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ABSTRACT 
 

JEROME JEFFREY FEDERSPIEL: Observational Methods in Cardiovascular Outcomes 
Research 

(Under the direction of Morris Weinberger) 
 

 Compared to randomized trials, observational methods have several advantages for 

cardiovascular outcomes research, including lower cost, reduced risk to subjects, and 

improved generalizability. Here, I leverage recently-developed observational methodologies 

to address questions that would be difficult or impossible to conduct using randomized trials. 

Study 1 centers on patterns and predictors of stress test use after elective percutaneous 

coronary intervention (PCI). I find that: (1) stress testing is commonly performed after 

elective PCI in a pattern suggestive of routine testing; (2) risk factors thought to increase the 

potential value of such testing are paradoxically associated with lower use of testing, and (3) 

the rate of stress testing use varies strongly across the facilities participating in the national 

CathPCI Registry in a manner that is associated with higher rates of repeat revascularization 

procedures without reduction in death or myocardial infarction. Study 2 centers on the 

imaging modality (echocardiography versus nuclear imaging) chosen for patients receiving 

an exercise stress test after PCI. While many comparisons of test performance (i.e., 

sensitivity and specificity) have been made for echocardiography and nuclear imaging, little 

is known about the implications of test choice on clinical outcomes or resource use. I find 

that patients who receive echocardiography received fewer subsequent coronary 

catheterization or revascularization procedures, but more repeat stress tests, than do nuclear 

testing patients. No differences in rates of death or readmission for myocardial infarction 
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were noted. Study 3 illustrates the use of newly-developed instrumental variables 

methodologies for outcomes research. While conventional instrumental variables techniques 

are only able to estimate a local average treatment effect, or the effect of a treatment on an 

unidentifiable "marginal" population of patients, newer methodologies allow for the 

estimation of more relevant estimands, such as the average treatment effect or effect of 

treatment on those patients receiving the treatment in clinical practice. We evaluated the 

effectiveness of drug-eluting versus bare metal coronary stents using these new methods, 

finding evidence that drug-eluting stents are safe and effective in patients receiving them, but 

that there is considerable heterogeneity in treatment response. 
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PREFACE 
 
 This dissertation is structured in an unconventional manner to better reflect the close 

topical unity of Papers 1 and 2 versus Paper 3, as well as differences between the level of 

detail permitted in most biomedical publications and the level of detail expected in a doctoral 

dissertation. As a result, while a brief general introduction is provided, Studies 1 and 2 are 

also preceded by an additional introductory chapter providing additional context on 

cardiovascular imaging.  
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1. INTRODUCTION 

 In economically-developed countries such as the United States, the burden of 

cardiovascular disease (CVD) on morbidity and mortality has steadily declined for over fifty 

years. Between 1968 and 2006, the age-adjusted CVD mortality rate in the US fell by 65 

percent (1). While lifestyle changes such as reduced smoking rates and improved nutrition 

are responsible for some of this decline, half of the reduction in death due to coronary heart 

disease that occurred in the 1980s and 1990s was due to improved medical treatment (2-4).  

 Improvements in treatment are certainly due in part to the development of novel 

treatments for CVD, but health services research’s role in optimizing the delivery of 

cardiovascular care is also a critical driver of improved CVD outcome (5-8). For example, 

despite its low cost and compelling evidence of survival benefit, aspirin was prescribed for 

only 60 percent of Medicare beneficiaries who experienced a myocardial infarction in 1992-

1993 (9). After health services researchers brought attention to this quality issue, prescription 

rates increased to 90% by 2001 (10). Similarly, the development of percutaneous coronary 

intervention (PCI) to terminate certain types of myocardial infarction (ST-elevation 

myocardial infarction) was a lifesaving clinical breakthrough (11). However, recent efforts 

by health services researchers have expanded the value of this lifesaving, but time-critical, 

procedure by developing strategies to rapidly transport patients to facilities able to provide 

the procedure and reducing the intra-facility delay between entering a facility and receiving 

PCI (12, 13). Simply put, cardiovascular health services research improves quality of care 

and has a long tradition of improving patients’ lives. 
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 Despite impressive progress, CVD remains an important clinical and public health 

problem. It continues to be the most common cause of mortality in the United States, 

responsible for 34 percent of deaths in 2006 (1). By 2030, it is projected that 41 percent of 

the United States population will have been diagnosed with some form of CVD (14). 

Additionally, improvements in outcome have come at growing financial cost to both patients 

and third party payers. Direct medical expenditures on CVD were estimated to exceed $324 

billion in 2010, and the growth in CVD-related medical care costs exceeds even the general 

rate of medical care inflation (15). As a result, CVD-related care is an increasingly important 

component of the overall explosive growth in American medical care spending, which 

ultimately threatens the ability of patients to access appropriate medical care (16). Thus, the 

agenda for CVD-related health services research in the 21st century must include identifying 

approaches that continue the trend of steadily improving patient outcomes in a manner that is 

sensitive to resource use. 

 Randomized trials are considered the gold standard methodology to evaluate the 

efficacy of interventions, because a well-conducted randomized trial is the methodology that 

is least vulnerable to bias due to confounding (i.e., treatment assignment is exogenous by 

construction). However, trials are conducted under highly controlled conditions, with a 

narrow range of patients, which limits their generalizability to real world patients and 

practices. The use of observational data has several compelling advantages for CVD-related 

health services research (17): 

1. Observational data allow for the evaluation of treatment effects that reflect utilization 

patterns in the “real world” of clinical practice, rather than the selected populations studied in 

trials. In addition to clinical exclusions that systematically reduce the number of typical 
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patients with comorbid conditions, current randomized trial design and recruitment efforts 

result in cohorts that under-represent the elderly, women, and racial or ethnic minorities (18). 

Furthermore, because patients must consent to participate in trials, those who agree to study 

enrollment differ in systematic ways from patients who refuse to consent (19, 20). Because 

the effects of most medical treatments are likely heterogeneous (i.e., treatments work better 

in some patients than others), the fact that patients enrolled in clinical trials may be 

systematically different than the typical patient eligible for treatment is a significant 

limitation of randomized trials. 

2. The sample sizes attainable with some observational datasets allows for the 

assessment of rare outcomes for which trials would be prohibitively expensive. Recent 

efforts to control the Federal deficit will impact the amount of funding available for 

biomedical research. The 1% decrease in the National Institutes of Health budget for Fiscal 

Year 2011 was only the second reduction in the NIH budget since 1970. As research budgets 

continue to shrink in real dollar terms, the lower cost of observational methods will be 

increasingly attractive, especially for research questions in which there is no commercial 

enterprise willing to fund trials. For similar reasons, the larger sample sizes obtainable in 

observational research also facilitate clinically-relevant subgroup analyses that would not be 

adequately powered in a trial. 

3. Finally, the use of observational data allows for comparisons that would be 

impractical or unethical in trials. Policy questions concerning the optimal benefits structure 

of government health insurance can be challenging to test using randomized trials for 

political reasons, particularly when many populations covered by government health 

insurance are considered to be vulnerable. Similarly, for those interventions recommended in 
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practice guidelines, pre-existing evidence of benefit can create an ethical prohibition against 

randomizing patients to a control group. Such ethical limitations, while clearly appropriate, 

nonetheless mean that it is difficult to use trials to measure the impact of non-adherence to 

clinical guidelines on patient outcome.  

 The three studies outlined in this dissertation leverage observational methods to 

conduct CVD-related health services research intended to inform efforts in the clinical and 

policy realms to improve outcomes while controlling costs. All three studies focus on 

questions related to the management of patients receiving percutaneous coronary intervention 

(PCI). Studies 1 and 2 focus on post-PCI care by characterizing patterns of care and 

outcomes associated with the use of coronary stress testing. Understanding the optimal use of 

cardiac testing procedures is an important clinical and policy problem, but a lack of evidence 

regarding the effects of testing on patient outcomes and treatment costs complicates these 

efforts. Study 3 focuses on a peri-procedural treatment decision – whether to deploy bare 

metal or drug-eluting stents.  Each study is briefly described below. 

Study 1: Stress testing patterns and predictors after elective PCI. Current treatment 

guidelines recommend that, for patients receiving elective PCI, stress testing should be 

reserved for the evaluation of recurrent symptoms rather than screening asymptomatic 

patients for recurrent ischemia (at least in the first two years following PCI). In this aim, we 

evaluated: (a) patterns in the use of stress testing after elective PCI; (b) predictors of stress 

test use; (c) correlations between facility-level variation in stress test use and both underling 

patient risk and subsequent patient outcomes.  

Study 2: Stress testing imaging modalities after percutaneous coronary intervention. 

Another important area for which evidence regarding stress test choice is lacking is the 
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optimal imaging modality to employ when performing imaging-based exercise stress testing 

after PCI – echocardiography (cardiac ultrasound) or nuclear imaging. In this aim, we used 

longitudinal claims data from a population of Medicare beneficiaries receiving PCI for acute 

coronary syndromes to measure the downstream resource use and clinical outcomes 

associated with the choice of imaging modality.  

Study 3: Local instrumental variables methods for evaluating drug-eluting and bare 

metal stents for PCI. Instrumental variables methods have gained some traction in the 

outcomes research literature, based on their ability to adjust for endogenous treatment 

selection (i.e., confounding) due to factors unobserved in the data available for analysis. 

However instrumental variables methods have a major limitation – they result in an estimate 

that reflects the local average treatment effect – the effect of a treatment on a hypothetical 

population that cannot generally be identified in practice. Methods developed by James 

Heckman and Edward Vytalcil and promoted in the outcomes research literature by Anirban 

Basu integrate an economic model of human behavior into the estimation approach in order 

to obtain results with greater policy relevance then the local average treatment effect 

available from traditional instrumental variable methods. Specifically, the use of “local 

instrumental variable” methods provide estimates of the average treatment effect, the effect 

of treatment on the treated, the effect of treatment on the untreated. In this study, I 

demonstrate an application of this methodology using the example of drug-eluting and bare 

metal coronary stents. 

In concert, these three studies use high-quality, contemporary empirical approaches to 

answer questions of clinical and policy interest for patients living with CVD. Studies 1 and 2 

inform the optimal use of stress testing. Non-invasive cardiovascular tests, including stress 
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testing, are commonly performed procedures and an important component of overall medical 

spending. Study 3 provides information about the comparative safety and efficacy of drug-

eluting versus bare metal coronary stents. Perhaps more importantly, Study 3 also continues 

efforts to make the results of observational outcomes research more useful to providers, 

patients, and policymakers by promoting the use of newer methodologies that permit the 

estimation of intuitive estimands from instrumental variables models. 

 



 

 
 
 
 
 

2. STRESS TESTING UTILIZATION AND MODALITY AFTER CORONARY 
REVASCULARIZATION 

 

 Understanding the optimal use of noninvasive cardiac testing procedures is an 

important clinical and policy problem, but a lack of evidence regarding the effects of testing 

on patient outcomes and treatment costs complicates these efforts. Papers 1 and 2 of this 

dissertation evaluate the use of stress testing after percutaneous coronary intervention. In this 

chapter, I provide additional background information on the use of coronary stress testing, its 

role in patients who have received elective PCI, and choices of stress testing modalities.  

 

AN IMPORTANT POLICY PROBLEM 

 Non-invasive cardiac testing has undergone tremendous technological innovation in 

the past twenty years, as advancements across testing modalities have led to improvements in 

capabilities to evaluate cardiac physiology and anatomy while sparing patients the risks and 

expense of invasive tests such as cardiac catheterization. Enormous growth in utilization of 

non-invasive cardiac testing has resulted (Figure 2.1) (21, 22). The overall utilization and 

cost of medical imaging more than doubled between 2000 and 2005 with over $14 billion in 

Medicare Part B costs alone; one-third of medical imaging was used for cardiovascular 

applications (23). Despite this substantial increase in costs, the benefits of increased testing 

to patients are uncertain (22, 24). Marked geographic variation in rates of cardiac imaging 

use has been noted that cannot be explained by differences in underlying patient risk (25). 

Additionally, the increasing prevalence of cardiologists owning advanced imaging equipment 
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and strong associations between having an ownership stake in an imaging device and the rate 

at which cardiologists employ imaging have raised concerns that financial interests rather 

than medical necessity drive imaging decision making (22, 24, 26-28). The financial toll of 

the growth in testing use, in concert with evidence of geographic and provider variation in 

testing utilization, explains why non-invasive cardiac testing is an important focus for both 

clinicians and policymakers (29, 30).  

 Numerous efforts have been implemented to control unnecessary utilization of non-

invasive cardiac testing. Payers have attempted to limit utilization through both changes in 

financial incentives and direct supervision of medical decision-making. Medicare 

reimbursement for cardiac imaging services has been reduced on several occasions – most 

recently in 2010, when CMS imposed a 36 percent reduction in reimbursement for the most 

common type of nuclear cardiac imaging test (single-photon emission computed 

tomography) and a 10 percent reduction for most forms of echocardiography (cardiac 

ultrasound) (31). In the private insurance market, there has been increased enthusiasm for 

applying managed care principles to imaging through pre-authorization review requirements 

administrated by radiology benefits management organizations (RBMs) (32, 33). The 

cardiology profession and allied groups have also responded to concerns about the growth in 

cardiac imaging use by developing voluntary practice guidelines from the American College 

of Cardiology and American Heart Association as well as Appropriate Use Criteria (AUC) 

from the American College of Cardiology Foundation (ACCF) (34). 

 Recent evidence suggests that this multifaceted approach is succeeding, with modest 

reductions in imaging utilization among Medicare beneficiaries (Figure 2.2) (35). However, 

each approach has weaknesses. While simple to implement, reimbursement changes are blunt 
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tools that do not distinguish between high- and low-value applications. There is evidence that 

cardiac imaging is overused for some applications, but also underused for some high-value 

indications (36). Thus, simple reimbursement reductions may have unintended consequences. 

The ACCF’s AUC provide for clinical scenarios based on expert assessment on whether 

imaging use is appropriate (34). AUC have now been issued for all forms of cardiac imaging 

(37-39). However, AUC and similar guidelines committees frequently rely on expert 

opinion–only 1% of ACC/AHA imaging guidelines are based on “A”-quality evidence (40). 

It is common for experts to disagree – for example the routine use of echocardiography after 

cardiac resynchronization therapy implantation for device optimization was considered of 

uncertain benefit by AUC evaluators, with estimates of its appropriateness ranging widely 

from 4-9 across a fifteen judge panel (1-3 is considered “inappropriate”, 4-6 “uncertain”, and 

7-9 “appropriate”) (37). Thus, promulgation and widespread adoption of these guidelines is 

hampered by a paucity of rigorous empirical evidence regarding imaging’s effects on 

outcomes, overall care processes, and cost (41, 42). 

 In response, the Agency for Healthcare Research and Quality (AHRQ) funded a 

contract with the Duke Clinical Research Institute (DRCI) through the Developing Evidence 

to Inform Decisions about Effectiveness program to develop new insights into the current 

patterns, predictors, and implications of stress testing after PCI (Project ID: 24-DKE-3; Work 

Assignment Number: HHSA290-2005-0032-I-TO4-WA3). This work has already led to 

insights about the use of coronary computed tomographic angiography after PCI (43) as well 

as the patterns and predictors of both stress test and angiography use after PCI (44). Studies 1 

and 2 of this dissertation extend this work to additional questions pertaining to the use of 

stress testing in patients who have received PCI. 
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PATTERNS AND PREDICTORS OF STRESS TESTING AFTER ELECTIVE PCI 
(STUDY 1/CHAPTER 3) 

Stress testing is a non-invasive test used to assess for significantly occluded coronary 

arteries. It is considered a “functional” test in that it measures the impact of occlusion on the 

myocardium (cardiac muscle), rather than an “anatomic” test (such as coronary angiography 

or cardiac computed tomographic angiography) that measures the narrowing of blood flow in 

the coronary arteries directly. The use of stress testing in patients who have previously 

received revascularization with PCI (commonly known as angioplasty) is an indication for 

which additional evidence is sorely needed to inform clinical practice. For patients who have 

received PCI, current major society guidelines and AUC consider assessment of recurrent 

chest pain to be an appropriate use of stress testing (referred to throughout this document as 

"symptom-driven testing"). However, the guidelines are also unanimous in recommending 

against the routine use of stress testing in asymptomatic patients to detect recurrent, 

asymptomatic cardiac ischemia after revascularization (referred to throughout this document 

as "surveillance testing") (38, 45, 46). This guidance was recently reflected by the American 

College of Physician’s “Choosing Wisely” campaign, in which the use of stress testing for 

surveillance testing was selected by both the American College of Cardiology and the 

American Society of Nuclear Cardiology as part of their lists of five common practices that 

ought to be questioned by patients and providers (47). 

The consensus that surveillance testing is not an appropriate use of stress testing is 

primarily based on the evolving understanding of coronary artery disease pathology. 

Myocardial infarction and sudden cardiac death are generally caused by rupture of unstable 

coronary plaques. Unfortunately, most unstable plaques do not cause significant coronary 
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stenosis and consequently do not impact myocardial function until they rupture, thus they 

cannot be detected by stress testing (48, 49). The overwhelming number of lesions that are 

identified by surveillance stress testing would be those for which preemptive treatment with 

revascularization would be unlikely to prevent major cardiac events. While some of these 

lesions may eventually cause stable anginal symptoms, early intervention is unlikely to offer 

benefit. Furthermore, falsely positive results from stress testing subject patients to 

unnecessary anxiety and additional unnecessary procedures such as coronary angiography – 

procedures that come with their own attendant risks and costs.  

While experts agree that stress testing should not be routinely performed after PCI, 

evidence from a large private insurer and the Medicare program demonstrated that stress 

testing is widely employed in the post-PCI population at rates that far exceed estimates of the 

incidence of recurrent chest pain in such a population (44, 50). These findings suggest that 

physicians are employing stress testing in post-PCI populations for indications other than 

those recommended by current AUC and clinical guidelines (i.e., they are using stress testing 

for surveillance testing). Because the current guidelines provide only limited consideration of 

the likely heterogeneity in the value of stress testing, one possible explanation for the 

discordance between guidelines and practice is that physicians selectively use surveillance 

testing among patients who are expected to benefit more from it than the average patient. 

While small-scale registry and single center studies suggest that this is not the case (51, 52) 

and randomized trials of surveillance testing in populations enriched by design to include 

more patients with high risk characteristics have shown no benefit from such an approach 

(53-55), a large, nationally representative cohort study will provide more conclusive insights.  
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CHOICE OF STRESS TESTING MODALITY AFTER PCI (STUDY 2/CHAPTER 4) 

 While efforts continue to define more precisely when stress testing should be 

employed after PCI, understanding which modality of stress testing is optimal is also an 

important clinical and policy question. Two main parameters define how a stress test is 

conducted (Figure 2.3): 

1. Imaging modality: Stress testing can be conducted with electrocardiography (ECG) alone 

or with imaging; if imaging is used, by far the two most commonly employed techniques in 

the United States are nuclear imaging and echocardiography. No single approach is 

universally optimal. ECG-based stress testing is inexpensive, but has limited sensitivity and 

is often not interpretable in the setting of left bundle branch block or paced ventricular 

rhythms (46). While stress echocardiography and nuclear stress imaging perform similarly in 

ischemia detection, they differ in other key respects (56, 57). Fundamentally, 

echocardiography and nuclear imaging measure related, but subtlety different, phenomena.  

Nuclear imaging measures the perfusion of blood within the myocardium, and 

echocardiography identifies a “downstream” effect of low myocardial perfusions (motion 

defects). As a result, echocardiography has generally been shown to be less sensitive but 

more specific than nuclear imaging (58). Other than performance parameters, there are other 

considerations that may drive test choice. Stress echocardiography allows the concomitant 

identification of structural heart disease and avoids patient exposure to ionizing radiation; 

however, results are heavily dependent on the skill of both the technologist and interpreting 

physician as well as the patient’s body habitus (59). Obtaining and interpreting results from 

nuclear stress testing is less subjective and modern nuclear techniques allow for the precise 

localization of myocardial ischemia, but nuclear stress testing is more expensive than other 



13 

modalities. In particular, the most common nuclear imaging technique (tomographic 

myocardial perfusion imaging) costs Medicare an average of $478, while stress 

echocardiography costs $210 (60). Recent evidence suggests that most stress testing 

conducted after revascularization is conducted with nuclear imaging; whether this approach 

represents optimal practice is unclear (50).  

2. Stress modality: Stress testing can be conducted with stress induced by either exercise or 

administration of pharmacologic agents. Exercise stress testing provides information about 

cardiac function in the context of normal activity and avoids side effects from pharmacologic 

stress agents. In addition, exercise capacity is itself a useful prognostic indicator, and in 

elderly patients may be the strongest available predictor of mortality and cardiovascular 

events (61, 62). Stress induced by pharmacologic agents can only be performed with imaging 

(i.e., no ECG-only testing). Therefore, it is recommended that pharmacologic stress testing 

be reserved for patients who are unable or unwilling to exercise adequately (>85% of age-

predicted maximal heart rate),(46) and guidelines for stress testing assume that providers will 

use exercise testing whenever possible (37, 38).  

 Preliminary data suggest the most promising comparison is between exercise 

echocardiography and exercise nuclear testing.  Federspiel et al. conducted a retrospective 

cohort study using 2006-2008 data to identify contemporary patterns, predictors, and 

implications of stress testing modality in the year following PCI.(63) We made three binary 

comparisons of modality:  

1) exercise testing with ECG alone versus exercise testing with imaging (either nuclear 

imaging or echocardiography);  

2) pharmacologic stress testing with imaging versus exercise stress testing with imaging; and  
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3) exercise echocardiography versus exercise nuclear testing.  

Using a combination of registry and administrative (claims) data from the Medicare program, 

we documented several findings: 

1. Among patients receiving exercise stress tests, baseline clinical characteristics of 

patients receiving testing with and without imaging were similar. However, the proportion of 

tests performed without imaging was far higher in the first six months post PCI than later, 

suggesting that ECG-only exercise tests are employed for a different purpose than imaging-

based exercise tests (i.e., that there is confounding by test indication) (Figure 2.4)1. Among 

patients receiving an imaging-based stress test, patients receiving pharmacologic stress 

testing were older and had higher rates of most comorbidities than patients receiving exercise 

stress testing, suggesting that this decision largely reflects differences in underlying risk (i.e., 

that there is confounding by patient characteristics). In contrast, patients receiving an 

exercise stress test with nuclear imaging appeared similar in most respects to patients 

receiving echocardiography, and there were no strong differences in test timing noted 

between echocardiography and nuclear-based tests. Based on these results, I concentrated 

this Study on the decision to use exercise echocardiography or nuclear testing.  

2. Both with and without statistical adjustment for patient characteristics, there was 

pronounced geographic variation in whether patients undergoing an exercise stress test with 

imaging received nuclear or echocardiography (Figure 2.5). Rates varied from 9.1% in the 

South Atlantic Census Division to 31.2% in the Pacific Division, a 3.4-fold difference.   

                                                 

1 Figures 2.4 and 2.5 are reprinted from Federspiel JJ, Mudrick DW, Shah BR, Stearns SC, Masoudi FA, 
Cowper PA, et al. Patterns and predictors of stress testing modality after percutaneous coronary stenting: Data 
from the NCDR((R)). JACC Cardiovasc Imaging 2012;5(10):969-80, with permission from Elsevier 
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3. The choice of echocardiography versus nuclear imaging for exercise stress testing 

was associated with short-term differences in downstream procedure use. The cumulative 

incidence of repeat stress testing within 90 days of the initial stress test was higher in 

exercise echocardiography compared with exercise nuclear imaging tests, but the incidence 

of subsequent cardiac catheterization and revascularization were lower. 

4. While the overall cumulative incidence of stress testing post-PCI declined by 

approximately 17 percent between 2006 and 2008, the proportion of stress tests performed 

with each modality varied little over the time period. These results suggest that broad-based 

reductions in stress test utilization post-PCI, rather than targeted changes in the use of 

specific modalities, have occurred in recent years. 

 Together, these results demonstrate broad variation in practice patterns in terms of 

whether patients receiving an exercise stress test with imaging receive echocardiography or 

nuclear imaging. This variation does not appear to be driven by differences in patient 

characteristics or test indications, but appear to be associated with differences in short-term 

procedure use after stress testing.  The evidence from these preliminary findings and other 

previous studies on the competing advantages of echocardiography and nuclear imaging 

motivates the value of an analysis evaluating the relationship between variation in imaging 

modality choice and the outcomes and costs of stress testing.  
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FIGURES 
 
Figure 2.1: Temporal trends in stress testing utilization compared with rates of invasive 
testing (catheterization), coronary revascularization and myocardial infarction: 1993-2001. 
 
Source: Lucas 2006 (used with permission) 
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Figure 2.2: Temporal trend in Medicare Part B spending on nuclear imaging (MPS), 
echocardiography (Echo), exercise testing (ETT), and cardiac catheterization (Cath) services: 
2000-2008.  
 
Source: Shaw 2009 (used with permission) 
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Figure 2.3: Forms of stress testing commonly performed in the United States 
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Figure 2.4: Trend in type of stress test employed as function of time since PCI.  
 
Source: Federspiel 2012(Used with permission) 
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Figure 2.5: Probabilities of receiving an exercise stress testing with echocardiography rather 
than nuclear imaging, by US Census division.  
 
