Injured Limb group demonstrated a decrease in the relative knee motion, and 

demonstrated more equal transverse plane motion of the hip and knee. There were no 

other significant interactions: Hip Sagittal Plane – Knee Sagittal Plane (F(2,65) = 0.850, p 

= 0.432), Hip Frontal Plane – Knee Frontal Plane (F(2,65) = 0.247, p = 0.782), Hip Frontal 

Plane – Knee Transverse Plane (F(2,65) = 2.678, p = 0.076), and Hip Transverse Plane – 

Knee Frontal Plane (F(2,65) = 0.025, p = 0.975). 

      A time main effect was observed for Hip Frontal Plane – Knee Transverse Plane 

(F(1,65) = 4.789, p = 0.032). When groups were collapsed across time, the change in values 

for each coordination variable indicated that there was a shift towards more hip motion 

relative to knee motion at Follow-Up as compared to Baseline. No other time main 

effects were observed, and no group main effects were observed. Descriptive statistics for 

each variable of interest is provided in Table 4. 
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DISCUSSION 

    The primary finding of this study indicates that ACL injury and subsequent ACLR 

causes a change in the relative coordination of hip rotation and knee rotation during a 

double leg jump landing. We observed no other changes in coordination across the hip 

and knee joint planes. In addition, these alterations were limited to the injured limb. This 

observation cannot be directly compared to any previous findings, as this is the first time, 

to our knowledge, that coordination measures have been compared prior to and following 

ACL injury and subsequent ACLR. Alterations in coordination of those with ACLR have 

been previously observed, though.17,18 Both Van Uden et al17 and Kurz et al18 observed 

alterations in sagittal plane coordination of the lower extremity as assessed by continuous 

relative phase methods for those with ACLR during single leg hopping and gait, 

respectively. Differences in the variability of coordination between the thigh and shank in 

the transverse plane were previously observed between healthy males and females by 

Pollard et al19 during a side-step cutting task. Direct comparison of our findings is not 

appropriate as we did not compare differences between genders and we did not measure 

coordination variability between the two joints. Their findings do though provide some 

support for our findings of alterations in transverse plane coordination of the hip and knee 

after ACL injury.  

      This shift in transverse plane coordination may help to expand our current 

understanding as to why those with ACLR are at an increased risk for reinjury and knee 

osteoarthritis. These findings are of clinical importance as alterations in knee rotation 

observed following ACL injury have been thought to influence loading of articular 

cartilage and influence the risk for the development of osteoarthritis.26 Following ACL 



 221 

injury, we observed more equal motion between the hip and knee in the transverse plane, 

with a shift towards more hip rotation relative to knee rotation for the members of the 

ACLR-Injured Limb group following ACL injury. Examining the angle-angle plots for 

these measures at Baseline (Figure 4) and Follow-Up (Figure 5) for the ACLR-Injured 

Limb group, some inferences about the relative change in coordination can be made. At 

Baseline, it appears that a majority of the initial transverse plane motion during landing 

was produced by the knee, indicated by the sharp near vertical trajectory of the plot. 

Greater knee rotation is present for the plot at Follow-Up as well, but the rise is not as 

dramatic because of an accompanying increase along the horizontal axis. This indicates 

that the ACLR-Injured Limb group used more hip rotation during initial landing at 

Follow-Up. This greater hip rotation is present throughout landing phase at Follow-Up, 

and is indicated by an increase in the length of the plot along the horizontal axis. We 

believe that this indicates greater coordination between the hip and knee in the transverse 

plane, and may represent a loss of independence of knee rotation post ACLR. 

      Differences in the magnitude of knee rotation among those with ACLR have been 

previously reported.14,15,27-32 There has been conflicting observations for alterations in 

tibial rotation, with several authors observing a decrease in tibial internal rotation15,27,28 or 

greater external rotation offset14,29, and increased tibial internal rotation.30-32 These 

studies have included a mix of tasks that have incorporated large transverse plane motion 

with a pivoting aspect, and more horizontally directed tasks such as ours. Of those that 

have quantified the amount of tibial rotation over a specified time period27,28,30-32, the 

majority have observed an increase in tibial rotation associated with ACLR. The 

exceptions are Webster et al27 as they observed a decrease in tibial rotation range of those 
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with ACLR, and Webster and Feller28 who observed no difference among groups for 

tibial internal rotation range. This is of importance for considering our results as Webster 

and Feller28 analyzed tibial rotation during a single leg horizontal hop and single leg 

vertical drop, and the other studies included pivoting components that required transverse 

plane motion to complete. The authors did note that internal rotation range was less for 

those with ACLR than healthy control groups, but their findings did not reach statistical 

significance. Examination of the angle-angle plots, our findings appear to contradict these 

previous findings, as it appears that post-injury there was a tendency for the ACLR-

