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ABSTRACT

NAOMI C. BROWNSTEIN: Analysis of Time-to-event Data, Intermediate
Phenotypes, and Sparse Factors in the OPPERA Study
(Under the direction of Drs. Eric Bair and Jianwen Cai)

Motivated by the Orofacial Pain: Prospective Evaluation and Risk Assessment

(OPPERA) project, a large study of temporomandibular disorders (TMD), this dissertation

develops statistical methods applicable to three facets of chronic pain.

First, we propose a method for parameter estimation in survival models with missing

censoring indicators. These result because conducting multiple invasive examinations

for incidence on all participants in large prospective studies is infeasible. We estimate

the probability of being an incident case for those lacking a gold standard” examination

using logistic regression. Multiple imputations of case status for each missing examination

are generated using these estimated probabilities. Imputed and observed data are

combined in Cox models to estimate the incidence rate and associations with putative

risk factors. The variance is estimated using multiple imputation. Our method performs

as well as or better than competing methods and highlighted new discoveries for

OPPERA.

Secondly, we propose a general method to analyze secondary phenotypes and apply

it to the OPPERA baseline case-control study. Traditional case-control genetic association

studies examine relationships between case-control status and one or more covariates.

Investigators now commonly study additional phenotypes and their association with

the original covariates as secondary aims. Assessing these associations is statistically

challenging, as participants do not form a random sample from the population of
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interest. Standard methods may be biased and lack coverage and power. Utilizing

inverse probability weighting and bootstrapping for standard error estimation, our

method performs as well as competitors when they are applicable and provides promising

results for outcomes to which other methods do not apply.

Third, we propose a method for sparse factor analysis. Psychometric studies frequently

measure numerous variables that may be noisy manifestations of a few underlying

constructs. Aims include identifying these latent variables and their relationship to

the observed variables and reducing the data to a few key variables that explain the

majority of variance. While variable reduction methods exist for principal component

analysis, none have been proposed to date for factor analysis. Our method retains

predictive accuracy for many thresholds in simulations while providing sparse loadings.

Competing methods had less predictive accuracy or less sparsity.
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CHAPTER 1: INTRODUCTION

Time-to-event analyses are frequently conducted in medicine, actuarial science, and

numerous other fields of applied science. Actuaries study the time until death of

individuals for the purpose of calculating and offering fair life insurance rates. In

clinical trials, researchers note whether and when participants experience the event of

interest and compare the times between the treatment and control groups. Similarly,

in cohort studies, researchers compare survival times and want to know if survival time

is related to a risk factor of interest. Additionally, it may be of interest to study the

hazard of death over time.

There is a well-developed set of standard time-to-event analysis methods implementable

in standard statistical software packages. Logrank tests allow testing of differences of

survival times between a finite number of groups. The survival distribution may be

eassily estimated non-parametrically and plotted using SAS or R. Semi-parametric

methods, such as the Cox proportional hazards model, allow robust estimation of the

hazard function in the presence of covariates. Yet, these methods require knowledge

of both the event time and status for all individuals. The event status may not be

known for all individuals, especially when one is interested in studying death due to a

particular cause.

Additionally, current methods do not work for secondary time-to-event outcomes

in case-control studies, in which study participants are sampled based on the primary

outcome, because the study does not constitute a simple random sample of the population
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of interest. In fact, arbitrary analysis of one or more secondary phenotypes is a non-

trivial problem and has spawned a great deal of research in recent years.

Often, the outcome of interest may be difficult to ascertain. For example, an

autopsy by expert medical examiner may be needed to determine if a death was due

to myocardial infarction, a cancer tumor, or other factors. In order to mitigate this

problem, some studies employ delayed event adjudication. That is, possible cases are

identified using simple, but possibly error-prone methods. Then, one or more experts

examines the possible cases using a more accurate, but also more costly and time-

consuming method to determine the true event status. For example, a specialized

dental examination is required for accurately diagnosing temporomandibular disorders

(TMD). It is impractical to subject large number of subjects to such an examination,

especially if they are unlikely to have the condition. Instead, the “gold standard”

examination is performed only on subjects who screen positive on a simpler assessment,

such as a questionnaire designed to measure recent orofacial pain. However, some

subjects do not receive the “gold standard” examination due to inability or unwillingness

to attend research centers. A time-to-event analysis would then have some subjects

with self-reported symptoms but missing censoring indicators. This setting presents

statistical challenges, which require care in order to avoid bias and maintain efficiency.

In other settings, cause of death may be unknown or death certificates may be

missing entirely. This frequently arises when there are multiple failure types. In

oncology studies, for example, researchers may want to differentiate between deaths

due to cancer and deaths due to car accidents or other unrelated causes. For such

studies, a death certificate is insufficient to classify a subject. Moreover, it may be

impossible to determine if a death occurred if a subject dies abroad or national death

registries are incomplete.

While there have been a few methods developed in this area, each has drawbacks.
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There is a clear need for new methodology to handle this challenging situation. In

the first paper, we propose a method for parameter estimation in the case of missing

censoring indicators. In the second paper, we seek an unbiased and efficient method to

model the relationship between a genotype and a secondary phenotype in case-control

studies. The third paper extends the framework of the first paper to allow for Cox

regression with both missing covariates and missing censoring indicators.
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CHAPTER 2: LITERATURE REVIEW

Our methods, detailed in chapters 3-5, rely on basic knowledge of survival analysis,

missing data, imputation, bootstrapping, joint-modeling, case-control genetic studies

and factor analysis. This chapter reviews the literature pertaining to these fields.

2.1 Survival Analysis

Actuaries, medical experts, and statisticians alike are frequently confronted with

failure time data. One important quantity of interest is the survival function. The

nonparametric maximum likelihood estimate of the survival distribution is given by

(60). Nonparametric estimation in the accelerated failure time model is discussed in

(72). The shape of the survival function is instructive in studying the progression of

the event of interest over time.

Yet, it is often of interest to model the relationship between the failure times and

a set of covariates. A parametric model with one covariate assuming that the failure

time has an exponential distribution is proposed in (36). Unfortunately, the stringent

distributional assumption and limit of one covariate prevent this method from being

useful in most situations. Instead, the classic semi-parametric model of the hazard

function in the presence of covariates is defined in (10). The field of survival analysis

in the past forty years has been centered around this model. In fact, in prospective

cohort studies of risk factors for disease, hazards ratios are beneficial because they
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approximate the incident rate ratio. The pervasiveness of this model is evident in, for

example, (40), a review of developments in survival analysis in clinical trials through

the turn of the century.

2.1.1 Cox Proportional Hazards Model

One of the most popular statistical tools today, the Cox model combines the ability

to handle covariates with the flexibility resulting from leaving the baseline hazard

unspecified. Cox defines a partial likelihood, which allows for maximum likelihood

estimation of the regression parameters, and extends results for bivariate life table

data. Further details on the partial likelihood are provided in (11).

The Fisher information matrix for the regression parameter from the standard

likelihood is calculated in (26) and shown under broad conditions to be asymptotically

equal to the information based on the partial likelihood. Thus, the Cox likelihood is

asymptotically efficient. Efron also estimates the hazard rate and connects it to the

Kaplan-Meier estimate of the survival function. Accelerated failure time model and

inference and parameter estimation in the Cox model is discussed in (59) as well as

extensions to multivariate failure data, time-dependent covariates, and case control

studies. A heuristic method for computing the asymptotic variance of the estimated

survival function is proposed in (68) and used it to construct confidence intervals, which

are shown in simulations to have adequate coverage.

The applicability of Cox models continued to grow. Methodology were generalized

to competing risks and multivariate outcomes. The framework for competing risks is

detailed in (81), (50) and (94).

Another important question is how robust the Cox model is to mis-measured or

missing data and what modifications are appropriate in the presence of such data.

Effects of covariate measurement error are investigated in (93) and (52). Cox models
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with missing data are discussed in section 2.4. Specifically, the setting of uncertain

outcomes are discussed in section 2.4.2.

2.2 Bootstrapping

Bootstrapping is an estimation method that may be applied in a wide variety of

situations with or without missing data. The goal is to estimate a statistical quantity

and its variability. Bootstrapping is especially useful for quantities whose standard

error is difficult or impossible to calculate mathematically. Over the past 30 years, the

original method has evolved dramatically, with new methods applicable to frequentist,

Bayesian, parametric, nonparametric, and semiparametric situations alike.

The nonparametric bootstrap was originally proposed in (27) as a modification of

the jackknife. The first step is to find the empirical distribution function of the data.

Next, one creates a large number of boostrap samples by sampling with replacement

from this empirical distribution function. Third, one combines the results from each of

the replications. The estimate of the quantity of interest is the mean of the R estimates

from the replicates and the estimated standard error is the standard deviation of the

estimates from the replicates. Details may be found in (27) and (29).

This simple procedure, available in standard statistical software, originally allowed

estimation of the parameter of interest and of bias, but now also routinely provides

several confidence intervals. Asymptotic properties, including second order accuracy,

are discussed in (111), (5) and (112). Literature on standard errors and confidence

interval estimation is discussed in more detail in section 2.2.1.

In its classical form, bootstrapping is a nonparametric frequentist method, though

it has been adapted to the parametric and Bayesian frameworks as well. One example

of parametric bootstrapping is found in (29). Instead of substituting the empirical
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distribution for the unknown sampling distribution, Efron substitutes a normal distribution

with mean and variance equal to the sample mean and sample variance. This procedure

is called the normal smoothed bootstrap. (102) first described the Bayesian bootstrap.

Weighted bootstrapping, which is applicable to hypothesis testing, is discussed in (62).

Bootstrapping has emerged as a useful tool for practitioners and the foundation of

numerous papers on its theoretical properties, scope, and limitations.

In his silver anniversary review paper, (31) stresses that boostrapping is founded

on the “plug-in principle”, which he defines as the act of simply “plugging in” the

empirical distribution function for the unknown distribution function. He notes that

while the literature as of 2003, (19), indicates that this is generally valid to the second

order, there are notable situations where it can be problematic. According to a similar

review paper by (14), it is the simplicity of the bootstrap and its connection with other

methods, such as the jackknife, that make it both widely utilized in applications and

extensively studied from a theoretical standpoint.

2.2.1 Standard Error and Confidence Intervals

One important benefit of bootstrap methods is the ability to calculate standard

errors and confidence intervals. For many estimators of interest in practice, standard

errors are, at best, difficult to calculate, or worse, impossible to evaluate analytically.

Moreover, even when the standard error can be found, standard confidence intervals

based on the central limit theorem may be inadequate for statistics whose distribution

are non-normal. On the other hand, according to (32), the bootstrap can always provide

numerical standard error estimates. A simple example of the bootstrapping in the Cox

proportional hazards model can be found in (32).

Three methods of bootstrap confidence intervals are discussed in the literature,
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namely percentile, bias corrected and acclerated (BCa), approximate bootstrap confidence

intervals (ABC) and bootstrap ‘t’. The percentile method simply reports the estimated

percentiles of the bootstrap distribution. A quick theoretical justification for percentile

intervals is provided in (28). BCa intervals are motivated by the assumption that a

simple monotone transformation of the parameter of interest is normally distributed

with slight bias with respect to the transformed mean and a variance that may not

be constant for all possible parameter values. The user does not need to specify the

transformation. In order for BCa confidence intervals to be accurate, it is only required

that such a transformation exists. Monte Carlo sampling yields adequate estimates of

the standard error in about 50-200 replications for most statistics and adequate BCa

confidence intervals in about 1000 replications (32, 19). The bootstrap ‘t’ interval is

conceptually simpler than BCa intervals. However, unlike percentile intervals, they are

not transformation invariant and can result in confidence intervals that are much too

wide. ABC intervals do not require Monte Carlo simulations at all, relying instead on

an analytic approximation to the BCa interval.

2.3 Missing Data: General Theory and Methods

The problem of missing data is nearly ubiquitous in practical statistical problems.

Consequently, there is a rich body of research on analysis with missing data, including

methods such as the EM algorithm, single imputation, and multiple imputation. There

are also a wide variety of ad-hoc techniques that may introduce severe bias. This section

summarizes the literature on missing data and proper data analyses.

In the classic paper, (101) defines three missing data mechanisms and ignorability.

Before proceeding, necessary definitions from Rubin’s work are introduced. Additional

details may be found in (70). The missing data mechanism refers to the probability
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of having missing data. Data are called missing completely at random (MCAR) if

the probability of having a missing value is independent of the data, both observed

and missing. Data are called missing at random (MAR) if the probability of having a

missing value is independent of the missing values, but may depend on the observed

values or on observed covariates. Under MAR or MCAR, the missing data mechanism

is said to be ignorable. If the probability of having a missing value depends on that

unobserved value, then the data is missing not at random (MNAR) and the mechanism

is non-ignorable.

When confronted with missing data, data users face a dilemma. They may know

that, in theory, disregarding observations that are not fully observed is inefficient, at

best. The loss in efficiency increases with the proportion of missing data. It may

bias inference and lead to misleading conclusions. Yet, most software is not equipped

to handle missing observations. Typically, observations with any missing values are

dropped. This can be problematic in studies with a large number of covariates of

interest. Subjects with one or more of the covariates missing would be excluded.

Denoted a “complete-case” analysis, the results may be severely biased when the

missing data mechanism is non-ignorable. Similarly, “available-case” analyses, which

use all cases with observed values for at least one of the variables under consideration,

may be invalid. Mean-imputation, in which missing values are imputed by the mean of

observed values, may also introduce bias, (103). While it may be tempting to use these

or other more convenient approaches, it is usually not appropriate. There is a rich set

of methodology for handling missing data without introducing bias and maintaining as

much efficiency as possible. A selection of relevant methods are included below.
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2.3.1 The EM Algorithm

One common method for handling missing data is the Expectation-Maximization

(EM) Algorithm. There are three steps: first, finding the expected value of the

full log-likelihood given the observed data and current parameter estimate, second

maximizing the expectation to update the parameter estimates, and third, iterating

until convergence. The method was formally introduced in (16) with details of the E-

step and M-step. The authors demonstrate why the EM algorithm works, that is, the

fact that the likelihood always increases with each iteration. They also give examples

and suggest the ability to generalize the EM algorithm in a Bayesian framework.

The EM-algorithm in some form is instrumental in most papers that develop new

methods for analysis of data with missingness. One noteworthy example is in the

context of logistic regression with uncertain outcomes. The EM-algorithm and known

or estimated values of sensitivity and specificity are used in (74) to improve upon

parameter estimates in standard logistic regression. Section 2.4 discusses additional

examples of methods that employ the EM-algorithm for missing data in survival analysis.

2.3.2 Multiple Imputation

Multiple imputation, discussed in section 2.3, is a Bayesian method for analyzing

data with some degree of missingness. It was first presented as a way to handle non-

response in sample surveys. The framework is summarized in (103) as containing

a database constructor often separate from the person who will analyze data. He

states that multiple imputation is a statistically valid method within this framework.

Multiple imputation definitions and equations are reviewed. He defines proper multiple

imputation and urges users to include available covariate information in the imputation.
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Finally, Rubin compares multiple imputation to competing methods, i.e. single imputation,

jackknife, bootstrapping.

Missing data mechanisms are discussed in (155) from frequentist and Bayesian

points of view as well as the consequent challenges under various assumptions and

appropriate missing data analysis methods. Imputation in general is explored in (155),

specifically two multiple imputation methods – propensity score and predictive model

– under monotone missingness, and one method of multiple imputation under non-

monotone missingness utilizing Markov Chain Monte Carlo (MCMC). Readily vailable

multiple imputation software procedures, such as PROC MI and PROC MIANALYZE

in SAS, frequently assume data are MAR.

Often, especially for binary data, values generated with multiple imputation are

rounded. Yet, rounding can cause excessive bias, as shown in (51). One solution is

to keep the raw imputed values, as they introduce less bias than the rounded values.

They urge instead to posit a more appropriate posterior, for example to refer to Rubin’s

detailed instructions for how to impute missing binary data.

2.3.3 Bootstrapping and Missing Data

For missing data problems, (30) provides a comparison of three bootstrapping

methods and multiple imputation. Non-parametric bootstrapping, the simplest form

of bootstrapping, requires no knowledge of the missing data mechanism. It may be

applied to virtually any reasonable estimator. However, nonparametric bootstrapping

may be too slow or infeasible to use in practice due to the comparatively large number

of replications required. This is especially true when BCa confidence intervals are of

utmost interest.

Full mechanism bootstrapping is less computationally intensive, but requires modeling
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of the missing data mechanism. Thus, it is most appropriate for non-ignorable missing

data, when this is required anyway. The multiple-imputation bootstrap begins with

the Bayesian bootstrap and calculates confidence intervals via the ABC method. It is

most appropriate for Bayesian settings, because it requires knowledge of the conditional

density of the full data given the observed data. Note that the requirement to know the

conditional density is less stringent than the requirement of full-mechanism bootstrapping

to know the missing data mechanism. For censored surival data, full mechanism and

nonparametric bootstrapping are identical (29, 30).

An important type of partially incomplete data is censored failure-time data. Under

the assumption of random censoring, (29) argues that bootstrapping is valid for survival

data. Similarly, it is straightforward to use bootstrapping to estimate the survival

function and its standard error.

2.4 Missing Data Methods and Survival Analysis

This section discusses specific developments in missing data methods for time-to-

event data. As discussed previously, survival analysis already has incomplete data in

the sense that the failure time is unknown for censored individuals. Most methods

assume that data are censored randomly. In the literature, this is termed as ignorable

censoring. When this assumption is not tenable, censoring is termed non-ignorable and

adjustments must be made.

When modeling time-to-event data with covariates, there are additional types of

missing data that may arise. Most commonly, some subjects may have one or more

unobserved covariates. A less studied situation is when the censoring indicator is

missing for a subset of the observations. While it is possible for a single dataset to

have missing covariates and missing censoring indicators, no papers on that problem
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have been found to date.

The following subsections detail, respectively, the literature for survival analysis

with missing covariates and missing censoring indicator models.

2.4.1 Cox Models with Missing Covariates

There have been numerous papers on modeling proportional hazards with missing

covariates. Estimating equations are propposed in (65) to yield what they call an

“approximate partial likelihood estimator” (APLE), which is consistent and asymptotically

normal under MCAR covariates. The assumption is relaxed to MAR by (89) and

impute the covariates using the conditional expectation based on observed information.

Through simulations, they demonstrate the superiority of their method to that of

Lin and Ying in terms of efficiency under MCAR and consistency under MAR. A

nonparametric model for estimation of relative risk with the missing covariates is given

in (156) based on additional auxiliary covariates. An EM-type algorithm for missing

covariates in Cox models is detailed in (49). Additional papers include the inverse

selection probability weighted estimator of (139), among others.

2.4.2 Cox Models with Missing Censoring Indicators

Missing censoring indicators frequently arise when there are multiple failure types.

Investigators may easily record the mortality of all subjects, but it may be extremely

difficult or costly to find out exactly why each subject died. Consequently, there has

been much more work done on missing censoring indicators in the context of competing

risks than when there is only one type of failure. Over the past three decades, authors

have produced a variety of methods of estimating the hazard and survival function
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for the missing censoring indicator model. The logrank test has been generalized for

missing censoring indicators. Yet, there have been fewer papers on the more difficult

problem of Cox regression.

First, (20) uses the EM algorithm to estimate the survival function under various

types of partially observed competing risk data. Observations may be either fully

observed, censored, or observed failures with unobserved causes. He estimates the

information matrix and provide clear examples of the method applied in practice. The

survival function is estimated non-parametrically in (96) when death status is known

but its cause is uncertain for some subjects, while the Kaplan-Meier estimate may be

biased for such data. Causes of failure are said to be masked when it is unknown but

at least one type of cause may be eliminated from consideration. For competing risks

data with masked causes of failure, (39) estimate the survival function.

A modified logrank test for competing risk data for which cause of failure is unknown

and missing at random, (44). A slight modification to their partial likelihood is

proposed in (17) to increase the information and improve the test. Multiple imputation

of the cause of failure and a corresponding asymptotically valid modified log-rank test

is detailed in (133).

For standard survival data, there have been a number of methods proposed for

estimating the survival function under the missing censoring indicator model. An

asymptotically efficient estimator of the survival function under missing at random,

or more generally, “coarsening at random” censoring indicators, is proposed by (136).

Namely, they use the nonparametric MLE of the survival function based on reduced

data produced by a discretization of the failure time. A comparable alternative is

proposed by (123) that requires less computational resources and time. Kernel estimation

is employed in (124) to provide a weakly convergent estimator of the survival function.

As in the case with fully observed censoring indiators, kernel estimation depends on
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the choice of bandwidth sequence. It follows that clever estimation of the bandwidth

would improve the kernel estimation performance. Three methods of bootstrapping the

bandwidth are compared to each other and to existing methods, (129). Semiparametric

random censorship models for hazard function estimatiors, both nonparametric and

semiparametric, are given in (128). In addition, they compute and minimize the

asymptotic mean squared error to find the optimal bandwidth. An augmented inverse

probability weighted estimator of the survival function under MAR is proposed in

(127) and shown that it is robust even under partial model misspecification. Improving

the survival function estimate in the missing censoring indicator model via multiple

imputation is discussed in (125) and (126).

An important research question is how Cox models are affected when case status

is uncertain. Competing risks proportional hazards regression models are proposed

in (45) using estimating equations assuming that observations are known either to be

censored or to have failed by some cause. They assume proportional hazards for each

failure type and between the two failure types. For the linear transformation model,

An augmented inverse probability weighted estimator and algorithm are proposed in

(41) along with asymptotic and double robustness properties.

Time-to-event data which may not be classified and confirmed is modeled in (8)

by weighting each subject by their estimated probability of being a true case. Their

methods include estimation of the survival function, Cox models, and a logrank test.

They propose an asymptotic variance expression which may be used as an approximation

for finite samples. Alternatively, they suggest estimating the variance by bootstrapping.

Empirical processes are employed to prove consistency and weak convergence of the

estimators to Gaussian processes.

For the usual survival setting with only one cause of failure, (43) estimate the

survival function by modifying and combining estimates of the hazard function, discuss
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estimation in the Cox model and prove consistency and asymptotic normality of the

estimators. The survival function is also estimated without covariates and Cox proportional

hazards models are proposed in (78) by modifying the Nelson-Aelen estimator and

taking the product-integral. The advantage of their method is that it does not require

discretization of the failure times or estimation of the unconditional probability of

having an observed censoring indicator. Simulations demonstrate that the (78) is

superior to previous estimators, such as the earlier version of (43). Yet, the methods

of (78) and (43) both depend on the MCAR assumption, which they state that it is

non-trivial to relax. Parameter estimation in the Cox model under the assumptions of

proportional censorship and MCAR censoring indicators is conducted in (122).

Weights are recommended for each potential event, of which individuals may have

more than one, along with a weighted partial likelihood, (116). That is, he suggests

screening out observations that are unlikely to be true events, and weighting each

observation by the probability that the subject had first failed at the observed time. The

weights may be known or estimated using auxiliary covariates. Taking this uncertainty

into account reduces bias and increases power. However, estimating the weights depends

upon the presence of a normally distributed diagnostic variable and either knowing or

having experts guess the relative frequency of true endpoints to false endpoints. In

addition, the variance of the method is mentioned but not described in detail.

Adjusting a proportional hazards model based on discrete survival times and measurement

error of case status is discussed in (79). They show that mis-measured outcomes can

bias the usual proportional hazards model parameter estimates toward the null and poor

coverage probability for confidence intervals, but this can be mitigated by incorporating

information about sensitivity and specificity.

Estimators for the regression parameters in the Cox proportional hazards model

with missing censoring indicators are derived in (6) using the EM algorithm and
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their consistency is established under basic regularity conditions. The authors then

estimate the non-missing rate of censoring indicators with the kernel estimator and use

it to estimate the information matrix. Their approach depends on the assumption of

piecewise constant hazard functions and proportional hazards for not only the event

time, but also for the censoring time.

Multiple imputation is also discussed for repeated failure times where the event is

known to have occurred at a certain time but the event type is missing (107). The

method is compared to multiple imputation under the Cox proportional hazards model

without repeated events.