Probabilities adjusted for patient, PCI procedure, and facility characteristics. Dotted line 
indicates national mean. Source: Federspiel 2012 
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3. STUDY 1: STRESS TESTING AFTER ELECTIVE REVASCULARIZATION 
 

OVERVIEW 

While current appropriate use criteria and guidelines consider stress testing not routinely 

indicated for surveillance in patients who received elective PCI for coronary artery disease, 

such testing may benefit higher-risk patients.  Study objectives were to identify whether: (1) 

current practice patterns of stress testing after elective PCI reflect greater use in higher-risk 

patients, (2) facility variation in testing patterns reflects difference in underlying patient risk, 

and (3) facility variation in testing is associated with differences in clinical outcomes. This 

was a retrospective, observational cohort study using the national CathPCI Registry® linked 

to Medicare fee-for-service inpatient and outpatient claims for beneficiaries ≥65 years 

receiving elective PCI from 2005-2008. Outcome measures were cumulative incidence and 

timing of stress testing after elective PCI; facility-level variation in stress testing and clinical 

outcomes (death, readmission for myocardial infarction, repeat revascularization). Among 

62,694 patients, stress testing incidence was 45.5% at 15 months post-PCI and 58.2% at 27 

months. Among patients receiving stress testing, 51.8% received another within 27 months of 

the first. Patient-level factors associated with increased stress testing included an abnormal 

noninvasive study prior to the index PCI; negative predictors included no symptoms at time 

of index PCI, diabetes mellitus, incomplete revascularization, and ejection fraction <50%. In 

higher risk patients (history of silent ischemia, multi-vessel coronary disease, history of MI, 

diabetes mellitus, or receipt of incomplete revascularization) facility-level analysis 
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demonstrated no association between stress testing rates and death (p=0.61) or readmission 

for MI (p=0.76), but a positive association with repeat revascularization (p=0.008). Stress 

testing after elective PCI is common, performed more frequently in lower-rather than higher-

risk patients, and occurs in a pattern indicating routine annual testing. Even in higher risk 

patients, associations between facility-level stress testing rates and increased use of repeat 

revascularization without differences in mortality or MI-related readmission suggest limited 

value from scheduled testing, providing an opportunity to improve management approaches 

after elective PCI. 

 

INTRODUCTION 

 Current American College of Cardiology (ACC) Foundation appropriate use criteria 

(AUC) deem imaging-based stress testing within two years of percutaneous coronary 

intervention (PCI) as appropriate in patients who have recurrent symptoms consistent with 

further coronary obstruction (“symptom-driven testing”), but inappropriate in asymptomatic 

individuals (“surveillance testing”) (37, 38). Routine stress testing was also deemed not 

beneficial in joint ACC/American Heart Association/Society for Cardiovascular 

Angiography and Interventions guidelines for PCI (64) and targeted as unnecessary in the 

ACC contribution to the “Choosing Wisely” initiative (47).  

Despite this guidance, stress testing is performed after coronary revascularization in 

the United States at rates far exceeding the expected rate of recurrent symptoms of restenosis; 

suggesting widespread surveillance testing (50, 65).  It is possible current testing patterns are 

driven by providers targeting higher-risk patients for surveillance testing, and that these 

patients do benefit from testing (i.e., that the effect of routine stress testing is heterogeneous) 
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- limiting the value of broad recommendations such as the current AUC and clinical 

guidelines and motivating the value of targeted examinations of stress test usage.   

 To explore these issues, we linked detailed clinical data provided by the CathPCI 

Registry to longitudinal data from the Centers for Medicare & Medicaid Services (CMS) to 

determine among patients receiving elective PCI for coronary disease: 1) patterns of stress 

testing after elective PCI; 2) associations between clinical factors and stress testing use; and 

3) for higher-risk patients, associations between facility-level utilization of stress testing after 

PCI and outcomes. 

 

METHODS 

Data Sources and Cohort 

 Cases of PCI with stent insertion were identified from the CathPCI Registry (66, 67), 

which is an initiative of the American College of Cardiology Foundation and The Society for 

Cardiovascular Angiography and Interventions. Details regarding dataset construction have 

been previously published (43, 63). Briefly, we included patients 65 years of age or older 

who were admitted and discharged between January 2005, and December 2008. Since the 

CathPCI Registry does not include direct identifiers, registry records were linked to fee-for-

service Medicare inpatient claims using indirect identifiers (68, 69), which has been 

previously shown to produce a cohort representative of both the overall CathPCI Registry 

and Medicare populations aged 65 and older (70). For matched patients, we obtained CMS 

data from 2004-2008 that included outpatient and carrier (physician/supplier) claims and 

Medicare denominator files to enable identification of resource use and clinical events 
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subsequent to the index PCI procedure. Up to four years of follow-up data were available 

(i.e., from time of PCI through the end of 2008). 

 For this analysis, the cohort was restricted to individuals receiving elective PCI for a 

non-acute coronary syndrome indication, based on CathPCI Registry data. Additional 

exclusion criteria were applied to accurately measure subsequent stress testing and repeat 

revascularization and identify factors associated with stress testing. We excluded any stress 

testing done during a 60-day “blackout period” after each patient’s index event, since 

diagnostic tests during this period may be routinely performed for cardiac rehabilitation, 

staging of procedures, or functional capacity assessments (50). We also excluded patients 

who ceased to be enrolled in fee-for-service Medicare, died, underwent repeat 

revascularization or angiography, or were readmitted for myocardial infarction (MI) during 

the blackout period.  

Identification of Outcomes, Stress Test Use, and Covariates 

 Enrollment and mortality data were obtained from Medicare denominator files, while 

repeat coronary angiography and revascularization (PCI and coronary artery bypass grafting) 

events were identified using International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD-9-CM) procedure and Healthcare Common Procedure Coding System 

(HCPCS) codes from inpatient, carrier, and outpatient claims. Readmissions for MI were 

identified from ICD-9-CM primary diagnosis codes in inpatient claims. 

 Cardiac stress testing after PCI was identified by HCPCS codes on carrier or 

outpatient claims. Electrocardiogram (ECG) stress and nuclear imaging procedures 

performed within one day of each other were considered a single stress nuclear event (71). 

Stress ECG, and either echocardiography, cardiac magnetic resonance, and positron emission 



25 

tomography testing performed on the same day were combined into a single stress imaging 

event (see Table 3.1 for codes). 

 Standard data definitions used in the CathPCI Registry were used for patient, 

procedural, and facility characteristics. One exception was revascularization completeness, 

which is not assessed in the CathPCI Registry (72). Therefore, in order to define 

revascularization completeness, registry data elements denoting maximum pre-PCI occlusion 

were consolidated into four coronary regions: left main, left anterior descending, circumflex, 

and right. Each region was considered to have a significant occlusion if maximum pre-PCI 

occlusion was reported to be ≥70% (≥50% for left main). We defined complete PCI as 

occurring when: 1) for each region in which significant occlusion was reported, ≥ 1 lesion 

(main vessel or major branch) was treated for pre-PCI occlusion reported ≥70% (≥50% for 

left main) and the post-PCI occlusion was reported as <50%; and 2) for all main vessel and 

major branch lesions treated in the region, post-PCI occlusion was reported as <50%. 

Because of the complexities inherent in assessing completeness of revascularization in 

bypass grafts, patients with a history of coronary artery bypass grafting were excluded. 

Because socioeconomic status was also not recorded in the CathPCI Registry, we obtained 

aggregate data at the patient ZIP code level from the 2009 Pop-Facts database (Nielsen 

Claritas, Ithaca, New York).  

 

Statistical Analyses 

Patterns of Stress Test Use 

Receipt of stress testing after the 60-day blackout period was assessed using cumulative 

incidence functions treating death, readmission for MI, repeat revascularization, and repeat 
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angiography as competing risks to identify the use of stress testing in patients without a 

major cardiac event after PCI; termination of fee-for-service Medicare coverage and end of 

claims availability were treated as censoring events. Testing patterns are presented both as 

cumulative incidence curves portraying the percentage of patients (accounting for censoring) 

who received a stress test up to a particular time point, as well as kernel-smoothed estimates 

of the hazard showing the rate at which stress testing was employed (the “intensity of 

testing”) at a specific time point (73). In addition to evaluating the use of first stress tests 

after PCI, second and third stress tests were also assessed to characterize longer term patterns 

of repeated testing. 

 

Clinical Correlates of Stress Test Use 

Characteristics of patients undergoing elective PCI were described using medians, 25th and 

75th percentiles for continuous variables and percentages for categorical variables. 

Associations between individual characteristics and stress testing (not preceded by death, MI-

related readmission, or repeat revascularization or angiography) were calculated with both  

unadjusted and adjusted cause-specific Cox proportional hazards models (74). In addition to 

adjusting for patient and procedural characteristics, we also constructed a model which 

included fixed effects for each PCI facility (using stratification rather than indicator variables 

to avoid the incidental parameter problem); this approach allowed for adjustment for 

differences in stress test use attributable to unobserved facility-level differences in patient 

risk or practice patterns. For selected covariates, we compared the unadjusted cumulative 

incidence of stress testing at 27 months after PCI (approximately two years after PCI) using 

Gray’s test (75). To evaluate whether clinical characteristics were associated with differences 
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in overall stress testing use and timing, we constructed extended proportional hazards models 

that included interaction terms between covariates and a binary indicator for time being in the 

seventh, thirteenth, and fourteenth months after PCI. These time points were selected based 

on inspection of testing rates in the data as appearing to correspond to follow-up visits at 6 

and 12 months post-PCI. We hypothesized that a different effect of a characteristic on stress 

testing use in these months versus the remainder of the follow-up period would suggest a 

different effect on surveillance stress testing use than symptom-driven testing, since 

surveillance testing is more likely to occur periodically at regular intervals and associated 

with interval office visits than symptom-driven testing. Wald tests were used to assess the 

significance of the interaction terms. 

 

Facility-level variation in test use in higher-risk individuals and patient outcomes 

 The cohort was limited to higher-risk patients who may have greater benefit from 

surveillance stress testing: history of silent ischemia (asymptomatic at PCI), multi-vessel 

coronary disease, history of MI (prior to their elective index PCI), diabetes mellitus, and 

receipt of incomplete revascularization. Because only limited data were available about 

patient’s health status after discharge from PCI, we conducted an indirect analysis leveraging 

variation in facility rates of stress testing, (calculated using cause-specific stress testing 

incidence 15 months after PCI, based on the facility in which the patient received PCI). 

Facilities were categorized into quartiles based on stress testing use; only facilities with ≥25 

patients were included to reduce measurement error. 

  Cause-specific Cox proportional hazards models were used to model the association 

between calculated facility-level quartile of stress testing and patient outcomes (all-cause 
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mortality, MI-related readmission, repeat coronary revascularization). All models considered 

end of fee-for-service claims availability to be a censoring event; for the MI endpoint, death 

was another censoring event; for repeat revascularization, both death and MI were considered 

to be censoring events. In addition to the facility-level quartile of stress testing, models for all 

three outcomes adjusted for patient, procedural, and facility characteristics specified a priori 

as possibly associated with differences in outcome. A marginal model was used to account 

for the likely correlation in error terms within-facility, with standard errors calculated using a 

robust sandwich variance estimator clustered at the facility level (74). We assessed the 

robustness of results with respect to model choice in sensitivity analyses in which we: 1) 

obtained standard errors via bootstrapping, sampling at the facility level, and 2) incorporated 

facility-level random effects to estimate a shared frailty (hierarchical or cluster-specific) 

model instead of a marginal (population-averaged) model (76). 

 This indirect approach assumed that variations in stress testing use across facilities 

would reflect variations in practice patterns- that high utilization rates suggest more frequent 

use of surveillance stress testing, and that low utilization rates would suggest stress testing 

reserved for recurrent symptoms. To assess the validity of this assumption, we calculated 

kernel-smoothed hazard rates, based on facility quartile of stress test use, to determine if 

facilities with a higher rate of stress test use had a more strongly periodic pattern of stress 

testing usage (spikes in stress testing utilization at time points suggesting surveillance testing 

at scheduled intervals). We also assessed whether underlying risk was correlated with 

variation in facility-level rates of stress testing usage. Given the large sample size, 

statistically significant differences in individual characteristics across quartiles of stress test 

use may not be clinically meaningful, and may be counter-balanced by differences in other 
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characteristics. To assess the net effect of observable differences in characteristics on 

expected outcomes, we constructed cause-specific Cox models, which included all covariates 

except the facility quartile of stress testing. Using this model, we calculated predicted relative 

hazards for each patient, and averaged them across facility quartiles of stress testing, with 

standard errors provided by the delta method. Higher rates of stress testing may alternatively 

indicate that patients receive stress testing prior to repeat angiography procedures, with lower 

rates of stress testing reflecting facilities in which patients with recurrence of symptoms are 

referred directly to repeat angiography. Consequently, as sensitivity analysis we also 

estimated a proportional hazards model including facility-level quartiles of combined repeat 

angiography or stress testing. 

 Statistical analyses were conducted using SAS version 9.2 (SAS Institute, Cary, 

North Carolina), Stata/SE version 12.1 (Statacorp LP, College Station, Texas), and R version 

2.11.1 (R Foundation, Vienna, Austria), using an alpha level of 0.05. The Duke University 

Medical Center and University of North Carolina Institutional Review Boards granted a 

waiver of informed consent and authorization for this study; all analyses were performed at 

the Duke Clinical Research Institute (Durham, NC). 

 

RESULTS 

Patient Cohort 

 Overall, 62,964 patients treated at 875 centers underwent elective PCI between 

January 1, 2005, and October 31, 2008 and met criteria for the 60-day blackout period 

(Figure 3.1). The median duration of follow-up was 625 days [25th–75th percentile: 323–960 

days]. The median age was 74 years, 56.8% were men, and 87.4% were white. 
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Patterns of Stress Test Use 

 By four years after PCI, 66.4% of patients received at least one stress test, while 

19.7% experienced a major coronary event prior to stress testing (a “competing event”)  

(Figure 3.2A).  Almost all (94.1%) of the initial post-PCI stress tests were performed with 

imaging, primarily nuclear imaging (84.4%). Stress testing in the first two years after PCI 

was common: the cumulative incidence of stress testing was 45.5% and 58.2% by 15 and 27 

months, respectively. Stress testing rates showed peaks in the 7th and 13-14th months after 

stress testing, suggesting frequent use of surveillance testing at these time points (Figure 

3.2B). Repeated stress testing was also common; by 27 months after an initial stress test, 

51.8% of patients received a second (Figure 3.2C); similarly, by 27 months after a second 

stress test, 58.7% received a third (Figure 3.2E). Rates of second stress testing peaked in the 

13-14th months after an initial stress test (Figure 3.2D), and third stress testing rates 

demonstrated a similar pattern (Figure 3.2F). As with initial tests, the vast majority (94.1%) 

of repeat stress tests were performed with imaging.  When CABG recipients were included in 

secondary analysis, results were very similar (not shown). 

 

Predictors of Stress Test Use 

 The unadjusted cumulative incidence of stress testing at 27 months post-PCI was 

lower for patients who were asymptomatic at time of PCI, received incomplete 

revascularization, had diabetes, multi-vessel coronary disease, a history of MI, were ≥ 75 

years, or had an ejection fraction <50% at time of PCI; it was higher for patients who had a 

positive pre-PCI ischemia test result (Figure 3.3). Cox modeling, with addition of facility 
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fixed effects, demonstrated that after adjustment, factors positively associated with receiving 

a stress test at any time within 4 years of PCI (Table 3.2) included neighborhood-level rates 

of college education, statin therapy use at time of PCI, family history of coronary artery 

disease, positive ischemia test result prior to the index PCI procedure, and a history of 

multiple PCI procedures as well as receiving a drug-eluting stent or multiple lesions treated 

during the index PCI procedure, and receiving PCI at a private rather than university hospital. 

Independent negative predictors included age ≥ 75 years, most comorbid conditions 

(cerebrovascular disease, chronic lung disease, heart failure, and peripheral vascular disease), 

being a current smoker, having a history of prior MI (not at the time of the encounter or 

during the study period), being asymptomatic at time of PCI, incomplete coronary 

revascularization, and having a major PCI-related complication.  While there was a modest 

difference between stress testing rates between white and nonwhite patients (HR 0.96, p = 

0.032) prior to inclusion of hospital fixed effects, this effect was eliminated with addition of 

fixed effects (HR 0.99). 

 Next, we introduced interaction terms between the covariate and time (7th or 13-14th 

months post-PCI based on the pattern of stress testing in Figure 3.1B) (Figure 3.4). 

Statistically significant interactions were observed for asymptomatic status at time of PCI 

(p=0.01), having a positive pre-PCI ischemia test (p<0.001), and ejection fraction <50% 

(p=0.03). Asymptomatic patients at the time of index PCI had a similar rate of stress testing 

as symptomatic patients during months 7 and 13-14, but a lower rate of testing in all other 

months. Compared with patients with no, negative, or equivocal pre-PCI ischemia testing, 

having a positive pre-PCI test was even more strongly associated with increased use of stress 

testing in months 7 and 13-14 than it was the remainder of the study period. Conversely, 
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while patients with ejection fraction <50% had lower rates of stress testing overall, this 

association was more strongly negative in months 7 and 13-14 than the remainder of the 

period. 

 

Facility-level variation in test use in higher-risk individuals and patient outcomes 

 The higher-risk cohort included 43,512 patients. There was significant variation in the 

15-month rate of stress testing usage after PCI, based on the facility in which the patient 

received PCI. Relative to the lowest test use quartile, the hazard ratio for stress testing within 

15 months of PCI increased to 1.59 (CI, 1.50–1.69), 2.09 (1.97–2.21), and 3.12 (2.91–3.35) 

in quartiles 2-4, respectively. The pattern of stress testing also differed across quartiles 

(Figure 3.5). Little periodicity was observed in the first quartile, while the fourth had a 

strongly periodic pattern, peaking in the 7th and 13-14th months post-PCI. This trend suggests 

that surveillance testing was commonly performed in the fourth quartile, while patients 

treated in facilities in the first quartile were unlikely to receive such surveillance testing. 

Statistically significant, albeit modest differences in many patient characteristics were 

observed across quartiles of stress testing (Table 3.3). Based on characteristics in the dataset, 

patients who received PCI in facilities in the highest quartile had less cerebrovascular 

disease, heart failure, pre-PCI ischemia testing and more positive pre-PCI ischemia testing, 

compared to lower quartiles.  These patients were, on average, at lower risk of death, MI, and 

repeat revascularization than those who were treated in the lowest quartile. In aggregate, on 

average patients receiving PCI at facilities in the highest quartile of stress testing rates after 

PCI were predicted to have 10% lower rates of death and MI, and approximately 4% lower 

rates of repeat revascularization, than those treated in lowest quartile facilities (Table 3.4). 



33 

  Covariate-adjusted, cause-specific Cox models, coefficients for facility quartiles 2-4 

(relative to quartile 1) were not jointly significant for death (p=0.61) or MI (p=0.76), nor 

were any pairwise comparisons to quartile 1 (Figure 3.6). In contrast, for repeat 

revascularization, terms for quartiles 2-4 were jointly significant (p=0.008), with increasing 

use of repeat revascularization associated with the increasing quartiles of stress testing, and 

greatest increase for patients receiving index PCI in fourth (highest) quartile facilities. 

Similar results were observed: 1. with quartiles calculated based on the combined rate of 

angiography and stress testing; 2. with bootstrapped standard errors; and 3. when using a 

shared frailty model rather than a marginal model (Table 3.5).  

 

DISCUSSION 

 In this national cohort of fee-for-service Medicare beneficiaries receiving elective 

PCI, subsequent stress testing was commonly performed for surveillance, rather than 

recurrent symptoms. Patient factors that would predict a high likelihood of restenosis or 

recurrent symptoms were paradoxically associated with lower rates of post-PCI stress testing. 

Associations between facility-level stress testing rates in the 15 months following elective 

PCI and clinical outcomes up to 4 years post-PCI demonstrated a positive relationship 

between stress testing rates and repeat revascularization in higher risk patients, but no 

association with respect to mortality or MI-related readmission. 

 Consistent with previous reports in privately-insured (50) and Medicare beneficiaries 

(65),  we find high rates of stress testing in the years following elective PCI. Testing rates 

exceed the estimated incidence of recurrent angina in the year after PCI (18-20%) (77). 

Similar to previous analyses of non-Medicare beneficiaries (50), the timing of stress testing 
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suggests that initial surveillance tests are commonly performed at 6 and 12 months post-PCI. 

Our analysis extends previous results not only by its focus on elective PCI but also by 

evaluating patterns of repeated stress testing after PCI both overall, and in higher risk 

individuals. We find that over half of patients receiving an initial post-PCI stress test receive 

additional stress tests within two years, with timing indicative of annual surveillance testing. 

These results are consistent with other recent work in Medicare beneficiaries, which 

demonstrated a similar incidence and pattern of repeated stress testing (78). 

 Surprisingly, patient factors predicted to increase the risk of recurrent ischemia and 

presumably the value of routine testing (e.g., incomplete revascularization, diabetes mellitus, 

prior MI, increasing age, low ejection fraction) were associated with reduced use of stress 

testing after elective PCI. In addition, while often statistically significant, the magnitude of 

observed effects was modest – none altered the overall rate of stress testing by even 20%. 

This finding suggests that underlying patient risk may not be a major factor driving decisions 

regarding stress testing in patients who have received elective PCI.  

The limited impact of patient risk factors on use of stress testing was striking when 

considering the wide variation in testing patterns observed in facilities where patients 

received PCI (a proxy measure for local practice patterns). Furthermore, some of the 

strongest predictors of increased stress testing were receipt of PCI in a private (versus 

university) facility and the neighborhood-level rate of college degree attainment. The reasons 

for these findings are unclear, but may reflect differences in perceived or actual malpractice 

risk (79), financial incentives from cardiologist ownership of imaging equipment or health 

system ownership of the cardiology practice (28), or local differences in patient preferences. 

Also of note was the lack of difference in testing patterns based on gender. There was a very 
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modest difference observed based on race, suggesting less post-PCI stress testing for white 

patients. However, observed race-based differences in care were eliminated with application 

of facility-level fixed effects, suggesting that differences in facility-level practice patterns 

explains the lower rate of stress test use in whites. 

 The observed variation in stress testing rates and periodicity even in a higher risk 

patient group based on the facility where the patient received PCI, suggests that higher-use 

facilities performed more surveillance testing, while low-use facilities reserved testing for 

patients with recurrent symptoms. Rather than increased stress testing rates reflecting 

increased patient risk, we observed greater use of stress testing in facilities where patients 

were, on average, at lower risk for death, MI, and repeat revascularization. Others have 

shown similarly broad facility-level variation in stress testing patterns and a lack of 

correlation between patient risk and test use (51, 52).  Facility-level variation in stress testing 

was associated with increased rates of coronary revascularization, but not death or MI-related 

readmission. These results complement those from a recent single-center study of CABG and 

PCI recipients referred for screening stress echocardiography (53), small randomized trials in 

high-risk populations (54, 55), and our previous work in an “all-comers” Medicare PCI 

population. 

  

Limitations 

 This large cohort study has many strengths, but we acknowledge several limitations. 

First, the cohort includes fee-for-service Medicare beneficiaries who are treated at facilities 

participating in the CathPCI Registry. While the merged dataset is representative of older 

Medicare beneficiaries and CathPCI Registry participants,(70) the generalizability of results 
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to younger patients is unknown. Second, data after PCI discharge are limited to Medicare 

claims. Consequently, we cannot know whether individual stress tests were consistent with 

AUC or practice guidelines - forcing the indirect analytic approaches employed here. Third, 

the validity of the facility-level variation analysis relies on the untestable assumption that 

after adjustment for observed factors, unobserved factors do not confound the relationship 

between facility-level stress test use and outcomes. Finally, patients may benefit from 

surveillance stress testing through outcomes not measured in this analysis (e.g., quality of 

life, angina, or reassurance).    

 

Conclusion 

 In summary, our findings suggest that stress testing is commonly used for 

surveillance after elective PCI, a strategy that is not recommended by current AUC and 

guidelines. Clinical factors predicting risk of recurrent ischemia, and possibly increased 

testing value seem to have modest influence on the overall testing rate. Even in higher risk 

patients, greater use of stress testing was not associated with either death or MI readmission, 

but was associated with an increased rate of revascularization. This finding is consistent with 

emerging evidence and consensus-based guidelines that surveillance testing in asymptomatic 

patients does not improve outcomes, even in the higher-risk patient cohort we examined, and 

may expose patients to unnecessary procedures. The implementation and assessment of a 

surveillance mechanism using detailed clinical data and focusing on the appropriateness of 

testing after PCI has the potential to improve the value of management approaches in this 

high risk population. 
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TABLES 
 
Table 3.1: Healthcare Common Procedure Coding System and International Classification of 
Diseases, Ninth Revision, Clinical Modification codes used to define stress testing and 
outcomes. 
 