Injured Limb group to land in slightly more knee external rotation, and obtain a greater 

amount of knee internal rotation as compared to their pre-injury condition. This 

observation, however, is based on the averaged ensemble plot of the group, and we 

cannot make any statement as to whether this difference would be significant given the 

variability between participants. It does appear that the relatively sharp increase in knee 

internal rotation during the initial stages of landing, are mitigated post-injury by an 

associate increase in hip rotation as well. This may indicate that the overall transverse 

plane motion is shared by the knee and hip, and may represent a loss of independence in 

knee rotation after ACLR. Unfortunately, Webster et al27 and Webster and Feller28 did 

not report hip rotation in their analysis and such information would be of benefit in the 

future to determine if alterations in tibial rotation they observed are better interpreted 

relative to the mount of hip rotation as well. There is previous evidence that peak hip 

internal rotation for those with ACLR is no different than healthy control subjects during 

a drop jump33, but may be of little use in the interpretation of our findings as relatively 

equal amounts of hip internal rotation were obtained prior to and following injury.   
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      The alterations in the coordination of the transverse plane motion of the hip and knee 

that we observed may be explained as occurring either as result of ACLR or as an 

adopted movement strategy. Cadaveric studies have previously demonstrated that tibial 

rotation may not be restored following ACLR resulting in reduced internal tibial rotation 

during dynamic activities.34 Tibial rotation has also been demonstrated to be particularly 

sensitive to femoral tunnel placement, with more oblique tunnel placements allowing for 

more similar rotational patterns of an intact knee.35,36 Therefore, the loss of independence 

in knee internal rotation we observed may be in part due to restrictions on tibial rotation 

imposed by ACLR. It is, however, also possible that the alterations in coordination 

represent an adopted movement strategy to increase stability at the knee and avoid 

loading the reconstructed ACL during dynamic activities. This proposition is supported 

by the findings of Vairo et al12 as they observed alteration in muscle activity for those 

with ACLR associated with increasing stability at the knee.12  

      Another observation that we feel is of importance, is that we observed no other 

change in the relative coordination of the hip and knee following ACL injury. This is 

contrary to our initial expectations, particularly for the sagittal plane coordination, as 

previous studies have identified alterations in sagittal plane coordination for those with 

ACLR.17,18 The lack of differences we observed in comparison to previous findings may 

be attributed to the population we sampled from, the technique we employed to assess 

coordination, and the task we chose. Our sample may have exhibited differences in 

coordination of the hip and knee in additional planes had we chosen different tasks to 

analyze.  In addition, a lack of change in coordination among the groups for the other 

planes of interest does not mean that kinematics were unaltered by ACLR. As this 
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technique assesses the relative motion of one joint to the other in a given plane, it is not 

sensitive to alterations in kinematics if the change is the same for both the hip and knee. 

Therefore, following ACL injury the ACL injured group may have demonstrated an 

increase in medial displacement of the knee, however, if there were a subsequent increase 

in medial displacement of the hip as well, the average coupling angle would not indicate 

the change over time.  

      Our study is not without limitations that must be acknowledged to enhance 

interpretation of our findings, the first being that we did not control for mechanism of 

injury, graft selection, concomitant joint injury, or gender, though we attempted to 

control for this in our statistical model, when identifying ACL injured participants for 

inclusion in this study. Because of the unique opportunity to compare coordination 

measures prior to and following ACL injury and the limited population we had to select 

from, we decided to use relatively open inclusion criteria for our ACL injured groups for 

fear that strict inclusion criteria would limit our sample group numbers. This increased 

the heterogeneity of our sample though, and may increase the external validity of our 

findings to a broader population of those with ACLR. In addition, due to the limitations 

of our study design there was a period of time that passed between when participants 

were first tested at Baseline and when injury occurred. Therefore, it is possible that the 

alterations we observed occurred during this time period and were not the result of ACL 

injury and ACLR. However, this is highly unlikely due to the lack of changes in the 

matched control group, and we are confident that the results we observed were due to 

ACL injury and ACLR alone. 
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CONCLUSIONS 

      Following ACL injury and ACLR, coordination of the hip and knee joints in the 

transverse are altered so that there is a more equal contribution of rotational motion 

between the hip and knee for the ACL injured limb. This alteration is likely the result of a 

decrease in the independence of rotation at the knee, and may contribute the progression 

of knee osteoarthritis for those with ACLR. Those with ACLR may be helped by 

rehabilitation and intervention strategies aimed at restoring coordination of hip and knee 

rotation post surgery. Future research should assess techniques to accomplish this. 
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Figure 1. Description of the JUMP ACL Cohorts of 2007 and 2008, as well as participant 
enrollment

 
 

JUMP ACL Cohort (n = 5,522) 

2007 & 2008 Cohort (n = 2,558) 

ACL Injury (n = 43) No ACL Injury (n = 2,515) 

Prior ACL Injury (n =87) 

No Prior ACL Injury (n = 2,428) 

Prior ACL Injury (n = 9) 

 No Prior ACL Injury (n = 34) 

Cases Enrolled (n = 35) 

Excluded  
> 1 ACL Injury (n = 3) 
 
Prior ACL Injury (n = 6) 

Cases 2009 Cohort (n = 3) 

Controls Enrolled (n = 50) 

Excluded  
Incomplete (n = 10) 

Prior ACL Injury (n = 1) 

Control Group 
(n = 39) 

ACLR-Noninjured Limb 
(n = 19) 

ACLR-Injured Limb  
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Figure 2. Double Leg Jump Landing. Participants were required to stand atop a box 
located a distance equal to one half of their body height from the front edge of the force 
plate, jump forward, land with their foot completely on the force plate, and then 
immediately make a vertical jump for maximum height. 
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Figure 3. Graphic representation depicting the calculation of coupling angles between 
subsequent points of an angle-angle plot for the hip and knee. 
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Figure 4. Angle-Angle plot of Hip Transverse Plane - Knee Transverse Plane for the 
ACLR-Injured Limb group at Baseline. 
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Figure 5. Angle-Angle plot of Hip Transverse Plane - Knee Transverse Plane for the 
ACLR-Injured Limb group at Follow-Up. 
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Table 1. Participant demographics and antrhopometrics. Units of measure are Age 
(years), Height (cm), and Mass (kg). Values represent means ± standard deviation. 
 

