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ABSTRACT 
Wujian Ju: Studies of Anti-Trypanosomal O-methyl Amidoxime Prodrugs in Identification of 

Novel Metabolites, Apoptotic Effects, and Inhibition of CYP1B1.  
(under the direction of James E. Hall, Ph.D.) 

 

Human African Trypanosomiasis (HAT), also known as sleeping sickness, afflicts hundreds 

of thousands of individuals in sub-Saharan Africa with another 60 million people at risk of 

infection. The agents that are currently available as anti-trypanosomals are generally 

unsatisfactory due to a combination of their low efficacy, dangerous side effects and 

difficulty in administration. Although drug development efforts have recently been focused 

on creating less toxic, more potent O-methyl amidoxime prodrugs with an orally bioavailable 

formulation, the overall mechanism of action of this series of compounds is unknown. 

 

The focus of this research is to identify novel metabolites of the O-methyl amidoxime 

prodrugs, investigate the apoptotic effects by the prodrug and each metabolite, and the 

inhibitory effect to the metabolizing CYP1 enzymes. These results may help us to better 

understand the mechanism of actions and mechanism of toxicity of the anti-trypanosomal O-

methyl amidoxime prodrugs, and therefore facilitate the further drug development in the 

future. 
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CHAPTER 1 

 

 

 

INTRODUCTION 



A. Trypanosomiasis 

Human African trypanosomiasis (HAT), also known as African sleeping sickness, once the 

causative trypanosome parasites have established within the central nervous system (CNS) 

(Barrett et al., 2003; Barrett et al., 2007), afflicts nearly half a million people in sub-Saharan 

Africa at the end of the twentieth century, with another 60 million people at risk of infection 

(Denise et al. 1999; Cattand et al. 2001; Barrett et al. 2003).   

 

There are two subspecies of human Trypanosome brucei were identified (Cox, 2002, Hide, 

1999). Trypanosoma brucei gambiense (T. b. gambiense) was identified by Everett Dutton in 

1902 as the causative agent of Gambian, or chronic human trypanosomiasis, which is 

prevalent in West and Central Africa (Figure 1.1). And Trypanosoma brucei rhodesiense (T. 

b. rhodesiense) was identified by J. W. W. Stephens and Harold Fantham in 1910 as the 

causative agent of the acute form of human trypanosomiasis, which is prevalent in Eastern 

and Southern Africa (Fevre et al., 2005). 

 

Trypanosomiasis is a vector borne disease, with transmission occurring after the bite of an 

infected tsetse fly (Glossina sp.). It usually takes weeks or months for rhodesiense form or 

years for the gambiense form to develop to be fatal after infection. In the early stage of the 

infection, the parasites reside and proliferate in the subcutaneous tissues and hemolymphatic 

system, causing symptoms such as fever, headaches, joint pains and itching (WHO. 2006). In 

the late stage, the parasites cross the blood brain barrier (BBB) and invade the central 

nervous system (CNS) and the cerebrospinal fluid. More severe symptoms of the disease 

appear, including confusion, sensory disturbances and poor coordination (WHO. 2006). The 
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most important feature of the late stage is the disturbance of the sleep cycle, which gives the 

disease its name (Buguet et al., 1993). If untreated, sleeping sickness is fatal. 

 

In recent years, vector control using extensive trapping and sterile insect technique was 

successfully employed to inhibit the transmission, and therefore the disease cases were 

significantly reduced (Allsopp et al., 2001; Vreysen et al., 2000). However, the coordination 

in the tsetse control was still very difficult in the African mainland. Vaccination is not a 

promising way neither, due to the rapid change of the surface antigen of the parasites 

(McCulloch et al., 2004). 

 

The clinical diagnosis is primarily through detecting Winterbottom’s sign and confirming 

using serological and parasitological techniques (Apted et al., 1980, Balasegaram et al., 2006, 

Jannin et al., 2004). However, the symptoms of the early stage trypanosomiasis are often 

vague and variable. Rapid, feasible and reliable diagnostic techniques are still in a great need 

for the detection of trypanosomiasis and determination of the infective stage in patients. 

Therefore, PCR-based tests (Deborggraeve et al., 2006) and a dot – ELISA test (Courtioux et 

al., 2005) have been developed and will be further investigated to verify the specificity and 

accuracy. 
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B. Treatment options 

HAT is considered as a neglected disease, which affects people from among the 

world’spoorest populations and is not economically attractive for pharmaceutical industries 

(Barrett et al., 2007; Stich et al., 2003; Thuita et al., 2008). Currently only four drugs are 

available in clinic against HAT according to the causative subspecies and the infection stages 

(Pepin and Milord, 1994; Denise and Barrett, 2001; Keiser et al., 2001; Fairlamb, 2003; Burri 

et al., 2004; Brun and Balmer, 2006).  

 

Pentamidine isethionate (Figure 1.2) is currently produced by Sanofi-Aventis as pentacarinat 

in 200mg ampoules for gambiense form of HAT by intramuscular injection with 4mgkg-1d-1 

for 7–10 days (Barrett et al., 2007; Sands et al., 1985; Burri et al., 2004). The extensive 

studies of pentamidine have shown that it can be enriched specifically by trypanosomes from 

low micromolar concentration to low millimolar range through the transporter P2 

aminopurine permease, high-affinity pentamidine transporter 1 (HAPT1) and low-affinity 

pentamidine transporter 1 (LAPT1) (Damper and Patton, 1976; Berger et al., 1995; Carter et 

al., 1995; de Koning, 2001) The mode of action for pentamidine is not fully understood 

(Berger et al., 1993; Werbovetz, 2006). But pentamidine may bind DNA and destroy the 

mitochondrion (Hentzer and Kobayasi, 1977; Croft and Brazil, 1982; Simpson, 1986). 

Pentamidine has large volume of distribution and long terminal half-life in the 

pharmacological studies due to its extensive tissue retention and protein binding (Bronner et 

al., 1991). Pentamidine is metabolic unstable and it can be extensively metabolized by 

cytochrome P450 (Berger et al., 1992). Pentamidine causes multiple toxic effects, such as 
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hypotension, nephrotoxicity, leucopenia and liver enzyme abnormalities (Sands et al., 1985; 

Doua and Yapo, 1993). 

 

Suramin (Figure 1.2) is produced by Bayer as Germanin for treatment of rhodesiense cases 

by intravenous injection (Voogd et al., 1993). Since this drug may bind many enzymes by 

electrostatic interaction, multiple pathways including glycolysis may be the targets 

(Wierenga et al., 1987). Endocytosis has been confirmed as the major route of entry 

(Fairlamb and Bowman, 1980). Suramin shows poor intestinal absorption and does not cross 

blood–brain barrier. The terminal half-life is quite long (Eisenberger and Reyno, 1994). The 

toxic effects include significant neurotoxicity, fatigue, anaemia, hyperglycaemia, 

hypocalcaemia, coagulopathies, neutropaenia, renal insufficiency and transaminitis (Kaur et 

al., 2002; Bitton et al., 1995) 

 

Melarsoprol (Figure 1.2) is used against late stage rhodesiense disease and gambiense disease 

by intravenous injection. The drug uptake may be carried by the P2 aminopurine transporter 

and other routes (Carter and Fairlamb, 1993; Barrett and Fairlamb, 1999; Ma¨ser et al., 1999; 

Stewart et al., 2005; Matovu et al., 2003). The mode of action for melarsoprol is unclear. But 

it can cause the depletion of ATP (Vanschaftingen et al., 1987) and parasites lyse rapidly 

(Meshnick et al., 1978). Melarsoprol may be metabolized rapidly to form active metabolite 

melarsen oxide (Burri and Brun, 1992; Burri et al., 1993). Melasoprol and its metabolite 

melarsen oxide may cross blood-brain barrier and accumulate to the level enough to kill 

trypanosomes in the CNS. Melarsoprol has very severe toxic effects including pyrexia, 

headache, pruritis and thrombocytopaenia. 
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Eflornithine (Figure 1.2) or D,L-a-difluoromethylornithine produced by Marion Merrell Dow 

is used against T. b. gambiense in the late stage by by intravenous injection (Burri and Brun, 

2003). It may inhibit the polyamine biosynthetic enzyme ornithine decarboxylase (ODC) in 

the parasites (Bacchi et al., 1980; Phillips et al., 1987; Bacchi and Yarlett, 1993) and cause 

them more susceptible to oxidative stress and other immunological insult (Barrett et al., 2007; 

Fairlamb et al., 1987). The uptake may be the transporter mediated in trypanosomes (Barrett 

and Gilbert, 2006).Side effects include fever, headache, hypertension, macular rash, 

peripheral neuropathy and tremor, gastrointestinal problems including diarrhoea (Chappuis et 

al., 2005). 

 

As described above, the treatment options for trypanosomiasis are very limited. All the four 

clinical drugs have obvious disadvantages, such as poor oral bioavailability, requirement of 

parenteral administration and severe side effects. So the development of more effective, 

feasible and less toxic drugs is in a great need. 
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C. Development of Diadimine Compounds and Prodrugs 

Diamidine furamidine (DB75) (Figure 1.3) is developed based on pentamidine by closing the 

central carbon chain to be furan ring to increase its metabolic stability. The diamidine 

furamidine was confirmed to have potent anti-parasitic activities against Trypanosoma brucei, 

Plasmodium falciparum, Leishmania spp., and Pneumocystis jirovecii in vitro and in vivo 

(Das and Boykin, 1977; Bell et al., 1990; Brendle et al., 2002; Tidwell et al.,1990). The 

diamidine furamidine is a binder of DNA minor groove (Tidwell et al., 2003, Wilson et al., 

2008). It shows selective and rapid uptake by the P2 aminopurine transporter, which enables 

this compound highly accumulated in the parasite (Mathis et al., 2006). However, as a 

dicationic molecule, DB75 carries two positive charges at the physiological condition and 

can not cross the cell membrane. Therefore, it showed poor oral bioavailability.  

 

Pafuramidine maleate (DB289) (Figure 1.3) was then synthesized by introducing two O-

methyl groups to the diamidine furamidine to mask the positive charges (Boykin et al., 1996). 

DB289 has shown enhanced permeability across intestinal epithelium (Zhou et al., 2002) and 

potent oral activities against trypanosomiasis and Pneunocystis carinii pneumonia in animal 

models (Boykin et al., 1996; Fitzpatrick et al., 2004). The phase I metabolic pathway of 

DB289 (scheme 3.1, adapted from Wang et al., 2006) has been determined in vitro using 

freshly isolated rat hepatocytes (Zhou, et al, 2004). DB289 was metabolized to form 

intermediate metabolites including M1, M2, M3 and M4, and the final active compound 

DB75 through sequential O-demethylation and N-dehydroxylation reactions, which are 

catalyzed by multiple enzymes, including CYP4F2, CYP4F3B, and CYP2J2 for the O-

demethylations, and cytochrome b5/b5 reductase for the N-dehydroxylations (Wang et al, 
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2006; Saulter et al., 2005). DB289 is also confirmed to be metabolized to DB75 rapidly in 

humans in phase I clinical trial and a twice daily oral administration of DB289 maintains 

plasma DB75 at required antimicrobial concentration (Yeramian et al., 2001). As a prodrug, 

pafuramidine maleate became the first oral drug for HAT to enter clinical trials for the early 

stage. In August 2005, a pivotal phase III trial was started for 273 enrolled patients (Wenzler 

et al., 2009). In October 2008, an extended phase I study of healthy volunteers was started for 

the safety assessment for registration for HAT and Pneumocystis jiroveci (Wenzler et al., 

2009). In the extended phase I trial, severe liver toxicity and delayed renal insufficiency were 

observed in a number of participants (Pholig et al., 2008). Therefore, the DB289 

development program was stopped. The toxicity issue ended the development of this oral 

anti-trypanosomal prodrug and its analogues. Previous pharmacokenics studies of oral 

DB289 in rat and monkey showed multiple metabolites were formed and distributed in 

different organs and tissues with different half lifes. Especially DB75 had a very long half 

life and accumulate in liver (Midgley et al., 2007). It becomes an urgent need to understand 

the toxicity of this prodrug and its each metabolite. 

 

Furamidine does not cross the blood–brain barrier. So it is not effective against late stage 

HAT. Many analogues of furamidine were synthesized and tested in order to find new 

clinical candidates effective to late stage HAT. An aza-analogue of furamidine, 6-[5-(4-

amidinophenyl)-furan-2-yl]nicotinamidine (DB820) (Figure 1.3) was synthesized by adding 

a nitrogen into one of the phenyl rings (Ismail et al., 2003) and exhibited trypanocidal 

activity in rodent models of stage 2 disease. However, like furamidine it suffers from poor 

oral activity because of its positively charged amidine groups. The dimethoxyamidine 
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prodrug of DB820, N-methoxy-6-{5-[4-(N-methoxyamidino)phenyl]-furan-2-yl}-

nicotinamidine (DB844), has potent oral activity in mouse models of both early stage and 

CNS African trypanosomiasis (Ismail et al. 2003) and thus was considered as a promising 

new prodrug for treating late stage human infection. However, severe dose limiting gastro 

intestinal toxicity in trypanosome infected vercet monkeys was recently reported (Thuita et 

al., 2008). Development of this compound has thus been dropped although new analoques 

continues to be pursued as CNS drug condidates. The metabolic pathway for the conversion 

of DB844 to DB820 in human liver microsomes (HLM) was reported (Ansede et al., 2005). 