HCPCS or ICD-9-CM Code Type of Claim 
Stress Testing 
Electrocardiogram stress test* 93015-93018 Carrier/Outpatient 
Nuclear imaging 78460-78461, 78464-78465, 

78472-78473, 78481, 78483 
Carrier/Outpatient 

Echocardiography 93350 Carrier/Outpatient 
Positron Emission 
Tomography 

78491-78492 Carrier/Outpatient 

Magnetic Resonance Imaging 75552-75556 (2005-2007) 
75559-75560, 75563-75564 (2008) 

Carrier/Outpatient 

Coronary Angiography 93508, 93539, 93540, 93545 Carrier, Outpatient 
Percutaneous Coronary 
Intervention 

92980-92982, 92984, 92995, 
92996, G0290, G0291, 36.01, 
36.02, 36.05, 36.06, 36.07, 00.66 

Carrier, 
Outpatient, 
Inpatient 

Coronary Artery Bypass 
Grafting 

33510-33514, 33516-33519, 
33521-33523, 33533-33536, 36.1x, 
36.2, S2205-S2209 

Carrier, 
Outpatient, 
Inpatient 

Acute Myocardial Infarction 410.x1 (principal diagnosis) Inpatient 
*Electrocardiogram stress and nuclear imaging procedures performed within one day of 
each other were considered a single stress nuclear event. Electrocardiogram stress and all 
other imaging performed on the same day were considered a single stress imaging event.   
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Table 3.2: Selected characteristics at time of elective PCI, and associations with stress testing rate. (N=62,694) 

 

% or median 
[Q1–Q3] 

Unadjusted Hazard 
Ratio (CI) 

Adjusted* Hazard 
Ratio (CI) 

Adjusted* Hazard 
Ratio, with Facility 

Effects (CI) 
Demographics     
Age (years)     

Median [Q1 - Q3] 74 [69-79] - -  
75 years or older  46.2 0.81 (0.79, 0.83) 0.82 (0.80, 0.84) 0.80 (0.78, 0.82) 

Male gender 56.8 1.05 (1.02, 1.07) 1.01 (0.99, 1.03) 1.01 (0.98, 1.03) 
White Race 87.4 0.99 (0.96, 1.03) 0.96 (0.93, 1.00) 0.99 (0.95, 1.03) 
ZIP Code Characteristics     

Mean household income 
($10,000s) 

6.0 [5.1-7.8] 1.04 (1.04, 1.05) 1.02 (1.01, 1.02) 0.99 (0.98, 1.01) 

% of households below poverty 
line (HR per 100% difference) 

6.9 [3.9-10.9] 0.27 (0.22, 0.33) 0.69 (0.49, 0.99)** 0.74 (0.49, 1.12)** 

% of households renting house 
(HR per 100% difference) 

23.2 [16.4-31.4] 0.90 (0.82, 0.98)** 1.01 (0.89, 1.14)** 0.89 (0.77, 1.03)** 

% of adults with less than HS 
diploma (HR per 100% 
difference) 

16.8 [11.1-23.9] 0.41 (0.36, 0.46)** 1.13 (0.85, 1.49)** 1.05 (0.75, 1.46)** 

% of adults with a college 
degree (HR per 100% 
difference) 

25.7 [18.6-38.0] 1.98 (1.83, 2.13)** 1.49 (1.21, 1.83)** 1.54 (1.21, 1.96)** 

     
Clinical History     
Body mass index (HR per 10 
units) 

28.1 [25.0-32.0] 1.02 (1.00, 1.04)*** 0.99 (0.97, 1.01)*** 0.98 (0.96, 1.00)*** 

Comorbidities     
Cerebrovascular Disease 13.7 0.84 (0.81, 0.87) 0.89 (0.86, 0.92) 0.89 (0.86, 0.93) 
Chronic Lung Disease 17.0 0.86 (0.84, 0.89) 0.94 (0.91, 0.98) 0.95 (0.92, 0.98) 
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Diabetes Mellitus  31.9 0.95 (0.93, 0.98) 0.97 (0.94, 0.99) 0.97 (0.94, 1.00) 
Dyslipidemia, on statin 75.7 1.10 (1.07, 1.13) 1.07 (1.04, 1.10) 1.08 (1.05, 1.11) 
Heart Failure 10.7 0.72 (0.69, 0.75) 0.84 (0.81, 0.88) 0.86 (0.82, 0.90) 
Hypertension 82.4 0.98 (0.95, 1.01) 1.00 (0.97, 1.03) 0.99 (0.96, 1.02) 
Peripheral vascular disease 14.1 0.86 (0.83, 0.89) 0.94 (0.90, 0.97) 0.93 (0.90, 0.96) 
Current smoker 10.6 0.84 (0.81, 0.88) 0.85 (0.82, 0.89) 0.83 (0.80, 0.87) 
Family history of CAD < 55 
years 

20.8 1.08 (1.05, 1.11) 1.07 (1.04, 1.10) 1.07 (1.03, 1.10) 

Pre-PCI Ischemia Testing     
None 18.4 0.98 (0.93, 1.03) 0.97 (0.92, 1.02) 0.96 (0.91, 1.01) 
Negative 9.9 1 (reference) 1 (reference) 1 (reference) 
Equivocal 2.4 0.99 (0.91, 1.08) 0.99 (0.90, 1.08) 1.08 (1.03, 1.13) 
Positive 69.2 1.19 (1.14, 1.24) 1.13 (1.08, 1.18) 1.00 (0.91, 1.10) 

Previous PCI (prior to index PCI) 26.8 1.05 (1.02, 1.08) 1.30 (1.22, 1.39) 1.26 (1.18, 1.35) 
Previous PCI > 1 year ago or 
unknown timing  

23.8 1.02 (0.99, 1.05) 0.79 (0.74, 0.85) 0.79 (0.74, 0.85) 

Previous MI (> 7 days) 18.6 0.89 (0.87, 0.92) 0.92 (0.89, 0.95) 0.93 (0.90, 0.96) 
Left Ventricular Ejection 
Fraction < 50% 

15.7 0.79 (0.76, 0.81) 0.88 (0.84, 0.91) 0.88 (0.84, 0.91) 

Admission Symptoms     
Asymptomatic 36.3 0.95 (0.92, 0.97) 0.96 (0.94, 0.98) 0.93 (0.90, 0.95) 
Atypical Chest Pain or Stable 
Angina 

63.7 1 (reference) 1 (reference) 1 (reference) 

Active heart failure at time of 
PCI  

8.1 0.75 (0.72, 0.79) 0.96 (0.91, 1.01) 0.91 (0.86, 0.97) 

Glomerular filtration rate (eGFR; 
mL/min/1.73m2) 

    

eGFR < 30 or on dialysis 3.2 0.81 (0.75, 0.87) 0.94 (0.88, 1.02) 0.97 (0.90, 1.04) 
30 ≤ eGFR < 60 33.5 0.92 (0.90, 0.94) 0.98 (0.95, 1.00) 0.97 (0.95, 1.00) 
eGFR ≥ 60 63.3 1 (reference) 1 (reference) 1 (reference) 

     



 

 

40 

PCI Procedural Characteristics     
Incomplete revascularization 25.3 0.91 (0.89, 0.94) 0.96 (0.93, 0.99) 0.95 (0.92, 0.98) 
Any drug-eluting stent used 78.1 1.15 (1.11, 1.18) 1.06 (1.03, 1.10) 1.08 (1.04, 1.11) 
Number of lesions treated 1 [1-2] 1.02 (1.00, 1.04) 1.04 (1.02, 1.06) 1.03 (1.01, 1.06) 
Multivessel Disease 40.0 0.94 (0.92, 0.96) 0.97 (0.94, 1.00) 0.92 (0.86, 0.98) 
Any Procedural Complication 3.9 0.89 (0.84, 0.95) 0.92 (0.86, 0.98) 0.95 (0.92, 0.98) 
Facility Characteristics     
Facility Type     

Private, teaching 39.2 1.16 (1.11, 1.21) 1.19 (1.14, 1.25) N/A** 
Private, non-teaching 48.9 1.24 (1.19, 1.30) 1.31 (1.25, 1.37) N/A** 
University 10.1 1 (reference) 1 (reference) N/A** 
Government 1.8 0.94 (0.85, 1.04) 0.91 (0.82, 1.01)  N/A** 

Annual PCI Volume (HR per 100 
procedures) 

853 [550-1482] 1.00 (1.00, 1.00) 1.01 (1.00, 1.01)  N/A** 

Bed Size (HR per 100 beds) 421 [299-576] 1.00 (0.99, 1.00) 1.00 (0.99, 1.01)  N/A** 
* In addition to listed variables, also adjusted for Census Region and year of PCI. 
** N/A because fixed effects removes time-invariant facility characteristics 
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Table 3.3: Patient characteristics (median [Q1,Q3] or percentage), by facility quartile of stress test use at 15 months after 
percutaneous coronary intervention 
 

 

Overall 
 

472 Facilities 
(N = 43,512) 

Quartile 1 
(Lowest rate) 
118 Facilities 
(N = 9,135) 

Quartile 2 
 

118 Facilities 
(N = 10,893) 

Quartile 3 
 

118 Facilities 
(N = 11,426) 

Quartile 4 
(Highest rate) 
118 Facilities 
(N = 12,058) p-value 

Demographics       

Age (years)       

Median [Q1 - Q3] 74 [69, 79] 73 [69, 79] 74 [69, 79] 74 [69, 79] 74 [69, 79] <0.001 
75 years or older  46.3 44.5 46.9 46 47.6 <0.001 

Female gender 41.4 42.8 43 40.8 39.6 <0.001 
White Race 87.1 89.0 86.7 85.9 87.3 <0.001 
ZIP Code Characteristics       

Mean household 
income ($10,000s) 6.0 [5.1, 7.8] 5.6 [4.9, 6.6] 5.6 [4.9, 7.2] 6.6 [5.3, 8.5] 6.4 [5.3, 8.5] <0.001 
% of households below 
poverty line 6.8 [3.9, 10.8] 7.8 [5.1, 11.0] 7.7 [4.3, 12.1] 5.9 [3.5, 10.2] 5.9 [3.4, 9.7] <0.001 
% of households renting 
house 23.2 [16.4, 31.4] 22.9 [16.5, 30.7] 23.8 [16.9, 31.0] 22.8 [15.9, 31.9] 23.3 [16.3, 32.4] 0.002 
% of adults with less 
than a high school 
education 16.7 [11.1, 23.7] 18.1 [13.1, 24.6] 18.3 [12.4, 25.5] 15.6 [10.2, 22.7] 15.4 [9.8, 21.9] <0.001 
% of adults with a 
college degree 25.7 [18.6, 37.9] 22.9 [17.6, 32.2] 22.9 [17.1, 34.1] 28.8 [20.1, 41.1] 28.1 [20.4, 41.9] <0.001 
       

Clinical History       
Body mass index [kg/m2]  28.3 [25.2, 32.3] 28.5 [25.4, 32.7] 28.4 [25.1, 32.4] 28.2 [25.1, 32.1] 28.2 [25.2, 32.1] <0.001 
Comorbidities       
Cerebrovascular Disease 14.7 14.8 15.6 15.1 13.3 <0.001 
Chronic Lung Disease 17.1 18 18.9 16.6 15.5 <0.001 
Diabetes Mellitus  41.1 42.5 41.8 40.3 40.3 <0.001 
Dyslipidemia, on statin 76.8 75.9 76.8 77.5 76.8 0.05 
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Heart Failure 11.8 12 13.2 12.1 10.1 <0.001 
Hypertension 83.4 83.5 83.8 83.4 82.9 0.32 
Peripheral vascular 
disease 15.2 14.3 16.9 15 14.5 <0.001 
Current smoker 10.8 11.3 11.1 10.4 10.4 0.10 
Family history of CAD < 
55 years 20.6 22.4 20.3 20.5 19.6 <0.001 
Pre-PCI Ischemia Testing      <0.001 
None 17.7 19.4 20.4 16.4 15  
Negative 2.3 2.3 2.7 2.5 1.5  
Equivocal 9.8 11.9 11.3 9 7.6  
Positive 70.3 66.4 65.6 72 75.8  
Previous PCI (before 
index procedure) 28.9 26.9 28.6 28.7 30.9 <0.001 

Previous PCI > 1 year 
before index procedure, 
or timing unknown 25.8 24.2 25.4 25.6 27.5 <0.001 

Previous MI (> 7 days) 24.1 23.5 26.4 24.1 22.4 <0.001 
Left Ventricular Ejection 
Fraction       

Median [Q1 - Q3] 60.0 [50.0, 63.0] 60.0 [50.0, 65.0] 60.0 [50.0, 61.0] 60.0 [50.0, 63.0] 60.0 [50.0, 60.0] <0.001 
< 50%  20.4 20.2 21.8 20.1 19.7 0.004 

Asymptomatic at PCI 46.6 40.3 45.7 47.7 51.1 <0.001 
Active heart failure at 
time of PCI  8.5 9.2 8.7 8.3 7.8 0.001 
Glomerular filtration rate 
(mL/min/1.73m2)      0.003 

eGFR < 30 or receiving 
dialysis 3.6 4.1 3.7 3.6 3.2  
30 ≤ eGFR < 60 34.1 35.1 34.1 33.7 33.5  
eGFR ≥ 60 58.4 57.3 58.2 59.5 58.5  

       
PCI Procedural       
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Characteristics 
Incomplete 
revascularization 32.6 33.2 31.2 33.2 32.8 0.004 
Any drug-eluting stent 
used 78.4 79.9 76.9 79.5 77.6 <0.001 
Multivessel Disease 51.7 54.2 49.3 52.2 51.6 <0.001 
Any Procedural 
Complication 4.1 3.8 3.9 4.6 3.9 0.006 
       
Facility Characteristics       
Facility Type       
Private, teaching 40.0 42.6 43.5 37.1 37.6 <0.001 
Private, non-teaching 48.0 36.9 45.8 47.2 59.2 <0.001 
University 10.2 14.4 10.8 14.6 2.4 <0.001 
Government 1.8 6.0 0.0 1.1 0.8 <0.001 
Annual PCI Volume 921 [601, 1597] 877 [603, 1334] 1001 [632, 1668] 946 [593, 1699] 878 [567, 1572] <0.001 
Bed Size 431 [300, 589] 445 [343, 568] 385 [300, 560] 500 [323, 650] 399 [279, 551] <0.001 
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Table 3.4: Comparison of expected event rates, across quartiles of stress test utilization 

 Hazard Ratio (CI) P 
Death  <0.001 
Quartile 1 (Lowest) 1.00 (Reference)  
Quartile 2 1.04 (1.01, 1.06)  
Quartile 3 0.94 (0.92, 0.97)  
Quartile 4 (Highest) 0.92 (0.89, 0.95)  
   
MI-related Readmission  <0.001 
Quartile 1 (Lowest) 1.00 (Reference)  
Quartile 2 1.02 (0.99, 1.06)  
Quartile 3 0.94 (0.89, 0.98)  
Quartile 4 (Highest) 0.90 (0.85, 0.95)  
   
Repeat Revascularization  <0.001 
Quartile 1 (Lowest) 1.00 (Reference)  
Quartile 2 0.98 (0.96, 1.00)  
Quartile 3 0.98 (0.95, 1.01)  
Quartile 4 (Highest) 0.96 (0.93, 1.00)  
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Table 3.5: Alternative Model Specifications 
 

 Hazard Ratio (95% Confidence Interval) 
 Quartiles of either stress 

testing or catheterization 
Bootstrapped Standard 

Errors 
Shared Frailty model 

Death    
Quartile 1 (Lowest) 1.00(Reference) 1.00 (Reference) 1.00 (Reference) 
Quartile 2 1.06 (0.96, 1.17) 1.04 (0.94, 1.17) 1.04 (0.94, 1.15)   
Quartile 3 0.99 (0.90, 1.10) 0.98 (0.89, 1.09) 0.98 (0.88, 1.08)   
Quartile 4 (Highest) 1.02 (0.92, 1.13) 1.02 (0.92, 1.14) 1.02 (0.92, 1.13)   
    
MI-related Readmission    
Quartile 1 (Lowest) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
Quartile 2 0.89 (0.74, 1.06) 0.92 (0.76, 1.10) 0.92 (0.77, 1.09)   
Quartile 3 1.05 (0.88, 1.25) 0.97 (0.79, 1.16) 0.97 (0.81, 1.15)   
Quartile 4 (Highest) 0.91 (0.76, 1.10) 0.93 (0.76, 1.12) 0.93 (0.77, 1.11)   
    
Repeat Revascularization    
Quartile 1 (Lowest) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
Quartile 2 1.12 (1.02, 1.23) 1.13 (0.98, 1.29) 1.11 (0.99, 1.26)   
Quartile 3 1.16 (1.06, 1.27) 1.11 (0.99, 1.25) 1.12 (1.00, 1.27)   
Quartile 4 (Highest) 1.24 (1.13, 1.36) 1.21 (1.08, 1.34) 1.19 (1.05, 1.34)  
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FIGURES 

Figure 3.1. Study cohort flow.  
 
The main cohort consisted of patients receiving elective PCI for a non-acute coronary 
syndrome indication. The facility variation analysis cohort included elective PCI patients 
who had a risk factor suggesting greater benefit from surveillance stress testing and who 
were treated at a facility in which at least 25 patients were included in the study cohort.



 

47 

Figure 3.2. Patterns of stress testing after PCI 
 
Panels A, C, and E illustrate the cumulative incidence of stress testing, while Panels B, D, 
and F illustrate kernel-smoothed estimates of the stress testing rate (the number of stress tests 
performed at the time point). Panels A and B illustrate the use of initial stress testing after 
PCI, while Panels C and D illustrate the use of a second stress after initial testing, and Panels 
E and F the use of a third stress test after a second test. * Competing events included death, 
admission for myocardial infarction, repeat coronary angiography, or repeat coronary 
revascularization.  
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Figure 3.3. Stress testing use, stratified by patient characteristics 
 
Bar graphs indicate unadjusted cumulative incidence of stress testing at 27 months after PCI, 
stratified by patient subgroups. Grey’s test for difference in cumulative incidence resulted in 
p-values < 0.001 for all comparisons.  
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Figure 3.4. Adjusted predictors of stress testing. 
 
Forest plot indicates adjusted predictors of receipt of any stress testing during the study 
period (up to 4 years). Models were fit to calculate an overall hazard ratio for each predictor. 
Points on the left side of the vertical line indicate an association with lower rates of stress 
testing, while points on the right side indicate an association with higher rates of stress 
testing. In addition to the main adjusted model, another model was fit to allow a time-varying 
effect in months 7 and 12-13 compared with the remainder of the study period. Displayed p-
value is a Wald test comparing the hazard rate for the predictor in months 7, 12-13 versus 
remainder of study period (indirect test of differential use for surveillance testing). 
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Figure 3.5. Stress testing patterns in higher-risk patients, by facility-level quartile of 
test use 
 
Kernel-smoothed estimates of rate of first stress testing after percutaneous coronary 
intervention (PCI), stratified by facility-level quartile of stress test use within 15 months of 
PCI. 
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Figure 3.6. Associations between facility-level quartile of stress test use among higher-
risk patients and clinical outcomes.  
 
Forest plot indicates adjusted associations between facility-level rates of stress testing 
performed within 15 months of PCI and clinical outcomes. The displayed P-values are for a 
Wald test of joint significance of the quartile terms. 



 

 

 
 
 
 
 

4. STUDY 2: STRESS TESTING IMAGING MODALITIES 
 

OVERVIEW 

Exercise stress testing is commonly performed following percutaneous coronary intervention 

(PCI) in patients with acute coronary syndromes (ACS); however, little is known about the 

impact of modality on patient outcomes or resource use. Our objective was to determine the 

impact of exercise nuclear versus exercise echocardiography testing after PCI on outcomes 

and resource use. This was done by doing a longitudinal observation study in the setting of 

medicare claims used to identify outpatient exercise stress testing with imaging within 15 

months after PCI for ACS. Patients included those aged 65 and older, enrolled in fee-for-

service Medicare and treated with PCI after hospitalization for ACS. Outcomes and resource 

use up to 4 years post-testing were compared using inverse probability weighting. We report 

adjusted hazard ratios (HRs) and 95% confidence intervals (CI). Among 29,279 eligible 

patients, 15.5% received exercise echocardiography. Echocardiography recipients had higher 

rates of repeat stress testing (adjusted HR: 2.60, CI: 2.19-3.10) than nuclear imaging 

recipients in the first 90 days after testing, but lower rates of revascularization (adjusted HR: 

0.87, CI: 0.76-0.98) and catheterization (adjusted HR: 0.88, CI: 0.80-0.97). None of these 

differences persisted for outcomes subsequent to the first 90 days after stress testing. Rates of 

death and readmission for myocardial infarction rates did not differ. Total Medicare 

payments, including test cost, were lower initially after echocardiography, but not 

significantly different after 14 months post-testing. A limitation was that we lacked detailed 
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clinical data at the time stress testing was ordered, precluding examination of test or 

procedural appropriateness. In this longitudinal observational study, echocardiography 

recipients had fewer invasive procedures, but higher rates of repeat testing, than nuclear 

testing recipients. Thus, imaging cost evaluations depend on analysis duration and scope of 

costs considered. The comparative evaluation of imaging modalities should reflect their 

impact on overall process and cost efficiency. 

 

BACKGROUND 

 Exercise stress testing is commonly performed following percutaneous coronary 

intervention (PCI) (50), most frequently using nuclear or echocardiography imaging (63). 

Studies have examined optimal testing approaches for patients without diagnosed coronary 

artery disease presenting with stable angina; however, little is known about optimal stress 

testing strategies in patients who have already received coronary revascularization (80, 81). 

Understanding the value of alternative testing modalities is critical given the costs of cardiac 

imaging-related services in the United States (35).  

To date, most evaluations of imaging efficacy have focused on test performance 

parameters such as sensitivity and specificity; only recently has a research agenda been 

expanded to focus upon the comparative value of cardiac imaging strategies (29). 

Unfortunately, many imaging cost evaluations have only considered the costs associated with 

testing, rather than the impact of testing on resource use during or after the current episode of 

care. Health reform will provide incentives to move from fee-for-service reimbursement to 

episodic payment approaches, such as bundling, global payments, or accountable care 

organization; these changes will make it critical to understand the implications of test choices 
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on short- and long-term resource use (82). We used longitudinal administrative data to 

compare both clinical outcomes and resource use post-PCI among patients with acute 

coronary syndromes (ACS), an indication for which PCI is commonly performed. 

 

METHODS 

Data Sources and Subjects 

 Medicare Provider Analysis and Review (MedPAR) claims from 2003 and 2004 were 

obtained for all discharges with an International Classification of Diseases, 9th Edition, 

Clinical Modification (ICD-9-CM) diagnosis codes for myocardial infarction (410.xx), 

unstable angina (411.1), or angina not otherwise specified (403.9). The first such admission 

for each patient was considered their index stay. Initial exclusions restricted the sample to 

patients: 1) treated at a short stay facility and, 2) who did not have a diagnosis code reflecting 

a history of PCI, coronary artery bypass grafting (CABG), or valve replacement. Next, 2002-

2006 Denominator files were obtained and additional exclusions were applied, using the 

Denominator data to exclude patients who were: 1) living outside of the 50 US States and 

Washington, DC, 2) not continuously enrolled in Fee-for-Service Medicare rather than 

Medicare Advantage (both exclusions to ensure complete measurement of subsequent 

outcomes and resource use), and 3) younger than age 66 (to allow for a full year of claims 

data prior to the index stay). Due to limitations on the sample size imposed by the data 

contractor, patients discharged after 10/14/2004 were excluded to reduce the sample size 

below 1,000,000 patients. Appendix A provides additional detail regarding initial dataset 

creation. For this study, the initial cohort was further restricted to individuals who were 

admitted for ACS (either myocardial infarction or unstable angina) and who had no 
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revascularization in the year preceding their index stay. For all such patients, 2003-2008 

inpatient, outpatient, and carrier claims were used to determine whether patients received 

coronary revascularization (CABG or PCI) in the 30 days subsequent to their index stay, and, 

if performed, to characterize the revascularization procedures performed and subsequent 

outcomes.  To ensure complete characterization of revascularization use, we excluded 

patients whose revascularization–related claims did not list Medicare as the primary payer (N 

= 3,170) or for which it was not possible to link either an inpatient or outpatient claim for the 

facility charge component of the revascularization to a Carrier claim for the professional 

component (N = 7,243). A small number (N = 1,895) of patients were excluded because their 

date of initial revascularization occurred in 2002. Figure 4.1A summarizes initial dataset 

construction, while Table 4.1 lists the specific coding criteria employed.  

 

Treatment Definition and Stress Test Population 

The use of cardiac stress testing after PCI was identified by Healthcare Common Procedure 

Coding System (HCPCS) codes. Electrocardiogram stress and nuclear imaging procedures 

performed within one day of each other were considered a single stress nuclear event; 

similarly, electrocardiogram stress and echocardiographic testing performed on the same day 

was considered a single stress echocardiography event. Pharmacologic stress was identified 

using HCPCS codes; a stress test occurring on the same day (or in the case of nuclear stress 

testing, within one day) as a pharmacologic stress code was considered a pharmacologic 

stress test. 

 Ultimately, 162,904 PCI recipients were included for analysis (Figure 4.1B). We 

defined a 60-day “blackout period” after each patient’s index event, because diagnostic tests 
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during this period may be performed for cardiac rehabilitation, staging of procedures, or 

functional capacity assessments (50). Any use of stress testing during this period was 

ignored. We excluded patients who died (n=19,789), were readmitted for myocardial 

infarction (n=2,169), or underwent repeat revascularization or catheterization (n=15,161) 

during the blackout period.  

 Among the remaining 135,785 patients, we identified patients who received an 

outpatient stress test between 2 and 15 months after their index PCI event that was not 

preceded by diagnostic cardiac catheterization, repeat revascularization, or readmission for 

myocardial infarction (N = 4,921). Each patient’s first eligible stress test was included in the 

analysis. We excluded patients: 1) receiving an inpatient stress test (based on place of service 

codes) in order to focus on ambulatory testing (n=5,318); 2) receiving positron emission 

tomography or magnetic resonance imaging (n=36) because these tests were rarely 

performed; 3) who were coded as having both a stress nuclear and stress echocardiography 

procedure on the same day (n=113); 4) receiving an ECG-only test (N = 4,135); and 5) who 

received a pharmacologic stress test, as pharmacologic stress testing was overwhelmingly 

(~98%) performed with nuclear imaging which precluded a comparison between 

pharmacologic nuclear and echo testing (N = 16,846). 

 

Outcome Definitions 

 The use of cardiac stress testing after PCI was identified by Healthcare Common 

Procedure Coding System (HCPCS) codes. Electrocardiogram stress and nuclear imaging 

procedures performed within one day of each other were considered a single stress nuclear 

event; similarly, electrocardiogram stress and echocardiographic testing performed on the 
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same day was considered a single stress echocardiography event. Pharmacologic stress was 

identified using HCPCS codes; a stress test occurring on the same day (or in the case of 

nuclear stress testing, within one day) as a pharmacologic stress code was considered a 

pharmacologic stress test. 

 We considered seven outcomes: all-cause mortality, readmission for myocardial 

infarction, coronary revascularization, cardiac catheterization, additional stress testing, a 

composite endpoint of catheterization and additional stress testing, and total Medicare 

payments. The number and dates of repeat catheterizations and coronary revascularization 

(either PCI or coronary artery bypass grafting surgery) following stress testing were 

identified using ICD-9-CM procedure, HCPCS, and diagnosis-related grouping (DRG) 

codes. Medicare payments were obtained by measuring total payments on inpatient, 

outpatient, and carrier claims occurring on and/or after the date of stress testing. In addition 

to overall payments, we also evaluated payments stratified by whether the claim included a 

stress test-related line item.  

 

Other Covariates 

The presence of comorbid conditions was assessed using the Elixhauser criteria, 

based on diagnosis codes recorded on all claims for services performed in the year preceding 

the index ACS event (83). Because diagnosis codes on Carrier claims are not validated, 

comorbidities recorded solely on Carrier claims were only included if they were documented 

on two or more claims for dates of service 30 or more days apart (49). PCI facility 

characteristics were obtained from Medicare Provider of Services Files. Small area 
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socioeconomic data, measured at the ZIP code level, was obtained from the 2000 United 

States Census. 