2.5 Genetics and Case-Control Data

Investigators are frequently interested in reusing case-control data to evaluate associations

between measured risk factors and outcomes other than the outcome to define case

status. These other outcomes are often referred to as secondary phenotypes, which may

be associated with the primary disease used to define case status. Utilizing one study

to investigate more than one outcome is important for financial reasons, as the process

of attaining genetic information and other putative risk factors for all participants is

time-consuming and expensive. While logistic regression is known to be invariant to

the sampling method for primary analyses, this does not hold for secondary phenotype

analyses. Simple logistic and linear regression may be severely biased. Restricting

analyses to cases only or controls only results in decreased efficiency. These methods

are considered “naive” methods. There has been a great deal of recent interest in

developing unbiased and efficient methodology for analyzing secondary phenotypes in

case-control studies.

Two methods for analyzing associations are proposed in (97). The first is to use a

17



standard logistic regression model with a covariate adjusting for original case status.

The second is to use stratum-weighted logistic regression, i.e. logistic regression in

which cases and controls are weighted by the reciprocal of their sampling fractions.

For population studies, it is often easier to estimate the ratio of the sampling fractions

than to estimate the sampling fractions for cases and controls separately. Hence, (97)

proposes using a unit weight for the cases and the ratio of the sampling fractions for

controls. In a nested case-control study, the ratio is the number of cases in the whole

study divided by number of controls.

Simulations are conducted in (82) to estimate size and power for the naive methods

and the inverse probability weighting (IPW) method and dummy variable adjustment

method in (97). They conclude that IPW has adequate type I error but has increased

variance and sometimes decreased power compared to the naive approaches. Note,

however, that the simple unweighted analysis and the analyses that adjust for case

status with a binary variable or restrict to either cases or controls have slightly inflated

type I error when the primary disease is not rare and both the genetic profile and

secondary phenotype are related to the primary disease. There are also situations in

which the IPW method is more efficient than the method that adjusts for case-control

status with an indicator variable for case status.

A rigorous likelihood based approach is derived in (66). However, (63) points out

that (66) assumes no interaction between the covariate information (genotypes) and the

secondary phenotype and that in the case of interaction in modeling the probability

of having the primary disease, the results may be biased. They propose an adaptive

weighting parameter estimate motivated by a Bayesian shrinkage estimator for gene-

environment interaction when the disease is rare.

The bias may be corrected by solving iterated non-linear equations relating regression

coefficients to estimates of prevalence of the disease and phenotype from the literature
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and using bootstrapping to calculate confidence intervals via the percentile method,

(140). Their method assumes that the secondary phenotype may be modeled by logistic

regression given a set of binary covariates and the primary disease may be model by

logistic regression given the covariates and the secondary phenotype but no interaction.

They describe the IPW method in (97) and extend it to retrospective case-control

studies using an estimate of disease prevalence. They also adapt their bias correction

method to the frequency-matched case-control study design. Their method produced

narrower confidence intervals than the IPW method.

In their second paper, (141) conduct simulations, which show that the method

in (140) has adequate size and is more powerful than the naive logistic regression

approaches. A joint model based on a Gaussian copula is proposed by (47) for one

or more secondary phenotypes in the exponential family and the disease of interest

given the covariate, i.e. genotype. Their simulations confirm that their method is more

powerful than the IPW method. Unlike other methods, this one allows joint modeling of

multiple secondary phenotypes that is more powerful than multiple univariate analyses.

2.6 Sparse Factor Analysis

Latent variable models are frequently used in statistics. In certain situations, it

is reasonable to assume that observed variables are random variations of one or more

unobserved random variables. Within the field of psychometrics, studies often consist

of a large number of correlated measured variables, which may be manifestations

of a smaller number of underlying constructs. Factor analysis is commonly used

for this purpose. In factor analysis models, the observed data is assumed to be

a linear combination of the unobserved factors, plus random error. See (9) for an

excellent description and illustration of some simple factor analysis models. A more

19



theoretical description of the problem of factor analysis is provided in (3) along with a

demonstration that it may fall into the Bayesian framework.

Factor analysis may be either exploratory or confirmatory in nature. Exploratory

factor analysis (EFA) aims to discover underlying relationships between the observed

variables and is more commonly used (91). Confirmatory factor analysis (CFA) begins

with an a priori structure and tests hypotheses about those structures using the factor

analysis setting. Researchers such as (137, 55) have debated quite heatedly about when

each type of factor analysis is appropriate.

Principal component analysis (PCA) is more frequently used in statistics than

is factor analysis. In principal component analysis, instead of assuming that there

are unobserved variables driving the observed data, it is desired to extract linear

combinations of the observed variables. The first linear combination, or component,

explains the largest amount of variability in the data. The second component explains

the next largest amount of variance, and so on. Traditionally, principal component

analysis extracts the same number of components as there are observed variables.

However, since data reduction is commonly a goal of PCA, usually the analyst selects

a smaller number of components that explains a sufficient amount of variance.

It is desired to have sparse loadings, meaning that many of the loadings are equal to

zero. Unfortunately, neither principal component analysis nor factor analysis produce

sparse loadings. This can be problematic, especially in genetic settings, where the

number of variables present in the study can be very large. Two methods (157,

147) have recently been proposed for sparse principal component analysis. (147)

uses a penalized matrix decomposition to produce more sparse results than traditional

principal component analysis.

The aforementioned sparse principal component analysis methods do not immediately

generalize to factor analysis models. To date, the author of this dissertation has not
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found any articles on sparse factor analysis.
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CHAPTER 3: PARAMETER ESTIMATION IN COX
PROPORTIONAL

HAZARD MODELS WITH MISSING CENSORING
INDICATORS

3.1 Introduction

Time-to-event analyses are frequently conducted in medicine, actuarial science, and

numerous other fields of applied science. There is a well-developed set of survival

analysis methods implemented in standard software. Semi-parametric methods, such as

the Cox proportional hazards model, allow robust estimation of the effects of covariates

on the hazard function. However, these methods require the analyst to know the

censoring status of each participant, which may not always be available.

In some cases the outcome of interest may be difficult to ascertain. For example, in

oncology studies, researchers may want to differentiate between deaths due to cancer

and deaths due to car accidents or other unrelated causes. Investigators may easily

record the mortality of all subjects, but it may be extremely difficult or costly to find

out exactly why each subject died. One possible solution to this problem is delayed

event adjudication (8). This means that possible cases are not identified immediately

but screened using simple methods that may have poor sensitivity or specificity. Later,

the screened candidate cases are re-examined using a more precise, but also more costly

and time-consuming, method to determine the true event status.

The study that motivates our work is Orofacial Pain: Prospective Evaluation and

Risk Assessment (OPPERA), a prospective cohort study to identify risk factors for the

onset of temporomandibular disorders (TMD). Each (initially TMD-free) OPPERA
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study participant was followed for a median of 2.8 years to identify cases of first-

onset TMD. However, it was impractical to perform a physical examination on every

participant. It would also have been inefficient given that most study participants did

not develop the condition. Instead, this “gold standard” examination was performed

only on participants who screened positively on a quarterly screening questionnaire

that was designed to assess recent orofacial pain (1). However, some participants

who screened positively were lost to follow-up before receiving the “gold standard”

examination. Thus a time-to-event analysis would have some participants with missing

censoring indicators.

Cook and Kosorok (8) estimate parameters in Cox proportional hazard models with

missing censoring indicators by weighting observations according to their probability

of being a true case. They show that the estimators are consistent and asymptotically

normally distributed. However, the standard error of their proposed estimate cannot

be easily obtained using existing software without bootstrapping. For the OPPERA

data, a separate Cox model was calculated for each putative risk factor of interest,

including approximately three thousand genetic markers. Consequently, applying this

method to the OPPERA genetic data would be computationally intractable.

In the OPPERA study, the likelihood that a participant who screened positively

was examined was associated with demographic variables such as gender, race, or

socioeconomic status (1). This indicated that the censoring indicators in the OPPERA

study were not missing completely at random (MCAR). Application of models that

assume MCAR censoring indicators may result in biased estimates of hazard ratios for

covariates of interest. More importantly, a participant’s responses to their screening

questions are predictive of whether or not they are an incident case of TMD. This

setting presents statistical challenges, which require care in order to avoid bias and

maintain efficiency. Additionally, incidence rate estimates are desired, and none of the
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methods currently available allow for estimation of the incidence rate. There is a clear

need for new methodology to effectively answer the research questions of the OPPERA

study.

In this paper, we propose a method for parameter and variance estimation in

Cox regression models with missing censoring indicators. The motivating data set

is introduced in section 3.2. We describe our method in section 3.3. In section 3.4, we

report the results of simulations. Finally, in section 3.5 we apply our method to the

OPPERA study. We conclude with a discussion in section 3.6.

3.2 Motivating Data Set: The OPPERA Study

OPPERA is a prospective cohort study designed to identify risk factors for first-

onset TMD. A total of 3,263 initially TMD-free subjects were recruited at four study

sites between 2006 and 2008. TMD status was confirmed by physical examination of

the jaw joints and muscles using the Research Diagnostic Criteria for TMD (25), which

is the gold standard for diagnosing TMD.

Upon enrollment in the study, each OPPERA participant was evaluated for a wide

variety of possible risk factors for TMD, including psychological distress, previous

history of painful conditions, and sensitivity to experimental pain. For a brief overview

of the risk factors of interest in the OPPERA study, see Section 6 in the Web Appendix.

See Ohrbach et al. (86), Fillingim et al. (37), Greenspan et al. (46), and Maixner et al.

(76) for a complete description of the baseline measures that were collected in OPPERA.

After enrollment, each participant was asked to complete questionnaires to evaluate

recent orofacial pain once every three months. These questionnaires (hereafter referred

to as “screeners”) evaluated the frequency and severity of pain in the orofacial region

during the previous three months. The purpose of the screener was to identify participants

who were likely to have recently developed TMD. For a complete description of the
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screener, see Slade et al. (114). Participants who screened positively were asked to

undergo a follow-up physical examination by a clinical expert to diagnose presence or

absence of TMD.

Of the 3,263 subjects, 2,737 filled out at least 1 screener, and the remaining 521 did

not fill out any screeners. The total number of screeners was 26,666. There were 717

positive screeners, 486 (about 68%) of which were followed by a clinical examination.

As reported in Bair et al. (1), case classifications made by one examiner (hereafter,

“Examiner #4”) were deemed unreliable because the examiner diagnosed a much higher

percentage of individuals with TMD compared to other examiners. We therefore set

all of Examiner #4’s physical examination findings to be missing and imputed them

using the methods in this paper. This left 404 positive screeners (56%) resulting in

valid clinical exams. On the individual level, after setting the exams from Examiner

#4 to missing, there were 404 people who had one positive screener, and 114 people

who had two or more positive quarterly screening questionnaires.

3.3 Model

3.3.1 Notation and Assumptions

Assume there are n independent participants. For each participant i (i = 1, . . . , n),

let Ci and Ti denote the potential times until censoring and failure, respectively, let

Vi = min(Ti, Ci), ∆i = I(Ti ≤ Ci), Ni(t) = I(Ti < t). Let Zi a p×1 vector of covariates

measured at baseline and let Xi be a q× 1 vector of covariates measured at the time of

the putative event. We assume the hazard for participant i follows a Cox proportional

hazards model

λ(t|zi) = λ0(t) exp(β′zi) (3.1)
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where λ0(t) is an unspecified baseline hazard function. Let ξi denote the indicator that

∆i is observed and σi = ξi∆i. We observe (Vi, ξi, σi) for i = 1, . . . , n.

In the OPPERA study, Vi is the length of time for participant i between enrollment

in the study and either of two events

(a) a screener which resulted in a diagnosis of incident TMD

(b) the last-completed screener before loss-to-follow-up.

If participant i either screened positively and subsequently was diagnosed with TMD,

then ∆i = 1. If participant i either screened negatively on the last quarterly screener

before loss-to-follow up or screened positively and was diagnosed to be free of TMD,

then ∆i = 0. If participant i screened positively on the last screener but was not

examined, then ∆i is missing and ξi = 0. The putative risk factors for TMD that were

assessed at enrollment are denoted by the vector Zi. Responses to the screener for

participant i at time Vi are denoted by the vector Xi. For OPPERA, we also define

Qi = 1 if participant i screens positively on the last screener before either a positive

diagnosis of TMD or loss to follow-up and Qi = 0 otherwise.

We assume the censoring indicators are missing at random (MAR) as follows:

P (ξi = 0|Xi, Vi,∆i, Qi = 1) = P (ξi = 0|Xi, Vi, Qi = 1) (3.2)

In other words, the probability of having a missing censoring indicator may depend on

measured factors, but it does not depend on whether or not an event occurred. We will

denote the probability in (3.2) by ρ(Xi, Vi).
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3.3.2 Estimating Event Probabilities

We model the probability that participant i with a missing censoring indicator is a

case by a logistic regression model based on Xi and Vi:

P (∆i = 1|Xi, Vi, Zi, ξi = 0, Qi = 1)

= P (∆i = 1|Xi, Vi, Qi = 1)

=
exp(α′Xi + γVi)

1 + exp(α′Xi + γVi)
I(Qi = 1) (3.3)

That is, we estimate the probability of examiner-diagnosed TMD in a participant

who was not examined as intended. (Here I(x) denotes an indicator function.) The

probability was estimated using the time between enrollment and their last positive

screener as well as their answers on that screener. Then, for those individuals who

screened positively on the last screener (i.e. those with Qi = 1) and were not examined,

the estimated probability of being a case is estimated by (3.3) with the parameters

replaced by their respective estimates based on individuals who were examined.

Note that if there are repeated measures, we may use a generalized linear mixed

effects logistic regression model rather than a standard univariate logistic regression

model. For example, if some participants screen positively on more than one screener

and are examined at least once, then we have multiple observations per participant.

In that case, fitting a generalized linear mixed effects logistic regression model rather

than a standard logistic regression model would account for correlations between the

responses of the same participant.

3.3.3 Multiple Imputation

One popular method for handling missing data is multiple imputation. For a

comprehensive review on multiple imputation, see (103). Our imputation procedure

27



is as follows:

(i) Estimate predicted probabilities as described in the previous section for observations

with missing censoring indicators. These are the individuals who screen positively

but are not examined by a clinician.

(ii) For each observation with a missing censoring indicator, generate a Bernoulli

random variable with success probability equal to the predicted probability found

in step (i).

(iii) Combine the raw data and imputed data from step (ii) to form a completed data

set.

(iv) Fit the Cox proportional hazards model to the completed data set.

(v) Record each parameter estimate β̂j and covariance matrix Ûj.

(vi) Repeat steps (ii)-(v) for a total of m times, where m is the desired number of

imputations.

Next, we combine all of the estimates. The average parameter estimate is

β̄ =
1

m

m∑
j=1

β̂j, (3.4)

the within-imputation variance estimate is

Ū =
1

m

m∑
j=1

Ûj, (3.5)

and the between-imputation variance

B̂ =
1

m− 1

m∑
j=1

(β̂j − β̄)(β̂j − β̄)′. (3.6)
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Finally, the estimated covariance matrix is

ˆV ar(β̄) = Ū + (1 +
1

m
)B̂. (3.7)

3.3.4 Estimation of Incidence

Previous sections of this paper described how to estimate hazard ratios in the

presence of missing censoring indicators. It may also be of interest to estimate incidence

rates for the same event using Poisson regression instead of Cox regression. For example,

one of the aims of the OPPERA study is to estimate the incidence rate of first-onset

TMD.

In order to estimate incidence rates, we estimate the case probabilities as described

previously based on participants who screened positively and were examined. Then we

impute case status as described in section 3.3.3 for those who screened positively but

were not examined. However, in this case we fit Poisson regression models, rather than

Cox models, to the completed data sets. Finally, we calculate the incidence rate based

on the estimates of the regression coefficients in the Poisson model. Specifically, we use

the data from imputation j to fit the model

log(E(∆ij|Zi, Vi)) = α + β′Zi + log(Vi) (3.8)

where ∆ij denotes the jth imputation for observation i, j = 1, . . . ,m. We combine the

m imputations using equation (3.4) and

ᾱ =
1

m

m∑
j=1

α̂j. (3.9)

The estimated incidence rate for an individual with covariate Z∗ is given by exp(ᾱ +

β̄Z∗).
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3.4 Simulations

Data with missing censoring indicators were simulated, and several possible methods

were compared with respect to bias, coverage, and confidence interval width. Survival

times for 1,000 individuals were generated with exponentially distributed failure times

under a proportional hazards model with covariates as proposed by Bender et al. (4).

That is, the survival time for each individual was distributed according to (3.1) where

λ0(t) = 1 is the baseline hazard. For our simulations, Zi = Xi1 was a single baseline

covariate following a normal distribution with mean 2 and unit variance. In other words,

the failure times Ti followed an exponential distribution with hazard exp(β′Xi1) where

β ∈ {−0.5,−1.5,−3}. The censoring times Ci followed an exponential distribution

with mean 5. This yielded about 35%, 75% and 90% censoring for β = −0.5, β = −1.5,

and β = −3, respectively.

Covariates are represented by Xi1, a risk factor for TMD measured at enrollment,

and Xi2, a measurement collected on the last screener. For each observation, a normally

distributed covariate Xi2 was generated with mean ∆i and standard deviation 0.3,

representing a continuous measure of the likelihood of being identified as an incident

case of TMD. This was used to generate Qi = I(Xi2 > 0.5), an indicator of whether

participant i screened positive on their last screener. Also, ξi = I(∆i is observed)

corresponds to the indicator of whether participant i came in for their clinical exam if

Qi = 1. In all simulations, we set ∆i = 0 if Qi = 0 (i.e. the participant’s final screener

was negative). This decision was made to reflect the fact that OPPERA participants

who screened negatively were not examined.

We created missing censoring indicators under the following classical missing data

mechanisms of Rubin (101):

(I) The probability of having a missing censoring indicator is independent of the
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data. This is known as missing completely at random (MCAR).

(II) The probability of having a missing censoring indicator depends on an observed

covariate. This is known as missing at random (MAR).

(III) The probability of having a missing censoring indicator depends on the (potentially

unobserved) censoring indicator. This is known as missing not at random (MNAR).

Our method assumes that the data are MAR, which includes MCAR as a special

case. Our simulations under MAR and MNAR parallel the study protocol in that

censoring indicators can only be missing for those with positive screeners. In other

words, observations were potentially missing if and only if Qi = 1. (Individuals with

negative screeners have Qi = 0 and are assumed to be censored. Those with positive

screeners have Qi = 1 and may have missing clinical examinations.) Details and results

for MCAR and MNAR data are shown in Sections 6 and 6 in the Web Appendix.

We also considered several simulation scenarios where the logistic regression model for

predicting the censoring indicator was misspecified; see Section 6 in the Web Appendix.

For MAR data, we set censoring indicators to be missing with probability

ρi(Xi, Vi) = P (ξi = 0|Xi, Vi, Qi = 1) (3.10)

=
exp(−0.2− 0.3Xi1 + 0.1Vi)

1 + exp(−0.2− 0.3Xi1 + 0.1Vi)
. (3.11)

In each simulated data set, all observations with observed censoring indicators who

had screened positively were used to fit a logistic regression model for case status with

covariates Xi1, Xi2 and Vi. That is, using the complete data (i.e. observations with

Qi = 1 and ξi = 1), we fit the logistic regression model for the event probability

conditional on X ′i = (1, Xi1, Xi2) and Vi, namely

logit{P (∆i = 1|Xi, Vi, Qi = 1, ξi = 1)} = α′Xi + γVi (3.12)
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The estimated probabilities p̂i = exp(α̂′Xi+γ̂Vi)
1+exp(α̂′Xi+γ̂Vi)

were calculated for individuals with

Qi = 1.

To evaluate the performance of our method, multiple imputation was employed

to calculate 100 imputed estimates of β for each simulation as described in Section

3.3.3. For each observation i with Qi = 1 and ξi = 0, we estimated failure indicators

∆̂ij ∼ Bernoulli(p̂i) independently for each imputation j.

A Cox proportional hazards model was fit for each imputed data set, and the

imputed estimates of the regression coefficient and their variances were recorded. These

were aggregated using equations (3.4) and (3.7) to create confidence intervals for the

multiple imputation estimates.

The performance of our method was compared with that of the method of Cook and

Kosorok (8). To obtain the estimates of (8), for each simulated data set, we estimated

the probabilities p̂i that the (potentially unobserved) event for participant i is a true

event, as described previously. We then fit a weighted Cox proportional hazards model

to the data set. Two new observations were generated for observations with missing

censoring indicators. Each such pair of observations had the same failure time and

covariates, but different failure indicators and weights. The first observation had weight

p̂i and ∆̂i = 1, and the second observation had weight 1− p̂i and ∆̂i = 0. Participants

with fully observed data had unit weight. The estimated regression coefficient, β̂ was

recorded. The variance of this estimate was estimated by generating 1000 bootstrap

replicates of each simulated data set and refitting the model for each bootstrap replicate.

The average parameter estimate,
¯̂
β and percentile confidence intervals (β0.025, β0.975)

were all recorded, where βα is the αth quantile among the 1000 bootstrap replicates.

We also compared our method to the ideal situation in which all data were observed,

complete case analysis (meaning that we exclude from the data set all observations with

missing censoring indicators), and two ad hoc methods in which we treat the missing
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indicators either all as censored or all as failures. Results under the assumption of MAR

are shown in Table 3.1. We estimated the bias of each method by calculating the mean

difference between the estimated Cox regression coefficient and the true coefficient over

the 1000 simulations. We also calculated the mean width of the confidence intervals

produced by each method over the 1000 simulations. Similarly, we calculated the

empirical coverage probability for the confidence intervals produced by each method by

dividing the number of times that the confidence intervals contained the true value of

the parameter by 1000. Finally, we report the Monte Carlo error for the coverage rate,

which is the error in the empirical coverage probability due to conducting only a finite

number of simulations (which would be
√
α(1− α)/n for n simulations).

The empirical coverage probability of the imputed confidence intervals is close to

the nominal level (0.95) in all simulations. Our multiple imputation method and the

method of Cook and Kosorok (8) produced approximately unbiased estimates and valid

confidence intervals in all the scenarios we considered. The estimates produced by the

other methods showed a larger amount of bias and did not always achieve the desired

coverage level. Our multiple imputation method also yielded the narrowest confidence

intervals in each scenario, although the method of Cook and Kosorok (8) produced

confidence intervals that were only slightly wider. Moreover, for most parameter values,

the coverage probabilities for the complete case and ad hoc methods were significantly

different (p < 0.01) from the nominal rate.

In addition, we examined the performance of our proposed methods when we

changed the logistic regression model for ∆i. We investigate two additional types

of models: one in which the model contained a variable unrelated to case status

and another in which the model does not include one variable related to case status.

As in the previous simulations, the failure times were generated by (3.1), censoring

was exponential with mean 5, failure indicators were set to be missing completely at
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random or missing at random with probability given in equation (3.10), Xi1 ∼ N(2, 1),

Xi2 ∼ N(∆i, 0.3) and Qi = I(Xi2 > 0.5) for i = 1, . . . , n. We also generated

Xi3 ∼ N(0, 1) where Xi1, Xi2, Xi3 were mutually independent.

In the previous simulations, we fit the data to (3.12) with Xi = {Xi1, Xi2}. The

additional simulations instead used the covariates and parameters as follows:

(A) X̃i = {1, Xi1, Xi2, Xi3}, α̃ = {α̃0, α̃1, α̃2, α̃3}

(B) X̃i = {1, Xi1} α̃ = {α̃0, α̃1} .

That is, rather than fitting model (3.12) to the data, we modeled the case probability

with

logit{P (∆i = 1|Xi, Vi, Qi = 1)} = α̃′X̃i + γVi. (3.13)

The results, which are shown in Section 6 in the Web Appendix, remained similar

under both alternative models. This indicates that the proposed methods are robust to

misspecification of the logistic regression model. Most notably, leaving out one covariate

that was weakly related to case status did not markedly decrease the performance of

the method.

Finally, we conducted simulations to evaluate the method’s ability to estimate

incidence rates. A similar multiple imputation strategy was applied to Poisson regression.

Our method produced estimates much closer to the true incidence rates than the

complete case estimate. In fact, the complete case method underestimated incidence

rates by as much as a factor of 3. See Section 6 in the Web Appendix for details.