O-demethylation and N-dehydroxylation reactions resulted in the production of eight major 

metabolites including the active DB820 metabolite providing evidence that DB844 may 

effectively be metabolized to its active metabolite in vivo. 
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D. Rationale for Proposed Studies 

There is a great need for new treatments of human African trypanosomiasis and other 

parasitic diseases worldwide. Major pharmaceutical companies often neglect drug 

development for diseases of the developing world, such as sleeping sickness. Although the 

consortium’s approach to the development of novel therapies has generated many dicationic 

compounds with anti-parasitic activity, there is little known about the exact mechanisms of 

action and mechanisms of toxicity. 

 

Pharmacokenics studies of oral DB289 in rat and monkey showed multiple metabolites are 

formed and distributed in different organs and tissues with different half lifes. Especially 

DB75 has very long half life and accumulates in liver (Midgley et al., 2007). Since the 

toxicity issue is one of the major obstacles for the development of this oral anti-trypanosomal 

prodrug and its analogues, it becomes an urgent need to identify all the metabolites of this 

prodrug, understand the toxicity of this prodrug and its each metabolite, and investigate the 

potential interactions between these compounds and their metabolizing P450 enzymes.  

 

The metabolic pathway for the conversion of DB844 to DB820 in human liver microsomes 

(HLM) was reported (Ansede et al., 2005). O-demethylation and N-dehydroxylation 

reactions resulted in the production of eight metabolites including the active DB820 

metabolite providing evidence that DB844 may effectively be metabolized to its active 

metabolite in vivo. Multiple cytochrome P450s, including CYP4F2, CYP4F3B, CYP2J2, 

CYP1A2, CYP1A1 and CYP1B1, catalyze the first step O-demethylation in the pathway 

(Wang et al., 2006). Therefore, the in vivo efficacy of DB844 is dependent on the level of 
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expression, localization (hepatic vs. extrahepatic) and polymorphism of the CYP(s) involved 

in its metabolism. Recently, two novel and unexpected products (MX and MY) catalyzed by 

extrahepatic P450s CYP1A1 and CYP1B1 were discovered and indicated that the metabolic 

pathway of DB844 was very complex. Due to the instability of MX in the in vitro enzyme 

reaction conditions, it is very challenging to identify its structure, but on the other aspect, it 

might be very significant for the activity study and toxicity study. 

 

Previous studies have confirmed that pentamidine and DB75 induce apoptotic-like death in 

Leishmania donovani and Trypanosome cruzi respectively (Singh and Dey 2007; De Souza et 

al., 2006). Although the mechanism is not fully elucidated, it might be because of their 

capacity of binding DNA and/or inhibiting topoisomerase II (Lausiaux et al., 2002 a and b; 

Singh and Dey et al., 2007). However, it has not been investigated yet if DB75 or the prodrug 

DB289 and its intermediate metabolites can induce apoptosis or necrosis in human cells. As 

we know, drug-induced liver injuries are by means of apoptosis and necrosis, for example 

amiodarone, benzarone (Kaufmann et al., 2005), and acetaminophen (Kon et al., 2004). 

Investigation into the apoptotic induction by DB289 and each metabolite may be helpful to 

elucidate their roles in the long term clinical toxicity. 

 

In recent studies, we found that the conversion of DB289 to M1 catalyzed by the 

recombinant human CYP1B1 was incomplete and the sequential conversion of M1 to M2 

was not observed. It might be explained by inhibition of the metabolizing CYP enzyme by 

the prodrug and/or its metabolites. Therefore, the investigation into the inhibitory abilities of 

 11



these compounds against CYP1B1 was carried out, which may enhance our knowledge of 

DB289 and perhaps lead to new applications for anti-cancer purpose. 

 

The major hypothesis governing the experiments in this dissertation is that identification of 

novel metabolites, investigation of apoptotic effects, and study of inhibition against the 

metabolizing enzymes, can reinforce our understanding of the anti-trypanosomal O-methyl 

amidoxime prodrugs DB289, and therefore develop novel more active and less toxic drugs. 

 

This hypothesis was evaluated through the following specific objectives: 

 

1. Identify the structures of the novel metabolites MX and MY from DB844. 

a) Scale up generation and purification of MX and MY, since they are minor metabolites 

from the prodrug; 

b) Analyze the purified MX and MY with LC-MS to provide structural information; 

c) Propose candidate structures for MX and MY and determine the correct structures by 

comparing with synthetic compounds. 

 

2. Investigate the apoptotic effects of the prodrug DB289 and its metabolites M1, M2, and 

M3 in the mammalian cell MCF-7. 

a) Determine the cytotoxicity of compounds using the Alamar BlueTM assay; 

b) Observe cell morphology and viability; 

c) Analyze the apoptotic effects using flow cytometry and western blotting; 

d) Determine the substrate depletion of these compounds during the apoptotic induction. 
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3. Determine the inhibition of DB289 and its metabolites M1 and M2  

a) Analyze the substrate depletion and metabolite formation of DB289, M1 and M2; 

b) Determine the in vitro inhibition potency using EROD assay and 4E2 and 2E2 formation 

assay. 

 

Potential implications, future studies, and the conclusions drawn from this research are 

presented in Chapter 6. 
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Figure 1.1 A map of countries infected with HAT. The countries shown in colour have 

historically reported HAT. Those countries coloured in red are currently reporting in excess 

of 1000 cases per year. Those in brown currently report between 50 and 1000 cases per year. 

Those in blue report fewer than 50 cases per year, while those in green currently report no 

cases of HAT. Nearly 97% of all reported cases are caused by T. b. gambiense. T. b. 

rhodesiense is found in East and Southern Africa. (Figure courtesy of Dr Pere Simarro at the 

World Health Organization.) HAT, human African trypanosomiasis. 
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Figure 1.2 Clinical drugs for anti-trypanosomiasis.  
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Figure 1.3 Structures of some important trypanocidal diamidines and prodrugs.  
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A. ABSTRACT 

N-methoxy-6-{5-[4-(N-methoxyamidino)phenyl]-furan-2-yl}-nicotinamidine (DB844) is an 

orally active prodrug against CNS African trypanosomiasis in mouse and monkey models.  In 

vivo, it is biotransformed to form the active diamidine 6-[5-(4-amidinophenyl)-furan-2-

yl]nicotinamidine (DB820) through a very complex metabolic pathway. Multiple cytochrome 

P450s, including CYP4F2, CYP4F3B, CYP2J2, CYP1A2, CYP1A1 and CYP1B1, catalyze 

DB844 O-demethylation, the first step in this pathway. Recently we discovered that extra-

hepatic CYP1A1 and CYP1B1, but not CYP4F2, CYP4F3B, CYP2J2 and CYP1A2, catalyze 

DB844 conversion to a novel unstable metabolite (MX), which subsequently degrades to 

another unknown metabolite (MY). MX molecular ion was determined by LC-MS as m/z 

351.1, which corresponds to a loss of “NH” from the prodrug. LC-MS3 spectra of MX 

formed from unlabeled and deuterium labeled DB844 verified that the methyl group on the 

pyridine side remained in these compounds.  Neither the pyridine ring nor the phenyl ring is 

altered. MX degraded to MY when stored in aqueous solution at room temperature overnight. 

LC-MS analysis of MY indicated that it lost “NH” and gained “O” from MX. With this 

information, the structures of MX and MY were proposed. MY (methyl 4-(5-(5-(N'-

methoxycarbamimidoyl)pyridin-2-yl)furan-2-yl)benzoate) was synthesized and has been 

confirmed to be identical to the degraded stable metabolite MY using LC-MS3. The potential 

anti-CNS trypanosomal activity and toxicity of MX and MY need further investigation. 
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B. INTRODUCTION 

African trypanosomiasis, also known as African sleeping sickness, is a parasitic 

infection that has a 100% fatality rate if left untreated. Drugs currently available for the 

treatment of trypanosomiasis suffer from poor oral bioavailability and therefore must be 

administered through intravenous or intramuscular injections, which makes it difficult to 

properly treat patients in rural Africa where this disease is endemic. Furthermore, many of 

these drugs are highly toxic. Melarsoprol causes fatal encephalopathy in 2 to 12% of patients 

(Pepin and Milord 1991); although pentamidine itself is not so highly toxic, it can be 

converted by cytochrome P450 (CYP) to more toxic metabolites. 2,5-Bis(4-

amidinophenyl)furan (furamidine; DB75), a dicationic structural analog of pentamidine, was 

developed as an alternative treatment for African trypanosomiasis (Das and Boykin 1977, 

Steck et al. 1982, Steck et al. 1981). Like many other trypanocides, furamidine has potent in 

vitro activity but suffers from poor oral bioavailability. The lipophilic methoxyamidine 

prodrug of furamidine, pafuramidine (DB289), was developed to improve the oral 

bioavailability of this drug and has recently completed Phase II trials for the treatment of 

primary stage trypanosomiasis. However, pafuramidine was not curative in mouse or monkey 

models of late stage infection (Brun, R. and Ndung'u, S.G., 2004, Personal communication) 

and thus several furamidmethoxime/furamidine analogs have since been synthesized and 

tested as alternative treatments for late stage infection (Ansede et al. 2004; Ismail et al. 2003; 

Ismail et al. 2004).  

6-[5-(4-amidinophenyl)-furan-2-yl]nicotinamidine (DB820) is an aza-analogue of 

furamidine with potent in vitro antitrypanosomal activity (Scheme 2.1). However, like 

furamidine it suffers from poor oral activity because of its positively charged amidine groups. 
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The dimethoxyamidine prodrug of DB820, N-methoxy-6-{5-[4-(N-methoxyamidino)phenyl]-

furan-2-yl}-nicotinamidine (DB844), has potent oral activity in mouse models of both early 

stage and CNS African trypanosomiasis (Ismail et al. 2003) and thus was considered as a 

promising new prodrug for treating late stage human infection. However, severe dose 

limiting gastro intestinal toxicity in trypanosome infected vercet monkeys was recently 

reported (Thuita et al., personal communication). Development of this compound has thus 

been dropped although new analoques continues to be pursued as CNS drug condidates. The 

metabolic pathway for the conversion of DB844 to DB820 in human liver microsomes 

(HLM) was reported (Ansede et al., 2005). O-demethylation and N-dehydroxylation 

reactions resulted in the production of eight metabolites including the active DB820 

metabolite providing evidence that DB844 may effectively be metabolized to its active 

metabolite in vivo. Multiple cytochrome P450s, including CYP4F2, CYP4F3B, CYP2J2, 

CYP1A2, CYP1A1 and CYP1B1, catalyze the first O-demethylation step in the pathway 

(Wang et al., 2006). Therefore, the in vivo efficacy of DB844 is dependent on the level of 

expression, localization (hepatic vs. extrahepatic) and polymorphism of the CYP(s) involved 

in its metabolism. Recently, two novel and unexpected products (MX and MY) catalyzed by 

extrahepatic P450s CYP1A1 and CYP1B1 were discovered and indicated that the metabolic 

pathway of DB844 was more complex (Scheme 2.2).  CYP1A1 and CYP1B1 expressions 

have been reported in several tissues including brain, kidney and lung. Over expression of 

CYP1B1 has been demonstrated in a number of primary human tumors (Maecker et al, 

2003). In this report, LC-MS analysis of MX and MY provided clues to their structures and 

the mechanism of formation. These results will help us to elucidate the whole 
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biotransformation of the prodrug DB844 and better understand the efficacy and toxicity in 

vivo for the treatment of CNS trypanosomiasis in the future. 
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C. METHODS AND MATERIALS 

Materials: DB844, M1A, M1B, M2, DB820 and deuterium labeled DB844 analogues were 

synthesized as reported (Boykin et al., 1996, Stephens et al., 2001; Anbazhagan et al., 2003). 

Human recombinant CYP1A1, CYP1B1, and CYP1A2 + P450 reductase Supersomes were 

purchased from BD Gentest (Bedford, MA, USA). Ammonium formate, formic acid, 

trifluoroacetic acid (TFA), β-NADPH, and other inorganic chemicals were from Sigma (St. 

Louis, MO, USA). E. coli expressing human CYP1A1 was made by Cypex Ltd., Scotland, 

UK. 

DB844 depletion by human recombinant CYP1A1, CYP1B1, and CYP1A2. 

Prior to each experiment, DB844 was prepared as 10 mM stock solution in DMSO. In the 

reaction mixtures, DB844 was added at a final concentration of 3 µM to 100 mM potassium 

phosphate buffer (pH 7.4) supplemented with 3.3 mM MgCl2. Human recombinant CYPs 

were added at a final concentration of 50 pmol /ml for CYP1A1, CYP1B1 or CYP1A2. The 

reaction mixtures were incubated at 37oC for five min prior to the addition of 1 mM NADPH 

to initiate the reaction. Aliquots (250 µL) were taken and the reactions were terminated by 

the addition of 125 µL of acetonitrile and samples were placed on ice. Precipitated protein 

was removed by centrifugation (21,000 x g for 10 min) and the supernatant was removed and 

placed in amber HPLC vials and sealed with Teflon lined caps. Samples were analyzed 

immediately by LC-UV with mobile phase gradient S as described below and DB844 was 

quantitated using DB844 standards at different concentrations for calibration. Experiments 

were performed in triplicate and data of average ± standard deviations are presented.  