 

Statistical Analysis 

 We present percentages and medians with interquartile ranges (IQR) for categorical 

and continuous variables, respectively. Baseline patient characteristics were compared 

between imaging modalities using Pearson chi-square tests for categorical and Kruskal-

Wallis tests for continuous variables. 

 A propensity score model, estimating the probability of receiving echocardiography 

versus nuclear imaging, was constructed using a logistic regression adjusting for patient- and 

facility-level characteristics. Included covariates (Table 4.2 and Figure 4.4) were selected a 

priori based on known factors that may confound the relationship between imaging modality 

and the measured outcomes (84) including: patient demographics; ZIP code level 

socioeconomic characteristics, PCI procedure facility characteristics; time from PCI to stress 

testing; Medicare payments in the 60 days preceding stress testing; and whether the patient 

received medical care for comorbid conditions in the year prior to their index stay. Inverse 

probability weighting with stabilized weights was used to adjust for differences in the 

baseline characteristics of patients (85). This method offers greater precision than propensity 

score matching and estimates the average treatment effect of one technology versus another 

(analogous to the estimate from clinical trials), rather than the effect of a technology only on 

patients who received it (86). Since p-values can be misleading after propensity score 

adjustment, we evaluated the balance of covariates before and after inverse probability 

weighting using standardized differences (87).  
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 All time-to-event outcomes were analyzed in a framework in which death was a 

competing event and end of fee-for-service claims availability was a censoring event. In 

addition, for the catheterization and revascularization outcomes, readmission for myocardial 

infarction was considered an additional competing risk; for repeat stress testing, readmission 

for myocardial infarction, revascularization, and catheterization were all considered 

competing events. Unadjusted results were portrayed using cumulative incidence curves, and 

bivariate tests of association performed between imaging modalities using Gray’s test (75). 

Adjusted hazard ratios (HRs) were generated using cause-specific Cox proportional hazards 

models, using inverse probability weighting. To determine whether stress testing imaging 

modality affected short-term processes of care differently than long-term processes, we 

constructed models with an interaction term between imaging modality and time (a binary 

indicator for being within 90 days after stress testing). The 90-day threshold was specified a 

priori to distinguish “short-term” and “long-term” processes of care; however, we conducted 

sensitivity analyses with thresholds set at 30-day increments between 30 and 180 days post-

stress testing. We also evaluated an alternative model formulation explicitly modeling the 

cumulative incidence of competing risks, rather than cause-specific hazards (17).  

 CMS payments were estimated in a partitioned framework to permit censoring caused 

by differential follow-up length (88). A person-period dataset was constructed using one 

period for the day of stress testing followed by up to 40 additional 30-day periods. Each 

patient’s resource use was included for all time periods in which they were completely 

observed. Adjusted estimates of the difference in cost were constructed using weighted linear 

models with clustered standard errors used to account for intra-individual correlation in the 

person-period observations.  



 

60 

 To address potential confounding by indication due to unobserved factors that affect 

test choice, we constructed facility-level variation models to compare outcomes and service 

use. In these models, we substituted the percentage of patients who received PCI at a given 

facility who received echocardiography for the variable indicating whether the individual 

patient received echocardiography. We hypothesized that, after adjustment, variation in site-

level use of echocardiography may represent idiosyncratic small-area variation in practice 

patterns. To reduce measurement error, we only included patients treated in facilities where 

at least 50 eligible patients received an exercise stress testing with imaging. Modeling was 

performed using covariate-adjusted cause-specific Cox models for time to event outcomes 

and a partitioned estimator for total CMS payments, with standard errors clustered by PCI 

site to account for intra-facility correlation in observations.  

Statistical analyses were conducted using SAS version 9.2 (SAS Institute, Inc., Cary, 

NC), R version 2.11.1 (R Foundation, Vienna, Austria), and Stata/MP version 12.1 

(Statacorp, College Station, TX) with a two-sided alpha level of 0.05 pre-specified as 

significant. The University of North Carolina at Chapel Hill Institutional Review Board 

granted a waiver of the informed consent and authorization for this study.  

 

RESULTS 

Characteristics of Study Population 

 Of 29,279 eligible patients (Figure 4.1b), 4,542 (15.5%) received exercise 

echocardiography. While generally similar, patients receiving exercise echocardiography had 

fewer comorbidities (e.g., heart failure pulmonary circulation disease, peripheral vascular 

disease, chronic lung disease, and diabetes mellitus) than those receiving exercise nuclear 
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(Table 4.2). Patients receiving exercise echocardiography were also more likely to have 

received a drug-eluting (rather than bare metal) coronary stent. There were no differences in 

the rates of the various ACS diagnoses. Echocardiography patients received PCI in smaller 

facilities.  

 

Propensity Score Model 

 Among echocardiography recipients, propensity scores ranged from 0.02–0.51, with 

median 0.16 (IQR, 0.12–0.25); among nuclear imaging recipients, propensity scores ranged 

from ranged from 0.02–0.51, with median 0.13 (IQR, 0.10–0.17) (Figure 4.3). Virtually all 

(99.9%) observations fell in the region of common support of the propensity score, 

suggesting that the analysis does not entail comparison of distinct populations. The initially 

selected logistic regression model, constructed without interactions or higher-order 

polynomial terms, produced an excellent balance of covariates as evidenced by reductions in 

absolute standardized differences after inverse probability weighting (Figure 4.4).  

 

Facility Variation Analysis 

 The 177 PCI-performing sites from which ≥50 patients received a PCI followed by an 

imaging-based exercise stress test during the follow-up period included 13,518 patients 

(46.1% of the overall sample). The proportion of patients undergoing PCI at each site who 

subsequently received echocardiography rather than nuclear imaging ranged from 0 to 85% 

(median 8.1%; IQR, 3.3–16.1%). The percentage of patients receiving echocardiography was 

strongly correlated across time, based on whether the patient received PCI in 2003 versus 

2004 (Spearman’s rho 0.73, p<0.001 for independence).  This finding suggests the observed 
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facility-level variation is a durable facility characteristic rather than an artifact of the patients 

sampled (Figure 4.5).  

Outcomes and Resource Use 

 Follow-up data were available for a median of 1,666 days after stress testing (IQR, 

1,446–1,854 days) and were virtually identical for echocardiography and nuclear testing 

(1,667 vs. 1,666 days, p=0.81). In unadjusted analyses, patients receiving exercise 

echocardiography had lower rates of repeat revascularization and catheterization after testing 

than did exercise nuclear patients, but higher rates of repeat stress testing and a composite of 

catheterization and repeat stress testing (Figure 4.2). The rate of catheterization was higher 

for nuclear than echocardiography recipients at 90 days (14.9% vs. 12.7%) and 3 years 

(34.8/% vs. 32.0%); nuclear patients also had higher rates of repeat revascularization at both 

90 days (9.0% vs. 7.7%) and 3 years (20.0% vs. 18.7%). Echocardiography patients had 

more repeat stress tests at 90 days post-testing (5.0% vs. 1.8%) and at three years (60.3% vs. 

55.7%). 

 In adjusted analyses, overall rates of catheterization were slightly lower in exercise 

echocardiography recipients (adjusted HR, 0.93; 95% confidence interval [CI], 0.88–0.98), 

but rates of repeat stress testing (adjusted HR, 1.07; 95% CI, 1.03–1.12) were higher. 

Differences in overall rates of death, admission for myocardial infarction, and repeat 

revascularization were not statistically significant. After the first 90 days post-testing, rates of 

all events were equal in patients tested with echocardiography and nuclear imaging. Rates of 

death and admission for myocardial infarction were not significantly different in either time 

period. Facility variation analysis produced point estimates that were generally consistent 

with inverse probability weighting for the overall rates of outcomes after stress testing, with 
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the exception that echocardiography was associated with higher short-term mortality in the 

facility variation analysis. Results were consistent across a range of cut points 30-180 days 

following stress testing (Table 4.5) and when estimated using competing risk regression 

models rather than cause-specific hazards models (Table 4.6). 

 Without adjustment, exercise echocardiography was associated with lower total 

Medicare payments than exercise nuclear on the day of stress testing (incremental difference 

[ID], $-497.61; CI, -506.89, -488.32); the cumulative difference between exercise 

echocardiography and exercise nuclear grew throughout the study period (Figure 4.6). After 

IPW adjustment, the difference in payments on day of test was comparable to the unadjusted 

estimate (ID, $-499; CI, -510, -489); however, the cumulative payment difference between 

echocardiography and nuclear imaging decreased over time, and was no longer statistically 

significant at 14 months post-stress testing. Stratifying payments into those for stress testing 

versus all other services illustrated that stress testing-related payments were lower for 

exercise echocardiography recipients, but there was no significant difference in payments for 

all other services (Figure 4.7). The $499 difference in overall payments observed on the day 

of initial stress test was explained by spending for stress testing-related services (difference: 

$491). The difference in cumulative stress testing-related payments grew smaller during the 

first year post-initial testing, but increased in magnitude for time points subsequent to one 

year.  

 

DISCUSSION 

 In a national cohort of patients >65 years with ACS who had exercise stress testing 

with imaging after coronary stenting, patients tested with echocardiography and nuclear 
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imaging had similar rates of death and myocardial infarction after adjustment for baseline 

differences; however, the pattern of resource use post-stress testing is markedly different. 

Echocardiography recipients had higher rates of additional testing (catheterization and repeat 

stress testing combined) and higher rates of repeat stress testing, but lower rates of invasive 

testing and intervention, in the short-term. Moreover, costs differed depending on the time 

interval considered, with total CMS payments being lower among echocardiography 

recipients immediately after testing, but not significantly different over the long-term. 

 While the baseline clinical characteristics of patients tested with echocardiography 

versus nuclear imaging had few large differences, patients tested with echocardiography had 

a lower burden of risk factors than those tested with nuclear testing, including lower rates of 

most comorbidities. Such differences have been suggested in previous research, but have 

generally not been carefully examined despite their potential to skew conclusions based on 

Bayesian principles (89, 90). We used administrative data to adjust for potential confounding 

using inverse probability weights, a propensity score-based technique.  

 When compared with nuclear imaging, echocardiography has been demonstrated to 

be a less sensitive but more specific test in terms of diagnostic accuracy, as wall motion 

abnormalities are “further down the ischemic cascade” than the ischemia detectable by 

nuclear imaging (57, 91). These performance characteristics may contribute to the lower 

short-term use of catheterization and revascularization in post-PCI patients receiving 

echocardiography testing, a finding that has been previously demonstrated for patients 

without a history of coronary artery disease (80). The dissipation of this effect by 90 days 

after stress testing may indicate how quickly patients move through an episode of care for 

coronary artery disease.  
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 Stress echocardiography resulted in higher short-term rates of repeat stress testing 

than did nuclear imaging. Several factors may explain this finding. As stress 

echocardiography studies are sometimes viewed as more challenging to interpret than nuclear 

images, higher short-term rates of repeat testing may reflect fewer definitive studies. Since 

physician confidence in test results is inversely correlated with rates of additional test use, 

our findings may also reflect lower physician comfort with echocardiography findings (92). 

Finally, nuclear stress testing may be viewed as having a longer “warranty period” (i.e., the 

period after a normal study in which the patient is viewed as being highly unlikely to have 

recurrent ischemia) than echocardiography (93). Since the effect attributed to 

echocardiography was stronger in the short-term than the long-term, an initial lack of 

confidence or clarity in test results (which should drive greater use of immediate repeat 

testing) seems a more relevant factor than differences in the warranty period. 

Most outpatient stress testing post-PCI is employed either to assess symptoms 

suggestive of recurrent or progressive myocardial ischemia or to screen asymptomatic 

patients. Evidence suggests that revascularization procedures in patients with stable chest 

pain may improve quality of life, but generally do not improve survival or prevent 

myocardial infarction (94). Thus, our finding of similar rates of death and myocardial 

infarction (regardless of stress test imaging modality used) is consistent with the overall good 

prognosis of this patient population. Furthermore, documentation of similar clinical outcomes 

makes differences in resource use become a more important consideration.  

 We examined multiple contributors to costs for the two imaging stress test strategies. 

Stress echocardiography’s lower initial cost and reduced rate of invasive procedures, but 

increased rate of repeat stress testing, meant that the direction of its effect on total CMS 
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payments relative to nuclear stress could not be predicted a priori. We found that stress 

echocardiography was associated with lower CMS payments on the day of, and up to 14 

months after, initial testing. After 14 months, CMS payments were still lower for patients 

receiving echocardiography, but were no longer significant. The difference in test 

reimbursement for echocardiography versus nuclear imaging during the time period under 

study (2003-2005) appeared to be a stronger determinant of cost difference to payers rather 

than downstream service use, suggesting that equalization of reimbursement for 

echocardiography and nuclear testing may result in even more similar long-term costs to 

payers. The pattern also suggests that careful attention to decisions regarding invasive work-

up shortly after stress testing may be a promising approach to controlling cost without 

affecting patient outcome, particularly in light of the similarities in death and myocardial 

infarction rates between imaging modalities. 

 In aggregate, our findings illustrate several complexities when evaluating cardiac 

imaging and using results to inform clinical practice and health policy. The differences 

observed in the populations chosen for each test suggest that careful attention to the risk 

profile of cohorts under study is needed to accurately compare testing strategies. This may be 

accomplished through careful statistical adjustment (as we have done) or by randomization as 

has been done in a handful of studies, including the recently-completed What Is the Optimal 

Method for Ischemia Evaluation in Women (WOMEN) Trial (2) and the ongoing 

PROspective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) study 

(NCT01174550).   

 The differences in downstream testing and procedure rates but similar rates of 

outcomes—even after statistical adjustment for clinical and other characteristics—
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demonstrate the need to examine parameters other than diagnostic and prognostic accuracy 

when evaluating testing strategies. In general, outcomes studies for cardiac imaging should 

consider the short- and long-term impact on processes of care and resource use (5). This 

effort may be complicated by the potential for “tradeoffs” associated with test choice:  we 

observed that more repeat stress testing for patients receiving echocardiography was 

balanced by fewer invasive procedures. Furthermore, the length of follow-up is also an 

important consideration: we found some differences in processes of care limited to only the 

days immediately following stress testing (increased catheterization and revascularization 

with nuclear), while others persisted over time (increased repeat stress testing with 

echocardiography). Since the potential tradeoffs in downstream test/procedure use and 

temporal variation in the duration of effects, predictions regarding the relative costs of 

different testing strategies may be unreliable. If only the short-term is considered, exercise 

echocardiography might appear less expensive, while if the longer-term is considered, there 

may be little difference between imaging modalities. As payment models increasingly 

transition toward paying for episodes of care rather than on a fee-for-service basis, the length 

of each episode may play an important role in what are perceived to be “optimal” testing 

strategies. 

 Our study had several limitations. First, the study cohort was limited to patients >65 

years and enrolled in fee-for-service Medicare. Results derived from it may not be 

generalizable to other populations. As with all observational studies, confounding between 

imaging modality and outcome may be due to factors not included in the regression model or 

the available data. Finally, we lacked detailed clinical data (e.g., symptoms) at the time a 

stress test was ordered. As a result, we cannot identify the specific indication for which the 
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stress test was ordered and, therefore, cannot examine the appropriateness of stress testing or 

of subsequent invasive procedures.  

 In summary, the choice of using echocardiography versus nuclear imaging in 

conjunction with exercise stress testing in patients who have received PCI for ACS results in 

a different pattern of subsequent care. Echocardiography recipients receive fewer invasive 

procedures in the short-term, but face increased use of repeat stress testing. Conversely, 

nuclear stress testing results in higher rates of downstream catheterization and repeat 

revascularization. These differences in post-testing patterns of care highlight that analyses of 

imaging value must consider not only unit cost and performance test characteristics, but also 

how initial testing choice affects short- and long-term outcomes and processes of care. Such 

considerations will be relevant for policy makers and providers in designing new 

reimbursement schemes for patients with ACS.  
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TABLES 

Table 4.1: Healthcare Common Procedure Coding System and International Classification of 
Diseases, Ninth Revision, Clinical Modification codes used to define stress testing and 
outcomes. 
 

HCPCS, ICD-9-CM, or DRG 
Code Type of Claim 

Stress Testing 
Electrocardiogram stress test* 93015-93018 Carrier/Outpatient 
Nuclear imaging 78460-78461, 78464-78465, 

78472-78473, 78481, 78483 
Carrier/Outpatient 

Echocardiography 93350 Carrier/Outpatient 
Positron Emission 
Tomography 

78491-78492 Carrier/Outpatient 

Pharmacologic stress testing J0152 (adenosine), J1245 
(dipyridamole), J1250 
(dobutamine), J3490, C9399, 
C9244 (regadenoson) 

Carrier/Outpatient 

Magnetic Resonance Imaging 75552-75556 (2005-2007) 
75559-75560, 75563-75564 (2008) 

Carrier/Outpatient 

Coronary Angiography 93508, 93539, 93540, 93545 Carrier, Outpatient 
Percutaneous Coronary 
Intervention 

HCPCS: 92980-92982, 92984, 
92995, 92996, G0290, G0291, 
ICD-9: 36.01, 36.02, 36.05, 36.06, 
36.07 
DRG: 516-518, 526, 527, 555-558 

Carrier, 
Outpatient, 
Inpatient 

Coronary Artery Bypass 
Grafting 

HCPCS: 33510-33514, 33516-
33519, 33521-33523, 33533-33536 
ICD: 36.1x 
DRG: 106-109, 547-550 

Carrier, 
Outpatient, 
Inpatient 

Acute Myocardial Infarction 410.x1 (principal diagnosis) Inpatient 
*Electrocardiogram stress and nuclear imaging procedures performed within one day of 
each other were considered a single stress nuclear event. Electrocardiogram stress and all 
other imaging performed on the same day were considered a single stress imaging event.   
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Table 4.2: Baseline Patient Characteristics  

  
Overall 

(N= 29,279) 
Exercise Nuclear

(N= 24,737) 
Exercise Echo 

(N= 4,542) p-value 
Demographics Median [25th-75th Percentile] or % 
Age 74.0 [70.0-78.0] 74.0 [70.0-78.0] 74.0 [70.0-78.0] 0.45 
Female gender 42.5 42.6 42.3 0.71 
Nonwhite race 6.2 6.1 6.8 0.07 
State Medicaid buy-in 6.9 6.8 7.3 0.27 
ZIP Code 
Characteristics 

Median household 
income ($10000s) 4.1 [3.4-5.3] 4.1 [3.4-5.3] 4.2 [3.4-5.4] 0.02 
Percentage living in 
poverty 8.8 [5.2-13.8] 8.8 [5.1-13.8] 9.0 [5.5-13.8] 0.02 
Percentage with 
college education 26.9 [19.3-39.6] 26.7 [19.1-39.2] 28.0 [20.1-41.4] <0.001 

Census region <0.001 
New England 5.6 5.6 6.1 
Middle Atlantic 14.2 14.7 11.4 
East North Central 20.2 20.6 18.5 
West North Central 10.1 9.6 12.6 
South Atlantic 21.5 23.3 11.8 
East South Central 6.4 6.9 3.7 
West South Central 8.4 8.3 8.6 
Mountain 5.1 4.4 8.6 
Pacific 8.5 6.7 18.8 

Clinical 
Characteristics 
ACS diagnosis 0.12 

UA 45.1 45.0 45.6 
NSTEMI 23.0 23.2 21.9 
STEMI 31.9 31.7 32.5 

Multivessel PCI 19.5 19.5 19.4 0.82 
Stent insertion 97.1 97.1 96.8 0.22 
Any DES insertion 45.2 44.9 47.0 0.01 
Any BMS insertion 53.5 53.9 51.1 <0.001 
Comorbidities 

Heart failure 12.6 13.0 10.5 <0.001 
Valve disease 8.1 8.1 7.7 0.31 
Pulmonary 
circulation disease 2.0 2.0 1.6 0.04 
Peripheral vascular 
disease 12.7 12.9 11.6 0.02 
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Paralysis 0.8 0.8 0.6 0.07 
Neurological disease 2.5 2.5 2.2 0.25 
Chronic lung disease 19.1 19.4 17.1 <0.001 
Diabetes: 
Uncomplicated 21.7 22.1 19.7 <0.001 
Diabetes: 
Complicated 5.3 5.5 4.2 <0.001 
Hypothyroidism 12.4 12.4 12.4 0.97 
Renal failure 2.8 2.8 2.6 0.33 
Liver disease 0.5 0.5 0.5 0.70 
Peptic ulcer 0.1 0.1 0.2 0.08 
HIV/AIDS 0.0 0.0 0.0 0.94 
Lymphoma 0.7 0.7 0.7 0.54 
Metastatic cancer 0.6 0.6 0.6 0.70 
Solid tumor 8.7 8.7 9.0 0.51 
Arthritis 3.4 3.4 3.4 0.83 
Liver disease 1.7 1.8 1.3 0.02 
Obesity 5.8 5.9 5.0 0.02 
Weight loss 0.9 0.9 0.9 0.78 
Electrolyte 
abnormality 9.9 10.0 9.5 0.28 
Blood loss anemia 1.8 1.9 1.6 0.12 
Deficiency* anemia 13.0 13.2 12.0 0.03 
Alcoholism 0.8 0.8 0.7 0.66 
Drug use 0.1 0.1 0.1 0.43 
Other psych. disease. 1.9 2.0 1.5 0.02 
Depression 5.3 5.3 5.2 0.71 
Hypertension 77.3 77.7 75.1 <0.001 
Recent stroke 6.6 6.7 6.0 0.06 

Facility 
Characteristics 
Hospital Ownership 0.05 

Non-Profit 80.6 80.5 81.3 
For-Profit 10.1 10.3 9.1 
Government 9.3 9.2 9.6 

Major medical school 
affiliation 32.0 31.9 32.7 0.27 
Number of CMS-
authorized beds 411 [285-597] 420 [289-606] 375 [269-537] <0.001 
Pre-Stress Test 
Characteristics 
Medicare payments 1-
60 days pre-test  ($) 274 [102-687] 276 [104-691] 258 [92-667] <0.001 
Calendar time in days 408 [247-598] 402 [246-598] 430 [257-600] <0.001 
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(1 = 3/1/2003) 
Time from PCI to stress 
test (days) 180 [112-273] 181 [113-273] 177 [107-274] 0.04 
Stress test during 
blackout period 20.2 19.9 21.8 0.005 

* Deficiencies include iron, vitamin B12, folate, and protein 
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Table 4.3: Propensity Score Model 

Odds Ratio 
[95% Confidence 

Interval] 
Age (per 10 years) 0.951 [0.896, 1.011] 
Female gender 1.043 [0.973, 1.118] 
Nonwhite race 1.050 [0.911, 1.210] 
Medicaid buy-in 0.983 [0.857, 1.128] 
Median household income (10000s) 0.949** [0.916, 0.984] 
Poverty (per 10%) 0.991 [0.926, 1.062] 
College (per 10%) 1.065*** [1.029, 1.101] 
Census Region 

New England 1 (reference) 
Middle Atlantic 0.753*** [0.641, 0.885] 
East North Central 0.940 [0.804, 1.098] 
West North Central 1.349*** [1.143, 1.593] 
South Atlantic 0.523*** [0.443, 0.618] 
East South Central 0.575*** [0.463, 0.715] 
West South Central 1.115 [0.928, 1.339] 
Mountain 1.934*** [1.610, 2.323] 
Pacific 2.827*** [2.399, 3.331] 

ACS Diagnosis 
Unstable Angina 1 (reference) 
Non-ST Elevation Myocardial Infarction 0.941 [0.865, 1.024] 
ST Elevation Myocardial Infarction 0.954 [0.883, 1.030] 

Multivessel procedure 0.982 [0.903, 1.067] 
PCI w/ stent insertion 1.004 [0.788, 1.279] 
PCI w/ any DES insertion 0.913 [0.776, 1.075] 
PCI w/ any BMS insertion 0.874 [0.745, 1.025] 
Comorbidities  

Heart failure 0.840** [0.751, 0.939] 
Valve disease 1.043 [0.921, 1.181] 
Pulmonary circulation dz. 0.883 [0.683, 1.141] 
Peripheral vascular dz. 1.000 [0.902, 1.109] 
Paralysis 0.772 [0.498, 1.198] 
Neurological dz. 0.948 [0.761, 1.182] 
Chronic lung dz. 0.927 [0.849, 1.012] 
Diabetes: Uncomplicated 0.890** [0.819, 0.968] 
Diabetes: Complicated 0.790** [0.670, 0.930] 
Hypothyroidism 1.015 [0.918, 1.123] 
Renal failure 1.057 [0.855, 1.306] 
Liver disease 1.191 [0.759, 1.871] 
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Peptic ulcer 1.639 [0.777, 3.457] 
HIV/AIDS 1.496 [0.173, 12.94] 
Lymphoma 0.919 [0.617, 1.369] 
Metastatic cancer 1.021 [0.670, 1.557] 
Solid tumor 1.088 [0.968, 1.224] 
Arthritis 1.016 [0.848, 1.217] 
Liver disease 0.816 [0.617, 1.079] 
Obesity 0.863 [0.744, 1.001] 
Weight loss 1.026 [0.720, 1.463] 
Electrolyte abnormality 1.056 [0.942, 1.185] 
Blood loss 0.925 [0.713, 1.200] 
Deficiency anemia 0.971 [0.874, 1.080] 
Alcoholism 0.918 [0.626, 1.347] 
Drug use 0.772 [0.262, 2.269] 
Non-depression psych. dz. 0.795 [0.607, 1.040] 
Depression 1.064 [0.915, 1.237] 
Hypertension 0.938 [0.867, 1.015] 
Recent stroke 0.968 [0.839, 1.116] 

Hospital Type 
Non-profit 1 (reference) 
For-profit 0.785*** [0.696, 0.884] 
Government 1.129* [1.005, 1.269] 

Major medical school affiliation 1.208*** [1.115, 1.309] 
Number of CMS-authorized beds (per 100) 0.966*** [0.953, 0.980] 
Medicare payments during 60 days pre-ST (per 100) 0.999* [0.997, 1.000] 
Calendar time (1 = 3/1/2003) (per 100 days) 1.029** [1.007, 1.051] 
Time from PCI to stress test (per 100 days) 0.956* [0.920, 0.994] 
Received stress test during blackout period 1.087* [1.001, 1.181] 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 4.4: Unadjusted and Adjusted Cause-Specific Hazards Models 

  
 Unadjusted 

Model 
IPW Model Facility-Level

Variation Model

 Entire Study Period 
Death 0.88 (0.81, 0.96) 0.99 (0.90, 1.09) 0.80 (0.57, 1.12)
MI 0.96 (0.84, 1.09) 1.01 (0.87, 1.17) 0.93 (0.55, 1.58)
Revascularization 0.93 (0.87, 0.99) 0.94 (0.87, 1.01) 0.89 (0.62, 1.27)
Catheterization 0.91 (0.87, 0.96) 0.93 (0.88, 0.98) 0.84 (0.62, 1.15)
Second stress test 1.12 (1.07, 1.16) 1.07 (1.03, 1.12) 1.28 (0.98, 1.66)
Catheterization or second stress test 1.04 (1.01, 1.08) 1.02 (0.98, 1.06) 1.11 (0.89, 1.39)

Days 1-90 after Stress Testing 
Death 1.04 (0.68, 1.59) 1.18 (0.75, 1.87) 3.35 (1.06, 10.6)
MI 0.70 (0.45, 1.10) 0.61 (0.37, 1.02) 0.49 (0.07, 3.66)
Revascularization 0.84 (0.75, 0.94) 0.87 (0.76, 0.98) 0.82 (0.48, 1.38)
Catheterization 0.85 (0.78, 0.93) 0.88 (0.80, 0.97) 0.80 (0.51, 1.26)
Second stress test 2.78 (2.37, 3.26) 2.60 (2.19, 3.10) 2.83 (1.23, 6.54)
Catheterization or second stress test 1.04 (0.96, 1.13) 1.04 (0.96, 1.13) 1.07 (0.64, 1.77)
 Days 91+ after Stress Testing 
Death 0.87 (0.80, 0.96) 0.98 (0.89, 1.08) 0.74 (0.53, 1.04)
MI 0.99 (0.86, 1.13) 1.06 (0.91, 1.24) 0.99 (0.58, 1.68)
Revascularization 0.98 (0.90, 1.07) 0.99 (0.90, 1.08) 0.93 (0.65, 1.33)
Catheterization 0.95 (0.89, 1.01) 0.96 (0.89, 1.03) 0.86 (0.62, 1.19)
Second stress test 1.06 (1.02, 1.11) 1.03 (0.98, 1.07) 1.24 (0.95, 1.60)
Catheterization or second stress test 1.04 (1.00, 1.08) 1.01 (0.97, 1.06) 1.12 (0.88, 1.42)
All abbreviations can be found in Table 4.1.  
 