 
 Baseline Follow-Up 

n Age Height Mass Age Height Mass 

ACLR-INJ 
12 

18.64 ± 0.50 174.10 ± 7.31 72.64 ± 9.48 21.42 ± 0.79 174.29 ± 7.56 76.25 ± 9.95 
(8 m, 4 f) 

ACLR-NINJ 
19 

18.52 ± 0.58 170.06 ± 9.26 68.99 ± 10.93 21.47 ± 0.77 170.05 ± 9.13 72.87 ± 12.78 
(9 m, 10 f) 

Control 
38 

18.47 ± 0.46 172.05 ± 8.65 69.16 ± 11.47 20.95 ± 0.73 172.16 ± 8.71 72.35 ± 12.37 
(19 m, 19 f) 
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Table 2. Group chronological descriptive statistics (Mean ± Standard deviation, Days) 

 
 Baseline to Follow-Up Baseline to Injury Injury to Surgery Surgery to Follow-Up 

ACLR-Injured Limb 1,074.42 ± 197.28 367.73 ± 156.06 33.70 ± 20.29 666.90 ± 209.24 

ACLR-Noninjured Limb 1,247.68 ± 179.04 533.33 ± 267.97 40.39 ± 24.92 691.06 ± 243.01 

Control 1,071.76 ± 179.00 - - - 
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Table 3. Descriptive statistics for bilateral difference of anterior knee laxity assessed 
using KT-1000, Marx Activity score, and KOOS for each group. Values represent mean 
± standard deviation, and units of measure other than anterior laxity (mm) are scale 
dependent. 
 

   KOOS 

 Bilateral 
Difference 
Anterior 
Laxity 
(mm) 

Marx 
Activity 

Total Score 
Pain Symptom ADL Sport/Rec QOL 

ACLR-INJ 1.9 ± 1.1 13.92 ± 2.75 84.75 ± 9.97 71.50 ± 13.16 93.00 ± 7.20 80.42 ± 16.16 65.63 ± 20.90 
ALCR-NINJ 2.5 ± 1.8 11.21 ± 4.57 86.95 ± 11.62 73.42 ± 15.85 96.74 ± 5.05 78.42 ± 17.72 71.71 ± 22.57 
Control 1.1 ± 0.8 10.92 ± 2.95 96.24 ± 5.12 92.63 ± 8.81 98.79 ± 2.11 93.95 ± 10.41 91.12 ± 14.14 

*Laxity measures were not obtained for 1 member of the ACLR-Noninjured Limb group 
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Table 4. Average Coupling Angle (Mean, SD, 95th Confidence Interval) for the Control, 
ACLR-Noninjured Limb Group, and ACLR-Injured Limb Group at Baseline (Pre) and 
Follow-Up (Post) 
 

 
 Control ACLR-Noninjured Limb ACLR-Injured Limb 

   Mean ± SD 95TH CI Mean ± SD 95TH CI Mean ± SD 95TH CI 

Hip & Knee 
Sagittal Plane 

PRE 53.76 ± 6.75 (51.57, 55.95) 54.76 ± 6.75 (51.67, 57.85) 53.99 ± 6.79 (50.08, 57.91) 

POST 52.48 ± 8.90 (49.60, 55.36) 51.64 ± 8.90 (47.56, 55.71) 55.32 ± 8.96 (50.16, 60.49) 

Hip & Knee 
Frontal Plane 

PRE 43.23 ± 7.29 (40.86, 45.59) 43.42 ± 7.30 (40.07, 46.76) 44.31 ± 7.34 (40.07, 48.54) 

POST 42.26 ± 7.42 (39.86, 44.67) 41.29 ± 7.43 (37.89, 44.70) 44.52 ± 7.48 (40.21, 48.83) 

Hip & Knee 
Transverse 
Plane 

PRE 52.76 ± 6.91 (50.52, 55.00) 54.98 ± 6.91 (51.81, 58.14) 54.85 ± 6.96 (50.84, 58.86) 

POST 54.78 ± 6.59 (52.64, 56.92) 53.46 ± 6.60 (50.44, 56.48) 47.97 ± 6.64 (44.15, 51.80) 
Hip Frontal & 
Knee 
Transverse 
Plane 

PRE 49.15 ± 7.67 (46.67, 51.64) 52.58 ± 7.67 (49.06, 56.09) 51.66 ± 7.72 (47.21, 56.11) 

POST 49.63 ± 6.04 (47.67, 51.58) 49.05 ± 6.04 (46.29, 51.82) 45.42 ± 6.07 (41.92, 48.92) 

Hip 
Transverse & 
Knee Frontal 
Plane 

PRE 47.51 ± 6.57 (45.38, 49.64) 46.45 ± 6.58 (43.44, 49.47) 48.35 ± 6.62 (44.53, 52.16) 

POST 47.49 ± 8.05 (44.88, 50.10) 45.99 ± 8.06 (42.29, 49.68) 47.71 ± 8.11 (43.04, 52.38) 

*Values for descriptive statistics are based on Gender entered as a covariate in the 
statistical model at a value of 0.52 
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APPENDIX D. MANUSCRIPT 3 

A Comparison of Lower Extremity Biomechanical Asymmetry of Those With and 

With Out Anterior Cruciate Ligament Reconstruction: The JUMP ACL Study 

(British Journal of Sports Medicine) 

 
ABSTRACT 

Background: Those with ACLR are at an increased risk for subsequent ACL injury. 