 

DB844 metabolite formations by human recombinant CYP1A1, CYP1B1, and CYP1A2. 
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Reaction mixtures were similar as described above, except that human recombinant CYPs 

were added at optimized final concentrations of 10 pmol /ml for CYP1A1, and 50 pmol/ ml 

for CYP1B1 or CYP1A2 to achieve comparable metabolism profiles with suitable amount of 

metabolites. The reactions were carried out, and the samples were processed the same way as 

described in the DB844 depletion studies. Samples were analyzed immediately by LC-UV 

and LC-MS with mobile phase gradient S as described below. 

Scale up generation and purification of MX and MY. 

Scale up generation of MX, MY by E. coli expressing human CYP1A1 was done by Cypex 

Ltd., Scotland, UK. Briefly, DB844 at a final concentration of 10 µM was incubated with E. 

coli expressing human CYP1A1 suspended in culture medium. Pillot experiments were 

conducted to optimize the incubation conditions and harvest time for the maximal production 

of MX and MY. Then, 2 liters of scale up incubation was performed under the optimized 

conditions and the reaction was quenched by addition of equal volume of ice cold acetonitrile. 

Then E. coli was span down and supernatant solution was transferred to another receptacle. 

The pallet was extracted by ice cold acetonitrile and was spun down again. The supernatant 

was combined with the previous solution and aliquoted into small 50 ml centrifuge tubes and 

stored on dry ice prior to usage. The MX and MY identities were confirmed by retention 

times and masses of LC-MS compared to metabolic samples from the human recombinant 

CYP1A1 reaction. 

This scale up sample was concentrated 200 fold with solid phase extraction followed by 

elution with acetonitrile. Then, MX and MY were purified by LC-UV with a semi-prep 

Bonus-RP column and gradient S as described in LC-UV conditions. In order to get better 

separation of MX from the adjacent peak M1B, the slow gradient S was applied and the 
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retention times of metabolites were longer than ones under gradient A. MX and MY were 

collected within a narrow range of time at their retention times. These purified samples were 

immediately passed through solid phase extraction cartridge to remove buffer and 

reconstituted in 1:1 acetonitrile / water.   

Conversion of MX to MY.  

One ml samples from the quenched scale up reaction of MX and MY, and 100 µl purified 

MX were kept at room temperature. Forty µl samples were taken at time 0 and time 6 h and 

analyzed by LC-UV immediately. The chromatography curves were overlaid with same ratio 

of retention time and UV signal intensity. The peaks of MX and MY were expanded to show 

the peak height changes of MX and MY.  

Metabolic studies of deuterium labeled DB844. 

Deuterium labeled DB844 analogues, including DB844-D , DB844-CD4 3(py), and DB844-

CD3(phe), were incubated with human recombinant CYP1A1 under the same conditions as 

described for DB844 metabolite formation. The quenched reaction samples were 

concentrated 10 fold by solid phase extraction and elution with acetonitrile. Then, MX and 

MY formed from deuterium labeled DB844 in these concentrated samples were analyzed by 

LC-UV and LC-MS3.  

HPLC-UV conditions.  

Analysis of DB844 and its metabolites or purification of MX and MY were performed on an 

Agilent 1100 series HPLC with a UV detector. Samples were separated on an Agilent 

ZORBAX bonus-RP column (2.1 x 150 mm, 5 µm) for analytical purpose or an Agilent 

semi-prep ZORBAX bonus-RP column (9.4 x 250 mm, 5 µm) for purification purpose.  The 

system was operated at 0.35 mL/min with a gradient mixing mobile phase buffer A (0.025% 
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TFA in deionized water) and mobile phase buffer B (0.025% TFA in acetonitrile: deionized 

water/ 80:20). Mobile phase gradient F was used for initial analysis of DB844 depletion and 

metabolites formation by human recombinant CYP1s: 90% buffer A plus 10 % buffer B at 

time 0 min, to 100% buffer B at time 22 min, followed by post washing with 90% buffer A 

plus 10 % buffer B for 6 min. Mobile phase gradient S was used for later purification of MX 

and MY, confirmation of purified products, analysis of conversion from MX to MY and LC-

MS3 for fragmentation profiles: 90% buffer A plus 10 % buffer B at time 0 min, to 40 % 

buffer A plus 60 % buffer B at time 25 min, to 100 % buffer B at time 28 min and keep 

100% buffer B until 33 min, followed by post washing with 90% buffer A plus 10 % buffer 

B for 6 min. The wave length of the UV detector was set to 359 nm. The columns were 

maintained at room temperature. For analytical purposes, 10 µl samples were injected. For 

purification purposes, up to 400 µl samples were injected without saturation of the semi-prep 

column. 

LC-MS conditions:  

Qualitative assessments of DB844 and its metabolites were performed on an Agilent 1100 

series HPLC coupled to a LC-MS ion trap mass spectrometer. HPLC conditions were 

described as above. The HPLC was directly linked to the ion trap MS equipped with a 

pneumatically assisted electrospray (ESI) interface operated in the positive mode. Nitrogen 

was used as the nebulizer gas at 45 psi and as the drying gas heated to 350°C at a flow rate of 

9 L/min to evaporate solvents in the spray chamber. The instrument was tuned with the 

Agilent Tuning mix. The voltage settings for the API electrospray interface were: 0 V 

(grounded); sampling capillary, -3000 V; end plate offset, -500 V; capillary exit offset, 35 V. 

The other lenses (skimmer, octopole, and lens voltages) were set to the optimal values for the 
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transmission of the Agilent tuning compound ions at m/z 322 and 622. The trap drive 

radiofrequency amplitude was set at 43 m/z (minimum value for stable mass in the ion trap) 

in the ion trap while ions were being accumulated from the API source. The ion charge 

control (ICC) was set to allow a maximum of 20,000 charges or 50 ms. Full-scan mass 

spectra were acquired with a scan rate of 13,000 m/z per second over a range of m/z 100-650. 

Auto MS/MS and MS/MS/MS was used to acquire MS2 and MS3 spectra for ions between 

m/z 200 and 650 that were above a threshold of 40,000 counts. The MS2 and MS3 spectra 

were acquired using a fragmentation amplitude ramp (end cap voltage) of 0.3 to 2 V in 40 ms. 

The CID spectra were generated at a qz of 0.35 with helium collision gas. Data was processed 

on Bruker version 4.1 data analysis software. 

Synthesis of proposed MY. 

A mixture of 2-bromo-5-(4-methoxyamidino-2-pyridyl)furan (296 mg, 1.0 mmol) (prepared 

according to Ismail et al., 2004), (4-methoxycarbonylphenyl)boronic acid (200 mg, 1.1 mmol, 

purchased from Combi-Blocks, Inc.), palladium acetate (10 mg, 4.5 mol%), and powdered 

potassium phosphate (420 mg, 2.0 mmol) in MeOH (12 mL) was stirred under nitrogen at 

room-temperature for 3 hr.  The mixture was then diluted with water to give a green solid, 

which was filtered off and washed with water.  Recrystallization from MeOH (~200 mL, 

with concentration to ~50 mL) gave, after standing overnight at room temperature, 

orange/tan crystals (114 mg, 32%), mp 231-234 oC.   
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D. RESULTS 

DB844 depletion catalyzed by human recombinant CYP1A1, CYP1B1, and CYP1A2. 

DB844 depletion by human recombinant CYP1A1, CYP1B1, and CYP1A2 was analyzed 

(figure 2.1). The human recombinant CYP1 family enzymes all showed the capacity to 

catalyze the metabolism of the prodrug DB844, which were confirmed by the loss of parent 

compound in the reactions. CYP1A1, CYP1B1 and CYP1A2 resulted in a 92.2 (± 3.6), 66.7 

(± 7.4) and 75.3 (± 6.1) percent loss of prodrug after 30 min of incubation, respectively. 

DB844 metabolite formation catalyzed by human recombinant CYP1A1, CYP1B1, and 

CYP1A2. 

DB844 first underwent an O-demethylation to form either M1A or M1B mono-

amidoxime/mono-methoxyamidine metabolites (figure 2.2), as previously reported (Ansede 

et al., 2005). The subsequent reduction of the amidoxime functionality required cytochrome 

b /b  reductase activity. Recombinant CYPs express no measurable levels of cytochrome b5 5 5 

activity to catalyze the amidoxime reduction, thus, the only metabolites that were formed 

from DB844 in recombinant CYPs were the products of an O-demethylation including M1A, 

M1B and M2 (DB821) (Scheme 2.1 for chemical structures and Scheme 2.2 for the 

metabolic pathway). The O-demethylation products M1A, M1B and M2 were observed in 

recombinant CYP1A1 and 1A2 catalyzed reactions, and M1A and M1B but no M2 were 

observed in recombinant CYP1B1catalyzed reaction. These known metabolites were 

identified by LC retention time and mass measured by full-scan ion trap MS compared with 

authentic standards. However, LC-UV analysis of the CYP1A1 and CYP1B1 reactions 

indicated the production of two additional metabolites with retention times MX (8.5 min) and 

MY (12.4 min) distinct from that of the three known demethylation metabolites M1A (9.1 
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min), M1B (8.3 min), and M2 (6.6 min) (figure 2.2). LC-MS also determined that the 

prodrug DB844 had a molecular ion of 366.2 m/z. M1A or M1B had a molecular ion of 352.2 

m/z, which was consistent with a 14 m/z net loss of “CH2” from the prodrug. M2 had a 

molecular ion of 338.2 m/z, which was consistent with a 28 m/z net loss of two “CH2”s from 

the prodrug. However, MX had a molecular ion of 351.2 m/z, which indicated that it had an 

even number of nitrogen atoms, therefore most likely was a 15 m/z net loss of “NH” from the 

prodrug. So MX is not the same as the O-demethylation metabolites. LC-MS didn’t solve the 

mass of MY under the same conditions due to its low abundance and high background noise 

when MY was eluted. 

Scale up generation and purification of MX and MY. 

To get stronger LCMS3 signals for more structural information, 2 liter of scale up reaction 

was carried out to generate MX and MY. This sample was concentrated with solid phase 

extraction. MX and MY were purified by a semi-prep LC. Later Both LC-UV and LC-MS 

confirmed that MX and MY formed by E.coli expressing CYP1A1 were the same as those 

formed by human recombinant CYP1A1 and CYP1B1 (data not shown).  

Conversion of MX to MY.  

Although the reaction was quenched by acetonitrile and CYP1A1 was removed by 

precipitation, the amount of MX in the supernatant mixture decreased and the amount of MY 

increased after 6 h storage at room temperature, which were determined by LC-UV (figure 

2.3A and 2.3 B.). However at the same conditions, prodrug DB844 and other metabolites M1, 

M2 remained the same in the mixture after 6 h storage. When MX was purified from the 

scale up sample by collecting MX at a narrow range of retention time (14.0 min) using semi-

prep HPLC, MY was also found at the same time, as determined by LC-UV, although MY 
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had a retention time (28.2 min) much longer than MX under the same separation conditions. 

However, no prodrug or other metabolites M1A, M1B, or M2 was found in this purified MX 

sample by careful LC-UV full length scan and LC-MS full-ion scan, which excluded the 

possibility of  MY contamination by overloading the reaction mixture sample to semi-prep 

column. Another possibility is that MX was converted to MY during purification. We also 

found after this purified MX was stored at room temperature for 10 h, it converted to MY 

(figure 2.3C).  

This conversion was tested under different conditions and was found not to be dependent on 

light; it was slowed down by storage at lower temperatures of 4 oC, -20 oC, or -80 oC (data 

not shown). When the purified MX was dried down and reconstituted in organic solvent 

DMSO, it was stable for more than several months. Later in order to reduce loss of MX, 

purified MX was reconstituted in DMSO immediately after purification and stored it at -80 

oC until just prior to usage.  

These results indicated that MX could slowly convert to MY in quenched reaction mixtures, 

during purification, and during storage after purification. Much higher stability of MX in 

DMSO without water indicated that conversion from MX to MY required water.  So it 

showed that a sequential pathway exits from prodrug DB844 to MX, which was catalyzed by 

CYP1A1 and CYP1B1, and from MX to MY, which required water instead of any enzyme. 

 

 

LC-MS3 fragmentation spectra of M1B, MX, MY formed from DB844 and deuterium 

labeled DB844. 
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Samples prepared from CYP1A1reaction with DB844 and purified as described in the 

methods and subjected to ion trap mass spectrometry for metabolite identification. LC-MS3 

fragmentation spectra of M1B, MX, MY formed from DB844 were shown in fig 4 . M1B had 

a molecular ion [M1B+H]+  of 352.2 m/z (figure 2.4A). This M1B parent ion underwent 

collision induced dissociation (CID) to form a daughter molecular ion of 305.1 m/z, which 

was 47 m/z loss corresponding to “OCH NH3 2”on the pyridine ring side. This molecular ion 

(305.1 m/z) was selected to undergo another CID to form several daughter ions including a 

major one of 288.0 m/z, which was 17 m/z loss corresponding to “OH” on the phenyl ring 

side. MX had a molecular ion [MX+H] + of 351.3 m/z (figure 2.4B). Very interestingly, this 

MX parent ion formed a daughter ion of 304.1 m/z, which was also 47 m/z loss corresponding 

to “OCH NH3 2”. Then, this molecular ion (304.1 m/z) gave 2 major daughter molecular ions 

after another CID, which were 289.0 m/z (15 m/z loss corresponding to “CH3”) and 272.0 m/z. 