 

 

Table 4.5: Robustness of inverse probability weighted model results to threshold value for time-varying effect 

 Hazard Ratio (CI) 
 Death MI Revasc Cath Second Stress 

Test 
Overall 1.11 (0.95, 1.30) 1.02 (0.85, 1.23) 0.94 (0.87, 1.02) 0.94 (0.89, 1.00) 1.22 (1.16, 1.28)

30-day cutpoint    
≤ 30 days 0.83 (0.33, 2.11) 1.10 (0.57, 2.14) 0.88 (0.76, 1.02) 0.89 (0.79, 0.99) 3.62 (2.74, 4.77)
> 30 days 0.99 (0.90, 1.09) 1.01 (0.87, 1.17) 0.96 (0.89, 1.05) 0.94 (0.88, 1.01) 1.05 (1.00, 1.10)

60-day cutpoint      
≤ 60 days 1.06 (0.55, 2.05) 0.68 (0.38, 1.23) 0.86 (0.76, 0.98) 0.86 (0.78, 0.95) 3.22 (2.60, 3.99)
> 60 days 0.99 (0.89, 1.09) 1.04 (0.89, 1.21) 0.98 (0.90, 1.08) 0.96 (0.90, 1.03) 1.03 (0.99, 1.08)

90-day cutpoint      
≤ 90 days 1.18 (0.75, 1.87) 0.61 (0.37, 1.02) 0.87 (0.76, 0.98) 0.88 (0.80, 0.97) 2.60 (2.19, 3.10)
> 90 days 0.98 (0.89, 1.08) 1.06 (0.91, 1.24) 0.99 (0.90, 1.08) 0.96 (0.89, 1.03) 1.03 (0.98, 1.07)

120-day cutpoint      
≤ 120 days 1.32 (0.90, 1.94) 0.84 (0.53, 1.32) 0.86 (0.77, 0.97) 0.87 (0.79, 0.95) 2.27 (1.97, 2.61)
> 120 days 0.97 (0.88, 1.07) 1.04 (0.89, 1.21) 0.99 (0.91, 1.09) 0.97 (0.90, 1.04) 1.01 (0.96, 1.06)

150-day cutpoint      
≤ 150 days 1.18 (0.83, 1.68) 0.76 (0.50, 1.17) 0.85 (0.76, 0.96) 0.87 (0.79, 0.95) 2.00 (1.76, 2.28)
> 150 days 0.98 (0.88, 1.08) 1.06 (0.90, 1.24) 1.01 (0.92, 1.11) 0.97 (0.90, 1.04) 1.01 (0.96, 1.06)

180-day cutpoint      
≤ 180 days 1.06 (0.77, 1.48) 0.80 (0.54, 1.18) 0.84 (0.75, 0.95) 0.86 (0.78, 0.94) 1.90 (1.69, 2.12)
> 180 days 0.98 (0.89, 1.09) 1.06 (0.90, 1.24) 1.02 (0.93, 1.13) 0.98 (0.91, 1.06) 0.99 (0.95, 1.04)

Cath = catheterization; CI = confidence interval; MI = myocardial infarction; Revasc = revascularization  
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Table 4.6: Inverse Probability Weighted Competing Risk Proportional Hazards Models 
 

 Hazard Ratio (CI) 
 MI Revasc Cath Second Stress 

Test 
Overall 1.01 (0.87, 1.17) 0.94 (0.88, 1.02) 0.93 (0.88, 0.98) 1.13 (1.08, 1.18)
90-day cutpoints     
≤ 90 days 0.61 (0.37, 1.02) 0.87 (0.76, 0.98) 0.88 (0.80, 0.97) 2.64 (2.22, 3.15)
> 90 days 1.06 (0.91, 1.24) 0.99 (0.91, 1.09) 0.96 (0.90, 1.03) 1.08 (1.03, 1.13)

All abbreviations can be found in Appendix Table 1.  
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FIGURES 

Figure 4.1A-B: Cohort Selection Diagram 
 
Figure illustrates process by which study cohort was identified. Included patients were those 
receiving an outpatient exercise nuclear or echocardiography stress test not preceded by 
another cardiac event. 
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Figure 4.2: Unadjusted Outcomes by Stress Test Imaging Modality 
 
Curves illustrate unadjusted cumulative incidence of outcomes, based on time since stress 
testing. P-values are for comparison of nuclear versus echocardiography using Gray’s test.  
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Figure 4.3: Distribution of propensity scores  
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Figure 4.4: Impact of inverse probability weighting on covariate balance 
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Figure 4.5: Temporal stability of facility-level imaging modality selection 
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Figure 4.6: Unadjusted and Adjusted Incremental Total Medicare Payments 
 
The top row illustrates per-period incremental costs, while the bottom row illustrates 
cumulative incremental costs up to the period in question. Dotted lines in the bottom row 
indicate incremental difference in cost accruing during the day of initial stress testing. 
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Figure 4.7: Inverse Propensity Weighted (IPW)-Adjusted Cumulative Incremental 
Costs 
 
Comparing echocardiography to nuclear imaging with costs stratified by stress test-related 
versus all other. 
 

 



 

 

 
 

 

 

 

5. INSTRUMENTAL VARIABLES FOR RELEVANT ESTIMATES  
 
OVERVIEW 

 The use of observational methods for cardiovascular comparative effectiveness 

research (CER) is an increasingly attractive alternative to randomized trials. However, 

endogeneity (confounding) of treatment choice is a major methodological limitation. 

Conventional methods such as propensity score and outcome modeling can adjust for 

endogeneity due to factors observed in the available data, but not unobserved factors. In 

contrast, instrumental variable methods allow for the consistent estimation of treatment 

effects from observational data even when endogeneity is due to unobserved factors. 

Unfortunately, instrumental variable methods typically estimate a treatment effect that only 

applies to an unidentifiable “marginal” population of patients, which complicates the 

interpretation of results for clinical and policy decisions. Economists have pioneered a new 

method – local instrumental variables – which allows for the estimation of treatment effects 

that are more directly clinically and policy relevant, such as the average treatment effect. In 

this study, we illustrate the value of these new methods and describe how they can be applied 

to CER using the example of drug-eluting coronary stents. We find evidence that drug-

eluting coronary stents are safe and effective in the patients receiving them, but that 

significant heterogeneity in treatment response exists such that patients who did not receive 

DES would be predicted to have a more adverse risk-benefit profile.  
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INTRODUCTION 

Observational data in outcomes research 

 Due to limitations of randomized trials, the cardiovascular community has 

demonstrated considerable enthusiasm for comparative effectiveness research (CER) 

employing observational data (95, 96). Observational data allow measurement of treatment 

effects in “real world” clinical practice. CER using observational data is less expensive and 

facilitates important comparisons that would be impractical using experimental methods. The 

availability of powerful computing resources paired with the ever-increasing accrual of data 

through administrative, registry, and electronic medical records mean that observational 

methods will continue to be an attractive option for conducting cardiovascular CER. 

 

Instrumental variable methods are a valuable tool for observational CER 

 Unlike trials, treatments are not assigned at random in observational data; thus, the 

potential for bias due to endogenous treatment choice (confounding by indication) is a 

persistent methodological challenge (97). Endogenous treatment choice is present when 

factors that affect treatment choice also affect patient outcomes through pathways other than 

treatment choice. The most common method of addressing endogenous treatment choice has 

been to identify factors affecting both treatment choice and outcome (i.e., the confounding 

factors) and to adjust for them with multivariate regression modeling. This adjustment can be 

performed through modeling of either treatment choice or outcome; when treatment choice is 

modeled, the approach is considered a propensity score method. There are circumstances in 

which modeling either treatment choice or outcome is clearly preferable (98). One such 

circumstance is the case of a common treatment but rare outcome.  In this circumstance, 
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outcome modeling may be limited by the poor asymptotic properties of non-linear estimators 

when used to estimate a high number of covariates relative to number of outcomes (99). 

There are also methods that attempt to model both treatment choice and outcome to achieve a 

“doubly robust” estimator which is robust to misspecification of the treatment equation or 

outcome equation (but not both) (100). Despite extensive debate in the literature concerning 

theoretical advantages and disadvantages of each method, empirically, the methods generally 

produce very similar results (101). Importantly, both conventional multivariate modeling and 

propensity score methods share a common and significant limitation: while they can adjust 

for bias caused by endogenous treatment selection due to factors that are observed by the 

analyst (or highly correlated with these factors), they cannot adjust for bias due to factors that 

are either unobserved or not perfectly correlated with observed factors. Incomplete 

adjustment for endogenous treatment choice can lead to severely biased estimates of 

treatment effects.  

 In contrast to conventional modeling approaches, instrumental variable (IV) 

techniques allow measurement of treatment effects that are adjusted for endogenous 

treatment choice, even if the confounding factors are not completely observed. This benefit is 

achieved by identifying instruments, which are variables that affect the patient’s treatment 

choice but have no expected effect on outcome through a mechanism other than treatment 

choice. In the language of econometrics, the instrument’s effect on treatment choice must be 

plausibly exogenous; in the language of statistics and epidemiology, it must be 

unconfounded.2 The seminal application of IV methods in cardiovascular medicine was an 

                                                 

2 Formally, IVs need only be exogenous after conditioning on observed covariates. The 
formal presentation of IV in the Model section clarifies this distinction. 
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effort to identify the effects of early invasive treatment versus thrombolysis for myocardial 

infarction, an area in which conventional methods were thought to provide inadequate 

adjustment for underlying differences in patient risk (102). The difficulty of identifying valid 

instruments for specific clinical situations has limited the broad application of IVs, as IV 

models estimated with poor quality instruments can, like incompletely adjusted conventional 

methods, result in severely biased estimates.3 However, recent successes in leveraging small 

area geographic variation and idiosyncrasies in provider preference as instruments have made 

performing such analyses increasingly tractable (103, 104).  

 

Treatment effect heterogeneity limits existing instrumental variable methods 

 The benefits of IV analysis for addressing endogeneity are well established, and there 

has been considerable progress made in identifying valid IVs for important questions in 

cardiovascular CER. However, a notable and persistent limitation of IV analyses is that they 

provide results that are challenging interpret for use in clinical practice. This is particularly 

true when individual patients respond differently to a treatment, a phenomenon known as 

treatment effect heterogeneity.  

 Most IV analyses estimate a local average treatment effect (LATE), which is the 

average effect of the treatment on a “marginal population” of patients whose treatment 

choice is affected by the IV (105). Unfortunately, it is impossible to identify precisely which 

patients comprise this marginal population (106), and except in two special cases discussed 

                                                                                                                                                       

 
3 One notable limitation of IV methods is the ease with which, through selection of an invalid 
IV, one can generate results that are more biased than an unadjusted, naïve comparison of 
outcomes (i.e., results that are worse than would be attained with a t-test).  
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later, the LATE will differ from treatment effects for other patients. There are circumstances 

in which the LATE estimated by IV is a policy-relevant estimand (result of estimation). For 

instance, investigators used the sharp decline in drug-eluting coronary stent (DES) utilization 

in late 2006 as an IV to determine how the more selective use of DES in 2007 affected 

patient outcome when compared with the permissive use in early 2006 (107).4 In this case, 

the specific question being asked was whether those “marginal patients” who would have 

received DES in 2006, but not in 2007, experienced a change in outcome should providers 

adopt practice patterns reminiscent of 2006 or 2007 going forward. Similarly, if a 

government assistance program changes its eligibility criteria from 100% of the Federal 

Poverty Line to 133%, an IV analysis using the changed threshold as an instrument would 

only estimate to the effect of the government assistance program on the population between 

101-133% of the poverty line.  However, investigators conducting CER are often interested 

in questions that correspond more directly with other estimands: 

1. Average Treatment Effect (ATE): The ATE is the expected difference in outcome 

caused by the treatment, averaged across the entire population that is considered potentially 

eligible to receive the treatment. Alternatively, it can be viewed as the effect of applying a 

treatment across an entire population of patients, such as would occur if a treatment was used 

in all eligible patients with a particular condition immediately after regulatory approval. 

2. Effect of Treatment on the Treated (TT): The TT is also an average treatment effect, 

but it is the expected difference in outcomes with and without treatment for only those 

patients actually receiving treatment in clinical practice. This estimand is particularly useful 

                                                 

4 I examined and ultimately rejected using a similar temporal instrument in this paper. It did 
not work because at the same time that the percentage of PCI patients receiving DES fell 
during this time period, the volume of PCI cases also declined.  
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for determining whether the treatment, as currently used, improves patient outcome.  As 

such, it is the natural estimand for decisions such as whether a treatment should remain 

covered by insurance plans or remain approved by regulators for a given indication. 

3. Effect of Treatment on the Untreated (TUT): The TUT is analogous to the TT, but it 

is instead the average treatment effect among those patients who do not currently receive the 

treatment. It can also be viewed as the predicted impact of expanding treatment to 

previously-untreated segments of the patient population. Consequently, the TUT is a natural 

estimand for deciding what treatments should be considered mandatory or defined as a 

measure of quality care. 

When treatment effect heterogeneity exists, and patients or their providers select 

treatments based on the factors associated with the treatment effect heterogeneity, the LATE 

estimand produced by conventional IV is not a consistent estimate of the ATE, TT, or TUT. 

Figure 5.1 summarizes the situations in which ATE, TT, and TUT differ from LATE. There 

has been a long-standing emphasis on estimation of the ATE in the clinical and policy 

literature (108) perhaps because the ATE is the estimand that most closely approximates 

those obtained from randomized trials.5 As such, it is particularly appropriate for an initial 

demonstration of a treatment’s safety and efficacy, as is done in Phase II/III trials. Because 

randomized trials by definition do not allow patients to choose treatments,6 estimation of 

                                                 

5 Studies analyzed on an intention to treat basis (i.e., those in which patients do not 
necessarily receive the assigned treatment) do not formally identify the ATE but rather the 
“average effect of being assigned to receive treatment”. 
 
6 Many randomized trials permit treatment refusal or crossover due to well-accepted ethical 
limitations concerning how subject behavior can be regulated in research settings; when these 
are permitted, the results are not strictly an ATE. However, even when such behavior is 
allowed, the resultant effect estimates are also still not equivalent to TT / TUT in non-
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meaningful TT and TUT parameters is only possible in observational settings.7 It is not 

uncommon, however, for clinical or policy questions to match more naturally to the TT or 

TUT than the ATE. For example, the question of whether an existing treatment should 

remain available to patients is most appropriately answered by considering the treatment’s 

effect only on those patients currently receiving it (TT). Doing so recognizes that patients 

and providers may selectively treat patients with the most favorable risk/benefit profile to 

receive treatment. Conversely, evidence that the average response to a treatment is positive is 

not definitive evidence that the treatment ought to be provided to all patients with the 

condition. Estimation of the TUT would provide stronger evidence about whether changing 

practice patterns to expand use of the treatment would improve outcomes.  

 

Local instrumental variable methods address treatment effect heterogeneity 

 Economists have developed a method known as local instrumental variables (LIV) 

that combines elements of conventional IV and propensity score methods (109-112). LIV 

methods allow for the adjustment for confounding that conventional IV offers, but also 

produce consistent estimates of the ATE, TT, and TUT, even under conditions of treatment 

                                                                                                                                                       

experimental settings because the act of randomization imposes a persistent, artificial effect 
on the distribution of treatments patients receive. 

7 Heckman (2007) argues that TT and TUT estimates can be constructed in randomized trials 
by limiting trial participation to the population subset that either currently uses or does not 
use a treatment, respectively. While this approach may prove practicable for social programs 
in which there are relatively straightforward eligibility criteria (e.g., income thresholds for 
Head Start), for clinical questions in which agents have discretion on treatment choice, 
identification a priori of the traits that characterize treatment utilization is much more 
complicated. For this reason, I would argue that even in those situations in which a 
randomized trial can be performed, only observational studies can measure a TT and TUT 
that reflects “real world” treatment choices. 
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effect heterogeneity. Their implementation is relatively complex, but in general, treatment 

effects are estimated including both observed heterogeneity (interactions between treatment 

choice and covariates) and unobserved heterogeneity (using a polynomial form of a 

propensity score, which acts as a proxy of unobserved heterogeneity). These different 

treatment effect values (called marginal treatment effects) are weighted based on the 

distribution of patients to produce estimates of the LATE, ATE, TT, and TUT parameters. 

Detailed expositions of the LIV technique are now available (113-117), but adoption of LIV 

has been slow in the clinical and policy communities. One reason for this delay may be the 

difficult nature of currently available literature on LIV, suggesting that an accessible 

introduction to the method’s value and implementation will provide a useful contribution to 

the literature. 

 

CLINICAL CONTEXT 

 Percutaneous coronary intervention (PCI) is an invasive procedure in which occluded 

coronary arteries are reopened through the use of catheters threaded into the heart. It is both 

commonly performed (over 1.3 million PCI procedures performed annually in the United 

States) and expensive (typical hospital charge of $45,000 per procedure) (118). PCI was 

initially performed by dilating areas of obstruction with a balloon, a procedure retroactively 

labeled “plain old balloon angioplasty” (119). However, damage to the vessel wall caused by 

the angioplasty process led to abrupt vessel closure or artery dissection in a small percentage 

of cases; these complications were medical crises often requiring emergent coronary artery 

bypass grafting. More frequently, a gradual reocclusion of the treated lesion (restenosis) led 

to the return of anginal symptoms requiring additional treatment. The development of the 
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first coronary stents (metal struts implanted at the time of angioplasty) provided dramatic 

reductions in the risk of emergencies such as vessel closure or dissection (120, 121).  Stents 

also reduced the risk of restenosis by approximately 50 percent, lowering the percentage of 

patients requiring an additional procedure at the site of the initial procedure (target lesion 

revascularization) from 20-30 percent to 10-15 percent (122-125).  

 Numerous efforts to further reduce the rate of restenosis were tested, but most 

centered on reducing the proliferative response of the vascular endothelium (the interior 

lining of the treated coronary artery) to PCI-induced injury. While some degree of 

endothelial proliferation is integral to vessel healing, excessive proliferation occludes the 

vessel lumen. After many prominent failures (126, 127), manufacturers eventually developed 

Drug Eluting Stents (DES), which are coated with minuscule doses of anti-proliferative 

compounds such as sirolimus and paclitaxel. In a series of pivotal clinical trials, sirolimus- 

and paclitaxel-eluting stents were shown to dramatically reduce restenosis and the need for 

consequent target lesion revascularization when compared with bare metal stents (BMS), 

without affecting mortality (128-130). Despite being substantially more expensive than BMS, 

DES rapidly dominated the marketplace after their introduction in April 2003 (131).  

Widespread use of DES continued through 2005 and most of 2006, but safety 

concerns regarding DES began to emerge. Since DES approval, there were scattered reports 

of DES-associated late stent thrombosis (blood clots occurring between 30 days and 1 year 

after insertion) (132, 133). These concerns erupted into the spotlight in September 2006 

when several studies presented at the annual meeting of the European Society of Cardiology 

(ESC) reported an elevated risk of death in DES recipients (134-136). This increase in 

mortality had not been observed in clinical trials of DES and was thought to be attributable to 
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elevated late stent thrombosis caused by reduced adherence to antiplatelet therapy [e.g., 

clopidogrel (Plavix®)] (137). The Food and Drug Administration immediately launched an 

inquiry into DES safety. Amid widespread clinical and lay media coverage, the DES market 

share in the United States fell from over 90% to barely 60% by mid-2007 (138). Ultimately, 

it was determined that DES were safe for most patients provided they were able to remain on 

antiplatelet therapy for at least 12 months after PCI; DES rates began to climb again in early 

2008 (Figure 5.3) (139).  

 In the immediate wake of the safety concerns regarding DES, American and 

Canadian investigators undertook a series of observational CER studies comparing DES and 

BMS. Interestingly, rather than the increased mortality seen in the studies presented in 2006 

at ESC, most studies using conventional model-based or propensity score-based adjustment 

found strong reductions in mortality associated with DES use, with the relative risk reduction 

in all-cause mortality frequently estimated to be 25 percent or more (69, 140-143). It is 

possible that DES improves survival among a subset of patients who are receiving DES who 

receive DES in clinical practice, but who were excluded from randomized clinical trials; 

however, the mechanism through which survival benefits of such magnitude would be 

achieved is unclear. These observational analyses of DES versus BMS may also be limited 

by endogenous treatment selection, as DES are used preferentially for patients with less acute 

coronary disease (144).  

 Supporting this explanation, comparisons of patient outcomes before and after the 

introduction of DES (considered in the clinical outcomes literature to be a “semi-IV” form of 

analysis) failed to show a mortality benefit to DES usage (145, 146). However, these studies 

did not calculate the LATE, instead reporting only the effect of widespread DES usage on the 
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entire population of PCI recipients. These results are thus only indirect evidence of DES 

effectiveness, and because these studies were performed on different cohorts using different 

definitions than the conventional CER studies, direct comparison of results is problematic. 

Others have explicitly compared propensity score and instrumental variables approaches, 

using the same cohort of patients for both methodologies (147, 148); these studies 

demonstrated that even among the same cohorts of patients, conventional and IV-based 

approached produced markedly different estimates of DES efficacy.  

However, comparing LATE estimates to the ATE and TT values produced by 

conventional CER methods is clearly problematic. Even with excellent control for 

confounding, the LATE, ATE, TT, and TUT parameters may differ from each other due to 

treatment effect heterogeneity rather than due to either the conventional or IV methods being 

the “correct” result. Intuitively, in the presence of potential treatment effect heterogeneity, 

comparing conventional and IV analysis involves an implicit “apples to oranges” contrast, 

because the two methodologies do not claim to estimate the same quantity (149).  Local IV 

methods provide a solution to this problem, because they allow for the comparison of like 

estimands. 
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A MODEL FOR TREATMENT SELECTION AND OUTCOMES 

Counterfactual-based definitions of heterogeneous treatment effects8 

 Patients experience outcomes (Y) based on the treatment they received (s) and their 

characteristics (ω) according to the function Y(s,ω). Both s and ω may be either a scalar or 

vector, in that s may contain a bundle of treatment components (e.g., repeated doses of a 

medication, staged surgical procedures, combinations of therapies) and that multiple patient 

characteristics may comprise ω (e.g., clinical, demographic, and socioeconomic factors). For 

simplicity, consider without loss of generalizability the case of a binary treatment choice 

such that ∈ 0,1 . Additionally, consider ω to consist of two components: X being those 

factors observed by the analyst and W being those factors unobserved. As a result, Y can also 

be expressed as a function of s, X, and W. As with other uses of potential outcomes models, 

we assume independence between X and W.  

 For any given patient at any given time, we can only observe those outcomes 

associated with one value of s: 

, 1, , 1 0, ,  

where D = 1 if the patient received s = 1 and D = 0 when the patient received s = 0. As a 

result, in most circumstances it is impossible to calculate individual-level treatment effects, 

which are Marshallian ceteris paribus differences in outcome associated with the change 

from s = 0 to s = 1 for the individual (150). This fundamental problem in causal inference 

                                                 

8 This section draws heavily from the exposition of Anirban Basu in “Estimating Decision-
Relevant Comparative Effects Using Instrumental Variables” Stat Biosci 2011 Sep;3(1):6-27 
as well as Chapters 70 and 71 (both by Heckman and Vytlacil) in the Handbook of 
Econometrics. I review the key points in a more approachable manner, but readers interested 
in a detailed exposition of the local instrumental methodology are urged to consult 
Heckman’s chapters in the Handbook for a conceptual understanding of the LIV approach, 
followed by Basu’s work for an illustration of its application of clinical outcomes research. 
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(the evaluation problem) has been long known to both economists and statisticians; the above 

model is known as both the Quandt and Roy models in economics and the Neyman-Fisher-

Cox-Rubin model in statistics (151-153).  