3.5 Analysis of the OPPERA Study

In this section, we apply our method to estimate hazard ratios and incidence rates

in the OPPERA study.
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3.5.1 Hazard Ratios

We applied our method to the OPPERA cohort to adjust for the effect of participants

with missing clinical examinations. (Note that examinations for participants evaluated

by Examiner #4 were also treated as missing.) First, we estimated the probability

that a participant would be diagnosed as an incident case of TMD given a positive

screener. Due to the rich body of information collected in each screener, we carefully

selected a small number of predictor variables. Specifically, we fit a generalized linear

mixed model with a logistic link function to predict the result of the clinical exam based

on each item in the screener. A mixed model was used because a significant (n=113)

minority of participants screened positive more than once. All models were adjusted

for study site and included a random effect term for each participant.

The majority of the variables measured on the screener were not associated with

the result of the clinical examination. The strongest predictor of being diagnosed with

TMD was a count of non-specific orofacial symptoms (e.g stiffness, fatigue) in the

previous three months. The time elapsed since enrollment and OPPERA study site

were also important covariates, as shown in (1). Several other possible predictors of

being diagnosed with TMD were identified, but including these additional predictors

in the model did not significantly improve the predictive accuracy of the model. Thus,

we estimated the probability of being diagnosed with TMD based on the count of

non-specific orofacial symptoms, time since enrollment, and OPPERA study site. This

model was used to perform multiple imputation for those with no clinical examination.

These imputed data sets were used to fit a series of Cox proportional hazards models

to estimate the hazard ratio (and associated confidence interval and p-value) for each

predictor using the methods described in section 3.3.3. Examples of predictors include

perceived stress, history of comorbid chronic pain conditions, and smoking status.

In addition, Bair et al. (1) examined univariate relationships between examination
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attendance and numerous possible predictor variables. Differences between examined

and non-examined participants were small and most were not statistically significant.

However, this indicates that the data were not missing completely at random.

Table 3.2 shows the results of applying our method to a subset of the putative risk

factors of TMD measured in OPPERA. Due to the large number of putative risk factors

measured in OPPERA, we only report the results for a selected subset of the variables.

All continuous variables were normalized to have mean 0 and standard deviation 1

prior to fitting the Cox models. (Thus, the hazard ratios for the continuous variables

represent the hazard ratios corresponding to a one-standard deviation increase in the

predictor variable.) In Table 3.2, all the quantitative sensory testing and psychosocial

variables were continuous, while all of the clinical variables were dichotomous (and

hence were not normalized). For a more detailed description of the OPPERA domains,

see Section 6 in the Web Appendix, (75), and (113).

Compared to the unimputed results, which treated missing censoring indicators as

censored observations, imputation slightly reduced the hazard ratios for most of the

psychosocial variables that were measured in OPPERA. For instance, Table 3.2 shows

the (standardized) hazard ratios for the Pennebaker Inventory of Limbic Languidness

(PILL) score, the neuroticism subscale of the Eyesenk Personality Questionnaire (EPQ),

the Spielberger Trait Anxiety Inventory score, the Perceived Stress Scale, and the

somatization subscale of the Symptom Checklist-90, Revised (SCL-90R). In each case,

the hazard ratios were reduced after imputation.

A similar pattern was observed after applying our imputation method to the measures

of experimental pain sensitivity. The mechanical pain aftersensation ratings were

strongly associated with first-onset TMD before imputation, but they were only weakly

associated with first-onset TMD after imputation. The pressure pain algometer ratings

were also more weakly associated with TMD after imputation (and two of three ratings
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in Table 3.2 were no longer significantly associated with first-onset TMD at the p < 0.05

level).

Interestingly, the hazard ratios for the presence of one or more palpation tender

points at the temporalis and masseter muscles were also attenuated after imputation.

These tender points were evaluated as part of the clinical examination using a different

protocol than the quantitative sensory testing algometer pain ratings. However, both

pain measures (algometer and palpation) were measured at the same facial locations.

While the palpation ratings were more strongly associated with first-onset TMD than

the algometer ratings both before and after imputation, it is interesting that different

pain sensitivity measures using different protocols at the same anatomical location were

both attenuated by imputation.

The effects of other clinical variables were also attenuated after imputation. For

example, the hazard ratios associated with being unable to open one’s mouth wide in

the past month and having two or more comorbid pain conditions were both noticeably

attenuated after imputation. However, other clinical variables were more strongly

associated with first-onset TMD after imputation. For example, having a history of

respiratory illness was only weakly associated with first-onset TMD before imputation

(HR=1.38, p=0.04), but the association was much stronger after imputation (HR=1.43,

p=0.004). Also, being a current smoker was not significantly associated with first-

onset TMD before imputation (HR=1.26, p=0.24) but was associated after imputation

(HR=1.49, p=0.02).

3.5.2 Incidence Rates

In Table 3.3, the incidence rate of first-onset TMD was estimated using two different

approaches. First, all missing censoring indicators were treated as censored. Second,

the multiple imputation method in this paper was used to estimate the incidence rate.
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The estimated TMD incidence rate using multiple imputation was 66% greater than

the unimputed estimate. The estimated incidence rate increased by 64% for females

and 72% for males. Estimated incidence rates for whites and Hispanics were 99% and

193% higher, respectively, with imputation. Thus, the incidence rate is likely to be

underestimated without imputation.

3.6 Discussion

We have developed a computationally efficient method to adjust for missing censoring

indicators in time-to-event data using logistic regression and multiple imputation.

Logistic regression is used to estimate the failure probability for participants with

missing censoring indicators. The missing values are imputed, and the standard errors

are estimated using our multiple imputation method. This framework is important in

studies where failure status may be measured in stages, which may lead to missing

censoring status indicators. This is a common occurrence in studies of diseases that

are difficult or expensive to diagnose, such as TMD.

The present method is similar to the method of Magder and Hughes (74), who

use an iterative procedure for parameter estimation based on the EM algorithm. Our

assumption of MAR data renders their iterative method unnecessary. Other methods

(78, 43, 122) depend on the MCAR assumption, which does not hold for the OPPERA

study. Chen et al. (6) estimate Cox regression parameters using the EM algorithm

and establish their consistency under basic regularity conditions, including missing

at random (MAR) censoring indicators. However, their approach depends on the

assumptions of piecewise constant proportional hazard functions for the censoring time

as well as for the failure time.

In each simulation scenario, our multiple imputation method produced the narrowest
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valid confidence intervals and no significant bias. In particular, the method of Cook and

Kosorok (8) produced slightly wider confidence intervals in all but one of the simulations

we considered. The differences were extremely small, so the performance of the two

methods appear to be comparable for most practical purposes. However, we believe

that our method has several possible advantages over the method of Cook and Kosorok

(8). First, bootstrapping is much more intensive computationally than our multiple

imputation approach. Calculating bootstrap confidence intervals generally requires

at least 1000 bootstrap replicates (33), whereas as few as 10 imputed data sets may

be sufficient for multiple imputation (70). Although the difference in the computing

time of the two methods is small for a single fitted model, many such models will be

required in the course of the OPPERA study. OPPERA has already collected data on

approximately 3000 genetic markers and has plans to collect data on approximately a

million genetic markers in a genome-wide association study. Thus, at least 3000 (and

potentially as many as a million) Cox models will need to be fit, and our proposed

method may allow for a significant decrease in computing time. Moreover, our method

can also be easily implemented in popular statistical software packages (such as SAS)

without additional programming.

Additionally, our methodology may easily be extended to other models, such as

Poisson regression. We conducted simulations (Table A1.10 in the Web Appendix) that

showed that our proposed method can be used to estimate incidence rates using Poisson

regression, which is one of the research aims of the OPPERA study. In particular,

estimates of the failure rates were biased when missing censoring indicators were treated

as censored or when the complete case method was used, but they were unbiased when

we employed the methodology in this paper. The method of Cook and Kosorok (8)

cannot be used for incidence rate estimation.

Our method may yield increased bias and decreased coverage if the logistic regression
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model for predicting case status is inaccurate, as observed in the simulations in Section

6 in the Web Appendix. However, this would also be true for competing methods,

including the method of (8).

In the OPPERA study, the hazard ratios associated with some variables were

noticeably different after imputation. Although other results remained qualitatively

unchanged, we note that even small changes in hazard ratios are important. In addition,

estimated incidence rates were significantly increased after imputation. Since the results

of OPPERA may become normative in the orofacial pain literature, precise calculation

of the incidence rate of TMD and the hazard ratios associated with putative risk factors

is important. Thus, imputation is recommended.
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Table 3.1: Simulation Results for MAR

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0005 0.0006 0.1668 0.0001 0.938

Complete Case 0.0018 0.0007 0.2155 0.0001 0.951
Treat all as Censored 0.1053 0.0007 0.2131 0.0001 0.494
Treat all as Failures 0.0018 0.0006 0.1701 0.0001 0.941
Cook & Kosorok -0.0010 0.0006 0.1738 0.0001 0.943
Multiple Imputation -0.0010 0.0006 0.1716 0.0001 0.938

-1.5 Full Data -0.0008 0.0010 0.3185 0.0002 0.966
Complete Case -0.0626 0.0015 0.4343 0.0003 0.930
Treat all as Censored 0.1215 0.0014 0.4229 0.0003 0.778
Treat all as Failures 0.0680 0.0010 0.3160 0.0002 0.852
Cook & Kosorok 0.0002 0.0011 0.3412 0.0004 0.951
Multiple Imputation 0.0002 0.0011 0.3309 0.0002 0.961

-3 Full Data -0.0301 0.0025 0.7627 0.0009 0.957
Complete Case -0.1996 0.0037 1.0840 0.0017 0.913
Treat all as Censored 0.0987 0.0035 1.0417 0.0016 0.919
Treat all as Failures 0.5875 0.0024 0.6307 0.0006 0.104
Cook & Kosorok -0.0275 0.0027 0.9112 0.0017 0.946
Multiple Imputation -0.0282 0.0027 0.8057 0.0011 0.947

*: The Monte Carlo error is 0.007.

41



Table 3.2: Results from the OPPERA Study
Treat All MCIs as Censored Multiple Imputation

HR LCL UCL P HR LCL UCL P

Clinical Variable

In the last month
3.26 1.83 5.84 <0.0001 2.45 1.42 4.22 0.0012

could not open mouth wide
Has two or more comorbid 3.08 2.26 4.21 <0.0001 2.50 1.90 3.29 <0.0001
chronic pain disorders
History of 5 respiratory conditions 1.38 1.01 1.87 0.0408 1.45 1.13 1.87 0.0040
Smoking: current 1.26 0.86 1.84 0.2403 1.49 1.07 2.09 0.0199
Smoking: former 1.87 1.22 2.87 0.0041 1.65 1.12 2.43 0.0106
One or more palpation tender

1.83 1.32 2.52 0.0002 1.54 1.18 2.02 0.0017
points: right temporalis
One or more palpation tender

1.60 1.14 2.25 0.0064 1.48 1.12 1.97 0.0060
points: left temporalis
One or more palpation tender

1.85 1.35 2.53 0.0001 1.63 1.25 2.12 0.0003
points: right masseter
One or more palpation tender

1.70 1.23 2.35 0.0013 1.53 1.17 2.01 0.0021
points: left masseter

Quantitative Sensory Testing Variable

Pressure pain threshold: temporalis 1.26 1.07 1.49 0.0065 1.16 1.01 1.33 0.0335
Pressure pain threshold: masseter 1.23 1.04 1.45 0.0170 1.15 1.00 1.32 0.0576
Pressure pain threshold: TM joint 1.25 1.05 1.48 0.0106 1.14 1.00 1.30 0.0555
Mechanical pain aftersensation:

1.23 1.09 1.38 0.0006 1.15 1.03 1.28 0.0123
512mN probe, 15 s
Mechanical pain aftersensation:

1.20 1.07 1.34 0.0020 1.12 1.01 1.25 0.0328
512mN probe, 30 s

Psychosocial Variable

PILL Global Score 1.52 1.35 1.71 <0.0001 1.46 1.31 1.62 <0.0001
EPQ-R Neuroticism 1.39 1.21 1.60 <0.0001 1.26 1.12 1.42 0.0002
Trait Anxiety Inventory 1.43 1.25 1.64 <0.0001 1.35 1.21 1.52 <0.0001
Perceived Stress Scale 1.35 1.17 1.55 <0.0001 1.30 1.16 1.47 <0.0001
SCL 90R Somatization 1.44 1.31 1.58 <0.0001 1.40 1.29 1.52 <0.0001
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Table 3.3: Estimated TMD Incidence Rates With and Without Imputation

No MI MI Percent Change
Overall 2.23 3.70 66
Males 1.87 3.22 72
Females 2.46 4.03 64
White 1.70 3.37 99
Black 4.20 5.32 27
Hispanic 1.17 3.44 193
Other 1.10 1.80 63

Incidence rates are given in cases per 100 person-years.
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CHAPTER 4: MODELING SECONDARY PHENOTYPES
CONDITIONAL ON GENOTYPES IN

CASE-CONTROL STUDIES

4.1 Introduction

Prospective studies are more straightforward and less prone to confounding than

other study designs. However, they may require either extremely long follow-up periods

or large sample sizes and lack power. For rare diseases, in particular, the sample

sizes required in a prospective cohort study to have adequate statistical power to test

hypotheses of interest may be prohibitively large. This can be especially problematic in

genetic association studies, which may cost thousands of dollars per participant just to

extract their genetic profiles. Retrospective case-control studies are more cost-effective.

The number of case-control studies focusing on the relationship between genetics and

disease outcomes has grown astronomically in recent years.

It is well known that when modeling the probability of case status in a case control

design, simple logistic regression may be used to model the primary outcome as if

the study were prospective (95). However, researchers may design studies based on

one outcome but study outcomes of secondary interest simultaneously or via a new

follow-up study. Without proper care, analysis of secondary phenotypes in case-control

studies may be problematic. Standard methods, such as logistic regression, may be

biased, inefficient, or lead to misleading inference. The standard method of unweighted

regression on the full case control sample and the method of adjusting for case status

with an indicator variable have inflated type I error when the disease is not rare, (82).
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The popular practices of restricting to cases or restricting to controls greatly reduce

efficiency and may be subject to bias.

This methodological work arose in consideration with data from the Orofacial

Pain: Prospective Evaluation and Risk Assessment (OPPERA) Study (113). The

OPPERA study was primarily designed to identify risk factors for temporomandibular

disorders (TMD). In addition to the cohort of initially-TMD-free adults enrolled in

the prospective cohort study, people with examiner-verified chronic TMD were were

enrolled to create an unmatched, case-control study. A large number of putative risk

factors were collected at enrollment (75). In particular, investigators seek to explain

relationships between TMD and other chronic pain conditions. One putative risk factor

of interest in its own right is the (ordinal) number of comorbid pain conditions a

subject experiences. The genetic information collected may be predictive of comorbid

conditions as well as of TMD. There currently are no readily available methods to assess

the relationship between comorbid conditions, a secondary phenotype, and individual

candidate genes.

Over the past five years, some methods have been proposed for analyzing secondary

phenotypes in case-control studies. For logistic regression, (97) recommends weighting

subjects from a nested prospective case-control study by the reciprocal of their probability

of selection. This stratum-weighted logstic regression method, also called inverse probability

weighting (IPW), achieves the nominal type I error rate but can be less efficient than

the standard unadjusted method or the method of adjusting for case status (82). (Yet,

in light of the fact that the method of adjusting for case status may have inflated type I

error, the lower power of IPW is less alarming.) More significantly, the IPW estimator

of (97) may merit a correction factor for the standard error. (82) provides a robust

sandwich estimator for the variance based on generalized estimating equations (GEE),

which applies to both continuous and binary outcomes.
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(66) propose a likelihood based method for both continuous and binary outcomes

that is more powerful than the IPW method, but the results may be biased and

have inflated size when there is significant interaction between the genotypes and the

original outcome (63, 47). (140) propose a bootstrap estimate for binary outcomes.

They first derive non-linear equations relating the logistic regression coefficients to

known sample sizes and prevalence estimates for the primary disease and secondary

phenotype. Then they calculate the unadjusted parameter estimate and standard error,

resample parameter estimates from a normal distribution with that mean and standard

error, refine the estimate for each replication by solving the aforementioned non-linear

equations, and then using the percentile method for confidence intervals. They also

adapt their bias correction method to the frequency-matched case-control study design

and extend the IPW method to retrospective case-control studies using an estimate of

primary disease prevalence to calculate weights. (141) demonstrate that these methods

have greater efficiency than the IPW method, but they assume that the secondary

phenotype and covariates are binary and there is no gene-environment interaction.

When there is gene-environment interaction and the disease is rare (63) recommend

estimation with adaptive weighting motivated by a Bayesian shrinkage estimator. (47)

discuss joint modeling based on Gaussian copulas for the analysis of multiple secondary

phenotypes in the exponential family. The copula method has controlled type I error

and is more powerful than the IPW method.

The aforementioned methods may not be appropriate for all applications. First,

the IPW method of (97) may require an adjustment to the standard error and was

originally only designed to apply to binary outcomes. As far as we know, there are no

methods that can be applied to secondary phenotypes outside the exponential family.

Time-to-event outcomes, for example, may be of clinical interest, and may be present

in large studies, such as OPPERA. Sequencing studies also utilize more complicated
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test statistics outside of the exponential family. Additionally, there is a lack of software

that may be easily implemented.

In this paper, we propose a method for analyzing secondary phenotypes in case-

control genetic association studies. We advocate using the IPW method of (97) for

parameter estimation, but estimating the standard error via bootstrapping. This

maintains the simplicity and intuitiveness of IPW and generalizes it to a wider variety of

situations than previously considered, while providing a valid estimate of the standard

error. Our method can handle arbitrary types of analyses, including time-to-event and

nonparametric methods, as well as logistic regression and linear models as described

in the current literature. Moreover, unlike other methods in the literature, IPW can

be easily generalized to outcomes for which no existing method applies. We describe

our methodology in detail in section 4.2. Simulations are presented in section 4.3. The

method is applied to the OPPERA study in section 4.4. We conclude with a discussion.

4.2 Proposed Method

Consider a case-control study consisting of n cases and m controls. Let Zi, a

p× 1 vector, denote covariate information, Di denote the case-control status (1=case,

0=control), and Yi denote the secondary phenotype for i = 1, . . . , n + m. In the

OPPERA study, Zi denotes the number of copies of the minor allele, Di is an indicator

of whether participant i is a chronic case of TMD, and Yi is the number (0,1,2+)

of comorbid pain conditions for participant i. If one were to ignore the case-control

study design and consider the data as a random sample from the population, then one

would use standard methodology to study the relationship between Yi = (Y1, . . . , Yn+m)′

and Z = (Z1, . . . , Zn+m)′. Denote the log-likelihood under the assumption of random

sampling as l(θ|Yi, Zi) where θ is a q × 1 vector of model parameters.

The IPW method of (97) simply weights standard analyses appropriately to account
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for over-sampling of cases. Specifically, in a prospective (nested) case-control study, if

we denote fca as the sampling fraction for cases and fco as the sampling fraction for

controls, we use wi = 1 as the weight for cases and wi = fca
fco

as the weight for controls.

For retrospective case-control studies, the weights may be estimated as in (140) by

wi = 1 for cases and wi = n(1−pe)
mpe

for controls. We may write wi(Di) = Di + (1−Di)wi.

The weighted log-likelihood is the weighted sum of the log-likelihood of each observation

lW (θ|Y, Z,D) =
m+n∑
i=1

wi(Di)l(θ|Yi, Zi) (4.1)

where l(θ|Yi, Zi) = log[f(Yi|Zi)] if Y is continuous or l(θ|Yi, Zi) = log[P (Yi|Zi)] if

Y is discrete. For example, if Yi is binary, one would typically use weighted logistic

regression with

lW (θ|Y, Z,D) =
m+n∑
i=1

log[P (Yi = 1|Zi, Di)] =
m+n∑
i=1

wi(Di){Yiα′Zi − log[1 + exp(α′Zi)]}

(4.2)

If Yi is continuous, a weighted linear model could be utilized,

lW (θ|Y, Z,D) =
m+n∑
i=1

log[f(Yi|Zi, Di)] =
m+n∑
i=1

wi(Di)[−
log(2πσ2)

2
− (Yi − α′Zi)2

2σ2
] (4.3)

where V ar(Yi) = εi ∼ N(0, σ2).

If (Yi,∆i) is a (possibly censored) time-to-event outcome with failure time Ti and

censoring time Ci and Yi = min(Ti, Ci) and ∆i = I(Ti < Ci), then one may use a

proportional hazards model,

λTi(t|Zi) = λ0(t)exp(β′Zi) (4.4)
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with weighted log-partial-likelihood given by

lW (Y |Z,D) =
m+n∑
i=1

wi(Di)∆i{β′Zi − log[
m+n∑
l=1

wl(Dl)I(Yi < Yl)exp(β
′Zl)]} (4.5)

We propose the use of bootstrapping to estimate the standard error of the estimate

of interest. We select R samples from the empirical distribution of the original data.

For each bootstrap replication, we apply the IPW method described above.

Specifically, let (D, Y, Z) denote the data with empirical cdf f , and let (D∗r , Y
∗
r , Z

∗
r )

denote bootstrap replications for r = 1, . . . , R. The first step is to fit a model to

(D∗r , Y
∗
r , Z

∗
r ) using the weighted log likelihood (4.1) for each replication. The variance of

the parameter estimate is given by the estimated variance of the R bootstrap parameter

estimates. Confidence intervals may be generated by the percentile method, BCa

method, bootstrap-t, or a normal approximation. Standard software, such as the boot

package in R, can easily generate these estimates.

4.3 Simulation Study

4.3.1 General Setup

We simulated data under the framework in (66). In order to have n cases and m

controls, we generated ns = 3max(m,n)
pe

observations where pe is the estimated prevalence

of cases in the population. This ensured there would be enough cases and controls

in each dataset. Next, we generated case status as detailed below. Lastly, we used

rejection sampling to select a subset of the cases and controls of the desired sample

size.

For all subjects in the large dataset, i = 1, . . . , ns, we assume that the relationship

between case-control status, Di, the number of copies of the minor allele, Zi, and
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the secondary phenotype, Yi, is given by a logistic regression model based on the

genetic profile and secondary phenotype. The distribution of each type of outcome

and corresponding specific form of the logistic regression model are given in sections

4.3.2, 4.3.3, and 4.3.4 for binary, ordinal, and time-to-event outcomes, respectively.

Each equation specifies that the probability of being a case of the primary disease

(rather than a control) depends on the status of the genetic profile and the secondary

phenotype. The inheritance model is assumed to be additive. We assumed an estimated

prevalence of D of 10% and a minor allele frequency of 30%.

Finally, we form a dataset consisting of the first n cases and m controls. For each of

these simulations, we generated 1000 datasets each with n = 1000 cases and m = 1000

controls. For each method and scenario, we estimated the value of the parameter

relating the secondary phenotype and the number of copies of the minor allele. (This

was the log-odds ratio or log-hazard ratio depending on the type of outcome.) Average

bias, empirical coverage, and average confidence interval width were compared between

our method, and the naive methods that restrict to cases, restrict to controls, or adjust

for case-control status using an indicator variable. We also compared performance to

the IPW with GEE method of (82) when applicable, i.e. for continuous outcomes.

4.3.2 Continuous Phenotypes

For continuous secondary phenotypes, we assume a standard linear model with

normally distributed errors, εi ∼ N(0, σ2),

Yi = β0 + β1Zi + εi. (4.6)

where Xi is defined in section 4.3.1, and case status is defined by

logit[P (Di = 1|Yi, Zi)] = γ0 + γ1Zi + γ2Yi. (4.7)
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Our simulations included the parameters β0 = 0, β1 = −0.12,−0.5,−1,−2 and

γ1 = log(2), log(3), log(5), log(10), γ2 = log(2) and σ2 = 1.

In order to keep the prevalence approximately constant, we set the value of γ0

separately for each simulation, according to

γ̂0 = log(
peexp(−1 ∗ X̃)

1− pe
) (4.8)

where

X̃ = γ1Z̄ + γ2Ȳ . (4.9)

and Z̄ = 1
ns

∑ns

i=1 Zi and Ȳ = 1
ns

∑ns

i=1 Yi are the averages of the i = 1, . . . , ns Zi and Yi

values.

The parameter of interest was β1. Considering continuous outcomes facilitated

comparison to the IPW with GEE method of (82).