MY had a molecular ion [MX+H] + of 352.3 m/z (figure 2.4C). Due to the even value 352 m/z, 

MY should have an odd number of nitrogen. Since MY formed from MX in water without 

CYPs enzymes and MY had 1 m/z more than MX, it is very likely that MY was formed by 

net loss of “NH” and gain of “O” from MX. 

Very interestingly, this MY parent ion also formed a daughter ion of 305.1 m/z, which was 

also 47 m/z loss corresponding to “OCH NH3 2”. Then, this molecular ion (305.1 m/z) gave 

one major daughter molecular ion after another CID, which was 273.0 m/z, and several minor 

daughter ions. These results showed that M1B, MX, and MY all had intact “OCH NH3 2” on 

the pyridine ring side.  

To further dissect the reaction site in the DB844 molecule to form MX and MY, deuterium 

labeled DB844s was incubated with CYP1A1 to generate metabolites. The reaction samples 
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3were concentrated as described in the methods and applied to LC-MS  analysis (figure 2.5) 

MX formed from DB844-CD3(py) showed a molecular ion of 354.1 m/z, which has 3 m/z 

more than MX from DB844, indicating that D 2 labeling was remained in MX. MS3  generated 

a daughter ion 303.9 m/z, corresponding to 50 m/z loss of “OCD NH ”, indicating OCD NH3 2 3 2 

on the pyridine ring side was intact. MS3 generated several daughter ions including 288.8 m/z, 

which was 15 m/z loss corresponding to “CH 3”. Similar results were also found in LC-MS3  

analysis of MY formed from DB844-CD (py), that OCD NH3 3 2 on the pyridine ring side was 

intact. When we repeated these experiments using DB844 with CD3 labeled on the phenyl 

ring side (figure 2.6), we found consistently that “OCH NH3 2” remained in MX, and MY. 

Very interestingly, MS3 of MX gave two major daughter ions including one at 288.9 m/z, 

which was 18 m/z loss corresponding to “CD ”. So it also indicated that CD3 3 was remained 

on the phenyl ring side after reaction to form MX from DB844-CD (phe). 3

LC-MS2 analysis of MX formed from DB844 with D4 labeled in the pheyl ring was also 

performed This MX had a molecular ion of 355.2 m/z, which was 4 m/z more than MX from 

DB844 without labeling (figure. 2.7). It indicated that the D4 labeling in phenyl ring 

remained. 

These LC-MS3 results showed that metabolic reactions from DB844 by CYP1A1 and 

CYP1B1 to form MX and MY occurred on the phenyl ring side, while the pyridine side was 

intact. The methyl group on the phenyl ring side remained in MX and MY. MX had net loss 

of “NH” from DB844 and MY had net loss of “NH” and gain of “O” from MX. 

Proposed metabolic reaction and MX and MY structures. 

According to the structural information obtained from the above experiments, we proposed 

the reaction of MX and MY formation and their structures (figure. 2.8). First, CYP1A1 or 
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CYP1B1 inserted a molecular oxgen into the C=N double bond on the phenyl ring side to 

form a triangle structure, which was followed by an O-methyl bond shift to the carbon of the 

triangle structure, subsequently causing the NO bond  to be broken with a NO leaving from 

the molecule and another double bond formed between the carbon and the other nitrogen. 

This product MX has calculated molecular weight of 350.0, the same as the experimental 

molecular weight. Then this MX underwent hydrolysis by being attacked by OH- in water 

and replaced NH to finally form MY, which has net loss of “NH” and gain of “O” and 

matches the molecular weight 351.0. 

3Confirmation of MY structure by HPLC and LC-MS

The proposed MY structure (methyl 4-(5-(5-(N'-methoxycarbamimidoyl)pyridin-2-yl)furan-

2-yl)benzoate) was synthesized as described in Methods (figure. 2.9). 

Synthetic MY (CES-IX-32) had an LC retention time of 27.8 -28.3 min and molecular ion 

m/z of 352.2. This parent ion underwent CID to form one major fragment with m/z of 305.1, 

which underwent further CID to form four major fragments with m/z of 273.0, 245.0, 218.0, 

and 162.9. Under the same analytical conditions, metabolite MY showed the same LC 

retention time, m/z of the molecular ion, and the fragmentation pattern as the synthetic MY. 

Therefore, this novel metabolite MY was assigned the structure as proposed in figure. 2.10. 
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E. Discussion 

MX, a novel metabolite, was formed from the antitrypanosomial prodrug DB844 by extra-

hepatic CYP1A1 and CYP1B1, and had a molecular weight 350, representing a net loss of 

“NH”. MX was different from the known O-demethylation metabolites M1A/B and M2. The 

amounts of MX and MY were very low. It became a challenge for us to solve their structure. 

We scaled up the generation of MX and MY using E.coli expressing CYP1A1 and purified 

MX and MY. We found that MX degraded to MY in water independent of enzyme activity. 

LCMS analysis indicated that MY had molecular weight 350 from a net loss of “NH” and 

gain of “O” from MX. Structural analysis of MX and MY formed from DB844 and 

deuterium labeled DB844 analogues by LC-MS3 verified that the reaction happened on the 

phenyl ring side and the methyl group remained. The formation reaction of MX and MY was 

proposed and MY was synthesize and confirmed by LC retention time and MS3 

fragmentation pattern. So MY structure was assigned as methyl 4-(5-(5-(N'-

methoxycarbamimidoyl)pyridin-2-yl)furan-2-yl)benzoate. Further study is needed to 

synthesize and confirm the MX structure.  

MX and MY formation were not observed in in vitro metabolism studies with liver 

microsomes, which maybe because CYP1A1 and CYP1B1 are not expressed in liver. In the 

future, we need to investigate if MX and MY can form in other tissues and organs especially 

brain, lung, ovaries, testes, and prostate, where CYP1A1 and CYP1B1 are expressed.  Since 

MX was an unstable metabolite, it may have the chance to react with biomolecules when it 

forms in cells, although the amounts of MX and MY were very low in our in vitro studies 

using human recombinant CYP1A1 and CYP1B1. So, the efficacy and toxicity of MX and 

MY need be investigated in the future. 
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Scheme 2.1. Chemical structures of DB844 and its metabolites. (A)DB844,  its known 

metabolites and DB844 with deuterium labeled on methoxy group.  (B) DB844 deuterium 

labeled in the phenyl ring. 
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Scheme 2.2. Metabolic pathway of DB844. Sequential O-demethylations and N-

dehydroxylations formed 8 known metabolites including M1A, M1B, M2, M3A, M3B, M4A, 

M4B, and the active diamidine DB820. The first O-demethylation can be catalyzed by 

CYP4F2/3B, CYP2J2, CYP1A2, CYP1A1, and CYP1B1. Two novel metabolites MX and its 

degradated MY were discovered. This reaction can be catalyzed by CYP1A1 or CYP1B1. 
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Figure 2.1. DB844 depletion catalyzed by human recombinant CYP1A1, CYP1B1, and 

CYP1A2. DB844 was incubated at a final concentration of 3 µM with 50 pmol/ml human 

recombinant CYP. Data represents the percent of DB844 remaining after 30 min incubation 

at 37oC with individual human recombinant CYP. Experiments were performed in triplicate 

and the average ± standard deviations are presented.  
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Figure 2.2. DB844 metabolite formation catalyzed by human recombinant CYP1A1, 

CYP1B1, and CYP1A2. DB844 was incubated at a final concentration of 10 µM with 10 

pmol/ml CYP1A1, 50 pmol/ml CYP1B1 or CYP1A2 at 37 oC for 30 min. Metabolites  were 

analyzed by LC-UV (359 nm) and identified by LC-MS. 
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Figure 2.3. Conversion of MX to MY. The sample from the quenched scale up reaction, and 

purified MX were kept at room temperature for 0 hr and 6 hr and analyzed by LC-UV 

immediately. A) MX in the scale up reaction, and B) MY in the scale up reaction at different 

times. C) MX and MY in the purified MX sample at different time. 
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Figure 2.4. LC-MS3 spectra of M1B, MX, and MY. 
 

 45



 
 

 
 
Figure 2.5. LC-MS3 spectra of MX, MY, and M1B formed from DB844-CD (py). 3
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Figure 2.6. LC-MS3 spectra of MX, MY, and M1B formed from DB844-CD (phe). 3
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Figure 2.7. LC-MS2 spectra of MX formed from DB844-D . 4
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Figure 2.8. Proposed metabolic reaction to form MX and MY. 
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Figure 2.9. Reaction scheme of MY synthesis. 
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Figure 2.10. Confirmation of MY structure by HPLC and LC-MS3. 
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APOPTOSIS INDUCED BY THE ANTI-TRYPANOSOMAL DRUG 

PAFURAMIDINE DB289 AND ITS METABOLITES M1, M2, M3 AND 

FURAMIDINE DB75 IN HUMAN MCF-7 CELLS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A. ABSTRACT 
 
Pafuramidine DB289 (2,5-bis-(4-amidinophenyl)furan-bis-O-methylamidoxime), an oral 

prodrug of furamidine DB75 (2,5-bis-(4-amidinophenyl)furan), exhibits enhanced 

bioavailability and potent activities against trypanosomiasis and Pneunocystis carinii 

pneumonia in animal models. DB289 is biotransformed to intermediate metabolites M1, M2, 

M3 and M4, and the final active compound DB75 in humans. DB289 has passed phase I and 

phase II clinical trials for African trypanosomiasis, malaria, and Pneunocystis carinii 

pneumonia. However, recently DB289 failed in an extended phase I clinical trial for African 

trypanosomiasis due to its severe liver toxicity and delayed kidney toxicity. The mechanism 

of this toxicity is not known now. Since many drug-induced liver injuries are by means of 

apoptosis and necrosis, and DB75 has been confirmed to be capable of inducing apoptotic-

like death in Trypanosome cruzi, we hypothesized that DB75 or the prodrug DB289 and its 

intermediate metabolites can induce apoptosis or necrosis in human cells. In this study, 

Alamar blueTM assay and microscopy determined that DB289, M1, M2, M3 and DB75 

induce cytotoxicity to MCF-7 cells with different potencies, highest with M3, followed by 

M1 and DB75, and the lowest with DB289 and M2. Both flow cytometry analysis and 

western blotting demonstrated that M1, M3, and DB75 induce apoptosis instead of necrosis 

in MCF-7 cells, while DB289 and M2 don't.  The metabolic study showed that most of 10 

µM M1, M3 and DB75 remained after 72 hr incubation in the presence of MCF-7 cells, 

which demonstrated M1, M3 and DB75 mainly contribute to the apoptotic effects. In 

conclusion, M1, M3, and DB75 instead of DB289 and M2 induce apoptosis in human MCF-7 

cells. 
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B. INTRODUCTION 

Furamidine DB75 (2,5-bis-(4-amidinophenyl)furan), a pentamidine analogue, has potent 

anti-parasitic activities against Trypanosoma brucei, Plasmodium falciparum, Leishmania 

spp., and Pneumocystis jirovecii in vitro and in vivo (Das and Boykin, 1977; Bell et al., 1990; 

Brendle et al., 2002; Tidwell et al.,1990). However, it was ineffective when orally 

administrated in animal models, because of its poor bioavailablity. To improve the oral 

absorption, pafuramidine (DB289, 2,5-bis-(4-amidinophenyl)furan-bis-O-methylamidoxime), 

a prodrug of DB75, has been developed to introduce two methoxy groups to mask the 

dicatonic diamidines. DB289 has shown enhanced permeability across intestinal epithelium 

(Zhou et al., 2002) and potent oral activities against trypanosomiasis and Pneunocystis 

carinii pneumonia in animal models (Boykin et al., 1996; Fitzpatrick et al., 2004). The phase 

I metabolic pathway of DB289 (scheme 3.1, adapted from Wang et al., 2006) has been 

determined in vitro using freshly isolated rat hepatocytes (Zhou, et al, 2004). DB289 was 

metabolized to form intermediate metabolites including M1, M2, M3 and M4, and the final 

active compound DB75 through sequential O-demethylation and N-dehydroxylation 

reactions, which are catalyzed by multiple enzymes, including CYP4F2, CYP4F3B, and 

CYP2J2 for the O-demethylations, and cytochrome b5/b5 reductase for the N-

dehydroxylations (Wang et al, 2006; Saulter et al., 2005). DB289 is also confirmed to be 

metabolized to DB75 rapidly in humans in phase I clinical trial and a twice daily oral 

administration of DB289 maintains plasma DB75 at required antimicrobial concentration 

(Yeramian et al., 2001). Then, DB289 passed phase II clinical trials for African 

trypanosomiasis in the Democratic Republic of Congo and Angola, for malaria in Thailand, 

and for Pneumocystis carinii pneumonia in Peru.  
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In October 2008, an extended phase I study of healthy volunteers was started for the safety 

assessment for registration for HAT and Pneumocystis jiroveci (Wenzler et al., 2009). In the 

extended phase I trial, severe liver toxicity and delayed renal insufficiency were observed in 

a number of participants (Pholig et al., 2008). The toxicity issue ended the development of 

this oral anti-trypanosomal prodrug and its analogues. Previous pharmacokenics studies of 

oral DB289 in rat and monkey showed multiple metabolites were formed and distributed in 

different organs and tissues with different half lifes. Especially DB75 had a very long half 

life and accumulate in liver (Midgley et al., 2007). It becomes an urgent need to understand 

the toxicity of this prodrug and its each metabolite. Drug-induced liver injuries are by means 

of apoptosis and necrosis; for example amiodarone, benzarone (Kaufmann et al., 2005), and 

acetaminophen (Kon et al., 2004). Previous studies have confirmed that pentamidine and 

DB75 induce apoptotic-like death in Leishmania donovani and Trypanosome cruzi 

respectively (Singh and Dey 2007; De Souza et al., 2006). Although the mechanism is not 

fully elucidated, it might be because of their capacity to bind DNA and/or inhibiting 

topoisomerase II (Lausiaux et al., 2002, Singh and Dey et al., 2007). However, it has not 

been investigated yet if DB75 or the prodrug DB289 and its intermediate metabolites can 

induce apoptosis or necrosis in human cells.  In this study, we used the human MCF-7 cell 

line, which is a well established cell line for study of drug-induced apoptosis and necrosis 

(Gao et al., 2003). It also has low P450s level (Yu et al., 2001), which may exhibit slow 

metabolism or no metabolism to DB289 and each metabolite, so that it allows us to test their 

direct cytotoxicity after a long treatment times (up to 72 h). Tetramethoxystilbene (TMS) and 

camptothecin (CPT) served as positive controls to induce apoptosis and necrosis as reported 

previously (Chun et al., 2005; Gao et al., 2003). This study of apoptotic or necrotic effects by 
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DB289 and its metabolites is a part of studies to help elucidate which metabolites may 

potentially contribute to long term clinical toxicity. The studies may enhance our knowledge 

of the structure and toxicity relationship and enable us to choose safe structures as scaffolds 

to design safer prodrugs. 
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C. Materials and Methods 

Chemicals and reagents. 