 Most applied research avoids the evaluation problem by estimating summary 

measures (e.g., means) of population-level treatment effects instead of individual-level 

treatment effects. The most common of these is the ATE, which can be expressed as the 

mean expected difference in outcome: 

1 0 1, , 0, , |

∆ , |  

(1)

Intuitively, this equation states that the ATE is an average of the expected difference between 

treated and untreated patients, weighted by the empirical distribution of patient 

characteristics (both X and W) in a given sample. ∆ ,  is defined as 1, ,

0, ,  for the purposes of simplifying subsequent notation. 

 The TT and TUT parameters are also averaged differences in expected outcome, but 

with weighting based on the distribution of patient characteristics (X, W) among those 

patients in the population who do or do not receive treatment, respectively for TT and TUT: 

1 0 | 1 ∆ , | , 1 | 1  (2)

1 0 | 0 ∆ , | , 0 | 0  (3)

The counterfactual framework thus provides a compact mechanism useful for defining 

several important estimands.  
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 With observational data, however, translating these definitions into empirical 

estimates is challenging. Simply calculating differences between mean values of Y(1) and 

Y(0) in the observed cohort will only estimate ATE, TT, and TUT if Y(1) and Y(0) are 

orthogonal to D 1 , 0 , which implies that D is not a function of X or W. In 

observational data from clinical practice, rarely are potential outcomes and treatment choices 

independent because agents9 actively attempt to match patients with their optimal treatment. 

This issue is dubbed the selection problem (i.e., endogenous treatment choice or confounding 

by indication).  

 There are two primary mechanisms by which the selection problem is normally 

addressed in CER using observational data: 

1. Outcome or treatment modeling: The basis of regression adjustment of either 

outcomes or treatment choice is that by conditioning on an observed subset of ω that is 

correlated with both outcome and treatment choice (XC; the confounding variables), it is 

possible to produce independence between Y and D: 

1 , 0 	|	  

If this relationship holds, then the remaining variation in D after conditioning on XC can be 

considered equivalent to randomization and used for the consistent estimation of treatment 

effects (116). In other words, any remaining unmeasured factors (W) that affect outcome 

must be independent of D after conditioning by XC. This assumption cannot be formally 

tested – it must instead be justified based on subject area knowledge of confounding factors 

and the quality of the available data.  

                                                 

9 “Agents” in this setting can be patients, providers, managed care entities, insurers, or some 
combination of decision makers. 
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2. Instrumental Variables: In contrast to conditioning methods, which uncover natural 

randomization “by subtraction” through the identification and removal of confounding 

variables, IV methods rely on identifying factors associated with natural randomization (Z). 

These factors (instruments) must, after conditioning on , be independent with respect to 

outcomes (validity criterion) but must be associated with treatment choice (strength 

criterion): 

1 , 0 	|	  and Pr 1| , Pr	 1|  

The major benefit of the IV approach for some empirical questions is that it is possible to 

identify instruments for which XIV is present in the data available to the analyst, even when 

XC is not available in the data. In the extreme case of “perfect” IVs, XIV can even be an empty 

set (i.e., no conditioning on observables is necessary); the randomization in a clinical trial 

can be viewed as one form of perfect IV. As with the independence of Y and D in the case of 

conditioning on observables, the validity criterion is also untestable and requires appeals to 

theory and contextual knowledge in order to justify.10  

The major limitation of IV methods is that their natural estimand is the LATE, which 

is a weighted average of treatment effects among only those patients who would receive the 

                                                 

10 When multiple instrumental variables are identified for a given empirical question, many 
econometricians advocate tests of “over-identification” as a mechanism by which 
instrumental variable validity may be assessed. However, such tests cannot differentiate 
between invalid instrumental variables and a number of other circumstances, including the 
presence of heterogeneous treatment effects (i.e., they are sensitive for IV validity but not 
specific). For this reason, they are of little value in CER for clinical medicine and I will not 
apply them in this study. 
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treatment s =0 if the IV Z = z and treatment s =1 the when Z = z’ (the marginal 

population):	11 

1 0 | 1

∆ , | , |  
(4)

Thus, the peculiarity of conventional IV methods is that they incorporate the tool used to 

identify the model (the instrument) into the definition of what the model is estimating (the 

LATE estimand). This conflation of model identification and estimand definition is the crux 

of the contentious debate between groups headed by Joshua Angrist and Guido Imbens (in 

favor of LATE) and James Heckman and Angus Deaton (against LATE) regarding the use of 

IV for treatment comparisons (154-159).12 

 

Treatment effect heterogeneity affects estimation of treatment effects 

 Equations 1-4 demonstrate that all commonly-estimated average treatment effects can 

be viewed as weighted averages of X- and W-specific treatment effects (∆ , , or 

1, , 0, , , which are weighted based on distributions of X and W in the 

population of interest. For the case of the ATE, it is the distribution of X and W among all 

patients in the cohort; for TT and TUT, it is the distribution among treated and untreated 

patients, respectively, and for LATE, it is the distribution among “marginal patients”. From 

these definitions of the treatment effects, it is clear that ATE, TT, TUT, and LATE will be 

                                                 

11 For instrumental variables with more than two values, the LATE is an information-
weighted average of a series of comparisons of z and z’. 
 
12 The debate between the Heckman/Deaton and Angrist/Imbens factions regarding the use of 
instrumental variables methods even spilled into the non-technical literature; for example, see 
http://www.economist.com/node/14210799. 
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equal to each other in two circumstances. The first is when there is no heterogeneity in 

treatment effect (when ∆ , 	 ∆		for all X, W). Intuitively, if all patients have the same 

response to a particular treatment (at least relative to the comparator treatment), then using 

different weights to average the treatment responses will have no effect on the resulting 

estimates. The second scenario is when there is no correlation between the treatment effect 

and the distributions of X and W, meaning that while ∆ ,  may vary in the population, 

there is no difference in the distributions of X and W in the treated, untreated, and “marginal” 

populations.  

 The principles necessary to address heterogeneous treatment responses are well 

developed when heterogeneity is governed by X, but not W. In this case, ∆ ∆ ,  for 

all W. Thus, equations 1-4 can be simplified to integrations of ∆  over the distribution of X 

corresponding to the estimand. Because X is observed in the data, such integration is 

straightforward to implement empirically and can be performed with matching or weighting, 

as is often performed for propensity score analyses (85, 160). Different weighting functions 

exist when the objective is to recover the ATE, TT or TUT parameters. It is important to note 

that the need to do some form of active adjustment to recover relevant treatment parameters 

is common to many regression techniques, not just IV models, when treatment effect 

heterogeneity is a function of X, and X is associated with treatment choice. Conventional 

regression methods such as ordinary least squares estimate ATE when treatment effects are 

constant. However,  when treatment effect heterogeneity is correlated with treatment choice, 

even when confounding is fully-adjusted, these models instead estimate a conditional 

variance-weighted averaged treatment effect parameter (161).  
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 Unfortunately, the approaches that allow for the consistent estimation of treatment 

effects when treatment effect heterogeneity is due to observed factors (X) fail when treatment 

effect heterogeneity is due to unobserved factors (W) and treatment choice is not independent 

of W. This limitation occurs because it is not possible to weight ∆ ,  by the empirical 

distribution of W because the distribution of W is, by definition, unknown. Such a scenario is 

dubbed essential heterogeneity in the econometrics literature (109). It is likely to be common 

in observational CER, as physicians and patients almost always have more information than 

the analyst for predicting a patient’s response to therapy, which influences their choice of 

treatment. Such concerns are particularly salient when the covariates available for performing 

observational CER are obtained through use of administrative or general purpose registry 

data rather than prospective data collection. However, by relying on choice theory regarding 

agent behavior, we can recover treatment effects while incorporating essential heterogeneity. 

 

An index model of treatment choice informs the essential heterogeneity problem 

 Based on a generalized Roy model, Heckman and his colleagues (1999) have 

developed a model of treatment effects that both clarifies how the ATE, TT, and TUT 

parameters can be estimated from observational data and can be used to unify the 

methodologies underlying treatment comparisons (e.g., trials, propensity score designs, IV) 

(116). Here, I concentrate on explaining the model in terms of how it can be used for IV, 

again considering the case of a binary treatment choice without loss of generalizability. 

 Agents (patients, physicians, or a combination) select treatments using an index 

model in which observed (confounding factors X as well as instruments Z) and unobserved 
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(W) factors are used to determine whether to use the treatment based on the value of latent 

anticipated utility D*: 

∗ , , ∗  

where ∗  is the random error term. Under standard exogeneity assumptions treating Z and 

X as independent of both W and ∗ , we can define ∗ , ∗, where ∗

0. Agents choose treatment 1 if D* > 0 and treatment 0 if D* < 0: 

∗ 0 ∗ , ⟺ ∗ ∗ ∗ ,  

We define P(X,Z) to be a propensity score predicting receipt of treatment as a function of 

both observable covariates and instruments such that , 1| ,

∗ , . We define another variable, UD, as a uniform random variable with range 

between zero and one (UD ~ Unif[0,1]) such that ∗ ∗ , meaning that UD is the 

probability transformation of ∗. Intuitively, P(X, Z) represents variation in treatment choice 

due to factors observed by the analyst, while UD is variation due to unobserved factors. P(Z) 

and UD are assumed to be independent.  

Using these definitions, we can rewrite D accordingly:  

1 ,  

The benefit of this form is that it combines with the marginal treatment effect (introduced 

next) to provide treatment effect estimates. 

 

Marginal treatment effects enable estimation of ATE, TT, and TUT 

We can re-define ATE, TT, and TUT parameters in terms of the index model of treatment 

choice by first calculating the Marginal Treatment Effect (MTE). MTE, developed by 
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Björklund and Moffitt,(162) is an average treatment effect conditional on specified values of 

X and UD:  

∆| ,  

Intuitively, this value is equal to the treatment effect that would be expected for patients with 

characteristics X who would be indifferent between receiving treatment and not receiving 

treatment if they were randomly assigned a value of instrument Z such that ∗

, 1 , . With this linkage between the unobservable ( ∗) and the 

observable ( , ), the method of local instrumental variables can be used to estimate 

MTE from empirical data. In LIV, we estimate outcome Y as a non-linear function of X, P(X, 

Z), and interactions between X and P(X, Z). We then calculate the partial derivative of Y with 

respect to P(X, Z), evaluated at different values of UD: 

| ,
,

,  

where , . A non-linear functional form for P(X, Z) in the outcome equation 

allows for MTE to vary as a function of UD. 

Heckman and colleagues developed weights for combining X- and UD-specific values 

of the MTE into estimates of standard treatment effects (109):  

Estimator Weight 

ATE 1 (constant for all) 

TT 
,

, | ,

∬Pr 1| ,
 

TUT 
,

| ,

∬Pr 0| ,
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TT weighting thus upweights MTE estimates with high values of , meaning that patients 

who possess unobserved characteristics giving them greater propensity to choose the 

treatment have more influence on the aggregate TT estimate than those patients with low 

values of , while the opposite is true for TUT. However, in practice these aggregated 

weighting based approaches have proven problematic to implement empirically (personal 

communication with Anirban Basu). Instead, we rely on a recently developed approach based 

on Patient-Centered Treatment (PeT) effects (163).  

The PeT effect framework allows for the estimation of individual-level treatment 

effects from the MTE. Because UD is not observable in the data, calculating a X- and UD-

specific treatment effect is not possible. Instead, we rely on the assumptions above that: 1. 

UD and X are orthogonal; 2. UD ~ Uniform(0,1); and 3. Patients choose treatment D when 

1 , . With these assumptions in place, it follows trivially that X-specific 

treatment effects can be obtained by simply integrating the MTE with respect to the 

distribution of UD: 

, , 1 ,  

PeT effects (which are conditional on X) can be aggregated into unconditional ATE, TT, and 

TUT effects by averaging over all patients, treated patients, and untreated patients, 

respectively: 

Estimator Weight 

ATE 
 

TT | 1  
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TUT | 0  

 

EMPIRICAL APPROACH 

Medicare claims data 

 As with Study 2, this study utilizes data from the Federal Medicare program. Details 

regarding initial stages of dataset creation are identical to those which were reported in Study 

2 (the sample size differs slightly due to a different version of the analytic dataset being used 

for analysis). In brief, we used the 2003-2004 Medicare Provider Analysis and Review 

(MedPAR) file to identify patients who were admitted for an acute coronary syndrome 

(either myocardial infarction or unstable angina). Using matching MedPAR, outpatient, and 

carrier (physician) claims for all patients, we identified the use of PCI or CABG within 30 

days of an acute coronary syndrome admission. A series of exclusions were made to include 

only patients in which complete follow-up data were available (documented in Study 2). All 

outcomes were measured relative to the date of the first ACS-related revascularization 

procedure. 

 

Cohort selection 

In this study, the cohort was limited to individuals receiving PCI with stent insertion, 

rather than CABG, for their revascularization procedure.  To ensure a clean comparison of 

DES versus BMS, we excluding patients that received both types of stents (in previous 

analyses, we have demonstrated our findings to be robust to defining DES based on receipt of 

any DES versus receipt of only DES). We also excluded a small number of patients with 

invalid date information, and a more substantial number of patients with missing covariate 
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values. This was deemed acceptable for this analysis because the primary intention is to 

demonstrate the use of the LIV methodology rather than to produce actionable estimates; 

however, in our previous studies of DES and BMS use of more complex approaches to 

addressing missing data (such as imputation) produced similar results. 

 

Outcomes 

We evaluated four outcomes, using definitions previously employed in the peer-

reviewed literature: 

1. All-cause mortality, measured in the Medicare denominator file. 

2. Readmission for MI, measured from Inpatient claims in which an International 

Classification of Diseases, Ninth Edition, Clinical Modification (ICD-9-CM) diagnosis code 

for acute MI (410.x1) was included a discharge diagnosis..  

3. Readmission for major bleeding, measured from inpatient claims in which ICD-9-

CM diagnosis codes 430-432 (intracerebral hemorrhage), 478.X (gastrointestinal), 719.1X 

(hemarthrosis), 423.0 (hemopericardium), 599.7 (hematuria), 626.2, 626.6, 626.8, 627.0, 

627.1 (vaginal), 486.3 (hemoptysis), 784.7 (epistaxis), and 459.0 (hemorrhage not otherwise 

specified) were included as a final diagnosis (164). Because it was not possible to determine 

the onset time of bleeding within an admission, only bleeding-related admissions subsequent 

to the index procedure discharge date were included. 

4. Inpatient repeat revascularization, measured from inpatient and carrier claims 

claims using the criteria described in Study 2. Only revascularizations subsequent to the 

index procedure discharge date were included. 
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All outcomes were measured for 46 months following revascularization, the longest 

follow-up period available for all included patients. This restriction is suboptimal in the sense 

that it means that longer-term follow-up data available for patients treated early in the study 

period were ignored. However, the restriction was necessary because, as previously 

mentioned, LIV methods have not been developed to address censored data (113).  

 

Covariates and model selection 

We selected covariates thought to be predictive of differences in outcomes or in 

differences in response to DES. This a priori, theory-driven approach to covariate selection 

is consistent with the evolving consensus that model selection based on predictive qualities 

of covariates through c-indices or other metrics is neither theoretically sound nor empirically 

useful when models are constructed for the purposes of inference rather than prediction 

(165). Covariates included patient demographics (age, gender, race), state Medicaid buy-in 

status, Rural-urban commuting area, and ZIP code mean household income, obtained from 

the 2000 United States Census. As in Study 2, clinical covariates included whether the 

patient received a multiple vessel PCI procedure, the specific ACS diagnosis, and clinical 

comorbidities using the Elixhauser criteria. Facility medical school affiliation and ownership 

status were obtained from the Medicare provider of services file. 

 

Statistical analysis 

Statistical analyses were performed in SAS System, version 9.2 (SAS Institute, Cary, 

North Carolina), Stata/SE, version 12.1 (Statacorp, College Station, TX), and R, version 

2.5.1 (R Foundation, Vienna, Austria). Programs to implement the PeT approach were 
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provided by Anirban Basu (personal communication with author) and were implemented in R 

by the author (Appendix B). An alpha level of 0.05 was considered statistically significant, 

and two sided-statistics were employed for symmetric distributions. Institutional Review 

Board approval was the Institutional Review Board of the University of North Carolina at 

Chapel Hill.  

 

Descriptive statistics 

DES recipients were compared with BMS recipients, and patients treated in the low-

DES usage facilities were compared to patients treated in high usage facilities using 

descriptive statistics such as median, 25th and 75th percentiles for continuous variables and 

frequency and percentage for categorical variables. Bivariate tests of association were 

conducted using Pearson chi-square tests for categorical variables and Kruskal-Wallis tests 

for continuous or ordinal variables. 

 

Local Instrumental Variable Analysis 

The LIV process consists of four analytic stages.   

1. We first estimated the propensity score P(X,Z) predicting the probability that patient 

received drug-eluting stents.  

	f  

After model development considering logit, probit, complementary log-log, and linear link 

functions, a logit link was found to offer the best fit.  Unlike traditional propensity score 

analysis in which instrumental variables should be excluded to maximize statistical power 

(84), in the LIV method, IVs are included in the propensity score model. This is analogous to 
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the first stage equation in conventional IV formulations such as two stage least squares. We 

tested multiple formulations of the instrument and an indicator variable functional form, 

choosing the best trade-off between flexibility and parsimony of functional form using 

Bayesian Information Criteria.  

2. Next, for each outcome, we developed models Y(X, P(X,Z)) including X, P(X,Z), and 

interaction terms between each element of X and P(X,Z).  

	  

As above, we tested a variety of link functions and functional forms of covariates in an 

attempt to optimize model specification. We also formally tested whether essential 

heterogeneity existed (at link scale) and optimized the specification of the outcome equation 

by testing specifications of the model including higher-order (second, third, and fourth 

degree) polynomial terms of the propensity score in the outcome models (113). Statistical 

significance of the higher-order polynomial terms would indicate that essential heterogeneity 

is present. The polynomial formulation of highest degree that is incrementally statistically 

significant was used as the final specification of the model. 

3. Using the specification of the outcome equations identified in step 2 (which varies for 

different outcomes), we next calculated the marginal treatment effect (MTE). This was 

performed by calculating, for each patient, estimates of MTE specific for their covariate 

profile (X) and for a range of potential values of UD. Basu’s program performs this step by 

sampling randomly (1000 draws per patient) using a uniform distribution across the range of 

the minimum propensity score observed in the data to the maximum propensity score. I 

instead present results that included 100 MTE values per patient, using a uniform range of 

values of UD from the lowest to the highest propensity score values in the region of common 
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support. I made this change both to accelerate speed of program execution and because the 

sampling methodology employed by Basu’s program results in patients near the highest and 

lowest propensity scores having a high probability of not having a PeT effect estimated. I 

also used Basu’s methods and obtained very similar results. MTE as a function of UD is 

calculated by replacing P in the above equation with a range of different values for UD and 

calculating the total marginal effect accordingly. 

, 	
,

 

4. Finally, PeT effects were calculated for each individual patient by averaging MTE 

values in which UD was greater than the observed propensity score (for DES recipients) and 

less than the observed propensity score (for BMS recipients). Overall average treatment 

effects were measured for the population by averaging the PeT effects across all (ATE), 

treated (TT) and untreated (TUT) patients. Because the variance theory of this estimator has 

not been developed, standard errors were calculated using bias-corrected bootstrapping 

methods using 500 iterations (166, 167). These results were compared with more traditional 

IV results estimated by standard bivariate probit approaches as well as a standard adjusted 

model using probit regression. 

 

RESULTS 

Study population 

In total, 69,740 patients in the Medicare dataset were treated from May 1, 2003 and 

February 28, 2004 using a PCI with stent insertion procedure (Figure 5.2). Exclusions 

removed patients who received both DES and BMS (N = 3,019), had an invalid age or death 
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date (N = 129), or had a missing value for a key covariate (N = 6,856). Ultimately, 59,466 

patients were included in the analysis.  

Temporal variation in DES usage, and correlations between observed covariates and both 

DES usage and month of PCI. 

Among the 10 months included in the analysis, the percentage of patients treated with 

DES varied from 26.1% to 55.6% (Figure 5.3). Statistically significant differences were 

observed in patient, procedural, and facility characteristics based both on whether the patient 

received DES or BMS and whether the patient was treated in the first five months or second 

five months of the study period (Table 5.1). However, in general, time of PCI was associated 

with reduced imbalance of covariates (Figure 5.5). Furthermore, models which compared the 

expected event rates in DES and BMS recipients, and patients treated in the first and second 

five month periods usage facilities, demonstrate that inter-temporal variation in patient risk is 

more modest than the variation between BMS and DES recipients (Figure 5.6). For this 

reason, we would argue that the IV strategy employed here is likely an improvement over 

conventional adjustment methodologies. 

 

Conventional modeling and IV  

 Using conventional multivariate adjustment with a probit model, DES usage was 

associated with a significant reduction in all measured outcomes, except bleeding-related 

readmission (Table 5.2). In contrast, using a bivariate probit model (a form of IV) only 

reductions in repeat revascularization and MI-related readmission were significant. Most 

notably, the difference in mortality associated with DES usage was not statistically 

significant in the bivariate (IV) probit model, as well as quite quantitatively different than the 
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adjusted probit estimate (incremental increase of 0.2 percentage point (CI: -3.4, 3.1) versus 

incremental decrease of 3.9 percentage points (CI: -4.5, -3.2).   

 

PeT-based modeling 

 Statistical testing for essential heterogeneity (at logit) scale using likelihood ratio tests 

did not produce evidence of heterogeneity in any measured outcomes (Table 5.4).  Thus, a 

linear specification of propensity score was included in the outcome equations for all 

outcomes. In the overall sample, average PeT effects were only significant for MI-related 

readmission and repeat revascularization. A statistically significant difference was noted in 

which treated patients (TT) experienced a more favorable result than would be expected from 

the untreated patients (TUT) for all outcomes except mortality. A technical concern emerged 

in that replicates from the bootstrapping process did not appear to approximate distributions 

centered at the point estimates for the various parameters (Figure 5.7). We also examined the 

joint distribution of individual-level PeT effects (Figure 5.8). Correlations between 

individual outcomes were all modest (Spearman’s rho ≤ 0.1), indicating that individual-

specific treatment effects were not correlated across outcomes (e.g., patients who benefitted 

from DES the most in terms of repeat revascularization reductions were not those in whom a 

mortality benefit was also similarly large).   

 

DISCUSSION 

 In this study, we demonstrated the application of clinically relevant causal estimands 

estimated from IV using PeT effects, a recently-developed econometric methodology to a 

question in cardiovascular outcomes research (whether to use drug-eluting or bare metal 
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coronary stents for PCI). Using Medicare administrative data, we found evidence that DES 

were generally safe and effective among the populations that were treated during the study 

period (2003-2004), but that the safety and efficacy profile of DES were considerably less 

favorable among the patients who received BMS instead. 

 Clinically, these results suggest that in 2003-2004, providers and patients applied a 

selective, deliberative approach to stent selection in which those receiving DES were those 

that would be expected to benefit from them. In contrast, it appears that patients who 

received BMS during the study period were those for whom the use of DES was predicted to 

result in less benefit in terms of reducing repeat revascularization, but potentially greater risk, 

particularly of bleeding-related complications. DES utilization rates have increased 

substantially since the study period, which raises concern whether the “marginal” patients 

(patients who would have received BMS in 2003 who receive DES in 2004) are being 

harmed by this change in practice pattern. Whether the current generation of DES and newer 

antiplatelet agents as well as changes in the profile of patients receiving PCI has changed the 

optimal choice of stent is also unclear. Together, these results suggest that while DES are a 

reasonable option for many patients and clearly inappropriate for others, further research is 

needed to understand the optimal treatment strategy on the margin of current clinical 

practice. 

 Technically, this report demonstrates that LIV-based approaches are feasible to 

implement in standard statistical software (Stata programs available from Basu on request), 

and an implementation of the PeT methodology developed by this author is provided in the R 

programming language as an appendix to this publication. However, further study is needed 

to understand the properties of these estimators. In particular, the difference between the 
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point estimates and bootstrapped replicates observed in this study require further 

investigation regarding whether the estimator underlying LIV has adequate asymptotic 

consistency for empirical work in which small differences in clinical effectiveness are 

important. 

LIV only identifies parameters over the range of support provided by the first-stage 

propensity score. In other words, the propensity score model we construct must include 

patients in both the DES and BMS treatment groups who have very high and very low 

propensity scores (i.e., close to 0 and 1), and consensus thresholds for “very high” and “very 

low” are elusive. In this case, the range of common support observed in the propensity score 

(0.09 – 0.82) was considered adequate to enable identification of effect estimates. Future 

research could attempt to estimate support across the entire range of P(X, Z) using 

extrapolation, or via placement of bounds on the treatment effects as previously described. 

Alternatively, estimates can be characterized as the “empirical” ATE, TT, and TUT 

parameters as has been done previously (112, 113).  

 Instrumental variables methods (both IV and LIV) are important tools for 

observational CER. While further work is necessary to better understand their optimal use, 

local instrumental variables-based methodologies show promise for allowing the estimation 

of clinically useful estimates from IV analyses.  