Simulations with continuous outcomes yielded the following results. In all scenarios,

our method had negligible bias and coverage rate near 95%, as desired. Performance

in terms of bias, coverage, and confidence interval width was comparable to that of

(82). The bootstrapping-IPW method had comparable bias to the method of (82) and

less bias than all other methods. Details are found in Table 4.1. This shows when

competing method are applicable, our method does at least as well as, if not better

than the competitors.

4.3.3 Ordinal Phenotypes

We tested four scenarios for ordinal phenotypes with 3 levels. For simplicity, we will

denote these Yi = 0, Yi = 1 and Yi = 2. In general, we generated the ordinal outcomes
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with the following probabilities

p0 = P (Yi = 0) = exp(ζ0 + βZi)/(1 + exp(ζ0 + βZi))

p1 = P (Yi = 1) = exp(ζ1 + βZi)/(1 + exp(ζ1 + βZi))− p0

p2 = P (Yi = 2) = 1− p1 − p0

For all subjects, i = 1, . . . ,m + n, we assume that the relationship between case-

control status, Di, the number of minor allele copies, Zi, and the secondary phenotype,

Yi, is given by the following logistic regression model

logit[P (Di = 1|Yi, Zi)] = γ0 + γ1Zi + γ2aI(Yi = 1) + γ2bI(Yi = 2). (4.10)

where

Ȳ = γ2a(

∑m+n
i=1 I(Yi = 1)

m+ n
) + γ2b(

∑m+n
i=1 I(Yi = 2)

m+ n
) (4.11)

is used to define the average outcome in equation (4.9) and thus the value of γ0 in (4.8).

For the four scenarios, we used the following parameters:

1. β = 0.5, ζ0 = 1.5, ζ1 = 2.5, and γ1 = γ2a = γ2b = log(2)

2. β = 1, ζ0 = 0, ζ1 = 1, and γ1 = γ2a = γ2b = log(2)

3. β = 0.75, ζ0 = 1, ζ1 = 2, and γ1 = γ2a = γ2b = log(2)

4. β = 0.5, ζ0 = 1.5, ζ1 = 2.5, γ1 = γ2a = log(2), and γ2b = log(3).

Our weighted bootstrap method has less bias than all other methods. None of the

other methods have adequate coverage for these ordinal simulations. Results are given

in Table 4.2.
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4.3.4 Time-to-Event Phenotypes

Survival outcomes were generated as in (4) with exponential failure and censoring

times. The failure time Ti satisfies equation (4.4) where λ0(t) = 1 for all t, β = −1

and Zi is the minor allele frequency. The censoring time was exponential with shape

parameter 2. The parameter of interest was β and the outcome of interest was (Yi,∆i)

where Yi = min(Ti, Ci) and ∆i = I(Ti < Ci). This yielded about 84% censoring.

Case status in similar to equation (4.7) for continuous outcomes, but instead depended

on the true failure time rather than the observed time as follows

logit[P (Di = 1|Xi, Ti)] = γ0 + γ1Xi + γ2Ti. (4.12)

The value of γ0 was set by equation (4.8) with X̃ defined by equation (4.9) and X̄ and

Ȳ defined as in section 4.3.2. We used γ1 = γ2 = log(2).

For time-to-event outcomes, our method retained empirical coverage around 95%

and had less bias than all other methods. None of the other methods have adequate

coverage, except the method that adjusts for case status. However, the latter method

was overly conservative. See Table 4.3 for details. Other methods do not apply for this

type of outcome. Consequently, no comparison is made.

4.4 Data Application

We applied the method to baseline case-control genetic study within OPPERA.

The prospective cohort study consisted of 3263 healthy TMD-free volunteers and 186

volunteers determined at baseline to have TMD. All 186 cases were retained and 1633

controls were randomly selected into the baseline case-control study.

The covariates of interest were 2924 SNPs collected in a genetic association study

of 3037 participants (115). The outcome was the number of co-morbid conditions,
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categorized as either zero, one, or more than one co-morbid condition. Upon enrollment

in OPPERA, participants self-reported by checking experience with a list of 20 conditions

on the Comprehensive Pain and Symptom Questionnaire (CPSQ). Examples of chronic

pain conditions include arthritis, fibromyalgia, irritable bowel syndrome, include chronic

pelvic pain, among others. All cases and 1626 controls filled out the CPSQ, (87).

Combining these yielded 166 cases and 1435 controls with information available on

both their history of comorbid conditions and their genetic profiles. Recruited from 4

study sites and ranged from 18 to 44 years in age, these 1601 individuals comprise the

proceeding analysis. For more details on the OPPERA study design, see (113, 75, 115,

87).

For each SNP with less than 5% missing values, we fit a proportional odds model

to the data, adjusting for study site, age, gender, and two racial eigenvectors.

We collected the p-values and created QQ-plots of the negative logarithm of the

p-values for the standard unweighted method and for our weighted bootstrapping

method. The plots indicate that neither method found any SNPs that were significantly

associated with comorbid pain conditions after adjusting for multiple comparisons. See

Figures 4.1 and 4.2.

4.5 Discussion

Our proposed method for analysis of intermediate phenotypes in case-control studies

of genetic data is simple and easily implemented in standard software. The simulation

results indicate that it is approximately unbiased, has comparable coverage and confidence

interval width to the method of IPW with GEE by (82). Under situations in which the

method of (66) is applicable, their method should be more powerful than our proposed

method.

Our method is general enough to allow for analysis of multiple outcomes simultaneously
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and for outcomes for which previous methodology not applicable. Multiple outcomes

could be analyzed using standard multivariate methods but weighting each observation

as described in this paper, and bootstrapping to estimate the standard error. Currently,

our method is the only viable way to evaluate secondary time-to-event outcomes in

case-control studies. More importantly, the method can be applied to complicated test

statistics where there is no existing formula for the standard error, such as the many

test statistics employed in sequencing studies. It is worth noting that our procedure

is computationally non-trivial due to the use of bootstrapping, but the runtime is

reasonable for modern computers. For 1000 runs of the survival scenario with 100

bootstrap replications, for instance, the output of proc.time was 773.288 or about 13

seconds of elapsed time.
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Figure 4.1: QQ Plot for the Unweighted Method
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Figure 4.2: QQ Plot for the Weighted Bootstrap Method
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Table 4.2: Results of Simulations for Intermediate Ordinal Phenotypes
Method Result

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Naive (Bias) -0.054 -0.068 -0.053 -0.069
Controls only (Bias) 0.075 0.051 0.063 0.093
Cases only (Bias) 0.805 -0.815 0.226 0.903
Adjusted for case status (Bias) 0.057 0.027 0.054 0.101
Bootstrap (Bias) 0.02 0.006 0.015 0.015

Naive (Coverage) 0.909 0.836 0.91 0.871
Controls only (Coverage) 0.937 0.937 0.948 0.933
Cases only (Coverage) 0 0 0 0
Adjusted for case status (Coverage) 0.904 0.937 0.913 0.824
Bootstrap (Coverage) 0.943 0.944 0.948 0.951

Bootstrap (Width) 0.519 0.399 0.477 0.512
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Table 4.3: Results of Simulations for Intermediate Time-to-Event Phenotypes
Method Result
Naive (Bias) -0.457
Controls only (Bias) 0.272
Cases only (Bias) -0.800
Adjusted for case status (Bias) 0.091
Bootstrap (Bias) -0.017

Naive (Coverage) 0.006
Controls only (Coverage) 0.396
Cases only (Coverage) 0.225
Adjusted for case status (Coverage) 1.000
Bootstrap (Coverage) 0.944

Bootstrap (Width) 0.439
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CHAPTER 5: SPARSE FACTOR ANALYSIS

5.1 Introduction

In many studies, we collect a large amout of data for each participant. The covariates

may be largely correlated and repetitive. Thus, it may be of interest to reduce the

covariates to a more manageable subset. Principal components analysis (PCA) and

exploratory factor analysis (EFA) are two classical methods designed for this purpose.

PCA calculates linear combinations of the variables which explain the maximal amout

of variance in the factors. EFA, by contrast, assumes that the observed variables are

a linear combination of a number of latent factors. However, the results of both PCA

and EFA are usually very difficult to interpret and may not be as sparse as desired.

It is desirable to have sparse loadings, meaning that most loadings are equal to zero

and only a small subset are nonzero. Sparse loadings facilitate solutions that are more

intuitive and make practical sense in real data applications.

Consequently, new methods have been proposed recently in the interest of sparsity.

(157) proposed an iterative method for sparse principal component analysis based on

elastic net. (147) proposed another iterative method for sparse principal component

analysis that maximizes the percentage of variance explained using penalized matrix

decomposition.

However, the aforementioned methods are not immediately applicable to the framework

of factor analysis. Factor analysis is commonly used for psychometric data, when it is

reasonable to assume that there are a small number of latent factors which drive the
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observed variables and simple interpretations are of the utmost importance. Compared

to principal component analysis, factor analysis by design sacrifices variance explained

for interpretability. Similarly, the increase in variance explained by iterating the method

of (147) may come with a decrease in interpretability.

Consider the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA)

study, a large multicenter study of temporomandibular disorders (TMD). Researchers

measured a large number of covariates related to orofacial pain. Within the quantitative

sensory testing domain, (46) uses EFA to identify five underlying clinically meaningful

components of the data. Similar analyses (76, 37) were performed for data on the

autonomic nervous system function and psychosocial responses. Unfortunately, the

loadings are not sparse for any of these domains. Investigators would like to be able

to succintly explain latent factors that explain first-onset and chronic TMD, identify

variables that do not add additional information after accounting for the other variables,

and reduce the number of variables collected for follow-up studies.

We seek a method that generalizes EFA to have sparse loadings. However, because

we would like to use the loadings to predict TMD-related outcomes, we want to make

sure that the most important covariate information is not lost. In short, we propose

a method of sparse factor analysis that is predictive of first-onset and chronic TMD,

while minimizing the loss in variance explained compared to other methods. In section

5.2, we discuss our proposed method. In section 5.3, we show how the method performs

in simulations. In section 5.4, we apply the method to the OPPERA study.

5.2 Proposed Methodology

5.2.1 Notation

This paper generalizes the method of (147) to the EFA setting with sparse loadings.

Assume there are n subjects and p covariates. Let X = (Xi, . . . , Xn)′ be an n×p matrix
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containing the covariate information, rank(X) = K ≤ min(n, p), and E[Xi] = µi. We

assume that there are k latent factors for each individual i, represented by the k × 1

vector Fi = (F1i, . . . , Fki)
′, Fji is a 1-dimensional unobserved random variable for all

i = 1, . . . , n and j = 1, . . . , k, and F = (F1, . . . , Fn)′ is a n× k matrix of these factors.

Often Also, X − µ = FL′ + ε, where L is a p× k matrix of factor loadings, ε is a n× p

matrix of random errors, µ = E[X], E(εij) = 0, V ar(εij) = σ2
ij and Cov(εij, εi′,j′) = 0

as long as i = i′ and j = j′ are not both true. We assume that E[F ] = 0, Cov(Fi) = I

for all i, and F and ε are independent.

In the OPPERA study, X is the matrix of all p variables collected on n individuals

for a given domain, such as quantitative sensory testing (QST). The factors F denote a

matrix of unobserved variables that affect our measurements in that domain. We seek

to reduce the number of variables collected to a subset of k interpretable components

that explain a maximal amount of variance in our measurements within that domain.

The singular value decomposition (SVD) of X is given by X = UDV ′ where U is an

n× n matrix, V is a p× p matrix, D is a n× p rectangular diagonal matrix U ′U = In

and V ′V = Ip. Denote uj and vj as the jth columns of U and V , respectively. The

notation ||M ||F denotes the Frobenius norm of a matrix M .

The soft threshholding function is given by S(x, c) = sign(x)(|x| − c)+ where y+ =

yI(y > 0). In other words, if possible, softthresholding reduces each coefficient by c in

absolute value. Otherwise, it sets the coefficient to zero. Practically, this means that

coefficients whose values are nonzero but too small to be practically meaningful are set

exactly equal to zero.
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5.2.2 Background Information

The optimization problem in (147) is to

Minimize d,u,v||X−duv′||2F subject to P1(u) < c1, P2(v) < c2, ||u||22 = 1, ||v||22 = 1, d > 0

(5.1)

where P1 and P2 are convex penalty functions, u is a n×1 vector, and v is a p×1 vector.

Typically the Lasso penalty, P1(u) = ||u||1 is used. We may rewrite the optimization

using theorem 2.1 in (147), reproduced here:

Theorem 1. Let U and V be n×K and p×K orthogonal matrices and D a diagonal

matrix with diagonal elements d1, . . . , dk . Then,

1

2
||X − UDV ′||2F =

1

2
||X||2F −

K∑
k=1

ukXvkdk +
1

2

K∑
k=1

dk
2

Applying Theorem 1 with K = 1 reduces problem (5.1) to

Maximize uu
′Xv subject to P1(u) < c2, P2(v) < c2, ||u||22 = 1, ||v||22 = 1. (5.2)

where the sole diagonal element d1 = d is positive. In order to have a convex solution,

problem (5.2) is redefined as

Maximize uu
′Xv subject to P1(u) < c2, P2(v) < c2, ||u||22 ≤ 1, ||v||22 ≤ 1 (5.3)

Finally, (147) impose constant L-1 norm penalties on u and v to yield the following.

Maximize u′Xv subject to ||v||1 < c2, ||u||22 ≤ 1, ||v||22 ≤ 1 (5.4)
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and

Maximize u′Xv subject to ||u||1 < c1, ||u||22 ≤ 1, ||v||22 ≤ 1 (5.5)

In short, for the first factor, they propose an iterative algorithm, solving (5.4) for

u based on fixed v, solving (5.5) for v based on the esimate for u and repeating until

convergence. Specifically, in (147), see Algorithms 1 and 2 for the single and multiple

factor solutions, the special form given in Algorithm 3, and the notes about sparsity in

section 3.2 for more details.

5.2.3 Our Algorithm

First, we center and scale X, resulting in the matrix Xs. We perform traditional

factor analysis on Xs and extract the factor loadings vf1, . . . , vfk for k factors. We

perform soft threshholding on the k factors and normalize the results to yield v1, . . . , vk.

Next, for each factor, we update u based on Xs and v. Namely, u1 = Xsv1/||Xsv1||,

and for j = 2, . . . , k, uj = εj where ỹj = Xsvj, X̃j = (u1, . . . , uj−1) denotes the first

j − 1 columns of U , and uj is the set of residuals from the least squares equation

ỹj = X̃jβj + εj (5.6)

The following algorithm summarizes the method.

1. Find the initial estimate for v.

(a) Scale and center X to yield Xs.

(b) Perform traditional factor analysis on Xs.

(c) Extract the factor loadings vf1, . . . , vfk for k factors.

(d) vj =
S(vfj ,∆j)

||S(vfj ,∆j)||2 for j = 1, . . . , k

2. Update u based on v.
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(a) u1 ← Xsv1
||Xsv1||2

(b) for j = 2, . . . , k, uj = εj is the set of residuals from the fit of the data to the

model in (5.6).

Note that the thresholds, ∆1, . . . ,∆k, may vary for each component.

Finally, we use the formula in (109) to calculate the percentage of variance explained

by this procedure. Namely, the cumulative percentage of variance explained by first

j components is given by tr(Xj
′Xj) where Vj = [v1, . . . , vj] is the p × j matrix of the

first j loading vectors and Xj = XsVj(V
′
jVj)

−1V ′j is the n× j projection of Xs onto the

subspace generated by Vj.

Unlike the method of (147), our procedure does not iterate between these steps.

Consequently, the percentage of variance explained will be less than the variance

explained by their method. However, the trade off is that the results of our procedure

should be more sparse and lend to more concise interpretations, which are of interest in

the factor analysis setting. In addition, lack of iteration results in greater computational

efficiency.

5.3 Simulations

This section describes simulations that demonstrate our method and compare it

to a number of alternatives. Samples of size n = 1000 were generated with p = 30

covariates. For each individual, k = 5 factors were generated as independent normal

random variables with mean zero and standard deviations 10, 20, 30, 30, 30. That is,

for all i, Fi = (F1i, . . . , F5i)
′ is a 5 × 1 random normal variable with E[Fji] = 0 and

V ar[Fi] = Diag(100, 400, 900, 900, 900). This corresponds to having one factor with a

small amount of noise, a second factor with increased noise, and 3 additional factors

that are noisier than the first two. The full matrix of all factors is given by the n× k

matrix F = (F1, . . . , Fn)′.
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We generated the p × k normally distributed loading matrix L. Loadings were

independent and each had standard deviation 0.1. The mean µij = E[Lij] varied based

on the row i and column j of the matrix L. Namely, µij = 0.8 if j = 1 and i = 1, ...6;

µij = 0.7 if j = 2 and i = 7, . . . , 12; µij = 0.6 if j = 3, and i = 13, ...18; µij = 0.5 if

j = 4, i = 19, ..., 24; or µij = 0.4 if j = 5, and i = 25, ..., 30. In other words, the first 6

elements of column 1 have mean 0.8, the second 6 elements of column 2 have mean 0.7,

the third six elements of column 3 have mean 0.6, the fourth six elements of column 4

have mean 0.5, and the last six elements of column 5 have mean 0.4; all other elements

have mean zero. The standard deviation of 0.1 for all elements means that all of the

loadings are nonzero, some are essentially just noise, and others are larger and more

meaningful but have a small amount of noise as well.

The elements of the n × 1 error vector ε were also independent and normally

distributed with mean 0, variance 1. As in the methodology section, X = FL′ + ε.

For each individual, a binary outcome Yi was generated based on the scaled factors,

Fs. We used

logitP (Y = 1) = F̃α

where α is a (k + 1) × 1 vector of ones, Fs is an n × k matrix of the factors, scaled

to have mean zero and unit variance, and F̃ = (1, Fs) is a n × (k + 1) matrix with

the first column consisting of all 1’s and the remaining entries identical to Fs. Here,

Y = (Y1, . . . , Yn)′.

We compared the performance of our method with traditional factor analysis, three

applications of (147), and two applications of (157). The different applications of the

competing methods varied based on level of sparsity specified. We used

c(0.06, 0.16, 0.1, 0.5, 0.5) and c(7, 4, 4, 1, 1) in the (157) function which corresponded to

low and high sparsity, respectively. The (147) applications varied based on 1,
√

(p)/2,
√

(p),

which correspond to high, medium, and low sparsity, where p denotes the number of
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variables under consideration. For our method, we also investigated softthreshold values

of 0.4, 0.5, 0.6, 0.7, and 0.8 for all components, as well as one scenario with increasing

thresholds for each components and one scenario with decreasing thresholds for the

components.

Simulations were run independently 1000 times. For each run, we fit logistic

regression models of the outcome based on each component separately for each method

and recorded the parameter estimate and corresponding p-value. We recorded the

average percent variance explained, and average parameter estimate (Table 5.1) and

average p-value (Table 5.2) for each of the five components. We also noted the number

of variables with nonzero loadings for each component and each method (Table 5.3).

We refer to our proposed method as Sparse Factor Analysis (SFA).

Our method captured a large percentage of the variance, around 71-82%, depending

on the thresholds used. Traditional factor analysis and the non-sparse methods of (147)

and (157) explained 91%. Sparse applications of (147) and (157) explained far less

variance (<40%).

For all thresholds, parameter estimates for all components were comparable in

magnitude to those for factor analysis but much larger than for the competing methods.

P-values were strongly significant for all methods. This indicates that the factor scores

from our method were more strongly related to the outcome than the competing method

scores were to the outcome. The associations were positive for our method, as intended,

and often negative for the other methods. Moreover, our method was clearly more

sparse than traditional factor analysis and all but the most sparse versions of (147)

and (157). We retained an average of about 6 variables per component with nonzero

loadings, compared to all or nearly all of the 30 variables for these other methods.

This was favorable, as we had generated only 6 variables to be meaningful for each

component and generated all others to represent noise.
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In conclusion, the simulations show that for various thresholds, our method results

in sparse factor scores that still explain a majority of the variance and are correlated

with the outcome of interest. These were exactly the properties that were desired from

a practical standpoint.

5.4 Data Application

This section details the application to the OPPERA study. The OPPERA study

is comprised of a baseline case-control study (113) of chronic temporomandibular

disorders (TMD) and a prospective cohort study (1) of first-onset TMD. The prospective

cohort study consists of 3258 subjects who were free from TMD at basline. Officially,

the baseline case-control data consists of half of the controls, i.e. 1633 subjects who were

free from TMD at baseline, as well as 185 previously diagnosed cases of TMD. However,

for purposes of measuring predictability of chronic TMD, it makes sense to consider not

only the 1633 randomly selected controls, but the entire collection of 3258 controls as

well as the 185 cases. This yields the total sample size in OPPERA, n = 3443. Within

the prospective cohort, 2737 subjects had some follow-up data.

The goals of this analysis are to see which variables are most important in predicting

chronic and first-onset TMD, to establish a subset of the variables that may adequately

explain TMD status, and to see if the use of different thresholds in our methodology

changes the results. Percentage of variance explained is far less important than the

combination of interpretability and the predictive value of the model. Predictive value

of the components was examined via logistic regression models. For each component,

a model was fit to the cohort against the outcome. The outcomes of interest, chronic

TMD and first-onset TMD, are defined in (113) and (1). The parameter estimate,

standard error, odds ratio, and p-values were recorded and compared between various

applications of the methods in this paper and the results of traditional factor analysis.
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This paper presents results for the case control subjects and prospective cohort of

the OPPERA study described above. Whenever possible, we consider three domains

of the OPPERA study: quantitative sensory testing (QST), autonomic nervous system

function, and psychosocial factors. Details on the these domains are provided in (75).

Previous results (46, 76, 37) indicate that 5, 5, and 4 components, respectively are

optimal for these datasets. Results in this paper use the same number of components

as the authors did in the previous results. First, cases and controls are analyzed

separately when possible. Next, factor scores are generated for the entire OPPERA

cohort, consisting of both cases and controls. Finally, the results are compared for

predictability of chronic TMD and first-onset TMD.

5.4.1 The Baseline Case-Control Study of Chronic TMD

Intoduction

This portion of the paper discusses the loadings for cases and controls separately

for the QST dataset. For the autonomic dataset, the cases and controls were analyzed

together. The psychosocial domain was not considered because there was not a dataset

consisting of only the cases and controls in the official baseline case-control study as

discussed in (37).

QST Results

This baseline case-control data includes 1633 controls and 185 cases with information

on p = 33 variables measuring quantitative sensory testing. Loadings were generated

for cases and controls separately to facilitate comparison with the results of (46). For

these separate analyses, the only soft threshold considered for all components was 0.4,

as is commonly used as an arbitrary cut-off in factor analysis.

Results in this first analysis were compared with competing methods. Our method
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explained 66.4% of the variance in the data for controls. By comparison, the (147)

method explained between 15.1 % and 71.9% of the variance, depending on the sparsity

specified. The (157) method also explained between 31.8% and 71.9% of the variance.

Our sparse factors were highly correlated with the original factor scores. Suppose

that F0 represents the factor scores based on EFA, and F represents the factor scores

from our method. The diagonal of Cor(F0, F ) is d = (0.934, 0.945, 0.950, 0.977, 0.995).

Table 5.4 shows the loadings from our method. Compared to the results in (46),

the loadings in the present paper are smaller but occur in the same places. This means

sparse factor analysis uncovered the same components as standard factor analysis,

but the sparse factor analysis method rigorously achieved truly sparse loadings rather

than ignoring or artificially setting small loadings to zero. These components are

known as “heat pain ratings” (component 1), “heat pain aftersensations and tolerance”

(component 2), “mechanical cutaneous pain sensitivity” (component 3), “pressure pain

thresholds” (component 4), and “heat pain temporal summation (TS)” (component 5).

Results for cases, found in Table A2.14, are similar. The clinical interpretation of these

components is discussed further in (46)

Autonomic Results

This dataset consists of 1630 cases and 185 controls with 42 measured variables on

autonomic function.

In this analysis and for subsequent sections, we applied our method multiple times

with various soft thresholds. Here, we examine thresholds of 0.4 to 0.8 for all components.

Thresholds were identical for each component for results in this section. Using thresholds

of 0.4 for all 5 components yielded similar components to that in Maixner et al. (76),

but with true zero loadings which previously were only arbitrarily set to zero. The

components were Blood Pressure, Stroop Heart Rate Variability (HRV), Heart Rate,
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Resting HRV and Orthostatic HRV. See Maixner et al. (76) for a biological description

of these components.