DB289 (2,5-bis-(4-amidinophenyl)furan-bis-O-methylamidoxime), M1 (2-(4-

hydroxyamidinophenyl)-5-(4-methoxyamidinophenyl)furan), M2 (2,5-bis(4-

amidinophenyl)furan-bis-O-amidoxime), M3 (2-(4-amidinophenyl)-5-(4-ethoxyamidino-

phenyl)-furan), DB75 (2,5-bis-(4-amidinophenyl)furan), and stable isotopically labeled 

internal standards d8-DB289 (d8-2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime) 

and d8-DB75 (d8-2,5-bis-(4-amidinophenyl)furan) were synthesized as previously described 

(Boykin et al., 1996, Stephens et al., 2001; Anbazhagan et al., 2003). Tetramethoxystilbene 

(TMS) was obtained from Cayman Chemical (Ann Arbor, MI). Camptothecin (CPT), 

ammonium formate, formic acid, and other inorganic chemicals were obtained from Sigma 

Chemical Co. (St. Louis, MO). Cell culture medium and components including Eagle's 

minimum essential medium (EMEM), nonessential amino acids (NEAA, 100x), sodium 

pyruvate and fetal bovine serum (FBS) of GIBCO were obtained from Invitrogen (Carlsbad, 

CA). Trypsin-EDTA solution (1x) was obtained from Sigma Chemical Co. (St. Louis, MO). 

Alamar BlueTM was obtained from Bioscouce (Camarillo, CA). Annexin V-FITC apoptosis 

detection kit was obtained from BD Pharmingen (San Jose, CA, USA). Antibody against 

PARP was from obtained from Cell Signaling Technology (Danvers, MA). 

Cell culture. 

Human breast carcinoma cell line MCF-7 was maintained in EMEM medium supplemented 

with NEAA, sodium pyruvate, and 10 % FBS under standard cell culture conditions at 37°C 

and 5% CO2 in a humid environment. Cells were passed once very 3 days with standard 

trypsinization procedure. 
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Cytotoxicity Assay. 

The cytotoxicity of compounds was determined using the Alamar BlueTM assay. The protocol 

was modified and optimized from the one recommended by the manufacturer (Ahmed et al., 

1994). MCF-7 cells were seeded in 96-well plates at a density of 3,000 cells / well in 90 µl 

culture medium. After one day, cells were treated with different concentrations of 

compounds including DB289, M1, M2, M3, DB75, TMS and DMSO (0.5% v/v) with 

triplicates for 72 hr. At 66 hr, Alamar BlueTM dye 10 µl / well was added to wells , which 

were then continuously incubated for 6 hr. Then, the samples were measured in a plate reader 

with excitation wave length at 560 nm and emission wave length at 590 nm. IC50 values were 

determined using GraphPad Prism 4.0 (San Diego, CA). The values of drug concentrations 

were transformed to log scale. The cell viability of each sample was expressed as a 

percentage of the Alamar BlueTM fluorescence intensity verse the control (DMSO treated). 

Sigmoidal dose response curves were created to fit the data and to determine the IC50 values.  

Cell morphology and viability. 

53 x 10  MCF-7 cells were treated with DB289 (at 2, 5, 10 µM), M1 (at 2, 5, 10, 25 µM), M2 

(at 2, 5, 10, 25 µM), M3 (at 2, 5, 10, 25, 50 µM), DB75 (at 2, 5, 10, 25, 50, 100 µM), DMSO 

0.5% v/v (negative control), or TMS (positive control) (at 2, 5, 10, 25 µM) at 37°C for 72 hr, 

and then observed under a microscope (Olympus IX70) with the 10 x objective len. The 

images were taken using Qcapture 2.56. 

 

Flow cytometry analysis of apoptosis. 

53 x 10  MCF-7 cells were treated with specific concentrations of DB289, M1, M2, M3, 

DB75, DMSO (negative control), or TMS (positive control) for a specific time, and then 
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harvested by trypsinization followed by centrifugation at 1,000 g at 4 oC for 5 min. The cell 

pellets were washed twice with potassium phosphate buffer PBS (pH 7.4). Cell staining was 

performed according to the protocol of the Annexin V-FITC apoptosis detection kit. Briefly, 

1 x 105 cells were suspended in 100 µl binding buffer and mixed with 5 µl of Annexin V-

FITC and 5 µl of propidium iodide (PI), and incubated for 15 min at 25oC in the dark.  Flow 

cytometry analysis was performed with a Becton Dickinson FACS Caliber as described 

previously (Coffield et al., 2004). Data was analyzed using software CellQuest gating on 

cells with normal size. Dots in the region R4 as Annexin V (-) and PI (-) represented viable 

cells. Dots in the region R5 as Annexin V (+) and PI (-) represent early-stage apoptotic cells. 

Dots in the region R3 as Annexin V (+) and PI (+) represent late-stage apoptotic cells. So, 

dots in R3 plus R5 represent all the apoptotic cells. Dots in the region R2 Annexin V (-) and 

PI (+) represent necrotic cells.  

Western blotting analysis of apoptotic marker protein PARP. 

1 x 106 MCF-7 cells were seeded in 10 cm cell culture dishes and grown at 37 oC in the cell 

incubator for 24 hr. Then, cells were treated with 10 µM DB289, M1, M2, M3, DB75, 

DMSO 0.5% v/v (negative control), or 10 µM TMS (positive control) (Park, 2007) for 72 hr 

or treated with 6 µM CPT (positive control) (Rastogi et al., 2006) from 66 hr for 6 hr before 

harvest. After the treatments, cells were scraped gently from the dish surface and spun down 

by centrifugation at 1,000 g at 4 oC for 5 min to remove the medium. The harvested cells 

were washed twice with cold 100 mM potassium phosphate buffer PBS (pH 7.4). The cells 

were lysed by 200 µl lysing buffer for each cell sample and sonicated for an appropriate 

period of time. After keeping on ice for 30 min, the cell extracts were prepared by 

centrifugation at 10,000 g at 4 oC for 30 min and aspirating the supernatant. The total protein 
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concentration of each cell lysate was determined using Pierce BCA Protein Assay Kit.  

About 20 µg of each sample or one rainbow pre-stained protein marker was loaded into the 

wells of 8% SDS-PAGE gel and the proteins were separated with BioRad SDS-PAGE gel 

cassette and transferred onto nitrocellulose membranes with BioRad semi-dry protein 

transferring cassette under the conditions recommended by BioRad. Membranes were 

blocked in Tris-buffered saline containing 5% non-fat milk and 0.05% Tween 20 at 4 oC 

overnight. Western blotting was performed by hybridizing the membranes with 1:1000 

diluted primary anti-PARP antibody for 2 hr at room temperature followed by four times of 

10 min washing with washing buffer. Then samples were hybridized with 1:5000 diluted 

secondary goat anti-rabbit IgG antibody conjugated with horseradish peroxidase for 1 hr at 

room temperature. After being washed four times with washing buffer for 10 min, the 

membranes were added to SuperSignal West Pico Chemiluminescent substrate and exposed 

to film and the bands were identified after development of the film. The molecular weight 

was determined by comparing with the protein markers. 

Metabolism of DB289, M1, M2, M3 and DB75 in MCF-7 cells. 

100 µl MCF-7 cells were seeded in the 96-well plate at the concentration 3,000 cells/well and 

incubated them at 37 oC for 24 hr. Then, cells or medium without cells (negative control) 

were treated with 1 µM or 10 µM DB289 and its metabolites M1, M2, M3 and the active 

drug DB75, in triplicate. Samples at 0, and 72h were taken and the medium was removed. 

One hundred µl organic extraction solution (7:1 methanol/water + 0.1% trifluoroacetic acid) 

was added to the cells, which was mixed well and kept for 30 min. Then, the extraction 

solution was combined with the medium. The samples were mixed well and kept on ice for 

20 min to precipitate proteins. Samples were spun at 4000 rpm 15 min at 4oC. Two hundred 
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µl supernatant was heated,then dried under nitrogen flow. Samples were reconstituted in 200 

µl solution containing 50% methanol plus 50% water, then vortexed and spun at 4000 rpm 15 

min at 4oC. Ninety eight µl supernatant was then taken and 2 µl internal standards d8-DB289 

and d8-DB75 was added to a final concentration at 0.5 µM. Standards of DB289, M1, M2, 

M3 and DB75 were prepared under the same conditions at various concentrations ranging 

from 1 nM to 15 µM. Blanks were from the DMSO 0.5% treated cell samples with the same 

methods.  

LC/MS/MS analysis. 

The LC/MS/MS analytic methods for DB289, M1, M2, M3 and DB75 were modified based 

on the previously described methods (Sturk et al., 2004; Mathis et al., 2007). Briefly, the 

LC/MS/MS system consisted of two solvent delivery pumps (Shimadzu Scientific, Columbia, 

MD), a thermostated (6°C) LEAP HTC autosampler (Carrboro, NC), and an Applied 

Biosystems API4000 triple-quadrupole mass spectrometer. The sample injection volume was 

4 µl. A Zorbax Bonus RP column (2.1 mm x 150 mm; 5 µm) from Agilent (New Castle, DE, 

USA) was used to separate compounds with flow rate 350 µl per min. The mobile phase A 

consisted of 15 mM ammonium formate and 0.1% TFA in HPLC-grade water. Mobile phase 

B consisted of 15 mM ammonium formate and 0.1% TFA in 4:1 (v/v) HPLC-grade 

acetonitrile/ water. The elution gradient started from 95% mobile phase A plus 5% mobile 

phase B, which  shifted linearly to 20% mobile phase A plus 80% mobile phase B at 20 min, 

then shifted linearly to 100% mobile phase B at 25 min, returning to starting  condition for 6 

min to equilibrate. User-controlled voltages, gas pressures, and source temperature were 

optimized for the detection of the parent and product ions of the compounds. All compounds 

were analyzed in positive-ion mode, using multiple reaction monitoring. 
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Statistical Analysis 

Data are presented as the mean ± SD from independent triplicate experiments unless 

otherwise noted.  P > 0.05 was considered as significant. T tests (unpaired, two-tailed) were 

performed if only two groups were analyzed. ANOVA followed by Tukey's test was used for 

comparison of more than 2 groups. 
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D. RESULTS 

Cytotoxicity Assay. 

To determine the cytotoxic effects by DB289 and its metabolites, MCF-7 cells were treated 

with different concentrations of DB289, M1, M2, M3, DB75, TMS and DMSO (0.5% v/v) 

for 72 hrs. Then, the cell viability was determined by Alamar BlueTM assay. DB289 and its 

four metabolites showed cytotoxicity with different potenies in MCF-7 cells (figure 3.1). 

With progressive higher concentration of treated compounds the cytotoxicity was increased. 

The most potent compound was M3 (IC50 = 4.6 µM), which was followed by M1 (IC50 = 

15.1 µM) and DB75 (IC50 = 21.1 µM). Due to the solubility limits, the maximum 

concentration tested was 10 µM for DB289 and 25 µM for M2, at which only about 20% and 

30% cell inhibitions were achieved, respectively. 

Cell morphology and viability. 

To determine the cytotoxic effects, cell morphological changes and viability were observed 

for MCF-7 cells after treatment of DB289 (at 2, 10 µM), M1, M2, M3, DB75 (at 2, 10, 25 

µM), or DMSO 0.5% v/v (negative control), or TMS (positive control) (at 2, 10, 25 µM) in 

6-well plates (figure 3.2). TMS, M1, M3, and DB75 showed cytotoxicity in a concentration-

dependent manner. Treated with a high concentration (25 µM) of M1, M3, or DB75, most of 

the cells detached from the culture surface and suspended in the medium. Their shape 

became round and their size varied. A similar phenomenon was observed from the cells 

treated with positive control 25 µM TMS. In contrast, the vehicle DMSO treated cells 

showed normal growth, attached to the culture surface and maintained normal fibroblast-like 

morphology and grew to around 90% confluency after 72hr. However, (due to the solubility) 

the high concentration 10 µM of the prodrug DB289 and 25 µM M2 treated cells showed 

very little cytotoxic effect. Most of the cells still attached to the culture surface and 
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maintained normal fibroblast like morphology. Only small numbers of the cells suspended 

and their shape became round with various size.  