 

 

 
TABLES 

Table 5.1: Baseline patient characteristics 

   Type of Stent Received Date of PCI Procedure 
  Overall 

(N=59,466)
BMS 

(N=33,656) 
DES 

(N= 25,810) 
p < Nov. 2003

(N= 29,445) 
≥ Nov. 2003
 (N= 30,021) 

p 

Outcomes        
Death 25.0 28.1 21.0 <0.001 24.6 25.4 0.03 
Repeat Revascularization 27.6 28.6 26.2 <0.001 28.1 27.0 0.003 
MI Readmission 7.9 8.4 7.4 <0.001 8.1 7.7 0.07 
Bleeding readmission 3.9 3.9 3.8 0.24 3.9 3.9 0.95 
        
Demographics        
Patient age (years) 75.8 (6.4) 76.0 (6.5) 75.5 (6.2) <0.001 75.7 (6.4) 75.8 (6.4) 0.06 
Non-white race 7.6 7.7 7.5 0.49 7.7 7.5 0.30 
Female 49.6 48.5 51 <0.001 49.6 49.5 0.81 
State Medicaid Buy-in 10.4 10.8 9.9 <0.001 10.6 10.3 0.34 
ZIP Code Household income 
($1000s) 

43.1 (15.9) 42.2 (15.4) 44.3 (16.6) <0.001 43.1 (16.0) 43.2 (15.9) 0.50 

Rural-Urban Commuting Area    <0.001   0.96 
Metropolitan 67.9 66.6 69.6  67.8 68.0  
Micropolitan 14.9 15.2 14.4  14.9 14.8  
Small Town 9.5 10 8.8  9.5 9.4  
Rural 7.8 8.2 7.3  7.8 7.8  

        
Clinical Characteristics        
Acute Coronary Syndrome 
Diagnosis 

   <0.001   <0.001
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ST-elevation MI 35.1 42.4 25.6  34.4 35.7  
Non ST-elevation MI 26.3 25.3 27.4  25.3 27.1  
Unstable angina 38.7 32.3 47  40.2 37.1  

Multivessel PCI 18.4 17.3 19.8 <0.001 18.4 18.5 0.63 
Comorbid Conditions        

Heart Failure 7.9 8.1 7.7 0.06 8.1 7.8 0.15 
Valvular disease 4.4 4.2 4.7 0.008 4.4 4.5 0.76 
Pulmonary circulatory 
disease 

2.6 2.7 2.4 0.02 2.5 2.7 0.28 

Peripheral vascular disease 14.1 14.1 14.2 0.56 13.9 14.3 0.19 
Paralysis 1.4 1.5 1.2 <0.001 1.4 1.3 0.09 
Neurological disease 2.7 2.8 2.6 0.03 2.6 2.8 0.06 
Chronic lung disease 23.1 24.3 21.5 <0.001 22.6 23.6 0.003 
Diabetes mellitus 28.5 27.1 30.3 <0.001 28.6 28.4 0.61 
Hypothyroidism 12.7 12.2 13.2 <0.001 12.8 12.5 0.38 
Renal failure 1.9 1.8 2.0 0.06 1.8 2.0 0.11 
Cancer (any) 8.5 8.9 7.9 <0.001 8.5 8.5 0.90 
Coagulopathy 1.1 1.1 1.0 0.46 1.0 1.1 0.34 
Arthritis 3.8 3.8 3.9 0.50 3.7 4.0 0.05 
Obesity 6.4 6.2 6.7 0.01 6.5 6.3 0.19 
Weight loss 1.4 1.5 1.1 <0.001 1.3 1.4 0.07 
Electrolyte abnormality 13.8 14.9 12.3 <0.001 13.5 14 0.07 
Anemia 13.8 14.3 13.2 <0.001 13.5 14.1 0.05 
Other Psychiatric Disorder 2.3 2.3 2.2 0.40 2.3 2.3 0.58 
Depression 6.0 5.8 6.2 0.02 6.1 5.9 0.41 
Hypertension w/ 
complications 

75.6 74.1 77.6 <0.001 75.7 75.6 0.74 

        
Facility and geographic characteristics       
Major medical school 31.7 28.9 35.4 <0.001 32.0 31.4 0.11 
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affiliation 
Facility type    <0.001   0.02 

Non-Profit 79.8 78.5 81.5  80.2 79.4  
For-Profit 10.8 11.8 9.5  10.6 11.0  
Government 9.4 9.8 9.0  9.2 9.7  

Census Region    <0.001   0.28 
Midwest 29.4 31.1 27.2  29.7 29.1  
South 39.8 40.8 38.6  39.8 39.8  
West 13.4 13.3 13.5  13.3 13.4  
Northeast 17.4 14.9 20.8  17.2 17.7  
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Table 5.2: Average marginal effects from probit and bivariate probit (IV) models  

  
Incremental Difference in 

Percentage Points (DES – BMS) 
  Probit Bivariate Probit 
Death -3.9*** 

(-4.5,-3.2) 
-0.2 

(-3.4, 3.1) 
Repeat 
Revascularization

-3.0*** 
(-3.7, -2.2) 

-7.4*** 
(-10.9, -3.8) 

MI Readmission -0.7** 
(-1.2,-0.3) 

-3.0** 
(-5.1, -0.9) 

Bleeding 
Readmission 

-0.1 
(-0.5, 0.2) 

-0.4 
(-1.9, 1.2) 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5.3: Complete probit and bivariate probit model results 

Death Repeat Revascularization MI Readmission Bleeding Readmission 

Probit: 
Outcome 

Bivariate 
Probit:  

Treatment 

Bivariate 
Probit: 

Outcome 
Probit: 

Outcome 

Bivariate 
Probit: 

Outcome 
Probit: 

Outcome 

Bivariate 
Probit: 

Outcome 
Probit: 

Outcome 

Bivariate 
Probit: 

Outcome 
desonly -0.143*** -0.006 -0.091*** -0.226*** -0.051** -0.210** -0.017 -0.044 

(0.012) (0.062) (0.011) (0.056) (0.016) (0.075) (0.020) (0.096) 

age_70 0.041*** -0.004 0.041*** 0.000 -0.001 0.009 0.008 0.022 0.022 
(0.008) (0.007) (0.008) (0.007) (0.007) (0.010) (0.010) (0.013) (0.013) 

age_75 0.036*** 0.000 0.036*** -0.012** -0.012** 0.011 0.011 0.022** 0.022** 
(0.005) (0.004) (0.005) (0.005) (0.005) (0.007) (0.007) (0.009) (0.009) 

age_80 0.037*** -0.016*** 0.038*** -0.017*** -0.018*** -0.002 -0.003 0.018* 0.017* 
(0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.008) (0.008) 

age_85 0.060*** -0.004 0.060*** -0.025*** -0.025*** 0.029*** 0.029*** 0.017 0.017 
(0.006) (0.005) (0.006) (0.006) (0.006) (0.007) (0.007) (0.009) (0.009) 

age_85up 0.060*** -0.036*** 0.062*** -0.036*** -0.038*** 0.015 0.013 0.001 0.000 
(0.006) (0.006) (0.006) (0.007) (0.007) (0.008) (0.008) (0.009) (0.010) 

nonwhite 0.069** 0.004 0.069** -0.012 -0.012 0.053 0.053 -0.038 -0.037 
(0.023) (0.021) (0.023) (0.022) (0.022) (0.029) (0.029) (0.039) (0.039) 

female -0.094*** 0.078*** -0.097*** -0.053*** -0.049*** -0.021 -0.017 0.000 0.001 
(0.013) (0.011) (0.013) (0.012) (0.012) (0.016) (0.016) (0.020) (0.021) 

inc_100 -0.032 -0.027 -0.031 -0.002 -0.003 -0.022 -0.023 -0.030 -0.030 
(0.022) (0.021) (0.022) (0.021) (0.021) (0.026) (0.026) (0.031) (0.031) 

inc_200 -0.007*** 0.012*** -0.008*** -0.004 -0.003 -0.001 -0.001 -0.002 -0.002 
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) 



 

 

inc_300 -0.002 0.003** -0.002 -0.001 -0.001 -0.001 -0.001 0.001 0.001 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) 

inc_400 -0.003 0.004* -0.004* 0.004* 0.004* -0.001 0.000 0.000 0.000 
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 

inc_500up 0.000 0.001 0.000 -0.001 -0.001 -0.005* -0.005* 0.003 0.003 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) 

   

dual_elig 0.201*** -0.050** 0.203*** 0.001 -0.002 0.102*** 0.098*** 0.060 0.059 
(0.020) (0.019) (0.020) (0.019) (0.019) (0.025) (0.025) (0.032) (0.032) 

micropolitan -0.048** 0.010 -0.048** -0.042* -0.041* 0.033 0.033 0.019 0.020 
(0.018) (0.016) (0.018) (0.017) (0.017) (0.023) (0.023) (0.030) (0.030) 

smalltown -0.034 0.003 -0.033 -0.063** -0.063** 0.003 0.003 0.108** 0.108** 
(0.022) (0.020) (0.022) (0.021) (0.021) (0.028) (0.028) (0.034) (0.034) 

rural -0.054* 0.014 -0.055* -0.031 -0.030 0.037 0.038 0.084* 0.084* 
(0.024) (0.022) (0.024) (0.022) (0.022) (0.030) (0.030) (0.038) (0.038) 

medsch -0.003 0.156*** -0.010 -0.030* -0.023 0.016 0.024 -0.010 -0.009 
(0.014) (0.012) (0.014) (0.013) (0.013) (0.018) (0.018) (0.022) (0.023) 

forprofit 0.007 -0.131*** 0.013 0.035 0.029 0.054* 0.046 -0.046 -0.047 
(0.020) (0.018) (0.020) (0.018) (0.019) (0.025) (0.025) (0.033) (0.033) 

govt 0.019 -0.090*** 0.023 0.037 0.033 -0.024 -0.029 -0.026 -0.027 
(0.021) (0.019) (0.021) (0.020) (0.020) (0.028) (0.028) (0.035) (0.035) 

midwest -0.022 -0.099*** -0.017 0.053*** 0.048*** 0.010 0.004 0.025 0.024 
(0.016) (0.014) (0.016) (0.014) (0.014) (0.020) (0.020) (0.025) (0.025) 

northeast -0.057** 0.130*** -0.064*** -0.035 -0.028 0.000 0.008 -0.006 -0.004 

122 
122 
122 
122 
122 
122 
122 
122 
122 
122 



 

 

(0.019) (0.017) (0.019) (0.018) (0.018) (0.024) (0.025) (0.031) (0.031) 

west -0.036 0.048** -0.038* -0.038* -0.036* -0.032 -0.029 -0.115*** -0.115*** 
(0.019) (0.017) (0.019) (0.018) (0.018) (0.025) (0.025) (0.033) (0.033) 

stemi 0.319*** -0.565*** 0.346*** -0.003 -0.031 0.115*** 0.082*** -0.079*** -0.085** 
(0.015) (0.013) (0.019) (0.013) (0.017) (0.019) (0.024) (0.024) (0.030) 

nstemi 0.262*** -0.201*** 0.271*** -0.045** -0.054*** 0.202*** 0.190*** 0.003 0.001 
(0.015) (0.013) (0.016) (0.014) (0.015) (0.019) (0.020) (0.024) (0.025) 

pci_multv 0.054*** 0.085*** 0.050** 0.029* 0.033* 0.093*** 0.098*** 0.007 0.008 
(0.015) (0.014) (0.015) (0.014) (0.014) (0.019) (0.019) (0.025) (0.025) 

chf 0.442*** -0.035 0.443*** -0.119*** -0.122*** 0.084** 0.081** 0.168*** 0.167*** 
(0.022) (0.021) (0.022) (0.023) (0.023) (0.027) (0.027) (0.032) (0.032) 

valve 0.155*** 0.032 0.152*** -0.010 -0.009 0.016 0.018 0.098* 0.098* 
(0.028) (0.027) (0.028) (0.028) (0.028) (0.036) (0.036) (0.041) (0.041) 

(0.035) (0.034) (0.035) (0.037) (0.037) (0.045) (0.045) (0.053) (0.054) 

perivasc 0.210*** -0.023 0.211*** 0.017 0.016 0.141*** 0.140*** 0.078** 0.078** 
(0.016) (0.016) (0.016) (0.016) (0.016) (0.021) (0.021) (0.026) (0.026) 

para 0.323*** -0.096* 0.328*** -0.113* -0.118* 0.210*** 0.202*** 0.111 0.110 
(0.047) (0.047) (0.047) (0.050) (0.050) (0.057) (0.057) (0.073) (0.073) 

neuro 0.371*** -0.061 0.373*** -0.145*** -0.147*** -0.009 -0.012 0.022 0.021 
(0.034) (0.033) (0.034) (0.036) (0.036) (0.046) (0.046) (0.055) (0.055) 

chrnlung 0.424*** -0.091*** 0.427*** -0.057*** -0.061*** 0.113*** 0.108*** 0.121*** 0.120*** 
(0.014) (0.013) (0.014) (0.014) (0.014) (0.018) (0.018) (0.022) (0.022) 

123 
123 
123 
123 
123 
123 
123 
123 
123 
123 



 

 

diabetes 0.240*** 0.075*** 0.236*** 0.118*** 0.122*** 0.233*** 0.236*** 0.067** 0.068** 
(0.013) (0.012) (0.014) (0.013) (0.013) (0.017) (0.017) (0.022) (0.022) 

hypothy -0.095*** 0.026 -0.096*** 0.041* 0.042* -0.018 -0.017 -0.014 -0.014 
(0.019) (0.016) (0.018) (0.017) (0.017) (0.023) (0.023) (0.029) (0.029) 

renlfail 0.284*** 0.089* 0.279*** -0.071 -0.066 0.072 0.077 0.024 0.025 
(0.041) (0.040) (0.041) (0.043) (0.043) (0.050) (0.050) (0.061) (0.061) 

cancer 0.415*** -0.076*** 0.417*** -0.038 -0.042* -0.061* -0.065* 0.090** 0.089** 
(0.020) (0.019) (0.020) (0.020) (0.020) (0.028) (0.028) (0.032) (0.033) 

coag 0.239*** -0.028 0.240*** -0.056 -0.057 -0.136 -0.137 0.041 0.041 
(0.054) (0.052) (0.054) (0.056) (0.056) (0.075) (0.075) (0.081) (0.081) 

arth 0.177*** 0.014 0.176*** -0.008 -0.007 0.064 0.065 0.095* 0.095* 
(0.030) (0.028) (0.030) (0.029) (0.029) (0.038) (0.038) (0.046) (0.046) 

obese -0.097*** -0.010 -0.097*** 0.018 0.018 -0.006 -0.006 -0.025 -0.025 
(0.026) (0.022) (0.026) (0.023) (0.023) (0.031) (0.031) (0.041) (0.041) 

wghtloss 0.453*** -0.060 0.454*** -0.075 -0.077 0.053 0.050 -0.033 -0.033 
(0.047) (0.047) (0.047) (0.051) (0.051) (0.061) (0.060) (0.076) (0.076) 

lytes 0.304*** -0.078*** 0.307*** -0.118*** -0.122*** 0.009 0.005 0.050 0.050 
(0.017) (0.016) (0.017) (0.017) (0.017) (0.022) (0.022) (0.027) (0.027) 

anemia 0.182*** -0.029 0.182*** 0.011 0.010 0.088*** 0.087*** 0.225*** 0.225*** 
(0.017) (0.016) (0.017) (0.017) (0.017) (0.022) (0.022) (0.025) (0.025) 

psych 0.128*** -0.021 0.129*** -0.199*** -0.200*** -0.047 -0.048 0.087 0.087 
(0.038) (0.036) (0.038) (0.040) (0.040) (0.051) (0.051) (0.059) (0.059) 

depress 0.083*** 0.031 0.081** 0.007 0.009 0.044 0.045 0.103** 0.103** 
(0.025) (0.023) (0.025) (0.024) (0.024) (0.032) (0.032) (0.038) (0.038) 

124 
124 
124 
124 
124 
124 
124 
124 
124 
124 



 

 

htn_c -0.075*** 0.035** -0.076*** 0.072*** 0.073*** 0.058** 0.060** 0.004 0.004 
(0.015) (0.013) (0.015) (0.013) (0.013) (0.019) (0.019) (0.024) (0.024) 

2.revascmonth 0.161*** 
(0.024) 

3.revascmonth 0.323*** 
(0.024) 

4.revascmonth 0.490*** 
(0.025) 

(0.024) 

6.revascmonth 0.714*** 
(0.024) 

7.revascmonth 0.569*** 
(0.024) 

8.revascmonth 0.667*** 
(0.024) 

9.revascmonth 0.785*** 
(0.024) 

10.revascmonth 0.833*** 
(0.024) 

constant -0.893* (0.188) -0.971* (0.356) (0.276) -1.409** -1.312** -1.586** -1.570** 
  (0.379) (0.371) (0.380) (0.370) (0.371) (0.455) (0.457) (0.530) (0.533) 
Note: While biprobit probit regressions are solved jointly and thus treatment regression equations are slightly different for 

125 
125 
125 
125 
125 
125 
125 
125 
125 
125 



 

 

each outcome, in the interest of brevity, the treatment regression results are only displayed for the death outcome. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5.4: Tests for essential heterogeneity (at raw scale) 

  p-value  
 Squared Cubic Quartic 
  Incremental Joint Incremental Joint 
Death 0.94 0.44 0.20 0.52 0.43 
Repeat Revascularization 0.17 0.32 0.50 0.45 0.56 
MI Readmission 0.71 0.75 0.50 0.85 0.65 
Bleeding Readmission 0.49 0.63 0.50 0.40 0.15 
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Table 5.5: Mean treatment effects estimated using PeT methodology 
 

 Incremental Difference in Percentage Points (DES – BMS) 
 Average Treatment 

Effect (ATE) 
Average Treatment 

Effect on the 
Treated (TT) 

Average Treatment 
Effect on the 

Untreated (TUT) 

Sorting gain 
(TT-TUT) 

Death     
Overall -0.2 (-3.5, 3.2) -0.4 (-3.6, 2.9) 0.0 (-3.5, 3.4) -0.5 (-1.2, 0.9) 
Myocardial Infarction 0.8 (-3.6, 5.5) 0.9 (-3.1, 5.6) 0.7 (-3.8, 5.7) 0.2 (-0.7, 1.5) 
Unstable Angina -1.8 (-5.5, 2.4) -2.0 (-5.8, 2.0) -1.5 (-5.6, 2.7) -0.5 (-0.8, 0.2) 

Repeat Revascularization     
Overall -6.8 (-10.4, -3.4) -8.1 (-11.8, -4.2) -5.8 (-9.8, -2.8) -2.3 (-3.0, -0.9) 
Myocardial Infarction -2.8 (-8.2, 1.1) -2.9 (-8.3, 0.9) -2.7 (-8.0, 1.4) -0.2 (-0.8, 1.3) 
Unstable Angina -13.2 (-18.6, -8.4) -14.0 (-19.5, -8.0) -12.4 (-17.7, -7.9) -1.6 (-2.2, -0.5) 

MI Readmission     
Overall -2.9 (-5.3, -0.7) -3.5 (-5.7, -0.9) -2.5 (-4.6, -0.7) -1.0 (-0.9, -0.3) 
Myocardial Infarction -3.5 (-6.4, -0.9) -4.4 (-7.7, -1.4) -3.0 (-5.7, -1.0) -1.4 (-1.5, -0.8) 
Unstable Angina -1.9 (-4.5, 1.2) -2.5 (-5.3, 0.8) -1.3 (-3.6, 1.3) -1.2 (-1.1, -0.9) 

Bleeding Readmission     
Overall 0.4 (-1.5, 2.1) -1.1 (-2.7, 0.9) 1.5 (-0.4, 2.9) -2.7 (-2.7, -2.2) 
Myocardial Infarction 0.5 (-2.5, 2.5) -1.3 (-3.1, 1.4) 1.5 (-1.5, 3.1) -2.8 (-2.7, -1.9) 
Unstable Angina 0.3 (-2.2, 2.8) -1.0 (-2.9, 1.3) 1.6 (-0.8, 4.0) -2.6 (-2.7, -1.9) 
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FIGURES 

Figure 5.1: Heterogeneity diagram 
 
Figure displays interpretation of treatment effects under different combinations of 
heterogeneity and treatment selection. 
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Figure 5.2: Cohort flow diagram 

Figure displays derivation of final study population from the Medicare cohort. 
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Figure 5.3: Temporal trend in DES utilization in cohort 

Figure displays increasing use of drug-eluting stents over the study period.  
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Figure 5.4: Unadjusted cumulative incidence of outcomes 

Cumulative incidence plots display outcomes up to 46 months after revascularization, 
stratified by whether patient received drug-eluting stents (DES) or bare metal stents (BMS) 
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Figure 5.5: Standardized differences in baseline patient, procedural, and facility 
characteristics 
 
Figure displays absolute standardized difference for covariates thought to potentially 
confound the relationship between stent use and outcome. Standardized differences were 
calculated comparing drug eluting and bare metal stent recipients, and patients treated in the 
first and second five months of drug eluting stent utilization. 
 

 
  



 

134 

Figure 5.6: Predicted event rate based on observed baseline covariates, stratified by 
DES receipt and time of PCI.  
 
Logistic regressions were fit, predicting probability of each event as a function of observed 
covariates but excluding DES versus BMS utilization and time of PCI. Logistic models were 
then used to calculate expected event rate in DES vs. BMS recipients, and first and second 
five month periods. 
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Figure 5.7: Comparison of bootstrapped replicates to point estimates.  
 
Histograms display results from bootstrap iterations. Dashed lines indicate the point estimate 
from the original sample. 
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Figure 5.8: Correlations between individual-level PeT effects for different clinical 
outcomes.  
 
Scatter plots display correlation between individual-specific PeT effects (the predicted PeT 
effects for each person in the cohort) across the different clinical outcomes assessed. 
Correlation was measured with a Spearman coefficient (rho). 
 



 

 

 
 

 

 

 

6. CONCLUSIONS 

STUDIES 1 AND 2 

Summary of findings 

 In Study 1, we sought to determine the prevalence of stress testing in the years 

following elective PCI, both first post-PCI tests and additional post-PCI testing, predictors of 

stress testing after elective PCI, correlations between facility-level rates of stress testing use 

and baseline patient risk, and correlations between facility-level rates of stress testing use and 

subsequent clinical outcomes. We found that stress testing was commonly performed after 

elective PCI, with 58.2% of patients having at least one stress test by 27 months after PCI. 

Furthermore, patients who received one post-PCI stress test appeared to fall into a pattern of 

care in which they received additional stress tests on an annual basis subsequent to their first; 

a pattern highly suggestive of surveillance testing. Factors predicted to increase the risk of 

recurrent ischemia were generally paradoxically associated with lower rates of stress test 

utilization, even after adjustment for other clinical factors. Among a subset of higher risk 

patients, there was broad – over three-fold – variation in the rate of stress test utilization, 

based on the facility in which patients received PCI (a proxy for local health system-level 

practice patterns). However, facilities where patients received more stress tests after PCI 

were those in which patients were on average at lower risk of death, myocardial infarction, or 

repeat revascularization based on their observed characteristics than those treated in low test-

use facilities. Correlations between facility-level rates of stress testing and clinical outcomes 
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were not significant for death or myocardial infarction, but higher rates of stress testing were 

correlated with higher rates of repeat revascularization.  

 In Study 2, we sought to evaluate associations between the imaging modality used to 

perform exercise stress testing after PCI (either echocardiography or nuclear imaging) and 

subsequent outcomes and resource use. We used an inverse probability weighted framework 

to adjust for potential confounding (endogenous treatment choice). We found that after 

adjustment, patients tested using echocardiography had lower rates of subsequent invasive 

cardiac procedures (catheterization or coronary revascularization) in the first 90 days after 

their stress test, but higher rates of repeat stress testing. Rates of both invasive cardiac 

procedure and repeat stress testing did not differ for events subsequent to 90 days. Total 

Medicare payments were lower in patients tested with echocardiography, but this difference 

was not significant after 14 months post-testing. Rates of death and MI-related readmission 

did not differ. Together, these findings suggest that the choice of imaging modality has a 

short term impact on processes of care, but that these effects offset each other so that there is 

a tradeoff between increased use of subsequent invasive testing and subsequent use of repeat 

stress testing. Cost differences between echocardiography and nuclear imaging appear driven 

primarily by differences in test reimbursement. 

 

Limitations 

The merged CathPCI-Medicare dataset used in Study 1 of this dissertation is the most 

detailed dataset of its kind, but it is not without limitations. Because the primary purpose of 

the CathPCI Registry is to improve the quality of PCI care, some data elements that would be 

of particular value for outcomes research are lacking. Socioconomic status is unquestionably 
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an important factor in determining patient treatment choices and outcomes, even when 

individuals all have the same primary insurer (Medicare in this care). However, there are no 

socioeconomic data captured in the Registry, forcing reliance on ZIP code level data. ZIP 

code-level data are a notoriously error-prone approach to addressing individual 

socioeconomic status (168). We also do not have data on supplemental Medicare coverage, 

such as plans offered by a former employer or Medigap plans, so consequently it is not 

possible to determine whether differences in the cost of testing affect decision-making. 

While data quality in CathPCI is validated with an onsite audit program, some have 

noted deficiencies with the data, both due to the far lower staffing levels for data collection 

when compared with randomized trials and the use of the patient’s medical records as the 

“gold standard” by which the accuracy of registry data elements is assessed. The quality of 

data in the clinical record has been demonstrated using a single facility’s experience to be 

remarkably poor (48), a finding which raises concern both for the validity of this study as 

well as for the ultimate value of all registries derived from clinical data for conducting 

observational CER. 

While Study 2’s dataset was also lacking socioeconomic data, it was even more 

limited by virtue of not including the CathPCI data elements and thus being entirely reliant 

on claims data. As the primary purpose of claims is to facilitate payment for services rather 

than to document the patient’s condition when services were received, they are far from an 

optimal information source for CER. Relying on the quality of data recorded in billing 

records to identify all sources of potential confounding due to clinical factors is known to be 

problematic (169). While large scale registries clearly have problems, as outlined above, the 
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use of the combined registry-claims datasets has been shown to improve model prediction 

capability (170).  

These studies also have several limitations in common. For both studies, the only data 

available at time of stress testing (if any) was that which could be gleaned from claims 

records. This limitation precludes identifying test indication and patient condition at time of 

testing. Both of these studies rely on data from the Federal Medicare program. Because of the 

limited Medicare eligibility for adults younger than age 65 (e.g., receiving Social Security 

disability benefits or having been diagnosed with end stage renal disease), the cohorts were 

limited to older Americans, and study results do not necessarily generalize to younger 

Americans. Like all studies utilizing Fee-for-Service Medicare claims, both studies outlined 

here are potentially vulnerable to threats to their external generalizability by the fact that 

Medicare Advantage recipients were not observed. Medicare Advantage recipients are 

generally younger and healthier than Fee-for-Service beneficiaries (171).  Future work could 

attempt to adjust for this problem either by jointly modeling Fee-for-Service selection (i.e., a 

Heckman selection model), or by using inverse probability of weighting approaches from the 

epidemiology literature (weights for various purposes can be multiplied together) (172).  