Asymmetries in lower extremity biomechanics have been previously observed for these 

individuals, and may influence their risk for reinjury. Few studies though have compared 

asymmetry to that present in healthy controls. 

Aim: The purpose of this study was to quantify and compare asymmetry in lower 

extremity biomechanics during a double leg jump landing task for those with and without 

ACLR. 

Methods: Sixty-three participants from the JUMP ACL cohort, 24 participants with 

ACLR and 39 without completed a double leg jump landing task. Bilateral lower 

extremity biomechanics were collected during Initial Ground Contact and Landing Phase 

of the task. The absolute values of difference scores were used to quantify asymmetry for 

each measure of interest. Average group values were compared using two-sample 

Kolmogorov-Smirnov tests. 

Results: Between group differences in peak internal knee flexion moment and peak 

vertical ground reaction force were observed, with the ACLR group demonstrating 

greater between-limb asymmetry. Follow up analysis of mean values for the injured and 

noninjured limb of the ACLR group demonstrated increased peak internal knee flexion 
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moment in the injure limb, and increased peak vertical ground reaction force for the 

noninjured limb. No other between group differences were observed. 

Conclusion: The increased difference in loading between the injured and noninjured 

limb in the absence of asymmetry in kinematics suggests that those with ACLR may 

employ strategies to reduce loading of the injured limb that are not obvious by assessing 

movement patterns alone. 
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INTRODUCTION 

      Reconstructive surgery following anterior cruciate ligament injury (ACLR) does not 

guarantee that an individual will be able to return to their same level of physical 

activity1,2 or protect against the onset of osteoarthritis.3,4 In addition, those with ACLR 

are at an increased risk for a secondary ACL injury as compared to those with no ACL 

injury.5-7 The incidence of reinjury for those with a history of ACLR when they return to 

physical activity is between 6-25%7-10, and the risk for reinjury is 5-15 times higher as 

compared to those who have no history of ACL injury.5-7 In addition, the risk for reinjury 

does not appear to be isolated to the previously injured limb.10 Therefore, there is a need 

for a better understanding of how to improve outcomes following ACLR, particularly for 

those in this population that wish to remain physically active or engage in sport activities. 

      Differences in lower extremity biomechanics for those with ACLR have been 

previously identified. They generally present with differences in the movement and 

loading of their limbs when compared to those who have never suffered an ACL injury.11-

14 Not only do ACLR patients perform activities differently than healthy individuals but 

also display differences or asymmetry between injured and contralateral limb following 

injury13-17, which provides a rationale for why risk for reinjury is not limited to the 

previously injured limb.18 However, few studies have examined asymmetry for those 

with ACLR in comparison to asymmetry that is present in a healthy noninjured group of 

individuals. 11,13,17,19 Only Gokeler et al17 directly quantified and compared asymmetry in 

individuals with ACLR to a healthy control group during a single leg forward hop, but 

were unable to make comparisons in biomechanical data because of a limited number of 

patients. This lack of information with regards to asymmetry present in healthy 
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individuals makes it difficult to know the true importance of asymmetry for the poor 

outcomes and reinjury associated with ACLR. 

      This may ultimately lead to better identification and interventions, reducing the risk 

for injury in this population, as asymmetry related to specific movement and loading 

patterns has been previously identified as a prospective risk factor for ACL injury in 

physically active adolescents with ACLR.20 Therefore, the purpose of this study was to 

quantify and compare biomechanical asymmetry in a group of healthy, physically active 

individuals with and without ACLR.  

 

METHODS 

Participants 

      Participants for this study were recruited from the Joint Undertaking to Monitor and 

Prevent ACL Injury (JUMP ACL) Project, a multi-year prospective study conducted with 

members of the United States’ service academies, including the United States Air Force 

Academy, the United States Military Academy, and the United States Naval Academy. 

The purpose of this project is to identify risk factors for noncontact ACL injury. 

Members of each incoming class between 2004 and 2009 enrolled in the study, and were 

prospectively followed to identify risk factors for ACL injury. We limited potential 

enrollment in this study to members of the 2007, 2008, and 2009 cohorts. Participants 

that had injured their ACL during enrollment in the JUMP ACL study, as well as a group 

of noninjured controls were matched based on cohort year, service academy, and sex. We 

attempted to achieve a 2:1 control to case ratio for our sample. Seventy-three participants 
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were enrolled in this study, 29 with ACLR (12 females, 17 males) and 44 healthy 

matched controls (22 females, 22 males).  