As expected, increasing the threshold from 0.4 to 0.8 for all components increased

the sparsity. When we used a threshold of 0.8 for all components, there were only

24 variables with a nonzero loading on at least one component (Table A2.18). For

example, average systolic blood pressure and heart rate were no longer needed in the

model after measuring average resting systolic blood pressure and mean arterial blood

pressure (MAP). Similarly, the initial orthostatic measurements (SBP, DBP, MAP, and

HR) were no longer needed. By contrast, traditional factor analysis and the application

of our method with the threshold of 0.4 for all components yielded all 42 variables with

nonzero loadings.

Despite the increased sparsity, overall predictability remained similar for the thresholds

as shown in Tables 5.5-5.7, which report the parameter estimates and their p-values for

three components at various thresholds. The second component was highly predictive

of chronic TMD for thresholds up to 0.7 and then significant but less strongly so

for a threshold of 0.8. However, even at this high threshold, our component was

more strongly predictive of chronic TMD than was the corresponding component from

traditional factor analysis. Moreover, the third component was highly significant for

all thresholds. The fourth component was not predictive of chronic TMD using the

methods in this paper for any of the thresholds explored. While the fourth component

of a traditional factor analysis was predictive, it was only marginally so (p=0.0362),

and as the threshold increased, our parameters increased in magnitude and the p-

values dropped. Curiously, higher thresholds resulted in higher parameter estimates (in

magnitude) for components two and three, which were associated with chronic TMD.

This indicates that the components were more strongly predictive of TMD once soft

thresholding was implemented with higher thresholds. The first and fifth components
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are not discussed because they were not predictive of chronic TMD for either method.

In short, it can be argued that soft thresholding did not reduce the predictability of the

model for chronic TMD, even when we dramatically reduced the number of variables

under consideration within the autonomic domain.

We report thus the loadings for thresholds of 0.7 for all components in Table 5.8.

For the other thresholds, see Tables A2.15-A2.18.

5.4.2 Application to the Full OPPERA Cohort

For the full dataset, the same scores were reported in the context of both chronic

TMD and first-onset TMD. It is only the predictability that changes. The following

subsections detail the factor scores in general as well as their relationship to chronic

and first-onset TMD.

QST Loadings for the Full Cohort

The full OPPERA data consists of n = 3443 subjects with information on p = 33

variables measuring quantitative sensory testing.

Table 5.9 shows the factor loadings when our method is applied to this QST data

with a threshold of 0.8 for all components. Additional results are given for various

thresholds in Tables A2.1-A2.4. When the threshold of c = 0.4 was used for all

components, our method explained 68.9% of the variance, compared to 73.4% for

standard factor analysis. Higher thresholds, such as 0.8 for all components, correspond

to decreased variance explained, down to 44%. Fortunately, as discussed in sections

5.4.2 and 5.4.2, this does not negatively impact predictability with respect to the

outcomes of interest.

Loadings were qualitatively similar for each threshold examined with one logical

but notable exception. Larger thresholds resulted in fewer variables with nonzero
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loadings. For example, the mechanical cutaneous pain sensitivity component only had

one variable with a nonzero loading: the rating 15 seconds after being probed by a

256 mN probe. Additionally, the heat pain temporal summation component only had

3 nonzero variables, one of which was very small (0.08). By contrast, all 8 variables

in the mechanical cutaneous pain sensitivity component and all 6 variables in the heat

pain temporal summation component loaded nonzero (and exceeded 0.4) in (46).

Application to the QST Data for Chronic TMD

For standard factor analysis, the third and fourth component were predictive of

chronic TMD. The first four factors (i.e. all but heat pain temporal summation) for

our method were all highly predictive of chronic TMD. Moreover, especially for higher

thresholds, our loadings were sparse. Consider Table 5.9, which shows loadings when we

use a threshold of 0.8 for all components. The fourth component, measuring mechanical

cutaneous pain sensitivity, was weighted less heavily than previously. In fact, the only

variable remaining in this component was the after sensation rating (15 s, 256 mN

probe). The fifth component, temporal summation, was also not weighted as heavily,

nor was it predictive of chronic TMD.

Application to the QST Data for First-Onset TMD

None of the components were significantly associated with TMD, but none of the

components of a traditional EFA/PCA analysis were significantly associated with TMD

either. Thus, our method was no worse than the traditional method at predicting first-

onset TMD.

Results remained qualitatively similar for different threshold values. Decreasing

the threshold values rendered heat pain tolerance and the temporal summation single

stimulus variables nonzero in all components. For thresholds of 0.7 or 0.8 for all
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components, the temporal summation slope of the line for 46 degrees was set equal

to zero. When the threshold was 0.8 for all components, single stimulus and temporal

summation for either probe, ratings 30 seconds after exposure to either probe or 15

seconds after the 512 mN probe, Single Stimulus 46 and 50 degrees and all three

temporal summation slope variables were also zero. This left the after Sensation Rating

(15 s, 256 mN probe) as the sole nonzero loading on the 4th component and the two

remaining temporal summation slope variables as the only nonzero loadings on the 5th

component when c = 0.8. All other variables only had minor changes in the loadings

as the thresholds changed.

Autonomic Loadings for the Follow-up Cohort

Loadings are provided in Table 5.10 for the 2737 individuals in the prospective

cohort study with at least 1 QHU. This allowed examination of associations with first-

onset TMD. Because predictability in the case-control study was already examined for

those in the official base-line case control study, and because of the plethora of tables

already in this paper, additional analysis was not done to examine chronic TMD in the

larger cohort. Moreover, these results should be virtually identical as they were in the

multiple subsets analyzed for the QST domain. If desired, this additional analysis can

be added before we publish this paper.

Application to the Autonomic Data for First-Onset TMD

There are 42 variables measured in the autonomic domain. (76) previously fit

traditional EFA/PCA to the autonomic baseline case-control data. This paper applies

the SFA method to the autonomic follow-up cohort data. SFA explained 71.1% of the

data, compared to 74.7% for the EFA/PCA analysis. Moreover, the first component

(blood pressure) scores were predictive of first-onset TMD. We fit the model using
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c = 0.4, 0.5, 0.6, 0.7, 0.8. Results were quantitatively similar, with only

baseline heart rate variability and heart rate variability related to the Stroop questionnaire

having all components set to zero. The percent variance explained dropped very slightly

when the threshold for all components increased.

Predictive accuracy remained high for all thresholds but decreased as the threshold

decreased. In particular, logistic regression models were fit for each set of factor

scores to predict TMD. Parameter estimates and odds ratios were compared for the

different threshold values and for traditional factor analysis. As shown in Table 5.11,

the parameter estimates were higher for the sparse factor analysis method than for

the traditional factor analysis when c = 0.4 or c = 0.5. For higher thresholds, the

relationship reversed. Yet, differences were slight for all thresholds. Odds ratios were

similar for method compared to the traditional method and only dropped noticeably for

the highest threshold. P-values only increased appreciably for the two highest threshold

values, but were still under 0.05. This indicates that even with sparse loadings, the

blood pressure component is predictive of TMD.

Loadings for the Psychosocial Data

For the psychosocial domain, results were applied to the full dataset of 3443 participants.

The psychosocial data consists of 21 variables as previously analyzed in (37). Loadings

for the psychosocial dataset are provided in Table 5.12 for when the threshold is 0.6

for all components. Other loadings may be found in the appendix in Tables A2.19,

A2.20, and A2.21. In fact, for the psychosocial domain, we considered having different

thresholds for different components. See Tables A2.22-A2.24.

The components were Global Psychological Symptoms, Stress and Negative Affectivity,

Passive Pain Coping, and Active Pain Coping. These are the same components identified

in (37), except that the order of the first two components were swtiched. For a more
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detailed description of their meaning, please see (37).

Application to the Psychosocial Data for Chronic TMD

The first, third, and fourth psychosocial components were predictive of chronic

TMD regardless of the threshold. That is, global psychological symptoms, and both

active and passive pain coping were associated with chronic TMD. The magnitude

of the parameter estimate and p-value did not have a monotonic relationship with the

thresholds. In fact, when the threshold increased, the parameter estimate increased and

the p-value decreased for component 3, passive pain coping. This indicates that the

larger thresholds both made the loadings more sparse and increased the predictability

compared to traditional factor analysis.

Application to the Psychosocial Data for First-Onset TMD

The first two components, Global Psychological Symptoms, Stress and Negative

Affectivity, were predictive of first-onset TMD for all thresholds of our method as well

as for standard EFA. However, unlike ERA, the loadings using the method proposed in

this paper are sparse especially for larger thresholds. Notable variables that had zero

loadings for all components included KOHN global score, POMS Negative Affective

Score, CSQ Praying, EPQ N scale and EPQ E scale. In short, our method produced

sparse components that were predictive of first-onset TMD.

5.5 Discussion

This work proposes a method for factor analysis that allows for sparse factors,

motivated by the research questions in the OPPERA study. The use of soft thresholding

is employed to shrink coefficients, followed by a simple one step update. Our method is

similar to the sparse principal component analysis method of (147) but does not iterate.
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This results in increased computational efficiency and sparsity, while maintaining a

reasonable percentage of variance explained. Simulations showed that promising results,

namely, that even as the thresholds increase for one or more components, the parameters

are still significantly associated with the outcomes of interest.

We applied the method to various domains within the OPPERA study. Compared

to previous results, our loadings were more sparse yet remained predictive of both

chronic and first-onset TMD, where applicable. Moreover, the sparse results of our

method illuminate to investigators variables which may be redundant and may not be

needed in follow-up studies.

The method proposed in this paper is preferred to other methods, such as (147) and

(157), which are designed for principal component analysis. While factor analysis may

not be as desirable statistically, it provides much more easily interpretable components.

Thus, it is commonly used in the psychometric literature. A generalization such as ours

would improve their research by allowing them to consider sparse factors.
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Table 5.1: Parameters for Different Thresholds and Other Methods

Method Used PVE Parameter for Components
1 2 3 4 5

SFA (0.8,...,0.8) 0.7085 0.6169 0.6186 0.6194 0.6053 0.5911
SFA (0.7,...,0.7) 0.7750 0.6179 0.6220 0.6246 0.6017 0.5901
SFA (0.6,...,0.6) 0.7987 0.6191 0.6253 0.6293 0.5965 0.5870
SFA (0.5,...,0.5) 0.8110 0.6203 0.6287 0.6331 0.5914 0.5838
SFA (0.4,...,0.4) 0.8207 0.6211 0.6317 0.6360 0.5871 0.5809
SFA (0.4,...,0.8) 0.7721 0.6211 0.6289 0.6284 0.5921 0.5829
SFA (0.8,...,0.4) 0.7955 0.6169 0.6219 0.6298 0.6006 0.5890
EFA 0.9054 0.6169 0.6173 0.6224 0.6076 0.6044
Witten (Sparse) 0.1667 -0.0828 0.0126 0.1157 0.1568 0.0145
Witten (Full) 0.9054 -0.1970 0.0068 0.1787 0.2002 0.0697
Witten (Medium) 0.8564 -0.0707 0.0021 0.1219 0.1610 -0.0139
Zou (Full) 0.9054 -0.0300 -0.0061 -0.0224 -0.0017 -0.0178
Zou (Sparse) 0.3752 -0.0341 0.0001 0.0094 0.0168 -0.0126
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Table 5.2: P-Values for Different Thresholds and Other Methods

Method Used P-value for Components
1 2 3 4 5

SFA (0.8,...,0.8) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SFA (0.7,...,0.7) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SFA (0.6,...,0.6) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SFA (0.5,...,0.5) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SFA (0.4,...,0.4) <0.0001 0.0001 <0.0001 <0.0001 <0.0001
SFA (0.4,...,0.8) <0.0001 0.0001 <0.0001 <0.0001 <0.0001
SFA (0.8,...,0.4) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
EFA <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Witten (Sparse) 0.0192 0.0096 0.0138 0.0112 0.0116
Witten (Full) 0.0572 0.0557 0.0590 0.0630 0.0814
Witten (Medium) 0.0005 <0.0001 <0.0001 <0.0001 <0.0001
Zou (Full) 0.0572 0.0557 0.0590 0.0630 0.0814
Zou (Sparse) 0.0103 0.0041 0.0023 0.0065 0.0086
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Table 5.3: Number of Variables Retained for Different Thresholds and Other Methods

Method Used Variables Retained for Components
1 2 3 4 5 Total

SFA (0.8,...,0.8) 5.919 5.761 5.468 5.203 5.080 27.431
SFA (0.7,...,0.7) 6.030 6.009 5.934 5.761 5.699 29.433
SFA (0.6,...,0.6) 6.115 6.120 6.111 5.992 5.911 29.914
SFA (0.5,...,0.5) 6.318 6.256 6.268 6.179 6.051 29.992
SFA (0.4,...,0.4) 6.896 6.637 6.585 6.432 6.207 29.998
SFA (0.4,...,0.8) 6.896 6.256 6.111 5.761 5.080 29.420
SFA (0.8,...,0.4) 5.919 6.009 6.111 6.179 6.207 29.893
EFA 30.000 30.000 30.000 30.000 30.000 30.000
Witten (Sparse) 1.000 1.000 1.000 1.000 1.000 5.000
Witten (Full) 30.000 30.000 30.000 30.000 30.000 30.000
Witten (Medium) 10.900 11.820 12.612 13.638 14.193 30.000
Zou (Full) 29.973 29.925 29.956 29.747 29.741 30.000
Zou (Sparse) 7.000 4.000 4.000 1.000 1.000 16.986

81



Table 5.4: PCA/SFA QST Results for Controls, c=0.4

Component 1 2 3 4 5
Pressure Pain Threshhold
Temporalis 0 0 0 0.47 0
Masseter 0 0 0 0.50 0
TMJ 0 0 0 0.47 0
Trapezius 0 0 0 0.39 0
Epicondyl 0 0 0 0.39 0
Mechanical Cutaneous Pain Threshhold 0 0 -0.01 0 0
Single Stimulus
256 mN Probe 0 0 0.34 0 0
512 mN Probe 0 0 0.35 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0.48 0 0
30 s, 256 mN probe 0 0 0.41 0 0
15 s, 512 mN probe 0 0.00 0.42 0 0
30 s, 512 mN probe 0 0.01 0.38 0 0
Temporal Summation
256 mN probe 0 0 0.19 0 0
512 mN probe 0 0 0 0 0
Heat Pain Tolerance -0.05 0 0 0 0
Single Stimulus
46 0.33 0 0 0 0
48 0.42 0 0 0 0
50 0.43 0 0 0 0
Area Under the Curve
46 0.42 0 0 0 0
48 0.45 0 0 0 0
50 0.38 0 0 0 0
After Sensations
15 s, 46 0 0.36 0 0 0
30 s, 46 0 0.40 0 0 0
15 s, 48 0 0.41 0 0 0
30 s, 48 0 0.44 0 0 0
15 s, 50 0 0.41 0 0 0
30 s, 50 0 0.42 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.47
48 0 0 0 0 0.50
50 0 0 0 0 0.32
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0.33
48 0 0 0 0 0.44
50 0 0 0 0 0.36
Percent Variance Explained 0.15 0.30 0.44 0.55 0.66
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Table 5.5: Autonomic Parameter Estimates and Different Thresholds, Component 2

Method Details Parameter Estimate Standard Error Odds Ratio P-value
Traditional EFA/PCA -0.20445 0.09420 0.8151 0.03
SFA c = 0.8 -0.25411 0.10456 0.7756 0.0151
SFA c = 0.7 -0.30642 0.09836 0.7361 0.00184
SFA c = 0.6 -0.31278 0.09455 0.7314 0.000939
SFA c = 0.5 -0.31401 0.09242 0.7305 0.00068
SFA c = 0.4 -0.31515 0.09112 0.7297 0.000543
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Table 5.6: Autonomic Parameter Estimates and Different Thresholds, Component 3

Method Details Parameter Estimate Standard Error Odds Ratio P-value
Traditional EFA/PCA 0.23284 0.07621 1.2622 0.00225
SFA c = 0.8 0.28326 0.07356 1.3275 0.000118
SFA c = 0.7 0.24390 0.07376 1.2762 0.000944
SFA c = 0.6 0.22576 0.07402 1.2533 0.00229
SFA c = 0.5 0.21577 0.07422 1.2408 0.00365
SFA c = 0.4 0.20941 0.07436 1.2330 0.00486

84



Table 5.7: Autonomic Parameter Estimates and Different Thresholds, Component 4

Method Details Parameter Estimate Standard Error Odds Ratio P-value
Traditional EFA/PCA -0.16051 0.07664 0.8517 0.0362
SFA c = 0.8 -0.10838 0.07626 0.8973 0.155
SFA c = 0.7 -0.09100 0.07658 0.9130 0.235
SFA c = 0.6 -0.08228 0.07673 0.9210 0.284
SFA c = 0.5 -0.07899 0.07695 0.9240 0.305
SFA c = 0.4 -0.07664 0.07714 0.9262 0.32
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Table 5.8: Autonomic Results for the OPPERA Case Control Study, c=0.7

Component 1 2 3 4 5
AvgRestingSPB 0.25 0 0 0 0
AvgRestingDPB 0.07 0 0 0 0
AvgRestingMAP 0.27 0 0 0 0
AvgRestingHR 0 0 0.15 0 0
InitialOrthoSPB 0 0 0 0 0
InitialOrthoDPB 0.03 0 0 0 0
InitialOrthoMAP 0.17 0 0 0 0
InitialOrthoHR 0 0 0 0 0
StroopColorSPBmean 0.38 0 0 0 0
StroopColorDPBmean 0.31 0 0 0 0
StroopColorMAPmean 0.44 0 0 0 0
StroopColorHRmean 0 0 0.44 0 0
StroopEmotionalSPBmean 0.37 0 0 0 0
StroopEmotionalDPBmean 0.27 0 0 0 0
StroopEmotionalMAPmean 0.43 0 0 0 0
StroopEmotionalHRmean 0 0 0.48 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0.14 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0.24 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0 0
HRVBaseline20minLnTP 0 0 0 0.67 0
HRVBaseline20minLnVLF 0 0 0 0.24 0
HRVBaseline20minLnLF 0 0 0 0.55 0
HRVBaseline20minLnHF 0 0 0 0.36 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.26 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.59
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.39
HRVOrtho5minLnTP 0 0 0 0 0.46
HRVOrtho5minLnVLF 0 0 0 0 0.04
HRVOrtho5minLnLF 0 0 0 0 0.25
HRVOrtho5minLnHF 0 0 0 0 0.47
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.47 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.58 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.53 0 0 0
HRVStroopColor5minLnTP 0 0.31 0 0 0
HRVStroopColor5minLnVLF 0 0 0 0 0
HRVStroopColor5minLnLF 0 0.17 0 0 0
0 HRVStroopColor5minLnHF 0 0.27 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.51 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.35 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.25 0 0 0
HRVStroopEmotion5minLnTP 0 0 0 0 0
HRVStroopEmotion5minLnVLF 0 0 0 0 0
Percent Variance Explained 0.17 0.29 0.41 0.5 0.59
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Table 5.9: PCA/SFA QST Results for the Entire OPPERA Cohort, c=0.8

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.45 0 0
Masseter 0 0 0.6 0 0
TMJ 0 0 0.48 0 0
Trapezius 0 0 0.39 0 0
Epicondyl 0 0 0.11 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.2 0 0
Single Stimulus
256 mN Probe 0 0 0 0 0
512 mN Probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 1 0
15 s, 512 mN probe 0 0 0 0 0
30 s, 256 mN probe 0 0 0 0 0
30 s, 512 mN probe 0 0 0 0 0
Temporal Summation
256 mN probe 0 0 0 0 0
512 mN probe 0 0 0 0 0
Heat Pain Tolerance 0 0 0 0 0
Single Stimulus
46 0 0 0 0 0
48 0.4 0 0 0 0
50 0.48 0 0 0 0
Area Under the Curve
46 0.43 0 0 0 0
48 0.63 0 0 0 0
50 0.17 0 0 0 0
After Sensations
15 s, 46 0 0.08 0 0 0
15 s, 48 0 0.39 0 0 0
15 s, 50 0 0.3 0 0 0
30 s, 46 0 0.31 0 0 0
30 s, 48 0 0.63 0 0 0
30 s, 50 0 0.52 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.39
48 0 0 0 0 0.92
50 0 0 0 0 0
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0
48 0 0 0 0 0.08
50 0 0 0 0 0
Percent Variance Explained 0.12 0.24 0.36 0.39 0.44
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Table 5.10: PCA/SFA Autonomic Results for the OPPERA Followup Cohort, c=0.7

Component 1 2 3 4 5
AvgRestingSPB 0.27 0 0 0 0
AvgRestingDPB 0.06 0 0 0 0
AvgRestingMAP 0.27 0 0 0 0
AvgRestingHR 0 0 0.16 0 0
InitialOrthoSPB 0 0 0 0 0
InitialOrthoDPB 0.02 0 0 0 0
InitialOrthoMAP 0.18 0 0 0 0
InitialOrthoHR 0 0 0 0 0
StroopColorSPBmean 0.37 0 0 0 0
StroopColorDPBmean 0.31 0 0 0 0
StroopColorMAPmean 0.44 0 0 0 0
StroopColorHRmean 0 0 0.44 0 0
StroopEmotionalSPBmean 0.36 0 0 0 0
StroopEmotionalDPBmean 0.27 0 0 0 0
StroopEmotionalMAPmean 0.43 0 0 0 0
StroopEmotionalHRmean 0 0 0.48 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0.14 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0.05 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0 0
HRVBaseline20minLnTP 0 0 0 0.7 0
HRVBaseline20minLnVLF 0 0 0 0.27 0
HRVBaseline20minLnLF 0 0 0 0.56 0
HRVBaseline20minLnHF 0 0 0 0.34 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.25 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.59
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.27
HRVOrtho5minLnTP 0 0 0 0 0.53
HRVOrtho5minLnVLF 0 0 0 0 0.04
HRVOrtho5minLnLF 0 0 0 0 0.25
HRVOrtho5minLnHF 0 0 0 0 0.47
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.47 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.56 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.44 0 0 0
HRVStroopColor5minLnTP 0 0.26 0 0 0
HRVStroopColor5minLnVLF 0 0 0 0 0
HRVStroopColor5minLnLF 0 0.11 0 0 0
HRVStroopColor5minLnHF 0 0.27 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.51 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.44 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.39 0 0 0
HRVStroopEmotion5minLnTP 0 0.06 0 0 0
HRVStroopEmotion5minLnVLF 0 0 0 0 0
Percent Variance Explained 0.17 0.29 0.41 0.49 0.58
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Table 5.11: Autonomic Parameter Estimates and Different Thresholds for Component
1, First-Onset TMD

Method Details Parameter Estimate Standard Error Odds Ratio P-value
SFA c = 0.8 0.14086 0.0629 1.15 0.0251
SFA c = 0.7 0.1540 0.0627 1.17 0.0140
SFA c = 0.6 0.1642 0.0626 1.18 0.0087
SFA c = 0.5 0.1682 0.0625 1.18 0.0072
SFA c = 0.4 0.1704 0.0625 1.19 0.0064
Traditional EFA/PCA 0.1649 0.0626 1.18 0.0085
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Table 5.12: PCA/SFA Psychosocial Results for the Entire OPPERA Cohort, c=0.6

Component 1 2 3 4

KOHN.Global.Score 0 0 0 0
PILL.Global.Score 0.09 0 0 0
POMS.PositiveAffectScore 0 -0.62 0 0
POMS.NegativeAffectScore 0 0 0 0
PSS.PerceivedStress 0 0.27 0 0
SCL.90R.Depression 0.5 0 0 0
SCL.90R.Somatization 0.49 0 0 0
SCL.90R.Anxiety 0.55 0 0 0
SCL.90R.Hostility 0.45 0 0 0
CSQ.Distraction 0 0 0 0.44
CSQ.IgnoringPain 0 0 0 0.48
CSQ.Distancing 0 0 0 0.47
CSQ.Coping 0 0 0 0.6
CSQ.Praying 0 0 0 0
STAIY1.StateTraitAnxiety 0 0.51 0 0
STAIY2.StateTraitAnxiety 0 0.53 0 0
PCS.Rumination 0 0 0.68 0
PCS.Magnification 0 0 0.43 0
PCS.Helplessness 0 0 0.59 0
EPQ.Escale 0 0 0 0
EPQ.Nscale 0 0 0 0
Percent Variance Explained 0.15 0.28 0.39 0.5
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Table 5.13: Psychosocial Parameter Estimates and Different Thresholds, Component 1
(Chronic)

Method Details Parameter Estimate Standard Error Odds Ratio P-value
Traditional EFA/PCA 0.49992 0.05443 ¡2e-16
SFA c = 0.7 0.35596 0.05258 1.29e-11
SFA c = 0.6 0.29673 0.03624 2.67e-16
SFA c = 0.5 0.41364 0.05211 2.05e-15
SFA c = 0.4 0.43485 0.05262 ¡2e-16
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Table 5.14: Psychosocial Parameter Estimates and Different Thresholds, Component 3
(Chronic)

Method Details Parameter Estimate Standard Error Odds Ratio P-value
Traditional EFA/PCA 0.23896 0.06946 0.000581
SFA c = 0.7 0.25626 0.06854 0.000185
SFA c = 0.6 0.24640 0.06832 0.00031
SFA c = 0.5 0.20356 0.06935 0.00333
SFA c = 0.4 0.17641 0.07025 0.012
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Table 5.15: Psychosocial Parameter Estimates and Different Thresholds, Component 4
(Chronic)

Method Details Parameter Estimate Standard Error Odds Ratio P-value
Traditional EFA/PCA -0.21275 0.07746 0.00602
SFA c = 0.7 -0.09480 0.07551 0.209
SFA c = 0.6 -0.16235 0.07676 0.0344
SFA c = 0.5 -0.17814 0.07708 0.0208
SFA c = 0.4 -0.18595 0.07722 0.016
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CHAPTER 6: CONCLUSION

In this dissertation, three methods were developed to properly analyze data from

the OPPERA study. Chapter 3 introduces a method for Cox modeling with missing

censoring indicators, which allows for estimation of hazard ratios and incidence rates,

even when a large subset of participants have uncertain event indicators. Event propabilities

are modeled via logistic regression and outcomes are imputed repeatedly using those

estimated probabilities. Implementing this method uncovered new risk factors of clinical

importance. It also illustrated that incidence rates may be underestimated if the

proposed method is not used. Incidence of TMD may be important for future studies

in orofacial pain.