Flow cytometry analysis of apoptosis. 

To determine if the cytotoxic effect by DB289, M1, M2, M3, and DB75 is through apoptosis 

or necrosis, the cells were exposed to 10 µM each compound for 72 hr, then were stained 

with Annexin V and PI followed by flow cytometry analysis. We found that comparing with 

the apoptotic cells in the untreated cells, chemical treated cells had increased apoptotic cells 

to different degrees (figure 3.3): untreated (4.41 ± 0.25 %), negative control DMSO (4.61 ± 

0.94 %), positive control TMS (13.17 ± 0.43 %), DB289 (6.5 ± 1.34 %), M1 (20.99 ± 2.95 

%), M2 (5.20 ± 0.44 %), M3 (32.72 ± 3.03 %), and DB75 (13.52 ± 1.19 %). So, M1, M3, 

DB75 and TMS treated cells had significantly increased apoptotic cells. However, DB289, 

M2 and DMSO treated cells had no such increase. The necrotic cells in the all these 

chemically treated cells were close to the spontaneous necrotic cells in the untreated cells: 

untreated (1.98 ± 0.13 %), DMSO (2.31 ± 0.48 %), TMS (3. 66 ± 0.71 %), DB289 (1.79 ± 

0.26 %), M1 (2.40 ± 0.62 %), M2 (2.34 ± 0.60 %), M3 (1.95 ± 1.19 %), and DB75 (1.25 ± 

0.25 %). These results showed that M1, M3 and DB75 induced cytotoxicity mainly through 

apoptosis instead of necrosis in MCF-7 cells, while DB289 and M2 didn’t induce apoptosis 

or necrosis. The positive control TMS also induced apoptosis instead of necrosis in our 

experiments, which is the same as reported previously (Chun et al., 2005).  

We also measured the apoptotic cells and necrotic cells induced by 10 µM TMS, M1, M3, 

DB75, and the vehicle DMSO (0.5 % v/v) at different time points after treatments. The 

results (figure 3.4a) show that the apoptotic cells in the DMSO treated cells remained the 

same at 24 hr, 48 hr, and 72 hr. However, the apoptotic cells continuously increased in 10 
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µM TMS, M1, M3, and DB75 treated cells at 24hr, 48 hr, and 72 hr. However, the necrotic 

cells (figure 3.4b) in all these chemically treated cells didn’t change significantly at 24hr, 48 

hr, and 72 hr. These results further confirmed the ongoing apoptosis instead of necrosis in 

M1, M3, DB75 and TMS treated MCF-7 cells. 

Western blotting analysis of the apoptotic marker protein PARP. 

To further confirm these compounds induced apoptosis, we used western blotting to detect 

the cleavage of the marker protein PARP in MCF-7 cells during apoptosis. 10 µM M1, M3 or 

DB75 treated cells showed cleavage of PARP from full length 116 kD to form 89kD (figure 

3.5). Such cleavage of PARP was also observed from the cell lysate treated with positive 

control drugs CPT and TMS, which are consistent with previous publications. There was no 

cleavage found from the cells treated with 10 µM DB289, M2 and the negative control 

DMSO under the same conditions. These cleavage results of the apoptotic marker PARP 

confirmed that M1, M3, and DB75 but not DB289 and M2, induced apoptosis in MCF-7 cells, 

consistent with results from our flow cytometry experiments.  

Metabolism of DB289, M1, M2, M3 and DB75 in MCF-7 cells. 

To test if the metabolic stability of the treated compounds and the formation of their 

downstream metabolites, metabolism studies of  1 µM or 10 µM DB289, M1, M2, M3 and 

DB75 in MCF-7 cells or medium without cells were carried out.   

After incubation in the medium without the cells for 72 hr, 1 µM substrate remained (figure 

3.6a.): DB289 (99.78 ± 2.47 %), M1 (96.83 ± 0.62 %), M2 (85.07 ± 1.77 %), M3 (84.17 ± 

5.16 %), DB75 (81.44 ± 9.28 %). When incubated in MCF-7 cells for 72 hr, the 1 µM 

substrate remained: DB289 (33.72 ± 1.45 %), M1 (72.84 ± 1.83 %), M2 (70.92 ± 10.17 %), 

M3 (53.98 ± 1.3 %), DB75 (79.98 ± 3.66 %).  So, the further substrate depletion in the 
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presence of MCF-7 cells showed that cell required metabolism of DB289, M1, M2, and M3 

occurred.  However, there was no cell required metabolism to DB75.   

After incubation in the cell culture medium without the cells for 72 hr, the 10 µM substrate 

remained (figure 3.6b.) : DB289 (91.1 ± 2.93 %), M1 (93.21 ± 7.17 %), M2 (87.98 ± 5.64 %), 

M3 (84.18 ± 5.3 %), DB75 (84.29 ± 2.4 %). When incubated in MCF-7 cells for 72 hr, the 10 

µM substrate remained: DB289 (48.84 ± 12.15 %), M1 (88.6 ± 0.97 %), M2 (73.02 ± 1.34 

%), M3 (82.34 ± 1.55 %), DB75 (89.66 ± 9.83 %) after incubated with the MCF-7 cells for 

72 hr.  Cell required metabolism still happened to DB289 and M2. So, there was no cell 

required metabolism to DB75. However, in the case of M1 or M3, the substrate depletions 

were very similar when incubated with MCF-7 cells or without cells. So, the cell metabolic 

enzymes were relatively saturated by 10 µM M1 or M3.  

Formation of metabolites M1 was also determined in a time course study of DB289 

incubation in MCF-7 cells (figure 3.7). M1 was formed in a time-dependent manner. 

So, 10 µM M1, M3, and DB75 remained most of them after 72 hr incubation in MCF-7 cells, 

during which they induced apoptosis as we observed above.  
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E. DISCUSSION 

Pafuramidine DB289 (2,5-bis-(4-amidinophenyl)furan-bis-O-methylamidoxime), an oral 

prodrug of furamidine DB75 (2,5-bis-(4-amidinophenyl)furan), exhibits enhanced 

bioavailability and potent activities against trypanosomiasis and Pneunocystis carinii 

pneumonia in animal models. DB289 is biotransformed to intermediate metabolites M1, M2, 

M3 and M4, and the final active DB75 in human. DB289 has successfully passed phase I and 

phase II clinical trials trials for African trypanosomiasis, malaria, and Pneumocystis 

pneumonia. However, recently DB289 failed in the extended phase I clinical trial for African 

trypanosomiasis due to severe liver toxicity and delayed kidney toxicity. The mechanism of 

this toxicity is not yet clear. Since many drug-induced liver injuries are by means of 

apoptosis and necrosis and DB75 has been confirmed to be capable of inducing apoptotic-

like death in Trypanosome cruzi, it is interesting to investigate if DB75 or the prodrug 

DB289 and its intermediate metabolites can induce apoptosis or necrosis in human cells.  

 

In this study, we found that DB289, M1, M2, M3 and DB75 showed cytotoxicity to MCF-7 

cells with different potencies, with M3 the most potent compound, followed by M1 and 

DB75. DB289 and M2 achieved less than 30% inhibition of cell growth at the highest 

concentrations tested. The cell morphology and viability observed by microscopy showed 

concentration-dependent inhibition of cell growth by these compounds, which were 

consistent with the cytotoxicity results. Annexin IV and PI double staining followed by flow 

cytometry analysis confirmed that M1, M3 and DB75, but not DB289 and M2, induced 

apoptosis instead of necrosis in MCF-7 cells. These apoptotic effects by M1, M3 and DB75 

occurred in a time-dependent manner. Western blotting also confirmed ongoing apoptosis by 
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showing that the apoptotic marker PARP was cleaved to form the 89kD fragment in the M1, 

M3 and DB75 treated cells but at DB289 and M2 treated cells. Finally, the metabolic study 

showed that most of 10 µM M1, M3 and DB75 remained after 72 hr incubation in the 

presence of MCF-7 cells, which demonstrated M1, M3 and DB75 mainly contribute directly 

to the apoptotic effects. 

 

In this study, we used synthetic compounds of the highest purity that we can obtain. 

DB289, M2 and DB75 are more than 95% pure. DB289 and M2 didn’t show ability to induce 

apoptosis. DB75 has low potency to induce apoptosis. M3 appeared to be most potent. M3 

has impurity DB75 about 10%, which maybe contributes to a small part of the apparent 

potency.  M1 has impurity M2, M3, and DB75, which maybe also contribute to small part of 

the potency.  

 

In the previous pharmacokinetics study of single orally dosed DB289, metabolism formed 

M1 has a relatively short half life, M3 has a relatively long half life and high level in blood 

and urine, DB75 has much longer half life and accumulated in liver. They all can induce 

apoptosis in our results. In future studies, we need examine at their cytotoxic effects to 

hepatic cells, especially DB75. Another important consideration is that the clinical toxicity 

occurred after repeated dosage for a long time, so the intermediated metabolites M1 and M3 

may also have a chance to accumulate and generate the toxicity if the P450 are inhibited after 

long time dosing. M1 and M3 are more potent in inducing apoptosis than DB75 but less 

abundant in liver and blood. Further studies are needed to determine how much they may 

contribute to the toxicity. The interesting thing is that M2 shows a short half life and low 
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levels in the pharmacokinetics study and doesn't induce apoptosis or necrosis in our results. 

So in the future we will be eager to know if M2 is a safe scaffold to design other less toxic 

prodrugs.  

 

There are also some questions in our experiments that are not clear yet.  First, although DB75 

has been confirmed as a DNA binder and can distribute in nucleus in human cell lines 

(Lansiaux et al., 2002), it is not known how it crosses mammalian cell membrane. M1 and 

M3 may pass the cell membrane by passive diffusion. But the targets of M1 and M3 to 

induce apoptosis are not known, which could be different from the targets of DB75.  

Elucidation of the whole process of apoptosis by these compounds may be also important. 
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Scheme 3.1. Metabolic pathway of prodrug DB289. (Adapted from Wang et al., 2006). 
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Figure. 3.1. Cytotoxicity of compounds. MCF-7 cells were seeded in 96-well plates at a 

density of 3,000 cells/well and treated with different concentrations of compounds A) DB289, 

B) M1, C) M2, D) M3 and E) DB75 for 72 hr. The cell viability was measure by Alamar 
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TMBlue  assay and IC50 values were determined by GraphPad Prism. Data represent the mean 

± S.D. of triplicate experiments.  
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DB289 2 µM DB289 10 µMDMSO 0.5% v/v 
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M1 2 µM M1 10 µM M1 25 µM
 

 



M2 25 µMM2 2 µM M2 10 µM
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M3 25 µMM3 2 µM M3 10 µM
 

 



DB75 2 µM DB75 10 µM DB75 25 µM
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TMS 2 µM TMS 10 µM TMS 25 µM  
 



Figure 3.2. Cell morphologic changes and death. 3 x 105 MCF-7 cells were treated with DB289 (at 2, 10 µM), M1, M2, M3, DB75 (at 2, 

10, 25 µM), DMSO 0.5% v/v (negative control), or TMS (positive control) (at 2, 10, 25 µM) at 37°C for 72 hr, and then observed under 

microscope (Olympus IX70) with the 10 x objective len. The images were taken using Qcapture 2.56. 
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Figure 3.3. Flow cytometry analysis of apoptosis. 3 x 105 MCF-7 cells were untreated or 

treated with solvent (DMSO 0.5% v/v), 10 µM TMS, DB289, M1, M2, M3, DB75 for 72 hr, 

and stained with Annexin V-FITC and PI. Flow cytometry analysis was performed with a 

Becton Dickinson FACS Caliber. Data was analyzed using software Cell QuestCell gating on 

cells with normal size. The horizontal axis represents the fluorescent intensity of Annexin V-

FITC, while the vertical axis represents the fluorescent intensity of PI. The region R4 

represents viable cells. The region R5 represents early-stage apoptotic cells. The region R3 
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represents late-stage apoptotic cells. R3 plus R5 represent all the apoptotic cells. The region 

R2 represents necrotic cells.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

81 



A) 

0

10

20

30

40

DMSO

%
 o

f a
po

pt
ot

ic
 c

el
ls

 v
s 

to
ta

l c
el

ls

24h
48h
72h

*

* *

*

* 
**

**

B) 

0

2

4

6

8

10

DMSO T

%
 o

f n
ec

ro
tic

 c
el

ls
 v

s 
to

ta
l c

el
ls

 

*

TMS

MS M

*

82
*

M1

1

*

M3 DB75

* 

 

24 h
48 h
72 h
**
**
M3
**
**
D

**
B75
**
 



Figure 3.4. Time course of the induced apoptosis and necrosis. 3 x 105 MCF-7 cells were 

untreated or treated with solvent (DMSO 0.5% v/v), 10 µM M1, M3, DB75, and TMS for 24, 

48, and 72 hrs, and stained with Annexin V-FITC and PI, followed by flow cytometry 

analysis. a) The percentage of apoptotic cells induced by different compounds. b) The 

percentage of necrotic cells induced by different compounds. Data are presented as the mean

±S.D. (n=3). 
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 116 kD PARP  

 89 kD cleaved PARP 

 45 kD β-actin  

 

Figure 3.5. Western blotting analysis of the apoptotic marker protein PARP. 1 x 106 MCF-7 

cells were treated with 10 µM DB289, M1, M2, M3, DB75, TMS, or solvent (DMSO 0.5 % 

v/v) for 72 hr or treated with 6 µM CPT from 66 hr for 6 hr before harvest. The cell extracts 

were prepared and whole protein was isolated by 8% SDS-PAGE gel and transferred onto 

nitrocellulose membranes. PARP cleavage was determined by anti-PARP antibody and 

propriate secondary antibody, substrate and signal detection method. The molecular weight 

was determined by comparing with the protein markers. 
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Figure. 3.6. Metabolism of DB289, M1, M2, M3 and DB75 in MCF-7 cells: 
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100 µl MCF-7 cells were seeded in the 96-well plate at a concentration 3,000 cells/well and 

incubated them at 37 oC for 24 hr. Then, the cells or medium without cells (negative control) 

were treated with a) 1 µM or b) 10 µM DB289 and its metabolites M1, M2, M3 and the 

active drug DB75 in triplicate.  
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Figure 3.7. Metabolites formatted from DB289 in MCF-7 cells. 