Procedures 

      Prior to data collection, each participant read and signed an informed consent, had 

anthropometric and demographic information recorded. In addition each participant was 

asked to complete the Marx Activity Scale21, Knee Injury and Osteoarthritis Outcome 

Score (KOOS)22, and had anterior knee laxity assessed bilaterally.23 Each participant then 

performed a double leg jump landing (Figure 1). This task required participants to stand 

atop a 30 cm high box located a distance from the edge of a force plate equal to half their 

height, jump forward from the box, landing with one foot completely on the force plate, 

and upon landing immediately make a maximal effort vertical jump. Trials were excluded 

and repeated if participants didn’t land with their foot completely on the force plate, the 

foot of the other limb made contact with the force plate, or if the participant hesitated 

between the landing and vertical jump phases of the task. We were limited to one force 

plate for this analysis, to collect kinetic data on both limbs participants alternated 

between the right and left leg landing on the force plate for each subsequent trial. The 

order of alternating was counterbalanced between participants. At least 5 successful trials 

per limb were performed to ensure that a minimum of three successful trials was 

collected for each limb per participant. Biomechanical data were collected using an 

electromagnetic tracking system (Ascension Technologies Inc., Burlington, VT) 

integrated with a non-conductive force plate (Bertec Co., Columbus, OH). All data 

collection was conducted using the Motion Monitor Software (Innovative Sports 

Training, Inc., Chicago, IL) 



 244 

      Prior to completion of the double leg jump landing, all participants were instrumented 

with electromagnetic sensors.24,25 The sensors were affixed to each leg, so that one was 

placed on each shank and thigh, and one was placed on the pelvis. The shank sensors 

were placed on the skin overlying the medial tibia, the thigh sensor on the mid portion of 

the lateral thigh and the pelvis sensor was affixed to the sacrum at the mid point between 

the posterior superior iliac spines. Each sensor was adhered to the participant’s skin using 

double-sided tape with athletic tape placed over it. The pelvis sensor was held in place 

using double sided tape and an elastic belt. Sensor placement and procedures were 

performed to minimize motion artifact during the jump landing. 

      Following placement of the electromagnetic sensors, a model of the lower extremities 

was constructed through digitization of the medial and lateral malleoli, medial and lateral 

femoral epicondyles, and the anterior superior iliac spines using a moveable sensor.24,25 

The midpoints of these landmarks were used to define the ankle and knee joint centers, 

respectively. The hip joint centers were defined based on the Bell Method.26 Shank, 

thigh, and pelvis segments were defined based on the joints as segment endpoints and the 

respective electromagnetic sensors as a third non-collinear point. Local right-handed 

segment axis systems were embedded into each segment, the orientation of which 

coincided with the global axis system, positive z-axis along the vertical direction, positive 

x-axis along the anterior direction of the participant, and the positive y-axis along a 

vector with a 90° positive rotation about the z-axis relative to the positive x-axis. 

Data Analysis 

      All kinematic and kinetic data were sampled at a frequency of 144 Hz and 1,444 Hz, 

respectively. Each trial was visually inspected within the Motion Monitor software to 
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identify any trials that included data collection errors that were not identified at the time 

of data collection. Errors of interest included excessive motion artifact of sensors at the 

time of contact with the force plate when landing, improperly constructed biomechanical 

models, and low vertical ground reaction force measures indicative of incomplete foot 

contact with the force plate. We then identified three trials for each limb per participant 

for data analysis. 

       Kinematic and kinetic values for the sagittal, frontal, and transverse plane the hip and 

knee were analyzed for this study. Measures of vertical ground reaction force and anterior 

tibial shear force, defined as the resultant anterior force located at the knee, were also 

included. Kinematics of the hip were defined as the thigh segment relative to the pelvis, 

and kinematics of the knee as the shank segment relative to the thigh. An Euler sequence 

of Y, X, Z was used to define orientation of the relative segments and calculate hip and 

knee angles. All moment data were calculated, and are reported, as internal moments 

normalized to a product of body height (m) and weight (N). Vertical ground reaction 

force and anterior tibial shear force data were normalized to body weight. All kinematic 

data were filtered using a 4th order Butterworth filter (14.5 Hz) prior to data exportation, 

and all biomechanical measures were calculated within the Motion Monitor software. 

      Biomechanical asymmetries at the time points of Initial Ground Contact and the 

Landing Phase of the double leg jump landing were analyzed for this study. Initial 

Ground Contact was defined as the first time point that the vertical ground reaction force 

exceeded 10 N, and the Landing Phase as the time frame from Initial Ground Contact to 

the time point coinciding with peak knee flexion. Peak 3D joint angles and moments as 

well as anterior tibial shear force and vertical ground reaction force were calculated for 
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the Landing Phase. Values were averaged across three trials or each limb per participant. 

All data reduction procedures were conducted using a customized MATLAB program 

(Mathworks, Inc., Natick, MA). 

      Asymmetry values were calculated as the absolute difference between limbs for each 

dependent variable. This method was chosen because we were only interested in 

comparing the relative magnitude of between limb differences for each group. This 

method is also helpful as it avoids having to determine how to match limbs for the 

Control group and ACLR group, and prevents any complications with sign conventions 

denoting direction for kinematics and kinematics. Some detail can be lost performing the 

comparison this way, but if differences were found between groups the raw values were 

analyzed to provide a description of the relative between limb biomechanics. 

      Procedures to assess the normality of data were conducted for each variable of 

interest to ensure the proper use of parametric statistics and to identify potential statistical 

outliers. This included calculation of Z-scores for the skewness and kurtosis of each 

variable. Those variables with a value greater than 1.96 were further analyzed by 

constructing box plots to identify potential statistical outliers. This assessment procedure 

indicated that the data did not meet the assumptions of normality for parametric tests. 