This method was well received by OPPERA investigators and widely applied, e.g.

in (1). The methods paper based on Chapter 3 is in the process of submission. In its

current state, the manuscript is appropriate for submission to a journal such as Statistics

in Medicine. Additional work will be performed in hopes of proving consistency of the

estimator. If this aim is successful, we will consider a more theoretical journal. Future

work includes completing an extension that includes missing covariates (i.e. skipped

screeners), missing time, and missing censoring indicators. This will allow study of

individuals who have uncertain screener data as well as uncertain outcomes. In addition,

there were a small number (n < 20) of false negatives, i.e. participants who screened

negative but who actually had TMD. This number was too small of a sample size for

meaningful modeling and imputation. Thus we did not make any further adjustments.

In the future, the methodology could be extended to control for false negatives, or a
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sensitivity analysis could be conducted.

Chapter 4 proposes a general method to analyze intermediate phenotypes in case-

control studies. Subjects are weighted to correct for the oversampling of cases and

undersampling of controls in this sample design. Standard methods are implemented

with these weights to estimate the quantities of interest. Then bootstrapping is utilized

to estimate the standard error. The method allows for analysis of outcomes that are

currently difficult or impossible to study, such as time-to-event outcomes and sequencing

statistics.

Additional work remains before the method may be published. First, application

to haplotypes will be demonstrated. Second, the method will be applied to different

outcomes in OPPERA. Third, the simulations on sequenced data will be completed.

Fourth, the method may be applied to sequencing data from Glaxo-Smith-Klein (GSK).

Once these steps are complete, the paper should be ready to submit to a genetic journal,

such as Genetic Epidemiology.

Chapter 5 introduces a method for sparse factor analysis. Soft thresholding reduces

the magnitude of each loading in a rigorous manner rather than arbitrarily ignoring

loadings under a certain value. Sparse loadings result that are still predictive of the

underlying outcome. Implications within the OPPERA study are wide. The sparse

loadings in each domain may highlight which variables are most important for future

studies and which variables may be dropped without losing significant information. It

remains to discuss this work with the principal investigators. Additional simulations

may be produced as well.
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APPENDIX 1: SUPPLEMENTARY MATERIAL FOR CHAPTER 3

The primary objective of the OPPERA study is to identify possible risk factors

for developing first-onset TMD. See Maixner et al. (75) and Slade et al. (113) for

a more detailed description of the study. The risk factors considered in OPPERA

are classified into the following domains: sociodemographic, clinical, psychosocial,

autonomic, quantitative sensory testing (QST), and genetics. The remainder of this

section describes these OPPERA domains in more detail.

First, sociodemographic information was recorded for each OPPERA participant.

This includes age, gender, race, and OPPERA study site, as well as educational

attainment, income, and marital status. For example, TMD is more common in females

than males and in non-Hispanic whites than in other races. Details are provided in Slade

et al. (113).

Clinical risk factors refer to variables that “typically are considered in clinical

settings when evaluating patients” (86). These clinical variables may be evaluated via

physical examinations or questionnaires. Examples include headaches, back aches, pain

in other regions of the body, jaw mobility, jaw noises, and orofacial trauma. OPPERA

participants also self-reported their health history, including the presence of comorbid

pain conditions such as irritable bowel syndrome, fibromyalgia, and dysmenorrhea.

Psychosocial factors have also been shown to be associated with TMD (37). Specific

qualities related to psychosocial functioning were evaluated in OPPERA, including

general psychological function, affective distress, psychological stress, somatic awareness,

and coping/catastrophizing. Affective distress measures include state and trait anxiety

and mood. Psychological stress includes perceived stress and measures of post-traumatic

stress disorder. Somatic awareness assesses sensitivity to physical sensations. Finally,

coping/catastrophizing assesses individuals’ ability to handle pain.
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The association between TMD and the function of the autonomic nervous system

was also evaluated. Key measures of autonomic function include blood pressure, heart

rate, and heart rate variability, which were measured during the OPPERA baseline

medical examination. In previous studies, TMD was associated with higher heart rates

and lower heart rate variability, which are symptoms of dysregulation of the autonomic

nervous system. See (76) for a more detailed description of the autonomic data collected

in OPPERA.

The QST variables collected in OPPERA measure sensitivity to experimental pain.

Several measures of experimental pain sensitivity were collected, including pressure pain

thresholds measured by algometers, mechanical (pinprick) pain sensitivity, and thermal

pain sensitivity. See (46) for a more detailed description of these QST variables.

Finally, the association between TMD and selected genetic markers was evaluated.

A total of 3295 single nucleotide polymorphisms (SNP’s) were selected from genes that

are believed to be associated with pain. See (115) for more detail on how the SNP’s

were chosen and their association with TMD.

Overview of Additional Simulations

In this appendix, we provide the results of additional simulations. We investigate

the performance of the method under a variety of missing data mechanisms. We also

consider scenarios where the logistic regression model for estimating the probability of

being a case is misspecified.

Recall that we created missing censoring indicators under the following classical

missing data mechanisms of Rubin (1976):

(I) The probability of having a missing censoring indicator is independent of the

data. This is known as missing completely at random (MCAR).

(II) The probability of having a missing censoring indicator depends on an observed
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covariate. This is known as missing at random (MAR).

(III) The probability of having a missing censoring indicator depends on the censoring

indicator itself. This is known as missing not at random (MNAR).

Simulations Under MCAR

When the data were MCAR, our method had less bias on average than the complete

case method that depended on the true parameter value. Not only did our method have

adequate coverage, but it had the most narrow confidence intervals of the methods with

adequate coverage. As in other simulations, the method treating all missing indicators

as failures had poor coverage and introduced extreme bias. The complete case method

and the method that treat all missing censoring indicators as censored were valid, but

had much wider confidence intervals than our method.

However, note that it would be dangerous to apply the complete case method to the

OPPERA study. According to the OPPERA protocol, participants who do not screen

positively and are not selected as matched controls will always be censored. Only

participants who screen positively (i.e. those with Qi = 1) should potentially have

missing censoring indicators. Data that are MCAR allow participants with Qi = 0 to

have missing censoring indicators. Fitting the logistic regression model to those with

Qi = 1 only but generalizing to people with Qi = 0 may result in extreme bias, as

shown in section 6.

Additional Simulations Under MCAR

In order to more closely parallel the OPPERA study, we simulated data where we

randomly set 40% of the censoring indicators to be missing for those with Qi = 1.

(Note that our simulations assume that censoring indicators can only be missing when

Qi = 1. Without this assumption the data would not be MCAR in this scenario, since
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Qi depends on Xi2, which is observed.) This setup assumes that the probability that a

participant has a non-missing censoring indicator depends only on whether or not their

screener was positive. The logistic regression model in this case included the covariates

Xi1 and Xi2 as before, but not the time of the screener. Results are shown in Table

A1.2. All methods had a negligible amount of bias in these scenarios except for the

complete case method and the method that treated all missing indicators as failures.

In these simulations, the complete case method also displayed extreme bias and poor

coverage. This indicates that a complete case analysis would not be appropriate for a

study such as OPPERA.

Alternative Logistic Regression Models

We considered several scenarios where the logistic regression model for the probability

of being a case is misspecified. Recall that we originally modeled the probability of being

a case as

P (∆i = 1|Xi, α) =
exp(α′Xi + γVi)

1 + exp(α′Xi + γVi)
(A.1)

The original logistic model had the covariates Xi = {Xi1, Xi2} and Vi where Xi1 ∼

N(0, 2) and Xi2 ∼ N(∆i, 0.3) are mutually independent for j = 1, 2, 3 and i = 1, . . . , n.

Two alternative models were examined:

1. The first alternative model was of the form (A.1) but used the covariates X̃i =

{Xi1, Xi2, Xi3} and Vi where Xi3 ∼ N(0, 1). This scenario was to used to evaluate

the robustness of the method when an extraneous covariate is included in the

model.

2. The second alternative model was generated according to (A.1) but was fit with

the covariates X̃i = {Xi1} and Vi. In the context of OPPERA, this represents the

scenario in which we failed to include a covariate that is associated with first-onset
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TMD.

Tables A1.3 and A1.4 indicate that our method produces valid results even if a noisy

variable is added to the model or if an important variable is not included in the model.

Next, we consider the scenario where censoring indicators may be missing even

if a participant had a negative screener (i.e. Qi = 0). For each such simulation,

we randomly selected 40% of the observations to have missing censoring indicators

regardless of the value of Qi. In the first such simulation, the logistic regression model

was correctly specified when Qi = 1. (However, it will be applied to all observations

with missing censoring indicators, including those for which Qi = 0. Since the true

value of the censoring indicator is always 0 when Qi = 0, the model will be biased

for these observations.) In the two remaining simulation scenarios, the model will be

misspecified even when Qi = 1 by either adding an extra covariate or leaving out a

significant covariate as we did in the earlier simulations.

The results of these three additional simulations are shown in Tables A1.1, A1.6,

and A1.7. The model performs well in two of the three scenarios, indicating that

our methodology is robust against misspecification of the logistic regression model.

However, when an important covariate is not included in the model, the estimates

are badly biased. Empirical coverage ranged from 0% to 50%, significantly below the

nominal rate. This indicates that our method can give incorrect results if the predictive

accuracy of the logistic regression model is poor. Note that the method of Cook and

Kosorok (8) also performs poorly in this scenario. If one cannot accurately estimate

which censoring indicators are missing, it is unlikely that any method can produce valid

confidence intervals for the Cox regression coefficients.

Simulations Under MNAR

We examined two possible scenarios where the data is MNAR:
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(A) In the first, we set 30% of the censored observations and 50% of the failures to

have missing indicators.

(B) In the second, we set 20% of the censored observations and 60% of the failures to

have missing indicators.

Bias increased for all methods under both MNAR scenarios. In particular, the

complete case method consistently displayed a high amount of bias and did not achieve

the desired coverage rate. For our imputation method and the method of Cook and

Kosorok (8), bias increased and coverage decreased as the true parameter value increased.

This indicates that when the MAR assumption is violated, our method as well as the

method of Cook and Kosorok (8) may not be valid. On the other hand, even when the

data was not MAR, our method provided an improvement in terms of bias and coverage

compared to the complete case method and the method that treats all missing subjects

as failures. Moreover, the coverage probability was slightly greater for our method than

for the method of Cook and Kosorok (8).

Simulations for Poisson Regression

We performed simulations to evaluate the performance of our method when the

desired time-to-event analysis is a Poisson regression model rather than a Cox model.

Poisson models are commonly used to estimate incidence rates, which is an objective

of the OPPERA study.

The simulations were identical to those described in Section 3.4 except that the

imputed data was used to fit Poisson regression models rather than Cox proportional

hazards models. That is, we fit the data from imputations j = 1, . . . ,m to the model

log(µi) = α + βxi1 + log(Vi). (A.2)
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where µi is the expected number of cases and the offset, log(Vi), is the logarithm

of the survival time. We measured the bias, defined as β̂ minus the true value, for

β ∈ {−0.5,−1.5,−3}.

The Cook and Kosorok (8) method does not immediately generalize to Poisson

regression. Consequently, we only compared our method to the unachievable ideal of

no missing data, the complete case method, and the two ad hoc methods.

The use of Poisson regression allows us to estimate incidence rates. For each

simulation, we estimated the incidence rate based on the coefficients of the Poisson

regression model in (A.2). Specifically, estimated incidence rates for fixed values of Xi1

are given by

exp(α + βxi1) (A.3)

The bias, confidence interval width, and coverage probability of each method are shown

in Table A1.10. We also present the estimated incidence rates for each quartile of the

random variable Xi1 (i.e. the quartiles of the N(2, 1) distribution). See Table A1.11.

Our method had close to 95% coverage probability when Poisson regression was

used. None of the other methods had proper coverage for all of the simulations. Multiple

imputation yielded the least bias of all the methods besides the unacheivable ideal of

observing all data. It also produced more narrow confidence intervals than the complete

case method and the method that treats all missing censoring indicators as censored.

The bias evident in parameter estimation was compounded for incidence rates.

The complete case method and the two ad hoc methos consistently underestimated

incidence. In fact, the complete case method underestimated incidence by about 30-

200%. By contrast, our method differed from the unachievable ideal by only about

4-6%.
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Table A1.1: Simulation Results for MCAR

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0010 0.0006 0.1671 0.0001 0.930

Complete Case -0.0042 0.0007 0.2218 0.0001 0.956
Treat all as Censored -0.0021 0.0007 0.2212 0.0001 0.947
Treat all as Failures 0.0932 0.0005 0.1525 0.0001 0.323
Cook & Kosorok -0.0005 0.0006 0.1802 0.0002 0.943
Multiple Imputation -0.0005 0.0006 0.1713 0.0001 0.932

-1.5 Full Data -0.0008 0.0010 0.3185 0.0002 0.966
Complete Case -0.0056 0.0014 0.4261 0.0003 0.948
Treat all as Censored -0.0025 0.0014 0.4229 0.0003 0.950
Treat all as Failures 0.8277 0.0007 0.2036 0.0001 0.000
Cook & Kosorok -0.0003 0.0011 0.3512 0.0004 0.952
Multiple Imputation -0.0005 0.0011 0.3306 0.0002 0.947

-3 Full Data -0.0190 0.0025 0.7574 0.0008 0.952
Complete Case -0.0321 0.0036 1.0255 0.0016 0.942
Treat all as Censored -0.0205 0.0035 1.0070 0.0015 0.950
Treat all as Failures 2.5225 0.0009 0.2216 0.0001 0.000
Cook & Kosorok -0.0229 0.0028 0.9459 0.0024 0.953
Multiple Imputation -0.0239 0.0028 0.7961 0.0010 0.936

*: The Monte Carlo error is 0.007.
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Table A1.2: Simulation Results for MCAR

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0010 0.0006 0.1671 0.0001 0.930

Complete Case -0.0543 0.0008 0.2210 0.0001 0.825
Treat all as Censored -0.0021 0.0007 0.2212 0.0001 0.947
Treat all as Failures 0.0041 0.0006 0.1703 0.0001 0.929
Cook & Kosorok -0.0012 0.0006 0.1742 0.0001 0.934
Multiple Imputation -0.0012 0.0006 0.1722 0.0001 0.938

-1.5 Full Data -0.0008 0.0010 0.3185 0.0002 0.966
Complete Case -0.1329 0.0014 0.4283 0.0003 0.759
Treat all as Censored -0.0025 0.0014 0.4229 0.0003 0.950
Treat all as Failures 0.0849 0.0011 0.3147 0.0002 0.790
Cook & Kosorok -0.0006 0.0011 0.3411 0.0004 0.951
Multiple Imputation -0.0006 0.0011 0.3320 0.0002 0.957

-3 Full Data -0.0190 0.0025 0.7574 0.0008 0.952
Complete Case -0.2342 0.0037 1.0336 0.0016 0.883
Treat all as Censored -0.0205 0.0035 1.0070 0.0015 0.950
Treat all as Failures 0.6626 0.0025 0.6165 0.0006 0.047
Cook & Kosorok -0.0232 0.0028 0.8775 0.0016 0.940
Multiple Imputation -0.0240 0.0028 0.7996 0.0010 0.937

*: The Monte Carlo error is 0.007.
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Table A1.3: Results for an Extra Covariate Included in the Logistic Regression Model

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0017 5e-04 0.1670 1e-04 0.957

Complete Case 9e-04 7e-04 0.2156 1e-04 0.942
Treat all as Censored 0.1038 7e-04 0.2132 1e-04 0.517
Treat all as Failures 0.0010 6e-04 0.1703 1e-04 0.948
Cook & Kosorok -0.0016 6e-04 0.1741 1e-04 0.954
Multiple Imputation -0.0016 6e-04 0.1718 1e-04 0.942

-1.5 Full Data -0.0010 0.001 0.3188 2e-04 0.950
Complete Case -0.0589 0.0014 0.4332 4e-04 0.929
Treat all as Censored 0.1240 0.0014 0.4227 3e-04 0.765
Treat all as Failures 0.0665 0.001 0.3166 2e-04 0.864
Cook & Kosorok -9e-04 0.0011 0.3425 3e-04 0.945
Multiple Imputation -0.0010 0.0011 0.3313 2e-04 0.946

-3 Full Data -0.0170 0.0025 0.7586 8e-04 0.956
Complete Case -0.1892 0.0035 1.0783 0.0016 0.929
Treat all as Censored 0.1090 0.0034 1.0351 0.0014 0.907
Treat all as Failures 0.6010 0.0025 0.6275 6e-04 0.095
Cook & Kosorok -0.0184 0.0028 0.9093 0.0016 0.946
Multiple Imputation -0.0191 0.0028 0.8057 0.0012 0.941

*: The Monte Carlo error is 0.007.
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Table A1.4: Results when a Relevant Covariate is Omitted frin the Logistic Regression
Model

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0034 5e-04 0.1671 1e-04 0.950

Complete Case -0.0012 7e-04 0.2157 1e-04 0.943
Treat all as Censored 0.1005 7e-04 0.2133 1e-04 0.544
Treat all as Failures -8e-04 6e-04 0.1704 1e-04 0.955
Cook & Kosorok -0.0036 6e-04 0.1739 1e-04 0.951
Multiple Imputation -0.0036 6e-04 0.1721 1e-04 0.954

-1.5 Full Data -0.0055 0.001 0.3183 2e-04 0.955
Complete Case -0.0638 0.0014 0.4322 4e-04 0.925
Treat all as Censored 0.1177 0.0014 0.4218 3e-04 0.787
Treat all as Failures 0.0625 0.001 0.3161 2e-04 0.869
Cook & Kosorok -0.0054 0.0011 0.3451 4e-04 0.944
Multiple Imputation -0.0055 0.0011 0.3359 2e-04 0.954

-3 Full Data -0.0190 0.0025 0.7574 8e-04 0.952
Complete Case -0.1888 0.0038 1.0804 0.0018 0.917
Treat all as Censored 0.1134 0.0035 1.0355 0.0015 0.907
Treat all as Failures 0.5996 0.0024 0.6264 6e-04 0.080
Cook & Kosorok -0.0165 0.0029 0.8985 0.0017 0.940
Multiple Imputation -0.0186 0.0029 0.8199 0.0011 0.943

*: The Monte Carlo error is 0.007.
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Table A1.5: Results when the Logistic Regression Model is Applied to Observations
with Qi = 0

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0010 0.0006 0.1671 0.0001 0.930

Complete Case -0.0042 0.0007 0.2218 0.0001 0.956
Treat all as Censored -0.0021 0.0007 0.2212 0.0001 0.947
Treat all as Failures 0.0932 0.0005 0.1525 0.0001 0.323
Cook & Kosorok -0.0005 0.0006 0.1802 0.0002 0.943
Multiple Imputation -0.0005 0.0006 0.1713 0.0001 0.932

-1.5 Full Data -0.0008 0.0010 0.3185 0.0002 0.966
Complete Case -0.0056 0.0014 0.4261 0.0003 0.948
Treat all as Censored -0.0025 0.0014 0.4229 0.0003 0.950
Treat all as Failures 0.8277 0.0007 0.2036 0.0001 0.000
Cook & Kosorok -0.0003 0.0011 0.3512 0.0004 0.952
Multiple Imputation -0.0005 0.0011 0.3306 0.0002 0.947

-3 Full Data -0.0190 0.0025 0.7574 0.0008 0.952
Complete Case -0.0321 0.0036 1.0255 0.0016 0.942
Treat all as Censored -0.0205 0.0035 1.0070 0.0015 0.950
Treat all as Failures 2.5225 0.0009 0.2216 0.0001 0.000
Cook & Kosorok -0.0229 0.0028 0.9459 0.0024 0.953
Multiple Imputation -0.0239 0.0028 0.7961 0.0010 0.936

*: The Monte Carlo error is 0.007.
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Table A1.6: Results when an Extra Covariate is Included in the Logistic Regression
Model and the Model is Applied to Observations with Qi = 0

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0020 5e-04 0.1671 1e-04 0.957

Complete Case -0.0026 7e-04 0.2218 1e-04 0.954
Treat all as Censored -1e-04 7e-04 0.221 1e-04 0.945
Treat all as Failures 0.0938 5e-04 0.1526 1e-04 0.328
Cook & Kosorok -4e-04 6e-04 0.1814 2e-04 0.951
Multiple Imputation -4e-04 6e-04 0.1713 1e-04 0.950

-1.5 Full Data -0.0050 0.0011 0.3187 2e-04 0.943
Complete Case -0.0077 0.0014 0.4245 4e-04 0.949
Treat all as Censored -0.0038 0.0014 0.4218 3e-04 0.947
Treat all as Failures 0.8225 7e-04 0.2040 1e-04 0.000
Cook & Kosorok -0.0041 0.0011 0.3526 4e-04 0.943
Multiple Imputation -0.0041 0.0011 0.3306 2e-04 0.939

-3 Full Data -0.0191 0.0026 0.7586 0.0008 0.950
Complete Case -0.0389 0.0035 1.0301 0.0016 0.949
Treat all as Censored -0.0276 0.0034 1.0108 0.0014 0.947
Treat all as Failures 2.5217 0.0008 0.2214 0.0001 0.000
Cook & Kosorok -0.0155 0.0029 0.9683 0.0025 0.961
Multiple Imputation -0.0156 0.0028 0.7978 0.0011 0.939

*: The Monte Carlo error is 0.007.
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Table A1.7: Results when a Relevant Covariate is not Included in the Logistic
Regression Model and the Model is Applied to Observations where Qi = 0

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0001 0.0006 0.1667 0.0001 0.941

Complete Case 0.0011 0.0008 0.2211 0.0001 0.939
Treat all as Censored 0.0009 0.0007 0.2205 0.0001 0.939
Treat all as Failures 0.0938 0.0005 0.1522 0.0001 0.331
Cook & Kosorok 0.0840 0.0005 0.1581 0.0001 0.484
Multiple Imputation 0.0840 0.0005 0.1551 0.0001 0.441

-1.5 Full Data -0.0046 0.0011 0.3187 0.0002 0.941
Complete Case -0.0068 0.0014 0.4242 0.0004 0.939
Treat all as Censored -0.0029 0.0014 0.4217 0.0003 0.945
Treat all as Failures 0.8236 0.0007 0.2041 0.0001 0.000
Cook & Kosorok 0.5062 0.0013 0.3936 0.0006 0.003
Multiple Imputation 0.5058 0.0013 0.2581 0.0002 0.000

-3 Full Data -0.0229 0.0026 0.7606 0.0009 0.954
Complete Case -0.0335 0.0034 1.0296 0.0016 0.965
Treat all as Censored -0.0282 0.0034 1.0132 0.0014 0.956
Treat all as Failures 2.5266 0.0008 0.2212 0.0001 0.000
Cook & Kosorok 0.8890 0.0034 1.0710 0.0026 0.191
Multiple Imputation 0.8867 0.0034 0.5424 0.0008 0.026

*: The Monte Carlo error is 0.007.