100 µl MCF-7 cells were seeded in the 96-well plate at the concentration 3,000 cells/well and 

incubated at 37 oC for 24 hr. Then, the cells were treated with 10 µM DB289 for 72 hr. The 

concentration of DB289 and the metabolites M1 and M2 formed during incubation were 

determined.  
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CHAPTER 4 

 

 

 

CYP1B1 INHIBITION BY THE ANTIMICROBIAL PRODRUG DB289 AND ITS 

METABOLITES M1 AND M2 



A. ABSTRACT 

2,5-Bis(4-amidinophenyl)furan-bis-O-methylamidoxime (DB289) is a potent antimicrobial 

prodrug that is biotransformed to the active diamidine 2,5-bis(4-amidinophenyl)furan (DB75) 

by sequential O-demethylation and N-dehydroxylation reactions. Previous studies have 

shown that O-demethylation reactions are catalyzed by multiple enzymes, including CYP4F2, 

CYP4F3B, CYP2J2, CYP1A2, CYP1A1, and CYP1B1. Recently, we discovered that 

recombinant CYP1A1 and CYP1A2 catalyzed the two sequential O-demethylations to form 

M1 and M2, respectively. However, CYP1B1 could only catalyze the first O-demethylation 

from DB289 to form M1, but could not form M2.  Studies of M1 metabolism and protein 

binding studies using 14C-DB289 indicated that M1 may be converted to a reactive 

intermediate metabolite by CYP1B1. Radiolabeled material was bound tightly to proteins, 

and could not be released by extensive organic extraction. DB289, M1, and M2 all exhibited 

inhibitory effects against CYP1B1 using the EROD assay. Different inhibition potencies 

were seen, with the highest potency IC50 value for M1 (0.9 µM), followed by DB289 (2.5 µM) 

and M2 (9.4 µM). DB289, M1, and M2 also could inhibit carcinogen 1, 3, 5(10)-estratrien-3, 

4, 17β-triol (4E2) formation catalyzed by CYP1B1 and non-carcinogen 1, 3, 5(10)-estratrien-

2, 3, 17β-triol (2E2) formation catalyzed by CYP1A1 and CYP1A2. Since CYP1B1 has been 

implicated as a potential anti-cancer target, future investigation of the CYP1B1 inhibition by 

DB289, M1, and M2 may be helpful for the potential cancer prevention.  

 

 

INTRODUCTION 
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DB289 is an antimicrobial prodrug developed for the treatment of a variety of microbial 

infections (Yeramiam et al. 2005). The phase I metabolic pathway of DB289 to form the 

active dicationic compound DB75 (figure 4.1) has been determined in vitro using freshly 

isolated rat hepatocytes (Zhou et al., 2004). These sequential O-demethylation and N-

dehydroxylation reactions are catalyzed by multiple enzymes, including CYP4F2, CYP4F3B, 

CYP2J2, CYP1A2, CYP1A1, and CYP1B1 for the O-demethylations, and cytochrome b5/b5 

reductase for the N-dehydroxylations (Wang et al., 2006; Saulter et al., 2005). Interestingly, 

the conversion of DB289 to M1 catalyzed by the recombinant human CYP1B1 was 

incomplete and the sequential conversion of M1 to M2 was not observed. Therefore, we 

hypothesized that DB289, M1 or M2 could inhibit CYP1B1 activity. Since CYP1B1 protein 

is expressed broadly in tumor cells and very rarely in normal cells, it has been extensively 

studied for its important role as a universal tumor marker. CYP1B1 has been confirmed to 

catalyze multiple exogenous and endogenous substrates to form carcinogens and therefore 

initiate tumorigenesis. A well known example is 1, 3, 5(10)-estratrien-3, 4, 17β-triol (4E2), 

which is selectively converted by CYP1B1 from endogenous 1, 3, 5(10)-estratrien-3, 17β-

diol (E2), and has been reported to be correlated to initiation of various cancers (Spink et al., 

1998). So CYP1B1 has been implicated as a potential anti-cancer target (Guengerich et al., 

2003) through vaccine, prodrug and inhibitor strategies (Gribben et al., 2005; Potter et al., 

2002; Chunet al., 2001). Investigation of CYP1B1 inhibition may be helpful for cancer 

prevention and anti-cancer drug design.  
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C. MATERIALS AND METHODS 

Chemicals and reagents. 

DB289 (2,5-bis-(4-amidinophenyl)furan-bis-O-methylamidoxime), M1 (2-(4-

hydroxyamidinophenyl)-5-(4-methoxyamidinophenyl)furan), and M2 (2,5-bis(4-

amidinophenyl)furan-bis-O-amidoxime) were synthesized as previously described (Boykin et 

al., 1996; Stephens et al., 2001) (figure 4.1). 14C labeled DB289 in methanol solution was 

obtained from Huntingdon Life Sciences Ltd. (Huntingdon, UK) (Midgley et al., 2007). The 

radiochemical purity was more than 97% and it was stored in dark at  

-80oC prior to usage. Human CYP1A1, CYP1A2, and CYP1B1 + P450 reductase 

Supersomes were purchased from BD Gentest (Bedford, MA, USA). Tetramethoxystilbene 

(TMS) was obtained from Cayman Chemical (Ann Arbor, MI, USA).  1, 3, 5(10)-estratrien-3, 

17β-diol (E2), 1, 3, 5(10)-estratrien-2, 3, 17β-triol (2E2), and 1, 3, 5(10)-estratrien-3, 4, 17β-

triol (4E2) were purchased from Steraloids, Inc. (Newport , RI, USA). Flutamide, 7-

ethoxyresorufin (7-ERF), resorufin (RF), ammonium formate, formic acid, β-NADPH, and 

other inorganic chemicals were obtained from Sigma Chemical Co. (St. Louis, MO, USA). 

Metabolism studies of DB289, M1, and M2 by human recombinant CYP1s. 

Prior to each experiment, DB289, M1, and M2 were prepared as 10 mM stock solutions in 

DMSO. In the reaction mixtures, compound was added at a final concentration of 1 µM to 

100 mM potassium phosphate buffer (pH 7.4) supplemented with 3.3 mM MgCl2. Human 

recombinant CYPs were added at a final concentration of 10 pmol/ml for CYP1A1, and 50 

pmol/ml for CYP1B1 or CYP1A2 to achieve comparable metabolism profiles with suitable 

amount of metabolites. The mixtures were incubated at 37oC for five min prior to the 

addition of 1 mM NADPH to initiate the reaction. Aliquots (250 µL) were taken at specific 
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time points and the reactions were terminated by the addition of 125 µL of acetonitrile and 

samples were placed on ice. Precipitated protein was removed by centrifugation (21,000 x g 

for 10 min) and the supernatant was removed and placed in amber HPLC vials and sealed 

with Teflon lined caps. Samples were analyzed immediately by LC-UV as described below 

and metabolites were quantitated using authentic standards at different concentrations for 

calibration.  

For the metabolic study of 14C-labeled DB289, the reaction conditions were the same as 

above. After the sample was quenched and centrifuged, the supernatant solution was 

transferred and the protein pellet was extracted with acetonitrile and washed by 

centrifugation three times. The supernatant solution, each extracted solution (extraction 1, 2, 

3 respectively), and the final protein pellet were kept and reconstituted in Ultima Gold 

Universal liquid scintillation cocktail. The luminescent counts were determined and analyzed 

with QuantaSmart.  

HPLC-UV analysis of compounds.  
 
Analysis of DB289 and its metabolites was performed on an Agilent 1100 series HPLC with 

a UV detector. Ten µl samples were injected and separated on an Agilent ZORBAX bonus-

RP column (2.1 x 150 mm, 5 µm). The system was operated at 0.35 mL/min with mobile 

phase buffer A (0.025% TFA in deionized water) and mobile phase buffer B (0.025% TFA in 

acetonitrile: deionized water/ 80:20). Mobile phase gradient was 90% buffer A plus 10 % 

buffer B at time 0 min, to 100% buffer B at time 22 min, followed by post washing with 90% 

buffer A plus 10 % buffer B for 6 min. The wave length of the UV detector was set to 359 

nm. The columns were maintained at room temperature. Authentic standards at different 

concentrations were used to obtain calibration curves for quantitation.  
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Ethoxyresorufin O-deethylation (EROD) assay. 

Reaction mixtures containing 5 pmol/ml CYP1B1, 4 µM 7-ethoxyresorufin as substrate, 3.3 

mM magnesium chloride in 100 mM potassium phosphate (pH 7.4) and chemicals (DB289, 

M1, M2, flutamide) at multiple concentrations (range 1 nM -100 µM) were incubated at 37oC. 

The control reaction mixtures contained vehicle instead of chemicals. The reactions were 

initiated by addition of 1 mM β-NADPH. After 5 min, the reactions were quenched by 

addition of half volume of acetonitrile. The amount of the products was determined by RF-

5001 PC Shimadzu fluorimeter with Ex at 510 nm and Em at 586 nm as described previously 

(Radenac et al., 2004). Resorufin standards at different concentrations were used for 

calibration. IC50 values were determined using GraphPad Prism 4.0 (San Diego, CA) 

statistical program. The values of drug concentrations were transformed to log scale. The 

enzyme activity of each sample was expressed as a percentage of signal intensity versus the 

control (DMSO treated). Sigmoidal dose response curves were created to fit the data and to 

determine the IC50 values.  

4E2 and 2E2 formation assay. 
 
Reaction mixtures containing 50 pmol/ml CYP1B1, CYP1A1, or CYP1A2,  1 µM 1, 3, 

5(10)-estratrien-3, 17β-diol (E2) as substrate, 3.3 mM magnesium chloride in 100 mM 

potassium phosphate (pH 7.4) and chemicals (DB289, M1, M2, flutamide, and TMS) at 

multiple concentrations were incubated at 37oC. The control reaction mixtures contained 

vehicle instead of chemicals. The reactions were initiated by addition of 1 mM β-NADPH. 

After 5 min, the reactions were quenched by addition of 0.1 volume of 1 M HCl. The amount 

of metabolite 1, 3, 5(10)-estratrien-3, 4, 17β-triol (4E2) was determined using the method 
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described previously (Aoyama et al., 1990). IC50 values were determined using GraphPad 

Prism 4.0 (San Diego, CA) statistical program. 

Statistical Analysis 

Data are presented as the mean ± SD from independent triplicate experiments unless 

otherwise noted.  P > 0.05 was considered as significant. T tests (unpaired, two-tailed) were 

performed if only two groups were analyzed. ANOVA followed by Tukey's test was used for 

comparison of more than 2 groups. 
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D. RESULTS 

 
Metabolism studies of DB289, M1, and M2 by human recombinant CYP1s: 

The O-demethylation reaction is the first step of the complex metabolic pathway of 

methoxime prodrug DB289.  Multiple P450s were confirmed to be capable of catalyzing this 

reaction according to previous P450s metabolism screening (Wang et al, 2006; Saulter et al., 

2005). In the metabolism study of DB289 catalyzed by CYP1 enzymes, we found very 

interesting results as shown in figure 4.2. CYP1B1 catalyzed the first O-demethylation to 

form M1 after 30 min reaction at 37oC, but did not form any M2, via the second O-

demethylation. However, under the similar experimental conditions, both CYP1A1 and 

CYP1A2 catalyzed the two sequential O-demethylations to form M1 and M2, respectively.   

In order to determine if M1 is a substrate of CYP1B1, we carried out a time course study of 

M1 metabolism. The substrate M1 could be continuously depleted by CYP1B1 with NADPH 

present during the time course, with about 42% M1 remaining at the last time point 120 min 

(figure 4.3B). However, only minor quantities of M2 were formed during this incubation 

(figure 4.3A). We also examined M2 metabolic stability under the reaction conditions. In a 

subsequent experiment M2 was not depleted by CYP1B1 during similar incubation (figure 

4.3C and 4.3D). Since M2 was metabolically stable in the presence of CYP1B1, it raised a 

question why M1 was depleted by CYP1B1 but did not form free metabolites that we could 

detect under the common HPLC-UV conditions for DB289 analogues. One possibility was 

that M1, or reactive metabolites of M1, may bind protein contents during the metabolic 

reaction and be removed by coprecipitation with proteins after the reaction mixture was 

quenched and centrifuged. 