Between group differences (ACLR v. Control) were determined using two-sample 

Kolmogorov-Smirnov tests. An a priori alpha level of 0.05 was set, and all statistical 

procedures were conducted using IBM SPSS v19 (SPSS, Inc., an IBM company, 

Chicago, IL). 
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RESULTS 

Participant Demographics 

      Demographic and anthropometric data describing each group is located in Table 1 

and Table 2. Ten participants were eliminated from data analysis (ACLR group: 5 (2 

females, 3 males), Control group: 5 (3 females, 2 males) because they had fewer than 3 

acceptable trials for one or both limbs following inspection. This left a total of 63 

participants for the final analysis (ACLR group: n=24, Control group: n=39). For the 

ACLR, 8 participants had a bone-patella tendon-bone autograft, 8 had a hamstrings 

autograft, and 1 had an Achilles tendon allograft. We were unable to obtain information 

for graft type for 7 participants. Those with ACLR were on average 1.89 ± 0.68 years 

post surgery, but we were unable to obtain date of surgery information for 3 participants 

of the ACLR group. 

      No between group differences for asymmetry in kinematics or kinetics were observed 

between groups at Initial Ground Contact (Table 3), and no between group differences 

for asymmetry in kinematics were identified during the Landing Phase (Table 4). 

      We observed an increased asymmetry in peak internal knee flexion moment for the 

ACLR group (Mdn = 0.040 ) as compared to the Control group (Mdn = 0.026) during the 

Landing Phase (ZKS = 1.42, p = 0.035). The ACLR group also had increased asymmetry 

in peak vertical ground reaction force (Mdn = 0.68) as compared to the Control group 

(Mdn = 0.46 ) during the Landing Phase (ZKS = 1.45, p = 0.031). Examining the mean 

values for each variable as a follow up analysis to better describe the asymmetries for the 

ACLR group, they had greater peak internal knee flexion moment for the injured limb 

(0.058 ± 0.032 Nm/BWxBH) as compared to the noninjured limb (0.053 ± 0.031 



 248 

Nm/BWxBH). This equaled 9.4% greater peak internal knee flexion moment for the 

injured limb as compared to the noninjured.  However, the noninjured limb (2.97 ± 0.069 

N/BW) had greater peak vertical ground reaction force as compared to the injured limb 

(2.55 ± 0.80 N/BW) for the ACLR group, equaling 16.5% greater peak vertical ground 

reaction force on the noninjured limb. No other differences in asymmetry of the peak 

kinetic variables during the Landing Phase were observed (Table 5). 

 

DISCUSSION 

      The main finding we observed for this study was increased asymmetry in peak knee 

flexion moment and peak vertical ground reaction force for the ACLR group compared to 

the healthy group during the landing phase. Follow up analysis of the values for the 

injured and noninjured limbs provided evidence that the asymmetry for these factors in 

the ACLR group was driven by an increased peak knee flexion moment for the injured 

limb and an increase in peak vertical ground reaction force for the noninjured limb.  

      The increased peak internal knee flexion moment we observed for the injured limb of 

the ACLR group is likely an attempt to decrease loading of the reconstructed ACL by 

increasing use of the hamstring muscles. Previous work has demonstrated that hamstrings 

force can decrease anterior tibial translation and potential ACL loading.27,28 Similar 

attempts to decrease loading of the reconstructed limb for those with ACLR have been 

previously observed, however, these attempts have been produced with the involved limb 

demonstrating decreases in external knee flexion or internal knee extension 

moment.11,29,30 Deficits in knee extension moment for those with ACLR has been 

characterized as a ‘quadriceps avoidance’ by Berchuck et al31 in which they observed an 
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increase in internal knee flexion moment for those with ACL deficiency during gait. Our 

observations occurred with those with ACLR and during a task that requires primarily 

sagittal plane motion and loading. We did not observe asymmetry in peak internal knee 

extension moment nor asymmetry in anterior tibial shear force, and if we had considered 

these variables alone to assess sagittal plane loading at the knee we would have observed 

no difference in asymmetry for the ACLR group. Therefore, it may be worth considering 

internal knee flexion moment in addition to other variables to characterize residual 

asymmetries in knee loading. 

      Our findings of asymmetry in peak vertical ground reaction force are supported by 

previous studies that have identified increased vertical ground reaction force for the 

noninjured limb for those with ACLR.13,14,32 Both Vairo et al14 and Nyland et al32 

observed similar results with decreased loading of the injured limb relative to the 

noninjured for those with ACLR when performing single leg jump landing tasks. When 

compared to a control group though, the difference observed by Vairo et al14 was 

suggested to be the result of decreased loading of the injured limb, rather than increased 

loading of the noninjured limb as we have observed. Our results are very similar to those 

of Paterno et al13 as they observed increased vertical ground reaction force for the 

noninjured limb when compared to the injured limb as well as to a control group during a 

double leg drop vertical jump. They observed a relative difference in peak vertical ground 

reaction force of approximately 33% greater loading of the noninjured limb. Our 

observation of 16.5% is roughly half of this between limb difference. This difference, 

however, may be explained in part by the use of females only for Paterno et al13, as 

females with ACLR have been previously shown to demonstrate differences in vertical 
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ground reaction force as compared to males with ACLR.32 These previous studies 

restricted their sampled ACLR group to a specific graft type though; ipsilateral 

semitendinosous and gracilis for Vairo et al14, and patellar tendon bone-tendon-bone for 

Paterno et al13. It is possible that the differences between these studies was in part the 

result of graft type as differences in knee biomechanics have been previously reported for 

graft type during single leg landing.29 However, Webster et al29 did not observe 

differences in peak vertical ground reaction force between grafts for single leg landings. 