109



Table A1.8: Simulation Results for MNAR, scenario A

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0021 0.0006 0.1671 0.0001 0.938

Complete Case -0.0755 0.0008 0.2424 0.0004 0.778
Treat all as Censored -0.0022 0.0008 0.2421 0.0001 0.942
Treat all as Failures 0.0023 0.0006 0.1705 0.0001 0.942
Cook & Kosorok -0.0054 0.0006 0.1760 0.0001 0.940
Multiple Imputation -0.0054 0.0006 0.1732 0.0001 0.943

-1.5 Full Data -0.0030 0.0011 0.3185 0.0002 0.942
Complete Case -0.1744 0.0016 0.4691 0.0004 0.717
Treat all as Censored -0.0049 0.0015 0.4623 0.0004 0.947
Treat all as Failures 0.0646 0.0011 0.3172 0.0002 0.875
Cook & Kosorok -0.0206 0.0011 0.3460 0.0004 0.921
Multiple Imputation -0.0207 0.0011 0.3362 0.0002 0.939

-3 Full Data -0.0289 0.0026 0.7611 0.0009 0.948
Complete Case -0.3308 0.0040 1.1490 0.0018 0.824
Treat all as Censored -0.0339 0.0039 1.1060 0.0016 0.935
Treat all as Failures 0.5242 0.0026 0.6487 0.0007 0.181
Cook & Kosorok -0.0737 0.0029 0.9026 0.0018 0.898
Multiple Imputation -0.0745 0.0029 0.8194 0.0011 0.940

*: The Monte Carlo error is 0.007.
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Table A1.9: Simulation Results for MNAR, scenario B

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0021 0.0006 0.1671 0.0001 0.938

Complete Case -0.0998 0.0009 0.2713 0.0002 0.687
Treat all as Censored -0.0016 0.0009 0.2707 0.0001 0.943
Treat all as Failures 0.0009 0.0006 0.1707 0.0001 0.943
Cook & Kosorok -0.0094 0.0006 0.1783 0.0001 0.933
Multiple Imputation -0.0095 0.0006 0.1747 0.0001 0.934

-1.5 Full Data -0.0030 0.0011 0.3185 0.0002 0.942
Complete Case -0.2278 0.0018 0.5289 0.0005 0.618
Treat all as Censored -0.0046 0.0017 0.5169 0.0004 0.958
Treat all as Failures 0.0444 0.0011 0.3201 0.0002 0.910
Cook & Kosorok -0.0398 0.0012 0.3534 0.0004 0.902
Multiple Imputation -0.0398 0.0012 0.3417 0.0002 0.920

-3 Full Data -0.0289 0.0026 0.7611 0.0009 0.948
Complete Case -0.4316 0.0046 1.3085 0.0023 0.781
Treat all as Censored -0.0464 0.0044 1.2434 0.002 0.932
Treat all as Failures 0.3661 0.0027 0.6850 0.0007 0.451
Cook & Kosorok -0.1180 0.0030 0.9425 0.0021 0.870
Multiple Imputation -0.1189 0.0030 0.8394 0.0012 0.924

*: The Monte Carlo error is 0.007.
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Table A1.10: Simulation Results for Poisson Models, MAR

β Method Bias SE (Bias) Width SE (Width) Coverage*
-0.5 Full Data -0.0036 0.0005 0.1596 0.0001 0.956

Complete Case -0.0101 0.0007 0.2067 0.0001 0.948
Treat all as Censored 0.0813 0.0007 0.2049 0.0001 0.652
Treat all as Failures -0.0002 0.0006 0.1628 0.0001 0.957
Multiple Imputation -0.0036 0.0006 0.1642 0.0001 0.959

-1.5 Full Data -0.0005 0.0010 0.2864 0.0002 0.945
Complete Case -0.1008 0.0015 0.3956 0.0004 0.829
Treat all as Censored 0.0704 0.0014 0.3883 0.0003 0.898
Treat all as Failures 0.0717 0.0010 0.2857 0.0002 0.820
Multiple Imputation 0.0006 0.0011 0.2979 0.0002 0.940

-3 Full Data -0.0184 0.0021 0.5994 0.0007 0.958
Complete Case -0.2733 0.0032 0.8710 0.0016 0.792
Treat all as Censored 0.0206 0.0030 0.8485 0.0012 0.954
Treat all as Failures 0.5232 0.0025 0.5544 0.0006 0.085
Multiple Imputation -0.0219 0.0024 0.6353 0.0009 0.940

*: The Monte Carlo error is 0.007.
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Table A1.11: Simulation Results for Incidence Rates

β Method Q1 SE Q2 SE Q3 SE
-0.5 Full Data 0.5157 0.0003 0.3671 0.0002 0.2615 0.0002

Complete Case 0.4261 0.0004 0.3019 0.0002 0.2142 0.0002
Treat all as Censored 0.2991 0.0003 0.2254 0.0002 0.1701 0.0002
Treat all as Failures 0.4949 0.0003 0.3531 0.0002 0.2521 0.0002
Multiple Imputation 0.4910 0.0003 0.3495 0.0002 0.2490 0.0002

-1.5 Full Data 0.1375 0.0001 0.0501 0.0001 0.0183 0.0000
Complete Case 0.0968 0.0001 0.0330 0.0001 0.0113 0.0000
Treat all as Censored 0.0753 0.0001 0.0288 0.0000 0.0110 0.0000
Treat all as Failures 0.1388 0.0001 0.0530 0.0001 0.0203 0.0000
Multiple Imputation 0.1309 0.0001 0.0477 0.0001 0.0174 0.0000

-3 Full Data 0.0186 0.0000 0.0025 0.0000 0.0003 0.0000
Complete Case 0.0106 0.0000 0.0012 0.0000 0.0001 0.0000
Treat all as Censored 0.0097 0.0000 0.0013 0.0000 0.0002 0.0000
Treat all as Failures 0.0301 0.0001 0.0058 0.0000 0.0011 0.0000
Multiple Imputation 0.0176 0.0000 0.0023 0.0000 0.0003 0.0000

*: Q1 denotes rates based on the lower quartile of Xi1.

*: Q2 denotes rates based on the median of Xi1.

*: Q3 denotes rates based on the upper quartile of Xi1.
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APPENDIX 2: SUPPLEMENTARY MATERIAL FOR CHAPTER 5

Results for the QST domain remained unchanged in overall interpretation for different

threshold values, ranging from 0.4 to 0.8 for all components. For the full cohort of

3443 individuals, see Tables A2.1-A2.4 and Table 5.9. For the follow-up cohort of

2737 individuals see Tables A2.6-A2.9. As expected, results are very close for the full

OPPERA dataset compared to for those with follow-up data only. No further discussion

is warranted, but tables are provided for the reader.
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Table A2.1: PCA/SFA QST Results for the Entire OPPERA Cohort, c=0.4

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.42 0 0
Masseter 0 0 0.44 0 0
TMJ 0 0 0.42 0 0
Trapezius 0 0 0.41 0 0
Epicondyl 0 0 0.37 0 0
Mechanical Cutaneous Pain Threshhold 0 0 0.38 0 0
Single Stimulus
256 mN Probe 0 0 0 0.36 0
512 mN Probe 0 0 0 0.37 0
After Sensation
15 s, 256 mN probe 0 0 0 0.48 0
30 s, 256 mN probe 0 0 0 0.40 0
15 s, 512 mN probe 0 0.04 0 0.41 0
30 s, 512 mN probe 0 0.07 0 0.37 0
Temporal Summation
256 mN probe 0 0 0 0.19 0
512 mN probe 0 0 0 0 0
Heat Pain Tolerance -0.03 0 0 0 0
Single Stimulus Ratings
46 0.35 0 0 0 0
48 0.42 0 0 0 0
50 0.43 0 0 0 0
Area Under the Curve
46 0.42 0 0 0 0
48 0.45 0 0 0 0
50 0.39 0 0 0 0
After Sensations
15 s, 46 0 0.37 0 0 0
30 s, 46 0 0.40 0 0 0
15 s, 48 0 0.41 0 0 0
30 s, 48 0 0.44 0 0 0
15 s, 50 0 0.40 0 0 0
30 s, 50 0 0.42 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.46
48 0 0 0 0 0.50
50 0 0 0 0 0.34
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0.28
48 0 0 0 0 0.43
50 0 0 0 0 0.39
Percent Variance Explained 0.15 0.31 0.45 0.58 0.69
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Table A2.2: PCA/SFA QST Results for the Entire OPPERA Cohort, c=0.5

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.42 0 0
Masseter 0 0 0.45 0 0
TMJ 0 0 0.43 0 0
Trapezius 0 0 0.41 0 0
Epicondyl 0 0 0.36 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.37 0 0
Single Stimulus
256 mN Probe 0 0 0 0.34 0
512 mN Probe 0 0 0 0.37 0
Temporal Summation
256 mN probe 0 0 0 0.1 0
512 mN probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 0.52 0
15 s, 512 mN probe 0 0 0 0.42 0
30 s, 256 mN probe 0 0 0 0.4 0
30 s, 512 mN probe 0 0 0 0.35 0
Heat Pain Tolerance 0 0 0 0 0
After Sensations
15 s, 46 0 0.36 0 0 0
15 s, 48 0 0.41 0 0 0
15 s, 50 0 0.4 0 0 0
30 s, 46 0 0.4 0 0 0
30 s, 48 0 0.45 0 0 0
30 s, 50 0 0.43 0 0 0
Single Stimulus
46 0.33 0 0 0 0
48 0.42 0 0 0 0
50 0.43 0 0 0 0
Area Under the Curve
46 0.42 0 0 0 0
48 0.46 0 0 0 0
50 0.37 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.47
48 0 0 0 0 0.53
50 0 0 0 0 0.32
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0.24
48 0 0 0 0 0.44
50 0 0 0 0 0.38
Percent Variance Explained 0.15 0.3 0.44 0.57 0.68
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Table A2.3: PCA/SFA QST Results for the Entire OPPERA Cohort, c=0.6

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.43 0 0
Masseter 0 0 0.47 0 0
TMJ 0 0 0.44 0 0
Trapezius 0 0 0.41 0 0
Epicondyl 0 0 0.34 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.36 0 0
Single Stimulus
256 mN Probe 0 0 0 0.3 0
512 mN Probe 0 0 0 0.34 0
Temporal Summation
256 mN probe 0 0 0 0 0
512 mN probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 0.59 0
15 s, 512 mN probe 0 0 0 0.43 0
30 s, 256 mN probe 0 0 0 0.4 0
30 s, 512 mN probe 0 0 0 0.32 0
Heat Pain Tolerance 0 0 0 0 0
After Sensations
15 s, 46 0 0.34 0 0 0
15 s, 48 0 0.41 0 0 0
15 s, 50 0 0.39 0 0 0
30 s, 46 0 0.39 0 0 0
30 s, 48 0 0.46 0 0 0
30 s, 50 0 0.44 0 0 0
Single Stimulus
46 0.3 0 0 0 0
48 0.42 0 0 0 0
50 0.44 0 0 0 0
Area Under the Curve
46 0.43 0 0 0 0
48 0.48 0 0 0 0
50 0.36 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.5
48 0 0 0 0 0.59
50 0 0 0 0 0.27
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0.15
48 0 0 0 0 0.44
50 0 0 0 0 0.35
Percent Variance Explained 0.15 0.30 0.44 0.56 0.66
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Table A2.4: PCA/SFA QST Results for the Entire OPPERA Cohort, c=0.7

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.43 0 0
Masseter 0 0 0.5 0 0
TMJ 0 0 0.45 0 0
Trapezius 0 0 0.41 0 0
Epicondyl 0 0 0.29 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.33 0 0
Single Stimulus
256 mN Probe 0 0 0 0.12 0
512 mN Probe 0 0 0 0.21 0
Temporal Summation
256 mN probe 0 0 0 0 0
512 mN probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 0.79 0
15 s, 512 mN probe 0 0 0 0.42 0
30 s, 256 mN probe 0 0 0 0.34 0
30 s, 512 mN probe 0 0 0 0.16 0
Heat Pain Tolerance 0 0 0 0 0
After Sensations
15 s, 46 0 0.3 0 0 0
15 s, 48 0 0.41 0 0 0
15 s, 50 0 0.38 0 0 0
30 s, 46 0 0.38 0 0 0
30 s, 48 0 0.5 0 0 0
30 s, 50 0 0.46 0 0 0
Single Stimulus
46 0.22 0 0 0 0
48 0.42 0 0 0 0
50 0.45 0 0 0 0
Area Under the Curve
46 0.44 0 0 0 0
48 0.52 0 0 0 0
50 0.33 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.52
48 0 0 0 0 0.69
50 0 0 0 0 0.09
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0
48 0 0 0 0 0.42
50 0 0 0 0 0.25
Percent Variance Explained 0.15 0.29 0.43 0.53 0.61
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Table A2.5: PCA/SFA QST Results for the OPPERA Follow-up Cohort, c=0.4

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.42 0 0
Masseter 0 0 0.44 0 0
TMJ 0 0 0.42 0 0
Trapezius 0 0 0.41 0 0
Epicondyl 0 0 0.36 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.39 0 0
Single Stimulus
256 mN Probe 0 0 0 0.36 0
512 mN Probe 0 0 0 0.37 0
Temporal Summation
256 mN probe 0 0 0 0.19 0
512 mN probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 0.48 0
15 s, 512 mN probe 0 0.06 0 0.41 0
30 s, 256 mN probe 0 0 0 0.4 0
30 s, 512 mN probe 0 0.09 0 0.35 0
Heat Pain Tolerance -0.03 0 0 0 0
After Sensations
15 s, 46 0 0.37 0 0 0
15 s, 48 0 0.41 0 0 0
15 s, 50 0 0.4 0 0 0
30 s, 46 0 0.4 0 0 0
30 s, 48 0 0.43 0 0 0
30 s, 50 0 0.42 0 0 0
Single Stimulus
46 0.35 0 0 0 0
48 0.42 0 0 0 0
50 0.43 0 0 0 0
Area Under the Curve
46 0.42 0 0 0 0
48 0.44 0 0 0 0
50 0.38 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.46
48 0 0 0 0 0.51
50 0 0 0 0 0.35
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0.27
48 0 0 0 0 0.43
50 0 0 0 0 0.39
Percent Variance Explained 0.15 0.31 0.45 0.58 0.69
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Table A2.6: PCA/SFA QST Results for the OPPERA Follow-up Cohort, c=0.5

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.42 0 0
Masseter 0 0 0.45 0 0
TMJ 0 0 0.43 0 0
Trapezius 0 0 0.41 0 0
Epicondyl 0 0 0.35 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.38 0 0
Single Stimulus
256 mN Probe 0 0 0 0.35 0
512 mN Probe 0 0 0 0.37 0
Temporal Summation
256 mN probe 0 0 0 0.11 0
512 mN probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 0.52 0
15 s, 512 mN probe 0 0 0 0.42 0
30 s, 256 mN probe 0 0 0 0.41 0
30 s, 512 mN probe 0 0 0 0.34 0
Heat Pain Tolerance 0 0 0 0 0
After Sensations
15 s, 46 0 0.36 0 0 0
15 s, 48 0 0.41 0 0 0
15 s, 50 0 0.4 0 0 0
30 s, 46 0 0.4 0 0 0
30 s, 48 0 0.44 0 0 0
30 s, 50 0 0.43 0 0 0
Single Stimulus
46 0.33 0 0 0 0
48 0.42 0 0 0 0
50 0.43 0 0 0 0
Area Under the Curve
46 0.42 0 0 0 0
48 0.45 0 0 0 0
50 0.37 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.47
48 0 0 0 0 0.54
50 0 0 0 0 0.33
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0.22
48 0 0 0 0 0.43
50 0 0 0 0 0.38
Percent Variance Explained 0.15 0.3 0.44 0.57 0.68
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Table A2.7: PCA/SFA QST Results for the OPPERA Follow-up Cohort, c=0.6

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.42 0 0
Masseter 0 0 0.46 0 0
TMJ 0 0 0.43 0 0
Trapezius 0 0 0.41 0 0
Epicondyl 0 0 0.33 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.38 0 0
Single Stimulus
256 mN Probe 0 0 0 0.31 0
512 mN Probe 0 0 0 0.34 0
Temporal Summation
256 mN probe 0 0 0 0 0
512 mN probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 0.59 0
15 s, 512 mN probe 0 0 0 0.43 0
30 s, 256 mN probe 0 0 0 0.41 0
30 s, 512 mN probe 0 0 0 0.3 0
Heat Pain Tolerance 0 0 0 0 0
After Sensations
15 s, 46 0 0.34 0 0 0
15 s, 48 0 0.41 0 0 0
15 s, 50 0 0.4 0 0 0
30 s, 46 0 0.39 0 0 0
30 s, 48 0 0.46 0 0 0
30 s, 50 0 0.44 0 0 0
Single Stimulus
46 0.3 0 0 0 0
48 0.43 0 0 0 0
50 0.44 0 0 0 0
Area Under the Curve
46 0.43 0 0 0 0
48 0.47 0 0 0 0
50 0.35 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.49
48 0 0 0 0 0.59
50 0 0 0 0 0.28
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0.12
48 0 0 0 0 0.44
50 0 0 0 0 0.36
Percent Variance Explained 0.15 0.3 0.44 0.56 0.66
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Table A2.8: PCA/SFA QST Results for the OPPERA Follow-up Cohort, c=0.7

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.43 0 0
Masseter 0 0 0.5 0 0
TMJ 0 0 0.44 0 0
Trapezius 0 0 0.41 0 0
Epicondyl 0 0 0.28 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.35 0 0
Single Stimulus
256 mN Probe 0 0 0 0.12 0
512 mN Probe 0 0 0 0.2 0
Temporal Summation
256 mN probe 0 0 0 0 0
512 mN probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 0.8 0
15 s, 512 mN probe 0 0 0 0.41 0
30 s, 256 mN probe 0 0 0 0.35 0
30 s, 512 mN probe 0 0 0 0.09 0
Heat Pain Tolerance 0 0 0 0 0
After Sensations
15 s, 46 0 0.29 0 0 0
15 s, 48 0 0.41 0 0 0
15 s, 50 0 0.39 0 0 0
30 s, 46 0 0.38 0 0 0
30 s, 48 0 0.49 0 0 0
30 s, 50 0 0.46 0 0 0
Single Stimulus
46 0.23 0 0 0 0
48 0.44 0 0 0 0
50 0.46 0 0 0 0
Area Under the Curve
46 0.43 0 0 0 0
48 0.5 0 0 0 0
50 0.32 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.51
48 0 0 0 0 0.7
50 0 0 0 0 0.11
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0
48 0 0 0 0 0.41
50 0 0 0 0 0.26
Percent Variance Explained 0.15 0.29 0.43 0.52 0.61

122



Table A2.9: PCA/SFA QST Results for the OPPERA Follow-up Cohort, c=0.8

Component 1 2 3 4 5
Pressure Pain Threshold
Temporalis 0 0 0.44 0 0
Masseter 0 0 0.6 0 0
TMJ 0 0 0.47 0 0
Trapezius 0 0 0.39 0 0
Epicondyl 0 0 0.09 0 0
Mechanical Cutaneous Pain Threshold 0 0 0.26 0 0
Single Stimulus
256 mN Probe 0 0 0 0 0
512 mN Probe 0 0 0 0 0
Temporal Summation
256 mN probe 0 0 0 0 0
512 mN probe 0 0 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0 0 0 1 0
15 s, 512 mN probe 0 0 0 0 0
30 s, 256 mN probe 0 0 0 0 0
30 s, 512 mN probe 0 0 0 0 0
Heat Pain Tolerance 0 0 0 0 0
After Sensations
15 s, 46 0 0.06 0 0 0
15 s, 48 0 0.37 0 0 0
15 s, 50 0 0.34 0 0 0
30 s, 46 0 0.31 0 0 0
30 s, 48 0 0.61 0 0 0
30 s, 50 0 0.52 0 0 0
Single Stimulus
46 0 0 0 0 0
0 48 0.44 0 0 0 0
50 0.49 0 0 0 0
Area Under the Curve
46 0.43 0 0 0 0
48 0.6 0 0 0 0
50 0.14 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0 0 0.32
48 0 0 0 0 0.95
50 0 0 0 0 0
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0 0 0
48 0 0 0 0 0
50 0 0 0 0 0
Percent Variance Explained 0.12 0.24 0.37 0.4 0.44
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Table A2.10: PCA/SFA Autonomic Results for the OPPERA Followup Cohort, c=0.4

Component 1 2 3 4 5
AvgRestingSPB 0.29 0 0 0 0
AvgRestingDPB 0.22 0 0 0 0
AvgRestingMAP 0.29 0 0 0 0
AvgRestingHR 0 0 0.3 0 0
InitialOrthoSPB 0.18 0 0 0 0
InitialOrthoDPB 0.2 0 0 0 0
InitialOrthoMAP 0.26 0 0 0 0
InitialOrthoHR 0 0 0.2 0 0
StroopColorSPBmean 0.33 0 0 0 0
StroopColorDPBmean 0.31 0 0 0 0
StroopColorMAPmean 0.35 0 0 0 0
StroopColorHRmean 0 0 0.4 0 0
StroopEmotionalSPBmean 0.33 0 0 0 0
StroopEmotionalDPBmean 0.29 0 0 0 0
StroopEmotionalMAPmean 0.35 0 0 0 0
StroopEmotionalHRmean 0 0 0.41 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0.3 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0.34 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0.12 0
HRVBaseline20minLnTP 0 0 0 0.53 0
HRVBaseline20minLnVLF 0 0 0 0.41 0
HRVBaseline20minLnLF 0 0 0 0.49 0
HRVBaseline20minLnHF 0 0 0 0.42 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.33 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.47
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.38
HRVOrtho5minLnTP 0 0 0 0 0.45
HRVOrtho5minLnVLF 0 0 0 0 0.33
HRVOrtho5minLnLF 0 0 0 0 0.38
HRVOrtho5minLnHF 0 0 0 0 0.43
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.41 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.42 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.38 0 0 0
HRVStroopColor5minLnTP 0 0.32 0 0 0
HRVStroopColor5minLnVLF 0 0.18 0 0 0
HRVStroopColor5minLnLF 0 0.28 0 0 0
HRVStroopColor5minLnHF 0 0.33 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.42 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.38 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.36 0 0 0
HRVStroopEmotion5minLnTP 0 0.26 0 0 0
HRVStroopEmotion5minLnVLF 0 0.13 0 0 0
Percent Variance Explained 0.2 0.36 0.51 0.61 0.72
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Table A2.11: PCA/SFA Autonomic Results for the OPPERA Followup Cohort, c=0.5