14C-DB289 during CYP1 catalyzed metabolic reactions. Protein binding of 
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To test this possibility of protein binding during metabolic reactions, we repeated the 

metabolism study using 14C-labeled DB289 as a substrate in the presence of CYP1 enzymes.  

After the reaction samples were quenched and centrifuged, the supernatant solution was 

transferred and the protein pellet was extensively extracted with acetonitrile. Most of the 

radio activity counts were recovered in the supernatant solution and the first extraction 

solution. Extraction solutions 2 and 3 had very similar low counts, less than 500 cpm, which 

confirmed that the extractions had efficiently removed the free 14C -labeled compounds, 

including prodrug and any metabolites (figure 4.4). The protein pellet from CYP1B1 reaction 

mixture incubated for 40 min with NADPH had counts (2258 ± 56), which was significantly 

higher than the counts of its two negative controls, incubated for 0 min with NADPH (541 ± 

25) and  incubated for 40 min without NADPH (523 ± 28), respectively. In contrast, the 

protein pellets from CYP1A1 or CYP1A2 had similar low counts (less than 500), whether 

incubated for 0 or 40 min, with or without NADPH. These results indicated that during 

metabolism, DB289 and/or its metabolite M1, or a possible reactive metabolite, could bind 

proteins in the CYP1B1 reaction mixture, but not in CYP1A1 and CYP1A2 reaction mixtures. 

Since this process was in a NADPH-dependent manner, reactive intermediate metabolite may 

form in the presence of CYP1B1 and bind protein contents tightly, which could not be 

released by extensive organic extraction.  

Inhibition of CYP1 metabolism. 

Based on the above metabolism studies, we knew that CYP1A1 and CYP1A2 catalyzed the 

two sequential O-demethylations from DB289 to M1 and M2, respectively (figure 4.5A).  

However, CYP1B1 could only catalyze the first O-demethylation from DB289 to form M1, 

but not further to form M2. The second O-demethylation may be inhibited (figure 4.5B). 
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Consistently, CYP1B1 could only catalyze the first O-demethylation from M1 to form M2 

(figure 4.5C). M1 may be catalyzed to form reactive intermediate metabolites, which bind to 

protein tightly. 

Inhibition of DB289, M1, and M2 against CYP1B1. 

In order determine the direct inhibitory effects of DB289 and each O-demethylated 

metabolite M1 and M2, we used 7-ethoxyresorufin as the marker substrate to measure 

CYP1B1 activity in the presence of these compounds at different concentrations (range 1 nM 

-100 µM). The results are shown in figure 4.6. With progressively increasing concentrations, 

all the tested compounds exhibited higher inhibition against CYP1B1 activity. Flutamide, a 

known CYP1B1 inhibitor (Rochat et al., 2001), served as a positive control. IC50 values 

were 11.3 µM for flutamide, 0.9 µM for M1, 2.5 µM for DB289 and 9.4 µM for M2. Control 

activity in the absence of inhibitors was 2.2 pmol min-1 -1 pmol CYP1B1 . These results 

indicated that DB289 and each O-demethylated metabolite M1 and M2 were all inhibitors of 

CYP1B1, with M1 the most potent one among them. 

Inhibition of carcinogen 4E2 and 2E2 formation by DB289, M1, and M2. 
 
The carcinogen 4E2 is mainly formed by CYP1B1 instead of CYP1A1 and CYP1A2 from 

endogenous substrate E2. In contrast, non-carcinogen 2E2 is the product catalyzed by 

CYP1A1 and CYP1A2 from E2. Since DB289, M1, and M2 showed inhibitory effects 

against CYP1B1 in the EROD assay, we also were interested to test if carcinogen 4E2 

formation by CYP1B1 could also be inhibited by these compounds. The results are shown in 

the table 4.1. DB289, M1, and M2 and the positive control chemicals flutamide and TMS all 

exhibited inhibitory effects against carcinogen 4E2 formation catalyzed by CYP1B1 with 

different potency. TMS showed the highest potency (IC50= 0.09 ± 0.02 µM) and flutamide 
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showed the lowest potency (IC50= 5.3 ± 0.46 µM). M1 has a potency (IC50= 0.12 ± 0.02 µM) 

close to TMS. DB289 and M2 both had potency with IC50 values less than 1 µM. These 

compounds also inhibited non-carcinogen 2E2 formation by CYP1A1 and CYP1A2.  DB289, 

M1, M2, and TMS showed preferential inhibition against CYP1A1 verse CYP1A2.  
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E. DISCUSSION 
 
The anti-trypanosomal dimethoxime prodrug DB289 has a complex metabolic pathway. The 

O-demethylation step could be catalyzed by multiple P450s. CYP1A1 and CYP1A2 

catalyzed the two sequential O-demethylations to form M1 and M2, respectively. However, 

CYP1B1 could only catalyze the first O-demethylation from DB289 to form M1, but not 

further to form M2.  Metabolism studies of M1 and protein binding studies of 14C-DB289 

indicated that M1 may be converted to a reactive intermediate metabolite by CYP1B1 and 

bind tightly to proteins, which could not be released by extensive organic extraction. 

The EROD assay is a standard assay to measure CYP1 enzyme activity. DB289, M1, and M2 

all exhibited inhibitory effects against CYP1B1 using this assay. In the future, more precise 

experiments need to be done to determine their inhibition types, especially using 

preincubation experiments to determine if M1 is an irreversible inhibitor.  

The positive control chemical TMS is the most potent and selective inhibitor against 

CYP1B1 reported to date. Its inhibition type was determined as reversible competitive 

inhibition. There has been no selective irreversible CYP1B1 inhibitor reported, yet. DB289, 

M1, and M2 all exhibited selective inhibition against CYP1B1 versus CYP1A1 and CYP1A2 

by 4E2 and 2E2 formation assay. Since M1 was depleted by CYP1B1 and there was no free 

metabolite formed during the reaction, it will be very interesting to know if it is a selective 

irreversible inhibitor against CYP1B1 in future investigations. 

TMS also showed inhibitory effects against mutagenesis and therefore was considered for the 

potential cancer prevention application. New selective CYP1B1 inhibitors, especially 

irreversible inhibitors may also be interesting candidate for such purpose.  
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Figure 4.1. Chemical structures of synthetic compounds DB289, M1, M2, and 14C-labeled 

DB289. * indicates the positions of 14C-radiolabels.  
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Figure 4.2. In vitro metabolism of DB289. Substrate was incubated with (A) 50 pmol /ml 

CYP1B1; (B) 10 pmol /ml CYP1A1; (c) 50 pmol /ml CYP1A2. Reactions were performed at 

37oC for 30 min. 
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B) 
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C) 

 
 
D) 

 
 
Figure 4.3. Substrate depletion by CYP1B1. (A) M1 was incubated with CYP1B1. Samples 

at time 0 min and 30 min were analyzed by HPLC; (B) M1 depletion by CYP1B1 at multiple 

time points during the incubation were quantitated by HPLC; (C) M2 was incubated with 

CYP1B1. Samples at time 0 min and 30 min were analyzed by HPLC; (D) M2 depletion by 
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CYP1B1 at multiple time points during the incubation were quantitated by HPLC-UV. 

Control reactions were initiated with water instead of β-NADPH. 
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Figure 4.4. Radio activity counts remaining in extraction solutions and protein precipitaion. 

14C-DB289 was metabolized by A) CYP1B1, B) CYP1A1, and C) CYP1A2 in the presence 

of NADPH or water at reaction time 0 and 40 min.  
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Figure 4.5. Metabolic pathways. A) DB289 was metabolized by CYP1A1 or CYP1A2 to form M1 and M2 sequentially. B) DB289 was 

metabolized by CYP1B1 to form M1, but not to further form M2. C) M1 was not metabolized by CYP1B1 to form M2. 

 

 

 

 

 

 

 

 



 

 
 
Figure 4.6. Concentration-dependent inhibition of EROD activities catalyzed by CYP1B1. 

The activities were determined in the presence of inhibitors: flutamide, DB289, M1 or M2 at 

concentrations (range 1 nM -100 µM). The control activities were determined in the absence 

of inhibitors.  
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Table 4.1. 

Inhibitory effects by DB289 and its metabolites M1 and M2 on carcinogen 4E2 formation 

catalyzed by CYP1B1 and non-carcinogen 2E2 formation catalyzed by CYP1A1 and 

CYP1A2. 

Assay conditions were as described in Materials and Methods. The data represent the mean 

from three separate experiments. 
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CONCLUSIONS AND FUTURE STUDIES 



Conclusions and Future Studies 

The agents that are currently available as anti-trypanosomals are generally unsatisfactory due 

to a combination of their low efficacy, dangerous side effects and difficulty in administration. 

Aromatic diamidines have long been used for the treatment of parasitic diseases such as 

human African trypanosomiasis.  

 

The investigations described here have focused primarily on O-methyl amidoxime prodrug 

DB289 and aza analogues DB844, and their metabolites (Chapters 2-4). The novel 

metabolites MX and MY were formed from these prodrugs catalyzed by CYP1 enzymes. The 

analysis of the purified MX and MY using LC-MS generated essential structural information 

of MX to MY. The structure of MY was assianged as methyl 4-(5-(5-(N'-

methoxycarbamimidoyl)pyridin-2-yl)furan-2-yl)benzoate. Further study is needed to 

synthesize and confirm the MX structure. In the future, we need investigate if MX and MY 

can form in other tissues and organs especially brain, lung, ovaries, testes, and prostate, 

where CYP1A1 and CYP1B1 are expressed.  Since MX was an unstable metabolite, it may 

have chance to react with biomolecules when it forms in cells, although the amounts of MX 

and MY were very low in our in vitro studies using human recombinant CYP1A1 and 

CYP1B1. So, the efficacy and toxicity of MX and MY may need be investigated in the future. 

 

DB289 failed in the extended phase I clinical trial for African trypanosomiasis due to its 

severe toxicity to liver and kidney. DB75 has been confirmed to be capable of inducing 

apoptotic-like death in Trypanosome cruzi. Before these studies began, little was known with 

if DB75 or the prodrug DB289 and its intermediate metabolites could induce apoptosis or 

necrosis in human cells. In the cell-based toxicity assays and apoptotic analysis using flow 

 115



cytometry and western blotting, these apoptotic effects by M1, M3 and DB75 were 

confirmed in MCF-7 cells. The metabolic study also demonstrated that M1, M3 and DB75 

mainly contribute to the apoptotic effects.  

In previous pharmacokinetics study of single orally dosed DB289, metabolism formed M1 

had a relative short half life, M3 had relatively long half life and high levels in blood and 

urine, DB75 had much longer half life and accumulated in liver. They all can induce 

apoptosis in our results. In future studies, we need examine their cytotoxic effects to hepatic 

cells, especially DB75. Another important consideration is that the clinical toxicity is after 

repeated dosage for a long time, so the intermediated metabolites M1 and M3 may also have 

chance to accumulate and generate the toxicity if the P450 are inhibited after long time 

dosing. M1 and M3 are more potent to induce apoptosis than DB75 but less abundant in liver 

and blood. So further study is needed to determine how much they may contribute the 

toxicity. The interesting thing is that M2 shows a short half life and low level in the 

pharmacokinetics study and it doesn't induce apoptosis or necrosis in our results. So in the 

future we will be eager to know if M2 is a safe scaffold to design other less toxic prodrugs. 

There are also some questions in our experiments that are not clear yet.  First, although DB75 

has been confirmed as a DNA binder and can distribute in nucleus in human cell lines 

(Lansiaux et al., 2002), it is not known how it crosses cell membrane. M1 and M3 may pass 

the cell membrane by passive diffusion. But the targets of M1 and M3 to induce apoptosis 

are not known, which could be different from the targets of DB75. Elucidaiton of the whole 

process of the apoptosis by these compounds may be also important. 

 

Metabolism study of DB289 and M1 showed that CYP1B1 could only catalyze the first O-

demethylation from DB289 to form M1, but not further to form M2. Metabolism study of M1 
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14and protein binding study of C-DB289 indicated that M1 may convert to reactive 

intermediate metabolite by CYP1B1 and bind tightly to proteins, which could not be released 

by extensive organic extraction. DB289, M1, and M2 all exhibited inhibitory effects against 

CYP1B1 using EROD assay. In the future, more precise experiments need to do to determine 

their inhibition types, especially using preincubation experiments to determine if M1 is an 

irreversible inhibitor. The positive control chemical TMS is the most potent and selective 

inhibitor against CYP1B1 being reported to now days. Its inhibition type was determined as 

reversible competitive inhibition. There was no selective irreversible CYP1B1 inhibitor 

being reported, yet. DB289, M1, and M2 all exhibited selective inhibition against CYP1B1 

verse CYP1A1 and CYP1A2 by 4E2 and 2E2 formation assay. Since M1 was depleted by 

CYP1B1 and there was no free metabolite formed during reaction, it will be very interesting 

to know if it a selective irreversible inhibitor against CYP1B1 in the future investigations. 

TMS also showed inhibitory effects against mutagenesis and therefore was considered for the 

potential cancer prevention application. New selective CYP1B1 inhibitors, especially 

irreversible inhibitors may also be interesting candidate for such purpose.  
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