      Another possibility is that loading for those with ACLR may be dependent on the 

task, and different strategies may be used to minimize loading of the injured knee. During 

a single leg landing on the injured limb those with ACLR may alter their movement to 

reduce loading. This notion is supported in part by the observation of a decreased peak 

vertical ground reaction force being accompanied by an increased hip flexion observed 

by Vairo et al14 when landing on the injured limb. We observed no asymmetry in 

kinematics during a double leg jump landing, and suggest that instead of using altered 

movement strategies to reduce loading of the injured limb, they may have chose to shift a 

greater portion of the vertical ground reaction force to the noninjured limb.  

      This has important implications, the first being that this strategy may increase risk for 

a second ACL injury as an increase in peak vertical ground reaction force has been 

previously identified as a prospective risk factor for noncontact ACL injury.33 So, in 

attempting to reduce loading of the injured limb, they may employ a faulty movement 

strategy that increases their risk for ACL injury. The observation of these altered loading 

patterns in the absence of asymmetry in kinematics has implications for clinicians as 

well. It is reasonably simple for clinicians to identify altered movement strategies or 
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asymmetries in movement that may represent dysfunction in those with ACLR. Our 

results though suggest that movement dysfunction may be present without accompanying 

asymmetry in kinematics. It may be useful for clinicians to employ methods to identify 

altered loading when implementing intervention programs for those with ACLR. 

      Our study is not without limitations that must be consider when interpreting the 

results. Limitations in our data collection capabilities prevented us from being able to 

analyze asymmetry in lower extremity biomechanics from the same trials. It is possible 

that any differences, or lack of differences we observed, may have been due in part to 

how the individual performed those particular trials and not representative of how the two 

limbs moved in unison. Also, for the purposes of this study we were solely interested in 

quantifying asymmetry between limbs. It is possible that we would have observed group 

main effects had we employed another strategy such as an ANOVA model. Differences 

in proportion of males and females in our groups may have influence results, as gender 

differences in biomechanics have been previously reported for those with ACLR.32,34 

Given the nature of the data, we were unable to employ methods to account for this group 

discrepancy and must accept it as a limitation. Lastly, our inclusion criteria were rather 

lenient for our sample selection for the ACLR group. Because of limited time and access 

to the cohort we chose to investigate, we decided to adopt these criteria to ensure 

adequate numbers for participant enrollment in the ACLR group. However, the 

heterogeneity of our sample may increase the external validity of our findings. 

      In summary, we observed greater asymmetry in sagittal plane loading and vertical 

ground reaction force for those with ACLR as compared to control groups. These greater 

asymmetries in loading were present despite no difference in asymmetry among the hip 



 252 

or knee kinematics. Our findings, in combination with previous observations, provide 

evidence that those with ACLR may employ methods to decrease loading of the injured 

knee during a double leg jump landing. However, the methods they employ to achieve 

this may increase their risk for a subsequent ACL injury. In addition, these asymmetries 

in loading may not be easily detected by clinicians, as they are not accompanied by 

increased asymmetry between limbs. 

 

What Is Already Known About This Topic: 

• Those with ACLR are at an increased risk for reinjury. 

• Asymmetries in lower extremity biomechanics are present following ACLR 

and may contribute to the increased risk for reinjury. 

  

What This Study Adds: 

• Greater asymmetries in loading are present for those with ACLR as 

compared to healthy individuals. 

• Asymmetries in loading may be present despite no difference in asymmetry 

of kinematics. 
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Table 1. Participant demographics and antrhopometrics. Units of measure are Age 
(years), Height (cm), and Mass (kg). Values represent means ± standard deviation. 

 
  

n Age Height Mass 

ACLR 
24 

21.58 ± 0.78  172.01 ± 8.85  74.69 ± 12.50 
(14 m, 10 f) 

Control 
39 

21.00 ± 0.77  172.25 ± 8.94  72.27 ± 13.72 
(20 m, 19 f) 
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Table 2. Descriptive statistics (Mean ± SD) of ACLR and Control groups for bilateral 
difference in anterior knee laxity, Marx activity score, and KOOS scores 
 

   KOOS 

 Bilateral 
Difference 
Anterior 

Laxity (mm) 

Marx 
Activity 

Total Score 
Pain Symptom ADL Sport/Rec QOL 

ACLR  2.4 ± 1.7 12.08 ± 4.43 87.15 ± 10.98 72.17 ± 14.71 96.20 ± 5.41 79.58 ± 18.17 69.53 ± 22.75 
Control  1.2 ± 1.0 10.87 ± 3.16 95.37 ± 6.29 92.49 ± 8.89 98.23 ± 3.19 92.44 ± 11.52 90.87 ± 14.04 
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Table 3. Asymmetry of kinematics (°), moments (Nm/BHxBW) and kinetics (N/BW) for 
groups at Initial Ground Contact 
 