Component 1 2 3 4 5
AvgRestingSPB 0.29 0 0 0 0
AvgRestingDPB 0.2 0 0 0 0
AvgRestingMAP 0.29 0 0 0 0
AvgRestingHR 0 0 0.28 0 0
InitialOrthoSPB 0.15 0 0 0 0
InitialOrthoDPB 0.18 0 0 0 0
InitialOrthoMAP 0.25 0 0 0 0
InitialOrthoHR 0 0 0.15 0 0
StroopColorSPBmean 0.34 0 0 0 0
StroopColorDPBmean 0.31 0 0 0 0
StroopColorMAPmean 0.37 0 0 0 0
StroopColorHRmean 0 0 0.41 0 0
StroopEmotionalSPBmean 0.33 0 0 0 0
StroopEmotionalDPBmean 0.29 0 0 0 0
StroopEmotionalMAPmean 0.36 0 0 0 0
StroopEmotionalHRmean 0 0 0.42 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0.28 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0.3 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0.01 0
HRVBaseline20minLnTP 0 0 0 0.57 0
HRVBaseline20minLnVLF 0 0 0 0.39 0
HRVBaseline20minLnLF 0 0 0 0.51 0
HRVBaseline20minLnHF 0 0 0 0.42 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.32 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.48
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.37
HRVOrtho5minLnTP 0 0 0 0 0.46
HRVOrtho5minLnVLF 0 0 0 0 0.29
HRVOrtho5minLnLF 0 0 0 0 0.37
HRVOrtho5minLnHF 0 0 0 0 0.44
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.42 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.44 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.39 0 0 0
HRVStroopColor5minLnTP 0 0.32 0 0 0
HRVStroopColor5minLnVLF 0 0.13 0 0 0
HRVStroopColor5minLnLF 0 0.27 0 0 0
HRVStroopColor5minLnHF 0 0.33 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.44 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.39 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.37 0 0 0
HRVStroopEmotion5minLnTP 0 0.24 0 0 0
HRVStroopEmotion5minLnVLF 0 0.07 0 0 0
Percent Variance Explained 0.2 0.36 0.5 0.59 0.7
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Table A2.12: PCA/SFA Autonomic Results for the OPPERA Followup Cohort, c=0.6

Component 1 2 3 4 5
AvgRestingSPB 0.29 0 0 0 0
AvgRestingDPB 0.16 0 0 0 0
AvgRestingMAP 0.29 0 0 0 0
AvgRestingHR 0 0 0.25 0 0
InitialOrthoSPB 0.09 0 0 0 0
InitialOrthoDPB 0.13 0 0 0 0
InitialOrthoMAP 0.23 0 0 0 0
InitialOrthoHR 0 0 0.06 0 0
StroopColorSPBmean 0.35 0 0 0 0
StroopColorDPBmean 0.31 0 0 0 0
StroopColorMAPmean 0.4 0 0 0 0
StroopColorHRmean 0 0 0.42 0 0
StroopEmotionalSPBmean 0.35 0 0 0 0
StroopEmotionalDPBmean 0.29 0 0 0 0
StroopEmotionalMAPmean 0.39 0 0 0 0
StroopEmotionalHRmean 0 0 0.44 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0.24 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0.23 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0 0
HRVBaseline20minLnTP 0 0 0 0.61 0
HRVBaseline20minLnVLF 0 0 0 0.36 0
HRVBaseline20minLnLF 0 0 0 0.53 0
HRVBaseline20minLnHF 0 0 0 0.4 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.3 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.52
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.35
HRVOrtho5minLnTP 0 0 0 0 0.49
HRVOrtho5minLnVLF 0 0 0 0 0.23
HRVOrtho5minLnLF 0 0 0 0 0.34
HRVOrtho5minLnHF 0 0 0 0 0.45
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.44 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.48 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.41 0 0 0
HRVStroopColor5minLnTP 0 0.31 0 0 0
HRVStroopColor5minLnVLF 0 0.02 0 0 0
HRVStroopColor5minLnLF 0 0.23 0 0 0
HRVStroopColor5minLnHF 0 0.32 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.46 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.41 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.38 0 0 0
HRVStroopEmotion5minLnTP 0 0.2 0 0 0
HRVStroopEmotion5minLnVLF 0 0 0 0 0
Percent Variance Explained 0.19 0.33 0.47 0.56 0.67
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Table A2.13: PCA/SFA Autonomic Results for the OPPERA Followup Cohort, c=0.8

Component 1 2 3 4 5
AvgRestingSPB 0.17 0 0 0 0
AvgRestingDPB 0 0 0 0 0
AvgRestingMAP 0.18 0 0 0 0
AvgRestingHR 0 0 0 0 0
InitialOrthoSPB 0 0 0 0 0
InitialOrthoDPB 0 0 0 0 0
InitialOrthoMAP 0 0 0 0 0
InitialOrthoHR 0 0 0 0 0
StroopColorSPBmean 0.39 0 0 0 0
StroopColorDPBmean 0.27 0 0 0 0
StroopColorMAPmean 0.53 0 0 0 0
StroopColorHRmean 0 0 0.43 0 0
StroopEmotionalSPBmean 0.37 0 0 0 0
StroopEmotionalDPBmean 0.18 0 0 0 0
StroopEmotionalMAPmean 0.51 0 0 0 0
StroopEmotionalHRmean 0 0 0.5 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0 0
HRVBaseline20minLnTP 0 0 0 0.86 0
HRVBaseline20minLnVLF 0 0 0 0 0
HRVBaseline20minLnLF 0 0 0 0.51 0
HRVBaseline20minLnHF 0 0 0 0 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.79
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0
HRVOrtho5minLnTP 0 0 0 0 0.54
HRVOrtho5minLnVLF 0 0 0 0 0
HRVOrtho5minLnLF 0 0 0 0 0
HRVOrtho5minLnHF 0 0 0 0 0.29
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.48 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.76 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.42 0 0 0
HRVStroopColor5minLnTP 0 0 0 0 0
HRVStroopColor5minLnVLF 0 0 0 0 0
HRVStroopColor5minLnLF 0 0 0 0 0
HRVStroopColor5minLnHF 0 0 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.58 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.42 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.27 0 0 0
HRVStroopEmotion5minLnTP 0 0 0 0 0
HRVStroopEmotion5minLnVLF 0 0 0 0 0
Percent Variance Explained 0.14 0.21 0.3 0.34 0.4
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Table A2.14: PCA/SFA QST Results for Cases, c=0.4

Component 1 2 3 4 5
Pressure Pain Threshhold
Temporalis 0 0 0 0.47 0
Masseter 0 0 0 0.5 0
TMJ 0 0 0 0.5 0
Trapezius 0 0 0 0.4 0
Epicondyl 0 0 0 0.36 0
Mechanical Cutaneous Pain Threshold 0 0 0 0 0
Single Stimulus
256 mN Probe 0 0 0 0 0.54
512 mN Probe 0 0 0 0 0.54
Temporal Summation
256 mN probe 0 0 0 0 0
512 mN probe 0 0.07 0 0 0
After Sensation Ratings
15 s, 256 mN probe 0.12 0 0 0 0.4
15 s, 512 mN probe 0.15 0 0 0 0.32
30 s, 256 mN probe 0.16 0 0 0 0.29
30 s, 512 mN probe 0.21 0 0 0 0.27
Heat Pain Tolerance 0 -0.05 0 0 0
Single Stimulus
46 0 0.28 -0.06 0 0
48 0 0.36 -0.09 0 0
50 0 0.42 0 0 0
Area Under the Curve
46 0 0.42 0 0 0
48 0 0.48 0 0 0
50 0 0.44 0 0 0
After Sensations
15 s, 46 0.37 0 0 0 0
15 s, 48 0.38 0 0 0 0
15 s, 50 0.34 0 0 0 0
30 s, 46 0.39 0 0 0 0
30 s, 48 0.42 0 0 0 0
30 s, 50 0.41 0 0 0 0
Temporal Summation: Highest Minus First Rating
46 0 0 0.42 0 0
48 0 0 0.48 0 0
50 0 -0.02 0.32 0 0
Temporal Summation: Slope of Line for First 3 Ratings
46 0 0 0.32 0 0
48 0 0 0.45 0 0
50 0 0 0.41 0 0
Percent Variance Explained 0.2 0.35 0.48 0.6 0.69
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Table A2.15: Autonomic Results for the OPPERA Case Control Study, c=0.4

Component 1 2 3 4 5
AvgRestingSPB 0.29 0 0 0 0
AvgRestingDPB 0.22 0 0 0 0
AvgRestingMAP 0.29 0 0 0 0
AvgRestingHR 0 0 0.3 0 0
InitialOrthoSPB 0.18 0 0 0 0
InitialOrthoDPB 0.21 0 0 0 0
InitialOrthoMAP 0.26 0 0 0 0
InitialOrthoHR 0 0 0.21 0 0
StroopColorSPBmean 0.33 0 0 0 0
StroopColorDPBmean 0.31 0 0 0 0
StroopColorMAPmean 0.35 0 0 0 0
StroopColorHRmean 0 0 0.4 0 0
StroopEmotionalSPBmean 0.33 0 0 0 0
StroopEmotionalDPBmean 0.29 0 0 0 0
StroopEmotionalMAPmean 0.35 0 0 0 0
StroopEmotionalHRmean 0 0 0.41 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0.3 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0.38 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0.18 0
HRVBaseline20minLnTP 0 0 0 0.52 0
HRVBaseline20minLnVLF 0 0 0 0.38 0
HRVBaseline20minLnLF 0 0 0 0.48 0
HRVBaseline20minLnHF 0 0 0 0.42 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.34 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.47
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.41
HRVOrtho5minLnTP 0 0 0 0 0.43
HRVOrtho5minLnVLF 0 0 0 0 0.31
HRVOrtho5minLnLF 0 0 0 0 0.37
HRVOrtho5minLnHF 0 0 0 0 0.44
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.41 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.42 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.4 0 0 0
HRVStroopColor5minLnTP 0 0.34 0 0 0
HRVStroopColor5minLnVLF 0 0.2 0 0 0
HRVStroopColor5minLnLF 0 0.3 0 0 0
HRVStroopColor5minLnHF 0 0.33 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.42 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.35 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.32 0 0 0
HRVStroopEmotion5minLnTP 0 0.25 0 0 0
HRVStroopEmotion5minLnVLF 0 0.12 0 0 0
Percent Variance Explained 0.2 0.36 0.51 0.61 0.72
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Table A2.16: Autonomic Results for the OPPERA Case Control Study, c=0.5

Component 1 2 3 4 5
AvgRestingSPB 0.28 0 0 0 0
AvgRestingDPB 0.2 0 0 0 0
AvgRestingMAP 0.29 0 0 0 0
AvgRestingHR 0 0 0.28 0 0
InitialOrthoSPB 0.14 0 0 0 0
InitialOrthoDPB 0.18 0 0 0 0
InitialOrthoMAP 0.25 0 0 0 0
InitialOrthoHR 0 0 0.17 0 0
StroopColorSPBmean 0.34 0 0 0 0
StroopColorDPBmean 0.31 0 0 0 0
StroopColorMAPmean 0.37 0 0 0 0
StroopColorHRmean 0 0 0.4 0 0
StroopEmotionalSPBmean 0.34 0 0 0 0
StroopEmotionalDPBmean 0.29 0 0 0 0
StroopEmotionalMAPmean 0.36 0 0 0 0
StroopEmotionalHRmean 0 0 0.42 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0.28 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0.37 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0.11 0
HRVBaseline20minLnTP 0 0 0 0.55 0
HRVBaseline20minLnVLF 0 0 0 0.37 0
HRVBaseline20minLnLF 0 0 0 0.49 0
HRVBaseline20minLnHF 0 0 0 0.42 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.33 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.49
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.41
HRVOrtho5minLnTP 0 0 0 0 0.44
HRVOrtho5minLnVLF 0 0 0 0 0.28
HRVOrtho5minLnLF 0 0 0 0 0.36
HRVOrtho5minLnHF 0 0 0 0 0.44
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.42 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.45 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.43 0 0 0
HRVStroopColor5minLnTP 0 0.34 0 0 0
HRVStroopColor5minLnVLF 0 0.16 0 0 0
HRVStroopColor5minLnLF 0 0.29 0 0 0
HRVStroopColor5minLnHF 0 0.33 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.44 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.36 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.32 0 0 0
HRVStroopEmotion5minLnTP 0 0.22 0 0 0
HRVStroopEmotion5minLnVLF 0 0.05 0 0 0
Percent Variance Explained 0.2 0.35 0.5 0.6 0.71
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Table A2.17: Autonomic Results for the OPPERA Case Control Study, c=0.6

Component 1 2 3 4 5
AvgRestingSPB 0.28 0 0 0 0
AvgRestingDPB 0.16 0 0 0 0
AvgRestingMAP 0.29 0 0 0 0
AvgRestingHR 0 0 0.25 0 0
InitialOrthoSPB 0.08 0 0 0 0
InitialOrthoDPB 0.14 0 0 0 0
InitialOrthoMAP 0.22 0 0 0 0
InitialOrthoHR 0 0 0.08 0 0
StroopColorSPBmean 0.36 0 0 0 0
StroopColorDPBmean 0.31 0 0 0 0
StroopColorMAPmean 0.4 0 0 0 0
StroopColorHRmean 0 0 0.42 0 0
StroopEmotionalSPBmean 0.35 0 0 0 0
StroopEmotionalDPBmean 0.29 0 0 0 0
StroopEmotionalMAPmean 0.39 0 0 0 0
StroopEmotionalHRmean 0 0 0.44 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0.24 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0.33 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0 0
HRVBaseline20minLnTP 0 0 0 0.59 0
HRVBaseline20minLnVLF 0 0 0 0.34 0
HRVBaseline20minLnLF 0 0 0 0.51 0
HRVBaseline20minLnHF 0 0 0 0.41 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.31 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.52
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.41
HRVOrtho5minLnTP 0 0 0 0 0.45
HRVOrtho5minLnVLF 0 0 0 0 0.21
HRVOrtho5minLnLF 0 0 0 0 0.33
HRVOrtho5minLnHF 0 0 0 0 0.45
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.44 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.49 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.46 0 0 0
HRVStroopColor5minLnTP 0 0.34 0 0 0
HRVStroopColor5minLnVLF 0 0.07 0 0 0
HRVStroopColor5minLnLF 0 0.26 0 0 0
HRVStroopColor5minLnHF 0 0.32 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.46 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.36 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0.31 0 0 0
HRVStroopEmotion5minLnTP 0 0.16 0 0 0
HRVStroopEmotion5minLnVLF 0 0 0 0 0
Percent Variance Explained 0.19 0.33 0.47 0.56 0.67
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Table A2.18: Autonomic Results for the OPPERA Case Control Study, c=0.8

Component 1 2 3 4 5
AvgRestingSPB 0.14 0 0 0 0
AvgRestingDPB 0 0 0 0 0
AvgRestingMAP 0.17 0 0 0 0
AvgRestingHR 0 0 0 0 0
InitialOrthoSPB 0 0 0 0 0
InitialOrthoDPB 0 0 0 0 0
InitialOrthoMAP 0 0 0 0 0
InitialOrthoHR 0 0 0 0 0
StroopColorSPBmean 0.4 0 0 0 0
StroopColorDPBmean 0.26 0 0 0 0
StroopColorMAPmean 0.54 0 0 0 0
StroopColorHRmean 0 0 0.42 0 0
StroopEmotionalSPBmean 0.38 0 0 0 0
StroopEmotionalDPBmean 0.18 0 0 0 0
StroopEmotionalMAPmean 0.51 0 0 0 0
StroopEmotionalHRmean 0 0 0.51 0 0
QST.SHRVBaseline20MinMeanHR 0 0 0 0 0
QST.SHRVBaseline20MinSDNN 0 0 0 0 0
QST.SHRVBaseline20MinRMSSD 0 0 0 0 0
HRVBaseline20minLnTP 0 0 0 0.84 0
HRVBaseline20minLnVLF 0 0 0 0 0
HRVBaseline20minLnLF 0 0 0 0.53 0
HRVBaseline20minLnHF 0 0 0 0.08 0
QST.SHRVOrthostatic5MinMeanHR 0 0 0.03 0 0
QST.SHRVOrthostatic5MinSDNN 0 0 0 0 0.8
QST.SHRVOrthostatic5MinRMSSD 0 0 0 0 0.17
HRVOrtho5minLnTP 0 0 0 0 0.39
HRVOrtho5minLnVLF 0 0 0 0 0
HRVOrtho5minLnLF 0 0 0 0 0
HRVOrtho5minLnHF 0 0 0 0 0.42
QST.SHRVSTROOPColor5MinMeanHR 0 0 0.49 0 0
QST.SHRVSTROOPColor5MinSDNN 0 0.77 0 0 0
QST.SHRVSTROOPColor5MinRMSSD 0 0.62 0 0 0
HRVStroopColor5minLnTP 0 0.03 0 0 0
HRVStroopColor5minLnVLF 0 0 0 0 0
HRVStroopColor5minLnLF 0 0 0 0 0
HRVStroopColor5minLnHF 0 0 0 0 0
QST.SHRVSTROOPEmotion5mnMeanHR 0 0 0.57 0 0
QST.SHRVSTROOPEmotion5mnSDNN 0 0.13 0 0 0
QST.SHRVSTROOPEmotion5mnRMSSD 0 0 0 0 0
HRVStroopEmotion5minLnTP 0 0 0 0 0
HRVStroopEmotion5minLnVLF 0 0 0 0 0
Percent Variance Explained 0.14 0.19 0.28 0.33 0.39
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Table A2.19: PCA/SFA Psychosocial Results for the Entire OPPERA Cohort, c=0.4

Component 1 2 3 4
KOHN.Global.Score 0 0 0.12 0
PILL.Global.Score 0.28 0 0 0
POMS.PositiveAffectScore 0 -0.52 0 0
POMS.NegativeAffectScore 0.11 0.23 0 0
PSS.PerceivedStress 0 0.39 0 0
SCL.90R.Depression 0.48 0 0 0
SCL.90R.Somatization 0.47 0 0 0
SCL.90R.Anxiety 0.5 0 0 0
SCL.90R.Hostility 0.45 0 0 0
CSQ.Distraction 0 0 0 0.48
CSQ.IgnoringPain 0 0 0 0.49
CSQ.Distancing 0 0 0 0.49
CSQ.Coping 0 0 0 0.54
CSQ.Praying 0 0 0.21 0
STAIY1.StateTraitAnxiety 0 0.48 0 0
STAIY2.StateTraitAnxiety 0.04 0.48 0 0
PCS.Rumination 0 0 0.61 0
PCS.Magnification 0 0 0.5 0
PCS.Helplessness 0 0 0.57 0
EPQ.Escale 0 -0.08 0 0
EPQ.Nscale 0 0.24 0 0
Percent Variance Explained 0.17 0.34 0.46 0.57
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Table A2.20: PCA/SFA Psychosocial Results for the Entire OPPERA Cohort, c=0.5

Component 1 2 3 4
KOHN.Global.Score 0 0 0 0
PILL.Global.Score 0.22 0 0 0
POMS.PositiveAffectScore 0 -0.56 0 0
POMS.NegativeAffectScore 0 0.14 0 0
PSS.PerceivedStress 0 0.36 0 0
SCL.90R.Depression 0.49 0 0 0
SCL.90R.Somatization 0.48 0 0 0
SCL.90R.Anxiety 0.52 0 0 0
SCL.90R.Hostility 0.45 0 0 0
CSQ.Distraction 0 0 0 0.46
CSQ.IgnoringPain 0 0 0 0.49
CSQ.Distancing 0 0 0 0.48
CSQ.Coping 0 0 0 0.56
CSQ.Praying 0 0 0.08 0
STAIY1.StateTraitAnxiety 0 0.5 0 0
STAIY2.StateTraitAnxiety 0 0.51 0 0
PCS.Rumination 0 0 0.65 0
PCS.Magnification 0 0 0.49 0
PCS.Helplessness 0 0 0.58 0
EPQ.Escale 0 0 0 0
EPQ.Nscale 0 0.15 0 0
Percent Variance Explained 0.16 0.31 0.43 0.54
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Table A2.21: PCA/SFA Psychosocial Results for the Entire OPPERA Cohort, c=0.7

Component 1 2 3 4
KOHN.Global.Score 0 0 0 0
PILL.Global.Score 0 0 0 0
POMS.PositiveAffectScore 0 -0.76 0 0
POMS.NegativeAffectScore 0 0 0 0
PSS.PerceivedStress 0 0 0 0
SCL.90R.Depression 0.5 0 0 0
SCL.90R.Somatization 0.48 0 0 0
SCL.90R.Anxiety 0.61 0 0 0
SCL.90R.Hostility 0.39 0 0 0
CSQ.Distraction 0 0 0 0.21
CSQ.IgnoringPain 0 0 0 0.38
CSQ.Distancing 0 0 0 0.35
CSQ.Coping 0 0 0 0.83
CSQ.Praying 0 0 0 0
STAIY1.StateTraitAnxiety 0 0.43 0 0
STAIY2.StateTraitAnxiety 0 0.48 0 0
PCS.Rumination 0 0 0.78 0
PCS.Magnification 0 0 0.25 0
PCS.Helplessness 0 0 0.57 0
EPQ.Escale 0 0 0 0
EPQ.Nscale 0 0 0 0
Percent Variance Explained 0.14 0.24 0.35 0.44
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Table A2.22: PCA/SFA Psychosocial Results for the Entire OPPERA Cohort, c=0.4
to 0.55

Component 1 2 3 4
KOHN.Global.Score 0 0 0 0
PILL.Global.Score 0.28 0 0 0
POMS.PositiveAffectScore 0 -0.54 0 0
POMS.NegativeAffectScore 0.11 0.2 0 0
PSS.PerceivedStress 0 0.38 0 0
SCL.90R.Depression 0.48 0 0 0
SCL.90R.Somatization 0.47 0 0 0
SCL.90R.Anxiety 0.5 0 0 0
SCL.90R.Hostility 0.45 0 0 0
CSQ.Distraction 0 0 0 0.45
CSQ.IgnoringPain 0 0 0 0.49
CSQ.Distancing 0 0 0 0.48
CSQ.Coping 0 0 0 0.57
CSQ.Praying 0 0 0.08 0
STAIY1.StateTraitAnxiety 0 0.49 0 0
STAIY2.StateTraitAnxiety 0.04 0.5 0 0
PCS.Rumination 0 0 0.65 0
PCS.Magnification 0 0 0.49 0
PCS.Helplessness 0 0 0.58 0
EPQ.Escale 0 -0.01 0 0
EPQ.Nscale 0 0.2 0 0
Percent Variance Explained 0.17 0.33 0.45 0.55
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Table A2.23: PCA/SFA Psychosocial Results for the Entire OPPERA Cohort, c=0.6
to 0.45

Component 1 2 3 4
KOHN.Global.Score 0 0 0 0
PILL.Global.Score 0.09 0 0 0
POMS.PositiveAffectScore 0 -0.59 0 0
POMS.NegativeAffectScore 0 0.04 0 0
PSS.PerceivedStress 0 0.33 0 0
SCL.90R.Depression 0.5 0 0 0
SCL.90R.Somatization 0.49 0 0 0
SCL.90R.Anxiety 0.55 0 0 0
SCL.90R.Hostility 0.45 0 0 0
CSQ.Distraction 0 0 0 0.47
CSQ.IgnoringPain 0 0 0 0.49
CSQ.Distancing 0 0 0 0.49
CSQ.Coping 0 0 0 0.55
CSQ.Praying 0 0 0.08 0
STAIY1.StateTraitAnxiety 0 0.51 0 0
STAIY2.StateTraitAnxiety 0 0.52 0 0
PCS.Rumination 0 0 0.65 0
PCS.Magnification 0 0 0.49 0
PCS.Helplessness 0 0 0.58 0
EPQ.Escale 0 0 0 0
EPQ.Nscale 0 0.05 0 0
Percent Variance Explained 0.15 0.29 0.41 0.51
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Table A2.24: PCA/SFA Psychosocial Results for the Entire OPPERA Cohort, c=0.7
to 0.4

Component 1 2 3 4
KOHN.Global.Score 0 0 0 0
PILL.Global.Score 0 0 0 0
POMS.PositiveAffectScore 0 -0.62 0 0
POMS.NegativeAffectScore 0 0 0 0
PSS.PerceivedStress 0 0.27 0 0
SCL.90R.Depression 0.5 0 0 0
SCL.90R.Somatization 0.48 0 0 0
SCL.90R.Anxiety 0.61 0 0 0
SCL.90R.Hostility 0.39 0 0 0
CSQ.Distraction 0 0 0 0.48
CSQ.IgnoringPain 0 0 0 0.49
CSQ.Distancing 0 0 0 0.49
CSQ.Coping 0 0 0 0.54
CSQ.Praying 0 0 0.08 0
STAIY1.StateTraitAnxiety 0 0.51 0 0
STAIY2.StateTraitAnxiety 0 0.53 0 0
PCS.Rumination 0 0 0.65 0
PCS.Magnification 0 0 0.49 0
PCS.Helplessness 0 0 0.58 0
EPQ.Escale 0 0 0 0
EPQ.Nscale 0 0 0 0
Percent Variance Explained 0.14 0.27 0.39 0.49
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