The patients studied here received treatment between 2003-2008. Cardiology is a 

rapidly evolving medical specialty, and it is possible that other changes in cardiology care 

have changed the population receiving PCI, or the population receiving stress testing after 

PCI, in ways that threaten the applicability of these results to modern practice.  
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Policy implications and future directions 

 Study 1 demonstrates that if anything, patients who receive stress testing after PCI are  

a population expected to receive a lower benefit from such testing than the average PCI 

recipient. Thus, policy makers may be confident based on these results that the disconnect 

between the guidelines consensus and clinical practice is not due to physicians employing a 

personalized approach based on patient risk rather than following broad guidelines. 

Furthermore, even in a higher risk population that might be expected to receive greater than 

average benefit from surveillance testing, facility-level stress testing rates were correlated 

with higher rates of repeat revascularization, but no improvement in rates of death or 

myocardial infarction. While relying on indirect, observational evidence is obviously not 

preferred, these results do suggest that current guidelines considering the use of routine 

surveillance stress testing after PCI to be inappropriate are correct. 

 Study 2 demonstrates that the choice of echocardiography versus nuclear imaging 

results in a modest, short term difference in processes of care in which echocardiography 

patients receive additional stress tests, but reduced rates of catheterization and repeat 

revascularization. Most of the difference in the cost of care appears driven by differences in 

the reimbursement for the tests themselves. Given the modest differences noted here, it 

appears that leaving the choice in the hands of patients and providers, based on preferences 

and local familiarity with both techniques, is the most reasonable approach. For future 

research, it would be important to understand if the regional variation in preference for 

echocardiography versus nuclear imaging results in productivity spillovers (173). If so, 

allowing for continued variation in practice patterns is likely to improve aggregate welfare. 
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Future research concerning the optimal use of stress testing after PCI would be 

enhanced by the development of a prospective registry, with data at the time of stress testing 

rather than at the time of PCI. Experience with the CathPCI and other NCDR registries, as 

well as similar quality improvement initiatives such as the American Heart Association’s 

“Get with the Guidelines” project has led to the development of automated data collection 

tools that transfer standardized data elements from popular electronic medical records 

platforms directly into the registry case report form, reducing the cost of registry 

participation. Furthermore, the development of a stress testing registry would lower the cost 

of future studies by providing a common infrastructure through which standardized data 

elements can be rapidly captured and study-specific data elements prospectively incorporated 

with minimal incremental effort for participating sites. Such efforts have already begun with 

CathPCI, as it is now the backbone of an observational pharmaceutical post-marketing safety 

study (TRANSLATE-ACS)(174) as well as a randomized trial of PCI access techniques in 

women (SAFE-PCI).  

 Ultimately, if additional research continues to demonstrate the validity of the AUC, 

one approach to controlling costs may be for insurers to base their coverage decisions 

directly on the AUC, as the Delaware Blue Cross Blue Shield plan was forced to adopt after a 

state investigation into their imaging review practices (175). Doing so would replace a 

system in which individual insurance companies make often-conflicting coverage decisions 

based on the expertise of their medical reviewers with a consistent, consensus-driven and 

evidence-based approach.  
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STUDY 3 

Summary of findings 

 In Study 3, we sought to demonstrate the use of a recently-developed econometric 

technique - local instrumental variables - for estimating policy relevant estimands in 

outcomes research. We applied the methodology to the choice of coronary stent for patients 

undergoing PCI - either a drug-eluting stent or a bare metal stent. We find evidence of 

considerable endogeneity in treatment selection that is not completely removed with 

conventional regression methods. In the local instrumental variables framework, we found 

evidence that the safety and efficacy profile of drug-eluting stents was considerably more 

favorable among the patients who actually received them than those that did not.  

 

Limitations 

The Medicare dataset used in this Aim was similar to that which was employed in 

Study 2. As with Study 2, the lack of some data elements does call into question the 

completeness of adjustment for potential confounding between DES and BMS. While a 

notable limitation, in our other studies which has used the CathPCI Registry with linked 

Medicare data, results have been consistent with what is reported in this dissertation. The 

choice of drug-eluting versus bare metal stenting likely depends, at least in part, on how 

affordable clopidogrel is for the patient, as patients who discontinue clopidogrel while on 

DES face dramatically higher risk of stent thrombosis and subsequent death (176).   
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Policy implications and future directions 

 Study 3 highlights the importance of a thoughtful approach to patient selection for 

DES insertion, and the potential benefits of local instrumental variables methods for 

outcomes research: 

 1. Our results suggest that in appropriately selected patients, DES are safe and 

efficacious, while in poorly selected patients, they are less effective and may cause harm. 

These results should reinforce to interventional cardiologists the importance of careful 

patient selection for DES placement. One possible further line of research that may assist in 

this effort would be to develop more clinically-nuanced models of predicted DES safety and 

efficacy that could interface with electronic medical records platforms to automatically 

estimate patient-specific predictions. In the meantime, DES rates should be monitored by 

policymakers. Rates that approach the >90% utilization rate observed in 2005 ought to be 

cause for concern, unless it is demonstrated that the safety and efficacy profile of newer 

DES, with more modern antiplatelet agents and treatment paradigms has altered the risk-

benefit ratio. 

2. In order for methods such as local instrumental variables to meet their potential, a 

great deal of additional methodological research is needed to understand issues such as: a) a 

tractable approach to model fitting in the setting of a complicated multi-stage equation, 

particularly with highly dimensional data; b) a theoretical and practical understanding of the 

assumptions underlying such models, and the consequences of violations; c) “best practices” 

for a structured approach to regression implementation, in the same manner as Peter Austin 

and colleagues have developed for propensity score methods; and d) an understanding of 

why bias occurs in bootstrapped replicates. An important limitation of LIV is that effects are 



 

145 

only identified when the region of common support for the propensity score fills close to the 

entire interval of (0,1), where the definition of “close” has never been formally defined (159). 

Obtaining a propensity score with that much range in values requires a strong instrument 

and/or covariates that strongly affect treatment receipt; while it was possible to obtain a fairly 

broad range (0.09-0.81) in this study, whether such range in obtainable in most empirical 

work or adequate for analysis is unclear. In summary, LIV is a methodology with tremendous 

promise, but for which much additional work is needed to assess its practical value and to 

provide guidance on its implementation.   

 

SUMMARY 

Improvements in cardiology care improve the quality and length of human life, and 

observational methods have an important role to play in ensuring that cardiovascular care 

continues to improve in quality, but at an acceptable financial cost.  In this dissertation, I 

produced three papers highlighting applications of observational methods to questions 

concerning the management of patients receiving and who have received PCI. The results 

from these studies will inform clinical practice for the care of PCI patients as well as paving 

the way for additional improvements in how outcomes research is performed. 
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APPENDIX A: DERIVATION OF INITIAL STUDY SAMPLE 

This section is adapted from documentation provided by John Cantrell, based on 

programming work performed by John Cantrell. 

 

Phase 1 

We requested all Medicare Provider Analysis and Review (MedPAR) claims for 2003-2004 

with a diagnosis code of (410.xx (myocardial infarction), 411.1 (unstable angina), or 403.9 

(angina NOS)). From these claims, the first record per subject was considered the index 

hospitalization. Subjects were retained whose index hospitalizations were not: 

1. admissions to a facility other than a short stay or critical access hospital; 

2. did not included diagnosis codes indicative of history of coronary bypass or PCI (V45.81-

V45.82, 414.02-414.06, 996.72); 

3. did not include receipt of valve replacement (procedure codes 35.xx). 

These exclusions produced a population of 1.29M subjects 

 

Phase 2 

For the 1.29M subjects identified above, 2002-2006 Medicare denominator files were 

obtained. For each subject, a start date was identified 12 months prior to the admission date 

of their index hospitalization, or January 1, 2002 for patients whose admission date antedated 

January 1, 2003. In addition, an end date was identified as being their data of death or 

December 31, 2006; whichever occurred later. Subjects were removed from the cohort if they 

experienced any of the following between their study entry or exit dates: 

1. Multiple denominator datasets in single year file 
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2. Reported location outside of the 50 US States, plus the District of Columbia. 

3. Disenrollment from either Medicare Part A or B 

4. Age < 65 at study start date 

5. Enrollment in a Medicare Advantage plan 

Note: Because of this exclusion (which is not modifiable), we do not have data on patients 

who enrolled in Medicare Advantage subsequent to their index event. Thus, we have an 

“always enrolled” cohort for which the only source of censoring is due to different length of 

follow-up based on when in 2003-2004 they experienced their index event.  

These exclusions produced a population of 1,096,614 subjects. 

 

Phase 3 

Per the terms of our contract with the Centers for Medicare and Medicaid Services (CMS), 

we were permitted to obtain all 2002-2008 MedPAR (not just those with a diagnosis code for 

ACS/angina), Carrier, Outpatient, and Denominator files for 1 million subjects. Thus, we 

needed to remove 96,614 patients from the request. This removal was performed by 

eliminating those with the most recent admission dates for their index hospitalization (i.e., 

starting at December 31, 2004) and working backwards. 1,000,000 subjects was reached 

excluding all subjects admitted 10/15/2004-12/31/2004, and some subjects admitted 

10/14/2004. Subsequent to the data request being sent to the CMS contractor, a coding error 

was discovered that reduced the ultimate sample size to 987,860. 
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APPENDIX B: R CODE TO IMPLEMENT PET-BASED IMPLEMENTATION OF 
LOCAL IV 

 
# **************************************************************************** 
# Program Name  : 03_petmodel.R 
# Project       : Local IV Project 
# Description   : Reimplements PET effects using Basu methodology 
# Programmer    : Jeff Federspiel (jerome_federspiel@med.unc.edu) 
# Original Date : 10/20/2012 (M/D/Y) 
# Input Files   : desbms_ahj_done 
# Output Files  : bootout.dta 
# R Command     : R CMD BATCH 06_petmodel.R 
# **************************************************************************** 
 
# *********** Startup tasks ************************************************** 
 
options(width=9999) 
cat("Program started", date()) 
 
# Clear memory 
rm(list=ls()) 
gc() 
 
# Change working directory 
setwd("/hpm2/acs/jeff/desbmsliv/logs") 
 
# Load required libraries (use install.packages() if any are missing) 
library(splines) 
library(stats) 
library(foreign) 
library(parallel) 
library(gdata) 
library(gtools) 
 
# *********** Data Load ****************************************************** 
 
# Data load 
indat <- read.dta("../sasdsl/desbms_ahj_cleaned.dta", convert.factors=FALSE) 
 
dim(indat) 
 
# *********** Regression Parameters ****************************************** 
 
# Covariates to be included in model 
termlist <- NULL 
               
intlist <- c("age_70","age_75","age_80","age_85","age_85up","nonwhite","female", 
             "inc_100","inc_200","inc_300","inc_400","inc_500up", "dual_elig", 
             "micropolitan", "smalltown","rural", "medsch", 
             "forprofit","govt","midwest","northeast","west", 
             "stemi","nstemi","pci_multv", 
             "chf","valve","pulmcirc","perivasc","para","neuro", 
             "chrnlung","diabetes","hypothy","renlfail","cancer", 
             "arth","obese","wghtloss","lytes","anemia","psych", 
             "depress","htn_c") 
         
# List of outcome variables to use 
outcomelist <- c("died46m","revasc46m","ami46m","bleed46m") 
 
# For each outcome, regression model to use 
functionlist <- c("logit","logit","logit","logit") 
 
# For each outcome, degree of polynomial of propensity score to use in second stage 
degreelist <- c(1,1,1,1) 
 
# Number of points to sample for distribution of u 
simsize <- 100 
 
# Number of replicates to run for bootstrap 
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R <- 500 
 
# Number of CPU cores to use 
cores <- 8 
 
# Type of approximation of U to employ 
umethod <- 2 
 
# Binary (treatment) variable 
treatvar <- "desonly" 
 
# *********** PET Function ***************************************************** 
 
# Main function to produce all average effects 
jeffpet <- function(data, treatvar, termlist=NULL, intlist=NULL, outcomes, functions, 
                    simsize, degrees, facvar, umethod=1, display=TRUE, personid) 
{   
   
  if (all(na.omit(data[[treatvar]])) %in% 0:1) { 
    
  } 
  else { 
   cat(treatvar, " must be 0/1 binary") 
   return() 
  } 
   
  fmlterms <- as.formula(paste(paste(treatvar)," ~ (", paste(c(termlist, intlist), 
collapse="+"), 
                         " ) + as.factor(revascmonth)")) 
                          
  psmodel <- glm(fmlterms,  
                 data=data, 
                 family=binomial(link=logit)) 
   
                  
  if (display==TRUE) { 
    cat("\n#########################################################################") 
    cat("\nPropensity Score Model\n") 
    print(summary(psmodel)) 
  } 
   
  # Add on first stage value to dataset 
  data$ps <- psmodel$fitted.values 
  rm(psmodel) 
   
  # Trim outside common support 
  minps  <- max(min(subset(data$ps, data[[treatvar]]==TRUE)),  
                min(subset(data$ps, data[[treatvar]]==FALSE))) 
                
  maxps  <- min(max(subset(data$ps, data[[treatvar]]==TRUE)),  
                max(subset(data$ps, data[[treatvar]]==FALSE))) 
   
   
  orig <- dim(data)[1] 
  data <- subset(data, (minps <= data$ps) & (data$ps <= maxps)) 
   
  # Display sample size in trimmed sample 
  if (display==TRUE) { 
    cat(paste("Common support from ", round(minps,3),  
              " to ", round(maxps,3)), "\n", 
              paste("N with common support = ", dim(data)[1]), " of ", orig, " 
(",format((dim(data)[1]*100)/orig, digits=4),"%)", "\n",sep="") 
  } 
   
  # Calculate sample size in sample 
  N <- dim(data)[1] 
 
  # Initialize output matrix for results   
  output <- array(0, c(length(outcomes), 4)) 
  rownames(output) <- outcomes 
  colnames(output) <- c("ate", "tt", "tut", "tt_tut") 
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  # Initialize output dataset for PETs 
  pets <- array(NA, c(N, length(outcomes))) 
  colnames(pets) <- c(outcomelist) 
   
  pets <- as.data.frame(pets) 
   
  # For each outcome, run second stage model and calculate effects 
  for(i in 1:length(outcomes)) { 
     
    # Set up formula and run model 
    if (degrees[i] == 1) { ppart <- NULL } 
    if (degrees[i] == 2) { ppart <- " + I(ps^2)" } 
    if (degrees[i] == 3) { ppart <- " + I(ps^2) + I(ps^3)" } 
    if (degrees[i] == 4) { ppart <- " + I(ps^2) + I(ps^3) + I(ps^4)" } 
    if (length(intlist)>0) { 
         formula <- as.formula(paste(outcomes[i], " ~ ", paste(termlist, collapse="+"), " + 
(", paste(intlist, collapse="+"), " ) * ps", ppart)) 
    } 
    else { 
         formula <- as.formula(paste(outcomes[i], " ~ ", paste(termlist, collapse="+"),"+ 
ps", ppart))  
    } 
 
     
    model <- glm(formula, 
                 data=data, 
                 family=binomial(link=functions[i]))     
     
    if (display==TRUE) { 
      cat("\n#########################################################################") 
      cat(paste("\n",paste("Outcome =",outcomes[i]),"\n",sep="")) 
      print(summary(model)) 
    } 
     
    # Extract coefficients for main effects, pscore terms, and interaction terms 
    mainterms <- model$coef[1:(length(c(termlist,intlist))+1)] # Includes constant term 
     
    psterm  <- model$coef[(length(c(termlist,intlist))+2)] 
     
    psterm2 <- 0 
    psterm3 <- 0 
    psterm4 <- 0 
     
    if (degrees[i]>1) { psterm2 <- model$coef[(length(c(termlist,intlist))+3)] } 
    if (degrees[i]>2) { psterm3 <- model$coef[(length(c(termlist,intlist))+4)] } 
    if (degrees[i]>3) { psterm4 <- model$coef[(length(c(termlist,intlist))+5)] } 
 
    # Interaction terms 
    if (length(intlist) > 0) { 
      intterms  <- 
model$coef[(length(c(termlist,intlist))+2+degrees[i]):(length(intlist)+length(c(termlist,intl
ist))+1+degrees[i])] 
    }  
     
    else { 
     intterms <- matrix(0,N,1) 
    } 
 
    rm(model) 
     
    # Replace any omitted terms with zeros 
    intterms[is.na(intterms)] <- 0 
    mainterms[is.na(mainterms)] <- 0 
    psterm[is.na(psterm)] <- 0 
    psterm2[is.na(psterm2)] <- 0 
    psterm3[is.na(psterm3)] <- 0 
    psterm4[is.na(psterm4)] <- 0 
 
    # Get score matrices (XB for interactions with p-score, 
    # and intercept plus main effects) 
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    intscore <- as.matrix(data[,c(intlist)]) %*% as.matrix(intterms) 
    mainscore <- as.matrix(cbind(1, data[,c(termlist, intlist)])) %*% as.matrix(mainterms) 
    rm(intterms, mainterms) 
 
    # Several different potential formulas for u 
    # 1. From min to max propensity score ala Basu using random draws 
    if (umethod==1) { u = matrix(runif(N*simsize, min(data$ps), max(data$ps)), N, simsize) } 
     
    # 2. From min to max propensity score (deterministically) 
    if (umethod==2) { u = matrix(seq(minps, maxps, length=simsize), N, simsize, byrow=T) } 
 
    # 3. From nearly 0 to nearly 1 (deterministically) 
    if (umethod==3) { u = matrix(seq((1/simsize)/2, (simsize-1)/simsize+(1/simsize)/2, 
length=simsize), N, simsize, byrow=T) } 
     
    # Calculate XB for each individual at each value of u 
    xbhat <- matrix(mainscore,N,simsize,byrow=F) + # X part 
             matrix(intscore,N,simsize,byrow=F)*u + # X*ps part 
             psterm*u + psterm2*(u^2) + psterm3*(u^3) + psterm4*(u^4) # K(ps) part 
     
    # Caculate MTE (partial derivative with respect to pscore term) 
    if (functions[i] == "logit") { 
      mte = inv.logit(xbhat) * (1-inv.logit(xbhat)) *  
            (matrix(intscore, N, simsize, byrow=F) + psterm + 2*psterm2*u + 3*psterm3*(u^2) + 
4*psterm4*(u^3)) 
    } 
     
    if (functions[i] == "probit") { 
      mte = dnorm(xbhat) *  
            (matrix(intscore, N, simsize, byrow=F) + psterm + 2*psterm2*u + 3*psterm3*(u^2) + 
4*psterm4*(u^3)) 
    } 
     
    # Replace MTEs with absolute values > 1 with 1 (Done in Basu Mata code) 
    mte[abs(mte)>1] <- sign(mte[abs(mte)>1])*1 
     
    # Remove unneeded xbhat matrix 
    rm(xbhat) 
    gc() 
 
    # Generate indicator of whether ps > u 
    dstar1 <- (qnorm(data$ps) + qnorm(1-u)) > 0 
 
    # Remove unneed u matrix 
    rm(u) 
    gc() 
 
    # TT is average MTE for values of ps > u 
    tt <- as.matrix(rowSums(mte * dstar1)/rowSums(dstar1)) 
 
    # TUT is average MTE for values of ps < u 
    tut <- as.matrix(rowSums(mte * (1-dstar1))/rowSums(1-dstar1)) 
 
    # Clean-up unneeded MTE and dstar1 matrices 
    rm(mte, dstar1) 
    gc() 
     
    # PET effect is TT for treated patients and TUT for untreated patients  
    pet       <- tt*(data[[treatvar]]==TRUE) + tut*(data[[treatvar]]==FALSE) 
    pets[i]   <- pet # Outputs the pet effects to results matrix 
     
    # ATE is overall average 
    ate       <- mean(pet, na.rm=TRUE) 
 
    # TT (average PET among Treated recipients)  
    att       <- mean(subset(pet, data[[treatvar]]==TRUE), na.rm=TRUE) 
 
    # TUT (PET among Untreated recipients) 
    atut       <- mean(subset(pet, data[[treatvar]] ==FALSE), na.rm=TRUE) 
 
    # Save results for ATE, TT, TUT, TT_TUT to output matrix  
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    output[i,] <- c(ate, att, atut, att-atut) 
 
    # Clean up unneeded datasets 
    rm(tt, tut, pet, ate, att, atut,  
       intscore, mainscore,  
       psterm, psterm2, psterm3, psterm4) 
    gc() 
     
  } 
   
  # Clean up final datasets 
  pets <- as.data.frame(cbind(data[[personid]], data[[treatvar]], pets, data$ps)) 
  rm(data, i) 
  gc() 
   
  # Output results 
  return(list(output=output, pets=pets)) 
  rm(output, pets) 
  gc() 
} 
 
# *********** Base Case ***************************************************** 
 
base <- jeffpet(data=indat,              # Input data 
        treatvar=treatvar,               # Treatment variable 
        termlist=termlist,               # Variables to include 
        intlist=intlist,                 # Variables to include with interactions 
        outcomes=outcomelist,            # Outcomes to assess 
        functions=functionlist,          # Models to use 
        degrees=degreelist,              # Polynomial of pscore to use 
        facvar="m_revaschospprovno",     # Facility ID variable 
        personid = "bid",                # Person identifier  
        simsize=simsize,                 # Number of points to use to approximate u 
        umethod = umethod,               # Method to create values of u 
        display=TRUE)                    # Display output of regressions 
 
base$output 
 
# Renaming variables b/c Stata chokes on variable names with $ symbols in them 
base$pets <- rename.vars(base$pets, from=c("data[[personid]]", "data[[treatvar]]", 
"data$ps"), to=c("bid","anydes","ps"), info=FALSE) 
 
# *********** Bootstrapping ************************************************* 
 
# Function for clustered bootstrap sampling  
# Modified from http://biostat.mc.vanderbilt.edu/wiki/Main/HowToBootstrapCorrelatedData 
 
resample <- function(dat, cluster, replace, addid) { 
   
  # exit early for trivial data 
  if(nrow(dat) == 1 || all(replace==FALSE)) 
      return(dat) 
   
  # sample the clustering factor 
  cls <- sample(unique(dat[[cluster[1]]]), replace=replace[1]) 
   
  # subset on the sampled clustering factors 
  # Add new identifying variable (sampleid) for highest-level 
  if (addid == TRUE) { 
    sub <- lapply(seq(1:length(cls)),  
                  function(sampleid)  
                  cbind(subset(dat, dat[[cluster[1]]]==cls[sampleid]), 
                        sampleid)) 
  } 
   
  # Don't add identifying variable for subsequent levels 
  if (addid == FALSE) { 
    sub <- lapply(cls, function(b) subset(dat, dat[[cluster[1]]]==b)) 
  } 
   
  # sample lower levels of hierarchy (if any) 
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  if(length(cluster) > 1) sub <- lapply(sub, resample, cluster=cluster[-1], replace=replace[-
1],addid==FALSE) 
   
  # join and return samples 
  do.call(rbind, sub) 
 
} 
 
# Wrapper function for each bootstrap cycle 
bootwrapper <- function(index) { 
 
  repset <- indat[sample(nrow(indat), nrow(indat), replace=T),] 
   
  bootfxn <- jeffpet(data=repset,                   # Input data 
                     treatvar=treatvar,             # Treatment variable 
                     termlist=termlist,             # Variables to include 
                     intlist=intlist,               # Variables to include with interactions 
                     outcomes=outcomelist,          # Outcomes to assess 
                     functions=functionlist,        # Models to use 
                     degrees=degreelist,            # Polynomial of pscore to use 
                     facvar="sampleid",             # Facility ID variable 
                     personid="bid",                # Person ID variable 
                     simsize=simsize,               # Number of points to approximate u 
                     umethod=umethod,               # Method to approximate distriubiton of u 
                     display=FALSE)                 # Suppress display 
   
  output <- as.vector(bootfxn$output) 
  return(output) 
  rm(repset, bootfxn, output) 
  gc() 
} 
 
# Do the actual bootstrap 
starttime <- proc.time() 
 
set.seed(19075020) 
bootresults <- mclapply(1:R, 
                        bootwrapper,  
                        mc.set.seed=TRUE, 
                        mc.silent=TRUE, 
                        mc.cores=cores, 
                        mc.cleanup=TRUE) 
proc.time()-starttime 
 
# Function to get bias-corrected CIs 
cifunction <- function(boot.out,base.out,conf=0.95) 
{ 
  dataset <- as.matrix(do.call(rbind,boot.out)) 
   
  correction <- qnorm(colMeans(dataset < matrix(base.out, R, length(base.out), byrow=T))) 
   
  ll <- sapply(seq(1:dim(dataset)[2]),  
               function(value) {quantile(dataset[,value], 
pnorm(qnorm(0.025)+2*correction[value]))}) 
   
  ul <- sapply(seq(1:dim(dataset)[2]),  
               function(value) {quantile(dataset[,value], 
pnorm(qnorm(0.975)+2*correction[value]))}) 
   
  matrixcis <- cbind( 
    seq(1:length(as.vector(base.out))), # Sequential Number 
    as.vector(base.out), # Point estimate 
    as.vector(ll), # Lower bound 
    as.vector(ul), # Upper bound 
    colMeans(dataset)-as.vector(base.out)) # Bias estimate (difference between mean value of 
bootstraps and point estimate) 
   
  colnames(matrixcis) <- c("index","point","ll","ul","bias") 
   
  rownames(matrixcis) <- sapply(seq(1:length(as.vector(base.out))), 
                                function(index) { 
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                                paste(colnames(base.out)[ceiling(index/length(outcomelist))], 
                                rownames(base.out)[(index-1)%%length(outcomelist)+1], 
sep="_") 
                                }) 
   
  colnames(dataset) <- rownames(matrixcis)   
                                  
  return(list("Summary"=matrixcis,"Boot_Iterations"=dataset)) 
} 
 
bootout <- cifunction(bootresults, base$output) 
bootout$Summary 
 
# Save output 
save(bootout, file="../output/bootout_int.rData") 
write.dta(base$pets, "../output/pets.dta") 
write.dta(as.data.frame(bootout$Boot_Iterations), "../output/bootout_iterations.dta") 
write.dta(as.data.frame(bootout$Summary), "../output/pet_summary.dta") 
 
# ****************** Wrapup ***************************************************** 
 
# Empty workspace 
rm(list=ls()) 
 
cat("Program ended", date()) 
 
# ****************** End of 06_petmodel.R ***********************************
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