 ACLR CONTROL 
ZKS P value 

 Mean (SD) Median Mean (SD) Median 

Knee Sagittal 6.982  (4.439) 6.179 7.337   (5.505) 6.260 0.568 0.903 

Knee Frontal 8.484   (6.339) 6.350 7.970   (5.686) 6.348 0.432 0.993 

Knee Transverse 7.120   (4.818) 6.154 6.340   (5.211) 5.444 0.507 0.960 

Hip Sagittal 7.571   (4.189) 7.475 7.213   (5.464) 5.944 0.630 0.822 

Hip Frontal 11.271   (9.178) 8.129 13.047   (9.431) 12.793 0.690 0.725 

Hip Transverse 8.858   (6.502) 7.567 9.423   (7.653) 7.617 0.395 0.998 

Knee Sagittal Moment 0.025   (0.023) 0.021 0.026   (0.022) 0.020 0.432 0.992 

Knee Frontal Moment 0.021   (0.022) 0.016 0.023   (0.015) 0.021 0.939 0.341 

Knee Transverse Moment 0.011   (0.008) 0.008 0.010   (0.008) 0.008 1.075 0.198 

Hip Sagittal Moment 0.070   (0.048) 0.058 0.070   (0.058) 0.059 0.729 0.663 

Hip Frontal Moment 0.058   (0.047) 0.045 0.061   (0.041) 0.055 0.618 0.840 

Hip Transverse Moment 0.032  (0.027) 0.026 0.021   (0.015) 0.019 0.791 0.559 

Anterior Tibial Shear Force 0.109   (0.083) 0.080 0.114   (0.097) 0.094 0.704 0.704 

Vertical Ground Reaction Force 0.024   (0.028) 0.017 0.031   (0.028) 0.024 0.988 0.283 
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Table 4. Asymmetry of peak kinematics (°) during Landing Phase 

 

 ACLR CONTROL 
ZKS P value 

 Mean (SD) Median Mean (SD) Median 

Knee Flexion 8.836 (6.409) 7.181 9.857 (6.604) 9.193 0.704 0.704 

Knee Extension 6.982 (4.439) 6.179 7.337 (5.505) 6.260 0.568 0.903 

Knee Varus 8.643 (8.499) 6.876 9.974 (6.573) 8.477 1.129 0.075 

Knee Valgus 9.939 (9.767) 5.763 11.308 (7.983) 8.628 1.161 0.135 

Knee Internal Rotation 8.704 (5.643) 8.114 7.579 (4.739) 7.254 0.877 0.425 

Knee External Rotation 8.070 (5.009) 6.642 6.793 (5.152) 5.858 0.889 0.407 

Hip Extension 7.528 (4.172) 7.488 7.043 (5.593) 6.004 0.927 0.357 

Hip Flexion 8.621 (5.505) 8.668 8.971 (6.058) 8.400 0.519 0.951 

Hip Adduction 9.441 (8.723) 7.556 12.998 (9.481) 11.474 0.988 0.283 

Hip Abduction 9.052 (7.040 8.884 11.461 (7.867) 9.431 0.692 0.725 

Hip Internal Rotation 12.314 (8.073) 11.090 10.794 (8.393) 8.273 0.828 0.500 

Hip External Rotation 11.349 (8.470) 8.668 10.306 (8.551) 8.591 0.778 0.580 
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Table 5. Asymmetry of peak moments (Nm/BHxBW) and kinetics (N/BW) during 

Landing Phase 

 

 ACLR CONTROL 
ZKS P value 

 Mean (SD) Median Mean (SD) Median 

Knee Extension Mom 0.050 (0.041) 0.037 0.043 (0.026) 0.042 0.667 0.765 

Knee Flexion Mom 0.039 (0.029) 0.032 0.026 (0.030) 0.015 1.421 0.035 

Knee Valgus Mom 0.026 (0.021) 0.020 0.032 (0.019) 0.028 1.186 0.120 

Knee Varus Mom 0.033 (0.024) 0.027 0.036 (0.028) 0.032 0.507 0.960 

Knee ER Mom 0.025 (0.020) 0.019 0.023 (0.017) 0.020 0.469 0.980 

Knee IR Mom 0.020 (0.024) 0.012 0.017 (0.019) 0.013 0.692 0.725 

Hip Flexion Mom 0.084 (0.047) 0.072 0.065 (0.055) 0.050 1.137 0.151 

Hip Extension Mom 0.088 (0.078) 0.069 0.079 (0.086) 0.054 0.939 0.341 

Hip Abduction Mom 0.070 (0.059) 0.058 0.057 (0.050) 0.047 0.902 0.390 

Hip Adduction Mom 0.060 (0.054) 0.055 0.045 (0.037) 0.033 0.803 0.539 

Hip ER Mom 0.031 (0.027) 0.023 0.026 (0.024) 0.023 0.914 0.373 

Hip IR Mom 0.023 (0.019) 0.017 0.021 (0.022) 0.013 0.791 0.559 

Anterior Tibial Shear Force 0.190 (0.154) 0.156 0.170 (0.132) 0.148 0.605 0.857 

Posterior Tibial Shear Force 0.139 (0.095) 0.133 0.131 (0.125) 0.101 0.865 0.443 

Vertical Ground Reaction Force 0.682 (0.508) 0.554 0.465 (0.279) 0.388 1.445 0.031 
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Figure 1. Double Leg Jump Landing. Participants were required to stand atop a box 
located a distance equal to one half of their body height from the front edge of the force 
plate, jump forward, land with their foot completely on the force plate, and then 
immediately make a vertical jump for maximum height. 
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